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Abstract. Robustness analysis for targeted attacks is essential, espe-
cially for critical infrastructures. Typically, targeted attacks rank the
nodes according to a centrality measure and remove top nodes according
to a budget. The goal is to exploit the network features efficiently to dis-
mantle them with a minimal budget. Few works are linked to the network
mesoscopic properties in the literature, although it is well-admitted that
communities or core-periphery are ubiquitous in real-world networks. We
propose a network dismantling method based on a mesoscopic represen-
tation called the component structure. It performs classical centrality
attacks on the network’s global components rather than on the original
network. Global components of a network are isolated networks formed
by the interactions between its dense parts that one can extract from
a community or multiple core-periphery structures. We investigate the
proposed strategy using three real-world networks and popular central-
ity measures (Degree, Betweenness, and PageRank). Results show that
the proposed approach is more effective for Degree and PageRank. In
contrast, the Betweenness attack on the original network slightly out-
performs the attack on the global components but at the price of higher
complexity.
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1 Introduction

Robustness analysis is one of the research areas with significant interest in the
network science literature. Many networks are susceptible to failure or attack,
especially infrastructure networks, whose damage can affect society at different
levels. Studying the robustness of a system consists in evaluating its vulnerabil-
ity against failures or intentional attacks. Thus, many articles study or propose
attack strategies, mainly based on centrality measures [1–4]. However, few con-
sider the influence of the mesoscopic organization of the network on its robust-
ness. We briefly discuss the main contributions in that direction considering the
network community structure in the network dismantling process.
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In [5], the authors propose link and node-based frameworks exploiting the
community structure to dismantle a network. First, one needs to uncover the
network community structure. In their experimental study, the authors evalu-
ate five community detection algorithms (Louvain, Girvan-Newman, Clauset-
Newman, Label Propagation, and Fluid community). Then, they build the com-
munity network considering each community as a node and establishing a link
if two communities share at least a connection. The dismantling strategy aims
at disconnecting the communities. Therefore, they attack links in the condensed
community network and nodes to dismantle the original network. Accordingly,
they select critical links in the reduced community network and map them into
nodes in the original network. According to the preceding step, a measure of
importance to target a node or link is designed relying on five criteria. The last
level is about translating the attacks on the condensed network to the initial
network. They obtain up to 40 community-based network dismantling methods.
They compare these methods to 7 classical network dismantled strategies. R []
is the evaluation criteria. The experiments include real-world and artificial net-
works. Result show Community based dismantling is sensitive to the community
detection algorithm. In addition, community-based network dismantling is not
efficient for model networks. In most real networks, the proposed methods are
generally more effective than the alternatives and are also much more efficient.

In [6], the authors present a dismantling network framework based on com-
munity structure. Their method is an iterative procedure in which they remove
the node with the highest inter-community links in the community with the
largest size. In each iteration, the community detection Leiden algorithm is used.
They investigate three real networks and a random network. The percolation
threshold is computed to compare their method to the classical degree attack.
They find that their strategy outperforms slightly on the random networks.
For the real-world network, the community dismantling is more effective than
the degree centrality dismantling strategy. Nevertheless, the efficiency of their
method decreases when the community structure strength decrease. In addition,
the complexity of the method is very high.

To summarize, these works demonstrate the advantages of exploiting the
mesoscopic representations of real-world networks to design effective and efficient
attack strategies. Our study is in this direction. Indeed, we propose and investi-
gate a dismantling technique based on a new mesoscopic structure described in
[7]. The component structure of a network splits networks into two types of com-
ponents. The local components are the dense parts of the network. The global
components contain the nodes and the links joining the local components in the
original network. In previous work, we show how this new representation allows
a better understanding of the local impact of various classical centrality-based
attacks on network robustness [8,9]. Here we present a dismantling strategy
based on a network’s global components. With the global components, one can
see, for example, that the inter-community links of a network can form several
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isolated networks. The purpose is to attack the global components using a given
centrality-based strategy instead of the overall network and to compare with the
corresponding attack on the original network. We investigate three real-world
networks with different community structure strengths in the experimental eval-
uation. Results show that the proposed framework outperforms most classical
attacks. It is also more efficient.

2 Background

2.1 Component Structure

The density of real-world networks is generally not uniform. One usually cap-
tures this phenomenon using two mesoscopic features: 1) the community struc-
ture and 2) the core-periphery structure. Although there is no consensus on a
universal definition of these representations, they share that the network con-
tains groups of nodes tightly connected, called cores or communities. They are
supposed to be loosely related to other groups when considering the community
structure. Peripheral nodes sharing few connections surround these core groups
in the multi-core-periphery structure. The component structure builds in these
representations. It splits the networks into dense groups and their interactions.
One obtains the local components by isolating the dense parts of the networks.
Links and nodes connecting the local components form the global components.
To build the component structure, one proceeds as follows:

To build the component structure, one proceeds as follows:

1. Uncover the dense parts of the network.
2. Remove the links between the dense parts to extract the local components.
3. Remove the links within the dense parts and the subsequently isolated nodes

to extract the global components.

Note that this representation is redundant. Indeed, a node can simultaneously
belong to a local and a global component. One can use community detection
or multi-core-periphery algorithms to extract the dense parts of the network.
In this work, we consider an approach based on the community structure to
uncover the component structure. Figure 1 A describes the extraction process of
the component structure. In this example, one uses a non-overlapping community
detection algorithm to extract the dense parts of the network. Then, we form
the local components by removing the inter-community links. Removing the
intra-community links and the isolated nodes extracts the global components.

2.2 Targeted Attack

Targeted attacks aim to remove the most vital nodes for network connectivity
[10–12]. Centrality measures generally describe the importance of nodes [13,14].
In a strong attack strategy, one removes nodes in the network in descending order
of magnitude of the chosen centrality. Classically, one can distinguish three types
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of centrality measures: Neighborhood-based, Path-based, and iterative refine-
ment [15]. This work uses the most popular measures in each category: Degree,
Betweenness, and PageRank.

Degree is a centrality based on the neighborhood [15]. In other words the node
influence is computed based on its local neighbors. Indeed, given a graph G(V,E),
such as V is the set of nodes and E the set of links, the Degree ki is the number
of the direct neighbors of a node i. It has a local scope, and is defined as:

ki =
∑

j∈V,i�=j

aij

aij is an element of the binary adjacency matrix of G such as aij = 1 if i and j
are connected, otherwise, aij = 0.

Betweenness is a global centrality based on path [15]. The fraction of the
shortest path passing through a node i is its Betweenness. When it is normalized,
the Betweenness of the node i is defined as:

b(i) =
2

(n − 1)(n − 2)

∑

i�=j

σjk(i)

σjk

σjk is the number of the shortest path between j and k. σjk(i) is the number of
the shortest path from j to k passing in i.

PageRank is a centrality based on iterative refinement [15]. Indeed, the influ-
ence of node depend on the influence of its neighbors which in turn also depends
of their neighbors. Initially defined for directed networks, the PageRank in undi-
rected networks consider two directions for a link. At t step, the PageRank of a
node i is defined as follows:

pri(t) =
n∑

j=1

aji
prj(t − 1)

kout
j

(1)

kout
j is the out-degree of the node j.

2.3 Evaluation Measures

We use the Largest Connected Component(LCC) and the R-value to evaluate the
network’s resilience. During the process of removing nodes from a network, the
largest interconnected set of nodes is called the Largest Connected Component.
The larger the LCC, the less effective the attack on the network. The R-value
refers to the size of the LCC during the process of removing nodes [16]. R is
defined as follows:

R =
1
N

N∑

Nr=1

s(Nr)
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s(Nr) is the size of the LCC after Nr nodes are removed. R represents the area
under the curve that denotes the LCC progression when a node is removed. It
ranges between 1

N and 0.5. The smaller the R and the number of nodes required
to break up the network, the more effective the attack.

3 Data and Methods

3.1 Data

We use three real-world networks (infrastructure, social, and information net-
works) to conduct our experiment. The infrastructure network concerns the
Brazil bus network [17]. A node represents a bus station in a municipality, and
there is an edge between two nodes if the bus stations share at least one route.
The nodes in the social network are Facebook’s pages denoting Public Figures.
A link is established when there is a mutual like between them [18]. The infor-
mation network is a co-author network [19]. The nodes represent the author, and
a link means two authors appear at least once in the same paper. These three
networks are undirected and unweighted. Their basic topological properties are
reported in Table 1.

Table 1. Basic topological properties of the networks under study. N is the network
size. |E| is the number of edges. d is the diameter. l is the average shortest path length.
ν is the density. ζ is the transitivity also called global clustering coefficient. knn(k) is
the assortativity also called Degree correlation coefficient.

Networks N |E| d l ν ζ knn(k)

Brazil bus 1786 19060 6 2,81 0,01 0,21 −0,01

Public figures 11565 67038 15 4.62 0.001 0.16 0.2

Co-author 13861 44619 18 6.27 0.0005 0.35 0.157

3.2 Methods

The proposed method relies on the component structure. First, one separates a
network into local and global components. Suppose we refer to the well-known
community structure used to uncover the dense parts of the original network.
In that case, the local components contain the nodes in a community and their
related intra-community links. Therefore, there are as many local components
as communities. The global components include the nodes sharing links with the
other communities and their inter-community links. As the components are iso-
lated networks, one can perform a targeted attack on any of them rather than the
original network. We propose dismantling the network by performing a targeted
attack on its global components. Indeed, removing nodes in the global compo-
nents allows for the isolation of the local components. Note that the proposed
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strategy is generic. Indeed, one can use any centrality measures or any method
available to fragment a network as long as it targets the global components.
After uncovering the component structure, the process proceeds as follows:

1. Rank the global components in descending order of size
2. From the largest to the smallest global component
3. do
4. Rank the nodes of the global component according to a centrality measure
5. Disconnect the top nodes of the global component.
6. Disconnect the same nodes in the original network.
7. Extract the LCC in the original network.
8. Extract the LCC of the global component.
9. While there is a link in the LCC of the global component

Fig. 1. (A) Process to uncover the component structure. We use a community detection
algorithm to uncover the dense parts of the network in this example. Therefore the 3
communities are the 3 local components and there are 2 global components. (B) Attack
on the largest global component and its impact on the original network.

4 Experimental Results

4.1 Component Structure

We use the Louvain community detection algorithm to uncover the community
structure. Then, we extract the component structure of each network. In the
following, we present the component structure of each network. The Brazil Bus
network consists of 9 local components and three global components. The local
components correspond to limited geographical areas. Note that these areas
overlap. Among the local components, the smallest contains ten nodes (less than
1% of the overall network). The most significant local component includes 22.6%
of the nodes of the network (404 nodes). Most of the diameters of the large local
components are identical to those of the initial network. The smallest diameter
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is 4. The large local components tend to be more transitive than the Brazil Bus
network, except the largest, which is the least transitive.

All the local components are more disassortative than the initial network. In
the global components, the largest contains 53.24% of the entire network (951
nodes), while the two others have 3 and 2 nodes.

Fig. 2. (Left) Distribution of the size of the Public Figures network global components.
(Right) Distribution of the size of the Co-author network global components.

The Public Figures network contains 34 local components and 138 global
components. The local components include 19 large local components, with
almost more than 1% of the original network. The largest local components
size range between 1.21% and 16.8%. The diameter of the local components size
range between 7 and 20. Only two large local components have a larger diameter
than the initial network; most measure 11 or 12. Generally, the large local com-
ponents are less transitive, except for a few. Their transitivity measure range
between 0.07 and 0.51. In contrast to many social networks, 10 of these large
local components of the Public Figures network are disassortative.

Figure 2A reports the distribution of the size of the global components of
the Public Figures network. The largest global component includes 44% of the
nodes. All the other global components are small. The largest global component
requires 16 hops at maximum to join two nodes, one more than the original
network. Moreover, it is less transitive and disassortative.

The Co-author network contains 62 local components and 143 global com-
ponents. The largest local component has 4% (555 nodes) of the nodes of the
overall network. The two small local components have less than 1% of the nodes.
The smallest among the local components includes less than 0.64%. Only one
local component has the same diameter as the original network. The smallest
diameter among the other local component is 8. Except for four large local com-
ponents, the other components are more transitive than the Co-author network.
In contrast to the initial network, a third of the large local components are not
assortative.
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Figure 2B illustrates the distribution of the size of the global components of
the Co-author network. Its diameter is one more hop greater than the one of the
initial network. Nevertheless, it is by far less transitive and disassortative. The
largest global component contains 26% (3623 nodes) of the nodes of the overall
network. The smallest ones have two nodes.

To summarize, let us focus on the global components of each network. Indeed,
we perform attacks on these components. One can see that each network has a
large global component and several small global components.

Fig. 3. Degree-based attacks: Evolution of the relative size of the LCC of the original
network when the attack is performed on the original network (in green) and on its
global components (in orange) A) Brazil Bus network B) Public Figures network C)
Co-author network. The figures contain also the R values.

4.2 Attacks Evaluation

Degree Attacks. Figure 3 shows the evolution of the relative size of the LCC
as a function of the proportion of top-degree nodes removed in the global com-
ponents in the three networks under study. It also reports the same curves when
performing the degree attack strategy in the original network for comparative
purposes. One can see that the proposed attack on the global component is far
more efficient than the classical attack on the overall network for all the net-
works. Indeed, attacking the global components of these networks requires fewer
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nodes to dismantle the three networks. In addition, the R values are smaller
compared to the degree-based attack on the entire network.

Nevertheless, one can see in Fig. 3 that one needs to reach a certain proportion
of removed nodes before observing high differences between the two strategies.
Indeed, removing less than 12% of the nodes in the Bus Brazil network produces
similar damage for both attacks. Beyond this value, the LCC decreases sharply,
with the proposed attack strategy showing its superiority. The same observation
holds in the two other networks. Indeed, for the Public Figures network, one
needs to reach a proportion of 15% of removed nodes before observing substantial
differences. The global component attack becomes more effective in the Co-
author network when removing 4 to 6% of the nodes.

Fig. 4. Betweeness-based attacks: Evolution of the relative size of the LCC of the
original network when the attack is performed on the original network (in green) and
on its global components (in orange) A) Brazil Bus network B) Public Figures network
C) Co-author network. The figures contain also the R values.

Betweenness Attacks. Figures 4 allows us to compare the two strategies when
the attack uses the Betweenness centrality to rank the nodes. It appears that
the attacks on the original networks are globally more effective according to
the R Values. Note that the impact of the attacks on the entire network and
the global components are comparable for a budget lower than 4% of removed
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nodes. Beyond this value, the LCC decreases with a sharp drop for the attacks
on the original network, while it decreases linearly for the attacks on the global
components. Indeed, Betweenness performs exceptionally in modular networks
because the intercommunity links have high betweenness values. Therefore, it
progressively disconnects the subnetworks in the original network. In contrast,
it is ineffective on the global component, which does not contain subnetworks.
The curves for the Bus Brazil network are slightly different. One can notice
that while for Public Figures and Co-author networks, the maximum budget
to dismantle the network is lower for the betweenness attacks on the original
network, it is slightly higher for Bus Brazil.

Fig. 5. PageRank-based attacks: Evolution of the relative size of the LCC of the
original network when the attack is performed on the original network (in green) and
on its global components (in orange) A) Brazil Bus network B) Public Figures network
C) Co-author network. The figures contain also the R values.

PageRank Attack. Figures 5 reports the evolution of the LCC for the three
networks for the PageRank attacks. The attacks of the global components out-
perform the attacks of the original networks. Indeed, the R values resulting from
the attacks on the global components are smaller. Furthermore, one obtains these
interesting results with a smaller budget. Nevertheless, at low and medium bud-
get, one can see that the Brazil Bus and Co-author networks are more vulnerable
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to removing nodes from the original network. This observation is more pro-
nounced in the Co-author networks. In the Public Figures network, the attacks
on the original network and the global components have a similar effect until
about 15.5% of the nodes are eliminated.

5 Conclusion

This paper proposes a targeted attack framework to dismantle a network. Rather
than attacking the original network based on a given centrality measure, we
suggest operating on the network’s global components. We conduct a preliminary
empirical investigation with three real-world networks of prominent centrality
measures to assess the interest of this framework.

The robustness analysis shows that targeting the global components is more
efficient than targeting the original network based on degree centrality and
PageRank ranking. In contrast, the Betweenness centrality attack on the entire
network outperforms the attack on the global components. Nevertheless, differ-
ences are not so pronounced. In that case, the main advantage of the attack
on the global components is its efficiency. Indeed, global components are much
smaller than the original networks, so that betweenness computation is much
faster.

In future work, we plan to investigate the influence of the uncovered compo-
nent structure on the results. Indeed, one can use various community detection
or multi-core periphery algorithms to extract the dense parts of the network.
Furthermore, through an extended empirical evaluation, we want to understand
better the relations between network topology, centrality measures, and targeted
attack effectiveness. Finally, we intend to compare the proposed approach with
alternative community-aware attacks.
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