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Abstract. In this paper, we address the detection of named entities
in multilingual historical collections. We argue that, besides the mul-
tiple challenges that depend on the quality of digitization (e.g., mis-
spellings and linguistic errors), historical documents can pose another
challenge due to the fact that such collections are distributed over a
long enough period of time to be affected by changes and evolution of
natural language. Thus, we consider that detecting entities in histori-
cal collections is time-sensitive, and explore the inclusion of temporal-
ity in the named entity recognition (NER) task by exploiting temporal
knowledge graphs. More precisely, we retrieve semantically-relevant addi-
tional contexts by exploring the time information provided by historical
data collections and include them as mean-pooled representations in a
Transformer-based NER model. We experiment with two recent multilin-
gual historical collections in English, French, and German, consisting of
historical newspapers (19C-20C) and classical commentaries (19C). The
results are promising and show the effectiveness of injecting temporal-
aware knowledge into the different datasets, languages, and diverse entity
types.

Keywords: Named entity recognition · Temporal information
extraction · Digital humanities

1 Introduction

Recent years have seen the delivery of an increasing amount of textual corpora
for the Humanities and Social Sciences. Representative examples are offered
by the digitization of the gigantic Gallica collection by the National Library
of France1 and the Trove online Australian library2, database aggregator and
1 https://gallica.bnf.fr/.
2 https://trove.nla.gov.au/.
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service of full-text documents, digital images and data storage of digitized docu-
ments. Access to this massive data offers new perspectives to a growing number
of disciplines, going from socio-political and cultural history to economic his-
tory, and linguistics to philology. Billions of images from historical documents
including digitized manuscript documents, medieval registers and digitized old
press are captured and their content is transcribed, manually through dedicated
interfaces, or automatically using optical character recognition (OCR) or hand-
written text recognition (HTR). The mass digitization process, initiated in the
1980 s s with small-scale internal projects, led to the “rise of digitization”, which
grew to reach a certain maturity in the early 2000 s s with large-scale digitiza-
tion campaigns across the industry [12,16]. As this process of mass digitization
continues, increasingly advanced techniques from the field of natural language
processing (NLP) are dedicated to historical documents, offering new ways to
access full-text semantically enriched archives [33], such as NER [4,10,19], entity
linking (EL) [26] and event detection [5,32].

However, for developing such techniques, historical collections present mul-
tiple challenges that depend either on the quality of digitization, the need to
handle documents deteriorated by the effect of time, the poor quality printing
materials or inaccurate scanning processes, which are common issues in histor-
ical documents [20]. Moreover, historical collections can pose another challenge
due to the fact that documents are distributed over a long enough period of time
to be affected by language change and evolution. This is especially true in the
case of Western European languages, which only acquired their modern spelling
standards roughly around the 18th or 19th centuries [29]. With existing collec-
tions [12,15,16] providing such metadata as the year of publication, we propose
to take advantage of the temporal context of historical documents in order to
increase the quality of their semantic enrichment. When this metadata is not
available, due to the age of the documents, the year has often been estimated
and a new NLP task recently emerged, aiming to predict a document’s year of
publication [36].

NER corresponds to the identification of entities of interest in texts, generally
of the type person, organization, and location. Such entities act as referential
anchors that underlie the semantics of texts and guide their interpretation. For
example, in Europe, by the medieval period, most people were identified sim-
ply by a mononym or a single proper name. Family names or surnames began
to be expected in the 13th century but in some regions or social classes much
later (17th century for the Welsh). Many people shared the same name and the
spelling was diverse across vernacular and Latin languages, and also within one
language (e.g., Guillelmus, Guillaume, Willelmus, William, Wilhelm). Locations
may have disappeared or changed completely, for those that survived well into
the 21st century from prehistory (e.g., Scotland, Wales, Spain), they are very
ambiguous and also have very different spellings, making it very difficult to iden-
tify them [6]. In this article, we focus on exploring temporality in entity detec-
tion from historical collections. Thus, we propose a novel technique for injecting
additional temporal-aware knowledge by relying on Wikipedia and Wikidata
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to provide related context information. More exactly, we retrieve semantically-
relevant additional contexts by exploring the time information provided by the
historical data collections and include them as mean-pooled representations in
our Transformer-based NER model. We consider that adding grammatically cor-
rect contexts could improve the error-prone texts due to digitization errors while
adding temporality could further be beneficial to handle changes in language or
entity names.

The paper is structured as follows: we present the related work and datasets
in Sect. 2 and 3 respectively. Our methodology for retrieving additional context
through temporal knowledge graphs and how contexts are included within the
proposed model is described in Sect. 4. We, then, perform several experiments in
regards to the relativity of the time span when selecting additional context and
present our findings in Sect. 5. Finally, conclusions and future work are drawn
in Sect. 63.

2 Related Work

Named Entity Recognition in Historical Data. Due to the multiple chal-
lenges posed by the quality of digitization or the historical variations of a lan-
guage, NER in historical and digitized documents is less noticeable in terms of
high performance than in modern documents [47,52]. Recent evaluation cam-
paigns such as the one organized by the Identifying Historical People, Places,
and other Entities (HIPE) lab at CLEF 20204 [16] and 20225 [17] proposed
tasks of NER and EL in ca. 200 years of historical newspapers written in multi-
ple languages (English, French, German, Finnish and Swedish) and successfully
showed that these tasks benefit from the progress in neural-based NLP (specif-
ically driven by the latest advances in Transformer-based pre-trained language
models approaches) as a considerable improvement in performance was observed
on the historical collections, especially for NER [24,42,44].

The authors of [10] present an extensive survey on NER over historical
datasets and highlight the challenges that state-of-the-art NER methods applied
to historical and noisy inputs need to address. For overcoming the impact of the
OCR errors, contextualized embeddings at the character level were utilized to
find better representations of out-of-vocabulary words (OOVs) [2]. The contex-
tualized embeddings are learned using language models and allow predicting the
next character of strings given previous characters. Moreover, further research
showed that the fine-tuning of several Transformer encoders on historical col-
lections could alleviate digitization errors [4]. To deal with the lack of historical
resources, [40] proposed to use transfer learning in order to learn models on
large contemporary resources and then adapt them to a few corpora of historical
nature. Finally, in order to address the spelling variations, some works developed
transformation rules to model the diachronic evolution of words and generate a
3 The code is available at https://github.com/EmanuelaBoros/clef-hipe-2022-l3i.
4 https://impresso.github.io/CLEF-HIPE-2020/.
5 https://hipe-eval.github.io/HIPE-2022/.

https://github.com/EmanuelaBoros/clef-hipe-2022-l3i
https://impresso.github.io/CLEF-HIPE-2020/
https://hipe-eval.github.io/HIPE-2022/
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normalized version processable by existing NER systems [8,23]. While most of
these approaches rely generally on the local textual context for detecting entities
in such documents, temporal information has generally been disconsidered. To
the best of our knowledge, several approaches have been proposed for named
entity disambiguation by utilizing temporal signatures for entities to reflect the
importance of different years [1], and entity linking, such as the usage of time-
based filters [26], but not for historical NER.

Named Entity Recognition with Knowledge Bases. Considering the
complementary behaviors of knowledge-based and neural-based approaches for
NER, several studies have explored knowledge-based approaches including dif-
ferent types of symbolic representations (e.g., knowledge bases, static knowl-
edge graphs, gazetteers) and noticed significant improvements in token repre-
sentations and the detection of entities over modern datasets (e.g., CoNLL [43],
OntoNotes 5.0 [35]) [27,43]. Gazetteer knowledge has been integrated into NER
models alongside word-level representations through gating mechanisms [31] and
Wikipedia has mostly been utilized to increase the semantic representations of
possible entities by fine-tuning recent pre-trained language models on the fill-in-
the-blank (cloze) task [39,52].

When well-formed text is replaced with short texts containing long-tail enti-
ties, symbolic knowledge has also been utilized to increase the contextual infor-
mation around possible entities [31]. Introducing external contexts into NER
systems has been shown to have a positive impact on the entities’ identification
performance, even with these complications. [48] constructed a knowledge base
system based on a local instance of Wikipedia to retrieve relevant documents
given a query sentence. The retrieved documents and query sentences, after con-
catenation, were fed to the NER system. Our proposed methodology could be
considered inspired by their work, however, we include the additional contexts
at the model level by generating a mean-pooled representation for each context
instead of concatenating the contexts with the initial sentence. We consider that
having pooled representations for each additional context can reduce the noise
that could be created by other entities found in these texts.

Temporality in Knowledge Graphs. Recent advances have shown a grow-
ing interest in learning representations of entities and relations including time
information [7]. Other work [50] proposed a temporal knowledge graph (TKG)
embedding model for representing facts involving time intervals by designing
the temporal evolution of entity embeddings as rotation in a complex vector
space. The entities and the relations were represented as single or dual complex
embeddings and temporal changes were the rotations of the entity embeddings
in the complex vector space. Since the knowledge graphs change over time in
evolving data (e.g., the fact The President of the United States is Barack Obama
is valid only from 2009 to 2017), A temporal-aware knowledge graph embedding
approach [49] was also proposed by moving beyond the complex-valued repre-
sentations and introducing multivector embeddings from geometric algebras to
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Fig. 1. An example from the
hipe-2020 dataset.

Fig. 2. An example from the ajmc

dataset.

model entities, relations, and timestamps for TKGs. Further research [51] pre-
sented a graph neural network (GNN) model treating timestamp information as
an inherent property of the graph structure with a self-attention mechanism to
associate appropriate weights to nodes according to their relevant relations and
neighborhood timestamps. Therefore, timestamps are considered properties of
links between entities.

TKGs, however, show many inconsistencies and a lack of data quality across
various dimensions, including factual accuracy, completeness, and timeliness. In
consequence, other research [9] further explores TKGs by targeting the com-
pletion of knowledge with accurate but missing information. Moreover, since
such TKGs often suffer from incompleteness, the authors of [53] introduced a
temporal-aware representation learning model that helps to infer the missing
temporal facts by taking interest in facts occurring recurrently and leverage a
copy mechanism to identify facts with repetition. The aforementioned methods
demonstrate that the usage of TKGs is considered an emerging domain that is
being explored, in particular in the field of NLP. The availability of information
about the temporal evolution of entities, not only could be a promising solution
for improving their semantic knowledge representations but also could provide
additional contextual information for efficient NER. To the best of our knowl-
edge, our work is the first attempt to leverage time information provided by
TKGs to improve NER.

3 Datasets

In this study, we utilize two collections composed of historical newspapers and
classical commentaries covering circa 200 years. Recently proposed by the CLEF-
HIPE-2022 evaluation campaign [14], we experiment with the hipe-2020 and the
Ajax Multi-Commentary (ajmc) datasets.

hipe-2020 includes newspaper articles from Swiss, Luxembourgish, and
American newspapers in French, German, and English (19C-20C) and contains
19,848 linked entities as part of the training sets [12,15,16]. For each language,
the corpus is divided into train, development, and test, with the only exception of
English for which only development and test sets were produced [13]. In this case,
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Table 1. Overview of the hipe-2020 and ajmc datasets. LOC = Location, ORG =
Organization, PERS = Person, PROD = Product, TIME = Time, WORK =
human work, OBJECT = physical object, and SCOPE = specific portion of work.

hipe-2020 ajmc

French German English French German English

Type train dev test train dev test train dev test train dev test train dev test train dev test

LOC 3,089 774 854 1,740 588 595 – 384 181 15 0 9 31 10 2 39 3 3

ORG 836 159 130 358 164 130 – 118 76 – – – – – – – – –

PERS 2,525 679 502 1,166 372 311 – 402 156 577 123 139 620 162 128 618 130 96

PROD 200 49 61 112 49 62 – 33 19 – – – – – – – – –

TIME 276 68 53 118 69 49 – 29 17 2 0 3 2 0 0 12 5 3

WORK – – – – – – – – – 378 99 80 321 70 74 467 116 95

OBJECT – – – – – – – – – 10 0 0 6 4 2 3 0 0

SCOPE – – – – – – – – – 639 169 129 758 157 176 684 162 151

we utilized the French and German datasets for training the proposed models in
our experimental setup. An example from the French dataset is presented in Fig. 1.

ajmc is composed of classical commentaries from the Ajax Multi-
Commentary project that includes digitized 19C commentaries published in
French, German, and English [41] annotated with both universal and domain-
specific named entities (NEs). An example in English is presented in Fig. 2.

These two collections pose several important challenges: the multilingual-
ism (both containing three languages: English, French and German), the code-
mixed documents (e.g., commentaries, where Greek is mixed with the language
of the commentator), the granularity of annotations and the richness of the
texts characterized by a high density of NEs. Both datasets provide different
document metadata with different granularity (e.g., language, document type,
original source, date) and have different entity tag sets that were built according
to different annotation guidelines. Table 1 presents the statistics regarding the
number and type of entities in the aforementioned datasets divided according to
the training, development, and test sets.

4 Temporal Knowledge-based Contexts for Named Entity
Recognition

The OCR output contains errors that produce noisy text and complications,
similar to those studied by [30]. It has long been observed that adapting NER
systems to deal with the OCR noise is more appropriate than adapting NER
corpora [11]. Furthermore, [22] showed that applying post-OCR correction algo-
rithms before running NER systems does not often have a positive impact on
NER results since post-OCR may degrade clean words during the correction of
the noisy ones. To deal with OCR errors, we introduce external grammatically
correct contexts into NER systems which have a positive impact on the entity
identification performance even in spite of these challenges [48]. Moreover, the
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inclusion of such contexts by taking into consideration temporality could further
improve the detection of time-sensitive entities. Thus, we propose several settings
for including additional context based on Wikidata5m6 [46], a knowledge graph
with five million Wikidata7 entities which contain entities in the general domain
(e.g., celebrities, events, concepts, things) and are aligned to a description that
corresponds to the first paragraph of the matching Wikipedia page.

4.1 Temporal Information Integration

A TKG contains time information and facts associated with an entity that pro-
vides information about spontaneous changes or smooth temporal transforma-
tions of the entity while informing about the relations with other entities. We
aggregate temporality into Wikidata5m including the TKG created by [25] and
tuned by [18]8. This TKG contains over 11 thousand entities, 150 thousand facts,
and a temporal scope between the years 508 and 2017. For a given entity, it pro-
vides a set of time-related facts describing the interactions of the entity in time.
It is thus necessary to combine these facts into a singular element through an
aggregation operator over their temporal elements.

We perform a transformation on the temporal information of every fact of
an entity in order to combine them into only one piece of temporal information.
Let e be an entity described by the facts:

{Fe}ni=1 = {(e, r1, e1, t1)(e, r2, e2, t2), . . . (e, ri, ei, ti), . . . (e, rn, en, tn)},

where a fact (e, ri, ei, ti) is composed of two entities e and ei that are connected
by the relation ri and the timestamp ti. A timestamp is a discrete point in time
which corresponds to a year in this work. The aggregation operator is the func-
tion AGG → te that takes as input the time information from Fe and outputs
the time information that is associated with e. Several aggregation operators are
possible. Among them, natural options are mean, median, minimum, and max-
imum operations. The minimum of a set of facts is defined as the oldest fact,
and the maximum is the most recent fact. If an entity is associated with four
facts spanning over years 1891, 1997, 2006, and 2011, the minimum aggregation
operator consists in keeping the oldest, resulting in the year 1891 the time infor-
mation of the entity. Given that our datasets correspond to documents between
19C and 20C, the minimum operation is more likely to create an appropriate
temporal context for the entities. Therefore it is a convenient choice to highlight
entities matching the corresponding time period by accentuating older facts. At
the end of the aggregation operation 8,176 entities of Wikidata5m are associ-
ated with a year comprised between 508 and 2001, filtering out most of the facts
occurring during 21C.

6 https://deepgraphlearning.github.io/project/wikidata5m.
7 https://www.wikidata.org/.
8 https://github.com/mniepert/mmkb/tree/master/TemporalKGs/wikidata.

https://deepgraphlearning.github.io/project/wikidata5m
https://www.wikidata.org/
https://github.com/mniepert/mmkb/tree/master/TemporalKGs/wikidata
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4.2 Context Retrieval

Our knowledge base system relies on a local ElasticSearch9 instance and fol-
lows a multilingual semantic similarity matching, which presents an advantage
on multilingual querying and is achieved with dense vector field indexes. Thus
given a query vector, a k-nearest neighbor search API retrieves the k closest vec-
tors returning the corresponding documents as search hits. For each Wikidata5m
entity, we create an ElasticSearch entry including an identifier field, a descrip-
tion field and a description embedding field which we obtain with a pre-trained
multilingual Sentence-BERT model [37,38]. We build one index on the entity
identifier and a dense vector index on the description embedding. We propose
two different settings for context retrieval:

– non-temporal: This setting uses no temporal information. Given an input
sentence during context retrieval, we first obtain the corresponding dense
vector representation with the same Sentence-BERT model used during the
indexing phase. Then, we query the knowledge base to retrieve the top-k
semantically similar entities based on a k -nearest neighbors algorithm (k-NN)
cosine similarity search over the description embedding dense vector index.
The context C is finally composed of k entity descriptions.

– temporal-δ: This setting integrates the temporal information. For each
semantically similar entity that is retrieved following non-temporal, we apply
a filtering operation to keep or discard the entity as part of the context.
Given the year tinput linked to the input sentence’s metadata during con-
text retrieval, the entity is kept if its associated year te is inside the interval
tinput − δ ≤ te ≤ tinput + δ, where δ is the year interval threshold, otherwise
it is rejected. As a result of AGG, te results to be the oldest year in the set of
facts of entity e in the TKG. If te is nonexistent, e is also kept. This operation
is repeated until |C| = k.

4.3 Named Entity Recognition Architecture

Base Model Our model consists of a hierarchical, multitask learning approach,
with a fine-tuned encoder based on BERT. This model includes an encoder with
two Transformer [45] layers with adapter modules [21,34] on top of the BERT
pre-trained model. The adapters are added to each Transformer layer after the
projection following multi-headed attention and they adapt not only to the task
but also to the noisy input which proved to increase the performance of NER in
such special conditions [4]. Finally, the prediction layer consists of a conditional
random field (CRF) layer.

In detail, let {xi}li=1 be a token input sequence consisting of l words, denoted
as {xi}li=1 = {x1, x2, . . . xi, . . . xl}, where xi refers to the i-th token in the
sequence of length l. We first apply a pre-trained language model as encoder
for further fine-tuning. The output is {hi}li=1,H[CLS] = encoder({xi}li=0) where

9 https://www.elastic.co/guide/en/elasticsearch/reference/8.1/release-highlights.
html.

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/release-highlights.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.1/release-highlights.html
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Fig. 3. NER model architecture with temporal-aware context s (context jokers).

{hi}li=1 = [h1, h2, . . . hi, . . . hl] is the representation for each i-th position in x
token sequence and h[CLS] is the final hidden state vector of [CLS] as the rep-
resentation of the whole sequence x. From now on, we refer to the Token Rep-
resentation as TokRep = {xi}li=1 that is the token input sequence consisting
of l words. The additional Transformer encoder contains a number of Trans-
former layers that takes as input the matrix H = {hi}li=1 ∈ Rl×d where d is
the input dimension (encoder output dimension). A Transformer layer includes
a multi-head self-attention Head(h): Q(h),K(h), V (h) = HW

(h)
q ,HW

(h)
k ,HW

(h)
v

and MultiHead(H) = [Head(1), . . . , Head(n)]WO
10 where n is the number of

heads and the superscript h represents the head index. Qt is the query vector
of the t-th token, j is the token the t-th token attends. Kj is the key vector
representation of the j-th token. The Attn softmax is along the last dimension.
MultiHead(H) is the concatenation on the last dimension of size Rl×d where
dk is the scaling factor dk × n = d. WO is a learnable parameter of size Rd × d.

By combining the position-wise feed-forward sub-layer and multi-head atten-
tion, we obtain a feed-forward layer FFN(f(H)) = max(0, f(H)W1)W2 where
W1, W2 are learnable parameters and max is the ReLU activation. W1 ∈
Rd×dFF , W2 ∈ RdFF ×d are trained projection matrices, and dFF is a hyper-
parameter. The task adapter is applied at this level on TokRep at each layer
and consists of a down-projection D ∈ Rh×d where h is the hidden size of the
Transformer model and d is the dimension of the adapter, also followed by a
ReLU activation and an up-projection U ∈ Rd×h.

10 We leave out the details that can be consulted in [45].
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Context Jokers For including the additional contexts generated as explained
in Sect. 4, we introduce the context jokers. Each additional context is passed
through the pre-trained encoder11 generating a JokerTokRep which is after-
wards mean-pooled along the sequence axis. We call these representations context
jokers. We see them as wild cards unobtrusively inserted in the representation
of the current sentence for improving the recognition of the fine-grained enti-
ties. However, we also consider that these jokers can affect the results in a way
not immediately apparent and can be detrimental to the performance of a NER
system. Figure 3 exemplifies the described NER architecture.

5 Experimental Setup

Our experimental setup consists of a baseline model and four configurations with
different levels of knowledge-based contexts:

– no-context: our model as described in Sect. 4.3. In this baseline configura-
tion, no context is added to the input sentence representations.

– non-temporal: contexts are generated with the first setting of context
retrieval with no temporal information and integrated into the model through
context jokers.

– temporal-(50|25|10): contexts are generated with the second setting of
context retrieval with δ ∈ {50, 25, 10} (where δ is the time span or year
interval threshold) and integrated into the model through context jokers.

Hyperparameters. In order to have a uniform experimental setting, we chose
a BERT-based cased multilingual pre-trained model12. We denote the number of
layers (i.e., adapter-based Transformer blocks) as L, the hidden size as H, and
the number of self-attention heads as A. BERT has L=12, H=768 and A=12.
We added two layers with H=128, A=12, and the adapters have 128 × 12 size.
The adapters are trained on the task during training. For all context-retrieval
configurations, the context size |C| of an input sentence was set to k = 10. For
indexing the documents in ElasticSearch, we utilized the multilingual pre-trained
Sentence-BERT model13.

Evaluation. The evaluation is performed over coarse-grained NER in terms of
precision (P), recall (R), and F-measure (F1) at micro level [12,28] (i.e., con-
sideration of all true positives, false positives, true negatives and false negatives
over all samples) in a strict (exact boundary matching) and a fuzzy boundary
matching setting14. Coarse-grained NER refers to the identification and cate-
gorization of entity mentions according to the high-level entity types listed in
Table 1. We refer to these metrics as coarse-strict (CS) and coarse-fuzzy (CF ).
11 We do not utilize in this case the additional Transformer layers with adapters, since

these were specifically proposed for noisy/non-standard text and they do not bring
any increase in performance on standard text [4].

12 https://huggingface.co/bert-base-multilingual-cased.
13 https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-

L12-v2.
14 We utilized the HIPE-scorer https://github.com/hipe-eval/HIPE-scorer.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://github.com/hipe-eval/HIPE-scorer
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Table 2. Results on French, German and English, for the hipe-2020 and ajmc datasets.

French German English

hipe-2020 ajmc hipe-2020 ajmc hipe-2020 ajmc

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

no-context

CS 0.755 0.757 0.756 0.829 0.806 0.817 0.754 0.730 0.742 0.910 0.877 0.893 0.604 0.563 0.583 0.789 0.859 0.823

CF 0.857 0.859 0.858 0.883 0.858 0.870 0.853 0.826 0.839 0.935 0.901 0.917 0.778 0.726 0.751 0.855 0.931 0.891

non-temporal

CS 0.762 0.767 0.765 0.829 0.783 0.806 0.759 0.767 0.763 0.930 0.898 0.913 0.565 0.601 0.583 0.828 0.871 0.849

CF 0.862 0.869 0.866 0.906 0.856 0.880 0.847 0.856 0.852 0.949 0.916 0.932 0.741 0.788 0.764 0.885 0.931 0.908

temporal-50

CS 0.765 0.765 0.765 0.839 0.822 0.830 0.748 0.756 0.752 0.921 0.911 0.916 0.643 0.617 0.630 0.855 0.882 0.868

CF 0.867 0.867 0.867 0.901 0.883 0.892 0.833 0.842 0.838 0.937 0.927 0.932 0.794 0.762 0.777 0.916 0.945 0.931

temporal-25

CS 0.759 0.756 0.757 0.848 0.839 0.844 0.757 0.743 0.750 0.925 0.903 0.914 0.621 0.630 0.625 0.833 0.876 0.854

CF 0.863 0.859 0.861 0.902 0.892 0.897 0.852 0.835 0.843 0.938 0.916 0.927 0.787 0.800 0.793 0.893 0.940 0.916

temporal-10

CS 0.762 0.764 0.763 0.848 0.839 0.844 0.760 0.765 0.762 0.917 0.898 0.907 0.605 0.646 0.625 0.866 0.888 0.877

CF 0.863 0.866 0.865 0.902 0.892 0.897 0.852 0.857 0.854 0.936 0.916 0.926 0.760 0.811 0.784 0.922 0.945 0.933

L3i@HIPE-2022

CS 0.782 0.827 0.804 0.810 0.842 0.826 0.780 0.787 0.784 0.946 0.921 0.934 0.624 0.617 0.620 0.824 0.876 0.850

CF 0.883 0.933 0.907 0.856 0.889 0.872 0.870 0.878 0.874 0.965 0.940 0.952 0.793 0.784 0.788 0.868 0.922 0.894

5.1 Results

Table 2 presents our results in all three languages and datasets (best results in
bold). It can be seen that models with additional knowledge-based context jokers
bring an improvement over the base model with no added contexts. Furthermore,
including temporal information outperforms non-temporal contexts. ajmc scores
show to be higher than hipe-2020 independently of the language and contexts.
We explain this behavior by the small diversity of some entity types of the ajmc
dataset. For example, the ten most frequent entities from the “person” type
represent the 55%, 51.5% and 62.5% from the train, development, and test sets
respectively. It also exists an 80% top-10 intersection between train and test
sets meaning that eight of the ten most frequent entities are shared between
train and test sets. English hipe-2020 presents the lowest scores compared to
French and German independently from the contexts. We attribute this drop in
performance to the utilization of the French and German sets during training
given the absence of a specific English training set.

The last two rows of Table 2 show the results of our best system [3] during the
HIPE-2022 evaluation campaign [15]. This system is similar to the one described
in Sect. 4.3 but it stacks, for each language, a language-specific language model
and does not include any temporal-aware knowledge. The additional language
model motivates the slightly higher results15. For half of the datasets, this sys-
tem outperforms the temporal-aware configurations (underlined values) but with
the cost of being language dependent, a drawback that mainly impacts English
hipe-2020 dataset where no training data is available.

15 We would expect higher results by utilising the temporal information, however, for
this experimental setup, we were limited in terms of resources.
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Table 3. Number of replaced contexts per time span.

French German English

train test train test train test

temporal-50/25/10

hipe-2020 120/154/217 42/47/61 325/393/482 12/14/14 192/222/246 77/85/96

ajmc 10/12/12 0/0/0 71/71/73 20/20/20 2/2/2 0/0/0

5.2 Impact of Time Intervals

ajmc contains 19th-century commentaries to Greek texts [41] and was created
in the context of the Ajax MultiCommentary project16, and thus, the French,
German and English dataset are about an Ancient Greek tragedy by Sophocles,
the Ajax, from the early medieval period17. The German ajmc contains commen-
taries from two years (1853 and 1894), English ajmc, also two years (1881 and
1896), while French ajmc just one year (1886). Due to the size of the collection,
hipe-2020 covers a larger range of years. In terms of span, French articles were
collected from 1798 to 2018, German articles from 1798 to 1948, and English
articles from 1790 to 1960. We, therefore, looked at the difference between the
contexts retrieved by the non-temporal and the temporal configurations. Table 3
summarizes these differences for train and test sets and displays the number of
contexts that had been filtered and replaced from non-temporal for each time
span, i.e., δ ∈ {50, 25, 10}. Overall, the smaller the interval of years, the greater
the number of contexts that are replaced. It can be noticed that the number of
replaced contexts is smaller for ajmc than for hipe-2020. This is explained by
the restrained year span and the lack of entity diversity during these periods.
When comparing with the results from Table 2, we can infer that, in general,
it is beneficial to implement shorter time intervals such as δ = 10. In fact,
temporal-10 presents higher F1 scores for ajmc in almost all cases. However,
this varies with the language and the year distribution of the dataset.

5.3 Impact of Digitization Errors

The ajmc commentaries on classical Greek literature present the typical difficul-
ties of historical OCR. Having complex layouts, often with multiple columns and
rows of text, the digitization quality of commentaries could severely impact NER
and other downstream tasks like entity linking. Statistically, about 10% of NEs
are affected by the OCR in the English and German ajmc datasets and 27.5%
of NEs are contaminated in the French corpus. The models with additional con-
text, especially the temporal approaches, contribute to recognizing NEs whether

16 https://mromanello.github.io/ajax-multi-commentary/.
17 Although the exact date of its first performance is unknown, most scholars date it

to relatively early in Sophocles’ career (possibly the earliest Sophoclean play still in
existence), somewhere between 450 BCE to 430 BCE, possibly around 444 BCE.

https://mromanello.github.io/ajax-multi-commentary/
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contaminated or clean. This contribution is more significant on NEs with digi-
tization errors. It has manifested in a better improvement in recognition of the
contaminated NEs compared to the clean ones despite their dominance in the
data. In the German corpus, for example, the gain is about 14% points using
temporal-50 compared to the baseline while only 2% points on the clean NEs.
Additionally, three-quarters of NEs with 67% of character error rate are correctly
recognized whereas the baseline recognized only one-quarter of them. Finally, all
the models are completely harmed by error rates that exceed 70% on NEs.

5.4 Limitations

The system ideally requires metadata about the year when the datasets were
written or at least a period interval. Otherwise, it will be necessary to use other
systems for predicting the year of publication [36]. However, the errors of such
systems will be propagated and may impact the NER results.

6 Conclusions & Future Work

In this paper, we explore a strategy to inject temporal information into the
named entity recognition task on historical collections. In particular, we rely on
using semantically-relevant contexts by exploring the time information provided
in the collection’s metadata and temporal knowledge graphs. Our proposed mod-
els include the contexts as mean-pooled representations in a Transformer-based
model. We observed several trends regarding the importance of temporality for
historical newspapers and classical commentaries, depending on the time inter-
vals and the digitization error rate. First, our results show that a short time
span works better for collections with restrained entity diversity and narrow
year intervals, while a longer time span benefits wide year intervals. Second, we
also show that our approach performs well in detecting entities affected by dig-
itization errors even to a 67% of character error rate. Finally, we remark that
the quality of the retrieved contexts is dependent on the affinity between the
historical collection and the knowledge base, thus, in future work, it could be
interesting to include temporality information by predicting the year spans of a
large set of Wikipedia pages to be used as complementary contexts.
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4. Boroş, E., Hamdi, A., Pontes, E.L., Cabrera-Diego, L.A., Moreno, J.G., Sidere, N.,
Doucet, A.: Alleviating digitization errors in named entity recognition for histor-
ical documents. In: Proceedings of the 24th conference on computational natural
language learning, pp. 431–441 (2020)

5. Boros, E., Nguyen, N.K., Lejeune, G., Doucet, A.: Assessing the impact of OCR
noise on multilingual event detection over digitised documents. Int. J. Digital Libr,
pp. 1–26 (2022)
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34. Pfeiffer, J., Vulić, I., Gurevych, I., Ruder, S.: MAD-X: An Adapter-Based Frame-
work for Multi-Task Cross-Lingual Transfer. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, pp. 7654–7673 (2020). https://doi.org/10.18653/v1/
2020.emnlp-main.617. https://aclanthology.org/2020.emnlp-main.617

35. Pradhan, S., Moschitti, A., Xue, N., Ng, H.T., Björkelund, A., Uryupina, O.,
Zhang, Y., Zhong, Z.: Towards robust linguistic analysis using OntoNotes. In:
Proceedings of the Seventeenth Conference on Computational Natural Language
Learning. Assoc. Comput. Linguist. Sofia, Bulgaria, pp. 143–152. (2013). https://
aclanthology.org/W13-3516

36. Rastas, I., et al.: Explainable publication year prediction of eighteenth century
texts with the bert model. In: Proceedings of the 3rd Workshop on Computational
Approaches to Historical Language Change, pp. 68–77 (2022)

37. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-networks. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Assoc. Comput. Linguist.
Hong Kong, China, pp. 3982–3992 (2019). https://doi.org/10.18653/v1/D19-1410.
https://aclanthology.org/D19-1410

38. Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual
using knowledge distillation. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 4512–4525 (2020)

39. Ri, R., Yamada, I., Tsuruoka, Y.: mLUKE: The power of entity representations in
multilingual pretrained language models. In: ACL 2022 (to appear) (2022)
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