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Phyllosphere Mycobiome: Diversity 
and Function

Teng Yang, Chao Xiong, Jiayu Zhou, Wei Zhang, and Xin Qian

1  Introduction

Fungi are one of most fascinating and enigmatic kingdoms on earth. They occupy 
enormous habitats in both terrestrial and aquatic environments, driving biogeo-
chemical cycling and influencing the structures of plant and animal communities 
(Peay et al. 2016; Grossart et al. 2019). Even in extreme ecosystems, such as deep- 
sea sediments, volcanic vents, and dry valleys of Antarctica, fungi are still the key 
players of biodiversity and biochemistry (Coleine et al. 2022). Benefiting from the 
development of high-throughput sequencing and omics technics, we are redrawing 
the atlas of fungal kingdom on their taxonomic and functional diversity (Nilsson 
et al. 2019; Fernandes et al. 2021; Tedersoo et al. 2022). For example, current esti-
mates based on high-throughput sequencing suggest that there are at least 6.28 mil-
lion fungal species on earth (Baldrian et al. 2021), which is larger than the total 
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species number previously estimated. In addition, the continuously updated fungal 
databases of functional traits, such as FUNGuild (Nguyen et  al. 2016b), FunFun 
(Zanne et al. 2020), and FungalTraits (Põlme et al. 2021), are designed for rapid 
functional assignments and predicting how fungal functional diversity varies along 
certain environmental gradients. Nevertheless, many previous studies focus on the 
underground fungal diversity and biogeography (Tedersoo et al. 2014, 2021; van der 
Linde et  al. 2018) and mycorrhizal functional ecology (Tedersoo et  al. 2020; 
Tedersoo and Bahram 2019; Genre et al. 2020). The surfaces of phyllosphere fungal 
diversity and function are barely scratched, despite the highest proportion of 
unknown fungal species is assumed in plant tissues and lichens (Baldrian et al. 2021).

Phyllosphere is termed as the aerial habitat influenced by plants (Lindow and 
Leveau 2002), and generally includes the endosphere and episphere (i.e., surface) of 
plants tissues. In some cases, phyllosphere also includes stems, buds, flowers, and 
fruits (Whipps et al. 2008); however, most studies on phyllosphere microbiology 
focus on leaves, the most dominant plant aerial organ. It is estimated that the ter-
restrial leaf surface area is close to 109 km2 (Lindow and Brandl 2003). Previously, 
researchers performed lots of work on bacterial diversity and function in phyllo-
sphere (Lindow and Leveau 2002; Lindow and Brandl 2003; Remus-Emsermann 
and Schlechter 2018). This is because bacterial community is regarded as the most 
predominant component of phyllosphere microbial community by the traditional 
view. For example, based on culture method, bacterial cell number was found about 
100-fold larger than fungal cell number in the unit weight of the blade (Yang et al. 
2013b); however, the difference between phyllosphere bacteria and fungi was not 
significant at the diversity level (Xiong et al. 2021b; Wei et al. 2022). As far as phyl-
losphere microbial functions are concerned, both bacteria and fungi play the crucial 
roles in plant fitness, health, and productivity (Bashir et al. 2022; Xu et al. 2022a, b).

Compared with phyllosphere bacteria, phyllosphere fungi may have the larger 
differences in morphology, such as filamentous and yeast forms. Moreover, fungi 
are supposed to more actively enter the internal tissues of plants through leaf sto-
mata or cuticle wounds. Consequently, a large quantity of case studies and reviews 
on phyllosphere fungi are at the scope of foliar endophytic fungi, including foliar 
endophytic fungal diversity and their interactions with plant health and fitness 
(Arnold 2007; Rodriguez et al. 2009; Busby et al. 2016). For example, Busby et al. 
exemplified foliar endophytic fungi to clarify how the plant microbiomes facilitate 
reforestation and serve in long-term forest carbon capture and the conservation of 
biodiversity (Busby et  al. 2022). For leaf episphere, Gouka et  al. reviewed the 
updated ecology and functional potential of yeasts; using genomic surveys, they 
proposed that we only scratched the surface of the largely unexplored functional 
potential of phyllosphere yeasts (Gouka et al. 2022).

Fungi exhibit a spectrum of life strategies among saprotrophy, mutualism (at 
most of the time, commensalism), and parasitism in phyllosphere (Schulz and Boyle 
2005). At the alive state of leaves, endophytic and epiphytic fungi can mediate host 
plant growth and health by affecting plant physiology, development, and tolerance 
to biotic and abiotic stresses (Yang et al. 2013a, 2014; Busby et al. 2016; Costa 
Pinto et al. 2000; Khan et al. 2015). When leaves fall, some phyllosphere (epiphytic 
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and endophytic) fungi, as the pioneer decomposers of leaf litter, drive the degrada-
tion of leaves, and facilitate the nutrient reflux to plants or soil organic matter accu-
mulation (Voriskova and Baldrian 2013; Unterseher et al. 2013; Chen et al. 2022; 
Osono 2006). Consequently, phyllosphere fungi play a predominant role in global 
carbon-nitrogen cycle, which has been largely ignored in the past. It is noted that 
foliar endophytic fungi, epiphytic fungi and both of them can be all termed as phyl-
losphere fungi. In some studies, epiphytic fungi are also termed as phylloplane 
fungi (Xiong et al. 2021a, b). The usage of aforementioned terms is determined by 
the pre-process methods of samples (e.g., leaf surface sterilization or not). 
Investigations at different compartments (e.g., endosphere vs. episphere) may lead 
to the distinctive diversity levels, community compositions, and co-occurrence pat-
terns (Yao et al. 2019).

Albert Einstein once said that it is more important to ask a question than to solve 
it. Around phyllosphere mycobiome, there are many questions that await to be 
solved. On one hand, high diversity of phyllosphere mycobiome spawns a series of 
questions about biogeographic patterns, temporal dynamics, and community assem-
bly processes. For example, what are the main environmental factors driving phyl-
losphere fungal diversity and community composition at different temporal and 
spatial scales? What are the relative contributions of stochastic and deterministic 
processes to fungal community assembly in phyllosphere? What are the proportions 
of phyllosphere fungal community originating from soil, air and water, respec-
tively? On the other hand, the essential functions of phyllosphere mycobiome trig-
ger us to think about the complicated interactions of phyllosphere mycobiome with 
plant health, changing environments and other biological communities. For exam-
ple, what are the key functional traits and genes of phyllosphere fungi that can sig-
nificantly enhance plant fitness and health? Whether do global change factors, such 
as warming and drought, break the balance of original relationships between phyl-
losphere fungi and host plants, or impair the beneficial effects of phyllosphere 
mycobiome? What are the potential roles of phyllosphere mycobiome in future 
global carbon cycling? By reading the chapter, we are confident that the readers will 
find most of the answers to the above questions.

2  High Diversity of the Phyllosphere Mycobiome

The phyllosphere supports a massive diversity of yeasts and filamentous fungi. 
Many of them are epiphytic and then become endophytic by entering the internal 
tissues. Some phyllosphere fungi could turn to pathogens (Behnke-Borowczyk 
et al. 2019; Lazarevic and Menkis 2020), while others have antagonistic capacities 
and influence plant performance (Bashir et al. 2022). Yeasts are the major fungal 
epiphytes, among which Cryptococcus, Sporobolomyces and Rhodotorula are the 
commonly occurring genera (Glushakova and Chernov 2004). Yeast-like fungus 
Aureobasidium pullulans is also frequently found in phyllosphere (Inacio et  al. 
2002). Compared to yeasts, most filamentous fungi tend to be endophytic and 
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commonly belong to Acremonium, Alternaria, Aspergillus, Cladosporium, Mucor 
and Penicillium (Bashir et al. 2022). Here, we summarize and compare the com-
munity composition and diversity of phyllosphere fungi from various plant species 
in different ecosystems, including natural ecosystems, agroecosystems, and urban 
ecosystems. We focus on the representative fungal taxa at genus level and summa-
rize the fungal diversities in Table 1.

2.1  Natural Ecosystems

A natural ecosystem is a relatively stable ecosystem maintained by natural regula-
tion within a certain time and space scale. On land, natural ecosystems mainly 
include forests, grasslands, deserts and wetlands. Among them, forests represent the 
highly productive ecosystem with hierarchical structure, numerous species and 
essential ecological functions (Baldrian 2017; Pan et al. 2011). Forests are mainly 
consisted of and represented by coniferous and broad-leaved trees, and thus the 
diverse phyllosphere fungi related to these tall trees are summarized at first.

Conifer needles are long lived and thus may harbor diverse fungal taxa (Millberg 
et al. 2015). Pinus is one of the most widely distributed coniferous trees. Previous 
studies showed that Alternaria, Aspergillus, Cladosporium, Cryptococcus, 
Lophodermium, Penicillium and Sydowia were the most observed fungal genera in 
Pinus (Lazarevic and Menkis 2020; Behnke-Borowczyk et al. 2019; Millberg et al. 
2015; Agan et al. 2021; Sun et al. 2021b; Lynikiene et al. 2020; Oono et al. 2015). 
In these cases, Cladosporium and Lophodermium were commonly observed in the 
phyllosphere of P. sylvestris, which was one of the most naturally widespread Pinus 
species (Behnke-Borowczyk et  al. 2019; Millberg et  al. 2015; Agan et  al. 2021; 
Lynikiene et al. 2020). Moreover, higher fungal diversity was observed in needles 
with disease symptoms compared to healthy ones of P. sylvestris, indicating the 
enrichment of plant pathogens or decomposers (Millberg et al. 2015). In addition, 
the phyllosphere fungal diversities of Picea abies (Nguyen et  al. 2016a), Picea 
glauca (Eusemann et  al. 2016) and Sequoia sempervirens (Harrison et  al. 2016) 
were also investigated. Generally, Cladosporium is the most common fungal genus 
in the phyllosphere of coniferous trees according to our summary. Alternaria, 
Aspergillus, Aureobasidium, Cryptococcus, Exobasidium, Lophodermium, 
Penicillium, Phoma, Sydowia and Taphrina were frequently observed in phyllo-
sphere as well.

Most of coniferous tree leaves remain alive and green all the year around. 
Moreover, some broad-leaved tree species are also evergreen or semi-evergreen. It 
is interesting to explore their phyllosphere fungal composition and to compare the 
common fungal genera in the phyllosphere of coniferous and these broad-leaved 
trees. Euterpe oleracea is an arborescent multiple stemmed palm with Xylaria and 
Letendraeopsis as the most common foliar endophytic fungi (Rodrigues 1994). 
Another study isolated and identified the phyllosphere fungal communities of five 
evergreen or semi-evergreen plant species (Acer monspessulanum, Quercus faginea, 
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Cistus albidus, Pistacia lentiscus and Osyris quadripartita) in a mediterranean- type 
ecosystem; they found that Alternaria, Aureobasidium, Cladosporium and 
Penicillium could be recovered from the leaf samples (Inacio et al. 2002). These 
four fungal genera were also frequently observed in the phyllosphere of coniferous 
species, indicating the long-life leaves might harbor the similar fungal taxa.

Although the leaves of some broad-leaved trees are evergreen or semi-evergreen, 
the leaves of most broad-leaved trees sprout in spring and fall in autumn. Thus, it is 
interesting to investigate whether these broad-leaved trees harbor different phyllo-
sphere fungal communities compared to evergreen coniferous and broad-leaved 
trees. Some studies investigated phyllosphere fungal communities of Fagus sylvat-
ica and showed that Mycosphaerella and Pseudocercospora were commonly 
observed in the phyllosphere (Cordier et  al. 2012a, b; Siddique and Unterseher 
2016; Unterseher et al. 2016). Other studies surveyed the phyllosphere fungal com-
munities of more deciduous broad-leaved tree species, such as Betula ermanii (Yang 
et al. 2016b), Mussaenda shikokiana (Qian et al. 2018a), and Swida controversa 
(Osono and Mori 2005). Summarily, Cladosporium and Phoma were the most com-
mon fungal genera in the phyllosphere of deciduous broad-leaved trees according to 
our review. Moreover, Alternaria, Aureobasidium, Cryptococcus, Mycosphaerella, 
Penicillium and Pseudocercospora were frequently observed. Although the life 
cycles of evergreen and deciduous trees are quite different, they harbor the similar 
fungal taxa in their phyllosphere.

Besides trees, phyllosphere fungal diversities of shrubs and herbs were explored as 
well. For Catharanthus roseus in the coastal areas, Alternaria, Cophinforma and 
Colletotrichum were the only three fungal genera isolated from the sterilized leaves 
(Dhayanithy et al. 2019). The phyllosphere yeast populations of Oxalis acetosella were 
dominated by Cystofilobasidium, Cryptococcus, Rhodotorula, and Sporobolomyces 
(Glushakova and Chernov 2004).

Summarily, Cladosporium was the most common fungal genus in the phyllo-
sphere of both coniferous and broad-leaved trees, which was not commonly 
observed in shrubs and herbs. This difference may be due to different sunshine 
conditions - the leaves of trees were commonly sampled from the canopy, while the 
leaves of shrubs and herbs most occupy the shade. In addition, Alternaria was fre-
quently observed in the phyllosphere of trees and shrubs, while Cryptococcus was 
frequently observed in the phyllosphere of trees and herbs. It indicates some fungal 
taxa may horizontally transfer among different plant species. It is worth noting that 
different plant lineages harbor specific phyllosphere fungal taxa. Various morpho-
logical and metabolic characteristics of host plants’ leaves may be one of important 
reasons behind the aforementioned patterns.

2.2  Agroecosystems

Agriculture practices can significantly influence phyllosphere fungal diversity and 
function. For example, conventional and organic agricultural management 
differentially affected the fungal community composition on the leaves of grapevines 
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(Castaneda et  al. 2018). Organic farming could increase fungal richness in the 
phyllosphere of Triticum aestivum (Karlsson et  al. 2017). Fungicide negatively 
affected the fungal richness and evenness as well as significantly changed the fungal 
composition in the phyllosphere of T. aestivum (Karlsson et al. 2014). Moreover, 
agroecosystems are supposed to harbor different fungal taxa compared to natural 
ecosystems. Recent studies showed that phyllosphere mycobiome is very important 
to crop health and growth (Sapkota et al. 2015). Thus, understanding the diversity 
of phyllosphere mycobiome in agroecosystems is crucial to develop new strategies 
for improving crop growth and adaptation.

In particular, phyllosphere fungal diversity in cereals has been largely explored, 
considering their importance to global food production. The phyllosphere mycobi-
ome of Avena sativa, Hordeum vulgare, Secale cereale, T. aestivum and Triticum × 
Secale were explored, and 20 fungal genera were observed in phyllosphere (Sapkota 
et al. 2015). Each genus was observed at least in two plant species, indicating the 
possibility of core fungal community in the phyllosphere of diverse cereals. Among 
them, Cladosporium and Cryptococcus were the most common genera observed in 
the phyllosphere of T. aestivum (Karlsson et  al. 2014, 2017; Larran et  al. 2007; 
Sapkota et al. 2015). Other studies focused on the fungal diversity in the phyllo-
sphere of Oryza sativa, the major cereal in Asia. For example, Venkatachalam et al. 
isolated and identified two morphologically different fungal strains, belonging to 
Bipolaris and Curvularia (Venkatachalam et al. 2016). Mwajita et al. showed that 
Penicillium, Aspergillus and Trichoderma were the common genera in the phyllo-
sphere of O. sativa (Mwajita et al. 2013). Nasanit et al. focused on the epiphytic 
yeast diversity in O. sativa; they found that Bullera, Pseudozyma and Cryptococcus 
were the most common genera (Nasanit et al. 2015). The fungal genera observed in 
the aforementioned three studies were quite different; the reason may be the signifi-
cant biogeographic isolation of phyllosphere fungal communities between nations 
that were revealed by culturable methods.

In addition, some studies explored the phyllosphere fungal communities across 
different grape species. For example, Singh et al. surveyed the fungal community 
composition in the phyllosphere of Vitis pentagona, Vitis riparia, Vitis vinifera, 
Muscadinia rotundifolia and Parthenocissus quinquefolia by Illumina MiSeq 
sequencing; they found that Alternaria, Aureobasidium, Cladosporium and 
Lachnum were the most abundant genera observed (Singh et al. 2019). Alternaria, 
Davidiella and Didymella were most abundant in the phyllosphere of Carménère 
grapevines (V. vinifera) (Castaneda et al. 2018). Moreover, the study showed that 
the diversity of phyllosphere fungi were highest in the wild, lowest in the conven-
tional, and intermediate in the organic vineyard, respectively (Kernaghan et  al. 
2017). According to these studies, Alternaria was the most common fungal genus in 
the grape phyllosphere.

Besides cereals and fruits, vegetables are also important crops in agroecosys-
tems. Kim and Park surveyed the fungal diversity in phyllosphere of preharvest and 
postharvest broccoli (Brassica oleracea var. italic); they found that Cystofilobasidium 
and Purpureocillium were the representative genera in phyllosphere of preharvest 
broccoli, while Filobasidium and Sporobolomyces were the most abundant genera 

Phyllosphere Mycobiome: Diversity and Function



72

in the phyllosphere of postharvest broccoli (Kim and Park 2021). Another study 
surveyed 26 lettuce (Lactuca spp.) accessions and showed that Sporobolomyces and 
Cladosporium were the two dominant genera with significant different abundances 
among accessions (Hunter et  al. 2015). In addition, the researchers analyzed the 
fungal diversity in the phyllosphere of pumpkin (Cucurbita moschata) showing 
powdery mildew symptoms; they found besides Podosphaera (the plant pathogen), 
Alternaria, Aureobasidium and Davidiella were the most observed genera (Zhang 
et al. 2018d). Toju et al. surveyed the leaf endophytic fungal community of tomato 
(Solanum lycopersicum) and found that Cladosporium, Dioszegia and Moesziomyces 
were the most frequently observed genera (Toju et al. 2019).

Moreover, many studies were performed on the phyllosphere mycobiome of 
medicinal plants, considering their contributions to human health. Atractylodes lan-
cea is a traditional Chinese medicinal plant with abundant bioactive terpenoids. 
Acremonium, Fusarium and Penicillium were the most abundant fungal genera in 
the phyllosphere of A. lancea; besides, some special fungal genera, such as Absidia, 
Gilmaniella and Verticillum, were also observed in phyllosphere (Yang et al. 2013b). 
Ginkgo biloba is one of the most distinctive trees with an important position in plant 
evolution, and its dry leaves have multiple medicinal values (Lin et al. 2022). In the 
leaf interiors of G. biloba, Alternaria, Colletotrichum, Fusarium and Phomopsis 
were the most dominant fungal genera (Xiao et  al. 2013). For the traditional 
Brazilian medicinal plant, Solanum cernuum, the dominant phyllosphere fungal 
genera differed between seasons: Colletotrichum, Coprinellus and Phoma were 
most frequently observed in summer; while Arthrobotrys, Colletotrichum, 
Glomerella, Diatrypella, and Mucor were most frequently observed in winter 
(Vieira et al. 2012). It is noteworthy that medicinal plants tend to harbor special 
fungal genera in their phyllosphere, which may facilitate the synthesis and accumu-
lation of special bioactive secondary metabolites (Yang and Dai 2013).

Summarily, Alternaria, Cladosporium and Cryptococcus were frequently 
observed in both natural and agricultural ecosystems. However, Exobasiduim, 
Lophodermium and Sydowia were only enriched in natural ecosystems. The phyl-
losphere of agricultural crops, especially vegetables, harbored some unique fungal 
taxa, such as Dioszegia and Sporobolomyces, indicating the interactive effects of 
agriculture practices and plant species identity. In addition, for most cases, the 
observed numbers of genera and OTUs in agroecosystems were lower than those in 
natural ecosystems (Table 1).

2.3  Urban Ecosystems

With an increase in human population, urban area is expanding rapidly. Compared 
to other ecosystems, urban microbial communities are largely affected by anthropo-
genic activities, land management, urban heat island effect and air pollution 
(Perreault and Laforest-Lapointe 2022). For example, Q. macrocarpa is a native 
tree species in Manhattan and often used as an ornamental tree. Fungal richness and 
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other diversity indices in the phyllosphere of Q. macrocarpa grown in urban areas 
were lower than those trees grown in nonurban areas (Jumpponen and Jones 2009), 
and half of the phyllosphere fungal genera showed distinct and significant seasonal 
dynamics (Jumpponen and Jones 2010).

Many plant species are cultivated in urban area to purify the air and improve the 
environment. Some of them could release fragrant and antimicrobial volatiles. 
Eucalyptus citriodora is a widely cultivated tree in Indian cities; Cladosporium was 
dominant in its phylloplane, while Botrytis was dominant in its leaf interiors 
(Kharwar et al. 2010). For Populus balsamifera grown in a garden, Leptosphaerulina 
was dominant in the phyllosphere (Balint et al. 2013). Moreover, some flowers were 
also common ornamental plants cultivated in urban ecosystems, and their phyllo-
sphere mycobiome were explored as well, such as Camellia japonica (Osono 2008) 
and Lycoris radiata (Zhou et  al. 2020). Among their phyllosphere fungi, 
Colletotrichum was the genus observed in both of the two flowers.

Some studies revealed that the plants grown in polluted areas could harbor more 
pollutant-degrading microbes. For example, aromatic hydrocarbon (AH) degrading 
fungi were enriched in the phyllosphere of Ixora chinensis, Ervatamia divaricata, 
Hibiscus rosa-sinensis and Amaranthus cruentus, which were grown on the road-
sides of polluted areas (Undugoda et al. 2016). Fungal communities in the phyllo-
sphere of Cinnamomum camphora were surveyed in urban, suburban and rural area. 
The results showed that the fungal diversity was highest in the suburban areas and 
was strongly affected by the polycyclic aromatic hydrocarbon (PAH) concentrations 
(Tan et  al. 2022); among the ten most abundant fungal genera, Mycosphaerella, 
Zasmidium, Trimmatostoma, Epicoccum and Paraconiothyrium were common in 
rural and suburban area, and Phoma was common in urban area.

Generally, all these studies showed that urban ecosystem could harbor special 
fungal taxa, and their enrichment was related to the environmental pollution induced 
by urbanization. In summary, common fungal genera could be observed in the phyl-
losphere of all the three ecosystems, but their abundances varied significantly. Thus, 
different ecosystems could enrich different fungal genera, indicating that different 
dominant environmental factors constrain and shape the fungal diversity and com-
munity composition accordingly.

3  Fungal Biogeographic Patterns in Phyllosphere

Fungal biogeography is the study of distribution of fungal diversity over space and 
time; the subject aims to reveal the general patterns and the underlying drivers 
(Martiny et al. 2006). It is necessary to know which fungi are where, and why they 
are found there and not somewhere else. These knowledges are the premise and 
foundation for the protection of fungal diversity and the utilization of fungal 
resources. The phyllosphere habitat provides an excellent platform to test the bio-
geographic hypotheses and formulate the associated theories (Andrews and Harris 
2000). As early as 1987, researchers had used the theory of island biogeography to 
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explain the fungal distributions on apple leaves (Andrews et al. 1987); they proposed 
that leaves, like virtual islands, have the natural advantages for biogeographic 
studies, as they are accessible, replicated and easily manipulated. Other researchers 
corroborated the geographic isolation and size effect of islands by surveying foliar 
endophytic fungi of birch trees in the archipelago of Finland (Helander et al. 2007). 
Based on the framework of current microbial biogeography (Chu et al. 2020), phyl-
losphere fungal biogeographic distribution is constrained by multiple driving fac-
tors, such as plant host identity, leaf functional traits, climatic conditions, geographic 
distance and other microbial guilds. Of note, microbial biogeographic distribution 
is spatial scale dependent. At the different spatial scales, the main driving factors 
may be distinctive (Vaz et al. 2014b). In addition, different detection methods, e.g., 
culture-based and culture-free methods (e.g., 454 Pyrosequencing, MiSeq 
Sequencing, and PacBio Sequencing), may lead to the different observed patterns 
(Bowman and Arnold 2021).

3.1  Fine and Local Scales

At the local-scale tropical forests, there are strong evidence of host tree preference 
and spatial heterogeneity for phyllosphere fungal communities, regardless of using 
culture-based or culture-free methods (Arnold et  al. 2000; Kembel and Mueller 
2014). However, the aforementioned host- and habitat-specificity were not observed 
for phyllosphere fungal communities of grasses in tropical forests (Higgins et al. 
2011, 2014). In other ecosystems, such as mountains, mangroves, and arctic zones, 
phyllosphere fungi also exhibited host-specificity, namely, different plant species 
have unique fungal partners (Arfi et al. 2012; Zhang and Yao 2015; Yao et al. 2019; 
Apigo and Oono 2022). The significant plant identity effect is partly attributed to 
leaf economic traits (Kembel and Mueller 2014; Tellez et al. 2022), and its extent 
varies by different plant abundances and lineages (Apigo and Oono 2022).

In order to deeply and extensively explore the other driving factors besides plant 
species identity, many studies focused on the phyllosphere fungal biogeography of 
single plant species. Across a Hawaiian landscape, foliar endophytic fungal com-
munities of Metrosideros polymorpha were strongly driven by temperature and 
rainfall (Zimmerman and Vitousek 2012). In a subalpine timberline ecotone on 
Changbai Mountain, the alpha diversity of foliar endophytic fungi of B. ermanii 
significantly increased with increasing elevation, and fungal community composi-
tion differed between different elevation sites; leaf carbon was the main driver of 
alpha diversity and community composition (Yang et al. 2016b). For Pinus muri-
cata and Vaccinium ovatum growing across a broad soil nutrient gradient, foliar 
endophytic fungal richness was constrained by leaf nitrogen-to-phosphorus ratio 
and sodium content (Oono et al. 2020). The effect of plant within-species variation 
(i.e., tree genotype) was not observed in the needle mycobiome-Picea glauca sys-
tem at an arctic treeline ecotone (Eusemann et al. 2016). In addition, biotic interac-
tions, such as neighboring plant diversity, fungal-fungal associations, mycorrhizal 
colonization, and inoculation of endophytes, were found to be significant drivers of 
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phyllosphere fungal communities (Pan and May 2009; Eschen et al. 2010; Nguyen 
et al. 2017; Yang et al. 2013b). Even at the fine scale, there are still the significant 
biogeographic patterns; e.g., fungal endophytes Xylaria associated with Myrtaceae 
exhibited leaf fragment preference to petiole and tip (Vaz et al. 2014a).

3.2  Regional Scales

Regional-scale biogeographic studies are commonly carried out over a span of more 
than 100 km, and thus have the larger geographic distance and broader environmental 
gradient compared with local-scale studies. Both host species identity and 
geographic locality were the primary drivers of fungal communities in phyllosphere 
at the regional scale (Hoffman and Arnold 2008). However, their relative effects 
were different, and most of the studies showed that host species identity played a 
more important role than dispersal limitation in shaping phyllosphere fungal bio-
geographic patterns (Lau et al. 2013; Sapkota et al. 2015; Vincent et al. 2016). Of 
note, with increasing urbanization, the community dissimilarity of foliar endophytic 
fungi among different tree species in urban zones significantly decreased compared 
with that in rural forests (Matsumura and Fukuda 2013). It indicates that human 
activity exerts a profound effect on fungal biogeographic patterns in phyllosphere, 
e.g., decrease beta diversity among different tree species (i.e., host specificity).

Strictly, site effect may result from two independent factors – one is geographic 
distance, and the other is environmental distance (e.g., climatic difference). By 
focusing on the phyllosphere fungal community of single plant species, researchers 
found that environmental filtering plays a greater role in structuring foliar fungal 
communities than dispersal limitation caused by geographic distance (Garcia et al. 
2013; Barge et al. 2019; Bowman and Arnold 2021). In addition, fungal community 
composition in the phyllosphere of Mussaenda pubescens was significantly 
structured by host genotype, and less by geographic distance (Qian et al. 2018b). 
Manipulative experiments are the important supplement to field surveys in 
biogeographic studies, as it can uncouple multiple effects directly and test for 
causality. Commonly, the manipulative experiments are carried out at the local 
scale. Sometimes, for example, provenance-progeny trails can be carried out at 
regional scales. Based the provenance-progeny trails of sugar maple as well as 
switchgrass, researchers found that site effect was the main driver of the variation 
in phyllosphere fungal communities, whereas seed provenance or host ecotype has 
no significant effect (Whitaker et al. 2018; De Bellis et al. 2022). Recently, a 7-year 
old provenance-progeny trail showed that both site and host genetic variation shape 
the phyllosphere fungal communities of Scots pine (Schonrogge et  al. 2022). 
Therefore, more experiments involving single plant species should be extensively 
performed to summarize the general pattern of phyllosphere fungal biogeography. 
In addition, aerial spore communities, rare fungal species and plant genetic distance 
among different host species were also reported as the drivers for phyllosphere 
fungal distributions (Oono et  al. 2017; Redondo et  al. 2022; Sarver et  al. 2022;  
Teng et al. 2022).
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3.3  Continental and Global Scales

Phyllosphere fungi cooccur with all major lineages of land plants and are widely 
distributed across every corner of the earth. However, few studies were really per-
formed to reveal the biogeographic pattern of phyllosphere fungi at the global scale. 
Previously, Arnold and Lutzoni isolated, cultured and (Sanger) sequenced 1403 
endophytic fungal strains involving 28 host plant species from the lowland tropical 
forest of central Panama to the Canadian arctic; they found the incidence, diversity, 
and host breadth of foliar endophytic fungi significantly decreased with the increas-
ing latitude (Arnold and Lutzoni 2007). The diversity pattern of foliar endophytic 
fungi along latitude seems to be similar to the pattern of plants and animals. Later 
on, the research team examined 4154 endophytic and endolichenic fungal strains 
involving ca. 20 plant and lichen species across North America; climatic variables, 
geographic distance, and plant host  identity together affected the fungal distribu-
tions at the continental scale, among which climatic variables more strongly affected 
the fungal distributions than geographic distance alone (U’ren et al. 2012). It indi-
cates again that environmental filtering plays a greater role in structuring foliar fun-
gal communities than dispersal limitation at the broad spatial scale. When we study 
the global-scale phyllophere fungal biogeography, one issue always exists. 
Considering the turnover of host plants with geography and climate, the relative 
effects of host species identity, geographic distance, and abiotic environmental vari-
ables on foliar fungal biogeography are not clear, especially at the global scale. Also 
from the progress of Arnold’s team, they revealed that host availability, rather than 
turnover with geographic or environmental distance, drove distributions of foliar 
endophytic fungi in boreal forest ecosystems at the trans-continent scale (across 
North America and Eurasia) (U’Ren et al. 2019).

Although there has been a few continental- and trans-continental-scale studies 
on phyllosphere fungal biogeography, these studies are mainly carried out in the 
American continent and for foliar endophytic fungi. Therefore, more global-scale 
integrated studies are needed to form the fundamental knowledge on the biogeogra-
phy of phyllosphere fungi. Meta-analysis is one of practical approaches to acquire 
the global-scale understanding. Starting from the raw sequencing data of 10 
published studies, researchers corroborated the latitudinal diversity decline and 
distance-decay relationships, which indicates the similarity in biogeographic 
patterns between fungi and other organisms (Meiser et al. 2014). Recently, Bladrian 
et  al. complied and analyzed fungal high-throughput sequencing data from 156 
publications; they extrapolated fungal diversity to 6.28 million and highlighted the 
hotspot of unknow diversity in lichen and plant tissues (Baldrian et al. 2021). Of 
note, phyllophere samples only accounted for one part in the aforementioned meta- 
analysis studies. Fortunately, some citizen science projects (incl. Dataset 
construction; Franic et  al. 2022) that specify phyllosphere fungi are in progress 
(https://sisu.ut.ee/funleaf/about). In the near future, it will definitely bring us more 
insights into the biogeographic patterns of phyllosphere fungi.
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4  Fungal Temporal Dynamics in Phyllosphere

4.1  Temporal Factors Shaping Phyllosphere 
Mycobiome Assembly

A better understanding of fungal temporal dynamics in the phyllosphere is essential 
for uncovering fundamental ecological processes underpinning the assembly of the 
plant mycobiome. Changes in phyllosphere mycobiome assembly along plant 
growth are closely associated with many temporal factors, including plant age, host 
developmental stage, and seasonal climatic factors (Gao et al. 2020; Xiong et al. 
2021b; Vacher et al. 2016; Remus-Emsermann and Schlechter 2018). Growing evi-
dences on maize, sorghum, barley, Arabidopsis, and trees have revealed that plant 
developmental stage and growing season are important factors influencing structure 
and function of leaf-associated fungal communities and regulating the balance 
between deterministic and stochastic processes in phyllosphere mycobiome assem-
bly (Table 2). For example, Gao and colleagues showed that leaf-associated fungal 
communities altered strongly across plant developmental stages (1st to 17th week), 
and stochastic forces (drift or stochastic dispersal) played a role in shaping leaf 
fungal community assembly at the early stage of plant development (Gao et  al. 
2020). Similarly, a recent work on maize grown under different fertilization prac-
tices at two contrast sites have suggested that plant developmental stage had the 
strongest effects on the phylloplane mycobiome, compared with other plant and soil 
compartments (Xiong et al. 2021b). Null model analysis further showed that the 
relative importance of deterministic and stochastic processes in the assembly of 
leaf-associated mycobiome were greatly influenced by plant developmental stage, 
with a higher relative contribution of stochastic processes mainly belonging to 
homogenizing dispersal and undominated (e.g., diversification and/or drift) observ-
ing for both epiphytic and endophytic phyllosphere fungal communities at the seed-
ling stage (Xiong et al. 2021b). By contrast, deterministic processes dominated the 
assembly of endophytic phyllosphere fungal community at both tasseling and 
mature stages (Xiong et  al. 2021b). Given that the phyllosphere is an important 
interface between the plant host and the environment, fungal community assembly 
in the phyllosphere is not only shaped by temporal factors but also influenced by 
other biotic and abiotic factors (Vacher et  al. 2016; Remus-Emsermann and 
Schlechter 2018; Vorholt 2012). By using artificial plants made of plastic material 
as “background controls” in the field during maize developmental stages, Xiong and 
colleagues found that season-dependent environmental factors like air, dust and 
rainwater also played a role in phyllosphere fungal community assembly (Xiong 
et al. 2021b). Source tracking analysis further indicated that atmosphere environment 
contributed an increasing proportion as the source of the maize phylloplane fungal 
community across three plant developmental stages (from 86.6% to 92.4%) (Xiong 
et al. 2021b).
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Table 2 Recent studies on fungal temporal dynamics in phyllosphere

Plant species
Leaf 
Compartment Research content Temporal factor References

Arabidopsis 
thaliana

Episphere and 
endosphere

Fungal diversity, 
composition, and 
network properties

5 growing 
seasons

Almario et al. 
(2022)

45 subtropical 
tree species

Episphere Fungal diversity and 
composition

Dry and wet 
seasons

Li et al. 
(2022a)

Hordeum vulgare Episphere and 
endosphere

Fungal diversity, 
composition, and 
network properties

1st to 18th week Sapkota et al. 
(2022)

Schefflera 
octophylla

Episphere Fungal composition 
and network 
properties

2nd to 6th week Song et al. 
(2022b)

Camellia sinensis Episphere and 
endosphere

Fungal diversity and 
composition

4 developmental 
stages

Xu et al. 
(2022b)

Gingko biloba,
Pinus bungeana, 
and Sabina 
chinensis

Episphere Fungal diversity, 
composition, and 
network properties

2 growing 
seasons

Bao et al. 
(2022)

Zea mays Episphere and 
endosphere

Fungal diversity, 
composition, 
assembly processes, 
and network 
properties

3 developmental 
stages

Xiong et al. 
(2021b)

Quercus robur Episphere and 
endosphere

Fungal diversity and 
composition

3 growing 
seasons

Faticov et al. 
(2021)

Panicum 
virgatum

Episphere and 
endosphere

Fungal diversity, 
composition, and 
network properties

7 growing 
seasons

Bowsher et al. 
(2021)

Sorghum bicolor Episphere and 
endosphere

Fungal diversity, 
composition, and 
assembly processes

1st to 17th week Gao et al. 
(2020)

Olea europaea Endosphere Fungal diversity and 
composition

3 growing 
seasons

Materatski 
et al. (2019)

Olea europaea Episphere and 
endosphere

Fungal diversity and 
composition

2 growing 
seasons

Gomes et al. 
(2018)

Fraxinus 
excelsior

Episphere and 
endosphere

Fungal diversity and 
composition

9 growing time 
points

Cross et al. 
(2017)

In addition, increasing studies indicated that effects of the temporal factors and 
other drivers on fungal community assembly in the phyllosphere largely depend on 
changes in plant growth and developmental stages, variation in host identity, and 
spatial scale (e.g., geographic distance). For example, previous work had showed 
that plant developmental stage (18–39%) dominated over site (3–26%) in shaping 
fungal communities in both epiphytic and endophytic phyllosphere of maize (Xiong 
et  al. 2021b). At the plant level, it was reported that plant developmental stage 
(10.7%) played a more important role than drought treatment (2.6%) and plant 
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cultivar (0.2%) in structuring fungal communities across soil, root, and leaf of 
sorghum (Gao et al. 2020). Moreover, a recent work on oak had suggested that plant 
growing season (10%) explained more variation in leaf fungal communities than 
warming treatment (2%) and host genotype (1%) (Faticov et al. 2021). Study on 
spring barley reported that plant age (44%) played a more important role than host 
cultivar (1%) in shaping leaf fungal community (Sapkota et al. 2022). Gomes et al. 
examined fungal communities in endophytic and epiphytic phyllosphere and 
demonstrated that season was the major driver of fungal community composition, 
especially for epiphytic fungal community (Gomes et al. 2018). Wind speed and 
temperature were important environmental factors influencing epiphytic 
phyllosphere fungal community, while plant organ, rainfall, and temperature were 
the major drivers shaping endophytic phyllosphere fungal community (Gomes et al. 
2018). All these results suggest that the temporal factors are vital drivers shaping the 
assembly of leaf- associated fungal communities under different host selection and 
environmental stresses.

4.2  Temporal Patterns of Fungal Diversity, Composition, 
and Networks

Increasing works have suggested that the temporal factors also significantly affected 
diversity, composition, and co-occurrence patterns of the phyllosphere mycobiome 
(Bowsher et al. 2021; Li et al. 2022a; Faticov et al. 2021; Almario et al. 2022). For 
instance, the study on the pedunculate oak (Quercus robur) across one growing 
season had showed that phyllosphere fungal species richness increased but evenness 
decreased during the growing season (Faticov et al. 2021). The relative abundance 
of Yeasts increased over the time, while putative fungal pathogens decreased 
(Faticov et al. 2021). A recent work analyzed leaf fungal community of Arabidopsis 
thaliana throughout the plant’s natural growing season (extending from November 
to March) over three consecutive years, and demonstrated that the time of sampling 
had an important effect on fungal communities (32–40% explained variance) 
(Almario et  al. 2022). The relative abundance of Microbotryales increased 
throughout the plant’s growing season, while that of Sporidiobolales decreased 
(Almario et  al. 2022). Sapkota and colleagues characterized the phyllosphere 
mycobiome of three spring barley cultivars at weekly intervals during a growth 
season from seedling emergence to senescence and seed maturity, and showed that 
the specific members like Dioszegia and Sporobolomyces of the mycobiome 
responded differently to plant developmental stage (Sapkota et al. 2022). Moreover, 
it was found that fungal seasonal dynamics in the phyllosphere differed between 
phylogenetic groups, with Aureobasidium and Neoascochyta sp. peaking in early 
summer and then decreasing across the growing season (Bowsher et al. 2021). By 
contrast, higher relative abundance of Epicoccum sp. were observed at the early 
stage and then steadily increased throughout much of the growing season (Bowsher 
et  al. 2021). Moreover, previous studies explored fungal diversity and seasonal 
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succession in ash leaves infected by the invasive ascomycete Hymenoscyphus 
fraxineus by high-throughput sequencing and quantitative PCR profiling of 
H. fraxineus DNA, and indicated that plant growing season had a significant impact 
on fungal composition in the phyllosphere (Cross et al. 2017). Initiation of ascospore 
production by H. fraxineus after overwintering was followed by pathogen 
accumulation in asymptomatic leaves across plant growing seasons (Cross et  al. 
2017). Some fungal taxa like genera Phyllactinia and Phoma were more abundant 
at the late season and were positively correlated with Hymenoscyphus, while some 
taxa like Taphrina, Tilletiopsis, Cladophialophora were more abundant at the early 
season and were negatively correlated with Hymenoscyphus (Cross et  al. 2017). 
These strong seasonal changes of the phyllosphere fungal community might be 
explained by the fact that plant metabolisms, leaf physical and chemical traits, and 
seasonal weather conditions significantly vary across different growing seasons and 
plant developmental stages (Xu et  al. 2022b; Vacher et  al. 2016). For example, 
theophylline was prevalent metabolite at the early shoot development stage and 
strongly affected fungal communities in the tea plant phyllosphere, in contrast, 
epigallocatechin gallate was more abundant at the late stage and was identified as 
the main driver of fungal community assembly (Xu et  al. 2022b). Bowsher and 
colleagues investigated seasonal dynamics of epiphytic phyllosphere fungal 
communities of switchgrass, and observed a strong impact of plant growing season 
on fungal community composition, with multiple taxonomic levels exhibiting clear 
temporal patterns (Bowsher et al. 2021). It was shown that fungal richness index 
increased after the first time point and remained high until late summer, when it 
decreased across the final two time points (Bowsher et al. 2021). Further, seasonal 
patterns in fungal community were significantly correlated to leaf nitrogen 
concentration, leaf dry matter content, plant height, and minimum daily air 
temperature(Bowsher et al. 2021), indicating that both host selection and environ-
mental changes contribute to phyllosphere fungal temporal dynamics.

Furthermore, it was reported that fungal network connectivity changed across 
plant growth stages, with a weak co-occurrence pattern early in the season but 
increasing dramatically at the late stage (Sapkota et al. 2022). A recent work on 
maize also revealed that bacterial-fungal interkingdom network patterns in both 
epiphytic and endophytic phyllosphere changed distinctly across three developmental 
stages (Xiong et al. 2021b). The fungal network connectivity and the proportion of 
fungal nodes increased over the time, indicating an increasing role of fungal taxa in 
the networks (Xiong et  al. 2021b). The random forest modeling analysis further 
indicated that fungal community composition at the mature stage is a strong 
predictor for crop yield (Sapkota et al. 2022). Additionally, an increasing research 
effort is to explore core taxa of the phyllosphere mycobiome during plant 
developmental stages. For instance, six fungal taxa were identified as persistent core 
taxa (present in at least 95% of samples) for the phyllosphere mycobiome, including 
two ascomycetes (Cladosporium spp.) and four basidiomycete yeast (Dioszegia sp., 
Itersonilia sp., Sporidiobolus sp., and Udeniomyces sp.) (Almario et  al. 2022). 
Taken together, these findings reveal the prominent roles of temporal factors in 
shaping diversity, composition and co-occurrence networks of the phyllosphere 
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mycobiome under various environmental conditions. These findings can help to 
form a systematic understanding on the fundamental ecological processes governing 
plant mycobiome assembly and to develop microbiome-based tools for sustainable 
plant protection and crop production.

5  Fungal Community Assembly in Phyllosphere

5.1  Community Assembly Processes

Microbial community assembly are driven by four ecological processes: selection, 
speciation, diversification, and drift based on the theory proposed by Vellend (2010). 
Selection mirrors deterministic fitness differences between species. Diversification 
represents evolutionary process of generating new genetic variants. Dispersal relates 
to the movement of organisms across space, and drift reflects stochastic changes in 
species abundance (Vellend 2010; Zhou and Ning 2017).

5.1.1  Selection

Leaves present as an extreme environment where phyllosphere fungi withstand low 
nutrient availability, large moisture fluctuation, intense ultraviolet radiation, and 
temperature oscillations. These leaf microclimate parameters vary with regional cli-
mate and exhibit fine-scale variations due to terrain, vegetation, and canopy struc-
ture (Vacher et al. 2016). Thus, environmental factors often exert important selective 
pressure on phyllosphere fungal communities. For example, climate warming 
altered the composition of fungal assemblages of Mycosphaerella punctiformis 
along an elevation gradient (Cordier et al. 2012b) or affected phyllophere fungal 
assemblages of Quercus robur in a multifactorial experiment (Faticov et al. 2021). 
Warming strengthened host plant defenses and filtered out the less adapted fungal 
taxa in the phyllosphere (Faticov et al. 2021). Precipitation also exerted a significant 
influence on phyllosphere fungal communities of Mussaenda kwangtungensis (Qian 
et al. 2018a) and Panicum hallii (Giauque and Hawkes 2016). Precipitation indi-
rectly influenced fungal community assembly through variation in the local plant 
community structure (Hawkes et al. 2011). In addition, environmental changes were 
assumed to decrease the activity of host genes, resulting in the context-dependent 
expression of genetic variation for plant phenotypic features, which might further 
alter the community assembly processes of phyllosphere fungi (Wagner et al. 2016).

Since the phyllosphere is an ecological interface between air and host plants. 
Plant species identity should be an essential driver of community structure of phyl-
losphere fungi. Previous studies have shown significant different foliar fungal com-
munity composition among different plant species (Kembel and Mueller 2014; 
David et al. 2016) or plant genotypes (Qian et al. 2018b; Balint et al. 2013). Many 
phenotypic properties including leaf morphology, physiology, and chemistry 
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derived from the host genetic repertoire likely exert selective pressure on the phyl-
losphere fungal community assembly and the plant-fungal interactions (Friesen 
et al. 2011). Fungal cells and spores that land on the leaf surface initially contact 
with the trichomes and cuticles, whose architecture varies greatly depending on 
environmental conditions and plant identity. Trichomes or hairy extensions can pro-
tect the leaf against ultraviolet radiation, ensnare the water, and help spores adhere 
to the leaf surface (Qian et al. 2020). For instance, some endophytic Trichoderma 
species were found to be intimately associated with Theobroma cacao glandular 
trichomes (Bailey et al. 2009). Cuticle permeability and wettability can influence 
the diffusion rate of compounds from the apoplast onto the leaf surface and the 
retention of water droplets on the leaf surface, which will affect the colonization of 
microbes in the phyllosphere (Schlechter et  al. 2019). Additionally, plant traits 
related to leaf sizes, foliar nutrients (e.g., sulfur, nitrate, and calcium) and leaf secre-
tions (e.g., organic acids, sugars, and secondary metabolites) can also largely influ-
ence the phyllosphere fungal diversity and community composition (Larkin et al. 
2012; Kivlin et al. 2019; Glushakova et al. 2007; Saunders and Kohn 2009).

5.1.2  Dispersal

Dispersal of foliar microbes is performed primarily by bioaerosols that contain fun-
gal spores, single cells, and fragments of hyphae. Bioaerosols can deposit on nearby 
plants and travel over a long distance, which relies on the height of release occurs, 
environmental conditions, local vegetation structures, and the size and density of 
particles (Vacher et al. 2016). Dispersal limitation theory demonstrates that there 
will be a decay in the similarity of microbial communities with geographic distance 
(Hanson et al. 2012). This phenomenon has been found in the fungal communities 
inhabiting the leaves of M. pubescens var. alba (Qian et al. 2018b) and Pinus taeda 
(Oono et al. 2017) at regional scales, which highlights the importance of geographic 
distance as a driver in shaping regional foliar fungal communities.

5.1.3  Diversification and Drift

Given that the current microbial distribution patterns cannot be entirely explained 
by selection and dispersal, diversification or mutation at the gene level may also act 
an essential role in determining microbial community assembly (Zhou and Ning 
2017). Phyllosphere fungi often cope with intense ultraviolet radiation and reactive 
oxygen that are considered to accelerate mutation rates (Vorholt 2012). However, 
we still lack the methods to calculate the relative contribution of diversification in 
shaping the community structure.

Drift is a purely stochastic process that can function on its own via probabilistic 
factors, especially in small communities or when the regional pool is enormous in 
comparison to the size of local communities (Chase 2003). Drift could interact with 
selection to create multiple stable equilibria and become more important when 
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selection is weak (Chase and Myers 2011). Generally, the majority of phyllosphere 
fungi are rare taxa, which may be easily influenced by drift, because slight changes 
in their abundance can lead to extinction on a local scale (Vacher et al. 2016). In 
addition, the functional redundancy of phyllosphere microbes could increase 
neutrality and makes functionally redundant members more vulnerable to drift 
(Zhou and Ning 2017).

5.2  Co-occurrence Networks

In phyllosphere environments, microbial members often interact with each other 
and live within complicated ecological networks rather than existing in isolation 
(Faust and Raes 2012). The microbial interactions can be classified as positive 
(mutualism), neutral (commensalism) or negative (competition, predation, parasit-
ism) and play important roles in determining the fitness of phyllosphere microbes, 
selecting for specific microbial traits, and shaping the structure of microbial com-
munities (Bashir et al. 2022; Vacher et al. 2016).

Co-occurrence network analysis can reveal how species coexist within a com-
munity, disentangle the microbe-microbe and microbe-host interactions, and thus 
provide comprehensive insights into the assembly process and ecological function 
of microbial communities (Banerjee et  al. 2018). The co-occurrence pattern has 
been frequently visualized as a network of nodes (microbial taxa) connected by 
edges (microbial interaction) of varying strength that correspond to the frequency of 
paired species presence at a site (Kay et al. 2018). Ecological modules are com-
prised of closely connected microbes, and are usually considered as the result of 
phylogenetic relatedness, niche differentiation, and/or habitat heterogeneity of the 
microbial communities (Zhang et al. 2018a; Newman 2006). Network analysis can 
also help us identify keystone microbes that are highly connected; the keystone spe-
cies may exert a great influence on the structure and functioning of microbial com-
munities irrespective of their abundance (Banerjee et  al. 2018). The removal of 
these taxa will lead to a dramatic shift in network topology. The network topological 
properties, such as clustering coefficient, average path length, mean connectivity, 
and edge density, can be used to speculate microbial assembly and interactions. In 
particular, co-occurrence network analysis based on amplicon sequencing data has 
been increasingly used to explore the ecological interactions among multiple- 
kingdom microbial members as well as microbe-host relationships in various habi-
tats (Teng et al. 2022; Yang et al. 2022).

Recently, several studies have been conducted to explore co-occurrence net-
works of phyllosphere fungal communities. For instance, Yao et  al. found foliar 
endophytic network had higher levels of specialization and modularity but lower 
connectance and stronger anti-nestedness than the epiphytic network in a local 
mangrove forest (Yao et al. 2019). Qian et al. found that the phyllosphere fungal 
networks of Mussaenda kwangtungensis in island regions showed less complex and 
coherent, but more modular structure than the mainland ones (Qian et al. 2020). At 
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the scale of more than 2000-km span of mountain forests in eastern China, Yang 
et  al. demonstrated that the plant-fungus networks in leaves were significantly 
higher specialized, modular and stable, but less connected compared to the networks 
in soils (Teng et al. 2022). Phyllosphere fungal networks of M. shikokiana displayed 
a trend of reduced connectivity and integrity with increasing elevation (Qian et al. 
2018a). Nevertheless, we still lack basic knowledge regarding the environmental 
factors that determine the network structure of phyllosphere fungi. Environmental 
drivers could influence phylogenetic congruence patterns and the rare taxa involved 
in coevolved interactions, but exploring the response of networks to environmental 
change will require linking network architecture with ecosystem functioning, and 
using multilayer network approaches (Tylianakis and Morris 2017).

5.3  Source Analyses of Phyllosphere Fungi

The phyllosphere recruits microbes via horizontal (from an environmental, free- 
living symbiont source) or vertical (from the inheritance of the symbiont from the 
mother or both parents) transmissions (Bright and Bulgheresi 2010; Bashir et al. 
2022). Therefore, the sources of phyllosphere fungi are diversified. Epiphytic fun-
gal residents originate from the air, water, or soil and can arrive at the leaf surface 
through wind, bioaerosols, raindrops or animals (especially insects and herbivores) 
(Whipps et al. 2008). Once deposited, their establishment and survival will further 
rely on microbial physiological and genetic features (e.g., acquisition of leaf nutri-
ents, capability to adhere to leaf surface, and adaptation to leaf microclimate) and 
leaf phenotypic properties in the aspects of morphology, chemistry and physiology 
(Bashir et al. 2022). Some of them can pass through leaf epidermal openings struc-
ture like stomata or hydathodes and become endophytes (Bashir et al. 2022). Yang 
et al. found more phylogenetically clustered structure for epiphytic and endophytic 
fungi inhabiting the leaves of B. ermanii compared with the corresponding soil 
fungi, indicating a continuum acted by epiphytes and endophytes in the phyllo-
sphere (Yang et al. 2016a). Some endophytic fungal species (e.g., clavicipitaceous 
endophytes) can transmit vertically, with maternal plants passing fungi on to off-
spring through seeds (Rodriguez et al. 2009). Additionally, there is increasing evi-
dence that endophytic microbes in the roots could enter the vascular system and be 
transferred internally to the leaves where they develop as foliar endophytes (Whipps 
et al. 2008). For example, many fungal taxa of Mussaenda kwangtungensis were 
shared between the leaf and root endosphere compartments, although the overall 
community structure can differ significantly (Qian et al. 2019).

The advancement of statistical tools facilitates us to identify the sources of phyl-
losphere fungi more precisely. For example, SourceTracker is a Bayesian approach 
to estimate the proportion of contaminants in a given community (Knights et al. 
2011); the approach was widely used in high-throughput metagenomic studies 
(Yang et al. 2021; Zhang et al. 2022). Using SourceTracker, the researchers found 
that 60% of the foliar endophytic fungal community of healthy Rice was derived 
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from the soil environment. FEAST (i.e., fast expectation-maximization microbial 
source tracking) is an alternative Bayesian approach to estimate the proportions of 
microbial sources in a given community based on Gibbs sampling; this method can 
deal with bigger data information in a timely manner (Shenhav et al. 2019). Using 
FEAST, the researchers surveyed the sources of the foliar fungal community along 
the burn severity gradient; they found that the percentages of these sources were 
strongly affected by the burn severity levels (Dove et al. 2021). In unburned plots, 
40% of the foliar fungal taxa were derived from rhizosphere, while bulk soil was the 
main source of the foliar fungal taxa in burned plots. In addition, airborne fungal 
community was more derived from leaf surface than soils (Qi et al. 2020). Therefore, 
soil, air and other plant tissues are potential sources of phyllosphere mycobiome, 
but their relative contributions vary by plant growth stages and surrounding 
environments.

6  Fungal Functions in Phyllosphere

Phyllosphere fungi have intimate relationships with plants and exhibit diverse func-
tions, which not only benefit their own survival and growth but also affect plant 
performance and even the whole ecosystem. They have been reported to increase 
plant access to nutrients and water, enhance plant resistance to biotic and abiotic 
stress, degrade organic matters or pollutants, drive plant population and community 
and so on (Busby et al. 2016; Khan et al. 2015; Rudgers et al. 2010; Russell et al. 
2011). However, leaf fungal pathogens induce plant diseases and cause huge losses 
in agroecosystem (Chen et al. 2021a). Thus, understanding functional diversity of 
phyllosphere fungi is essential to maintain the sustainability of natural ecosystems, 
promote the yield in agroecosystems, and benefit to human health in urban 
ecosystems.

6.1  Functional Traits

Recently, more and more studies focus on fungal functional traits, which are the 
measurable characteristics that affect organism growth and adaptability in certain 
environments (Yang 2021). Functional traits can be analyzed based on phenotypic 
characteristics or inferred from microbial genomes. Microbial functional traits are 
more sensitive to environmental fluctuations compared to microbial taxonomic 
composition (Xiang et al. 2020). Currently, several databases of fungal functional 
traits have been established, including FUNGuild (Nguyen et  al. 2016b), FunFun 
(Zanne et al. 2020), and FungalTraits (Põlme et al. 2021), which make the quantifi-
cation and prediction of diverse fungal traits under different conditions much 
quicker and easier.
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Fig. 1 Dimensions of mycobiome around plant individuals. The transitions in life history and 
biotic interactions among representative fungal guilds are shown in diagram ➂. In the diagram, 
blue arrows represent biotic interactions between different fungal guilds. For example, endophytes 
(or epiphytes) and foliar pathogens affect each other by adjusting plant immune responses (Schulz 
and Boyle 2005). Green arrows represent the transitions in life history between phyllosphere fungi 
and other plant mycobiomes. For examples, endophytic fungal lineages frequently transit to and 
from pathogenicity, while endophytic lineages give rise to saprotrophs, but the revisions to endo-
phytism are rare (Arnold et al. 2009). The diagrams are created with the help of BioRender.

Guild, also known as functional group, refers to a group of organisms that utilize 
the similar environmental resources or have certain niche overlaps, no matter these 
organisms are phylogenetic related or not (Nguyen et al. 2016b). In FUNGuild, 12 
guilds were classified, among which endophytes, pathogens, saprotrophs, and 
mycorrhizal fungi are plant-associated fungi (Nguyen et al. 2016b). Nevertheless, 
there are the highly complicated plant mycobiome around plant individuals  - 
different functional guilds (incl. endophytes and epiphytes) transform the life 
histories and interact with each other closely (Fig. 1). Some fungal endophytes in 
the phyllosphere could become saprotrophic decomposers after leaf fall 
(Suryanarayanan 2013). Moreover, Colletotrichum (Rojas et al. 2010; Mendgen and 
Hahn 2002) and Dothideomycetes fungi (Ohm et al. 2012) could transform between 
non-pathogens and pathogens in response to different environmental conditions or 
host cues. Dothideomycetes fungi are common in the phyllosphere of many plant 
species (Qian et al. 2018b; Yao et al. 2019; Teng et al. 2022). The comparison of 
genome features of 18 Dothideomycetes fungi showed that they could be classified 
as plant pathogens and saprotrophs, and these pathogens could be further divided 
into necrotrophs, biotrphs, and hemibiotrophs (Ohm et al. 2012). Further analysis 
showed that genes involved in carbohydrate degradation and secondary metabolism 
were expanded in necrotrophs; and necrotrophs also had higher number of genes 
encoding effectors compared to (hemi)biotrophs, which could lead to the death of 
leaves and benefit the survival and growth of necrotrophs. Thus, the shift among 
different life strategies could be predicted by measuring fungal functional traits, 
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such as the production and exudation of lytic enzymes, the suppression of host 
defenses, and so on (Mendgen and Hahn 2002).

Functional traits that are critical to fungal physiology were also summarized, such 
as growth rate, respiration rate, spore size and number, stress tolerance (especially 
through melanin synthesis), demand for nitrogen (N) and phosphorus (P), and 
extracellular enzyme activity (Zanne et al. 2020). Other functional traits are highly 
correlated with fungal interactions with plants. For example, some foliar endophytes 
inhibited Rhizoctonia solani, decreasing disease severity and increasing potato yield 
(Lahlali and Hijri 2010). Among the tested fungal endophytes, Trichoderma atroviride 
acted as a mycoparasite; Alternaria longipes and Epicoccum nigrum produced 
antagonistic secondary metabolites; Phomopsis sp. competes for nutrients and space 
with leaf pathogens. Thus, the aforementioned fungal functional traits could be used 
to predict three-way interactions among plants, pathogens, and mutualists.

As mentioned above, phyllosphere fungi may change their functional guilds in 
response to changed conditions. Zhang and Elser examined the stoichiometry of 
different fungal guilds and found that N content was higher while P content was 
lower in pathogens compared to saprophytes (Zhang and Elser 2017). However, the 
N/P ratio was much higher in saprophytes than pathogens (Zhang and Elser 2017). 
Moreover, saprophytes acquire carbon energy by decomposing dead plant matter, so 
they may harbor more abundant genes encoding carbohydrate-active enzymes 
(CAZymes) (Zanne et al. 2020). Therefore, for the fungal taxa that can transition 
from one guild to another, it is essential to understand which fungal traits can specify 
the guild changes. These functional traits may help to predict fungal functions in 
phyllosphere more precisely in the future.

6.2  Functional Genes

One microbial strain harbors thousands of functional genes, which are less evolu-
tionarily conserved compared to phylogenetic biomarkers such as 18S rRNA gene 
or nuclear ribosomal internal transcribed spacer (ITS) gene (Yang 2021). The pres-
ence and expression levels of certain functional genes can be used to estimate the 
fungal functional traits (Zanne et al. 2020). Although the simplest trait is encoded 
by single genetic locus, most traits are complex (Martiny et  al. 2015). Some 
phyllosphere fungi may obtain certain genes from their host plants and exhibit novel 
traits through horizontal gene transfer (HGT) (Tiwari and Bae 2020). Thus, it is 
difficult to summarize all the fungal functional traits by only one or several genes 
(Escalas et al. 2019). More approaches are needed to ensure the links between func-
tional genes and traits, such as gene knockout and genetic mutant generation.

Fungal community, as a functional library, contains a collection of genes selected 
by certain environmental conditions (Escalas et  al. 2019). A large collection of 
microbial functional genes have been summarized, which are mainly categorized 
into nutrient cycling, substance degradation, antibiotic resistance, stress response, 
and virulence (Escalas et al. 2019). Some functional genes are reported to enrich or 
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delete in phyllosphere mycobiome. For example, phyllosphere fungi harbored 
specific functional genes related to carbon (C), N, P, sulfur (S) cycles compared to 
the fungi in other habitats, because carbohydrates, amino acids, and organic acids 
were released by plants to leaf surface (Xiang et al. 2020). In contrast, powdery 
mildews lost genes encoding CAZymes, primary and secondary metabolism related 
enzymes, and transporters, which benefit its biotrophic pathogenicity (Spanu et al. 
2010). Thus, the presence and absence of some unique genes in phyllosphere fungal 
communities can be used to assess their potential phenotypes, functional diversity 
as well as the healthy state of host plants.

6.3  Omics

Most fungi in the phyllosphere are unculturable in common media and under com-
mon culture conditions. Metagenomics is defined as the culture-independent 
genomic analysis of microbial community (Schloss and Handelsman 2003), which 
was followed by the emergence of metatranscriptomics, metabolomics, and meta-
proteomics (Schneider and Riedel 2010). The applications of aforementioned high- 
throughput techniques will promote the exploration of fungal functions in 
phyllosphere, providing more comprehensive and accurate information.

6.3.1  Metagenomics

Metagenomics can reveal a much higher fungal diversity in the phyllosphere com-
pared to culture dependent methods (Quince et al. 2017), because the unculturable 
microbes occupy nearly 99.5% of the entire environmental microbiota (Lloyd et al. 
2018). More importantly, metagenomics provides a powerful tool to extend the 
functional traits from individual to community at the extensive sampling effort (e.g., 
hundreds or thousands of samples) (Barberan et  al. 2012). Individual microbial 
genomes could be assembled from community metagenomics data, referred to as 
metagenome-assembled genomes (MAGs), providing an essential basis for genome- 
centric functional analyses (Luo et  al. 2012). Several steps are essential to the 
accuracy and efficiency of metagenomics. For example, the purity and quality of 
nucleic acid molecules extracted from environmental samples must be ensured 
(Hawkes et al. 2021). Then, the improvements in bioinformatic tools and pipelines 
will further identify and remove contamination sequences. These bioinformatic 
tools could mimic gene translation progress, converting raw reads generated from 
metagenomic sequencing into meaningful microbial features. Furthermore, 
metagenomic sequencing could avoid the biases of PCR amplification that result 
from the use of target-specific primers (Tedersoo et al. 2015).

Metagenomic analysis showed low functional diversity but highly redundant 
functions in phyllosphere mycobiome, which may be relevant to fungal adaption to 
low nutrients, high ultraviolet radiation, and changing temperature and humidity of 
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phyllosphere environment (Stone et al. 2018). Khoiri et al. analyzed the structure 
and function of microbial community in the sugarcane phyllosphere using the shot-
gun metagenomics, including archaea, bacteria, fungi, and viruses; they found that 
different farming practices strongly affected the taxonomic and functional diversity 
and co-occurrence interactions of phyllosphere microbes (Khoiri et  al. 2021). 
However, several studies used metagenomics to explore fungal taxonomic diversity 
rather than functions. For example, Ottesen et  al. combined amplicon and 
metagenomic sequencing to reveal the fungal and bacterial diversity in the surface 
of tomato leaves, stems, roots, flowers, and fruits (Ottesen et al. 2013).

It is noteworthy that metagenomics is the first step to understand microbial com-
munity, which could reveal the gene capacity of a community but not the expression 
of genes and their post-transcriptional modification. Thus, the metatranscriptomics, 
metabolomics, and metaproteomics should be applied to achieve a more compre-
hensive picture on the functions of phyllosphere mycobiome.

6.3.2  Metatranscriptomics

Metatranscriptomics could capture gene expression in the plant-associated micro-
bial community, showing the functional profile under certain conditions (Aguiar- 
Pulido et al. 2016). Since fungal transcripts show different sequence length and GC 
content from plant transcripts, it is possible to analyze the transcriptome of plants 
and their phyllosphere fungi together (Delhomme et  al. 2015). Delhomme et  al. 
performed de novo transcript assembly of more than 1  billion reads from Picea 
abies and obtained a mix of plant and fungal transcripts (Delhomme et al. 2015). 
They found that fungal transcripts were predominantly from Dothideomycetes and 
Leotiomycetes, with functional annotation related to glucose intake and processing, 
indicating active fungal growth and metabolism in the phyllosphere. In other stud-
ies, metagenomics and metatranscriptomics were combined to analyze phyllosphere 
mycobiome. Camargos  Fonseca et  al. combined amplicon sequencing, shotgun 
metagenomics, and small RNA transcriptomics to explore the fungal diversity and 
functions of rubber trees (Hevea brasiliensis); they found that most phyllosphere 
fungi were assigned to saprotrophic ecological mode, with fewer to pathotrophic 
and symbiotrophic modes, or a combination among them (Camargos Fonseca 
et al. 2022).

6.3.3  Metabolomics and Metaprotemics

Metabolomics aims to analyze all the metabolites produced by an organism or a com-
munity, while metaproteomics aims to identify all the proteins and peptides in a 
microbial community. Unlike metagenomics and metatranscriptomics that heavily 
rely on sequencing, both metabolomics and metaproteomics have benefited from the 
improvement of mass spectroscopy technologies. Moreover, proteins and peptides 
could also be quantified by analyzing their individual intensity on gels. Generally, 
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metabolomics and metaproteomics provide a more accurate information to the 
metabolic pathways compared to metagenomics and metatranscriptomics (Levy 
et al. 2018).

Metabolomics is able to characterize and quantify the chemical outputs of micro-
bial metabolism, which are highly related to the cellular processes under certain 
conditions (Fiehn 2002). In community, microbes would produce various metabolites, 
including signaling molecules to communicate with others as well as toxins to kill 
competitors (Aguiar-Pulido et al. 2016). As such, metabolomics analysis can reveal 
the role of phyllosphere fungi in the transformation of nutrients and degradation of 
pollutants. Some fungal endophytes could get host genes through HGT and 
synthesize plant metabolites (Kusari et al. 2012). Consequently, phyllosphere fungi 
may be one of most important factors for leaf phytochemical composition (Mogouong 
et al. 2021). In addition, metabolome is considered as the most direct indicator of the 
homeostasis of an environment, so certain microbial metabolites could be developed 
as predictive biomarkers for environmental fluctuations (Lankadurai et al. 2013).

Metaproteomics is defined as a large scale characterization of the entire proteins 
in microbial communities at a given time point (Wilmes and Bond 2004), which is 
necessary to reveal the physiology, ecology, and evolution of microbial communi-
ties (VerBerkmoes et al. 2009). Currently, metaproteomics has been used to analyze 
the bacterial functions in the phyllosphere (Lambais et al. 2017; Knief et al. 2012), 
few studies focused on fungal metaproteomic analysis. In addition, some studies 
used metaproteomics to reveal fungal functions in soil. For example, Fernandes and 
colleagues found that the protein functions of soil fungi shifted from metabolism in 
forests to information processing and storage in shrublands (Fernandes et al. 2021). 
These existing studies provide some essential technical references to advancing 
metaproteomics analyses for phyllosphere mycobiome, whose composition and 
diversity are much simpler than soil mycobiome.

In summary, integrated analysis of metagenomics, metatranscriptomics, metabo-
lomics, and metaproteomics are enabled by the lower cost of sequencing and the 
advancement of bioinformatic platform. These omics approaches will accelerate 
our understanding of phyllosphere fungal diversity and functions greatly.

7  Interactions of Phyllosphere Mycobiome with Plants

Phyllosphere mycobiome intimately interacts with host plants and contributes to 
many processes, from the health of individual plant to the development and function 
of plant community. Some phyllosphere fungal taxa are reported as latent plant 
pathogens that may produce negative effects on plant development and growth in 
some cases. Most of phyllosphere fungi, especially for endophytic fungal group, are 
able to increase plant fitness by producing phytohormones, increasing plant nutrient 
uptake, reducing pathogen and herbivore damages, and enhancing plant adaption to 
stressful environments. Besides influencing the health of individual plant, 
phyllosphere fungi have a consequence on the plant population and community by 
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Fig. 2 Roles of phyllosphere mycobiome in plant health and plant community. Phyllosphere fungi 
can act as latent plant pathogens that produce negative effects on plant development and growth. 
Some foliar fungi are able to increase plant fitness by producing phytohormones, increasing plant 
nutrient uptake, reducing pathogen and herbivore damages and enhancing plant adaption to stress-
ful environments. Besides influencing the health of individual plant, foliar fungi have a conse-
quence on the plant population and community by decomposing leaf litter and modifying plant 
disease. Part ➀–➃ are at the plant individual level, while part ➄ occurs at the plant population and 
community level

decomposing leaf litter (Osono 2006) and modify plant disease (Busby et al. 2016). 
Here, we focus on the effects of interactions of phyllosphere mycobiome with plants 
on plant health, growth, biomass, population and community (Fig. 2).

7.1  Roles in Plant Health

7.1.1  Phyllosphere Fungi as Pathogens that Inhibit Plant Health

In the last several decades, the ecology of phyllosphere inhabiting fungi has been 
studied extensively, but more attentions have been paid on fungal pathogens (Jia 
et al. 2020). This is not surprising, as 7 in the top 10 most important plant- pathogenic 
fungi are foliar infection, including Magnaporthe oryzae, Puccinia spp., Fusarium 
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graminearum, Blumeria graminis, Mycosphaerella graminicola, Colletotrichum 
spp., Ustilago maydis and Melampsora Lini (Dean et  al. 2012). Many previous 
studies have revealed the molecular mechanisms underlying foliar infection of 
fungal pathogens, and identified fungal virulence effectors and plant resistance (R) 
proteins during infection process. For instance, fungal effector AvrPiz-t of M. oryzae 
suppresses rice immunity and promotes virulence by Ca2+ sensor-mediated ROS 
scavenging system (Gao et al. 2021).

Given that leaves are initial infection organ for foliar fungal pathogens, it is rea-
sonable that photosynthesis system would be the prime target by the infection. 
Foliar fungal infection inevitably deters plant health by directly damaging 
photosynthetic organelle, chloroplasts, and indirectly interfering plant immunity. 
Photosynthesis is the fundamental process that fuels plant growth and development 
(Brestic et al. 2021). Foliar fungal disease causes substantial loss of photosynthetic 
tissue, reductions in chlorophyll content, net photosynthesis rate (Pn) and other 
photosynthesis-related parameters, and thus reduces the carbohydrates for plant 
growth. For instance, maize leaves infection with Colletotrichum musae and 
Fusarium moniliforme reduce photosynthetic capacity due to the reduction in 
chlorophyll content (Pinto et  al. 2000). The negative effects on photosynthesis 
system by foliar fungal and oomycete pathogens are achieved by a cocktail of 
effectors. During infection, pathogens introduce effectors specifically into 
chloroplasts, which interact with chloroplast proteins to induce programmed cell 
death (PCD), interfere chloroplasts function and facilitate pathogen proliferation 
(Kretschmer et  al. 2019). For example, Pyrenophora tritici-repentis (Ptr), a 
necrotrophic fungus, produces host-selective toxins ToxA and ToxB (Ciuffetti et al. 
2010), of which ToxA interacts with chloroplast protein ToxA Binding Protein 1 
(ToxABP1) in wheat, leading to reductions in levels of PSI and PSII protein 
(Manning et al. 2010). A haustorium- specific protein (Pst_12806) from wheat stripe 
rust fungus, Puccinia striiformis f. sp. Tritici (Pst) is transported into chloroplasts 
and interacts with the C-terminal Rieske domain of TaISP protein, which suppresses 
chloroplast function by reducing electron transport rate, photosynthesis and 
chloroplast-derived H2O2 accumulation (Xu et al. 2019). However, our knowledge 
of chloroplast-targeted effectors from fungi and oomycete pathogens has lagged 
behind our knowledge of cytoplasm- targeted effectors, as chloroplast-targeted 
effectors have not been identified in some of best-characterized fungal pathogens, 
such as M. oryzae and U. maydis.

Besides fueling the growth of plants, photosynthesis system also plays central 
role in early immune responses through the formation of ROS and NO, Ca2+ 
oscillations, and the synthesis of plant defensive phytohormones, including salicylic 
acid (SA) and jasmonic acid (JA) (Serrano et al. 2016). The biosynthesis of JA and 
SA is associated with chloroplast. Two different enzymatic pathways are responsible 
for SA biosynthesis: isochorismate (IC) and phenylalanine ammia-lyase (PAL) 
pathways, of which IC is operative in chloroplast. IC is catalyzed by the chloroplast- 
localized IC synthase (ICS), and exported to cytosol by enhanced disease 
susceptibility 5 (EDS5) (Rekhter et  al. 2019). IC is then catalyzed by avrPphB 
Susceptible 3 (PSB3) to form IC-9-glutamate, which is converted to SA 
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spontaneously or enhanced by pesudomonas susceptibility 1 (EPS1) (Torrens-
Spence et al. 2019). Notably, rapid biosynthesis of SA caused by foliar pathogens 
infection is mainly through ICS pathway. (9S, 13S)-12-oxophytodienoic acid 
(OPDA), a precursor of JA is synthesized in chloroplast by 13-lipoxygenase (LOX), 
allene oxide synthase (AOS) and allene oxide cyclase (AOC) (Turner et al. 2002; 
Zhang et al. 2019). The OPDA is then transported to peroxisome to synthesize JA. It 
is well known that SA and JA are key components of plant defence against biotrophic 
and hemibiotrophic (SA-mediated), and necrotrophic (JA-mediated) pathogens, 
respectively (Bari and Jones 2009). As a consequence, the loss of photosynthetic 
tissue by the foliar fungal pathogen activity compromises SA- and JA-mediated 
plant immunity, which further increases plant susceptibility.

To combat foliar fungal infection, the prioritization of carbohydrates synthesized 
by non-infected of leaves towards production of defense compounds rather than 
plant growth. As defense compounds biosynthesis imposes a substantial demand for 
resources, the diversion of plant resources from growth to defense is detrimental to 
plant growth and reproduction under a fixed total resource budget (Huot et al. 2014; 
He et al. 2022). This phenomenon is commonly known as “growth-defense trad-
eoff”, which is one of most fundamental principles of “plant economics” (Monson 
et  al. 2022). Consequently, foliar pathogens deter plant health by directly 
compromising photosynthesis and plant immunity due to the loss of photosynthetic 
tissue, and indirectly modulating plant resources distribution.

7.1.2  Phyllosphere Fungi as Bio-control Agents that against Pathogens 
and Herbivores

Besides being pathogens, some fungi inhabiting leaves act as bio-control agents that 
are beneficial to plant health. Foliar fungi, especially fungal endophytes reduce 
disease by directly killing pathogenic microbes or insects through the production of 
toxins, or indirectly activating plant immunity (Jia et al. 2020). The extracts of 5 
foliar fungal endophytes (Diaporthe terebinthifolii CMRP1430, D. terebinthifolii 
CMRP1436, D. foliorum CMRP1321 and D. malorum CMRP1438) isolated from 
Schinus terebinthifolius showed the anti-microbial activity in agar diffusion assays, 
and three key classes of chemical compounds, including ferric chloride, potassium 
hydroxide, and vanillin-sulfuric acid, were identified (dos Santos et al. 2021). Other 
studies have shown that the plants infected by endophytic fungi emit volatile organic 
compounds (VOCs) to inhibit pathogenic fungal growth. For example, the volatile 
oil extracted from Epichloë gansuensis-infected drunken horse grass effectively 
inhibited the growth of 6 fungal pathogens, including Alternaria alternata, Bipolaris 
sorokiniana, Curvularia lunata, F. avenaceum, F. solani and Trichoderma viride 
(Zhang et al. 2015). Moreover, some foliar fungi can produce anti-fungal proteins. 
For example, Epichloë endophytes, can produce an anti-fungal protein, Efe-Afp, 
which directly impedes the growth of plant pathogen Sclerotinia homoeocarpa 
(Tian et al. 2017).
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There is a bit of literature showed that some phyllosphere fungi can function as 
entomopathogenic fungi that restrict insect activity by producing toxins. Sumarah 
et al. screened the toxicity of extracts from 150 foliar fungal endophytes from Picea 
rubens (red spruce) needles to the forest pest Choristoneura fumiferana (eastern 
spruce budworm) in dietary bioassays and found that 3 of these strains are toxic to 
C. fumiferana larvae (Sumarah et  al. 2010). LC-MS and spectroscopic analyses 
showed that the extracts of 3 strains contained 9 major metabolites, all of which 
showed toxicity to C. fumiferana. When feeding on Epichloë-infected plants, insects 
begin to metabolize alkaloids into non-toxic compounds. If the energetic cost of 
such detoxification over other physiological processes, such as growth and 
reproduction, the fitness of insects can be compromised (Bastias et  al. 2017). 
Moreover, Epichloë endophytes-derived alkaloids are harmful to animal herbivores 
by influencing their gut metabolome and microbiome. Mote et al. investigated the 
metabolomic features of plasma and urine from steers grazing Epichloë-infected tall 
fescue, and provided evidence that Epichloë infection perturbs tryptophan and lipid 
metabolism (Mote et al. 2017).

Some phyllosphere fungi cannot directly inhibit pathogens and insect growth, 
but their colonization reduces pathogen and pest disease severity, suggesting that 
plant immunity is activated by foliar fungi under pathogen and pest challenges. For 
example, foliar application of leaf-colonizing yeast Pseudozyma churashimaensis 
strain RGJ1 confers pepper’s resistance to bacterial and virus pathogens through 
inducing the expression of resistance marker genes Capsium annuum Pathogenesis- 
Related (CaPR)4 and CaPR5 (Lee et  al. 2017). Although more and more foliar 
fungi and their metabolites with anti-microbial or anti-insect activities have been 
isolated and identified, their anti-microbial or anti-insect capacities were deter-
mined under controlled conditions, which is far away from the natural situation in 
planta. Future works are required to confirm their pathogens and pest diseases sup-
pression in agricultural and natural ecosystems, which will greatly facilitate their 
practical use. Moreover, recent studies have reported that dysbiosis in phyllosphere 
microbiome led to disease symptoms (leaf chlorosis and necrosis) (Chen et  al. 
2020a), and leaves can recruit beneficial microbes to combat pathogenic diseases 
(Li et al. 2022b). Although these studies focus on the functions of foliar bacterial 
community, they promote us to test whether phyllosphere fungi possess the similar 
functions at community level.

7.2  Effects on Plant Growth and Biomass

7.2.1  Phyllosphere Fungi Promote Plant Growth and Biomass through 
Producing Phytohormones

Phyllosphere fungi promote plant growth and biomass by producing phytohor-
mones, including indole-3-acetic acid (IAA, a major auxin) and cytokinins (Liu 
et  al. 2020). Auxin is one of the main regulators in plant developmental and 
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physiological processes, including embryogenesis, vascular differentiation, 
organogenesis, top growth, and root and shoot architecture (Quint and Gray 2006; 
Zhang et al. 2018c). Khan et al. isolated 17 endophytic fungal strains from leaves 
and stems of Frankincense tree (Boswellia sacra); among them, Aureobasidium sp. 
BSS6 and Preussia sp. BSL10 showed high IAA production capacity (Khan et al. 
2016). The root inoculation of Preussia sp. BSL10 significantly increased plant 
growth and biomass of B. sacra trees. Hoffman et al. reported that the presence of 
endohyphal bacteria (Luteibacter sp., Xanthomonadales) enhanced the IAA 
production of a foliar fungal endophyte (Pestalotiopsis aff. Neglecta, Xylariales), 
suggesting that the production of IAA in foliar fungi can be induced by their 
interactions with other microorganisms (Hoffman et  al. 2013). Recently, several 
studies have indicated that the microbes-derived auxin plays crucial roles during the 
infection process by counteracting the plant immunity responses and alleviating 
ROS toxicity, but the knowledge comes from root-microbe interactions (Tzipilevich 
et al. 2021). Given that phyllosphere is a nutrient-limited, high ultraviolent radiation 
and low water availability environment (Vorholt 2012), the auxin production by 
fungi may contribute to their adaptability in phyllosphere.

7.2.2  Phyllosphere Fungi Promote Plant Growth and Biomass through 
Increasing Nutrient Uptake

It is well known that root-associated beneficial fungi, such as arbuscular mycorrhi-
zal (AM) fungi, ectomycorrhizal (EcM) fungi, and fungal endophytes promote plant 
nutrient and water uptake. Emerging evidences show that foliar fungal endophytes 
can also enhance plant capability to absorb minerals, such as nitrogen (N), phospho-
rus (P) and potassium (K) (Malinowski et al. 2000). Christian et al. traced the N 
uptake and distribution of Theobroma cacao with or without foliar fungal endo-
phyte (Colletotrichum tropicale) inoculation with 15N isotope labeling methods 
(Christian et al. 2019). The results showed that endophyte-inoculated plants exhib-
ited a greater 15N uptake efficiency than endophyte-free plants. The inoculation of 
Epichloë endophytes improved the survival and biomass of Lolium perenne in low 
fertility soils by increasing N, P and Mn content in leaves, as well as K content in 
leaves and roots (Chen et al. 2020b). Here, we suggest the two mechanisms that 
explain the roles of foliar fungal colonization in root nutrients uptake. (1) Foliar 
fungal colonization upregulates the genes that are associated with plant nutrient 
uptake (Wang et  al. 2018). (2) Foliar fungal colonization alters rhizosphere 
microbiome by modulating the composition of root exudates (Casas et al. 2011). 
Previously, Novas et al. reported that the root exudates of Bromus setifolius infected 
by Neotyphodium significantly increased AM fungal hyphal branches and length, 
and thus promote plant nutrient uptake (Novas et al. 2011). However, the internal 
signals and pathways that mediate the effects of leaf-inhabiting fungi on root exu-
dates or rhizosphere microbiome are largely unknown.
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7.2.3  Phyllosphere Fungi Increase Plant Tolerance 
to Environmental Stresses

The colonization of phyllosphere fungi (in particular endophytes) can confer pro-
tection for the host plants against various environmental stressors, such as drought, 
salinity, heavy metals, cold and flood (Lee et al. 2021). Foliar fungal endophytes 
increase plant tolerance to drought by increasing root biomass, regulating stomatal 
closure and accumulating solutes for osmotic stress. For example, Xu et al. investi-
gated the effects of E. sinensis endophyte on physiology of Festuca sinensis under 
different soil water conditions, finding that E. sinensis infection improved the 
growth of F. sinensis under drought conditions by increasing root and shoot growth, 
improving photosynthetic rate, accumulating K+ and Ca2+, and promoting nutrient 
absorption (Xu et al. 2021). In particular, the inoculation of E. sinensis significantly 
modulated the content of abscisic acid (ABA). Similarly, fungal endophytes 
Acremonium strictum conferred drought tolerance to Atractylodes lancea plantlets 
by increasing the ABA level and root:shoot ratio of host plants (Yang et al. 2014). 
ABA plays a crucial role in triggering stomatal closure to avoid excessive water loss 
under drought (Gupta et al. 2020). In addition, foliar fungal infection increased the 
contents of osmo-protective compounds, such as sugars, proline, glutamic acid and 
mannitol (Yang et al. 2014). Higher levels of anti-oxidative enzymes, such as super-
oxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) are found 
in foliar fungi-infected plants under drought, which contributes to the migration of 
damages by scavenging excessive ROS (Zhang and Nan 2007).

Foliar fungal infection also increases plant tolerance to salinity by increasing net 
photosynthesis, regulating ion transport and improving anti-oxidative system. For 
example, Neotyphodium colonization reduced Na+ and Cl− contents in tall and 
meadow fescues, but increased K+ contents in the shoots under salinity stress 
(Sabzalian and Mirlohi 2010). Higher levels of K+ can balance Na+, which is crucial 
for the growth of plants under salinity conditions (Hussain et al. 2021). Pan et al. 
found that the infection of E. coenophiala promoted tall fescue salinity tolerance 
through lowering Na2+ accumulation and decreasing lipid peroxidation, and thus 
maintained higher plant growth and photochemcial efficiency (Pan et  al. 2021). 
Enzymatic and non-enzymatic anti-oxidants are also induced by foliar fungal infec-
tion, which contribute to salinity tolerance of plants by counteracting ROS accumu-
lation. For example, E. gansuensis infection increase growth and grass yield of 
Achnatherum inebrians under salinity by enhancing the activity of glucose-6- 
phosphate dehydrogenase (G6PDH) and plasma membrane (PM) H+-ATPase 
activity to reduce ROS content (Wang et  al. 2021). Interestingly, foliar fungal 
infection can regulate plant anatomical structures to acquire salinity tolerance. For 
example, the presence of E. bromicola increased the area of conducting tissues and 
the thickness of leaf veins, epodermis in stems, cortex and endodermis in roots of 
wild barley (Hordeum brevisublatum) under salinity stress (Chen et al. 2021b). In 
that way, foliar fungi help wild barley to reduce water loss and inhibit the decrease 
of transport capacity, and ultimately enhance the salinity tolerance.
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Similar to drought and salinity stresses, foliar fungal infection can relieve the 
symptoms of plants to heavy metal toxicity by promoting plant growth and inducing 
anti-oxidant systems. For example, the E. gansuensis-infected drunken horse grass 
(Achnatherum inebrians) had more biomass and higher values for plant height and 
tillers compared to non-infected plants under cadmium stress (Zhang et al. 2010). 
More plant biomass can dilute heavy metal concentrations, and induced anti- oxidant 
systems can prevent plants from ROS injury under heavy metal stress (Zhang 
et al. 2010).

7.3  Effects on Plant Population and Community

It has been established that the associations between root and microbial symbionts, 
such as AM fungi, EcM fungi and rhizobia, largely influence plant population and 
community (van der Heijden et al. 2016; Keller and Lau 2018; Tedersoo et al. 2020). 
Mycorrhizal networks connect the conspecific and heterospecific plant individuals 
belowground, mediating nutrient flow and phytochemcial signals transmission, and 
ultimately influencing plant population and community (Genre et al. 2020). Given 
that plant leaves are associated with a large number of fungal species, phyllosphere 
fungi are also supposed to drive the structure of plant population and community. 
On one hand, phyllosphere fungi may affect plant population and community by 
influencing growth and biomass of individual plants. On the other hand, more 
importantly, phyllosphere fungi drive plant population and community by control-
ling the degradation rate of leaf litter and the occurrence of plant diseases.

As we described above, foliar fungal infection can influence the health, growth 
and biomass of individual plant, which depends on the fungal taxa. If the leaves of 
individual plant infected by pathogens, the health of neighboring plant community 
will be threatened, as fungal spores can be transported by rainfall, wind and insects 
(Roper et al. 2010; Kim et al. 2019). In an interesting study, the researchers investi-
gated the dispersal of spores of leaf rust fungus Puccinia triticina on the infected 
wheat plants following a raindrop hits with high-speed photography (Kim et  al. 
2019). They found the raindrop-induced vortex ring carried the spores beyond the 
laminar boundary layer of leaves and lead to the long-distance transport of patho-
gens through the atmosphere. If the phyllosphere fungi are beneficial to health of 
plants, they will have the positive impacts on plant community establishment and 
persistence under stressful conditions.

Phyllosphere fungi can indirectly influence plant population and community 
by acting as pioneer decomposers and regulating the subsequent soil nutrient 
cycling (Saikkonen et al. 2015; Sun et al. 2020). For example, accumulations of 
leaf litter create a physical barrier that interferes the arrival of seeds to soil and the 
emergence of sprouts and seedlings. Vellend et al. reported that the germination of 
forest sedges (Carex, Cyperaceae) is lower for seeds beneath the leaf litter than 
those on the top of the litter layer (Vellend et al. 2000). In addition, plant litter can 
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intercept light, shading seeds and seedlings, reduce soil water evaporations, and 
control soil thermal amplitude. As such, the effects of litter on seedling emergency 
depend to some extent on the litter amount and quality, which can be adjusted by 
phyllosphere fungi. Additionally, plant litter is the major organic carbon source in 
ecosystems, especially in forest and grassland ecosystems. During the early stage 
of leaf litter decay, Ascomycota is dominate phylum that involves the decomposition 
of easily degradable and nutrient-rich compounds, such as oligosaccharides, 
organic acid, hemicellulose and cellulose (Ma et al. 2013). With the process of 
degradation, Ascomycota is gradually replaced by the saprotrophs in 
Basidiomycota, which can degrade highly recalcitrant compounds, such as lignin 
and suberin (Voriskova and Baldrian 2013). The cooperation of phyllosphere 
fungi and later decomposer releases nutrients from leaf litter to soil, which 
increases soil nutrient availability and promotes root nutrient uptake, and 
ultimately influences plant community.

In addition, based on the Janzen-Connell hypothesis, the researchers reported 
that pathogenic fungi significantly increased plant diversity, while insect herbivores 
changed plant community composition in rainforest (Bagchi et al. 2014). Plant dis-
eases caused by fungal pathogens, from some perspectives, are regarded as the 
modulator of plant diversity and community structure. The occurrence of plant dis-
eases constrains the population density of dominate species and increases the 
advantage of rare species, maintaining multiple species co-existence. Usually, we 
name the pattern as conspecific negative density dependence (CNDD). By a long-
term monitoring on seedling demographic data in a subtropical forest, Chen et al. 
found the tree species with higher pathogenic fungal accumulation more suffered 
from CNDD, whereas the tree species with higher ectomycorrhizal fungal 
accumulation less suffered from CNDD (Chen et  al. 2019). Nevertheless, how 
diverse phyllosphere fungi regulate plant communities by affecting CNDD is still 
unknown. In future, the related studies will definitely expand our knowledge on 
effects of phyllosphere fungi on plant population and community.

8  Interactions of Phyllosphere Mycobiome with Global 
Change Factors

The Earth and its ecosystems are undergoing radical global changes such as climate 
change (e.g., global warming, extreme drought and precipitation) and land-use 
change (e.g., habitat loss, urbanization, and fertilization) (Perreault and Laforest- 
Lapointe 2022; Zhu et al. 2022). Emerging studies have suggested that these global 
change factors had an important impact on multiple facets of the phyllosphere 
mycobiome (Table 3). A better understanding of how the phyllosphere mycobiome 
and plant-mycobiome interactions response to global change will be a crucial step 
for harnessing the plant mycobiome to improve plant fitness and productivity.
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Table 3 Recent studies showing the impacts of multiple global change factors on the phyllosphere 
mycobiome

Plant species
Leaf 
Compartment Factors Impacts References

Quercus robur Episphere and 
endosphere

Warming Decrease fungal species 
richness and evenness; 
decrease the relative 
abundance of putative 
fungal pathogens

Faticov et al. 
(2021)

Eucalyptus Episphere and 
endosphere

Precipitation Increase fungal species 
richness and abundance; 
increase the relative 
abundance of putative 
fungal pathogens

Chen et al. 
(2021a)

Sorghum 
bicolor

Episphere and 
endosphere

Drought Significantly affect 
fungal community 
structure

Gao et al. 
(2020)

Zea mays, 
Triticum 
aestivum, and 
Hordeum 
vulgare

Endosphere Fertilization Chemical N fertilizer 
increased the relative 
abundance of potential 
plant pathogen

Xiong et al. 
(2021a)

Schefflera 
octophylla

Episphere Nitrogen 
deposition

2-week NH3 exposure 
increased the relative 
abundance of 
Alternaria, 
Cladosporium, and 
Sampaiozyma.

Song et al. 
(2022a)

Betula pendula Episphere Urbanization Decrease fungal 
diversity, DNA amount, 
and activity; increase 
microbial respiration

Ivashchenko 
et al. (2022)

Populus nigra Episphere and 
endosphere

Acid rain Simulated sulfuric and 
nitric acid rain 
significantly decreased 
fungal biomass in the 
phyllosphere

Du et al. (2020)

8.1  Warming, Precipitation, and Drought

It is unequivocal that human activities result in rapid changes in global climate, and 
global mean surface temperature is estimated to be increased by 2–3 °C within the 
next decades (Zhu et al. 2022; Allen et al. 2014). Global warming caused by the 
“Greenhouse effect” attracts great attention from the general publics and could 
strongly affect the assembly and function of microbiome (Zhu et al. 2022; Faticov 
et al. 2021). A lot of efforts have been made to explore impact of warming on diver-
sity, composition, and function of microbial community but mainly focused on bac-
teria and soil samples (Yuan et  al. 2021; Feng et  al. 2019; Tao et  al. 2020). In 
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addition to affecting bacterial community, growing evidence has suggested that 
warming significantly influences diversity and structure of the fungal community 
living in the phyllosphere (Faticov et al. 2021; Zhu et al. 2022; Liu et al. 2019). For 
example, it was recently showed that warming had a significant effect on fungal 
community composition of the oak phyllosphere and decreased fungal species rich-
ness and evenness (Faticov et al. 2021). Moreover, warming decreased the relative 
abundance of putative fungal pathogens in the early and late growing seasons 
(Faticov et al. 2021). Using the common-garden experiment, Balint and colleagues 
also found that warming significantly decreased fungal diversity in the phyllosphere 
of Populus balsamifera; warming changed the phyllosphere fungal community with 
the increase of plausible pathogens (Balint et al. 2015).

Liu and colleagues investigated effects of global change on foliar fungal diseases 
using a 6-year factorial experiment in a natural Tibetan alpine meadow ecosystem, 
and revealed that warming significantly increased fungal diseases for nine plant spe-
cies and increased pathogen load of entire host communities (Liu et al. 2019). In 
contrast, altered precipitation had no significant effect on community pathogen 
load, indicating that warming has a more important role than precipitation in affect-
ing plant health (Liu et al. 2019). Inconsistent with this finding, it was reported that 
changes in precipitation can largely influence plant pathogens and plant fitness by 
altering humidity and water availability (Xin et al. 2016; Romero et al. 2022). For 
instance, humidity and high temperature are identified as key factors invoking actual 
fungal plant-disease outbreaks, and Puccinia and Fusarium are frequently reported 
as causative agents of plant disease in phyllosphere (Romero et al. 2022). Similarly, 
a recent study on the phyllosphere of Eucalyptus in Australia suggested that precipi-
tation was the most important factor predicting fungal taxonomic diversity and 
abundance (Chen et  al. 2021a). Random forest analysis and structural equation 
models (SEM) further indicated that precipitation was the best predictor for putative 
fungal pathogens and can increase its abundance in the phyllosphere (Chen 
et al. 2021a).

In addition to warming and precipitation, there is a global increase in drought 
frequency and duration, as well as in extreme weather events including flood and 
drought (Zhu et al. 2022; Sardans et al. 2008). Increasing researches have showed 
that drought has important impacts on plant production and health by affecting 
plant-associated microbiomes and plant-microbiome interactions (Zhu et al. 2022; 
Santos-Medellin et al. 2021; Gao et al. 2020; Xu et al. 2018; de Vries et al. 2020). 
Gao and colleagues examined fungal communities associated with soil, root, and 
leaf compartments of the sorghum under drought stress, and demonstrated that 
stochastic processes (e.g., drift or stochastic dispersal) dominated mycobiome 
assembly at the early stage of host development (Gao et al. 2020). Although drought 
treatment had a significant effect on fungal community structure, there was no sig-
nal for stochasticity was observed when drought stress was relieved, indicating that 
host selection rather than drought plays a more important role in shaping fungal 
assembly (Gao et al. 2020). All these observations highlighted the importance of 
improving our understanding of how the phyllosphere mycobiome responses to 
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climate change factors and harnessing the plant mycobiome to improve host fitness 
under warming, precipitation, and drought stresses.

8.2  Fertilization, Nitrogen Deposition, Acid Rain, 
and Urbanization

Chemical fertilizers like nitrogen, phosphorus, and potassium are essential for plant 
growth and health and play a vital role in modern agricultural production. The use 
of chemical fertilizers, especially for nitrogen fertilizer, is likely to increase 
significantly in future agricultural production to feed the growing human population 
(Zhu et al. 2022; Singh et al. 2021). It has been well documented that the overuse of 
the fertilizers can negatively influence ecosystem function and agricultural produc-
tion by increasing environmental pollution and soil degradation, such as nitrogen 
deposition, acid rain, and soil acidification (Carrara et al. 2018; Zhu et al. 2022; 
Raza et al. 2020). Moreover, increasing evidence showed that excessive chemical 
fertilization will threaten the diversity, composition, and functioning of soil and 
plant microbiomes (Fan et  al. 2019; Xiong et  al. 2021a; Sun et  al. 2021a). For 
example, a recent work on the soil-plant continuum of maize, wheat, and barley has 
suggested that the excessive application of chemical N fertilizer increased the rela-
tive abundance of potential fungal pathogen in the leaf endosphere (Xiong et al. 
2021a). Sun and colleagues examined fungal communities associated soil and plant 
compartments of the sorghum and suggested that the mycobiome in phyllosphere 
was more resistant than those in soils to fertilization treatments including inorganic, 
organic, and mixed fertilizations (Sun et  al. 2021a). Among the treatments, the 
NPKM fertilization regime (mineral fertilizers NPK plus organic manure) had a 
positive effect on fungal alpha diversity in phyllosphere (Sun et al. 2021a). In addi-
tion to fertilization regime, agronomic managements (e.g., organic and conventional 
management) were found to significantly affect microbial diversity and function in 
soil and plant compartments (Karlsson et al. 2017; Wittwer et al. 2021; Chowdhury 
et al. 2019). Karlsson and colleagues sampled the wheat leaves from 22 organically 
and conventionally cultivated fields and found that organic farming increased fungal 
alpha diversity in the wheat phyllosphere, compared with conventional management 
(Karlsson et al. 2017).

It has been well documented that nitrogen deposition and acid rain caused by 
agricultural intensification, industrial pollution, and rapid urbanization are major 
environmental problems that adversely influence food production, environmental 
quality, and biogeochemical cycling (Yu et al. 2019; Guo et al. 2010; Zhang et al. 
2018b). Previously, numerous studies have explored the impact of nitrogen deposi-
tion and acid rain on microbial diversity and composition but still focused on soil 
and rhizosphere samples (Li et al. 2019; Moore et al. 2021; Zhao et al. 2020). A few 
recent studies reported that microbial communities living in leaves can take up pol-
lutant nitrogen including wet, dry and gaseous N, and nitrogen deposition and acid 
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rain could drive the assembly changes of the phyllosphere mycobiome (Zhu et al. 
2022; Song et al. 2022a, b; Vacher et al. 2016). For example, 2-week NH3 exposure 
increased the relative abundance of most fungal genera in phyllosphere, including 
Alternaria, Cladosporium, Sampaiozyma, Cystobasidium, Gibellulopsis, and 
Cercospora (Song et al. 2022a). Song and colleagues explored the impact of con-
tinuous NOx exposure on the phyllosphere microbiome and found that NOx expo-
sure intensify the phyllosphere fungal interactions in co-occurrence networks (Song 
et al. 2022b). Helander and colleagues tested the influence of simulated acid rain on 
the occurrence of endophytes and found that the acid rain treatment (pH  =  3) 
decreased approximately 25% of the number of isolated endophytes in the birch 
phyllosphere (Helander et al. 1993).

In addition, growing evidence has demonstrated a role of rapid urbanization in 
structuring plant-associated microbial communities (Jumpponen and Jones 2010; 
Berg and Cernava 2022; Perreault and Laforest-Lapointe 2022). For instance, it was 
reported that seasonal dynamics of the fungal communities in the Quercus macrocarpa 
phyllosphere differed between urban and nonurban environments, indicating the role 
of urbanization in the assembly of the phyllosphere mycobiome (Jumpponen and 
Jones 2010). Imperato and colleagues observed the higher fungal diversity and richness 
in the phyllosphere of urban environment (Imperato et al. 2019), while Jumpponen 
et  al. found the lower diversity values of that within cities (Jumpponen and Jones 
2010). Recently, the researchers investigated the leaves of Betula pendula in Moscow 
at increasing distances from the road; they found that microbial diversity and activity 
significantly declined with road vicinity, indicating the negative impact of urbanization 
on phyllosphere fungal diversity and function (Ivashchenko et  al. 2022). Taken 
together, the results demonstrate that multiple global change factors exert the strong 
effects on many traits of the phyllosphere mycobiome, including fungal diversity, 
community composition, assembly processes, and biotic interactions. A systematic 
understanding of ecological and biological mechanisms that govern mycobiome 
assembly and phyllosphere-mycobiome interactions in the context of global change 
will provide the pivotal basis for the future plant mycobiome engineering.

9  Future Prospects

Phyllosphere mycobiome owns the extremely high species diversity, and thus 
should be protected as a hotspot in the global diversity conservation boom. In 
particular, considering the pressures from deforestation, grassland degradation, 
irrational use of agricultural fertilizers and pesticides, and urban pollution, it is 
timely to draw the monitoring of phyllosphere mycobiome into the global 
biodiversity monitoring network (Guerra et  al. 2021). Compared with the 
phyllosphere fungal studies in natural ecosystems, greater research efforts are 
needed in agricultural and urban ecosystems. It is because they are more closely 
correlated with our lives and benefits. Rhizosphere microbiome optimization and 
synthetic colony techniques has been considered as an important way to solve the 
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future food crisis (Zhang et  al. 2017). Obviously, a better understanding of the 
mechanism of community assembly of phyllosphere fungi will further help us to 
develop climate-smart agriculture and maintain the crop health (Trivedi et al. 2020). 
In addition, monitoring the phyllosphere fungal community dynamics in urban 
greenery will provide new ideas and approaches for monitoring and altering urban 
environmental pollution.

As phyllosphere fungi are accessible, replicated and easily manipulated, they are 
well suited for theoretical studies in ecology and biogeography (Andrews and Harris 
2000). Several factors that drive the variation in phyllosphere fungal communities 
have been identified, however, it is more difficult for us to generalize about their 
distribution patterns and succession dynamics. Currently, we still lack the global- 
scale and standardized research paradigm for biogeography of phyllosphere fungi. 
Fungal taxonomic diversity may not be always correlated with their functional 
diversity. How much is the functional redundancy of phyllosphere mycobiome at the 
global scale? Trait-based approaches, as an important direction for the phyllosphere 
mycobiome studies, will hopefully give us some clues (Zanne et al. 2020).

In terms of technology, drone mounted robotic arms will boost the sampling 
work for phyllosphere fungal researches. Compared with the traditional sampling 
methods, such as using pruning shears, professional tree climbers and shotgun 
collection, drone sampling will help us acquire the leaf samples at the high-height 
canopy more effectively and safely. For example, we may survey the phyllosphere 
mycobiome of Sequoia sempervirens along its whole trunk, which is one of the tall-
est trees in the world. In addition, the in-depth integration of remote sensing and 
omics will correlate the fungal taxonomic and functional diversity to the entire eco-
system functioning (e.g., Liu et al. 2022). As Albert Einstein said, the more we see, 
the less we know. For phyllosphere mycobiome, we only begin to scratch the sur-
face of such important microorganisms. More and more researches and reviews in 
these areas will be helpful in evaluating and predicting the variation in diversity and 
function of phyllosphere mycobiome, and providing the new theoretical guide for 
agricultural application and ecological protection in the context of global change.
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