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Impacts of Climate Change on Plant 
Mycobiome

Abdelghafar M. Abu-Elsaoud and Walaa I. Saadeldin

1 � Introduction

There is widespread agreement that climate change is a serious threat to the 
environment and one of the most pressing social issues of the century. More 
atmospheric carbon dioxide (CO2) and, by extension, increased ultraviolet radia-
tion (UVR) reaching Earth’s surface owing to both rising temperatures and 
ozone depletion are two of the many phenomena associated to global climate 
change that have their roots in industrialization (Madronich et al. 1998). These 
climatic shifts may have both direct and indirect effects on organisms, altering 
their phenology and physiology (Beaugrand et al. 2003; Cloern et al. 2005) and 
impacting environmental parameters that regulate mortality and growth (Beardall 
et  al. 2009). There is a chance that this might change the species’ range, the 
composition of communities, and the ecosystem’s ability to operate (Beaugrand 
et al. 2002).

The effects of ultraviolet radiation (UVR) on plants and fungi are not only depen-
dent on the UVR’s intensity and spectrum content, but also on the interaction of 
UVR exposure with other environmental factors such as nutrients (Marcoval et al. 
2007), light acclimation history (van de Poll et al. 2006), and temperature (Villafañe 
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et  al. 2008). (Boyd et  al. 2010). Biological processes including nutrition uptake, 
growth, species composition, and toxin generation might all be negatively impacted 
by UVR. Evidence from many studies (Beardall et al. 2009; Fu et al. 2012; Hogue 
et al. 2005) supports this notion. The community structure of phytoplankton might 
shift as a result of this since various species/groups react differently to UVR. As a 
result of affecting both the dark and light responses of photosynthesis at photosys-
tem II, namely the enzyme RuBisCO (Vincent and Neale 2000), exposure to UVR 
can reduce photosynthetic rates. Significant UVR-induced damage on nucleic acids 
has also been observed (Boelen et al. 1999; Buma et al. 1996), leading to nucleotide 
damage and the production of photoproducts (Görner 1994). These photoproducts, 
such as pyrimidine dimers, can induce mutations and decrease the amount of free 
RNA polymerase, which affects transcription (Britt 1996). UVR exposure has been 
linked to an increase in reactive oxygen species (He and Häder 2002), which may 
damage macromolecules including lipids, DNA, and proteins, leading to oxidative 
damage and possibly even cell death.

The rise in atmospheric carbon dioxide concentrations since the start of the 
Industrial Revolution has had a significant impact on global warming. The increase 
in atmospheric CO2 from 280 parts per million (before the start of the Industrial 
Revolution) to the present 410 parts per million is roughly proportional to the 
increase in average global temperature of about 1 °C since 1880. (Ciais et al. 2014). 
As long as CO2 concentrations are on the increase, the Earth will continue to warm, 
but the extent to which this happens will rely on political will and human ability to 
limit carbon emissions as quickly as feasible. Therefore, increasing temperatures 
will lead to different climatic conditions in many places, which will affect the way 
species operate and their current geographic ranges. By taking in some of the car-
bon dioxide (CO2) emitted into the air from burning fossil fuels, terrestrial plants 
have played an important role in mitigating climate change. Ciais et  al. (2014) 
found that plants now absorb 30% of annual CO2 emissions, hence slowing the pace 
at which the planet is warming. However, plants are adaptive, and some of them 
may adjust their optimal development temperature based on external conditions 
(see below). Because forests are responsible for a sizable proportion of global ter-
restrial production, knowing how they will respond to climate change is crucial for 
foreseeing the future. In order to assess how trees in a forest will react to rising 
temperatures, it is important to measure any potential changes in tree physiology. 
One of the major gaps in our knowledge of the carbon cycle and our capacity to 
forecast future increases in atmospheric CO2 concentrations is how temperature 
influences the physiological changes of forest trees (Mercado et al. 2018). Since the 
greatest fluxes of carbon intake and loss occur during photosynthesis and respira-
tion, respectively, the capacity of a species to physically modify its plant metabo-
lism is a first line of defence for how they would adapt to rising temperatures. The 
topics of this chapter include global warming (temperature), UV radiation, and car-
bon dioxide emissions.
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2 � Effect of Climate Change on Plants and Mycobiota

2.1 � Ultraviolet Radiations

2.1.1 � Nature of Light

Light is an essential source of energy for virtually all organisms on Earth. Many 
different kinds of organisms are able to absorb and use the energy from light. 
Autotrophs and plants, for instance, are able to achieve this via photosynthesis. 
However, light has many other functions than providing energy for biological reac-
tions. Its quality (the ratio of photons at different wavelengths), intensity (energy 
flux), and relationships to other environmental characteristics all reveal information 
about the condition of the environment right now. (Jones et al. 2013).

Relativity and quantum physics, the two dominant theories of the twentieth cen-
tury, both focus on the behaviour of as light travels through space as well as inter-
acts with matter. The study of this phenomenon is also crucial to our knowledge of 
how organisms behave and operate (Björn 2015).

Photomorphogenesis is described as an organism’s developmental reaction to 
information in light, such as the amount of light, the quality of light in terms of 
wavelengths present, the direction of light, or the length of night and day and (pho-
toperiod). Photoreceptors are molecules within cells that take in light and trigger a 
series of reactions in the organism when exposed to it (Jones et  al. 2013). 
Photostimulators are a specific kind of light utilised in the process of photostimula-
tion, which is the use of light to stimulate biological processes.

2.2 � Electromagnetic Spectrum

For all forms of energy production that do not involve nuclear fission, the Sun is 
indispensable. Energy from the sun is the result of nuclear fusion, and each year the 
Earth absorbs around 5.62 × 1024 joules of solar radiation through its atmosphere, 
seas, and landmasses; of this amount, photosynthesis is responsible for capturing 
3.16 × 1021 joules (Table 1). The electromagnetic spectrum includes not only visi-
ble light but also - and X-rays, and all the way to radio waves at the other end. Light 
is both a particle and a wave at the same time. As a simplified metaphor, think of it 
as waves made up of discrete packets of energy, or quanta. A photon is the quantiza-
tion of light’s energy. Lambda (λ), the Greek letter that represents wavelength, is 
often written in nanometers when referring to visible light (nm). Radiation with 
wavelengths between around 380 nm (violet) and 760 nm (far red) is known as the 
visible spectrum (Fig.  1). Equation 14.1 expresses the relationship between fre-
quency (ν, Greek letter nu; units = s−1), speed of light (c, units = m s−1), and wave-
length (in meters). There are two primary characteristics of light. Light has both 
particle and wave qualities, and they can be clearly seen in an adjusted version of 
Young’s double-slit experiment (Jones 2013).
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Table 1  The fate of solar energy reaching Earth (Jones 2013)

Global solar power balance Amount in terawattsa

Solar power inputb 178,000
Reflected to space immediately 53,000
Absorbed and then reflected as heat 82,000
Used to evaporate water 40,000
Captured by photosynthesis (net primary 
productivity)c

100

Total power used by human society
In 2005 13
Projected use in 2100 46
Total used for food 0.6

aPower is measured in watts, and a watt is equal to one joule every second. Terawatts are measured 
in units of power equivalent to 1012 joules second−1, or 1012 watts
bSolar energy input is 5.621012 terawatts (5.621024 joules)
cPhotosynthetic organisms are responsible for harvesting an average of 3.16  ×  109  terawatts 
(3.16 × 1021 joules) of solar energy every year

Fig. 1  The visible portion of the electromagnetic spectrum, from 400 to 710 nm, enlarged to dis-
play colour. The blue end of the spectrum (380 nm) and the red end of the spectrum (760 nm) are 
not the absolute limiting factors for human perceptual abilities. Keep in mind that the units of 
energy are J mol−1 (Jones 2013)
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Equation 1  Relationship between light speed, frequency & wavelength

	 c ��� 	

Equation 2  Energy as a function of electromagnetic radiation wavelength or 
frequency:

	 E hc� / � 	

Where c = speed of light (approximately 300 × 106 m s−1) and h = Planck’s constant 
(4.14 × 10−15 eV.s).

2.3 � Photobiology: Interaction of Light with Living Organisms

Photobiology is the study of how various wavelengths of light influence living 
organisms. Photoreceptors are light-absorbing molecules that trigger a series of 
reactions in living things when they detect light (Jones et al. 2013). Photostimulators 
are a specific kind of light utilised in the process of photostimulation, which is the 
use of light to stimulate biological processes. Photoreceptor molecules detect light 
and transmit that information to the cell so that the body may respond to changes in 
its environment.

Rhodopsin is found in the eyes of humans and other animals and functions as a 
photoreceptor. Photoreceptors are found in a wide variety of plant and microbial 
species. Phytochromes, cryptochromes, and phototropins are all examples of photo-
synthetic pigments. There is a unique spectrum of light that is taken in by each type 
of photoreceptor. Absorption of light by a photoreceptor causes a variety of reac-
tions depending on the wavelength of the light. An action spectrum is the result of 
plotting the magnitude of a certain physiological reaction against the wavelengths 
that elicit that response. The photoreceptor responsible for a given reaction can be 
determined by measuring the spectrum of the associated action potential.

UV light with shorter wavelengths than the visible and infrared ranges display a 
greater number of quantum characteristics. We arbitrarily divide ultraviolet light 
into three bands, each with distinct biological consequences. Since it carries the 
least amount of energy, UV-A light is the least dangerous and most frequent kind of 
UV radiation. The ultraviolet-a (UV-A) spectrum of light is commonly referred to 
as “black light” because of its reputation for inducing visible light emission from 
fluorescent materials. UV-A lamps, the kind used in tanning salons and photother-
apy, are the most common (Fig. 2).

Since UV-B has enough energy to destroy living tissues yet is not completely 
absorbed by the atmosphere, it is the most dangerous kind of UV radiation. 
Overexposure to UV-B rays has been linked to skin cancer. Given that the atmo-
sphere blocks most of the UV-B radiation from space, even a little change in the 
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Fig. 2  Annual mean erythemal (skin-burning) clear-sky UV-B radiation at the Earth’s surface, 
observed (before 2010) and anticipated (after 2010) compared to 1980 for different latitude bands 
(Bais et al. 2015; McKenzie et al. 2011; Williamson et al. 2014)

ozone layer might significantly increase the risk of skin cancer. While the sun’s 
ultraviolet radiation (UV) is essential for life on Earth, it has the potential to damage 
living as well as non-living organisms. Conventionally, UV light has been separated 
into three wavelength bands: UV-A (315–400 nm), UV-B (280–315 nm), and UV-C 
(200 nm) (100–280 nm). Potentially harmful ultraviolet (UV)-C radiation is blocked 
entirely by Earth’s atmosphere before it reaches the planet’s surface. Stratospheric 
ozone absorbs the most harmful short wavelength UV-B radiation, protecting 
Earth’s surface from it. The majority of the sun’s ultraviolet (UV) light reaching the 
ground is UV-A, which is mostly unimpeded by the Earth’s atmosphere. UV-A radi-
ation is mutagenic and suppresses the immune system in humans, but it also has 
essential impacts on tropospheric chemistry, air quality, aquatic and soil processes, 
and is typically less hazardous than UV-B radiation (Damian et al. 2011). Insect 
pests and harmful bacteria can be effectively repressed by plants’ natural defence 
mechanisms, and solar UV light, especially UV-B, can be a positive regulator of 
these mechanisms (Williamson et al. 2014). Microorganisms can be affected posi-
tively or negatively by UV light, with UV-A and UV-B having the most dramatic 
impacts (Abu-Elsaoud and Abdel-Azeem 2020).

In an in vitro experiment, we determined how exposure to higher UV radiation 
levels, particularly UVA + UVB, affected certain aeromycobiota from the Ismailia 
region in Egypt (unpublished data). Paecilomyces sp. and Drechslera sp. were the 
two kinds of fungi examined. While both Drechslera sp. and Paecilomyces sp. 
showed an effect of UV-B and UV-A on biochemical consequences and conidial 
structure (size), UV-absorbing compound levels were found to be much higher in 
Paecilomyces following irradiation with both wavelengths compared to the control 
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group. Mycosporine-like amino acids (MAAs) were found in increased quantities 
(Abu-Elsaoud and Abdel-Azeem 2020). Table 2 Summarized selected studies on the 
effect of climate change in terms of Electromagnetic spectrum on microorganisms 
especially fungi (Figs. 3 and 4).

The majority of filamentous fungi finish their asexual life cycle by forming spe-
cialised structures known as conidia. They are critical to the proliferation of fungi 
as well as the survival of their habitats. They also play a role in pathogenic species 
identification and infection. Solar radiation can have a variety of effects on conidial 
production, survival, dispersal, germination, pathogenicity, and virulence, some of 

Table 2  Some selected studies Effect of climate change in terms of Electromagnetic spectrum on 
microorganisms especially fungi

EM radiation
Wavelength 
(λ; nm) Subject Microorganism Reference

UV-B 280–320 Growth, pigmentation, 
and spore generation in 
the phytopathogenic 
fungus Alternaria solani 
in response to ultraviolet 
B light

Alternaria solani Fourtouni 
et al. (1998)

UV-B 280–320 Effect of UV-B irradiation 
on the antioxidant activity 
and content of the 
medicinal Caterpillar 
fungus, Cordyceps 
militaris (ascomycetes)

Cordyceps militaris Huang et al. 
(2015)

Serpula himantioides 
cultures exposed to UV-B 
radiation accumulate 
more xerocomic acid, 
which is found in the cell 
wall

Serpula himantioides Torres et al. 
(2019)

Physiological and 
molecular effects of 
environmental UV 
radiation on fungal 
conidia

Magnaporthe grisea, 
Alternaria alternata, 
Colletotrichum 
lagenarium, 
Cochliobolus 
heterostrophus, and 
Aspergillus spp.

Braga et al. 
(2015)

UV-A + UV-B 320–400 Conidial structure has 
been altered

Fungi: Drechslera sp. 
Paecilomyces sp.

Abu-
Elsaoud and 
Abdel-
Azeem 
(2020)

280–320 UV-absorbing chemicals 
have been increased
Mycosporine-like-amino 
acids have increased 
(MAAs)

He-Ne laser 
and UV

Endo-polysaccharide 
synthesis and antioxidant 
activity

Phellinus igniarius Zhang et al. 
(2016)
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Fig. 3  The conidial size (m) of Paecilomyces spp. and Dreschlera spp. increases in response to 
increased ultraviolet radiations (UV-B, UV-A). (Abu-Elsaoud and Abdel-Azeem unpublished data)

which are species-specific. The ultraviolet (UV) spectrum of the sun’s radiation is 
the most harmful and mutagenic. Most fungal conidia are susceptible to mortality 
when exposed to direct sunlight for a few hours. Conidia are killed by UV-A and 
UV-B rays from the sun. Sublethal UV light exposure can decrease the speed and 

A. M. Abu-Elsaoud and W. I. Saadeldin



477

0

1

2

3

4

5

6

7

0 12 36 60 4

Co
ni
di
op

ho
re

di
am

et
er

(u
m
)

UV-exposition mti e (hours)

Dreschlera Paecilomyces

y = 0.0119x + 4.6857
R² = 0.21906

y = 0.0148x + 3.7954
R² = 0.45859

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 0

co
ni
di
ph

or
e
di
am

et
er

(u
m
)

UV-exposition time (hours)

Dreschlera
conidiphore
Paecilomyces
conidiiophore

8

9

Fig. 4  The conidiophore diameter (m) of Paecilomyces sp. and Dreschlera sp. increases when 
exposed to higher amounts of ultraviolet radiations (UV-B, UV-A). (Abu-Elsaoud and Abdel-
Azeem unpublished data)

pathogenicity of conidial germination as well as kill conidia, reducing the number 
and spread of the fungal population. This page attempts to provide readers with an 
overview of the key systems involved in UV radiation defence and healing, with a 
particular emphasis on how these mechanisms influence conidia. The methods used 
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Fig. 5  The biological and molecular impacts of solar UV radiation on conidia and their ability to 
operate. (Source: Braga et al. 2015)

to create sun radiation-resistant strains of fungal species of interest, such as entomo-
pathogens, will also be discussed. To further understand how solar UV radiation 
affects conidia on a molecular and physiological level, as well as how conidia 
respond functionally, refer to Fig. 5 (Braga et al. 2015).

3 � Climate Warming

3.1 � Plant Responses to Climate Warming

Tree growth and other physiological processes are very sensitive to temperature. A 
rise of 2–5 °C is forecast for this century, creating circumstances for numerous spe-
cies that have never been seen before in evolutionary history. Sedentary and living 
for far longer periods of time than animals, plants, and especially trees, may require 
physiological adaptations to greater temperatures. But most plants can adjust to new 
conditions, and they typically do so in ways that maintain or even improve their 
carbon gain. Climate change has led to adaptations that increase carbon intake and 
growth, such as reduced respiration rates (Atkin and Tjoelker 2003), increased leaf 
areas (Way and Oren 2010), and even increased assimilation rates at warmer growth 
temperatures (Way and Sage 2008). In addition, most species may raise their ther-
mal optimum of photosynthesis in response to rising temperatures (Crous et  al. 
2013; Way and Oren 2010) (Fig. 6). “Thermal acclimation” refers to the process by 
which a plant’s physiology adapts to different temperatures used for growth. In most 
cases, the thermal ideal of photosynthesis will alter by a fraction of a degree for 
every degree that the growth temperature changes. By allowing plants to function at 
extremely high temperatures without a decrease in photosynthetic rates, raising the 
temperature ideal of photosynthesis has the potential to greatly mitigate the negative 
effects of warming (Fig. 6). Furthermore, in comparison to non-adaptive respiration 
rates, lower respiration rates with warming minimise carbon loss (Atkin et al. 2015). 
Large-scale changes in plant fluxes of respiration and photosynthesis will impact 
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Fig. 6  Reduced complexity version of the physiological responses plants can make to rising tem-
peratures throughout time (i.e., thermal acclimation). Temperature increases (red dots) and higher 
respiration (blue dots) relative to ambient conditions (left picture) both lead to lower rates of car-
bon uptake through photosynthesis. In reaction to rising temperatures, plants often move to a 
higher temperature optimum for photosynthesis (Shift in Topt), which allows them to keep their 
photosynthetic rates constant even as the temperature rises (compare red with blue lines in upper 
right panel). Consider the case when respiration is equal at the new growth temperature compared 
to ambient conditions, but with a lower slope, to see how thermal adaptation in respiration (Change 
in Q 10) can reduce carbon loss due to warming temperatures (compare red with blue lines in bot-
tom right panel). (Source: Crous 2019)

the future degree of climate warming because plants affect global and regional tem-
perature (Dusenge et al. 2019).

The climatic conditions to which a species is used have a role in determining how 
well it adapts to its new environment. When temperatures rise, many plant and ani-
mal species respond positively by increasing their rate of development and photo-
synthetic ability (Gunderson et al. 2009; Way and Sage 2008). On the other hand, 
research conducted in warmer climes showed that tree growth and carbon acquisi-
tion are lower in species native to warmer low-latitude conditions, as is the species’ 
photosynthetic capability (Crous et al. 2013; Feeley et al. 2007). This data suggests 
that warmer-grown animals have a restricted physiological potential to adapt to 
higher temperatures. Species native to the equator, which experience relatively con-
stant temperatures throughout the year, may be less able to adapt to rising global 
temperatures than those native to colder regions (higher latitudes), where seasonal 
temperature swings are more pronounced. Species that live at lower latitudes are 
also more likely to be operating at their thermal optimum (Crous et  al. 2018; 
Doughty and Goulden 2008). As a result, the tropical rainforests, the most produc-
tive ecosystem on Earth, may lose some of their capacity to act as a carbon sink if 
the global average temperature continues to rise.
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Plant responses to warming can be modulated by a number of other variables, 
including, but not limited to, increased (CO2), nutrient availability, and changing 
precipitation patterns. Drought stress is anticipated to rise as a result of changes in 
rainfall patterns, the frequency of heatwaves, and the intensity of those heatwaves, 
all of which reinforce the negative impacts of higher temperatures. Warmer tem-
peratures not only slow development, but also hinder seed generation and dissemi-
nation, which can ultimately lead to fewer seedling establishments and widespread 
forest dieback (Allen et al. 2010). Climate change has several consequences, includ-
ing altered plant communities and decreased or modified distribution ranges of sev-
eral plant species (Harsch and HilleRisLambers 2016).

3.2 � Climate Affects Symbiotic Fungal Endophyte Diversity 
and Performance

The genetic diversity of endophytic fungi, which are microorganisms found on the 
surfaces of plants, is exceptionally great (Rodriguez et al. 2009). As a result, they 
can alter a plant’s growth, offspring, and resistance to predators and adverse condi-
tions (Cosme et al. 2016; Kivlin et al. 2013; Mayerhofer et al. 2013; Oberhofer et al. 
2014; Rho et al. 2018; Rodriguez et al. 2008). Increased nitrogen absorption by host 
plants is one positive effect of endophytes (Afkhami and Strauss 2016; Aguilar-
Trigueros and Rillig 2016; Behie and Bidochka 2014; Clay and Holah 1999; 
Rudgers et al. 2004, 2005) have all shown that endophytes have an impact on the 
overall structure and function of plant communities and the ecological webs that 
connect them (e.g. herbivores and their parasitoids; Omacini et al. 2001). The genus 
Neotyphodium and its asexual stage, Epichlo, have been used in a small number of 
experiments to teach us about fungal endophytes. It is not feasible to undertake 
randomised controlled trials to validate the ecological activities of most fungal 
endophytes due to their infamous difficulty to cultivate.

One of the most notable features of this important group of fungal endophytes is 
the wide host and geographic ranges of the species that make up the Serendipitaceae 
family, which is part of the order Sebacinales (Garnica et al. 2016; Weiß et al. 2011). 
Previous studies have demonstrated that Serendipita indica (Piriformospora indica) 
improves plant growth and modulates plant nutrition and tolerances to biotic and 
abiotic stresses, however these studies have mostly focused on S. indica (Achatz 
et  al. 2010; Barazani et  al. 2005; Gill et  al. 2016; Waller et  al. 2005). Tübingen 
coworkers and I have recently identified and cultured Serendipita herbamans, 
another member of the Serendipitaceae family that is widespread and associated 
with a wide range of host species and environmental conditions across Central 
Europe (Riess et al. 2014).

Soil microorganisms may have an impact on both plant growth and stress resis-
tance, albeit how exactly they do so may differ from host to host. As a result, plant-
microbe interactions aid in the development of plant communities, and there is 
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growing evidence that they play a role in the spread of invasive plant species 
(Callaway et al. 2004; Dawson and Schrama 2016; Inderjit and van der Putten 2010; 
Klironomos 2002). Plants may profit from or be harmed by the microorganisms that 
live on them (Bever et al. 2012; van der Putten et al. 2013). If exotics accumulate 
biota that has a net favourable effect on the plant, they may have an advantage over 
locals. This could happen if the imported region does not have the same natural ill-
nesses as the exotic does (Callaway et al. 2011; Maron et al. 2014; Mitchell and 
Power 2003; Reinhart et al. 2003). It has been suggested that the introduction of 
exotic plants into an area can have a negative effect on the soil biota by either 
increasing the number of diseases that attack native plants (Mangla and Callaway 
2008) or by disrupting the interactions between mutualists and native plants 
(Meinhardt and Gehring 2012; Stinson et al. 2006).

Many studies on plant-microbe interactions and plant invasion have focused on 
soil-borne microbes rather than endophytes, despite the fact that fungal endophytes 
are apparently widespread and diverse also in invasive plant populations (Clay et al. 
2016; Shipunov et  al. 2008). A remarkable set of research by Aschehoug et  al. 
(2012, 2014) showed how the leaf endophyte Alternaria alternata causes the inva-
sive knapweed (Centaurea stoebe) highly effective and allelopathic towards native 
North American grasses.

3.3 � Climate Change and Fungal Pathogens

Growing evidence suggests environmental factors have a significant influence in the 
emergence and resurgence of infectious illnesses, notably those caused by fungus 
and other fungal infections (El-Sayed and Kamel 2020; Wu et al. 2016; Nnadi and 
Carter 2021). The United Nations Framework Convention on Climate Change 
defines climate change as “a change of climate which is attributed directly or indi-
rectly to human activity that alters the composition of the global atmosphere and 
which is in addition to natural climate variability observed over comparable time 
periods,” suggesting that climate change may lead to the emergence of new fungal 
diseases (Farber 2021). Reference: (Garcia-Solache and Casadevall 2010). The pos-
sible role of viruses and bacteria in epidemics and pandemics is well discussed, but 
fungus should not be overlooked. Fungi may grow saprotrophically, producing huge 
amounts of infectious spores, and infecting new hosts does not necessitate direct 
contact between them. Despite these challenges, no vaccines have been developed 
specifically for fungal infections (Casadevall 2019). To be sure, fungi appear to be 
the only organisms capable of triggering total host extinction (Fisher et al. 2012).

Most fungal species cannot infect animals and establish lifelong infections 
because they cannot tolerate high temperatures. While a rise in disease-causing 
organisms is possible as a result of climate change’s sluggish adaptation to warming 
temperatures, fungi can be taught to gain thermotolerance (Casadevall 2020; de 
Crecy et  al. 2009). Climate change also increases the likelihood that pathogenic 
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Fig. 7  Climate change’s impact on the development of fungal diseases. Climate change modifies 
the characteristics of the fungus, its habitat, and its host, which can lead to the creation of novel, 
unusual, or adaptable fungal species, with repercussions for human health, biodiversity, and food 
security. On this diagram, solid lines between characteristics and fungal species represent associa-
tions supported by published research, whereas dashed lines represent associations that are likely 
but unconfirmed. “?” signifies the advent of as-yet-unidentified fungus species with unclear reper-
cussions. (Source: Nnadi and Carter 2021)

organisms or the vectors that carry them may move to new locations, perhaps result-
ing in the emergence of diseases that have not been seen in those areas before 
(Casadevall 2020). Mold may be spread and aerosolized during climate-related 
environmental disruptions like floods, storms, and hurricanes, or it can be implanted 
via traumatic wounds and cause diseases from previously identified fungal species. 
Figure 7 depicts the potential consequences of climate change through the lens of 
emergent fungus and its effects, as well as the possibility that new and undiscovered 
species will emerge.

3.4 � Climate Affects Symbiotic Fungal Endophyte Diversity 
and Performance

Because water is such a crucial factor in a plant’s survival and growth, its drought 
tolerance can have far-reaching effects on production, variety, and dispersion 
(Knapp and Smith 2001; Lauenroth and Sala 1992). That this is the case has been 
demonstrated (Archaux and Wolters 2006; Craine et al. 2013; Knapp et al. 2002; 
Tilman and El Haddi 1992). Many climate models forecast broad increases in 
drought frequency and intensity in the future, therefore plants’ capacity to tolerate 
drought will likely grow more essential (Meehl et  al. 2007; Schoof et  al. 2010; 
Seager et al. 2007; Solomon et al. 2007). Understanding the processes underpinning 
drought resistance is crucial for optimising plant growth in water-limited condi-
tions. There is mounting evidence that microbial symbionts can play a role in medi-
ating plant responses to drought and other stresses (e.g., Augé 2001; Márquez et al. 
2007; Xu et al. 2008), despite the fact that most studies of plant drought resistance 
have focused on the plant’s physiology and genetics in its abiotic environment.
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Common plant symbionts, fungal endophytes, can have a significant impact on 
how well plants tolerate drought. Osmotic adjustment and other drought tolerance 
mechanisms may be affected by these factors (Malinowski and Belesky 2000; 
Morsy et al. 2010; Rodriguez et al. 2009, 2010; Waller et al. 2005). Host plants that 
were colonised by endophytes during drought showed increased biomass produc-
tion, decreased evaporation, and increased resistance to water stress (Elmi and West 
1995; Kane 2011; Kannadan and Rudgers 2008; Rodriguez et al. 2008). However, 
not all endophytes are beneficial to their host plants. Actually, the presence of cer-
tain endophytes can cause a decline in biomass and an increase in transpiration rates 
in host plants (Arnold and Engelbrecht 2007; Cheplick 2004; Kleczewski et  al. 
2012). Complex variables may explain why endophyte function varies between fun-
gal species, genotypes, and habitats (Cheplick 2004; Morse et al. 2007; Rodriguez 
and Redman 2008).

How and what fungal endophytes perform in communities are likely influenced 
by a variety of factors, including location, ecology, and evolution (Leibold et al. 
2004). Although most assume that bacteria may spread globally, there is mounting 
evidence that their transmission is confined to regional scales at most (Kivlin et al. 
2011; Martiny et al. 2011; Peay et al. 2010; Waldrop and Firestone 2006). Spatial 
structure and species turnover may result from limited dispersion. For instance, 
Márquez et al. (2008) discovered that as they travelled further from the coast of 
Spain, the endophyte community in two different grasses became less similar. 
Species will naturally separate into several populations in places with varying habi-
tats if there is sufficient dispersal (Leibold et al. 2004). By analysing community 
data from 158 research, Cottenie (2005) showed that 44% of communities were 
structured by species sorting, 29% by a combination of species sorting and disper-
sion effects, and 8% by spatial factors that likely indicate neutral processes or patch 
dynamics. The review did not consider symbiotic or terrestrial microbial popula-
tions. The nonclavicipitaceous endophytes of above-ground plant tissues discussed 
here are often a result of horizontal transmission from their natural habitats (e.g., 
soil, other plants, Rodriguez et al. 2009). Horizontal spread of endophytes is less 
likely to result in symbiotic relationships than vertical transmission via seeds 
(Higgins et al. 2011; Rodriguez et al. 2009). What’s more plausible is that endo-
phytes are influenced by a combination of environmental variables and the way 
space evolves through time. For instance, Arnold and Lutzoni (2007) discovered 
that, for 28 host species spanning the northern tundra to the tropical jungle, latitude 
was the strongest predictor of endophyte diversity. Likely causes include restricted 
range and a lack of suitable habitat.

The key to developing a prediction paradigm for endophyte function in symbio-
sis is understanding how endophyte dispersion corresponds to their functional 
capacities. Since endophyte function is linked to some particularly hostile environ-
ments, environmental filtration and local adaptation may both play a role in shaping 
species’ ranges in such settings. Several plant species, for instance, gained salt and 
heat tolerance through endophytes that had been separated from salty and geother-
mal habitats (Redman et al. 2002; Rodriguez et al. 2008). Both past drought patterns 
and current drought levels are likely to operate as environmental filters when we 
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think about drought stress (Evans and Wallenstein 2012). Current endophyte com-
munities may have emerged in reaction to previous moisture circumstances, but it is 
unknown how long-term drought stress influences the available species pool. If dis-
persal is the major controller of endophyte distributions, however, these organisms 
will be dispersed in a fashion that is unrelated to their function, as established by the 
spatial arrangement of sites. It may be possible to better anticipate the involvement 
of endophytes in plants under different environmental conditions if we understand 
the relative impact of environmental variables (species sorting) and spatial pro-
cesses (neutral or mass effects) in endophyte community distributions. By learning 
more about endophytes’ function in drought resistance, we could be better able to 
foresee how plants will react to drought in the future.

3.5 � Effect of Climate Change on Fodder and Forage 
Availability and Livestock

The farming industry as a whole is heavily invested in animal domestication. It is 
not uncommon for there to be lone or several small farmers in each country of the 
region, each with between one and five ruminants. To put it another way, climate 
change has an immediate effect on the production of feed and livestock. The effects 
of climate change in the 1990s were disastrous across the world. Global surface 
temperatures increased by 0.6 °C over the twentieth century, and more rises are 
expected during the twentieth century. At now, the ability of ruminants to transform 
low-quality forages into nutritious human food is threatened by the global warming 
phenomenon. The cattle business is a major source of greenhouse gas emissions, 
including methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2). The 
International Panel on Climate Change (IPCC) estimates that ruminants in India, 
Pakistan, and Bangladesh release as much carbon dioxide as 950 metric tonnes 
worth of methane every year. More study is required because of the large gap 
between IPCC estimates and actual situations. There are more than 125 million 
buffalo in the surrounding area. It’s possible that ruminants fed a diet high in rough-
age, although economically feasible, will emit more of the greenhouse gas methane 
than ruminants on diets more typical of the rest of the globe (Godde et al. 2021).

The amount of food production and the health of the global environment are both 
linked to the intensity with which agriculture is practised. Half of all farmable land 
is already in use, either for extensive livestock ranching or large-scale crop produc-
tion. The sustainability of food production, aquatic ecosystems, and societal ser-
vices will be severely tested by the predicted doubling of global food demand over 
the next 50 years. Most of the world’s population lives on grasslands, which account 
for 40% of the planet’s surface and are particularly vulnerable because of this. The 
ability of the world’s grasslands to sustain human, plant, and animal life has dimin-
ished as a result of overgrazing. Grasslands are changing due to human activities 
such as agriculture, urbanisation, and industry. The warming effect of atmospheric 
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gas buildup over the coming century makes it evident that the world’s resource allo-
cation and consumption must alter. Most scientists agree that climate change is 
happening due to human actions like burning fossil fuels, clearing forests, and using 
chemical fertilisers, and that poorer nations will be hit harder by the effects of 
this shift.

Greenhouse gases, like CO2, methane, and nitrous oxide, that humans release 
into the atmosphere are a major cause of global warming. The higher prevalence of 
floods, droughts, cyclones, and heavy rains in recent times is evidence that the accu-
mulation of gases is affecting the climate change globally. Ruminant animals are the 
most effective users of natural grassland and serve a variety of purposes in global 
agricultural systems. They provide as a source of food and revenue for both rural 
and urban dwellers, facilitate movement by providing transport and traction, and 
generate value-added commodities that can have a multiplicative influence on the 
economy and the demand for a wide range of services. Reports on the effects of 
global warming on agriculture indicate that the nations of the tropics and subtropics 
will be particularly hard hit. The development and maturity of plants, as well as the 
quality of their forage, can be affected by variations in environmental conditions 
from year to year, season to season, and location. Because of this, estimating the 
nutrient content of forages and the variety in how they will be used by ruminants is 
more difficult than it needs to be. Changes in chemical composition and senescence 
caused by environmental factors such temperature, moisture, sunlight, soil composi-
tion, and pathogens can reduce fodder quality and therefore, intake and digestion. 
Production and feeding of quality forages, which are impacted by climate and soil, 
are the main constraints on sustainable livestock production in the South Asian area. 
Despite the importance of studying the impact of environmental changes on fodder 
productivity and quality in the Asian area, relatively few research has been done on 
the topic. The elements that affect plant growth and quality are discussed in this work.

Reasons for the climate change are related to the environment. Cause of global 
warming. Methane (CH4), carbon dioxide (CO2), halocarbons, ozone, nitrous oxide 
(N2O), water vapour and aerosols are the most significant greenhouse gases. Human 
activity is the primary contributor to the steady increase of carbon dioxide in the 
atmosphere (Fig. 8).

Carbon dioxide levels are rising at a rate of roughly 0.3% each year, according to 
measurements taken throughout the world. They are expected to reach 600 parts per 
million by the end of the twenty-first century, from their current level of 370 parts 
per million (Houghton et  al. 1990). Humans contribute at a rate of 1.9% year 
(Marland 1990; Watson et al. 1992), with most of the increase coming from wealthy 
countries. The United States and the United Kingdom are responsible for an esti-
mated 18.9 and 8.9 tones, respectively, while India contributes a far more modest 1 
tone. Carbon dioxide emissions at a worldwide level increased by 1.6 gigatons per 
year due to deforestation (Watson et al. 1990, 1992). In 1990, it was projected that 
Bangladesh produced 13.5–15.5 and 61.2 thousand Gg of carbon dioxide annually 
from the burning of fossil fuels and biomass, respectively (Ahmed et  al. 1996; 
DOE 1997).
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Fig. 8  Global atmospheric concentrations of carbon dioxide over time. (Source: US EPA 2022)

The death of all above-ground vegetation and the resulting shortage of forage can 
have a devastating effect on animal output. Due to slower stem development and a 
resultant leafier sward, digestibility is unaffected by or even improved by moderate 
moisture stress (Wilson 1983). This is crucial information for plants that need a 
constantly moist environment to thrive. Forage growth and productivity are more 
severely impacted by water stress than forage quality. Increases in nitrogen (N) 
content (Wilson and Ng 1975), minerals (Abdel Rahman et al. 1971), and soluble 
carbohydrates (SC) in forage have all been linked to water stress(Ford and Wilson 
1981). Alfalfa output drops by 49% when water stress delays plant development, 
leading to a higher leaf-to-stem ratio (18%) and higher digestibility (8%). It also 
caused a 10% boost in CP in the stem and a 14% drop in the leaves (Halim et al. 
1989). Forage grasses and legumes exhibited analogous tendencies. Where soil 
phosphorus levels are low, animal output may be constrained because phosphorus 
concentrations are often low in water-stressed feed (Abdel Rahman et  al. 1971). 
Elevated levels of alkalinity, hydrocyanic acid, or tannins in forages might diminish 
their appeal (Hoveland and Monson 1980). Grass that has been sitting in the rain for 
too long or that grows in low-lying regions may have a high call wall content but 
low CP (Pate and Snyder 1979). Lower cell wall digestibility from increased ligni-
fications is a common result of high growing temperatures, which has important 
implications for food quality (Ford et  al. 1979). High temperatures have a more 
noticeable impact on grass quality than legume quality. Plants cultivated at low 
temperatures are more digestible than those produced at high temperatures, despite 
the fact that both had the same age at harvest (Fig. 3). A decrease in the N content 
and digestibility of grasses and tropical legumes may accompany the effect of 
drought on production and composition of forage legumes and grasses in tropical 
climates (Wilson and Mannetje 1978).
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3.5.1 � Nutritional Factors

Fodder, horticultural, vegetable, forest, livestock, and fishery production are all 
impacted by climate change, as is the capacity to supply the world’s ever-increasing 
food demand. Rapid climate change hinders ecosystems’ and species’ ability to 
adapt, speeding up biodiversity loss. Human security is threatened by climate 
change and the corresponding loss of biodiversity because of the potential for dras-
tic shifts in the food chain on which we rely, the potential for water sources to 
change, recede, or disappear, and the potential for medicines and other resources to 
be affected. It may become more challenging for humans to get some resources if 
plant and flora populations decline or disappear. Climate change in the region has 
had a significant impact on a wide range of physical and biological systems, and 
there are signs to suggest it has also had an impact on social and economic struc-
tures. As a result of the summer monsoon circulation, India’s climate and weather 
are dominated by the world’s most significant seasonal mode of precipitation. 
Precipitation variability beyond this seasonal mode is primarily inter-annual and 
intra-seasonal, resulting in extremes in seasonal anomalies that cause widespread 
droughts and floods and short-period precipitation extremes that take the form of 
torrential downpours or protracted breaks on the synoptic scale. In addition, India’s 
climate has cold waves throughout the north during the winter and hot waves in the 
bulk of the nation during the pre-monsoon season. As a significant natural catastro-
phe connected to climatic extremes, tropical cyclones are responsible for severe 
destruction and loss of life when they strike coastal areas with heavy rain, strong 
winds, and storm surges. Human activities are affected by these extremes, thus more 
attention is needed from all levels of society to combat this threat.

3.5.2 � Effect of Climate on Fodder

As a crop or plant, fodder has a high level of variety and the ability to withstand 
moderate effects of climate change. However, in any particular area, the predomi-
nating source of feed is the vegetation and animals that evolved there organically. 
However, there is a wide range in the development and production capacity of 
excellent green fodder due to the fact that different cultivable cereals fodder, 
roughes, legumes, trees, and perennial grasses have distinct climatic requirements. 
Green forage varied in composition and quality as the climate did. In addition, the 
same affected the health of animals and the quality of animal products.

3.5.3 � Effect of Climate on Livestock

Loss of grazing land, a shortage of forage because of slowing growth and lower 
green fodder yield (GFY), and lower milk, egg, and meat production are the most 
notable consequences of climate change for the livestock industry. There will be a 
drop in income and an increase in rural residents’ need for food stamps and 
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unemployment as a result of all these factors. Weather and extreme events have 
direct effects on animal health, growth, and reproduction; (a) the availability and 
cost of livestock feed grains; (b) the production and quality of pastures and forage 
crops used in livestock production; (c) the distribution of livestock diseases and 
pests; and (d) the direct effects of weather on livestock. However, it is unclear how 
global climate change may affect animal productivity because most research has 
been conducted in industrialised nations and very little in Africa, Asia, and South 
America. Threats to the animal husbandry industry include habitat loss, altered 
environmental conditions, disease outbreaks, reproductive obstacles, and decreased 
productivity.
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