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Preface

The 45th European Conference on Information Retrieval (ECIR 2023) was held in
Dublin, Ireland, during April 2–6, 2023, and brought together hundreds of researchers
from Europe and abroad. The conference was organized by Dublin City University, in
cooperation with the British Computer Society’s Information Retrieval Specialist Group
(BCS IRSG).

These proceedings contain the papers related to the presentations, workshops, and
tutorials given during the conference. This year’s ECIR program boasted a variety of
novel work from contributors from all around theworld. In total, 489 papers from authors
in 52 countries were submitted to the different tracks. The final program included 65
full papers (29% acceptance rate), 41 short papers (27% acceptance rate), 19 demon-
stration papers (66% acceptance rate), 12 reproducibility papers (63% acceptance rate),
10 doctoral consortium papers (56% acceptance rate), and 13 invited CLEF papers.
All submissions were peer-reviewed by at least three international Program Commit-
tee members to ensure that only submissions of the highest relevance and quality were
included in the final program. The acceptance decisionswere further informed by discus-
sions among the reviewers for each submitted paper, led by a senior Program Committee
member. In a final PC meeting all the final recommendations were discussed, trying to
reach a fair and equal outcome for all submissions.

The accepted papers cover the state of the art in information retrieval: user aspects,
system and foundational aspects, machine learning, applications, evaluation, new social
and technical challenges, and other topics of direct or indirect relevance to search. As in
previous years, the ECIR 2023 program contained a high proportion of papers with stu-
dents as first authors, as well as papers from a variety of universities, research institutes,
and commercial organizations.

In addition to the papers, the program also included 3 keynotes, 7 tutorials, 8 work-
shops, a doctoral consortium, the presentation of selected papers from the 2022 issues
of the Information Retrieval Journal, and an industry day. Keynote talks were given by
Mounia Lalmas (Spotify), Tetsuya Sakai (WasedaUniversity), and this year’s BCS IRSG
Karen Spärck Jones Award winner, Yang Wang (UC Santa Barbara). The tutorials cov-
ered a range of topics including conversational agents in health; crowdsourcing; gender
bias; legal IR andNLP; neuro-symbolic representations; query auto completion; and text
classification. The workshops brought together participants to discuss algorithmic bias
(BIAS); bibliometrics (BIR); e-discovery (ALTARS); geographic information extraction
(GeoExT); legal IR (Legal IR); narrative extraction (Text2story); online misinformation
(ROMCIR); and query performance prediction (QPP).

The success of ECIR 2023would not have been possible without all the help from the
team of volunteers and reviewers.Wewish to thank all the reviewers and meta-reviewers
who helped to ensure the high quality of the program. We also wish to thank: the short
paper track chairs:MariaMaistro andHideo Joho; the demo track chairs: LitingZhou and
Frank Hopfgartner; the reproducibility track chair: Leif Azzopardi; the workshop track
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chairs: Ricardo Campos and Gianmaria Silvello; the tutorial track chairs: Bhaskar Mitra
and Debasis Ganguly; the industry track chairs: Nicolas Fiorini and Isabelle Moulinier;
the doctoral consortium chair: Gareth Jones; and the awards chair: Suzan Verberne.
We thank the students Praveen Acharya, Chinonso Osuji and Kanishk Verma for help
with preparing the proceedings. We would like to thank all the student volunteers who
helped to create an excellent experience for participants and attendees. ECIR 2023 was
sponsored by a range of research institutes and companies. We thank them all for their
support.

Finally, we wish to thank all the authors and contributors to the conference.

April 2023 Lorraine Goeuriot
Fabio Crestani
Jaap Kamps

Maria Maistro
Hideo Joho

Annalina Caputo
Udo Kruschwitz

Cathal Gurrin
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Personalization at Spotify

Mounia Lalmas

Spotify

Abstract. One of Spotify’s missions is “to match fans and creators in a
personal and relevantway”. This talkwill share some of the researchwork
aimed at achieving this, from usingmachine learning tometric validation,
and illustrated through exampleswithin the context of Spotify’s home and
search. An important aspect will focus on illustrating that when aiming
to personalize for both recommendation and search, it is important to
consider the heterogeneity of both listener and content. One way to do
this is to consider the following three angles when developing machine
learning solutions for personalization: (1) Understanding user journey;
(2) Optimizing for the right metric; and (3) Thinking about diversity.



On A Few Responsibilities of (IR) Researchers: Fairness,
Awareness, and Sustainability

Tetsuya Sakai

Waseda University, Tokyo, Japan
tetsuyasakai@acm.org

Abstract. I would like to discuss with the audience a few keywords
which I believe should be considered as foundation pillars of modern
research practices, namely, fairness, awareness, and sustainability. Other
important pillars such as ethics are beyond the scope of this keynote.

Fairness. By this I mean fairness in terms of exposure etc. for the
items being ranked or recommended. As an example, I will describe
the ongoing NTCIR-17 Fair Web Task, which is about ensuring group
fairness of web search results.1 More specifically, I will explain themodel
behind the Group Fairness and Relevance evaluation measure, which can
handle ordinal groups (e.g. high h-index researchers vs. medium h-index
researchers vs. others) as well as intersectional group fairness.

Awareness. What I mean by this word is that researchers should
always try to see “both sides” andmake informed decisions instead of just
blindly accepting recommendations from a few particular researchers,
even if they are great people. Conference PC chairs and journal editors
should also be aware of both sides and provide appropriate guidance to
authors and reviewers.2

Sustainability. From this year until 2025, Paul Thomas and I will be
working as the first sustainability chairs of SIGIR. So I would like to
discuss how IR researchers may want to minimise and/or compensate for
the negative impact of our activities on earth and on society. As a related
development, I will mention SIGIR-AP (Asia/Pacific), a regional SIGIR
conference which will be launched this year. I will also solicit ideas from
the audience for the IR community to go greener and beyond.

Keywords:Awareness · Diversity and inclusion · Fairness · Sustainability

1 http://sakailab.com/fairweb1/.
2 https://twitter.com/tetsuyasakai/status/1596298720316129280.
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2022 KAREN SPÄRCK JONES AWARD LECTURE Large
Language Models for Question Answering: Challenges

and Opportunities

William Yang Wang

University of California, Santa Barbara, Santa Barbara, CA 93117, USA
william@cs.ucsb.edu

Abstract. A key goal for Artificial Intelligence is to design intelligent
agents that can reason with heterogeneous representations and answer
open-domain questions. The advances in large language models (LLMs)
bring exciting opportunities to create disruptive technologies for question
answering (QA). In this talk, I will demonstrate that major challenges for
open-domain QA with LLMs include the capability to reason seamlessly
between textual and tabular data, to understand and reason with numeri-
cal data, and to adapt to specialized domains. To do this, I will describe
our recent work on teaching machines to reason in semi-structured tables
and unstructured text data. More specifically, I will introduce (1) Open
Question Answering over Tables and Text (OTT-QA), a new large-scale
open-domain benchmark that combines information retrieval and lan-
guage understanding formultihop reasoning over tabular and textual data;
(2) FinQAandConFinQA, two challenging benchmarks for exploring the
chain of numerical reasoning in conversational finance question answer-
ing. I will also describe other exciting research directions in open-domain
question answering.

Keywords: Large language models · Question answering · Reasoning
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Abstract. As natural language interfaces enable users to express increas-
ingly complex natural language queries, there is a parallel explosion of
user review content that can allow users to better find items such as
restaurants, books, or movies that match these expressive queries. While
Neural Information Retrieval (IR) methods have provided state-of-the-art
results for matching queries to documents, they have not been extended
to the task of Reviewed-Item Retrieval (RIR), where query-review scores
must be aggregated (or fused) into item-level scores for ranking. In the
absence of labeled RIR datasets, we extend Neural IR methodology to RIR
by leveraging self-supervised methods for contrastive learning of BERT
embeddings for both queries and reviews. Specifically, contrastive learning
requires a choice of positive and negative samples, where the unique two-
level structure of our item-review data combined with meta-data affords
us a rich structure for the selection of these samples. For contrastive learn-
ing in a Late Fusion scenario (where we aggregate query-review scores into
item-level scores), we investigate the use of positive review samples from
the same item and/or with the same rating, selection of hard positive sam-
ples by choosing the least similar reviews from the same anchor item, and
selection of hard negative samples by choosing the most similar reviews
from different items. We also explore anchor sub-sampling and augment-
ing with meta-data. For a more end-to-end Early Fusion approach, we
introduce contrastive item embedding learning to fuse reviews into single
item embeddings. Experimental results show that Late Fusion contrastive
learning for Neural RIR outperforms all other contrastive IR configura-
tions, Neural IR, and sparse retrieval baselines, thus demonstrating the
power of exploiting the two-level structure in Neural RIR approaches as
well as the importance of preserving the nuance of individual review con-
tent via Late Fusion methods.
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Reviewed-Item Retrieval

"A fancy
restaurant with
good seafood &
good ambience"

Information Retrieval

"Wendy's with
parking"

I ordered a ...

Amazing ...

They had a ...

Aran Thai
Kitchen

My sushi was ...

My food ...

Best lobster in ...

Nobu
Seafood, 

Fine Dining

Thai

Level 2Level 1Level 1

Paragraph 1 .....
......................

Paragraph 2 .....
......................

Paragraph 1 .....
......................

Paragraph 2
...Wendy's with
fast service and
ample parking...

Fig. 1. Structural difference between IR (left) and RIR (right). In RIR, items have
reviews covering different aspects. In contrast, documents in the IR task do not have
this two-level item-review structure.

1 Introduction

The rise of expressive natural language interfaces coupled with the prevalence
of user-generated review content provide novel opportunities for query-based
retrieval of reviewed items. While Neural Information Retrieval (IR) methods have
provided state-of-the-art results for query-based document retrieval ([16]), these
methods do not directly extend to review-based data that provides a unique two-
level structure in which an item has several reviews along with ratings and other
meta-data. Due to differences between standard IR document retrieval ([21]) and
the task of retrieving reviewed-items indirectly through their reviews, we coin the
term Reviewed-Item Retrieval (RIR) for this task. Figure 1 illustrates the struc-
tural difference between IR and RIR. In RIR, each item includes a set of reviews
and each review expresses different perspectives about that item.

Unlike standard Neural IR, which produces query-document scores for doc-
ument ranking, RIR requires query-item scores to be obtained indirectly using
review text. This can be done both via Late Fusion (LF) methods that sim-
ply aggregate query-review scores into item scores or Early Fusion (EF) meth-
ods that build an item representation for direct query-item scoring. Given the
absence of labeled data for RIR, we explore self-supervised contrastive learning
methods for Neural RIR that exploit the two-level structure of the data in both
the LF and EF frameworks with the following contributions:

1. For LF, we propose different positive and negative sampling methods that
exploit the two-level structure of RIR data as well as data augmentation
methods for contrastive fine-tuning of a BERT [4] Language Model (LM).

2. For EF, we propose end-to-end contrastive learning of item embeddings to
fuse reviews of each item into a single embedding vector.

3. We experimentally show that LF-based Neural RIR methods outperform EF
and other contrastive IR methods, Neural IR, and sparse retrieval baselines.
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Overall, these results demonstrate the power of exploiting the two-level struc-
ture in Neural RIR approaches. By showing the superiority of LF over EF, we
also demonstrate the benefit of aggregating scores for individual reviews after
similarity with a query is computed, thus preserving the nuances of each review
during scoring. Ultimately, this work develops a foundation for the application
and extension of Neural IR techniques to RIR.

2 Background

2.1 IR

Given a set of documents D and a query q ∈ Q, an IR task IR〈D, q〉 is to assign
a similarity score Sq,d ∈ R between the query and each document d ∈ D and
return a list of top-scoring documents.

Before the advent of Neural IR methods, most methods depended on sparse
models such as TF-IDF ([20]) and its variants such as BM25 [19], which heavily
relied on exact term matches and measures of term informativeness. However,
the need for exact term matches, the availability of large datasets, and increases
in computational power led to a shift from traditional models to deep neural
networks for document ranking [8,10]. Recently, Nogueira and Cho [18] have
initiated a line of research on Neural IR by fine-tuning BERT [4] for ranking
candidate documents with respect to queries.

Recent works have substantially extended BERT-based Neural IR methods.
CoCondenser [6] is a resource-efficient model with excellent performance on the
MS-MARCO benchmark ([17]). This model is based on Condenser ([5]), which
alters the BERT architecture to emphasize more attention to the classification
embedding (i.e., the so-called “[CLS]” output of BERT). Contriever ([12]) is a
state-of-the-art self-supervised contrastive Neural IR method that does not rely
on query-document annotations to train.

Although our work on Neural RIR is influenced by Neural IR, the structure
of IR and RIR differ as illustrated by Fig. 1. This requires methods specifically
for working with the two-level structure of data in both training and inference
in the RIR task. To the best of our knowledge, these methods have not been
explored in the literature.

2.2 Fusion

Information retrieval from two-level data structures has previously been studied
by Zhang and Balog [27], though they did not study neural techniques, which are
the focus of our work. Specifically, Zhang and Balog define the object retrieval
problem, where (high-level) objects are described by multiple (low-level) docu-
ments and the task is to retrieve objects given a query. This task requires fusing
information from the document level to the object level, which can be done
before query scoring, called Early Fusion, or after query scoring, called Late
Fusion. Our contributions include extending Early and Late Fusion methods to
self-supervised contrastive Neural IR.
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Formally, let i ∈ I be an object described by a set of documents Di ⊂ D
and let ri,k denote the k’th document describing object i. Given a query q ∈ Q,
fusion is used to aggregate document information to the object level and obtain
a query-object similarity score Sq,i ∈ R.

Late Fusion. In Late Fusion, similarity scores are computed between documents
and a query and then aggregated into a query-object score. Given an embedding
space R

m, let g : D ∪ Q → R
m map ri,k and q to their embeddings g(ri,k) = ri,k

and g(q) = q, respectively. Given a similarity function f(·, ·) : Rm × R
m → R, a

query-document score Sq,ri,k for document ri,k is computed as

Sq,ri,k = f(q, ri,k) (1)

To aggregate such scores into a similarity score for object i, the top-K query-
document scores for that object are averaged:

Sq,i =
1
K

K∑

j=1

Sq,ri,j (2)

where Sq,ri,j is the j’th top query-document score for object i. The Late Fusion
process is illustrated on the left side of Fig. 2.

Previously, Bursztyn et al. [3] introduced a method (one of our baselines)
which can be interpreted as neural late fusion with K = 1, in which query and
document embeddings are obtained from an LM fine-tuned using conventional
Neural IR techniques. In contrast, we develop neural late fusion methods where
K �= 1 and introduce novel contrastive LM fine-tuning techniques for neural
fusion.

Early Fusion. In Early Fusion, document information is aggregated to the
object level before query scoring takes place. Various aggregation approaches
are possible and we discuss the details of our proposed methods in Sect. 3.2;
however, the purpose of aggregation is to produce an object embedding i ∈ R

m.
Query-item similarity is then computed directly as

Sq,i = f(q, i) (3)

The Early Fusion process is illustrated on the right side of Fig. 2.
Interestingly, related work [22,25] which uses hierarchical neural networks

to classify hierarchical textual structures can be interpreted as Supervised Early
Fusion, since the hierarchical networks learn to aggregate low-level text informa-
tion into high-level representations. In contrast to these works, we study retrieval,
use self-supervised contrastive learning, and explore both Early and Late Fusion.

2.3 Contrastive Representation Learning

To generate embeddings, our methods rely on contrastive representation learn-
ing. Given data samples x ∈ X where each x is associated with a label, the goal
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Fig. 2. (Left) Late Fusion demonstrates how embedding of queries and reviews are
used to get a similarity score with Eq. (1) and how items are ranked according to the
query-item score. (Right) Early Fusion demonstrates how reviews are fused together
to build a vector representation for comparing the item with the query.

of contrastive learning is to train an embedding function g : X → R
m which

maximizes the similarity between two embeddings f(g(xa), g(xb)) = f(xa,xb)
if xa and xb are associated with the same label, and minimizes this similarity if
xa and xb are associated with different labels. During training, these similarities
are evaluated between some anchor xA ∈ X , positive samples x+ ∈ X associated
with the same label as xA, and negative samples x− ∈ X associated with different
labels than xA. Specifically, given a tuple of N +1 inputs (xA, x+, x−

1 , ..., x
−
N−1),

a similarity function f , and an embedding function g, the N-pair loss [23] is
defined as:

Lg
con(x

A, x+, {x−
i }N−1

i=1 ) = −log
ef(g(x

A),g(x+))

ef(g(xA),g(x+)) +
∑N−1

i=1 ef(g(x
A),g(x−

i ))
(4)

This equation is equivalent to the softmax loss for multi-class classification of N
classes. Letting s = (xA, x+, {x−

i }N−1
i=1 ) denote a sample tuple and S be the set

of samples used for training, the objective of contrastive learning is:

min
g

Lg(S) = min
g

∑

s∈S
Lg
con(s) (5)

Sampling Methods for Neural IR. For contrastive learning to be used for
Neural IR, a set of samples S must be created from the documents. We focus
on two sampling methods for this task as baselines. The Inverse Cloze Task
(ICT) ( [12]) uses two mutually exclusive spans of a document as a positive
pair (xA, x+) and spans from other documents as negative samples. Independent
Cropping (IC) ([6,12]) takes two random spans of a document as a positive
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pair and spans from other documents as negative samples. Another sampling
approach used in ANCE [24] relies on query similarity to dynamically identify
additional negative samples, but we do not compare to this approach since we
do not have access to queries in our self-supervised learning setting.

In-Batch Negative Sampling. Equation (5) is often optimized using mini-
batch gradient descent with in-batch negative sampling [7,9,13,26]. Each mini-
batch contains N anchors and N corresponding positive samples. The j’th sam-
ple tuple sj consists of an anchor xA

j , a positive sample x+
j , and, to improve

computational efficiency, the positive samples of other tuples sj′,j′ �=j are used
as negative samples for tuple sj . That is, the set of negative samples for sj is
{x+

j′}Nj′=1,j′ �=j .

3 Proposed Fusion-based Methods for RIR

We now define the Reviewed-Item Retrieval problem as a specific and highly
applicable case of object retrieval (Sect. 2.2). We then demonstrate how the two-
level structure of reviewed-item data can be exploited by our novel contrastive
fine-tuning methods for late and early fusion. In the Reviewed-Item Retrieval
problem RIR〈I,D, q〉, we are given a set of n items I where each item i ∈ I
is described by a set of reviews Di ⊂ D, and where the k’th review of item i is
denoted by ri,k. A review ri,k can only describe one item i, and this requirement
makes RIR a special case of object retrieval since, in object-retrieval, a document
can be associated with more than one object. Given a query q ∈ Q, the goal is
to rank the items based on the Sq,i score for each item-query pair (q, i).

3.1 CLFR: Contrastive Learning for Late Fusion RIR

We now present our novel contrastive fine-tuning method for late fusion, in which
review nuance is preserved during query scoring. In Contrastive Learning for Late
Fusion RIR (CLFR), we fine-tune a language model g (the embedding function)
using the contrastive loss function in Eq. (5) to produce embeddings of queries
and reviews. The similarities of query and review embeddings are then evaluated
using the dot product and aggregated into query-item scores by Eq. (2).

As opposed to single-level Neural IR contrastive sampling, RIR enables us to
use the item-review structure in our sampling methods. Specifically, a positive
pair (xA, x+) is constructed from two reviews of the same item, while negative
samples {x−

i }N−1
i=1 are obtained from reviews of different items. We explore sev-

eral variations of sampling, including the use of item ratings, item keywords, and
review embedding similarity, described below. While most of our methods use
full reviews as samples, we also experiment with the use of review sub-spans for
anchors; the goal of these variants is to reduce the discrepancy between anchor
length and query length, since queries are typically much shorter than reviews.
To keep training balanced, the same number of samples is used for all items.
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Reviews from 
Restaurant B

Attract

Embedding SpaceHard Positive sample

Hard Negative sample

Negative sample

.....
...

Reviews from 
Restaurant A

My food ...

My stake was ...Repel

B: Bob's Steakhouse

Anchor

Positive Sample

A: Bangkok Thai Kitchen
Anchor

They had ...

Amazing ...

I ordered a ...

Hard Negative SamplesHard Positive Samples

Positive Samples Negative Samples

Positive and Negative Sampling Illustration

Fig. 3. The objective of contrastive fine-tuning is to fine-tune the LM so that positive
sample embeddings are closer to the anchor while negative sample embeddings are
further from the anchor. Hard positive and hard negative samples are selected based
on their distance to the anchor. A hard positive sample (e.g., the green filled circle) is a
review from the same item which is furthest from the anchor. A hard negative sample
(e.g., the red filled diamond) is the closest review to the anchor but from a different
item. (Color figure online)

Positive Sampling Methods

I. Same Item (SI): We want two reviews from the same item to be close to
each other in the embedding space. Therefore, if we have a review from item i
as an anchor xA, the positive sample is a different review from item i, x+ ∈ Di,
sampled randomly unless otherwise mentioned.

II. Same Item, Same Rating (SI, SR): Building on SI, we further filter
the positive pair reviews from the same item to have the same user rating as
well. The motivation for this method is that reviews with the same rating are
from people that had the same level of satisfaction from their experience. They
are likely expressing a different aspect of their experience or a different phrasing
of the same experience. This may be helpful for better embeddings of reviews
according not only to language similarity but also user experience similarity.

III. Least Similar, Same Item (LS, SI): Choosing a set of the hardest
positive samples for the model to train on may help to further boost the perfor-
mance. For the positive samples, we choose the samples that are from the same
item and are furthest away from anchor in the BERT embedding space. Figure 3
(cf. green rings) shows this sampling method.
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IV. Least Similar, Same Item, Same Rating (LS, SI, SR): The reviews
least similar to the anchor but from the same item and with the same rating are
chosen as positive samples. This is a union of the previous methods.

Negative Sampling Methods
I. In-Batch (IB): We use the In-Batch negative sampling method as explained
in Sect. 2.3 for efficiency purposes. Since each anchor and positive sample pair in
the mini-batch is from a different item, this ensures In-Batch negative samples
for each anchor are from a different item than the anchor.

In-Batch + Hard Negatives (IB + HN): In addition to the In-Batch neg-
atives, we use the review that is most similar to the anchor xA — but from a
different item — as a hard negative sample. We use dot product similarity to
find the most similar review to each anchor in the (BERT) embedding space, as
illustrated in Fig. 3, and hard negatives are cached from the fine-tuning proce-
dure. By adding the hard negatives to the In-Batch negatives we aim to make
the model more robust.

Data Augmentation. We propose two data augmentation methods for RIR.
Our first method exploits the meta-data tags that each item has, and our second
method aims to mitigate the gap between self-supervised training and inference
by shortening the anchor text.

I. Prepending meta-data (PPMD): Many item-review structures contain
meta-data alongside textual and structural information. In our inference dataset,
the items are restaurants that have categorical labels such as “Pizza, Salad, Fast
Food” and usually include the cuisine type such as “Mediterranean, Middle East-
ern”. In order to use this meta-data without changing the model architecture,
we prepend this data in text format to the review text during inference. This
augmentation is done with the goal of better working with queries referring to
categories and cuisine types.

II. Anchor sub-sampling: User queries are usually shorter than reviews.
Thus, instead of taking a review as an anchor (which are the pseudo queries
during the self-supervised fine-tuning), we take a shorter span from the review
as the anchor in what we call sub-sampling anchor to a span (SASP). In an
alternative method, we take a single sentence from the review as the anchor,
and call this sub-sampling anchor to a sentence (SASN). For both cases, the
span or sentence is chosen randomly, and we still use full reviews as positive and
negative samples.
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3.2 CEFR: Contrastive Learning for Early Fusion RIR

We now present our contrastive learning approaches for Early Fusion, in which
item embeddings are learned before query-scoring. In Early Fusion, the query-
item score Sq,i is computed by Eq. (3) once we have an embedding i for each item
i. A naive approach for obtaining the item embedding is to take the average of
the review embeddings ri,k’s of item i. We call this naive approach Average EF.

We also introduce a new method which we call Contrastive Learning for Early
Fusion RIR (CEFR), where we use contrastive learning to simultaneously fine-
tune g and learn an item embedding i in an end-to-end style. In particular, we
let i be a learnable vector which we use instead of an anchor embedding g(xA)
and initialize i with the naive item embedding obtained from Average EF. For
a tuple (i, x+, {x−

j }N−1
j=1 ), the loss given by Eq. (4) thus becomes

Lg
con(i, x

+, {x−
j }N−1

j=1 ) = −log
ef(i,g(x

+))

ef(i,g(x+)) +
∑N−1

j=1 ef(i,g(x
−
j ))

(6)

Given a set of training samples S, with si = (i, x+, {x−
j }N−1

j=1 ) representing the
sample tuple for item i, and denoting I as the set of learnable item embeddings,
the objective of contrastive learning in CEFR is

min
I,g

Lg(S) = min
I,g

N∑

i=1

Lg
con(si) (7)

Note that CEFR simultaneously learns item embeddings and fine-tunes the
language model g (the embedding function), which is intended to allow flexibility
in learning i. For each item i, the positive sample x+

i ∈ Di is a review from item
i, and the negative samples are obtained via In-Batch negative sampling.

4 Experiments

4.1 Reviewed-Item Retrieval Dataset (RIRD)

To address the lack of existing RIR datasets, we curated the Reviewed-Item
Retrieval Dataset (RIRD)1 to support our analysis. We used reviews related to
50 popular restaurants in Toronto, Canada obtained from the Yelp dataset.2 We
selected restaurants with a minimum average rating of 3 and at least 400 reviews
that were not franchises (e.g., McDonalds) since we presume franchises are well-
known and do not need recommendations. We created 20 queries for 5 different
conceptual categories highlighted in Table 1 (with examples). These 5 groups
capture various types of natural language preference statements that occur in
this task. We then had a group of annotators assess the binary relevance of each
of these 100 queries to the 50 restaurants in our candidate set. Each review was
1 RIRD: https://github.com/D3Mlab/rir data.
2 Yelp Dataset: https://www.yelp.com/dataset.

https://github.com/D3Mlab/rir_data
https://www.yelp.com/dataset
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labeled by 5 annotators and the annotations showed a kappa agreement score of
0.528, demonstrating moderate agreement according to Landis and Koch [15],
which is expected given the subjectivity of the queries in this task ([1]). There
is a total number of 29k reviews in this dataset.

Table 1. Categories of queries and their examples

Query category Example

Indirect queries I am on a budget

Queries with negation Not Sushi but Asian

General queries Nice place with nice drinks

Detailed queries A good cafe for a date that has live music

Contradictory queries A fancy, but affordable place

4.2 Experimental Setup

All experiments for fine-tuning models and obtaining semantic representations
for reviews and queries were done with 8 Google TPUs. Each fine-tuning experi-
ment took between 5–7 h depending on the experimental setup. We use an Adam
optimizer [14] with a learning rate of 10−5 and use a validation set of 20% of
reviews for hyperparameter tuning. Each experiment was repeated 5 times with
5 different seeds to mitigate possible noise in dataset. We use a batch size of
N = 48, and add one hard negative per tuple if hard negatives are used. The
similarity function f is the dot product. For the choice of LM, we use uncased
base BERT ([11]), and we select K ∈ {1, 10, |Dj |} for Eq. 2.2, where |Di| is the
number of reviews for item i. Our code for reproducing all results is publicly
available.3

4.3 Baselines

Traditional IR: We use TF-IDF and BM25 with LF as baselines. First, all
query-review scores are computed by TF-IDF and BM25 (b = 0.75, k1 = 1.6)
ranking functions. These scores are then fused in the same manner as in Sect. 2.2,
where query-review level information is aggregated to the query-item level using
Eq. (2). Stopword removal and Lemmatization were also applied for these models
using NLTK ([2]).

Masked Language Modeling (MLM): Masked Language Modeling (MLM)
is a primary self-supervised fine-tuning objective for many LMs such as
BERT [4]. We use off-the-shelf BERT as a baseline and also fine-tune it with an
MLM objective on our review data as another baseline. We train for 100 epochs
with early stopping and a learning rate of 10−5.
3 Code: https://github.com/D3Mlab/rir.

https://github.com/D3Mlab/rir
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Neural IR Models: In order to compare state-of-the-art Neural IR models
with our proposed models in the self-supervised regime, we use the following con-
trastively trained Neural IR language models: Contriever ([12]), Condenser ([5])
and CoCondenser ([6]). We use publicly released pre-trained models for these base-
lines. Since only one model is available, confidence intervals are not applicable.

IR-Based Contrastive: We use contrastive learning with self-supervised IR,
explained in Sect. 2.3, to fine-tune the LM as a baseline. The positive samples
are created by ICT and IC from a single review, and In-Batch negative sampling
is used. Since these methods are agnostic to the item associated with a review,
as long as a review is not used for the positive pair, negative samples could
come from reviews of the same item or reviews of different items. We use these
baselines to examine the importance of using the two-level item-review structure
in addition to the review text in our contrastive learning methods for RIR, since
IR-based contrastive learning (ICT, IC) does not leverage that structure.

4.4 Evaluation Metrics

We use Mean R-Precision (R-Prec) and Mean Average Precision (MAP) with
90% confidence intervals to evaluate the performance of RIR in our experiments.
We note that R-Precision is regarded as a stable measure for averaging when
the number of relevant items varies widely per query.

4.5 Results and Discussion

This section studies four Research Questions (RQ) and discusses our experimen-
tal results for each. Specifically, we compare the effects of various sampling and
data augmentation methods, evaluate Late Fusion against Early Fusion, and
examine how our proposed methods compare to baselines.

RQ1: Which sampling method from Section 3.1 gives the best per-
formance for LM fine-tuning for LF? The choice of sampling method for
contrastive fine-tuning has an important effect on retrieval performance, but
must be analysed jointly with the effect of K. In Table 2, we explore all the
sampling options outlined in Sect. 3.1 with our base CLFR method using Same
Item (SI) and In-Batch Negatives (IB) sampling. Regardless of K, there is no
significant improvement from using Same Item (SI) Same Rating (SR) sam-
pling over Same Item (SI) sampling. However, adding Least Similar (LS) to the
base CLFR and having Same Rating (SR) provides an absolute and significant
improvement of 0.028 and 0.036 for K = 1 and K = |Dj | in R-Prec but no sig-
nificant improvement for K = 10. Adding hard negative samples fails to provide
significant improvement regardless of the positive sampling method.

RQ2: What is the impact of data augmentation methods from Section
3.1 for LM fine-tuning in LF setting? The results in Table 2 show that
prepending meta-data (i.e., cuisine type) to review text gives no significant
improvement. We see that sub-sampling the anchors, by span or by sentence,
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achieves the best performance. On average, SASP and SASN improve R-Prec
on the base CLFR method by a significant amount for every K. This shows
that being robust to the length of the anchor through sub-sampling plays a
crucial role for contrastive learning in Neural RIR. Due to space limitations,
full comparative evaluation results are made available in online supplementary
material.4

RQ3: Does Early Fusion or Late Fusion work better for RIR? Table 3
shows the performance of our Early and Late Fusion methods. We can see that
our Late Fusion methods outperform Early Fusion significantly. We conjecture
that since Early Fusion fuses all of an item’s reviews into a single embedding
vector, it may lose the nuance of individual review expressions or differences that
averaged out in the Early Fusion process. In contrast, Late Fusion preserves the
nuances of individual reviews until query-scoring.

Table 2. Results for exploring different techniques for CLFR with 90% confidence
intervals. Positive and negative sampling methods are explained in Sect. 3.1. All rows
have the base Same Item (SI) positive and In-Batch (IB) negative sampling. Additional
sampling methods are specified in the first two columns.

Sampling K=1 K=10 K=|Dj | (Avg)

Pos. Neg. R-Prec MAP R-Prec MAP R-Prec MAP

– – 0.497± 0.010 0.569±0.021 0.514± 0.011 0.587± 0.013 0.495± 0.017 0.575± 0.018

SR – 0.499± 0.016 0.563± 0.022 0.509± 0.011 0.583± 0.010 0.501± 0.029 0.572± 0.030

LS – 0.513± 0.014 0.589± 0.018 0.500± 0.014 0.584± 0.015 0.487± 0.008 0.569± 0.013

SR, LS – 0.525± 0.004 0.596± 0.014 0.515± 0.013 0.590± 0.016 0.531±0.006 0.607±0.014

– HN 0.511± 0.012 0.589± 0.011 0.512± 0.016 0.590± 0.012 0.516± 0.014 0.589± 0.018

SR, LS HN 0.504± 0.015 0.571± 0.006 0.516± 0.016 0.594± 0.012 0.517± 0.012 0.596± 0.013

PPMD – 0.506± 0.004 0.576± 0.012 0.503± 0.007 0.579± 0.010 0.507± 0.010 0.573± 0.009

SASP – 0.523± 0.013 0.595± 0.016 0.531± 0.006 0.611± 0.005 0.525± 0.008 0.599± 0.013

SASN – 0.532± 0.019 0.609±0.020 0.545±0.009 0.626±0.009 0.530±0.012 0.610±0.011

Table 3. Comparing our non-contrastive and contrastive Early Fusion (EF) methods
with our base and best Late Fusion (LF) methods. Average EF takes an average BERT
embedding of reviews as the item embedding. Base LF is CLFR with Same Item and In-
Batch negatives. Best LF is CLFR with Same item and SASN and In-Batch negatives.
We can see the noticeable improvement of using LF over EF. We conjecture this is due
to the preservation of nuance in individual reviews during query scoring.

EF Model R-Prec MAP

Average 0.297 0.364

CEFR 0.438± 0.003 0.519± 0.003

K=1 K=10 K=|Dj | (Avg)

LF Model R-Prec MAP R-Prec MAP R-Prec MAP

Base LF 0.497± 0.010 0.569± 0.021 0.514± 0.011 0.587± 0.013 0.495± 0.017 0.575± 0.018

Best LF 0.532±0.019 0.609±0.020 0.545±0.009 0.626±0.009 0.530±0.012 0.610±0.011

4 Supplementary Materials: https://ssanner.github.io/papers/ecir23 rir.pdf.

https://ssanner.github.io/papers/ecir23_rir.pdf
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RQ4: How effective is our (best) method of using the structure of
the review data for Late Fusion in RIR (CLFR) compared to existing
baselines? Table 4 compares the performance of state-of-the-art unsupervised
IR methods with our best contrastive fine-tuning method for RIR. The out-
of-domain Neural IR pre-trained language models CoCondenser and Contriever
perform noticeably better than base BERT, with CoCondenser performing the
best among them. The traditional sparse retrieval models (TF-IDF and BM25)
both outperform non-fine-tuned BERT, which emphasizes the importance of
fine-tuning BERT for the downstream task of RIR. We also see that the self-
supervised contrastive fine-tuning methods for IR (ICT and IRC) outperform
non-fine-tuned BERT, but fall far behind the CoCondenser model. MLM fine-
tuning of BERT also does not improve the performance of RIR, which is expected
since it neither utilizes the structure of the data nor does this training objective
directly support IR or RIR tasks. In contrast, by using the item-review data
structure, our best method (CLFR with Same Item, SASN, and In-Batch Nega-
tives) outperforms all contrastive IR, Neural IR, and sparse retrieval baselines.

Table 4. CLFR (our best model) results on RIRD dataset versus baselines from
Sect. 4.3. IR-based methods (Sect. 2.3) and CLFR use In-Batch negatives (IB), and
CLFR uses Same Item (SI) positive samples and SASN augmentation (Sect. 3.1).

K=1 K=10 K=|Dj | (Avg)

Model R-Prec MAP R-Prec MAP R-Prec MAP

TF-IDF 0.345 0.406 0.378 0.442 0.425 0.489

BM25 0.393 0.450 0.417 0.490 0.421 0.495

BERT 0.295 0.343 0.296 0.360 0.297 0.364

MLM 0.289 0.347 0.303 0.366 0.298 0.353

Condenser 0.358 0.410 0.390 0.449 0.378 0.428

CoCondenser 0.445 0.505 0.481 0.553 0.482 0.570

Contriever 0.375 0.427 0.418 0.482 0.458 0.519

IR-based, IRC 0.355± 0.024 0.422± 0.033 0.355 ± 0.022 0.424± 0.028 0.398± 0.031 0.464± 0.026

IR-based, ICT 0.331± 0.011 0.395± 0.016 0.339± 0.023 0.405± 0.025 0.328± 0.009 0.384± 0.014

CLFR 0.532±0.019 0.609±0.020 0.545±0.009 0.626±0.009 0.530±0.012 0.610±0.011

5 Conclusion

In this paper, we proposed and explored novel self-supervised contrastive learn-
ing methods for both Late Fusion and Early Fusion methods that exploit the
two-level item-review structure of RIR. We empirically observed that Same Item
(SI) positive sampling and In-Batch negative sampling with sub-sampling anchor
reviews to a sentence for Late Fusion achieved the best performance. This model
significantly outperformed state-of-the-art Neural IR models, showing the impor-
tance of using the structure of item-review data for the RIR task. We also showed
Late Fusion outperforms Early Fusion, which we hypothesize is due to the preser-
vation of review nuance during query-scoring. Most importantly, this work opens
new frontiers for the extension of self-supervised contrastive Neural-IR tech-
niques to leverage multi-level textual structures for retrieval tasks.
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Abstract. Meetings are recurrent organizational tasks intended to drive
progress in an interdisciplinary and collaborative manner. They are,
however, prone to inefficiency due to factors such as differing knowl-
edge among participants. The research goal of this paper is to design a
recommendation-based meeting assistant that can improve the efficiency
of meetings by helping to contextualize the information being discussed
and reduce distractions for listeners. Following a Wizard-of-Oz setup,
we gathered user feedback by thematically analyzing focus group discus-
sions and identifying this kind of system’s key challenges and require-
ments. The findings point to shortcomings in contextualization and raise
concerns about distracting listeners from the main content. Based on the
findings, we have developed a set of design recommendations that address
context, interactivity and personalization issues. These recommendations
could be useful for developing a meeting assistant that is tailored to the
needs of meeting participants, thereby helping to optimize the meeting
experience.

Keywords: Mediated human-human interaction · Recommender
systems · User-centered design · User experience · Natural language

1 Introduction

Meetings are intended to drive progress in an interdisciplinary and collabora-
tive manner and have become a recurrent task within companies. A meeting
context entails many variables. Speech may be unevenly distributed among par-
ticipants [3]. Multiple topics may be discussed in parallel [34], with a possible
but not systematic display of visuals. Finally, a meeting can be held entirely
remotely or partially so (i.e., hybrid).

Discussions in meetings frequently stray into unplanned topics. In such cases,
no visual support will have been prepared, so other participants cannot evaluate
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the reliability of the verbal contribution. The other participants may also be
less familiar with the topic, making it difficult for them to follow the discus-
sion. With the Internet easily accessible via connected devices, it is tempting to
quickly conduct a web search about the topic under discussion. This, however,
distracts participants during the meeting [25]. Consequently, a tool for quick
information retrieval connected to a display system could help them understand
in real time what another participant is saying (e.g., a participant is talking
about a particular country, and the system displays a map of that country). In
addition, combining this tool with the presentation slides would serve to enhance
them with additional information. The potential benefits of such a tool include
shortening the speaker’s preparation time, facilitating the audience’s compre-
hension of the topic under consideration, and providing a summary of what was
said during the meeting.

However, to optimize the utility and user adoption of a recommendation-
based meeting assistant, it is essential that such a system should meet user needs
since system accuracy is not the only performance criteria [36]. To this end, this
paper presents a user study which took place during the discovery phase at the
beginning of the user-centered design process [4]. We derive actionable design
recommendations from the study’s findings, including contextual and interac-
tive aspects. These contribute to global understanding of user requirements for
recommender systems in a meeting context. Design recommendations for the
meeting assistant are discussed. together with limitations and future perspec-
tives respectively.

2 Related Work

This section on the related work is divided into three subtopics. First, in Sect. 2.1,
we discuss existing meeting assistants, their use, and their design. Second, in
Sect. 2.2, we mention general guidelines about recommender systems that cover
different ways of increasing trust in such systems. The last part (Sect. 2.3) elab-
orates on the importance of user experience in recommender systems.

2.1 Meeting Assistants

In the past few years, various meeting assistant solutions have been developed
to improve collaboration in meetings. These solutions fall into several categories:
(i) those that provide automated meeting assistant features such as automatic
transcription and annotation. Cognitive Assistant that Learns and Organizes
(CALO) [34] is one of the most famous examples of meeting assistants that
belong to this category. Another more recent example, from industry, is the
WebEx meeting assistant developed by Cisco1, (ii) ontology-based assistants
like that of [33], whose aim is to provide means to manage virtual meetings in a
way that allows the participants to add contributions, consult the contributions

1 https://www.webex.com/webex-assistant.html.

https://www.webex.com/webex-assistant.html
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of others, and obtain supporting information and meetings history, (iii) natural
language processing (NLP) focused meeting assistants such as the Intel Meeting
Assistant [3], whose main innovative features are online automatic speech recog-
nition, speaker diarization, keyphrase extraction and sentiment detection. (iv)
information retrieval and user interface management user assistants (the topic
of this paper).

This paper concerns the final category. The goal of an information retrieval
and user interface management user assistant is to retrieve and present rele-
vant information about what is being discussed by participants in a meeting.
Only few works in the literature fall into this category. The first concerns Aug-
mented Multi-party Interaction with Distance Access (AMIDA) [25] with its tan-
gible interface [13], a helper agent [19]. AMIDA is a recommender system that,
based on speech, presents documents from previous meetings to participants. It
is based on the Automatic Content-Linking Device (ACLD) recommender sys-
tem [26]. The documents retrieved are primarily textual. Then, participants can
manipulate documents by sliding their fingers on tables with the help of the
tangible interface. Yet, this research is limited to the corpus available within an
offline database. Moreover, it presupposes that there is a room available that
is especially equipped to display the presented material, thereby shifting the
focus of the work to the front end. The second work describes Image Recom-
mender Robot Meeting Assistant (IRRMA), a recommender system embodied
in a QTRobot2 that, based on speech, presents image documents retrieved from
web databases [1]. It comes with the drawback that its databases are not lim-
ited to documents about previous meetings, making it prone to recommending
non-related content accidentally.

This paper aims to address the above limitations. To do so, we ran an empir-
ical study in order to determine which features should be included and avoided
in a future system.

2.2 General Guidelines Concerning Recommender Systems

Amershi et al. [2] have provided a total of eighteen guidelines (G) on how to
design recommender systems for various contexts (e.g., commercial, web search,
voice agents). Some of these guidelines apply to our meeting assistant. The appli-
cable guidelines are: G3. Time of service based on context; G4. Show contextually
relevant information; G7. Support efficient invocation; G8. Support efficient dis-
missal; G11. Make clear why the system did what it did; G17. Provide global
controls. The user study described in this paper looked into the understanding
of users who were domain experts of these guidelines.

In addition, some work has been done on understanding how to increase
user trust in recommender systems. Indeed, trust is a key point since it directly
impacts how users perceive recommendation materials [6,15]. It has been shown
that the system setup impacts user trust too [27]. The study presented in [22]
denotes the impact of embodiment over time on users’ trust in an agent. It shows

2 https://luxai.com/humanoid-social-robot-for-research-and-teaching/.
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that users initially trust physical agents more than virtual ones. Nevertheless,
the difference in trust tends to decrease with the amount of time passed with the
agent. Other studies [17,32] tell us that trust comes mainly from the preference
elicitation feature and explanations from the recommender system, even when
the recommendation material is not optimal. It has also been shown that high
transparency regarding the origin of the information provided increases users’
trust in the recommendations [29]. These different results show that what affects
user trust remains unclear and merits further investigation.

Recent research on AI ethics has contributed to defining and understanding
ethical challenges associated with recommender systems. Milano et al. [24] iden-
tified six major ethical challenges, including opacity, privacy, and inappropriate
content. They prescribed a set of guidelines to overcome these challenges ranging
from user-specified filters, and explainability with factual explanations, to the
adoption of multi-sided recommendation material to improve the fairness of such
systems.

2.3 User Experience of Recommender Systems

Recommender systems pose various technical challenges, which have been par-
tially addressed in existing research [37]. However, we note a lack of regard for
eliciting users’ needs in the design and development of solutions. Recently, user
experience (UX) of recommender systems has received growing attention because
of its impact on the ability of such systems to help users make better choices,
for example, when selecting from a long list of available options (see e.g., [8]).
According to [16], UX is the first feeling the user has regarding the product,
which emphasizes its importance. Even though a lot of UX research has been
conducted on recommender systems providing personalized and user-centered
recommendation material (e.g., [9,12,23,28]), only a few exist when it comes
to group and user-agnostic recommendations. Even if the features of most of
the existing recommender systems were designed according to market studies
and experimental results, only a minority of them address our topic, as shown
in [7,35]. Moving forward, the available knowledge is insufficient as a basis for
designing a recommender system that takes into account end-user needs.

To close this gap and gather user requirements, we conducted a user study
as a preliminary step to developing a system intended to be used by people
collaborating in a work context.

3 Method

3.1 User-Centered Design Approach

Our research project concerns the design and development of tools that support
collaborative work. In this paper, we focus on meetings. Our system will be a
meeting assistant to help people follow the contents of a meeting better. The
system will potentially serve educators and people working in business contexts.
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A user-centered approach is indispensable to devising a system that people will
adopt into their work routines. The project supports the creation of products
and services tailored to address end-users’ needs, wants and limitations by con-
sidering their perspective throughout the design process and ensuring that the
final products and services meet those needs and are easy to use [30]. The user-
centered design process starts with a ’discover and define phase’ during which
user requirements are gathered and defined before heading into an ideation phase
to produce concept ideas and generate solutions. The process is iterative and
includes regular evaluations of the ideas and solutions [4]. As a first step, we
presented a qualitative experiential study that served to identify user require-
ments by simulating the recommendation system during a live presentation with
small user groups. The simulation was carried out via a Wizard-of-Oz setup [11]
(in such a setup, an administrator hides in an adjacent room). The administra-
tor simulated the behavior of an intelligent computer application by intercepting
communications between the participants and the system.

3.2 Participants

To gather user requirements for the meeting assistant, we conducted a focus
group study at the University of Luxembourg’s user lab. Seventeen professionals
participated. Fifteen audience participants were divided into four focus groups
(three groups had four participants and one group had three). Six participants
identified as women and nine as men. Five were Bachelor’s students in Computer
Science, two were Bachelor’s students in Psychology, two were Master’s students
in Civil Engineering, and five were human-computer interaction (HCI) profes-
sionals. Their ages ranged from 20 to 41 years (an average of 27 years). In addi-
tion, two presenters (male Computer Science researchers aged 28 and 42) intro-
duced a different machine learning topic in two sessions (topic A: genetic algo-
rithms; topic B: natural language processing NLP). All the participants received
a compensation of 30 EUR, which was deemed fair by the Ethics Committee of
the University of Luxembourg.

3.3 Study Material

The study took place during the early design phase of the meeting assistant,
where user requirements are gathered. Due to the lack of a functional prototype,
we had to pre-select the recommendation material and could not carry out the
test in an actual meeting scenario in which people discuss freely. We chose a
meeting scenario in which one person presents to a group. The recommendation
material was pre-selected from Wikimedia by the first author, using a minimalist
procedure that selected only the first search results based on three keywords from
the speaker’s discourse. Simulating the system instead of relying on existing
systems reduces the risk of detecting local rather than global design issues and
enables exploration of the wider design space.
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Three to four attendees per session followed a presentation on one of the two
machine learning topics during which a recommender system suggested visual
content. The audience was seated around a table facing the presenter. Each
individual had an iPad lying on the table in front of them. The recommender
system under the Wizard of Oz setup sent information to individual iPads via a
Microsoft Teams video call in screen-sharing mode (see Fig. 1). The system was
placed before the participants without instructions to prevent priming on the
topic of recommender systems. After the presentation, iPads were also used to
conduct a user experience (UX) questionnaire.

Fig. 1. Room layout for the Wizard-of-Oz setup.

3.4 Study Procedure

We obtained the participants’ consent to record them during the session. Each
session took 60min, starting with a 15-min presentation where they were
observed via a one-sided mirror to follow how their gazes alternated between
the presentation and the material presented on the iPad. Following the pre-
sentation, they filled in a questionnaire providing demographic information and
feedback about their experience with the recommender system-based meeting
assistant during the presentation. The questionnaire used the standardized User
Experience Questionnaire (UEQ) scale [21] and included sentence completion
exercises [20]. Finally, the first and last authors (over three and one sessions
respectively) moderated a semi-structured focus group discussion [14] with the
participants. Each session took about 30min and addressed the shortcomings
and potential benefits of the system’s design along the following topics:
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1. their previous experience with existing recommender systems;
2. their experience with the tested recommender system;
3. their experience with the medium (individual iPad) of the tested recom-

mender system.

The focus group format was based on a semi-structured interview [14] and chosen
because it naturally follows from a group activity setting. Individual interviews
would have been a valid alternative, but this would have imposed waiting times
on the participants. Moreover, focus groups allow participants to build on each
other’s responses. Together, they can recall experiences in greater detail, which
makes it a suitable research method for extracting rich qualitative insights.

The first author also ran individual interviews with the two presenters to
probe their experiences with the recommender-based meeting assistant, including
questions about the added value for the presenters and their take on the medium.

Thematic analysis with an inductive approach [10] was used to analyze the
focus group discussions, the interviews with the two presenters, and the sen-
tence completion exercises. User Experience Questionnaire (UEQ) is a fast UX
measurement tool designed to be used as part of usability tests. It consists of
semantic differential item pairs to be rated on a 7-point Likert scale. The UEQ
ratings obtained were analyzed via that scale following the guidelines at [21].

4 Results

4.1 Prior Experience with Recommender Systems

The participants were familiar with the recommender systems of Netflix, Deezer,
Spotify, YouTube, Amazon and others, as well as social media applications that
recommend content based on users’ behavioral data. They were ambivalent about
their experiences with those systems. They appreciate the convenience of being
proposed suitable options without the need to search. However, they regularly
encounter irrelevant recommendations. Furthermore, they expressed mistrust in
AI, fears about being manipulated, and loss of agency (“Sometimes we’re scared
about the technology that makes our life so easy. I don’t like to be recommended
everything by AI technology. Sometimes I prefer to search for something useless
for a lot of time, trying to find a solution by myself instead of receiving [it].”
G3-P4). Their trust in such systems is closely linked to 1) the pertinence of the
recommendations and 2) the discretion with which user data is gathered and
handled (“[T]hen it’s the time they help us, and we see the help is trustworthy.
[...] But if you don’t want them at [that] moment or they give us the information
that they [have] just gathered, it’s untrustworthy. Because we, as humans, don’t
want to be manipulated. And if we see [...] somebody knows some information
about us [...] we feel insecure.” G3-P2).

4.2 Participants’ Experience with the Meeting Assistant

Through this study, we sought to understand how the audience experienced the
tested recommender system-based meeting assistant in a presentation setting.
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Looking at the UEQ data, we see that the overall experience under the setup
tested was not very satisfying. The system scores (Table 1) were approximately
neutral on all five criteria: attractiveness, perspicuity, efficiency, dependability,
and stimulation. The score for novelty was positive, but the data obtained for
this scale was not sufficiently consistent (Guttman’s Lambda-2 Coefficient 0.54).

Table 1. Scores for UEQ scales

UEQ Scales Mean Variance Lambda2

Attractiveness 0.067 1.73 0.89
Perspicuity –0.100 2.39 0.90
Efficiency 0.133 1.41 0.76
Dependability –0.100 1.22 0.67
Stimulation 0.217 1.78 0.88
Novelty 0.867 0.61 0.54

Looking at the single items (Fig. 2), we see that the attributes experienced most
strongly indicate the system’s innovative, inventive and creative character. The
attributes experienced most weakly indicate that the participants perceived the
system as unpredictable and rather annoying. These scores align with comments
from the focus group that the participants found it challenging to make connec-
tions between the recommended material and the presentation. This was either
caused by a lack of contextual information or timing issues (“I didn’t trust it much
since we didn’t get much context and [...] the interval seems kind of random. Like
each time you change the slides, it would change, but sometimes it wouldn’t.” G2-
P1). The lack of contextual hints hindered participants who were not familiar with
the topic being presented from understanding the material provided by the recom-
mender system better. By contrast, participants who were familiar with the topic
were critical that many of the visuals provided by the recommender system did not
add anything to enhance their understanding (“It’s a concept that I’m very familiar
with [...] I didn’t get any value out of the information displayed here. It was supposed
to be supportive material, but it wasn’t concrete enough for me to help.” PG4-P3).
Furthermore, all the participants expressed uncertainty about where the material
was coming from—whether it was prepared by the presenter or was the result of
an algorithm (“Where does it come up with these recommendations? Does it come
from the slides directly? Does the presenter have to give keywords? Does the presen-
ter give the images?” G2-P3).

Due to the lack of introduction to the system, about a quarter of the partic-
ipants did not see all the material provided by the recommender system while
following the presentation. All feared that the meeting assistant was potentially
a source of distraction. They felt uneasy about looking at the material on the
iPad instead of looking at the presenter (“I cared [about] him—if we are all on the
tablet and then he has the impression that we are not listening to him.” G1-P2).
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Fig. 2. Scores for UEQ items

Nevertheless, some also said that the system was stimulating in moments when
their thoughts started to drift away from the presentation (“If your attention
starts [to stray], you can maybe look here and keep your [mind on] the subject.”
G3-P3). Moreover, participants saw that material from the recommender system
has the potential to bring them back when they have lost the thread (“I think
that we cannot concentrate for a whole presentation. [...] I think the brain needs
to [get] distract[ed] somewhere. That’s why it goes [over] there and then goes to
the presentation. So I think it’s a good distraction. It’s a distraction [that] is
not very distracting.” G2-P2). The content of the recommended material could
signal the start of a new part of the presentation so that the listener would be
motivated to try and follow it again. Multiple comments also underlined the wish
for more user agency over the recommender system, in particular, the ability to
navigate between the recommended material (“[S]ome interaction would go a
long way. Maybe [being] able to go back to previous [material] and then be able
to come back to [...]. [A] bit more control would be good.” G3-P3).

Regarding system setup, all participants appreciated the individual setup
with the tablet close by. However, some believed it would be easier to make
connections between the presentation and the recommended material if they were



User Requirement Analysis for Meeting Assistants 27

displayed side by side. The presenter could then also refer to the recommended
material (“Maybe it’s easier for the presenter to make the link between what is
happening with the recommended system if it is on the same level.” G1-P3).

An individual device offers desirable possibilities for personalizing the recom-
mendations. The participants envisioned two different approaches to personal-
ized recommendation content. These would either help to simplify the narrative
by making explanatory material more accessible or augment the presentation
with stimulating content for people who want more information. Ultimately,
most agree that such a system would probably work better as a personalized
system as this would allow recommendation material to be tailored to the back-
ground of each listener (“It would be nice to have these things personalized for
each person. So me, I’m a little bit stupid with graphs. So all the graphs would
be shown on this device for me, but for him, he will have some texts because he
is very good with text. He can read and learn with text. So we will have the main
content [presented differently]. That would be awesome.” G3-P2). The partici-
pants generally preferred personalized recommendations derived in accordance
with their parameters instead of recommendations based on their behavioral data
(“To some extent, it’s not intelligent, but it’s more like user-driven.” G4-P2).

The tested setup was non-humanoid, with a simple tablet displaying the
recommended visual material. Discussion about the potential character of such
a system was non-conclusive. Many participants thought this very neutral setup
was suitable for a meeting assistant (“[User-]friendliness doesn’t really play a big
role. I think [I would like] several buttons to call back and that’s it.” G2-P2). A
more humanoid setup similar to Amazon Alexa was met with interest by some.
However, there was consensus that users should be able to select a humanoid or
non-humanoid setup according to their own preference, which some mentioned
could also depend on the context of use (“You know, I may or may not use it for
class, depending also on how well the lecturer uses the system.” G2-P3).

4.3 The Presenters’ Experience with the Meeting Assistant

We gathered the following points about the presenters’ point of view. It seems
that they quickly forgot about the presence of the meeting assistant even though
they were initially aware of it. This contrasts with some participants’ remarks
that it might irritate presenters.

After showing the presenters the material displayed by the meeting assistant
during the presentation, one considered the recommended material to be not very
useful, but the other did see the potential value of the system. Both presenters
agreed that they would appreciate having control over the material displayed by
the meeting assistant, especially when they are inappropriate, even if that rarely
happens. Regarding the system setup, the second presenter would be willing to
try a setup that involves a robot acting as a meeting assistant, but like most
participants, he was not convinced of its suitability either.
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4.4 Envisioned Use Cases for the Meeting Assistant

Despite the shortcomings found in user experience during the test session, most
participants thought that the meeting assistant had great potential. They imag-
ined a wide range of use cases from education to business settings. In education,
they envisaged the system as an individual assistant that knows to what extent
the lecture falls into the listener’s field of knowledge (“[p]resentations where the
people watching are not the target audience and need additional information for
them to better follow and understand what is being shown.” P2-1). It would then
display (animated or non-animated) visual material, definitions, essential key-
words, even additional information to keep the listener’s interest (“Useful for
kids [who] are distracted most of the time, so they have something [to address]
distraction, and [...] lead them to the main subject.” P3-2). Combining this with
interactivity was seen as highly desirable. They imagined being able to combine
the recommended material with the lecture slides and their own annotations. A
similar use scenario mentioned by the participants was conferences, where a per-
sonalized system would allow more and less experienced listeners to follow the
presentations better (“For some fields that you are not secure about, never heard
of, it’s kind of probably useful to have like little graphs or some recommendations
that help you understand the topic.” P3-1). The same goes for business meetings
with people from different backgrounds, where the assistant might save people
time googling technical terms (“[m]eetings where discussions really happen and
people come together from different backgrounds for one objective because not
everyone knows the same information.” P4-1). They also see it having utility
as a fact-checking tool when people have diverging opinions (“...like corporate
meetings, because they also have different levels of complexity in their opinions.
And [...] you should look at the screen, and you make sure.” P4-2). Finally, the
participants also saw potential use cases in entertainment settings like museums.

5 Discussion and Recommendations

The focus group discussions brought forth manifold insights into how a recom-
mender system-based meeting assistant should be designed. This section outlines
our recommendations.

5.1 Introduce the System to Users

We had not introduced the system to the users before because this might not
happen in a real-world scenario. The participants’ reactions demonstrated the
need to manage user expectations and introduce the system, detailing what it
can do and where the information comes from. This can be done with simple
stand-by text on the first screen. It would help participants become aware of
incoming recommendation material and judge to what extent they can trust
them.
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5.2 Annotate Visual Material with Titles and Keywords

To help users understand the recommendations shown, it is useful to display
the keywords used for the search. This will help them know what the displayed
visual represents and determine whether it is still relevant to what the presenter
is currently saying. The display of small animations could be treated as even more
suitable than static visuals, as it is stated that they enhance understanding of
topics [18]. However, the feasibility of providing animations depends on the data
available in the databases searched. They could be hard to find consistently.

5.3 Cater to User Preferences

Suppose the participants’ profiles are known in advance, and they consent to
sharing some of their data. In that case, the system could adapt its search cri-
teria across different databases, taking account of the confidence level of each
participant. Doing this would improve the relevance and usefulness of the rec-
ommended material for each participant, avoiding material that is too hard to
understand for non-experts and too basic for experts. On a different matter,
users should also be able to indicate what type of material they prefer, ranging
from text to images or even animations.

5.4 Add Interactivity Options

Our experiment showed that users require a cue to let them know when new
recommendation material is available. An audio signal would be too intrusive,
but one option could be to add an overlay icon to the presentation display to
let people know there is new material to view from the recommender system.
Another option is to let people click a button to trigger a search for material
about what is currently being presented. However, according to the literature,
people prefer a proactive system to a reactive or human-initiated one [5]. Beyond
a recommendation cue, our results indicate a strong user need to navigate back
and forth between the recommended material.

5.5 Companion Style

Unlike some of the literature, which states that using a human-like robot
increases users’ trust in such systems [31], we cannot give a clear recommenda-
tion regarding a specific style of meeting assistant. Whether users prefer neutral
or humanoid systems appears to be a rather personal and context-dependent
choice.

6 Limitations and Future Work

The study could not employ an existing prototype and had to simulate a recom-
mender system via a Wizard-of-Oz setup [11]. The choice to test during a pre-
sentation rather than a “meeting-style” discussion among participants was moti-
vated by the impossibility of simulating recommendations in real time regarding
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any kind of dialogue. In addition, the pre-selected recommendations did not
always perfectly match the discourse when the presenters strayed from their
initial script. The setup did not allow for the simulation of personalized recom-
mendations at this early concept stage. In our future work, we plan to pursue the
development of a meeting assistant based on the design recommendations. Early
prototypes will be user tested on various features, including different setups,
personalized recommendations, and presenter control.

7 Conclusion

In this study, we simulated a meeting assistant system that displays recom-
mendation material to an audience. Our user study aimed to investigate how
users perceive recommender systems employed in real-world meeting situations
and to identify user requirements ranging from contextual triggers to navigation
options. Our findings suggest that there are some challenges involved with con-
textualizing the recommendation material and that listeners may be distracted
by the recommendations if they are not engaged in the meeting.

Acknowledgement. This research is supported by the Luxembourg National
Research Fund (FNR): IPBG2020/IS/14839977/C21.

This work has been partially supported by the Chist-Era grant CHIST-ERA19-
XAI-005, by Swiss National Science Foundation (G.A. 20CH21 195530), Italian Min-
istry for Universities and Research, Luxembourg National Research Fund (G.A.
INTER/CHIST/19/14589586), Scientific and Research Council of Turkey (TÜBİTAK,
G.A. 120N680).

References

1. Alcaraz, B., Hosseini-Kivanani, N., Najjar, A.: IRRMA: an image recommender
robotic meeting assistant. In: Dignum, F., Mathieu, P., Corchado, J.M., De La Pri-
eta, F. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems,
and Complex Systems Simulation. The PAAMS Collection. PAAMS 2022. LNCS,
vol. 13616. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18192-4_36

2. Amershi, S., et al.: Guidelines for human-AI interaction. In: Proceedings of the
2019 Chi Conference on Human Factors in Computing Systems, pp. 1–13 (2019)

3. Assayag, M., et al.: Meeting assistant application. In: Sixteenth Annual Conference
of the International Speech Communication Association (2015)

4. Ball, J.: The double diamond: a universally accepted depiction of the design pro-
cess (2022). www.designcouncil.org.uk/our-work/news-opinion/double-diamond-
universally-accepted-depiction-design-process

5. Baraglia, J., Cakmak, M., Nagai, Y., Rao, R.P., Asada, M.: Efficient human-robot
collaboration: when should a robot take initiative? Int. J. Robot. Res. 36(5–7),
563–579 (2017)

6. Billings, D.R., Schaefer, K.E., Chen, J.Y., Hancock, P.A.: Human-robot interac-
tion: developing trust in robots. In: Proceedings of the Seventh Annual ACM/IEEE
International Conference on Human-Robot Interaction, pp. 109–110 (2012)

https://doi.org/10.1007/978-3-031-18192-4_36
www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process
www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process


User Requirement Analysis for Meeting Assistants 31

7. Çano, E., Morisio, M.: Hybrid recommender systems: a systematic literature
review. Intell. Data Anal. 21(6), 1487–1524 (2017)

8. Champiri, Z.D., Mujtaba, G., Salim, S.S., Yong Chong, C.: User experience and
recommender systems. In: 2019 2nd International Conference on Computing, Math-
ematics and Engineering Technologies (iCoMET), pp. 1–5 (2019). https://doi.org/
10.1109/ICOMET.2019.8673410

9. Chiu, M.C., Huang, J.H., Gupta, S., Akman, G.: Developing a personalized rec-
ommendation system in a smart product service system based on unsupervised
learning model. Comput. Ind. 128, 103421 (2021)

10. Clarke, V., Braun, V., Hayfield, N.: Thematic analysis. Qualit. Psychol. a practical
guide to research methods 222, 248 (2015)

11. Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of OZ studies-why and how.
Knowl.-Based Syst. 6(4), 258–266 (1993)

12. Do, V., Corbett-Davies, S., Atif, J., Usunier, N.: Online certification of preference-
based fairness for personalized recommender systems. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, pp. 6532–6540 (2022)

13. Ehnes, J.: A tangible interface for the AMI content linking device-the automated
meeting assistant. In: 2009 2nd Conference on Human System Interactions, pp.
306–313. IEEE (2009)

14. Fessenden, T.: Focus groups 101 (2022). www.nngroup.com/articles/focus-groups-
definition/

15. Ge, Y., et al.: A survey on trustworthy recommender systems. arXiv preprint
arXiv:2207.12515 (2022)

16. Hassenzahl, M.: User experience (UX) towards an experiential perspective on
product quality. In: Proceedings of the 20th Conference on l’Interaction Homme-
Machine, pp. 11–15 (2008)

17. Herse, S., et al.: Do you trust me, blindly? factors influencing trust towards a robot
recommender system. In: 2018 27th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), pp. 7–14. IEEE (2018)

18. Höffler, T.N., Leutner, D.: Instructional animation versus static pictures: a meta-
analysis. Learn. Instr. 17(6), 722–738 (2007)

19. Isbister, K., Nakanishi, H., Ishida, T., Nass, C.: Helper agent: designing an assistant
for human-human interaction in a virtual meeting space. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 57–64 (2000)

20. Lallemand, C., Mercier, E.: Optimizing the use of the sentence completion survey
technique in user research: a case study on the experience of e-reading. In: CHI
Conference on Human Factors in Computing Systems, pp. 1–18 (2022)

21. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9_6

22. van Maris, A., Lehmann, H., Natale, L., Grzyb, B.: The influence of a robot’s
embodiment on trust: a longitudinal study. In: Proceedings of the Companion of
the 2017 ACM/IEEE International Conference on Human-Robot Interaction, pp.
313–314 (2017)

23. Martijn, M., Conati, C., Verbert, K.: “knowing me, knowing you”: personalized
explanations for a music recommender system. User Model. User-Adapt. Inter.
32(1), 215–252 (2022). https://doi.org/10.1007/s11257-021-09304-9

24. Milano, S., Taddeo, M., Floridi, L.: Recommender systems and their ethical chal-
lenges. AI Soc. 35(4), 957–967 (2020)

https://doi.org/10.1109/ICOMET.2019.8673410
https://doi.org/10.1109/ICOMET.2019.8673410
www.nngroup.com/articles/focus-groups-definition/
www.nngroup.com/articles/focus-groups-definition/
http://arxiv.org/abs/2207.12515
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/s11257-021-09304-9


32 B. Alcaraz et al.

25. Popescu-Belis, A., et al.: The AMIDA automatic content linking device: just-in-
time document retrieval in meetings. In: Popescu-Belis, A., Stiefelhagen, R. (eds.)
MLMI 2008. LNCS, vol. 5237, pp. 272–283. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85853-9_25

26. Popescu-Belis, A., Kilgour, J., Nanchen, A., Poller, P.: The ACLD: speech-based
just-in-time retrieval of meeting transcripts, documents and websites. In: Proceed-
ings of the 2010 International Workshop On Searching Spontaneous Conversational
Speech, pp. 45–48 (2010)

27. Rae, I., Takayama, L., Mutlu, B.: In-body experiences: embodiment, control, and
trust in robot-mediated communication. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1921–1930 (2013)

28. Renjith, S., Sreekumar, A., Jathavedan, M.: An extensive study on the evolution
of context-aware personalized travel recommender systems. Inf. Process. Manage.
57(1), 102078 (2020)

29. Sinha, R., Swearingen, K.: The role of transparency in recommender systems. In:
CHI2002 Extended Abstracts On Human Factors In Computing Systems, pp. 830–
831 (2002)

30. Still, B., Crane, K.: Fundamentals of user-centered design: a practical approach.
CRC Press (2017)

31. Stroessner, S.J., Benitez, J.: The social perception of humanoid and non-humanoid
robots: effects of gendered and machinelike features. Int. J. Soc. Robot. 11(2), 305–
315 (2019)

32. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Moviexplain: a recommender
system with explanations. In: Proceedings of the Third ACM Conference on Rec-
ommender systems, pp. 317–320 (2009)

33. Thompson, P., James, A., Stanciu, E.: Agent based ontology driven virtual meeting
assistant. In: Kim, T., Lee, Y., Kang, B.-H., Ślęzak, D. (eds.) FGIT 2010. LNCS,
vol. 6485, pp. 51–62. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17569-5_8

34. Tur, G., Tur, G., et al.: The CALO meeting assistant system. IEEE Trans. Audio
Speech Lang. Process. 18(6), 1601–1611 (2010)

35. Villegas, N.M., Sánchez, C., Díaz-Cely, J., Tamura, G.: Characterizing context-
aware recommender systems: a systematic literature review. Knowl.-Based Syst.
140, 173–200 (2018)

36. Wu, W., He, L., Yang, J.: Evaluating recommender systems. In: Seventh Interna-
tional Conference on Digital Information Management (ICDIM 2012), pp. 56–61.
IEEE (2012)

37. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a
survey and new perspectives. ACM Comput. Surv. (CSUR) 52(1), 1–38 (2019)

https://doi.org/10.1007/978-3-540-85853-9_25
https://doi.org/10.1007/978-3-540-85853-9_25
https://doi.org/10.1007/978-3-642-17569-5_8
https://doi.org/10.1007/978-3-642-17569-5_8


Auditing Consumer- and
Producer-Fairness in Graph Collaborative

Filtering

Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta(B),
Vincenzo Paparella, and Claudio Pomo(B)

Politecnico di Bari, Bari, Italy
{vitowalter.anelli,yashar.deldjoo,tommaso.dinoia,daniele.malitesta,

vincenzo.paparella,claudio.pomo}@poliba.it

Abstract. To date, graph collaborative filtering (CF) strategies have
been shown to outperform pure CF models in generating accurate rec-
ommendations. Nevertheless, recent works have raised concerns about
fairness and potential biases in the recommendation landscape since
unfair recommendations may harm the interests of Consumers and Pro-
ducers (CP). Acknowledging that the literature lacks a careful evalua-
tion of graph CF on CP-aware fairness measures, we initially evaluated
the effects on CP-aware fairness measures of eight state-of-the-art graph
models with four pure CF recommenders. Unexpectedly, the observed
trends show that graph CF solutions do not ensure a large item exposure
and user fairness. To disentangle this performance puzzle, we formalize
a taxonomy for graph CF based on the mathematical foundations of the
different approaches. The proposed taxonomy shows differences in node
representation and neighbourhood exploration as dimensions character-
izing graph CF. Under this lens, the experimental outcomes become clear
and open the doors to a multi-objective CP-fairness analysis (Codes are
available at: https://github.com/sisinflab/ECIR2023-Graph-CF.).

Keywords: Graph collaborative filtering · Fairness · Multi-objective
analysis

1 Introduction and Motivations

Recommender systems (RSs) are ubiquitous and utilized in a wide range of
domains from e-commerce and retail to media streaming and online advertis-
ing. Personalization, or the system’s ability to suggest relevant and engaging
products to users, has long served as a key indicator for gauging the success of
RSs. In recent decades, collaborative filtering (CF) [10], the predominant mod-
eling paradigm in RSs, has shifted from neighborhood techniques [10,30,31] to
frameworks based on the learning of users’ and items’ latent factors [16,29,49].
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More recently, deep learning (DL) models have been proposed to overcome the
linearity of traditional latent factors approaches.

Among these DL algorithms, graph-based methods view the data in RSs
from the perspective of graphs. By modeling users and items as nodes with
latent representations and their interactions as edges, the data can be naturally
represented as a user-item bipartite graph. By iteratively aggregating contribu-
tions from near- and long-distance neighborhoods, the so-called message-passing
schema updates nodes’ initial representations and effectively distills the collabo-
rative signal [43]. Early works [5,50] adopted the vanilla graph convolutional net-
work (GCN) [15] architecture and paved the way to advanced algorithms light-
ening the message-passing schema [8,14] and exploring different graph sampling
strategies [47]. Recent approaches propose simplified formulations [21,26] that
optionally transfer the graph CF paradigm to different spaces [33,34]. As some
graph edges may provide noisy contributions to the message-passing schema [39],
a research line focuses on meaningful user-item interactions [36,42,45]. In this
context, explainability is the natural next step [18] towards the disentanglement
of user-item connections into a set of user intents [44,46].

On the other side, the adoption of DL (and, often, black-box) approaches to the
recommendation task has raised issues regarding the fairness of RSs. The concept
of fairness in recommendation is multifaceted. Specifically, the two core aspects to
categorize recommendation fairness may be summarized as (1) the primary par-
ties engaged (consumers vs. producers) and (2) the type of benefit provided (expo-
sure vs. relevance). Item suppliers are more concerned about exposure fairness
than customers because they want to make their products better known and visi-
ble (Producer fairness). However, from the customer’s perspective, relevance fair-
ness is of utmost importance, and hence system designers must ensure that expo-
sure of items is equally effective across user groups (Consumer fairness). A recent
study highlights that nine out of ten publications on recommendation fairness con-
centrated on either C-fairness or P-fairness [22], disregarding the joint evaluation
between C-fairness, P-fairness, and the accuracy.

The various graph CF strategies described above have historically centered
on the enhancement of system accuracy, but, actually, never focused on the rec-
ommendation fairness dimensions. Despite some recent graph-based approaches
have specifically been designed to address C-fairness [11,17,27,40,41,48] and P-
fairness [6,19,20,35,51,52], there is a notable knowledge gap in the literature
about the effects of the state-of-the-art graph strategies on the three objectives
of C-fairness, P-fairness, and system accuracy. This work intends to complement
the previous research and provide answers to pending research problems such
as how different graph models perform for the three evaluation objectives. By
measuring these dimensions in terms of overall accuracy, user fairness, and
item exposure, we observe these aspects in detail1.

Motivating Example. A preliminary comparison of the leading graph and clas-
sical CF models is carried out to provide context for our study. The graph-based
1 In the rest of the paper, when no confusion arises, we will refer to C-fairness with user

fairness, to P-fairness with item exposure, and to their combination as CP-fairness.
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Fig. 1. Kiviat diagrams indicating the performance of selected pure and graph CF
recommenders on overall accuracy (i.e., O-Acc, calculated with the nDCG@20 ), item
exposure (i.e., I-Exp, calculated with the APLT@20 [1]), and user fairness (U-Fair,
calculated with the UMADrat@20 [9]). Higher means better.

models include LightGCN [14], DGCF [44], LR-GCCF [8], and GFCF [33], which
are tested against two classical CF baselines, namely BPRMF [28] and RP3β [25],
on the Baby, Boys & Girls, and Men datasets from the Amazon catalog [23]. We
train each baseline using a total of 48 unique hyper-parameter settings and select
the optimal configuration for each baseline as the one achieving the highest accu-
racy on the validation set (as in the original papers). Overall accuracy, user fair-
ness, and item exposure (as introduced above) are evaluated. Figure 1 displays
the performance of the selected baselines on the three considered recommenda-
tion objectives. For better visualization, all values are scaled between 0 and 1 using
min-max normalization, and, when needed, they are replaced by their 1’s comple-
ment to adhere to the “higher numbers are better” semantics. As a result, in each
of the three dimensions, the values lay in [0, 1] with higher values indicating the
better. Please, note that such an experimental evaluation is not the main focus
of this work but it is the motivating example for the more extensive analysis we
present later. The interested reader may refer toAppendix A for a presentation
of the full experimental settings to reproduce these results and the ones reported
in the following sections of the paper.

First, according to Fig. 1, graph CF models are significantly more accurate
than the classical CF ones, even if the latter perform far better in terms of item
exposure. Moreover, the displayed trends suggest there is no clear winner on the
user fairness dimension: classical CF models show promising performance, while
some graph CF models do not achieve remarkable results. As a final observation,
an underlying trade-off between the three evaluation goals seems to exist, and it
might be worth investigating it in-depth. Such outcomes open to a more complete
study on how different strategy patterns recognized in graph CF may affect
the three recommendation objectives, which is the scope of this work.

Research Questions and Contributions. In the remainder of this paper, we
therefore attempt to answer the following two research questions (RQs):
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Table 1. Categorization of the chosen graph baselines according to the proposed tax-
onomy. For each model, we refer to the technical description reported in the original
paper and try to match it with our taxonomy.

Models Nodes representation Neighborhood exploration

Latent representation Weighting Explored nodes Message passing

low high weighted unweighted same different implicit explicit

GCN-CF* [15] � � � �
GAT-CF* [39] � � � �
NGCF [43] � � � �
LightGCN [14] � � � �
DGCF [44] � � � �
LR-GCCF [8] � � � � �
UltraGCN [21] � � � �
GFCF [33] � �

*The postfix -CF indicates that we re-adapted the original implementations (tailored for the task of node

classification) to the task of personalized recommendation.

RQ1. Given the different graph CF strategies, the raising question is “Can
we explain the variations observed when testing several graph models on
overall accuracy, item exposure, and user fairness separately?” According to
a recent benchmark that identifies some state-of-the-art graph techniques [54],
the suggested graph CF taxonomy (Table 1) extends the set of graph-based
models introduced in the motivating example by examining eight state-of-the-
art graph CF baselines through their strategies for nodes representation and
neighborhood exploration. We present a more nuanced view of prior findings
by analyzing the impact of each taxonomy dimension on overall accuracy and
CP-fairness.

RQ2. The demonstrated performance prompts the questions: “How and why
nodes representation and neighborhood exploration algorithms can strike a
trade-off between overall accuracy, item exposure, and user fairness?”
We employ the Pareto optimality to determine the influence of such dimen-
sions in two-objective scenarios, where the objectives include overall accuracy,
item exposure, and user fairness. The Pareto frontier is computed for three
2-dimensional spaces: accuracy/item exposure, accuracy/user fairness, and
item exposure/user fairness.

2 Nodes Representation and Neighborhood Exploration
in Graph Collaborative Filtering: A Formal Taxonomy

2.1 Preliminaries

Let U be the set of N users, and I the set of M items in the system, respectively.
We represent the observed interactions between users and items in a binary
format (i.e., implicit feedback). Specifically, let R ∈ R

N×M be the user-item
feedback matrix, where ru,i = 1 if user u ∈ U and item i ∈ I have a recorded
interaction, ru,i = 0 otherwise. Following the above preliminaries, we introduce
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G = (U , I,R) as the bipartite and undirected graph connecting users and items
(the graph nodes) when there exists a recorded bi-directional interaction among
them (the graph edges). Nodes features for user u ∈ U and i ∈ I are suitably
encoded as the embeddings eu ∈ R

d and ei ∈ R
d, with d << N,M . Given the

dual nature of user and item derivations, we only report user-side formulas.

2.2 Updating Node Representation Through Message-Passing

The representation of users’ and items’ nodes are updated by leveraging the
graph topology from G. In this respect, the message-passing schema has recently
gained attention in the literature. The algorithm works by aggregating the infor-
mation (i.e., the messages) from the neighbor nodes into the ego node, and the
process is recursively performed for multiple hops thus exploring wider neigh-
borhood portions. In general, the message-passing for l hops is:

e(l)u = ω
({

e(l−1)
i′ ,∀i′ ∈ N (u)

})
, (1)

where ω(·) and N (·) are the aggregation function and neighborhood node set,
respectively, while l is in 1 ≤ l ≤ L, where L is a hyper-parameter. Note that
the following statements hold: e(0)u = eu and e(0)i = ei. A reworking of Eq. (1)
for l ∈ {2, 3} allows same- and different-type node representation emerge [3]:

Same-type
node
representation

{
e
(2)
u︸︷︷︸

(user)

= ω
({

ω
({

e
(0)
u′′︸︷︷︸

(user)

, ∀u′′ ∈ N (i′) \ {u}
})

, ∀i′ ∈ N (u)
})

Different-type
node
representation

⎧⎪⎪⎨
⎪⎪⎩

e
(3)
u︸︷︷︸

(user)

= ω
({

ω
({

ω
({

e
(0)
i′′′︸︷︷︸

(item)

, ∀i′′′ ∈ N (u′′) \ {i′′}
})

,

∀u′′ ∈ N (i′) \ {u′′}
})

, ∀i′ ∈ N (u)
})

.

(2)

To better clarify the extent of Eq. (2), after an even and an odd number of
explored hops, ego node updates leverage by design same- and different-type
node connections, i.e., user-user/item-item and user-item/item-user as evident
from Eq. (2). While the existing literature does not always consider the two
scenarios as distinct, we underline the importance of investigating the influence
of different node-node connections explored during the message-passing. In light
of the above, we will count the number of explored hops as follows: e(2l)

∗ ,∀l ∈
{1, 2, . . . , L

2 } as obtained through l same-type node connections (denoted as
same-l), and e(2l−1)

∗ ,∀l ∈ {1, 2, . . . , L
2 } as obtained through l different-type

node connections (denoted as different-l). In the following, we introduce the
graph convolutional network (GCN) and its recent CF applications.

The Baseline: Graph Convolutional Network (GCN). The standard
graph convolutional network from Kipf and Welling [15] performs feature
transformation, message aggregation, application of a one-layer neural net-
work, element-wise addition, and ReLU activation, respectively. Let us consider
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W(l) ∈ R
dl−1×dl and b(l) ∈ R

dl as the weight matrix and the bias for the l-th
explored hop. The message-passing for user u is:

e(l)u = ReLU

⎛
⎝ ∑

i′∈N (u)

(
W(l)e(l−1)

i′ + b(l)
)
⎞
⎠ . (3)

GCN for Collaborative Filtering. Inspired by the GCN message-passing
approach, the authors from Wang et al. [43] propose neural graph collaborative
filtering (NGCF). At each hop exploration, the model aggregates the neighbor-
hood information and the inter-dependencies among the ego and the neighbor-
hood nodes. Formally, the aggregation could be formulated as follows:

e(l)
u = LeakyReLU

⎛
⎝ ∑

i′∈N (u)

(
W

(l)
neighe

(l−1)

i′ + W
(l)
inter

(
e
(l−1)

i′ � e(l−1)
u

)
+ b(l)

)⎞
⎠ , (4)

where LeakyReLU is the activation function, W(l)
neigh ∈ R

dl−1×dl and W(l)
inter ∈

R
dl−1×dl are the neighborhood and inter-dependencies weight matrices, respec-

tively, while � is the Hadamard product.
He et al. [14] propose a light convolutional network, namely LightGCN, with

the rationale to simplify the message-passing schema from GCN and NGCF by
dropping feature transformations (i.e., the weight matrices and biases) and the
non-linearity applied after the message aggregation. Specifically, they implement:

e(l)u =
∑

i′∈N (u)

e(l−1)
i′ . (5)

The variation shows superior accuracy to the state-of-the-art. A slightly different
solution [8] can outperform LightGCN regarding the accuracy level.

2.3 Weighting the Importance of Graph Edges

The message-passing schema is inherently designed to aggregate into the ego
node all messages coming from its neighborhood. Nevertheless, the binary nature
of the user-item feedback (i.e., 0/1) would suggest that not all recorded user-item
interactions necessarily hide the same importance to the nodes they involve.

In general, let a
(l)
y−→x be the importance of the neighbor node y on its ego node

x after l explored hops. We re-write the formulation of the message-passing after
l explored hops (presented in Eq. (1)) as:

e(l)u = ω
({

a
(l)
i′−→ue

(l−1)
i′ ,∀i′ ∈ N (u)

})
. (6)

The Baseline: Graph Attention Network (GAT). Attention mechanisms
have reached considerable success in the GCN-related literature to weight the
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contribution of neighbor messages before aggregation. The original study [39]
proposes the following message-passing formulation:

e(l)u =
∑

i′∈N (u)

(
a
(l)
i′−→uW

(l)
neighe

(l−1)
i′ + b(l)

)

=
∑

i′∈N (u)

(
α

(
e(l−1)

i′ , e(l−1)
u

)
W(l)

neighe
(l−1)
i′ + b(l)

)
,

(7)

where α(·) is the importance function depending on the lastly-calculated embed-
dings of the neighbor and the ego nodes, e.g., a

(l)
i′−→u = α

(
e(l−1)

i′ , e(l−1)
u

)
.

GAT for Collaborative Filtering. The authors from Wang et al. [44] design
a message-passing schema that calculates the importance of neighborhood nodes
for ego nodes by disentangling the intents underlying each user-item interaction.
Similarly to He et al. [14] and Chen et al. [8], they therefore propose the following
embedding update formulation:

e(l)u =
∑

i′∈N (u)

a
(l)
i′−→ue

(l−1)
i′

=
∑

i′∈N (u)

α
(
e(l−1)

i′ , e(l−1)
u ,K, T

)
e(l−1)

i′ ,
(8)

where α (·,K, T ) is the importance function of the lastly-calculated embeddings
from the neighbor and the ego nodes, e.g., a

(l)
i′−→u = α

(
e(l−1)

i′ , e(l−1)
u ,K, T

)
, K

is the total number of intents, and T is the total number of routing iterations to
repeat the disentangling procedure.

2.4 Going Beyond Message-Passing

The recent graph learning literature [7,53] has outlined the phenomenon of over-
smoothing, that leads node representations to become more similar as more hops
are explored. The issue is generally tackled by limiting the neighborhood explo-
ration to (maximum) three hops, and to two hops when attention mechanisms are
introduced. However, the idea of improving accuracy by restricting the number
of explored neighborhoods is counter-intuitive and “conflicts” with the rationale
behind collaborative filtering [4]. This awareness led works such as Mao et al. [21]
and Shen et al. [33] to surpass and simplify the traditional concept of message-
passing. UltraGCN [21] adopts negative sampling to contrast over-smoothing
and additional objective terms to (i) approximate the infinite neighborhood
exploration and (ii) mine relevant “unexpected” node-node interactions such
as the item-item ones. Conversely, GFCF [33] translates the graph-based recom-
mendation task into the graph signal processing domain to obtain a closed-form
formulation for approximating the infinite neighborhood exploration. Given that
such recent strategies do not explicitly perform the message-passing schema as
presented above, in the remaining sections of this paper, we will adopt the terms
explicit and implicit message-passing as shorthands to denote the two model
families, respectively.
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2.5 A Taxonomy of Graph CF Approaches

We propose (see Table 1) a taxonomy to classify the state-of-the-art graph mod-
els. The taxonomy considers the recurrent strategy patterns as emerged by
conducting an in-depth review and analyzing the different graph CF approaches.

• Node representation indicates the representation strategy to model users’
and items’ nodes. It involves the dimensionality of node embeddings, and the
possibility of weighting the neighbor node contributions.

• Neighborhood exploration refers to the procedure for exploring the multi-
hop neighborhoods of each node to update the node latent representation.
It involves the type of node-node connections which are explored, and the
message-passing schema (i.e., explicit or implicit as previously defined).

In the next two sections, we will assess the performance of the graph CF models
from the taxonomy in Table 1. Thus, we consider GCN-CF [15], GAT-CF [39],
NGCF [43], LightGCN [14], DGCF [44], LR-GCCF [8], UltraGCN [21], and
GFCF [33] for a total of eight graph CF solutions.

3 Taxonomy-aware Evaluation

This section aims to answer RQ1 (“Can we explain the variations observed when
testing several graph models on overall accuracy, item exposure, and user fairness
separately?”) by showing how the proposed taxonomy of graph strategies can
explain the recommendation evaluation on CP-Fairness and overall accuracy.
We experiment with 48 hyper-parameter configurations to investigate various
combinations of graph CF techniques for message-passing, explored nodes, edge
weighting, and latent representations. Results refer to the Amazon Men dataset
and top-20 lists (Table 2). Please note that we report the best metric result for
each <dimension, value> pair (the corresponding best graph recommendation
model is displayed below each metric result) to ease the interpretation of results
and provide meaningful insights.

• Message-passing. We investigate the two widely-recognized message-passing
strategies: implicit and explicit. The most obvious pattern indicates that both
sets have almost the same number of top-performing models in each of the eval-
uation criteria. Explicit graph approaches perform better on item exposure,
where they outperform implicit techniques (i.e., on Gini and APLT ) two out
of three times by a significant margin. On the one hand, this tendency may be
due to the absence of a directmessage (information) propagating along the user-
item graph in implicit techniques, which prevents the user node from exploring
vast item segments. On the other hand, it appears that models from both fami-
lies perform similarly on accuracy and user fairness, indicating that there is no
obvious reason to favor implicit over explicit or vice versa.

• Explored nodes. Here, we examine four methods to explore nodes (adopting
the message-passing re-formulation from Eq. (2)): same and different, with 1
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Table 2. Best metric results (and corresponding graph CF model) for each <dimension,
value> pair, on the Amazon Men dataset for top-20 lists. Bold is used to indicate the
best result in the pairs having a two-valued dimension, while † is used only for the
“explored nodes” dimension to indicate also the best results on same and different.
The symbols

	⏐ and
⏐� indicate whether better stands for high or low values. We use

“rank” and “rat” as the UMADrank@k and UMADrat@k.

Dimensions Values Overall accuracy Item exposure User fairness

Recall
	⏐ nDCG

	⏐ EFD
	⏐ Gini

	⏐ APLT
	⏐ rank

⏐� rat
⏐�

Message
passing

implicit 0.1222
(GFCF)

0.0911
(GFCF)

0.2615
(GFCF)

0.2871
(UltraGCN)

0.1808
(UltraGCN)

0.0123
(UltraGCN)

0.0022
(UltraGCN)

explicit 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0169
(LightGCN)

Explored nodes same-1 0.1221†

(LR-GCCF)
0.0884 †

(LR-GCCF)
0.2500†

(LR-GCCF)
0.4377
(LR-GCCF)

0.3433
(GAT-CF)

0.0002†

(DGCF)
0.0022†

(UltraGCN)

same-2 0.1184
(LightGCN)

0.0841
(LightGCN)

0.2380
(LightGCN)

0.5090†

(LR-GCCF)
0.3823†

(GAT-CF)
0.0002†

(DGCF)
0.0209
(NGCF)

different-1 0.1222†

(GFCF)
0.0911†

(GFCF)
0.2615†

(GFCF)
0.4093
(NGCF)

0.3424
(GAT-CF)

0.0002†

(DGCF)
0.0022†

(UltraGCN)

different-2 0.1210
(DGCF)

0.0850
(DGCF)

0.2407
(LightGCN)

0.4934†

(LR-GCCF)
0.3438†

(LR-GCCF)
0.0002†

(DGCF)
0.0388
(LightGCN)

Weighting weighted 0.1210
(DGCF)

0.0857
(DGCF)

0.2428
(DGCF)

0.3240
(DGCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0301
(DGCF)

unweighted 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3438
(LR-GCCF)

0.0101
(GCN-CF)

0.0169
(LightGCN)

Latent
representations

emb-64 0.1193
(LR-GCCF)

0.0871
(LR-GCCF)

0.2479
(LR-GCCF)

0.5090
(LR-GCCF)

0.3627
(GAT-CF)

0.0002
(DGCF)

0.0054
(UltraGCN)

emb-128 0.1221
(LR-GCCF)

0.0883
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3644
(GAT-CF)

0.0002
(DGCF)

0.0111
(UltraGCN)

emb-256 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2532
(LR-GCCF)

0.5038
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0022
(UltraGCN)

and 2 hops. Similarly to the trend found for the message-passing dimension,
the results demonstrate that the two primary categories (same and differ-
ent) are nearly equally performing across all measurements, with same-2 and
different-1 being the prominent ones. In detail, the different-1 exploration
outperforms the same-2 on the overall accuracy level (GFCF is the leading
model here). Conversely, same-2 is the best strategy for item exposure (with
LR-GCCF and GAT-CF leading). As observed for the message-passing, user
fairness does not give a reason to choose between same and different. The
exploration of 1 hop in same and different settings is the preferable tech-
nique, even if 2 hops connections lead to a better item exposure.

• Weighted. This study examines weighted and unweighted graph CF tech-
niques. Differently from above, we observe that unweighted solutions pro-
vide the best performance on almost all CP-fairness metrics, with LR-GCCF
steadily being the superior approach. The only trend deviation refers to GAT-
CF (i.e., a weighted method) surpassing unweighted solutions on the APLT
level, that is, recommending items from the long-tail. The behavior is likely
attributable to the design of weighted techniques, which can investigate far-
ther neighbors of the ego node (observe the performance of GAT-CF on the
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same-2 dimension), leading user profiles to match distant (and possibly niche)
products in the catalog. On the contrary, it is interesting to notice how the
other two metrics accounting for item exposure (i.e., EFD as item novelty
measure and Gini as item diversity measure) seem to privilege unweighted
graph techniques (i.e., LR-GCCF). The observed behaviors differ as the three
metrics provide completely different perspectives of the item exposure, and
thus they are uncorrelated.

• Latent representations. We compare the performance of graph CF tech-
niques adopting latent representations with 64, 128, and 256 features, respec-
tively. It is worth noticing that higher latent representations (i.e., 128 and
256 ) result in better performance on all measurements. Specifically, it appears
that the 128 dimension is the turning point after which the trend becomes
stable (i.e., the metric values for 128 and 256 are frequently comparable).
This may be an important insight since the majority of research works in
recent literature tend to employ 64 -embedded representations of nodes with-
out exploring further dimensionalities (see Table 1 as a reference).

4 Trade-off Analysis

This section analyses how the graph CF baselines balance the trade-off among
accuracy, item exposure, and user fairness, and aims to answer RQ2 (“How and
why nodes representation and neighborhood exploration algorithms can strike a
trade-off between overall accuracy, item exposure, and user fairness?”). Due to
space constraints, we report the results only for the Amazon Men dataset. The
negative Pearson correlation values for accuracy/item exposure (nDCG/APLT )
and accuracy/user fairness (nDCG/UMADrank) suggest that a trade-off may
be necessary, and desirable. In addition, the same correlation metric indicates
the necessity of a trade-off for item exposure/user fairness (APLT/UMADrank).
Among the strategy patterns identified in the proposed taxonomy (see Table 1),
we select the most important architectural dimensions, message-passing and
weighting of graph edges, to conduct this study. In detail, the analysis studies
three combined categories: (1) models with implicit message-passing (denoted as
implicit); (2) models with explicit message-passing and neighborhood weighting
(denoted as explicit/weighted); (3) models with explicit message-passing with-
out neighborhood weighting (denoted as explicit/unweighted). For each analyzed
trade-off, we select the Pareto optimal solutions2 of the baselines laying on the
model-specific Pareto frontier [24]. Figure 2 plots graph models Pareto frontiers
in the common objective function spaces related to the considered trade-offs.
The careful reader may notice the different axis’ scales across the graphics due
to the metric values. The colors of Pareto optimal solutions are model-specific,
while the line style is used to distinguish the categories: dotted lines for implicit,
dash-dot lines for explicit/weighted, and dashed lines for explicit/unweighted.

2 A solution is Pareto optimal if no other solution can improve an objective without
hurting the other one.
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Fig. 2. Overall Accuracy/Item Exposure, Overall Accuracy/User Fairness, and Item
Exposure/User Fairness trade-offs on Amazon Men, assessed through nDCG/APLT,
nDCG/UMADrank, and APLT/UMADrank, respectively. Each point depicts a model
hyper-parameter configuration set belonging to the corresponding Pareto frontier. Col-
ors refer to a particular baseline, while lines styles discern their technical strategies
based on the proposed taxonomy. Arrows indicates the optimization direction for each
metric on x and y axes.
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• Accuracy/Item Exposure. Figure 2a shows that the explicit/weighted
models exhibit a trade-off, as they maximize either nDCG (i.e., DGCF) or
APLT (i.e., GAT-CF), but not both. This is expected since DGCF is designed
as a version of GAT-CF with improved accuracy. It is worth mentioning that
DGCF’s trade-off is reached at the expense of item exposure. In contrast to
these models, explicit/unweighted baselines show a balanced trade-off because
they do not prioritize accuracy or item exposure exclusively. In detail, LR-
GCCF provides the best performance in terms of nDCG and APLT simul-
taneously. From a visual inspection, LR-GCCF’s Pareto frontier dominates
those of the other explicit/unweighted models. Conversely, GCN-CF exhibits
the worst trade-off because it is neither ideal for nDCG nor APLT. As for
the implicit models, they appear to prioritize precision over the provision of
long-tail items. Under this lens, the latest (i.e., implicit) approaches seem to
increase accuracy, even if this is to the detriment of the niche items exposure.

• Accuracy/User Fairness. To ease the interpretation of Fig. 2b, we recall
that UMADrank (used to measure User Fairness) measures to what extent
the model ranking performance differs among the user groups (partitioned
based on their activity on the platform). Figure 2b shows that, for GAT-
CF and GCN-CF, the poor performance in terms of nDCG is associated
with high variability in terms of user fairness. In fact, for these two models,
the UMADrank value indicates high variability across user groups. Some-
thing different emerges for models such as NGCF, LightGCN, LR-GCF, and
GFCF. These models, GFCF in particular, exhibit valuable recommendation
accuracy with better stability in terms of ranking performance across the
different user groups. As a consequence, the Pareto frontiers associated with
these models dominate the others. In detail, GFCF is the best-performing
one regarding this trade-off. Conversely, UltraGCN and DCGF do not show
consistent behavior demonstrating a strong sensitivity to the chosen hyper-
parameters set. In this setting, no graph CF strategy emerges as the abso-
lute winner. Specifically, every graph CF strategy is not enough to guarantee
adequate fairness among different user groups. Then, the positive results are
associated with particular configurations of some models and are lost when
the hyper-parameter set changes.

• Item Exposure/User Fairness. The trade-off indicates to what extent
graph CF models can treat final users fairly and recommend items from the
long tail. In Fig. 2c, it is possible to identify two groups of baselines: the mod-
els that show poor performance in terms of item exposure (UltraGCN, DGCF,
GCN-CF, and GFCF) and the models that exhibit an acceptable exposure
for long-tail items (LightGCN, NGCF, LR-GCCF, and GAT-CF). In detail,
a cluster of models that belong to the explicit/unweighted category stands
out in this second group. Not only are these models able to recommend niche
items, but also they are stable (among the user groups) in terms of accuracy.
On the contrary, although GAT-CF lies close to the utopia point3, it exhibits
greater variability regarding the accuracy metric. Indeed, comparing Fig. 2c

3 The point that simultaneously minimizes (maximizes) all the metrics.



Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering 45

with Fig. 2a, GAT-CF demonstrates to achieve adequate user fairness, but its
performance is still very poor in terms of accuracy. To summarize, even if a
system designer could be more interested in promoting models solely guaran-
teeing the best value for APLT (Producer Fairness), the explicit/unweighted
strategies can generally ensure a satisfactory (for Consumers and Producers)
trade-off between user fairness and item exposure.

5 Conclusion and Future Work

We assess the performance of graph CF models on Consumer and Producer
(CP)-fairness metrics showing that their superior accuracy capabilities is reached
at the expense of user fairness, item exposure, and their combination. By rec-
ognizing nodes representation and neighborhood exploration as the two main
dimensions of a novel graph CF taxonomy, we study their influence on CP-
fairness and overall accuracy separately and simultaneously. The outcomes raise
concerns about the effective application of recent approaches in graph CF (e.g.,
implicit message-passing techniques). On such basis, we are performing further
investigations on other datasets and algorithms, and we are working on new
graph models balancing accuracy and CP-Fairness.

Acknowledgment. This work was partially supported by the following projects:
IPZS-PRJ4 IA NORMATIVO, Codice Pratica VHRWPD7 - CUP B97I19000980007
- COR 1462424 ERP 4.0, Grant Agreement Number 101016956 H2020 PASSEPA-
RTOUT, Secure Safe Apulia, Codice Pratica 3PDW2R7 SERVIZI LOCALI 2.0, MISE
CUP: I14E20000020001 CTEMT - Casa delle Tecnologie Emergenti Comune di Matera,
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A Experimental Settings and Protocols

Datasets. As a pre-processing stage, for each dataset, we randomly sample 60k
interactions and drop users and items with less than five interactions to avoid the
cold-start effect [12,13]. The final dataset statistics are: (1) Baby has 5,842 users,
7,925 items, 35,475 interactions; (2) Boys & Girls has 3,042 users, 12,912 items,
35,762 interactions; (3) Men has 3,909 users, 27,656 items, 51,519 interactions.

Reproducibility. Datasets are split using the 70/10/20 train/validation/test
hold-out strategy. Baselines are trained through grid search (48 explored config-
urations), with a batch size of 256 and 400 epochs. Datasets and codes (imple-
mented with Elliot [2]) are available at this link.

Evaluation. As for the overall accuracy, we use the recall (Recall@k) and the
normalized discounted cumulative gain (nDCG@k). Concerning the item expo-
sure, we focus on: (1) item novelty [37,38] through the expected free discovery
(EFD@k) measuring the expected portion of relevantly-recommended items that

https://github.com/sisinflab/ECIR2023-Graph-CF
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have already been seen by the users; (2) item diversity [32] with the 1’s complement
of the Gini index (Gini@k), a statistical dispersion measure which estimates how
a model suggests heterogeneous items to users; (3) the average percentage of items
from the long-tail (APLT@k) which are recommended in users’ lists [1] to calculate
recommendation’s bias towards popular items.User fairness indicates how equally
each user group receives accurate recommendations. Users are split into quartiles
based on the number of items they interacted with. We then measure UMADrat@k
and the UMADrank@k [9], where the former stands for the average deviation in the
predicted ratings among users groups, while the latter represents the average devi-
ation in the recommendation accuracy (calculated in terms of nDCG@k) among
users groups. The best hyper-parameter configurations are found by considering
Recall@20 on the validation.
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Abstract. Multi-domain recommender systems benefit from cross-
domain representation learning and positive knowledge transfer. Both
can be achieved by introducing a specific modeling of input data (i.e.
disjoint history) or trying dedicated training regimes. At the same time,
treating domains as separate input sources becomes a limitation as it
does not capture the interplay that naturally exists between domains. In
this work, we efficiently learn multi-domain representation of sequential
users’ interactions using graph neural networks. We use temporal intra-
and inter-domain interactions as contextual information for our method
called MAGRec (short for M ulti-domAin Graph-based Recommender).
To better capture all relations in a multi-domain setting, we learn two
graph-based sequential representations simultaneously: domain-guided
for recent user interest, and general for long-term interest. This approach
helps to mitigate the negative knowledge transfer problem from multiple
domains and improve overall representation. We perform experiments on
publicly available datasets in different scenarios where MAGRec consis-
tently outperforms state-of-the-art methods. Furthermore, we provide an
ablation study and discuss further extensions of our method.

Keywords: Multi-domain recommendation · Graph neural networks ·
Sequence-aware recommender system

1 Introduction

Recommender systems are introduced to solve the task of quickly retrieving the
most suitable items from large catalogs to the corresponding users. The complex-
ity of the task comes not only from the huge amount of information that already
subdivides the recommendation problem into three stages (matching, ranking
and re-ranking) [8], but also from the multi-objective minimization interest in
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multi-stakeholder platforms (accuracy, novelty, fairness, explainability, business
income, etc.) [1] and the different types of recommendation scenarios (sequential,
session-based, social, cross-domain, multi-domain, etc.).

Whilst most recommender systems focus on a single domain recommenda-
tion (SDR) problem, it is increasingly common to find large-scale commercial
platforms containing products from multiple domains in which the user/item
set reaches a certain overlapping degree. These multiple domains may corre-
spond to different advertisement types or product categories that present cer-
tain domain commonalities but still require specialized promotion strategies or
models for effective profitability. Unfortunately, having a single “naive” model to
serve all domains may achieve subpar results. As a consequence, several models
were proposed to tackle cross-domain recommendation (CDR) with the aim of
transferring knowledge from a source domain to one or multiple target domains
[11,19,22].

The main problem that appears with CDR is the fact that each domain
requires separate training or fine-tuning of a different model per each set of
source-target domains, but large-scale commercial platforms may consider a sin-
gle model to improve performance for all domains simultaneously. This challenge
has been recently introduced as Multi-Domain Recommendation (MDR) [27] in
which the distinct domain data distributions caused by different user behavioral
patterns are modelled altogether. An advantage of MDR systems is that they
make use of all available data for training unlike previous alternatives, resulting
in positive outcomes for low-resource domains and optimal performance if shared
information among domains is properly exploited.

As previously explored, one approach to improve learning on multiple
domains is to use multi-task learning (MTL) models by considering each domain
as a different task [4,18,25] . However, MTL models are built to model different
label spaces rather than partially distinct input data distributions that char-
acterize the MDR problem. That is the reason why these models incorporate
separate task-specific output layers and share the bottom input representational
layers, leading to a poor ability to represent domain commonalities in the label
space. To overcome MTL limitations, existing studies [16,27] have focused on
adding domain-shared knowledge to the classification block of the recommender
system, and defining new training strategies to avoid the domain conflict and
domain overfitting problems. However, little to no effort has been made on prop-
erly modeling the available multi-domain structural information from the past
user behavior history. Existing approaches ignore this information and rely on
a simple domain indicator. Therefore, the input modeling capabilities are lim-
ited and excessive time-consuming training strategies are necessary to achieve a
successful convergence.

In order to fully exploit domain interest fluctuations and specific data distri-
butions, we combine the power of Sequence-Aware Recommender Systems and
Graph Neural Networks (GNN) into a new model named MAGRec for MDR.
MAGRec receives multi-domain graph representations of historical user inter-
actions performed in multiple domains, and processes them using a two-branch
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network architecture. On the one hand, one branch focuses on the user’s most
recent interest via domain-aware message passing through the sequential graph.
On the other hand, the second branch tries to create a contextualized global
user representation via graph structure learning and local pooling operations.
Finally, this rich representation of the input is combined and fed to the classifi-
cation network that models the MDR task. Given that our focus lies on the input
representation modeling and its ignored presence in the MDR literature, unlike
previous works that adapt the classification network and training strategies, our
model only uses a single fully connected network (FCN) as the classification
block. This approach also benefits those cases where the number of domains is
very large and both training times and model parameters reach unacceptable
limits. Nonetheless, it is important to note that our domain-aware graph model-
ing network could be combined with previous state-of-the-art adopted strategies,
which is left for future work.

The main contributions of this work can be summarized as follows:

– We propose a new MDR model: MAGRec. The use of graph neural net-
works to capture domain relationships from past user interactions in multiple
domains, together with the integration of global and recent user interest with
domain-shared Graph Structure Learning, provides a faster alternative to
MDR that puts the focus on the input modeling stage of the model.

– We explore different input representations from a “naive” to a more complex
multi-domain sequential representation and test them on multiple sequential
and graph-based recommender systems.

– Extensive experiments on different MDR scenarios and models, including:
single-domain sequential CTR prediction models, MTL recommendation
models, and MDR strategies show the consistent viability of our model, and
it clearly opens new directions in MDR research such as the combination of
input representation capabilities with task modeling strategies.

2 Related Work

Sequence-aware and graph recommender systems are commonly applied for the
SDR problem. In our work, we propose an approach based on recent advancement
from latest research in those fields to tackle the MDR problem, which we describe
below.

Sequence-Aware CTR Prediction. The path that single-domain CTR pre-
diction models have followed over the past few years go from shallow models
[20] to complex deep learning architectures. The later are trying to extract more
complex patterns from users’ behavior by adding feature interaction modeling
strategies such as cross-connections [30], improving numerical features represen-
tation [9] or exploiting sequential patterns in the past user’s behavior [34,35],
just to name a few. However, it was a sequential modeling that improved recom-
mender systems in many domains with the introduction of recurrent architec-
tures [10], convolutional networks [29] and attention modules [12,13]. Therefore,
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they have been adopted for CTR prediction task as well. However, these tech-
niques remain unexplored in MDR where domain sequential interest fluctuations
must be correctly accounted for.

An important remark from recent sequence-aware models is the necessity
to properly integrate the long- and short-term user interest representations [5,
17,23]. In this work, we integrate domain contextualization for both short- and
long-term user modeling. The former is achieved via a weighted edge message
passing mechanism, and the latter via domain-aware graph structure learning
and local pooling strategies.

Graph Neural Networks for Recommendation. The use of GNNs has
notably improved sequential recommendation [5,24,31]. The importance of
structure modeling has even been addressed with hypergraph representations to
account for higher-order node relations. [32] proved the beneficial effects of com-
bining different input graph representations such as hypergraphs and reduced
line graphs for session-based user representation. Furthermore, [5] support previ-
ous findings regarding the necessity of extracting global user interest with graph
clustering (for noise removal) and properly fuse it with the most recent user
interests for more accurate recommendations.

In our work, we use GNNs to model intra- and inter-domain connectivity pat-
terns from a graph-based multi-domain user history representation by exploiting
item node features and domain-related edge features.

Multi-Domain Recommendation. Unlike CDR, where source and target
domains are clearly defined and most benchmarks assess a knowledge transfer
between domains, MDR aims at improving performance on all domains simul-
taneously with, preferably, a single model to reduce computational complexity.

On the one hand, having a single traditional model without domain knowl-
edge and sharing all parameters to serve all domains may put a huge burden
on the generalizability-specialty trade-off of the downstream task. On the other
hand, having a separate model per domain is unacceptable in platforms with
many domains, due to the number of trainable parameters and lack of training
data for certain domains. A middle ground for CDR and MDR can be found in
[7,14,33]. [14] proposed a sequential modeling of the input with dual embedding
and dual attention mechanisms. However, generalizing this work for more than
two domains is not trivial. [7,33] created a cross-domain graph representation
but ignored the sequential connections that are important for inter-domain inter-
est flow. Moreover, generalization to an arbitrary number of domains is barely
explored.

Alternatively, other approaches to MDR included several MTL architectures
in order to model each domain as a separate task [3,4,18,28]. All of them have
task-shared input representation network i.e., expert networks, and multiple
task-specific networks for a final prediction denoted as tower networks by MMoE.
Nonetheless, as previously mentioned, the MDR problem differs from MTL in the
fact that the task/label space is the same and face different input distributions
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from multiple domains. Consequently, [27] focused their efforts on building a
task-modeling network with star topology that could model all domains as a
shared task called STAR. It proved the importance of domain contextualization
with the use of a partitioned normalization per domain and an auxiliary net-
work. Despite improving MDR performance, STAR still suffers from the domain
conflict problem and it is prone to overfit on sparse domains as stated in [16].
To overcome those limitations, [16] introduced MAMDR as an attempt to adapt
the MDR training strategy to include a domain negotiation and a domain regu-
larization approach. Nevertheless, as these MDR approaches were built on top of
MTL strategies and despite STAR supporting the evidence that a simple domain
indicator is important contextual information in these scenarios, they pay little
attention on how to model domain interconnections and structural information
from the input.

In this work, we aim to prove the relevance of structured multi-domain rep-
resentation in MDR problems. Note that [16,27] are complementary to this
work and could potentially be used in combination with our model to over-
come task modelling limitations on many-domain scenarios, thus, boosting the
performance.

3 Methodology

In this section, we provide a brief introduction to the MDR problem and our
proposed two-branch architecture. Furthermore, we detail how domain infor-
mation is exploited by each branch to leverage recent and global user interest
representations.

Problem Formulation. In traditional recommendation scenarios, it is common
to have a set of users and a set of items, denoted by U and I respectively. In
addition, we have a set of user interactions denoted by B. In the single domain
setting, each interaction b ∈ B is a tuple (u, i, t, y), where u ∈ U , i ∈ I, t is the
timestamp of the interaction and y is the user action (e.g. was there a click or
not in CTR prediction). In the MDR setting, each tuple must further contain
the domain d ∈ D in which that interaction took place, i.e. b = (d, u, i, t, y).

The goal in a conventional single-domain setting is to predict the action y a
user u will take for a candidate next item ik in a domain d, given their previous
behaviors as a sequence in that particular domain Bd

u = [bdu,1, b
d
u,2, ..., b

d
u,N ]. How-

ever, when there are |D| different domains that need to be taken into account,
some domains may encounter partial or total overlap in their user and/or item
sets. Consequently, user history Bu can be interpreted in multiple ways depend-
ing on how domain data is aggregated and which interactions are considered.
In order to account for more complex representations to be fed into the model,
Bu is transformed into the corresponding graph representation Gu = {Vu, Eu},
where Vu is the set of vertices/items, and Eu is the set of edges containing
intra- and, potentially, inter-domain sequential connections. This transforma-
tion is data dependent, see Experiments section.
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Fig. 1. Illustration of MAGRec. MAGRec extracts both recent and global user inter-
ests from a contextualized multi-domain user history graph representation. The recent
interest extractor learns cross-domain sequential patterns from intra- and inter-domain
interactions focused on the last user-item interaction. The global interest extractor
learns item correlations and their affinity to long-term user core preferences via graph
structure learning and local graph pooling techniques.

Proposed Architecture. Our proposed MAGRec model is primarily built to
maximize input representation capabilities for the multi-domain recommenda-
tion problem. Its architecture is illustrated in Fig. 1. As previously mentioned,
the input includes the user u, the selected user history representation Gu, the
candidate item ik and the domain to which the candidate item belongs dk. Note
that the graph contains both node and edge features. Specifically, node fea-
tures are represented by item embeddings and edge attributes correspond to the
source and target domains in the sense of a directional connection. Next, a brief
explanation of each block of our architecture is presented:

Embedding. An initial embedding layer is applied to the items, users and
domains in order to obtain their latent representations, i.e. �ij ∈ R

mi , �uj ∈ R
mu

and �dj ∈ R
md respectively.

Domain Contextualization. In order to transform item embeddings from
multiple domains to a shared latent space, we apply a dense transformation
layer to the concatenation of the item embedding and its associated domain
embedding as follows:

�ij
′
= Wd · (�ij ‖ �dj) (1)

where ‖ is the concatenation operator and Wd is a matrix of learnable parame-
ters. Note that other aggregation operators could also be used, such as element-
wise summation or Hadamard product.
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Recent Interest Extractor. This block receives the selected graph represen-
tation of the user behavior history Gu, already contextualized by the previous
module, and it is responsible for temporally aggregating implicit signals into a
strong recent user interest representation. This process is performed in two steps:

Domain-Aware Gated Graph Convolution. To learn inter-domain sequential pat-
terns and intra-domain structural constraints, it is important to model domain
commonalities by considering how much information a domain is able to pass
onto another domain. Therefore, an edge weight is computed using the source
and target domains as edge attributes:

ez,j = 〈Wsrc · �dz,Wtrg · �dj〉 (2)

where Wsrc and Wtrg are learnable parameters and 〈�x, �y〉 is the dot product
operator. The next step is to learn smooth node representations with a proper
sequence modeling technique applied to graphs. We opted for stacking L Gated
Graph Convolutional (GGCN) layers [15] with the previously computed cross-
domain edge weights:

�h
(l+1)
j = GGCN(ez,j ,�h(l)

z ) (3)

where �h
(0)
z = �ij

′
.

Attention Graph Readout. A graph level embedding of the short-term user inter-
ests is obtained by a weighted aggregation of the node embeddings. To compute
those weights, a local attention mechanism is applied to each node j and the
node corresponding to the last interaction of Bu:

αj = softmaxj

(
Wl2 · σ(Wl1 · (�h(L)

j ‖ �h
(L)
N ))T

)

where Wl1 and Wl2 are learnable parameters and σ is a non-linear activation
function. Finally, a weighted aggregation with the computed coefficients gener-
ates the graph embedding:

�ru =
∑
j∈Vu

αj · �h(l+1)
j (4)

Global Interest Extractor. A graph built from user history is useful for
extracting strong recent interests but the history may also contain noisy interac-
tions that confound long-term core user preferences. The global interest extractor
branch is tasked with obtaining a global time independent user interest repre-
sentation. It consists of the following modules:

Graph Structure Learning. A new graph representation G′
u = {Vu, E ′

u} whose
adjacency matrix A′ is created based on a relative ranking of multi-head kernel
similarity scores between any two vertices in Vu:

Ah
j,z = Kernel(Wh

gsl · �ij
′
,Wh

gsl · �iz
′
) (5)
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Aj,z =
1
H

H∑
h=1

Ah
j,z (6)

where H denotes the number of kernel heads to extract specific node similarities
and Wh

gsl are learnable parameters. We select the cosine similarity as the kernel
function. Following [5], a relative ranking with a threshold γ equal to 0.5 is
applied for graph sparsification:

A′
j,z =

{
1, if Aj,z ≥ γ;
0, otherwise;

(7)

Local Graph Pooling. MemPooling [2], a hierarchical graph representation learn-
ing technique based on multiple memory layers for local clustering, is applied on
top of a Graph Attention (GAT) query network to obtain a global user interest
embedding of the last N interactions:

�gu = MemPool
(
GAT (�ij

′|j ∈ G′
u)

)
(8)

User Contextualization. Given that a user can have more than N past inter-
actions, a “residual” user contextualization is aimed at a more global interest
representation:

�gu
′ = Wu · (�gu ‖ �u) (9)

where Wu are learnable parameters.
Note that learning a new graph structure based on item similarities increases

the model cross-domain representation capabilities as it helps to pull similar
items from different domains together in the shared space.

Classification Network. Previous MDR work has focused their efforts on
this block by extracting ideas from MTL strategies combining domain-shared
and domain-specific parameters. However, given the aim of this paper on multi-
domain data modeling, we decided to implement a single tower network with
global batch normalization and FCN. This tower network receives the concate-
nation of the contextualized candidate item embedding and both, recent and
global user interest representations (�ik, �gu

′, �ru), and it outputs the probability of
the candidate item being clicked next by the current user (ŷk). It is important
to note that we leave the combination of MDR-MTL strategies and our MDR
graph-based representational model for future work.

4 Experiments

Dataset1. Following previous work [11,14,16], we use the Amazon 5-core review
dataset [21] by combining data corresponding to different domains (product cat-
egories) with varying degrees of users overlap, dataset size and click-trough-rates
(CTR). In order to bridge CDR and MDR evaluation scenarios, we form eight
1 Code and dataset partitions are available at https://github.com/alarca94/magrec.

https://github.com/alarca94/magrec
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sub-datasets: four 2-domain, one 3-domain, one 6-domain and one 13-domain
partition. Similar to previous studies [16], for each partition, we keep the exist-
ing user-item reviews as positive samples and perform negative sampling on the
set of items that the user has not interacted with, using a randomly generated
CTR per domain to simulate domain distinction. For sequential recommenda-
tion, we perform a sliding window approach on the user histories and set the
minimum and maximum window lengths to 5 and 80 respectively. Finally, for
each user, a temporal split of ratio 6:2:2 is used to create the train, validation
and test sets. Table 1 summarizes the basic statistics for all datasets.

Table 1. Dataset statistics.

Dataset # User # Item # Train # Val # Test

Amazon-2a 153,658 55,089 1,766,478 267,805 267,884

Amazon-2b 290,631 105,609 3,593,621 610,585 610,537

Amazon-2c 188,539 59,978 2,245,655 348,101 347,917

Amazon-2d 254,736 95,394 3,009,960 555,399 555,701

Amazon-3 113,144 33,193 1,443,804 220,155 220,109

Amazon-6 444,737 170,815 7,580,825 1,397,290 1,395,688

Amazon-13 500,569 212,241 7,105,872 1,380,084 1,379,630

Baselines. To demonstrate the sequential modeling effectiveness of MAGRec,
we compare it against competitive single-domain recommenders, including non-
sequential, sequential and graph-based alternatives. Furthermore, we consider
several MTL and MDR strong baselines to determine how well our model per-
forms in multi-domain settings:

– WDL [6]: non-sequential model based on the combination of wide linear and
deep neural models with cross-product feature transformations.

– DIN [35]: non-sequential model that aggregates the user behavior history
using a softmax attention pooling based on the candidate item.

– DIEN [34]: sequential model with a two-layer GRU that implements an atten-
tional update gate for a proper interest evolution modeling.

– FGNN [24]: competitive session-based recommender model adapted to predict
CTR. It uses several weighted attention graph layers followed by a GRU set-
to-set readout function.

– Shared-Bottom (SB) [4]: MTL model with shared parameters in the bottom
layers and |D| domain-specific tower networks.

– MMoE [18]: MTL model that adopts a Mixture of Experts layout with |D|
experts and a gating mechanism per domain connecting experts to the respec-
tive tower networks.

– STAR [27]: MDR model with partitioned normalization and star topology
network to leverage shared and specific domain knowledge. They also use an
auxiliary domain-aware network.
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– MAMDR [16]: MDR learning method that uses domain regularization and
domain negotiation on top of a star topology network.

To give a fair comparison, all non-sequential models are fed with a mean
pooled representation of the user behavior sequence. Some of the methods can
be used as a complementary to ours.

Evaluation Metrics. We use logloss and area under the ROC curve (AUC)
as it is the most common metrics used to evaluate the performance of CTR
prediction. We report overall metrics for all domains and, wherever possible,
domain-specific results.

Implementation Details. Both graph-based models (FGNN2 and MAGRec)
are implemented using Pytorch Geometric. MAMDR and STAR implementa-
tions correspond to the ones provided by MAMDR authors3. For the other meth-
ods, they have been implemented by DeepCTR [26]. To make a fair comparison,
all FCNs are set to [128, 64] parameters; the user and item embedding sizes are
64; the domain embedding size is 128; the initial learning rate is set to 1e−3 and
the batch size is 512; the selected optimizer is Adam and Binary Cross Entropy
is the loss function. For the model specific parameters, in the case of DeepCTR
and graph-based models, a TPE hyperparameter search is performed on the
Amazon 2d dataset and the best hyperparameters are used for the rest of the
datasets. MAGRec best hyperparameters are 2 GGCN layers, 1 GAT layer with
2 attention heads and 3 MemPooling layers with [32, 10, 1] centroids respec-
tively. Regarding MTL and MDR model specific parameters, we keep the ones
selected in [16]. Experiments were conducted on a Tesla P100-PCIE-16GB GPU
and 500GB RAM.

Two Domains Results. The results for two domain datasets are presented in
Table 2. Overall and per-domain AUC and logloss values are presented. MAGRec
outperforms all other methods in a meaning of single and combined domain
performance for all scenarios. Amazon-2c is the scenario with the biggest logloss
difference between two domains. The second-best method in this setting is an
MTL approach. MMoE is consistently better than others (on the second place
after MAGRec). Single-domain recommenders in this scenario can still be strong
baselines, i.e. DIN and DIEN outperform STAR in all datasets and MAMDR for
Amazon-2b,d. Lastly, session-based FGNN performs the worst on all partitions.

Input Representation Analysis. As described in the Methodology section, an
input graph for MAGRec can be prepared in a few different ways. Consequently,
we have experimented with three different graph representations i.e. Disjoint,

2 https://github.com/RuihongQiu/FGNN.
3 https://github.com/RManLuo/MAMDR.

https://github.com/RuihongQiu/FGNN
https://github.com/RManLuo/MAMDR
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Table 2. Results on 2-domain datasets and different methods. Bold numbers indicate
the leading results, while underlined numbers represent the second-best scores. Mean
and std. from seven runs are presented.

Dataset Model Domain 1 Domain 2 Both

Logloss AUC Logloss AUC Logloss AUC

Amazon-2a DIEN 0.510 ± 0.007 0.786 ± 0.003 0.393 ± 0.003 0.853 ± 0.003 0.452 ± 0.004 0.819 ± 0.002

DIN 0.496 ± 0.003 0.806 ± 0.002 0.398 ± 0.004 0.842 ± 0.002 0.447 ± 0.004 0.824 ± 0.001

FGNN 0.530 ± 0.003 0.766 ± 0.002 0.451 ± 0.003 0.792 ± 0.004 0.491 ± 0.003 0.779 ± 0.003

MAMDR 0.481 ± 0.007 0.819 ± 0.005 0.377 ± 0.003 0.865 ± 0.002 0.429 ± 0.004 0.842 ± 0.002

MMoE 0.474 ± 0.013 0.823 ± 0.007 0.372 ± 0.009 0.869 ± 0.005 0.423 ± 0.003 0.846 ± 0.001

SB 0.470 ± 0.013 0.823 ± 0.010 0.375 ± 0.006 0.865 ± 0.004 0.423 ± 0.005 0.844 ± 0.004

STAR 0.543 ± 0.032 0.777 ± 0.005 0.419 ± 0.021 0.830 ± 0.008 0.481 ± 0.022 0.804 ± 0.003

WDL 0.481 ± 0.013 0.816 ± 0.008 0.378 ± 0.005 0.863 ± 0.002 0.430 ± 0.004 0.840 ± 0.003

MAGRec 0.466 ± 0.004 0.831 ± 0.001 0.363 ± 0.003 0.875 ± 0.001 0.415 ± 0.003 0.853 ± 0.001

Amazon-2b DIEN 0.407 ± 0.055 0.849 ± 0.004 0.405 ± 0.022 0.841 ± 0.001 0.406 ± 0.033 0.845 ± 0.003

DIN 0.451 ± 0.000 0.845 ± 0.000 0.400 ± 0.000 0.838 ± 0.000 0.425 ± 0.000 0.841 ± 0.000

FGNN 0.485 ± 0.006 0.820 ± 0.005 0.421 ± 0.003 0.822 ± 0.003 0.453 ± 0.005 0.821 ± 0.004

MAMDR 0.467 ± 0.007 0.834 ± 0.004 0.408 ± 0.004 0.836 ± 0.002 0.437 ± 0.005 0.835 ± 0.003

MMoE 0.443 ± 0.027 0.851 ± 0.016 0.386 ± 0.017 0.849 ± 0.011 0.414 ± 0.015 0.850 ± 0.010

SB 0.472 ± 0.031 0.830 ± 0.018 0.393 ± 0.010 0.841 ± 0.010 0.433 ± 0.020 0.836 ± 0.013

STAR 0.467 ± 0.010 0.832 ± 0.003 0.417 ± 0.019 0.828 ± 0.004 0.442 ± 0.007 0.830 ± 0.001

WDL 0.461 ± 0.019 0.838 ± 0.014 0.396 ± 0.013 0.842 ± 0.008 0.428 ± 0.009 0.840 ± 0.008

MAGRec 0.416 ± 0.002 0.869 ± 0.002 0.378 ± 0.003 0.856 ± 0.002 0.397 ± 0.002 0.862 ± 0.002

Amazon-2c DIEN 0.446 ± 0.060 0.805 ± 0.006 0.411 ± 0.023 0.835 ± 0.002 0.429 ± 0.036 0.820 ± 0.004

DIN 0.496 ± 0.001 0.805 ± 0.001 0.399 ± 0.001 0.834 ± 0.001 0.448 ± 0.001 0.819 ± 0.001

FGNN 0.525 ± 0.002 0.773 ± 0.000 0.432 ± 0.001 0.808 ± 0.001 0.478 ± 0.001 0.791 ± 0.001

MAMDR 0.484 ± 0.005 0.816 ± 0.004 0.396 ± 0.002 0.844 ± 0.001 0.440 ± 0.002 0.830 ± 0.002

MMoE 0.462 ± 0.009 0.829 ± 0.006 0.393 ± 0.007 0.845 ± 0.005 0.428 ± 0.005 0.837 ± 0.003

SB 0.468 ± 0.011 0.825 ± 0.007 0.394 ± 0.007 0.845 ± 0.006 0.431 ± 0.007 0.835 ± 0.005

STAR 0.528 ± 0.017 0.782 ± 0.004 0.411 ± 0.008 0.827 ± 0.003 0.469 ± 0.006 0.805 ± 0.001

WDL 0.469 ± 0.004 0.822 ± 0.004 0.401 ± 0.007 0.841 ± 0.006 0.435 ± 0.005 0.831 ± 0.004

MAGRec 0.462 ± 0.007 0.830 ± 0.006 0.383 ± 0.004 0.852 ± 0.004 0.423 ± 0.006 0.841 ± 0.005

Amazon-2d DIEN 0.427 ± 0.026 0.857 ± 0.005 0.413 ± 0.029 0.844 ± 0.005 0.420 ± 0.023 0.851 ± 0.004

DIN 0.413 ± 0.008 0.872 ± 0.005 0.398 ± 0.006 0.842 ± 0.002 0.405 ± 0.007 0.857 ± 0.003

FGNN 0.468 ± 0.004 0.837 ± 0.002 0.427 ± 0.003 0.825 ± 0.002 0.448 ± 0.003 0.831 ± 0.002

MAMDR 0.473 ± 0.017 0.857 ± 0.005 0.391 ± 0.001 0.852 ± 0.001 0.432 ± 0.008 0.855 ± 0.002

MMoE 0.393 ± 0.014 0.885 ± 0.009 0.394 ± 0.016 0.849 ± 0.012 0.393 ± 0.014 0.867 ± 0.010

SB 0.416 ± 0.021 0.870 ± 0.015 0.408 ± 0.015 0.837 ± 0.013 0.412 ± 0.017 0.853 ± 0.013

STAR 0.455 ± 0.006 0.842 ± 0.006 0.431 ± 0.014 0.824 ± 0.005 0.443 ± 0.005 0.833 ± 0.002

WDL 0.414 ± 0.011 0.871 ± 0.008 0.418 ± 0.019 0.830 ± 0.014 0.416 ± 0.015 0.850 ± 0.011

MAGRec 0.375 ± 0.002 0.897 ± 0.001 0.363 ± 0.001 0.873 ± 0.001 0.369 ± 0.001 0.885 ± 0.001

Flattened and Interacting History. In Disjoint History, domains are considered
as independent data sources, meaning that for a candidate item ik from domain
dk, the graph is constructed from the past user history in that particular domain.
This representation is inline with the way MDR models [16,27] handle alternate
domain training and, therefore, it is not able to exploit the existing cross-domain
behaviors in the overall user history. A complete but naive cross-domain rep-
resentation is the sequence of user-item interactions in all domains as a single
timeline, thus, filling the gap between specific domain user sessions with the user
sessions occurring in other domains. This representation is what we refer to as
Flattened History. The downside of it is that user interests are assumed to evolve
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Table 3. Comparison of different methods for graph Gu preparation on Amazon-2a
dataset for selected methods. DIN and DIEN cannot be combined with Interacting.

Input DIN DIEN FGNN MAGRec

Logloss AUC Logloss AUC Logloss AUC Logloss AUC

Disjoint 0.486 ± 0.012 0.778 ± 0.017 0.493 ± 0.013 0.790 ± 0.003 0.496 ± 0.001 0.774 ± 0.004 0.565 ± 0.209 0.827 ± 0.021

Flattened 0.447 ± 0.004 0.824 ± 0.001 0.453 ± 0.004 0.816 ± 0.002 0.495 ± 0.003 0.779 ± 0.003 0.417 ± 0.003 0.849 ± 0.002

Interacting – – – – 0.497 ± 0.002 0.778 ± 0.002 0.415 ± 0.003 0.853 ± 0.001

Table 4. Average logloss and AUC values for different methods and many domains
scenarios

Model 3 domains 6 domains 13 domains

Logloss AUC Logloss AUC Logloss AUC

SB 0.482 ± 0.007 0.802 ± 0.007 0.516 ± 0.017 0.736 ± 0.023 0.574 ± 0.022 0.661 ± 0.016

MMoE 0.489 ± 0.037 0.809 ± 0.003 0.514 ± 0.029 0.754 ± 0.022 0.572 ± 0.026 0.683 ± 0.009

WDL 0.478 ± 0.008 0.804 ± 0.006 0.505 ± 0.007 0.748 ± 0.013 0.553 ± 0.011 0.663 ± 0.014

STAR 0.528 ± 0.020 0.766 ± 0.003 0.488 ± 0.014 0.810 ± 0.002 0.545 ± 0.024 0.760 ± 0.003

FGNN 0.512 ± 0.001 0.766 ± 0.001 0.453 ± 0.001 0.808 ± 0.002 0.486 ± 0.002 0.775 ± 0.000

MAMDR 0.472 ± 0.002 0.812 ± 0.002 0.430 ± 0.004 0.835 ± 0.001 0.483 ± 0.036 0.772 ± 0.042

DIN 0.473 ± 0.000 0.804 ± 0.000 0.427 ± 0.000 0.818 ± 0.000 0.461 ± 0.000 0.791 ± 0.000

DIEN 0.475 ± 0.004 0.807 ± 0.002 0.427 ± 0.001 0.825 ± 0.001 0.457 ± 0.005 0.797 ± 0.001

MAGRec 0.461 ± 0.003 0.819 ± 0.003 0.416 ± 0.001 0.836 ± 0.001 0.436 ± 0.001 0.815 ± 0.002

smoothly across all domains and unrelated domains could potentially create an
interest bottleneck in a k-hop message passing for user recent interest modelling.
To overcome this limitation, we propose an Interacting History representation in
which the Flattened History is enriched with domain skip connections to enable
uninterrupted intra-domain paths and proper signal propagation in cases where
two domains share little to no commonalities. Table 3 compares all three repre-
sentations for two domain setting on Amazon-2a dataset and different methods.
It is clear that Interacting History gives the best results with 26.5% and 0.5%
improvement over Disjoint and Flattened History representations respectively
for MAGRec. Results are consistent for sequential (DIN, DIEN) and graph-based
models (FGNN, MAGRec) proving the importance of multi-domain context as
well as intra- and inter-domain paths. FGNN cannot benefit from the Interacting
History, as it lacks a dedicated mechanism for Domain Contextualization during
message propagation.

More Domains Scenarios. In order to evaluate our method performance
beyond two domain scenarios, we use three, six and 13 domains. The results
are in Table 4. MAGRec receives the best logloss and AUC in all scenarios.
Interestingly, SDR models (i.e., DIN, DIEN) achieve second-best performance
on 13-domains where both, MAMDR and STAR, struggle to model all domains
well at the same time. As stated in [16], the incremental drop in performance is
even more noticeable for STAR. MTL-based models such as MMoE also cope to
handle larger number of domains. Figure 2 presents variability across all domains
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Fig. 2. Results for all 13 domains and methods presented as a heatmap. Logloss (left)
and AUC (right).

Table 5. Results for MAGRec and Amazon-2d dataset where Recent Interest Extrac-
tor (RIE), Global Interest Extraction (GIE) and Domain Contextualization (DC) are
ablated.

RIE GIE DC Domain 1 Domain 2 Both

Logloss AUC Logloss AUC Logloss↓ AUC

� � 0.434 ± 0.001 0.805 ± 0.002 0.487 ± 0.001 0.812 ± 0.003 0.460 ± 0.001 0.808 ± 0.002

� 0.429 ± 0.001 0.810 ± 0.001 0.477 ± 0.003 0.820 ± 0.002 0.453 ± 0.002 0.815 ± 0.001

� 0.365 ± 0.001 0.872 ± 0.001 0.381 ± 0.002 0.893 ± 0.001 0.373 ± 0.001 0.882 ± 0.000

� � 0.364 ± 0.000 0.873 ± 0.001 0.378 ± 0.000 0.895 ± 0.000 0.371 ± 0.000 0.884 ± 0.001

� � 0.364 ± 0.002 0.874 ± 0.002 0.376 ± 0.003 0.897 ± 0.001 0.370 ± 0.002 0.885 ± 0.001

� � � 0.364 ± 0.001 0.873 ± 0.001 0.374 ± 0.002 0.897 ± 0.001 0.369 ± 0.001 0.885 ± 0.001

and used methods. MAGRec and DIEN are clear winners here. While MMoE,
SB, WDL are worse, with a high variability between domains.

Ablation Study. In Table 5, we present the ablation study results for MAGRec
network, where particular modules of the network are disabled. The biggest
improvement in logloss 0.08 is when Recent Interest Extractor (RIE) is used.
Then, Global Interest Extractor (GIE) gives a smaller boost of 0.002. When
combining all, with Domain Contextualization (DC), we observe the best out-
come of 0.369 logloss value. Combining DC with GIE alone does not help to get
better overall performance.

5 Conclusions and Future Work

This paper presents a new method, MAGRec, for multi-domain recommenda-
tion that uses GNNs to model intra- and inter-domain sequential relations. In
our experiments on publicly available datasets, our method shows better perfor-
mance compared to state-of-the-art methods in multiple different settings: from
two up to 13 different domain combinations. Additionally, we performed a series
of experiments that proved the usefulness of Interacting History representation
as well as Recent and Global Interest Extractors. As future work, higher-order
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graph representations could be explored as input for sparse multi-domain rep-
resentation. Additionally, aforementioned integration with other MDR training
strategies can further improve the results.
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Abstract. In this paper we propose a novel approach for combining
first-stage lexical retrieval models and Transformer-based re-rankers: we
inject the relevance score of the lexical model as a token in the mid-
dle of the input of the cross-encoder re-ranker. It was shown in prior
work that interpolation between the relevance score of lexical and BERT-
based re-rankers may not consistently result in higher effectiveness. Our
idea is motivated by the finding that BERT models can capture numeric
information. We compare several representations of the BM25 score and
inject them as text in the input of four different cross-encoders. We
additionally analyze the effect for different query types, and investigate
the effectiveness of our method for capturing exact matching relevance.
Evaluation on the MSMARCO Passage collection and the TREC DL
collections shows that the proposed method significantly improves over
all cross-encoder re-rankers as well as the common interpolation meth-
ods. We show that the improvement is consistent for all query types.
We also find an improvement in exact matching capabilities over both
BM25 and the cross-encoders. Our findings indicate that cross-encoder
re-rankers can efficiently be improved without additional computational
burden and extra steps in the pipeline by explicitly adding the output
of the first-stage ranker to the model input, and this effect is robust for
different models and query types.

Keywords: Injecting BM25 · Two-stage retrieval · Transformer-based
rankers · BM25 · Combining lexical and neural rankers

1 Introduction

The commonly used ranking pipeline consists of a first-stage retriever, e.g. BM25
[47], that efficiently retrieves a set of documents from the full document collec-
tion, followed by one or more re-rankers [40,59] that improve the initial rank-
ing. Currently, the most effective re-rankers are BERT-based rankers with a
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Fig. 2. Injection of BM25 in input

cross-encoder architecture, concatenating the query and the candidate docu-
ment in the input [2,25,40,44]. In this paper, we refer to these re-rankers as
Cross-EncoderCAT (CECAT). In the common re-ranking set-up, BM25 [47] is
widely leveraged [7,20,27] for finding the top-k documents to be re-ranked; how-
ever, the relevance score produced by BM25 based on exact lexical matching is
not explicitly taken into account in the second stage. Besides, although cross-
encoder re-rankers substantially improve the retrieval effectiveness compared to
BM25 alone [34], Rau et al. [43] show that BM25 is a more effective exact lexi-
cal matcher than CECAT rankers; in their exact-matching experiment they only
use the words from the passage that also appear in the query as the input of
the CECAT. This suggests that CECAT re-rankers can be further improved by a
better exact word matching, as the presence of query words in the document is
one of the strongest signals for relevance in ranking [48,50]. Moreover, obtain-
ing improvement in effectiveness by interpolating the scores (score fusion [58])
of BM25 and CECAT is challenging: a linear combination of the two scores has
shown to decrease effectiveness on the MSMARCO Passage collection compared
to only using the CECAT re-ranker in the second stage retrieval [34].

To tackle this problem, in this work, we propose a method to enhance CECAT

re-rankers by directly injecting the BM25 score as a string to the input of the
Transformer. Figure 2 show our method for the injection of BM25 in the input
of the CE re-ranker. We refer to our method as CEBM25CAT. Our idea is inspired
by the finding by Wallace et al. [54] that BERT models can capture numeracy.
In this regard, we address the following research questions:

RQ1: What is the effectiveness of BM25 score injection in addition to the query
and document text in the input of CE re-rankers?
To answer this question we setup two experiments on three datasets:
MSMARCO, TREC DL’19 and ’20. First, since the BM25 score has no defined
range, we investigate the effect of different representations of the BM25 score
by applying various normalization methods. We also analyze the effect of con-
verting the normalized scores of BM25 to integers. Second, we evaluate the best
representation of BM25 – based on our empricial study – on four cross-encoders:
BERT-base, BERT-large [53], DistillBERT [49], and MiniLM [56], comparing
CEBM25CAT to CECAT across different Transformer models with a smaller and
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larger number of parameters. Next, we compare our proposed approach to com-
mon interpolation approaches:

RQ2: What is the effectiveness of CEBM25CAT compared to common approaches
for combining the final relevance scores of CECAT and BM25?
To analyze CEBM25CAT and CECAT in terms of exact matching compared to
BM25 we address the following question:

RQ3: How effective can CEBM25CAT capture exact matching relevance compared
to BM25 and CECAT?
Furthermore, to provide an explanation on the improvement of CEBM25CAT, we
perform a qualitative analysis of a case where CECAT fails to identify the relevant
document that is found using CEBM25CAT with the help of the BM25 score.1

To the best of our knowledge, there is no prior work on the effectiveness of
cross-encoder re-rankers by injecting a retrieval model’s score into their input.
Our main contributions in this work are four-fold:

1. We provide a strategy for efficiently utilizing BM25 in cross-encoder re-
rankers, which yields statistically significant improvements on all official met-
rics and is verified by thorough experiments and analysis.

2. We find that our method is more effective than the approaches which linearly
interpolate the scores of BM25 and CECAT.

3. We analyze the exact matching effectiveness of CECAT and CEBM25CAT in
comparison to BM25. We show that CEBM25CAT is a more powerful exact
matcher than BM25 while CECAT is less effective than BM25.

4. We analyze the effectiveness of CECAT and CEBM25CAT on different query
types. We show that CEBM25CAT consistently outperforms CECAT over all
type of queries.

After a discussion of related work in Sect. 2, we describe the retrieval models
employed in Sect. 3 and the specifics of our experiments and methods in Sect. 4.
The results are examined and the research questions are addressed in Sect. 5.
Finally, the conclusion is described in Sect. 6.

2 Related Work

Modifying the Input of Re-rankers. Boualili et al. [12,13] propose a method
for highlighting exact matching signals by marking the start and the end of each
occurrence of the query terms by adding markers to the input. In addition,
they modify original passages and expand each passage with a set of generated
queries using Doc2query [41] to overcome the vocabulary mismatch problem.
This strategy is different from ours in two aspects: (1) the type of information
added to the input: they add four tokens as markers for each occurrence of
query terms, adding a burden to the limited input length of 512 tokens for query

1 In this work, we interchangeably use the words document and passage to refer to
unit that should be retrieved.
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and document together, while we only add the BM25 score. (2) The need for
data augmentation: they need to train a Doc2query model to provide the exact
matching signal for improving the BERT re-ranker while our strategy does not
need any extra overhead in terms of data augmentation. A few recent, but less
related examples are Al-Hajj et al. [4], who experiment with the use of different
supervised signals into the input of the cross-encoder to emphasize target words
in context and Li et al. [30], who insert boundary markers into the input between
contiguous words for Chinese named entity recognition.

Numerical Information in Transformer Models. Thawani et al. [52] pro-
vide an extensive overview of numeracy in NLP models up to 2021. Wallace
et al. [54] analyze the ability of BERT models to work with numbers and come
to the conclusion that the models capture numeracy and are able to do numeri-
cal reasoning; however the models appeared to struggle with interpreting floats.
Moreover, Zhang et al. [63] show that BERT models capture a significant amount
of information about numerical scale except for general common-sense reasoning.
There are various studies that are inspired by the fact that Transformer models
can correctly process numbers [11,15,21,22,26,38]. Gu et al. [23] incorporate
text, categorical and numerical data as different modalities with Transformers
using a combining module accross different classification tasks. They discover
that adding tabular features increases the effectiveness while using only text is
insufficient and results in the worst performance.

Methods for Combining Rankers. Linearly interpolating different rankers’
scores has been studied extensively in the literature [8–10,34,58]. In this paper,
we investigate multiple linear and non-linear interpolation ensemble methods
to analyze the performance of them for combining BM25 and CECAT scores in
comparison to CEBM25CAT. For the sake of a fair analysis, we do not compare
CEBM25CAT with a Learning-to-rank approach that is trained on 87 features by
[65]. The use of ensemble methods brings additional overhead in terms of effi-
ciency because it adds one more extra step to the re-ranking pipeline. It is note-
worthy to mention that in this paper, we concentrate on analyzing the improve-
ment by combining the first-stage retriever and a BERT-based re-ranker: BM25
and CECAT respectively. However, we are aware that combining scores of BM25
and Dense Retrievers that both are first-stage retrievers has also shown improve-
ments [1,6,55] that are outside the scope of our study. In particular, CLEAR
[20] proposes an approach to train the dense retrievers to encode semantics that
BM25 fails to capture for first stage retrieval. However, in this study, our aim is
to improve re-ranking in the second stage of two-stage retrieval setting.

3 Methods

3.1 First Stage Ranker: BM25

Lexical retrievers estimate the relevance of a document to a query based on word
overlap [46]. Many lexical methods, including vector space models, Okapi BM25,
and query likelihood, have been developed in previous decades. We use BM25
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because of its popularity as first-stage ranker in current systems. Based on the
statistics of the words that overlap between the query and the document, BM25
calculates a score for the pair:

slex(q, d) = BM25(q, d) =
∑

t∈q∩d

rsjt.
tft,d

tft,d + k1{(1 − b) + b |d|
l }

(1)

where t is a term, tft,d is the frequency of t in document d, rsjt is the Robertson-
Spärck Jones weight [47] of t, and l is the average document length. k1 and b are
parameters [32,33].

3.2 CECAT: Cross-Encoder Re-rankers Without BM25 Injection

Concatenating query and passage input sequences is the typical method for using
cross-encoder (e.g., BERT) architectures with pre-trained Transformer models
in a re-ranking setup [25,36,40,60]. This basic design is referred to as CECAT

and shown in Fig. 1. The query q1:m and passage p1:n sequences are concatenated
with the [SEP ] token, and the [CLS] token representation computed by CE is
scored with a single linear layer Ws in the CECAT ranking model:

CECAT (q1:m, p1:n) = CE([CLS] q [SEP ] p [SEP ]) ∗ Ws (2)

We use CECAT as our baseline re-ranker architecture. We evaluate different cross-
encoder models in our experiments and all of them follow the above design.

3.3 CEBM25CAT: Cross-Encoder Re-rankers with BM25 Injection

To study the effectiveness of injecting the BM25 score into the input, we modify
the input of the basic input format as follows and call it CEBM25CAT:

CEBM25CAT (q1:m, p1:n) = CE([CLS] q [SEP ]BM25 [SEP ] p [SEP ]) ∗ Ws (3)

where BM25 represent the relevance score produced by BM25 between query
and passage.

We study different representations of BM25 to find the optimal approach for
injecting BM25 into the cross-encoders. The reasons are: (1) BM25 scores do not
have an upper bound and should be normalized for having an interpretable score
given a query and passage; (2) BERT-based models can process integers better
than floating point numbers [54] so we analyze if converting the normalized
score to an integer is more effective than injecting the floating point score. For
normalizing BM25 scores, we compare three different normalization methods:
Min-Max, Standardization (Z-score), and Sum:

Min-Max(sBM25) =
sBM25 − smin

smax − smin
(4)

Standard(sBM25) =
sBM25 − μ(S)

σ(S)
(5)
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Sum(sBM25) =
sBM25

sum(S)
(6)

where sBM25 is the original score, and smax and smin are the maximum and
minimum scores respectively, in the ranked list. Sum(S), μ(S), and σ(S) refer
to sum, average and standard deviation over the scores of all passages retrieved
for a query. The anticipated effect of the Sum normalizer is that the sum of
the scores of all passages in the ranked list will be 1; thus, if the top-n passages
receive much higher scores than the rest, their normalized scores will have a larger
difference with the rest of passages’ scores in the ranked list; this distance could
give a good signal to CEBM25CAT. We experiment with Min-Max and Standard-
ization in a local and a global setting. In the local setting, we get the minimum
or maximum (for Min-Max) and mean and standard deviation (for Standard)
from the ranked list of scores per query. In the global setting, we use {0, 50, 42, 6}
as {minimum, maximum, mean, standard deviation} as they have been empiri-
cally suggested in prior work to be used as default values across different queries
to globally normalize BM25 scores [37]. In our data, the {minimum, maximum,
mean, standard deviation} values are {0, 98, 7, 5} across all queries. Because of
the differences between the recommended defaults and the statistics of our col-
lections, we explore other global values for Min-Max, using 25, 50, 75, 100 as
maximum and 0 as minimum. However, we got the best result using default val-
ues of [37]. To convert the float numbers to integers we multiply the normalized
score to 100 and discard decimals. Finally, we store the number as a string.

3.4 Linear Interpolation Ensembles of BM25 and CECAT

We compare our approach to common ensemble methods [34,64] for interpolating
BM25 and BERT re-rankers. We combine the scores linearly using the following
methods: (1) Sum: compute sum over BM25 and CECAT scores, (2) Max: select
maximum between BM25 and CECAT scores, and (3) Weighted-Sum:

si = α . sBM25 + (1 − α) . sCECAT
(7)

where si is the weighted sum produced by the interpolation, sBM25 is the nor-
malized BM25 score, sCECAT

is the CECAT score, and α ∈ [0..1] is a weight that
indicates the relative importance. Since CECAT score ∈ [0, 1], we also normalize
BM25 score using Min-Max normalization. Furthermore, we train ensemble mod-
els that take sBM25 and sCECAT

as features. We experiment with three different
classifiers for this purpose: SVM with a linear kernel, SVM with an RBFkernel,
Naive Bayes, and Multi Layer Perceptron (MLP) as a non-linear method and
report the best classifier performance in Sect. 5.1.

4 Experimental Design

Dataset and Metrics. We conduct our experiments on the MSMARCO-
passage collection [39] and the two TREC Deep Learning tracks (TREC-DL’19
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and TREC-DL’20) [17,19]. The MSMARCO-passage dataset contains about 8.8
million passages (average length: 73.1 words) and about 1 million natural lan-
guage queries (average length: 7.5 words) and has been extensively used to train
deep language models for ranking because of the large number of queries. Fol-
lowing prior work on MSMARCO [28,34,35,67,68], we use the dev set (∼7k
queries) for our empirical evaluation. MAP@1000 and nDCG@10 are calcu-
lated in addition to the official evaluation metric MRR@10. The passage corpus
of MSMARCO is shared with TREC DL’19 and DL’20 collections with 43 and
54 queries respectively. We evaluate our experiments on these collections using
nDCG@10 and MAP@1000, as is standard practice in TREC DL [17,19] to
make our results comparable to previously published and upcoming research.
We cap the query length at 30 tokens and the passage length at 200 tokens
following prior work [25].

Training Configuration and Model Parameters. We use the Huggingface
library [57], Cross-encoder package of Sentence-transformers library [45], and
PyTorch [42] for the cross-encoder re-ranking training and inference. For inject-
ing the BM25 score as text, we pass the BM25 score in string format into the
BERT tokenizer in a similar way to passing query and document. Please note
that the integer numbers are already included in the BERT tokenizer’s vocabu-
lary, allowing for appropriate tokenization. Following prior work [25] we use the
Adam [29] optimizer with a learning rate of 7 ∗ 10−6 for all cross-encoder layers,
regardless of the number of layers trained. To train cross-encoder re-rankers for
each TREC DL collection, we use the other TREC DL query set as the validation
set and we select both TREC DL (’19 and ’20) query sets as the validation set
to train CEs for the MSMARCO Passage collection. We employ early stopping,
based on the nDCG@10 value of the validation set. We use a training batch size
of 32. For all cross-Encoder re-rankers, we use Cross-Entropy loss [66] . For the
lexical retrieval with BM25 we employ the tuned parameters from the Anserini
documentation [32,33].2

5 Results

5.1 Main Results: Addressing Our Research Questions

Choice of BM25 Score Representation. As introduced in Sect. 3.3, we com-
pare different representations of the BM25 score in Table 1 for injection into
CEBM25CAT. We chose MiniLM [56] for this study as it has shown competitive
results in comparison to BERT-based models while it is 3 times smaller and 6
times faster.3 Our first interesting observation is that injecting the original float
score rounded down to 2 decimal points (row b) of BM25 into the input seems to
slightly improve the effectiveness of re-ranker. We assume this is due to the fact
that the average query and passage length is relatively small in the MSMARCO

2 The code is available on https://github.com/arian-askari/injecting bm25 score bert.
3 https://huggingface.co/microsoft/MiniLM-L12-H384-uncased.

https://github.com/arian-askari/injecting_bm25_score_bert_reranker
https://huggingface.co/microsoft/MiniLM-L12-H384-uncased
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Passage collection, which prevents from getting high numbers – with low inter-
pretability for BERT – as BM25 score. Second, we find that the normalized
BM25 score with Min-Max in the global normalization setting converted to inte-
ger (row f) is the most significant effective4 representation for injecting BM25.

Table 1. Effectiveness results. Lines b-n refer to the MiniLMBMCAT re-ranker using
different representations of the BM25 score as text. Significance is shown with † for
the best result (row f) compared to MiniLMCAT (row a). Statistical significance was
measured with a paired t-test (p < 0.05) with Bonferroni correction for multiple testing.

Normalization Local/Global Float/Integer MSMARCO DEV

nDCG@10 MAP MRR@10

(a) MiniLMCAT (without injecting BM25 score) .419 .363 .360

(b) Original score — — .420 .364 .362

(c) Min-Max Local Float .411 .359 .354

(d) Min-Max Local Integer .414 .361 .355

(e) Min-Max Global Float .422 .365 .363

(f) Min-Max Global Integer .424† .368† .367†
(g) Standard Local Float .407 .355 .352

(h) Standard Local Integer .410 .358 .354

(i) Standard Global Float .420 .363 .361

(j) Standard Global Integer .421 .365 .363

(k) Sum – Float .402 .349 .338

(l) Sum – Integer .405 .350 .342

The global normalization setting gives better results for both Min-Max (rows
e, f) and Standardization (rows i, j) than local normalization (rows c, d and
g, h).5 The reason is probably that in the global setting a candidate document
obtains a high normalized score (close to 1 in the floating point representation)
if its original score is close to default maximum (for Min-Max normalization) so
the normalized score could be more interpretable across different queries. On the
other hand, in the local setting, the passages ranked at position 1 always receive
1 as normalized score with Min-Max even if its original score is not high and it
does not have a big difference with the last passage in the ranked list.

Moreover, converting the normalized float score to integers gives better
results for both Min-Max (rows d, f) and Standardization (rows h, j) than the
float representation (rows c, e and g, i). We find that Min-Max normalization is
a better representation for injecting BM25 than Standardization, which could

4 Although the evaluation metrics are not in an interval scale, Craswell et al. [18] show
that they are mostly reliable in practice on MSMARCO for statistical testing.

5 The range of normalized integer scores using the best normalizer (row f) are from 0
to 196 as the maximum BM25 score in the collection is 98.
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Table 2. Effectiveness results. Fine-tuned cross-encoders are used for re-ranking over
BM25 first stage retrieval with a re-ranking depth of 1000. † indicates a statistically
significant improvement of a cross-encoder with BM25 score injection as text into
the input (Cross-encoderBM25CAT) over the same cross-encoder without BM25 score
injection (Cross-encoderCAT). Statistical significance was measured with a paired t-
test (p < 0.05) with Bonferroni correction for multiple testing.

Model TREC DL 20 TREC DL 19 MSMARCO DEV

nDCG@10 MAP nDCG@10 MAP nDCG@10 MAP MRR@10

BM25 .480 .286 .506 .377 .234 .195 .187

Re-rankers

BERT-BaseCAT .689 .447 .713 .441 .399 .346 .342

BERT-BaseBM25CAT .705† .475† .723† .453† .422† .367† .364†
BERT-LargeCAT .695 .464 .714 .467 .401 .344 .360

BERT-LargeBM25CAT .728† .482† .731† .477† .424† .367† .369†
DistilBERTCAT .670 .442 .679 .440 .383 .310 .325

DistilBERTBM25CAT .682† .456† .699† .451† .390† .323† .339†
MiniLMCAT .681 .448 .704 .452 .419 .363 .360

MiniLMBM25CAT .710† .473† .711† .463† .424† .368† .367†

be due to the fact that in Min-Max the normalized score could not be negative,
and, as a result, interpreting the injected score is easier for CEBM25CAT. We find
that the Sum normalizer (rows k and l) decreases effectiveness. Apparently, our
expectation that Sum would help distinguish between the top-n passages and
the remaining passages in the ranked list (see Sect. 5.1) is not true.

Impact of BM25 Injection for Various Cross-encoders (RQ1). Table 2
shows that injecting the BM25 score – using the best normalizer which is Min-
Max in the global normalization setting converted to integer – into all four cross-
encoders improves their effectiveness in all of the metrics compared to using them
without injecting BM25. This shows that injecting the BM25 score into the input
as a small modification to the current re-ranking pipeline improves the re-ranking
effectiveness. This is without any additional computational burden as we train
CECAT and CEBM25CAT in a completely equal setting in terms of number of
epochs, batch size, etc. We receive the highest result by BERT-LargeBM25CAT

for cross-encoder with BM25 injection, which could be due to the higher number
of parameters of the model. We find that the results of MiniLM are similar to
those for BERT-Base on MSMARCO-DEV while the former is more efficient.

Comparing BM25 Injection with Ensemble Methods (RQ2). Table 3
shows that while injecting BM25 leads to improvement, regular ensemble meth-
ods and Naive Bayes classifier fail to do so; combining the scores of BM25 and
BERTCAT in a linear and non-linear (MLP) interpolation ensemble setting even
leads to lower effectiveness than using the cross-encoder as sole re-ranker. There-
fore, our strategy is a better solution than linear interpolation. We only report
results for Naive Bayes – having BM25 and BERTCAT score as features – as
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Table 3. The effectiveness of injecting BM25 score into the input (Bert-BaseBM25CAT)
compared to interpolation performance of BM25 and Bert-BaseCAT using common
ensemble methods.

Model Ensemble MSMARCO DEV

nDCG@10 MAP MRR@10

BM25 — .234 .195 .187

BERT-BaseCAT — .399 .346 .342

BM25 and BERT-BaseCAT Sum .270 .225 .218

BM25 and BERT-BaseCAT Max .237 .197 .190

BM25 and BERT-BaseCAT Weighted-Sum (tuned) .353 .295 .290

BM25 and BERT-BaseCAT Naive Bayes .314 .260 .254

BERT-BaseBM25CAT BM25 Score Injection .422 .367 .364

it had the highest effectiveness of the four estimators. Still, the effectiveness is
much lower than BERTBM25CAT and also lower than a simple Weighted-Sum.
Weighted-Sum (tuned) in Table 3 is tuned on the validation set, for which α = 0.1
was found to be optimal. We analyze the effect of different α values in a weighted
linear interpolation (Weighted-Sum) to draw a more complete picture on the
impact of combining scores on the DEV set. Figure 3 shows that by increas-
ing the weight of BM25, the effectiveness decreases. The figure also shows that
the tuned alpha which was found on the validation set in Table 3 is not the
most optimal possible alpha value for the DEV set. The highest effectiveness for
α = 0.0 in Fig. 3 confirms we should not combine the scores by current interpo-
lation methods and only using scores of Bert-BaseCAT is better, at least for the
MSMARCO passage collection.

Exact Matching Relevance Results (RQ3). To conduct exact matching
analysis, we replace the passage words that do not appear in the query with
the [MASK] token, leaving the model only with a skeleton of the original pas-
sage and force it to rely on the exact word matches between query and passage
[43]. We do not train models on this input but use our models that were fine-
tuned on the original data. Table 4 shows that BERT-BaseBM25CAT performs
better than both BM25 and BERT-BaseCAT in the exact matching setting on
all metrics. Moreover, we found that the percentage of relevant passages ranked
in top-10 that are common between BM25 and BERTBM25CAT is 40%, which is
higher than the percentage of relevant passages between BM25 and BERTCAT

(37%). Therefore, the higher effectiveness of BERTBM25CAT in exact matching
setting could be at least partly because it mimics BM25 more than BERTCAT.
In comparison, this percentage is 57 between BERTBM25CAT and BERTCAT.
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Fig. 3. Effectiveness on MSMARCO DEV with varying the interpolation weight of
BM25 and BERT-BaseCAT scores. α = 0 means only BERTCAT scores are used.

Table 4. Comparing exact matching effectiveness of BERT-BaseBM25CAT and BERT-
BaseCAT by keeping only the query words in each passage for re-ranking. The increase
and decrease of effectiveness compared to BM25 is indicated with ↑ and ↓.

Model Input MSMARCO DEV

nDCG@10 MAP MRR@10

BM25 Full text .234 .195 .187

BERT-BaseCAT Only query words .218 (↓1.6) .186 (↓0.9) .180 (↓0.7)

BERT-BaseBM25CAT Only query words .243 (↑.9) .209 (↑1.4) .202 (↑1.5)

5.2 Analysis of the Results

Query Types. In order to analyze the effectiveness of BERT-baseCAT and
BERT-baseBM25CAT across different types of questions, we classify questions
based on the lexical answer type. We use the rule-based answer type classifier6

inspired by [31] to extract answer types. We classify MSMARCO queries into 6
answer types: abbreviation, location, description, human, numerical and entity.
4105 queries have a valid answer type and at least one relevant passage in the
top-1000. We perform our analysis in two different settings: normal (full-text)
and exact-matching (keeping only query words and replacing non-query words
with [MASK]). The average MRR@10 per query type is shown in Table 5. The
table shows that BERTBM25CAT is more effective than BERTCAT consistently
on all types of queries.

6 https://github.com/superscriptjs/qtypes.

https://github.com/superscriptjs/qtypes
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Table 5. MRR@10 on MSMARCO-DEV per query type for comparing BERT-
BaseBM25CAT and BERT-BaseCAT on different query types in full-text and exact-
matching (only keeping query words) settings.

Model Input ABBR LOC DESC HUM NUM ENTY

# queries 9 493 1887 455 933 328

BERT-BaseCAT Full text .574 .477 .397 .435 .361 .399

BERT-BaseBM25CAT Full text .592 .503 .428 .457 .405 .411

BM25 Only query words .184 .256 .215 .238 .200 .221

BERT-BaseCAT Only query words .404 .204 .224 .240 .177 .200

BERT-BaseBM25CAT Only query words .438 .278 .245 .258 .215 .216

Query [SEP] BM25 [SEP] Passage Label Model: Rank

[CLS] what is the shingles jab ? [SEP] 22 [SEP] the shingles vaccine

. the vaccine , called zostavax , is given as a single injection under

the skin ( subcutaneously ) . it can be given at any time in the

year . unlike with the jab

R BM25: 3
BERTBM25CAT: 1
BERTCAT: 104

[CLS] what is the shingles jab ? [SEP] 11 [SEP] shingle is a

corruption of german schindle ( schindel ) meaning a ro slate .

shingles historically were called tiles and shingle was a term applied

to wood shingles , as is still mostly the case outside the us [SEP]

N BM25: 146
BERTBM25CAT: 69
BERTCAT: 1

Fig. 4. Example query and two passages in the input of BERTBM25CAT. The color of
each word indicates the word-level attribution value according to Integrated Gradient
(IG) [51], where red is positive, blue is negative, and white is neutral. We use the
brightness of different colors to indicate the values of these gradients. (Color figure
online)

Qualitative Analysis. We show a qualitative analysis of one particular case in
Fig. 4 to analyze more in-depth what the effect of BM25 injection is and why it
works. In the top row, while BERTCAT mistakenly ranked the relevant passage
at position 104, BM25 ranked that passage at position 3 and BERTBM25CAT –
apparently helped by BM25 – ranked that relevant passage at position 1. In the
bottom row, BERTCAT mistakenly ranked the irrelevant passage at position 1
and informed by the low BM25 score, BERTBM25CAT ranked it much lower, at
69. In order to interpret the importance of the injected BM25 score in the input
of CEBM25CAT and show its contributions to the matching score in comparison
to other words in the query and passage, we use Integrated Gradient (IG) [51]
which has been proven to be a stable and reliable interpretation method in many
different applications including Information Retrieval [16,61,62].7 On both rows
of Fig. 4, we see that the BM25 score (‘22’ in the top row and ‘11’ in the bottom
row) is a highly attributed term in comparison to other terms. This shows that

7 We refer readers to [51] for a detailed explanation.
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injecting the BM25 score assists BERTBM25CAT to identify relevant or non-
relevant passages better than BERTCAT.

As a more general analysis, we randomly sampled 100 queries from
MSMARCO-DEV. For each query, we took the top-1000 passages retrieved by
BM25, we fed all pairs of query and their corresponding retrieved passages (100k
pairs) into BERTBM25CAT, and computed the attribution scores over the input
at the word-level. We ranked tokens based on their importance using the abso-
lute value of their attribution score and found the mode of the rank of the BM25
token over all samples is 3. This shows that BERTBM25CAT highly attributes the
BM25 token for ranking.

6 Conclusion and Future Work

In this paper we have proposed an efficient and effective way of combining BM25
and cross-encoder re-rankers: injecting the BM25 score as text in the input of the
cross-encoder. We find that the resulting model, CEBM25CAT, achieves a statis-
tically significant improvement for all evaluated cross-encoders. Additionally, we
find that our injection approach is much more effective than linearly interpolat-
ing the initial ranker and re-ranker scores. In addition, we show that CEBM25CAT

performs significantly better in an exact matching setting than both BM25 and
CECAT individually. This suggests that injecting the BM25 score into the input
could modify the current paradigm for training cross-encoder re-rankers.

While it is crystal clear that our focus is not on chasing the state-of-the-art,
we believe that as future work, our method could be applied into any cross-
encoder in the current multi-stage ranking pipelines which are state-of-the-art for
the MSMARCO Passage benchmark [24]. Moreover, previous studies show that
combining BM25 and BERT re-rankers on Robust04 [5] leads to improvement
[3]. It is interesting to study the effect of injecting BM25 for this task because
documents often have to be truncated to fit the maximum model input length
[14]; injecting the BM25 score might give information to the cross-encoder re-
ranker about the lexical relevance of the whole text of the document. Another
interesting direction is to study how Dense Retrievers can benefit from injecting
lexical ranker scores. Moreover, injecting scores of several lexical rankers and
adding more traditional Learning-to-Rank features could be also interesting.

Acknowledgments. This work was supported by the EU Horizon 2020 ITN/ETN on
Domain Specific Systems for Information Extraction and Retrieval (H2020-EU.1.3.1.,
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Abstract. The analysis of emotions expressed in text has numerous
applications. In contrast to categorical analysis, focused on classifying
emotions according to a pre-defined set of common classes, dimensional
approaches can offer a more nuanced way to distinguish between differ-
ent emotions. Still, dimensional methods have been less studied in the
literature. Considering a valence-arousal dimensional space, this work
assesses the use of pre-trained Transformers to predict these two dimen-
sions on a continuous scale, with input texts from multiple languages
and domains. We specifically combined multiple annotated datasets from
previous studies, corresponding to either emotional lexica or short text
documents, and evaluated models of multiple sizes and trained under
different settings. Our results show that model size can have a signif-
icant impact on the quality of predictions, and that by fine-tuning a
large model we can confidently predict valence and arousal in multiple
languages. We make available the code, models, and supporting data.

Keywords: Transformer-based multilingual language models ·
Emotion analysis in text · Predicting valence and arousal

1 Introduction

The task of analyzing emotions expressed in text is commonly modeled as a
classification problem, representing affective states (e.g., Ekman’s six basic emo-
tions [22]) as specific classes. The alternative approach of dimensional emotion
analysis focuses on rating emotions according to a pre-defined set of dimensions,
offering a more nuanced way to distinguish between different emotions [7]. Emo-
tional states are represented on a continuous numerical space, with the most com-
mon dimensions defined as valence and arousal. In particular, valence describes
the pleasantness of a stimulus, ranging from negative to positive feelings. Arousal
represents the degree of excitement provoked by a stimulus, from calm to excited.
The Valence-Arousal (VA) space [4] corresponds to a 2-dimensional space to
which a text sequence can be mapped.

This study proposes using pre-trained multilingual Transformer models to
predict valence and arousal ratings in text from different languages and domains.
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Models pre-trained on huge amounts of data from multiple languages can be fine-
tuned to different types of downstream tasks with relatively small datasets in
one or few languages, and still obtain reliable results on different languages [43].
While previous research focused on monolingual VA prediction as regression from
text, this study compiled 34 publicly available psycho-linguistic datasets, from
different languages, into a single uniform dataset. We then evaluated multilingual
DistilBERT [48] and XLM-RoBERTa [17] models, to understand the impact of
model size and training conditions on the ability to correctly predict affective
ratings from textual contents.

Experimental results show that multilingual VA prediction is possible with
a single Transformer model, particularly when considering the larger XLM-
RoBERTa model. Even if performance differs across languages, most results
improve or stay in line with the results from previous research focused on pre-
dicting these affective ratings on a single language. The code, models, and data
used in this study are available on a GitHub repository1.

The rest of the paper is organized as follows: Sect. 2 presents related work,
while Sect. 3 describes the models considered for predicting valence and arousal.
Section 4 describes the corpora used for model training and evaluation. Section 5
presents our findings and compares the results. Finally, Sect. 6 summarizes the
main findings and discusses possibilities for future work.

2 Related Work

Since Russel [47] first proposed a two-dimensional model of emotions, based
on valence and arousal, much research has been done on dimensional emotion
analysis. Most relevant to this study are the main lexicons [5,38,49,55,60] and
corpora [6,8,42,66] annotated according to these dimensions, used in previous
work. Still, while several NLP and IR studies have addressed dimensional emo-
tion extraction, most previous work has focused on categorical approaches [1].

Trying to predict valence and arousal has long been a relevant topic, both
at the word-level [11,20,26,45,51,62,67] and at the sentence/text-level [7,9,32,
36,41,44,52,59,63]. Recchia et al. used pointwise mutual information coupled
with k-NN regression to estimate valence and arousal for words [45]. Hollis et al.
resorted to linear regression modelling [26]. Sedoc et al. combined distributional
approaches with signed spectral clustering [51]. Du and Zhang explored the use
of CNNs [20]. Wu et al. used a densely connected LSTM network and word
features to identify emotions on the VA space for words and phrases [62]. More
recently, Buechel et al. proposed a method for creating arbitrarily large emotion
lexicons in 91 languages, using a translation model, a target language embedding
model, and a multitask learning feed-forward neural network [11]. This last work
is interesting when compared to ours, as it is one of the few attempts to predict
VA at a multilingual level, if only for individual words.

Paltoglou et al. attempted text-level VA prediction by resorting to affective
dictionaries, as supervised machine learning techniques were inadequate for the
1 https://www.github.com/gmendes9/multilingual va prediction.

https://www.github.com/gmendes9/multilingual_va_prediction
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small dataset used in their tests [41]. Preoţiuc-Pietro et al. compiled a corpus
of Facebook posts and built a bag-of-words (BoW) linear regression prediction
model [44]. Similarly, Buechel and Hahn used BoW representations in conjunc-
tion with TF-IDF weights [7,9]. More recently, several studies have compared
CNNs and RNNs, amongst other neural architectures [32,52,59,63]. For instance,
Lee et al. explored different methods for prediction, ranging from linear regres-
sion to multiple neural network architectures [36]. This last study explored the
use of a BERT model, but differs from our work as the data is not multilin-
gual. The present work follows the steps of some of the aforementioned studies
leveraging deep learning, aiming to build a single multilingual model capable of
predicting affective ratings for valence and arousal.

3 Models for Predicting Valence and Arousal from Text

We address the prediction of valence and arousal scores as text-based regression,
using pre-trained multilingual models adapted from the Huggingface library [61].
In particular, we use DistilBERT [48] and XLM-RoBERTa [17] models.

The multilingual DistilBERT model, consisting of 134M parameters, is based
on a 6 layer Transformer encoder, with 12 attention heads and a hidden state
size of 768. The model can train two times faster with only a slight performance
decrease (approx. 5%), compared to a multilingual BERT-base model with 25%
more parameters. As for XLM-RoBERTa, we used both the base (270M param-
eters) and large (550M parameters) versions. The base version is a 12 layer
Transformer, with 12 attention heads and a hidden state size of 768. The large
version uses 24 layers, 16 attention heads, and a hidden state size of 1024.

Both these models are pre-trained on circa 100 different languages, which will
likely enable the generalization to languages for which there are no annotated
data in terms of valence and arousal ratings. These models are fine-tuned for the
task at hand with a regression head on top, consisting of a linear layer on top of
the pooled representation from the Transformer (i.e., the representation of the
first token in the input sequence).

The regression head produces two outputs, which are processed through a
hard sigmoid activation function, forcing the predicted values on both dimensions
to respect the target interval between zero and one.

Three loss functions were initially compared for model training, namely
the Mean Squared Error (MSE), the Concordance Correlation Coefficient Loss
(CCCL), and a recently proposed Robust Loss (RL) function [3]. In all these
cases, the models are trained with the sum of the loss for the valence and arousal
predictions, equally weighting both affective dimensions.

MSE is the most used loss function in regression problems and can be
defined as the mean of the squared differences between predicted (ŷ) and ground-
truth (y) values, as shown in Eq. 1.

MSE =
1
N

N∑

i=0

(yi − ŷi)2. (1)
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The CCCL corresponds to a correlation-based function, evaluating the rank-
ing agreement between the true and predicted values, within a batch of instances.
It varies from the Pearson correlation by penalizing the score in proportion to
the deviation if the predictions shift in value. Atmaja and Akagi [56] compared
this function to the MSE and Mean Absolute Error (MAE) loss functions for
the task of predicting emotional ratings from speech signals using LSTM neural
networks, suggesting that this loss yields a better performance than error-based
functions. The CCCL follows Eq. 2, where ρyŷ represents the Pearson correla-
tion coefficient between y and ŷ, σ represents the standard deviation, and μ the
mean value. Notice that the correlation ranges from −1 to 1, and thus we use
one minus the correlation as the loss.

CCCL = 1 − 2ρyŷσyσŷ

σy2 + σŷ2 + (μy − μŷ)2
. (2)

The RL function generalizes some of the most common robust loss functions
(e.g., the Huber loss), that reduce the influence of outliers [3], being described in
its general form through Eq. 3. In this function, x is the variable being minimized,
corresponding to the difference between true and predicted values (i.e., xi =
yi − ŷi). The function involves two parameters that tune its shape, namely α ∈ R

that controls the robustness, and a scale parameter c > 0 which controls the size
of its quadratic bowl.

RL =
1
N

N∑

i=0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2 (xi/c)2 if α = 2
log

(
1
2 (xi/c)2 + 1

)
if α = 0

1 − exp
(− 1

2 (xi/c)2
)

if α = ∞
|α−2|

α

((
(xi/c)2

|α−2| + 1
)α/2

− 1
)

otherwise.

(3)

A lower value of α implies penalizing minor errors at the expense of larger
ones, while a higher value of α allows more inliers while increasing the penalty
for outliers. We used the adaptive form of this robust loss function, where the
parameter α is optimized and tuned during model training via stochastic gradient
descent, as explained in the original paper [3].

We also tested two hybrid loss functions derived from the previous ones,
combining their different properties and merits. While the MSE and the RL
functions analyze results at the instance level, the CCCL function does the same
at the batch level. With this in mind, one hybrid loss function combines the
CCCL and the MSE functions, while the other combines the CCCL with the RL
function, in both cases through a simple addition.

4 Resources

We collected 34 different public datasets to form a large corpus of annotated data
for the emotional dimensions of valence and arousal, with the intent to build the
largest possible multilingual dataset. The original datasets comprise 13 different
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languages, which represent up to 2.5 billion native speakers worldwide2,3. There
are two types of datasets described on Table 1, namely word and short text
datasets, respectively associating valence and arousal ratings to either individual
words or short text sequences. All of these datasets were manually annotated
by humans, either via crowdsourcing or by experienced linguists/psychologists,
according to the Self-Assessment Manikin (SAM) method [4]. In addition, several
lexicons relate to the Affective Norms for English Words (ANEW) resource,
corresponding to either adaptations to other languages or extensions in terms of
the number of words [5]. ANEW was the first lexicon providing real-valued scores
for the emotional dimensions of valence and arousal. It is important to note that
this lexicon is excluded from our corpus for being part of larger datasets that
were included, such as the one from Warriner et al. [60].

Overall, merging the 34 datasets allowed us to build a large multilingual VA
dataset, consisting of 128,987 independently annotated instances (i.e., 30,657
short texts and 98,330 words). The textual sequences were left unchanged from
the source datasets. As for the valence and arousal ratings, we took the mean
annotated values when ratings were obtained from multiple individuals, and nor-
malized the scores between 0 and 1. The normalization was performed according
to the equation zi = (xi − min(x))/(max(x) − min(x)), in which zi denotes the
normalized value, xi the original value, and min and max denote the extremes
of the scales in which the original scores were rated on.

Table 1 presents a statistical characterization for the short text datasets in its
first half, followed by the word datasets. Each entry describes the dataset source
language, the dataset size, and the mean number of words (this last variable
in the case of the short texts). An exploratory analysis of the VA ratings sup-
ports a better understanding of the score distributions. In turn, Fig. 1 presents
the distribution of the ratings for the entire merged dataset, as well as for its
two subsets (i.e., words and short texts). The ratings were plotted on the two-
dimensional valence-arousal space, and they are visualized with the help of a
kernel density estimate. The individual distributions of the two dimensions are
displayed on the margins. The analysis of the resulting merged dataset leads to
the conclusion that there is a quadratic relationship between the two emotional
dimensions, with a tendency for increased arousal on high and low valence val-
ues, and abundant low arousal scores in the middle of the valence scale. A similar
pattern was previously observed in several different studies in Psychology, such
as in the original ANEW study and its extensions [5,18,28,33,39,42,64].

5 Experimental Evaluation

Each of the individual original datasets were randomly split in half and com-
bined with the others to form two subsets of data equally representative of all
the datasets, later used for 2-fold cross-validation. For each configuration, two
models were separately trained on each fold, and then separately used to make
2 https://www.cia.gov/the-world-factbook/countries/world/people-and-society.
3 https://www.ethnologue.com/.

https://www.cia.gov/the-world-factbook/countries/world/people-and-society
https://www.ethnologue.com/
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Table 1. Dataset characterization. μlength represents the mean text length of each
instance, in terms of the number of words. μ and σ represent the mean and standard
deviation, in the emotional ratings, respectively.

Dataset Language Items μlength Arousal Valence
μ σ μ σ

EmoBank [8,10] English 10062 23.27 0.51 0.06 0.49 0.09

IEMOCAP [12] English 10039 19.22 0.56 0.22 0.48 0.17

Facebook Posts [44] English 2894 28.15 0.29 0.25 0.53 0.15

EmoTales [24] English 1395 17.91 0.55 0.12 0.49 0.15

ANET [6] English 120 31.96 0.66 0.22 0.52 0.33

PANIG [16] German 619 9.12 0.47 0.12 0.40 0.22

COMETA sentences [15] German 120 16.75 0.48 0.15 0.50 0.20

COMETA stories [15] German 64 90.17 0.53 0.15 0.56 0.21

CVAT [66] Mandarin 2969 58.00 0.48 0.13 0.48 0.17

CVAI [63] Mandarin 1465 29.53 0.51 0.12 0.32 0.06

ANPST [28] Polish 718 28.16 0.48 0.13 0.47 0.22

MAS [42] Portuguese 192 8.94 0.52 0.17 0.49 0.28

Yee [65] Cantonese 292 0.40 0.15 0.58 0.17

Ćoso et al. [18] Croatian 3022 0.45 0.15 0.51 0.21

Moors et al. [40] Dutch 4299 0.52 0.14 0.49 0.18

Verheyen et al. [57] Dutch 1000 0.52 0.17 0.50 0.20

NRC-VAD [38] English 19971 0.50 0.17 0.50 0.22

Warriner et al. [60] English 13915 0.40 0.11 0.51 0.16

Scott et al. [50] English 5553 0.45 0.14 0.51 0.19

Söderholm et al. [54] Finnish 420 0.50 0.13 0.50 0.25

Eilola et al. [21] Finnish 210 0.36 0.19 0.44 0.26

FAN [39] French 1031 0.41 0.13 0.56 0.17

FEEL [25] French 835 0.56 0.17 0.43 0.20

BAWL-R [58] German 2902 0.44 0.17 0.51 0.21

ANGST [49] German 1034 0.52 0.16 0.51 0.24

LANG [29] German 1000 0.39 0.20 0.50 0.13

Italian ANEW [23] Italian 1121 0.52 0.19 0.51 0.26

Xu et al. [64] Mandarin 11310 0.52 0.14 0.52 0.16

CVAW [36,66] Mandarin 5512 0.50 0.18 0.44 0.21

ANPW R [27] Polish 4905 0.39 0.11 0.50 0.16

NAWL [46] Polish 2902 0.34 0.13 0.53 0.20

Portuguese ANEW [53] Portuguese 1034 0.49 0.14 0.50 0.23

S.-Gonzalez et al. [55] Spanish 14031 0.70 0.22 0.72 0.16

Kapucu et al. [30] Turkish 2031 0.50 0.11 0.49 0.20

predictions for the instances in the other fold (containing instances not seen
during training), with final evaluation metrics computed on the complete set of
results (the predictions from the models trained on each fold were joined, and
the metrics were computed over the full set of predictions). Hyperparameters
were defined through an initial set of tests and kept constant for all models. The
batch size was fixed at 16, and models were trained during 10 epochs. AdamW
was the chosen optimizer, and we used it together with a linear learning rate
schedule with warm-up. The learning rate was set at 6 · 10−6, with a warm-up
ratio of 1 · 10−1. We experimented with various model and loss function com-
binations, namely by using the three differently-sized pre-trained Transformer
models, as well as the loss functions presented in Sect. 3.
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Fig. 1. Distribution of dataset instances in the valence-arousal space. Each dimensions’
distribution is shown with a histogram on the corresponding axis. An orange trend line
shows the quadratic relation between valence and arousal. (Color figure online)

Three different evaluation metrics were used to assess and compare model
performance, namely the Mean Absolute Error (MAE), the Root Mean Squared
Error (RMSE), and the Pearson correlation coefficient (ρ). The MAE, as detailed
by Eq. 4, corresponds to the sum of absolute errors between observations xi and
predictions yi.

MAE =
1
N

N∑

i=1

|xi − yi|. (4)

The RMSE, as shown by Eq. 5, is the square root of the mean square of the
differences between observations xi and predictions yi.

RMSE =

√√√√ 1
N

N∑

i=1

(xi − yi)2. (5)

Finally, the Pearson correlation coefficient, given by Eq. 6, is used to assess the
presence of a linear relationship between the ground truth x and the predicted
results given by y.

ρ =
∑N

i=1(xi − x̄)(yi − ȳ)√∑N
i=1(xi − x̄)2(yi − ȳ)2

. (6)

While the first two metrics should be minimized, the latter is best when it is
closer to one, i.e., the value denoting a perfect correlation.

5.1 Results with Different Models and Loss Functions

Table 2 summarizes the results for the different combinations of model size and
loss function. The single thing that affects evaluation metrics the most is the size
of the pre-trained Transformer model being used. The best performing model
was the large version of XLM-RoBERTa, respectively returning on average 9%
and 20% better correlation results than XLM-RoBERTa-base and DistilBERT.
For each model, we compared the five loss functions, highlighting in bold the
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Table 2. Comparison between different models and loss functions.

Model Loss ρV ρA RMSEV RMSEA MAEV MAEA

DistilBERT MSE 0.663 0.594 0.138 0.132 0.102 0.101

CCCL 0.657 0.590 0.150 0.146 0.111 0.111

RL 0.668 0.598 0.138 0.132 0.101 0.101

MSE+CCCL 0.657 0.590 0.149 0.145 0.110 0.111

RL+CCCL 0.664 0.591 0.147 0.144 0.109 0.110

XLM
RoBERTa
base

MSE 0.757 0.646 0.121 0.125 0.088 0.095

CCCL 0.757 0.653 0.136 0.144 0.101 0.110

RL 0.757 0.657 0.122 0.125 0.088 0.095

MSE+CCCL 0.757 0.655 0.135 0.141 0.099 0.108

RL+CCCL 0.757 0.657 0.134 0.141 0.099 0.107

XLM
RoBERTa
large

MSE 0.810 0.695 0.109 0.120 0.079 0.091

CCCL 0.817 0.698 0.117 0.132 0.085 0.099

RL 0.802 0.689 0.114 0.122 0.083 0.092

MSE+CCCL 0.815 0.699 0.121 0.135 0.089 0.103

RL+CCCL 0.813 0.694 0.119 0.133 0.087 0.100

best performing one for each metric, and evaluating separately for valence and
arousal. In short, the choice of loss function has less impact on the quality of the
results. For the best model, we see differences in correlation of up to 2% between
best and worst performing loss functions. Comparatively, in the error metrics,
these differences can be of up to 12%. As such, looking to identify the best
model/loss-function combination, we gave more relevance to the error metrics.
We identified the MSE loss function as the best performing one, adding to the
fact that this loss function is also the simplest of the set of functions that were
tested. Consequently, further results are presented for that model/loss pair.

When analyzing the results, it is possible to break them down into two cat-
egories: predicting valence and arousal for individual words or, on the other
hand, for short texts (see Table 3). Our models are more accurate at predicting
word-level scores, although this is also a more straightforward problem with less
ambiguity. An essential fact to take from the results is the greater difficulty in
predicting the affective dimension of arousal. Previous research has also stated
that human ratings themselves varied much more in annotating arousal when
compared to the valence dimension [41].

5.2 Results per Language and Dataset

Further analysis focused on the results of predicting ratings for each of the
original datasets, with results summarized on Table 4.
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Table 3. Comparing VA prediction on words or short texts using the XLM-RoBERTa-
large model and considering the MSE loss function for training.

Dataset ρV ρA RMSEV RMSEA MAEV MAEA

All data 0.810 0.695 0.109 0.120 0.079 0.091

Words 0.833 0.686 0.107 0.116 0.078 0.090

Short texts 0.682 0.711 0.115 0.132 0.082 0.093

For most word datasets, compared in the bottom half of Table 4, our best
model performed to high standards, showing a correlation between predicted
values and the ground truth of around 0.8 for valence and 0.7 for arousal. As
a comparison, when evaluating correlation on Warriner’s dataset [60], our work
achieved ρV = 0.84 and ρA = 0.65, while Hollis [26] achieved ρV = 0.80 and
ρA = 0.63. Although good scores are observed for most datasets, we can also
identify some outliers, like in the case of the dataset from Kapucu et al. [30].

As for the short text datasets, compared in the top half of Table 4, perfor-
mance varies more significantly, with an overall lower correlation and a higher
error. A particular case is the COMETA stories dataset [15], which shows a
correlation close to zero. The COMETA dataset is a database of conceptual
metaphors, in which half of the text instances contain metaphors while the other
half corresponds to their literal counterparts. The obtained results indicate that
even the best model does not cope well with metaphorical phrasing. Comparing
our model to the method from Preoţiuc-Pietro et al. [44], the correlation values
we obtained for the Facebook Posts dataset were ρV = 0.80 and ρA = 0.78, while
they achieved ρV = 0.65 and ρA = 0.85 (i.e., we have better results for valence,
and worse for arousal). In [66], Yu et al. predict VA on the CVAT dataset using
the ratings obtained for the CVAW words. They obtained correlation results of
ρV = 0.54 and ρA = 0.16, while our approach obtained ρV = 0.89 and ρA = 0.62.
In subsequent research, the same team tried to predict VA ratings with different
neural network approaches, including a model based on BERT, for which they
obtained ρV = 0.87 and ρA = 0.58 on the same dataset [36].

It should be noted that all previous comparisons against other studies are
merely indicative, given that the experimental conditions (e.g., the data splits
used for training and evaluation) were very different.

We performed a similar comparison to evaluate the result quality in distinct
languages, grouping prediction results by language. It was possible to conclude
that our best model yields good results in most languages. The most challenging
languages in terms of word prediction are Finnish and Turkish, with the model
seemingly excelling at Portuguese, Mandarin, and English, to name a few. The
lower scores observed for Finnish and Turkish can be explained by the small
sample of training data in those languages, respectively 0.48% and 1.57% of the
entire dataset, as well as by the complex morphology and productive compound-
ing associated with these languages, as found by Buechel et al. [11].

As for the short texts, compared in detail in Table 5, the most challenging
language was German. On this subject, we note that the German training sam-
ple contains the metaphorical instances of the COMETA dataset, which can
explain the gap in the results for this language. Predicting valence in English
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also proved demanding. If analyzed in detail, the results are heavily influenced
by the IEMOCAP dataset, which makes up for 46% of the English short text
corpus. IEMOCAP is a particular dataset, created through the video recording
of actors performing scripts designed to contain select emotions [12]. We used
the transcriptions of the audio, which is annotated for valence and arousal in the
dataset. Contrarily to all other datasets, these instances were annotated from
videos, which can portray a large range of sentiments for the same textual script,
depending on aspects such as posture and intonation of the actors. This implies
that annotations range over a broader scope too, which likely affects the quality
of the prediction results.

Table 4. Evaluation results for the short texts (top) and words (bottom) datasets,
using the XLM-RoBERTa-large model and considering the MSE loss.

Dataset Language ρV ρA RMSEV RMSEA MAEV MAEA

EmoBank English 0.736 0.440 0.061 0.071 0.044 0.052

IEMOCAP English 0.469 0.656 0.159 0.173 0.126 0.132

Facebook Posts English 0.797 0.776 0.098 0.176 0.075 0.124

EmoTales English 0.560 0.405 0.127 0.123 0.095 0.091

ANET English 0.920 0.859 0.135 0.111 0.095 0.087

PANIG German 0.597 0.563 0.181 0.111 0.137 0.085

COMETA sent German 0.853 0.598 0.103 0.120 0.074 0.096

COMETA stories German 0.072 0.042 0.254 0.160 0.206 0.130

CVAT Mandarin 0.890 0.623 0.082 0.105 0.062 0.085

CVAI Mandarin 0.517 0.720 0.068 0.089 0.053 0.071

ANPST Polish 0.868 0.607 0.113 0.111 0.082 0.089

MAS Portuguese 0.935 0.694 0.115 0.124 0.082 0.100

Yee Cantonese 0.875 0.718 0.090 0.121 0.069 0.099

Ćoso et al. Croatian 0.784 0.646 0.133 0.120 0.096 0.093

Moors et al. Dutch 0.776 0.653 0.116 0.125 0.081 0.098

Verheyen et al. Dutch 0.791 0.637 0.130 0.137 0.096 0.109

NRC-VAD English 0.858 0.754 0.111 0.124 0.086 0.097

Warriner et al. English 0.843 0.655 0.101 0.114 0.078 0.090

Scott et al. English 0.884 0.636 0.095 0.117 0.067 0.092

Söderholm et al. Finnish 0.645 0.492 0.188 0.138 0.147 0.109

Eilola et al. Finnish 0.807 0.534 0.164 0.191 0.117 0.161

FAN French 0.755 0.605 0.116 0.112 0.086 0.087

FEEL French 0.823 0.664 0.131 0.131 0.096 0.103

BAWL-R German 0.749 0.629 0.139 0.133 0.101 0.105

ANGST German 0.837 0.738 0.135 0.117 0.092 0.089

LANG German 0.802 0.696 0.100 0.144 0.074 0.115

Italian ANEW Italian 0.846 0.644 0.138 0.148 0.099 0.118

Xu et al. Mandarin 0.882 0.754 0.078 0.098 0.055 0.077

CVAW Mandarin 0.904 0.666 0.094 0.136 0.071 0.108

ANPW R Polish 0.846 0.689 0.093 0.088 0.065 0.069

NAWL Polish 0.828 0.581 0.111 0.122 0.081 0.096

Portuguese ANEW Portuguese 0.893 0.779 0.106 0.103 0.074 0.081

S.-Gonzalez et al. Spanish 0.808 0.689 0.100 0.095 0.074 0.072

Kapucu et al. Turkish 0.571 0.373 0.165 0.127 0.125 0.101
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Table 5. Evaluation results for individual languages on the short text datasets, using
the XLM-RoBERTa-large model and considering the MSE loss function.

Language ρV ρA RMSEV RMSEA MAEV MAEA

English 0.592 0.719 0.118 0.138 0.085 0.096

Mandarin 0.892 0.657 0.077 0.100 0.059 0.080

German 0.619 0.533 0.179 0.117 0.133 0.090

Portuguese 0.935 0.694 0.115 0.124 0.082 0.100

Polish 0.868 0.607 0.113 0.111 0.082 0.089

Stemming from these last conclusions, we performed one more separate exper-
iment. Considering the same training setting, we trained the model with a com-
bined dataset not containing the two seemingly troublesome datasets, COMETA
stories and IEMOCAP. Compared to previous results, the Pearson’s ρ for valence
increased from 0.8095 to 0.8423, and arousal’s correlation increased from 0.6974
to 0.7107. Performance gains were observed for all tested languages. In particu-
lar, valence and arousal correlation values for German short texts increased 13%
and 7%, and most noticeably for English they increased 31% and 11%, respec-
tively. This took the scores obtained for these two languages, which are well
represented in the training instances, to levels akin to most other languages, and
explained the previously noticed discrepancy in the evaluations.

5.3 Results in Zero-Shot Settings

With the previous results in mind, a question remained on whether our best
model could generalize well to other languages in which it was not trained on.
For that purpose, two other XLM-RoBERTa-large models were fine-tuned under
the same training setup. Specifically, these models were trained with all the
data from the merged dataset except for either the Polish or the Portuguese
instances. These instances were saved for subsequent zero-shot evaluations, sep-
arately focusing on each of these languages. This trial aimed to assert whether
the proposed approach can generalize to a language not used for training. Pol-
ish and Portuguese were chosen for this purpose, as both these languages are
represented in our dataset, simultaneously with word and short text instances.
Despite being reasonably popular languages, they are not as extensively present
as English, and thus they allow us to adequately simulate the scenario of test-
ing the proposed model on a new language not seen during training, and also
not seen extensively during the model pre-training stage (i.e., the DiltilBERT
and XML-RoBERTa models, despite being multilingual, have seen much more
English training data in comparison to other languages).

We can compare the results of these zero-shot experiments, presented in
Table 6, with the results obtained for the Polish and Portuguese subsets of pre-
dictions presented previously in Table 4. When comparing correlation and error
metrics, we found overall worse results. However, the difference is not significant,
and the results are in fact higher than some of the observed results for other lan-
guages on which the model was fine-tuned on. The zero-shot performance for
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Table 6. Zero-shot evaluation for Polish (PL) and Portuguese (PT) data, using the
XLM-RoBERTa-large model and considering the MSE loss function.

Training on Predicting on ρV ρA RMSEV RMSEA MAEV MAEA

All Any PL input 0.839 0.648 0.101 0.103 0.072 0.080

All excl. PL 0.818 0.618 0.111 0.135 0.080 0.108

All Any PT input 0.895 0.756 0.108 0.107 0.075 0.084

All excl. PT 0.886 0.735 0.112 0.112 0.079 0.088

All PL words 0.833 0.631 0.100 0.102 0.071 0.079

All excl. PL 0.814 0.647 0.111 0.135 0.079 0.108

All PT words 0.893 0.779 0.106 0.103 0.074 0.081

All excl. PT 0.906 0.777 0.102 0.107 0.071 0.084

All PL short texts 0.868 0.607 0.113 0.111 0.082 0.089

All excl. PL 0.860 0.487 0.113 0.135 0.085 0.108

All PT short texts 0.935 0.694 0.115 0.124 0.082 0.100

All excl. PT 0.923 0.627 0.155 0.135 0.121 0.109

both languages shows promising prospects for the application of the proposed
approach to different languages without available emotion corpora.

6 Conclusions and Future Work

This paper presented a bi-dimensional and multilingual model to predict real-
valued emotion ratings from instances of text. First, a multi-language emotion
corpus of words and short texts was assembled. This goes in contrast to most
previous studies, which focused solely on words or texts in a single language.
The corpus, consisting of 128,987 instances, features annotations for the psycho-
linguistic dimensions of Valence and Arousal (VA), spanning 13 different lan-
guages. Subsequently, DistilBERT and XLM-RoBERTa models were trained for
VA prediction using the multilingual corpus. The evaluation methodology used
Pearson’s ρ and two error metrics to assess the results. Overall, the predicted
ratings showed a high correlation with human ratings, and the results are in
line with those of previous monolingual predictive approaches. Additionally, this
research highlights the challenge of predicting arousal to the same degree of con-
fidence of predicting valence from text. In sum, the evaluation of our best model
showed competitive results against previous approaches, having the advantage
of generalization to different languages and different types of text.

An interesting idea to explore in future work concerns applying uncertainty
quantification4 to the predicted ratings, for instance as explained by Angelopou-
los and Bates [2]. Instead of predicting a single pair of values for the valence and
arousal ratings, the aim would be to predict a high confidence interval of values
in which valence and arousal are contained. Future work can also address the

4 https://mapie.readthedocs.io/en/latest/.

https://mapie.readthedocs.io/en/latest/
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study of data augmentation methods (e.g., based on machine translation), in an
attempt to further improve result quality and certainty.

Another interesting direction for future work concerns extending the work
reported in this paper to consider multimodal emotion estimation. Instead of
the models considered here, we can consider fine-tuning a large multilingual
vision-and-language model5 such as CLIP [13], combining the textual datasets
together with affective image datasets like the International Affective Picture
System (IAPS) [35], the Geneva Affective PicturE Database (GAPED) [19], the
Nencki Affective Picture System (NAPS) [37], the Open Affective Standardized
Image Set (OASIS) [34], or others [14,31].
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Abstract. In this paper, we hypothesize that sarcasm detection is closely
associated with the emotion present in memes. Thereafter, we propose
a deep multitask model to perform these two tasks in parallel, where
sarcasm detection is treated as the primary task, and emotion recog-
nition is considered an auxiliary task. We create a large-scale dataset
consisting of 7416 memes in Hindi, one of the widely spoken languages.
We collect the memes from various domains, such as politics, religious,
racist, and sexist, and manually annotate each instance with three sar-
casm categories, i.e., i) Not Sarcastic, ii) Mildly Sarcastic or iii) Highly
Sarcastic and 13 fine-grained emotion classes. Furthermore, we pro-
pose a novel Knowledge Infusion (KI) based module which captures
sentiment-aware representation from a pre-trained model using the Mem-
otion dataset. Detailed empirical evaluation shows that the multitask-
ing model performs better than the single-task model. We also show
that using this KI module on top of our model can boost the perfor-
mance of sarcasm detection in both single-task and multi-task settings
even further. Code and dataset are available at this link: https://www.
iitp.ac.in/ ai-nlp-ml/resources.html#Sarcastic-Meme-Detection.

Keywords: Sarcasm detection in meme · Emotion recognition ·
Knowledge infusion · Multitasking

1 Introduction

Recently, there has been a growing interest in the domain of computational social
science for detecting various attributes (e.g., Hateful Tweets, Fake news, Offensive
posts) of social media articles to curb their circulation and thereby reduce social
harm. Often, these articles use sarcasm to veil offensive content with a humorous
tone. This is due to the very nature of sarcasm, where the article utilizes superficial
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humor to mask the intended offensive meaning. This makes detecting harmful con-
tent more difficult. Also, sarcasm detection, in itself, is a challenging task because
detecting it often requires prior context about the article creators, audience, and
social constructs, and these are hard to determine from the article itself [34].

Memes are a form of multimodal (Image+Text) media that is becoming
increasingly popular on the internet. Though it was initially created to spread
humor, some memes help users to spread negativity in society in the form of
sarcasm [18,35,37]. In the context of memes, detecting sarcasm is very difficult,
as memes are multimodal in nature. In meme, just like offensiveness detection
[15], we cannot uncover the complex meaning of sarcasm until we know all the
modalities and their contributions in sarcastic content. Also, a sarcastic sentence
always has an implied negative sentiment because it intends to express contempt
and derogation [16].

Refer to example meme 3 of Fig. 1, which is taken from the political domain.
It says, “While selling mangoes on a handcart, I asked a man, “brother, this
mango is not ripe by giving chemicals.” The vendor replied, “No, brother, it has
been ripened after listening to Person-A’s inner thoughts.” When we observe
this meme from an outer perspective (by considering both text and image), it is
seen that the meme was formed solely to spread humor with no apparent twist.

Fig. 1. Some samples from our dataset. We have masked individual faces with white
color and their name with Person-A throughout the paper to maintain anonymization

But, after carefully analyzing the intended meaning, we observe that the
meme creator is using sarcasm to offend Person-A. The meme creator wants
to convey two conflicting emotions with the help of this sarcastic meme, i.e.,
both insult and joy up to varying degrees. Additionally, the meme creator is
implicitly ‘annoyed’ (which may be considered as a negative sentiment) with
Person-A. This demonstrates a clear interplay between emotions and sentiment
in a meme and their associations with sarcasm.

Armed with the above analysis, we hypothesize through the help of the asso-
ciated emotions and the overall sentiment, we can detect sarcasm and vice-versa.
Multimodality helps us to understand the intent of the meme creator with more
certainty. We list the contributions of this work as follows:
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– We create a high-quality and large-scale multimodal meme dataset annotated
with three labels (non-sarcastic, mildly sarcastic, and highly sarcastic) to
detect and also quantify the sarcasm given in a meme and 13 fine-grained
emotion classes.

– We propose a deep neural model which simultaneously detects sarcasm and
recognizes emotions in a given meme. Multitasking ensures that we exploit
the emotion of the meme, which aids in detecting sarcasm more easily. We also
propose a module denoted as knowledge infusion (KI) by which we leverage
pre-trained sentiment-aware representation in our model.

– Empirical results show that the proposed KI module significantly outperforms
the naive multimodal model.

2 Related Work

The multimodal approach to sarcasm detection in memes is a relatively recent
trend rather than just text-based classification [4,24]. A semi-supervised frame-
work [39] for the recognition of sarcasm proposed a robust algorithm that uti-
lizes features specific to (Amazon) product reviews. Poria et al. [30] developed
pre-trained sentiment, emotion, and personality models to predict sarcasm on a
text corpus through a Convolutional Neural Network (CNN), which effectively
detects sarcasm. Bouazizi et al. [4] proposed four sets of features, i.e., sentiment-
related features, punctuation-related features, syntactic and semantic features,
and pattern-related features that cover the different types of sarcasm. Then,
they used these features to classify tweets as sarcastic/non-sarcastic.

The use of multi-modal sources of information has recently gained significant
attention from researchers in affective computing. Ghosal et al. [12] proposed a
recurrent neural network-based attention framework that leverages contextual
information for multi-modal sentiment prediction. Kamrul et al. [14] presented a
new multi-modal dataset for humor detection called UR-FUNNY that contains
three modalities, viz. text, vision, and acoustic.

Researchers have also put their efforts towards sarcasm detection in the direc-
tion of conversational Artificial Intelligence (AI) [8,13,17]. For multimodal sar-
casm detection in conversational AI, Castro et al. [5] created a new dataset,
MUStARD, with high-quality annotations by including both multimodal and
conversational context features. Majumder et al. [26] demonstrated that sar-
casm detection could also be beneficial to sentiment analysis and designed a
multitask learning framework to enhance the performance of both tasks simul-
taneously. Similarly, Chauhan et al. [6] have also shown that sarcasm can be
detected with better accuracy when we know the sarcasm and sentiment of the
speaker. This work differs from conversational sarcasm detection owing to the
presence of contextual and background information in memes. Specifically, in
this paper, we try to demonstrate that these multitasking approaches hold true
in the domain of memes as well when sentiment-aware representation is used as
contextual information via the proposed knowledge infusion (KI) scheme.
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3 Dataset

Data Collection and Preprocessing: Our data collection process is inspired
by previous studies done on meme analysis [18,35]. We collect 7416 freely avail-
able public domain memes to keep a strategic distance from any copyright issues.
For retrieval, we consider domains like politics, religion, and social issues like
terrorism, racism, sexism, etc., following a list of a total of 126 keywords (e.g.
Terrorism, Politics, Entertainment) in Hindi for retrieval.

To save the data annotation effort, we manually discard the collected memes
which are (i) noisy such as background pictures are not clear, (ii) non-Hindi,
i.e., meme texts are written in other languages except Hindi, and (iii) non-
multimodal, i.e., memes contain either text or visual content. Next, we extract
the textual part of each meme using an open source Optical Character Recog-
nition(OCR) tool: Tesseract1. The OCR errors are manually post-corrected by
annotators. We finally consider 7, 416 memes for data annotation.

Data Annotation:

Sarcasm. Previous works for sarcasm detection use a dataset that is labeled
with two classes of sarcasm, i.e., i) Sarcastic, ii) Non Sarcastic [6,35]. To make
the problem even more challenging for a system, we annotate each sample in
the dataset with three labels of sarcasm viz. Non-sarcastic, Mildly sarcastic and
Highly Sarcastic. Although it is easy for a system to detect either non-sarcastic or
highly sarcastic memes, it becomes harder when the system has to disambiguate
a non-sarcastic meme from a mildly sarcastic one and vice-versa.

Emotion. Most psycho-linguistic theories [11,41] claim that there are only a few
primary emotions, like Anger, Fear, that form the basis of all other emotions. How-
ever, Merely these primary emotions could not adequately represent the diverse
emotional states that humans are capable of [20]. Taking inspiration from their
work, we construct a list of 120 affective keywords collected from our pre-defined
four domains (i.e., politics, religious, racist, and sexist). After mapping these affec-
tive keywords to their respective emotions and depending on the specific affective
keyword present in a meme, we annotate every sample of the dataset with 13 fine-
grained categories of emotions, viz. Disappointment, Disgust, Envy, Fear, Irrita-
tion, Joy, Neglect, Nervousness, Pride, Rage, Sadness, Shame, and Suffering.

Annotation Guidelines. We employed two annotators with an expert-level
understanding of Hindi for annotation purposes. At first, we provided expert-
level training based on 100 sample memes. After automatic Data collection and
Data preprocessing steps, the annotators were then asked to annotate the memes
with three classes of sarcasm and thirteen classes of fine-grained emotions. The
annotation process is significantly prone to the creation of a racially and polit-
ically biased dataset as illustrated in [7]. To counter bias, i) we made sure that
the terms included were inclusive of all conceivable politicians, political organi-
zations, young politicians, extreme groups, and religions and were not prejudiced
1 github.com/tesseract-ocr/tesseract.

http://github.com/tesseract-ocr/tesseract
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Fig. 2. Distribution of fine-grained
emotion categories for each sarcasm
class

Fig. 3. Data statistics of our annotated
corpus for sarcasm

against any one group, and ii) Annotators were instructed not to make decisions
based on what they believe but what the social media user wants to transmit
through that meme. In the case of disagreements between the annotators dur-
ing the annotation process, we resolved them by agreeing on a common point
after thorough discussions. The annotators were asked to annotate each sample
meme with as many emotion classes as possible. This is done to ensure that
we do not have a severe class imbalance in emotion categories for each sarcasm
class. Despite that, there is an overall small class imbalance for emotion cat-
egories in our proposed dataset. Note that while learning and evaluating our
models on top of our dataset, this small class imbalance is ignored. To assess
inter-rater agreement, we utilized Cohen’s Kappa coefficient [2]. For the sarcasm
label, we observed Cohen’s Kappa coefficient score of 0.7197, which is considered
to be a reliable score. Similarly, for 13 fine-grained emotion labels, the reported
Krippendorff’s Alpha Coefficient [21] is 0.6174 in a multilabel scenario, which is
relatively low. But previous annotation tasks [1,3,28] have shown that even with
binary or ternary classification schemes, human annotators agree only about 70-
80% of the time and the more categories there are, the harder it becomes for
annotators to agree. Based on this point, 0.6174 can be considered a good score
for inter-annotator agreement. In Fig. 3, we show the data statistics of sarcasm
classes and the respective distribution of emotion classes in Fig. 2.

4 Methods

This section presents the details of our proposed multitasking model architecture
by which we perform two tasks in parallel, viz. Sarcasm detection and Emotion
recognition. We also describe the knowledge infusion (KI) mechanism, which is
a novel addition to the multitasking model.

The basic diagram of the proposed model is shown in Fig. 4. The following
section discusses our method in detail:

4.1 Feature Extraction Layer

We use memes (M) as input to our model, which is comprised of an image (V )
and an associated text (T ). These are then fed into pre-trained and frozen CLIP
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Fig. 4. A generic architecture of our proposed model

model [31]2 to obtain the text representation (ft) and visual representation (it),
respectively.

We summarize the above steps by the following equation:

T, V ∈ M

ft, it = CLIP (T, V )
(1)

4.2 Multimodal Fusion

Text (ft) and visual representation (it) obtained from the feature extraction layer
are then fed into a Fusion Module to prepare a fused multimodal representation.

We have CLIP extracted text feature (ft) and visual features (it) having
dimensions Rm×1 and R

n×1 respectively. Further, assume we need a multimodal
representation Mt having dimension R

o×1. The fusion module is comprised of
two trainable weight matrices U and V having dimensions R

m×ko such that the
following projection followed by the average-pooling operation is performed.

Mt = AveragePool(UT ft ◦ V T it, k) (2)

where ◦ denotes element-wise multiplication operation and k denotes the stride
of the overlapped window (similar to convolutional stride) to perform the pooling
operation.

4.3 Knowledge Infusion (KI)

We devise a simple knowledge infusion (KI) technique to enrich multimodal rep-
resentation (Mt) for better performance in our downstream classification tasks.

2 https://github.com/FreddeFrallan/Multilingual-CLIP.

https://github.com/FreddeFrallan/Multilingual-CLIP
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Our KI method consists of two steps: (i) Obtaining a learned representation from
an already trained model, (ii) Utilizing the learned representation via a gating
mechanism to ‘enrich’ Mt. The following subsections deal with the aforemen-
tioned steps in detail.

KI LearnedRepresentation. We fine-tune a copy of our model (parent model)
until convergence. We use Memotion dataset3 for training. We perform multitask-
ing by classifying each meme instance into (i) one of three classes for sarcasm and
(ii) one of the three classes of sentiment.4 This is done using two task specific clas-
sification layers, D′

sar and D′
sent, respectively, on top of the shared layers.

After the model is completely trained, we freeze its layers. We provide an
input meme to extract multimodal representation M ′

t from its trained fusion
module. Subsequently, M ′

t is used to enrich Mt via the proposed gating mecha-
nism described below.

Gating Mechanism. Firstly, we obtain multimodal representation (Mt) fol-
lowing Eq. 2. Instead of feeding Mt directly into the subsequent classifier layers,
we use a gating mechanism by which we pass extra information (M ′

t) as needed
and update Mt according to the following equation:

Mupdated
t = f(Mt,M

′
t) (3)

where f is a generic function used to show the ‘gating’ mechanism.

Importance Weighting. Firstly an importance score (z) is obtained via Eq. 4
to measure the importance of Mt and M ′

t for the downstream classification task.

z = σ(UTMt + V TM ′
t + b) (4)

where σ refers to sigmoid operation and U and V are learnable weight matrices
and b is a bias term.

Update Scheme. We linearly interpolate Mt and M ′
t via z to obtain KI infused

representation (Mupdated
t ) following Eq. 5.

Mupdated
t = z × Mt + (1 − z) × M ′

t (5)

Linear Interpolation. The parent model was never trained to detect emo-
tion in memes, and the obtained representation from the gating mechanism
(Mupdated

t ) thus conflicts with the employed multitasking objective (simultane-
ously detecting sarcasm and recognizing emotion). To compensate for this issue,
we tweak our training objective by replacing Mupdated

t with Mupdated′
t , which is

given by:
Mupdated′

t = w1 × Mupdated
t + w2 × Mt (6)

where, w1 and w2 are scalar weight parameters initialized to 0.5.
3 https://competitions.codalab.org/competitions/35688.
4 Each meme in Memotion. dataset is annotated with both sarcasm and sentiment

classes.

https://competitions.codalab.org/competitions/35688
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4.4 Classification

Our model performs multitasking to detect sarcasm and recognize emotion in
an input meme.

For both of these tasks, task-specific dense classification layers are used, and
both of the task-specific layers get the same multimodal representation from the
previous ‘shared’ layers. Specifically, the fusion layer acts as a shared layer, and
the updated multimodal representation (M ′

t) is then used as an input to two
separate dense layers. We denote the dense layer as Dsar for sarcasm detection
and Demo for emotion recognition, respectively.

Previous operations can be described as follows:

Osar = Dsar(M
updated′
t , activation = softmax)

Oemo = Demo(M
updated′
t , activation = sigmoid)

Osar ∈ R
1×3;Oemo ∈ R

1×13

(7)

Osar and Oemo are respectively the logit outputs associated to the Dsar and Demo

classifier heads. These output vectors are then used to calculate the respective
cross-entropy loss to optimize the model.

Experimental Setups: We train our proposed model with a batch size of 32
for 50 epochs with an early-stopping callback. We use Adam optimizer [19] (i.e.
lr = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e − 8) with standard hyperparameters
throughout the experiments.

5 Results

We evaluate our proposed architecture with unimodal inputs, i.e., Text only (T)
and Vision only (V), and compare their performance with multimodal inputs
(T+V). For all of the input combinations (T, V, T+V), we perform our exper-
iments for both Single Task Learning (STL) and Multitask learning (MTL)
setups. In the STL setup, we only consider the model to learn to detect sarcasm
in a given meme, whereas in the MTL setup, the model learns from the mutual
interaction of two similar tasks, viz. sarcasm detection and emotion recognition.
For each of the STL and MTL setups, we also show the effect of knowledge
infusion by training our proposed model with the KI component.
STL Setup: In STL setup, we train the models to detect sarcasm in a meme by
only training its Dsar classifier head. Furthermore, we train two separate models
based on whether or not we use the KI component.

1. Msar: This model is trained by only optimizing its Dsar head. Also we set
Mupdated′

t = Mt to disable Knowledge infusion.
2. Memo: This model is trained by only optimizing its Demo head. This is

done to measure the emotion recognition performance of our model without
multitasking.

3. MKI
sar : This is same as Msar except KI is enabled here.
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Table 1. Sarcasm detection performance. For both text-only (T) and vision-only
(V) unimodal architectures, we show the performance of our proposed model for sar-
casm detection. For comparison purposes, we also show multimodal (T+V) system
performance. Here, Knowledge Infusion (KI) is disabled.

Setup Model T+V T V

R P F1 Acc R P F1 Acc R P F1 Acc

STL Msar 59.88 63.28 59.88 63.87 53.18 53.79 53.24 55.88 55.94 58.69 56.00 59.13

MTL Msar+emo 61.07 62.43 61.11 64.61 53.04 54.48 53.14 55.81 56.75 62.03 56.28 60.75

Table 2. Sarcasm detection performance. Here, Knowledge Infusion (KI) is
enabled. MKI

sar+emo is statistically significant to Msar (p < 0.05). McNemar’s test [27]
is performed to determine statistical significance level.

Setup Model T+V T V

R P F1 Acc R P F1 Acc R P F1 Acc

STL MKI
sar 63.15 64.01 63.29 65.89 58.15 58.32 58.19 60.14 56.89 57.63 57.01 59.81

MTL MKI
sar+emo 63.11 65.01 63.37 66.64 58.14 60.01 57.80 62.31 57.79 60.73 57.25 62.24

MTL Setup: In MTL setup, we simultaneously train Dsar and Demo classifier
heads of the model to perform multitasking by detecting both sarcasm and
emotion in a meme (shown by sar+emo subscript). Mutual interaction between
two similar tasks helps in learning both. Similar to the STL setup, two models
are trained for MTL setup.

1. Msar+emo: It is trained by optimizing its Dsar head for detecting sarcasm
and Demo for recognizing emotion. We set Mupdated′

t = Mt to disable Knowledge
infusion.

2. MKI
sar+emo: It is same as Msar+emo, except KI is enabled here.

In this section, we show the results that outline the comparison between
the single-task (STL) and multi-task (MTL) learning frameworks. We use 7416
data points with a train-test split of 80 − 20. 15% of the train set is used for
validation purposes. For the evaluation of sarcasm classification in Table 1 and
Table 2, we use macro-F1 score (F1), precision (P), and recall score (R), and
accuracy (Acc) as the preferred metrics. In the STL setup, we observe that
the MKI

sar performs better than Msar. This shows enabling knowledge infusion
aids the model in detecting sarcasm. We observe that even the MTL setup
benefits by enabling knowledge infusion (KI). This is evident from the increased
performance of +2.26 F1-score when MKI

sar+emo compared to Msar+emo. This
improvement could be attributed to the sentiment-aware hidden representation
(M ′

t), which helps our model perform better by transferring knowledge via the
proposed gating mechanism.

We also observe that for both STL and MTL setups, the multimodal input
settings (T+V) show better performance than unimodal input settings (T or V).
Our best performing model (MKI

sar+emo) obtains an F1 score of 63.37, surpassing
all the baselines. This performance gain is also statistically significant to Msar

(p < 0.05). We separately show the performance of our model on the emotion
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Table 3. Emotion Recognition performance for multimodal (T+V) setting. hloss
refers to Hamming Loss [40].

Task Memo Msar+emo

R P F1 hloss R P F1 hloss

Emo. recognition 46.93 75.36 57.84 12.88 51.07 71.11 59.46 13.11

recognition task in Table 3. We observe increased performance of Msar+emo com-
pared to Memo, which supports the proposed MTL objective that training the
model with both sarcasm detection and emotion recognition helps each other.

Ablation Study. Performance of both MKI
sar and Msar+emo depend on the

objective by which the parent model is trained. We can train the parent model
with (i) sar objective (only detecting sarcasm) by only training it’s D′

sar clas-
sifier head; or (ii) sar+sent objective (detecting both sarcasm and sentiment
via multitasking) by training its D′

sar head and D′
sent simultaneously. We also

observe that besides the proposed gating mechanism, the generic gating mecha-
nism shown in Eq. 3 can be implemented by the following methodologies as (i)
Concatenation followed by projection (cat+proj ) to combine Mt and M ′

t and (ii)
Minimize KL divergence (KL div) between Mt and M ′

t . For all the above com-
binations, we show their performance in Table 4. We observed that our proposed
KI fusion with sar+sent pretraining of the parent model performs better than
other techniques, as it can be inferred intuitively. Furthermore, to demonstrate
the superior performance of our proposed KI method, we sequentially finetune
our model on our dataset after being trained on Memotion dataset using two
setups:

Table 4. Ablation 1 Results of two models viz sar only and sar+sent pretraining
objective of parent model with different KI fusion methods.

Obj. KI fusion MKI
sar MKI

sar+emo

R P F1 Acc R P F1 Acc

sar proposed 62.07 62.82 62.31 64.34 62.05 65.05 61.89 66.37

KL div 61.85 64.11 62.06 65.29 61.14 64.25 61.00 65.30

cat+proj 60.70 61.87 60.89 62.31 59.63 64.08 59.24 64.07

sar+sent proposed 63.15 64.01 63.29 65.89 63.12 65.00 63.37 66.64

KL div 61.75 64.33 62.00 65.15 62.34 64.67 62.49 66.00

cat+proj 61.12 62.28 61.31 64.20 60.86 63.58 61.20 63.59
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i) KI-enabled fine-tuning: Instead of only fine-tuning sequentially, we also
enable the KI mechanism using the proposed gating scheme.

ii) KI-disabled fine-tuning: We only fine-tune sequentially without enabling
the KI mechanism. In Table 5, we observe that KI-enabled finetuning performs
better than KI-disabled fine-tuning, and the proposed KI setup performs better
than sequential finetuning (by comparing Table 2 and Table 5). Also, we observe
that, (i) KI helps the sequential fine-tuning procedure and (ii) Combining KI
with sequential fine-tuning is not effective as only performing KI.

Table 5. Ablation 2 Performance of sequential fine-tuning process.

Obj. Process STL MTL

R P F1 Acc R P F1 Acc

KI enabled seq. finetuning 63.32 63.53 62.11 65.08 63.10 63.92 62.08 65.47

KI disabled seq. finetuning 60.25 61.78 60.34 63.73 61.5 64.25 61.74 65.02

Table 6. Baseline performance. Note that our proposed model (MKI
sar+emo) outper-

forms the developed baselines. hloss refers to Hamming Loss.

Task STL MTL

R P F1 hloss R P F1 hloss

CNN+VGG19 [36] 48.71 44.91 45.12 – 53.32 58.01 51.52 29.16

BiLSTM+VGG19 [32] 46.41 46.12 42.85 – 51.52 52.67 51.62 30.81

mBERT+VGG19 [29] 45.82 49.61 45.23 – 48.66 48.79 47.80 31.30

mBERT+ViT [9] 62.88 64.12 60.69 – 63.29 64.63 61.24 14.64

VisualBERT [23] 64.74 63.66 60.64 – 62.44 63.09 60.38 14.10

LXMERT [38]1 60.38 60.66 60.47 – 60.09 60.31 60.10 14.75

Ours MKI
sar+emo 63.15 64.01 63.29 – 63.11 65.01 63.37 13.11

1 For training both VisualBERT and LXMERT, we automatically translated the Hindi
textual part of our dataset to English using MBart model [25]

Baselines. In Table 6, we show the baseline results for both STL and MTL
setups. Majorly the developed baselines are categorized into two categories: i)
Late fusion models: Here, visual representations are separately encoded by CNN
or ViT, and then they are fused together (the first four baselines in Table 6),
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ii) Early fusion models: Here the visual and textual information are fused in
the beginning before encoding them via a transformer architecture (last two
baselines in Table 6). We observe that our proposed method outperforms all the
baselines both in sarcasm detection (by F1 score) and emotion recognition tasks
(by Hamming Loss). To determine if these performance gains are statistically
significant, we used McNemar’s test [27], which is a widely used hypothesis
testing method used in NLP [10,22,42]. We observe that the performance gains
are statistically significant with p-values < 0.05.

6 Analysis

We perform a detailed quantitative and qualitative analysis of some samples
from the test set. In Table 8, we show 3 examples with true labels of the sar-
casm class. We compare models for both STL and MTL setups by comparing
their predicted labels with actual labels. We observe that the MTL model with
KI objective (MKI

sar+emo) helps to capture related information from the meme
to correctly predict the associated sarcasm class. To analyze whether the multi-
modality helps in the context of detecting sarcasm, we also analyze two predicted
examples in the left portion of Fig. 6. In the first example, we see that the text-
only (T) model fails to detect sarcasm, whereas the multimodal (T+V) model
correctly classifies it. The text ‘Come, brother, beat me’ alone is not sarcas-
tic, but whenever we add Mahatma Gandhi’s picture as a context, the meme
becomes sarcastic. This is correctly classified by the multimodal (T+V) Msar

model. Similarly, in the second example, without textual context, the image
part is non-sarcastic, and thus, the vision only (V) Msar model wrongly clas-
sifies this meme as non-sarcastic. Adding textual context helps the multimodal
model to correctly classify this meme as a sarcastic meme. To explain the predic-
tion behavior of our model, we use a well-known model-agnostic interpretability
method known as LIME (Locally Interpretable Model-Agnostic Explanations)
[33]. In the right portion of Fig. 6, we observe the parts of the meme and texts
where the model focuses on making predictions, which aligns with our intuition.
We also observe that despite the strong performance of our proposed model, it
still fails to predict the sarcasm class correctly in a few cases. In Table 7, we
show some of the memes with actual and predicted sarcasm labels from the mul-
timodal (T+V) framework (Msar, MKI

sar ,Msar+emo, MKI
sar+emo, ). We show the

six most common reasons why the models are failing to predict the actual class
associated with the memes (Fig. 5).
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Table 7. Error analysis: error cases and the possible reasons frequently occurring
with each of them

Meme name Ssarcasm class Possible reason

Act Msar MKI
sar Msar+emo MKI

sar+emo

meme1 0 2 2 2 2 Hazy picture

meme2 0 2 1 2 2 Uninformative picture

meme3 0 2 2 2 2 Background knowledge

meme4 0 1 1 1 1 Common sense

meme5 1 2 2 2 2 Hindi words in English font

meme6 2 1 1 0 1 Code mixing

Fig. 5. Associated memes with the previous Table 7

Table 8. Sample test examples with predicted sarcasm label for STL and MTL
models. Label definition: 2: Highly Sarcastic, 1: Mildly Sarcastic, 0: Not Sarcastic.
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Fig. 6. Left: Two examples where we show multimodal (T+V) Msar model performs
better than unimodal (T and V only) Msar models., Right: LIME outputs for the
model explanation.

7 Conclusion

In this paper, we propose a multitask knowledge-infused (KI) model that lever-
ages emotions and sentiment to identify the presence of sarcasm in a meme.
To this end, we manually create a large-scale benchmark dataset by annotating
7,416 memes for sarcasm and emotion. Detailed error analyses and ablation stud-
ies show the efficacy of our proposed model, which produces promising results
compared to the baseline models. Our analysis has found that the model could
not perform well enough in a few cases due to the lack of contextual knowledge.
In the future, we intend to explore about including background context to solve
this problem more effectively.

Acknowledgement. The research reported in this paper is an outcome of the
project “HELIOS-Hate, Hyperpartisan, and Hyperpluralism Elicitation and
Observer System”, sponsored by Wipro.
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Abstract. Check-worthiness detection is the task of identifying claims,
worthy to be investigated by fact-checkers. Resource scarcity for non-
world languages and model learning costs remain major challenges for the
creation of models supporting multilingual check-worthiness detection.

This paper proposes cross-training adapters on a subset of world lan-
guages, combined by adapter fusion, to detect claims emerging globally
in multiple languages. (1) With a vast number of annotators available for
world languages and the storage-efficient adapter models, this approach
is more cost efficient. Models can be updated more frequently and thus
stay up-to-date. (2) Adapter fusion provides insights and allows for inter-
pretation regarding the influence of each adapter model on a particular
language.

The proposed solution often outperformed the top multilingual
approaches in our benchmark tasks.

Keywords: Fact-checking · Checkworthiness detection · Mutilingual ·
Adapters

1 Introduction

There is an increasing demand for automated tools that support fact-checkers
and investigative journalists, especially in the event of breaking or controversial
news [11,19]. Identifying and prioritizing claims for fact-checking, aka. check-
worthy (CW) claim detection, is the first task of such automated systems [9].
This task helps guiding fact-checkers to potentially harmful claims for further
investigation. CW claims, as shown in Table 1, are verifiable, of public interest
and may invoke emotional responses [20]. Most studies in this area focus on
monolingual approaches, predominantly using English datasets for learning the
model. Support for multilingualism has become an essential feature for fact-
checkers who investigate non-English resources [8].
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Table 1. An example of a check-worthy claim from CT21.

Those who falsely claim Vaccines are 100% safe and who laugh at anti-vaxxers will be dependent
on those who refuse to tell the official lies to say that wide-spread vaccination *is* critical. 23 die
in Norway after receiving COVID-19 vaccine: [URL] via [MENTION]

Although transformers achieved competitive results on several multilingual
applications [3,4] including CW detection [18,21], there are still two main chal-
lenges in the CW task: (1) Because of the task complexity, there are a few pub-
licly available datasets in multiple languages. Updating a multilingual model to
detect even recently emerged claims requires data annotation and timely retrain-
ing. Finding fact-checking experts to annotate samples would be hard, especially
in low-resourced languages. (2) Storing standalone copies of each fine-tuned
model for every supported language requires vast storage capacities. Because
of the limited budgets of non-profit organizations and media institutes, it would
be infeasible to update the models frequently.

World Languages (WLs) are languages spoken in multiple countries, while
non-native speakers can still communicate with each other using the WL as a
foreign language. English, Arabic and Spanish are examples of WLs1. It would
appear that finding expert annotators for collecting samples in a WL is easier
than finding expert annotators for low-resourced languages.

As a resource-efficient alternative to fully fine-tuning transformer models,
adapters [14,31] have been recently proposed. Adapters are lightweight and
modular neural networks, learning tasks with fewer parameters and transferring
knowledge across tasks [14,22,31] as well as languages [24]. Fine-tuned adapters
require less storage than fully fine-tuned pre-trained models.

In this paper, we propose cross-lingual training of datasets in WLs with
adapters to mitigate resource scarcity and provide a cost-efficient solution. We
first train Task Adapters (TAs) [23] for each WL and incorporate an interpretable
Adapter Fusion (AF) [22] to combine WL TAs for an effective knowledge transfer
among the heterogeneous sources.

Our contributions for this paper are summarized as follows2:

– We extensively analyze the WL AF models on the multilingual CW claim
detection task and evaluate the models on zero-shot learning (i.e., the tar-
get languages were unseen during training). We show that the models could
perform better than monolingual TAs and fully fine-tuned models. They also
outperformed the related best performing methods in some languages. In
addition, zero-shot learning is possible with the WL AF models.

– We construct an evaluation to quantify the performance of the models on
claims about global/local topics across the languages. Our approach for
curating the evaluation set could be reused for the assessment of other mul-
tilingual, social tasks.

1 https://bit.ly/3eMIZ9q.
2 We share our source code at https://bit.ly/3rH6yXu.

https://bit.ly/3eMIZ9q
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– We present a detailed ablation study for understanding the limitations of AF
models and their behavior on the CW task.

2 Related Work

2.1 Identifying Check-Worthy Claims

Early studies applied feature engineering to machine learning models and neural
network models to identify CW claims in political debates and speeches. Claim-
Buster [12,13] was one of the first approaches using a Support Vector Machine
(SVM) classifier trained on lexical, affective feature sets. Gencheva et al. [7]
combined sentence-level and contextual information from political debates for
training neural network architectures. Lespagnol et al. [17] employed informa-
tion nutritional labels [6] and word embeddings as features. Vasileva et al. [35]
applied multitask learning from different fact-checking organizations to decide
whether a statement is CW. Jaradat et al. [15] used MUSE word embeddings to
support the CW detection task in English and Arabic.

CheckThat! (CT) organized multilingual CW detection tasks since 2020 [2,
18,21]. They support more languages every year and an increasing number of
multilingual systems have been submitted. Schlicht et al. [28] proposed a model
supporting all languages in the dataset. They used a multilingual sentence trans-
former [26] and then fine-tuned the model jointly on a language identification
task. Similarly, Uyangodage et al. [34] fine-tuned mBERT on a dataset containing
balanced samples for each language. Recently, Du et al. [5] fine-tuned mT5 [37]
on the CW detection task, jointly with multiple related tasks and languages by
inserting prompts. All of the listed methods were limited to the languages they
were trained on.

Kartal and Kutlu [16] evaluated mBERT for zero-shot learning in English,
Arabic and Turkish, and observed the performance drop in cross-training. A
more effective method would be required for cross-lingual training. Furthermore,
none of the approaches tackled the resource efficiency issue. In this paper, we
use adapters and train them only on WLs for resource efficiency and evaluate
unseen languages, leveraging AF to understand which target language in the
dataset benefits from transferring knowledge from WLs.

2.2 Adapters

Adapters have been successfully applied to pre-trained models for efficient fine-
tuning to various applications. Early studies [14,22] used adapters for task adap-
tation in English. Pfeiffer et al. [22] propose an AF module for learning to com-
bine TAs as an alternative to multi-task learning. Some researchers [24,25,33]
exploit language-specific adapters for cross-lingual transfer. This paper builds
upon the works of [22,25]. We exploit a cross-lingual training set to learn TAs
and then use AF to combine them effectively and provide interpretability on
which source TAs are efficient on the target language.
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Table 2. Statistics of CT21 and CT22.

CT21 CT22

Split Total %CW Total %CW

ar Train 3444 22.15 2513 38.28

Dev 661 40.09 235 42.55

Test 600 40.33 682 35.28

es Train 2495 8.02 4990 38.14

Dev 1247 8.74 2500 12.20

Test 1248 9.62 4998 14.09

en Train 822 35.28 2122 21.07

Dev 140 42.86 195 22.56

Test 350 5.43 149 26.17

tr Test 1013 18.07 303 4.62

bg Test 357 21.29 130 43.85

nl Test - - 666 47.45

Table 3. Statistics of Global and Local
Topics

CT21 CT22

Split Total %CW Total %CW

ar Global 269 43.12 116 46.55

Local 40 42.5 - -

es Global 1208 9.93 148 22.97

Local - - 917 12.43

nl Global - - 103 56.31

Local - - 15 46.67

en Global 349 5.44 14 28.57

tr Global 887 8.91 - -

bg Global 356 21.35 25 32

3 Datasets

3.1 Task Datasets

We looked for multilingual datasets in WLs and other languages for the exper-
iments. CT21 [29] and CT22 [18] are the only publicly available datasets that
meet this requirement. CT21 includes English, Arabic, Turkish, Spanish, and
Bulgarian samples. It deals mainly with Covid-19 events, except for the Spanish
samples, which focus only on politics. Compared with CT21, CT22 also includes
samples in Dutch. The English, Arabic, Bulgarian, and Dutch samples in the
dataset build on the corpora on Covid-19 [1]. The researchers collected new
samples in Turkish and Spanish. The Spanish samples were augmented with
CT21.

The statistics of the datasets are shown in Table 2. English, Spanish and Ara-
bic are the WLs contained in the datasets. Both datasets are imbalanced, i,e.
CW samples are under-represented across the languages. Although English is
considered a high-resource language, there are considerably fewer English sam-
ples than samples in other languages. Since some samples of the datasets could
overlap, we conducted our research experiments per dataset.

3.2 Topical Evaluation Dataset

Some countries are culturally dissimilar or might have different political agendas,
thus CW topics might differ among countries. For example, while vaccination
was a globally CW topic throughout the COVID-19 pandemic, some COVID-
19 myths were believed only by a few communities [30]. An ideal multilingual
system should perform well on global as well as local topics.

Global topics are the topics present in all languages in all datasets, while local
topics are present in only one language. We created dedicated datasets to eval-
uate the performance of the WL models for identifying CW claims across global
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Fig. 1. The architecture of the WL+AF models within a transformer. WL+AF+LA
is the setup when the LAs (blocks with the dashed lines) are stacked into the task
adapters.

and local topics. This evaluation dataset contains solely global and local topics
and was created as follows. To learn topics across datasets, we first translated
the datasets into English and encoded them with a sentence transformer [26].
Second, we learned a topic modeling on the training datasets in the WLs by
using BERTopic [10] to assign topics to test samples in all languages. Test sam-
ples with topics present in all WL languages were added as presumably global
topics to the evaluation set. BERTopic labeled topics that are unrelated to the
learnt topics with -1. To select samples with local topics, we chose the samples
labeled with -1 from the evaluation and applied a new topic modeling on them.
Test samples with topics that were not present in the test dataset of any other
language (i.e., local topics) were added to the evaluation set for local topics. The
statistics of the local and global evaluation sets are presented in Table 3.

4 Methodology

4.1 World Language Adapter Fusion

This section describes the WL+AF models. The WL+AF models are trans-
formers containing additional modules called adapters. During training, only
the adapters are trained and the weights of pre-trained model are frozen. There-
fore, it is a parameter-efficient approach. We experiment with two types of
WL+AF models. WL+AF is a standard setup for combining WL task adapters.
WL+AF+LA has additional language adapters (LAs) [24] by stacking task
adapters. We illustrate the architecture of the models in Fig. 1. The input of
the architecture is a text while the output is a probability score describing the
check-worthiness of the input.
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Transformer Encoder. To provide cross-lingual representations, we use mul-
tilingual BERT (mBERT) [4] and XLM-Roberta (XLM-R) [3]3. Because the
transformers were previously used by the related studies [1,34]. Furthermore,
there are publicly available LAs for the transformers. Before encoding text with
transformers, we first clean it from URLs, mentions and retweets, then truncate
or pad it to 128 tokens.

Task Adapter. The annotations might be affected by the different cultural
backgrounds and events across the countries, like the CW claims. Additionally,
some may have been created from journalists following manual fact-checking
procedures while others stem from crowd-sourcing [18,21] For these reasons, we
treat each WL dataset as a separate task. Then, we obtain TAs by optimizing
on their corresponding WL dataset. TAs consist of one down projection layer
followed by a ReLU activation and one up projection layer [23]. The TA of each
WL is fine-tuned on its corresponding dataset.

Adapter Fusion. To share knowledge from the different TAs for predicting
samples in an unseen language or new topics, we need to combine them effec-
tively. AF is a method for combining multiple TAs, and mitigating the common
issues of multi-task learning, such as catastrophic forgetting and complete model
retraining for supporting new tasks [22]. AF consists of an attention module
which learns how to combine knowledge from the TAs dynamically. By analyz-
ing the attention weights of the AF, we could learn which source task adapter
contributes more to test predictions. We combine the TAs trained on the WLs
with an AF. Then, the AF is fine-tuned on mixed datasets of the WLs to use
for the target languages.

Language Adapter. To learn CW claim detection from various cross-lingual
sources, we should ensure that the model does not learn a language classifica-
tion task but learns how to identify CW claims. Therefore, we need to separate
language-specific knowledge from task-specific knowledge. A recent study [24]
demonstrated that LAs achieved better results when transferring the knowledge
of a task performed in one source language into another language. To encode
language-specific information into the transformer model and to see the LAs
impact on the performance of the AF models, we use the LAs from Adapter
Hub [23]. The architecture of the LAs is analog to those of the TAs. However,
these LAs were pre-trained on the unlabeled Wikipedia [24] by using a masked
language model objective. While learning task-specific transformations with TAs,
each world LA is stacked on its corresponding TA. The weights of the LAs are
kept frozen, so they are not learned again. During inference of the target task,
the source LA is replaced with the target LA.

4.2 Implementation Details

We download the pre-trained transformers from Huggingface [36]. We fine-tune
the TAs on English, Arabic, and Spanish training samples (WLs), and evaluate
3 We use the base version of the model, which consists of 12 layers.
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the models for their capability of zero-shot learning by testing on the other
languages. As LAs for Arabic, English, Spanish and Turkish samples in the
dataset [24], we download the pre-trained LAs from Adapter Hub [23] for both
transformers. However, a LA for Bulgarian and Dutch is not available in Adapter
Hub, therefore, we use the English LA.

We use the trainers of AdapterHub [23] for both full fine-tuning and adapter
tuning. We set the number of epochs as 10 and train the models with a learning
rate of 1e-4 for CT21 and 2e-5 for CT224, and batch size of 16. We use the best
models on the development set according to the dataset metrics. We repeat the
experiments ten times using different random seeds using an NVIDIA GeForce
RTX 2080.

5 Baselines

We compare the performance of the WL AF models against various baselines:

– Top performing systems: We chose the top-performing systems on CT21
and CT22 which used a single model for the multilingual CW detection
instead of containing language-specific models. Schlicht et al. [28] is a runner-
up5 system on CT21. The original implementation uses a sentence transformer
and the model was fine-tuned on all the language datasets. For a fair compar-
ison, we set the language identification task to WLs and replaced the sentence
transformer with mBERT and XLM-R. The state-of-the-art model on CT22 is
based on mT5-xlarge [5], a multi-task text-to-text transformer. Like Schlicht
et al., the model is fine-tuned on all of the corpora by using multi-task learn-
ing. Due to the limited computing resources, we couldn’t fine-tune this model
on WLs alone. We report the results from [5].

– Fully fine tuned (FFT) Transformers (on Single Language): We fine-
tune the datasets on a single language of the WLs to evaluate the efficiency
of cross-lingual learning: AR+FFT, EN+FFT, and ES+FFT. We also add
BG+FFT, ES+FFT, and NL+FFT as the baseline for zero-shot learning.

– Task Adapters (on Single Language): These baselines contain a task
adapter followed by a LA, a widely used setup for cross-lingual transfer learn-
ing with adapters [24]: AR+TA+LA, EN+TA+LA, ES+TA+LA. Comparing
our model to these baselines can help understand whether cross-training with
WLs is efficient.

– Other WL Models: We evaluate the AF models against a model containing
a task adapter trained on WLs (WL+TA). In addition to this baseline, to see
if we need a complex fusion method, we use WL+TA+LA+Mean, which takes
the average of the predictions by AR+TA, EN+TA and ES+TA. Finally, we
analyze the adapter tuning on multiple WLs against the fully fine tuning of
mBERT: WL+FFT.

4 2e-5 gives better results on the development set of CT22.
5 BigIR is the state of art approach, but there is no associated paper/code describing

the system.
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Table 4. MAP scores for CT21 and F1 scores for CT22 of the CW detection in WLs.
The bold indicates the best score and underline indicates the second best score. Overall
the AF models performed well on multiple languages while the performance of other
models are sensitive to the characteristics of the training set.

CT21 CT22

ar es en ar es en avg

Du et al. [5] - - - 62.8 57.1 51.9 -

mBERT AR+FFT 50.17 15.78 6.03 55.52 17.85 42.92 31.38

ES+FFT 41.22 20.30 6.80 37.30 54.05 45.28 34.16

EN+FFT 51.63 15.90 10.80 40.97 22.49 44.29 31.01

AR+TA+LA 58.20 19.97 8.62 18.13 17.61 45.73 28.04

ES+TA+LA 48.07 18.93 11.06 37.30 54.05 45.73 35.86

EN+TA+LA 50.81 40.81 21.21 56.39 24.63 12.93 34.46

WL+FFT 47.93 51.50 13.85 51.50 63.20 39.94 44.65

Schlicht et al. [28] 51.51 31.04 7.87 45.93 66.48 34.18 39.50

WL+TA 53.77 46.58 14.44 39.54 62.69 37.19 42.37

WL+TA+LA+Mean 54.89 35.72 12.96 0.00 33.21 51.03 31.30

WL+AF 55.13 46.29 16.05 36.45 64.32 39.73 42.96

WL+AF+LA 55.32 46.58 15.66 39.87 64.64 37.27 43.22

XLM-R AR+FFT 43.55 12.80 5.88 38.72 6.83 41.29 24.85

ES+FFT 41.22 15.90 6.80 40.25 21.69 43.51 28.23

EN+FFT 43.64 10.49 5.64 31.46 64.66 45.69 33.60

AR+TA+LA 58.16 25.87 7.64 6.93 0.06 1.40 16.68

ES+TA+LA 50.27 52.51 11.53 41.24 65.45 38.79 43.30

EN+TA+LA 56.39 24.63 12.93 12.82 0.06 28.74 22.60

WL+FFT 47.93 13.85 6.37 44.53 64.75 50.93 38.06

Schlicht et al. [28] 51.56 21.61 7.32 42.59 67.13 36.40 37.77

WL+TA 58.02 50.76 11.53 42.91 63.36 31.69 43.05

WL+TA+LA+Mean 59.32 46.11 10.49 25.32 35.55 35.28 35.35

WL+AF 58.39 49.42 13.29 39.84 65.66 46.96 45.59

WL+AF+LA 58.83 47.26 16.06 35.17 65.80 43.46 44.43

6 Results and Discussion

In this section, we present and analyze the results of the WL AF(+LA) models.
We compare the models performance at CW detection for (1) WLs (2) zero-shot
languages and (3) local and global topics. Lastly, we compare the performance
of WL+AF and WL+AF+LA to investigate whether LA is effective in model
performance.

As seen in Table 4, the models trained on single languages are able to perform
well for other WLs if only provided with training sets of considerable size, or
language of the training and test sets are same. Additionally, Schlicht et al.
[28] and WL+FFT were performing well only on CT22, overall, the AF models,
perform well for various languages. Du et al. [5] outperformed the AF models
for Arabic and English samples of CT22, but it underperformed for the Spanish
samples.

As shown in Table 5, the AF models achieve good results on target sets in
zero-shot languages. It shows that the fusion of multiple sources with adapters
could be beneficial in knowledge transfer and is better than the other fusion
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Table 5. MAP for CT21 and F1 for CT22 of the CW detection in zero-shot languages.
The bold indicates the best score and underline indicates the second best score. The
AF models performed well, even outperformed WL+FFT and Schlicht et al. [28] and
some of the monolingual approaches in terms of average score.

CT21 CT22

tr bg tr bg nl avg

Du et al. [5] - - 17.3 61.7 64.2 -

BG+FFT - 35.64 - 57.16 - -

TR+FFT 28.47 - 14.66 - - -

NL+FFT - - - - 49.80 -

mBERT AR+FFT 30.14 22.12 10.71 54.84 45.55 32.67

ES+FFT 23.17 24.15 8.19 47.67 33.82 27.4

EN+FFT 42.80 33.20 13.57 54.58 54.32 39.69

AR+TA+LA 58.08 26.76 8.04 57.43 58.99 41.86

ES+TA+LA 49.09 28.09 8.58 47.67 42.16 35.12

EN+TA+LA 54.16 44.98 8.19 33.92 33.82 35.01

WL+FFT 27.61 24.29 10.90 58.53 29.03 30.07

Schlicht et al. [28] 27.81 24.41 7.86 51.94 29.33 28.27

WL+TA 54.11 37.04 9.73 48.02 36.95 37.17

WL+TA+LA+Mean 62.32 34.52 12.02 47.17 39.91 39.19

WL+AF 50.46 39.80 9.63 53.55 38.76 38.44

WL+AF+LA 50.94 40.27 9.73 52.75 43.07 39.35

BG+FFT - 24.68 - 43.47 - -

TR+FFT 24.57 - 18.90 - - -

NL+FFT - - - - 58.61 -

XLM-R AR+FFT 23.40 21.86 11.62 45.10 38.73 28.14

ES+FFT 23.17 24.15 9.07 62.72 31.24 30.07

EN+FFT 22.63 21.76 18.43 49.25 45.62 31.54

AR+TA+LA 56.19 21.37 0.48 9.75 5.22 18.60

ES+TA+LA 44.98 23.86 8.04 46.72 30.52 30.82

EN+TA+LA 58.38 41.61 15.19 8.42 25.83 29.89

WL+FFT 27.61 24.29 14.02 63.79 36.34 33.21

Schlicht et al. [28] 25.86 22.19 9.55 53.75 24.44 27.16

WL+TA 59.37 39.72 15.60 66.14 35.98 43.36

WL+TA+LA+Mean 63.65 32.28 9.90 31.27 19.91 31.40

WL+AF 57.46 46.86 12.73 59.12 40.83 43.4

WL+AF+LA 61.74 41.78 17.77 63.88 37.59 44.55

Table 6. F1 scores of the models on global topics for each dataset. Adapter training is
more effective than fully fine-tuning. Although WL+TA outperformed the AF models
in particular languages, at average the AF models performed better.

CT21 CT22

tr es ar en bg es ar en bg nl avg

WL+FFT 0.00 0.00 2.60 0.59 0.10 77.59 52.13 52.05 48.52 38.53 27.21

Schlicht et al. [28] 18.15 17.92 58.84 7.18 19.75 81.81 48.12 28.33 36.55 30.34 34.70

WL+TA 52.37 38.09 61.01 13.58 38.44 77.28 45.47 22.57 41.31 45.09 38.52

WL+AF 45.02 41.57 61.51 13.36 36.23 79.14 44.61 50.96 40.58 43.19 45.62

WL+AF+LA 48.52 37.44 61.79 13.38 28.72 77.95 42.84 44.23 41.09 43.99 44.00
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Table 7. F1 scores of the models on local topics for each dataset. The AF models show
similar results to WL+TA and outperformed WL+FFT.

CT21 CT21

ar es nl avg

WL+FFT 0.93 60.64 31.11 30.89

Schlicht et al. [28] 46.80 64.65 14.44 41.96

WL+TA 50.88 61.65 38.47 50.33

WL+AF 48.15 62.01 34.38 48.18

WL+AF+LA 46.41 63.07 41.16 50.21

Table 8. Number of training parameters and file size comparisons for the models. mT5
is larger than mBERT and XLM-R.

Model Base model Parameters Model size

WL+FFT mBERT 178 M 711.5 MB

XLM-R 278 M 1.1 GB

Schlicht et al. [28] mBERT 179 M 716.3 MB

XLM-R 279 M 1.1 GB

TA & WL+TA mBERT 1.5 M 6 MB

XLM-R 1.5 M 6 MB

AF mBERT 22 M 87.4 MB

XLM-R 22 M 87.4 MB

LA mBERT - 147.78 MB

XLM-R - 147.78 MB

mT5 3.7 B 15 GB

method WL+TA+LA+Mean. It is noteworthy that Du et al [5] was trained on
all samples of the training datasets and hence has no zero-shot learning capacity.
Although Du et al. achieved a better performance on the Dutch samples, the
AF models could obtain similar results in other languages. In terms of resource
efficiency, the AF models required less space than WL+FFT and mT5 for storing
new weights, as shown in Table 8, which make them more suitable than updating
mT5 for newsrooms with a limited budget.

We compare the performance of models trained on multiple WLs for identify-
ing CW claims about global or local topics. We tested this experiment with the
evaluation set described in Sect. 3.2 in terms of F1 score. We take the average of
the scores of the models coded with mBERT and XLM-R and present them in
Tables 6 and 7, respectively, for global and local topics. Overall, the AF models
performed better than WL+FFT and Schlicht et al. [28] for both types. However,
WL+TA performed similarly to WL+AF+LA in predicting local statements in
Arabic samples in CT21.

Last, we compare the performance of WL+AF and WL+AF+LA to inves-
tigate whether LA is effective in model performance. We computed the Fleiss
Kappa scores of the AF models for each experiment and language. The overall
score is 0.63, which is a moderate agreement. We further investigate the disagree-
ments where the kappa is below 0.5. The conflicts mainly occurred in the zero
shot languages and English, with the lowest CW samples on both datasets. Since
sometimes WL+AF+LA is better than WL+AF and vice versa, we conclude that
LA is not effective in our experiments. The pre-trained LAs were trained on the
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Fig. 2. The left images are topical relation graphs of CT21 (top left) and CT22 (bottom
left). In the graphs, the size of the nodes varies by the number of samples, and the edge
thickness depends on the overlapping topics. x-axis of heatmaps shows task adapters,
y-axis shows the test samples in the different languages. (b) (c) attention heatmaps of
mBERT (e) (f) attention heatmaps of XLM-R. Topical distribution, and the sample
sizes of the training datasets impact the task adapters’ activations. Especially XLM-R
TAs are more sensitive than mBERT.

Wikipedia texts [24]. Thus, they might miss the properties of social texts, which
are mostly noisy.

7 Further Analysis

In this section, we present further analysis of the AF models. We investigate AF
attentions and then apply an error analysis on the models’ predictions.

Interpretation of the Fusion Attentions. The AF models can provide an
interpretation of which source task adapter might be useful when transferring
the knowledge into the target dataset. This kind of analysis would help a data
scientist at a newsroom on a decision on which WL should be collected for
updating model and managing new resources. To check the AF behavior on
WL+TA+LA+AF, we took the average of the softmax probabilities of the layer
of each task adapter in the fusion layer. The higher probability means the more
useful the task for determining the label [22]. In addition, to correlate the atten-
tion with the source datasets, we created a graph displaying the topical rela-
tionship between source and target sets. In the graph, the nodes are the mono-
lingual datasets; the edges are the overlapped topics between the source and
target dataset, weighted by the percentage of the samples about the overlapped
topic. The size of nodes are scaled according to sample size. Figure 2 shows
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Fig. 3. The CW claims predicted correctly by the WL+TA+AF, the examples are in
Spanish and Bulgarian. The order of the texts for each example: 1) Visualizations on
mBERT, 2) Visualizations on XLM-R 3) English translation. The models focus more
on GPE (e.g. country names) than the other entity types. We colorized the claims
based on their integrated gradients [32].

Table 9. The performance of the AF model at predicting entity types in terms of
average F1 and the standard deviation. The models could predict GPE more accurately
than the others.

Geo-political Entity Organization Number People

F1 46.83 ± 17.37 40.44 ± 18.62 40.99 ± 22.52 37.88 ± 18.83

the graph for both datasets and the attention weights of mBERT and XLM-R
task adapters. Topical distributions and source datasets’ size affect which task
adapter activates. XLM-R TAs are more sensitive to the source data size and
topical relationship. For instance, the Spanish tests in CT22 are weakly con-
nected with the Arabic and English source datasets, and the Spanish TA of
XLM-R has less activation than the mBERT TA.

Error Analysis. Last, we analyze the misclassified/correctly classified samples
by both AF models. As shown in Fig. 3, we noted that the AF model focuses
on geo-political entities (GPE). The models could categorize the claims with
GPE better than claims containing other type of entities as shown in Table 9.
The importance of the GPE could be learned from the WL corpus whose CW
samples have no negligible amount of these entities (e.g. %76 of CT21 and %77 of
CT22 Arabic source datasets are GPE). However, the models cannot predict the
claims requiring local context, especially in the zero-shot languages. Moreover,
the models cannot identify the claims whose veracity can be changed to not CW
by time. Some examples are shown in Table 10.

Training Efficiency. We measured the models’ training time for one epoch on
the datasets. The TA training is on average 4 min less than the fully fine tuning.
However, the AF training without LAs lasts 3 min more, and the training with
LAs 9 min more than the training time of WL+FFT which was approx. 22 min.
The methods such as AdapterDrop [27] could speed up the AF training.
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Table 10. The Turkish examples of CW claims that are misclassified by the AF models.
Additionally, we present their English translations and claim explanations.

Example 1: Bunu hep yazdım yine yazacağım , Bakanların aileleri , annesi - babası
tam kapsamlı sağlık tedavileri buna ( Estetik dahil ) devlet bütcesinden karşılanıyor
da , SMA hastası çocukların tedavisi için niye bir bütçe oluşturulmuyor [UNK]
[UNK] # DevletSMAyıYaşatsın

Translation: I’ve always written this and I will write it again. The families of the
ministers, their mother-father full health treatments (including Aesthetics) are
covered by the state budget, but why isn’t a budget created for the treatment of
children with SMA [UNK] [UNK] # Let The State Live

Explanation: Example of a CW claim that requires local context. SMA is a disease
that affects children, and the treatment of SMA is a controversial issue in Turkey

Example 2: Koronavirüs salgınında vaka sayısı 30 bin 021 [UNK] e ulaştı #
Corona # COVID # coronavirus

Translation: The number of cases in the coronavirus epidemic reached 30
thousand 021 [UNK] # Corona # COVID # coronavirus

Explanation: An example of a CW claim whose veracity could be changed by time

8 Conclusion and Future Work

In this paper, we investigated the cost efficient cross-training of adapter fusion
models on world languages to detect check-worthiness in multiple languages.
The proposed solution performs well on multiple languages, even on zero-shot
learning. Thanks to adapter fusion, the effectiveness of the adapters on particular
languages was possible.

The attention of some task adapters seems to depend on the topic and sam-
ple distribution in the source dataset. Ensuring a topical balance across world
languages appears to be important. Our error analysis results indicate that local
context is required to detect local claims. We recommend the usage of back-
ground knowledge injection to detect local claims.

In the future, we would like to investigate the injection of background knowl-
edge in adapters and verify our results in additional domains (e.g. war), employ-
ing more languages such as German and focusing on zero-shot learning.
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35. Vasileva, S., Atanasova, P., Màrquez, L., Barrón-Cedeño, A., Nakov, P.: It takes
nine to smell a rat: Neural multi-task learning for check-worthiness prediction. In:
Mitkov, R., Angelova, G. (eds.) Proceedings of the International Conference on
Recent Advances in Natural Language Processing, RANLP 2019, Varna, Bulgaria,
September 2–4, 2019, pp. 1229–1239. INCOMA Ltd. (2019)

36. Wolf, T., et al.: Transformers: State-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, Online (2020)

37. Xue, L., et al.: mt5: a massively multilingual pre-trained text-to-text transformer.
In: Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp.
483–498 (2021)



Market-Aware Models for Efficient
Cross-Market Recommendation

Samarth Bhargav(B) , Mohammad Aliannejadi , and Evangelos Kanoulas

University of Amsterdam, Amsterdam, The Netherlands
{s.bhargav,m.aliannejadi,e.kanoulas}@uva.nl

Abstract. We consider the cross-market recommendation (CMR) task,
which involves recommendation in a low-resource target market using
data from a richer, auxiliary source market. Prior work in CMR utilised
meta-learning to improve recommendation performance in target mar-
kets; meta-learning however can be complex and resource intensive. In
this paper, we propose market-aware (MA) models, which directly model
a market via market embeddings instead of meta-learning across markets.
These embeddings transform item representations into market-specific
representations. Our experiments highlight the effectiveness and effi-
ciency of MA models both in a pairwise setting with a single target-
source market, as well as a global model trained on all markets in
unison. In the former pairwise setting, MA models on average outper-
form market-unaware models in 85% of cases on nDCG@10, while being
time-efficient—compared to meta-learning models, MA models require
only 15% of the training time. In the global setting, MA models out-
perform market-unaware models consistently for some markets, while
outperforming meta-learning-based methods for all but one market. We
conclude that MA models are an efficient and effective alternative to
meta-learning, especially in the global setting.

Keywords: Cross-market recommendation · Domain adaptation ·
Market adaptation

1 Introduction

Cross-market recommendation (CMR) involves improving recommendation per-
formance in a target market using data from one or multiple auxiliary source
markets. Data from source markets, which have rich- and numerous interactions,
are leveraged to aid performance in a target market with fewer interactions. For
instance, an e-commerce company well-established in Germany may want to start
selling its products in Denmark. Using CMR methods, data from the German
market can be utilised to augment recommender performance in the Danish mar-
ket. This task is challenging since target market data can be scarce or otherwise
unavailable, and user behaviours may differ across markets [2,7,24].

Research in CMR tackles multiple challenges. One challenge is to select the
best source market, which is crucial since user behaviours across markets may
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vary [2,24], which may harm performance instead of bolstering it. Furthermore,
effectively utilising data from multiple markets at the same time without harming
performance can be challenging [2]. Another key obstacle is effectively modelling
a market, in addition to users and items. Bonab et al. [2] treat recommendation
in each market as a task in a multi-task learning (MTL) framework, using meta-
learning to learn model parameters. This is followed by a fine-tuning step per
market. These two steps enable models to learn both common behaviours across
markets as well as market-specific behaviours. However, meta-learning can be
resource intensive compared to other methods. In addition to this, utilising new
data from source markets requires re-running the meta-learning step.

We propose market-aware (MA) models to address these limitations. We aim
to explicitly model each market as an embedding, using which an item represen-
tation can be transformed and ‘customised’ for the given market. Compared to
meta-learning models, we show that MA models are far more efficient to train.
Furthermore, they are trained in one go, enabling easier model updates when
new data is collected. MA models are built on the hypothesis that explicit mod-
elling of markets allows better generalisation. In essence, an item representation
is a product of (i) an across-market item embedding and (ii) a market embed-
ding. The former is learnt from data across markets, and aims to capture an
item representation applicable across markets; the latter enables market-specific
behaviours to be captured.

In our experiments, we compare MA models with market-unaware baselines
as well as meta-learning models. We do so in multiple settings, utilising data from
several markets: the pairwise setting, which deals with a single target-source
pair, and the global setting which trains one model for recommendation in all
markets. In the pairwise setting, we show that MA models improve over market-
unaware models for many markets, and match or beat meta-learning methods.
This is significant since we show that training MA models require approximately
the same time as market-unaware models and only 15% of the time required to
train meta-learning models. We show that MA models especially excel in the
global setting, outperforming meta-learning methods for nearly every market.
We examine the following research questions1:

RQ1. Given a single source and target market, does explicitly modelling mar-
kets with embeddings lead to effective performance in the target market? We
compare MA models against market-unaware as well as meta-learning mod-
els. We show MA models achieve the best performance for most markets, and
when a single, best source is available they match or outperform baselines for
all markets.
RQ2. How computationally expensive are MA models compared to market-
unaware and meta-learning models? We show that MA models require similar
training times as market-unaware models, and require fewer computational
resources to train compared to meta-learning models while achieving similar
or better performance.

1 https://github.com/samarthbhargav/efficient-xmrec.

https://github.com/samarthbhargav/efficient-xmrec
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RQ3. How do MA models compare against market-unaware models and meta-
learning models when a global model is trained on all markets in unison?
We show that MA models outperform or match market-unaware baselines,
outperforming meta-learning models for all but one market.

2 Related Work

While both cross-domain recommendation (CDR) and CMR focus on improving
recommender effectiveness using data from other domains (i.e. item categories)
or markets, they present different challenges: CDR involves recommending items
in a different domain for the same set of users, with the general assumption that
the model learns from interactions of overlapping users. In CMR, items are
instead shared across different markets, with each market having a different set
of users. Interactions from auxiliary markets are leveraged to boost performance
for users in the target market for a similar set of items.

Cross-domain Recommendation. CDR has been researched extensively
[6,12,14,17,18,20,22,23]. Prior approaches involve clustering-based algorithms
[21] and weighing the influence of user preferences based on the domain [23]. Lu
et al. [20] show that domain transfer may sometimes harm performance in the
target domain. Neural approaches using similarity networks like DSSM [13] or
transfer learning [6,12] can be effective. DDCTR [18] utilises iterative training
across domains. Augmenting data with ‘virtual’ data [4,22], as well as consid-
ering additional sources [27] have been shown to help. Other approaches lever-
age domain adaptation [9] for leveraging content for full cold-start [15], utilis-
ing adversarial approaches [19,25] or formulating it as an extreme classification
problem [26]. Our approach is inspired by contextual invariants [17], which are
behaviours that are consistent across domains, similar to our hypothesis that
there are behaviours common across markets.

Cross-market Recommendation. CMR is relatively new and understudied
compared to CDR. Ferwerda et al. [7] studied CMR from the perspective of
country based diversity. Roitero et al. [24] focus on CMR for music, investigat-
ing trade-offs between learning from local/single markets vs. a global model,
proposing multiple training strategies. [2] release a new dataset for the Cross
Market Product recommendation problem, which we utilise in our experiments.
They design a meta-learning approach to transfer knowledge from a source mar-
ket to a target market by freezing and forking specific layers in their models.
The WSDM Cup 2022 challenge also dealt with this dataset, where most top
teams utilised an ensemble of models based on different data pairs. Cao et al.
[3] builds on the XMRec dataset and proposes multi-market recommendation,
training a model to learn intra- and inter-market item similarities. In this work,
we show that meta-learning methods are expensive to train. Instead, we show
that market embeddings can encode and effectively transfer market knowledge,
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beating or matching the performance of complex models while being much more
efficient to train.

3 Methodology

We outline market-unaware models in Sect. 3.1, followed by market-aware models
as well as meta-learning models in Sect. 3.2.

Notation. Given a set of markets {M0,M1, . . . ,Mt}, such that market l has a
items Il and zl users Ul = {U1

l . . . Uzl
l } . We assume the base market M0 has

I0 s.t. I0 ⊃ Il for all 1 ≤ l ≤ m. The task is to adapt a given market Ml using
data from other markets Mm �=l as well as data from the target market. We use
pu for the user embedding for user u, qi for the item embedding for item i, and
finally ol for the market embedding for market l. yui and ŷui is the actual and
predicted rating respectively. � denotes an element-wise product.

3.1 Market-Unaware Models

These models do not differentiate between users and items from different markets
and are termed market-unaware since they do not explicitly model the market.
We first outline three such models previously employed for CMR [2,11]:

– GMF: The generalized matrix factorization (GMF) model computes the pre-
dicted rating ŷui given pu, qi and parameters h:

ŷui = sigmoid(hT (pu � qi))

– MLP: An multi-layer perceptron (MLP) uses a L layer fully-connected net-
work, such that:

m0 =
[
pu

qi

]

mL−1 = ReLU(WT
L−1ReLU(. . .ReLU(WT

1 m0 + b1)) + bL−1)

ŷui = sigmoid(hTmL−1)

– NMF: neural matrix factorization (NMF) combines both MLP and GMF.
Given p1

u, q1
i for the MLP, and p2

i , q2
u for GMF, the NMF model computes

the score as follows:

m0 =
[
p1
u

q1
i

]

mMLP = ReLU(WT
LReLU(. . .ReLU(WT

1 m0 + b1))) + bL)

mGMF = p2
u � q2

i

ŷui = sigmoid(hT

[
mGMF

mMLP

]
)
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For adapting to CMR, different sets of users from different markets are
treated similarly, and training is performed on a combined item pool result-
ing in a single model. During inference for a user, however, only items from that
market are ranked.

3.2 Market-Aware Models

We first discuss models proposed by Bonab et al. [2], followed by our proposed
methods.

Meta-learning Baselines. Bonab et al. [2] propose using meta-learning in
an MTL setting where each market is treated as a ‘task’. model-agnostic met-
alearning (MAML) [8] is employed to train the base NMF model across markets.
MAML employs two loops for training, an inner loop that optimises a particular
market, and an outer loop that optimises across markets. This makes training
expensive, as we will show in our experiments. Once a MAML model is trained,
the FOREC model is obtained as follows for a given source/target market: (a) the
MAML model weights are copied over to a new model, ‘forking’ it, (b) parts of
the weights of the model are frozen and finally (c) the frozen model is fine-tuned
on the given market.

Both MAML and FOREC are market aware but do not explicitly model the
market i.e. a single item embedding is learned in MAML models for all mar-
kets, and while market adaptation is achieved through fine-tuning for FOREC,
it requires maintaining separate sets of parameters, unlike the proposed MA
models.

Market Aware Models. Markets here are explicitly modelled by learning
embeddings for each of them, in addition to user and item embeddings. A mar-
ket embedding adapts an item to the current market, which we argue is crucial
for items that may be perceived differently in different markets. This aspect
should be reflected in the latent representation of the item, motivating our app-
roach. Both meta-learning and MA models learn item representations across
markets, but MA models this explicitly via an element-wise product between a
representation for an item and a market embedding. This produces item embed-
dings adapted to a given market. We augment the market-unaware baselines with
market embeddings, producing MA models. We leave more complex methods,
for instance—a neural network that models item/market interactions instead of
an element-wise produce—for future work.

To obtain a market-adapted item embedding, we first (one-hot) encode a
market l, to obtain a market embedding ol; the dimensionality of ol is the same
as pu and qi. The scores are computed as follows for the three proposed models:

– MA-GMF: For a user u in market l, and item i, we have embeddings pu, ol

and qi:

ŷui = sigmoid(hT (pu � (ol � qi)))
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– MA-MLP: This is the same as the MLP, with the initial embedding m0

augmented with market information: m0 =
[

pu

qi � ol

]

– MA-NMF: The NMF model utilises both modifications listed above. That
is:

mGMF = p2
u � (ol � q2

i )

m0 =
[

p1
u

q1
i � ol

]

These models are trained similarly to the market-unaware models, except
the market is taken into consideration when making recommendations. Mar-
ket embeddings are learned via backpropagation, similar to how user and item
embeddings are learned, using a binary cross entropy loss [11].

Our proposed technique adds market awareness to all the models. Besides
this, the proposed models are easier to update with new interactions compared
to MAML/FOREC. While FOREC requires the expensive MAML pre-training
followed by the fork and fine-tune step, MA models simply can be trained with
new interaction data. In spite of this simplicity, MA models achieve similar
performance compared to meta-learning models while requiring far lesser time
to train, which we demonstrate in the following section.

4 Experimental Setup

We conduct two sets of experiments. The first set of experiments trains models
with a single auxiliary source market for improving recommendation perfor-
mance in a given target market. We term these pairwise experiments since one
model is trained for a given source-target market pair. The second set of exper-
iments deals with a global model trained on all markets in unison, with the goal
of improving overall performance. We outline the dataset, evaluation, baselines,
hyperparameters and training followed by a description of the experiments.

Dataset. We use the XMarket dataset [2] for all experiments. XMarket is an
CMR dataset gathered from a leading e-commerce website with multiple mar-
kets. We utilise the largest subset, ‘Electronics’, considering the following mar-
kets (# users, # items, # interactions): de (2373/ 2210/ 22247), jp (487/ 955
/4485), in (239/ 470/ 2015), fr (2396/ 1911/ 22905), ca (5675/ 5772/ 55045), mx
(1878/ 1645/ 17095), uk (4847/ 3302/ 44515), us (35916/ 31125/ 364339). We
consider all markets except us as a target market, with all markets (including
us) as possible source markets. Experiments are limited to XMarket as it is the
only public dataset for research in CMR.

Evaluation. The data (per market) is split into a train/validation/test set,
where one left-out item from the user history is used in the validation and test



140 S. Bhargav et al.

set. This follows the leave-one-out strategy [5,10–12,16]. We extract 99 negatives
per user for evaluating recommender performance in the validation/test set,
following Bonab et al. [2]. In the pairwise experiments, the best-source market
is picked based on the validation set performance. We report nDCG@10 on the
test set in all results, with significance tests using a paired two-sided t-test with
the Bonferroni correction. While we report only nDCG@10, we note that we
observed similar trends for HR@10.

Compared methods. Market-aware models are denoted with an ‘MA-’ prefix,
and are compared with the following models:

– Single-market models: These are models trained only on the target market
data without any auxiliary source data, see Sect. 3.1. We train all three models
GMF, NMF and MLP.

– Cross-market models: In addition to target market data, these models are
trained with either one source market (for pairwise experiments), or all source
markets (for global experiments). Models trained with at least one source
market have a ‘++’ suffix e.g. GMF++ and MA-GMF++.

– Meta-learning models (see Sect. 3.2) similarly utilise data from one or more
auxiliary markets:

• MAML [2,8]: These are models trained using MAML, with weights ini-
tialised from a trained NMF++ model [2].

• FOREC [2]: This model uses the trained MAML model to first freeze
certain parts of the network, followed by a fine-tuning step on the target
market.

Model hyperparameters. We set model parameters from [2]2: the dimen-
sionality of the user, item, and market embeddings are set to 8, with a 3-Layer
[12,23,23] network for MLP/NMF models. For MAML models, we set the fast
learning rate β = 0.1 with 20 shots.

Training. All models are trained for 25 epochs using the Adam optimiser with
a batch size of 1024. We use learning rates from [2], for GMF we use 0.005, for
MLP and NMF we use 0.01. All models also utilise an L-2 regularisation loss with
λ = 1e − 7. The NMF model is initialised with weights from trained GMF and
MLP models. MAML models are trained on top of the resulting NMF models,
and FOREC models utilise the trained MAML models for the fork-and-fine-tune
procedure [2]. MA variants use the same hyperparameters as the market-unaware
models. The objective function for all models is binary cross-entropy, given pos-
itive items and 4 sampled negatives [2,11]. For pairwise experiments, data from
the source market is (randomly) down-sampled to the target market [2], which
ensures that models are comparable across different-sized source markets. For
global models, all data is concatenated together without any down-sampling3.
2 https://github.com/hamedrab/FOREC.
3 We observed that this greatly improved performance for almost all markets.

https://github.com/hamedrab/FOREC
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Table 1. AVG results: Models are first trained on a single target-source pair and perfor-
mance across sources are averaged. We report the nDCG@10 on the test set, with best
performance in bold. Significance test (p < 0.05

9
) results are also reported comparing

MA models with market-unaware (‡), MAML (∗) and FOREC (+).

Method de jp in fr ca mx uk

GMF++ 0.2045 0.0916 0.1891 0.2026 0.1937 0.4204 0.3222
MA-GMF++ 0.2148‡ 0.1079 0.2013 0.2022 0.2203‡ 0.4283‡ 0.3327‡

MLP++ 0.2836 0.1653 0.4376 0.2704 0.2905 0.5274 0.4346
MA-MLP++ 0.2909‡+∗ 0.1741 0.4502 0.2805‡ 0.3073‡+∗ 0.5311 0.4349∗

NMF++ 0.2927 0.1826 0.4403 0.2844 0.2844 0.5367 0.4379
MA-NMF++ 0.3055‡+∗ 0.1824 0.4471 0.2893+∗ 0.3002‡+∗ 0.5387+∗ 0.4370∗

MAML 0.2808 0.1770 0.4320 0.2785 0.2794 0.5288 0.4296
FOREC 0.2835 0.1758 0.4345 0.2816 0.2772 0.5302 0.4330

Pairwise Experiments. The first set of experiments dealing with RQ1 and
RQ2, which we call pairwise (Sect. 5.1), assumes a single auxiliary market is
available for a given target market. Since there are multiple source markets, we
report both the average performance in the target market across source markets
— termed AVG — as well as performance in the target market using the best
source market, termed BST . The two tables relay different results: the average
performance indicates the expected performance of a method since the ‘best’
source market might be unknown, or only a single source may exist; whereas the
best-source results are indicative of the maximum achievable performance if a
good source market is already known (this is typically unknown [24]).

Global Experiments. The second set of experiments corresponding to RQ3
utilises data from multiple auxiliary markets at once to train a global recom-
mender, with the goal to achieve good performance for all markets. We term
these experiments Global (Sect. 5.2). We describe the results of the two sets of
experiments in the following section.

5 Results and Discussion

5.1 Pairwise Experiments

Tables 1 and 2 report the results of the pairwise experiments, where the models
only use one auxiliary market at a time. We report both AVG , the average per-
formance of models using different auxiliary markets for the same target market
(Table 1), as well as BST , the best auxiliary market (Table 2). The best auxil-
iary market is determined based on the validation set performance. Moreover,
the results of the single-market baseline models are only reported in Table 2.
We first examine RQ1, comparing the performance of MA models against base-
lines in both the AVG and BST settings. We end with discussion of RQ2, which
compares training times across models.
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Do MA models improve over market unaware models on average?
Using Table 1, we first examine if MA models outperform market-unaware mod-
els in the AVG setting e.g. GMF++ against MA-GMF++. We see that the
MA-GMF++ outperforms GMF++ for every market except fr. MA-MLP++
outperforms MLP++ for all markets, and MA-NMF++ outperforms NMF++
on all markets except jp and uk. For the de and ca markets, we see that MA
models always outperform their non-MA variant. In addition, for the uk and
mx markets, MA-GMF++ significantly outperforms GMF++; and for fr we see
that MA-MLP++ significantly outperforms MLP++. Despite large improve-
ments in some markets e.g. MA-MLP++ improves nDCG@10 by 0.12 points
over MLP++ for in, we do not see a significant result, which may be due to the
conservative Bonferroni correction, or fewer test users for in (requiring larger
effect sizes). Overall, MA models outperform their market unaware equivalent
in 18 of 21 settings. In summary, we can conclude that in the AVG setting, the
proposed market-aware models outperform market-unaware baselines for nearly
all markets. This demonstrates the robustness of MA models since these improve-
ments are across multiple source markets.

How do MA models compare against meta-learning models in the AVG
setting? We compare MA models against MAML and FOREC considering AVG ,
in Table 1. MA-GMF++ never outperforms MAML/ FOREC, but the differences
in model sizes render this comparison unfair. A fairer comparison would be with
MA-NMF++: we see that it outperforms MAML for 5 of 7 markets: de, fr, ca, mx
and uk. Additionally, FOREC is significantly outperformed by MA-NMF++ for
4 of 7 markets: de, fr, ca and mx. We note, however, that at least one MA model
outperforms both MAML/FOREC for all markets, and at least one MA model
significantly outperforms MAML/FOREC for de (both), fr (both), ca (both),
mx (MAML only) and uk (MAML only). Therefore, we can thus conclude that
market-aware models either match or outperform meta-learning models for many
markets in AVG setting.

Do MA models outperform market-unaware models when trained
with the best available source? Viewing Table 2, we first note that MA
models outperform all single market variants, highlighting the utility of selecting
a good source market, consistent with prior research [2,24]. MA models signif-
icantly outperform single-market variants depending on the market and model,
with more significant improvements seen for MA-GMF++ (5 of 7 markets) than
MA-MLP++ (3 of 7) or MA-NMF++ (3 of 7). Consistent improvements over
the single-market models are surprisingly seen for some larger markets i.e. ca
and de (but not for uk), showing larger markets can sometimes benefit from
auxiliary market data. However, the results are less consistent when comparing
the MA models with their augmented but market-unaware models, especially as
model size increases. MA-GMF++ improves over GMF++ in 4 of 7 markets,
MA-MLP++ improves over MLP++ in 3 of 7 markets, and finally, MA-NMF++
improves over NMF++ only in 2 markets. In fact, for in, fr, mx and uk, we see
that NMF++ outperforms MA-NMF++. Furthermore, only MA-NMF++ on ca
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Table 2. BST : Models are trained on all source markets, the best source is selected
based on validation set performance. We report nDCG@10 on the test set, along with
significance test results (p < 0.05

12
) comparing MA models with single market (†), market

unaware (‡), MAML (∗) and FOREC (+).

Method de jp in fr ca mx uk

GMF 0.2574 0.0823 0.0511 0.2502 0.2566 0.5066 0.4136
GMF++ 0.2670 0.1093 0.2838 0.2708 0.2818 0.5338 0.4399
MA-GMF++ 0.2831† 0.1453† 0.3338† 0.2654 0.2907† 0.5145 0.4336†

MLP 0.2986 0.1340 0.4506 0.2869 0.2934 0.5367 0.4465
MLP++ 0.3170 0.1865 0.4470 0.3016 0.3100 0.5455 0.4585
MA-MLP++ 0.3167† 0.1806† 0.4584 0.3026 0.3105†+∗ 0.5419 0.4544
NMF 0.3214 0.1717 0.4265 0.3014 0.2848 0.5430 0.4488
NMF++ 0.3332 0.1921 0.4595 0.3271 0.3008 0.5590 0.4702
MA-NMF++ 0.3415†+∗ 0.1896 0.4433 0.3228† 0.3158†‡+∗ 0.5573 0.4578
MAML 0.3168 0.2083 0.4491 0.3152 0.2989 0.5463 0.4671
FOREC 0.3040 0.1983 0.4458 0.3191 0.2927 0.5442 0.4683

significantly outperforms NMF++. We can thus conclude that while MA models
improve over market unaware models in some cases, selecting a source market
remains an important factor for improving performance given a target market.
While this conclusion holds, we note that in general, data from multiple source
markets may be unavailable, or otherwise data from target markets might be
unavailable—making best source selection unviable [24]. In such cases, results
from the average-source experiments have to be considered.

How Do MA models compare against meta-learning models when
trained on the best source? We now compare MA models against MAML/
FOREC. We first note that at least one MA model beats MAML/FOREC for all
markets but jp and uk. MA-NMF++, in particular, outperforms both MAML
and FOREC for 4 of 7 markets. We see MA-NMF++ significantly outperforms
both MAML/FOREC for de and ca. MAML achieves the best performance for
jp, beating other models by a large margin. In conclusion, we observe similar
performance of our MA models compared to meta-learning models, while outper-
forming them in some cases. This again indicates the effectiveness of our market
embedding layer, especially when the training times are considered, which we
discuss next.

How do training times compare across models? Are MA models time-
efficient? We plot the time taken to train all models for a given target market
(distributed across the seven different source markets) in Fig. 1, where the time
taken is on a log scale. From this, we can see that the meta-learning models
take far longer to train compared to MA models. We note that MA models
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Fig. 1. Time taken to train a model for a target market across all source markets,
where time is on a log scale. MA and market-unaware models require similar training
times, while meta-learning models require significantly more.

require only 15% of the time taken to train meta-learning models, with MA
models requiring about the same time to train as market-unaware models. This
is unsurprising, since MAML requires an inner and outer loop, as well as requir-
ing the expensive computation of second-order derivatives [1,8]. FOREC uses
MAML in addition to fine-tuning the target market, so training FOREC takes
up even more training time. In conclusion, MA models achieve better or similar
performance to MAML/FOREC while requiring much less training time.

Discussion. Overall, we can conclude for AVG that MA models outperform
both market-unaware baselines as well as meta-learning models, demonstrating
the effectiveness of MA models across multiple sources. For BST i.e. when best-
source selection is viable, the results are mixed: MA models always outperform
single model variants; they outperform market-unaware models for many, but
not all, markets; and an MA model either matches or outperforms meta-learning
models for all markets.

A fair question to ask is whether an increase in performance of MA over
market-unaware models can be attributed to the increase in the number of
parameters from the market embeddings. However, this increase is minuscule
compared to model sizes, especially for NMF and MLP i.e. for t markets and D
dimensional user/item/market embeddings, the increase is just tD parameters.
In the pairwise experiments, this difference is just 16(= 2 ∗ 8), much fewer than
19929, the number of parameters of a MLP model for the smallest target/source
pair (in/jp).

While meta-learning models implicitly model the market during training,
MA models show that this may be insufficient. We attribute the success of MA
models to this explicit modelling of the markets: by adapting item representa-
tions depending on the market, the model may be better able to distinguish
between recommendation in different markets more than market-unaware and
meta-learning models. As we observe a better performance on AVG , we can con-
clude for RQ1 , that market-aware models exhibit a more robust performance
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Table 3. Global experiments: All markets are trained in unison. Best model for a
market is in bold. Significance test (p < 0.05

9
) results are also reported comparing MA

models with market unaware (‡), MAML (∗) and FOREC (+).

Method de jp in fr ca mx uk

GMF++ 0.3166 0.1781 0.4535 0.2884 0.2921 0.5245 0.4481
MA-GMF++ 0.3073 0.1817 0.4554 0.2836 0.3015∗ 0.5262 0.4504
MLP++ 0.3268 0.2127 0.4479 0.2953 0.3048 0.5376 0.4491
MA-MLP++ 0.3158 0.2195 0.4398 0.2958 0.3178‡+∗ 0.5258 0.4535
NMF++ 0.3262 0.1930 0.4796 0.3030 0.2851 0.5340 0.4476
MA-NMF++ 0.3442‡+ 0.2212 0.4602 0.3052 0.3112‡+∗ 0.5536‡∗ 0.4604‡+∗

MAML 0.3281 0.1860 0.4736 0.3022 0.2836 0.5317 0.4474
FOREC 0.3249 0.1956 0.4778 0.3033 0.2947 0.5409 0.4474

compared to other models either matching or outperforming baselines in many
settings. While this indicates that market-aware models are more effective mod-
els in general, in some cases meta-learning models seem to learn better from the
most suitable market: in these cases, MA models achieve similar performance.
However, it is critical to note that MA models achieve this while requiring far
less computational power. Moreover, it is evident that MA models do not add
much complexity to non-MA models, while empowering the model to capture
the market’s attributes more effectively, resulting in an efficient and effective
model.

5.2 Global Experiments

Table 3 reports the results of training one global recommendation model for
all markets. We see that MA models outperform baselines in many cases, even
beating meta-learning models for almost all markets.

How do MA models compare with market-unaware models? MA-
variant models outperform market-unaware models in 15 of 21 settings, but
results differ across models: MA-GMF++ (5 of 7), MA-MLP++ (4 of 7) and
MA-NMF++ (6 of 7). MA-MLP++ significantly outperforms MLP++ for ca
whereas MA-NMF++ significantly outperforms NMF++ for four markets. We
also note that MA models for the largest markets, uk and ca, outperform both
market-unaware and meta-learning models. We observe mixed results for smaller
markets: for jp, MA consistently improves over market-unaware variants, but for
in, only MA-GMF++ outperforms GMF++. Overall, we can conclude that MA
models outperform market-aware models in several settings, especially for larger
markets and models.

How do MA models compare with meta-learning-based models? We
first note that an MA model (typically MA-NMF++) beats MAML/FOREC
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for all markets except in. Indeed, MA-NMF++ beats both MAML and FOREC
for all markets except in. It significantly outperforms MAML for ca, mx and
uk markets, and FOREC for de, ca and uk—the larger markets. For ca, we see
all three MA models significantly outperform MAML, with MA-MLP++ and
MA-GMF++ significantly outperforming FOREC. On the whole, we see that
in a global setting, MA models outperform meta-learning methods in nearly all
markets, and in particular the larger markets.

Discussion. We can conclude for RQ3 that MA models are more suitable than
market unaware or meta-learning models if a global model is used for recommen-
dation across all markets. This is critical for cases where various markets exist,
empowering the model to take advantage of various user behaviours across differ-
ent markets to improve recommendation in the target market. Moreover, it also
leaves the problem of selecting the ‘best source’ to the model (i.e. the market
embedding), as the model consumes the whole data and synthesises knowledge
from multiple markets. MA models seem to have an advantage over market-
unaware and meta-learning models, especially for larger markets. This is likely
due to the market embedding, allowing markets to distinguish source- and target-
market behaviours. As more data is collected, MA models, which perform better
in the global setting for larger markets, are likely to have a clear advantage.

6 Conclusions and Future Work

In this work, we proposed simple yet effective MA models for the CMR task.
In a pairwise setting where models are trained with a single source market,
MA models on average outperform baselines in most settings, showcasing their
robustness. Considering the best source market, we showed that MA models
match or outperform baselines for many markets. We showed that they require
far less time to train compared to meta-learning models. Next, we trained a
global model for all markets and showed that MA models match or outperform
market-unaware models in nearly all settings, and outperform meta-learning
models for all but one market. For future work, we plan to experiment with more
complex MA models in a limited data setting. We also plan to investigate the
utility of MA models in a zero-shot setting, substituting the market-embedding
of the new market with a similar market. In addition, we want to consider data
selection techniques, since we speculate that not all data from a given source
market will be useful for a given target market.
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Abstract. The tourism industry is important for the benefits it brings
and due to its role as a commercial activity that creates demand and
growth for many more industries. Yet there is not much work on data
science problems in tourism. Unfortunately, there is not even a standard
benchmark for evaluation of tourism-specific data science tasks and mod-
els. In this paper, we propose a benchmark, TourismNLG, of five natu-
ral language generation (NLG) tasks for the tourism domain and release
corresponding datasets with standard train, validation and test splits.
Further, previously proposed data science solutions for tourism prob-
lems do not leverage the recent benefits of transfer learning. Hence, we
also contribute the first rigorously pretrained mT5 and mBART model
checkpoints for the tourism domain. The models have been pretrained
on four tourism-specific datasets covering different aspects of tourism.
Using these models, we present initial baseline results on the benchmark
tasks. We hope that the dataset will promote active research for natural
language generation for travel and tourism. (https://drive.google.com/
file/d/1tux19cLoXc1gz9Jwj9VebXmoRvF9MF6B/.)

Keywords: NLG for Tourism · Long QA · Blog-title generation ·
Forum-title generation · Paragraph generation · Short QA

1 Introduction

According to World Travel and Tourism Council, in 2019, travel and tourism
accounted for (1) 10.3% of global GDP, (2) 333 million jobs, which is 1 in 10
jobs around the world, and (3) US$1.7 trillion visitor exports (6.8% of total
exports, 27.4% of global services exports)1. Tourism boosts the revenue of the
economy, creates thousands of jobs, develops the infrastructure of a country,
and plants a sense of cultural exchange between foreigners and citizens. This
commercially important industry has resulted in a lot of online data.
1 https://wttc.org/research/economic-impact.
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Data in the tourism domain exists in the form of (1) public web pages (blogs,
forums, wiki pages, general information, reviews), or (2) travel booking informa-
tion owned by travel portals which includes customer travel history, schedules,
optimized itineraries, pricing, customer-agent conversations, etc. Accordingly,
work on tourism data mining has mostly focused on structured extraction of
trip related information [26], mining reviews (personalized sentiment analysis
of tourist reviews [25], establishing review credibility [5,14]), and automatic
itinerary generation [9–11,15]. Most of this work has however relied on tradi-
tional ways of performing natural language processing (NLP). However, recently
transfer learning using pretrained models has shown immense success across
almost all NLP tasks. Transformer [32] based models like Bidirectional Encoder
Representations from Transformers (BERT) [12], Generative Pre-trained Trans-
former (GPT-2) [27], Extra-Long Network (XLNet) [34], Text-to-Text Transfer
Transformer (T5) [28] have been major contributors to this success. These mod-
els have been pretrained on generic corpora like Books Corpus or Wikipedia
pages. To maximize benefits, researchers across various domains have come up
with domain specific pretrained models like BioBERT (biomedical literature cor-
pus) [22], SciBERT (biomedical and computer science literature corpus) [6], Clin-
icalBERT (clinical notes corpus) [18], FinBERT (financial services corpus) [4],
PatentBERT (patent corpus) [21], LegalBERT (law webpages) [8], etc. However,
there are no models specifically pretrained for the tourism task. Further, there
is no standard benchmark for tourism related tasks.

Travel text is very different from usual text across domains. Skibitska [30]
investigated the degree of specialization of language of tourism in different kinds
of tourism-related texts. They group tourism vocabulary into groups like types
of tours and tourism (e.g. agro tourism, incentive tour, rural tourism, week-end
tour, day trip etc.), industry professionals (e.g. guide, event organizer, travel
agent, tourist information center assistant, etc.), accommodation (e.g. standard
room, daily average rate, reservation, cancellation, room facilities, spa, check
in, prepaid room etc.), catering (e.g. full board, white glove service, buffet, a la
carte, coffee shop, tip, bev nap, etc.), transportation (e.g. charge, refund, non-
refundable, actual passenger car hours, excess baggage, scheduled flight, frequent
flyer, etc.), excursion (e.g., itinerary, overnight, local venue, sightseeing, city
guide, departure point, meeting point, hop on hop off etc.), abbreviations (e.g.
IATA, AAA, WTO, NTA, etc.). Compared to usual blogs, travel and tourism
blog titles often (a) include a destination or type of travel experience to empha-
size the appeal of the location, (b) emphasize the “adventure” aspect of traveling,
(c) include the words “explore” or “discover” to emphasize the discovery of new
places, (d) include words like “journey,” “voyage,” or “road trip” to emphasize the
journey aspect of traveling, and (e) use vivid adjectives or descriptive phrases to
emphasize the beauty and uniqueness of the destination. Compared to generic
answers, answers on travel forums are (a) more focused on specific destinations,
(b) typically more concise and to-the-point, (c) include advice or tips and less
opinion-based, (d) written in a more conversational tone, (e) frequently include
personal stories and anecdotes, (f) often written in the first person, (g) written
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in a positive or helpful manner. Paragraphs in travel webpages tend to describe
culture and event sequences (in blogs), temporal facts and planning (on forums),
etc. For factual short question answering, the answer types are rather restricted
in tourism domain to architectural types, geographic names, population, timings,
cost, directions etc.

Hence, we propose a benchmark, TourismNLG, consisting of five novel nat-
ural language generation (NLG) tasks in the travel and tourism domain. Overall,
the number of instances across these five tasks add up to 4.2M instances. We
make the datasets corresponding to these tasks, along with their train, validation
and test splits publicly available. We also make the code and all our pretrained
models publicly available.

Given this benchmark of five tourism NLG tasks and four different tourism-
specific multi-lingual pretraining datasets, we also perform domain-adaptive pre-
training of mT5 [33] and mBART [23] models for the tourism domain. Since all
our tasks are generative, we chose mT5 and mBART as our primary model archi-
tectures. We show the efficacy of our models by finetuning them on the proposed
TourismNLG benchmark tasks both individually as well as in a multi-task
setup. This sets a good baseline for further researchers to compare their results
on the TourismNLG benchmark.

Overall, in this paper, we make the following contributions. (1) We propose
a benchmark of five novel and diverse tourism NLG tasks called TourismNLG.
As part of this benchmark, we also contribute four datasets along with stan-
dard splits to the research community. (2) We pretrain multiple tourism-domain
specific models. We also make the pretrained models publicly available. (3) We
experiment with multiple pretraining and finetuning setups, and present initial
baseline results on the TourismNLG benchmark.

2 Related Work

2.1 Data Science in Tourism

Published work on data science in the tourism domain has been very sparse.
It has been mainly focused on structured extraction of trip related informa-
tion, mining reviews, and automatic itinerary generation. Popescu et al. [26] use
tagged photos uploaded by tourists on Flickr to deduce trip related information
such as visit times for a tourist spot, while Pantano et al. [25] build a model
using online tourist reviews to predict tourists’ future preferences. Generation of
automatic travel itineraries is another well-explored problem, with papers like
[9,15] and [11] that use travel histories and online data generated by tourists to
automatically generate itineraries for future travellers under monetary and time
constraints. Specifically in NLP, Gurjar et al. [17] study aspect extraction for
tourism domain for eleven factors, Kapoor et al. [20] identify travel-blog-worthy
sentences from Wikipedia articles, and Iinuma et al. [19] propose a methodology
to summarise multiple blog entries by finding important sentences and images
using a graph-based approach. Finally, [3] proposed a large dataset from the
hotel domain, for hotel recommendation task. Unfortunately, there is hardly any
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work on natural language generation for the tourism domain. We attempt to fill
this gap in this paper.

2.2 Domain-specific Pretrained Models

Several previous works have presented models trained for various domains and
their respective domain specific tasks. Transformer models like BERT [12] have
been adapted to create pre-trained models like BioBERT [22] for Bio-Medical
Domain, SciBERT [6] for scientific data domain and two models proposed by [2],
one for generic clinical text and other for discharge summaries specifically, among
others such as FinBERT [4] for NLP tasks in Financial Domain, Covid-Twitter-
BERT [24] trained on Covid related Twitter content, and PatentBERT [21].
There are also models in the legal domain (LegalBERT [8]) and even special-
ized ones to model conversational dialogues (DialoGPT [35]). Since there are
no domain-specific pretrained models for the tourism domain, we propose the
TourismNLG benchmark and the associated initial models.

3 TOURISMNLG Benchmark

In this section, we present details of the four datasets and five NLG tasks which
form the TourismNLG benchmark.

3.1 TOURISMNLG Datasets

The TourismNLG benchmark consists of four datasets: TravelWeb, TravelBlog,
TripAdvisorQnA, and TravelWiki. These datasets were carefully chosen to cover
diverse online content in the public domain.

TravelWeb: Given a large web crawl, we use a proprietary domain classifier
based on [7] to choose webpages broadly in the travel and tourism domain. Fur-
ther, to be able to reuse cleaned text for these URLs, from this set of URLs,
we retain those URLs which are also present in mC4 dataset2. We use Marisa
trie [13] for computing the intersection efficiently. We gather the webpage con-
tents from the clean and pre-processed mC4 chunks. This leads to a dataset con-
taining the URL, body text and publication timestamp. We remove instances
where body text is empty. Overall, the dataset contains 454553 documents pub-
lished from 2013 to 2020. The webpages belong to 80157 unique websites. The top
few websites include wikipedia, tripadvisor, britannica, rome2rio, lonelyplanet,
maplandia, expedia and theculturetrip.

TravelBlog: We collected travel blogs from travelblog.org. The dataset contains
blog title, publication date, body text. The dataset contains 491276 blogs from
2009 to 2020. The dataset is divided into ten geo-categories with the follow-
ing data split: Africa (33226), Antarctica (376), Asia (91626), Central America

2 https://huggingface.co/datasets/mc4.

https://huggingface.co/datasets/mc4
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and Caribbean (21505), Europe (119202), Middle East (12093), North America
(85270), Oceania (69783), Oceans and Seas (1802) and South America (56393).
We use this dataset for the blog title generation task. We remove instances where
blog titles and/or body text are empty.

TripAdvisorQnA: We prepare a tourism-centred Question-Answering dataset
by collecting questions asked on TripAdvisor’s forums3 The dataset comprises
of 217352 questions across several tourism-related categories such as Air Travel,
Road Trips, Solo Travel, Cruises, Family Travel, etc. For each question, we collect
the question title, the question description and all the responses to the query
by other forum members. We also collect public user details for the user who
posted the question as well as details of users who posted answers. In addition
to this, we store the number of “helpful votes” for every response denoting the
usefulness of the responses as voted by others. We use this to judge the quality
of response for a particular question, and use the most voted response as the
golden answer for our tasks.

We identified a list of standard messages from the TripAdvisor staff that
were very common throughout the dataset. We identified at least three phrases
in each of the language subsets, to remove such comments. For example, in
English, common messages included the phrases: “this post was determined to
be inappropriate”, “this post has been removed”, “message from tripadvisor staff”.
Similarly, in Spanish, we removed examples where answers contained “el personal
de tripadvisor ha eliminado”, “esta publicación ha sido eliminada por su autor”,
“no es posible responder a este tema ya que ha sido cerrado por inactividad”.
Since the dataset is large, we use only one response per question, but we have
included all responses in the dataset. We remove instances where page titles are
empty or where there is no answer.

TravelWiki: We gathered a list of top 1000 tourism spots worldwide from web-
sites like lonelyplanet. Next, we discovered their Wikipedia pages (basic string
match with typical normalizations) and gathered a histogram of Infobox tem-
plate names for those Wikipedia pages. Further, we manually looked at the
top 100 templates and identified a list of 29 Infobox templates like “nrhp”, “uk
place”, “mountain”, “river”, etc. which seemed relevant to travel and tourism.
Subsequently we collect the list of English Wikipedia pages containing these
templates, and finally their counterparts in other languages using WikiData4
mappings. For each page in our data we collect the first paragraph of that page
along with key attributes (and their values) from the corresponding Infoboxes.
Each Infobox is associated with 5.76 key-value pairs on average. TravelWiki
contains content from about 3077404 tourism-related Wikipedia pages gathered
from Wikipedia websites for 31 languages. Although the dataset contains the
entire Infobox per page, we sample one random key-value pair per webpage and
use it for the Paragraph generation and Short Question Answering (QA) tasks.

3 https://www.tripadvisor.<countryCode>/ListForums-g1-World.html. We used
these country codes: in, it, es, fr, de, pt, jp and ru.

4 https://www.wikidata.org/wiki/.

https://www.tripadvisor
https://www.wikidata.org/wiki/
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Fig. 1. Word cloud for top few words in text associated with TripAdvisorQnA (top-
left), TravelWeb (top-right), TravelBlog (bottom-left) and TravelWiki (bottom-right)
datasets.

The dataset consists of many key-value pairs that are present disproportion-
ately. For example, “Country: United States” occurs 50948 times in the dataset.
In order to prevent the model from getting biased into predicting the most com-
monly occurring value corresponding to a given key, while sampling, we ensure
that the value appears in a max of 2000 instances across the entire dataset. Note
that this sampling is done only for the Short QA task, since we are trying to
predict a value corresponding to a key. In the case of paragraph generation task,
all valid key-value pairs in the instance are used. We remove examples where the
text is empty or if there are no key-value pairs in the infobox.

Figure 1 shows word clouds for top few words in text associated with Tri-
pAdvisorQnA, TravelWeb, TravelBlog and TravelWiki datasets. We manually
removed stop words and create word clouds using English documents. We observe
that formal words like village, country, population, district are frequent in Trav-
elWiki. On the other hand, informal language with words like people, way, really,
night are common in TravelBlog. Further, TripAdvisor has a lot of frequent words
like trip, travel, suggestions, time, hotel, etc. which are related to advice around
travel planning.



156 S. M. Bhatt et al.

Table 1. Language distribution across the four datasets.

TripAdvisorQnA TravelWeb TravelBlog TravelWiki
Language Docs (%) Language Docs (%) Language Docs (%) Language Docs (%)

en 58.84 en 70.93 en 88.84 en 27.28
it 21.84 de 4.91 de 2.26 pl 6.85
es 10.48 es 4.32 fr 2.14 fr 6.31
fr 4.87 fr 4.21 nl 1.19 fa 5.85
de 1.74 it 2.32 es 0.79 it 5.29
pt 1.07 fa 1.85 it 0.51 es 5.09
ru 0.88 nl 1.81 da 0.46 uk 4.71
ja 0.16 pt 1.45 fi 0.36 nl 4.66
ca 0.02 pl 0.93 no 0.29 sv 4.02
nl 0.01 ru 0.85 sk 0.26 de 3.81
Others 0.09 Others 6.42 Others 2.90 Others 26.13

Document language is not explicitly known for these datasets except for
TravelWiki. Hence, we predict the same using the langdetect library. Table 1
shows language distribution across languages for these datasets. TravelBlog is
heavily skewed towards English but TravelWiki and TripAdvisorQnA have higher
representation from other languages.

Each dataset is split (stratified by language count) into four parts as follows:
pretrain, finetune, validation and test. Pretrain part is used for pretraining, fine-
tune part is used for task-specific finetuning, validation part is used for early
stopping as well as hyper-parameter tuning and test part is used for report-
ing metrics. We allocate 7500 instances each for validation and test, remaining
instances are divided equally into pretrain and finetune. We do not use Travel-
Web dataset for any specific downstream task, thus for this dataset, we allocate
7500 instances for validation and the remaining for pretraining. Table 2 shows
basic statistics of the datasets in TourismNLG.

Table 2. Characteristics of the datasets in TourismNLG.

Dataset Domain |Pretrain| |Finetune| |Dev| |Test| Tasks

TravelWeb General 447053 – 7500 – –
TravelBlog Social Media 238143 238133 7500 7500 Blog-Title Generation
TripAdvisorQnA Community Question

Answering
101210 101142 7500 7500 Forum-Title Generation, Long

Question Answering
TravelWiki Encyclopedia 1531208 1531196 7500 7500 Paragraph Generation, Short

Question Answering



TourismNLG: Multi-lingual Generative Benchmark for Tourism 157

3.2 TOURISMNLG Tasks

Our goal is to provide an accessible benchmark for standard evaluation of models
in the tourism domain. We select the tasks in the benchmark based on the
following principles.

– Tourism specific: Tasks should be specific to tourism or defined on tourism-
specific datasets.

– Task difficulty: Tasks should be sufficiently challenging.
– Task diversity: The generated output is of different sizes. Short QA generates

very short answers. Blog-title generation as well as forum-title generation
generate
sentence-sized outputs. Paragraph generation as well as Long QA tasks expect
much longer outputs.

– Training efficiency: Tasks should be trainable on a single GPU for less than a
day. This is to make the benchmark accessible, in particular to practitioners
working with low resource languages under resource constraints.

TourismNLG consists of five generative NLP tasks. We give an overview of all
tasks, including the average input and output sequence length for each task, in
Table 3, and describe the tasks briefly as follows.

Paragraph Generation: Given the (key, value) pairs from Wikipedia Infobox,
the goal is to generate the first paragraph of the Wikipedia page. For example,
Input: “official_name=skegness; population=18910; population_date=2001;
post _town=skegness; shire_district=east lindsey; shire_county=lincolnshire”.
Output: “skegness ist eine kleinstadt im district east lindsey der englischen graf-
schaft lincolnshire. sie hatte 18910 einwohner im jahre 2001. die stadt ist ein
beliebtes touristenziel und ist auch bekannt als skeg, skeggy, costa del skeg oder
das blackpool der ostküste und hat ein berühmtes maskottchen den jolly fisher-
man”.

Short QA: Given the first paragraph of the Wikipedia page, and a key from
the Wikipedia Infobox, the goal is to generate the correct value for that key.
For example, Input: “Dinbaghan (also Romanized as Dı̄nbāghān; also known as
Deym-e Bāghān) is a village in Jowzar Rural District, in the Central District of
Mamasani County, Fars Province, Iran. At the 2006 census, its population was
115, in 23 families” and key is “County”. Output: “Mamasani”.

Blog-Title Generation: This is essentially the page title or headline generation
task. Given body text of a travel blog article, the goal is to generate its title. For
example, Input: “spent 10 days in el salvador, a country a similar size to wales.
one of the first things we noticed was how polite and courteous everyone was.
no-one batted an eyelid at the monstrously tall, ice-cream eating, lost europeans
showing up. started off in alegria, a tiny town which is the highest in the country.
a cooler mountain climate was very welcome after escaping the furnace that was
san miguel...”. Output: “Trip to El Salvador”.

Forum-Title Generation: Given a description and an answer on a TripAdvisor
Question-Answer forum page, the goal is to generate the title associated with the
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Table 3. Characteristics of the tasks in TourismNLG. |I|= Avg Input Sequence
Lengths (in words). |O|= Avg Output Sequence Lengths (in words).

Task Dataset Input Output Metrics |I| |O|
Paragraph Generation TravelWiki (key, value) paragraph ROUGE-1,

ROUGE-L,
METEOR, MRR

2.29 49.34

Short QA TravelWiki paragraph, key value F1, Accuracy, MRR 50.34 1.29
Blog-Title Generation TravelBlog body text title ROUGE-1,

ROUGE-L,
METEOR, MRR

793.9 4.41

Forum-Title Generation TripAdvisorQnA description, answer title ROUGE-1,
ROUGE-L,
METEOR, MRR

156.3 5.32

Long QA TripAdvisorQnA question title and
description

answer ROUGE-1,
ROUGE-L,
METEOR, MRR

103.2 58.46

(description, answer) pair. For example, Input: “hoping to go on a mediterranean
[/cruises] cruise on september 2016. when is the best time to book to get a good
price. we looked at a [/cruises] cruise to the baltics back in may 2015 and were
on the point of booking it 2 months beforehand.the price changed on a daily
basis,one day it was £1199,the following day it dropped to £999 and when we
sorted out payment for a few days later,it went back up to £1299.” Output:
“when is it best to book a cruise”

Long QA: Given a question (title+description) on a TripAdvisor Question-
Answer forum page, the goal is to generate the answer associated with the ques-
tion. For example, Input: “trenhotel granada to barcelona 13 september. hi there
i can see on renfe that i can book the trenhotel on the 12th and 14th of septem-
ber but not the 13th. at first i thought it may be a saturday thing, but i checked
and the saturdays before all have trenhotel.am i missing something? is it possible
that this train will appear at a later date? i know its silly but we were really
hoping to get this date so we didnt have to cut granada or barcelona short and
spend a ful day on a train”. Output: “it should run daily.just wait a bit and
keep checking, it may well appear shortly. renfe are really bad about loading
reservations the full 60 days out.”

4 Baseline Models for TOURISMNLG

In this work, our goal is to build generic pretrained models for the tourism
domain which can be finetuned for individual tasks.

4.1 Model Selection

All of our tasks contain multi-lingual data and are generative in nature. mT5 [33]
and mBART [23] are both multilingual encoder-decoder Transformer models and
have been shown to be very effective across multiple NLP tasks like question
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answering, natural language inference, named entity recognition, etc. Thus, mT5
and mBART were natural choices for our purpose. mT5 [33] was pretrained on
the mC4 dataset5 comprising of web data in 101 different languages and leverages
a unified text-to-text format. mBART [23] was pretrained on the CommonCrawl
corpus using the BART objective where the input texts are noised by masking
phrases and permuting sentences, and a single Transformer model is learned to
recover the texts.

Specifically, our mT5-base model is an encoder-decoder model with 12 layers
each for encoder as well as decoder. It has 12 heads per layer, feed forward size
of 2048, keys and values are 64 dimensional, dmodel=768, and a vocabulary size
of 250112. Overall the model has 582.40M parameters. Our mBART-large-50
model [31] also has 12 layers each for encoder as well as decoder. It has 16
heads per layer, feed forward size of 4096, dmodel=1024, and a vocabulary size of
250054. Overall the model has 610.87M parameters. Note that the two models
have almost the same size.

We use the mC4-pretrained mT5-base and CommonCrawl-pretrained
mBART-large models, and perform domain adaptive pretraining to adapt them
to the tourism domain. These are then further finetuned using task-specific
labeled data. We discuss pretraining and finetuning in detail later in this section.

mT5 requires every task to be modelled as sequence-to-sequence generation
task preceded by a task prompt specifying the type of task. Thus, we use this for-
mat both while pretraining as well as finetuning. For the language modeling task
while domain-specific pretraining, we use the task prefix “language-modeling”.
For the downstream TourismNLG tasks, we use the following task prefixes:
infobox-2-para, para-2-infobox, blog-title-generation, forum-title-generation, and
answer-generation. Further, mBART also requires a language code to be passed
as input. Thus, for mBART, we pass language code, task prefix and task-specific
text as input6.

4.2 Pre-Training and Finetuning

For domain adaptive pretraining, we leverage our four datasets described in
detail in the previous section. We pretrain mT5 as well as mBART using two
different approaches: MLM and MLM+Tasks. MLM models have been pre-
trained only on masked language modeling (MLM) loss; MLM+Tasks models
are pretrained using a combination of the MLM and task-specific losses. Pretrain-
ing tasks include masked language modeling on all the four datasets, paragraph
generation and Short QA on TravelWiki, blog-title generation on TravelBlog and
forum-title generation and Long QA on TripAdvisorQnA.

For MLM, the goal was to reconstruct the original text across all positions
on the decoder side. The decoder input is the original text with one position
offset. MLM uses text combined across pretrain parts of all datasets; large input

5 https://www.tensorflow.org/datasets/catalog/c4#c4multilingual_nights_stay.
6 If the language of current instance was not among the 50 supported by the mBART

model, we passed language=English.

https://www.tensorflow.org/datasets/catalog/c4#c4multilingual_nights_stay
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sequences were chunked and masked to create training instances. All the other
pretraining tasks are sequence generation tasks. Thus, the input was fed to the
encoder and loss was defined with respect to tokens sampled at the decoder.

For pretraining, we use the standard categorical cross entropy (CCE) loss. For
MLM, CCE is computed for masked words. For other tasks, CCE is computed
for task-specific output words.

We finetune the pretrained models in two ways: (1) Single-task finetune (2)
Multi-task finetune. Finetuning on individual tasks leads to one finetuned model
per task. Managing so many models might be cumbersome. Thus, we also fine-
tune one single model across all tasks. Another benefit of multi-task finetuning
is that it can benefit from cross-task correlations.

4.3 Metrics

We evaluate our models using standard NLG metrics like ROUGE-1, ROUGE-L
and METEOR for four tasks except Short QA where we report F1 and accu-
racy (exact match). These metrics are syntactic match-based and hence cannot
appropriately evaluate predictions against the ground truth from a semantic
perspective. For example a blog title like “Trip to Bombay” is semantically very
similar to “Five days of fun in Mumbai, Maharashtra, India” but has no word
overlap.

One approach is to create a set with the prediction and K hard negative
candidates and check if the predicted output is most similar to the ground truth.
Hence, we use the popular mean reciprocal rank metric (as also done in [29] for
dialog quality evaluation) which is computed as follows. For every instance in the
test set, we gather 10 negative candidates. Given the predicted output, we rank
the 11 candidates (1 ground-truth and 10 negatives) and return the reciprocal
of the rank of the ground-truth. Ranking is done in the descending order of
similarity between the prediction output and candidate text using paraphrase-
multilingual-MiniLM-L12-v2 model from Huggingface7.

Negative candidates are sampled as follows. Given a test instance and its
ground-truth output, we compute 20 most similar outputs from the train and
dev sets of the same language. For the Short QA task, negatives are sampled from
instances such that the “key” in the input also matches. Amongst most similar
20 candidates, top 10 are rejected since they could be very similar to ground-
truth and hence may not be negative. The remaining ten are used as negative
candidates. Note that these are fairly hard negatives and help differentiate clearly
between strongly competing approaches.

4.4 Implementation Details for Reproducibility

We use a machine with 4 A100 GPUs with CUDA 11.0 and PyTorch 1.7.1. We
use a batch size of 16 with AdamW optimizer. We pretrain as well as finetune

7 https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-
L12-v2.

https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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for 3 epochs. Maximum sequence length is set to 256 for both input as well as
output. We perform greedy decoding.

Pretraining: We initialize using google/mt5-base and facebook/mbart-large-50
checkpoints. We use a learning rate of 1e-5. Pretraining takes approximately 12,
26, 14 and 37 h for mT5 MLM, mT5 MLM+Tasks, mBART MLM and mBART
MLM+Tasks models respectively. We use a dropout of 0.1.

Finetuning: We use a learning rate of 5e-6 and 3e-6 for single-task finetune and
multi-task finetune respectively.

Table 4. Results on TourismNLG Tasks: Long QA, Blog-title Generation, Forum-title
Generation, Paragraph Generation and Short QA. For finetuning, STF=Single Task
Finetune and MTF=Multi-task Finetune. For pretraining, (-) means no pretraining,
(A) means MLM, (B) means MLM+Tasks. Best results in each block are highlighted.

Model Long QA Blog-title generation Forum-title generation
R-1 R-L METEOR MRR R-1 R-L METEOR MRR R-1 R-L METEOR MRR

M
T
F

mT5 (-) 9.31 7.51 4.79 62.93 16.18 15.99 9.32 20.45 21.58 21.12 13.74 27.77
mT5 (A) 10.55 8.18 5.35 64.20 15.86 15.75 8.93 20.86 22.09 21.50 14.13 27.53
mT5 (B) 13.73 9.71 8.55 68.17 17.49 17.40 9.81 22.01 25.78 25.10 16.26 31.81
mBART (-) 10.46 7.82 6.09 70.97 19.30 19.14 11.24 23.81 27.22 26.48 17.47 33.58
mBART (A) 11.00 7.86 7.13 72.93 20.07 19.95 11.77 24.23 29.00 28.08 19.10 35.59
mBART (B) 12.47 8.79 8.28 75.14 21.01 20.84 12.28 25.03 30.77 29.72 20.53 37.99

S
T
F

mT5 (-) 10.22 7.36 7.57 60.61 12.48 12.31 7.69 16.11 15.70 15.33 10.10 22.21
mT5 (A) 11.80 8.46 9.11 69.39 14.90 14.74 8.72 18.99 23.92 23.12 15.96 30.80
mT5 (B) 11.03 8.37 7.62 72.49 17.98 17.85 10.41 21.96 28.59 27.57 18.96 35.07
mBART (-) 13.17 9.20 9.22 75.94 20.44 20.21 12.99 23.98 31.55 30.21 21.61 37.73
mBART (A) 12.39 8.81 9.17 75.63 20.99 20.70 13.21 24.00 31.65 30.38 21.56 38.16
mBART (B) 13.82 9.88 9.65 76.12 21.86 21.59 13.74 24.95 33.00 31.56 22.30 39.42

Model Paragraph generation Short QA
R-1 R-L METEOR MRR F1 Accuracy MRR

M
T
F

mT5 (-) 23.90 21.15 17.53 48.01 48.80 64.93 75.70
mT5 (A) 32.27 28.85 22.22 54.61 58.98 73.68 82.83
mT5 (B) 34.26 30.63 24.27 56.79 61.76 75.77 84.28
mBART (-) 33.16 29.80 24.76 54.45 62.86 76.56 85.25
mBART (A) 35.11 31.71 26.84 56.64 63.89 77.45 85.98
mBART (B) 33.87 30.46 25.75 56.16 64.60 77.96 86.38

S
T
F

mT5 (-) 19.73 17.48 12.87 33.93 48.80 65.00 75.40
mT5 (A) 25.70 22.72 17.46 43.63 62.69 76.36 84.49
mT5 (B) 26.08 22.88 19.14 44.84 64.17 77.60 85.51
mBART (-) 35.23 31.31 28.04 53.16 69.66 81.37 88.36
mBART (A) 31.73 28.26 24.18 50.07 71.07 82.39 89.10
mBART (B) 35.62 31.43 27.30 55.59 71.17 82.40 89.16

5 Experiments and Results

In this section, we first present the main TourismNLG benchmark results using
various proposed models. Next, we briefly present notes on pretraining stabil-
ity, qualitative analysis of model outputs, human evaluation and detailed error
analysis.

TourismNLG Benchmark Results: Table 4 shows results obtained using
our models under various pretraining and finetuning setups for the five
TourismNLG tasks on the test set. From the two tables we make the following
observations: (1) STF models lead to better results compared to MTF models.
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But MTF models are very close across all metrics. Thus, rather than retaining
individual STF models, deploying just one MTF model is recommended. (2)
Domain-pretraining helps. Domain-pretrained models are better than standard
models. (3) Pretraining using MLM+Tasks is better than just MLM-based pre-
training. (4) Lastly, mBART models are significantly better than mT5 models
except for the MTF Long QA setting.

Pretraining Stability: Figure 2 shows the variation in loss with epochs for
the mT5 MLM, mT5 MLM+Tasks, mBART MLM and mBART MLM+Tasks
models respectively.

Fig. 2. Variation in Pretraining Loss on Training as well as Validation Data for our
mT5 and mBART models under the MLM and MLM+Tasks settings.

Qualitative Analysis: Table 5 shows an example of generated output using
our best model for each of the five tasks. Due to lack of space, we show shorter
examples. We observe that the generated results are very relevant and well-
formed.

Human Evaluation and Error Analysis: Finally, to check fluency and rel-
evance of the generated outputs for various tasks, one of the authors manually
labeled 50 English samples per task on a 5-point scale. Note that we did not do
such an evaluation for the Short QA task since the output is just the value (and
not expected to be a well-formed sentence). Table 6 shows that our model gener-
ates human consumable output with high quality. Fluency measures the degree
to which a text ‘flows well’, is coherent [1] and is not a sequence of unconnected
parts. Relevance measures correctness and the overall factual quality of the gen-
erated answer.
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Table 5. Examples of predictions using our best model

Task Input Output

Paragraph
Generation

title=amorebieta-etxano; Nome=amorebieta-etxano;
divisione amm grado 1=paesi baschi; abitanti=16182

amorebieta-etxano
è un comune
spagnolo di 16182
abitanti situato
nella comunità
autonoma dei paesi
baschi

Short QA Seion Cwmaman is a Welsh Baptist church originally
established in 1859. The chapel closed in 2013 but the
church still meets at another location in the village.
Guess “architectural type”

chapel

Blog-title
Generation

Text from https://www.travelblog.org/Asia/
Malaysia/Johor/Johor-Bahru/blog-526949.html

johor bahru - day 1

Forum-title
Generation

Please suggest Honeymoon destination starting the
end of april for 2 weeks,and we want beach activities
Thank you :) Maldives and Bali offer great
honeymoon stay. Some hotels even have wedding vow
renewal on the beach. Bali high end resorts even have
private beach to you only!!!

honeymoon end of
april

Long QA With an extended amount of time off, my family and
I are looking for a small epic adventure. Would like to
include activities for the 4 year old son and relaxing
for the parents. We have done the Caribbean all
inclusive vacations and want something more
adventurous than laying on a beach for 2 weeks.
Traveling for 14 days anywhere from December to
February and son is a great traveler. Any climate will
do, but like the warmth and no skiing. What
memorable vacations have you experienced and would
suggest?

i would look at the
cancun area. it is a
great place to visit

Table 6. Human evaluation
results

Task Fluency Relevance

Paragraph
Generation

4.18 3.36

Blog-title
Generation

4.88 4.00

Forum-title
Generation

4.82 4.08

Long QA 4.28 3.84

Table 7. Error Analysis: # errors across cate-
gories for each task (out of 50 judged samples).

Error Category Paragraph
Generation

Blog-title
Generation

Forum-title
Generation

Long QA

Less Creative
Response

5 3 0 5

Hallucination 15 5 6 3

Grammatical
error

11 1 1 13

Incomplete 0 12 5 8

We also performed analysis of the kinds of errors in the generated out-
puts. Table 7 shows distribution of errors across major categories. Less creative
responses include cases where bland responses were generated, e.g., simply using

https://www.travelblog.org/Asia/Malaysia/Johor/Johor-Bahru/blog-526949.html
https://www.travelblog.org/Asia/Malaysia/Johor/Johor-Bahru/blog-526949.html
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city name as blog title, repeating the question as answer for long QA task or
asking the user to post on another forum, or simply concatenating the key-value
pairs as output for paragraph generation task. Incomplete category includes cases
like blog/forum titles that do not take into account the entire context or output
that does not answer the user’s question completely in long QA task. Halluci-
nation includes cases where forum/blog titles have nothing to do with the input
text, or unseen irrelevant information is added in the generated output.

6 Conclusions

In this paper, we propose the first benchmark for NLG tasks in the tourism
domain. The TourismNLG benchmark consists of five novel natural language
generation tasks. We also pretrained mT5 and mBART models using various
tourism domain-specific pretraining tasks and datasets. Our models lead to
encouraging results on these novel tasks. We make our code, data and pretrained
models publicly available. We hope that our work will help further research on
natural language generation in the travel and tourism domain. We expect that
such models will help in writing automated tour guides, travel reviews and blogs,
trip planning, travel advisories, multi-destination itinerary creation, and travel
question answering. In the future, we plan to extend this work by including
multi-modal tasks and datasets like [16].
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Abstract. Data representation plays a crucial role in natural language
processing (NLP), forming the foundation for most NLP tasks. Indeed,
NLP performance highly depends upon the effectiveness of the prepro-
cessing pipeline that builds the data representation. Many representation
learning frameworks, such as Word2Vec, encode input data based on local
contextual information that interconnects words. Such approaches can
be computationally intensive, and their encoding is hard to explain. We
here propose an interpretable representation learning framework utilizing
Tsetlin Machine (TM). The TM is an interpretable logic-based algorithm
that has exhibited competitive performance in numerous NLP tasks. We
employ the TM clauses to build a sparse propositional (boolean) repre-
sentation of natural language text. Each clause is a class-specific propo-
sitional rule that links words semantically and contextually. Through
visualization, we illustrate how the resulting data representation pro-
vides semantically more distinct features, better separating the under-
lying classes. As a result, the following classification task becomes less
demanding, benefiting simple machine learning classifiers such as Sup-
port Vector Machine (SVM). We evaluate our approach using six NLP
classification tasks and twelve domain adaptation tasks. Our main finding
is that the accuracy of our proposed technique significantly outperforms
the vanilla TM, approaching the competitive accuracy of deep neural
network (DNN) baselines. Furthermore, we present a case study showing
how the representations derived from our framework are interpretable.
(We use an asynchronous and parallel version of Tsetlin Machine: avail-
able at https://github.com/cair/PyTsetlinMachineCUDA).

Keywords: Natural language processing (NLP) · Tsetlin machine
(TM) · Propositional logic · Knowledge representation · Domain
adaptation · Interpretable representation

1 Introduction

The performance of machine- and deep learning in NLP heavily relies on the
representation of natural language text. Therefore, succeeding with such models
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13980, pp. 167–181, 2023.
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requires efficient preprocessing pipelines that produce effective data represen-
tations. Firstly, data representation influences the accuracy of the classifier by
determining how much helpful information it can extract from raw data. Sec-
ondly, dense and high-dimensional representation models can be more costly
to compute. Indeed, recent advances in deep neural networks (DNNs) have
brought forward both the accuracy benefits and the complexity of NLP data
representation.

Since natural language data is unstructured, encompassing multiple granu-
larities, tasks, and domains, achieving sufficient natural language understanding
is still challenging. Simultaneously, state-of-the-art language models like BERT
and GPT-3 struggle with high computational complexity and lack of explainabil-
ity [2,35]. One might argue that attention is an explanation. However, attention
merely highlights which part of the input the model used to produce its output.
It does not break down the focus area into semantically meaningful units and
cannot explain the ensuing reasoning process leading to an output decision [36].
Further, computation-wise, the complexity of attention is quadratic.

DNN NLP models usually represent words in vector space. Word2Vec is
one early and widely used vector-based representation approach introduced by
Mikolov et al. in 2013 [29]. In Word2Vec, a single-layer neural network learns
the context of words and relates the words based on the inner product of con-
text vectors. Similarly, GloVe is a popular unsupervised model incorporating
corpus-wide word co-occurrence statistics [31]. The cornerstone of the latter two
approaches is the distributional hypothesis, which states that words with sim-
ilar contexts have similar meanings. While boosting generalization ability by
co-locating similar words in vector space, the dense vectors are expensive to
compute and difficult to interpret.

The Tsetlin Machine (TM) is a logic-based pattern recognition approach that
blends summation-based (cf. logistic regression) and rule-based approaches (cf.
decision trees). Recent studies on TMs report promising performance in NLP,
including sentiment analysis [44], novelty detection [6,9], fake news detection [8],
semantic relation analysis [34], and robustness toward counterfactual data [46].

The TM leverages propositional logic for interpretable modeling and bitwise
operation for efficiency. Yet, recent TM research reports increasingly competitive
NLP accuracy compared to deep learning at reduced complexity and increased
efficiency. Simple AND rules, referred to as clauses, give these properties, employ-
ing set-of-words (SOW) as features. The clauses are self-contained, hence paral-
lelizable [1]. Simultaneously, they can capture discriminative patterns that are
interpretable [10].

Contributions: In this paper, we propose a representation learning framework
for NLP classification utilizing TM. We use the TM clauses for supervised pre-
training, building an abstract logical representation of the training data. We
then show that the logical representation may be effective already after three
epochs of training for six NLP classification tasks. We also evaluate our logic-
based approach on twelve domain adaptation tasks from the Amazon dataset.
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Furthermore, as the learning of TM is human-interpretable, we provide a case
study to explore the explainability of our representation.

2 Related Work

Conventional representation learning mostly focuses on feature engineering for
data representation. For example, [23] introduced distributed representation for
symbolic data, further developed in the context of statistical language mod-
elling [4] and in neural net language models [3]. The neural language models
are based on learning a distributed representation for each word, termed as a
word embedding. One of the most common techniques in NLP is the bag of
words (BOW) representation [49], extended to n-grams, topic modelling [42],
and fuzzy BOW [50]. Other techniques include representing text as graphs [28].
However, because these models lack pre-trained knowledge, the representations
produced are in general not robust, and consequently, they have degraded per-
formance [47].

In recent years, there has been tremendous progress in NLP models employ-
ing pretrained language models [19,24,33]. Most of the state-of-the-art NLP solu-
tions are today initialized using various pre-trained input data representations
such as word2vec [29], GloVe [31], and FastText [12]. These word embeddings
map words into informative low-dimensional vectors, which aid neural networks
in computing and understanding languages. While the initialization of input
using such embeddings has demonstrated improved performance in NLP tasks,
adopting these sophisticated pretrained language models for data representa-
tion comes with a cost. First, the models are intrinsically complicated, being
trained on immense amounts of data through fine-tuning of a very large number
of parameters [2]. Second, as complexity rises, the interpretability of the input
representation becomes more ambiguous [21]. One interpretation of such models
is based on the attention mechanism, which assigns weights to input features.
However, a more extensive investigation demonstrates that attention weights do
not in general provide useful explanations [36].

TMs [22] are a recent rule-based machine learning approach that demon-
strates competitive performance with DNN, providing human-interpretable rules
using propositional reasoning [5]. Several studies have demonstrated the inter-
pretability of TM, with competitive accuracy in comparison with other deep
learning approaches. Examples of applications for TM include regression [17] ,
natural language understanding [6–9,34,44,45], and speech understanding [26].
Furthermore, [10] analyzed the local and global interpretability of TM clauses,
showing how the TM discrimination capability can be interpreted by inspecting
each clause. However, these studies generally employ TM as a classifier. In this
work, we exploit the data representations created by a TM to train computation-
ally simple machine learning classifiers such as Support Vector Machine (SVM)
and Logistic Regression (LR). Our intent is to develop rich context-specific lan-
guage representations by using the clauses of a TM to capture the patterns
and sub-patterns of data, utilized for later classification and domain adaptation
tasks.
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3 Data Representation Framework

3.1 Tsetlin Machine

A TM consists of dedicated teams of two-action Tsetlin Automata (TA) [41] that
operate with boolean input and its negations. Each TA has 2N states (i.e., N
states per action) and performs an action depending on its current state, which
is either an “Include” action (in state 1 to N) or “Exclude” action (in state
N + 1 to 2N). The TA states update based on reinforcement feedback in the
form of rewards and penalties. Rewards strengthen the TA action, enhancing
the confidence of the TA in the current action, whereas a penalty suppresses
the action. The feedback helps the TA reach the optimal action, which is the
one that maximizes the expected number of rewards. The learning of TM comes
from multiple teams of TAs that build conjunctive clauses in propositional logic.
During learning, each TM clause captures a specific sub-pattern, comprising
negated and non-negated inputs. The output is decided by counting the number
of matching sub-patterns recognized by the clauses.

The TM accepts a vector x = [x1, . . . , xo] of o propositional features as
Boolean input, to be categorized into one of Cl classes, Y = (y1, y2, . . . , yCl),
where Cl is the total number of classes. These features are then turned into a
set of literals that comprises of the features themselves as well as their negated
counterparts: L = {x1, . . . , xo,¬x1, . . . ,¬xo}.

Fig. 1. Knowledge representation framework.

If there are Cl classes and m sub-patterns per class, a TM employs Cl × m
conjunctive clauses to express the sub-patterns. For a given class1, we index its
clauses by j, 1 ≤ j ≤ m/2, each clause being a conjunction of literals. In general,
half of the clauses are assigned positive polarity, i.e., C+

j , and the other half are

1 Without loss of generality, we consider only one of the classes, thereby simplifying
the notation. Any TM class is modeled and processed in the same way.
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assigned negative polarity, i.e., C−
j . A clause Cψ

j , ψ ∈ {−,+}, is produced by
ANDing a subset of the literals, Lψ

j ⊆ L:

Cψ
j (x) =

∧
lk∈Lψ

j
lk. (1)

Here, lk, 1 ≤ k ≤ 2o, is a feature or its negation. Lψ
j is a subset of the literal

set L. For example, a particular clause C+
j (x) = x1 ∧ ¬x2 consists of literals

L+
j = {x1,¬x2} and it outputs 1 if x1 = 1 and x2 = 0.

The number of clauses m assigned to each class is user-configurable. The
clause outputs are merged into a classification decision by summation and thresh-
olding using the unit step function u(v) = 1 if v ≥ 0 else 0:

ŷ = u
(∑m/2

j=1 C+
j (x) − ∑m/2

j=1 C−
j (x)

)
. (2)

From Eq. (2), we can see that the classification is accomplished based on a
majority vote, with the positive clauses voting for the class and the negative ones
voting against it. For example, the classifier ŷ = u (x1x̄2 + x̄1x2 − x1x2 − x̄1x̄2)
captures the XOR-relation. The TM learning involves guiding the TAs to take
optimal actions. Each clause receives feedback for each round of training, which is
transmitted to its individual TAs. The TM utilizes Type I and Type II feedback
that governs the rewards and penalties distributed to the TAs. In short, Type
I feedback is designed to develop frequent patterns, eliminate false negatives,
and make clauses evaluate to 1. Type II feedback, on the other hand, enhances
pattern discrimination, suppresses false positives, and makes clauses evaluate
to 0. Both types of feedback allow clauses to learn numerous sub-patterns from
data. The details of the learning process can be found in [22].

3.2 Data Representation

The trained TM is comprised of clauses that express sub-patterns in the data. In
our NLP tasks, sub-patterns typically contain contextual combinations of words
that explicitly characterize a specific class. In essence, the operation of TM in
NLP consists of building rules by ANDing groups of word literals that occur
together in similar contexts. As such, the clauses (rules) are contextually rich
and specific, which we here exploit to build accurate representations. By being
modular and decomposable, our representation also signifies which clauses are
relevant for a given input. Since our representations are based on logical rules, we
will refer to them as knowledge representations (cf. knowledge-based systems).

Our overall procedure is illustrated in Fig. 1 and can be detailed as fol-
lows. In brief, consider a trained TM with m clauses. Given the input text
x = [x1, . . . , xo], we transform it into a representation consisting of logical rules:

TM x
trans = ζx = ‖Cl

y=1[C
y,+
1 (x), . . . , Cy,+

m/2(x), Cy,−
1 (x), . . . , Cy,−

m/2(x)]. (3)

Here, ‖Cl
y=1 denotes the array concatenation of the positive- and negative polarity

clauses for class 1 to Cl. Each clause can be computed using Eq. (1).
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Next, we perform feature compression since the transformed feature array
produced in Eq. (3) can be too sparse for many machine learning algorithms.
Assume that the total number of input examples is E and that each example is
converted to a vector ζx = (x1, x2, . . . , xdζ

), ζx ∈ Rdζ of dimensionality dζ =
Cl·m. The dimensionality of the input matrix then becomes E×dζ . We transform
this input matrix further by centering the data: A = [Ω1, Ω2, . . . , ΩE ]. The center
can be determined as follows:

xr =
∑E

e=1 xe

E
, (4)

Ωe = xe − xr. (5)

The covariance matrix of A is Cov(A,A) = E[(A − E[A])(A − E[A])T ] and it
contains eigenvalues arranged in decreasing orders i.e., γ1 > γ2 > . . . > γE with
corresponding eigenvectors v1, v2, . . . , vE . The set of original vectors can then be
presented in the eigen space as follows:

Ω = α1v1 + α2v2 + . . . + αEvE =
E∑

i=1

αivi. (6)

After picking the top P eigenvectors vi and corresponding eigenvalues γi, we
have:

Ω = α1v1 + α2v2 + . . . + αPvP =
P∑

i=1

αivi, (7)

where P << E . In the above equation, a vector of coefficients [α1, α2, . . . , αP ]
represents the final representation formed in a Principal Component Analy-
sis (PCA) space. We can observe that the number of dimensions is reduced
while the most important features are retained by eigenvectors corresponding to
large eigenvalues. Also, P eigenvalues in E are selected as follows:

∑P
i=1 γi

∑E
i=1 γi

� θ. (8)

Here, θ can be 0.9 or 0.95. Now, each input example Ωi can be expressed by a
linear combination of P eigen vectors αi = vT

j Ωi, where j = 1, 2, . . . ,P, which
is a compressed representation of the input given to the attached classifier, such
as SVM or LR.

4 Experiments and Results

In this section, we evaluate the performance of the logical data representation
created by transforming the input using the trained TMs2.

2 Classification is done using SVM from scikit-learn with default parameters.
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4.1 Datasets

We conduct our experiments on six publicly accessible benchmark text classifi-
cation datasets.

– TREC-6 [13] is an open-domain, fact-based question classification dataset.
– WebKB [16] comprises manually classified web pages gathered from the com-

puter science departments of 4 universities and classified into 5 categories.
– MPQA [43] is a dataset for detecting opinion polarity.
– CR [20] is a customer review dataset with each sample labeled as positive or

negative.
– SUBJ [30] is a review classification into subjective or objective.
– R8 [18] is a subset of the Reuters-21578 with 8 classes.

4.2 Implementation Details

We utilize the publicly accessible predefined train and test splits for all the
datasets. The TM model is first initialized with three parameters: the num-
ber of clauses m, threshold T , and specificity s. We generate the TM repre-
sentation under 3 settings: early stopping, mid stopping, and best stopping.
The early stopping, mid stopping, and best stopping correspond to running our
experiment with 3, 10, and 250 epochs. This enables us to observe the effect
of quick TM convergence on the representation and classification performance.
Following that, the TM model is trained for the different settings, and the train-
ing and testing input are transformed into respective representations using the
trained model. The representations obtained at this point are uncompressed
and in sparse Boolean form. Thereafter, the representation compression is done
using PCA and Linear Discriminant Analysis (LDA)3. Finally, the compressed
representation is fed into a simple machine learning classifier such as linear SVM
and LR, where the only features are the transformed vectors from TM. We repeat
this procedure for each setting, and the results are reported in Subsect. 4.4.

Table 1. Performance comparison (in accuracy) of vanilla TM with and without
Knowledge representation in three stopping settings.

Datasets TMvanilla TMrepresentation

TMbest TMmid TMearly

TREC 91.6 95 95.6 92.2

MPQA 74.55 87.3 82.75 81.33

SUBJ 86.8 88.4 89.9 90.1

WebKB 91.69 93.05 92.19 92.47

CR 80.55 83.06 77.76 81.48

R8 95.93 96.84 96.71 96.29

3 We use the default scikit-learn parameters for PCA and LDA for feature compression.
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4.3 Baselines

We compared the performance of our framework with deep learning and general
pre-trained models. We adopted BERT [14] as a general pre-trained baseline.
These models achieve state-of-the-art performance on a variety of NLP tasks.
For deep learning models, we also included long short-term memory (LSTM) and
convolutional neural network (CNN). We present the results of all the baseline
models from the original papers. The LSTM model in our work is from [27],
which represents the entire text based on the last hidden state. We use a BiL-
STM model from [15,39,48]. The CNN models are taken from [15,25], which
employ pretrained word embedding for initialization. The result for DiSAN,
which adopts directional self-attention, is taken from [38]. The BERT model
is from [14].

Table 2. Performance comparison of our model with baseline algorithms. We reproduce
the results with the same hyperparameter configurations for all baselines for a fair
comparison and report average accuracy across 10 different random seeds.

Models TREC MPQA SUBJ WebKB CR R8

LSTM 87.19 89.43 85.66 85.32 80.06 96.09

BiLSTM 91.0 89.5 92.3 - - 96.31

CNN-non-static 93.6 89.05 93.4 - 84.3 95.71

CNN-static 92.0 89.06 93.0 - 84.7 94.02

CNN-multichannel 92.2 89.4 93.2 - 85.0 -

DiSAN 94.2 90.1 94.2 - 84.8 -

BERT 97.6 90.66 97.0 79.0 86.58 96.02

TM 91.6 74.55 86.8 91.69 80.55 95.93

TMrep 95.6 87.3 90.1 93.05 83.06 96.84

4.4 Results and Analysis

The performance of our representation is compared to vanilla TM under 3 dif-
ferent settings (as explained in Subsect. 4.2) shown in Table 1. The TMvanilla is
the text classification using legacy TM. And TMrep makes use of the represen-
tation generated by TM under various settings. On all datasets, we observe that
the classification accuracy using the representation outperforms vanilla TM. For
MPQA, we can see a massive improvement of around 13% followed by approxi-
mately 4% for TREC. With only 3 epochs, we can observe that the TM represen-
tation performs well, with the highest accuracy in the SUBJ dataset. This also
demonstrates how the quick convergence of TM enables the generation of richer
representation within a small number of epochs, hence benefiting representation
production time.
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Table 3. Computation for TM vs BERT in TREC dataset.

Parameter BERT TM

10 Epochs 297s 96s

Memory in (MB) 4637 1131

The performance result of our representation framework is compared with
the other baselines (from Subsect. 4.3) in Table 2. We observe that our frame-
work performs competitively with other baselines. The model beats all other
baselines in WebKB and R8, with an accuracy of 93.05% and 96.84% respec-
tively. WebKB largely entails classifying personal attributes captured by sparse
data, such as categorizing individual students and professors from academia. The
sparseness of the data may explain the poor performance of BERT according to
a study that reports that BERT completely ignores the minority class at test
time for low-resource tasks such as few-shot learning and rare entity recogni-
tion [40]. For TREC, MPQA, and CR, BERT outperforms all other models. Our
model, on the other hand, achieves 95.6% on TREC, placing it as the second-best
model in terms of performance. LSTM performs the worst of all models, whereas
BiLSTM performs competitively. Surprisingly, a basic CNN model with static
vectors gives competitive results against the more sophisticated attention-based
DiSAN model. We see that the performance of vanilla TM falls short when
compared with models initialized with pre-trained word embeddings. Overall,
the TM representation performs competitively compared with computationally
intensive models such as BERT, which is trained on a big text corpus. Training
time and memory consumption of TM and BERT are shown in Table 3. To cal-
culate training time, we run both TM and BERT for 10 epochs. Note that the
TM is trained entirely from scratch, whereas the BERT is simply fine-tuned. We
observe that the TM outperforms BERT by 3× in terms of training time and
memory utilization.

4.5 Visualization

To investigate how our representation enhances the performance on NLP tasks,
we plot the learned representation using t-SNE. We visualize the input with
and without the TM representation in Fig. 3. Additionally, the figure contains
the corresponding BERT hidden layer representation4. We observe that both
representations provide richer and more precise information because the clusters
get more separated and clear-cut. Further, notice how the TM clauses compress
the data, significantly reducing the number of distinct data points (Fig. 3b).
Each data point relates important features, formulated in propositional logic.
Additionally, we demonstrate in Fig. 2 how the number of epochs influences the

4 For BERT representation, the pretrained “BERT Base Uncased” model is fine-tuned
with 3 epochs, and hidden states from the 11th layer are visualized.
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Fig. 2. Visualization of t-SNE projection of representation produced in 3 training set-
tings on TREC dataset.

Fig. 3. Visualization of t-SNE projection for raw data, TM, and BERT representation
on TREC dataset.

representation. We observe that as the number of epochs increases, the cluster
becomes increasingly compact and distinct.

4.6 Concluding Remarks

From the above empirical results and visual analysis, our conclusion is that the
TM representation considerably enhances the input feature space, resulting in
enhanced performance. As explored further below in the case study on inter-
pretability, the advantage of using TM can at least partially be explained by
its ability to capture both semantic and structural word representations from
the input. Additionally, unlike DNNs, our model provides a reasonable trade-off
between performance and explainability. That is, the TM representation is com-
putationally simple and explainable through the logic-based propositional rules
composed by the clauses.

5 A Case Study: Interpretability

In this section, we demonstrate a case study showing how the representation
produced by our framework is interpretable. Let us assume the following input
sentence from the TREC dataset: “what is the highest waterfall in the united
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states?” with the label “Location” and “what is the date of boxing day?” with the
label “Entity”. After tokenization, the vocabulary will consist of the following
tokens: [“what”, “highest”, “waterfall”, “united”, “states”, “date”, “boxing”,
“day”]. During training, the clauses capture the distinctive pattern to designate
each label. Figure 4 contains some sample clauses that support “Location”.

Fig. 4. Literals captured by clauses.

Referring to Fig. 1, the given input can be represented using TM clauses
from a trained model. The representation can be written in an array:
[C1, C2, . . . , Cm] → [1, 0, . . . , 1]. For a given input, the representation consists
of an array of clauses that are activated. And the clauses that are activated
encapsulate the propositional rules necessary to make the correct classification
decision. As a result, the representation is dense with information and can be
completely interpretable. For example, for the above input, C1 and Cm in Fig. 4
are activated in the representation. The vocabulary encompassed by these clauses
are [“highest”, “waterfall”, “united”, “states”]. That is, these clauses encapsulate
the propositional rules associated with the label “Location”.

Table 4. Domain adaptation performance (accuracy %) on Amazon review dataset.

S-only MMD DANN CORAL WDGRL ACAN BERT TMrep

B → D 81.09 82.57 82.07 82.74 83.05 83.45 86.75 84.94

B → E 75.23 80.95 78.98 82.93 83.28 81.20 82.80 86.21

B → K 77.78 83.55 82.76 84.81 85.45 83.05 86.20 87.57

D → B 76.46 79.93 79.35 80.81 80.72 82.35 81.55 85.06

D → E 76.24 82.59 81.64 83.49 83.58 82.80 80.60 86.81

D → K 79.68 84.15 83.41 85.35 86.24 78.60 83.00 87.75

E → B 73.37 75.72 75.95 76.91 77.22 79.75 81.85 84.83

E → D 73.79 77.69 77.58 78.08 78.28 81.75 83.85 83.43

E → K 86.64 87.37 86.63 87.87 88.16 83.35 90.80 87.88

K → B 72.12 75.83 75.81 76.95 77.16 80.80 82.10 82.30

K → D 75.79 78.05 78.53 79.11 79.89 82.10 82.05 83.07

K → E 85.92 86.27 86.11 86.83 86.29 86.60 88.35 88.31

AVG 77.84 81.22 80.74 82.16 82.43 82.15 84.13 85.68
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6 Application: Domain Adaptation

We here demonstrate that the input representations produced from our frame-
work can be used in domain adaptation tasks. These results thus reinforce our
previous conclusion that the representations are rich, and also applicable as con-
texts in cross-domain applications. We employ Amazon reviews datasets [11],
which comprises 4 domains: Books (B), DVD (D), Electronic (E), and Kitchen
& Housewares (K), with 12 adaptation scenarios. Each domain has around 2000
labeled and approximately 4000 unlabeled reviews. We follow the transductive
setting in [32] to train in the source domain and test in the target domains. For
a fair comparison, the results for the baseline algorithms are obtained directly
from [37,51]. The results are summarized in Table 4. As shown, the new app-
roach can outperform baseline algorithms in 9 out of 12 tasks. And on average,
our model beats all the other algorithms.

7 Conclusion

In this paper, we propose a data representation framework that enhances the per-
formance of Tsetlin Machines (TMs). Our approach is capable of producing more
sophisticated data representation through the utilization of semantic and contex-
tual patterns captured by clauses in TMs. We conduct extensive experiments on
NLP classification and domain adaptation using publicly available datasets. In
NLP classification, our experimental findings suggest that our method is com-
petitively equal to complicated and non-transparent DNNs, including BERT.
In domain adaptation, we outperform all other baselines, illustrating that the
representation produced from our framework can be employed in cross-domain
applications. Additionally, using a t-SNE plot, we visualize how the representa-
tion can enhance input features by utilizing distinctive decision boundaries for
each class. Finally, we present a case study demonstrating the interpretability of
TM-generated representation.
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Abstract. Recommender system research has oftentimes focused on
approaches that operate on large-scale datasets containing millions of
user interactions. However, many small businesses struggle to apply
state-of-the-art models due to their very limited availability of data. We
propose a graph-based recommender model which utilizes heterogeneous
interactions between users and content of different types and is able to
operate well on small-scale datasets. A genetic algorithm is used to find
optimal weights that represent the strength of the relationship between
users and content. Experiments on two real-world datasets (which we
make available to the research community) show promising results (up
to 7% improvement), in comparison with other state-of-the-art methods
for low-data environments. These improvements are statistically signifi-
cant and consistent across different data samples.

Keywords: Personalized page rank · Genetic algorithm ·
Collaborative filtering

1 Introduction

With the advent of the internet, huge amounts of data have become available.
This allows to design and develop novel Recommender Systems (RSs) based on
complex Machine Learning (ML) and Deep Learning (DL) approaches, often
characterized as data-hungry approaches. Many recent recommender models
belong to this category, so a recommender dataset of size 100 K might already
be considered small [23]. Moreover, when using such datasets, a pre-processing
step is often applied to remove all users with less than a certain number of inter-
actions, e.g., 5, because several models are not able to learn with only few data
points per user [14,24,28,42].
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In the era of big data, Small and Medium Enterprises (SMEs) struggle to find
their way, given that they might not have access to such a huge amount of data.
However, SMEs are fundamental actors in the global economy, as they represent
about 90% of businesses and more than 50% of employment worldwide [11]. In
these cases, RSs able to cope with low data scenarios are necessary [13].

In ML and DL, small data problems are notoriously hard and are usu-
ally solved with a number of well-studied techniques [29]: (1) data augmen-
tation, where synthetic samples are generated from the training set [27,44,51];
(2) transfer learning, where models learn from a related task and transfer the
knowledge [25,50]; (3) self supervision, where models learns from pseudo or weak
labels [37,49]; (4) few-shot learning, i.e., (meta-)learning from many related tasks
with the aim of improving the performance on the problem of interest [35,39,40];
(5) exploiting prior knowledge manually encoded, for example external side infor-
mation and Knowledge Graphs (KGs) [3,47]. However, except for hand-coded
knowledge, the above approaches still require a considerable amount of initial
data or access to a different, but similar domain, where plenty of data is available.
On the other side, knowledge bases are application dependent, require access to
expert knowledge, and are not always available.

In this paper, we contribute a novel recommender approach able to operate
in small data scenarios: our model does not require large volumes of initial data
and is not application dependent. We use a heterogeneous graph, where vertices
denote entities, e.g., users and different types of content, and edges represent
interactions between users and content, e.g., a user posting a message on a social
media. Then we use Personalized PageRank (PPR) to recommend items. Note
that, edges represent any interaction with users and content, not only interaction
with recommendable items. We assign weights to edges in the graph, which
represent the strength of the relationship between users and content. In previous
work within RSs [26,52,53], such weights are usually pre-defined depending on
the application. We do not make any assumption on the values of such weights
and optimize them with a genetic algorithm [17]. To the best of our knowledge,
heuristic algorithms have never been applied to learn edge weights in the context
of RSs. Our approach is evaluated on two real-world use cases: (1) an emergent
educational social network, where there are few user interactions due to the
initial stage of the platform, but a large number of items; (2) an insurance
e-commerce platform, where there are many users but few user interactions,
because users do not interact often with insurance products, and few items by
nature of the insurance domain. Experimental results are promising, showing up
to a 7% improvement over state-of-the-art baselines.

2 Related Work

Recommendation with small data has been tackled heuristically, i.e., by rec-
ommending items based on a set of specific rules [18]. Such rules have to be
designed for each use case, making these models application dependent. Hybrid
RSs have also been proposed for small data, for instance by merging Content
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Based (CB) and association rules [19,20]. Note that the datasets in [19,20] are
not publicly available. Item-to-item recommendation is addressed in [36] with a
CF approach as a counterfactual problem, where a small collection of explicit
user preferences is used to improve propensity estimation. We cannot use this
in our work because: (1) our task is not item-to-item recommendations; (2) we
do not have access to explicit user preferences; (3) a large dataset (MovieLens
25M [15]) is still needed to estimate propensity (the small annotated dataset is
only used to debias the propensity estimate). In [38], a hybrid user-based model
combines CF, rule-based recommendation, and the top popular recommender
with domain-specific and contextual information in the area of a small online
educational community. The dataset is not publicly available and the approach
is domain-dependent, hence not applicable to our work. Finally, conversion rate
prediction for small-scale recommendation is used in [32], with an ensemble of
deep neural networks that are trained and evaluated on a non-public dataset
of millions of users, impressions, and clicks. Our small data scenario does not
include enough data to train this ensemble model.

Solutions for cold start cases (where users or items have few or no interac-
tions) are hybrid combinations of CF, CB, demographic and contextual infor-
mation [5,12,33], or ML methods such as data augmentation [51], transfer learn-
ing [2,50], etc. (see Sect. 1). Data augmentation is used in [27], where a CF model
creates synthetic user ratings and is then combined with a CB model. We cannot
use this in our task because we do not have explicit ratings (we use any user
interaction as implicit feedback). In [49], self-supervision and data augmenta-
tion are combined on the user-item graph, and in [37], self-supervision on the
user-item graph is enhanced with features extracted from user reviews. Few shot
learning and meta-learning have also been used. In [35], a neural recommender
is trained over head items with frequent interactions, and this meta-knowledge
is transferred to learn prototypes for long-tail items. In [39], recommendations
for cold users are generated with a meta-learner that accounts for interest drift
and geographical preferences. In [3], knowledge bases (KG) are used to enrich
feature representations, and in [47] a neural attention mechanism learns the high
order relation in the user-item graph and the KG.

All above approaches [2,3,35,37,39,47,49–51] are evaluated on popular pub-
licly available datasets, e.g., MovieLens [15], Yelp, Amazon, CiteULike [43],
Weeplaces, etc. These datasets are much larger than those in our case (see
Tables 1 and 2) and allow using self-supervision, few-shot learning, attention
mechanisms, and other neural models that we cannot use due to the extremely
low amount of data. Transfer learning and domain adaptation require large
amounts of training data from a similar task or a related domain, which are
not (publicly) available for our use cases.

Lastly, graph-based RSs can be robust as they enable information to propa-
gate through vertices, unlike matrix completion which is affected by data spar-
sity [45]. This motivates recent approaches using GNN [34,37,46,49,51]. How-
ever, these are not applicable to small data problems because there are not
enough samples to train GNN models. PathRank [26] uses a heterogeneous
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user-item graph with additional vertices that are attributes of items, e.g., movie
genre, director, etc. Recommendations are generated with a random walk sim-
ilar to PPR, but constraints are used to ensure that the random walks follow
certain predefined paths. These are application dependent. In [54], the user-item
graph is extended with item attributes, and meta-paths are defined to deter-
mine how two entities in the graph (vertices of different types) are connected
(this encodes entity similarity). A preference diffusion score is defined for specific
meta-paths, based on user implicit feedback and co-occurrences of entities, and
used to recommend items. Unlike [26,54], we build the heterogeneous graph from
all user interactions, not only interactions with items. We also do not include
item attributes in the graph and we do not use predefined paths or meta-paths.
We assume any possible path and optimize edge weights with a genetic algorithm.

Injected Preference Fusion (IPF) [52] extends PPR with a session-based tem-
poral graph (STG) that includes both long- and short-term user preferences.
STG is a bipartite graph where users, items, and sessions are vertices. Non-
negative weights are associated with edges, which control the balance between
long- and short-term preferences. Multi-Layer Context Graph (MLCG) [53] is a
three-layer graph, where each layer represents a different type of context: (1) user
context, e.g., gender and age; (2) item context, e.g., similarity between items;
and (3) decision context, e.g., location and time. Different weights are associated
with intra- and inter-layer edges, defined as functions of vertice co-occurrence.
Unlike [52,53], (1) we represent in the graph all user interactions (not only those
with recommendable items); (2) we do not consider temporal, contextual, or
demographic features, which may not be available; (3) we do not use predefined
weights, but we optimize them with a genetic algorithm.

3 Approach

Usually, graph-based recommendation consists of 2 steps: (1) building the graph
structure (Sect. 3.1), and (2) recommending items (Sect. 3.2). We introduce an
intermediate step between (1) and (2), where we optimize weights associated to
different edge types (Sect. 3.3).

3.1 Heterogeneous Graph Representation of User Interactions

Let us consider a set of users who interact with content of various types, for
example posts and comments in social networks or items and services in an
online store. We represent users and content (vertices), and their relationships
(edges) with a heterogeneous graph [41]. Vertices belong to different types, e.g.,
users, items, posts, etc. Edges have different types depending on the action that
they represent, e.g., the edge with the type “like” can connect a user with a
post. Moreover, edges have a direction because some actions are not symmetric,
e.g., a user can follow another user, but not be followed by the same user. Note
that all types of user interactions are included in the graph, i.e., also interactions
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Fig. 1. Example of the heterogeneous graph in a social network.

with objects that are not recommendable items, for example, a user creating a
post or reporting a claim.

A heterogeneous graph, or heterogeneous information network, is a type of
directed graph G = (V, E ,A,R), where vertices and edges represent different
types of entities and relationships among them. Each vertex v ∈ V and edge
e ∈ E is associated to its type through a mapping function τ : V → A and
φ : E → R respectively. A is the set of vertex types, or tags, e.g., users or various
type of content. R is the set of edge types, e.g., a user liking a post.

We denote edges as e = (i, j), where i and j ∈ V and i �= j. Edge types
are mapped to positive weights representing the strength of the relationship
between two vertices. Formally, given an edge (i, j), we define a weight function
W : R → R

+ such that W (φ((i, j))) = wi,j , with the constraint that wi,j > 0
(Sect. 3.3 explains how to compute optimal weights wi,j).

Since G is a directed graph, φ((i, j)) �= φ((j, i)), i.e., R contains distinct types
for ingoing and outgoing edges. Therefore, each user interaction is represented
as two weighted edges1, wi,j from the user to another vertex and wj,i from that
vertex to the user vertex, e.g., a user liking a post and a post being liked by a user.
The weights for those outgoing and ingoing edges might differ. Edges can also
exist between two content vertices when two entities are related (for example a
comment that was created under a post). In case of multiple interactions between
2 vertices, e.g., a user can both create a post and like it, we define a different
type of edge, i.e., a new value in R, which represents the two actions. The weight
of such edge corresponds to the sum of the weights of each individual type, e.g.,
the creation and liking of a post. In practice, this happens only for a few actions
and does not affect the size of R significantly.

1 Except for non-symmetric actions, e.g., following a user.
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Figure 1 illustrates an example of a heterogeneous graph in an educational
social network, where user 1 follows course 1 (note that course means university
course in an educational setting), user 2 follows course 2, and user 1 and 3 follow
user 2. Furthermore, user 2 has created post 1, user 1 has created comment 1
under post 1 and user 3 has liked comment 1.

3.2 Generating Recommendations Using Random Walks

Given a user, the recommendation task consists in ranking vertices from the
heterogeneous graph. To do this, we use PPR [31]. Starting at a source vertex
s, the PPR value of a target vertex, t, is defined as the probability that an α-
discounted random walk from vertex s terminates at t. An α-discounted random
walk represents a random walker that, at each step, either terminates at the
current vertex with probability α, or moves to a random out-neighbor with
probability 1 − α. Formally, let G be a graph of n vertices, let O(i) denote the
set of end vertices of the outgoing edges of vertex i, and let the edge (i, j) be
weighted by wij > 0. The steady-state distribution of an α-discounted random
walk in G, starting from vertex s, is defined as follows:

π = (1 − α)PTπ + αes where P = (pi,j)i,j∈V =
wi,j∑

k∈O(i) wi,k
· 1{j∈O(i)} (1)

α ∈ (0, 1), P is the transition matrix, es is a one-hot vector of length n with
es(s) = 1, and 1 is the indicator function, equal to one when j ∈ O(i). Eq. (1) is
a linear system that can be solved using the power-iteration method [31].

Solving Eq. (1) returns a π for each user containing the PPR values (i.e., the
ranks) of all the content vertices with respect to that user. A recommendation
list is then generated by either ordering the content vertices by their ranks and
selecting the top-k, or by selecting the most similar neighbors by their ranks, then
ordering the content by the neighbors’ interaction frequency with the content.
We implement both methods (see Sect. 4.3).

3.3 Optimizing Edge Weights Using Genetic Algorithm

Next, we explain how to compute the weight function W , which assigns the
optimal weights for outgoing and ingoing edges of each interaction type. In our
data (which is presented in Sect. 4.1), the number of interaction types was 11 and
9, which required to optimize respectively 22 and 18 parameters (see Table 3).
With such a large search space, using grid search and similar methods would
be very inefficient. Instead, we use a heuristic algorithm to find the optimal
weights. Heuristic methods can be used to solve optimization problems that are
not well suited for standard optimization algorithms, for instance, if the objective
function is discontinuous or non-differentiable. In particular, we use a genetic
algorithm [17] as our optimization algorithm, as it is a widely known and used
algorithm, which is relatively straightforward to get started with and has been
shown to serve as a strong baseline in many use cases [30]. The algorithm in [17]
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consists of 5 components, which in our case are specified as follows: 1. Initial
population: A population consisting of a set of gene vectors is initialized. In
our case, each gene vector is a vector of weights with size |R|, and each gene is
uniformly initialized from a predefined range. 2. Fitness function: Each of the
initialized gene vectors is evaluated. In our case, recommendations are generated
with PPR as described in Sect. 3.2 where the graph is weighted by the genes.
The fitness function can be any evaluation measure that evaluates the quality
of the ranked list of recommendations, e.g., normalized Discounted Cumulative
Gain (nDCG), Mean Average Precision (MAP), etc. 3. Selection: Based on
the fitness score, the best gene vectors are selected to be parents for the next
population. 4. Crossover: Pairs of parents are mated with a uniform crossover
type, i.e., offspring vectors are created where each gene in the vector is selected
uniformly at random from one of the two mating parents. 5. Mutation: Each
gene in an offspring vector has a probability of being mutated, meaning that the
value is modified by a small fraction. This is to maintain diversity and prevent
local optima. Finally, new offspring vectors are added to the population, and
step 2 to 5 are repeated until the best solution converges.

4 Experiments

Next we describe the experimental evaluation: the use cases and datasets in
Sect. 4.1; training and evaluation in Sect. 4.2; baselines and hyperparameters in
Sect. 4.3; and results in Sect. 4.4. The code is publicly available2.

4.1 Use Cases and Datasets

To evaluate our model, we need a dataset that satisfies the following criteria: (1)
interaction scarcity; (2) different types of actions which might not be directly
associated with items. To the best of our knowledge, most publicly available
datasets include only clicks and/or purchases or ratings, so they do not satisfy
the second criterion. We use two real-world datasets described next. The educa-
tional social network dataset was collected from a social platform for students
between March 17, 2020 to April 6, 2022. We make this dataset public available3.
The users can, among others, follow courses from different universities, create
and rate learning resources, and create, comment and like posts. The content
vertices are: courses, universities, resources, posts, and comments and the goal is
to recommend courses. The platform is maintained by a SME in the very early
stage of growth and the dataset from it contains 5088 interactions, made by 878
different users with 1605 different content objects resulting in a data sparsity of
0.996. Dataset statistics are reported in Table 1.

The second dataset is an insurance dataset [7] collected from an insurance
vendor between October 1, 2018 to September 30, 20204. The content vertices
2 https://github.com/simonebbruun/genetically optimized graph RS.
3 https://github.com/carmignanivittorio/ai denmark data.
4 https://github.com/simonebbruun/cross-sessions RS.

https://github.com/simonebbruun/genetically_optimized_graph_RS
https://github.com/carmignanivittorio/ai_denmark_data
https://github.com/simonebbruun/cross-sessions_RS
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Table 1. Dataset statistics: educational social network.

Type of interaction Follow Post Comment Source Join Uni-
versity

Course User Create Like Create Like Create Rate

Training 1578
(28.12%)

842
(15%)

92
(1.64%)

339
(6.04%)

116
(2.07%)

96
(1.71%)

75
(1.34%)

113
(2.01%)

1400
(24.95%)

Validation 415
(7.39%)

Test 546
(9.73%)

Table 2. Dataset statistics: insurance dataset.

Type of interaction Purchase
items

E-commerce Personal account Claims reporting Information

Items Services Items Services Items Services Items Services

Training 4853
(13.65%)

6897
(19.4%)

1775
(4.99%)

287
(0.81%)

17050
(47.96%)

154
(0.43%)

6
(0.02%)

1129
(3.18%)

2118
(5.96%)

Validation 601
(1.69%)

Test 680
(1.91%)

are items and services within a specified section of the insurance website being
either e-commerce, claims reporting, information or personal account. Items are
insurance products (e.g., car insurance) and additional coverages of insurance
products (e.g., roadside assistance). Services can, among others, be specification
of “employment” (required if you have an accident insurance), and information
about “the insurance process when moving home”. User interactions are pur-
chases and clicks on the insurance website. The goal is to recommend items.
The dataset contains 432249 interactions, made by 53569 different users with 55
different item and service objects resulting in a data sparsity of 0.853. Dataset
statistics are reported in Table 2.

4.2 Evaluation Procedure

We split the datasets into training and test set as follows. As test set for the
educational social network dataset, we use the last course interaction (leave-one-
out) for each user who has more than one course interaction. The remaining is
used as training set. All interactions occurring after the left-out course inter-
action in the test set are removed to prevent data leakage. As test set for the
insurance dataset, we use the latest 10% of purchase events (can be one or more
purchases made by the same user). The remaining interactions (occurring before
the purchases in the test set) are used as training set.

For each user in the test set, the RS generates a ranked list of content vertices
to be recommended. For the educational social network dataset, courses that
the user already follows are filtered out from the ranked list. For the insurance
dataset, it is only possible for a user to buy an additional coverage if the user
has the corresponding base insurance product, therefore we filter out additional
coverages if this is not the case, as per [1].
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As evaluation measures, we use Hit Rate (HR) and Mean Reciprocal Rank
(MRR). Since in most cases, we only have one true content object for each
user in the test set (leave-one-out), MRR corresponds to MAP and is somehow
proportional to nDCG (they differ in the discount factor). For the educational
social network, we use standard cutoffs, i.e., 5 and 10. For the insurance dataset,
we use a cutoff of 3 because the total number of items is 16, therefore with higher
cut-offs all measures will reach high values, which will not inform on the actual
quality of the RSs.

4.3 Baselines, Implementation, and Hyperparameters

The focus of this work is to improve the quality of recommendations on small
data problems, such as the educational social network dataset. Therefore, we
consider both simple collaborative filtering baselines that are robust on small
datasets as well as state-of-the-art neural baselines: Most Popular recommends
the content with most interactions across users; UB-KNN is a user-based nearest
neighbor model that computes similarities between users, then ranks the content
by the interaction frequency of the top-k neighbors. Similarity is defined as the
cosine similarity between the binarized vectors of user interactions; SVD is a
latent factor model that factorizes the matrix of user interactions by singular
value decomposition [8]; NeuMF factorizes the matrix of user interactions and
replaces the user-item inner product with a neural architecture [16]; NGCF rep-
resents user interactions in a bipartite graph and uses a graph neural network
to learn user and item embeddings [48]; Uniform Graph is a graph-based model
that ranks the vertices using PPR [31] with all edge weights equal to 1; User
Study Graph is the same as uniform, but the weights are based on a recent user
study conducted on the same educational social network [6]. Users assigned 2
scores to each action type: the effort required to perform the action, and the
value that the performed action brings to the user. We normalized the scores
and used effort scores for outgoing edges and value scores for ingoing edges. The
exact values are in our source code. A similar user study is not available for the
insurance domain.

All implementation is in Python 3.9. Hyperparameters are tuned on a val-
idation set, created from the training set in the same way as the test set (see
Sect. 4.2). For the educational social network, optimal hyperparameters are the
following: damping factor α = 0.3; PPR best predictions are obtained by rank-
ing vertices; 30 latent factors for SVD; and number of neighbors k = 60 for
UB-KNN. Optimal hyperparametrs in the insurance dataset are: damping fac-
tor α = 0.4; PPR best predictions are obtained by ranking user vertices and
select the closest 90 users; 10 latent factors for SVD; and number of neighbors
k = 80 for UB-KNN.

The genetic algorithm is implemented with PyGAD 2.16.3 with MRR as fit-
ness function and the following parameters: initial population: 10; gene range:
[0.01, 2], parents mating: 4; genes to mutate: 10%; mutation range: [−0.3, 0.3].
We optimize the edge weights using the training set to build the graph and the
validation set to evaluate the fitness function. The optimal weights are reported
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Table 3. Optimized interaction weights averaged over five runs of the genetic algo-
rithm.

(a) Educational social network dataset.

Trained for Course follows

Direction of edge Out In

User follows user 0.95 0.86

User follows course 0.73 1.88

User creates post 1.11 1.09

User creates resource 1.27 0.55

User creates comment 0.91 1.03

User likes post 1.27 0.61

User likes comment 0.42 0.99

User rates resource 0.77 0.84

Comment under post 0.91 1.17

User joins university 0.28 1.06

(b) Insurance dataset.

Trained for Purchase items

Direction of edge Out In

Purchase items 0.24 1.05

E-commerce items 0.64 1.49

E-commerce services 1.21 1.18

Personal account items 1.06 0.36

Personal account services 0.92 0.66

Claims reporting items 0.93 0.58

Claims reporting services 0.90 1.32

Information items 1.60 0.79

Information services 0.64 0.51

in Table 3. In order to provide stability of the optimal weights, we report the
average weights obtained by five runs of the genetic algorithm.

4.4 Results

Table 4 reports experimental results. On both datasets, UB-KNN outperforms
SVD and NeuMF, and the best-performing baseline is the uniform graph-based
model on the educational social network dataset and the NGCF model on the
insurance dataset. This corroborates previous findings, showing that graph-based
RSs are more robust than matrix factorization when data is sparse [45] and neu-
ral models need a considerable amount of data to perform well. Graph-based
methods account for indirect connectivity among content vertices and users, thus
outperforming also UB-KNN, which defines similar users on subsets of commonly
interacted items. Our genetically optimized graph-based model outperforms all
baseline models on the educational social network dataset and obtains competing
results with the NGCF model on the insurance dataset, showing that the genetic
algorithm can successfully find the best weights, which results in improved effec-
tiveness. In order to account for randomness of the genetic algorithm, we run the
optimization of weights five times and report the mean and standard deviation of
the results in Table 4. The standard deviation is lowest on the insurance dataset,
but even on the very small educational dataset, the standard deviation is rela-
tively low, so for different initializations, the algorithm tends to converge toward
similar results. Moreover, we tried a version of our model where we let the graph
be an undirected graph, meaning that for each edge type the weight for the ingo-
ing and the outgoing edge is the same. The results show that the directed graph
outperforms its undirected version. For the educational social network, weights
based on the user study result in worse performance, even lower than UB-KNN.
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Table 4. Performance results (†mean/std). All results marked with * are signifi-
cantly different with a confidence level of 0.05 from the genetically optimized graph
(ANOVA [22] is used for MRR@k and McNemar’s test [9] is used for HR@k). The best
results are in bold.

Dataset Educational social network Insurance

Measure MRR@5 MRR@10 HR@5 HR@10 MRR@3 HR@3

Most Popular 0.0797* 0.0901* 0.1978* 0.2729* 0.4982* 0.6791*

SVD 0.3639* 0.3767* 0.5275* 0.6209* 0.5787* 0.7399*

NeuMF 0.3956* 0.4110* 0.5604* 0.6740* 0.5937* 0.7448*

UB-KNN 0.4304* 0.4456* 0.6172* 0.7271* 0.6238* 0.7569*

NGCF 0.4471 0.4592 0.6245* 0.7143* 0.6517 0.8043*

Uniform
Graph

0.4600 0.4735 0.6300* 0.7289* 0.6263* 0.7730*

User Study
Graph

0.4162* 0.4330* 0.5952* 0.7179* - -

Genetically
Undirected
Graph

0.4809 0.4957 0.6410 0.7509 0.6339 0.7760*

Genetically
Directed
Graph†

0.4907/
0.0039

0.5045/
0.0037

0.6505/
0.0052

0.7520/
0.0055

0.6435/
0.0029

0.7875/
0.0044

Overall, scores are higher on the insurance data. This might happen because:
(1) data from the educational social network is sparser than insurance data (see
Sect. 4.1); (2) the insurance data has a considerably larger training set; (3) there
are fewer items to recommend in the insurance domain (16 vs. 388).

Figure 2 shows MRR at varying cutoffs k. We have similar results for HR,
which are omitted due to space limitations. It appears that the results are
consistent for varying thresholds. Only on the insurance dataset, we see that
the UB-KNN is slightly better than the uniform graph-based model for smaller
thresholds.

Inspecting the optimal weights in Table 3, we see that for the educational
social network all the interaction types associated with courses (following course,
creating resource, creating comment, creating and liking posts) are highly
weighted. This is reasonable since courses are the recommended items. More-
over, a higher weight is assigned when a user follows a user compared to when a
user is followed by a user. This reasonably suggests that users are interested in
courses attended by the users they follow, rather than the courses of their fol-
lowers. For the insurance dataset, we observe that the greatest weights are given
when a user clicks on items in the information and personal account section,
when items are purchased by a user, and when items and services are clicked in
the e-commerce section, which are all closely related to the process of purchasing
items.
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Fig. 2. MRR@k for varying choices of the cutoff threshold k.

Table 5. Results on smaller samples of the insurance dataset. The notation is as in
Table 4.

Percentage of
insurance dataset

10% 25% 50% 100%

Measure MRR@3 HR@3 MRR@3 HR@3 MRR@3 HR@3 MRR@3 HR@3

Most popular 0.5003* 0.6856* 0.4981* 0.6789* 0.5003* 0.6856* 0.4982* 0.6791*

SVD 0.5785* 0.7336* 0.5794* 0.7395* 0.5758* 0.7379* 0.5787* 0.7399*

NeuMF 0.5792* 0.7326* 0.5759* 0.7291* 0.5849* 0.7466* 0.5937 0.7448

UB-KNN 0.6183 0.7661* 0.6180* 0.7494* 0.6243 0.7524* 0.6238* 0.7569*

NGCF 0.5937* 0.7199* 0.6030* 0.7405* 0.6397 0.7894 0.6517 0.8043*

Uniform Graph 0.6196 0.7687* 0.6206* 0.7687* 0.6253 0.7746 0.6263* 0.7730*

Genetically
Undirected Graph

0.6238 0.7672* 0.6224 0.7601* 0.6286 0.7741 0.6339 0.7760

Genetically
Directed Graph†

0.6267/
0.0052

0.7784/
0.0084

0.6353/
0.0039

0.7845/
0.0073

0.6397/
0.0045

0.7903/
0.0071

0.6435/
0.0029

0.7875/
0.0044

We further evaluate the performance of our models, when trained on smaller
samples of the insurance dataset. We randomly sample 10%, 25% and 50% from
the training data, which is then split into training and validation set as described
in Sect. 4.3. In order to account for randomness of the genetic algorithm, we
sample 5 times for each sample size and report the mean and standard deviation
of the results. We evaluate the models on the original test set for comparable
results. The results are presented in Table 5. While the genetically optimized
graph-based model only partially outperforms the NGCF model on large sample
sizes (50% and 100%) it outperforms all the baselines on small sample sizes (10%
and 25%). This shows that our genetically optimized model is more robust for
small data problems than a neural graph-based model. In addition, it is still
able to compete with the neural graph-based model when larger datasets are
available.

In Fig. 3 we inspect how the outgoing edge weights evolve when optimized on
different sizes of the insurance dataset. We have similar results for the ingoing
edge weights, which are omitted due to space limitation. It appears that the
optimized weights only change a little when more data is added to the training
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Fig. 3. Plot of how the outgoing edge weights evolve for different sizes of the insurance
dataset.

set, and the relative importance of the interaction types remains stable across the
different sizes of the dataset. Only the interaction type “information services”
has large variations across the different dataset sizes, and in general, the biggest
development of the weights happens when the dataset is increased from 10% to
25%. It shows that once the genetic algorithm has found the optimal weights in
offline mode, the weights can be held fixed while the RS is deployed online, and
the weights only need to be retrained (offline) once in a while, reducing the need
for a fast optimization algorithm.

5 Conclusions and Future Work

We have introduced a novel recommender approach able to cope with very low
data scenarios. This is a highly relevant problem for SMEs that might not have
access to large amounts of data. We use a heterogeneous graph with users, con-
tent and their interactions to generate recommendations. We assign different
weights to edges depending on the interaction type and use a genetic algorithm
to find the optimal weights. Experimental results on two different use cases show
that our model outperforms state-of-the-art baselines for two real-world small
data scenarios. We make our code and datasets publicly available.

As future work we will consider possible extensions of the graph structure,
for example, we can include contextual and demographic information as addi-
tional layers, similarly to what is done in [53]. Moreover, we can account for the
temporal dimension, by encoding the recency of the actions in the edge weight,
as done in [52]. We will further experiment with the more recent particle swarm
[21] and ant colony optimization algorithms [10] instead of the genetic algorithm
to find the optimal weights. Finally, we will investigate how to incorporate the
edge weights into an explainability model, so that we can provide explanations
to end users in principled ways as done in [4].
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23. Kużelewska, U.: Effect of dataset size on efficiency of collaborative filtering recom-
mender systems with multi-clustering as a neighbourhood identification strategy.
In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12139, pp. 342–
354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50420-5 25

24. Latifi, S., Mauro, N., Jannach, D.: Session-aware recommendation: a surprising
quest for the state-of-the-art. Inf. Sci. 573, 291–315 (2021). https://doi.org/10.
1016/j.ins.2021.05.048

25. Lee, D., Kang, S., Ju, H., Park, C., Yu, H.: bootstrapping user and item rep-
resentations for one-class collaborative filtering. In: Diaz, F., Shah, C., Suel, T.,
Castells, P., Jones, R., Sakai, T. (eds.) Proceedings of the 44th International ACM
Conference on Research and Development in Information Retrieval, (SIGIR 2021),
pp. 1513–1522. ACM (2021). https://doi.org/10.1145/3404835.3462935

26. Lee, S., Park, S., Kahng, M., Lee, S.: PathRank: ranking nodes on a heterogeneous
graph for flexible hybrid recommender systems. Expert Syst. Appl. 40(2), 684–697
(2013). https://doi.org/10.1016/j.eswa.2012.08.004

27. Lee, Y., Cheng, T., Lan, C., Wei, C., Hu, P.J.: Overcoming small-size training
set problem in content-based recommendation: a collaboration-based training set
expansion approach. In: Chau, P.Y.K., Lyytinen, K., Wei, C., Yang, C.C., Lin, F.
(eds.) Proceedings of the 11th International Conference on Electronic Commerce,
(ICEC 2009), pp. 99–106. ACM (2009). https://doi.org/10.1145/1593254.1593268

http://dblp.uni-trier.de/db/conf/edm/edm2017.html#HansenHHAL17
http://dblp.uni-trier.de/db/conf/edm/edm2017.html#HansenHHAL17
https://doi.org/10.1145/3442381.3450011
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3038912.3052569
http://www.jstor.org/stable/24939139
http://www.jstor.org/stable/24939139
https://doi.org/10.1007/978-3-642-45135-5_4
https://doi.org/10.1007/978-3-319-27729-5_2
https://doi.org/10.1007/978-3-319-27729-5_2
https://doi.org/10.1007/s13740-016-0058-3
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/978-3-030-50420-5_25
https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1145/3404835.3462935
https://doi.org/10.1016/j.eswa.2012.08.004
https://doi.org/10.1145/1593254.1593268


Graph-Based RS for Sparse and Heterogeneous User Interactions 197

28. Ludewig, M., Mauro, N., Latifi, S., Jannach, D.: Empirical analysis of session-
based recommendation algorithms. User Model. User-Adap. Inter. 31(1), 149–181
(2020). https://doi.org/10.1007/s11257-020-09277-1

29. Ng, A.Y.T.: Why AI Projects Fail, Part 4: Small Data (2019). https://www.
deeplearning.ai/the-batch/why-ai-projects-fail-part-4-small-data/. Accessed 04
Oct 2022

30. Odili, J.: The dawn of metaheuristic algorithms. Int. J. Softw. Eng. Comput. Syst.
4, 49–61 (2018). https://doi.org/10.15282/ijsecs.4.2.2018.4.0048

31. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking :
bringing order to the web. In: WWW 1999 (1999)

32. Pan, X., et al.: MetaCVR: conversion rate prediction via meta learning in
small-scale recommendation scenarios. In: Amigó, E., Castells, P., Gonzalo, J.,
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Abstract. Depression detection from user-generated content on the
internet has been a long-lasting topic of interest in the research commu-
nity, providing valuable screening tools for psychologists. The ubiquitous
use of social media platforms lays out the perfect avenue for exploring
mental health manifestations in posts and interactions with other users.
Current methods for depression detection from social media mainly focus
on text processing, and only a few also utilize images posted by users. In
this work, we propose a flexible time-enriched multimodal transformer
architecture for detecting depression from social media posts, using pre-
trained models for extracting image and text embeddings. Our model
operates directly at the user-level, and we enrich it with the relative time
between posts by using time2vec positional embeddings. Moreover, we
propose another model variant, which can operate on randomly sampled
and unordered sets of posts to be more robust to dataset noise. We show
that our method, using EmoBERTa and CLIP embeddings, surpasses
other methods on two multimodal datasets, obtaining state-of-the-art
results of 0.931 F1 score on a popular multimodal Twitter dataset, and
0.902 F1 score on the only multimodal Reddit dataset.

Keywords: Depression detection · Mental health · Social media ·
Multimodal learning · Transformer · Cross-attention · Time2vec

1 Introduction

More than half of the global population uses social media1. People use platforms
such as Twitter and Reddit to disclose and discuss their mental health problems
1 https://datareportal.com/reports/digital-2022-july-global-statshot.
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online. On Twitter, users feel a sense of community, it is a safe place for expres-
sion, and they use it to raise awareness and combat the stigma around mental
illness or as a coping mechanism [5]. On Reddit, more so than on Twitter, users
are pseudo-anonymous, and they can choose to use “throw-away” accounts to be
completely anonymous, subsequently encouraging users to disclose their mental
health problems. Users talk about symptoms and their daily struggles, treatment,
and therapy [13] on dedicated subreddits such as r/depression, r/mentalhealth.
To date, there have been many methods that aim to estimate signs of mental
disorders (i.e., depression, eating disorders) [30,58] from the social media con-
tent of users. The primary focus has been on processing the posts’ text, fuelled
partly by the widespread availability and good performance of pretrained lan-
guage models (e.g., BERT) [1,25,56]. Recently, however, both textual and visual
information has been used for multimodal depression detection from social media
data, on datasets collected from Twitter [20,39,41], Instagram [10,32], Reddit
[51], Flickr [57], and Sina Weibo [54]. These methods obtain good performance,
but nevertheless assume that social media posts are synchronous and uploaded
at regular intervals.

We propose a time-enriched multimodal transformer for user-level depression
detection from social media posts (i.e., posts with text and images). Instead of
operating at the token-level in a low-level manner, we utilize the cross- and self-
attention mechanism across posts to learn the high-level posting patterns of a
particular user. The attention layers process semantic embeddings obtained by
pretrained state-of-the-art language and image processing models. As opposed
to current time-aware methods for mental disorders detection [4,9], our method
does not require major architectural modifications and can easily accommodate
temporal information by simply manipulating the transformer positional encod-
ings (e.g., using time-enriched encodings such as time2vec [24]). We propose two
viable ways to train our architecture: a time-aware regime using time2vec and a
set-based training regime, in which we do not employ positional encodings and
regard the user posts as a set. The second approach is motivated by the work of
Dufter et al. [16], which observed that positional encodings are not universally
necessary to obtain good downstream performance. We train and evaluate our
method on two social media multimodal datasets, each with its own particular-
ities in user posting behavior, and obtain state-of-the-art results in depression
detection. We make our code publicly available on github2.

This work makes the following contributions:

1. We propose a time-enriched multimodal transformer for user-level depression
detection from social media posts. Using EmoBERTa and CLIP embeddings,
and time2vec positional embeddings, our method achieves 0.931 F1 on a pop-
ular multimodal Twitter dataset [20], surpassing current methods by a margin
of 2.3%. Moreover, using no positional embeddings, we achieve 0.902 F1 score
on multiRedditDep [51], the only multimodal Reddit dataset to date.

2. We perform extensive ablation studies and evaluate different types of image
and text encoders, window sizes, and positional encodings. We show that a

2 https://github.com/cosmaadrian/time-enriched-multimodal-depression-detection.

https://github.com/cosmaadrian/time-enriched-multimodal-depression-detection


202 A.-M. Bucur et al.

time-aware approach is suitable when posting frequency is high, while a set-
based approach is robust to dataset noise (i.e., many uninformative posts).

3. We perform a qualitative error analysis using Integrated Gradients [46], which
proves that our model is interpretable and allows for the selection of the most
informative posts in a user’s social media timeline.

2 Related Work

Although research in depression detection was focused on analyzing language
cues uncovered from psychology literature (e.g., self-focused language reflected
in the greater use of the pronoun “I” [37,38], dichotomous thinking expressed in
absolute words (e.g., “always”, “never”) [18]), studies also began to investigate
images posted on social media. Reece et al. [35] showed that the images posted
online by people with depression were more likely to be sadder and less happy,
and to have bluer, darker and grayer tones than those from healthy individuals.
Users with depression posted more images with faces of people, but they had
fewer faces per image, indicating reduced social interactivity and an increased
self-focus [21,35]. Guntuku et al. [21] and Uban et al. [51] revealed that users
diagnosed with depression have more posts with animal-related images.

Deep learning methods such as CNNs [34,58], LSTMs [43,49] and
transformer-based architectures [1,7,56] achieved good results on depression
detection using only the textual information from users’ posts. Further, mul-
timodal methods incorporating visual features achieve even greater results
[32,39,57]. Shen et al. [41] collected the first user-level multimodal dataset from
social media for identifying depression with textual, behavioral, and visual infor-
mation from Twitter users and proposed a multimodal depressive dictionary
learning method. The same Twitter dataset was later explored by Gui et al. [20],
who used a cooperative multi-agent reinforcement learning method with two
agents for selecting only the relevant textual and visual information for classi-
fication. An et al. [2] proposed a multimodal topic-enriched auxiliary learning
approach, in which the performance of the primary task on depression detec-
tion is improved by auxiliary tasks on visual and textual topic modeling. By
not taking the time component into account, the above methods assume that
social media posts are synchronous, and are sampled at regular time intervals.
Realistically, posts from online platforms are asynchronous and previous studies
have shown differences in social media activity, partly due to the worsening of
depression symptoms at night [14,31,45]. Motivated by this, methods that use
time-adapted weights [10] or Time-Aware LSTMs [9,40] to include the time com-
ponent of data for mental health problems detection report higher performance.

3 Method

The problem of depression detection from social media data is usually formu-
lated as follows: given a user with an ordered, asynchronous, sequence of mul-
timodal social media posts containing text and images, determine whether or
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Fig. 1. The overall architecture of our proposed method. From a user’s social media
timeline, we sample a number of posts containing text and images. Each image and
text is encoded with pretrained image and text encoders. The sequence of encoded
images and texts is then processed using a cross-modal encoder followed by a trans-
former encoder, together with the relative posting time encoded into the positional
embeddings. After mean pooling, we perform classification for the particular user.

not the user has symptoms of depression. This formulation corresponds to user-
level binary classification. The main difficulty in this area is modeling a large
number of user posts (i.e., tens of thousands), in which not all posts contain rel-
evant information for depression detection. This aspect makes the classification
inherently noisy. Formally, we consider a user i to have multiple social media
posts Ui, each post containing the posting date Δ, a text T and an accom-
panying image I. A post-sequence Pi is defined as K posts sampled from Ui:
Pi = {(T j , Ij ,Δj) ∼ Ui, j ∈ (1 . . . K)}. During training, we used an input batch
defined by the concatenation of n such post-sequences: B = {Sb1 , Sb2 , . . . Sbn}.
Since the users’ posts are asynchronous (i.e., are not regularly spaced in time),
time-aware approaches based on T-LSTM [9,40] have become the norm in mod-
eling users’ posts alongside with the relative time between them. However, in
T-LSTM [4], including a relative time component involves the addition of new
gates and hand-crafted feature engineering of the time. Moreover, T-LSTM net-
works are slow, cannot be parallelized and do not allow for transfer learning.

To address this problem, we propose a transformer architecture that can per-
form user-level multimodal classification, as shown in Fig. 1. To process the mul-
timodal data from posts, we first encode the visual and textual information using
pretrained models (e.g., CLIP [33] for images and EmoBERTa [26] for text). The
embeddings are linearly projected to a fixed size using a learnable feed-forward
layer, are augmented with a variant of positional encodings (expanded below)
and are further processed with a cross-modal encoder based on LXMERT [48].
Finally, self-attention is used to process the cross-modal embeddings further,
and classification is performed after mean pooling. The network is trained using
the standard binary cross-entropy loss. In this setting, the transformer atten-
tion does not operate on low-level tokens such as word pieces or image patches.
Rather, the cross- and self-attention operates across posts, allowing the network
to learn high-level posting patterns of the user, and be more robust to individ-
ual uninformative posts. As opposed to other related works in which a vector
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of zeros replaces the embeddings of missing images [2,20], we take advantage of
the attention masking mechanism present in the transformer architecture [52],
and mask out the missing images.

For this work, we experiment with positional embeddings based on time2vec
[24] to make the architecture time-aware. Utilizing time2vec as a method to
encode the time τ into a vector representation is a natural way to inject temporal
information without any major architectural modification, as it was the case for
T-LSTM, for example. Time2vec has the advantage of being invariant to time
rescaling, avoiding hand-crafted time features, it is periodic, and simple to define
and consume by various models. It is a vector of k + 1 elements, defined as:

t2v(τ)[i] =
{

ωig(τ) + φi i = 0
F(ωig(τ) + φi) 1 ≤ i ≤ k

(1)

where t2v(τ)[i] is the ith element of t2v(τ), F is a periodic activation function
(in our case it is sin(x)), and ωis and φis are learnable parameters. To avoid
arbitrarily large τ values, we transform τ with g(τ) = 1

(τ+ε) , with ε = 1. For
processing user’s posts, we use sub-sequence sampling and sample K consecutive
posts from a user’s timeline (Fig. 2). We name the model utilizing time2vec
embeddings Time2VecTransformer.

Fig. 2. The two sampling methods used in this work. Methods that use positional
embeddings (either time2vec or learned) employ sub-sequence sampling, and the Set-
Transformer, with zero positional embeddings, uses random sampling of posts. K refers
to the number of posts in the post window.

However, processing user posts sequentially is often not desirable, as clus-
ters of posts might provide irrelevant information for depression detection. For
instance, sub-sequence sampling of posts from users with mental health prob-
lems might end up in an interval of positive affect, corresponding to a sudden
shift in mood [50]. Somewhat orthogonal to the time-aware school of thought,
we also propose a SetTransformer for processing sets of user posts for depression
detection, to alleviate the issues mentioned above. Our proposed SetTransformer
randomly samples texts from a user and assumes no order between them by
omitting the positional encoding, essentially making the transformer permuta-
tion invariant [52]. For this method, K posts in a post-sequence are randomly
sampled (Fig. 2). For SetTransformer, we treat the user timeline as a “bag-of-
posts” motivated by the work of Dufter et al. [16], in which the authors show
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that treating sentences as “bag-of-words” (i.e., by not utilizing any positional
embeddings) results in a marginal loss in performance for transformer architec-
tures.

4 Experiments

4.1 Datasets

To benchmark our method, we use in our experiments multiRedditDep [51] and
the Twitter multimodal depression dataset from Gui et al. [20]3. Reddit and
Twitter are two of the most popular social media platforms where users choose
to disclose their mental health problems [5,13]. Moreover, the data coming from
these two platforms have different particularities: both social media platforms
support images, but the textual information is richer on Reddit, with posts
having up to 40,000 characters, as opposed to Twitter, where the limit is 280
characters. In some subreddits from Reddit, the image cannot be accompanied
by text; the post is composed only of image(s) and a title with a maximum
length of 300 characters. On Twitter, posts with images have the same character
limit as regular posts. For both datasets, the users from the depression class were
annotated by retrieving their mention of diagnosis, while users from the control
group did not have any indication of depression diagnosis.

Fig. 3. Left - Distribution of posts per
user on both datasets. Users from Red-
dit have significantly (Mann Whitney U
Test, p < 0.001) more posts than users
from Twitter. Right - Distribution of aver-
age time duration in hours between posts
at the user level. Users from Twitter post
significantly (p < 0.001) more frequently
than users from Reddit.

Table 1. Statistics for the Reddit [51] and
Twitter [20] datasets. #T represents the
number of posts with only text, #(T+I)
represents the number of posts with both
text (title, in the case of Reddit) and
images. #T and #(T+I) represent the
average number of posts with only text
and text + image per user, respectively.

Dataset Class #T #(T+I) #T #(T+I)
Reddit Depr 6,6M 46.9k 4.7k 33.33

Non-Depr 8,1M 73.4k 3.5k 31.51
Twitter Depr 213k 19.3k 152.43 13.81

Non-Depr 828k 50.6k 590.82 36.16

The Reddit dataset contains 1,419 users from the depression class and 2,344
control users. The authors provided the train, validation and test splits, with

3 We also attempted to perform our experiments on a multimodal dataset gathered
from Instagram [9,10], but the authors did not respond to our request.
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2633, 379 and 751 users, respectively. The dataset from Twitter contains 1,402
users diagnosed with depression and 1,402 control users. Shen et al. [41] collected
only tweets in the span of one month for users from both classes. Due to the lack
of access to the benchmark train/test splits from An et al. [2], we are running
the experiments following the same experimental settings as Gui et al. [20], and
perform five-fold cross-validation. In Table 1, we showcase the statistics for both
datasets. There is a greater total number of posts from the non-depressed group,
but depressed users have more posts, on average, than non-depressed users, in
the case of Reddit. For Twitter, the opposite is true, with non-depressed users
having more posts on average. It is important to note that not all posts have
images, only a small amount of social media posts contain both text and image
data. Figure 3 (left) shows that Reddit users have a greater average number of
posts than Twitter users. Regarding posting frequency, Twitter users post more
frequently than Reddit users, as shown in Fig. 3 (right), in which the average
time between posts is 26.9 h for Reddit and 11.2 h for Twitter.

4.2 Experimental Settings

Image Representation Methods. For encoding the images in users’ posts,
we opted to use two different encoders trained in a self-supervised manner.
Many approaches for transfer learning employ a supervised network, usually
pretrained on ImageNet [15]. However, transfer learning with self-supervised
trained networks is considered to have more general-purpose embeddings [8],
which aid downstream performance, especially when the training and transfer
domains qualitatively differ [17]. Since images in our social media datasets are
very diverse, including internet memes and screenshots [51] with both visual
and textual information, specialized embeddings from a supervised ImageNet
model are not appropriate. Therefore, we used CLIP [33], a vision transformer
trained with a cross-modal contrastive objective, to connect images with tex-
tual descriptions. CLIP has been shown to perform well on a wide range of
zero-shot classification tasks, and is capable of encoding text present in images.
CLIP embeddings are general, multi-purpose, and are trained on a large-scale
internet-scraped dataset. Additionally, we used DINO [8], a vision transformer
pretrained in a self-supervised way on ImageNet, achieving notable downstream
performance. Moreover, compared to a supervised counterpart, DINO automat-
ically learns class-specific features without explicitly being trained to do so.

Text Representation Methods. We explored three pretrained transformers
models to extract contextual embeddings from users’ texts. RoBERTa [29],
pretrained in a self-supervised fashion on a large corpus of English text, was
chosen given its state-of-the-art performance on downstream tasks. Emotion-
informed embeddings from EmoBERTa [26] that incorporate both linguistic
and emotional information from users’ posts were also used. Emotions expressed
in texts are a core feature used for identifying depression [3,28], users with
depression showing greater negative emotions [14]. EmoBERTa is based on a
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RoBERTa model trained on two conversational datasets and adapted for iden-
tifying the emotions found in users’ utterances. Multilingual MiniLM [53],
the distilled version of the multilingual language model XLM-RoBERTa [12],
was used for encoding text because both Twitter and Reddit datasets contain
posts in various languages besides English, such as Spanish, German, Norwegian,
Japanese, Romanian and others. Moreover, MiniLM is a smaller model, providing
384-dimensional embeddings, as opposed to 768-dimensional embeddings from
RoBERTa and EmoBERTa.

Positional Encodings. Since the network is processing sequences of posts,
we explored three different methods for encoding the relative order between
posts. Firstly, we used a standard learned positional encoding, used in many
pretrained transformer models, such as BERT [25], RoBERTa [29] and GPT
[6]. Wang and Chen [55] showed that for transformer encoder models, learned
positional embeddings encode local position information, which is effective in
masked language modeling. However, this type of positional encoding assumes
that users’ posts are equally spaced in time. Second, we used time2vec [24]
positional encoding, which allows the network to learn a vectorized representa-
tion of the relative time between posts. Lastly, we omit to use any positional
encoding, and treat the sequence of user posts as a set. We refer to this type of
positional encodings as zero encodings. For both learned and time2vec we used
a sub-sequence sampling of posts, while for zero, we used a random sample of
user posts (Fig. 2).

4.3 Comparison Models

We evaluate our proposed method’s performance against existing multimodal
and text-only state-of-the-art models on the two multimodal datasets from Twit-
ter and Reddit, each with its different particularities in user posting behavior.
For multiRedditDep, since it is a new dataset, there are no public benchmarks
besides the results of Uban et al. [51]. We report Accuracy, Precision, Recall, F1,
and AUC as performance measures. The baselines are as follows. Time-Aware
LSTM (T-LSTM) [4] - we implement as text-only baseline a widely used [9,40]
T-LSTM-based neural network architecture that integrates the time irregulari-
ties of sequential data in the memory unit of the LSTM. EmoBERTa Trans-
former - we train a text-only transformer baseline on user posts. Both text-only
models are based on EmoBERTa embeddings. LSTM + RL and CNN + RL
[19] - two text-only state-of-the-art models which use a reinforcement learning
component for selecting the posts indicative of depression. Multimodal Topic-
Enriched Auxiliary Learning (MTAL) [2] - a model capturing the multi-
modal topic information, in which two auxiliary tasks accompany the primary
task of depression detection on visual and textual topic modeling. Multimodal
Time-Aware Attention Networks (MTAN) [9] - a multimodal model that
uses as input BERT [25] textual features, InceptionResNetV2 [47] visual features,
posting time features and incorporates T-LSTM for taking into account the time



208 A.-M. Bucur et al.

intervals between posts and self-attention. GRU + VGG-Net + COMMA
[20] - in which a reinforcement learning component is used for selecting posts
with text and images which are indicative of depression and are classified with
an MLP. For extracting the textual and visual features, GRU [11] and VGGNet
[42] were used. BERT + word2vec embeddings - baseline proposed by Uban
et al. [51], which consists of a neural network architecture that uses as input
BERT features from posts’ titles and word2vec embeddings for textual infor-
mation found in images (i.e., ImageNet labels and text extracted from images).
VanillaTransformer - the multimodal transformer proposed in this work, with
standard learned positional encodings. SetTransformer - the set-based mul-
timodal transformer proposed in this work employing zero positional encod-
ing, alongside a random sampling of user posts. Time2VecTransformer - the
time-aware multimodal transformer proposed in this work using time-enriched
positional embeddings (i.e., time2vec [24]) and sub-sequence sampling.

4.4 Training and Evaluation Details

We train all models using Adam [27] optimizer with a base learning rate of
0.00001. The learning rate is modified using Cyclical Learning Rate schedule
[44], which linearly varies the learning rate from 0.00001 to 0.0001 and back
across 10 epochs. The model has 4 cross-encoder layers with 8 heads each and
an embedding size of 128. The self-attention transformer has 2 layers of 8 heads
each and the same embedding size.

At test time, since it is unfeasible to use all users’ posts for evaluation, with
some users having more than 50k posts, we make 10 random samples of post-
sequences for a user, and the final decision is taken through majority voting on
the decisions for each post-sequence. In this way, the final classification is more
robust to dataset noise and uninformative posts.

5 Results

5.1 Performance Comparison with Prior Works

In Table 2, we present the results for models trained on the Twitter dataset. For
our models and proposed baselines, each model was evaluated 10 times and we
report mean and standard deviation. Our architecture, Time2VecTransformer
achieves state-of-the-art performance in multimodal depression detection,
obtaining a 0.931 F1 score. The model uses as input textual embeddings
extracted from EmoBERTa and visual embeddings extracted from CLIP. The
best model uses sequential posts as input from a 512 window size, and the time
component is modeled by time2vec positional embeddings. Our time-aware mul-
timodal architecture surpasses other time-aware models such as T-LSTM [4]
and MTAN [9]. Moreover, our method surpasses text-only methods such as T-
LSTM and EmoBERTa Transformer - a unimodal variant of our model using
only self-attention on text embeddings.
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As opposed to the previous result on Twitter data, which include the time
component, for Reddit, we achieved good performance by regarding the users’
posts as a set. In Table 3, we showcase our model’s performance on the Red-
dit dataset, compared to Uban et al. [51], our trained text-only T-LSTM and
text-only EmoBERTa Transformer. Our SetTransformer model (with zero posi-
tional encodings), using as input EmoBERTa and CLIP, obtains the best per-
formance, a 0.902 F1 score. While counter-intuitive, treating posts as a “bag-
of-posts” outperforms Time2VecTransformer in the case of Reddit. However,

Table 2. Results for multimodal depression detection on Twitter dataset [20]. Our
models use EmoBERTa and CLIP for extracting embeddings. VanillaTransformer and
SetTransformer were trained on 128 sampled posts, while Time2VecTransformer was
trained on a window size of 512 posts. Denoted with bold are the best results for each
column. ∗An et al. [2] report the performance on a private train/dev/test split, not
on five-fold cross-validation. ∗∗ Cheng et al. [9] are not explicit in their experimen-
tal settings for the Twitter data. † indicates that the result is a statistically significant
improvement over SetTransformer (p < 0.005, using Wilcoxon signed-rank test). ‡ indi-
cates that there is a statistically significant improvement over Time2VecTransformer
(p < 0.05, using Wilcoxon signed-rank test).

Method Modality F1 Prec. Recall Acc.

T-LSTM [4] T 0.848±8e-3 0.896±2e-2 0.804±1e-2 0.855±5e-3

EmoBERTa Transformer T 0.864±1e-2 0.843±1e-2 0.887±3e-2 0.861±1e-2

LSTM + RL [19] T 0.871 0.872 0.870 0.870
CNN + RL [19] T 0.871 0.871 0.871 0.871
MTAL [2]∗ T+I 0.842 0.842 0.842 0.842
GRU + VGG-Net + COMMA [20] T+I 0.900 0.900 0.901 0.900
MTAN [9]∗∗ T+I 0.908 0.885 0.931 -
Vanilla Transformer (ours) T+I 0.886±1e-2 0.868±2e-2 0.905±2e-2 0.883±5e-3

SetTransformer (ours) T+I 0.927±8e-3 0.921±1e-2 0.934±2e-2
‡ 0.926±8e-3

Time2VecTransformer (ours) T+I 0.931±4e-3
† 0.931±2e-2

† 0.931±1e-2 0.931±4e-3
†

Table 3. Results for multimodal depression detection on multiRedditDep. Our models
use EmoBERTa and CLIP for extracting embeddings. VanillaTransformer was trained
on 128 sampled posts, while Time2VecTransformer and SetTransformer were trained
on a window size of 512 posts. We denote with bold the best results for each column.
∗Uban et al. [51] conducted experiments using the visual and textual features from
images and titles of the posts. † indicates that the result is a statistically significant
improvement over Time2VecTransformer (p < 0.005, using Wilcoxon signed-rank test).

Method Modality F1 Prec. Recall Acc. AUC

T-LSTM [4] T 0.831±1e-2 0.825±8e-3 0.837±1e-2 0.872±7e-3 0.946±2e-3

EmoBERTa Transformer T 0.843±6e-3 0.828±3e-3 0.858±1e-2 0.879±4e-3 0.952±2e-3

Uban et al. [51]∗ T+I - - - 0.663 0.693
VanillaTransformer (ours) T+I 0.837±8e-3 0.827±1e-2 0.848±1e-2 0.876±6e-3 0.956±3e-3

SetTransformer (ours) T+I 0.902±7e-3
† 0.878±6e-3

† 0.928±1e-2
† 0.924±5e-3

† 0.976±1e-3
†

Time2VecTransformer (ours) T+I 0.869±7e-3 0.869±7e-3 0.869±8e-3 0.901±5e-3 0.967±1e-3
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the Reddit dataset contains a considerable amount of noise and uninformative
posts (links, short comments, etc.), which dilutes discriminative information for
depression detection. A random sampling of posts seems to alleviate this problem
to some degree.

Fig. 4. Comparison among different window sizes used in our experiments, using
EmoBERTa for text embeddings and CLIP for image encodings. For Twitter, the results
were averaged across the 5 folds.

5.2 Ablation Study

To gauge the effect of the sampling window size, we performed experiments using
CLIP as an image encoder and EmoBERTa as a text encoder, in which we varied
the window size in K = {32, 64, 128, 256, 512}, as presented in Fig. 4. For Reddit,
the 128 window size is the best suited for all three kinds of positional embeddings,
as evidenced by the high F1 score. Even if Reddit users have an average of over
3,000 posts (Table 1), 128 posts contain enough information to make a correct
decision. On Twitter, for learned and zero positional embeddings, the model
with 128 posts window size performs best, while for time2vec, 512 has the best
F1 score. This may be because the 512 window size covers the average number
of posts from users in the Twitter dataset (see Table 1). Given the short time
span of one month for the posts coming from Twitter, we can hypothesize that
for datasets in which the time between posts is very small (average of 11.2 h for
Twitter), the time component modeled by time2vec positional encodings may be
more informative than other positional embedding methods. For Reddit, many of
the users’ posts are, in fact, comments or links, which are usually not informative
to the model decision. Nevertheless, we achieve a performance comparable to
the previous state-of-the-art, even in low-resource settings, by processing only 32
posts. Including the time component modeled by time2vec has a more important
contribution when the time between posts is shorter (as in the data from Twitter)
as opposed to larger periods between the posts (as is the case of Reddit).

In Table 4, we showcase different combinations of text encoders
(RoBERTa/EmoBERTa/MiniLM) and image encoders (CLIP/DINO). The dif-
ference between image encoders is marginal, due to the small number of images
in the users’ timeline (Table 1). Interestingly, RoBERTa embeddings are more
appropriate for Twitter, while EmoBERTa is better suited for modeling posts
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from Reddit. We hypothesize that this is due to the pseudo-anonymity offered
through Reddit, encouraging users to post more intimate and emotional texts
[13]. Using RoBERTa text embeddings and CLIP image embeddings, we obtain
an F1 score of 0.943, which is even higher than the state-of-the-art. Further, the
performance using MiniLM for text embeddings is lacking behind other encoders.

Table 4. Model comparison with different text and image encoding methods using the
Reddit and Twitter datasets, with time2vec positional embeddings and 128 window
size. The best results are with bold, and with underline the second best results.

Reddit Twitter
Text+Image Enc. F1 Prec. Recall F1 Prec. Recall

MiniLM+CLIP 0.789±6e-3 0.686±7e-3 0.929±9e-3 0.827±8e-3 0.803±3e-2 0.854±4e-2

MiniLM+DINO 0.799±9e-3 0.745±8e-3 0.862±1e-2 0.792±8e-3 0.782±3e-2 0.806±4e-2

RoBERTa+CLIP 0.845±8e-3 0.829±8e-3 0.862±1e-2 0.943±6e-3 0.951±1e-2 0.936±2e-2

RoBERTa+DINO 0.840±9e-3 0.820±7e-3 0.861±1e-2 0.936±1e-2 0.946±2e-2 0.926±2e-2

EmoBERTa+CLIP 0.871±7e-3 0.883±8e-3 0.858±8e-3 0.928±1e-2 0.933±1e-2 0.924±2e-2

EmoBERTa+DINO 0.863±6e-3 0.865±4e-3 0.862±1e-2 0.915±1e-2 0.918±2e-2 0.913±2e-2

5.3 Error Analysis

We perform an error analysis on the predictions of Time2VecTransformer on
the Twitter data. We use Integrated Gradients [46] to extract posts’ attributions
scores for predictions. In Fig. 5 (Left), the posts with depression cues have the
strongest attribution scores, and the user is correctly labeled by the model. Given
the way in which the mental health datasets are annotated by users’ mention
of diagnosis, some users from the non-depressed class may also have depression,
but without mentioning it on social media. This may be the case of the user

Fig. 5. Error analysis on two predictions, one correct (Left), and another incorrect
(Right). The posts are sorted by their attribution scores given by Integrated Gradi-
ents [46]. The top posts have strong attribution for a positive (depressed) prediction,
the bottom texts have a weak attribution to a positive prediction. All examples were
paraphrased, and only the texts are shown to maintain anonymity.
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from Fig. 5 (Right), who is showing definite signs of sadness and was incorrectly
predicted by the model as having depression. Since our model operates across
posts, using a feature attribution method such as Integrated Gradients naturally
enables the automatic selection of the most relevant posts from a user, similar
to [20,36], but without relying on a specialized procedure to do so.

5.4 Limitations and Ethical Considerations

The method proposed in this paper is trained on data with demographic bias [23]
from Reddit and Twitter, two social media platforms with a demographic skew
towards young males from the United States; thus our method may not succeed
in identifying depression from other demographic groups. The aim of our system
is to help in detecting cues of depression found in social media, and not to diag-
nose depression, as the diagnosis should only be made by a health professional
following suitable procedures. Further, the dataset annotations rely on the users’
self-reports, but without knowing the exact time of diagnosis. Harrigian et al.
[22] studied the online content of users with a self-report of depression diagnosis
and observed a decrease in linguistic evidence of depression over time that may
be due to the users receiving treatment or other factors.

6 Conclusion

In this work, we showcased our time-enriched multimodal transformer architec-
ture for depression detection from social media posts. Our model is designed to
operate directly at the user-level: the attention mechanisms (both cross-modal
and self-attention) attend to text and images across posts, and not to individual
tokens. We provided two viable ways to train our method: a time-aware approach,
in which we encode the relative time between posts through time2vec positional
embeddings, and a set-based approach, in which no order is assumed between
users’ posts. We experimented with multiple sampling methods and positional
encodings (i.e., time2vec, zero and learned) and multiple state-of-the-art pre-
trained text and image encoders. Our proposed Time2VecTransformer model
achieves state-of-the-art results, obtaining a 0.931 average F1 score on the Twit-
ter depression dataset [20]. Using the SetTransformer, we obtain a 0.902 F1 score
on multiRedditDep [51], a multimodal depression dataset with users from Reddit.
Given the particularities of the two datasets, we hypothesize that a set-based
training regime is better suited to handle datasets containing large amounts of
noise and uninformative posts, while a time-aware approach is suitable when
user posting frequency is high.
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Abstract. Recently, recommendation algorithms based on Graph Con-
volution Network (GCN) have achieved many surprising results thanks
to the ability of GCN to learn more efficient node embeddings. However,
although GCN shows powerful feature extraction capability in user-item
bipartite graphs, the GCN-based methods appear powerless for knowl-
edge graph (KG) with complex structures and rich information. In addi-
tion, all of the existing GCN-based recommendation systems suffer from
the over-smoothing problem, which results in the models not being able
to utilize higher-order neighborhood information, and thus these models
always achieve their best performance at shallower layers. In this paper,
we propose a Deep Light Graph Convolution Network for Knowledge
Graph (KDL-GCN) to alleviate the above limitations. Firstly, the User-
Entity Bipartite Graph approach (UE-BP) is proposed to simplify knowl-
edge graph, which leverages entity information by constructing multiple
interaction graphs. Secondly, a Deep Light Graph Convolution Network
(DLGCN) is designed to make full use of higher-order neighborhood
information. Finally, experiments on three real-world datasets show that
the KDL-GCN proposed in this paper achieves substantial improvement
compared to the state-of-the-art methods.

Keywords: Recommendation · Graph convolution network ·
Knowledge graph

1 Introduction

Information overload has now become a nuisance for people, and it is diffi-
cult for information consumers to find their demands from the cluttered data,
but the emergence of the recommendation systems (RS) have alleviated the
problems, because the RS can recommend items of interest to target users
based on their historical behavior or similar relationships among the users. A
highly effective recommendation system has great benefits for information con-
sumers, information providers and platforms. Collaborative filtering (CF) [22]
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enables effective personalized recommendation services which focus on histori-
cal user-item interactions and learn user and item representations by assuming
that users with similar behaviors have the same preferences. Many CF-based
results [2,18,19,34,35,43] have been achieved based on different proposals.

In recent years, Graph Convolution Network [25] has shown unprecedented
feature extraction capabilities on graph data structures. Coincidentally, the data
in the recommendation systems is converted into bipartite graphs after process-
ing. Therefore, many researchers [1,3,17,37,42,43,49] apply GCN in the rec-
ommendation systems, and various models are built to solve specific problems.
Although the GCN-based models have achieved great success, they face two
dilemmas.

Firstly, GCN shows excellent feature extraction ability in user-item bipartite
graph, but is powerless in the face of knowledge graph. KG contains multiple
types of entities, and there are complex interactions between different entities.
However, it is difficult for GCN to distinguish entity types in knowledge graphs,
and the interaction between different classes of entities generates noise interfer-
ence. The UE-BP proposed in this paper first fuses KG and user-item bipartite
graphs, and then decomposes the fused graphs to obtain multiple user-entity
bipartite graphs, which enables GCN to make full use of entity information
while eliminating the noise interference between different entities.

Secondly, most current GCN-based models [1,3,17,42,43] achieve their best
performance at a shallow layer without utilizing higher-order neighborhood infor-
mation. For instance, GCMC [1] uses one layer of GCN, NGCF [42] and DGCF
[43] are both 3-layer models, and LR-GCCF [3] and LightGCN [17] simplify GCN
to alleviate the over-smoothing problem, but still can only exploit information
of 3 to 4 steps. The deeper GCN-based model is supposed to have better per-
formance because it receives more information about the higher-order neighbor-
hoods. However, the over-smoothing problem makes the performance of deeper
networks degrade dramatically.

The over-smoothing problem states that as the GCN deepens, the embed-
dings of the graph nodes become similar. As the aggregation path lengthens, the
central node will aggregate an extremely large number of nodes, where the num-
ber of higher-order nodes will be much larger than the lower-order nodes, which
leads to the neglect of the lower-order information. However, the lower-order
nodes are closer to the central node and have more influence on the representa-
tion of the central node. The DLGCN is designed to alleviate the over-smoothing
problem, which assigns higher weights to the low-order nodes and allows the low-
order neighborhood information to propagate farther.

In summary, the KDL-GCN model is proposed to alleviate two challenges
faced by GCN-based recommendation algorithms. Firstly, the UE-BP method is
adopted to simplify KG and obtain multiple user-entity bipartite graphs, provid-
ing an idea of GCN for KG. Secondly, a neglected factor is noticed: deeper networks
aggregate too many higher-order nodes, resulting in lower-order features being
neglected.Therefore,DLGCN is designed to alleviate the over-smoothing problem.
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Finally, the node embeddings extracted from the KG are fused for the recommen-
dation task.

2 Related Work

2.1 Problem Formulation

In this section, we introduce the basic definition and symbols of recommendation
systems. In a typical recommendation scenario, let U = {u1, u2, . . . , uN} be a
user set of N users, and I = {i1, i2, . . . , iM} denote the item collection with M
items. The task of the RS is to find more suitable user and item embedding.
Therefore, let eu ∈ R

1×d be final embedding of user u and ei ∈ R
1×d be final

embedding of item i, where d is embedding size.

2.2 Recent Work

The recommendation systems have received a lot of attention since its emergence
and they are capable of making personalized recommendations for users even
when they do not have explicit needs. Among them, CF-based models are fruitful
as the most popular technique in the modern recommendation systems [5,6,17,
19,21,27,32,41,42].

CF usually takes the rating matrix as the input to the algorithm and retrieves
similar users or items as the basis for rating prediction. For example, matrix
decomposition (MF) [27] project user or item IDs as hidden embeddings and use
inner products to predict interactions. Fast MF [20] proposes a method to weight
missing data based on item popularity, and designs a new learning algorithm
based on the element-wise Alternating Least Squares (eALS) technique, which
is effective and efficient in terms of both improved MF models.

Subsequently, there has been a boom in neural recommendation models
[4,8,11,19]. For instance, deep collaborative filtering model [8] applied deep
learning to the field of recommendation algorithms and proved its excellent
learning ability. NCF [19] replaces the interaction function in MF with non-
linear neural networks, and these improvements and optimizations allow better
learning of user and item representations.

Additionally, to alleviate data sparsity, some researchers further suggest bor-
rowing users’ historical behaviors for better user representation modeling, e.g.,
FISM [23] aggregates users’ historical interaction items embedding as user rep-
resentation vectors. SVD++ [26] additionally utilizes user ID embedding on
the basis of FISM. Recent studies have found that users’ historical interaction
behavior should be given different importance. On account of this reason, atten-
tion mechanisms are applied to recommendation algorithms, such as ACF [2]
and NAIS [18], which automatically assign different weighting factors to each
historical interaction.

Another research direction is the combination of the Graph Neural Net-
works (GNNs) and the Recommendation System [1,17,30,31,37,41,42,44,45,48–
51,53]. GNNs fit well with RS, because most data in RS is essentially graph
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structure, and on the other hand, GNNs are better able to capture the rela-
tionships between nodes and have strong capabilities in representation learn-
ing of graph data [47]. The Graph Convolution Network is one of the vari-
ous GNNs frameworks, which have shown powerful feature extraction capabili-
ties in recent years, and as a result, many GCN-based recommendation models
[1,3,17,30,31,37,42,44] have emerged.

The basic idea of GCN is to aggregate neighborhood information to update
the representation of the central node. GCMC [1] considers the matrix com-
pletion problem of RS from the perspective of link prediction of graphs, which
employs user-item bipartite graphs to represent interaction data, and proposes
a framework for autoencoder based on bipartite interaction graphs with promis-
ing performance. However, GCMC applies only one layer of graph convolution
operations and ignores the higher order information in the data. Neural Graph
Collaborative Filtering (NGCF) [42] proposes a new approach to encode nodes
based on the development of Graph Neural Networks. More specifically, mul-
tiple GCN layers are leveraged to propagate node embedding, and in this way,
information about higher-order neighborhoods is obtained, which is then injected
into the embedding in an efficient manner. LightGCN [17] removes the nonlinear
activation function and the feature transformation matrix in the GCN, conducts
extensive experiments to prove the correctness of its model, and has made great
progress.

IMP-GCN [30] argues that indiscriminate use of higher-order nodes intro-
duces negative information and leads to performance degradation when stacking
more layers. In view of that, it groups the users and constructs subgraphs of the
users with similar hobbies, which reduces the propagation of negative informa-
tion among higher-order neighbors, alleviates the over-smoothing problem, and
deepens the Graph Convolutional Network. LGC-ACF [31] proposes that most
GCN-based methods focus on the user-item bipartite graph, but ignore the infor-
mation carried by the items themselves, introducing multi-faceted information
of the items and thus improves the model. However, we argue that LGC-ACF
simply mean-pooling the item information embedding and item ID embedding
produces noise effects, and conducted derivations and extensive experiments to
show that these noises affect the performance of the model.

In real life, KG is more extensive and there are many KG-based recommenda-
tion system models [9,28,33,36,39–41,46,52]. IntentGC [52] reconstructs user-
user relationship and item-item relationship based on multi-entity knowledge
graph, turning the multi-relationship graph into two homogeneous graphs. Unfor-
tunately, the simplified graph structure will lose some information. AKGE [33]
automatically extracts higher-order subgraphs that link user-item pairs with rich
semantics based on the shortest path algorithm. KGNN-LS [39] is designed to
learn user-specific item embeddings by identifying important knowledge graph
relationships for a given user, and ablation studies demonstrate the efficacy of
constraining neighboring nodes with the same label. KGAT [41] considers the
user node as an entity in the knowledge graph and the interaction between the
user and the item as a relationship. Consequently, the user-item bipartite graph
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is incorporated into the KG, which unifies the propagation operations while
introducing noise interference.

3 Method

In this section, we introduce KDL-GCN as an example of a user-item bipartite
graph and a knowledge graph with two types of entity information. Firstly, the
KDL-GCN model framework is briefly described. Then each component of the
model is presented in detail. Finally, a description of the loss function is given.

3.1 Overall Structure of KDL-GCN

Figure 1 shows the overall framework of KDL-GCN, which takes user-item bipar-
tite graph and KG as input, and the output is the probability that user u selects
item i. Firstly, the UE-BP method is proposed to decompose the relationship
between user-item-entity and construct multiple user-entity bipartite graphs.
Secondly, DLGCN is designed to extract the features of user-entity bipartite
graphs and represent node ID as node embedding. It is worth mentioning that
DLGCN alleviates the over-smoothing problem and makes full use of higher-
order neighborhood information. Finally, the node embeddings obtained from
the training are fused to obtain the final representation of the nodes, and then
the inner product operation is performed to simulate the recommendation task.

Fig. 1. An overview of KDL-GCN with two item-entity relations as illustration.

3.2 User-Entity Bipartite Graph Method

The knowledge graph contains rich entity information, for example, the movie
KG includes movies, actors, directors, and genres; the commodity KG is com-
posed of products, brands, and categories. However, the complex structure of
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the KG is not compatible with GCN, and the interaction between entities in KG
generates noise interference. Therefore, the application of entity information in
GCN becomes a difficult problem and there are fewer related studies. UE-BP
method takes the item node as the medium to link the user-item bipartite graph
with the KG, and then generates the user-entity bipartite graph based on the
class of entities in the KG.

As shown in Fig. 2, using the example of users purchasing items to illustrate,
KG contains brand and category information. There are four users, five items,
three brands, and two categories. Using u for user, i for item, b for brand, and c
for category. In Fig. 2 (a), u1 purchased i1, i3. In the knowledge graph, the entity
information of i1 is c1 and b1, and i3 corresponds to c1, b2. Thus, in the user-
brand interaction graph, u1 interacts with b1, b2; in the user-category bipartite
graph, u1 is associated with c1. And so on, decompose all the user-item-entity
relationships and construct user-entity bipartite graphs, namely {G1, G2, G3},
as shown in Fig. 2 (b). Please note that in this paper, the user-item bipartite
graph is treated as a special type of user-entity bipartite graph, which is because
the item node is a kind of entity information.

Fig. 2. (a) user-item-entity relations. (b) user-entity bipartite graphs.

3.3 Deep Light Graph Convolution Network

The GCN-based recommendation models update the node embedding at the
(l + 1)th layer by aggregating the representations of its neighbor nodes at the
lth layer. It is undeniable that the GCN-based algorithms have obtained great
success, but the over-smoothing problem causes the models to achieve only sub-
optimal performance.

Figure 3 depicts the overall architecture of DLGCN, combining the Residual
Network [14] and LightGCN [17]. The addition of the residual network gives higher
weights to the lower-order information, thus ensuring that nodes embedding do not
assimilate by aggregating too many higher-order features. Based on the GCN [25],
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the updated formulation of DLGCN on graph G for node embeddings between lay-
ers is specified as follows:

e
(l+1)
G,u =

∑

v∈NG,u

1√‖NG,u‖‖NG,v‖
e
(l)
G,v + γe

(l−1)
G,u (1)

e
(l+1)
G,v =

∑

u∈NG,v

1√‖NG,v‖‖NG,u‖e
(l)
G,u + γe

(l−1)
G,v (2)

where, e
(l)
G,u and e

(l)
G,v denote respectively the embedding of user u and entity

v after l layers aggregation on graph G, NG,u indicates the set of entities that
interact with user u on G, NG,v represents the set of users that interact with
entity v on G, γ is the proportion of feature information in the residual network
passed from shallow to deep layers. The interval of the residual network is 2.
This is considering that even if the GCN is deepened, its depth is still shallow.
Besides, we adopt the symmetric normalization 1√

‖NG,u‖‖NG,v‖ to prevent the

increase in embedding scale with graph convolution operations.

Fig. 3. An illustration of the DLGCN model architecture.

Layer-level Combination. When the DLGCN model with L-layers is adopted
to a user-entity bipartite graph G, each node has (L + 1) embeddings, namely
{e

(0)
G,u, e

(1)
G,u, . . . , e

(L)
G,u} and {e

(0)
G,v, e

(1)
G,v, . . . , e

(L)
G,v}. A fair strategy is applied to

assign equal weights to the embeddings at each layer. The embeddings formula
for the nodes can be obtained as follows [17]:

eG,u =
1

L + 1

L∑

l=0

e
(l)
G,u, eG,v =

1
L + 1

L∑

l=0

e
(l)
G,v (3)
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where, L represents the depths of the DLGCN, e
(l)
G,u and e

(l)
G,v indicate the embed-

ding of user u and item v on graph G, respectively, which aggregate the node
information within l steps.

3.4 Node Embedding Fusion and Rating Prediction

The concatenation is chosen to fuse the node embeddings learned from different
user-entity interaction graphs because it eliminates the noise generated by the
interaction between entities. The inner product of the final embeddings of users
and items is used to predict users’ preferences, calculated as follows:

ŷui = eue�
i (4)

where, ŷui is the prediction result of the model, which indicates the preference
of user u for item i, and eu, ei is the final embedding of user u and item i.

Analysis. In this section, the advantages of concatenation are illustrated by
comparing the concatenation with the sum operation and the mean-pooling
method. For illustration, two user-entity bipartite graphs are used, then there
are embedding of user u as eG1,u, eG2,u, and embedding of item i as eG1,v, eG2,v.

Adopting the concatenation [12], eu = (eG1,u, eG2,u), ei = (eG1,v, eG2,v), are
obtained, and then ŷui is calculated as follows:

ŷui = eG1,ue�
G1,v + eG2,ue�

G2,v (5)

with the sum operation [38], getting eu = (eG1,u + eG2,u), ei = (eG1,v + eG2,v),
applying the model prediction, ŷui is represented as follows:

ŷui = eG1,ue�
G1,v + eG2,ue�

G2,v + eG1,ue�
G2,v + eG2,ue�

G1,v︸ ︷︷ ︸
Noise

(6)

After performing the mean-pooling operation [29], eu = 1
2 (eG1,u + eG2,u),

ei = 1
2 (eG1,v + eG2,v), and ŷui is depicted as follows via model prediction:

ŷui =
1
4

⎛

⎜⎝eG1,ue�
G1,v + eG2,ue�

G2,v + eG1,ue�
G2,v + eG2,ue�

G1,v︸ ︷︷ ︸
Noise

⎞

⎟⎠ (7)

Comparing the three methods, it can be found that the sum operation and
the mean-pooling method lead to the interplay of node embeddings learned on
different graphs, which generates noise interference. However, the purpose of
the UE-BP method is to separate the user-item-entity relations. Sum operations
and mean-pooling approach complicate the relationship and run counter to our
original intent. In Sect. 4.3, a comparative test of the three methods is performed
to prove the correctness of our theory.
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3.5 Optimization

The parameters trained in KDL-GCN are the 0th layer embedding in each user-
entity bipartite graph, i.e., Θ = {E

(0)
G1

, E
(0)
G2

, . . . , E
(0)
Gs

}. In the training process of
the model, we use Bayesian Personalized Ranking (BPR) loss [32], which is based
on the idea of making the difference between the scores of positive and negative
samples as large as possible. To implement the optimization process, the set of
triples (u, i+, i−) is constructed, where interactions are observed between u and
i+, while no interactions are observed between u and i−. Therefore the BPR loss
function equation is as follows [32]:

L =
∑

(u,i+,i−)∈O

− lnσ (ŷui+ − ŷui−) + λ‖Θ‖22 (8)

where, O = {(u, i+, i−)|(u, i+) ∈ R+, (u, i−) ∈ R−} represents the training data,
R+ denotes the positive samples, which imply that there is an observable interac-
tion between u and i+, and R− indicates the sampled unobserved interactions. In
addition, L2 regularization is used to prevent overfitting, λ is the regularization
weight and Θ represents the parameters in the model. The Adam [24] optimizer
in a mini-batch manner is applied in KDL-GCN, which calculates the adaptive
learning rate for each parameter and works well in practical applications.

3.6 Time Complexity Analysis

Cluster-GCN [7] states that for the l − th propagation layer of GCN [25], the
computational complexity is O (||A||0dl−1 + Ndldl−1), where ||A||0 is number of
nonzeros in the adjacency matrix, n is the number of nodes, dl and dl−1 are the
embedding size of the current layer and the previous layer, respectively.

The nonlinear activation functions and feature transformation matrices are
removed from LightGCN [17] and only the aggregation operations are saved. Its
time complexity is O (L||A||0d), where L denotes the number of network layers
and d is the embedding size, which is fixed in each layer.

In contrast to LightGCN, the residual network is added to DLGCN and the
residual interval is 2, so the computational complexity is O

(
L||A||0d + LN

2 d
)
.

KDL-GCN fuses features of multiple user-entity bipartite graphs, therefore
the time complexity of KDL-GCN is O

(
L

∑Gs

G=G1

(||AG||0 + N
2

)
d
)
, where G is

the user-entity bipartite graph.

4 Experiments

4.1 Experiment Setup

Datasets. To evaluate the effectiveness of KDL-GCN, extensive experiments are
conducted on three benchmark datasets: Movielens [13], Amazon-Electronic [15],
TaoBao [54], which are widely used for training and evaluation of the recommen-
dation models. These benchmark datasets are open sourced real-world data with
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Table 1. The statistics of the knowledge graph.

Datasets Users Items Interactions Density Attribute Counts

Movielens 610 9606 100551 0.01716 Genres 21
directors 3942
actors 4034

Amazon 13201 14094 390581 0.00210 Brands 2771
categories 15

TaoBao 69166 39406 918431 0.00034 Categories 1671

various domains, sizes, and density. The demographic data of the datasets are
shown in Table 1.

Movielens: Movielens latest small is chosen. Regarding the entity informa-
tion, three relations were used: genre, director and actor. Finally, the explicit
ratings were converted to implicit data.

Amazon: Amazon-Electronic from the public Amazon review dataset. We
removed items with less than 5 interactions and ensured that each user inter-
acted with at least 20 items. For KG, two relationships are selected: brand and
category, and finally the explicit ratings are converted to implicit data.

TaoBao: TaoBao dataset is a publicly e-commerce dataset. The users with
less than 10 interactions were removed, and also treat ‘buy’ and ‘add to cart’ as
positive samples. In terms of knowledge graph, we choose the category.

Baseline Models. Comparing KDL-GCN with the following methods:
(1) MF [27] adopts the user-item direct interactions, which is a classical model
based on matrix factorization. (2) GCMC [1] applies the one layer GCN to uti-
lize the connections between users and items. (3) NGCF [42] employs 3-layer
graph convolution that captures both direct and indirect information between
users and items. (4) LR-GCCF [3] removes the non-linear activation function to
overcome the over-smoothing problem. (5) LightGCN [17] simplifies the GCN
by removing the nonlinear activation and the feature transformation matrices.
(6) IMP-GCN [30] mitigates the over-smoothing problem and deepens the Light-
GCN by using a user grouping strategy, i.e., separating users that are not similar.
(7) LGC-ACF [31] follows the structure of LightGCN and further exploits the
multi-aspect user-item interaction information.

Evaluation Metrics. Two mainstream metrics are used to evaluate the KDL-
GCN, Recall and Normalized Discounted Cumulative Gain (NDCG) [16]. The
top-20 results for both assessment metrics were calculated.

Hyper-parameters Setting. The embedding size is fixed to 64 for all models
and embedding parameters are initialized with Xavier method [10]. The embed-
ding size may be set larger, such as 128 or 256, which can further improve the
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accuracy of the model, but the computational efficiency will be reduced. And
the embedding size of each comparison model is the same, which does not affect
the fairness of the experiment. Adam [24] with a default learning rate of 0.001
is used to optimize KDL-GCN. Meanwhile, the mini-batch size is set to 2048
to accelerate the training of the model. The L2 regularization coefficient λ is
search from 1e−6, 1e−5, . . . , 1e−2, and in most cases the optimal value is 1e−4.
In addition, setting the propagation ratio γ in residual network to 0.1, and L is
tested in the range of 1 to 8.

The triplet (u, i+, i−) is constructed by random sampling and recombina-
tion, where the seed of the random number is set to 2022. Specifically, there
are two types of relationships between users and items in the training set, i.e.,
POSITIVE and NEGATIVE. POSITIVE indicates interaction with the user and
NEGATIVE means no interaction with the user, so each user has independent
POSITIVE and NEGATIVE samples. In each epoch, all users perform a random
sampling of their own POSITIVE and NEGATIVE to get the i+ and i− corre-
sponding to user u. Finally, the data obtained by random sampling are combined
into a triple (u, i+, i−).

4.2 Performance Comparison

Table 2 shows the results of model performance comparison. From the experi-
mental results, we have the following observations:

Table 2. The comparison of the overall performance of Recall@20 and NDCG@20.
The best performance is highlighted in bold, and the second best is underlined. Note
that these values are in the form of percentages with the ‘%’ omitted.

Dataset Movielens Amazon TaoBao
Method Recall NDCG Recall NDCG Recall NDCG

MF 21.87 27.67 4.35 3.04 3.23 1.72
GCMC 22.65 29.98 4.68 3.38 3.39 1.82
NGCF 23.68 30.85 4.98 3.74 3.59 1.98
LR-GCCF 24.42 33.23 6.17 4.55 3.73 2.05
LightGCN 24.59 33.11 5.79 4.39 4.88 2.82
IMP-GCN 24.65 33.58 6.72 5.22 5.66 3.23
LGC-ACF 24.91 34.76 6.21 4.70 6.76 3.80
KDL-GCN 25.86 35.53 7.52 5.77 7.61 4.30
Improve(%) 3.81 2.22 11.90 10.54 12.57 13.16

– The KDL-GCN achieves the best performance on all datasets, indicating that
UE-BP method and DLGCN significantly improve the performance of the
recommendation system.
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– Of all the methods, MF performs the worst because it does not use the higher-
order connection between the user and the item. GCMC also does not achieve
good performance because it uses only one layer of GCN. However, GCMC
performs better than MF, which indicates that the GCN-based method is
stronger in feature extraction.

– LGC-ACF utilizes the mean-pooling operation to introduce the item infor-
mation, and KDL-GCN outperforms it on every dataset, which indicates that
mean-pooling generates noise interference and concatenation is a more appro-
priate fusion method.

– In contrast to LGC-ACF, the improvement of KDL-GCN is more obvious on
large datasets, which indicates that there are more high-order nodes on the
big datasets and the adoption of high-order neighborhood information will
improve the performance of the model.

4.3 Ablation Analysis

Impact of Network Depth. To investigate the influence of the number of
layers L on KDL-GCN, varying L in the range of {1, . . . , 8} and summarizing
the experimental results as shown in Fig. 4.

Fig. 4. The impact of network depth on KDL-GCN.

The best results of KDL-GCN are achieved at L = 4 for the Movielens
dataset, and then the model performance gradually decreases as the number
of layers increases. This indicates that small datasets contain few higher-order
nodes. Focusing on Amazon and Taobao, the performance of the model increases
gradually as L increases from 1 to 8, but the metric increases at a slower rate and
eventually levels off. This denotes that higher-order neighborhood information
plays a significant role in the improvement of model performance.

Impact of Fusion Methods. In Sect. 3.4, a theoretical comparison of the
three approaches to fusion embeddings is presented. In this section, three fusion
methods are tested on three datasets based on DLGCN. Table 3 shows the exper-
imental results, which are consistent with the theoretical analysis that the sum
operation and mean-pooling method produce noise interference and decreases
the performance of the model.
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Table 3. Performance comparison of different fusion methods. Note that these values
are in the form of percentages with the ‘%’ omitted.

Dataset Movielens Amazon TaoBao
Metrics Recall NDCG Recall NDCG Recall NDCG

Concatenation 25.86 35.53 7.52 5.77 7.61 4.30
Sum operation 24.45 31.15 6.20 4.59 7.12 3.99
Mean-pooling 24.55 34.37 6.24 4.65 6.47 3.56

5 Conclusion

In this paper, a new GCN-based recommendation model, KDL-GCN, is pro-
posed, which unites the user-item bipartite graph and the knowledge graph.
KDL-GCN, firstly, constructs the user-entity interaction graph, then extracts
the features of each user-entity bipartite graph using the DLGCN module, and
finally the features on different graphs are fused to get the final embedding of
the nodes. The experiments on the real datasets demonstrate the effectiveness of
the KDL-GCN model and achieve the state-of-the-art performance. We believe
that this study can demonstrate the importance of higher-order nodes and entity
information and provide some insight on how to leverage high-order information
and knowledge graphs.

Acknowledgements. This work was supported by the Basic and Applied Basic
Research of Guangdong Province under grant [No.2015A030308018], the authors
express their thanks to the grant.

References

1. Berg, R.V.d., Kipf, T.N., Welling, M.: Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263 (2017)

2. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.S.: Attentive collaborative
filtering: multimedia recommendation with item-and component-level attention.
In: Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 335–344 (2017)

3. Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based col-
laborative filtering: a linear residual graph convolutional network approach. In:
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 27–34 (2020)

4. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceed-
ings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10
(2016)

5. Cheng, Z., Chang, X., Zhu, L., Kanjirathinkal, R.C., Kankanhalli, M.: MMALFM:
explainable recommendation by leveraging reviews and images. ACM Trans. Inf.
Syst. (TOIS) 37(2), 1–28 (2019)

6. Cheng, Z., Ding, Y., Zhu, L., Kankanhalli, M.: Aspect-aware latent factor model:
rating prediction with ratings and reviews. In: Proceedings of the 2018 World Wide
Web Conference, pp. 639–648 (2018)

http://arxiv.org/abs/1706.02263


Recommendation Algorithm Based on Deep Light 229

7. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an
efficient algorithm for training deep and large graph convolutional networks. In:
Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 257–266 (2019)

8. Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommen-
dations. In: Proceedings of the 10th ACM Conference on Recommender Systems,
pp. 191–198 (2016)

9. Fan, W., et al.: Graph neural networks for social recommendation. In: The World
Wide Web Conference, pp. 417–426 (2019)

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference
Proceedings (2010)

11. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

12. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035 (2017)

13. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

15. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends
with one-class collaborative filtering. In: Proceedings of the 25th International
Conference on World Wide Web, pp. 507–517 (2016)

16. He, X., Chen, T., Kan, M.Y., Chen, X.: Trirank: review-aware explainable recom-
mendation by modeling aspects. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pp. 1661–1670 (2015)

17. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: LightGCN: simplifying
and powering graph convolution network for recommendation. In: Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 639–648 (2020)

18. He, X., He, Z., Song, J., Liu, Z., Jiang, Y.G., Chua, T.S.: Nais: neural attentive
item similarity model for recommendation. IEEE Trans. Knowl. Data Eng. 30(12),
2354–2366 (2018)

19. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182 (2017)

20. He, X., Zhang, H., Kan, M.Y., Chua, T.S.: Fast matrix factorization for online
recommendation with implicit feedback. In: Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 549–558 (2016)

21. Hsieh, C.K., Yang, L., Cui, Y., Lin, T.Y., Belongie, S., Estrin, D.: Collaborative
metric learning. In: Proceedings of the 26th International Conference on World
Wide Web, pp. 193–201 (2017)

22. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp.
263–272. IEEE (2008)

http://arxiv.org/abs/1703.04247


230 X. Chen and N. Xiao

23. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n
recommender systems. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 659–667 (2013)

24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

25. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

26. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 426–434 (2008)

27. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

28. Li, M., Gan, T., Liu, M., Cheng, Z., Yin, J., Nie, L.: Long-tail hashtag recommen-
dation for micro-videos with graph convolutional network. In: Proceedings of the
28th ACM International Conference on Information and Knowledge Management,
pp. 509–518 (2019)

29. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

30. Liu, F., Cheng, Z., Zhu, L., Gao, Z., Nie, L.: Interest-aware message-passing GCN
for recommendation. In: Proceedings of the Web Conference 2021, pp. 1296–1305
(2021)

31. Mei, D., Huang, N., Li, X.: Light graph convolutional collaborative filtering with
multi-aspect information. IEEE Access 9, 34433–34441 (2021)

32. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

33. Sha, X., Sun, Z., Zhang, J.: Attentive knowledge graph embedding for personalized
recommendation. arXiv preprint arXiv:1910.08288 (2019)

34. Shi, C., et al.: Deep collaborative filtering with multi-aspect information in hetero-
geneous networks. IEEE Transactions on Knowledge and Data Engineering (2019)

35. Shi, Y., Larson, M., Hanjalic, A.: List-wise learning to rank with matrix factoriza-
tion for collaborative filtering. In: Proceedings of the fourth ACM Conference on
Recommender Systems, pp. 269–272 (2010)

36. Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., Tang, J.: Session-based
social recommendation via dynamic graph attention networks. In: Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, pp.
555–563 (2019)

37. Sun, J., et al.: Multi-graph convolution collaborative filtering. In: 2019 IEEE Inter-
national Conference on Data Mining (ICDM), pp. 1306–1311. IEEE (2019)

38. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

39. Wang, H., et al.: Knowledge-aware graph neural networks with label smooth-
ness regularization for recommender systems. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
968–977 (2019)

40. Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional
networks for recommender systems. In: The World Wide Web Conference, pp.
3307–3313 (2019)

41. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention
network for recommendation. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1910.08288
http://arxiv.org/abs/1710.10903


Recommendation Algorithm Based on Deep Light 231

42. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative
filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 165–174 (2019)

43. Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.S.: Disentangled graph
collaborative filtering. In: Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 1001–1010
(2020)

44. Wang, X., Wang, R., Shi, C., Song, G., Li, Q.: Multi-component graph convolu-
tional collaborative filtering. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 6267–6274 (2020)

45. Wu, L., Li, J., Sun, P., Hong, R., Ge, Y., Wang, M.: Diffnet++: a neural influence
and interest diffusion network for social recommendation. IEEE Trans. Knowl.
Data Eng. (2020)

46. Wu, Q., et al.: Dual graph attention networks for deep latent representation of
multifaceted social effects in recommender systems. In: The World Wide Web Con-
ference, pp. 2091–2102 (2019)

47. Wu, S., Sun, F., Zhang, W., Cui, B.: Graph neural networks in recommender
systems: a survey. arXiv preprint arXiv:2011.02260 (2020)

48. Wu, S., Zhang, M., Jiang, X., Ke, X., Wang, L.: Personalizing graph neural net-
works with attention mechanism for session-based recommendation. arXiv preprint
arXiv:1910.08887 (2019)

49. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 974–983 (2018)

50. Zhang, J., Shi, X., Zhao, S., King, I.: Star-GCN: stacked and reconstructed graph
convolutional networks for recommender systems. arXiv preprint arXiv:1905.13129
(2019)

51. Zhang, M., Chen, Y.: Inductive matrix completion based on graph neural networks.
arXiv preprint arXiv:1904.12058 (2019)

52. Zhao, J., et al.: IntentGC: a scalable graph convolution framework fusing heteroge-
neous information for recommendation. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2347–2357
(2019)

53. Zheng, L., Lu, C.T., Jiang, F., Zhang, J., Yu, P.S.: Spectral collaborative filtering.
In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 311–
319 (2018)

54. Zhu, H., et al.: Learning tree-based deep model for recommender systems. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1079–1088 (2018)

http://arxiv.org/abs/2011.02260
http://arxiv.org/abs/1910.08887
http://arxiv.org/abs/1905.13129
http://arxiv.org/abs/1904.12058


Query Performance Prediction for Neural
IR: Are We There Yet?

Guglielmo Faggioli1(B), Thibault Formal2,3, Stefano Marchesin1,
Stéphane Clinchant2, Nicola Ferro1, and Benjamin Piwowarski3,4

1 University of Padova, Padova, Italy
guglielmo.faggioli@unipd.it

2 Naver Labs Europe, Meylan, France
3 Sorbonne Université, ISIR, Paris, France

4 CNRS, Paris, France

Abstract. Evaluation in Information Retrieval (IR) relies on post-hoc
empirical procedures, which are time-consuming and expensive opera-
tions. To alleviate this, Query Performance Prediction (QPP) models
have been developed to estimate the performance of a system without
the need for human-made relevance judgements. Such models, usually
relying on lexical features from queries and corpora, have been applied to
traditional sparse IR methods – with various degrees of success. With the
advent of neural IR and large Pre-trained Language Models, the retrieval
paradigm has significantly shifted towards more semantic signals. In
this work, we study and analyze to what extent current QPP models
can predict the performance of such systems. Our experiments consider
seven traditional bag-of-words and seven BERT-based IR approaches,
as well as nineteen state-of-the-art QPPs evaluated on two collections,
Deep Learning ’19 and Robust ’04. Our findings show that QPPs per-
form statistically significantly worse on neural IR systems. In settings
where semantic signals are prominent (e.g., passage retrieval), their per-
formance on neural models drops by as much as 10% compared to bag-
of-words approaches. On top of that, in lexical-oriented scenarios, QPPs
fail to predict performance for neural IR systems on those queries where
they differ from traditional approaches the most.

1 Introduction

The advent of Neural IR (NIR) and Pre-trained Language Models (PLM)
induced considerable changes in several central IR research and application areas,
with implications that are yet to be fully tamed by the research community.
Query Performance Prediction (QPP) is defined as the prediction of the perfor-
mance of an IR system without human-crafted relevance judgements and is one
of the areas the most interested by advancements in NIR and PLM domains. In
fact, i) PLM can help developing better QPP models, and ii) it is not fully clear
yet whether current QPP techniques can be successfully applied to NIR. With
this paper, we aim to explore the connection between PLM-based first-stage
retrieval techniques and the available QPP models. We are interested in investi-
gating to what extent QPP techniques can be applied to such IR systems, given
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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i) their fundamentally different underpinnings compared to traditional lexical IR
approaches, ii) that they hold the promise to replace – or at least complement –
them in multi-stage ranking pipelines. In return, QPP advantages are multi-fold:
it can be used to select the best-performing system for a given query, help users
in reformulating their needs, or identify pathological queries that require manual
intervention from the system administrators. Said otherwise, the need for QPP
still holds for NIR methods. Among the plethora of available QPP methods, most
of them rely on lexical aspects of the query and the collection. Such approaches
have been devised, tested, and evaluated in predicting the performance of lexical
bag-of-words IR systems – from now on referred to as Traditional IR (TIR) –
with various degrees of success. Recent advances in Natural Language Processing
(NLP) led to the advent of PLM-based IR systems, which shifted the retrieval
paradigm from traditional approaches based on lexical matching to exploiting
contextualized semantic signals – thus alleviating the semantic gap problem. To
ease the readability throughout the rest of the manuscript, with an abuse of
notation, we use the more general term NIR to explicitly refer to first-stage IR
systems based on BERT [13].

At the current time, no large-scale work has been devoted to assessing
whether traditional QPP models can be used for NIR systems – which is the goal
of this study. We compare the performance of nineteen QPP methods applied to
seven traditional TIR systems, with those achieved on seven state-of-the-art first-
stage NIR approaches based on PLM. We consider both pre- and post-retrieval
QPPs, and include in our analyses post-retrieval QPP models that exploit lexi-
cal or semantic signals to compute their predictions. To instantiate our analyses
on different scenarios we consider two widely adopted experimental collections:
Robust ‘04 and Deep Learning ‘19. Our contributions are as follows:

– we apply and evaluate several state-of-the-art QPP approaches to multiple
NIR retrievers based on BERT, on Robust ‘04 and Deep Learning ‘19;

– we observe a correlation between QPPs performance and how different NIR
architectures perform lexical match;

– we show that currently availableQPPs perform reasonably well when applied
to TIR systems, while they fail to properly predict the performance for NIR
systems, even on NIR oriented collections;

– we highlight how such decrease in QPP performance is particularly prominent
on queries where TIR and NIR performances differ the most – which are those
queries where QPPs would be most beneficial.

The remainder of this paper is organized as follows: Sect. 2 outlines the main
related endeavours. Section 3 details our methodology, while Sect. 4 contains the
experimental setting. Empirical results are reported in Sect. 5. Section 6 summa-
rizes the main conclusions and future research directions.
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2 Related Work

The rise of large PLM like BERT [13] has given birth to a new generation of NIR
systems. Initially employed as re-rankers in a standard learning-to-rank frame-
work [35], a real paradigm shift occurred when the first PLM-based retrievers
outperformed standard TIR models as candidate generators in a multi-stage
ranking setting. For such a task, dense representations, based on a simple pool-
ing of contextualized embeddings, combined with approximate nearest neighbors
algorithms, have proven to be both highly effective and efficient [22,28–30,37,49].
ColBERT [31,41] avoids this pooling mechanism, and directly models semantic
matching at the token level – allowing it to capture finer-grained relevance sig-
nals. In the meantime, another research branch brought lexical models up to
date, by taking advantage of BERT and the proven efficiency of inverted indices
in various manners. Such sparse approaches for instance learn contextualized
term weights [10,33,34,55], query or document expansion [36], or both mecha-
nisms jointly [20,21]. This new wave of NIR systems, which substantially differ
from lexical ones – and from each other – demonstrate state-of-the-art results
on several datasets, from MS MARCO [3] on which models are usually trained,
to zero-shot settings such as the BEIR [46] or LoTTE [41] benchmarks.

A well-known problem linked to IR evaluation is the variation in perfor-
mance achieved by different IR systems, even on a single query [4,9]. To partially
account for it, a large body of work has focused on predicting the performance
that a system would achieve for a given query, using QPP models. Such mod-
els are typically divided into pre- and post-retrieval predictors. Traditional pre-
retrieval QPPs leverage statistics on the query terms occurrences [26]. For exam-
ple, SCQ [53], VAR [53] and IDF [8,42] combine query tokens’ occurrence indica-
tors, such as Collection Frequency (CF) and Inverse Document Frequency (IDF),
to compute their performance prediction score. Post-retrieval QPPs exploit the
results of IR models for the given query [4]. Among them, Clarity [7] compares
the language model of the first k retrieved documents with the one of the entire
corpus. NQC [43], WIG [54] and SMV [45] exploit the retrieval scores distribution
for the top-ranked documents to compute their predictive score. Finally, Utility
Estimation Framework (UEF) [44] serves as a general framework that can be
instantiated with many of the mentioned predictors, pre-retrieval ones included.
Post-retrieval predictors are based on lexical signals – SMV, NQC and WIG rely
on the Language Model scores estimated from top-retrieved documents, while
Clarity and UEF exploit the language models of the top-k documents.

We further divide QPP models into traditional and neural approaches.
Among neural predictors, one of the first approaches is NeuralQPP [50] which
computes its predictions by combining semantic and lexical signals using a feed-
forward neural network. Notice that NeuralQPP is explicitly designed for TIR
and is hence not expected to work better with NIR [50]. A similar approach for
Question Answering is NQA-QPP [24], which also relies on three neural com-
ponents but, unlike NeuralQPP, exploits BERT [13] to embed tokens seman-
tics. Similarly, BERT-QPP [2] encodes semantics via BERT, but directly fine-
tunes it to predict query performance based on the first retrieved document.
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Subsequent approaches extend BERT-QPP by employing a groupwise predictor
to jointly learn from multiple queries and documents [5] or by transforming its
pointwise regression into a classification task [12]. Since we did not consider mul-
tiple formulations, we did not experiment with such approach in our empirical
evaluation.

Although traditional QPP methods have been widely used over the years,
only few works have been done to apply them on NIR models. Similarly, neu-
ral QPP methods – which model the semantic interactions between query and
document terms – have been mostly designed for and evaluated on TIR models.
Two noteworthy exceptions concerning the tested IR models are [24] who eval-
uate the devised QPP on pre-BERT approaches for Question Answering (QA),
while [11] assess the performance of their approach on DRMM [23] (pre-BERT)
and ColBERT [31] (BERT-based) as NIR models. Hence, there is an urgent need
to deepen the evaluation of QPP on state-of-the-art NIR models to understand
where we are, what are the challenges, and which directions are more promising.

A third category that can be considered a hybrid between the groups of
predictors mentioned above is passage retrieval QPP [38]. In [38], authors exploit
lexical signals obtained from passages’ language models to devise a predictor
meant to better deal with passage retrieval prediction.

3 Methodology

Evaluating Query Performance Predictors. QPP models compute a score
for each query, that is expected to correlate with the quality of the retrieval
for such query. Traditional evaluation of QPP models relies on measuring the
correlation between the predicted QPP scores and the observed performance
measured with a traditional IR measure. Typical correlation coefficients include
Kendall’s τ , Spearman’s ρ and the Pearson’s r. This evaluation procedure has
the drawback of summarizing, through the correlation score, the performance of
a QPP model into a single observation for each system and collection [15,16].
Therefore, Faggioli et al. [15] propose a novel evaluation approach based on the
scaled Absolute Rank Error (sARE) measure that, given a query q, is defined
as sARE(q) = |Re

q−Rp
q |

|Q| , where Re
q and Rp

q are the ranks of the query q induced
by the IR measure and the QPP score respectively, over the entire set of queries
of size |Q|. With “rank” we refer to the ordinal position of the query if we sort
all the queries of the collection either by IR performance or prediction score. By
switching from a single-point estimation to a distribution of performance, sARE
has the advantage of allowing conducting more powerful statistical analyses and
carrying out failure analyses on queries where the predictors are particularly bad.
To be comparable with previous literature, we report in Sect. 5.1 the performance
of the analyzed predictors using the traditional Pearson’s r correlation-based
evaluation. On the other hand, we use sARE as the evaluation measure for the
statistical analyses, to exploit its additional advantages. Such analyses, whose
results are reported in Sect. 5.2, are described in the remainder of this section.
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ANOVA. To assess the effect induced by NIR systems on QPP performance, we
employ the following ANalysis Of VAriance (ANOVA) models. The first model,
dubbed MD1, aims at explaining the sARE performance given the predictor, the
type of IR model and the collection. Therefore, we define it as follows:

sAREijpqr = μ + πp + ηi + χj + (ηχ)ij + εijpqr, (MD1)

where μ is the grand mean, πp is the effect of the p-th predictor, ηi represents
the type of IR model (either TIR or NIR), χj stands for the effect of the j-th
collection on QPP’s performance, and (ηχ)ij describes how much the type of
run and the collection interact and ε is the associated error.

Secondly, since we are interested in determining the effect of different pre-
dictors in interaction with each query, we define a second model, dubbed MD2,
that also includes the interaction factor and is formulated as follows:

sAREipqr = μ + πp + τq + ηi + (πτ)qp + (πη)pi + (τη)iq + εipqr, (MD2)

Differently from MD1, we apply MD2 to each collection separately. Therefore,
having a single collection, we replace the effect of the collection with τq, the
effect for the q-th topic. Furthermore, the model includes also all the first-order
interactions.

The Strength of Association (SOA) [39] is assessed using ω2 measure com-
puted as:

ω2
<fact> =

df<fact> ∗F<fact>

df<fact> ∗(F<fact> − 1) ∗ N
,

where N is the number of experimental data-points, df<fact> is the factor’s
number of Degrees of Freedom (DF), and F<fact> it the F statistics computed by
ANOVA. As a rule-of-thumb, ω2 < 6% indicates a small SOA, 6% ≤ ω2 < 14%
is a medium-sized effect, while ω2 ≥ 14% represent a large-sized effect.

ANOVA Models have been fitted using anovan function from the stats MAT-
LAB package. In terms of sample size, depending on the model and collection
at hand, we considered 19 predictors, 249 topics in the case of Robust ‘04 and
43 for Deep Learning ‘19 and 14 different IR systems for a total of 66234 and
11438 observations for Robust ‘04 and Deep Learning ‘19 respectively.

4 Experimental Setup

Our analyses focus on two distinct collections: Robust ‘04 [47], and TREC Deep
Learning 2019 Track (Deep Learning ‘19) [6]. The collections have respectively
249 and 43 topics each and are based on TIPSTER and MS MARCO passages
corpora. Robust ‘04 is one of the most used collections to test lexical approaches,
while providing a reliable benchmark for NIR models [48] – even though they
struggle to perform well on this collection, especially when evaluated in a zero-
shot setting [46]. Deep Learning ‘19 concerns passage retrieval from natural
questions – the formulation of queries and the nature of the documents (passages)



QPP for Neural IR: Are We There Yet? 237

make the retrieval harder for TIR approaches, while NIR systems tend to have
an edge in retrieving relevant documents.

Our main objective is to assess whether existing QPPs are effective in predict-
ing the performance of different state-of-the-art NIR models. As reference points,
we consider seven TIR methods: Language Model with Dirichlet (LMD) and
Jelinek-Mercer (LMJM) smoothing [52], BM25, vector space model [40] (TFIDF),
InExpB2 [1] (InEB2), Axiomatic F1-EXP [17] (AxF1e), and Divergence From
Independence (DFI) [32]. TIR runs have been computed using Lucene. For the
NIR methods, we focus on BERT-based first-stage models. We consider state-
of-the-art models from the three main families of NIR models, which exhibit dif-
ferent behavior, and thus might respond to QPPs differently. We consider dense
models, i) a “standard” bi-encoder (bi) trained with negative log-likelihood,
ii) TAS-B [28] (bi-tasb) whose training relies on topic-sampling and knowl-
edge distillation iii) and finally CoCondenser [22] (bi-cc) and Contriever [29]
(bi-ct) which are based on contrastive pre-training. We also consider two models
from the sparse family: SPLADE [21] (sp) with default training strategy, and its
improved version SPLADE++ [19,20] (sp++) based on distillation, hard-negative
mining and pre-training. We finally consider the late-interaction ColBERTv2 [41]
(colb2). Models are fine-tuned on the MS MARCO passage dataset; given the
absence of training queries in Robust ‘04, they are evaluated in a zero-shot man-
ner, similarly to previous settings [41,46]. Besides the bi-encoder we trained on
our own, we rely on open-source weights available for every model. The advantage
of considering multiple TIR and NIR models is that i) we achieve more general-
izable results: different models, either TIR or NIR perform the best in different
scenarios and therefore our conclusions should be as generalizable as possible;
ii) it allows to achieve more statistical power in the experimental evaluation. We
focus our analyses on Normalized Discounted Cumulated Gain (nDCG) with
cutoff 10, as it is employed across NIR benchmarks consistently. This is not the
typical setting for evaluating traditional QPP – which usually considers Average
Precision (AP) @1000. Nevertheless, given our objective – determining how QPP
performs on settings where NIR models can be used successfully – we are also
interested in selecting the most appropriate measure.

Concerning QPP models, we select the most popular state-of-the-art
approaches. In details, we consider 9 pre-retrieval models: Simplified query Clar-
ity Score (SCS) [27], Similarity Collection-Query (SCQ) [53], VAR [53], IDF and
Inverse Collection Term Frequency (ICTF) [8,42]. For SCS, we use the sum
aggregation, while for others we use max and mean, which empirically produce
the best results. In terms of post-retrieval QPP models, our experiments are
based on Clarity [7], Normalized Query Commitment (NQC) [43], Score Mag-
nitude and Variance (SMV) [45], Weighted Information Gain (WIG) [54] and
their UEF [44] counterparts. Among post-retrieval predictors, we also include
a supervised approach, BERT-QPP [2], using both bi-encoder (bi) and cross-
encoder (ce) formulations. We train BERT-QPP1 for each IR system on the MS

1 We use the implementation provided at https://github.com/Narabzad/BERTQPP.

https://github.com/Narabzad/BERTQPP
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Table 1. nDCG@10 for the selected TIR and NIR systems. NIR outperform traditional
approaches on Deep Learning ‘19, and have comparable performance on Robust ‘04.

axF1e BM25 LMD LMJM TFIDF DFI InEB2 bi bi-tasb bi-cc bi-ct sp sp++ colbv2

Deep Learning ‘19 0.45 0.48 0.45 0.48 0.37 0.47 0.49 0.64 0.72 0.72 0.67 0.71 0.73 0.75
Robust ‘04 0.39 0.44 0.43 0.40 0.31 0.44 0.44 0.23 0.45 0.30 0.46 0.39 0.45 0.47

MARCO training set, as proposed in [2]. Similarly to what is done for NIR mod-
els, we apply BERT-QPP models on Robust ‘04 queries in a zero-shot manner.

5 Experimental Results

5.1 QPP Models Performance

Table 1 reports the absolute nDCG@10 performance for the selected TIR and
NIR models. Figures 1a and 1b refer, respectively, to Robust ‘04 and Deep Learn-
ing ‘19 collections and report the Pearson’s r correlation between the scores
predicted by the chosen predictors and the nDCG@10, for both TIR and NIR
runs2. The presence of negative values indicates that some predictors fail in
specific contexts and has been observed before in the QPP setting [25].

For Robust ‘04, we notice that – following previous literature – pre-retrieval
(top) predictors (mean correlation: 15.9%) tend to perform 52.3% worse than
post-retrieval ones (bottom) (mean correlation: 30.2%). Pre-retrieval results are
in line with previous literature [51]. The phenomenon is more evident (darker
colors) for NIR runs (right) than TIR ones (left). Pre-retrieval predictors fail in
predicting the performance of NIR systems (mean correlation 6.2% vs 25.6% for
TIR), while in general, to our surprise, we notice that post-retrieval predictors
tend to perform similarly on TIR and NIR (34.5% vs 32.3%) – with some excep-
tions. For instance, for bi, post-retrieval predictors either perform extremely
well or completely fail. This happens particularly on Clarity, NQC, and their
UEF counterparts. Note that bi is the worst performing approach on Robust
‘04, with 23% of nDCG@10 – the second worst is bi-cc which achieves 30%
nDCG@10.

The patterns observed for Robust ‘04 hold only partially on Deep Learning
‘19. For example, we notice again that pre-retrieval predictors (mean correlation:
14.7%) perform 58.3% worse than post-retrieval ones (mean correlation: 35.3%).
On the contrary, the difference in performance is far more evident between NIR
and TIR. On TIR runs, almost all predictors perform particularly well (mean
correlation: 38.1%) – even better than on Robust ‘04 collection. The only three
exceptions are SCQ (both in avg and max formulations) and VAR using max
formulation. Conversely, on NIR the performance is overall lower (13.1%) and
relatively more uniform between pre- (5.4%) and post-retrieval (19.9%) models.
In absolute value, maximum correlation achieved by pre-retrieval predictors for
2 Additional IR measures and correlations, as well as full ANOVA tables are available

at: https://github.com/guglielmof/ECIR2023-QPP.

https://github.com/guglielmof/ECIR2023-QPP


QPP for Neural IR: Are We There Yet? 239

Fig. 1. Pearson’s r correlation observed for different pre (top) andpost (bottom) retrieval
predictors on lexical (left) and neural (right) runs. To avoid cluttering, we report the
results for the 3 main TIR models, other models achieve highly similar results.

NIR on Deep Learning ‘19 is much higher than the one achieved on Robust ‘04,
especially for bi-ct, sp, and bi-tasb runs. On the other hand, post-retrieval
predictors, perform worse than on the Robust ‘04. The only exception to this pat-
tern is again represented by bi, on which some post-retrieval predictors, namely
WIG, UEFWIG, and UEFClarity work surprisingly well. The supervised BERT-
QPP shows a trend similar to other post-retrieval predictors on Deep Learning
‘19 (42.3% mean correlation against 52.9% respectively) for what concerns TIR,
with performance in line with the one reported in [2]. This is exactly the setting
where BERT-QPP has been devised and tested. If we focus on Deep Learning



240 G. Faggioli et al.

Table 2. Pearson’s r QPP performance for three versions of sp++ applied on Robust
‘04, with varying degree of sparsity (sp++2 � sp++1 � sp++0 in terms of sparsity).
The more “lexical” are the models, the better QPP performs. dl and ql represent
respectively the average document/query sizes (i.e. non-zero dimensions in SPLADE)
on Robust ‘04.

dl/ql Clarity NQC SMV WIG UEFClarity UEFNQC UEFSMV UEFWIG

sp++2 55/22 0.26 0.31 0.46 0.42 0.44 0.4 0.48 0.5
sp++1 79/29 0.2 0.34 0.47 0.35 0.38 0.4 0.46 0.43
sp++0 204/45 0.25 0.37 0.44 0.33 0.4 0.39 0.44 0.42

‘19 and NIR systems, its performance (mean correlation: 4.5%) is far lower than
those of other post-retrieval predictors (mean correlation without BERT-QPP:
23.8%). Finally, its performance on Robust ‘04 – applied in zero-shot – is con-
siderably lower compared to other post-retrieval approaches.

Interestingly, on Robust ‘04, post-retrieval QPPs achieve, on average, top per-
formance on the late interaction model (colb2), followed by sparse approaches
(sp and sp++). Finally, excluding bi, where predictors achieve extremely incon-
sistent performance, dense approaches are those where QPP perform the worst.
In this sense, the performance that QPP methods achieve on NIR systems seems
to correlate with the importance these systems give to lexical signals. In this
regard, Formal et al. [20] observed how late-interaction and sparse architectures
tend to rely more on lexical signals, compared to dense ones.

To further corroborate this observation, we apply the predictors to three
versions of SPLADE++ with various levels of sparsit as controlled by the reg-
ularization hyperparameter. Increasing the sparsity of representations leads to
models that cannot rely as much on expansion – emphasizing the importance
given to lexical signals in defining the document ranking. Therefore, as a first
approximation, we can deem sparser methods to be also more lexical. Given
the low performance achieved by pre-retrieval QPPs, we focus this analysis on
post-retrieval methods only. Table 2 shows the Pearson’s r for the considered
predictors and different SPLADE++ versions. Interestingly, in the majority of
the cases, QPPs perform the best for the sparser version (sp++2), followed by
sp++1 and sp++0 – which is the one used in Fig. 1. There are a few switches,
often associated with very close correlation values (SMV and UEFClarity). Only
one predictor, NQC, completely reverses the order. This goes in favour of our
hypothesis that indeed QPP performance tends to correlate with the degree of
lexicality of the NIR approaches. Although not directly comparable, following
this line of thought, sp, being handled better by QPPs (cfr. Fig. 1a), is more lex-
ical than all the sp++ versions considered: this is reasonable, given the different
training methodology. Finally, colb2, being the method where QPPs achieve the
best performance, might be the one that, at least for what concerns the Robust
‘04 collection, gives the highest importance to lexical signals – in line with what
was observed in [21].
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Fig. 2. Comparison between the mean sARE (sMARE) achieved over TIR or NIR when
changing the corpus. Observe the large distance between results on NIR – especially
for Deep Learning ‘19 – compared to the one on TIR runs.

5.2 ANOVA Analysis

To further statistically quantify the phenomena observed in the previous sub-
section, we apply MD1 to our data, considering both collections at once. From a
quantitative standpoint, we notice that all the factors included in the model
are statistically significant (p-value < 10−4). In terms of SOA, the collec-
tion factor has a small effect (0.02%). The run type, on the other hand,
impacts for ω2 = 0.48%. Finally, the interaction between the collection and run
type, although statistically significant, has a small impact on the performance
(ω2 = 0.05%): in both collections QPPs perform better on TIR models. All fac-
tors are significant but have small-size effects. This is in contrast with what was
observed for the performance of IR systems [9,18], where most of the SOA range
between medium to large. Nevertheless, it is in line with what was observed by
Faggioli et al. [15] for the performance QPP methods, who showed that all the
factors besides the topic are small to medium. A second observation is that it is
likely that the small SOAs are due to a model unable to accrue for all the aspects
of the problem – more factors should be considered. Model MD2, introducing
also the topic effect, allows for further investigation of this hypothesis.

We are now interested in breaking down the performance of the predictors
according to the collection and type of run. Figure 2 reports the average per-
formance (measured with sMARE, the lower the better) for QPPs applied on
NIR or TIR runs over different collections, with their confidence intervals as
computed using ANOVA. Interestingly, regardless of the type of collection, the
performance achieved by predictors on NIR models will on average be worse
than those achieved on TIR runs. QPP models perform better on TIR than NIR
on both collections: this explains the small interaction effect between collec-
tions and run types. Secondly, there is no statistical difference QPPs applied to
TIR models when considering Deep Learning ‘19 and Robust ‘04– the confidence
intervals are overlapping. This goes in contrast with what happens on Robust ‘04
and Deep Learning ‘19 when considering NIR models: QPPs approaches applied
on the latter dataset perform by far worse than on the former.



242 G. Faggioli et al.

Table 3. p-values and ω2 SOA using MD2 on each collection

Deep Learning ‘19 Robust ‘04
p-value ω2 p-value ω2

Topic <10−4 22.5% <10−4 24.0%
qpp <10−4 1.65% <10−4 2.21%
Run type <10−4 4.35% <10−4 0.11%
Topic*qpp <10−4 22.7% <10−4 17.2%
Topic*run type <10−4 15.2% <10−4 10.0%
qpp*run type 0.0012 0.23% <10−4 0.30%

Fig. 3. sMARE observed for different predictors on Deep Learning ‘19 (left) and Robust
‘04 (right). On Deep Learning ‘19, predictors behave differently on TIR and NIR runs,
while they are more uniform on Robust ‘04.

While on average we will be less satisfied by QPP predictors applied to NIR
regardless of the type of collection, there might be some noticeable exceptions
of good performing predictors also for NIR systems. To verify this hypothesis,
we apply MD2 to each collection separately, and measure what happens to each
predictor individually3. Table 3 reports the p-values and ω2 SOA for the factors
included in MD2, while Fig. 3 depicts the phenomena visually. We observe that,
concerning Deep Learning ‘19, the run type (TIR or NIR) is significant, while
the interaction between the predictor and the run type is small: indeed predic-
tors always perform better on TIR runs than on NIR ones. The only model
that behaves slightly differently is Clarity, with far closer performance for both
classes of runs – this can be explained by the fact that Clarity is overall the
worst-performing predictor. Notice that, the best predictor on TIR runs – NQC
– performs almost 10% worse on NIR ones. Finally, we notice a large-size interac-
tion between topics and QPP models – even bigger than the topic or QPP them-
selves. This indicates that whether a model will be better than another strongly
depends on the topic considered. An almost identical pattern was observed also

3 To avoid cluttering, we report the subsequent analyses only for post-retrieval pre-
dictors – similar observations hold for pre-retrieval ones.
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Fig. 4. left: topics selected to maximize the difference between lexical and neural mod-
els; right: results of MD2 applied on Robust ‘04 considering only the selected topics.

in [15]. Therefore, to improve QPP’s generalizability, it is important not only to
address challenges caused by differences in NIR and TIR but also to take into
consideration the large variance introduced by topics. We analyze more in detail
this variance later, where we consider only “semantically defined” queries.

If we consider Robust ‘04, the behaviour changes deeply: Fig. 3 shows that
predictors performances are much more similar for TIR and NIR runs compared
to Deep Learning ‘19. This is further highlighted by the far smaller ω2 for run
type on Robust ‘04 in Table 3 – 4.35% against 0.11%. The widely different pattern
between Deep Learning ‘19 and Robust ‘04 suggests that current QPPs are
doomed to fail when used to predict the performance of IR approaches that
learned the semantics of a collection – which is the case for Deep Learning
‘19 that was used to fine-tune the models. Current QPPs evaluate better IR
approaches that rely on lexical clues. Such approaches include both TIR models
and NIR models applied in a zero-shot fashion, as it is the case for Robust ‘04.
Thus, QPP models are expected to fail where NIR models behave differently from
the TIR ones. This poses at stake one of the major opportunities provided by
QPP: if we fail in predicting the performance of NIR models where they behave
differently from TIR ones, then a QPP cannot be safely used to carry out model
selection. To further investigate this aspect, we carry out the following analysis:
we select from Robust ‘04 25% of the queries that are mostly “semantically
defined” and rerun MD2 on the new set of topics. We call “semantically defined”
those queries where NIR behave, on average, oppositely w.r.t. the TIR, either
failing or succeeding at retrieving documents. In other terms, we select queries
in the top quartile for the absolute difference in performance (nDCG), averaged
over all TIR or NIR models.

Figure 4a shows the performance of topics that maximize the difference
between TIR and NIR and can be considered as more “semantically defined” [14].
There are 62 topics selected (25% of the 249 topics available on Robust ‘04).
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Of these, 35 topics are better handled by TIR models, while 27 obtain better
nDCG if dealt with NIR rankers. If we consider the results of applying MD2 on
this set of topics, we notice that compared to Robust ‘04 (Table 3, last column)
the effect of the different QPPs increases to 2.29%: on these topics, there is more
difference between different predictors. The interaction between predictors and
run types grows from 0.30% to 0.91%. Furthermore, the effect of the run type
grows from 0.11% to 0.67% – 6 times bigger. On the selected topics, arguably
those where a QPP is the most useful to help select the right model, using NIR
systems has a negative impact (6 times bigger) on the performance of QPPs.
Figure 4b, compared to Fig. 3b, is more similar to Fig. 3a – using only topics
that are highly semantically defined, we get similar patterns as those observed
for Deep Learning ‘19 on Fig. 3a. The only methods that behave differently are
BERT-QPP approaches, whose performance is better on NIR runs than on TIR
ones, but are the worst approaches in terms of predictive capabilities for both
run types. In this sense, even though the contribution of the semantic signals
appears to highly important to define new models with improved performance in
the NIR setting, it does not suffice to compensate for current QPPs limitations.

6 Conclusion and Future Work

With this work, we assessed to what extent current QPPs are applicable to
the recent family of first-stage NIR models based on PLM. To verify that, we
evaluated 19 diverse QPP models, used on seven traditional bag-of-words lexical
models (TIR) and seven first-stage NIR methods based on BERT, applied to the
Robust ‘04 and Deep Learning ‘19 collections. We observed that if we consider a
collection where NIR systems had the chance to learn the semantics – i.e., Deep
Learning ‘19 – QPPs are effective in predicting TIR systems performance, but fail
in dealing with NIR ones. Secondly, we considered Robust ‘04. In this collection,
NIR models were applied in a zero-shot fashion, and thus behave similarly to
TIR models. In this case, we observed that QPPs tend to work better on NIR
models than in the previous scenario, but they fail on those topics where NIR and
TIR models differ the most. This, in turn, impairs the possibility of using QPP
models to choose between NIR and TIR approaches where it is most needed. On
the other hand, semantic QPP approaches such as BERT-QPP do not solve the
problem: being devised and tested on lexical IR systems, they work properly on
such category of approaches but fail on neural systems. These results highlight
the need for QPPs specifically tailored to Neural IR.

As future work, we plan to extend our analysis by considering other factors,
such as the query variations to understand the impact that changing how a topic
is formulated has on QPP. Furthermore, we plan to devise QPP methods explic-
itly designed to synergise with NIR models, but that also take into consideration
the large variance introduced by topics.
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Abstract. Graph Convolutional Networks (GCN) have been recently
employed as core component in the construction of recommender system
algorithms, interpreting user-item interactions as the edges of a bipar-
tite graph. However, in the absence of side information, the majority
of existing models adopt an approach of randomly initialising the user
embeddings and optimising them throughout the training process. This
strategy makes these algorithms inherently transductive, curtailing their
ability to generate predictions for users that were unseen at training
time. To address this issue, we propose a convolution-based algorithm,
which is inductive from the user perspective, while at the same time,
depending only on implicit user-item interaction data. We propose the
construction of an item-item graph through a weighted projection of the
bipartite interaction network and to employ convolution to inject higher
order associations into item embeddings, while constructing user repre-
sentations as weighted sums of the items with which they have interacted.
Despite not training individual embeddings for each user our approach
achieves state-of-the-art recommendation performance with respect to
transductive baselines on four real-world datasets, showing at the same
time robust inductive performance.

Keywords: Recommender systems · Inductive recommendations ·
Graph convolution · Collaborative filtering

1 Introduction

Recent years have witnessed the success of Graph Convolutional Networks based
algorithm in many domains, such as social networks [3,15], natural language
processing [29] and computer vision [25]. The core component of Graph Convo-
lutional Networks algorithms is the iterative process of aggregating information
mined from node neighborhoods, with the intent of capturing high-order associa-
tions between nodes in a graph. GCNs have opened a new perspective for recom-
mender systems in light of the fact that user-item interactions can be interpreted
as the edges of a bipartite graph [4,10,24]. Real-world recommender system sce-
narios must contend with the issue that user-item graphs change dynamically
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over time. New users join the system on a daily basis, and existing users can
produce additional knowledge by engaging with new products (introducing new
edges in the user-item interaction graph). The capacity to accommodate new
users to the system - those who were not present during training - and fast
leverage novel user-item interactions is a highly desirable characteristic for rec-
ommender systems meant to used in real-world context. Delivering high quality
recommendations under these circumstances poses a severe problem for many
existing transductive recommender system algorithms. Models such as [4,10,24]
need to be completely re-trained to produce the embedding for a new user that
joins the system post-training and the same happens when new user-item inter-
actions must be considered; this limitation restricts their use in real-world cir-
cumstances. [28].

One solution present in literature, is to leverage side information (user and
item metadata) beyond the pure user-item interactions in order to learn a map-
ping function from user and item features to embeddings [8,12,23,30]. However,
it can be difficult to obtain this additional side information in many real-world
scenarios, as it may be hard to extract, unreliable, or simply unavailable. For
example, when new users join a system, there may be very little or no information
available about them, making it difficult or impossible to generate their embed-
dings. Even when it is possible to gather some information about these users, it
may not be useful in inferring their preferences. Another way to account for new
users and rapidly create embeddings which exploit new user-item interactions
is to resort to item-based models [5,13]. In this setting only the item represen-
tations are learnt and then exploited to build the user embeddings. Anyway
these category of models do not directly exploit the extra source of information
present in the user-item interaction graph, which have been shown to benefit the
performance of the final model. Furthermore the application of standard Graph
Convolution methods recently presented for the collaborative filtering problem
have not been extended to work in a setting where only the item representations
are learnt.

In this paper we propose a novel item-based model named Item Graph Con-
volutional Collaborative Filtering (IGCCF), capable of handling dynamic graphs
while also leveraging the information contained in the user-item graph through
graph convolution. It is designed to learn rich item embeddings capturing the
higher-order relationships existing among them. To extract information from the
user-item graph we propose the construction of an item-item graph through a
weighted projection of the bipartite network associated to the user-item inter-
actions with the intent of mining high-order associations between items. We
then construct the user representations as a weighted combination of the item
embeddings with which they have previously interacted, in this way we remove
the necessity for the model to learn static one-hot embeddings for users, reducing
the space complexity of previously introduced GCN-based models and, at the
same time, unlocking the ability to handle dynamic graphs, making straightfor-
ward the creation of the embeddings for new users that join the system post
training as well as the ability of updating them when new user-item interactions
have been gathered, all of that without the need of an expensive retraining
procedure.
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2 Preliminaries and Related Work

In this paper we consider the extreme setting for inductive recommendation in
which user preferences are estimated by leveraging only past user-item interac-
tions without any additional source of information. We focus on implicit user
feedback [21], with the understanding that explicit interactions are becoming
increasingly scarce in real-world contexts. More formally, denoting with U and
I the sets of users and items, and with U = |U| and I = |I| their respec-
tive cardinalities, we define the user-item interaction matrix RU×I , where cell
rui = 1 if user u has interacted with item i, and 0 otherwise, as the only source
of information.

2.1 GCN-Based Recommender

GCN-based models have recently been applied to recommender system models,
by virtue of the fact that historical user-item interactions can be interpreted as
the edges of a graph. It is possible to define the adjacency matrix A, associated
with an undirected bipartite graph, exploiting the user-item interaction matrix
RU×I , as:

A =
[
0U×I R
RT 0I×U

]

The set of the graph’s nodes is V = U ⋃ I and there exists an edge between a user
u and an item i if the corresponding cell of the interaction matrix rui = 1. He et
al. [24], first applied graph convolution in a setting where no side information was
available, and proposed to initialise the node representations with free parame-
ters. This formulation is a variant of the one proposed in [15] but includes infor-
mation about the affinity of two nodes, computed as the dot product between
embeddings. Subsequently, Chen et al. [4] have shown how the affinity informa-
tion as well as the non-linearities tend to complicate the training process as well
as degrade the overall performance. Finally, He et al. [10], confirmed the results
of [26] by showing how the benefits of graph convolution derive from smoothing
the embeddings and that better performance can be achieved by removing all
the intermediary weight matrices. In this formulation, the embeddings of users
and items at depth k can be simply computed as the linear combination of the
embeddings of the previous step with weights assigned from a suitably chosen
propagation matrix P.

2.2 Item-Based Recommender

Item-based models aim to learn item embeddings which are subsequently used to
infer user representations. As a result, this model category is capable of provid-
ing recommendations to new users who join the system post training. Cremonesi
et al.[5], proposed PureSVD which uses singular value decomposition to retrieve
item representations from the user-item interaction matrix, and subsequently
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Fig. 1. Model architecture.

compute the user embeddings as a weighted combination of item representa-
tions. Later, Kabbur et al.in [13] also propose to compute users as a weighted
combination of items, but instead of computing them after the creation of the
item embeddings, they are jointly used together with the item representation as
part of an optimisation process.

Our proposed IGCCF model inherits from the item-based model the core
idea of inferring user embeddings from items, but it is also capable of leveraging
the information contained in the graph-structure during the item representation
learning phase through graph convolution.

3 Methodology

In this section we present details of the proposed model. IGCCF comprises three
different elements: (1) a graph projection module, which is used to transform
a user-item bipartite graph into a homogeneous item-item graph; (2) an item
embedding module, which is used to learn item embeddings starting from the
item-item graph; (3) a user embedding module, which is used to build user
embeddings given the user-item interaction matrix and the items embeddings.
The overall architecture is presented in Fig. 1.

3.1 Graph Projection Module

The graph convolution module operates over item embeddings which are opti-
mised during training while the explicit representation and optimisation of sepa-
rate user embeddings is not required. This gives the model the flexibility to easily
make recommendations for unseen users. To fully capture the item relationships
we construct an item-item relational graph from which extract knowledge regard-
ing item associations during the representation learning process. The purpose of
the graph projection module is to transform the bipartite user-item graph into
a homogeneous item-item graph. The simplest means of achieving this is to use
a one-mode projection onto the set of item nodes I, creating an unweighted
graph with exactly I nodes where two item nodes share an edge when they have
at least one common neighbour in U [19]. This technique ignores the frequency
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with which two nodes share neighbors, resulting in information loss. To account
for this, we build the projected item-item graph by weighting the edges based
on the cosine similarity of item profiles. The edge between nodes i and j has
weight wij = ri·rj

||ri||·||rj || where i, j ∈ I and indicating with ri the ith column
of the matrix R. In this way we are able to retain information about the fre-
quency with which two items share neighbors. The model can easily adapt to
different bipartite graph projection methodologies such as hyperbolic weighting
[20] that takes into account the saturation effect; or weighting based on resource
allocation [31], which doesn’t assume symmetric weights between pairs of nodes.

Top-K Pruning. Previous works on GCNs have highlighted how the size of
the neighbourhood included in the convolution operation, as well as the convolu-
tion depth, can lead to an oversmoothing of the embeddings. The oversmoothing
leads to a loss of embedding uniqueness, and results in the degradation of rec-
ommendation performance [4,16,27]. To address this problem we apply a top-K
pruning preprocessing step on the edges of the item-item graph, keeping only
the K edges associated to the highest similarity score, for each item node. In
this way only the most important neighbours are included in every convolution
operation reducing the effect of the smoothing phenomenon. In Sect. 4.5 we show
how the top-K pruning is beneficial to both training time and recommendation
performance of the presented algorithm.

3.2 Item Embedding Module

The item embedding module uses information from the item-item graph to gen-
erate refined item embeddings. The primary difference between this module and
previously described graph convolution modules [4,10,24] is that we use the
item-item similarity matrix as propagation matrix, allowing us to directly lever-
age the information provided by the weighted projection used to construct the
homogeneous item graph.

At the first iteration, k = 0, the item embedding matrix X(0) is randomly ini-
tialised. At each subsequent iteration k, the item embedding matrix is a weighted
combination of the embedding matrix at the previous layer k − 1 with the prop-
agation matrix, formed from the cosine similarity measure:

X(k) = PX(k−1) = P(PX(k−2)) = PkX0 (1)

The representation of an item i at convolution depth k can be written explicitly
as:

x(k)
i =

∑
j∈Ni

wijx
(k−1)
j

where Ni represents the 1-hop neighbourhood of item i.
The embedding at depth k can be directly computed using the power of the

propagation matrix as shown in Eq. 1, which demonstrates that, at depth k, the
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embedding can be seen as the linear combination of neighbourhoods represen-
tations up to k-hop distance with weights given by the kth power of the cosine
similarity matrix Pk.

3.3 User Embedding Module

As there are no separate user embeddings, a method to map users into the item
embedding space is required. We propose to map a user inside the item latent
space as a weighted combination of the items in their profile. Given the item
embeddings, a user embedding is created as:

xu =
∑
i∈I

λuiruixi (2)

where λui is a scalar weighting the contribution of item i to the embedding of
user u and xi represents the embedding of item i. We can compute the user
embeddings in matrix form as follows:

U = (R � Λ)X = R̃X

where � indicates the Hadamard product, R̃ represents a weighted version of the
interaction matrix and X is the item embedding matrix. In the proposed work,
we assign uniform weights to all user interactions and leave the investigation of
different weighting mechanisms as future work.

We want to emphasize the key advantages of modeling a user as a weighted
sum of item embeddings in their profiles over having a static one-hot repre-
sentation for each of them. First, it makes the model inductive from the user
perspective and endows IGCCF with the ability to perform real-time updates of
the user-profile as it is possible to create the embedding of a new user as soon as
they start interacting with items in the system using Eq. 2. Second, it improves
the model’s space complexity from O(I + U) to O(I) when compared to trans-
ductive models. Finally, different importance scores may be assigned to user-item
interactions when generating the user embeddings, this might be beneficial in
situations where recent interactions are more significant than older ones.

3.4 Model Training

To learn the model parameters, we adopt the Bayesian Personalised Ranking
(BPR) loss [21]:

LBPR =
∑

(u,i+,i−)∈O
− ln σ(ŷui+ − ŷui−) + λ||Θ||22

where O = {(u, i+, i−)|(u, i+) ∈ R+, (u, i−) ∈ R−} denotes the pairwise training
data, R+ indicates the observed interactions, and R− the unobserved interac-
tions; σ(·) represents the sigmoid activation function; Θ are the parameters of
the model which correspond to the item embeddings.
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We use the Glorot initialisation for the item embeddings [6] and mini-batch
stochastic gradient descent with Adam as optimiser [14]. The preference of a user
for an item is modelled through the standard dot product of their embeddings
ŷ(u, i) = xT

u · xi

User-Profile Dropout. It is well-known that machine learning models can
suffer from overfitting. Following previously presented works on GCNs [1,22,24],
we design a new dropout mechanism called user-profile dropout. Before applying
Eq. 2 to form the user embeddings, we randomly drop entries of the weighted
user interaction matrix R̃ with probability p ∈ [0, 1]. The proposed regularisation
mechanism is designed to encourage the model to rely on strong patterns that
exist across items rather than allowing it to focus on a single item during the
construction of user embeddings.

4 Experiments

We perform experiments on four real-world datasets to evaluate the proposed
model. We answer to the following research questions. [RQ1]: How does IGCCF
perform against transductive graph convolutional algorithms? [RQ2]: How well
does IGCCF generalise to unseen users? [RQ3]: How do the hyperparameters
of the algorithm affect its performance?

4.1 Datasets

To evaluate the performance of the proposed methodology we perform exper-
iments on four real world datasets gathered in different domains. LastFM:
Implicit interactions from the Last.fm music website. In particular, the user
listened artist relation expressed as listening counts [2]. We consider a positive
interaction as one where the user has listened to an artist. Movielens1M: User
ratings of movies from the MovieLens website [7]. Rating values range from 1
to 5, we consider ratings ≥ 3 as positive interactions. Amazon Electronics:
User ratings of electronic products from the Amazon platform [9,18]. The rating
values also range from 1 to 5, so we consider ratings ≥ 3 as positive interactions.
Gowalla User check-ins in key locations from Gowalla [17]. Here, we consider a
positive interaction between a user and a location, if the user has checked-in at
least once. To ensure the integrity of the datasets, following [10,24], we perform
a k -core preprocessing step setting kcore = 10, meaning we discard all users and
items with less than ten interactions.

4.2 Baselines

To demonstrate the benefit of our approach we compare it against the following
baselines: BPRMF [21] Matrix factorisation optimised by the BPR loss func-
tion. iALS [11] matrix factorization learned by implicit alternating least squares.
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Table 1. Transductive performance comparison. Bold and underline indicate the first
and second best performing algorithm respectively.

user/item/int LastFM Ml1M

1,797/1,507/6,376 6,033/3,123/834,449

Model NDCG Recall NDCG Recall

@5 @20 @5 @20 @5 @20 @5 @20

BPR-MF 0.2162 0.3027 0.2133 0.4206 0.1883 0.3173 0.1136 0.2723

iALS 0.2232 0.3085 0.2173 0.4227 0.2057 0.3410 0.1253 0.2893

PureSVD 0.1754 0.2498 0.1685 0.3438 0.2024 0.3369 0.1243 0.2883

FISM 0.2143 0.2978 0.2145 0.4139 0.1929 0.3188 0.1203 0.2805

NGCF 0.2216 0.3085 0.2185 0.4299 0.1996 0.3309 0.1206 0.2821

LightGCN 0.2293 0.3157 0.2287 0.4379 0.1993 0.3319 0.1218 0.2864

IGCCF (Ours) 0.2363 0.3207 0.2372 0.4405 0.2070 0.3456 0.1249 0.2954

user/item/int Amazon Gowalla

13,455/8,360/234,521 29,858/40,988/1,027,464

Model NDCG Recall NDCG Recall

@5 @20 @5 @20 @5 @20 @5 @20

BPR-MF 0.0247 0.0419 0.0336 0.0888 0.0751 0.1125 0.0838 0.1833

iALS 0.0273 0.0432 0.0373 0.0876 0.0672 0.1013 0.0763 0.1667

PureSVD 0.0172 0.0294 0.0244 0.0631 0.0795 0.1032 0.0875 0.1861

FISM 0.0264 0.0424 0.0353 0.0865 0.0812 0.1191 0.0915 0.1925

NGCF 0.0256 0.0436 0.0346 0.0926 0.0771 0.1156 0.0867 0.1896

LightGCN 0.0263 0.0455 0.0358 0.0978 0.0874 0.1279 0.0975 0.2049

IGCCF (Ours) 0.0336 0.0527 0.0459 0.1072 0.0938 0.1373 0.1049 0.2203

PureSVD [5]Compute item embeddings through a singular value decomposition
of the user-item interaction matrix, which will be then used to infer user rep-
resentations. FISM [13] Learn item embeddings through optimisation process
creating user representations as a weighted combination of items in their profile.
Additional user and item biases as well as an agreement term are considered in
the score estimation. NGCF [24] Work that introduces graph convolution to the
collaborative filtering scenario, it uses dense layer and inner product to enrich the
knowledge injected in the user item embeddings during the convolution process.
LightGCN [10] Simplified version of graph convolution applied to collaborative
filtering directly smooth user and item embeddings onto the user-item bipartite
graph. We follow the original paper [10] and use ak = 1/(k + 1).

For each baseline, an exhaustive grid-search has been carried out to ensure
optimal performance. Following [10], for all adopted algorithms the batch size
has been set to 1024 and embedding size to 64. Further details on the ranges
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of the hyperparameter search as well as the data used for the experiments are
available in the code repository1.

4.3 Transductive Performance

In this section we evaluate the performance of IGCCF against the proposed
baselines in a transductive setting, meaning considering only users present at
training time. To evaluate every model, following [10,24], for each user, we ran-
domly sample 80% of his interactions to constitute the training set, 10% to
be the test set, while the remaining 10% are used as a validation set to tune
the algorithm hyper-parameters. Subsequently, validation and training data are
merged together and used to retrain the model, which is then evaluated on the
test set. In order to asses the quality of the recommendations produced by our
system, we follow the approach outlined in [4,24,26]. For each user in the test
data, we generate a ranking of items and calculate the average Recall@N and
NDCG@N scores across all users, considering two different cutoff values N = 5
and N = 20. The final results of this analysis are presented in Table 1.

Based on the results obtained, we can establish that IGCCF outperforms
NGCF and LightGCN on all four datasets examined for each metric and cutoff.
This confirms that explicitly parametrizing the user embeddings is not necessary
to get the optimum performance; on the contrary, it might result in an increase
in the number of parameters of the model, which is detrimental to both training
time and spatial complexity of the model. Furthermore, IGCCF shows superior
performance with respect to the item-based baseline models. This demonstrates
that interpreting user-item interaction as graph-structured data introduces rele-
vant knowledge into the algorithm learning process, leading to improved model
performance.

4.4 Inductive Performance

A key feature of the proposed IGCCF algorithm, is the ability to create embed-
dings and consequently retrieve recommendations for unseen users who are not
present at training time. IGCCF does not require an additional learning phase
to create the embeddings. As soon as a new user begins interacting with the
items in the catalogue, we may construct its embedding employing Eq. 2.

To assess the inductive performance of the algorithm we hold out 10% of
the users, using the remaining 90% as training data. For every unseen user we
use 90% of their profile interactions to create their embedding (Eq. 2) and we
evaluate the performance on the remaining 10% of interactions. We compare the
performance of our model against the inductive baselines corresponding to the
item-based models (PureSVD and FISM) since the transductive models are not
able to make predictions for users who are not present at training time without an
additional learning phase. Recommendation performance is evaluated using the
same metrics and cutoffs reported in Subsect. 4.3. The overall results are reported

1 https://github.com/damicoedoardo/IGCCF.

https://github.com/damicoedoardo/IGCCF
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Table 2. Inductive performance on unseen users. Bold indicates the performance of
the best ranking algorithm.

Model LastFM Ml1M

NDCG Recall NDCG Recall

@5 @20 @5 @20 @5 @20 @5 @20

PureSVD 0.1640 0.2279 0.1610 0.3124 0.2064 0.3418 0.1165 0.2759

FISM 0.1993 0.2921 0.1927 0.4165 0.1974 0.3221 0.1105 0.2638

IGCCF (Ours) 0.2374 0.3227 0.2355 0.4395 0.2089 0.3474 0.1177 0.2817

Model Amazon Gowalla

NDCG Recall NDCG Recall

@5 @20 @5 @20 @5 @20 @5 @20

PureSVD 0.0221 0.0345 0.0320 0.0721 0.0815 0.1213 0.0862 0.1910

FISM 0.0330 0.0468 0.0424 0.0891 0.0754 0.1102 0.0829 0.1763

IGCCF (Ours) 0.0356 0.0513 0.0477 0.0978 0.0910 0.1341 0.1009 0.2172

in Table 2. IGCCF outperforms the item-based baselines on all the datasets.
These results strongly confirm our insight that the knowledge extracted from
the constructed item-item graph is beneficial to the item-embedding learning
phase, even when making predictions for unseen users.

Robustness of Inductive Performance. We are interested in the extent to
which IGCCF can maintain comparable recommendation performance between
seen and unseen users as we train the model with less data. For this experiment,
we increasingly reduce the percentage of seen users which are used to train
the model and consequently increase the percentage of unseen users which are
presented for inductive inference. We train the model 5 times on each different

Fig. 2. For each dataset we vary the percentage of users in the training data, and
evaluate the performance of IGCCF on both seen and unseen users.
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Fig. 3. Ablation study: Effect of the Convolution depth parameter on the algorithm
performance.

split used and we report the average performance (NDCG@20). From the results
in Fig. 2 we can observe: IGCCF exhibits comparable performance on both seen
and unseen user groups for all the splits analysed, showing how the inductive
performance of IGCCF is robust with respect to the amount of training data
available. As expected, reducing the amount of available training data results in
a lower NDCG@20, anyway is interesting to notice how the drop in performance
is minimal even when the model is trained with half of the data available.

4.5 Ablation Study

Convolution Depth. The convolution operation applied during the learning
phase of the item embeddings, is beneficial in all the studied datasets, the results
are reported in Fig. 3. It is interesting to consider the relationship between the
dataset density and the effect of the convolution operation. We can see that the
largest improvement of 31% is found on Gowalla, which is the least dense dataset
(0.08%). As the density increases, the benefit introduced by the convolution oper-
ation decreases. We have an improvement of 26% and 6% on Amazon Electronics
(0.21%) and LastFM (2.30%) respectively while there is a very small increase of
1.5% on Movielens1M (4.43%). The results obtained suggest an inverse correla-
tion between the dataset density and the benefit introduced by the convolution
operation.

User-Profile Dropout. From the analysis reported in Fig. 4, it is clearly visible
that user profile dropout regularisation have a strong impact on the performance
of the proposed method. In all four datasets, the utilisation of the suggested reg-
ularisation technique enhance the quality of the recommendation performance,
resulting in a gain over the NDCG@20 metric of 4.4%, 3.0%, 10.5%, 1.5% for
LastFM, Movielens1M, Amazon Electronics and Gowalla respectively. Dropping
a portion of the user profiles during the embeddings creation phase, force the
algorithm to not heavily rely on information coming from specific items.
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Fig. 4. Ablation study: Effect of the dropout mechanisms on the algorithm perfor-
mance.

Fig. 5. Effect of the top-K preprocessing step on the algorithm performance and train-
ing time.

Top-K Pruning. To prevent the well-known oversmoothing issue caused by
graph convolution, we trim the edges of the item-item graph to maintain only
the most strong connections between items. Figure 5 illustrates the results of the
ablation study. In all of the datasets investigated, utilising at most 20 neigh-
bours for each item node yields the highest performance; this demonstrates how
retaining edges associated with weak item links can worsen model performance
while also increasing the algorithm training time.

5 Conclusion and Future Work

In this work we presented IGCCF, an item-based model that employs graph
convolution to learn refined item embeddings. We build upon the previously
presented graph convolution models by removing the explicit parameterisation
of users. The benefits of that are threefold: first, it reduces model complexity;



Item Graph Convolution Collaborative Filtering 261

second, it allows real-time user embeddings updates as soon as new interactions
are gathered; and third, it enables inductive recommendations for new users
who join the system post-training without the need for a new expensive training
procedure. To do this, we devised a novel procedure that first constructs an item-
item graph from the user-item bipartite network. A top-K pruning procedure is
then employed to refine it, retaining only the most informative edges. Finally,
during the representation learning phase, we mine item associations using graph
convolution, building user embeddings as a weighted combination of items with
which they have interacted. In the future, we will extend the provided method-
ology to operate in settings where item side-information are available.
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Abstract. Multi-choice reading comprehension (MC-RC) is supposed
to select the most appropriate answer from multiple candidate options by
reading and comprehending a given passage and a question. Recent stud-
ies dedicate to catching the relationships within the triplet of passage,
question, and option. Nevertheless, one limitation in current approaches
relates to the fact that confusing distractors are often mistakenly judged
as correct, due to the fact that models do not emphasize the differ-
ences between the answer alternatives. Motivated by the way humans
deal with multi-choice questions by comparing given options, we propose
CoLISA (Contrastive Learning and In-Sample Attention), a novel model
to prudently exclude the confusing distractors. In particular, CoLISA
acquires option-aware representations via contrastive learning on multi-
ple options. Besides, in-sample attention mechanisms are applied across
multiple options so that they can interact with each other. The experi-
mental results on QuALITY and RACE demonstrate that our proposed
CoLISA pays more attention to the relation between correct and distrac-
tive options, and recognizes the discrepancy between them. Meanwhile,
CoLISA also reaches the state-of-the-art performance on QuALITY (Our
code is available at https://github.com/Walle1493/CoLISA..).

Keywords: Machine reading comprehension · Multi-choice question
answering · Contrastive learning

1 Introduction

Machine Reading Comprehension (MRC) requires models to answer questions
through reasoning over given documents. Multi-choice reading comprehension
(MC-RC) [17], as one of the variants of MRC tasks, aims at choosing the most
appropriate answer from multiple options to respond to the question for a given
passage. It requires models to identify the validity of each candidate option by
reading and comprehending the referential passage.

Existing studies on MC-RC usually focus on solving the gap between the
passage and a single option for a given question [16,26]. The models encode
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13980, pp. 264–278, 2023.
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each option independently. In this way, each option corresponding to a certain
question cannot intuitively interact with each other, which limits the inference
capability of models. Besides, there exists a more troublesome condition in some
of the real cases. For a certain question, some options are literally and even
semantically similar to the gold answer, in other words, they appear to be plau-
sible when identifying the authenticity of only a single option. Existing methods
fail to deal with such kinds of cases. We believe that an extra and more elaborate
operation is supposed to be applied between those so-called confusing distrac-
tors and the correct answer. Table 1 depicts an example of an indistinguishable
distractor from QuALITY1 [15]. Reading through the entire passage, we con-
sider that both the correct answer O2 (bold and underlined) and the confusing
distractor O1 (underlined) can be regarded as precisely correct. To select the
most appropriate option given a question, a model needs to find the discrepancy
between the representations of gold answers and the distractors.

Table 1. An example from QuALITY.

Passage:

(...) I’m sure that ‘justifiable yearnings for territorial self-realization’ would be more
appropriate to the situation (...) (Over 4,000 words)

Question:

According to Retief what would happen if the Corps did not get involved in the
dispute between the Boyars and the Aga Kagans?

Options:

O1: The Aga Kagans would enslave the Boyars

O2: The Boyars and the Aga Kagans would go to war

O3: The Aga Kagans would leave Flamme to find a better planet

O4: The Boyars would create a treaty with the Aga Kagans without the Corps’
approval

Humans usually exclude plausible distractors by carefully comparing between
options to answer MC-RC questions [4]. Motivated by such a procedure, we
come up with a framework with Contrastive Learning and In-Sample Attention
(CoLISA) including two main characteristics. First of all, with two different
hidden dropout masks applied, we acquire two slightly different representations
including two correct answers and multiple distractors from the same input.
Our proposed CoLISA aims to pull two correct answers together and push the
answer-distractor pairs away by means of contrastive learning, therefore, the
model is expected to learn a more effective representation. In addition, self-
attention mechanisms [21] are applied across multiple options within a specific

1 The issue that input passages exceed the length constraint exists in QuALITY, we
seriously consider it in our work as well.
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sample to allow information to flow through them. As a result, the model learns
to incline to the correct answer through self-attention interaction across multiple
candidate options. We conduct extensive experiments on two MC-RC datasets,
QuALITY [15] and RACE [12]. Experimental results demonstrate that CoLISA
significantly outperforms the existing methods.

Our contributions are summarized as follows.

• We introduce the contrastive learning method into multi-choice reading com-
prehension, which is capable of distinguishing the correct answer from dis-
tractors. Our approach pays sufficient attention to distractive candidates by
distributing more weight to them.

• We apply in-sample attention mechanisms across multiple options within a
specific sample to have them interact with each other.

• Our proposed model reaches the state-of-the-art performance on QuALITY
and achieves considerable improvements compared with solid baselines on
RACE.

2 Task Formulation

Given a referential passage, a target question, and several candidate options, the
multi-choice reading comprehension (MC-RC) task aims to predict one option
as the final answer. Formally, we define the passage as p = [sp

1, s
p
2, ..., s

p
n], where

sp
i = [ws

1, w
s
2, ..., w

s
l ] denotes the i-th sentence in p and ws

j denotes the j-th
word of sp

i . The question is defined as q = [wq
1, w

q
2, ..., w

q
t ], where wq

i denotes
the i-th word of q. The option set is defined as O = [o1, o2, ..., or], where oi =
[wo

1, w
o
2, ..., w

o
k] denotes the i-th option and wo

k denotes the k-th word of oi. The
target of MC-RC is to maximize the probability of the predicted option:

a = argmax
i

(P(oi|p, q)). (1)

When the length of p exceeds the maximum input length of encoders, we
compress it to a shorter context by retrieving relevant sentences. The shorter
context is represented as c = [sc

1, s
c
2, ..., s

c
m], where sc

i = [ws
1, w

s
2, ..., w

s
l ] denotes

the i-th sentence of c, and ws
j denotes the i-th sentence of sc

i .

3 Methodology

As illustrated in Fig. 1, we come up with a novel MC-RC framework with con-
trastive learning and in-sample attention (CoLISA), which is composed of 1)
DPR-based retriever that selects relevant sentences from a long passage accord-
ing to the given question and its multiple options, to construct a new context
with their original order in the passage (Sect. 3.1), and 2) CoLISA reader that
predicts the final answer from several candidate options according to the given
question and context. In particular, the CoLISA reader consists of two modules.
1) In-Sample Attention (ISA) mechanism, whereby we introduce a long-sequence



CoLISA 267

Fig. 1. Architecture of CoLISA.

network with a multi-head self-attention operation to enhance the interaction
across multiple options within one sample (Sect. 3.2). 2) Contrastive Learning
(CoL) with a distractive factor (DiF) to represent the sequences composed of
the context, the question, and the options (Sect. 3.3).

3.1 DPR-Based Retriever

To select relevant sentences from a long passage, we employ a Dense Passage
Retrieval (DPR)-based sentence retriever, which is a dense retriever for latent
semantic encoding [11]. Note that two encoders from DPR are already pre-
trained for extracting diverse sorts of sentences, we correspondingly utilize them
to ensure the diversity of the retrieved sentences. A context encoder ES encodes
all sentences s of the referential p to d-dimensional vectors. Similarly, a query
encoder ER encodes the question q and the option set O to d-dimensional vec-
tors, as two sorts of retrieval queries r. The global representations of the [CLS]
tokens of s and r are fetched to calculate their negative Euclidean (L2) distance:

− L2
dist(r, s) = −||ER(r) − ES(s)||2. (2)

For the option query, we select top-k sentences in descending order of the
relevance distance between s and r. Meanwhile, prior and following sentences of
these k sentences are selected for the sake of semantic coherence. Furthermore,
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reduplicative sentences that probably exist in the set of these sentences are
supposed to be abandoned.

For the question query, we get the top-n sentences.2 The only difference
is that we do not collect the prior and following sentences, since the evidence
from options is more appropriate to our method than that from the question.
Eventually, we eliminate the potential reduplicative sentences to guarantee the
uniqueness of all extracted sentences. After picking out the most relevant sen-
tences, we sort them by the order of the original passage and concatenate them
as the referential context c. Algorithm 1 illustrates the extracting process in
detail.

Algorithm 1: The Extracting Algorithm
Input: Passage p = [s1, s2, ..., sn], Question q, Options O = [o1, o2, ..., om]
Output: Context
if Input (x) belongs to p then

Ex = ContextEncoder(x);
else

Ex = QuestionEncoder(x);

for oi in O do
for sj in p do

sim(oi, sj) = −L2
dist(Eoi , Esj )

Select: Top-k relevant sentences si1 , si2 , ..., sik ;
Select: Their previous and next sentences sprevi1

, snext
i1 , ..., sprevik

, snext
ik

;

Context ← Selected sentences;

for sj in p do
sim(q, sj) = −L2

dist(Eq, Esj )

Select: Top-n relevant sentences sj1 , sj2 , ..., sjn ;
Context ← Selected sentences;
Context.unique().sort().to str();

3.2 In-Sample Attention Mechanism

When encoding q and oi, different options for the same question are encoded
independently of each other, which causes a lack of attention among these
options. To address this problem, we borrow from human behaviors when
answering multi-choice questions. Generally, one prefers to eliminate distractors
by simultaneously comparing multiple indistinguishable options to ultimately
decide which option to choose. Inspired by such a way, we come up with an
in-sample attention (ISA) mechanism to enhance the interaction between repre-
sentations of different options.
2 Considering an appropriate value of the extracted context length, we simply define
k as 2 and n as 1 in our experiments.
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In general, each candidate option oi is concatenated with its corresponding
context c and question q to form a triplet xi = [c; q; oi]. We get series of complete
sequential representations by feeding each xi into a pre-trained encoder one
by one. To model the interaction across multiple oi, our proposed ISA module
first collects all of xi that are corresponding to the same question q, with an
operation of concatenation to construct a single sequence X = [x1;x2; ...;xn].
Then, we calculate the self-attention representation of X to learn the distant
dependency across multiple options. Specifically, we reuse the architecture of
vanilla self-attention mechanisms and simultaneously pack the sequence X into
three matrices query Q, key K, and value V . The self-attention matrix of outputs
is calculated as:

SA(Q,K, V ) = softmax(
QKT

√
dk

)V, (3)

where dk is a scaling factor denoting the dimension of K against causing
extremely small gradients [21]. Furthermore, a multi-head mechanism is intro-
duced to comprehensively represent X at various vector dimensions. The process
of multi-head self-attention is defined as:

headi = SA(QWQ
i ,KWK

i , V WV
i ), (4)

H = Concat(head1, ..., headh), (5)

MSA(Q,K, V ) = HWO, (6)

where h denotes the number of parallel attention heads, and WQ
i ,WK

i ,WV
i ,WO

are parameter matrices. We note the vector representation of multi-head self-
attention as Xatt. As illustrated in the ISA mechanism of Fig. 1, the self-attention
mechanisms over the concatenated sequence X achieve the interaction across
multiple options, by calculating its crossing-option representations Xatt.

In addition, to avoid the collapse of multi-head self-attention output [19,21],
we add a fully-connected feed-forward layer after the multi-head self-attention
layer:

Xffn = FFN(Xatt). (7)

We employ GeLU [9] as the activation function. Finally, Xffn is supposed to
be unpacked to multiple representations corresponding to multiple input triplets
xi. We denote the set of output triplets as X

′
.

3.3 Contrastive Learning for Inner Interaction

To encourage CoLISA to explicitly distinguish the representation of the answer
from other distractors, we introduce a contrastive learning (CoL) module.
Inspired by the common contrastive learning framework [7], our CoL module
promotes two positive triplets to get closer to each other while pushes all repre-
sentations within a sample well-distributed in a specific vector space. Following
the ISA module, the input vector with interacted attention X

′
is passed to the

dropout layer twice, to produce two slightly different representations for each
input, X(1) and X(2), respectively.
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We first calculate the cross-entropy loss of MC-RC between the target label
y and the output X(1). Specifically, we apply a linear layer to convert X(1) to
the prediction ŷ that is the same size as y. The loss function is defined as:

LMC−RC = − 1
N

ΣN
i=1(y

(i) log ŷ(i) + (1 − y(i)) log(1 − ŷ(i))). (8)

Note that both X(1) and X(2) from each sample consistently consist of the exact
amount of triplets xi: one gold triplet and the rest distractive triplets. Therefore,
the contrastive loss is defined as the average of negative log-likelihood losses for
the two outputs over each sample. More specifically, we keep the gold triplet
as the anchor and remove the distractive triplets from X(1). While for X(2), all
triplets are reserved: the gold one is regarded as the positive instance and the
rest as negative instances. Each loss term discriminates the positive instance
from the negative ones. The loss function of CoL is defined as:

LCoL = − 1
N

ΣN
j=1 log

esim(x
(1)
+ ,x

(2)
+ )/τ

ΣS
i=1e

sim(x
(1)
+ ,x

(2)
i )/τ

, (9)

where x
(1)
+ is the representation of the gold triplet from X(1), x

(2)
i is each vector

representation of the triplets of X(2), in which x
(2)
+ is the positive sample, and

τ is the configurable temperature hyper-parameter. sim(·) is a similarity metric
(we typically use cosine similarity in all our experiments), S indicates the num-
ber of triplets for each sample, and N denotes the batch size. The aggregated
contrastive loss LCoL is preliminarily obtained by averaging over all the samples
within a batch.

Distractive Factor. Finding out that diverse distractors within a sample var-
iously interfere the inference capability of the model, we introduce a distractive
factor (DiF) into CoLISA by combining it with the process of contrastive learn-
ing. Annotators from QuALITY treat candidate options that mislead their judg-
ment worst as the distractor items for each question. Therefore, we construct
a list of confidence factors to present the contribution of each option to LCoL,
according to their corresponding annotation scores. Specifically, we enumerate
the annotated votes for each option to construct the DiF Θ = [θ1, θ2, ..., θn],
where n is the number of options. Then a softmax function helps scale the Θ to
differentiate each θi more obviously. Each θi is revised as below:

θi =
eθi

Σn
i eθi

. (10)

The exponential operation distinctly discriminates n coefficients θi. When cal-
culating the contrastive loss, θi is multiplied by the similarity value of its cor-
responding option, to weight the correct options and the confusing distractors.
The more prominent the θi is, the more the corresponding option contributes to
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the loss. We improve the contrastive loss function as below:

LCoL = − 1
N

ΣN
j=1log

θ+esim(x
(1)
+ ,x

(2)
+ )/τ

ΣS
i=1θie

sim(x
(1)
+ ,x

(2)
i )/τ

, (11)

where θ+ and θi correspond to the positive sample and the i-th sample from Θ,
respectively. The final loss function is formulated as:

L = α · LMC−RC + (1 − α) · LCoL, (12)

where α ∈ [0, 1] is the balance coefficient.

4 Experimentation

We describe our experimental settings and provide facts about the experiments
that we execute in this section. Then we further depict the comparison with
existing models and conduct some ablation studies.

4.1 Experimental Settings

We employ the benchmark datasets QuALITY and RACE to validate the effec-
tiveness of CoLISA. We mainly conduct experiments on QuALITY3, and simul-
taneously report experimental results on RACE.

– QuALITY [15]. The multi-choice reading comprehension (MC-RC) dataset
with an average length of about 5,000 tokens for context passages. The most
noteworthy feature of the dataset is that some distractors influence the cog-
nition of the model badly. Skimming and simple search are not adequate to
perform consistently and reasonably without relying on abstracts or excerpts.
Articles are mainly sourced from science fiction and magazines, which have
been read and validated by contributors.

– RACE [12]. We embrace another gigantic MC-RC dataset to verify the model
performance since QuALITY comprises only 6,737 source data that cannot
thoroughly estimate the results. RACE is collected from English entrance
exams for Chinese middle and high school students. Most of the questions also
need reasoning. What’s more, the domains of passages are diversified, ranging
from news and story to advertisements, making the dataset challengeable.

We mainly adopt accuracy (acc) in QuALITY [15] and RACE [12] as our
evaluation criterion to assess the percentage of questions answered correctly.
Following the divided manner of the two datasets, we also employ acc in the

3 DPR-based retriever is available for long input, which is the characteristic owned by
QuALITY. Besides, the best distractors are only annotated in QuALITY, therefore,
we execute experiments mainly on QuALITY.
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full/hard subset of QuALITY and in the middle/high subset of RACE4 in our
main experiments.

For the DPR-based retriever, we employ the identical component as QuAL-
ITY does to alleviate the impact of retrieval disparity for a fair comparison.
Expressly, we utilize a question encoder to encode a query and a context encoder
for the passage.

For the CoLISA reader, we predominantly use DeBERTaV3-large as our pre-
trained language model. For all the experiments, we train our models on QuAL-
ITY and RACE with a learning rate of 1e-5 and a warm-up proportion of 0.1.
We maintain a default dropout rate of 0.1 in all dropout layers and use the
GeLU activation function [9]. Our implementation adopts a batch size of 16
with a maximum length of 512 tokens. We fine-tune our model for 20 epochs on
QuALITY and 3 epochs on RACE.

For contrastive learning, we adjust the temperature τ on the DeBERTaV3-
base and RoBERTa-base models due to the experimental cost. The optimal τ =
0.1 on base models is then directly applied to large models. Cross-entropy loss
and contrastive loss are 50-50 split contributed to the synthetic loss. In addition,
the distractive factor (DiF) is only adopted in experiments of QuALITY, for the
reason that RACE does not annotate such labels for each option.

All our experiments are executed on 1 T V100-32GB GPU for training. FP16
from Apex is adopted for accelerating the training process.

Note that manifold approaches are applied on QuALITY, we employ two
typical baselines.

– Longformer [1]. The pre-trained model combines sliding-window local atten-
tion and global attention to encode longer sequences. Longformer supports up
to an utmost of 4,096 tokens. We pick up Longformer as one of our baselines
because it contains most of the context needed to respond to the questions
for samples in QuALITY.

– DPR & DeBERTaV3 [8,11]. The pipeline framework consists of a retriever
and a reader. The DPR-based retriever is adopted to extract the most relevant
context corresponding to the question from an article. The selected context,
as part of inputs, is then fed to the following module. Finally, a standard
DeBERTaV3 model for MC-RC is supposed to determine the correct option.

4.2 Main Results

We compare our CoLISA model with two solid baselines on QuALITY and three
pre-trained language models on RACE. As the overall results are displayed in
Table 2, our CoLISA surpasses all other models. The deficient performance of
Longformer suggests that Longformer blunders to locate pivotal hints from a

4 Source data in QuALITY is divided into full and hard subsets according to the
question difficulty, while in RACE, middle and high subsets represent two levels of
school entrance exams.
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Table 2. Acc results on the development and test set over QuALITY (full/hard)
and RACE (middle/high). Models on QuALITY are intermediately trained on RACE
and then fine-tuned on QuALITY. It is worth mentioning that the results of DPR &
DeBERTaV3 architecture baseline on the development set are our reimplementations
(marked with *) and appreciably higher than records from QuALITY (53.6/47.4). And
so are the results of DeBERTaV3-large. While other baseline results are from either
related works or relevant leaderboards. Experiments on RACE do not demand a DPR-
based retriever and the distractive factor.

Model QuALITY RACE

Dev Test Dev Test

Longformer-base [1] 38.1/32.8 39.5/35.3 – –

DPR & DeBERTaV3-large [15] 56.7*/48.6* 55.4/46.1 – –

DeBERTaV3-base [8] – – 81.1 (85.2/79.4) 79.7 (82.8/78.4)

XLNet-large [24] – – 80.1 (–/–) 81.8 (85.5/80.2)

RoBERTa-large [14] – – – (–/–) 83.2 (86.5/81.8)

DeBERTaV3-large [8] – – 88.3* (91.4*/87.0*) 87.5* (90.5*/86.8*)

CoL (DeBERTaV3-base) –/– –/– 82.9 (87.3/81.0) 81.6 (85.3/80.1)

CoLISA (DeBERTaV3-base) –/– –/– 83.2 (86.4/81.9) 81.6 (84.6/80.4)

CoL (DeBERTaV3-large) 60.1/52.6 62.1/54.3 88.6 (91.6/87.3) 87.9 (90.8/86.9)

CoLISA (DeBERTaV3-large) 61.7/53.6 62.3/54.7 88.8 (91.1/87.8) 87.8 (90.0/87.0)

more extensive range of source documents. We speculate that long-text pre-
trained language models require more training data. Besides, the sequence length
in QuALITY still exceeds the encoding limit of Longformer, which probably
causes the lack of key information. Comparatively, the DPR & DeBERTaV3
architecture appears to be more predominant than Longformer due to their
extraction strategy. Compared with the two baselines mentioned above, our pro-
posed CoLISA learns more effective contextual representations and identifies
the discrepancy between multiple options with contrastive learning (CoL) intro-
duced. Meanwhile, adding an in-sample attention (ISA) mechanism after the
DeBERTaV3 encoder consistently enhances the performance. This effort implies
that inner interaction across multiple options in an ISA-style manner further
captures the discrepant relationship across all candidates.

4.3 Analysis

Contrastive Learning. In order to assess how our CoL module influences the
entire model performance, we complete an ablation study as illustrated in the
first column in Table 3. At first, we discard the ISA module to only evaluate how
contrastive learning works on our architecture. The experimental result validates
our assumption that the CoL component alone significantly improves the per-
formance compared to the baseline model, where the baseline model indicates
the DPR & DeBERTaV3-large in the first three columns.

For the DPR-based retriever, CoL employs both the question and multiple
options as queries to extract context from referential passages. In contrast, we
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find out merely using a question as the query exhibits a sharp performance degra-
dation. The explanation is that our CoL method, which aims at distinguishing
an accurate answer from other options, can better extract the question/option-
related evidence.

Applying the standard dropout twice, we acquire two different representa-
tions. And each representation includes a positive instance, respectively, for con-
trastive learning. While collecting negative instances, previous works take the
rest samples in the same batch as negative instances, usually named in-batch
negatives [7]. We also take a crack at in-batch negatives. Following this method,
the experimental result reveals that changing the way we construct negative
instances from in-sample to in-batch leads to an inferior performance5. We con-
jecture that various samples have nothing to do with each other within a batch,
which violates the target of pushing the gold answer and distractors away.

Table 3. Ablation study on contrastive learning module, distractive factor, and in-
sample attention mechanism on the development set of QuALITY.

Model Acc. Model Acc. Model Acc. Model Acc.

Baseline 56.7 Baseline 56.7 Baseline 56.7 Baseline 39.6

CoL 60.1 CoL 60.1 CoL 60.1 CoL 40.8

Question query 58.9 w/ DiF 60.9 w/ self-attention 60.4 In-batch negatives 37.1

In-batch negatives 59.4 KL Loss 57.0 Context masked 60.4

w/ transformer 61.0

w/ transformer*2 60.8

w/ modified transformer 58.9

Distractive Factor. As mentioned before, we specifically design a distrac-
tive factor (DiF) for QuALITY to purposely emphasize confusing distractors.
The second column in Table 3 displays our implementation results about DiF,
where we multiply a DiF Θ with the similarity of corresponding instances to
weight the contribution of confusing distractors. It can be observed that the DiF
action significantly boosts the performance of our CoL module. A straightfor-
ward explanation is that the DiF forces confusing distractors to contribute more
to the contrastive loss, making the model more inclined to learn how to recognize
distractive options.

Out of a hypothesis that the likelihood of each candidate option being the
definitive answer follows a specific probability distribution, we intuitively sub-
stitute KL divergence loss [10] for the cross-entropy loss. The fiercely degraded
5 The performance on base models is actually far lower than listed, we transfer identical

experiments from large models to base models, which display worse results. Results
are listed in the last column in Table 3. The performance drops fiercely from 40.8
to 37.1. Our baseline here is Roberta-base. We have to deploy a small batch size
on large models due to device limitations. Hence, both manners of in-batch and
in-sample on large models do not show such an enormous dissimilarity.
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result validates that KL divergence appears to function similarly to the DiF.
Meanwhile, the cross-entropy loss is indispensable for identifying the authentic-
ity of each triplet concatenated with context, question, and option.

In-Sample Attention. We exploit variants of ISA mechanisms to verify their
effectiveness, as illustrated in the third column in Table 3. We observe that,
as expected, when our ISA mechanism is self-attention, the performance rises
due to interaction across multiple triplets. Then, we further attempt to mask
context tokens, which means only the question and option attend to each other
without context information. The performance remains the same, indicating the
interaction across the question and multiple options is truly the crucial operation.

The ablation study further demonstrates that the transformer architecture
is superior to a single self-attention layer. It is because the feed-forward net-
work inside the transformer maintains considerable parameters to assure the
propagation of attention output. An intriguing phenomenon is that assembling
an additional transformer layer leads to a tiny decline in model performance.
We believe that taking over the checkpoint successively fine-tuned on RACE
and QuALITY expands the amount of randomly initialized parameters, which
burdens the training process.

In addition, we modify the inner structure of the fundamental encoder by
transplanting attention mechanisms inside the encoder. The whole pre-trained
encoder consists of n layers6, where each layer shares completely the identical
structure: a multi-head self-attention sub-layer and a feed-forward sub-layer.
Consequently, we add an extra attention layer between such two sub-layers
for multi-choice interaction. Note that lower layers principally present shal-
low semantics, while higher layers are for deep semantics, we only replenish
attention mechanisms at top-4 layers in practice. Such modified transformer
intuitively models both inner-sequence relationship in lower layers and multi-
sequence interaction in higher layers. Experimental results indicate that modi-
fying the encoder structure is not so unexceptionable as the best method due to
incomplete exploitation from pre-trained outcomes.

5 Related Work

Multi-choice Reading Comprehension. The multi-choice reading compre-
hension (MC-RC) task aims at selecting the most appropriate answer from given
multiple options. Research in this domain primarily concerns tasks that involve
complex passages or distractive options, including datasets like QuALITY [15],
RACE [12], and DREAM [20]. QuALITY is an MC-RC dataset with source pas-
sages whose average lengths are around 5,000 tokens. Each question is written by
professional authors and requires consolidating reasoning or sophisticated com-
parison over multiple options. RACE covers English entrance exams for Chinese

6 The parameter n is 12 for base models or 24 for large models.
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middle and high school students and demands miscellaneous reasoning strate-
gies. DREAM is a dialogue-based dataset that considers unspoken world knowl-
edge and information across multi-turn involves multi-party. To solve MC-RC
problems, recent works usually focus on the interaction between the passage
and an option for a given question. DUMA [28] captures relationships among
them with a pattern of dual attention for the whole combined sequence. RekNet
[27] extracts the critical information from passages and quotes relevant explicit
knowledge from such information. Besides, an alternative solution for multi-
choice question answering is to retrieve knowledge from external KBs and select
valid features [13].

Long-Text Comprehension. Long text is infeasible to be processed since the
sequence length of text usually exceeds the constraint of pre-trained language
models (PLM) [5]. Two practical approaches are proposed to address this lim-
itation: extractive strategies and sparse attention for PLMs. DPR [11], a dense
passage retrieval trained for open-domain QA [22], outperforms other sparse
retrievers for extracting critical spans from the long text. Longformer [1] and
other sparse-attention PLMs [25] can process longer sequences by applying the
combination of local sliding window attention and global attention mechanism.
In general, a two-stage framework [6] is usually adopted to solve the long-text
MRC task.

Contrastive Learning. Contrastive learning, which has been recently applied
to various PLMs, is supposed to learn precise representations by pulling seman-
tically similar instances together and pushing all instances apart as possible. For
example, SimCSE [7] proposes two contrastive learning frameworks: an unsu-
pervised approach of using standard dropout twice, and a supervised way by
collecting positive and negative instances in a mini-batch on natural language
inference (NLI) [3] tasks. Besides, [2] utilizes contrastive learning to explicitly
identify supporting evidence spans from a long document by maximizing the
similarity of the question and evidence. Moreover, xMoCo [23] proposes a con-
trastive learning method to learn a dual-encoder for query-passage matching. In
contrast, our proposed model CoLISA is devoted to explicitly distinguishing the
representation among multiple options corresponding to the same question.

Self-attention. The attention mechanism is proposed originally for interaction
between two input sequences. BiDAF [18] utilizes a bi-directional attention flow
to couple query and context vectors and produce a set of query-aware representa-
tions for each word within a sequence. Transformer [21] employs a self-attention
mechanism to represent relations of specific tokens in a single sequence, which
has been proven to be extraordinarily effective in all kinds of tasks.
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6 Conclusion

This paper concentrates on dealing with confusing distractors in multi-choice
reading comprehension by a contrastive learning method and an in-sample atten-
tion mechanism. The proposed model, CoLISA, achieves the interaction across
multiple options to solve hard cases that urgently demand a rigorous comparison
between the correct answer and distractive options. The experiments demon-
strate a consistent improvement of CoLISA over two different benchmarks. For
future work, we would like to explore more variants of contrastive learning meth-
ods.
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Abstract. Adverse phenomena such as the search engine manipulation
effect (SEME), where web search users change their attitude on a topic fol-
lowing whatever most highly-ranked search results promote, represent cru-
cial challenges for research and industry. However, the current lack of auto-
matic methods to comprehensively measure or increase viewpoint diver-
sity in search results complicates the understanding and mitigation of such
effects. This paper proposes a viewpoint bias metric that evaluates the
divergence from a pre-defined scenario of ideal viewpoint diversity consid-
ering two essential viewpoint dimensions (i.e., stance and logic of evalu-
ation). In a case study, we apply this metric to actual search results and
find considerable viewpoint bias in search results across queries, topics,
and search engines that could lead to adverse effects such as SEME. We
subsequently demonstrate that viewpoint diversity in search results can
be dramatically increased using existing diversification algorithms. The
methods proposed in this paper can assist researchers and practitioners
in evaluating and improving viewpoint diversity in search results.

Keywords: Viewpoint diversity · Metric · Evaluation · Bias · Search
results

1 Introduction

Web search is increasingly used to inform important personal decisions [16,31,45]
and users commonly believe that web search results are accurate, trustworthy,
and unbiased [53]. However, especially for search results related to debated top-
ics, this perception may often be false [30,54,65,66]. Recent research has demon-
strated that a lack of viewpoint diversity in search results can lead to unde-
sired outcomes such as the search engine manipulation effect (SEME), which
occurs when users change their attitude on a topic following whichever viewpoint
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happens to be predominant in highly-ranked search results [5,6,24,27,52]. For
instance, SEME can lead users to judge medical treatments as (in-)effective [52]
or prefer a particular political candidate over another [27]. To mitigate poten-
tial large-scale negative consequences of SEME for individuals, businesses, and
society, it is essential to evaluate and foster viewpoint diversity in search results.

Measuring and increasing the diversity of search results has been studied
extensively in recent years, e.g., to satisfy pluralities of search intents [2,19,58]
or ensure fairness towards protected classes [9,70,72,73]. First attempts in specif-
ically evaluating [23,43] and fostering [47,61] viewpoint diversity in ranked out-
puts have also been made. However, two essential aspects have not been suf-
ficiently addressed yet: (1) current methods only allow for limited viewpoint
representations (i.e., one-dimensional, often binary) and (2) there is no clear
conceptualization of viewpoint diversity or what constitutes viewpoint bias in
search results. Current methods often assume that any top k portion of a ranked
list should represent all available (viewpoint) categories proportionally to their
overall distribution, i.e., analogous to the notion of statistical parity [23,42],
without considering other notions of diversity [64]. This impedes efforts to mean-
ingfully assess viewpoint bias in search results or measure improvements made
by diversification algorithms. We thus focus on three research questions:

RQ1. What metric can thoroughly measure viewpoint diversity in search
results?

RQ2. What is the degree of viewpoint diversity in actual search results?
RQ3. What method can foster viewpoint diversity in search results?

We address RQ1 by proposing a metric that evaluates viewpoint bias (i.e.,
deviation from viewpoint diversity) in ranked lists using a two-dimensional view-
point representation developed for human information interaction (Sect. 3). We
show that this metric assesses viewpoint diversity in a more comprehensive fashion
than current methods and apply it in a case study of search results from two popu-
lar search engines (RQ2; Sect. 4). We find notable differences in search result view-
point diversity between queries, topics, and search engines and show that applying
existing diversification methods can starkly increase viewpoint diversity (RQ3;
Sect. 4.3). All code and data are available at https://osf.io/kz3je/.

2 Related Work

Viewpoint Representations. Viewpoints, sometimes called arguments [3,26]
or stances [41], are positions or opinions concerning debated topics or claims [20].
To represent viewpoints in ranked lists of search results, each document needs
to receive a label capturing the viewpoint(s) it expresses. Previous work has pre-
dominantly assigned binary (e.g., con/pro) or ternary (e.g., against/neutral/in
favor) viewpoint labels [32,52,71]. However, these labels ignore the viewpoint’s
degree and reason behind opposing or supporting a given topic [20], e.g., two
statements in favor of school uniforms could express entirely different view-
points in strongly supporting school uniforms for productivity reasons and only

https://osf.io/kz3je/
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somewhat supporting them for popularity reasons. To overcome these limita-
tions, earlier work has represented viewpoints on ordinal scales [23,24,43,57],
continuous scales [43], as multi-categorical perspectives [3,18,21], or computed
the viewpoint distance between documents [47]. A recently proposed, more
comprehensive viewpoint label [20], based on work in the communication sci-
ences [7,8,11], consists of two dimensions: stance (i.e., an ordinal scale ranging
from “strongly opposing” to “strongly supporting”) and logics of evaluation (i.e.,
underlying reasons –sometimes called perspectives [18,21], premises [13,26] or
frames [3,47]).

Viewpoint Diversity in Ranked Outputs. Previous research has shown that
search results across topics and domains (e.g., politics [54], health [65,66]) may
not always be viewpoint-diverse and that highly-ranked search results are often
unbalanced concerning query subtopics [30,50]. Limited diversity, or bias, can
root in the overall search result index but become amplified by biased queries
and rankings [30,56,66]. Extensive research further shows that viewpoint-biased
(i.e., unbalanced) search results can lead to undesired consequences for individu-
als, businesses, and society (e.g., SEME) [5,10,24,27,52,67]. That is why many
studies now focus on understanding and mitigating cognitive user biases in this
context [6,24,28,33,44,51,57,68,69,71]. However, because adverse effects in web
search are typically an interplay of content and user biases [67], it is essential to
also develop methods to evaluate and foster viewpoint diversity in search results.

Building on work that measured diversity or fairness in search results con-
cerning more general subtopics [2,9,19,70,72,73], recent research has begun
to evaluate viewpoint diversity in ranked outputs. Various metrics have been
adapted from existing information retrieval (IR) practices to quantitatively eval-
uate democratic notions of diversity [37,63,64], though only few [63] crucially
incorporate users’ attention drop over the ranks [6,27,39,49]. Ranking fairness
metrics such as normalized discounted difference (rND) [70] can assess viewpoint
diversity by measuring the degree to which documents of a pre-defined protected
viewpoint category are ranked lower than others [23]. The recently proposed
ranking bias (RB) metric considers the full range of a continuous viewpoint
dimension and evaluates viewpoint balance [43]. Existing metrics such as rND
and RB, however, have a key limitation when measuring viewpoint diversity:
they cannot accommodate comprehensive, multi-dimensional viewpoint repre-
sentations. Incorporating such more comprehensive viewpoint labels is crucial
because stances and the reasons behind them can otherwise not be considered
simultaneously [20].

Search Result Diversification. To improve viewpoint diversity, we build on
earlier work on diversifying search results concerning user intents [1,2,25,40,
59]. xQuAD [59] and HxQuAD [38] are two such models that re-rank search
results with the aim of fulfilling diverse ranges of information needs at high
ranks. Whereas xQuAD diversifies for single dimensions of (multi-categorical)
subtopics, HxQuAD adapts xQuAD to accommodate multiple dimensions of
subtopics and diversifies in a multi-level hierarchical fashion. For example, for the
query java, two first-level subtopics may be java island and java programming.
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For the former, queries such as java island restaurant and java island beach may
then be second-level subtopics. To the best of our knowledge, such methods have
so far not been used to foster viewpoint diversity in ranked lists.

3 Evaluating Viewpoint Diversity in Search Results

This section introduces a novel metric for assessing viewpoint diversity in ranked
lists such as search results. To comprehensively capture documents’ viewpoints,
we adopt the two-dimensional viewpoint representation recently introduced by
Draws et al. [20] (see Sect. 2). Each document thus receives a single stance label
on a seven-point ordinal scale from strongly opposing (−3) to strongly support-
ing (3) a topic and anywhere from no to seven logic of evaluation labels that
reflect the underlying reason(s) behind the stance (i.e., inspired, popular, moral,
civic, economic, functional, ecological). Although other viewpoint diversity rep-
resentations could be modeled, this 2D representation supports more nuanced
viewpoint diversity analyses than current approaches, and it is still computa-
tionally tractable (i.e., only seven topic-independent categories per dimension).

We consider a set of documents retrieved in response to a query (e.g., “school
uniforms well-being”) related to a particular debated topic (e.g., mandatory
school uniforms). R is a ranked list of N retrieved documents (i.e., by the search
engine), R1...k is the top-k portion of R, and Rk refers to the kth-ranked docu-
ment. We refer to the sets of stance and logic labels of the documents in R as
S and L, respectively, and use Sk or Lk to refer to the labels of the particular
document at rank k. For instance, a document at rank k may receive the label
[Sk = 2; Lk = (popular, functional)] if the article supports (stance) school uni-
forms because they supposedly are popular among students (i.e., popular logic)
and lead to better grades (i.e., functional logic). S and L, respectively, are the
(multinomial) stance and logic distributions of the documents in R.

Defining Viewpoint Diversity. Undesired effects such as SEME typically
occur when search result lists are one-sided and unbalanced in terms of view-
points [6,27,52]. To overcome this, we follow the normative values of a delibera-
tive democracy [37], and counteract these problems through viewpoint plurality
and balance. We put these notions into practice by following three intuitions:

1. Neutrality. A set of documents should feature both sides of a debate equally
and not take any particular side when aggregated. We consider a search result
list as neutral if averaging its stance labels results in 0 (a neutral stance score).

2. Stance Diversity. A set of documents should have a balanced stance distri-
bution so that different stance strengths (e.g., 1, 2, and 3) are covered. For
example, we consider a search result list as stance-diverse if it contains equal
proportions of all seven different stance categories, but not if it contains only
the stance categories −3 and 3 (albeit satisfying neutrality here).

3. Logic Diversity. A set of documents should include a plurality of reasons for
different stances (i.e., balanced logic distribution within each stance category).
For example, a search result list may not satisfy logic diversity if documents
containing few reasons (here, logics) are over-represented.
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Our metric normalized discounted viewpoint bias (nDVB) measures the degree to
which a ranked list diverges from a pre-defined scenario of ideal viewpoint diver-
sity. It combines the three sub-metricsnormalized discounted polarity bias (nDPN),
normalized discounted stance bias (nDSB), and normalized discounted logic bias
(nDLB), which respectively assess the three characteristics of a viewpoint-diverse
search result list (i.e., neutrality, stance diversity, and logic diversity).

3.1 Measuring Polarity, Stance, and Logic Bias

We propose three sub-metrics that contribute to nDVB by considering different
document aspects. They all ignore irrelevant during their computation and – like
other IR evaluation metrics [55] – apply a discount factor for rank-awareness.

Normalized Discounted Polarity Bias (nDPB). Polarity bias considers the
mean stance label balance. Neutrality, the first trait in our viewpoint diversity
notion, posits that the stance labels for documents in any top k portion should
balance each other out (mean stance = 0). We assess how much a top k search
result list diverges from this ideal scenario (i.e., polarity bias; PB; see Eq. 1) by
computing the average normalized stance label. Here, S1...k is the set of stance
labels for all documents in the top k portion of the ranking. PB normalizes all
stance labels Si in the top k to a score between −1 and 1 (by dividing it by its
absolute maximum, i.e., 3) and takes their average. To evaluate the neutrality
of an entire search result list τ with N documents, we compute PB iteratively
for the top 1, 2, . . . , N ranking portions, aggregate the results in a discounted
fashion, and apply min-max normalization to produce nDPB (see Eq. 2). Here,
Z is a normalizer equal to the highest possible value for the aggregated and
discounted absolute PB values and I is an indicator variable equal to −1 if
∑N

k=1
PB(S,k)
log2(k+1) < 0 and 1 otherwise. nDPB quantifies a search result list’s bias

toward opposing or supporting a topic and ranges from −1 to 1 (more extreme
values indicate greater bias, values closer to 0 indicate neutrality).

PB(S, k) =
∑k

i=1
Si

3

|S1...k| (1) nDPB(τ) =
1
Z

I

N∑

k=1

|PB(S, k)|
log2(k + 1)

(2)

Normalized Discounted Stance Bias (nDSB). Stance bias evaluates how
much the stance distribution diverges from the viewpoint-diverse scenario. Stance
diversity, the second trait of our viewpoint diversity notion, suggests that all
stance categories are equally covered in any top k ranked list portion. We cap-
ture this ideal scenario of a balanced stance distribution in the uniform target
distribution T =

(
1
7 , 1

7 , 1
7 , 1

7 , 1
7 , 1

7 , 1
7

)
. The stance distribution of the top k-ranked

documents is given by S1...k =
( |S−3

1...k|
k , . . . ,

|S3
1...k|
k

)
, where each numerator refers

to the number of top-k search results in a stance category. We assess how much
S1...k diverges from T by computing their Jensen-Shannon divergence (JSD), a
symmetric distance metric for discrete probability distributions [29]. This app-
roach is inspired by work suggesting divergence metrics to measure viewpoint
diversity [23,63,64]. We then normalize JSD between S1...k and T by dividing
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it by the maximal divergence, i.e., JSD(U‖T ) where U = (1, 0, 0, 0, 0, 0, 0) and
call the result stance bias (SB; see Eq. 3). SB ranges from 0 (desired scenario of
stance diversity) to 1 (maximal stance bias). Notably, SB will deliberately always
return high values for the very top portions (e.g., top one or two) of any search
result list, as it is impossible to get a balanced distribution of the seven stance
categories in just a few documents. We evaluate an entire search result list using
nDSB (see Eq. 4), by computing SB iteratively for the top 1, 2, . . . , N ranking
portions, aggregating the results in a discounted fashion, and normalizing.

SB(S, k) =
JSD(S1...k||T )

JSD(U ||T )
(3)

nDSB(τ) =
1
Z

N∑

k=1

SB(S, k)
log2(k + 1)

(4)

Normalized Discounted Logic Bias (nDLB). Logic bias measures how bal-
anced documents in each stance category are in terms of logics. Logic diversity
suggests that all logics are equally covered in each document group when split-
ting documents by stance category. Thus, when a search result list contains docu-
ments, e.g., with stances −1, 0, and 1, the logic distributions of each of those three
groups should be balanced. The logic distribution of all top k results belong-

ing to a particular stance category s is given by Ls
1...k =

( |Ls,l1
1...k|

|Ls
1...k| , . . . ,

|Ls,l7
1...k|

|Ls
1...k|

)
,

where each numerator |Ls,l
1...k| refers to the number of times logic l (e.g., inspired)

appears in the top k documents with stance category s. Each denominator |Ls
1...k|

is the total number of logics that appear in the top k documents with stance cat-
egory s. Ls

1...k reflects the relative frequency of each logic in the top k documents
in a specific stance category. Similar to SB, we evaluate the degree to which Ls

1...k

diverges from T by computing the normalized JSD for the logic distributions of
each available stance category and then produce logic bias (LB) by averaging
the results (Eq. 5). Here, S∗

k is the set of unique stance categories among the
top k-ranked documents. LB thus quantifies, on a scale from 0 to 1, the average
degree to which the logic distributions diverge from the ideal, viewpoint-diverse
scenario where all logics are equally present within each stance category. We
produce nDLB by computing LB iteratively for the top 1, 2, . . . , N documents
and applying our discounted aggregation and normalization procedures (Eq. 6).

LB(S, L, k) =
1

|S∗
k |

∑

s∈S∗
k

JSD(Ls
1...k||T )

JSD(U ||T )
(5) nDLB(τ) =

1
Z

N∑

k=1

LB(S, L, k)
log2(k + 1)

(6)

3.2 Normalized Discounted Viewpoint Bias

To evaluate overall viewpoint diversity, we combine nDPB, nDSB, and nDLB
into a single metric, called normalized discounted viewpoint bias (nDVB):

nDVB(τ) = I
α|nDPB(τ)| + βnDSB(τ) + γnDLB(τ)

α + β + γ
.
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Here, I is an indicator variable that equals −1 when nDPB(τ)< 0 and 1 other-
wise. The parameters α, β, and γ are weights that control the relative importance
of the three sub-metrics. Thus, nDVB measures the degree to which a ranked list
of documents diverges from an ideal, viewpoint-diverse scenario. It ranges from
−1 to 1, indicating the direction and severity with which such a ranked list (e.g.,
search results) is biased (values closer to 0 imply greater viewpoint diversity).

Our proposed metric nDVB allows for a more comprehensive assessment of
viewpoint diversity in search results compared to metrics such as rND or RB. It
does so by allowing for comprehensive viewpoint representations of search results,
simultaneously considering neutrality, stance diversity, and logic diversity.

4 Case Study: Evaluating, Fostering Viewpoint Diversity

This section presents a case study in which we show how to practically apply
the viewpoint bias metric we propose (nDVB; see Sect. 3.2) and examine the
viewpoint diversity of real search results from commonly used search engines,
using relevant queries for currently debated topics (i.e., atheism, school uniforms,
and intellectual property). Finally, we demonstrate how viewpoint diversity in
search results can be enhanced using existing diversification algorithms. More
details on the materials and results (incl. figures) are available in our repository.

4.1 Materials

Topics. We aimed to include in our case study three topics that (1) are not sci-
entifically answerable (i.e., with legitimate arguments in both the opposing and
supporting directions) and (2) cover a broad range of search outcomes (i.e., con-
sequences for the individual user, a business, or society). To find such topics, we
considered the IBM-ArgQ-Rank-30kArgs data set [35], which contains arguments
on controversial issues. The three topics we (manually) selected from this data set
were atheism (where attitude change may primarily affect the user themselves,
e.g., they become an atheist), intellectual property rights (where attitude change
may affect a business, e.g., the user decides to capitalize on intellectual property
they own), and school uniforms (where attitude change may affect society, e.g.,
the user votes to abolish school uniforms in their municipality).

Queries. We conducted a user study (approved by a research ethics committee)
to find, per topic, five different queries that users might enter into a web search
engine if they were wondering whether one should be an atheist (individual use
case), intellectual property rights should exist (business use case), or students
should have to wear school uniforms (societal use case). In a survey, we asked
participants to imagine the three search scenarios and select, for each, three “neu-
tral” and four “biased” queries from a pre-defined list. The neutral queries did
not specify a particular debate side (e.g., school uniforms opinions), while
the biased queries prompted opposing (e.g., school uniforms disadvantages)
or supporting results (e.g., school uniforms pros).
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We recruited 100 participants from Prolific (https://prolific.co) who com-
pleted our survey for a reward of $0.75 (i.e., $8.09 per hour). All participants
were fluent English speakers older than 18. For our analysis, we excluded data
from two participants who had failed at least one of two attention checks. The
remaining 98 participants were gender-balanced (49% female, 50% male, 1% non-
binary) and rather young (50% were between 18 and 24). We selected five queries
per topic: the three most commonly selected neutral queries and the single most
commonly selected opposing- and supporting-biased queries (see Table 1).1

Table 1. Viewpoint diversity evaluation for all 30 search result lists from Engine 1
and 2: rND, RB, and nDVB (incl. its sub-metrics DPB, DSB, and DLB). Queries were
designed to retrieve neutral (neu), opposing (opp), or supporting (sup) results (↔).

Engine 1 Engine 2

Query ↔ rND RB nDPB nDSB nDLB nDVB rND RB nDPB nDSB nDLB nDVB

why people become atheists or theists neu .70 .27 .32 .33 .38 .34 .69 .14 .21 .36 .33 .30

should I be atheist or theist neu .68 .13 .24 .39 .44 .35 .80 .04 .05 .51 .40 .32

atheism vs theism neu .58 −.06 −.07 .52 .37 −.32 .77 .01 .03 .53 .39 .32

why theism is better than atheism opp .47 .19 .22 .28 .35 .29 .53 −.04 −.15 .45 .30 −.30

why atheism is better than theism sup .35 .05 .15 .23 .43 .27 .68 .10 .15 .45 .34 .31

why companies maintain or give away IPRs neu .77 .46 .49 .41 .45 .45 .97 .61 .60 .48 .51 .53

should we have IPRs or not neu .80 .34 .34 .35 .33 .34 .93 .47 .44 .42 .41 .43

IPRs vs open source neu .80 .10 .09 .45 .43 .32 .92 .18 .19 .57 .53 .43

why IPRs don’t work opp .69 .30 .33 .42 .40 .38 .54 .18 .19 .40 .35 .31

should we respect IPRs sup .90 .48 .49 .41 .36 .42 .95 .60 .59 .50 .35 .48

why countries adopt or ban school unif. neu .59 −.01 .14 .37 .25 .26 .54 −.10 −.11 .37 .20 −.23

should students wear school unif. or not neu .62 −.10 −.10 .45 .20 −.25 .85 .14 .15 .42 .19 .26

school unif. well-being neu .55 .07 .09 .28 .25 .21 .54 .13 .23 .31 .35 .30

why school unif. don’t work opp .30 −.22 −.31 .33 .18 −.27 .59 −.01 −.03 .37 .21 −.20

why school unif. work sup .89 .43 .49 .38 .27 .38 .92 .45 .03 .50 .39 .36

Overall mean absolute bias .65 .21 .26 .37 .34 .32 .75 .21 .24 .44 .34 .34

Note. In contrast to the actual queries, we here abbreviate intellectual property rights
(IPRs) and uniforms (unif.).

Search Results. We retrieved the top 50-ranked search results for each of
the 3 × 5 = 15 queries listed in Table 1 from two of the most commonly used
search engines, through web crawling or an API.2 This resulted in a data set
of 15 × 2 × 50 = 1500 search results, 25 of which (mostly the last one or two
results) were not successfully retrieved. The remaining 1475 (i.e., 973 unique)
search results were recorded, including their query, URL, title, and snippet.

Viewpoint Annotations. To assign each search result the 2D (stance, logic)
viewpoint label (see Sect. 3), we employed six experts, familiar with the three
topics, the annotation task, and the viewpoint labels. This is more than the
one to three annotators typically employed for IR annotation practices [34,62].
The viewpoint label consists of stance (i.e., position on the debated topic on
an ordinal scale ranging from −3; strongly opposing; to 3; strongly supporting)

1 Due to error, we used the 2nd most common supporting query for the IPR topic.
2 The retrieval took place on December 12th, 2021 in the Netherlands.

https://prolific.co
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and logics of evaluation (i.e., motivations behind the stance).3 First, the experts
discussed annotation guidelines and examples before individually annotating the
same set of 30 search results (i.e., two results randomly chosen per query). Then,
they discussed their disagreements, created an improved, more consistent set
of annotation guidelines, and revised their annotations. Following discussions,
their overall agreement increased to satisfactory levels for stance (Krippendorff’s
α = .90) and the seven logics (α = {.79, .66, .73, .86, .77, .36, .57}). Such agree-
ment values represent common ground in the communication sciences, where,
e.g., two trained annotators got α = {.21, .58} when annotating morality and
economical frames in news [15]. Each expert finally annotated an equal and
topic-balanced share of the remaining 943 unique search results.

4.2 Viewpoint Diversity Evaluation Results

We conducted viewpoint diversity analyses per topic, search engine, and query.
Specifically, we examined the overall viewpoint distributions and then measured
viewpoint bias in each of the (15 × 2 =) 30 different top 50 search result lists
retrieved from the two search engines, by computing the existing metrics rND
and RB (see Sect. 2) and our proposed metric incl. its sub-metrics (see Sect. 3).

Overall Viewpoint Distributions. Among the 973 unique URLs in our search
results data set, 306, 334, and 263 respectively related to the topics atheism,
intellectual property rights (IPRs), and school uniforms. A total of 70 unique
search results were judged irrelevant to their topic and excluded from the anal-
ysis. Search Engine 1 (SE1) provided a somewhat greater proportion of unique
results for the 15 queries (77%) than Search Engine 2 (SE2, 69%). For all three
topics, supporting stances were more common. Regarding logics, the school uni-
forms topic was overall considerably more balanced than the others. Atheism-
related documents often focused on inspired, moral, and functional logics (e.g.,
religious people have higher moral standards, atheism explains the world bet-
ter). Documents related to IPRs often referred to civic, economic, and functional
logics (e.g., IPRs are an important legal concept, IPRs harm the economy).

Viewpoint Diversity per Query, Topic, and Search Engine. We analyzed
the viewpoint diversity of search results using the existing metrics rND, RB,
and our proposed (combined) metric nDVB. We slightly adapted rND and RB
to make their outcomes better comparable; aggregating both in steps of one
and measuring viewpoint imbalance (or bias) rather than ranking fairness. Our
rND implementation considered all documents with negative stance labels as
protected, all documents with positive stance labels as non-protected, and ignored
neutral documents. Computing RB required standardizing all stance labels to
scores ranging from −1 to 1. To compute nDVB, we set the parameters to α =
β = γ = 1, i.e., giving all sub-metrics equal weights. Table 1 shows the evaluation

3 Note that viewpoint labels do not refer to specific web search queries, but always to
the topic (or claim) at hand. For example, a search result supporting the idea that
students should have to wear school uniforms always receives a positive stance label
(i.e., 1, 2, or 3), no matter what query was used to retrieve it.
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results for all metrics across the 30 different search result lists from the two search
engines. Scores closer to 0 suggest greater diversity (i.e., less distance to the ideal
scenario), whereas scores further away from 0 suggest greater bias.

Neutrality. As we note in Sect. 3, viewpoint-diverse search result lists should
feature both sides of debates equally. While rND does not indicate whether a
search result list is biased against or in favor of the protected group [23], the RB
and nDPB outcomes suggest that most of the search result lists we analyzed are
biased towards supporting viewpoints. We observed that results on IPRs tended
to be more biased than results on the other topics but, interestingly, we did not
observe clear differences between query types. Moreover, except for the school
uniforms topic, supposedly neutral queries generally returned results that were
just as biased as queries targeted specifically at opposing or supporting results.

Stance Diversity. Another trait of viewpoint-diverse search result lists is a
balanced stance distribution. Since rND, RB, and nDPB cannot clarify whether
all stances (i.e., all categories ranging from −3 to 3) are uniformly represented,
we here only inspect the nDSB outcomes. While we did not observe a noteworthy
difference between topics or queries, we found that SE2 returned somewhat more
biased results than SE1. Closer examination of queries where the two engines
differed most in terms of nDSB (e.g., why theism is better than atheism) revealed
that SE2 was biased in the sense that it often returned fewer opinionated (and
more neutral) results than SE1. Regarding their balance between mildly and
extremely opinionated results, both engines behaved similarly.

Logic Diversity. The final characteristic of viewpoint-diverse search result
lists concerns their distribution of logics, i.e., the diversity of reasons brought
forward to oppose or support topics. When inspecting the nDLB outcomes, we
found that logic distributions in the search result lists were overall more balanced
than stance distributions (see nDSB results) and similar across search engines
and queries. However, we did observe that nDLB on the school uniforms topic
tended to be lower than for other topics, suggesting that greater diversities of
reasons opposing or supporting school uniforms were brought forward.

Overall Viewpoint Diversity. To evaluate overall viewpoint diversity in the
search result lists, we examined nDVB, the only metric that simultaneously
evaluates divergence from neutrality, stance diversity, and logic diversity. Bias
magnitude per nDVB ranged from .20 to .53 across results from search engines,
with only four out of 30 search result lists being biased against the topic. Regard-
ing topics, search results for neutral queries were somewhat less biased on school
uniforms compared to atheism or intellectual property rights.

Interestingly, search results for neutral queries on all topics were often just as
viewpoint-biased as those from directed queries. Some queries returned search
results with different bias magnitudes (e.g., school uniforms well-being) or bias
directions (e.g., atheism vs theism) depending on the search engine. Moreover,
whereas search results for supporting-biased queries were indeed always biased in
the supporting direction (i.e., positive nDVB score), results for opposing-biased
queries were often also biased towards supporting viewpoints. Figure 1 shows,
per topic and search engine, how the absolute nDVB developed on average when
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evaluated at each rank. It illustrates that nDVB tended to decrease over the
ranks across engines, topics, and queries but highlights that the top, say 10,
search results that users typically examine are often much more viewpoint-biased
than even the top 30 (i.e., more search results could offer more viewpoints).

4.3 Viewpoint Diversification

We implemented four diversification algorithms to foster viewpoint diversity
in search results by (1) re-ranking and (2) creating viewpoint-diverse top 50
search result lists using all unique results from each topic. Specifically, we per-
formed ternary stance diversification, seven-point stance diversification, logic
diversification (all based on xQuAD; i.e., diversifying search results according
to stance labels in the common ternary format, the seven-point ordinal format,
or logic labels, respectively), and hierarchical viewpoint diversification (based
on HxQuAD; i.e., diversifying search results hierarchically: first for seven-point
ordinal stance labels and then, within each stance category, for logic labels; giv-
ing both dimensions equal weights). We evaluated the resulting search result
lists using nDVB.

Fig. 1. Development of mean absolute
nDVB@k across search result ranks, split
by topic and search engine.

Fig. 2. Mean absolute viewpoint diversity
(nDVB@10) per diversification algorithm
across the 30 search result lists.

Re-ranked Top 50 Search Result Lists. Fig. 2 compares absolute nDVB
between the original top 50 search result lists and the four diversification strate-
gies. All strategies improved the viewpoint diversity of our lists. Whereas the
ternary stance diversification only showed marginal improvements (mean abs.
nDVB@10 = .42, nDVB@50 = .35) compared to the original search result lists
(mean abs. nDVB@10 = .47, nDVB@50 = .33), the hierarchical viewpoint diver-
sification based on stances and logics was the most effective in fostering viewpoint
diversity (mean abs. nDVB@10 = .35, nDVB@50 = .27) . Viewpoint diversity for
the seven-point stance diversification (mean abs. nDVB@10 = .39, nDVB@50 =
.29) and logic diversification (mean abs. nDVB@10 = .42, nDVB@50 = .31) were
comparable, and in between the ternary stance and hierarchical diversification.
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“Best-case” Comparison. Despite the promising re-ranking results, diversifi-
cation methods can only work with the specific sets of documents they are given.
To show a “best-case” scenario for comparison, we employed our diversification
algorithms to create, per topic, one maximally viewpoint-diverse search result
list using all topic-relevant search results (i.e., from across queries and search
engines). We found that all four diversification algorithms yielded search result
lists with much less bias when given more documents compared to when they
only re-ranked top 50 search results lists. Here, the hierarchical diversification
was again most effective (mean abs. nDVB@10 = .29, nDVB@50 = .20); improv-
ing by a magnitude of .07 on average over the re-ranked top 50 search result lists.
Compared to the average search result list we had retrieved from the two search
engines, the “best-case” hierarchical diversification improved viewpoint diversity
by margins of .17 (nDVB@10) and .13 (nDVB@50), reflecting a mean improve-
ment of 39%. The other diversification algorithms showed similar improvements,
albeit not as impactful as the hierarchical method (i.e., mean abs. nDVB@10 was
.37, .37, .34 and mean abs. nDVB@50 was .31, .24, .24 for the ternary stance,
seven-point stance, and logic diversifications, respectively).

5 Discussion

We identified that viewpoint diversity in search results can be conceptualized
based on the deliberative notion of diversity by looking at neutrality, stance
diversity, and logics diversity. Although we were able to adapt existing metrics
to partly assess these aspects, a novel metric was needed to comprehensively
measure viewpoint diversity in search results. We thus proposed the metric
normalized discounted viewpoint bias (nDVB), which considers two important
viewpoint dimensions (stances and logics) and measures viewpoint bias, i.e., the
deviation of a search result list from an ideal, viewpoint-diverse scenario (RQ1).
Findings from our case study suggest that nDVB is sensitive to expected data
properties, such as aligning with the query polarity and bias decreasing for larger
lists of search results. Although further refinement and investigation of the met-
ric are required (e.g., to find the most practical and suitable balance between
the three notions of diversity or outline interpretation guidelines), our results
indicate that the metric is a good foundation for measuring viewpoint diversity.

The degree of viewpoint diversity across search engines in our case study was
comparable: neither engine was consistently more biased than the other (RQ2).
However, we found notable differences in bias magnitude and even bias direction
between search engines regarding the same query and queries related to the same
topic. This lends credibility to the idea that nDVB indeed measures viewpoint
diversity, and is able to detect different kinds of biases. Further work is required
to compare different metrics and types of biases. Similar to previous research [65],
we found that search results were mostly biased in the supporting direction.
This suggests that actual search results on debated topics may often not reflect
a satisfactory degree of viewpoint diversity and instead be systemically biased
in terms of viewpoints. More worryingly, depending on where (which search
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engine) or how (which query) users search for information, they may not only be
exposed to different viewpoints, but ones representing a different bias than their
peers. We also found that neutrally formulated queries often returned similarly
biased search results as queries calling for specific viewpoints. In light of findings
surrounding SEME and similar effects, this could have serious ramifications for
individual users’ well-being, business decision-making, and societal polarization.

Our case study further showed that diversification approaches based onxQuAD
and HxQuAD can improve the viewpoint diversity in search results. Here, the hier-
archical viewpoint diversification (based on HxQuAD, and able to consider both
documents’ stances and logics of evaluation) was most effective (RQ3).

Limitations and Future Work. Although our case study covered debated
topics with consequences for individuals, businesses, and society, it is important
to note that our results may not generalize to all search engines and controver-
sial issues. We carefully selected the deliberative notion of diversity to guide our
work as we believe it suits many debated topics, especially those with legitimate
arguments on all sides of the viewpoint spectrum. However, we note that some
scenarios may require applying other diversity notions and that presenting search
results according to the deliberative notion of diversity (i.e., representing all
viewpoints equally) may even cause harm to individual users or help spread fake
news (e.g., considering health-related topics where only one viewpoint represents
the scientifically correct answer [5,10,52,67]). Future work could measure search
result viewpoint bias for larger ranges of topics, explore whether different diver-
sity notions apply when debated topics have clear scientific answers [14,48,63],
and capture user perceptions of diversity [36,46,57].

Another limitation of our work is that, despite providing a diverse range of
queries to choose from, queries may not have represented all users adequately.
Future work could collect topics and queries via open text fields [67]. Further-
more, our proposed metric nDVB is still limited in several ways, e.g., it does not
yet incorporate document relevance, other viewpoint diversity notions, or the
personal preferences and beliefs of users. We encourage researchers and prac-
titioners to build on our work to help improve the measurement of viewpoint
diversity in search results. Finally, annotating viewpoints is a difficult, time-
consuming task even for expert annotators [15,20]. Recent work has already
applied automatic stance detection methods to search results [22] but did so
far not attempt to identify logics of evaluation. However, once such automatic
systems have become more comprehensive, researchers and practitioners could
easily combine them with existing methods for extracting arguments [12,60] and
visualize viewpoints [4,17] in search results.

6 Conclusion

We proposed a metric for evaluating viewpoint diversity in search results, mea-
suring the divergence from an ideal scenario of equal viewpoint representation. In
a case study evaluating search results on three different debated topics from two
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popular search engines, we found that search results may often not be viewpoint-
diverse, even if queries are formulated neutrally. We also saw notable differences
between search engines concerning bias magnitude and direction. Our hierarchi-
cal viewpoint diversification method, based on HxQuAD, consistently improved
the viewpoint diversity of search results. In sum, our results suggest that, while
viewpoint bias in search results is not pervasive, users may unknowingly be
exposed to high levels of viewpoint bias, depending on the query, topic, or search
engine. These factors may influence (especially vulnerable and undecided) users’
attitudes by means of recently demonstrated search engine manipulation effects
and thereby affect individuals, businesses, and society.
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Abstract. Lexical exact match systems that use inverted lists are a
fundamental text retrieval architecture. A recent advance in neural IR,
COIL, extends this approach with contextualized inverted lists from a
deep language model backbone and performs retrieval by comparing
contextualized query-document term representation, which is effective
but computationally expensive. This paper explores the effectiveness-
efficiency tradeoff in COIL-style systems, aiming to reduce the com-
putational complexity of retrieval while preserving term semantics. It
proposes COILcr, which explicitly factorizes COIL into intra-context
term importance weights and cross-context semantic representations. At
indexing time, COILcr further maps term semantic representations to a
smaller set of canonical representations. Experiments demonstrate that
canonical representations can efficiently preserve term semantics, reduc-
ing the storage and computational cost of COIL-based retrieval while
maintaining model performance. The paper also discusses and compares
multiple heuristics for canonical representation selection and looks into
its performance in different retrieval settings.

Keywords: First-stage retrieval · Lexical exact match · Deep
language models · Contextualized inverted lists · Approximation

1 Introduction

Lexical exact matching [21] has been a fundamental component of classic infor-
mation retrieval (IR). In the new era of neural IR and deep language models
(LM) [2,24], lexical retrievers are still used in large-scale settings and initial
stages of ranking pipelines due to their simplicity and efficiency: lexical exact
match signals are captured at the token (word) level, and the matching pro-
cess can be highly accelerated with inverted indexes built during offline pre-
processing. Such simplicity, however, is accompanied by the natural gap between
explicit lexical form and the implicit semantics of a concept. Lexical retrievers
have long suffered from the vocabulary mismatch (different lexical forms for the
same concept) and semantic mismatch (different semantic meanings for the same
lexical form) between the two spaces.

The introduction of deep LMs has led to large improvements in search accu-
racy [18]. Deep LM-augmented lexical retrieval systems fine-tune pretrained
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J. Kamps et al. (Eds.): ECIR 2023, LNCS 13980, pp. 298–312, 2023.
https://doi.org/10.1007/978-3-031-28244-7_19
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language models on different retrieval-specific tasks to aid classic non-neural sys-
tems or directly perform retrieval. Particularly, to address semantic mismatch,
recent work uses deep LMs to generate contextualized term representations and
calculates term scores by vector similarity instead of scalar weight product.

Gao et al. proposed COIL (contextualized inverted lists) [8], a framework
for incorporating semantic matching in lexical exact match systems. COIL aug-
ments traditional inverted lists with contextualized representations of each term
occurrence. At search time, it keeps the constraint of lexical exact match, but
calculates term scores based on the similarity of the representations. Compared
to previous systems using term weights to model in-sequence term importance,
COIL uses term representation vectors to additionally measure cross-sequence
term similarity between query and document terms. This leads to improved
retrieval accuracy but also increased storage and computational costs. Every
term is represented by a d-dimensional vector during indexing, and each term
score is calculated by a d-dimensional vector dot product at retrieval time.

This paper builds on the COIL framework, focusing on its semantic match-
ing capability. It investigates whether it is it possible to effectively recognize
semantic mismatch at a lower cost. COIL utilizes a dense vector to directly
model a term’s importance as well as the fine-grained semantics of its unique
context. However, for a vocabulary term, the number of its important meanings
or base senses across the corpus is usually much smaller than its actual collection
term frequency. While modeling fine-grained term semantic match requires pre-
cise vector similarity comparison, modeling the mismatch of coarse term senses
may not require such high representation capacity, and can be performed more
efficiently by approximation of term representations.

Following these ideas, we propose COILcr, COntextualized Inverted Lists
with Canonical Representations, to efficiently model coarse term semantics in
COIL-based lexical exact match systems. We first factorize term representations
and decouple term importance weight and semantic representation. We proceed
to build a set of canonical representations (CR) for term semantic representations
via spherical k-means clustering [3], and map all individual term occurrences to
the set of base CRs. This approximation reduces the inverted index storage size
and number of similarity calculations at retrieval time. We demonstrate through
multiple experiments that COILcr’s approximation is almost as effective as
precise lexical COIL systems, but at much lower storage and computational
cost.

The next section discusses related work, and provides a detailed description of
the COIL framework. Section 3 describes the proposed canonical representation-
based approach to the recognition of semantic mismatch. Section 4 discusses our
experimental methodology, and Sect. 5 discusses experiment results and findings.
Section 6 concludes.
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2 Related Work

The introduction of deep language models [2] has led to a new era in neural
IR. Cross-encoder models [18] first demonstrated that deep LMs can be tuned
to understand context and handle the gap between explicit text and implicit
semantics, and achieve state-of-the-art performance in neural reranking tasks.

Large-scale neural ranking systems have also benefited from the finetuned
LMs’ capability to generate semantic representations both at the text sequence
level and at the lexical token level. Dense retrieval systems [14] directly encode
text segments into a dense semantic representation, and score query-document
pairs with some vector similarity metric.

S(q, d) = σ(vq,vd)

where vq and vd are dense representations of the query and document, usually
the [CLS] outout of the language model, and σ is a similarity function such as dot
product or cosine similarity. Recent work investigates various training techniques
to improve the quality of representations, including hard negative mining [11,25],
pretraining task design [6,7,11] and knowledge distillation [9,10,20].

Lexical match systems, on the other hand, perform encoding and matching
at the lexical token level, and score query-document pairs by aggregating term
match scores.

S(q, d) =
∑

t∈Vq∩Vd

st(q, d)

where S(q, d) is the overall document score, st(q, d) is term matching score of
term t, and Vq and Vd are the sets of terms in the query and document respec-
tively. For non-neural lexical exact match retrievers such as BM25 [21], a docu-
ment term is represented by a scalar weight wt,d that represents its importance
and is stored in an inverted list. Term scoring is modeled as st(q, d) = wt,qwt,d,
a product of query and document term importance weights. Finetuned language
models were first introduced to improve existing non-neural weighting-based sys-
tems by performing term reweighting [1] and explicit vocabulary expansion [19].

In such lexical exact match systems, storing scalar weights ensures efficient
storage and computational cost, but does not preserve extra semantic informa-
tion or context. At retrieval time, the system can not distinguish the actual
semantic agreement between query and document terms, thereby suffering from
semantic mismatch. To tackle this problem, researchers explored using contex-
tualized representations in lexical retrieval [15,22,29] under soft match settings.
Gao et al. further proposed COIL1 [8], which introduces contextualized term

1 The full COIL retrieval model is a hybrid model combining dense document scoring
and sparse token scoring. In this paper we mainly focus on the lexical exact match
retrieval setting, and mainly refer to COIL as the basic concept of contextualized
term representation and inverted index. We compare our system to the lexical-only
model form of the COIL retriever, referred to as COIL-tok in the original work.
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representations under lexical exact match settings, and expands the term weight
product into a vector similarity calculation to further model the semantic simi-
larity between query and document terms.

vqi = φ(LM(q, i))
vdj

= φ(LM(d, j))

st(qi, dj) = vT
qivdj

where qi = dj are the i-th query term and j-th document term with vector
representation vqi and vdj

respectively. φ denotes a linear transformation layer
that maps the LM output to token representations of a lower dimension.

COIL’s lexical-only model variant COIL-tok is a natural extension of tradi-
tional lexical retrieval systems. The vector representations of document terms vdj

are precomputed and indexed in inverted lists, and the overall query-document
score is the aggregation of exact match term scores. Replacing term weights with
vectors leads to clear performance gain in accuracy and recall but also increases
storage and computational cost. Lin and Ma further proposed UniCOIL [16],
a followup study to COIL in which the generated representation dimension is
lowered to dv = 1 and the COIL language model directly predicts scalar term
weight, and demonstrates that the model achieves decent accuracy with much
lower cost under term weighting-only settings.

In this paper, we look into the necessity and methodology of preserving
term semantics in COIL-style systems and balancing its effectiveness-efficiency
tradeoff. Index compression and retrieval efficiency has gained growing research
interest with the development of neural IR systems. Recent systems investigate
multiple methods such as dimension reduction [12], hashing [26], product quan-
tization [27,28] and residual compression [22].

3 COILCR: Contextualized Inverted Lists with Canonical
Representations

COILcr is based on two key ideas: i) factorizing COIL token representations into
intra- and cross-context components, and ii) approximating the cross-context
component with canonical representations.

3.1 Term Score Factorization

COIL-tok implicitly models two distinct aspects of term match scoring: intra-
context importance, which measures the importance of a term (qi or dj) to its
own text (q or d), and cross-context similarity, which measures whether matching
terms qi and dj are used in a similar context and require actual interaction at
retrieval time. As shown in previous term-weighting systems and COIL model
variants (e.g., UniCOIL [16]), the term importance component can be effectively
represented with a scalar. A more critical question lies in the capacity and cost
of representing term semantics and calculating query-document similarity.
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COILcr explicitly factorizes COIL’s contextualized token representations
into a scalar term weight value and a term semantic representation vector for
each term, using separate linear projection layers:

wdj
= φw(LM(d, j))

vdj
= φv(LM(d, j))

v̂dj
=

vdj

||vdj
||

where wdj
is a non-negative value denoting term weight, and v̂dj

is a normalized
vector denoting term semantics.

COILcr uses the same language model to encode query and document terms.
The factorized contextualized exact match score between overlapping terms qi =
dj is defined as:

s(qi, dj) = wqiwdj
cos(vqi ,vdj

)

= wqiwdj
v̂T
qi v̂dj

(1)

where w, v and s represents the weighting component, semantic similarity com-
ponent and overall token matching score respectively. Equation 1 can be viewed
as a factorization of COIL’s dot-product scoring function to an equivalent cosine
similarity form. It explicitly decouples term weighting to enable more direct anal-
ysis and approximation of term semantics.

The exact overall score between a query q and document d is the
sum of all lexical matching scores of overlapping terms. Following COIL,
we train COILcr with an NLL loss defined on query q, document set
{d+, d−

1 , d−
2 , ..., d−

n−1}, and the scoring function.

Se(q, d) =
∑

qi∈Vq∩Vd

max
dj=qi

s(qi, dj)

=
∑

qi∈Vq∩Vd

max
dj=qi

wqiwdj
v̂T
qi v̂dj

LNLL = − log
exp(Se(q, d+))

exp(Se(q, d+)) +
∑n−1

i=1 exp(Se(q, d−
i ))

3.2 Approximate Term Semantic Interaction

The main additional cost of COIL compared to other lexical exact-match systems
lies in storing a unique vector for each document term occurrence during index-
ing, and having to compute vector products vT

qivdj
or v̂T

qi v̂dj
for each document

term occurrence at retrieval time. COILcr mainly focuses on approximating the
vector product by reducing the space of vocabulary representations. For a term t,
instead of using unique vectors for every term occurrence, COILcr selects a fixed
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set of semantic canonical representations Ct after the encoding stage, and maps
each term semantic representation to its closest vector in Ct.

cdj
= argmax

c∈Ct

cos(v̂dj
, c)

where cdj
can be viewed as an approximate representation of the original term

vdj
. At retrieval time, cdj

is used to calculate an approximated term matching
score and the final document score.

sc(qi, dj) = wqiwdj
v̂T
qicdj

Sc(q, d) =
∑

qi∈q∩d

max
dj=qi

wqwd v̂T
qicdj

Mapping unique term occurrence representations to canonical term occur-
rence representations reduces the storage cost of each individual term occurrence
from a unique |d|-dim vector to just its term weight w and the index of its canon-
ical representation. At retrieval time, instead of calculating v̂T

qi v̂dj
for each term

occurrence dj , COILcr only needs to calculate v̂T
qic for each CR c ∈ Ct. The

actual term representation scoring is reduced to a lookup operation of v̂T
qicdj

from the set of candidate scores.
Canonical semantic representations Ct can be generated in varied ways.

COILcr generates them using weighted spherical k-means clustering [3]. For
each term, it iterates to optimize

Ft =
∑

dj=t

wdj
cos(v̂dj

, cdj
)

where Ft is a weighted sum of cosine similarity between v̂dj
and cdj

. This is
aligned with the scoring function of COILcr.

The number of canonical representations |Ct|, or the number of clusters,
directly determines the granularity of term semantics and the degree of approx-
imation. In this work we experiment with three cluster selection methods.

– Constant: A fixed number of clusters |C| is generated for all terms.
– Dynamic: The cluster size is determined dynamically based on a clustering
error threshold. Given an error threshold ε and a set of candidate cluster sizes
{Kd}, for each term the minimum cluster size kd

t ∈ {Kd} is selected such
that the clustering error Et = 1 − 1

|dt|Ft falls below ε.
– Universal: Following previous work [22], we include a separate experiment

where all terms share a fixed set of universal canonical representations. The
centroids are generated by randomly sampling term representations in the
entire corpus and performing clustering.

We perform detailed analysis of the effect of cluster size selection in Sect. 5.2.
In the sections below, we refer to COILcr variants that perform clustering
as COILcr-t,k where t is the type of clustering strategy (c/d/u for constant,
dynamic, universal) and k is the respective parameter (cluster size |C| for con-
stant and universal, error threshold ε for dynamic). When no clustering approx-
imation is performed, COILcr is equivalent to COIL-tok with factorized term
scoring. We refer to this model variant as COILcr-∞ (infinite clusters).
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4 Experimental Methodology

Implementation. COILcr mostly follows COIL’s implementation2 and train-
ing settings, using a default token representation with dv = 32 dimensions. We
analyze the effect of token representation dimension in Sect. 5. All COILcr vari-
ants are trained for 5 epochs with a batch size of 8 queries and 8 documents (1
positive, 7 negative) per query. At indexing time, we randomly sample repre-
sentations and perform spherical k-means clustering with Faiss [13]. We experi-
ment with k ∈ {1, 4, 16, 64, 256, 1024} clusters for constant and dynamic cluster
generation, error thresholds ε ∈ {0.05, 0.1, 0.15, 0.2, 0.25} for dynamic cluster
generation, and k ∈ {256, 1024, 4096} for universal cluster generation.

Extensions. COILcr does not perform expansion or remapping of orig-
inal terms, but can be used with document expansion systems such as
DocT5Query [19]. We also experiment with model initialization using coCon-
denser [7], a deep LM trained on retrieval-related tasks, as this has been effective
in prior work [4,22].

Experiments. We train our model on the MSMARCO passage dataset [17]
and report model performance on MSMARCO dev queries and TREC DL 2019
manual queries. We report MRR@10 and recall@1000 for MSMARCO dev evalu-
ation, and report NDCG@10 and recall@1000 for TREC DL queries. We mainly
focus our comparison to previous COIL-based lexical exact match retrieval sys-
tems COIL-tok and its term-weighting variant UniCOIL. We also train and
report results for UniCOIL and COIL-tok baselines with coCondenser initial-
ization and DocT5Query augmentation. We additionally report the performance
of two related retrieval systems: (1) COIL-full, a hybrid retriever that addition-
ally utilizes a dense scoring component, and (2) SPLADE [5], an end-to-end term
weighting-based lexical retrieval system with vocabulary expansion.

5 Experiments

In this section, we discuss the retrieval performance of COILcr and the effect
of its components. We first separately analyze the effectiveness of explicit score
factorization and post-hoc CR-based approximation. We further perform a quan-
titative analysis on the two main factors of COILcr’s effectiveness-efficiency
tradeoff: the vector representation dimension and the post-hoc approxima-
tion. We finally look into the semantic information of canonical representations
through domain-transfer experiments and analysis.

5.1 Passage Retrieval Effectiveness

We first report the passage retrieval performance of COILcr-∞ variants on
MSMARCO in Table 1. Under the same training settings, COILcr-∞ achieves
2 https://github.com/luyug/COIL.

https://github.com/luyug/COIL
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Table 1. Passage retrieval performance for COILcr on MSMARCO. Baselines labeled
with * were retrained. We perform significance testing for COILcr variants with
coCondenser initialization. Under the same training settings, † denotes equal or better
performance compared to COIL-tok and ‡ denotes better performance compared to
UniCOIL.

Model MSMARCO dev Trec DL 2019

Retriever Init MRR@10 R@1000 NDCG@10 R@1000

Lexical retrievers w/o implicit vocabulary expansion
UniCOIL BERT 0.320 0.922 0.652 –
UniCOIL + DocT5Q BERT 0.351 - 0.693 –
COIL-tok BERT 0.341 0.949 0.660 –
UniCOIL* coCondenser 0.328 0.929 0.646 0.778
UniCOIL + DocT5Q* coCondenser 0.357 0.961 0.702 0.823
COIL-tok* coCondenser 0.353 0.949 0.692 0.801
COIL-tok + DocT5Q* coCondenser 0.365 0.967 0.707 0.833

Hybrid systems or lexical retrievers with implicit expansion
COIL-full BERT 0.355 0.963 0.704 –
COIL-full coCondenser 0.374 0.981 – –
SPLADE BERT 0.322 0.955 0.665 0.813

COILcr-∞ BERT 0.341 0.944 0.673 0.787
COILcr-∞ + DocT5Q BERT 0.358 0.964 0.692 0.830
COILcr-∞ coCondenser 0.355†‡ 0.951†‡ 0.717 0.794
COILcr-∞ + DocT5Q coCondenser 0.370†‡ 0.968†‡ 0.711 0.832

COILcr-c256 BERT 0.331 0.941 0.676 0.784
COILcr-c256 + DocT5Q BERT 0.352 0.963 0.698 0.831
COILcr-c256 coCondenser 0.346‡ 0.948†‡ 0.704 0.797
COILcr-c256 + DocT5Q coCondenser 0.362‡ 0.966†‡ 0.714 0.836
† TOST testing with α = 5% and equivalence bound of ±0.005.
‡ Paired t-test with α = 5%.

very similar accuracy and Recall compared to COIL-tok. This demonstrates the
extra capacity of modeling term semantics, and that COILcr’s score factoriza-
tion step does not limit such model capacity by itself.

Performing coCondenser initialization and DocT5Query augmentation
improves the retrieval performance of all COILcr variants with different
effects, as expected. Initialization with coCondenser, a system pretrained on the
MSMARCO dataset and on a dense retrieval-related task, also helps lexical-only
retrieval systems COIL-tok and COILcr learn higher quality term representa-
tions and more accurate matching signals, leading to improvement in model accu-
racy. On the other hand, COIL-based models do not implicitly resolve the vocab-
ulary mismatch between the query and document. Under comparable training
setups, COILcr-∞ and COIL-tok systems outperform SPLADE on accuracy
at top positions (MRR@10 and NDCG@10 on respective datasets) but under-
perform on recall@1000. The addition of DocT5Query augmentation introduces
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explicit document expansion which leads to better overall performance, espe-
cially for Recall@1000 (0.95 → 0.97 for MSMARCO dev, 0.79 → 0.83 for Trec
DL 2019). Specifically, on the Trec DL 2019 queries, UniCOIL achieves close
performance to COILcr and COIL-tok with DocT5Query augmentation.

Fig. 1. Passage retrieval performance on MSMARCO-dev for COILcr model variants
with different degrees of approximation and different training setup.

Fig. 2. Recall at different depths (Recall@k) for COILcr model variants with different
degree of approximation (|Ct|). Models are initialized with coCondenser.

After performing clustering with |Ct| = 256 CRs per term, we observe only
a slight drop in MRR@10 and Recall. To further explore how post-hoc approx-
imation affects COILcr’s retrieval performance, we report the MRR@10 and
Recall@1000 of COILcr on MSMARCO dev queries with different CR size |Ct|
in Fig. 1, and the change in Recall at different depths with different |Ct| in Fig. 2.
Under all training settings, the degree of approximation mainly affects the pre-
cision of lexical exact match signals and documents at the top of the ranking. It
has particularly little impact on recall at lower positions, where the more critical
bottleneck is vocabulary mismatch and sufficient lexical exact match signals do
not exist.



COILcr: Efficient Semantic Matching with COIL 307

Table 2. Passage retrieval accuracy and storage cost of COILcr with varying numbers
of representation dimensions and CRs per term. Models initialized with coCondenser.
† and ‡ respectively denotes equal or better performance compared to COIL-tok, and
better performance compared to UniCOIL.

Model MSMARCO dev Storage (GB)
MRR@10 R@1000 CR Index Inv. Index Total

COIL-tok 0.353 0.949 n/a 45 45
UniCOIL 0.328 0.929 n/a 4.8 4.8
COILcr:
32 ∞ 0.355†‡ 0.951†‡ n/a 55 55
16 ∞ 0.350‡ 0.950†‡ n/a 34 34
8 ∞ 0.350‡ 0.946†‡ n/a 21 21
4 ∞ 0.345‡ 0.941‡ n/a 14 14
32 c256 0.346‡ 0.948†‡ 0.7 5.5 6.2
16 c256 0.343‡ 0.947†‡ 0.4 5.4 5.8
8 c256 0.349‡ 0.945‡ 0.2 5.5 5.7
4 c256 0.343‡ 0.941‡ 0.1 5.4 5.4
32 c256 0.346‡ 0.948‡ 0.7 5.5 6.2
32 c64 0.340‡ 0.946‡ 0.2 5.4 5.6
32 c16 0.331 0.943‡ 0.1 5.2 5.3
32 c4 0.320 0.938‡ 0.02 5.1 5.1
32 c1 0.302 0.923 <0.01 4.9 4.9

5.2 Balancing Model Efficiency

Next, we examine the effectiveness-efficiency tradeoff of COILcr and its two
main factors, the number of term representation dimensions and the degree of
approximation from original term representations to canonical representations.

Table 2 shows the model accuracy and storage cost of COILcr on the
MSMARCO passage dataset with varying representation sizes dv and CRs per
term |Ct|. By reducing each inverted index entry to a term weight and a CR
index, COILcr significantly lowers the storage cost of the COIL index. The
content and storage cost of the inverted index entry remains the same regardless
of representation dimension changes.

All COILcr-∞ systems outperform the UniCOIL baseline where dv=1. We
further report the performance of COILcr variants with different representa-
tion dimensions dv in Fig. 3. Higher dimension representations lead to a higher
ceiling in model accuracy, but require more CRs per term to reach such perfor-
mance. On the other hand, the overall difference in Recall@1000 for different dv
and different CR size becomes relatively small after very coarse term semantic
modeling (|Ct| > 16). This may be beneficial in Recall-oriented settings such as
first-stage ranking in a reranking pipeline, when a lower dv and |Ct| reduces run
time and storage cost while not affecting the overall performance of the system.
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Table 3. Passage retrieval accuracy and retrieval cost of COILcr with different CR
generation strategies. c/d/u respectively denotes the constant, dynamic and universal
clustering approaches, as discussed in Sect. 3.2. Models initialized with coCondenser.

Model Model Performance Run Cost
MRR@10 R@1000 CR Storage Avg. Ops

c1024 0.351 0.949 2.5 1024
c256 0.346 0.948 0.77 256
c64 0.340 0.946 0.2 64
c16 0.331 0.942 0.06 16
c4 0.320 0.938 0.02 4
c1 0.302 0.923 <0.01 1
d0.05 0.349 0.949 2.3 997.4
d0.1 0.349 0.948 1.1 591.5
d0.15 0.344 0.947 0.27 152.5
d0.2 0.337 0.945 0.1 41.34
d0.25 0.330 0.942 0.05 14.76
u4096 0.346 0.946 <0.01 2740
u1024 0.339 0.945 <0.01 823
u256 0.336 0.943 <0.01 233
Ctok-c1024 0.339 0.946 – –
Ctok-c256 0.329 0.944 – –
Ctok-c64 0.309 0.939 – –

Fig. 3. Passage retrieval performance on MSMARCO-dev for COILcr model variants
with different representation dimensions.

5.3 Canonical Representation Analysis

In this section, we take a deeper look into the construction process and proper-
ties of canonical representations in COILcr. We first compare different CR
selection strategies discussed in Sect. 3.2, and report model performance on
MSMARCO in Table 3. As discussed in Sect. 3.2, for a query term at retrieval
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Table 4. Zero-shot retrieval accuracy (nDCG@10) on the BEIR benchmark. CoCon-
denser initialization and DocT5Q augmentation were applied for all models. Best per-
formance of each dataset is underlined.

Corpus UniCOIL COILcr-∞ COILcr-c256 COILcr-c256-tr

ArguAna 0.365 0.342 0.339 0.341
C-FEVER 0.178 0.186 0.188 0.188
DBPedia 0.360 0.378 0.380 0.376
FEVER 0.778 0.782 0.793 0.797
FiQA 0.293 0.310 0.303 0.297
HotpotQA 0.662 0.683 0.679 0.675
NFCorpus 0.336 0.338 0.338 0.336
NQ 0.446 0.485 0.483 0.477
Quora 0.732 0.773 0.762 0.750
SCIDOCS 0.150 0.153 0.154 0.151
SciFact 0.696 0.698 0.699 0.697
T-COVID 0.739 0.735 0.739 0.745
Touche2020 0.279 0.287 0.289 0.292

time, COILcr only performs vector product with its canonical representations
instead of the representation of every term occurrence. In addition to CR index
storage cost, we report the average number of retrieval-time vector product opera-
tions, or the average number of canonical representations a query term matches,
to compare the computational cost between COILcr variants. Compared to
term-specific CR selection, universal CR selection introduces much less storage
cost, but naturally requires a larger set of CRs to preserve the semantics of all
terms, and leads to extra operations at retrieval time. The two term-specific CR
selection approaches have similar performance trends, as they require similar
storage and operation costs to achieve the same level of performance.

To investigate the effect of factorizing term weight and term semantics, we
additionally perform a side experiment where we directly generate canonical
representations from COIL-tok term representations via k-means clustering. We
denote this retrieval approach as Ctok-ck and report performance in Table 3.
Compared to COILcr, the canonical representations generated from COIL-tok
need to preserve extra information of the representation norm, which affects
distance and loss calculation and leads to inefficient K-means clustering. Thus,
this approach naturally requires much more CRs per term to reach the same
retrieval performance as COILcr.

Additionally, to investigate the robustness of the COILcr system and the CR
approximation approach, we take COILcr trained on MSMARCO and perform
a zero-shot retrieval experiment on the BEIR [23] benchmark, which consists
of datasets covering a wide range of different domains. We also introduce an
extra COILcr variant, denoted as COILcr-tr, where we also directly trans-
fer the CRs generated from MSMARCO representations, instead of generating
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from the new dataset. We report performance results on 13 datasets in the
BEIR benchmark in Table 4. We observe that COILcr-∞ maintains its extra
model capacity over UniCOIL, with larger than 3% gains on 7 of 13 datasets.
the only dataset where COILcr clearly underperforms UniCOIL is ArguAna,
which involves retrieval of counterarguments given a query argument, and is
very different from classic web search settings. Moreover, across all datasets,
the model accuracy of COILcr and COILcr-tr remains similar and close to
the performance of COILcr-∞. This demonstrates the robustness of the CR
approximation approach with sufficient clusters and suggests that the main bot-
tleneck for COILcr in the zero-shot retrieval setting lies in the language model
base, at the step of term representation generation.

6 Conclusion and Future Work

This paper investigates the model capacity and runtime cost of COIL-style
lexical retrievers. We present COILcr, an extension to COIL which factorizes
term representations into weighting and semantic components. At indexing time,
COILcr constructs semantic canonical representations to approximate term
semantics and precise matching between query and document terms, leading to
reduced index storage and retrieval runtime cost.

Without approximation, COILcr-∞ maintains the model capacity of COIL-
tok and consistently outperforms UniCOIL. Performing CR-based approxima-
tion for COILcr only slightly affects model accuracy, but drastically reduces
the inverted index storage cost by 90% while also transforming most run-time
vector product operations to a simple lookup operation.

Our experiments examine the effectiveness-efficiency balance of COILcr,
and discuss the effects of different term representation sizes and clustering heuris-
tics on model performance. We find that model accuracy is more prone to error
from approximation, while consistent Recall performance can be achieved with
very coarse term semantics. Experiments under different approximation and
retrieval settings further demonstrate the robustness of the CR approximation
approach.

Throughout this work, we observe the necessity of modeling term seman-
tics in lexical exact match retrieval, as well as the potential of very efficiently
doing so. In this paper, we utilize spherical clustering as a simple post-hoc app-
roach for CR generation and note the possibility of finding improved methods
to build canonical representation sets which reflect term senses. We hope this is
an encouraging step towards building both effective and efficient lexical retrieval
models and indexes in the future.
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Abstract. Retrieval studies often reuse TREC collections after the cor-
responding tracks have passed. Yet, a fair evaluation of new systems that
retrieve documents outside the original judgment pool is not straightfor-
ward. Two common ways of dealing with unjudged documents are to
remove them from a ranking (condensed lists), or to treat them as non-
or highly relevant (naïve lower and upper bounds). However, condensed
list-based measures often overestimate the effectiveness of a system, and
naïve bounds are often very “loose”—especially for nDCG when some top-
ranked documents are unjudged. As a new alternative, we employ boot-
strapping to generate a distribution of nDCG scores by sampling judg-
ments for the unjudged documents using run-based and/or pool-based
priors. Our evaluation on four TREC collections with real and simulated
cases of unjudged documents shows that bootstrapped nDCG scores yield
more accurate predictions than condensed lists, and that they are able
to strongly tighten upper bounds at a negligible loss of accuracy.

1 Introduction

The Cranfield experiments [12,13] were conducted on a collection of 1,400 doc-
uments and complete relevance judgments for 225 topics. Since collection sizes
grew substantially, complete judgments became infeasible almost immediately
thereafter. The current best practice at shared tasks in IR is to create per-topic
pools of the submitted systems’ top-ranked documents and then judge each
topic’s pool [40]. Systems that did not contribute to the pools may then later
retrieve some unjudged documents. Thakur et al. [36] recently observed this
for TREC-COVID [41], where dense retrieval models in post-hoc experiments
retrieved many unjudged documents that turned out to be relevant. Typical rea-
sons for “incomplete” judgments are lacking run diversity or time constraints—
which was the case for TREC-COVID as per Roberts et al. [29]. When reusing
shared task data, one thus often has to deal with unjudged documents.

Unjudged documents can be judged post hoc, but this can be costly and
inconsistent with the original judging process. Typically, post-hoc evaluations
either remove unjudged documents (condensing the results lists of a new sys-
tem to the included judged documents in their relative order) [31], or the
unjudged documents are assumed to either all being non- or highly relevant
(naïve lower/upper bounds) [25]. Both ideas have drawbacks: Condensed lists
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Fig. 1. Actual (obtained via post-judging) and estimated nDCG@10 of the dense
retrieval model ANCE for selected TREC-COVID topics with unjudged documents.

often overestimate effectiveness [33], and the difference between naïve lower
and upper bounds can be very large [25]—especially for a recall-oriented mea-
sure such as nDCG [23], one of the most reported measures for many retrieval
tasks [11,15,17,36]. We further show that lower/upper bounds on nDCG are
potentially incomparable to results reported based on complete judgments on
the same data (Sect. 3.3).

To address the outlined problems, we propose a new bootstrapping approach
to estimate nDCG in the presence of unjudged documents (Sect. 3). By repeat-
edly sampling judgments for unjudged documents using run- and/or pool-based
priors, we derive a distribution of possible nDCG scores for a retrieval system
on a topic. Figure 1 compares such distributions with the estimates of condensed
lists and the naïve lower/upper bounds on selected TREC-COVID topics for
the dense retrieval model ANCE [43] (which retrieved many unjudged docu-
ments deemed relevant [36]). The distributions help to identify topics with an
extremely unlikely naïve upper bound (Topics 3, 19, 34), or where only a few
nDCG scores between the bounds are very likely (Topic 22). In an evaluation
on the Robust04, ClueWeb09, ClueWeb12, and TREC-COVID collections with
real and simulated unjudged documents, we show the mode of the bootstrapped
nDCG score distribution to be a more accurate estimate than those obtained
from condensed lists and the, often default, naïve lower bound (Sect. 4). More-
over, bootstrapped nDCG bounds can be configured to be a lot tighter than
the naïve upper bound at a negligible loss of accuracy. For future nDCG evalu-
ations with unjudged documents, we share our data and code compatible with
TrecTools [28].
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2 Background and Related Work

We briefly review the nDCG evaluation measure, methods for dealing with
unjudged documents, and previous applications of bootstrapping in IR.

Normalized Discounted Cumulative Gain (nDCG). The nDCG [23] is one of
the most widely used IR evaluation measures (e.g., in the TREC Web and Deep
Learning tracks [8,17] or in the BEIR benchmark [36]). It is a normalized version
of the discounted cumulative gain (DCG) that combines result ranks and graded
relevance so that lower-ranked results contribute less “gain”. The DCG is usually
defined as

DCG@k =
k∑

i=1

2rel(di,q) − 1
log2(1 + i)

,

where k is the maximum rank to consider, rel(di, q) is the graded relevance
judgment of the document returned at rank i for the query q, the logarithm
ensures smooth reduction, and 2rel(di,q) emphasizes highly relevant documents.
The nDCG@k normalizes a system’s DCG@k score by dividing by the DCG∗@k
score of the “ideal” top-k ranking of the pool (i.e., the ranking of the judged doc-
uments by relevance). Note that the ideal ranking may easily include documents
that some systems do not return in their results.

Methods to Deal with Unjudged Documents. Only a few “specialized” retrieval
effectiveness measures specifically target situations with unjudged documents
(e.g., bpref [4] or RBP [27]). Yet, these measures are used in only a few scenarios
like the TREC 2009 Web track [8] that aimed for minimal judgment pools [6].
Most retrieval studies instead usually report measures that assume all documents
in the evaluated part of a ranking to have relevance judgments (e.g., nDCG).
When evaluating a new retrieval system in the scenario of such a study, retrieved
documents that were not in the original judgment pool cause problems [4,46].

Typical methods [25] to deal with unjudged documents are: (1) assuming
non-relevance, (2) predicting relevance, (3) condensing result lists, or (4) com-
puting naïve bounds. Assuming non-relevance for unjudged documents is the
standard in trec_eval, but only yields good results for “essentially” complete
judgments [42] and favors systems that retrieve many (relevant) judged docu-
ments [35]. Since systems that retrieve unjudged but relevant documents might
be severely underestimated [46], there have been attempts to automatically pre-
dict relevance [1,2,5,7] (e.g., based on document content). However, such pre-
dictions can be problematic given that even experienced human assessors can
struggle [38]. Also inferred measures like infAP [44] and infNDCG [45] could
be viewed as prediction approaches. They exploit the probabilities with which
documents were sampled for incomplete judgment pools with reduced overall
effort [39]. But inference does not really work for post-hoc evaluation of systems
that did not contribute to the original pool sampling since the sampling proba-
bilities for newly retrieved high-ranked documents then can be undefined. Still,
the general idea of sampling inspired our approach.
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In the condensed list approach, all unjudged documents are removed from
a ranked list before calculating effectiveness. The conceptual simplicity and the
experimental evidence [31] that condensed lists give better results than the spe-
cially designed bpref helped condensed lists to become widely used—also in Trec-
Tools [28] or PyTerrier [26]. But like relevance prediction, compressed lists also
have the disadvantage of hiding the potential uncertainty created by unjudged
documents. This motivates approaches that make this uncertainty “visible,” such
as calculating (naïve) lower or upper effectiveness bounds [25,27].

Naïve bounds contrast the worst case with the best case by calculating the
score a system would achieve if all unjudged documents were non-relevant or
highly relevant. In the context of utility-based (based only on ranking) and
recall-based (normalized by a “best possible” ranking) evaluation measures, the
naïve bounds are designed for the former [25]. For utility-based measures, any
actual effectiveness score of a system is guaranteed to be within the naïve bounds.
However, for recall-oriented measures like nDCG, we show that the actual effec-
tiveness of a system may lie outside the naïve bounds (cf. Sect. 3.3) and that
expanding them often leads to meaningless 0.0 (lower) and 1.0 (upper) bounds.

Our new bootstrapping approach addresses the outlined shortcomings of the
existing ideas for dealing with unjudged documents when using nDCG. By deriv-
ing a distribution of possible nDCG scores, we allow tighter bounds and more
informed point estimates. Both improvements are based on the same underlying
distribution of possible nDCG values, which also simplifies uncertainty assess-
ment and interpretation.

Bootstrapping in Information Retrieval. Bootstrapping is a statistical technique
in which repeated samples are drawn from data to obtain a distribution for subse-
quent statistical analyses [18]. It has been applied to various statistical problems
in information retrieval, either as topic bootstrapping or corpus bootstrapping.
Topic bootstrapping was probably the first use of bootstrapping in IR [34]. It
refers to the repeated sampling of queries for some statistical analyses and has
been used in significance tests [34,35] or to assess the discriminatory power of
effectiveness measures [30,32,47]. However, topic bootstrapping is not intended
to assess the uncertainty created by unjudged documents.

In corpus bootstrapping, documents are sampled from a corpus to simu-
late different corpora [47]. Previous use cases of corpus bootstrapping include
assessing the transferability of system comparisons between different corpora [16]
or the robustness of evaluation measures [47] and significance tests [19]. The
assumption underlying corpus bootstrapping is that observations should be sta-
ble between (slightly) different corpora. This inspired our idea of applying boot-
strapping to evaluations with unjudged documents in the sense that an unjudged
document should “behave” similarly to the judged documents in a run and/or
pool. Bootstrapping has not yet been applied to the evaluation of unjudged doc-
uments, although the research reviewed above shows that bootstrapping enables
similar applications. By making our code publicly available, we try to support
Sakai’s call for bootstrapping to get more attention in IR [30].
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3 Bootstrapping nDCG Scores

After preparatory theoretical considerations, we propose a bootstrapping app-
roach to generate nDCG score distributions by repeatedly sampling judgments
for unjudged documents. Based on the lessons learned, we then reconsider cur-
rent methods for estimating lower and upper bounds and propose improvements.

3.1 Preparatory Theoretical Considerations

As briefly discussed in Sect. 2, nDCG requires judgments to be complete up to
the desired scoring depth k. Unjudged documents in the top-k results of a system
must therefore either be post-judged, or be estimated otherwise based on some
strategy. Post-judgments are costly and may lead to inconsistencies with prior
judgments. This often leaves automatically estimating unjudged documents as
the most feasible practical option.

A first idea could be to simply randomly sample relevance labels for unjudged
documents. But without any further corrections, this approach can lead to
invalid results. For instance, consider an evaluation setting with three relevance
grades {0; 1; 2} and a fictional judgment pool that contains nine highly relevant
documents (grade 2), one relevant document (grade 1), and arbitrarily many
non-relevant documents (grade 0) for some topic. Assume that a to-be-evaluated
system A returns in its top-10 results the nine highly relevant documents from
the pool and one unjudged document not part of the pool. Suppose that rel-
evance grade 2 is randomly sampled for the unjudged document. Adding this
sampled highly relevant document to the pool then improves the ideal ranking:

DCG∗
original pool@10 < DCG∗

pool with sample@10 .

If DCG∗
pool with sample@10 is used as the normalization denominator for com-

puting the nDCG@10 of system A, the resulting scores are thus not directly
comparable to nDCG scores of other systems calculated based on complete
judgments for the original pool and DCG∗

original pool@10. Comparability could
be reestablished by recalculating the nDCG scores of the other systems using
DCG∗

pool with sample@10. Yet, recalculating scores might be biased towards the
newly added system: in case the randomly sampled score is higher than the
unjudged document’s true relevance, recomputing diminishes the original sys-
tems’ nDCG scores below their true value, yet increases the newly added sys-
tems’ nDCG beyond its true value.

Conversely, also using DCG∗
original pool@10 as the denominator to maintain

comparability is not valid. In the example case of system A, this would cause

DCGsystemA@10 > DCG∗
original pool@10 � DCGsystemA@10

DCG∗
original pool@10

> 1 ,

which exceeds the range of nDCG expected from normalization.

It follows that theoretically sound and empirically viable nDCG estimation
approaches to handle unjudged documents must not change the pool’s initial
number of judgments per relevance grade in order to preserve the DCG∗@k.
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Algorithm 1. Bootstrapping nDCG Scores
Input: R top-k ranking for query q that contains unjudged documents

J pool of pairs (d, rel(d, q)) (i.e., documents with relevance judgments)
b number of desired bootstrapped nDCG scores

prior pool-, run-, or pool+run-based sampling probability
Output: Scores multiset of b bootstrapped nDCG scores for R based on J and prior

1: Scores ← ∅
2: repeat b-times � following Sakai [30], we usually set b = 1, 000
3: J ′ ← J, S′ ← ∅ � buffers for pool and judgm. sample of unjudg. documents
4: for all unjudged documents d ∈ R do � try to sample prior -based judgment
5: select target relevance label r for d based on prior
6: if J ′ contains a document d′ �∈ R with rel(d′, q) = r then
7: J ′ = J ′ \ {(d′, r)}
8: S′ = S′ ∪ {(d, r)} � desired judgment can be sampled from pool
9: else if J ′ contains a document d′ �∈ R with 0 ≤ rel(d′, q) < r then

10: let d′ �∈ R be a document in J ′ with highest rel(d′, q) < r
11: J ′ = J ′ \ {(d′, rel(d′, q))}
12: S′ = S′ ∪ {(d, rel(d′, q))} � otherwise, sample best possible lower judgm.
13: else
14: S′ = S′ ∪ {(d, 0)} � fallback: standard assumption of non-relevance
15: Scores ← Scores ∪

{
DCG@k of R based on J′∪S′

DCG∗@k of J

}

3.2 Our Bootstrapped nDCG Estimation Approach

Algorithm 1 shows our approach. It meets the constraint of preserving the num-
ber of judgments per relevance grade in the pool by restricting the random
sampling of relevance degrees to a prior . In each of the b bootstrap iterations, a
relevance grade r is sampled for an unjudged document in the top-k ranking R
from the judgment pool J according to one of three sampling priors:

pool-based P (rel = r | J) =
|{d ∈ J : rel(d, q) = r}|

|J | ,

run-based P (rel = r | R) =
|{d ∈ R : rel(d, q) = r}|
|{d ∈ R : d is judged}| , and

pool+run-based P (rel = r | J,R) =
P (rel = r | J) + P (rel = r | R)

2
.

During sampling, our approach checks in each iteration whether the desired
relevance grade r is still present in the pool. If not, the highest possible judgment
that is below the desired grade is selected, with grade 0 as the default fallback
option. This sampling strategy guarantees that the ideal ranking of the original
pool J and the ideal ranking of the final “sampled” judgments J ′ ∪ S′ have
the same DCG∗@k. The bootstrapped nDCG scores for R are thus directly
comparable to nDCG scores of other rankings derived from the same pool J (e.g.,
to completely judged runs with nDCG scores computed on the initial pool).



Bootstrapped nDCG Estimation in the Presence of Unjudged Documents 319

Table 1. Examples with incorrect RBP-inspired/naïve nDCG@2 bounds or with very
broad guaranteed nDCG bounds; relevance labels from 0 (not rel.) to 3 (highly rel.).

Bound Input Truth Estimated nDCG Bounds vs. Actual Score

? =unjudged Lower Bound ≤ Actual ≤ Upper Bound

RBP-insp. [1, ?] [1,2]
DCG([1,0])
DCG([1,0])

= 1.00 � DCG([1,2])
DCG([2,1])

= 0.80 � DCG([1,3])
DCG([3,1])

= 0.71

Naïve [?, 1] [2, 1]
DCG([0,1])
DCG([1,0])

= 0.63 ≤ DCG([2,1])
DCG([2,1])

= 1.00 � DCG([0,1])
DCG([1,0])

= 0.63

Guarant. [1, ?] [1,2]
DCG([1,0])
DCG([3,3])

= 0.09 ≤ DCG([1,2])
DCG([2,1])

= 0.80 ≤ DCG([1,0])
DCG([1,0])

= 1.00

Efficient Implementation. Our bootstrapping approach computes nDCG scores
in each iteration. To ensure efficiency, we precompute and tabulate the possi-
ble discounted gain values for each relevance grade at each of the top-k ranks,
the DCG∗@k of the ideal ranking of the given pool J , and the sum of the dis-
counted gain values of the judged documents in R—all of these values do not
change during bootstrapping. The nDCG score computation can then look up
the sampled discounted gain values for unjudged documents, add them to the
precomputed intermediate DCG of the judged part of R, and divide by the pre-
computed DCG∗@k of J . On an AMD Epyc 1.8GHz CPU, a TrecTools-based
tabulated implementation of our approach takes an average of 2.84 s per topic
(stddev: 0.01 s) to bootstrap nDCG@10 scores for the four runs that have the
most unjudged documents in TREC-COVID (9–32% unjudged documents) as
per Thakur et al. [36]—without tabulation: 17.62 s (stddev: 0.91 s). The fast run
time shows that bootstrapping is practically applicable, especially since further
massive parallelization is possible.

3.3 Conceptual Comparison

Our preparatory considerations from Sect. 3.1 also apply to the derivation of
lower/upper bounds for nDCG. Bounds for nDCG inspired by RBP [25,27] can
be incomparable, too. Naïve bounds can easily be made comparable but we show
that they and RBP-inspired bounds are not guaranteed to be correct. We thus
devise guaranteed bounds, but show that they then “necessarily” are very broad.

Error Bounds for nDCG. Inspired by the error bounds proposed for the utility-
based measure RBP [25,27], lower/upper bounds for nDCG may be derived
by either assigning a relevance grade of 0 or the highest relevance grade to all
unjudged documents. But since the latter changes the ideal ranking, such an
upper bound can lead to incomparable nDCG scores. Therefore, in order to
yield comparable scores, we propose that an RBP-inspired “naïve” upper bound
for nDCG should iteratively greedily assign the highest still available relevance
judgment from the pool to the highest ranked unjudged document. If the pool’s
available non-zero grades are exhausted, 0 is assigned. This naïve bounding does
not change the DCG∗@k and thus yields scores comparable to other rankings on
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Table 2. Characteristics of methods to deal with unjudged documents in nDCG scor-
ing. Some are deterministic, some not (Det.), and they use different strategies with pool-
and/or run-based priors. All are “comparable” (i.e., do not change the ideal DCG∗@k).

Approach Det. Selection/Sampling Strategy Prior Comp.

Run Pool

Condensed lists [31] ✓ Remove unjudged documents. ✓ ✗ ✓

Naïve low. b. [25,27] ✓ Unj. = Non-relevant. ✗ ✗ ✓

Naïve upper bound ✓ Unj. = Highest remaining judgm. ✗ ✓ ✓

Pool-based bootstr. ✗ P (rel = r | J) = |{d∈J : rel(d,q)=r}|
|J| ✗ ✓ ✓

Run-based bootstr. ✗ P (rel = r | R) =
|{d∈R : rel(d,q)=r}|
|{d∈R : d is judged}| ✓ ✗ ✓

Pool+run-based bs. ✗ P (rel = r | J,R) =
P (r | J) + P (r | R)

2
✓ ✓ ✓

the pool. However, the examples in Table 1 show that both the RBP-inspired and
the naïve bounds can be incorrect. The RBP-inspired lower bound (and thus also
the equivalent naïve lower bound) can be too high (first row; the actual grade of 2
for the unjudged document increases DCG∗@k more than DCG@k). Similarly,
also the upper RBP-inspired and naïve bounds can be incorrect (first and second
row). For a guaranteed correct lower bound, a hypothetical ideal ranking needs
to be assumed that consists of only documents with the highest relevance grade,
and all unjudged documents get a grade of 0. Computing a guaranteed correct
upper bound is more complicated but in the end usually uses a different ideal
ranking which makes the guaranteed bounds incomparable.

Discussion. Table 2 summarizes characteristics of methods that deal with
unjudged documents but that preserve the ideal ranking. The methods rely on
different priors (none, pool-, run-, or pool+run-based)—some only implicitly, like
the upper bound method, which uses the pools highest remaining judgments.
Our bootstrapping idea incorporates priors from both run and pool, and indi-
cates the uncertainty introduced by unjudged documents through a probability
distribution. Condensed lists and naïve bounds only generate point scores.

4 Evaluation

We experimentally compare our bootstrapping approach to naïve bounds and
condensed lists on real and simulated scenarios with unjudged documents on
the Robust04, ClueWeb09, ClueWeb12, and TREC-COVID collections. In the
comparison, we assess the ability to predict actual nDCG scores, their effects
on system rankings, and the tightness of potential bounds. For score prediction
and the creation of subsequent system rankings, our approach uses the most
likely nDCG score from the bootstrapped distribution, for tighter bounds, our
approach uses fixed percentiles in the bootstrapped distribution. All experiments
use nDCG@10, since it is predominant in shared tasks and the highest cut-off
for which the four collections have complete judgments for the submitted runs.
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Table 3. The prevalence of each relevance label in the judgment pool and the unjudged
documents, respectively. For Robust04, ClueWeb09, and ClueWeb12, we show the sim-
ulated incompleteness averaged over groups; TREC-COVID is real incompleteness.

Corpus Judgement Pool Unjudged Documents

0 1 2 3 4 0 1 2 3 4

ClueWeb09 0.74 0.17 0.07 0.01 0.01 0.80 0.15 0.03 0.01 0.01
ClueWeb12 0.64 0.25 0.09 0.02 0.02 0.67 0.24 0.08 0.02 0.01
Robust04 0.80 0.18 0.02 0.00 0.00 0.96 0.04 0.00 0.00 0.00
TREC-COVID 0.63 0.16 0.21 0.00 0.00 0.75 0.02 0.23 0.00 0.00

4.1 Experimental Setup

We compare a run with unjudged documents in two setups against (1) runs with-
out unjudged documents (measuring the accuracy of lower and upper bounds),
and (2) other runs without unjudged documents (measuring correlations in sys-
tem rankings). Score ties in a run are solved via alphanumeric ordering by
document ID (following a recommendation by Lin and Yang [24]). To reduce
the impact of low-performing systems, only the 75% of runs with the highest
nDCG@10 are included (following a similar setup by Bernstein and Zobel [3]).
The ClueWeb corpora have a high number of near-duplicates [20] that might
invalidate subsequent evaluations [3,21,22]. We use pre-calculated lists [20] to
deduplicate the run and qrel files. We follow trec_eval and replace negative rele-
vance judgments with 0. All experiments use TrecTool’s nDCG@10 implementa-
tion with default parameters, and we report statistical significance where appli-
cable according to the Students’ t-test with Bonferroni correction at p = 0.05.

Test Collections. Our evaluation is based on four collections: (1) Robust04 [37]
(528,155 documents, 249 topics, 311,410 relevance judgments, pool: 111 runs
by 14 groups), (2) ClueWeb09 (1 billion web pages, 200 topics, 58,414 judg-
ments from TREC Web tracks [8–11], pools: 32–71 runs by 12–23 groups),
(3) ClueWeb12 (0.7 billion web pages, 100 topics, 23,233 judgments from TREC
Web tracks [14,15], pools: 34 + 30 runs by 14 + 12 groups), (4) TREC-
COVID [41] (171,332 documents, 50 topics, 66,336 judgments).

Establishing Incompleteness. TREC-COVID allows a real case study on incom-
pleteness. In post-hoc experiments [36], three models retrieved 17% to 41%
unjudged documents in their top-10 that were post-judged [36]. For Robust04,
ClueWeb09, and ClueWeb12, we simulate incomplete pools with the “leave one
group out” method [38], adjusting the pool by removing documents solely con-
tributed by the group submitting a run (i.e., only their runs have the document
in the top-10 results), simulating that the group did not participate. This yields
one incomplete pool per group, where runs of other groups remain fully judged.

Table 3 provides an overview of the ratios of relevance degrees in the pools and
the unjudged documents. For simulated incompleteness, we report averages over
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Table 4. Overview of nDCG score prediction assessed by the actual RMSE, and the
lower and upper bound RMSE (ignoring under/overestimations) on Robust04 (R04),
ClueWeb09 (CW09), and ClueWeb12 (CW12). We report statistical significance
according to Student’s t-test with Bonferroni correction at p=0.05 to the naïve lower
(†) and upper bound (‡), respectively condensed lists (∗).

Approach RMSE on R04 RMSE on CW09 RMSE on CW12

Lower Actual Upper Lower Actual Upper Lower Actual Upper

Naïve (L) .004∗‡ .058∗‡ .058∗‡ .009∗‡ .076∗‡ .076∗‡ .007∗‡ .113∗‡ .113∗‡

Conden. .062†‡ .068†‡ .027†‡ .081†‡ .087†‡ .034†‡ .081†‡ .092†‡ .043†‡

Naïve (U.) .210†∗ .210†∗ .002†∗ .338†∗ .338†∗ .000†∗ .307†∗ .307†∗ .001†∗

Bootstr.P .078†∗‡ .083†∗‡ .027†‡ .086†‡ .097†∗‡ .046†∗‡ .093†∗‡ .105∗‡ .048†‡

Bootstr.R .007†∗‡ .058∗‡ .058∗‡ .021†∗‡ .077∗‡ .075∗‡ .059†∗‡ .108∗‡ .091†∗‡

Bootstr.P+R .037†∗‡ .056∗‡ .041†∗‡ .046†∗‡ .074∗‡ .058†∗‡ .058†∗‡ .083†‡ .060†∗‡

all groups. None of the collections are complete, as all have relevant documents
among the unjudged ones. However, for Robust04, the high number of submitted
runs and deep pooling ensured that the pools are “essentially complete”, even
for simulated incompleteness (4% of the unjudged documents are relevant). The
remaining collections have 20% to 33% relevant documents among the unjudged
ones, providing a good range of (in)completeness for our experiments.

4.2 Evaluation Results

For nDCG prediction experiments, accuracy is reported as root-mean-square
error (RMSE), contrasted by two RMSE variants that assess lower and upper
bounds. Furthermore, we measure the correlation of system rankings obtained by
predicted nDCG scores to the ground truth rankings as Kendall’s τ and Spear-
man’s ρ. For experiments on tightening naïve bounds, we measure precision and
recall in reconstructing per-topic system rankings. Evaluation is first conducted
on simulated incompleteness and concludes with the TREC-COVID case study.

nDCG Score Predicion. Table 4 reports the nDCG@10 prediction accuracy of all
tested approaches. We report the actual RMSE, a lower-bound RMSE (ignor-
ing underestimations), and an upper-bound RMSE (ignoring overestimations).
Cases with incorrect naïve bounds occur in practice but are rare. The naïve lower
bound is slightly more inaccurate than the naïve upper bound (maximum viola-
tions of 0.009 on ClueWeb09 for the lower bound vs. 0.002 for the upper bound on
Robust04). Similar to the incompleteness degrees of the collections (Table 3), the
actual RMSE is rather small on Robust04, larger on ClueWeb09, and the high-
est on ClueWeb12. Consequently, the naïve lower bound that assumes unjudged
documents are non-relevant has high accuracy on both collections, but is out-
performed by condensed lists on ClueWeb12 (RMSE 0.113 vs. 0.92).

Our three bootstrapping variants with a prior from the pool (Bootstr.P ), the
run (Bootstr.R), or both (Bootstr.P+R) show that priors from the run yield more
accurate results than from the pool, and combining both yields the highest accu-
racy in all cases, significantly improving upon the naïve lower and upper bound,
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Table 5. Overview of the correlation between system rankings obtained via predicted
nDCG@10 scores on incompletely judged runs to those runs with complete judgments.
We report Kendall’s τ and Spearman’s ρ on Robust04, ClueWeb09, ClueWeb12, and
the mean over those three corpora.

Approach Robust04 ClueWeb09 ClueWeb12 Mean

τ ρ τ ρ τ ρ τ ρ

Naïve (L) .936 .997 .821 .959 .646 .837 .801 .931
Conden. .924 .978 .610 .744 .786 .889 .773 .870
Naïve (U.) .189 -.268 -.411 -.656 -.097 -.250 -.106 -.391

Bootstr.P .911 .975 .644 .824 .781 .909 .779 .903
Bootstr.R .943 .997 .721 .878 .764 .908 .810 .927
Bootstr.P+R .966 .996 .716 .885 .814 .924 .832 .935

and condensed lists. This result is reasonable, as the combination of run priors
and pool priors allows the bootstrapping approach to account for relationships
between the topic and the run. The results show that bootstrapped nDCG scores
from run and pool priors are highly applicable in practice as they yield the most
accurate nDCG predictions in all our experiments. Additionally, by comparing
the lower- and upper-bound RMSE of condensed lists with those of pool/run-
based bootstrapping, we observe that condensed lists are inclined to overestimate
on all corpora. In contrast, bootstrapped predictions are more balanced with a
tendency for underestimations, which is preferable in practice [35].

System Ranking Reconstruction Against Incompletely Judged Runs. We contrast
our experiments on the accuracy of predicted nDCG@10 scores by measuring
the correlation of system rankings obtained via predicted scores on incompletely
judged runs to the ground truth system ranking obtained via fully judged runs.
Therefore, we predict the nDCG@10 sores of each run using the incomplete judg-
ments for the run obtained via the “leave one group out” method [38]. Table 5
reports the correlation of the system rankings obtained on the incomplete judg-
ments with the ground-truth system ranking measured as Kendall’s τ and Spear-
man’s ρ. Again, we observe that the judgment pool for Robust04 is, even with
simulated incompleteness, highly reusable as all approaches (besides the naïve
upper bound) achieve high correlations (pool/run- based bootstrapping having
the highest Kendall’s τ of 0.966). Our pool/run-based bootstrapping substan-
tially outperforms condensed lists in all cases, and also achieves the highest
correlation on average over all three corpora (Kendall’s τ of 0.832).

System Ranking Reconstruction Against Fully Judged Runs. To assess pool/run-
based bootstrapping for tightening naïve bounds, we compare different methods
for score prediction w.r.t. their ability to reconstruct the topic-level ground-truth
ranking of systems. Given a run with unjudged documents, we first calculate
point estimates: the naïve lower bound, condensed list, and the most likely score
according to pool/run-based bootstrapping. Then, score ranges are established,
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Table 6. Precision, recall, and F1 in reconstructing topic-level system rankings with
unjudged documents. We report significance (Student’s t-test with Bonferroni correc-
tion at p=0.05) to the point estimate of list condensation (∗) and score ranges starting
at the lower bound, ending at the naïve upper bound (†), resp. list condensation (‡).

Approach Reconstr. on R04 Reconstr. on CW09 Reconstr. on CW12

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

P
oi
nt

Naïve (L.) .954†∗ .954†∗‡ .954†∗ .921†∗‡ .921†∗‡ .921†∗‡ .866†‡ .866†‡ .866†

Conden. .931†‡ .931†‡ .931† .886†‡ .886†‡ .886† .891†‡ .891†‡ .891†

BSR/P .946†∗‡ .946†∗‡ .946†∗ .916†∗‡ .916†∗‡ .916†∗‡ .903†‡ .903†‡ .903†‡

R
an

ge

Naïve (U.) .987∗ .775∗‡ .865∗‡ .995∗‡ .606∗‡ .741∗‡ .998∗‡ .547∗‡ .693∗‡

Cond. .973∗ .906†∗ .936† .969†∗ .833†∗ .892† .957†∗ .791†∗ .862†

BSP+R@75 .977∗ .868†∗‡ .917† .972†∗ .822†∗ .888† .971†∗ .758†∗ .847†∗

BSP+R@90 .985∗ .831†∗‡ .898†∗‡ .985†∗‡ .766†∗‡ .857†∗‡ .986†∗‡ .707†∗‡ .817†∗‡

BSP+R@95 .986∗ .815†∗‡ .890†∗‡ .988∗‡ .739†∗‡ .840†∗‡ .990∗‡ .673†∗‡ .793†∗‡

starting at the naïve lower bound and ending at different high points: the naïve
upper bound, the score of condensed lists, and the upper 75%, 90%, or 95% per-
centiles of the bootstrapped distributions. Score ranges and point estimates for
each run are compared against the scores of all other runs that contributed to the
respective pool, emitting corresponding system preferences if the range/estimate
is strictly below or above the exact score of another system.

Table 6 reports the reconstruction effectiveness as precision, recall, and F1
score. In recall-oriented settings, where score ranges are unsuitable, the naïve
lower bound (recall of 0.954 on Robust04), or the bootstrapped prediction (recall
of 0.903 on the ClueWeb12) should be used. In precision-oriented scenarios,
naïve bounds achieve the highest precision at a high cost in recall (only 0.547
on the ClueWeb12). The pool/run-based bootstrapping at the 95% percentile
provides significantly tighter naïve bounds (recall is always significantly better)
at a negligible loss in precision (not significant in all cases). Hence, nDCG bounds
can be substantially tightened without loss in accuracy using bootstrapping.

Real Incompleteness on TREC-COVID. As a final case study, we apply naïve
bounds, condensed lists, and our pool/run-based bootstrapping to estimate the
nDCG@10 of three dense retrieval models on the original TREC-COVID collec-
tion, for which the unjudged documents were post-judged [36]. The three dense
retrieval systems operated in a zero-shot setting. Thus we compare them against
the best run submitted to the first round of TREC-COVID, as those systems
also had no access to training data.

Table 7 shows the results on the original (incomplete) TREC-COVID qrels
and the post-hoc (complete) qrels for three selections of topics: (1) moderate
levels of incompleteness (between 25% to 50% unjudged documents), (2) high
incompleteness (more than 50% unjudged documents), and (3) all topics (only
nDCG@10 scores in the setup with all topics are comparable between different
systems). The original run files were not stored in the BEIR experiments [36],
so we reproduced them (only minor differences for ANCE, TAS-B, and ColBERT,
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Table 7. The nDCG@10 on the original qrels (unjudged documents) from TREC-
COVID and the expanded qrels (all documents judged) for topics with 25% to 50%
unjudged documents (.25 to .5), topics with more than 50% unjudged documents
(.5 to 1), and all topics. We report the proportion of unjudged documents (U@10),
and predictions of the lower bound (Default), condensed lists (Cond.), pool/run-based
bootstrapping (BSP+R), and naïve and tightened upper bounds (BSP+R@95).

Model Original Qrels Ex. Qrels

nDCG@10 Upper Bound nDCG@10

U@10 Default Cond. BSP+R Naïve BSP+R@95

.2
5
to

.5 ANCE 35.6% 0.489 -0.161 0.683+0.033 0.660+0.010 0.838+0.188 0.795+0.145 0.650

ColBERT 33.3% 0.485 -0.141 0.641+0.015 0.614 -0.012 0.770+0.144 0.741+0.115 0.626

TAS-B 32.5% 0.597 ±0.000 0.875+0.278 0.847+0.250 0.902+0.305 0.894+0.297 0.597

.5
to

1 ANCE 65.6% 0.207 -0.150 0.547+0.190 0.385+0.028 0.769+0.412 0.542+0.185 0.357

ColBERT 62.9% 0.337 -0.110 0.679+0.232 0.517+0.070 0.881+0.434 0.645+0.198 0.447

TAS-B 73.8% 0.211 -0.119 0.584+0.254 0.459+0.129 0.918+0.588 0.623+0.293 0.330

A
ll

T
op

ic
s ANCE 22.4% 0.652 -0.083 0.772+0.037 0.747+0.012 0.853+0.118 0.804+0.069 0.735

ColBERT 17.2% 0.680 -0.054 0.770+0.036 0.741+0.007 0.826+0.092 0.789+0.055 0.734

TAS-B 41.0% 0.481 -0.074 0.705+0.150 0.633+0.078 0.871+0.316 0.729+0.174 0.555

1st@TREC 0.0% 0.679 ±0.000 0.679 ±0.000 0.679 ±0.000 0.679 ±0.000 0.679 ±0.000 0.679

but for DPR, we scores were substantially different and still had unjudged doc-
uments, so we exclude DPR). The default behaviour of assuming that unjudged
documents are non-relevant (i.e., the naïve lower bound) underestimates the
effectiveness for all dense retrieval models. At the same time, condensed lists
substantially overestimate the effectiveness (e.g., for TAS-B by 0.150). Our pro-
posed pool/run-based bootstrapping produces the best estimates in all cases.
Tightening upper bounds with bootstrapping is very valuable, as the 95% per-
centile of bootstrapped nDCG scores is much tighter as the naïve upper bound.

5 Conclusion

Our new bootstrapping method to account for unjudged documents in post-
hoc nDCG evaluations is efficient in practice and more effective than previous
methods that derive a point estimate or bounds for a system’s true nDCG. Pack-
aged as a TrecTools-compatible software that is publicly available, bootstrapped
estimation is directly applicable to retrieval studies.

As interesting directions for future work, we want to expand our bootstrap-
ping approach to more evaluation measures (e.g., Q-Measure, MAP, or RBP) and
combine it with approaches that predict the relevance of unjudged documents
based on their content. This combination could lead to more informed bootstrap
priors and might also tighten the resulting bootstrapped score distributions.
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Abstract. Playlists are a major way of interacting with music, as evi-
denced by the fact that streaming services currently host billions of
playlists. In this content overload scenario, it is crucial to automatically
characterise playlists, so that music can be effectively organised, accessed
and retrieved. One way to characterise playlists is by their listening con-
text. For example, one listening context is “workout”, which characterises
playlists suited to be listened to by users while working out. Recent work
attempts to predict the listening contexts of playlists, formulating the
problem as multi-label classification. However, current classifiers for lis-
tening context prediction are limited in the input data modalities that
they handle, and on how they leverage the inputs for classification. As a
result, they achieve only modest performance. In this work, we propose
to use knowledge graphs to handle multi-modal inputs, and to effectively
leverage such inputs for classification. We formulate four novel classifiers
which yield approximately 10% higher performance than the state-of-
the-art. Our work is a step forward in predicting the listening contexts
of playlists, which could power important real-world applications, such
as context-aware music recommender systems and playlist retrieval sys-
tems.

Keywords: Music playlists · Context-awareness · Recommender
systems

1 Introduction

Music is commonly organised in some form of a playlist. According to a standard
definition, a playlist is a sequence of music songs [5]. Playlists are a popular fea-
ture of music streaming services. Users consume playlists for 31% of their total
listening time [31]; and 55% of users create their own playlists [27]. Playlists are
also created for users by professional editors and by algorithms. For instance,
the popular music streaming service Spotify was hosting more than four billion
playlists in 2021.1 In this content overload scenario, it is crucial to automatically
characterise playlists, so that music can be effectively organised, accessed and

1 https://backlinko.com/spotify-users.
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Fig. 1. A knowledge graph representing two playlists and three songs in total. The
bottom and top boxes indicate two portions: Gi, which contains song, playlist and
listening context nodes, and Gm, which contains metadata nodes, such as musical
genres.

retrieved [9]. A common approach is playlist tagging, which is the task of assign-
ing to a playlist one or more tags, drawn from a fixed vocabulary of tags. For
example, [14] proposes a dataset of playlists annotated with a variety of different
tags, like musical genres or decades. Similarly, [8] proposes a dataset of playlists
annotated with listening context tags. Examples of listening context tags are
“workout” and “party”, which characterise playlists suited to be listened to by
users while working out, and while having a party.

Listening context tags are interesting because they are user-centered, rather
than music-centered [30]. For example, musical genre and decade tags refer to
music. On the other hand, listening context tags refer to how people listen to
music. As such, the accurate prediction of listening contexts can allow advances
at the intersection of music information retrieval (MIR) and human-computer
interaction (HCI), such as context-aware music recommendation [33]. In fact,
recommending the right playlist at the right time is only possible if the listening
context suited to listening to the playlist is known.

To the best of our knowledge, there exists only one attempt to predict the
listening context of music playlists: [8]. The authors of [8] set up a multi-label
classification problem, in which playlists are classified for their listening contexts,
and they propose four classifiers: two matrix factorisation (MF)-based classifiers,
that work by counting how many times a song is associated with each playlist
listening context, and two convolutional neural network (CNN)-based classifiers,
that work with song audio. However, these classifiers are limited in that they do
not incorporate song metadata, such as musical genres.

In this paper, we formulate two novel knowledge graph (KG)-based classifiers.
KGs are a powerful data model, suitable for storing heterogeneous information
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[34]. Figure 1 depicts a KG like those we use, made up of two distinct portions: Gi

and Gm. The portion Gi represents the membership of songs to playlists, and of
playlists to listening contexts. The portion Gm represent song metadata, solving
the limitation of existing classifiers that they do not use song metadata. The KG-
based classifiers that we propose work by building a KG, such as the one depicted
in Fig. 1, embedding the KG, so that each node and edge is transformed to a
feature vector, and using the song embeddings to predict the listening contexts
of playlists.

We benchmark the classifiers with a dataset of playlists annotated with their
listening contexts, similar to the one proposed in [8]. The two KG-based classi-
fiers we propose achieve approximately 10% higher performance than the exist-
ing predictors. A sensitivity analysis reveals that the KG-based classifiers can
incorporate song metadata effectively.

However, the two KG-based classifiers do not consider song audio. So, we
formulate another two novel predictors, as the hybrid of the CNN-based and KG-
based classifiers. As expected, the hybrid classifiers outperform MF-based, KG-
based and CNN-based predictors, setting the new state-of-the-art performance
in the task.

We release the source code and the dataset that supports our work here, so
as to allow reproducibility and foster new research on the subject.2

In summary, our contributions are:

1. The first two KG-based listening context predictors of music playlists that
incorporate song metadata;

2. Another two novel predictors that incorporate KGs and song audio;
3. A comparison of the predictors reporting approximately 10% higher perfor-

mance than the state-of-the-art, and showing the impact of song metadata
on performance.

The rest of the paper is organised as follows: in Sect. 2, we review related
work on music listening contexts, and especially work that looks into how music
consumption changes in different listening contexts. We also review related work
in music tagging. In Sect. 3, we describe our four novel classifiers for predicting
the listening context of music playlists. In Sect. 3, we present extensive experi-
ments that compare the novel classifiers to existing classifiers, and validate the
design of the novel classifiers with a sensitivity analysis. Section 5 concludes the
paper and outline future work.

2 Related Work

The task of tagging can be defined as marking content with descriptive terms,
also called keywords or tags, drawn from a fixed vocabulary [16]. Content can
refer to different objects, such as text, audio, images or video. For example,
[7] propose an approach for tagging an image with its objects, such as: “fish”,

2 https://github.com/GiovanniGabbolini/playlist-context-prediction.

https://github.com/GiovanniGabbolini/playlist-context-prediction
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“plane” or “shoe”. And, [25] survey tagging systems in the text, image and music
domains.

In this work, we focus on the music domain, as tagging is a major topic
in music information retrieval (MIR). Music tagging is the task of classifying
music in one or more tag classes. As such, the vocabulary of tags is typically
assumed to be fixed. One common setup is song tagging, where single songs
are classified. [36], for example, offers a comparison of recent Convolutional
Neural Network (CNN)-based classifiers: a CNN extracts learned features from
the audio of a song, and leverages these features to output appropriate tags.
Similarly, the state-of-the-art classifiers proposed in [10,29,35] are CNN-based.
Progress in song tagging is enabled by the availability of large scale datasets,
such as the Million Songs Dataset [3], the MagnaTagATune Dataset [24] and the
MG-Jamendo Dataset [4]. These datasets contain songs annotated with tags of
several categories: genre tags (e.g. “jazz”), instrumentation tags (e.g. “guitar”),
decade tags (e.g. “80s”), mood tags (e.g. “happy”) and listening context tags
(e.g. “party”). A related (but different) task to song tagging is playlist tagging,
where a list of songs is tagged, instead of a single song. [14] proposes a dataset of
playlists annotated with a variety of different tags, like genre tags or decade tags.
Classifiers for song tagging can be extended to do playlist tagging. For example,
[8] proposes a CNN-based playlist classifier, with an architecture similar to the
CNN-based song classifiers.

Previous work shows that music listening behaviour depends on the listening
context [11,17]. For example, users listen to one type of music while having a
party, to another type of music while spending time alone, and to another type
while working. Context-aware music recommender systems [33] address the user’s
need to access the right music in the right context. Applications include: context-
aware song and playlist recommendation, and context-aware playlist continua-
tion [31]. Predicting the listening context that suits some music is a first step
towards context-awareness. Hence, some of the recent work on music tagging
focuses on listening context tags only. For example, [19,20] propose a dataset of
songs annotated with listening context tags, and a baseline CNN-based classifier.
And, [8] proposes a dataset of playlists annotated with listening context tags,
such as “workout” and “party”, and four baseline classifiers: two CNN-based
and another two MF-based classifiers.

Our work here is on playlist tagging, as we focus on predicting the listening
contexts of playlists. We build on [8], as we propose four novel classifiers, which
outperform the four classifiers that they propose, setting the new state-of-the-art
performance in the task.

3 Method

Predicting the listening contexts of playlists is framed by the authors of [8] as
a multi-label classification problem. The same authors propose four such classi-
fiers (MF-avg, MF-seq, CNN-avg and CNN-seq). Here, we propose another
four such classifiers (KG-avg, KG-seq, Hybrid-avg, Hybrid-seq). As we will
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explain below, six of the classifiers that we consider follow the schema depicted
in Fig. 2. The two hybrid classifiers follow the schema depicted in Fig. 3. In the
rest of this section, we summarise the four classifiers that were proposed in [8],
and we describe the four classifiers that we propose.

Fig. 2. Schematic architecture of MF-avg, MF-seq, CNN-avg, CNN-seq, KG-avg

and KG-seq.

Fig. 3. Schematic architecture of Hybrid-avg and Hybrid-seq.

3.1 Matrix Factorisation-Based

The two matrix factorisation (MF)-based classifiers (MF-avg and MF-seq),
originally proposed in [8], take as input a matrix X ∈ R

N,M where N is the
number of songs and M is the number of listening contexts. The element at row
n and column m of X is equal to the number of times the nth song appears
in playlists that have the mth context. The matrix X is factorised into two
matrices, S ∈ R

N,H and C ∈ R
H,M , using WR-MF, which is the MF procedure

described in [18], so that SC ≈ X. H is the embedding dimension, which is
a hyper-parameter of WR-MF. The rows of S and the columns of C contain,
respectively, song and listening context embeddings. Then, the song embedding
vectors for the songs in a given playlist (a subset of the embeddings contained
in S) are either averaged song-wise (in MF-avg) or input to a single-layered
LSTM network (in MF-seq), to get a playlist embedding vector, which is fed
into a single-layered feed-forward (FF) network that outputs a score for each
listening context.
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The architecture of MF-avg and MF-seq fit into the schema of Fig. 2 as the
matrix X is the input, and WR-MF is the song embedding extractor. Notice that
MF-avg and MF-seq work in two steps, that is the song embedding extractor
is trained separately from the rest.

3.2 Convolutional Neural Network-Based

The two convolutional neural network (CNN)-based classifiers (CNN-avg and
CNN-seq), originally proposed in [8], extend the state-of-the-art in song tagging
to playlist tagging. Given a song, they consider the full audio, and compute mel-
spectrograms for every contiguous 3-seconds of audio. The mel-spectrogram is
a hand-crafted feature extracted from audio, commonly used in many music
information retrieval (MIR) tasks, such as song tagging, e.g. [10,29,35]. The
mel-spectrograms are input to a Convolutional Neural Network (CNN) with five
1D-convolutional layers, which outputs an embedding vector for every 3-seconds
of audio. Such embeddings are averaged point-wise, to get one song embedding
vector. Given a playlist, the song embedding vectors are computed as above,
and either averaged song-wise (in CNN-avg) or input to a single-layered LSTM
network (in CNN-seq), to get a playlist embedding vector, which is fed into a
single-layered (FF) network that outputs a score for each listening context.

The architecture of CNN-avg and CNN-seq fit into the schema of Fig. 2
as the mel-spectrograms are the input, and the CNN is the song embedding
extractor. Notice, however, that CNN-avg and CNN-seq are end-to-end, that
is the song embedding extractor is trained jointly with the rest.

3.3 Knowledge Graph-Based

A knowledge graph (KG) is a set of triples G = {(e, r, e′) | e, e′ ∈ E, r ∈ R},
where E and R denote, respectively, the sets of entities (nodes) and relationships
(edges). KGs are suitable for representing heterogeneous information [34]. For
example, [28] builds a KG representing users, their interactions with songs, and
acoustical metadata, such as what musical instruments are played in the songs.

The information we want to represent is: songs; playlists; listening contexts;
and song metadata. So, we build a KG composed of two portions. (1) Gi: the
portion containing song nodes, playlist nodes and listening context nodes. These
nodes are connected by edges according to membership: a song node is connected
to the playlist nodes the song belongs to, and a playlist node is connected to
its listening context node. (2) Gm: the portion containing song metadata, i.e.
the record label associated with the song, the musical genres associated with the
song, the year and the month when the song was released, the artist of the song,
the city and the country where the artist is currently based, and where they
were born. We selected these items of metadata empirically, through informal
experimentation, and by taking inspiration from previous work; for example, [21]
finds that the release year of a song can be a predictor for the listening context.
In future work, Gm can be readily expanded to include more song metadata,
such as information extracted from song lyrics. For each piece of song metadata,



336 G. Gabbolini and D. Bridge

there is a node in Gm. Song nodes are connected by edges to their metadata
nodes. Song metadata may be missing, e.g. we may not know the record label
for a particular song. We obtain metadata from the crowd-sourced database
MusicBrainz.3

Figure 1 depicts a KG, like those that we build.
We embed the KG using the Trans-D algorithm, which is a state-of-the-

art KG embedding algorithm [12]. Trans-D produces an embedding vector for
every node and edge in the KG, in such a way that the topology of the KG is
preserved. In particular, given a KG G, and given a triple (e, r, e′) ∈ G, Trans-

D produces three embedding vectors ve, vr and ve′ that satisfy a relationship
similar to ve + vr ≈ ve′ , for every triple in G. The embedding vectors of the
song nodes in the KG for the songs in a playlist are either averaged song-wise
(in KG-avg) or input to a single-layered LSTM network (in KG-seq), to get
a playlist embedding vector, which is fed into a (FF) network, that outputs a
score for each listening context.

The architecture of KG-avg and KG-seq fit into the schema of Fig. 2 as
the KG we build is the input, and Trans-D is the song embedding extractor.
Notice that KG-avg and KG-seq work in two steps, that is the song embedding
extractor is trained separately from the rest.

The MF-based and KG-based algorithms both leverage information about
listening contexts when computing song embeddings. However, KG-based algo-
rithms exploit that information more effectively. For example, let us consider
the scenario depicted by the portion Gi of the KG in Fig. 1 where there are
two playlists, playlist1 and playlist2, whose listening contexts are respectively
context1 and context2, and which contain respectively the songs song1 & song2
and song2 & song3. MF song embeddings are aligned with their listening con-
texts, as explained in Sect. 3.1. In the example above, the MF embedding of song1
is aligned with context1, the MF embedding of song3 is aligned with context2,
and the embedding of song2 is aligned with both context1 and context2. How-
ever, song1 and song2 are in the same playlist (playlist1). As such, we expect
the embedding of song1 to be aligned, to some extent, also with context2, and
not only with context1; similarly for the embedding of song3. That is, MF-based
algorithms ‘short-circuit’ the representation of playlists by modelling the asso-
ciation of songs to playlist listening contexts directly. KG embeddings preserve
the topology of the KG, and so can overcome the short-circuiting problem of the
MF-algorithms. In the example above, the songs in Gi are all connected with
each other, via the explicit representation of the playlists as well as the listening
contexts. That is, the embeddings of song1, song2 and song3 are all aligned, to
some extent with context1, and to some other extent with context2. The short-
circuiting problem undermines the performance of the MF-based classifiers, as
we empirically prove in Sect. 4.3. In a similar vein, [26] propagates tags among
songs in the same playlists, and measure an increase in performance.

3 https://musicbrainz.org.

https://musicbrainz.org
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3.4 Hybrid

The CNN-based classifiers and the KG-based classifiers differ on their input data,
as the CNN-based classifiers rely on song audio, while the KG-based classifiers
rely on a KG representation of songs, playlists, listening contexts, and song
metadata. The audio and the KG differ in modality, as well as availability. For
example, while song audio is available for every song in the catalogue, a KG such
as the one we use may represent the most famous songs well, but it may fail to
represent properly more niche songs, which is a manifestation of the long-tail
problem [22], and it may also fail to represent newly-released songs. To address
this limitation, we complement the KG-based classifiers with the CNN-based
classifiers, by formulating two hybrid classifiers.

The hybrids work by jointly running a KG-based classifier (KG-avg or KG-

seq) and a CNN-based classifier (CNN-avg or CNN-seq), and by fusing the
two playlist embedding vectors that they compute, before they are passed to a
single-layered FF network that outputs a score for each listening context. We
refer to Hybrid-avg as the hybrid of KG-avg & CNN-avg and to Hybrid-

seq as the hybrid of KG-seq & CNN-seq. The architecture of the two hybrids
follow the schema of Fig. 3.

For the embedding fusion, both the audio and KG-based playlist embedding
vectors are input to two separate linear layers, two separate non-linearities, and
then summed point-wise, as suggested by [2]. We did experiment with other
simple fusion strategies, e.g. concatenation, but they achieved lower performance.

3.5 Implementation Details

Our implementation of CNN-avg and CNN-seq is a little different from the
original paper [8] as we make two simplifications. First, we use Spotify’s 30-
second audio previews of the songs instead of their full audio. These audio pre-
views are freely available, unlike the full audio, which is expensive to access
due to copyright restrictions. Moreover, the usage of audio previews make our
work reproducible. Second, we average the 3-second mel-spectrograms of a song
point-wise in input to the CNN. As such, the CNN receives only one spectro-
gram, and outputs the song embedding directly. This second simplification saves
computing resources. In Sect. 4, we show that our implementation of the CNN-
based models outperforms the MF-based models, which is consistent with the
original paper. More specifically, our implementation of CNN-seq achieves 7%
higher performance than MF-seq, which is consistent with the original paper;
similarly for CNN-avg and MF-avg. Given those results, we are confident that
our implementations of the CNN-based models, although simplified, are as valid
as the original implementations presented in [8].

We compute the mel-spectrograms for the CNN-avg and CNN-seq classi-
fiers with 22,050 Hz sampling rate, 1,024 FFT size, 512 hop size, and 128 mel
bins. We set hyper-parameters of the MF and CNN-based classifiers as in the
original paper [8]. That is, we set the song embedding dimension to 50, and we
use ReLU as the non-linearity. We do the same in the KG-based and hybrid



338 G. Gabbolini and D. Bridge

classifiers. We train the classifiers with early-stopping, monitoring FH@1 on the
validate set, with patience equal to ten. We tune other hyper-parameters of the
eight classifiers (learning rate, weight decay and batch size) using bayesian opti-
misation [32]. We fix the number of trials of the bayesian optimiser to 20. For the
WR-MF and Trans-D embedding procedures, we use the default parameters
and we set the number of epochs to ensure convergence of the loss function.

For other implementation details, we refer the reader to the source code that
supports our work here.

4 Experiments

We compare the classifiers described in Sect. 3, and variants of those, on their
performance in predicting the listening context of music playlists.

4.1 Dataset

We use a dataset of playlists annotated with their listening contexts. The dataset
was annotated by the authors of [8], starting from user playlists contained in the
Spotify Million Playlist Dataset (MPD) [6], and retaining only the portion of
playlists that have a listening context as title.4 Examples of listening contexts
present in the dataset are: driving, studying and summertime. For other exam-
ples, we refer the reader to the dataset that supports our work here. Also, we
refer the reader to [8] for more information on the annotation procedure. Each
playlist is annotated with one listening context. We split the dataset randomly
into train, validate and test sets, accounting respectively for 60%, 20% and 20%
of the total playlists. Similar to [8], we filter out songs that occur in the validate
and test sets but not in the train set, as some classifiers cannot handle at testing
time songs not seen at training time. The classifiers that have this limitation are
MF-avg, MF-seq, KG-avg and KG-seq. They work by training a song embed-
ding extractor model in a first step, separately from the classifier that outputs
the listening context, see Sects. 3.1 and 3.3. As a result, embeddings for songs
not present at training time are not available at test time. In a real world sce-
nario, where new releases are frequently added to the songs catalogue, it would
be necessary to incrementally train the models so that the training set covers
all songs in the catalogue. An alternative is to use CNN-avg and CNN-seq, as
they rely on the audio signal, which is available for songs not seen at training
time.

Table 1 contains statistics of the dataset that we use (train, validate and test
splits together).

4 The dataset we use is not the one used in [8], which is proprietary, but it was supplied
to us by the authors of [8] as a dataset annotated with the same procedure, and in
which similar results can be obtained.
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Table 1. Dataset statistics.

Statistic Value

Number of playlists 114,689

Average playlist length 62.6

Number of unique songs 418,767

Number of unique listening contexts 102

4.2 Metrics

We call D the test set, and we call p a playlist in the test set, that is p ∈ D. We
call |D| the number of playlists in the test set. The classifiers described in Sect. 3
predict a score for each listening context. As such, given a playlist, a classifier
predicts a ranking of listening contexts, by decreasing score. Given a ranking
of listening contexts for a playlist p, we call rankp the position of the correct
listening context in the ranking. For example, if a classifier assigns the highest
score to the correct listening context, then rankp = 1. Instead, if the classifier
assigns the lowest score to the correct listening context, then rankp = 102 (see
Table 1).

We compare the classifiers for their performance in predicting the listening
contexts of the playlists in D. We measure performance with four metrics, as in
[8]:

Flat hits (FH@1 , FH@5). Flat hits is the percentage of playlists D such that
rankp ≤ k. In our case, since the goal is classification rather than retrieval,
we consider only k = 1 and k = 5 and no higher values for k. In formulas:

FH@k =
1

|D|
∑

p∈D

1(rankp ≤ k)

where 1(rankp ≤ k) is the indicator function. That is, 1(rankp ≤ k) = 1
if rankp ≤ k and 0 otherwise. In other words, FH@1 is the percentage of
playlists for which the classifier predicts the listening context correctly. And,
FH@5 is the percentage of playlists for which the classifier predicts the correct
listening context among the first five predictions.

Mean reciprocal rank (MRR). The reciprocal rank is the reciprocal of rankp.
The MRR is the average of those reciprocals ranks. In formulas:

MRR =
1

|D|
∑

p∈D

1
rankp

.

Mean average precision (MAP@5). MAP is equivalent to MRR, except that
we set the reciprocal rank to 0 when rankp > k5. That is, if rankp > k for

5 Our formulation of MAP is different from others, which allow for multiple relevant
items. In our case, there is only one relevant item: the correct listening context.
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Table 2. Performance of the classifiers.

FH@1 FH@5 MRR MAP@5

MF-avg 0.299 0.536 0.416 0.386

MF-seq 0.327 0.595 0.452 0.423

CNN-avg 0.291 0.583 0.425 0.395

CNN-seq 0.352 0.639 0.484 0.456

KG-avg 0.388 0.678 0.521 0.495

KG-seq 0.389 0.678 0.520 0.494

Hybrid-avg 0.395 0.687 0.528 0.503

Hybrid-seq 0.389 0.678 0.520 0.495

every p ∈ D, then MAP@k = 0. In our case, we consider k = 5. In formulas:

MAP@k =
1

|D|
∑

p∈D

1
rankp

× 1(rankp ≤ k).

On the one hand, FH@k disregards the actual position of the correct listening
context in the ranking, but counts how frequently this position is lower than a
threshold k. On the other hand, MAP@k and MRR do account for the actual
position of the correct listening context in the ranking. Therefore, these metrics
give a multi-sided view of the classifiers’ performance.

We set up significance tests to check whether differences in performance are
statistically significant or not. Following [13], we set up a t-test for MRR and
MAP@5, and a paired bootstrap test for FH@1 and FH@5. Similar to [23], we
fix the number of bootstrap replicas to 1000.

4.3 Results

We conduct two experiments: a comparison with the state-of-the-art, and a sen-
sitivity analysis.

Comparison with State-of-the-Art. We measure the performance of the
classifiers that we propose (KG-avg, KG-seq, Hybrid-avg, Hybrid-seq), and
the performance of the state-of-the-art baselines, i.e. the existing listening con-
text classifiers (MF-avg, MF-seq, CNN-avg, CNN-seq). The results are in
Table 2.

The classifiers that we propose outperform the baselines by a considerable
amount. Hybrid-avg scores highest performance, improving by approximately
10% over the baselines. The improvement in performance is statistically signifi-
cant (p < 10−4). In general, all the classifiers we propose improve performance
over the baselines (p < 10−4).

The improvement in performance has real world relevance. For example,
Hybrid-avg achieves 12% higher FH@1 than the best baseline (0.395 vs 0.352),
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Table 3. Performance of KG-based classifiers with (w) and without (wo) song meta-
data.

FH@1 FH@5 MRR MAP@5

KG-avg wo metadata 0.375 0.665 0.507 0.481

KG-avg w metadata 0.388 0.679 0.521 0.495

KG-seq wo metadata 0.382 0.668 0.513 0.487

KG-seq w metadata 0.388 0.679 0.520 0.495

which means than in a sample of 1000 playlists, our algorithm predicts the listen-
ing context correctly 395 vs 352 times, on average. Considering that the current
databases contain millions of playlists, the 12% increase over the baselines is
particularly ‘tangible’.

We notice that the more complex seq variants of the algorithms are not
always superior to their simpler avg variant. MF-seq and CNN-seq have higher
performance than, respectively, MF-avg and CNN-avg (p < 10−4). But we do
not find any statistically significant differences between the performance of KG-

avg and KG-seq, while Hybrid-seq has lower performance than Hybrid-avg

(p < 10−4). Probably, the architecture of Hybrid-seq is too complex for the
task at hand, and may overfit the training set, while the simpler Hybrid-avg

generalises better to new data. Moreover, the result corroborates previous work
[8], where the seq variant is found to be sometimes superior and sometimes
inferior to the avg variant.

The hybrid classifiers are the combination of the (audio) CNN-based and
KG-based classifiers. Accordingly, Hybrid-avg has higher performance than
CNN-avg and KG-avg. Though statistically significant (p < 10−4), the increase
in performance is only slight. We can understand the result by looking at the
literature on the well-studied task of music similarity [1]. Flexer [15] shows that
increasing the performance of similarity algorithms is particularly challenging
after a certain threshold, as there exists an upper bound to performance, caused
by the low agreement of different users in the perception of music similarity.
Likewise, humans can have different perceptions of the right listening context
for a given playlist. In the dataset we use, each song is associated with 17 different
playlist listening contexts, on average. As such, we expect that increasing the
performance of classifiers can become particularly challenging after a certain
threshold. For example, Hybrid-seq has higher performance than CNN-seq

(p < 10−4), but not over KG-seq (no statistically significant difference).

Sensitivity Analysis. KG-based classifiers have as input a KG with songs,
playlists, their listening contexts (portion Gi) and song metadata (portion Gm).
We measure the performance of variants of the KG-based classifiers that have as
input only the portion Gi of the full KG. The results are in Table 3, and show
an increase in performance when using metadata (p < 10−4). This indicates
that the KG-based classifiers make effective use of song metadata for predicting
listening contexts. However, the increase in performance is only slight, and again
can be explained by the work of Flexer [15], as in Sect. 4.3.
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The Gi portion of the KG contains the same information as the input to
the MF-based classifiers, i.e. playlist listening contexts. However, as argued
in Sect. 3.3, MF-based classifiers suffer from what we called the playlist short-
circuiting problem, i.e. they model the association of songs to playlist listening
contexts directly, while KG-based classifiers do not. A comparison of the results
of the KG-based classifiers without metadata in Table 3 and the MF-based clas-
sifiers in Table 2 reveals the consequences of these two ways of modelling the
information. The comparison shows that the KG-based algorithms exploit that
information more effectively, since their results are significantly superior to those
of the MF-based algorithms (p < 10−4).

5 Conclusions and Future Work

We propose four novel systems for predicting the listening contexts of music
playlists, which include, for the first time, song metadata in their models. In two
of them, we represent songs, playlists, listening contexts and song metadata in
a KG, that we embed, and we use the song embeddings to make predictions. In
the other two, we combine the KG and song audio in a unique hybrid model. We
benchmark the performance of the predictors we propose, reporting an increase
in performance of approximately 10% over the state-of-the-art. We also show,
through a sensitivity analysis, that the KG-based predictors can incorporate the
song metadata effectively. We argued that the improvement in performance that
we have achieved has real world relevance.

Our work can power a number of real applications that make use of listening
contexts, such as context-aware recommender systems. More generally, our work
introduces a way to use KGs for effective music classification, which is an under-
explored direction.

Future work include the construction of a novel playlist extender i.e. one that
recommends songs to add to a playlist but that ensures that the new songs are
suited to the playlist listening context.
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Abstract. Nowadays, search engine users commonly rely on query sug-
gestions to improve their initial inputs. Current systems are very good
at recommending lexical adaptations or spelling corrections to users’
queries. However, they often struggle to suggest semantically related key-
words given a user’s query. The construction of a detailed query is crucial
in some tasks, such as legal retrieval or academic search. In these scenar-
ios, keyword suggestion methods are critical to guide the user during the
query formulation. This paper proposes two novel models for the keyword
suggestion task trained on scientific literature. Our techniques adapt the
architecture of Word2Vec and FastText to generate keyword embeddings
by leveraging documents’ keyword co-occurrence. Along with these mod-
els, we also present a specially tailored negative sampling approach that
exploits how keywords appear in academic publications. We devise a
ranking-based evaluation methodology following both known-item and
ad-hoc search scenarios. Finally, we evaluate our proposals against the
state-of-the-art word and sentence embedding models showing consider-
able improvements over the baselines for the tasks.

Keywords: Keyword suggestion · Keyword embeddings · Negative
sampling · Academic search

1 Introduction

The use of word embeddings [6] has improved the results of many Natural Lan-
guage Processing (NLP) tasks, such as name entity recognition, speech pro-
cessing, part-of-speech tagging, semantic role labelling, chunking, and syntactic
parsing, among others. These techniques represent words as dense real-valued
vectors which preserve semantic and syntactic similarities between words. More
recently, the so-called document and sentence embedding models allow the com-
puting of embeddings for larger pieces of text directly (instead of doing it word
by word), getting state-of-the-art results on different tasks.

Nowadays, search engines are outstanding in recommending lexical adap-
tations or corrections to users’ queries [14,17]. However, there is still room
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for improvement in suggesting semantically similar phrases to users’ inputs.
The few systems that address this task do it by simply using existing word
or sentence embedding models, which leads to poor keyword suggestions.

Keyword suggestion, which consists in recommending keywords similar to the
user’s input, is critical in search scenarios where the completeness of the query
clauses may dramatically affect the recall, such as academic or legal search [13,
24]. An incomplete query may end up in a null search session [15], that is, the
system presents an empty result list to the user. In tasks where use cases are
recall-oriented, having an incomplete or even empty results set greatly diminishes
the search experience.

Having good keyword suggestion models in a keyword-based search engine
has many benefits. (i) It will help to identify the query intent [10], as users will
be able to refine their search by adding new query clauses that may be clarifying.
(ii) It will promote serendipity [1,5], as users may see a recommended keyword
that they were not considering but perfectly fits their search interest. (iii) It
will help prevent null sessions or incomplete results lists. (iv) Systems may use
semantically similar keywords to the user input to perform query expansion [7,
22] without further user interaction.

In this paper, we leverage Word2Vec [19] and FastText [4] models’ architec-
ture to generate keyword embeddings instead of word embeddings, this meaning
that embeddings represent sequences of words rather than a single word, simi-
lar to sentence embeddings. Unlike the base models, which use bag-of-words to
build the representations, our approaches are based on bag-of-keywords. Thus,
the proposed models exploit the annotated keywords’ co-occurrence in the sci-
entific literature for learning the dense keyword representations.

Our main aim for producing keyword embeddings is to represent concepts
or topics instead of representing just words’ semantics or even their contextual
meaning like word embedding models do. The keywords’ conceptual or topical
semantics rely on an explicit human annotation process. First, the annotator will
only select proper or commonly used descriptors for the presented documents. In
this way, we may assume that those keywords are a good proxy when searching
for the documents’ topics. Second, authors use a limited number of keywords
when annotating documents, so the strength of the semantic relationships among
them is higher than the traditional approach of word co-occurrence in windows
of free text.

Along with these models, we propose a new method to perform negative
sampling, which leverages connected components to select the negative inputs
used in the training phase. This method uses the keywords co-occurrence graph
to extract the connected components and then select inputs that are not in the
same connected component as negative samples.

To evaluate our models’ performance, we compare them against a set of
baselines composed of state-of-the-art word and sentence embedding models.
We both trained the baselines in the keyword data and used the pre-trained
models. In particular, we further trained Word2Vec [19] and Sentence-BERT [21]
(SBERT) on the task data, and we used SBERT, SciBERT [2] and FastText [4] base
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models. We carry out the evaluation in Inspec [11] and KP20k [18], two classical
keyword extraction datasets compound of scientific publications which count
with a set of human-annotated keywords (for now on, we refer to keywords anno-
tated by documents’ authors or professional annotators as annotated keywords).
The results show significant improvements for the task over state-of-the-art word
and sentence embedding models.

The main contributions of our work can be summarized as follows:

– Keywords2Vec, a keyword embedding model based on Word2Vec.
– FastKeywords, a keyword embedding model based on FastText.
– A new method for negative sampling based on connected components.
– Baselines and evaluation methods for the similar keyword suggestion task.

2 Related Work

This section briefly overviews the existing word and sentence embedding models,
particularly those used as baselines in the evaluation stage, along with some
previous work related to the keyword suggestion task.

Dense vector representations, a.k.a. embeddings, have an appealing, intuitive
interpretation and can be the subject of valuable operations (e.g. addition, sub-
traction, distance measures, etc.). Because of those features, embeddings have
massively replaced traditional representations in most Machine Learning algo-
rithms and strategies. Many word embedding models, such as Word2Vec [19],
GloVe [20] or FastText [4], have been integrated into widely used toolkits, result-
ing in even more precise and faster word representations.

Word2Vec [19] was one of the first widely used neural network-based tech-
niques for word embeddings. These representations preserve semantic links
between words and their contexts by using the surrounding words to the target
one. The authors proposed two methods for computing word embeddings [19]:
skip-gram (SG), which predicts context words given a target word, and contin-
uous bag-of-words (CBOW), which predicts a target word using a bag-of-words
context.

FastText [4] is a Word2Vec add-on that treats each word as a collection of
character n-grams. FastText can estimate unusual and out-of-vocabulary words
thanks to the sub-word representation. In [12], authors employed FastText word
representation in conjunction with strategies such as bag of n-gram character-
istics and demonstrated that FastText outperformed deep learning approaches
while being faster.

Sentence embeddings surged as a natural progression of the word embed-
ding problem. Significant progress has been made in sentence embeddings in
recent years, particularly in developing universal sentence encoders capable of
producing good results in a wide range of downstream applications.

Sentence-BERT [21] is one of the most popular sentence embedding models
and state-of-the-art on the sentence representation task. It is a modification of
the BERT [9] network using siamese and triplet networks that can derive seman-
tically meaningful sentence embeddings.
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There are other sentence embedding models based on pre-trained language
models. An example of those language models which achieves excellent results
when working with scientific data is SciBERT. SciBERT [2] is an adaptation of
BERT [9] to address the lack of high-quality, large-scale labelled scientific data.
This model leverages BERT unsupervised pre-training capabilities to further train
the model on a large multi-domain corpus of scientific publications, producing
significant improvements in downstream scientific NLP tasks.

Even though word and sentence embeddings have been widely studied, the
work on keyword embeddings is still limited. Researchers have employed them
mainly on tasks like keyword extraction, phrase similarity or paraphrase identi-
fication. Several approaches for the keyword extraction task, like EmbedRank [3],
directly rely on pre-trained sentence embedding models to rank the extracted
keywords. However, other approaches such as Key2Vec [16] train their own model
for the phrase embedding generation. In particular, the authors propose directly
training multi-word phrase embeddings using FastText instead of a classic app-
roach that learns a model for unigram words combining the words’ dense vectors
to build multi-word embeddings later.

Yin and Schütze [25] presented an embedding model for generalized phrases
to address the paraphrase identification task. This approach aims to train the
Word2Vec SG model without any modification to learn phrase embeddings. They
pre-process the corpus by reformatting the sentences with the continuity infor-
mation of phrases. The final collection contains two-word phrases whose parts
may occur next to each other (continuous) or separated from each other (dis-
continuous).

The phrase semantic similarity task is akin to the one we address in this
paper. Many sentence embedding models, including SBERT, are pre-trained in
that downstream task. In [26], the authors present a composition model for build-
ing phrase embeddings with semantic similarity in mind. This model, named
Feature-rich Compositional Transformation (FCT), learns transformations for
composing phrase embeddings from the component words based on extracted
features from a phrase.

Finally, the keyword suggestion task is also a sub-type of query sugges-
tion where all the input and output queries are represented as keywords. Pre-
vious works in query term suggestion did not leverage the power of keyword
co-occurrence to recommend new terms. Instead, existing query suggestion sys-
tems usually approach this task by suggesting terms extracted from the docu-
ment’s content without relying on the relations between these terms. For exam-
ple, in [24], authors propose indexing a set of terms extracted from the corpus
to rank them using a language model given an input query. The problem with
these approaches is that they depend on the appearance of semantically related
terms in the analyzed documents.
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3 Proposal

In this section, we present two novel keyword embedding models that leverage
Word2Vec [19] and FastText [4] architectures to produce keyword embeddings.
We name these models Keywords2Vec and FastKeywords, respectively. Unlike
Word2Vec and FastText, these models are not trained on rolling windows over
the documents’ full text; instead, we only use combinations from the documents’
set of keywords as inputs.

The first of them, Keywords2Vec, modifies Word2Vec CBOW architecture to
represent each keyword as one item. That is, we use keywords as token inputs
instead of words. Additionally, we change how to perform the training of the
models; we will explain it later for both proposals. We also evaluated the SG
counterpart, but it performed considerably worse than the CBOW, so we do not
report them here for brevity.

The second one, FastKeywords, adapts FastText CBOW variant in a more
complex way. First, instead of working with words as the bigger information
unit, it works with keywords. Second, it always selects each word of the keyword
and the keyword itself as inputs, and then, during the n-grams selection process,
it generates each word’s n-grams.

Taking the keyword “search engine” and n = 3 as an example, it will be
represented by the following n-grams:

sea ear arc rch eng ngi gin ine

the special sequences for words:

search engine

and the special sequence for the whole keyword:

search engine

The model uses special sequences to capture the semantic meaning of both
words and keywords. Finally, we implemented a weighting system to ignore “fill”
n-grams used when a keyword does not have enough n-grams to fill the desired
input size. The inclusion of this kind of n-grams is needed because the model
requires the same input length on every iteration.

Another novel contribution of this paper is how we generate the training
inputs. The model needs both positive and negative contexts for the target key-
word. They are called positive and negative samples. For producing the positive
samples, we select combinations of annotated keywords from the document to
which the target keyword belongs. In the case of the negative samples, we repre-
sent the keywords’ co-occurrences in the dataset as a graph. In this graph, each
keyword is a node and edges are created when two keywords appear together in a
document. We select the negative samples from connected components different
from that of the target keyword.
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Fig. 1. Example of a keyword co-occurrence graph with its connected components.

Figure 1 shows an example of a keyword co-occurrence graph and its con-
nected components. In that example, the positive samples for the keyword “infor-
mation retrieval ” would be combinations of “search engine”, “word embeddings”
and “vector ”, and its negative samples will always be extracted from connected
components 2 or 3. Note that this means that the keyword “maths” will never be
a negative sample for “information retrieval”, even though it does not co-occur
with it in any document.

Fig. 2. Positive and negative samples generation example. (The target keyword is high-
lighted).

Figure 2 shows how the positive and negative sampling is performed for a
document extracted from the graph shown in the Fig. 1. Having the keyword
“word embeddings” as the target, we first select its positive samples. In this
example, we select every combination of 2 (w − 1 = 2) keywords that belong
to the same document as the target. Then, for each pair of keywords we have
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to select the two negative samples (ns = 2). Given the connected components
shown in the Fig. 1, we select two keywords that do not belong to the same
connected component than the target keyword.

Formally, to train these models, we use a dataset of scientific documents (D).
Each document (d ∈ D) contains a set of annotated keywords (Kd). Then, given
a combination size (w − 1), which plays an analogous role to the window size in
the original models, we compute the set of positive samples (Kps

d ) of a document
d as follows:

Kps
d =

{
(ki,K

psj
d ) | ki ∈ Kd, K

psj
d ∈

(
Kd − {ki}

w − 1

)}
,

that is, for each keyword (ki) of the document’s keywords set (Kd), we compute
its positive samples (Kps

d ), which are the combinations of size w − 1 of the
document’s keywords set excluding the target keyword (Kd − {ki}). Finally, for
each positive samples set (Kpsj

d ) we obtain a pair (ki,K
psj
d ).

As for the negative samples for each document (Kns
d ) we have followed the

subsequent novel approach. First, we build the aforementioned keywords co-
occurrence graph for the collection and compute its connected components.
Then, for each pair (ki,K

psj
d ) we select as negative samples ns keywords belong-

ing to a different connected component than the target keyword (ki).
To adapt the previous process to our FastKeywords model, we have to gen-

erate n-grams for each context keyword (positive samples and negative samples)
following the strategy explained before.

The FastKeywords model has two main advantages over Keywords2Vec
because of the use of subword information:
– It will perform significantly better on large collections.
– It will be able to generate embeddings for keywords that are not in the training

corpus.

Figure 3 shows the FastKeywords model’s architecture. As we may see, it
follows the classic CBOW strategy where several context samples are fed to the
model in order to predict the target keyword.

4 Experimental Setup

This section describes the datasets used during the training and evaluation of
the models, the baselines used to compare our model, the evaluation process and
metrics, and finally, the parameters and setup used to train our models.

Our objective is to suggest similar keywords to the user input in the search
process. With this in mind, we designed two experiments that approach the key-
word suggestion problem as a keyword ranking task. In particular, the evaluation
considers if the model can find keywords that belong to the same document as
the target keyword. The rationale for this evaluation is that keywords with which
the authors annotate a document tend to be semantically related. Alternatively,
we may perform user studies to evaluate the perceived quality of the suggestions.
We leave that for future work.
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Fig. 3. FastKeywords model high-level architecture diagram.

4.1 Datasets

We selected two datasets commonly used on the classical keyword extraction
task: the Inspec [11] and the KP20k [18] collections.

Inspec. This collection consists of 2,000 titles and abstracts from scientific
journal papers. The annotators assigned two sets of keywords to each docu-
ment in this collection: controlled keywords that occur in the Inspec thesaurus
and uncontrolled keywords that can be any suitable terms. We will only use
the uncontrolled keywords created by professional indexers in our experiments,
following the standard approach in the keyword extraction task.

KP20k. This dataset is a keyword generation collection that includes 567,830
articles of the computer science domain obtained from various online digital
libraries, including ACM Digital Library, ScienceDirect, Wiley and Web of Sci-
ence. In this case, the authors made no differentiation during the annotation
process, so we used all of the keywords in both training and testing.

4.2 Baselines

We include five baselines in our evaluation to compare our embedding models
against other models that have already proven their effectiveness in capturing
words or sentence syntax and semantic information.
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The first baseline is the Word2Vec model trained in the Google News dataset
and further tuned on each dataset to learn their vocabulary. That process was
performed using the keywords set as a sentence so that the model could learn
the contextual relationships between them.

The second baseline is the pre-trained SBERT all-mpnet-base-v2 1 model fine-
tuned in the evaluation datasets for the sentence similarity task. To fine-tune
the model, we served as inputs pairs of keywords and a binary value of similarity
(1 if keywords belong to the same document and 0 if they do not).

The other three baselines were not trained for the task. These baselines are:

– The pre-trained SBERT model, all-mpnet-base-v2.
– The pre-trained SciBERT model that uses the uncased version of the vocab-

ulary.
– The English FastText model trained on Common Crawl2 and Wikipedia3.

4.3 Evaluation

As we mentioned before, to assess our models’ performance in the keyword sug-
gestion task, we devise two evaluation strategies representing two specific cases
in the academic search field.

The first task consists of retrieving all the keywords with which a document
was annotated, given one of them. The keyword retrieval is done via cosine
similarity between the query keyword and all the other keywords. Then, we
compute each average precision and aggregate all the results to compute the
MAP (Mean Average Precision). Specifically, we calculate MAP@20.

The second task we propose follows a masking problem. For each document,
we mask one keyword from the keywords set and then use the remaining key-
words to try to find the masked one. For each of the remaining keywords, we
retrieve the most similar ones using cosine similarity. Then, combining the scores
of all the non-masked keywords, we compute the final ranking. Finally, we com-
pute each masked keyword’s reciprocal rank to calculate the MRR (Mean Recip-
rocal Rank). Precisely, we compute MRR@100. Note that for this evaluation
method, we only used 50 random documents from the test split of each dataset.

Regarding methodologies, we evaluated both tasks under all-items and test-
items approaches. In the all-items fashion, the keywords to be ranked are the
whole set of keywords in the dataset, while in the test-items indexing approach,
only the keywords in the test subset are ranked.

We also perform statistical significance tests for all the evaluations. On the
one hand, for comparing more than two systems, we use the Randomised Tukey
HSD Test [8,23]. On the other hand, we follow the classic permutation test
approach when comparing a pair of systems. These tests verify that the family-
wise error does not exceed the confidence level α.

1 https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
2 https://commoncrawl.org/.
3 https://dumps.wikimedia.org/.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://commoncrawl.org/
https://dumps.wikimedia.org/
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Table 1. Models’ training parameters on the Inspec and KP20k datasets.

Model Inspec KP20k
Batch Epochs Dim w ns Batch Epochs Dim w ns

Word2Vec – early stopping 300 6 – – 20 300 6 –
SBERT 29 early stopping 768 – 4 29 20 768 – 4
Keywords2Vec 217 early stopping 300 3 4 217 20 300 3 4
FastKeywords 215 early stopping 300 3 4 215 20 300 3 4

4.4 Experimental Settings

This section will describe the parameters used to train the baselines and our
proposed models. Table 1 shows a summary of the models’ training parameters
detailed hereunder.

To train the Word2Vec model, we followed an early-stopping strategy for the
Inspec dataset, while for KP20k, we trained the model for 20 epochs. For both
datasets, the selected embedding size was 300. Finally, we used a window size of
6 and 1 as the minimum count (lowest frequency of a word to be considered).

On the other hand, as we mentioned before, we fine-tuned the SBERT model
in the sentence similarity task. For each positive sample (two keywords that
co-occur in a document), we selected four negative samples (two keywords that
never co-occur in a document). Again, we followed an early-stopping strategy
for the Inspec dataset, while for KP20k, we trained the model for 20 epochs. For
both datasets, we used a batch size of 29 and an embedding size of 768.

We trained both our models using an early-stopping strategy for the Inspec
dataset. On the other hand, when using the KP20k dataset, we trained each
model for 20 epochs. Regarding the batch size, the Keywords2Vec model was
trained with a batch size of 217 on both datasets, while for the FastKeywords
model, we used a batch size of 215 on Inspec and KP20k. Also, both were trained
to generate embeddings of size 300. The combination size and the number of
selected negative samples were the same for both models on both datasets, 2
(w = 3) and 4, respectively. Finally, regarding FastKeywords parameters, we
used a minimum n-gram size of 3, a maximum n-gram size of 6 and a maximum
number of n-grams of 20.

When trained, we used the whole set of document keywords from the dataset
in the tuning process of the models4. When not trained, we used the default
pre-trained models for the baselines. In the evaluation process, we selected a
subset of documents on which we performed the aforementioned tasks.

4 All experiments were run on an NVIDIA A100 GPU with 80GB of memory.
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Table 2. MAP@20 for the document’s keywords identification task. Statistically sig-
nificant improvements according to the Randomized Tukey HSD test (permutations =
100, 000; α = 0.05) are superscripted.

Model Inspec KP20K
All items Test items All items Test items

SBERT (no train) (†) 0.0323 0.0544� 0.0039 0.0134�

SciBERT (no train) (‡) 0.0205 0.0345 0.0040 0.0110
FastText (no train) (�) 0.0147 0.0217 0.0039 0.0095
Word2Vec (∓) 0.0463� 0.0832†‡� 0.0048 0.0130‡�

SBERT (±) 0.1481†‡�∓ 0.5880†‡�∓ 0.0072†‡�∓ 0.0182†‡�∓

Keywords2Vec (⊗) 0.8634†‡�∓± 0.9090†‡�∓± 0.0690†‡�∓± 0.0918†‡�∓±

FastKeywords (�) 0.8659†‡�∓± 0.9161†‡�∓± 0.0762†‡�∓±⊗ 0.1060†‡�∓±⊗

5 Results

This section reports how Keywords2Vec and FastKeywords perform against the
selected baselines and how they perform against each other. As we mentioned in
Sect. 4.3 we report results using two tasks and two evaluation techniques.

Table 2 shows the results for the document’s keywords identification task.
We can see that our models significantly outperform the established baselines
in both datasets and evaluation approaches. This is especially remarkable in the
case of the state-of-the-art sentence BERT model, which, even for the fine-tuned
scenario and using embeddings with twice the dimensions, lies quite behind our
proposals. As expected, using the test-items strategy produces better results
since the keyword set where the search is performed is much smaller.

Moreover, we can see that the dataset size is a determinant factor in this
task. A much larger set of keywords (this is the case of the KP20k dataset
versus the Inspec dataset) greatly impacts the final score. This makes sense
because increasing the keyword set size makes finding the ones we are looking
for more challenging (something analogous happens to a lesser degree between
the all-items and test-items results).

In terms of comparing FastKeywords against Keywords2Vec we can see that
the former performs better and that the more considerable difference between
them appears when the keyword set is the biggest (KP20k dataset). The main
reason behind this relies on the capability of FastKeywords to leverage subword
information to build the keywords embeddings.

Table 3 shows results for the masked keyword discovering task. These results
confirm what we had already seen in the first one: our models significantly out-
perform all the established baselines in every experiment we performed. Again,
we can see that increasing the keyword set length produces worse results as the
task becomes more and more challenging. Again, when comparing the proposed
models against each other on this task, we can see that FastKeywords performs
better than Keywords2Vec when increasing the dataset size, getting statistically
significant improvements over the Word2Vec-based method.

Table 4 shows the performance of the proposed negative sampling method,
comparing it with a FastKeywords model that uses a random negative sampling
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Table 3. MRR@100 for the masked keyword discovering task. Statistically signifi-
cant improvements according to the Randomized Tukey HSD test (permutations =
1, 000, 000; α = 0.05) are superscripted.

Model Inspec KP20K
All items Test items All items Test items

SBERT no train (†) 0.0342 0.0479 0.0018 0.0152
SciBERT no train (‡) 0.0220 0.0345 0.0056 0.0129
FastText no train (�) 0.0068 0.0097 0.0023 0.0047
Word2Vec (∓) 0.0751 0.1187� 0.0008 0.0079
SBERT (±) 0.1688†‡� 0.5890†‡�∓ 0.0138 0.0448
Keywords2Vec (⊗) 0.8914†‡�∓± 0.9100†‡�∓± 0.0778†‡�∓± 0.0828†‡�∓

FastKeywords (�) 0.8988†‡�∓± 0.9102†‡�∓± 0.1402†‡�∓±⊗ 0.1467†‡�∓±⊗

Table 4. Negative sampling methods comparison on the Inspec dataset. Statisti-
cally significant improvements according to the permutation test (permutations =
1, 000, 000; α = 0.05) are superscripted.

Model MAP@20 MRR@100
All items Test items All items Test items

FastKeywords random negative sampling (⊕) 0.8420 0.9093 0.8750 0.8890
FastKeywords (�) 0.8659⊕ 0.9161⊕ 0.8988 0.9102⊕

Table 5. Top 10 nearest neighbours for the keyword “information retrieval” on the
KP20k collection (test-items index).

FastKeywords Keywords2Vec
keyword score keyword score
ranking 0.9133 retrieval model 0.6045
query expansion 0.9104 collection selection 0.5587
text classification 0.9067 link topic detection 0.5472
relevance 0.9044 dempstershafer evidence theory 0.5418
text mining 0.9018 retrospective evidence event detection 0.5371
information extraction 0.9012 instance based learning 0.5361
relevance feedback 0.8980 query expansion 0.5282
knowledge discovery 0.8979 terminology extraction 0.5260
document clustering 0.8971 viral marketing 0.5253
text categorization 0.8970 query formulation 0.5248

strategy. The results ratify that the proposed method works significantly better
than a naive random approach in all cases except on MRR@100 using the all-
items indexing strategy. For this case, the p-value is 0.06.

Finally, for illustrative purposes, Table 5 shows the top 10 nearest neighbours
for the keyword “information retrieval” on the KP20k collection retrieved by
both proposed models. We also show each keyword’s associated score, which
represents the similarity with the query keyword.
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6 Conclusions

This paper explored the potential of keyword embedding models in the keyword
suggestion task. We also propose several baselines and new evaluation methods
to assess the performance of the models, as not much previous work has been
published for this task.

The proposed models adapt Word2Vec and FastText CBOW architectures to
compute keyword embeddings instead of word embeddings. Along with these two
keyword embedding models, we present a novel strategy for the negative sam-
pling task, which leverages the potential of the keyword co-occurrence graph’s
connected components to perform a better selection of the negative samples.

Results show that our methods significantly outperform the selected baselines
on both evaluation datasets. We also demonstrated the potential of sub-keyword
and sub-word information to represent keywords as embeddings. In future work
we aim to:

– Use the designed weights system to give more relevance to full keywords and
words than to n-grams.

– Assess the models’ performance using popularity-based negative sampling.
– Combine negative samples extracted from the target keyword connected com-

ponent and from different connected components.
– Use special delimiters to differentiate if a word is a part of a keyword or a

keyword itself or if a n-gram is a part of a word or a word itself.
– Train and test the models on non-scientific keyword-style annotated data.
– Study how the offline findings of this work align with live user testing.
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Abstract. Scientific articles tend to follow a standardised discourse that
enables a reader to quickly identify and extract useful or important infor-
mation. We hypothesise that such structural conventions are strongly
influenced by the scientific domain (e.g., Computer Science, Chemistry,
etc.) and explore this through a novel extractive algorithm that utilises
domain-specific discourse information for the task of abstract genera-
tion. In addition to being both simple and lightweight, the proposed
algorithm constructs summaries in a structured and interpretable man-
ner. In spite of these factors, we show that our approach outperforms
strong baselines on the arXiv scientific summarisation dataset in both
automatic and human evaluations, confirming that a scientific article’s
domain strongly influences its discourse structure and can be leveraged to
effectively improve its summarisation. Our code can be found at: https://
github.com/TGoldsack1/DodoRank.

Keywords: Summarisation · Scientific documents · Scientific discourse

1 Introduction

Scientific abstracts are used by researchers in determining whether a given article
is relevant to their own work. Therefore, a well-written scientific abstract should
concisely describe the essential content of an article from the author’s perspec-
tive [18], whilst following some standardised discourse structure [15,26]. Several
structural classification schemes exist that attempt to model the sentence-level
discourse of scientific articles within a particular scientific domain (e.g., Com-
puter Science, Chemistry, etc.), with a focus on categorising sentences according
to factors such as rhetorical status [3,20,27]. These schemes have proven utility
in the automatic summarisation of scientific articles [6,21,28].
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Neural network-based approaches have gained increasing popularity for
abstractive summarisation in recent years [11]. Although these models are capa-
ble of producing coherent summaries, they are prone to generating hallucinations
(i.e., text that is unfaithful to the source document) which can result in factual
inconsistencies in their output [2,23]. When it comes to scientific content, this
is especially problematic as it may result in the dissemination of false or mis-
leading information relating to important research findings [24]. On the other
hand, extractive summarisation systems typically ensure the basic syntactic and
semantic correctness of their output and thus remain widely used [11].

Fig. 1. Examples of the rhetorical abstract
structures typical of different scientific
domains (Computer Science and Physics).
Highlighted text donates rhetorical labels:
Background, Objective, Approach,
and Outcome.

Recent extractive works have
attempted to leverage coarse section-
level discourse structure of scientific
articles, assuming that this provides
a strong signal in determining the
most informative content of the input.
Dong et al. [10] build on the unsuper-
vised graph-based approach of Zheng
and Lapata [31], introducing a hier-
archical document representation that
accounts for both intra- and inter-
section connections and exploits posi-
tional cues to determine sentence
importance. Similarly, Zhu et al. [33]
exploit discourse structural informa-
tion, proposing a supervised approach
that extracts article sections based on
predicted salience before ranking their
sentences via a hierarchical graph-
based summariser. While the afore-
mentioned works have explored mod-
elling the discourse of articles to some
extent, few have addressed how it can
be used to directly influence the struc-
ture and content of their generated
output. Furthermore, to our knowledge, no prior work has studied how the sci-
entific domain of an article impacts the discourse structure of its abstract.

In this work, we tackle the problem of generating scientific abstracts, propos-
ing a novel summarisation method that explicitly models and exploits domain-
specific discourse, a valuable source of information that has not been explored
in the prior literature. We hypothesise that the scientific domain of an article
has a strong influence over the rhetorical structure of its abstract (exempli-
fied in Fig. 1), and thus can be leveraged in the context of abstract generation to
improve both the content and structure of the generated output. As such, we con-
duct the first study on the influence of scientific domain over the discourse struc-
ture of abstracts, using it to inform our summarisation method, DodoRank
(Domain and Discourse-oriented Ranking model). DodoRank consists of two
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primary components: (i) a discourse extraction module that, for a given dataset,
determines which sections contain the most salient content for abstract genera-
tion and computes domain-specific, sentence-level rhetorical abstract structures
for governing the generation process; and (ii) an unsupervised extractive sum-
mariser, which produces a scientific abstract based on the extracted domain-
specific discourse information. Specifically, discourse information is used to both
reduce the input to the most salient sections and impose a rhetorical structure
upon our generated output that conforms to the conventions of the scientific
domain. The sentences of salient sections are ranked and extracted in an unsu-
pervised fashion, using sentence centrality as a domain-independent measure of
importance [10,12,31]. Consequently, DodoRank constitutes a lightweight and
interpretable approach to summarisation that, despite its simplicity, gives better
or comparable performance to strong supervised baselines on the multi-domain
arXiv dataset [4], whilst also reducing the size of the input by an average of
66.24%. We further illustrate the effectiveness our approach via human eval-
uation, achieving superior performance to the state-of-the-art centrality-based
model. Finally, we provide a domain-specific breakdown of results on arXiv,
conclusively demonstrating that consideration of a scientific article’s domain is
beneficial for its summarisation.

2 Related Work

Table 1. Scientific datasets used in this
work. Here, † denotes that sentences are
manually annotated with rhetorical labels
and ∗ denotes the official data splits.

Dataset Domain # Train / Val / Test
ART corpus† (2010) Chemistry 169 / 28 / 28
CSAbstruct† ∗ (2019) CS 1668 / 295 / 226
AZ Abstract† (2010) Biomedical 750 / 150 / 100
AZ Article† (2013) Biomedical 37 / 7 / 6
arXiv∗ (2018) Multi-domain 203K / 6.4K / 6.4K

Scientific Discourse. The formalised
nature of scientific writing has led
to the creation of several classifica-
tion schemes which categorise sen-
tences according to their role within
the larger discourse structure. By cap-
turing the different types of informa-
tion scientific articles contain at a
fine-grained level, these schemes have
the ability to support both the man-
ual study and automatic analysis of scientific literature and its inherent struc-
tural discourse [14,16,28]. The two most prevalent of these schemes are Argu-
mentative Zoning [27] and Core Scientific Concepts (CoreSC) [20], both of which
categorise sentences according to their rhetorical status and are provided along-
side manually annotated corpora with scientific articles from the Computational
Linguistics and Chemistry domains, respectively. Subsequent works have since
introduced corpora annotated with similar schemes, typically focusing on a sin-
gle scientific domain [3,16,17,29]. Several of these datasets are used within this
work (see Table 1).

Extractive Summarisation of Scientific Articles. Extractive summarisation
approaches aim to build a summary using text spans extracted from the source
document. These approaches remain attractive as they prevent factual hallucina-
tions in the generated output, resulting in more reliable and usable summaries.
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Prior to the rise of deep neural models, the use of traditional supervised
algorithms proved popular, commonly used in combination with statistical text
features such as sentence length and location, TFIDF scores, and frequency of
citations [5,6,21,28]. Rhetorical classification schemes, such as those previously
described, have also been shown to have value as features to these algorithms
[6,28]. We make use of rhetorical classes in a style similar to that of Liakata
et al. [21] who use the distribution of CoreSC classes within Chemistry articles
to create a rhetorical plan for their generated output. In contrast to this work,
we derive rhetorical structures directly from abstracts themselves and deploy
them on multiple scientific domains. These earlier works also fail to address the
section-based structure of scientific documents, which has since been shown to
have influence over the distribution of summary-worthy content [10,33].

More recently, Xiao and Carenini [30] incorporate section information within
a bi-directional RNN document encoder, before outputting confidence scores
for each sentence. As covered in §1, both Dong et al. [10] and Zhu et al. [33]
model coarse-level structural discourse information within hierarchical document
graphs. Additionally, Dong et al. [10] determine the importance of a sentence
calculating its centrality within a group of sentences [12,31]. In this work, we also
make use of centrality to compute sentence importance. However, where Dong
et al. [10] group sentences based on the origin section and place emphasis on
the position of sentences within sections, we group sentences based on rhetorical
status and place emphasis on structuring output in a way that conforms with
the conventions of the specific scientific domain.

3 Method

Fig. 2. DodoRank model overview.

Our summarisation framework consists
of two key components: A) a discourse
extraction component and B) a sum-
marisation component, as illustrated in
Fig. 2. The discourse extraction com-
ponent operates offline during an ini-
tial ‘learning phase’. It is responsible
for (i) determining the most salient
article sections for abstract generation
(Sect. 3.1), and (ii) capturing domain
specific, sentence-level rhetorical abstract
structures (Sect. 3.2). The summarisation
component then employs the extracted
discourse information in an online set-
ting for guided abstract generation based
on the centrality ranking of sentences
(Sect. 3.3).
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3.1 Salient Section Determination

A scientific abstract is a concise summary of a research paper, typically high-
lighting a few important components such as the research motivation, problem,
approach, and key results and/or findings. We hypothesise that some of the arti-
cle sections serve a more similar communicative goal to the abstract than others,
and hence contribute more significantly to its content.

To deduce the most salient article sections for a given dataset, we propose to
assess their individual contribution to the content of the abstract. We conduct
our analysis and discourse information extraction based on a sample set, derived
from the arXiv dataset, that contains articles from all eight scientific domains.1
We balance sampling in terms of the scientific domain to ensure that the dis-
course information extracted is representative of all domains in the dataset.
Further details on the sample set are given in Sect. 4.

Table 2. Matching terms used for each con-
flated heading.

Conflated heading Matching terms
Introduction “introduction”
Conclusion “conclu”, “summary”
Discussion “discussion”
Result/analysis “result”, “analys”, “ablat”
Background/motivation “background”, “motivation”
Method “implement”, “method”
Model “architec”, “system”, “model”
Future work “direction”, “future”
References “referenc”
Acknowledgements “acknowledg”
Related work “related”

For each abstract within the
sample, we calculate the similarity
between each sentence it contains and
every sentence in the main body of
the respective article. Due to the sci-
entific nature of the text, similar-
ity is measured using cosine similar-
ity between SciBERT embeddings [1].
Subsequently, the sentence with the
greatest similarity to each abstract
sentence (referred to as the oracle sen-
tence) and the heading of the section
in which it is located are retrieved.

In verbatim form, the retrieved section headings are noisy, with much varia-
tion in phrasing and formatting when referring to semantically similar concepts
(e.g., the concluding section of an article can be titled “conclusion”, “summary”,
“concluding remarks”, etc., all of which are semantically identical). Therefore,
following Ermakova et al. [13], verbatim headings are conflated into a standard-
ised form by matching selected words and sub-words against them using regular
expressions. Matching terms for all conflated headings are derived empirically
based on the sample set and given in Table 2.

The most important sections are regarded as those which the oracle sentences
most frequently originate from, and we use only sentences from these sections
as input to our summarisation component. Specifically, we select the minimum
amount of sections that cumulatively contribute to at least 50% of all oracle sen-
tences (see Table 5), to ensure sufficient coverage of salient content. Our analysis
based on the arXiv dataset shows that the Introduction and Conclusion sections
are the most salient contributors for the abstracts across all tested domains.
Please refer to Sect. 5.1 for detailed analysis.

1 This sample set is also used within §3.2, as indicated in Fig. 2.
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3.2 Rhetorical Content Modelling

To govern the generation process of our summariser, we aim to extract a rhetor-
ical structure which is representative of a typical abstract for each specific scien-
tific domain. We refer to these structures as content models. To this end, we adopt
a sentence-level classification scheme similar to that of CSAbstruct [3], a dataset
consisting of rhetorically labelled Computer Science abstracts. Specifically, our
scheme contains the rhetorical labels: {Background, Objective, Approach,

Outcome, Other}, where each label represents a high-level rhetorical role
that may be assigned to any sentence in a given article, regardless of scientific
domain.

Table 3. Mapping of the rhetorical labels of
other datasets to our classification scheme.

Our label Verbatim label
ART Corpus CSAbstruct AZ Article AZ Abstract

Background Background Background Background Background
Connection Related Work
Difference

Objective Motivation Objective Problem Objective
Goal Future Work Future Work
Hypothesis
Object

Approach Experiment Method Method Method
Model
Method

Outcome Observation Result Result Result
Result Conclusion Conclusion
Conclusion

Other – Other – –

Applying this classification
scheme requires us to obtain the
rhetorical labels for the unlabelled
scientific abstracts. Therefore, we
train a SciBERT-based sequen-
tial classifier [1,3,9] on a com-
bination of four datasets, all of
which contain scientific articles
and/or abstracts manually anno-
tated with similar sentence-level
rhetorical schemes by their cre-
ators. Specifically, we convert the
labels of CSAbstruct [3], the ART
corpus [20], AZ Abstract [16],
and AZ Article [17] to our given
scheme via a simple label mapping procedure, illustrated in Table 3. In combin-
ing these datasets and exposing the classifier to instances of our rhetorical classes
from different scientific domains (see Table 1), we aim to make it more robust
to unseen domains. We validate the reliability of this mapping by evaluating the
trained classifier on the test set of CSAbstruct (Sect. 5.1), by far the largest of
the contributing datasets.

Following label prediction on the abstracts of the sample set, we employ
a frequency-based approach to extract the domain-specific content models. The
core idea of this approach is to find the most common pattern of rhetorical labels
observed in the abstracts of a given domain. A content model M corresponds to
a sequence of K rhetorical sentence labels, where K is a hyperparameter to our
model and determined based on overall model performance on the validation split
(e.g., for a value of K = 3, an example M could be [Background, Approach,

Outcome]).
To extract our domain-specific content models, one intuitive solution would

be to sequentially compute the rhetorical label that occurs most frequently
within its sample set abstracts for each sentence position from 0 to K. However,
abstracts vary in length, and therefore a simple frequency-based method with-
out taking this into account will be sub-optimal in capturing the rhetorical label
distributions of the sample set. To tackle this challenge, we propose to normalise
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Fig. 3. Example showing how a sample abstract s is compressed to s’ using (1).

a sample abstract’s rhetorical label sequence s by performing position-aware
up/down sampling, thus producing a normalised label sequence s′ of length K
that approximates the original rhetorical label distribution. This normalisation
process (i.e., construction of s′) is formally defined below:

is = � is′

K − 1
(|s| − 1)�, (1)

where |s| is the number of sentence labels (equivalent to the number of sen-
tences) in the sample abstract. Equation (1) essentially samples an index is in
s from which we retrieve a label value for sentence position is′ (0 < is′ < K)
of the normalised sequence s′. More specifically, if |s| is larger than the content
model length K, Eq. (1) is used to perform position-aware down-sampling of s,
retrieving a subset of its labels to form a condensed version of its label distribu-
tion; likewise, if |s| is smaller than K, it will be used to perform position-aware
up-sampling of s to form an expanded version of its label distribution. Figure 3
exemplifies how Eq. (1) samples the labels from s to form a representation s′

with K elements.2 After deriving an s′ for each s within a given domain, we
construct a content model M by calculating the most frequent label observed
at each normalised sentence position. By following this position-aware approach
rather than truncating/padding sample abstracts to K labels, we ensure that
our content models better reflect the true rhetorical distributions of the sample
abstracts.

3.3 Centrality-based Summariser

As per Sect. 3.1, the summariser receives the previously identified salient sec-
tions as input (i.e., Introduction and Conclusion). Prior to summarisation, the
sentences of these sections are assigned a rhetorical label using the classifier
described in Sect. 3.2. To generate an extractive summary guided by a content
model, we first group input sentences by their assigned rhetorical class. For each

2 Note that we also experimented with both rounding up and rounding to the nearest
integer value for Eq. (1), but found that rounding down gave the best performance.
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class label within the content model, we extract the candidate sentence with the
greatest centrality from the corresponding group. In order to avoid redundancy,
a sentence is no longer considered a candidate sentence once it is extracted,
and thus can not be extracted for subsequent occurrences of the same rhetorical
label.

The centrality of a sentence si is equal to the average cosine similarity
between si and every other sentence within its group:

Centrality(si) =
1
N

N∑

j=1

ei,j , (2)

ei,j = Cosine(vi, vj) (3)

Here vi and vj are the SciBERT embeddings of sentences si and sj , and N
is the number of sentences of the same rhetorical class.

4 Experimental Setup

Table 4. The frequencies of different scien-
tific domains within the different data splits
of arXiv (EESS = Electrical Engineering
and Systems Science).

Domain Frequency
Train Valid Test

Physics 169,827 5,666 5,715
Mathematics 20,141 360 322
Computer Science 9,041 280 258
Quantitative Biology 1,842 59 71
Statistics 1,399 47 46
Quantitative Finance 701 24 28
EESS 80 0 0
Economics 6 0 0
Total 203,037 6,436 6,440

Datasets. For the task of abstract
generation, we experiment on the test
split of the popular arXiv scientific
summarisation dataset [4], for which
document-summary pairs consist of
full research articles (taken from the
arXiv online repository) and their
author-written abstracts. We assume
a scenario where the domain of the
input article is known by the user (as
such information is typically available
or easily predictable). We retrieve the
scientific domain of each article within
arXiv using the unique article IDs.3
As shown in Table 4, arXiv contains
articles from eight scientific domains,
with Physics being the most frequent. For discourse extraction (i.e., the deriva-
tion of salient sections and domain-specific content models), we sample 5,000
instances from the train split of arXiv (≈ 840 samples from each domain, or
all training instances when less than this is available), allowing for meaningful
statistics to be calculated for each domains whilst remaining relatively compu-
tationally inexpensive. Also note that we exclude EESS and Economics domains
for content modelling and the main experiment due to their limited size and no
valid/test sets.

3 The domain names retrieved are equal to highest-level categories as defined in the
arXiv category taxonomy: https://arxiv.org/category_taxonomy.

https://arxiv.org/category_taxonomy
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Implementation Details. DodoRank contains only one hyperparameter, the
length of the content model K. We found that a value of K = 6 gave the
best performance on the validation set of arXiv, meaning our output summaries
exclusively consist of 6 sentences.4 Moreover, this happens to be the median
number of sentences for abstracts within arXiv [19].

Baselines. We compare our model with traditional baselines Oracle, Lead,
LexRank [12], and LSA [25]. We include supervised baselines Discourse-

Aware [4], Seq2Seq-Loc&Glob [30], Match-Sum [32], Topic-GraphSum

[8] and SSN-DM [7]. For unsupervised models, we include the results of Pac-

Sum [31] and HipoRank [10], the latter of which achieves state-of-the-art per-
formance for an unsupervised model.

Evaluation. We perform automatic evaluation using standard ROUGE metrics
[22].5 Specifically, we give the average F1-scores for ROUGE-1, ROUGE-2 and
ROUGE-L. Following Dong et al. [10], we also perform human evaluation on a
subset of abstracts within the arXiv test set, allowing for a more comprehensive
comparison of model performance.

5 Experimental Results

5.1 Structural Discourse Analyses

Table 5. The average section contribution
to abstract content within the arXiv sam-
ple set (% of oracle sentences originating
from each section). Underlined text denotes
selected input sections.

Conflated heading Contribution (%)
Introduction 35.98
Conclusion 14.94
Results/Analysis 8.06
Discussion 5.13
Model 4.15
Method 2.68
Background/motivation 0.86
Compression ratio 33.76

Section Contribution to Abstract Con-
tent. Table 5 gives the contribution
of different sections to the content
of the abstracts within the sample
set, highlighting the selected sections.
As stated in §3.1, this is measured
as the percentage of oracle sentences
that originate from a given section.
We find that over 50% of abstract
content is derived from the Intro-
duction and Conclusion sections. The
provided compression ratio indicates
that these sections constitute 33.76%
of an article on average. To validate
the input reduction process, we also
calculate the average ROUGE F-scores obtained by two oracle-based summaries
(cf. §3.1) when compared to the reference abstracts: one containing oracle sen-
tences extracted from the full text, and the other containing oracle sentences
extracted from only the salient sections (Table 6).
4 Increasing or decreasing K (which directly influences the number of sentences in the

summaries produced by DodoRank) invariably led to a worse average performance,
as measured by the metrics described in this Section.

5 All ROUGE calculations are performed using the rouge-score Python package.
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Table 6. Sample set oracle ROUGE scores
using the full text and extracted sections (I
= Introduction, C = Conclusion).

Oracle type R-1 R-2 R-L
Full text 47.45 21.53 41.99
Extracted (I + C) 46.35 20.77 40.67

The results given in Table 6 sup-
port this, showing only a small dis-
parity between the oracle ROUGE
scores obtained using only these sec-
tions and those obtained using the full
text (average difference < 1). As fur-
ther validation, we carry out signifi-
cance testing on oracle ROUGE scores
(t-test), the results of which indicate that differences between performance using
the full text and the extracted sections are is statistically insignificant for all
variants (p = 0.26, 0.48, and 0.19 for ROUGE-1, 2, and L, respectively).

Table 7. Classifier performance for 5-way
rhetorical label classification on the CSAb-
struct test set. Results are average scores of
3 runs with different random seeds.

Training data F-score Acc.
CSAbstruct 0.794 0.819
Combined datasets 0.811 0.824

Rhetorical Label Prediction. Table 7
provides statistics on the performance
of the SciBERT-based classifier for
rhetorical label prediction on the
Computer Science abstracts of the
CSAbstruct test set. Although the
classifier exhibits strong performance
when using only the training data
of CSAbstruct, the additional out-of-
domain data provided by our combined datasets further improves performance
in terms of both accuracy and F-score, attesting to the domain-independence of
our classification scheme (described in §3.2). This suggests that we can rely on
predicted rhetorical labels for subsequent experiments.

Table 8. The Jensen-Shannon divergence
between the distributions given in Fig. 4,
averaged across all rhetorical labels (CSA =
CSAbstruct, aX = arXiv, P = Physics, M =
Mathematics, CS = Computer Science, QB
= Quantitative Biology, S = Statistics).

aX[P] aX[M] aX[CS] aX[QB] aX[S] CSA
aX[P] – 0.215 0.250 0.098 0.217 0.307
aX[M] 0.215 – 0.140 0.213 0.137 0.204
aX[CS] 0.250 0.140 – 0.201 0.094 0.138
aX[QB] 0.098 0.213 0.201 – 0.169 0.246
aX[S] 0.217 0.137 0.094 0.169 – 0.160
CSA 0.307 0.204 0.138 0.246 0.160 –

Rhetorical Structure of Abstracts.
Fig. 4 provides a visualisation of how
the frequency of each rhetorical class
changes according to the sentence
position within the abstracts of dif-
ferent scientific domains. For each
sub-graph, by observing the pattern
of most frequent labels (tallest bars)
across all positions, we can iden-
tify the dominant rhetorical struc-
ture for a given domain. It is evi-
dent that these structures differ sig-
nificantly depending on the scientific
domain. To quantify this difference, we compute the average Jensen Shannon
divergence (JSD) between the distributions (Table 8).

We show the five domains most prevalent within the arXiv train set:
Physics (83.6%), Mathematics (9.8%), Computer Science (4.5%), Quantita-
tive Biology (0.9%), and Statistics (0.7%). As an additional point of compar-
ison with our predicted label distributions, we also include the distribution
of the manually labelled CSAbstruct. We find that the most similar rhetor-
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Fig. 4. Visualisation of the rhetorical distributions of abstracts for different domains.

ical structures are shared by the Statistics and Computer Science instances
within arXiv (0.094 JSD). Both domains, in addition to Mathematics which
also attains a low JSD score with each, follow the rhetorical flow of Back-

ground→Approach→Outcome. Similar patterns can also be observed in the
extracted content models for all of these domains. Additionally, we find that
predicted distributions for arXiv’s Computer Science instances are similar to
that CSAbstruct (0.138 JSD), further supporting the reliability of the predicted
labels. Interestingly, the abstracts of both the Physics and Quantitative Biology
domain instances within arXiv exhibit a rhetorical structure that differs signif-
icantly from the other presented domains, placing a much greater emphasis on
the Outcome class. Furthermore, their abstract structures are judged to be
very similar by way of JSD score (0.098).

5.2 Abstract Generation

Automatic Evaluation. Table 9 presents the performance of DodoRank and
selected baselines on the arXiv test split. We include the results of two
ablated versions of DodoRank, DodoRankno_ss and DodoRankno_cm. Here,
DodoRankno_ss denotes omission of section selection (full article text is used)
and DodoRankno_cm, the omission of the sentence-level content models (i.e.,
K most central sentences are selected, regardless of rhetorical class).

DodoRank achieves strong performance, exceeding that of supervised mod-
els Discourse-aware (in all metrics) and Match-Sum (in R-2 and R-L,
whilst achieving comparable performance in R-1), despite employing an unsu-
pervised extractive summariser using centrality. DodoRank also outperforms
both closely-related centrality-based unsupervised baselines in all metrics. Fur-
thermore, the use of both discourse-based sub-components results in a large
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improvement compared to when only one is used. This attests to the utility of
both sub-components and indicates that: 1) the rhetorical structure imposed by
the domain-specific content models results in the extraction of sentences more
similar to those in the reference abstracts, and 2) the most central sentences
within the Introduction and Conclusion sections better reflect the abstract con-
tent than the most central sentences of the document as a whole.

Table 9. Test set results on arXiv
(ROUGE F1). Results with † and ∗ are
taken from [7,10], respectively. Results
with ‡ are reproduced.

Model R-1 R-2 R-L

Oracle∗ 53.88 23.05 34.90
Lead∗ 33.66 8.94 22.19
LexRank (2004)∗ 33.85 10.73 28.99
LSA (2004)∗ 29.91 7.42 25.67
Supervised models
Discourse-aware (2018)

† 35.80 11.05 31.80
Seq2Seq-Loc&Glob (2019)

† 43.62 17.36 29.14
Match-Sum (2020)

† 40.59 12.98 32.64
Topic-GraphSum (2020)

† 44.03 18.52 32.41
SSN-DM+discourse (2021)

† 44.90 19.06 32.77
Unsupervised models
PacSum (2019)∗ 38.57 10.93 34.33
HipoRank (2021)∗ 39.34 12.56 34.89
DodoRank (ours) 40.11 14.20 35.31
DodoRankno_ss (ours) 36.66 10.87 31.12
DodoRankno_cm (ours) 36.51 12.15 31.99

Table 10. Domain-specific breakdown
of results (ROUGE F1) on the arXiv
test set.

Domain Model R-1 R-2 R-L

Physics DodoRank 40.34 14.47 35.49
DodoRankno_ss 37.07 11.24 32.48
DodoRankno_cm 36.40 12.19 31.87

Mathematics DodoRank 34.65 10.21 30.53
DodoRankno_ss 30.94 7.12 27.03
DodoRankno_cm 33.76 10.17 29.77

Computer Science DodoRank 41.13 14.01 36.27
DodoRankno_ss 34.51 8.38 30.27
DodoRankno_cm 39.79 13.46 35.13

Quantitive Biology DodoRank 38.69 10.79 33.90
DodoRankno_ss 34.86 7.99 30.59
DodoRankno_cm 37.99 10.54 33.41

Statistics DodoRank 39.06 10.93 34.24
DodoRankno_ss 35.19 7.28 31.88
DodoRankno_cm 38.64 11.20 33.89

Quantitive Finance DodoRank 39.84 13.18 35.59
DodoRankno_ss 36.72 10.06 31.88
DodoRankno_cm 38.34 13.25 33.81

Table 10 provides a domain-specific breakdown of ROUGE scores on the
arXiv test set for standard and ablated versions of DodoRank. Again, we
observe a universal improvement in performance across all domains when both
discourse-based analyses are included, providing further indication that our anal-
yses capture the nuances of each scientific domain and, in doing so, improves the
summarisation of their articles.

Table 11. Human evaluation results on
20 sampled reference summaries with 307
system summary sentences from arXiv.
Results for both criteria are statistically
significant with Mann-Whitney U tests.

Model Content-coverage Importance
HipoRank 12.17 37.21
DodoRank 22.03 59.04

Human Evaluation. Results for human
evaluation are given in Table 11. We
chose to replicate the procedure of
Dong et al. [10] to facilitate a
direct comparison between our model
and the state-of-the-art for centrality-
based extractive summarisation model
DodoRank. For this evaluation, two
human judges6 are repeatedly pre-
6 Judges are native English speakers holding a bachelor’s degree in scientific disciplines.
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sented with a reference abstract and a sentence extracted by either DodoRank

or HipoRank model in a random anonymised order. Each sentence is evaluated
on whether it contains content from the reference abstract (content coverage) and
whether it contains content that would be important for a goal-oriented reader,
regardless of whether it is covered in the reference abstract (importance). Each
reference summary-sentences pair is annotated by two annotators (i.e., a score
1 will be assigned if a sentence is deemed content relevant or important; and 0
otherwise). Scores are aggregated and then averaged across the sentences from
the tested models. The average annotator agreement of 73.31%, attesting to their
reliability.

DodoRank significantly outperforms the HipoRank model for both content
coverage and importance, in line with automatic evaluation results. Overall,
these results provide further indication that summarising only the salient sections
of an article and arranging output according to a domain-specific rhetorical
structure improves the overall quality of the summaries produced, particularly
in the selection of important content.

6 Conclusions

In this paper we proposed an extractive, discourse-guided approach to the
generation of scientific abstracts which adapts to the scientific domain. For a
given domain, the model extracts rich discourse information which is used to
both reduce the input and guide the output of a simple centrality-based sum-
mariser. Our approach exhibits impressive performance on the multi-domain
arXiv dataset, exceeding that of strong baselines, both supervised and unsuper-
vised. This demonstrates that the scientific domain of an article can effectively
be leveraged in a summarisation context and supports our original hypothesis,
that the domain of an article has a strong influence over the structural discourse
of its abstract.
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Abstract. In this paper, we address the detection of named entities
in multilingual historical collections. We argue that, besides the mul-
tiple challenges that depend on the quality of digitization (e.g., mis-
spellings and linguistic errors), historical documents can pose another
challenge due to the fact that such collections are distributed over a
long enough period of time to be affected by changes and evolution of
natural language. Thus, we consider that detecting entities in histori-
cal collections is time-sensitive, and explore the inclusion of temporal-
ity in the named entity recognition (NER) task by exploiting temporal
knowledge graphs. More precisely, we retrieve semantically-relevant addi-
tional contexts by exploring the time information provided by historical
data collections and include them as mean-pooled representations in a
Transformer-based NER model. We experiment with two recent multilin-
gual historical collections in English, French, and German, consisting of
historical newspapers (19C-20C) and classical commentaries (19C). The
results are promising and show the effectiveness of injecting temporal-
aware knowledge into the different datasets, languages, and diverse entity
types.

Keywords: Named entity recognition · Temporal information
extraction · Digital humanities

1 Introduction

Recent years have seen the delivery of an increasing amount of textual corpora
for the Humanities and Social Sciences. Representative examples are offered
by the digitization of the gigantic Gallica collection by the National Library
of France1 and the Trove online Australian library2, database aggregator and
1 https://gallica.bnf.fr/.
2 https://trove.nla.gov.au/.
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service of full-text documents, digital images and data storage of digitized docu-
ments. Access to this massive data offers new perspectives to a growing number
of disciplines, going from socio-political and cultural history to economic his-
tory, and linguistics to philology. Billions of images from historical documents
including digitized manuscript documents, medieval registers and digitized old
press are captured and their content is transcribed, manually through dedicated
interfaces, or automatically using optical character recognition (OCR) or hand-
written text recognition (HTR). The mass digitization process, initiated in the
1980 s s with small-scale internal projects, led to the “rise of digitization”, which
grew to reach a certain maturity in the early 2000 s s with large-scale digitiza-
tion campaigns across the industry [12,16]. As this process of mass digitization
continues, increasingly advanced techniques from the field of natural language
processing (NLP) are dedicated to historical documents, offering new ways to
access full-text semantically enriched archives [33], such as NER [4,10,19], entity
linking (EL) [26] and event detection [5,32].

However, for developing such techniques, historical collections present mul-
tiple challenges that depend either on the quality of digitization, the need to
handle documents deteriorated by the effect of time, the poor quality printing
materials or inaccurate scanning processes, which are common issues in histor-
ical documents [20]. Moreover, historical collections can pose another challenge
due to the fact that documents are distributed over a long enough period of time
to be affected by language change and evolution. This is especially true in the
case of Western European languages, which only acquired their modern spelling
standards roughly around the 18th or 19th centuries [29]. With existing collec-
tions [12,15,16] providing such metadata as the year of publication, we propose
to take advantage of the temporal context of historical documents in order to
increase the quality of their semantic enrichment. When this metadata is not
available, due to the age of the documents, the year has often been estimated
and a new NLP task recently emerged, aiming to predict a document’s year of
publication [36].

NER corresponds to the identification of entities of interest in texts, generally
of the type person, organization, and location. Such entities act as referential
anchors that underlie the semantics of texts and guide their interpretation. For
example, in Europe, by the medieval period, most people were identified sim-
ply by a mononym or a single proper name. Family names or surnames began
to be expected in the 13th century but in some regions or social classes much
later (17th century for the Welsh). Many people shared the same name and the
spelling was diverse across vernacular and Latin languages, and also within one
language (e.g., Guillelmus, Guillaume, Willelmus, William, Wilhelm). Locations
may have disappeared or changed completely, for those that survived well into
the 21st century from prehistory (e.g., Scotland, Wales, Spain), they are very
ambiguous and also have very different spellings, making it very difficult to iden-
tify them [6]. In this article, we focus on exploring temporality in entity detec-
tion from historical collections. Thus, we propose a novel technique for injecting
additional temporal-aware knowledge by relying on Wikipedia and Wikidata
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to provide related context information. More exactly, we retrieve semantically-
relevant additional contexts by exploring the time information provided by the
historical data collections and include them as mean-pooled representations in
our Transformer-based NER model. We consider that adding grammatically cor-
rect contexts could improve the error-prone texts due to digitization errors while
adding temporality could further be beneficial to handle changes in language or
entity names.

The paper is structured as follows: we present the related work and datasets
in Sect. 2 and 3 respectively. Our methodology for retrieving additional context
through temporal knowledge graphs and how contexts are included within the
proposed model is described in Sect. 4. We, then, perform several experiments in
regards to the relativity of the time span when selecting additional context and
present our findings in Sect. 5. Finally, conclusions and future work are drawn
in Sect. 63.

2 Related Work

Named Entity Recognition in Historical Data. Due to the multiple chal-
lenges posed by the quality of digitization or the historical variations of a lan-
guage, NER in historical and digitized documents is less noticeable in terms of
high performance than in modern documents [47,52]. Recent evaluation cam-
paigns such as the one organized by the Identifying Historical People, Places,
and other Entities (HIPE) lab at CLEF 20204 [16] and 20225 [17] proposed
tasks of NER and EL in ca. 200 years of historical newspapers written in multi-
ple languages (English, French, German, Finnish and Swedish) and successfully
showed that these tasks benefit from the progress in neural-based NLP (specif-
ically driven by the latest advances in Transformer-based pre-trained language
models approaches) as a considerable improvement in performance was observed
on the historical collections, especially for NER [24,42,44].

The authors of [10] present an extensive survey on NER over historical
datasets and highlight the challenges that state-of-the-art NER methods applied
to historical and noisy inputs need to address. For overcoming the impact of the
OCR errors, contextualized embeddings at the character level were utilized to
find better representations of out-of-vocabulary words (OOVs) [2]. The contex-
tualized embeddings are learned using language models and allow predicting the
next character of strings given previous characters. Moreover, further research
showed that the fine-tuning of several Transformer encoders on historical col-
lections could alleviate digitization errors [4]. To deal with the lack of historical
resources, [40] proposed to use transfer learning in order to learn models on
large contemporary resources and then adapt them to a few corpora of historical
nature. Finally, in order to address the spelling variations, some works developed
transformation rules to model the diachronic evolution of words and generate a
3 The code is available at https://github.com/EmanuelaBoros/clef-hipe-2022-l3i.
4 https://impresso.github.io/CLEF-HIPE-2020/.
5 https://hipe-eval.github.io/HIPE-2022/.
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normalized version processable by existing NER systems [8,23]. While most of
these approaches rely generally on the local textual context for detecting entities
in such documents, temporal information has generally been disconsidered. To
the best of our knowledge, several approaches have been proposed for named
entity disambiguation by utilizing temporal signatures for entities to reflect the
importance of different years [1], and entity linking, such as the usage of time-
based filters [26], but not for historical NER.

Named Entity Recognition with Knowledge Bases. Considering the
complementary behaviors of knowledge-based and neural-based approaches for
NER, several studies have explored knowledge-based approaches including dif-
ferent types of symbolic representations (e.g., knowledge bases, static knowl-
edge graphs, gazetteers) and noticed significant improvements in token repre-
sentations and the detection of entities over modern datasets (e.g., CoNLL [43],
OntoNotes 5.0 [35]) [27,43]. Gazetteer knowledge has been integrated into NER
models alongside word-level representations through gating mechanisms [31] and
Wikipedia has mostly been utilized to increase the semantic representations of
possible entities by fine-tuning recent pre-trained language models on the fill-in-
the-blank (cloze) task [39,52].

When well-formed text is replaced with short texts containing long-tail enti-
ties, symbolic knowledge has also been utilized to increase the contextual infor-
mation around possible entities [31]. Introducing external contexts into NER
systems has been shown to have a positive impact on the entities’ identification
performance, even with these complications. [48] constructed a knowledge base
system based on a local instance of Wikipedia to retrieve relevant documents
given a query sentence. The retrieved documents and query sentences, after con-
catenation, were fed to the NER system. Our proposed methodology could be
considered inspired by their work, however, we include the additional contexts
at the model level by generating a mean-pooled representation for each context
instead of concatenating the contexts with the initial sentence. We consider that
having pooled representations for each additional context can reduce the noise
that could be created by other entities found in these texts.

Temporality in Knowledge Graphs. Recent advances have shown a grow-
ing interest in learning representations of entities and relations including time
information [7]. Other work [50] proposed a temporal knowledge graph (TKG)
embedding model for representing facts involving time intervals by designing
the temporal evolution of entity embeddings as rotation in a complex vector
space. The entities and the relations were represented as single or dual complex
embeddings and temporal changes were the rotations of the entity embeddings
in the complex vector space. Since the knowledge graphs change over time in
evolving data (e.g., the fact The President of the United States is Barack Obama
is valid only from 2009 to 2017), A temporal-aware knowledge graph embedding
approach [49] was also proposed by moving beyond the complex-valued repre-
sentations and introducing multivector embeddings from geometric algebras to
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Fig. 1. An example from the
hipe-2020 dataset.

Fig. 2. An example from the ajmc

dataset.

model entities, relations, and timestamps for TKGs. Further research [51] pre-
sented a graph neural network (GNN) model treating timestamp information as
an inherent property of the graph structure with a self-attention mechanism to
associate appropriate weights to nodes according to their relevant relations and
neighborhood timestamps. Therefore, timestamps are considered properties of
links between entities.

TKGs, however, show many inconsistencies and a lack of data quality across
various dimensions, including factual accuracy, completeness, and timeliness. In
consequence, other research [9] further explores TKGs by targeting the com-
pletion of knowledge with accurate but missing information. Moreover, since
such TKGs often suffer from incompleteness, the authors of [53] introduced a
temporal-aware representation learning model that helps to infer the missing
temporal facts by taking interest in facts occurring recurrently and leverage a
copy mechanism to identify facts with repetition. The aforementioned methods
demonstrate that the usage of TKGs is considered an emerging domain that is
being explored, in particular in the field of NLP. The availability of information
about the temporal evolution of entities, not only could be a promising solution
for improving their semantic knowledge representations but also could provide
additional contextual information for efficient NER. To the best of our knowl-
edge, our work is the first attempt to leverage time information provided by
TKGs to improve NER.

3 Datasets

In this study, we utilize two collections composed of historical newspapers and
classical commentaries covering circa 200 years. Recently proposed by the CLEF-
HIPE-2022 evaluation campaign [14], we experiment with the hipe-2020 and the
Ajax Multi-Commentary (ajmc) datasets.

hipe-2020 includes newspaper articles from Swiss, Luxembourgish, and
American newspapers in French, German, and English (19C-20C) and contains
19,848 linked entities as part of the training sets [12,15,16]. For each language,
the corpus is divided into train, development, and test, with the only exception of
English for which only development and test sets were produced [13]. In this case,
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Table 1. Overview of the hipe-2020 and ajmc datasets. LOC = Location, ORG =
Organization, PERS = Person, PROD = Product, TIME = Time, WORK =
human work, OBJECT = physical object, and SCOPE = specific portion of work.

hipe-2020 ajmc

French German English French German English

Type train dev test train dev test train dev test train dev test train dev test train dev test

LOC 3,089 774 854 1,740 588 595 – 384 181 15 0 9 31 10 2 39 3 3

ORG 836 159 130 358 164 130 – 118 76 – – – – – – – – –

PERS 2,525 679 502 1,166 372 311 – 402 156 577 123 139 620 162 128 618 130 96

PROD 200 49 61 112 49 62 – 33 19 – – – – – – – – –

TIME 276 68 53 118 69 49 – 29 17 2 0 3 2 0 0 12 5 3

WORK – – – – – – – – – 378 99 80 321 70 74 467 116 95

OBJECT – – – – – – – – – 10 0 0 6 4 2 3 0 0

SCOPE – – – – – – – – – 639 169 129 758 157 176 684 162 151

we utilized the French and German datasets for training the proposed models in
our experimental setup. An example from the French dataset is presented in Fig. 1.

ajmc is composed of classical commentaries from the Ajax Multi-
Commentary project that includes digitized 19C commentaries published in
French, German, and English [41] annotated with both universal and domain-
specific named entities (NEs). An example in English is presented in Fig. 2.

These two collections pose several important challenges: the multilingual-
ism (both containing three languages: English, French and German), the code-
mixed documents (e.g., commentaries, where Greek is mixed with the language
of the commentator), the granularity of annotations and the richness of the
texts characterized by a high density of NEs. Both datasets provide different
document metadata with different granularity (e.g., language, document type,
original source, date) and have different entity tag sets that were built according
to different annotation guidelines. Table 1 presents the statistics regarding the
number and type of entities in the aforementioned datasets divided according to
the training, development, and test sets.

4 Temporal Knowledge-based Contexts for Named Entity
Recognition

The OCR output contains errors that produce noisy text and complications,
similar to those studied by [30]. It has long been observed that adapting NER
systems to deal with the OCR noise is more appropriate than adapting NER
corpora [11]. Furthermore, [22] showed that applying post-OCR correction algo-
rithms before running NER systems does not often have a positive impact on
NER results since post-OCR may degrade clean words during the correction of
the noisy ones. To deal with OCR errors, we introduce external grammatically
correct contexts into NER systems which have a positive impact on the entity
identification performance even in spite of these challenges [48]. Moreover, the
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inclusion of such contexts by taking into consideration temporality could further
improve the detection of time-sensitive entities. Thus, we propose several settings
for including additional context based on Wikidata5m6 [46], a knowledge graph
with five million Wikidata7 entities which contain entities in the general domain
(e.g., celebrities, events, concepts, things) and are aligned to a description that
corresponds to the first paragraph of the matching Wikipedia page.

4.1 Temporal Information Integration

A TKG contains time information and facts associated with an entity that pro-
vides information about spontaneous changes or smooth temporal transforma-
tions of the entity while informing about the relations with other entities. We
aggregate temporality into Wikidata5m including the TKG created by [25] and
tuned by [18]8. This TKG contains over 11 thousand entities, 150 thousand facts,
and a temporal scope between the years 508 and 2017. For a given entity, it pro-
vides a set of time-related facts describing the interactions of the entity in time.
It is thus necessary to combine these facts into a singular element through an
aggregation operator over their temporal elements.

We perform a transformation on the temporal information of every fact of
an entity in order to combine them into only one piece of temporal information.
Let e be an entity described by the facts:

{Fe}ni=1 = {(e, r1, e1, t1)(e, r2, e2, t2), . . . (e, ri, ei, ti), . . . (e, rn, en, tn)},

where a fact (e, ri, ei, ti) is composed of two entities e and ei that are connected
by the relation ri and the timestamp ti. A timestamp is a discrete point in time
which corresponds to a year in this work. The aggregation operator is the func-
tion AGG → te that takes as input the time information from Fe and outputs
the time information that is associated with e. Several aggregation operators are
possible. Among them, natural options are mean, median, minimum, and max-
imum operations. The minimum of a set of facts is defined as the oldest fact,
and the maximum is the most recent fact. If an entity is associated with four
facts spanning over years 1891, 1997, 2006, and 2011, the minimum aggregation
operator consists in keeping the oldest, resulting in the year 1891 the time infor-
mation of the entity. Given that our datasets correspond to documents between
19C and 20C, the minimum operation is more likely to create an appropriate
temporal context for the entities. Therefore it is a convenient choice to highlight
entities matching the corresponding time period by accentuating older facts. At
the end of the aggregation operation 8,176 entities of Wikidata5m are associ-
ated with a year comprised between 508 and 2001, filtering out most of the facts
occurring during 21C.

6 https://deepgraphlearning.github.io/project/wikidata5m.
7 https://www.wikidata.org/.
8 https://github.com/mniepert/mmkb/tree/master/TemporalKGs/wikidata.

https://deepgraphlearning.github.io/project/wikidata5m
https://www.wikidata.org/
https://github.com/mniepert/mmkb/tree/master/TemporalKGs/wikidata
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4.2 Context Retrieval

Our knowledge base system relies on a local ElasticSearch9 instance and fol-
lows a multilingual semantic similarity matching, which presents an advantage
on multilingual querying and is achieved with dense vector field indexes. Thus
given a query vector, a k-nearest neighbor search API retrieves the k closest vec-
tors returning the corresponding documents as search hits. For each Wikidata5m
entity, we create an ElasticSearch entry including an identifier field, a descrip-
tion field and a description embedding field which we obtain with a pre-trained
multilingual Sentence-BERT model [37,38]. We build one index on the entity
identifier and a dense vector index on the description embedding. We propose
two different settings for context retrieval:

– non-temporal: This setting uses no temporal information. Given an input
sentence during context retrieval, we first obtain the corresponding dense
vector representation with the same Sentence-BERT model used during the
indexing phase. Then, we query the knowledge base to retrieve the top-k
semantically similar entities based on a k -nearest neighbors algorithm (k-NN)
cosine similarity search over the description embedding dense vector index.
The context C is finally composed of k entity descriptions.

– temporal-δ: This setting integrates the temporal information. For each
semantically similar entity that is retrieved following non-temporal, we apply
a filtering operation to keep or discard the entity as part of the context.
Given the year tinput linked to the input sentence’s metadata during con-
text retrieval, the entity is kept if its associated year te is inside the interval
tinput − δ ≤ te ≤ tinput + δ, where δ is the year interval threshold, otherwise
it is rejected. As a result of AGG, te results to be the oldest year in the set of
facts of entity e in the TKG. If te is nonexistent, e is also kept. This operation
is repeated until |C| = k.

4.3 Named Entity Recognition Architecture

Base Model Our model consists of a hierarchical, multitask learning approach,
with a fine-tuned encoder based on BERT. This model includes an encoder with
two Transformer [45] layers with adapter modules [21,34] on top of the BERT
pre-trained model. The adapters are added to each Transformer layer after the
projection following multi-headed attention and they adapt not only to the task
but also to the noisy input which proved to increase the performance of NER in
such special conditions [4]. Finally, the prediction layer consists of a conditional
random field (CRF) layer.

In detail, let {xi}li=1 be a token input sequence consisting of l words, denoted
as {xi}li=1 = {x1, x2, . . . xi, . . . xl}, where xi refers to the i-th token in the
sequence of length l. We first apply a pre-trained language model as encoder
for further fine-tuning. The output is {hi}li=1,H[CLS] = encoder({xi}li=0) where

9 https://www.elastic.co/guide/en/elasticsearch/reference/8.1/release-highlights.
html.

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/release-highlights.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.1/release-highlights.html
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Fig. 3. NER model architecture with temporal-aware context s (context jokers).

{hi}li=1 = [h1, h2, . . . hi, . . . hl] is the representation for each i-th position in x
token sequence and h[CLS] is the final hidden state vector of [CLS] as the rep-
resentation of the whole sequence x. From now on, we refer to the Token Rep-
resentation as TokRep = {xi}li=1 that is the token input sequence consisting
of l words. The additional Transformer encoder contains a number of Trans-
former layers that takes as input the matrix H = {hi}li=1 ∈ Rl×d where d is
the input dimension (encoder output dimension). A Transformer layer includes
a multi-head self-attention Head(h): Q(h),K(h), V (h) = HW

(h)
q ,HW

(h)
k ,HW

(h)
v

and MultiHead(H) = [Head(1), . . . , Head(n)]WO
10 where n is the number of

heads and the superscript h represents the head index. Qt is the query vector
of the t-th token, j is the token the t-th token attends. Kj is the key vector
representation of the j-th token. The Attn softmax is along the last dimension.
MultiHead(H) is the concatenation on the last dimension of size Rl×d where
dk is the scaling factor dk × n = d. WO is a learnable parameter of size Rd × d.

By combining the position-wise feed-forward sub-layer and multi-head atten-
tion, we obtain a feed-forward layer FFN(f(H)) = max(0, f(H)W1)W2 where
W1, W2 are learnable parameters and max is the ReLU activation. W1 ∈
Rd×dFF , W2 ∈ RdFF ×d are trained projection matrices, and dFF is a hyper-
parameter. The task adapter is applied at this level on TokRep at each layer
and consists of a down-projection D ∈ Rh×d where h is the hidden size of the
Transformer model and d is the dimension of the adapter, also followed by a
ReLU activation and an up-projection U ∈ Rd×h.

10 We leave out the details that can be consulted in [45].
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Context Jokers For including the additional contexts generated as explained
in Sect. 4, we introduce the context jokers. Each additional context is passed
through the pre-trained encoder11 generating a JokerTokRep which is after-
wards mean-pooled along the sequence axis. We call these representations context
jokers. We see them as wild cards unobtrusively inserted in the representation
of the current sentence for improving the recognition of the fine-grained enti-
ties. However, we also consider that these jokers can affect the results in a way
not immediately apparent and can be detrimental to the performance of a NER
system. Figure 3 exemplifies the described NER architecture.

5 Experimental Setup

Our experimental setup consists of a baseline model and four configurations with
different levels of knowledge-based contexts:

– no-context: our model as described in Sect. 4.3. In this baseline configura-
tion, no context is added to the input sentence representations.

– non-temporal: contexts are generated with the first setting of context
retrieval with no temporal information and integrated into the model through
context jokers.

– temporal-(50|25|10): contexts are generated with the second setting of
context retrieval with δ ∈ {50, 25, 10} (where δ is the time span or year
interval threshold) and integrated into the model through context jokers.

Hyperparameters. In order to have a uniform experimental setting, we chose
a BERT-based cased multilingual pre-trained model12. We denote the number of
layers (i.e., adapter-based Transformer blocks) as L, the hidden size as H, and
the number of self-attention heads as A. BERT has L=12, H=768 and A=12.
We added two layers with H=128, A=12, and the adapters have 128 × 12 size.
The adapters are trained on the task during training. For all context-retrieval
configurations, the context size |C| of an input sentence was set to k = 10. For
indexing the documents in ElasticSearch, we utilized the multilingual pre-trained
Sentence-BERT model13.

Evaluation. The evaluation is performed over coarse-grained NER in terms of
precision (P), recall (R), and F-measure (F1) at micro level [12,28] (i.e., con-
sideration of all true positives, false positives, true negatives and false negatives
over all samples) in a strict (exact boundary matching) and a fuzzy boundary
matching setting14. Coarse-grained NER refers to the identification and cate-
gorization of entity mentions according to the high-level entity types listed in
Table 1. We refer to these metrics as coarse-strict (CS) and coarse-fuzzy (CF ).
11 We do not utilize in this case the additional Transformer layers with adapters, since

these were specifically proposed for noisy/non-standard text and they do not bring
any increase in performance on standard text [4].

12 https://huggingface.co/bert-base-multilingual-cased.
13 https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-

L12-v2.
14 We utilized the HIPE-scorer https://github.com/hipe-eval/HIPE-scorer.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://github.com/hipe-eval/HIPE-scorer
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Table 2. Results on French, German and English, for the hipe-2020 and ajmc datasets.

French German English

hipe-2020 ajmc hipe-2020 ajmc hipe-2020 ajmc

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

no-context

CS 0.755 0.757 0.756 0.829 0.806 0.817 0.754 0.730 0.742 0.910 0.877 0.893 0.604 0.563 0.583 0.789 0.859 0.823

CF 0.857 0.859 0.858 0.883 0.858 0.870 0.853 0.826 0.839 0.935 0.901 0.917 0.778 0.726 0.751 0.855 0.931 0.891

non-temporal

CS 0.762 0.767 0.765 0.829 0.783 0.806 0.759 0.767 0.763 0.930 0.898 0.913 0.565 0.601 0.583 0.828 0.871 0.849

CF 0.862 0.869 0.866 0.906 0.856 0.880 0.847 0.856 0.852 0.949 0.916 0.932 0.741 0.788 0.764 0.885 0.931 0.908

temporal-50

CS 0.765 0.765 0.765 0.839 0.822 0.830 0.748 0.756 0.752 0.921 0.911 0.916 0.643 0.617 0.630 0.855 0.882 0.868

CF 0.867 0.867 0.867 0.901 0.883 0.892 0.833 0.842 0.838 0.937 0.927 0.932 0.794 0.762 0.777 0.916 0.945 0.931

temporal-25

CS 0.759 0.756 0.757 0.848 0.839 0.844 0.757 0.743 0.750 0.925 0.903 0.914 0.621 0.630 0.625 0.833 0.876 0.854

CF 0.863 0.859 0.861 0.902 0.892 0.897 0.852 0.835 0.843 0.938 0.916 0.927 0.787 0.800 0.793 0.893 0.940 0.916

temporal-10

CS 0.762 0.764 0.763 0.848 0.839 0.844 0.760 0.765 0.762 0.917 0.898 0.907 0.605 0.646 0.625 0.866 0.888 0.877

CF 0.863 0.866 0.865 0.902 0.892 0.897 0.852 0.857 0.854 0.936 0.916 0.926 0.760 0.811 0.784 0.922 0.945 0.933

L3i@HIPE-2022

CS 0.782 0.827 0.804 0.810 0.842 0.826 0.780 0.787 0.784 0.946 0.921 0.934 0.624 0.617 0.620 0.824 0.876 0.850

CF 0.883 0.933 0.907 0.856 0.889 0.872 0.870 0.878 0.874 0.965 0.940 0.952 0.793 0.784 0.788 0.868 0.922 0.894

5.1 Results

Table 2 presents our results in all three languages and datasets (best results in
bold). It can be seen that models with additional knowledge-based context jokers
bring an improvement over the base model with no added contexts. Furthermore,
including temporal information outperforms non-temporal contexts. ajmc scores
show to be higher than hipe-2020 independently of the language and contexts.
We explain this behavior by the small diversity of some entity types of the ajmc
dataset. For example, the ten most frequent entities from the “person” type
represent the 55%, 51.5% and 62.5% from the train, development, and test sets
respectively. It also exists an 80% top-10 intersection between train and test
sets meaning that eight of the ten most frequent entities are shared between
train and test sets. English hipe-2020 presents the lowest scores compared to
French and German independently from the contexts. We attribute this drop in
performance to the utilization of the French and German sets during training
given the absence of a specific English training set.

The last two rows of Table 2 show the results of our best system [3] during the
HIPE-2022 evaluation campaign [15]. This system is similar to the one described
in Sect. 4.3 but it stacks, for each language, a language-specific language model
and does not include any temporal-aware knowledge. The additional language
model motivates the slightly higher results15. For half of the datasets, this sys-
tem outperforms the temporal-aware configurations (underlined values) but with
the cost of being language dependent, a drawback that mainly impacts English
hipe-2020 dataset where no training data is available.

15 We would expect higher results by utilising the temporal information, however, for
this experimental setup, we were limited in terms of resources.
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Table 3. Number of replaced contexts per time span.

French German English

train test train test train test

temporal-50/25/10

hipe-2020 120/154/217 42/47/61 325/393/482 12/14/14 192/222/246 77/85/96

ajmc 10/12/12 0/0/0 71/71/73 20/20/20 2/2/2 0/0/0

5.2 Impact of Time Intervals

ajmc contains 19th-century commentaries to Greek texts [41] and was created
in the context of the Ajax MultiCommentary project16, and thus, the French,
German and English dataset are about an Ancient Greek tragedy by Sophocles,
the Ajax, from the early medieval period17. The German ajmc contains commen-
taries from two years (1853 and 1894), English ajmc, also two years (1881 and
1896), while French ajmc just one year (1886). Due to the size of the collection,
hipe-2020 covers a larger range of years. In terms of span, French articles were
collected from 1798 to 2018, German articles from 1798 to 1948, and English
articles from 1790 to 1960. We, therefore, looked at the difference between the
contexts retrieved by the non-temporal and the temporal configurations. Table 3
summarizes these differences for train and test sets and displays the number of
contexts that had been filtered and replaced from non-temporal for each time
span, i.e., δ ∈ {50, 25, 10}. Overall, the smaller the interval of years, the greater
the number of contexts that are replaced. It can be noticed that the number of
replaced contexts is smaller for ajmc than for hipe-2020. This is explained by
the restrained year span and the lack of entity diversity during these periods.
When comparing with the results from Table 2, we can infer that, in general,
it is beneficial to implement shorter time intervals such as δ = 10. In fact,
temporal-10 presents higher F1 scores for ajmc in almost all cases. However,
this varies with the language and the year distribution of the dataset.

5.3 Impact of Digitization Errors

The ajmc commentaries on classical Greek literature present the typical difficul-
ties of historical OCR. Having complex layouts, often with multiple columns and
rows of text, the digitization quality of commentaries could severely impact NER
and other downstream tasks like entity linking. Statistically, about 10% of NEs
are affected by the OCR in the English and German ajmc datasets and 27.5%
of NEs are contaminated in the French corpus. The models with additional con-
text, especially the temporal approaches, contribute to recognizing NEs whether

16 https://mromanello.github.io/ajax-multi-commentary/.
17 Although the exact date of its first performance is unknown, most scholars date it

to relatively early in Sophocles’ career (possibly the earliest Sophoclean play still in
existence), somewhere between 450 BCE to 430 BCE, possibly around 444 BCE.

https://mromanello.github.io/ajax-multi-commentary/
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contaminated or clean. This contribution is more significant on NEs with digi-
tization errors. It has manifested in a better improvement in recognition of the
contaminated NEs compared to the clean ones despite their dominance in the
data. In the German corpus, for example, the gain is about 14% points using
temporal-50 compared to the baseline while only 2% points on the clean NEs.
Additionally, three-quarters of NEs with 67% of character error rate are correctly
recognized whereas the baseline recognized only one-quarter of them. Finally, all
the models are completely harmed by error rates that exceed 70% on NEs.

5.4 Limitations

The system ideally requires metadata about the year when the datasets were
written or at least a period interval. Otherwise, it will be necessary to use other
systems for predicting the year of publication [36]. However, the errors of such
systems will be propagated and may impact the NER results.

6 Conclusions & Future Work

In this paper, we explore a strategy to inject temporal information into the
named entity recognition task on historical collections. In particular, we rely on
using semantically-relevant contexts by exploring the time information provided
in the collection’s metadata and temporal knowledge graphs. Our proposed mod-
els include the contexts as mean-pooled representations in a Transformer-based
model. We observed several trends regarding the importance of temporality for
historical newspapers and classical commentaries, depending on the time inter-
vals and the digitization error rate. First, our results show that a short time
span works better for collections with restrained entity diversity and narrow
year intervals, while a longer time span benefits wide year intervals. Second, we
also show that our approach performs well in detecting entities affected by dig-
itization errors even to a 67% of character error rate. Finally, we remark that
the quality of the retrieved contexts is dependent on the affinity between the
historical collection and the knowledge base, thus, in future work, it could be
interesting to include temporality information by predicting the year spans of a
large set of Wikipedia pages to be used as complementary contexts.
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390 C.-E. González-Gallardo et al.

2. Bircher, S.: Toulouse and Cahors are French Cities, but Ti*louse and Caa. Qrs as
well. Ph.D. thesis, University of Zurich (2019)
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Mellado, E.: Medieval spanish (12th-15th centuries) named entity recognition and
attribute annotation system based on contextual information. J. Assoc. Inf. Sci.
Technol. 72(2), 224–238 (2021)

9. Dikeoulias, I., Amin, S., Neumann, G.: Temporal knowledge graph reasoning with
low-rank and model-agnostic representations. arXiv preprint arXiv:2204.04783
(2022)

10. Ehrmann, M., Hamdi, A., Linhares Pontes, E., Romanello, M., Douvet, A.: A
Survey of Named Entity Recognition and Classification in Historical Documents.
ACM Comput. Surv. (2022). https://arxiv.org/abs/2109.11406

11. Ehrmann, M., Hamdi, A., Pontes, E.L., Romanello, M., Doucet, A.: Named entity
recognition and classification on historical documents: a survey. arXiv preprint
arXiv:2109.11406 (2021)

12. Ehrmann, M., Romanello, M., Bircher, S., Clematide, S.: Introducing the CLEF
2020 HIPE shared task: Named entity recognition and linking on historical news-
papers. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva,
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42. Suárez, P.J.O., Dupont, Y., Lejeune, G., Tian, T.: Sinner clef-hipe2020: sinful
adaptation of SOTA models for named entity recognition in French and German.
In: CLEF (Working Notes) (2020)

43. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In: Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147
(2003). https://www.aclweb.org/anthology/W03-0419

44. Todorov, K., Colavizza, G.: Transfer learning for named entity recognition in his-
torical corpora. In: CLEF (Working Notes) (2020)

45. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Proc. Syst. 30
(2017)

46. Wang, X., Gao, T., Zhu, Z., Zhang, Z., Liu, Z., Li, J., Tang, J.: Kepler: A unified
model for knowledge embedding and pre-trained language representation. Trans.
Assoc. Comput. Linguist. 9, 176–194 (2021)

47. Wang, X., et al.: Automated concatenation of embeddings for structured predic-
tion. arXiv preprint arXiv:2010.05006 (2020)

https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://aclanthology.org/2020.emnlp-main.617
https://aclanthology.org/W13-3516
https://aclanthology.org/W13-3516
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D19-1410
https://www.aclweb.org/anthology/W03-0419
http://arxiv.org/abs/2010.05006


Injecting Temporal-Aware Knowledge in Historical NER 393

48. Wang, X., et al.: Damo-nlp at semeval-2022 task 11: a knowledge-based system for
multilingual named entity recognition. arXiv preprint arXiv:2203.00545 (2022)

49. Xu, C., Chen, Y.Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph com-
pletion using a linear temporal regularizer and multivector embeddings. In: Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Assoc. Comput.
Linguist, pp. 2569–2578 (2021). https://doi.org/10.18653/v1/2021.naacl-main.202.
https://aclanthology.org/2021.naacl-main.202

50. Xu, C., Nayyeri, M., Alkhoury, F., Shariat Yazdi, H., Lehmann, J.: TeRo: A time-
aware knowledge graph embedding via temporal rotation. In: Proceedings of the
28th International Conference on Computational Linguistics. Int. Committee Com-
put. Linguist. Barcelona, Spain, pp. 1583–1593 (2020). https://doi.org/10.18653/
v1/2020.coling-main.139. https://aclanthology.org/2020.coling-main.139

51. Xu, C., Su, F., Lehmann, J.: Time-aware relational graph attention network for
temporal knowledge graph embeddings (2021)

52. Yamada, I., Asai, A., Shindo, H., Takeda, H., Matsumoto, Y.: LUKE: Deep con-
textualized entity representations with entity-aware self-attention. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP) Assoc. Comput. Linguist, pp. 6442–6454 (2020). https://doi.org/10.
18653/v1/2020.emnlp-main.523, https://aclanthology.org/2020.emnlp-main.523

53. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhang, Y.: Learning from history: mod-
eling temporal knowledge graphs with sequential copy-generation networks. In:
Proceedings of the AAAI Conference on Artificial Intelligence. 35, pp. 4732–4740
(2021)

http://arxiv.org/abs/2203.00545
https://doi.org/10.18653/v1/2021.naacl-main.202
https://aclanthology.org/2021.naacl-main.202
https://doi.org/10.18653/v1/2020.coling-main.139
https://doi.org/10.18653/v1/2020.coling-main.139
https://aclanthology.org/2020.coling-main.139
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://aclanthology.org/2020.emnlp-main.523


A Mask-based Logic Rules Dissemination
Method for Sentiment Classifiers

Shashank Gupta1(B) , Mohamed Reda Bouadjenek1 ,
and Antonio Robles-Kelly2

1 School of Information Technology, Deakin University, Waurn Ponds Campus,
Geelong, VIC 3216, Australia

{guptashas,reda.bouadjenek}@deakin.edu.au
2 Defence Science and Technology Group, Edinburg, SA 5111, Australia

antonio.robleskelly@defence.gov.au

Abstract. Disseminating and incorporating logic rules inspired by
domain knowledge in Deep Neural Networks (DNNs) is desirable to make
their output causally interpretable, reduce data dependence, and provide
some human supervision during training to prevent undesirable outputs.
Several methods have been proposed for that purpose but performing
end-to-end training while keeping the DNNs informed about logical con-
straints remains a challenging task. In this paper, we propose a novel
method to disseminate logic rules in DNNs for Sentence-level Binary
Sentiment Classification. In particular, we couple a Rule-Mask Mecha-
nism with a DNN model which given an input sequence predicts a vector
containing binary values corresponding to each token that captures if
applicable a linguistically motivated logic rule on the input sequence.
We compare our method with a number of state-of-the-art baselines
and demonstrate its effectiveness. We also release a new Twitter-based
dataset specifically constructed to test logic rule dissemination methods
and propose a new heuristic approach to provide automatic high-quality
labels for the dataset.

Keywords: Logic rules · Sentiment classification · Explainable AI

1 Introduction

Deep Neural Networks (DNNs) provide a remarkable performance across a broad
spectrum of Natural Language Processing (NLP) tasks thanks to mainly their
Hierarchical Feature Representation ability [5], However, the complexity and
non-interpretability of the features extracted hinder their application in high-
stakes domains, where automated decision-making systems need to have a human
understanding of their internal process, and thus, require user trust in their
outputs [23]. Moreover, a huge amount of labeled training data is required to
construct these models, which is both expensive and time-consuming [2].

To fight against the above-mentioned drawbacks, it is desirable to make
DNNs inherently interpretable by augmenting them with domain-specific or
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task-specific Expert Prior Knowledge [4]. This would complement the labeled
training data [26], make their output causally interpretable [23] to answer the
why? question and help the model learn real-world constraints to abstain from
providing strange outputs, in particular for high-stakes domains. For example,
for the binary sentiment classification task, given a sentence containing an A-
but-B syntactic structure where A and B conjuncts have contrastive senses of
sentiment (A-but-B contrastive discourse relation), we would like the model to
base its decision on the B conjunct – following the A-but-B linguistically moti-
vated logic rule [14]. However, in practice, such rules are difficult to learn directly
from the data [10,13].

In this paper, we propose to model Expert Prior Knowledge as First Order
Logic rules and disseminate them in a DNN model through our Rule-Mask mech-
anism. Specifically, we couple a many-to-many sequence layer with DNN to rec-
ognize contrastive discourse relations like A-but-B on input sequence and transfer
that information to the DNN model via Feature Manipulation on input sequence
features. The task of recognizing these relations is treated as binary token clas-
sification, where each token in the input sequence is classified as either 0 or 1
creating a rule-mask of either syntactic structure (e.g., 0 − 0 − 1 or 1 − 0 − 0),
where only tokens corresponding to the rule-conjunct are classified as 1. This
mask is then applied to the input sequence features via a dot product and the
output is fed to the DNN model for the downstream task. Compared to existing
methods, our method is jointly optimized with the DNN model and so it main-
tains the flexibility of end-to-end training, being straightforward and intuitive.
Thus, the key contributions of this paper are summarized as follows:

1. We introduce a model agnostic Rule-Mask Mechanism that can be coupled
with any DNN model to ensure that it will provide prediction following some
logical constraints on the downstream task. We test this mechanism on the
task of Sentence-level Binary Sentiment Classification where the DNN model
is constrained to predict sentence sentiment as per linguistically motivated
logic rules.

2. We release a dataset for the Sentence-level Binary Sentiment Classification
task which contains an equal proportion of the sentences having various appli-
cable logic rules as contrastive discourse relations. This dataset was con-
structed to test our method’s ability to recognize the applicable logic rule in
the input sentence and disseminate the information in the DNN model (i.e.
help the DNN model to constrain its prediction as per the logic rules).

3. Instead of manual labeling of the dataset, we propose a new heuristic app-
roach to automatically assign the labels based on Emoji Analysis and using a
lexicon-based sentiment analysis tool called VADER [12]. We validate this
approach by labeling a sample of tweets where we find high consistency
between automatic labels and human labels.

4. We present a thorough experimental evaluation to demonstrate the empiri-
cally superior performance of our method on a metric specifically constructed
to test logic rule dissemination performance and compare our results against
a number of baselines.
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2 Related Work

Even before the advent of modern Neural Networks, attempts to combine logic
rules representing domain-specific or task-specific knowledge with hierarchi-
cal feature representation models have been studied in different contexts. For
example, Towell and Shavlik [26] developed Knowledge-Based Artificial Neu-
ral Networks (KBANN) to combine symbolic domain knowledge abstracted as
propositional logic rules with neural networks via a three-step pipelined frame-
work. Garcez et al. [4] defined such systems as Neural-Symbolic Systems, which
can be viewed as a hybrid model containing the representational capacity of a
connectionist model like Neural Network and inherent interpretability of sym-
bolic methods like Logical Reasoning. Our work is related to the broader field
of Neural-Symbolic Systems, where we construct an end-to-end model, which
embeds the representational capacity of a Neural Network and is aware of the
logical rules when making inference decisions on the input. Thus, we review below
both implicit and explicit methods to construct Neural-Symbolic Systems.

2.1 Implicit Methods to Construct Neural-Symbolic Systems

While not originally proposed to construct a Neural-Symbolic System, these
works show that certain existing models can implicitly capture logical structures
without any explicit modifications to their training procedure or architecture.
For example, Krishna et al. [13] claimed that creating Contextualized Word
Embeddings (CWE) from input sequence can inherently capture the syntactic
logical rules when fine-tuned with the DNN model on downstream sentiment
analysis task. They proposed to create these embeddings using a pre-trained
language model called ELMo [19]. More recent state-of-the-art models like BERT
[3] and GPT-2 [21] can also be used to create contextual representations of words
in the input sequence.

However, as we show in our experimental results, such contextual representa-
tion of words alone is not sufficient to capture logical rules in the input sequence
and pass the information to the DNN model. We instead show that implicit
learning can be used to learn a rule-mask by a sequence model which then can
be used to explicitly represent logic rule information on the input features to the
downstream DNN model via Feature Manipulation.

2.2 Explicit Methods to Construct Neural-Symbolic Systems

These methods construct Neural-Symbolic systems by explicitly encoding logic
rules information into the trainable weights of the neural network by modifying
either its input training data, architecture, or its objective function.

Focusing on sentence-level sentiment classification, perhaps the most famous
method is the Iterative Knowledge Distillation (IKD) [10], where first-order logic
rules are incorporated with general off-the-shelf DNNs via soft-constrained opti-
mization. An upgraded version of this method is proposed in [11] called Mutual
Distillation, where some learnable parameters φ are introduced with logic rules
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when constructing the constrained posterior, which are learned from the input
data. Instead of formulating constraints as regularization terms, Li and Sriku-
mar [16] build Constrained Neural Layers, where logical constraints govern the
forward computation operations in each neuron. Another work by Gu et al. [6]
uses a task-guided pre-training step before fine-tuning the downstream task in
which domain knowledge is injected into the pre-trained model via a selectively
masked language modeling.

In contrast to these methods, our approach does not encode the rule infor-
mation into the trainable parameters of the model but instead uses Feature
Manipulation on the input through rule masking so as to disseminate the rule
information into the downstream model. Thus, our method can incorporate logic
rules without any such complicated ad-hoc changes to either input training data,
architectures, or training procedures. Overall, the current literature lacks any
method to construct a Neural-Symbolic model for sentiment classification which
is straightforward, intuitive, end-to-end trainable jointly with the base neural
network on training data and that can provide empirically superior performance.

3 Methodology

This section provides a detailed description of our method starting with the
inception of Logic rules from domain knowledge to disseminating them with a
DNN model.

3.1 Sources of Logic Rules

Previous work has shown that Contrastive Discourse Relations (CDRs) are
hard to capture by general DNN models like CNNs or RNNs for sentence-level
binary sentiment classification through purely data-driven learning [10,13]. Thus,
Prasad et al. [20] define such relations as sentences containing A-keyword-B
syntactic structure where two clauses A and B are connected through a dis-
course marker (keyword) and have contrastive polarities of sentiment. Sentences
containing such relations can be further classified into (i) CDRFol, where the
dominant clause is following and the rule conjunct is B (sentence sentiment is
determined by B conjunct), or (ii) CDRPrev, where the dominant clause is pre-
ceding and the rule conjunct is A. Mukherjee and Bhattacharyya [17] argue that
these relations need to be learned by the model while determining the overall
sentence sentiment. Hence, for our experiments, we identify these relations as
expert prior knowledge, construct First Order Logic rules from them and incor-
porate these rules with the DNN model through our mask method. Table 1 lists
all the logic rules we study in this paper.

3.2 Rule-Mask Mechanism to Disseminate Logical Information

Our task is to build an end-to-end system, which provides sentence-level senti-
ment predictions and bases its predictions on linguistically motivated logic rules.
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Table 1. List of logic rules used in this analysis. Rule conjunct denotes the dominant
clause during the sentiment determination and is italicized in examples.

Logic rule Keyword Rule conjunct Example

A − but − B but B [17] Yes there is an emergency called
covid-19 but victory is worth celebration

A − yet − B yet B [17] Even though we can’t travel yet
we can enjoy each other and what we have

A − though − B though A [17] You are having an amazing time though
we are having this awful pandemic

A − while − B while A [1] Stupid people are not social distancing while
there’s a global pandemic

Specifically, given an input sentence S containing a rule-syntactic structure like
A − keyword − B where keyword indicates an applicable logic rule in Table 1
and A & B conjuncts have contrastive senses of sentiment, we would like the
classifier to predict the sentiment of S as per the B conjunct if the rule conjunct
is B, otherwise, to predict the sentence sentiment as per A if the rule conjunct
is A.

A straightforward method to create such a system is to use Feature Extrac-
tion [8] on the input data, where features corresponding to the rule conjunct are
extracted and fed as input to the classifier. Specifically, given the input sentence,
S containing A-keyword-B syntactic structure, Gupta et al. [8] proposed to man-
ually compute a rule mask M of the structure 0 − 0 − 1 if the rule conjunct is
B, otherwise, 1− 0− 0 if the rule conjunct is A. Then, they propose to compute
a post-processed instance Xconjunct = X ∗ M as the dot product between S and
M , where Xconjunct can be regarded as an explicit representation of the appli-
cable logic rule. Xconjunct is then passed as input to the sentiment classifier and
hence, the classifier predicts the sentiment as per the rule conjunct. The mask
M is applied during both the training and testing phases of the classifier.

Although the Feature Extraction method proposed in [8] is quite simple,
intuitive, and can determine whether the sentence contains A-keyword-B struc-
ture, it lacks the adaptability to the more nuanced nature of language since it
cannot determine whether the conjuncts have contrastive polarities of sentiment
and hence, cannot determine whether the sentence has a CDR or not. More-
over, simply removing a part of the input sequence entirely often leads to a loss
of sentiment-sensitive information which can affect the sentiment classification
performance on sentences that contains rule-syntactic structure but no CDR.
Besides, as pointed out in [11], human knowledge about a phenomenon is usu-
ally abstract, fuzzy, and built on high-level concepts (e.g., discourse relations,
visual attributes) as opposed to low-level observations (e.g., word sequences,
image pixels). Thus, logic rules constructed from human knowledge should have
these traits in the context of the dataset under consideration.

This necessitates a mechanism based on predictive modeling for the rule
mask, which can: (i) determine whether the input sentence has a CDR instead of
just rule syntactic structure, (ii) be learned from the training data, (iii) coupled
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Fig. 1. Architecture of our rule-mask mechanism coupled with a DNN model. In mask
block, the sequence layer predicts a rule mask M containing binary values correspond-
ing to each token in input sentence S. Rule mask M is then multiplied with word
embeddings W of S and the result is fed to the downstream DNN model.

with the classifier instead of being applied in a pipelined fashion, and (iv) jointly
learned with the classifier on the training data to create a truly end-to-end
system. Thus, we present a mechanism, in which given an input sentence S, it
identifies whether it contains a logic rule structure like A − keyword − B with
A & B conjuncts having contrastive polarities of sentiment. If both conditions
are met, it predicts a rule mask of a syntactic structure 0 − 0 − 1 if the rule
conjunct is B (mask values corresponding to tokens in A and keyword parts
are zero) or, otherwise, of structure 1 − 0 − 0 if the rule conjunct is A (mask
values corresponding to tokens in B and keyword parts are zero). If there is no
sentiment contrast between conjuncts or there is no rule-syntactic structure, it
predicts a rule mask of a structure 1 − 1 − 1. We optimize both the rule-mask
mechanism and the DNN model jointly as:

min
θ1,θ2∈Θ

L(y, pθ1(y|x)) + Σn
t=1L(yt, pθ2(yt|xt)) (1)

where pθ1(y|x) is the sentiment prediction of the DNN model and pθ2(yt|xt) is
the mask value for tth token in the input sequence x = [x1 · · · xn] and tackle the
task of rule mask prediction by casting it as a token-level binary classification
problem, where we predict either 0 or 1 tags corresponding to every token in the
input sentence. We choose L as the Binary Cross-Entropy loss function.

Note that the proposed rule-mask mechanism can also be used with popular
transformer-based DNN models BERT [3] where token embeddings can be first
used to calculate the rule mask and then used to calculate the Masked Language
Modeling (MLM) output.
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4 Covid-19 Twitter Dataset

Fig. 2. Sector map of the constructed
dataset denoting the overall distribution of
tweets. The 1st layer denotes the proportion
of tweets containing negative and positive
sentiment polarities. In the 2nd layer, the
Rule sector denotes tweets having at-most
one of the logic rules applicable in Table 1
and the No-Rule sector denotes tweets with
no applicable logic rule. In the last layer,
the Contrast sector denotes tweets contain-
ing a CDR as defined in Sect. 3.1 and the
No-Contrast sector denotes tweets without
a CDR but contains a logic rule.

To conduct effective experimenta-
tion for testing the logic rule dis-
semination capability of our method,
we constructed a dataset that con-
tains an equally proportional amount
of sentences containing logic rules
(shown in Table 1) and no rules as
shown in Fig. 2. Further, the rule
subset contains an equal proportion
of sentences containing CDRs (con-
trast labels) and no CDRs (no con-
trast labels). The reason behind con-
structing our own dataset is that we
wanted to get the specific distribu-
tion of sentences as shown in Fig. 2 to
test the logic rule dissemination per-
formance of our method in an unbi-
ased manner. Such distribution in
sufficient quantities is very difficult
to find in existing popular sentiment
classification datasets like SST2 [25],
MR [18], or CR [9].

To get this distribution, we cre-
ated a corpus of tweets from Twit-
ter on the Covid-19 topic where the
tweet IDs were taken from the Covid-
19 Twitter dataset [15]. Raw tweets
were then pre-processed using a
tweet pre-processor1, which removes
unwanted contents like hashtags,
URLs, @mentions, reserved keywords, and spaces. Each pre-processed tweet was
then passed through a series of steps as listed in Fig. 3 so as to obtain the
following: (1) Sentiment Label, which indicates the polarity of the sentence, (2)
Logic-Rule Label corresponding to either of the applicable rules listed in Table 1,
and (3) Contrast Label which determines if the sentence containing a logic rule
has a CDR or not (conjuncts A and B have a contrastive sense of sentiments).
In the following sub-sections, we provide more details on the definition of these
labels, why they need to be assigned, and how they were assigned to each tweet.

1 Tweet pre-processing tool used here is accessible at https://pypi.org/project/tweet-
preprocessor/.

https://pypi.org/project/tweet-preprocessor/
https://pypi.org/project/tweet-preprocessor/
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4.1 Sentiment Labels

Fig. 3. Covid-19 tweets dataset construc-
tion flowchart.

Previous works [27] have shown that
emojis indicate a strong correlation
with associated sentence sentiment
polarity and hence, we designed an
Emoji Analysis method to assign sen-
timent labels to pre-processed tweets.
Specifically, for each pre-processed
tweet, we check whether it contains
an emoji using an automatic emoji
identification tool in texts2, whether
all emojis are present at the end of
the tweet to make sure the tweet con-
tains complete text3 and whether at
least one emoji is present in the Emo-
Tag1200 table [24] which associates 8
types of positive and negative emo-
tions scores with an emoji - anger,
anticipation, disgust, fear, joy, sad-
ness, surprise, and trust - and contains
a score for each emotion assigned by
human annotators. If the tweet passes
the above checks, we then calculate
the sum of all emotion scores for
each emoji present and get an Aggre-
gate Emotion Score for the tweet.
This score is compared against emo-
tion score thresholds for positive and
negative polarities, which we found
dynamically based on the dataset.
These thresholds, 2.83 and -2.83, are
such that they correspond to one stan-
dard deviation of aggregate emotion
scores for a random sample of 1 mil-
lion tweets. As a further consistency
check, we used a lexicon-based sen-
timent analysis tool called VADER
[12] and only kept those tweets in our
dataset for which both VADER and
emoji analysis assigns the same senti-
ment class.

2 The emoji extraction tool is available at https://advertools.readthedocs.io/en/
master/.

3 This is so as to exclude tweets such as "I ♥NYC" as they are semantically incorrect.

https://advertools.readthedocs.io/en/master/
https://advertools.readthedocs.io/en/master/
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4.2 Rule Labels

For each tweet that has been successfully assigned a sentiment label, we perform
a conjunction analysis and identify if it contains any rule-syntactic structure
listed in Table 1. Note that we only consider tweets that contain only one struc-
ture (i.e. no multiple nested structures like A-but-B-yet-C ). The absence of any
structure in the tweet is labeled as No-Rule otherwise, we check the correspond-
ing rule applicability condition on the tweet which for example, for A − but − B
structure checks whether the sentiment polarity of the tweet is consistent with
the sentiment polarity of B conjunct. We again use VADER to determine the
sentiment polarity of the rule conjunct. If the rule applicability condition holds,
we assign the corresponding rule label to the tweet, otherwise discard it to avoid
noise in our dataset.

4.3 Contrast Labels

Contrast labels are important as performance on this subset (Rule-Contrast) is
expected to indicate how effectively a method disseminates contrastive discourse
relations (CDRs) in the DNN model. As mentioned in Sect. 3.1, general DNNs
cannot capture CDRs in sentences and hence, cannot determine their sentiment
correctly. Therefore, we need to provide another label to tweets containing a
rule-syntactic structure, which determines whether they contain a CDR or not.
For such tweets, we provide another binary label called Contrast, which deter-
mines whether their conjuncts contain contrastive senses of sentiments or not. To
determine this label, we again use VADER and determine the sentiment polarity
of each conjunct to compare whether they are similar indicating “No-Contrast”
or opposite indicating a CDR and labeled as “Contrast”. We again maintain
an equal proportion of sentences labeled with “Contrast” and “No-Contrast” so
to train classifiers that can effectively determine the CDR, not just the rule-
syntactic structure.

4.4 Constructed Dataset

After processing the corpus (flowchart shown in Fig. 3) and assigning all the
labels, we obtain the final distribution as shown in Fig. 2. The dataset contains
a total of 109,919 tweets assigned either positive or negative sentiment labels
accounting for about 60% and 40% of the dataset respectively. Further, each
sentiment subset is divided into 2 subsets - Rule, which contains tweets having
one of the logic rule labels listed in 1, and No-Rule tweets, which do not contain
any logic rules. The Rule subsets are further divided into Contrast and No-
Contrast subsets, where the former contains tweets containing logic rules and
CDRs (A and B conjuncts have contrastive senses of sentiment), and the latter
contains tweets having applicable logic rule but do not contain a CDR (A and
B conjuncts do not have contrastive senses of sentiment). In Table 2, we show a
small sample of tweets annotated manually for all the labels in our dataset as
shown in Fig. 2 to validate our heuristic approach of dataset labeling.
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Table 2. Sample of tweets labeled manually to validate the heuristic approach.

(a) No rule tweets labeled with Positive Sentiments.

finally have decent ppe in the care home.

love this idea we are living through history and this is a great way to capture it.

we went to crawley, it was well organised and we felt looked after so thanks indeed.

ederson still my best performing city player since lockdown.

u are well i hope you are staying safe much love from montreal canada.

ms dionne warwick you are giving me so much lockdown joy.

(b) No rule tweets labeled with Negative Sentiments.

the provincial governments are drastically failing its people.

this quarantine makes you to attend a funeral just to cry out.

duterte threatens to jail those who refuse covid vaccines.

my professor just sent us an email saying he got covid there will be no class.

got covid yesterday and today pumas lost what a shit weekend.

i told my mam i filled out my application for my vaccine and she called me a bitch.

(c) Rule tweets labeled with positive sentiment and contrast.

A lot has been said against our president but I think he is doing his best.

it’s a covid 19 pandemic ravaged tennis season yet carlos alcaraz is still won 28 lost 3.

first game after lockdown started with a birdie though good scoring didnt last.

friends in brazil posting festivals while ive been in lockdown since march.

He’s in quarantine but still looking good and handsome as always.

feku wrote the book on how to lie non stop but his supporters still believe him.

(d) Rule tweets labeled with positive sentiment and no contrast.

michael keaton is my favorite batman but lori lightfoot is my favorite beetlejuice.

best boy band and yet so down to earth and always down for fun bts best boy.

awww it’s such a cute corona though i want to hug it.

happy birthday have all the fun while staying covid safe.

well said we always try to improve as human nature but corona teach us very well.

this research is funny but also might encourage some mask use.

(e) Rule tweets labeled with negative sentiment and contrast.

I want to get a massage but of course, that’s not such a good idea during a pandemic.

kaaan it has been one freakin year yet people still dont take this pandemic seriously.

absolutely disgusting that fans would gather even though corona virus is a thing.

niggas having social events while its a pandemic out.

thats looks fun but covid 19 destroyed our habitat shame on that virus.

i got a plan for a trip but chuck it i know it’s gonna get cancel.

Rule tweets labeled with negative sentiment and no contrast.

this is so sad i want churches to reopen too but i also dont want to see this happening.

stage 4 cancer yet its corona that killed him.

people are getting sick on the vaccine though i know people who have it very bad.

there is nothing safe about this while theres a pandemic still going on i mean wtf.

i may come off as rude but during the pandemic ive forgotten how to socialize sorry.

hes never stayed away from me but i know he misses them and i have to work.
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5 Experimental Results

In this section, we discuss the performance results of our method and baselines
under study for the task of sentence-level binary sentiment classification on our
dataset4.

5.1 Dataset Preparation

We divide the Covid-19 tweets dataset into the Train, Val, and Test splits con-
taining 80%, 20%, and 20% proportion of sentences respectively. Each split con-
tains similar distributions for various subsets - No-Rule Positive, No-Rule Nega-
tive, Rule Positive Contrast, Rule Negative Contrast, Rule Positive No-Contrast,
and Rule Negative No-Contrast - as presented in the complete dataset Fig. 2.
This ensures the classifiers are trained, tuned, and tested on splits containing
proper distributions of every category of sentences.

5.2 Sentiment Classifiers

To conduct an exhaustive analysis, we train a range of DNN models as Base
Classifiers - RNN, BiRNN, GRU, BiGRU, LSTM, and BiLSTM - to get the
baseline measures of performances. Each model contains 1 hidden layer with
512 hidden units and does not have any mechanism to incorporate logic rules.
We then train these models again coupled with a rule dissemination method
proposed in Iterative Knowledge Distillation (IKD) [10], Contextualized Word
Embeddings (CWE) [13] and our Rule-Mask Mechanism to construct Logic Rule
Dissemination (LRD) Classifiers. For our method, we train a wide range of pos-
sible configurations to provide an exhaustive empirical analysis. These config-
urations are {RNN base classifier, BiRNN base classifier, GRU base classifier,
BiGRU base classifier, LSTM base classifier, and BiLSTM base classifier} ×
{RNN mask layer, BiRNN mask layer, GRU mask layer, BiGRU mask layer,
LSTM mask layer, and BiLSTM mask layer}, which totals up to 36 LRD classi-
fiers to exhaustively test the empirical performance of our method. We want to
compare the performance of our method with other dissemination methods and
propose the best method for a particular base classifier.

5.3 Metrics

While Sentiment Accuracy is the obvious choice given the task is sentiment
classification, it fails to assess whether the classifier based its decision on the
applicable logic rule or not. For example, a classifier may correctly predict the
sentiment of the sentence "the casting was not bad but the movie was awful"
as negative but may base its decision as per the individual negative words like
not in the A conjunct instead of using B conjunct. Hence, we decided to use
an alternative metric called PERCY proposed in [7] which stands for Post-hoc
4 Code and dataset are available at https://github.com/shashgpt/LRD-mask.git.

https://github.com/shashgpt/LRD-mask.git
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Explanation-based Rule ConsistencY. It assesses both the accuracy and logic
rule consistency of a classifier for the sentiment classification task. Briefly, we
compute this score as follows:

1. Given a sentence s which is an ordered sequence of terms [t1t2 · · · tn] and
contains a logic rule structure like A-keyword-B, we use LIME explanation
framework [22], which maps it to a vector [w̃1w̃2 · · · w̃n] with w̃n indicating
how much the word tn contributed to the final decision of the classifier.

2. Next we define the contexts C(A) = [w̃1 · · · w̃i−1] and C(B) = [w̃i+1 · · · w̃n] as
respectively the left and a right sub-sequences w.r.t the word keyword indexed
by i.

3. Finally, we select top k = 5 tokens by their values from C(A) as Ck(A) and
C(B) as Ck(B) and, propose that a classifier has based its decision on B
conjunct if Ew[Ck(B)] > Ew[Ck(A)] otherwise on A conjunct if Ew[Ck(A)] <
Ew[Ck(B)], where E is the expectation over conjunct weights. Hence, we define
the PERCY score as the following:

PERCY (s) = (P (y|s) = ygt) ∧ (Ew[Ck(A)] ≶ Ew[Ck(B)]) (2)

where the first condition (P (y|s) = ygt) tests the classification accuracy
(P (y|s) denotes classifier prediction on sentence s and ygt is the ground-
truth sentiment) and the second condition (Ew[Ck(A)] < Ew[Ck(B)] or
Ew[Ck(A)] > Ew[Ck(B)]) checks whether the prediction was based as per the
rule-conjunct (if the logic rule present is A-but-B or A-yet-B, the rule-conjunct
is B whereas if the logic rule is A-though-B or A-while-B, the rule-conjunct
is A).

5.4 Results

In this section, we analyze the PERCY scores for the classifiers as discussed
in Sect. 5.2 obtained on rule-contrast subset of Covid-19 tweets test dataset
(yellow color portion of the distribution as shown in Fig. 2), which contains sen-
tences with Contrastive Discourse Relations as discussed in Sect. 3.1. Remember
that the task of our method is to identify applicable CDRs in the sentences and
disseminate the information in the downstream DNN model. Therefore, we show
the results only on the rule-contrast subset.

Here, we find that our method outperforms all the base classifiers as well
as the other logic rule dissemination methods proposed in [10] and [13]. This
implies that the base classifiers cannot learn CDRs in sentences while determin-
ing their sentiments, and hence, they perform poorly. Further, we observe that
the bidirectional mask models perform the best which implies that bidirectional
models can identify the applicable CDRs and learn the rule mask better than
unidirectional ones. It could be argued that the mask method uses the explicit
representation of logic rules on input features instead of probabilistic model-
ing like other methods and, hence, is expected to provide the best empirical
performance.
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Fig. 4. PERCY scores for the classifiers obtained on rule-contrast subset of Covid-
19 tweets test dataset. We show a total of 6 bar plots each corresponding to a base
classifier (RNN, BiRNN, etc.) and each plot contains results for 9 classifiers as discussed
in Sect. 5.2 with the best value highlighted in bold.

6 Conclusion

In this paper, we presented a novel method to disseminate contrastive discourse
relations as logical information in a DNN for the sentiment classification task.
This is done by coupling a rule mask mechanism with the DNN model, which
identifies applicable CDR on the input sequence and transfers the information to
the model via feature manipulation on the input sequence. Compared to exist-
ing methods, ours is end-to-end trainable jointly with the DNN model, does
not require any ad-hoc changes to either training or, architecture, and is quite
straightforward. We constructed our own dataset of tweets using a heuristic app-
roach to conduct an unbiased analysis. We have shown results for various config-
urations of our method on different DNN models and compared it with existing
dissemination methods. Our experimental results demonstrate that our method
consistently outperforms all baselines on a both sentiment and rule consistency
assessment metric (PERCY score) when applied to sentences with CDRs.
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Abstract. Inverse-propensity scoring and neural click models are two
popular methods for learning rankers from user clicks that are affected
by position bias. Despite their prevalence, the two methodologies are
rarely directly compared on equal footing. In this work, we focus on the
pointwise learning setting to compare the theoretical differences of both
approaches and present a thorough empirical comparison on the preva-
lent semi-synthetic evaluation setup in unbiased learning-to-rank. We
show theoretically that neural click models, similarly to IPS rankers, opti-
mize for the true document relevance when the position bias is known.
However, our work also finds small but significant empirical differences
between both approaches indicating that neural click models might be
affected by position bias when learning from shared, sometimes conflict-
ing, features instead of treating each document separately.

1 Introduction

Learning-to-rank a set of items based on their features is a crucial part of many
real-world search [9,23,37,42] and recommender systems [15,20,55]. Traditional
supervised learning-to-rank uses human expert annotations to learn the optimal
order of items [8,9,31]. However, expert annotations are expensive to collect [9]
and can be misaligned with actual user preference [41]. Instead, the field of
unbiased learning-to-rank seeks to optimize ranking models from implicit user
feedback, such as clicks [1,28,34,49,50]. One well-known problem when learn-
ing from click data is that the position at which an item is displayed affects
how likely a user is to see and interact with it [16,27,28,47,50]. Click mod-
eling [14,16,19,21,39] and inverse-propensity scoring (IPS) [1,25,28,35,45] are
two popular methods for learning rankers from position-biased user feedback.
IPS-based counterfactual learning-to-rank methods mitigate position bias by re-
weighting clicks during training inversely to the probability of a user observing
the clicked item [28,49]. In contrast, click models are generative models that rep-
resent position bias and item relevance as latent parameters to directly predict
biased user behavior [14,16,19,21,39].

IPS approaches were introduced to improve over click models [28,49] by:
(i) requiring less observations of the same query-document pair by representing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13980, pp. 409–425, 2023.
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items using features instead of inferring a separate relevance parameter for each
document [1,28,49,50]; (ii) decoupling bias and relevance estimations into sepa-
rate steps since the joint parameter inference in click models can fail [2,32,50];
and (iii) optimizing the order of documents through pairwise [25,28] and listwise
loss [34] functions instead of inferring independent pointwise relevance estima-
tions for each document [28,50].

At the same time, neural successors of click models have been introduced [7,
13,22,23,54,55] that can leverage feature inputs, similarly to IPS-based rankers.
Moreover, pointwise IPS methods have been presented that address the same
ranking setting as click models [5,40]. In this work, we ask if both approaches
are two sides of the same coin when it comes to pointwise learning-to-rank?

To address this question, we first introduce both approaches (Sects. 2, 3) and
show theoretically that both methods are equivalent when the position bias is
known (Sect. 4). We then compare both approaches empirically on the preva-
lent semi-synthetic benchmarking setup in unbiased learning-to-rank (Sect. 5) and
find small but significant differences in ranking performance (Sect. 6.1). We con-
clude by investigating the found differences by performing additional experiments
(Sect. 6.2) and hypothesize that neural click models might be affected by position
bias when learning from shared, sometimes conflicting, document features.

The main contributions of this work are:

(1) A theoretical analysis showing that a PBM click model optimizes for unbi-
ased document relevance when the position bias is known.

(2) An empirical evaluation of both methods on three large semi-synthetic click
datasets revealing small but significant differences in ranking performance.

(3) An analysis of the empirical differences that hint at neural click models
being affected by position bias when generalizing over conflicting document
features instead of treating each document separately.

2 Related Work

We provide an overview of probabilistic and neural click models, IPS-based coun-
terfactual learning-to-rank, and comparisons between the two methodologies.

Click Models. Probabilistic click models emerged for predicting user interac-
tions in web search [14,16,39]. Factors that impact a user’s click decision, such
as an item’s probability to be seen or its relevance are explicitly modeled as
random variables, which are jointly inferred using maximum likelihood estima-
tion on large click logs [14]. An early but prevailing model is the position-based
model (PBM), which assumes that a click on a given item only depends on its
position and relevance [16,39]. Another prominent approach, the cascade model,
assumes that users scan items from top to bottom and click on the first relevant
item, not examining the documents below [16]. Follow-up work extends these
approaches to more complex click behavior [11,19,21,48], more elaborate user
interfaces [52,53], and feedback beyond clicks [18]. We refer to Chuklin et al. [14]
for an overview.
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Recent click models use complex neural architectures to model non-sequential
browsing behavior [56] and user preference across sessions [12,30]. Additionally,
exact identifiers of items are typically replaced by more expressive feature repre-
sentations [22,54,56]. In contrast to ever more complicated click models, neural
implementations of the classic PBM recently gained popularity in industry appli-
cations [23,54,55]. So-called two-tower models input bias and relevance-related
features into two separate networks and combine the output to predict user
clicks [22,54]. We use a neural PBM implementation similar to current two-
tower models in this work and our findings on click model bias might be relevant
to this community.

Counterfactual Learning-to-Rank. Joachims et al. introduced the concept
of counterfactual learning-to-rank [28], relating to previous work by Wang et
al. [49]. This line of work assumes a probabilistic model of user behavior, usually
the PBM [25,28,34,40] or cascade click model [46], and uses inverse-propensity
scoring to mitigate the estimated bias from click data. The first work by Joachims
et al. [28] introduced an unbiased version of the pairwise RankSVM method,
Hu et al. [25] introduced a modified pairwise LambdaMART, and Oosterhuis
and de Rijke suggested an IPS-correction for the listwise LambdaLoss frame-
work [35]. Given that click models are pointwise rankers [50], we use a pointwise
IPS method introduced by Bekker et al. [5] and later Saito et al. [40].

Comparing Click Models and IPS. Lastly, we discuss related work compar-
ing IPS and click models. To our knowledge, Wang et al. [50] conduct the only
experiment that compares both approaches on a single proprietary dataset. Their
RegressionEM approach extends a probabilistic PBM using logistic regression to
predict document relevance from item features instead of inferring separate rel-
evance parameters per document. While the main motivation behind their work
is to obtain better position bias estimates to train a pairwise IPS model, the
authors also report the ranking performance of the inferred logistic regression
model which can be seen as a component of a single-layer neural click model. The
authors find that the click model improves rankings over a baseline not correcting
for position bias, but is outperformed by a pairwise IPS approach [50, Table 4].
The authors also include two pointwise IPS approximations which are less effec-
tive than the click model and also fail to outperform the biased baseline model.
Therefore, it is unclear how current pointwise methods suggested by Bekker et
al. [5] and Saito et al. [40] would compare. We compare a recent pointwise IPS
method with a common neural PBM implementation and report experiments on
three public LTR dataset unifying model architecture, hyperparameter tuning,
and position bias estimation to avoid confounding factors.

Lastly, recent theoretical work by Oosterhuis [32] compares click models and
IPS and their limits for unbiased learning-to-rank. Their work finds that IPS-
based methods can only correct for biases that are an affine transformation
of item relevance. For click models jointly inferring both relevance and bias
parameters, they find no robust theoretical guarantees of unbiasedness and find
settings in which even an infinite amount of clicks will not lead to inferring the
true model parameters. We will discuss this work in more detail in Sect. 4 and
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extend their analysis to show that a click model only inferring item relevance
should be in-fact unbiased.

3 Background

We introduce our assumptions on how position bias affects users, the neural click
model, and IPS approach that we compare in this work.

A Model of Position Bias. We begin by assuming a model of how position
bias affects the click behavior of users. For this work, we resort to the prevalent
model in unbiased learning-to-rank, the position-based model (PBM) [16,39].
Let P (Y = 1 | d, q) be the probability of a document d being relevant to a given
search query q and P (O = 1 | k) the probability of observing a document at
rank k ∈ K,K = {1, 2, . . .}; then we assume that clicks occur only on items that
were observed and relevant:

P (C = 1 | d, q, k) = P (O = 1 | k) · P (Y = 1 | d, q)
cd,k = ok · yd.

(1)

For brevity, we use the short notation above for the rest of the paper and drop
the subscript q in all of our formulas assuming that the document relevance yd

is always conditioned on the current query context.

A Neural Position-Based Click Model. A neural click model directly mir-
rors the PBM user model introduced in the previous section in its architec-
ture [7,13,22,54]. We use a neural network g to estimate document relevance
ŷd from features xd and estimate position bias ôk using a single parameter per
rank denoted by f(k). We use sigmoid activations and multiply the resulting
probabilities:

ĉd,k = σ(f(k)) · σ(g(xd))
ĉd,k = ôk · ŷd.

(2)

A common choice to fit neural click models is the binary cross-entropy loss
between predicted and observed clicks in the dataset [22,23,54–56]:

Lpbm(ŷ, ô) = −
∑

(d,k)∈D

cd,k · log(ŷd · ôk) + (1 − cd,k) · log(1 − ŷd · ôk). (3)

A Pointwise IPS Model. Instead of predicting clicks, IPS directly predicts
the document relevance ŷd and assumes an estimation of the position bias ôk

is given [28,40]. Thus, the IPS model we assume in this work only uses the
relevance network g:

ŷd = g(xd). (4)

Bekker et al. [5] introduce a pointwise IPS loss that minimizes the binary cross-
entropy between predicted and true document relevance. Note how the PBM
assumption is used to recover the unbiased document relevance by dividing clicks
by the estimated position bias ôk:
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Lips(ŷ, ô) = −
∑

(d,k)∈D

cd,k

ôk
· log(ŷd) +

(
1 − cd,k

ôk

)
· log(1 − ŷd). (5)

4 Methods

4.1 Comparing Unbiasedness

In this section, we compare the ability of the neural click model and pointwise
IPS ranker to recover the unbiased relevance of an item under position bias. We
begin by noting that in the trivial case in which there is no position bias, i.e.,
clicks are an unbiased indicator of relevance, both approaches are identical.

Proposition 1. When correctly assuming that no position bias exists, i.e., ∀k ∈
K, ok = ôk = 1, the click model and pointwise IPS method are equivalent:

E [Lips(ŷ, ô)] = E [Lpbm(ŷ, ô)] = −
∑

(d,k)∈D

yd · log(ŷd) + (1 − yd) · log(1 − ŷd).

Second, both approaches also collapse to the same (biased) model in the case of
not correcting for an existing position bias in the data.

Proposition 2. When falsely assuming that no position bias exists, i.e., ∀k ∈
K, ôk = 1 ∧ ok < 1, the click model and pointwise IPS method are equivalently
biased:

E [Lips(ŷ, ô)] = E [Lpbm(ŷ, ô)] = −
∑

(d,k)∈D

ydok · log(ŷd) + (1 − ydok) · log(1 − ŷd).

However, how do both approaches compare when inferring the unbiased docu-
ment relevance under an existing position bias? Saito et al. [40] show that Lips(ŷ)
is unbiased if the position bias is correctly estimated, ∀k ∈ K, ôk = ok and users
actually behave according to the PBM [40, Proposition 4.3]. The notion of an
unbiased estimator is harder to apply to neural click models, since relevance is
a parameter to be inferred. Instead of unbiasedness, Oosterhuis [32] looks into
consistency of click models and shows that click models jointly estimating both
bias and relevance parameters are not consistent estimators of document rele-
vance. This means that there are rankings in which even infinite click data will
not lead to the true document relevance estimate.

But what happens if click models do not have to jointly estimate bias and rel-
evance parameters, but only item relevance? Since IPS approaches often assume
access to a correctly estimated position bias [1,28,34,40,45], we investigate this
idealized setting for the click model and show that initializing the model param-
eters ôk with the true position bias leads to an unbiased relevance estimate.

Theorem 1. The click model is an unbiased estimator of relevance when given
access to the true position bias:

E [ŷd] =
okyd

ôk
,∀k ∈ K, ôk = ok. (6)
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Proof. We begin by taking the partial derivative of Lpbm with regard to the
estimated document relevance ŷ in our click model. Since the model factorizes,
for ease of notation we will look at a single document and single observation:

∂Lpbm

∂ŷ
= −

(
c · ∂

∂ŷ
[log(ôŷ)] + (1 − c) · ∂

∂ŷ
[log(1 − ôŷ)]

)

= −
(

c · ô

ôŷ
+ (1 − c) · −ô

1 − ôŷ

)

= −
(

c

ŷ
+

−ô + ôc

1 − ôŷ

)

= − c − ôŷ

ŷ(1 − ôŷ)
.

(7)

Next, we find the ideal model minimizing the loss by finding the roots of the
derivative. We note that this function is convex and any extrema found will be
a minimum:

∂Lpbm

∂ŷ
= 0

− c − ôŷ

ŷ(1 − ôŷ)
= 0

ŷ =
c

ô
.

(8)

Lastly, in expectation we see that the obtained relevance estimate is the true
document relevance when the estimated and true position bias are equal:

E [ŷ] =
E [c]

ô

E [ŷ] =
oy

ô
.

(9)

Thus, given the correct position bias, we find that both the click model and IPS
objective optimize for the unbiased document relevance, suggesting a similar
performance in an idealized benchmark setup. But before covering our empirical
comparison, we want to note one additional difference of both loss functions.

4.2 A Difference in Loss Magnitude

We note one difference between the click model and IPS-based loss functions
concerning their magnitude and relationship with position bias. While IPS-based
loss functions are known to suffer from high variance due to dividing clicks by
potentially small probabilities [44,51], the neural click model seems to suffer
from the opposite problem since both yd,k and ŷd,k (assuming our user model
is correct) are multiplied by a potentially small examination probability. Thus,
independent of document relevance, items at lower positions have a click proba-
bility closer to zero, impacting the magnitude of the loss (and gradient). Figure 1
visualizes the loss for a single item of relevance yd = 0.5 under varying degrees
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of position bias. While the pointwise IPS loss in expectation of infinite clicks
always converges to the same distribution, the click model’s loss gets smaller in
magnitude with an increase in position bias. While the magnitude differs, the
minimum of the loss, as shown earlier in Sect. 4.1, is still correctly positioned at
0.5. We will explore if this difference in loss magnitude might negatively impact
items at lower positions in our upcoming experiments.

Fig. 1. Visualizing Lpbm on the left and Lips on the right for a single document of
relevance yd = 0.5 under varying degrees of position bias.

Table 1. Overview of the LTR datasets used in this work.

Dataset #Features #Queries %Train/val/test #Documents per query
min mean med p90 max

MSLR-WEB30K 136 31,531 60/20.0/20.0 1 120 109 201 1,251
Istella-S 220 33,018 58.3/19.9/21.8 3 103 120 147 182
Yahoo! Webscope 699 29,921 66.6/10.0/23.3 1 24 19 49 139

5 Experimental Setup

To compare click model and IPS-based approaches empirically, we use an eval-
uation setup that is prevalent in unbiased learning-to-rank [24,26,28,33,35,36,
45,47]. The main idea is to use real-world LTR datasets containing full expert
annotations of item relevance to generate synthetic clicks according to our user
model. Below, we describe the used datasets, the click generation procedure, as
well as model implementation and training.

Datasets. We use three large-scale public LTR datasets to simulate synthetic
user clicks: MSLR-WEB30k [37], Istella-S [17], and Yahoo! Webscope [9]. Each
query-document pair is represented by a feature vector xd and is accompanied by
a score sd ∈ {0, 1, 2, 3, 4} indicating relevance as judged by a human annotator.
Table 1 contains an overview of the dataset statistics. During preprocessing, we
normalize the document feature vectors of MSLR-WEB30k and Istella-S using
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log1p(xd) = loge(1 + |xd|) � sign(xd), as recently suggested by Qin et al. [38].
The features of Yahoo! Webscope come already normalized [9]. We use stratified
sampling to limit each query to contain at most the 90th percentile number of
documents (Table 1), improving computational speed while keeping the distri-
bution of document relevance in the datasets almost identical.

Simulating User Behavior. Our click simulation setup closely follows [45,47].
First, we train a LightGBM [29] implementation of LambdaMART [8] on 20 sam-
pled train queries with fully supervised relevance annotations as our production
ranker.1 The intuition is to simulate initial rankings that are better than random
but leave room for further improvement.

We generate up to 100 million clicks on our train and validation sets by
repeatedly: (i) sampling a query uniformly at random from our dataset; (ii)
ranking the associated documents using our production ranker; and (iii) gener-
ating clicks according to the PBM user model (Eq. 1). As in [45], we generate
validation clicks proportional to the train/validation split ratio in each dataset
(Table 1). When sampling clicks according to the PBM, we use the human rele-
vance labels provided by the datasets as ground truth for the document relevance
yd. We use a graded notion of document relevance [3,4,10,25] and add click noise
of ε = 0.1 to also sample clicks on documents of zero relevance:

yd = ε + (1 − ε) · 2
sd − 1
24 − 1

. (10)

We follow Joachims et al. [28] and simulate the position bias for a document at
rank k after preranking as:

ok =
(
1
k

)η

(11)

The parameter η controls the strength of position bias; η = 0 corresponds to no
position bias. We use a default of η = 1. Lastly, we apply an optimization step
from [34] and train on the average click-through-rate of each query-document
pair instead of the actual sampled raw click data [34, Eq. 39]. This allows us to
scale our simulation to millions of queries and multiple repetitions while keep-
ing the computational load almost constant. Our experimental results hold up
without this trick.

Model Implementation and Training. We estimate document relevance
from features using the same network architecture g(xd) for both the click model
and IPS-based ranker. Similar to [45,46], we use a three layer feed-forward net-
work with [512, 256, 128] neurons, ELU activations, and dropout 0.1 in the last
two layers. We pick the best-performing optimizer2 and learning rate3 over five
independent runs on the validation set for each model. In all experiments, we
1 LightGBM Version 3.3.2, using 100 trees, 31 leafs, and learning rate 0.1.
2 optimizer ∈ {Adam, Adagrad, SGD}.
3 learning rate ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}.
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train our models on the synthetic click datasets up to 200 epochs and stop
early after five epochs of no improvement of the validation loss. We do not clip
propensities in the IPS model to avoid introducing bias [1,28].

Experimental Runs. We follow related work and report the final evaluation
metrics on the original annotation scores of the test set [1,28,34]. We test differ-
ences for significance using a two-tailed student’s t-test [43], apply the Bonferroni
correction [6] to account for multiple comparisons, and use a significance level of
α = 0.0001. All results reported in this work are evaluated over ten independent
simulation runs with different random seeds. We compare five models:

IPS/PBM - Naive: A version of both models that does not compensate for
position bias. In this case both models are equivalent (Proposition 2).

IPS-True bias: Pointwise IPS ranker with access to the true simulated position
bias.

PBM-Estimated bias: Neural PBM jointly inferring position bias and docu-
ment relevance during training.

Fig. 2. Test performance after training on up to 100M simulated queries. All results
are averaged over ten independent runs, and we display a bootstrapped 95% confidence
interval.

PBM-True bias: Neural PBM initialized with the true position bias; the bias
is fixed during training.

Production ranker: LambdaMART production ranker used to pre-rank
queries during simulation.

6 Results and Analysis

We examine if the neural click model and pointwise IPS models are empirically
equivalent in a semi-synthetic click simulation.
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6.1 Main Findings

Fig. 2 displays the test performance of all model combinations when training up
to 100M simulated queries; full tabular results are available in Table 2. Inspecting
Fig. 2, we first note that all approaches improve over the initial rankings provided
by the production ranker. The version of both models not correcting for position
bias (IPS/PBM - Naive) converges to its final, suboptimal, performance after
one million clicks. Significantly improving over the naive baseline on two out
of three datasets (except Istella-S ) is the neural click model jointly estimating
position bias and relevance (PBM - Estimated bias).

Next, we see that providing the PBM - True Bias model with access to the
correct position bias stabilizes and improves performance significantly over the
naive baseline on all datasets. While having a lower variance, the improvements
over PBM - Estimated Bias are not significant on any of the datasets. The IPS
- True bias model is less effective than the neural click models for the first 100k
clicks but ends up outperforming the click model significantly on two of the three
LTR datasets (Istella-S and Yahoo! Webscope). These differences under idealized
conditions between pointwise IPS and the click model are small, but significant.
And to our surprise, the neural click model performs worse than the pointwise
IPS model, even with access to the true position bias.

In Theorem 1, we prove that click models can recover unbiased document
relevance when the position bias is accurately estimated. However, our empirical

Table 2. Ranking performance on the full-information test set after 100M train queries
as measured in nDCG and Average Relevant Position (ARP) [28]. Results are averaged
over ten independent runs, displaying the standard deviation in parentheses. We mark
significantly higher � or lower performance � compared to the PBM - True bias
model using a significance level of α = 0.0001.

Dataset Model nDCG@5 ↑ nDCG@10 ↑ ARP ↓
MSLR-WEB30K Production 0.301 (0.027) � 0.330 (0.024) � 49.223 (0.693) �

Naive 0.348 (0.022) � 0.370 (0.020) � 48.386 (0.538) �
PBM - Est. Bias 0.429 (0.010) 0.449 (0.008) 44.835 (0.274)
PBM - True Bias 0.428 (0.006) 0.447 (0.006) 44.965 (0.230)
IPS - True Bias 0.432 (0.011) 0.454 (0.010) 44.418 (0.227)

Istella-S Production 0.566 (0.012) � 0.632 (0.010) � 10.659 (0.207) �
Naive 0.616 (0.005) � 0.683 (0.005) � 9.191 (0.154) �
PBM - Est. Bias 0.629 (0.008) 0.692 (0.007) 10.605 (1.193)
PBM - True Bias 0.638 (0.003) 0.703 (0.004) 8.911 (0.212)
IPS - True Bias 0.656 (0.005) � 0.724 (0.004) � 8.274 (0.141) �

Yahoo! Webscope Production 0.613 (0.012) � 0.671 (0.009) � 10.439 (0.095) �
Naive 0.647 (0.006) � 0.699 (0.004) � 10.199 (0.052) �
PBM - Est. Bias 0.673 (0.005) 0.722 (0.003) 9.848 (0.055)
PBM - True Bias 0.680 (0.004) 0.728 (0.003) 9.812 (0.035)
IPS - True Bias 0.695 (0.001) � 0.741 (0.001) � 9.658 (0.011) �
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evaluation indicates a difference between click model and IPS-based approaches,
even under the idealized conditions assumed in this setup: unlike the IPS-based
approach, the neural click model may suffer from bias. Given this observed dif-
ference, we conduct further analyses by revisiting the effect of position bias on
the magnitude of the click model’s loss discussed earlier in Sect. 4.2.

6.2 Further Analyses

Our first hypothesis to explain the lower performance of the neural click model
concerns hyperparameter tuning. Section 4.2 shows that the click model loss
decreases with an increase in position bias. Through manual verification, we
find that items at lower positions have smaller gradient updates, affecting the
choice of learning rate and the number of training epochs. While this is a con-
cern when using SGD, our extensive hyperparameter tuning and use of adaptive
learning rate optimizers should mitigate this issue (Sect. 5). Hence, we reject this
hypothesis.

Instead, we hypothesize that higher ranked items might overtake the gradient
of lower ranked items, given their higher potential for loss reduction. This case
might occur when encountering two documents with similar features but different
relevance. The item at the higher position could bias the expected relevance
towards its direction. This is indeed what we find when simulating a toy scenario
with two documents in Fig. 3. There, we display one relevant but rarely observed
document (red triangle) and one irrelevant but always observed item (orange
square). Both click model and IPS approaches converge to the correct document
relevance when computing the loss for each item separately, but when computing
the combined average loss, the IPS approach converges to the mean relevance
of both items while the click model is biased towards the item with the higher
examination probability.

Fig. 3. Visualizing the loss and estimated document relevance of two documents when
calculated separately (dotted lines) and combined (solid line).
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Fig. 4. Experiments on one-hot encoded documents. All results are averaged over ten
independent runs. We display a bootstrapped 95% confidence interval.

One can frame this finding as an instance of model misfit. Theorem 1 demands
a separate parameter ŷd for each query-document pair, but by generalizing over
features using the relevance network g, we might project multiple documents
onto the same parameter ŷd, which might be problematic when features do not
perfectly capture item relevance. We test our hypothesis that the click model’s
gradient updates are biased towards items with higher examination probabilities
with three additional experiments.

No Shared Document Features. First, we should see an equivalent perfor-
mance of both approaches in a setting in which documents share no features
since the gradient magnitude should not matter in this setting. We create a
fully synthetic dataset of 10,000 one-hot encoded vectors with uniform relevance
scores between 0 and 4. To avoid feature interactions, we reduce the depth of the
relevance network g to a single linear layer. We find in Fig. 4a that indeed both
approaches are able to recover the true document relevance. Every document
in the validation or test set appears once in the train dataset, thus achieving a
perfect ranking score (e.g., nDCG@10 = 1.0) is possible in this setting.

Fig. 5. Simulating an increasing (known) position bias. We report test performance
after 100M clicks over 10 independent runs.
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Feature Collisions. Second, gradually forcing documents to share features by
introducing random feature collisions into our one-hot encoded dataset should
lead to a stronger drop in performance for the click model. At the start of each
simulation, we use a modulo operation to assign a share of documents based
on their id on to the same one-hot encoded feature vectors. Figure 4b shows
that both approaches perform equivalently when each document has its own
feature vector. But when gradually introducing collisions, PBM-Estimated bias
and PBM-True bias deteriorate faster in performance than IPS-True bias.

Mitigating Position Bias. A last interesting consequence is that this prob-
lem should get worse with an increase in (known) position bias. Simulating an
increasing position bias and supplying the examination probabilities to both
approaches on Istella-S shows that IPS can recover consistently from high posi-
tion bias, while the click model deteriorates in performance with an increase in
position bias (Fig. 5).

In summary, we found strong evidence that when encountering documents of
different relevance but similar features, the neural click model biases its relevance
estimate towards items with higher exposure.

7 Conclusion

We have considered whether recent neural click models and pointwise IPS rankers
are equivalent for pointwise learning-to-rank from position-biased user clicks. We
show theoretically and empirically that neural click models and pointwise IPS
rankers achieve equal performance when the true position bias is known, and
relevance is estimated for each item separately. However, we also find small but
significant empirical differences, indicating that the neural click model may be
affected by position bias when learning from shared and potentially conflicting
document features.

Given the similarity of the neural PBM used in this work to current industry
trends [22,23,54,55], we urge practitioners to investigate if their model architec-
ture is vulnerable to the described bias, especially when representing items using
a small set of features or low dimensional latent embeddings. Potential diagnos-
tic tools include simulating synthetic clicks or training a related pointwise IPS
method to test for performance improvements.

We emphasize that our findings are specific to our neural PBM setup, and we
make no claims about other architectures, such as additive two-tower models [54]
or click models trained using expectation maximization [50]. We plan to further
investigate connections and differences between IPS and click models, extending
our evaluation beyond the pointwise setting to more sophisticated conditions
such as mixtures of user behavior and bias misspecification. We share our code
at https://github.com/philipphager/ultr-cm-vs-ips/
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Abstract. We address the task of retrieving sentences for an open
domain dialogue that contain information useful for generating the next
turn. We propose several novel neural retrieval architectures based on
dual contextual modeling: the dialogue context and the context of the
sentence in its ambient document. The architectures utilize contextual-
ized language models (BERT), fine-tuned on a large-scale dataset con-
structed from Reddit. We evaluate the models using a recently published
dataset. The performance of our most effective model is substantially
superior to that of strong baselines.

Keywords: Open domain dialogue · Dialogue retrieval · Sentence
retrieval

1 Introduction

Throughout the last few years there has been a rapid increase in various
tasks related to dialogue (conversational) systems [7,12,14,15,37,47]. Our work
focuses on responses in an open-dialogue setup: two parties converse in turns
on any number of topics with no restrictions to the topic shifts and type of
discussion on each topic. In addition, the dialogue is not grounded to a specific
document, in contrast to the setting used in some previous work (e.g., [28]).
The task we pursue is to retrieve passages—specifically, sentences—from some
document corpus that would be useful for generating the next response in a
given dialogue; the response can be written either by humans or by conditional
generative language models [12,17,34].

There has been much research effort on utilizing information induced from
the context of the last turn in the dialogue—henceforth referred to as dialogue
context—so as to retrieve a response from a corpus of available responses [4,20,
35,38,40,45,46,48]. However, these models address complete responses as the
retrieved items. In our setting, the retrieved items are sentences from documents,
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which may aid in writing a complete response. Unlike full responses, sentences
usually do not contain all the information needed to effectively estimate their
relevance to an information need. Indeed, there is a line of work on ad hoc
sentence retrieval [13,30] and question answering [18,24,41] that demonstrated
the clear merits of using information induced from the document containing the
sentence, henceforth referred to as sentence context.

To address sentence retrieval in a dialogue setting, we present a suite of
novel approaches that employ dual contextual modeling: they utilize informa-
tion not only from the dialogue context but also from the context of candidate
sentences to be retrieved; specifically, from the documents that contain them.
We are not aware of previous work on conversational search that utilizes the
context of retrieved sentences. Using the context of the dialogue is important for
modeling latent information needs that were explicitly or implicitly mentioned
only in previous dialogue turns. Using the context of the sentence in its ambient
document is important for inducing an enriched representation of the sentence
which can help, for example, to fill in topical and referential information missing
from the sentence.

Our sentence retrieval approaches employ the BERT [10] language model,
fine-tuned for simultaneous modeling of the context of the last turn in the dia-
logue and the context of a candidate sentence for retrieval. We propose three
different BERT-based architectures that differ in the way context in the dialogue
and in the document are modeled and interact with each other. While our main
architectural novelty lies in the study of the dialogue/sentence context interac-
tion, some of the dialogue context modeling techniques we employ are also novel
to this task.

We evaluated our models using a recently published dataset for sentence
retrieval for open-domain dialogues [19]. The dataset was created from Red-
dit. It includes human generated relevance labels for sentences with respect to
dialogues. As in [19], we used weakly supervised (pseudo) relevance labels for
training our models.

We contrast the performance of our models with that of a wide suite of
strong reference comparisons. The retrieval performance of our best performing
approach is substantially better than that of the baselines. We also show that
while using only the dialogue context results in performance superior to that of
using only the sentence context, using them both is of clear merit. In addition, we
study the performance effect of the type of document context used for sentences
and the length of the context used from the dialogue.

To summarize, we address a research challenge that has not attracted much
research attention thus far: retrieving sentences that contain information useful
for generating the next turn in an open-domain dialogue. This is in contrast
to retrieving responses and/or generating them, and to conversational retrieval
where the information need is explicitly expressed via queries or questions. On
the model side, our work is the first, to the best of our knowledge, to model
both the dialogue context and the context of candidate sentences to be retrieved;
specifically, using neural architectures that utilize a pre-trained language model.
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2 Related Work

The two main lines of work on open domain dialogue-based systems [21] are
response generation [12,17,34,49] and response selection [4,20,35,38,40,45,46,
48]; some of these methods are hybrid selection/generation approaches. Some
recent generative dialogue systems include a retrieval component that generates
a standalone query from the dialogue context against a fixed search engine (e.g.
Bing or Google) [16,23,42]. Response selection is a retrieval task of ranking
candidate full responses from a given pool. In contrast, our task is to retrieve
from a document corpus sentences that could serve as a basis for generating a
response, optimizing the retrieval model.

Related to our task is conversational search [7,15,36,47]. The goal of this
task is to retrieve answers to questions posted in the conversation or to retrieve
passages/documents that pertain to the information needs expressed in it. In
our setting, we do not make any assumptions on the type of response to be
generated from retrieved sentences. It could be an answer, an argument, or even
a question. Consequently, the types of information needs our retrieval models
have to satisfy are not necessarily explicitly mentioned in the dialogues (e.g., in
the form of a question); they could be quite evolved, and should be inferred from
the dialogue.

The last turn in a dialogue is often used as the basis for response selection
or passage/answer retrieval. A large body of work utilized information induced
from the dialogue context – the turns preceding the last one – to improve rank-
ing. There are approaches that reformulate the last turn [26], expand it using
terms selected from the context [27,43], expand it using entire previous turns
[29,34,37], or use the context for cross referencing the last turn [40]. Yan et
al. [45] proposed to create multiple queries from the context, assign a retrieval
score to a candidate response w.r.t. each query, and fuse the retrieved scores.
We demonstrate the merits of our joint representation approach w.r.t. a repre-
sentative turn expansion method [43] and to Yan et al.’s [45] fusion approach.

Other models for dialogue-based retrieval include the dialogue context as
part of a retrieval neural network. Several works [38,46,48] use a hierarchical
architecture for propagating information from previous turns to the last turn
representation. Qu et al. [35] embed selected previous answers in the conversation
as an additional layer in BERT. In contrast, we focus on early cross-attention of
all context in the input, simultaneously modeling the dialogue context and the
context of the sentences to be retrieved.

Passage context from the ambient document was used for non-conversational
passage retrieval [13,30] and question answering [18,24,41], but there was no
dialogue context to utilize in contrast to our work. As already mentioned, there
is much work on utilizing dialogue context for dialogue-based retrieval [26,27,
29,34,37,40,43], and we use some of these methods as reference comparisons,
but the passage (response) context was not utilized in this line of work.
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3 Retrieval Framework for Open Dialogues

Suppose that two parties are holding a dialogue g which is an open-ended con-
versation. Open domain means that there are no restrictions about the topics
discussed in g and their shifts.

The parties converse in turns: g
def
= < t1, . . . , tn >; t1 is the first turn and tn is

the current (last) turn. Herein, we refer to a turn and the text it contains inter-
changeably. Our goal is to retrieve relevant sentences from some document cor-
pus C, where relevance means that the sentence contains information that can be
used to generate the next turn, tn+1. We address this sentence retrieval task via
a two-stage ranking approach: an initial ranker (see Sect. 4 for details) followed
by a more computationally-intensive ranker that reranks the top-k retrieved
sentences and is our focus.

In open-ended dialogues there is often no explicit expression of an information
need; e.g., a query or a question. We assume that the current turn, tn, expresses
to some extent the information need since tn+1 is a response to tn. Because
turns can be short, preceding turns in g are often used as the context of tn
in prior work on conversational search and dialogue-based retrieval [20,35,40,

45,46,48]. Accordingly, we define the sequence CX(tn)
def
= tn−h, . . . , tn−1 to

be the dialogue (historical) context, where h is a free parameter. We treat the
sequence tn−h, . . . , tn as a pseudo query, Q, which is used to express the presumed
information need1.

Standard ad hoc sentence retrieval based on query-sentence similarities is
prone to vocabulary mismatch since both the queries and sentences are relatively
short. We use the BERT [10] language model to compare the pseudo query, Q,
with a sentence, which should ameliorate the effects of token-level mismatch.
We note that the pseudo query Q is not as short as queries in ad hoc retrieval.
Nevertheless, we hypothesize that utilizing information from the document con-
taining the sentence, which was found useful in ad hoc sentence retrieval [13,30]
and question answering [18,24,41], will also be of merit in sentence retrieval for
open dialogue.

Specifically, we define the context of sentence s in its ambient document as a
sequence of m sentences selected from the document: CX(s)

def
= s1, . . . , sm ; m

is a free parameter. These sentences are ordered by their relative ordering in the
document, but they need not be adjacent2 to each other in the document. We
treat the ordered sequence composed of s and its context as the pseudo sentence:
S

def
= s1, . . . , s, . . . , sm (s may appear before s1 or after sm).
In what follows, we describe estimates for the relevance of sentence s with

respect to dialogue g where relevance means, as noted above, inclusion of infor-
mation useful for generating the next turn in the dialogue. The estimates are
based on modeling the relation between the pseudo sentence S and the pseudo
query Q.

1 If n− 1 < h, we set Q
def
= t1, . . . , tn. If h=0, Q

def
= tn, CX(tn)

def
= {}.

2 We evaluate a few approaches for selecting the sentences in CX(s) in Sect. 5.
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3.1 Sentence Retrieval Methods

We present three architectures for sentence retrieval in dialogue context that
are based on matching between Q and S. These architectures utilize BERT for
embedding texts, taking its pooler output vector as the single output, denoted
by vBERT .

From Dense Vectors to a Sentence Relevance Score. The architectures
we present below utilize a generic neural component that induces a sentence
relevance score from a set of k dense vectors. The vectors, denoted v1, . . . , vk,
are the outcome of representing parts of Q and S and/or their matches using
the architectures.

Following work on estimating document relevance for ad hoc document
retrieval using passage-level representations [25], we train an encoder-only Trans-
former [10] whose output is fed into a softmax function that induces a relevance
score for sentence s with respect to pseudo query Q:

Score(s|v1, . . . , vk) = Softmax(Wscore vout + bscore), (1)

vout = TRANSFORMERenc(v0, . . . , vk)[0], (2)

where: a) Wscore and bscore are learned parameters; b) v0 is the word embedding
of the [CLS] token in BERT, which is prepended to the vector sequence v1, . . . , vk;
and c) vout is the contextual embedding of the [CLS] token v0 in the topmost
Transformer layer3. Figures 1, 2 and 3 depict three models with this high-level
architecture.

Architectures. We next present three BERT-based architectures. The out-
put of each architecture is a sequence of dense vectors which is the input to
Score(s|v1, . . . , vk) in Eq. 1 to compute the final sentence score.

The Tower architecture (Fig. 1). Two instances of BERT with shared weights
produce two output vectors to compute Score(s|vBERT

1 , vBERT
2 ) in Eq. 1. The

input to the first BERT is the pseudo query Q with separating tokens between
the turns: “[CLS] tn−h [SEP] . . . [SEP] tn [SEP]”4. The second BERT is fed with
the pseudo sentence S to be scored: “[CLS] s1 [SEP] . . . s [SEP] . . . sm [SEP]”.
This architecture is similar to Dense Passage Retrieval (DPR) [23].

The Hierarchical architecture (Fig. 2). A potential drawback of the Tower
architecture (cf., [33]) is that matching the pseudo query and the pseudo sen-
tence is performed after their dense representations were independently induced.
To address this, we present the Hierarchical architecture, which uses BERT to
3 We tried replacing the Transformer-based embedding in Eq. 2 with a feed-forward

network with the same number of parameters, but this resulted in inferior perfor-
mance.

4 We also tested a simpler scoring approach (without fine tuning), Cosine(v1, v2),
which performed significantly worse.
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Fig. 1. The Tower model with dialog history h = 3.

Fig. 2. The Hierarchical model with dialog history h = 3.

induce joint representations of each turn in the pseudo query with parts of the
pseudo sentence.

This model uses 2∗(h+1) instances of BERT with shared weights, constructed
as follows. For each turn i ∈ {n − h, . . . , n} in Q, the model computes output
vBERT

i,s by feeding BERT with turn i and the sentence s: “[CLS] ti [SEP] s”.
Similarly, the output vBERT

i,S is computed by feeding BERT turn i and pseudo
sentence S: “[CLS] ti [SEP] s1 [SEP] . . . s [SEP] . . . sm[SEP]”. The output vec-
tors {vBERT

n,s , vBERT
n,S . . . vBERT

n−h,s , vBERT
n−h,S } are fed as input to Eq. 1. This architec-

ture is inspired by the PARADE ad hoc document retrieval model [25]. Unlike
PARADE, we enrich all embeddings with positional encoding. The goal is to
model sequential information, e.g., the order of turns in the dialogue.

The QJoint architecture (Fig. 3). The Hierarchical architecture enables early
joint representations for each turn in the pseudo query Q and the pseudo sentence
S. Still, turns are used independently to derive intermediate representations.
We next present the QJoint architecture that represents jointly all turns in Q.
The goal is to cross-attend the inter-relations between the turns in Q and their
relations with S as early as possible.
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Fig. 3. The QJoint model with dialog history h = 3.

We use two instances of BERT with shared weights. The first jointly repre-
sents Q and s, with input “[CLS] tn−h [SEP] . . . tn [SEP] s [SEP]”. The second
instance jointly represents Q and S, with input “[CLS] tn−h [SEP] . . . tn [SEP]
s1 [SEP] . . . s [SEP] . . . sm [SEP]”. The two output BERT vectors serve as input
to Eq. 2.

QJoint is conceptually reminiscent of early passage-based document retrieval
methods where document and passage query similarity scores were interpolated
[2]. Here, the pseudo sentence S is viewed as the document and the sentence
s as the passage and their query matching induced using the BERT models
is interpolated via a Transformer. The sentence context serves as a means to
disambiguate, resolve references and offer global document topicality that may
be missing from a single sentence. Yet, the BERT model that focuses on matching
only the single sentence with the pseudo query offers a differentiator for ranking
two consecutive sentences, which would share much of their pseudo sentence
content.

Neural Reference Comparisons. As noted in Sect. 1, previous work on con-
versational search and dialogue-based retrieval did not utilize the context of
candidate passages in contrast to our architectures. We use several such BERT-
based sentence retrieval methods as reference comparisons.

RANKBERT. This method, which was the best performing in [19] for sentence
retrieval for open-domain dialogues, takes BERT with input “[CLS] q [SEP] s
[SEP]” and uses its output as input to Eq. 1 (which includes a Transformer
layer). In this method, q is set to be turn tn and no context for the sentence s
is utilized; see QuReTeC and CONCAT next for different q settings.

QuReTeC. The Query Resolution by Term Classification method [43]
(QuReTeC in short) is a representative of methods (e.g., [27]) that use explicit
term-based expansion, based on the dialog history, to enrich the current (last)
turn tn. Specifically, it applies a token-level classifier, utilizing turns in CX(tn)
(with a [SEP] token separating between turns), to select a few tokens that will
be added to tn. The resultant text is provided as input q to RANKBERT.
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CONCAT. As an alternative to the term selection approach, represented by
QuReTeC, we consider the CONCAT method [27] which uses all CX(tn) when
constructing the input q to RANKBERT: “[CLS] tn−h [SEP] . . . [SEP] tn
[SEP] s [SEP]” . We note that CONCAT is essentially a special case of QJoint
(Sect. 3.1) where no sentence context is used.

External Fusion. The Hierarchical architecture (Sect. 3.1) fuses information
induced from the turns in the pseudo query by aggregating turn/sentence repre-
sentations using a Transformer. In contrast, QJoint, and its special case CON-
CAT, perform the fusion via a joint representation of all the turns in Q and the
sentence.

We also consider an external fusion approach which fuses information induced
from the turns in Q at the retrieval-score level. We employ RANKBERT to assign
a score to each sentence s in an initially retrieved sentence list with respect to
each turn in Q. Hence, each turn ti induces a ranked list of sentences Li. Let
rankLi

(s) be s’s rank in Li; the highest rank is 1. We use reciprocal rank fusion

(RRF) [6] to fuse the lists {Li}: ExtFuse(s)
def
=

∑
Li

μi
1

ν+rankLi
(s) , where ν

is a free parameter and μi is a uniform weight; linear and exponential decay
weights did not yield improvements. Fusion was also used in [45] at the retrieval
score level for conversational search, but contextualized language models were
not used.

4 Experimental Setting

Dataset and Evaluation Measures. We use a recent dataset of sentence
retrieval for open-ended dialogues [19]5. Dialogues were extracted from Reddit,
and sentences were retrieved from Wikipedia. The test set contains 846 dia-
gloues, each accompanied with an initially retrieved list of 50 sentences judged
by crowd workers for relevance. The initial ranker, henceforth Initial Ranker, is
based on unigram language models and utilizes the dialogue context [19]. All
sentence retrieval methods that we evaluate re-rank the initial sentence list pro-
vided in the dataset. We use Harel et al.’s [19] 50 random equal-sized splits of
the test dialogues to validation and test sets; the validation set is used for hyper-
paramter tuning. We report the average and standard deviation over the 50 test
sets of mean average precision (MAP), NDCG of the 5 highest ranked sentences
(NDCG@5) and mean reciprocal rank (MRR). The two tailed permutation (ran-
domization) test with 10, 000 random permutations and p ≤ 0.05 was used to
determine statistical significance. Bonferroni correction is applied for multiple
hypothesize testing.

We followed the guidelines on the weakly-supervised training data collection
from [19], which showed much merit. Specifically, the sentences in the initial
list retrieved for a dialogue were assigned pseudo relevance labels using a fusion

5
https://github.com/SIGIR-2022/A-Dataset-for-Sentence-Retrieval-for-Open-Ended-Dialogues.

git.

https://github.com/SIGIR-2022/A-Dataset-for-Sentence-Retrieval-for-Open-Ended-Dialogues.git
https://github.com/SIGIR-2022/A-Dataset-for-Sentence-Retrieval-for-Open-Ended-Dialogues.git
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approach. Following these guidelines, we obtained ∼73,000 dialogues with weakly
annotated sentences, which were used to fine tune a basic BERT-based sentence
retrieval model.

Other datasets are not a good fit for training and evaluating our models since
(i) they do not include open-domain dialogues (e.g., TREC’s CAsT datasets [7–
9]6, CoQA [37], DoQA [3] and QuAC [4]) and/or (ii) they do not include the
document context for training a dual context model.

Model and Training Settings. All neural models (Sect. 3.1) were fine-tuned
end2end on the weakly supervised training set, unless stated otherwise. For a
single text embedding in the Tower architecture, pre-trained BERT-Large [10]
is used as a starting point. To embed a pair of texts, e.g., in RANKBERT and
QJoint, as starting point we used a pre-trained BERT that was fine-tuned for
ad hoc passage retrieval on the MS MARCO dataset [31]. We fine-tuned it using
the RANKBERT architecture7; q and s were set to a query and a passage in MS
MARCO, respectively, and trained with pointwise classification loss8 [32].

We implemented and trained the QuReTeC model using the hyperparameter
values detailed in [43] for 10 epochs. When generating the resolved queries, we
applied the constraints mentioned below to the dialogue context; i.e., we set
h = 3 with maximum of 70 tokens per turn. Then, RANKBERT was utilized
for inference on the resolved queries. We tested all QuReTeC variants (different
batch sizes, learning rates and number of epochs), each with the RANKBERT

variant that was the best performing model in most of the validation splits.

Modeling the Pseudo Sentence Context. We tested three alternatives for
modeling CX(s), the context of sentence s in its ambient document: (i) LocalSur-
round. the sentence that precedes and the sentence that follows s, (ii) LocalPrev.
the two sentences that precede s; and (iii) Global. the two sentences in the doc-
ument whose TF-IDF vectors are most similar (via Cosine similarity) to the
TF-IDF vector of s. Sentences in (i) and (ii) were limited to passage boundaries.

Unless stated otherwise, we used LocalSurround in our models, since it per-
formed best in terms of MAP. We use only two sentences as context due to
BERT’s input-length limitation. If the input to BERT should still be truncated,
first the sentences in the context are truncated, and only then the sentence s.

Bag-of-Terms Reference Comparisons. In addition to the neural reference
comparisons described in Sect. 3.1, and the unigram language-model-based Ini-
tial Ranker, we applied Okapi BM25 [39] on the last turn tn as a reference
comparison.

Hyperparameter Tuning. The values of the following hyperparameters were
optimized for MAP over the validation sets. Okapi BM25’s k1 ∈ {1.2, 2, 4, 8, 12}

6 In addition, these datasets include a too small number of dialogues which does not
allow for effective training of the proposed architectures, even when used for weak
supervision.

7 Without the additional transformer in Eq. 2.
8 Training with pairwise loss showed no improvement.
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Table 1. Architectures which utilize both the dialogue and the sentence context. Statis-
tical significance w.r.t. Tower and Hierarchical is marked with ’t’ and ’h’, respectively.

MAP NDCG@5 MRR

Tower .212±.007 .298±.015 .291±.014

Hierarchical .451±.010
t .611±.012

t .588±.013
t

QJoint .477±.010
th .644±.012

th .609±.013
th

and b ∈ {0.25, 0.5, 0.75, 1}. RRF’s (external fusion) ν ∈ {0, 10, 60, 100}. All
BERT-based models were trained using the Adam optimizer with learning rate
∈ {3e−6, 3e−8} and batch size ∈ {8, 16}. RANKBERT that is the starting point
of all these models was fine tuned as in [32].

All models were trained for 10 epochs on Google’s TPU9 v3-8 and the best
model snapshot was selected based on the validation set. The number of Trans-
former layers (Sect. 3.1) was set to 2 in all related architectures following [25].
The maximum sequence length for all BERT-based models is 512. The dialogue
context length h is set to 3. (We analyze the effect of h in Sect. 5.)

5 Results

Main Result. Table 1 compares our architectures, which utilize both the dia-
logue context and the sentence context. We see that Hierarchical outperforms
Tower. This shows that jointly modeling matched texts, in our case the pseudo
query and the sentence, is superior to modeling the interaction between texts
only at the top-most neural layer. This finding is aligned with previous reports
on semantic matching [11,22]. We also see that QJoint is the best perform-
ing model. This attests to the downside of “breaking up” the pseudo query at
the lower representation levels of the network while early cross-representation
between the pseudo query and the pseudo sentence results in higher-quality
semantic retrieval modeling. One potential benefit of Hierarchical is increased
input capacity, since concatenating both the query and its context and the sen-
tence and its context in QJoint may exceed the input size limit and incur penalty
due to truncation.

Table 2 compares our most effective architecture, QJoint, with the neural
and bag-of-terms baselines. The main difference between QJoint and the other
models is that QJoint utilizes both the dialogue context and the sentence context,
while the other methods utilize only the dialogue context, with the exception of
BM25, as is the case in all prior work as noted in Sect. 1.

We see in Table 2 that all trained neural methods significantly outperform the
Initial Ranker and Okapi BM25. The superiority of ExtFuse (external fusion) to
QuReTeC can potentially be attributed to the fact that it compares all the turns
in the dialogue context with the sentence rather than “fuses” several selected
9 https://cloud.google.com/tpu/.

https://cloud.google.com/tpu/
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Table 2. The best performing QJoint compared to reference models. Statistical sig-
nificance w.r.t. Initial Ranker and QJoint is marked with ’i’ and ’q’ respectively.

MAP NDCG@5 MRR

Okapi BM25 .185±.006
iq .259±.010

iq .258±.009
iq

Initial Ranker .238±.007 .355±.012 .353±.012

QuReTeC .375±.009
iq .543±.014

iq .517±.013
iq

ExtFuse .436±.011
iq .606±.013

iq .582±.014
iq

CONCAT .470±.009
iq .635±.012

iq .607±.012
i

QJoint .477±.010 .644±.012 .609±.013

Table 3. QJoint with no context, only with sentence context, only with dialogue
context, and both. The corresponding statistical significance marks are ’n’, ’s’ and ’h’,
respectively.

Context Used MAP NDCG@5 MRR

None .354±.009 .481±.014 .468±.013

Sentence context only .351±.008 .478±.014 .463±.013

Dialogue context only .470±.009
ns .635±.012

ns .607±.012
ns

Both .477±.010
nsh .644±.012

nsh .609±.013
ns

terms with the last turn to yield a single query compared with the sentence. It
is also clear that CONCAT outperforms ExtFuse, which attests to the merit of
using a joint representation for the entire pseudo query and the sentence com-
pared to fusing retrieval scores attained from matching parts of the pseudo query
with the sentence. We also point that CONCAT improves over Hierarchical (see
Table 1), which does utilize the sentence context. This indicates that Hierar-
chical’s use of the sentence context does not compensate for the performance
drop due to breaking up the pseudo query in the model’s lower layers. Finally,
Table 2 shows that QJoint consistently and statistically significantly outperforms
all other methods. The improvement over CONCAT shows the merit of utilizing
the sentence context, since CONCAT is a special case of QJoint that does not
use it.

Analysis of Retrieval Contexts. To further study the merit of using both
the dialogue and sentence contexts, we trained the QJoint model (i) with no
context, (ii) only with sentence context, (iii) only with dialogue context and (iv)
with both (the full model).

Table 3 shows that using only the sentence context without the dialogue con-
text yields performance that is statistically significantly indistiguishable from
that of not using context at all, and statistically significantly inferior to using
only the dialogue context. Yet, using both dialogue and sentence contexts
yields statistically significant improvements over using just the dialogue context.
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Table 4. Sentence context in QJoint. ’s’ and ’p’: statistical significance w.r.t. Local-
Surround and LocalPrev, respectively.

MAP NDCG@5 MRR

QJoint LocalSurround .477±.010 .644±.012 .609±.013

QJoint LocalPrev .476±.010 .639±.013 .612±.015

QJoint Global .467±.011
sp .623±.013

sp .601±.015
sp

Table 5. The effect of the number of past turns (h) used as dialogue context on
QJoint’s performance. Statistical significance w.r.t. h = 0, 1, 2 is marked with 0, 1 and
2, respectively.

MAP NDCG@5 MRR

QJoint (h = 0) .351±.008 .478±.014 .463±.013

QJoint (h = 1) .430±.009
0 .589±.014

0 .566±.014
0

QJoint (h = 2) .472±.010
01 .638±.012

01 .604±.012
01

QJoint (h = 3) .477±.010
01 .644±.012

01 .609±.013
012

This result indicates that while the sentence context does not help by itself, it
is beneficial when used together with the dialogue context.

Thusfar, the context of sentence s, CX(s), was the two sentences that sur-
round it in the document. Table 4 presents the performance of our best method,
QJoint, with the alternative sentence contexts described in Sect. 4. We see that
both LocalSurround and LocalPrev statistically significantly outperform Global,
which is aligned with findings in some work on question answering [18]. This
attests to the merits of using the “local context”; i.e., the sentences around
the candidate sentence. There are no statistically significant differences between
LocalSurround and LocalPrev, providing flexibility to choose local context based
on other constraints; e.g., input size.

Heretofore, we used the h = 3 turns that precede the current (last) turn in
the dialogue as the dialogue context. Table 5 shows that reducing the number
of previous turns for dialogue context results in decreasing performance. The
smaller difference between h = 2 and h = 3 is due to relatively few dialogues in
the test set with history longer than 2 turns (about 15%). For these dialogues,
the difference in performance between h = 2 and h = 3 is similar to that between
h = 1 and h = 2.

6 Conclusions and Future Work

We addressed the task of retrieving sentences that contain information useful for
generating the next turn in an open-ended dialogue. Our approaches utilize both
the dialogue context and the context of candidate sentences in their ambient doc-
uments. Specifically, we presented architectures that utilize various hierarchies
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of the match between a sentence, its context and the dialogue context. Empirical
evaluation demonstrated the merits of our best performing approach.

We intend to explore the use of transformers for long texts [1,5,44] to over-
come the input size limitation. We also plan to ground generative language
models with our retrieval models and study the conversations that emerge from
such grounding.

Acknowledgements. We thank the reviewers for their comments. This work was
supported in part by a grant from Google.
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Abstract. It is important to learn whether text information remains valid or not
for various applications including story comprehension, information retrieval,
and user state tracking on microblogs and via chatbot conversations. It is also
beneficial to deeply understand the story. However, this kind of inference is still
difficult for computers as it requires temporal commonsense. We propose a novel
task, Temporal Natural Language Inference, inspired by traditional natural lan-
guage reasoning to determine the temporal validity of text content. The task
requires inference and judgment whether an action expressed in a sentence is
still ongoing or rather completed, hence, whether the sentence still remains valid,
given its supplementary content. We first construct our own dataset for this task
and train several machine learning models. Then we propose an effective method
for learning information from an external knowledge base that gives hints on
temporal commonsense knowledge. Using prepared dataset, we introduce a new
machine learning model that incorporates the information from the knowledge
base and demonstrate that our model outperforms state-of-the-art approaches in
the proposed task.

1 Introduction

It is rather easy for humans to reason on the validity of sentences. Given a user’s post:
“I am taking a walk”, and a subsequent post from the same user: “Ordering a cup of
coffee to take away”, we can guess that the person is very likely still taking a walk,
and has just only stopped for a coffee during her walk. That is, the action stated in
the former message is still ongoing, thus, the first sentence remains valid. On the other
hand, if the subsequent post would be “I am preparing a dinner”, it would be highly
possible that the first message (the one about taking a walk) is no longer valid in view
of this additional evidence. This kind of inference is usually smoothly done by the
commonsense of humans.

Thanks to the emergence of pre-training models, computers have shown signifi-
cant performance in the field of natural language understanding [59]. However, it is
still a challenging task for computers to perform effective reasoning that requires com-
monsense knowledge [54]. As the amount of available text information is exploding
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13980, pp. 441–458, 2023.
https://doi.org/10.1007/978-3-031-28244-7_28
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nowadays, it is getting more and more important for machines to achieve much better
understanding of natural language.

In this work, we propose a novel task called Temporal Natural Language Inference
(TNLI), in which we evaluate the validity of text content using an additional related
content used as evidence. Similarly to Natural Language Inference (NLI) task [55] an
input is in the form of a sentence pair (we explain more on the differences of these two
tasks in Sect. 2.5). We address the TNLI problem as a classification task using the fol-
lowing two input sentences: (1) hypothesis sentence and (2) premise sentence. The first
one, the hypothesis sentence, is the one whose validity is to be judged. The second one,
the premise sentence, is following the hypothesis sentence and is supposed to provide
new information useful for classifying the hypothesis. The classification labels for the
hypothesis sentence are as follows: SUPPORTED, INVALIDATED, and UNKNOWN. SUP-
PORTED means that the hypothesis is still valid after seeing the premise, INVALIDATED

means that the hypothesis ceased to be valid, and otherwise it is UNKNOWN.
Considering our earlier example, if we regard “I am taking a walk” as a hypothesis

and “I am preparing a dinner” as a premise, the hypothesis becomes INVALIDATED

since the user has clearly concluded her earlier action. If we consider “coffee for take
away” as a premise instead, the hypothesis would be SUPPORTED.1

The potential applications of our proposed task are as follows:

Support for Story Understanding and Event Extraction: Effective methods trained
for the proposed task can lead to better understanding of stories described in text and
potentially also more effective event extraction [72]. Reading comprehension of stories
would be improved if one incorporates a component that can reason about action com-
pletion given the evidence provided by the following sentences. We note that this kind
of knowledge is often implicit in text.

Classification and Recommendation of Microblog Posts: Microblog posts can be
valid for different lengths of time. In the era of information overload, users need to
select valid messages among a large number of posts, as valid ones are typically the
most relevant and important. This kind of information overload would be significantly
alleviated when they could use an option to filter out invalid posts from their time-
lines, or the posts could be ranked by several factors including their estimated temporal
validity.

User Tracking and Analysis: User tracking and analysis in social networks services
(SNS) and chats [1,2,33] can be enhanced based on temporal processing of user’s posts
so that the user’s current situation and action can be flagged. This could be useful for
example for selecting suitable advertisements or in emergency situations like during the
time of disasters to know the current state of users.

1 Note that it is not always easy to determine the correct answer as the context or necessary
details might be missing, and in such cases humans seem to rely on probabilistic reasoning
besides the commonsense base.
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Chatbots: Chatbots and AI assistants are becoming recently increasingly popular [43].
However, their use is still quite limited as they cannot understand well users’ context
such as their actions, goals and plans, and so on. To achieve much better communication
with humans, it is necessary to develop user state-aware approach.

In addition to the proposal of a novel task, our second contribution is the construc-
tion of dedicated dataset for the proposed task. As we especially focus on sentences that
describe actions and relatively dynamic states that can be relevant to the aforementioned
applications, our dataset contains pairs of sentences describing concrete actions.

Finally, we also develop a new machine learning model incorporating information
from a knowledge graph as we believe that successful model requires external knowl-
edge about the world. Our proposed model combines the following two encoders: the
first one incorporates commonsense knowledge via pre-training and the other one is
purely based on text to jointly capture and reason with the commonsense knowledge.
To develop these encoders, we construct a new model for learning the embeddings of
concepts in knowledge bases. In particular, we employ the ATOMIC-2020 dataset [25]
as an external knowledge base.

Our main contributions can be summarized as follows:

1. We propose a novel task called, Temporal Natural Language Inference (TNLI),
requiring to identify the validity of a text content given an evidence in the form
of another content. We formulate it as a text classification problem.

2. We construct a dedicated dataset2 for our proposed task that contains over 10k sen-
tence pairs, and analyze its relation to Natural Language Inference (NLI) task and
NLI’s corresponding datasets.

3. We design and develop an effective new machine learning model for the proposed
task which utilizes information from commonsense knowledge bases.

4. Finally, we compare our model with some state-of-the-arts in natural language infer-
ence task and discuss the results. We also test if pre-training using standard NLI
datasets is effective for TNLI.

2 Related Work

2.1 Temporal Information Retrieval and Processing

Temporal Information Retrieval is a subset of Information Retrieval domain that focuses
on retrieving information considering their temporal characteristics. Many tasks and
approaches have been proposed so far [1,9,27,28,42,45], including the understanding
of story [23], temporal relation extraction [18,63], question answering [24,26], and
so on. White and Awadallah [69] estimated the duration of tasks assigned by users in
calendars. Takemura and Tajima [57] classified microblog posts to different lifetimes
based on features specific to Twitter such as number of followers or presence of URLs.
Almquist and Jatowt [3] examined the validity of sentences considering the time elapsed
since their creation (more in Sect. 2.5).

2 The dataset will be made freely available after paper publication.
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2.2 Commonsense Reasoning

Implicit information that humans commonly know is addressed in, what is called,
Commonsense Reasoning domain [60]. Winograd Schema Challenge [32] was one
of the earliest challenges for machines in this regard, and many other challenges and
approaches have also been proposed [21,34,36,38,44,49,58]. Temporal Commonsense
is one of them, in which temporal challenges are addressed [78]. Zhou et al. [77] focused
on comparing actions such as “going on a vacation” with others like “going for a walk”
to assess which take longer, and constructed a dataset for question-answering including
this kind of estimation. We further compare our task with other related ones in Sect. 2.5.

2.3 Natural Language Inference

Recently, Natural Language Understanding (NLU) by computers has attracted a lot
of researchers’ attention. Natural Language Inference (NLI) or Recognizing Textual
Entailment is one of NLU domains, in which computers deal with input in the form
of two sentences [55], similar to our proposed task. NLI problems require to deter-
mine that a premise sentence entails, contradicts, or is neutral to a hypothesis sentence
(or in some settings, entails vs. not entails). In the early stages of NLI work, Dagan
et al. [15] constructed a relatively small dataset. The first largely annotated dataset
was Stanford Natural Language Inference (SNLI) dataset [6], which was annotated
through crowdsourcing. After that, many NLI datasets [16,22], including Multi-genre
Natural Language Inference (MNLI) [70] and Scitail [30], have been constructed.
Notably, Vashishtha et al. [62] converted existing datasets for temporal reasoning into
NLI format, pointing out that no NLI dataset focuses on temporal reasoning. Their
task focuses on explicit temporal description while our task tackles implicit informa-
tion. The emergence of these large scale datasets made it possible to train more com-
plex models [7,55]. Remarkably, state-of-the-art large-scale pre-trained models such as
BERT [17] and RoBERTa [37] demonstrated significant performance on NLI datasets,
and are also used to train multi-task models [14].

2.4 Incorporation of Knowledge Bases

Generally, NLUworks make use of Knowledge Graphs (KG) or Knowledge Bases (KB)
to improve model performance [11,40,73]. Especially, Commonsense Reasoning works
commonly incorporate knowledge from large KBs such as ConceptNet [35,53] and
WikiData [64] in their architectures [48,75,76]. However, only a few works in NLI
attempt to incorporate KGs into models [8,29]. Wang et al. [66], for example, improve
performance on Scitail using knowledge in ConceptNet.

2.5 Comparison with Related Tasks

Similar to NLI, our work addresses a text classification problem, in which two sen-
tences form an input. However, we focus on neither entailment nor contradiction but
the validity of sentences (see Tables 3 and 4 for comparison).
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The NLI dataset constructed by Vashishtha et al. [62] includes temporal phenom-
ena. However, their task addresses explicit descriptions of temporal relations such as
duration and order, while we focus on implicit temporal information that is latent in
sentences. Temporal Commonsense task [77] includes implicit temporal information,
too. The problem that the task deals with is reasoning about event duration, ordering,
and frequency in a separate manner. However, our approach requires a more compre-
hensive understanding of temporal phenomena through a contrastive type inference.
Also, their task is posed as a question-answering problem while ours is formalized as
an NLI type problem. Almquist and Jatowt [3] also worked on the validity of sentences.
Unlike their work, we use premises as the additional source instead of the information
on the elapsed time from sentence creation as in [3], since, in practice, in many situ-
ations, additional text is available (e.g., sequences of tweets posted by the same user,
or following sentences in a story or novel). Table 1 compares our task with the most
related ones.

Table 1. Comparison our work with related tasks.

Task Task Type Temporal Input Output

McTaco [77] Question Answering � source, question, answer
candidates

correct answers

NLI [12,20] Classification sentence pair 3 classes (entailment,
contradiction, neutral)

Validity Period Estimation [3] Classification � sentence 5 classes (hours, days,
weeks, months, years)

TNLI (Proposed Task) Classification � sentence pair 3 classes (SUPPORTED,
INVALIDATED,
UNKNOWN)

3 Task Definition

We first provide the definition of our task, in which a pair of sentences p = (s1, s2) is
given, where s1 and s2 are a hypothesis and a premise sentence, respectively.3 The task
is to assign one of the following three classes to s1 based on the inference using the
content of s2:

c ∈ {SUPPORTED, INVALIDATED, UNKNOWN} (1)

Here, the SUPPORTED class means that s1 is still valid given the information in s2. The
INVALIDATED class, on the other hand, means that s1 ceased to be valid in view of s2.
The third one, UNKNOWN class, indicates that the situation evidence is not conclusive
or clear, and we cannot verify the validity of the hypothesis.

3 Note that s1 and s2 may have temporal order: ts1 ≤ ts2 , where tsid (id = 1, 2) is the creation
time (or a reading order) of a sentence sid. This may be for example in the case of receiving
microblog posts issued by the user (or when reading next sentences of a story or a novel).
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4 Proposed Method

We discuss next our proposed approach for content validity estimation task. We hypoth-
esize that the task cannot be successfully solved without the incorporation of external
knowledge given the inherent need of temporal commonsense reasoning. Therefore,
we first attempt to find the useful knowledge base to provide knowledge of temporal
properties. We then propose a new model by combining an encoder that incorporates
information from this knowledge base and a text encoder that uses only text data. The
output of the encoder using the knowledge base and the text encoder are combined and
used as input to the softmax classifier. Figure 1 shows the model outline.

Fig. 1. Outline of our approach.

4.1 Encoding Knowledge

One of the key components of the proposed model is the knowledge encoder.

Knowledge Base. We have explored different knowledge bases (KBs) for our objec-
tive including FrameNet [19], WikiHow [31], Howto100m [39], and VerbNet [52]. We
concluded that ATOMIC-2020 (An ATlas Of MachIne Commonsense) [25] is the most
suitable KB to achieve our goal thanks to its temporal commonsense knowledge and
relatively large scale (1.33 M commonsense knowledge tuples and 23 commonsense
relations).

ATOMIC [51] is the predecessor KB of ATOMIC-2020 designed for commonsense
reasoning that contains nine different if-then relations such as Cause, Effect, Inten-
tion, Reaction, and so on. Most of the entities in this KG are in the form of sentences
or phrases. COMET [5] is a language model trained with ATOMIC and ConceptNet
in order to generate entities that were not in the ATOMIC dataset. Then, ATOMIC-
2020 adds new relations in comparison to ConceptNet and ATOMIC. The new relations
include “IsAfter”, “IsBefore”, “HasSubevent”, and so on, which represent the relations
between events. For example, “PersonX pays PersonY a compliment” and “PersonX
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will want to chat with PersonY” are sentences belonging to the if-then relation in
Atomic-2020, while “PersonX bakes bread” and “PersonX needed to buy ingredients”
is an example of a pair of sentences connected by the “IsAfter” relation.

Fig. 2. TransE model for sentences.

TransE. We now briefly explain TransE [4] which we adapt for the purpose of KB
relation embedding. TransE is a model for learning embeddings of KBs represented in
the triple form of entities and relations <head entity, relation, tail entity>. Relations are
considered to be translations in the embedding space. TransE learns embedding using
the following loss function, which is an operation between entities and relations as in
skip-gram [41], where head entity + relation = tail entity:

L =
∑

(h,l,t)∈S

∑

(h′,l,t′)∈S′
(h,l,t)

[γ + d(h+ l, t) − d(h′ + l, t′)]+, (2)

where [x]+ denotes the positive part of x, γ is a margin parameter, d is the distance
function, while h, l, and t are the embeddings of head entity, relation label, and tail
entity, respectively. In addition, S is a set of positive examples, while S′ is the set of
negative examples.

TransE for Sentences. Since the entities in the ATOMIC-2020 dataset are mostly in
the form of short sentences, it is difficult to train with original TransE as the number of
potential entities is very large, and inference for sentences that are not in the training
data is not possible. To solve this problem, we adapt the TransE model for sentences.
First, we compute the sentence vector corresponding to each entity in the KG using
Sentence-BERT (SBERT) [50]. We then train the weights W for the sentence vectors
and the relation embedding Er using Margin Based Ranking Loss as in TransE. Here,
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the weights of SBERT are fixed and not trained, so that if the data is not in the training
set, the embeddings of similar sentences will remain similar. Figure 2 shows the model
structure. Since information related to time is crucial in our work, we only use “IsAfter”
and “IsBefore” ATOMIC-2020 relations.

Other Translating Embedding Models. We also explore other variants of translating
embedding models: TransH [67] and ComplEx [61].

For TransH model, we adopt the same model as TransE for sentences except for an
additional module for projection. To project into the hyperplane of each relation, we
use relation-specific projection matrix as original TransH does.

For ComplEx model, we add a linear layer after sentence embedding so that the
model has two different parallel linear layers to transform sentence embeddings, where
one represents real part, and the other is for imaginary part.

Encoder with Knowledge. We create an encoder for the downstream task using the
ATOMIC-2020 pre-trained embeddings of the TransE model. In this encoder, the output
is the concatenation of the embeddings of the hypothesis and of premise sentence.

4.2 Combined Model

The entire model for the proposed downstream task consists of text encoder, knowl-
edge encoder, and a classification layer on top of them. Since the dimensions of the
pre-trained embeddings and the output of the text encoder are not the same, each output
is linearly transformed to make the dimensions equal. The two vectors obtained in this
way are compared and combined, and then linearly transformed. We use the concatena-
tion, difference, and element-wise product for combination:

H = Linear(Ht;Hk;Ht − Hk;Ht � Hk), (3)

where Ht is the output of text encoder, Hk is the output of knowledge encoder, and �
denotes element-wise multiplication. The obtained output is linearly transformed, and
then fed into a softmax classifier to decide the validity class.

5 Dataset

5.1 Dataset Construction

To create our dataset, we need hypotheses, premises, and ground truth labels. As men-
tioned before, we decided to focus on sentences similar to the typical setup of NLI
task. As the hypothesis sentences we used randomly selected 5,000 premise sentences
from SNLI dataset4. These sentences were originally taken from the captions of the
Flickr30k corpus [74]. We conducted clustering over all the collected sentences and
sampled equal number of sentences from each cluster to maintain high variation of

4 SNLI dataset is licensed under CC-BY-SA 4.0.
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Table 2. Average sentence length in our dataset.

Average Variance

Hypothesis 11.4 19.4

Premise 8.9 10.8

Invalidated 8.4 8.6

Supported 9.3 10.7

Unknown 8.9 12.7

sentence topics. For this, we first employed BERT [17] to vectorize each word, and
then vectorized the sentences based on computing the arithmetic mean of word vectors.
For clustering, we employed k-means to group sentence vectors into 100 clusters. We
then extracted up to 50 sentences from each cluster with uniform probability and used
them as the source of the hypotheses. Premise sentences and labels were collected using
crowdsourcing with the Amazon Mechanical Turk5. For each hypothesis, we asked two
crowdworkers to create a sentence corresponding to each label. To avoid sentences that
are simply copied or modified with minimum effort, we accepted sentences only when
40% or more words were not overlapped with the corresponding hypothesis. Otherwise,
crowdworkers could, for example, simply change one word in order to claim the added
trivial sentence is of a given class (e.g., SUPPORTED class). Since the dataset should
involve non-explicit temporal information and we wanted to make sure that the workers
carefully consider it, we also asked for providing a description of the estimated time
during which the hypotheses sentences could have been realistically valid, although
this information was not included in the final dataset. In total, about 400 workers par-
ticipated in the dataset creation.

Since we found out some spamming and dishonest activity, we later manually ver-
ified the validity of all the obtained data, corrected the grammar and words, as well
as we manually filtered poor-quality, noisy, offensive, or too-personal sentences. For
example, removed sentences included instances in which a single word was substituted
with a different one that has the same or similar meaning or different case such as
replacing “mother” with “MOM.” We removed in total 19,341 pairs of sentences.

5.2 Dataset Statistics

The final dataset includes 10,659 sentence pairs. Since the previous research has pointed
out that the number of words in sentences in some NLI datasets varies significantly
depending on their labels [30], we examined the average number of words in our dataset.
Table 2 shows the statistics indicating that the average number of words in our dataset
does not change significantly for different labels. The variance tends to be higher, how-
ever, for the UNKNOWN class.

Note that the number of sentence pairs belonging to each class is the same (3,553).
Table 3 shows some examples of the generated data, while, for contrast, we also show
example sentences of NLI task in Table 4.

5 https://www.mturk.com/.

https://www.mturk.com/


450 T. Hosokawa et al.

6 Experiments

6.1 Experimental Settings

In our experiments, we perform 5-fold non-nested cross-validation for all the compared
models. The batch size is 16, and the learning rate is determined by the performance on
the validation fold chosen from the training folds among 0.005, 0.0005, 0.00005. For
all the models, the optimal value was 0.00005. We evaluate our approach with accu-
racy, the percentage of correct answers, which is the most relevant metric and widely
used for NLI task. We compare our proposed approach with the following four models:
BERT (bert-base-uncased) [17], Siamese Network [10], SBERT [50] Embeddings with
Feedforward Network, and Self-Explaining Model [56]. Except for ones including the
self-explaining model, we train the models with cross-entropy loss.

Table 3. Example sentences of TNLI task in our dataset.

Hypothesis Label Premise

A woman in blue rain boots is eating a
sandwich outside.

INVALIDATED She takes off her boots in her house

A small Asian street band plays in a city
park

SUPPORTED Their performance pulls a large crowd as
they used new tunes and songs today

A man jumping a rail on his skateboard. UNKNOWN His favorite food is pizza.

Table 4. Example sentences of NLI task from SNLI dataset (borrowed from SNLI website:
https://nlp.stanford.edu/projects/snli/).

Hypothesis Label Premise

A man is driving down a lonely road. Contradiction A black race car starts up in front of a
crowd of people

Some men are playing a sport. Entailment A soccer game with multiple males playing

A happy woman in a fairy costume
holds umbrella.

Neutral A smiling costumed woman is holding an
umbrella

The architecture of the Siamese Network is similar to that of Bowman et al. [6]
using the 8B version of GloVe [47] for word embedding and multiple layers of tanh.
For SBERT with Feedforward Network, each layer has 500 dimensions and ReLU acti-
vation and dropout. The number of hidden layers on the top of SBERT equals to 3, and
the output layer is a softmax classifier. The dropout rates are 75%.

The Self-Explaining [56] is a model with an attention-like Self-Explaining layer on
top of a text encoder (RoBERTa-base [37]), and it achieves state-of-the-art results on
SNLI. The Self-Explaining layer consists of three layers: Span Infor Collecting (SIC)
layer, Interpretation layer, and an output layer.

For testing the proposed architecture, we experimented with the two types of con-
textual encoders: Siamese Network and Self-Explaining model. The dimensionality of

https://nlp.stanford.edu/projects/snli/
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the entity embedding was 256, and the combined embedding was linearly transformed
to 128 to match the dimensionality of each encoder. We trained the entity embeddings
of Bordes et al. [4] with a learning rate of 0.001.

We implemented the models using PyTorch [46] with HuggingFace’s transform-
ers [71] and we conducted our experiments on a machine equipped with GPU.

6.2 Experiments with NLI Pre-training

Generally, pre-training with NLI datasets improves accuracy in many downstream
tasks [13]. As there is certain degree of relevance between our proposed task and NLI,
we first experimented with pre-training selected models using the NLI datasets and
then fine-tuning them on the proposed task. The datasets we used are the training sets
of SNLI 1.0 and MNLI 0.9, which contain 550,152 and 392,702 examples, respectively.
We mapped SUPPORTED to the entailment class of NLI, INVALIDATED to contradiction,
and UNKNOWN to neutral.

Table 5 shows the results obtained by NLI pre-training, indicating that the NLI data
has some relevance to our proposed task and can improve accuracy as it improves the
results for Siamese network. However, when we use the Self-Explaining model, which
is an already pre-trained model, we did not observe any improvement. This indicates
that NLI datasets include effective information, yet it can likely be learned from general
corpus, especially when using RoBERTa [37].

Table 5. NLI pre-training results in Siamese Network and Self-Explaining Model.

Model Accuracy

Siamese 0.715

+SNLI 0.756

+MNLI 0.757

Self-Explaining 0.873

+SNLI 0.867

+MNLI 0.535

6.3 Incorporating Common-sense Knowledge

Table 6 shows the main experimental results. Among the compared models, the Self-
Explaining model achieves the best accuracy. BERT, on the other hand, gives the worst
results. We also observe that training of BERT is unstable as also pointed out in [17].

The incorporation of commonsense knowledge improves the accuracy in both the
Siamese and Self-Explaining cases. While it can significantly improve the performance
for the case of Siamese Network, it does not help much for Self-Explaining model.
Self-explaining uses RoBERTa model which has been trained on larger data and has
been carefully optimized, while other models use standard BERT. This might affect the
results. In general, we believe that adding commonsense data through the architecture
that we have proposed is a promising direction for TNLI task that calls for exploration
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of more sophisticated commonsense reasoning and more extensive datasets. This con-
clusion is also supported by the analysis of the confusion matrices shown in Fig. 3.
Incorporating TransE to Siamese net helps to more correctly determine SUPPORTED and
UNKNOWN classes (improvement by 28% and 6.5%, respectively), while only slightly
confusing the INVALIDATED class (decrease of 1.4%).

6.4 Testing Different Knowledge Embedding Approaches

Finally, we explored different approaches of translating embedding models in addi-
tion to TransE. Table 7 shows the results of TransE variants combined with the Self-
Explaining model. As it can be seen, the loss for pre-training does not go down in
TransH [67] and ComplEx [61]. As the loss remains high, the accuracy with the pro-
posed downstream task is also lower, indicating that the proposed architecture requires
simpler way to construct the knowledge-based embeddings for TNLI because TransH
and ComplEx are more complex models than TransE. Another possibility is that the
other models were not supplied with sufficient knowledge to properly benefit from their
more complex architectures.

Table 6. Results on TNLI task.

Model Accuracy

Siamese 0.715

SBERT + FFN 0.806

BERT 0.441

Self-Explaining 0.873

Siamese+TransE 0.784

Self-Explaining+TransE 0.878

Fig. 3. Confusion matrices for TNLI prediction task of Siamese network (left) and Siamese net-
work with TransE (right). The horizontal axis corresponds to the prediction (xP ) and vertical one
to gold labels (xG). The left (upper) blocks are INVALIDATED, middle ones are SUPPORTED, and
right (bottom) ones are UNKNOWN.
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Table 7. Results of TransE variants used with Self-Explaining model on TNLI task.

Model Pre-Train Loss Accuracy

TransE 0.19 0.878

TransH 0.48 0.868

ComplEx 1.24 0.856

7 Conclusion and Future Work

Computational processing of non-explicit temporal information in natural language still
poses many challenges. In this work, we proposed a novel task for reasoning on the
validity of sentences based on additional evidence and we trained a new model with an
embedded knowledge base for this task. The motivation behind our idea is that humans
can judge the temporal validity of a sentence using their commonsense, and our goal is
to enable such reasoning ability for machines.

To achieve this goal, we first formally defined the task, constructed a dedicated
dataset, and trained several baseline models. In addition, we proposed a new method of
knowledge base embedding for sentences and a machine learning model that incorpo-
rates it. We believe that this work can contribute to our understanding of how to rely
on knowledge bases that contain sentences as entities and of how to further improve
the accuracy of TNLI task. We have also experimented with popular NLI datasets to
answer a question on whether these can be useful for the proposed task.

Extending the dataset is one of our future goals. Our current work focused on
sentences with relatively dynamic descriptions based on envisioned applications in
microblogging. However, for more applications and training more robust models, it is
necessary to construct datasets that also contain other forms of descriptions. More data,
regardless of type, would be also necessary for larger-scale and less-biased training.

One way to achieve this would be to consider conversion methods from other
datasets, as some NLI datasets such as Scitail and QNLI [16,65,68] have already
employed them. Multi-modal datasets that include videos as well as their captions
could be candidates for this. Another future direction is to extend the proposed task
itself. More specifically, the timestamp of the premise sentences can be used as an addi-
tional signal to identify the validity of hypotheses sentences [3] in addition to judgments
based on the content of premise sentences. This would lead to a more general task and a
higher number of potential applications. It would be possible to address the cases where
not only additional content is available as evidence for reasoning on the hypothesis’s
validity but also the time gap that elapsed from its statement is utilized (e.g., when
using both the content and timestamps of user messages/posts or utterances). There-
fore, the re-formulation of our task with added time information and the construction
of a corresponding dataset are also in our plans. Finally, a further future work may
focus on automatically generating premise sentences that would move their hypotheses
into a required validity class to obtain the desired indication of action’s completion or
continuation.
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Abstract. This study presents a theoretical analysis on the efficiency of
interleaving, an efficient online evaluation method for rankings. Although
interleaving has already been applied to production systems, the source
of its high efficiency has not been clarified in the literature. Therefore,
this study presents a theoretical analysis on the efficiency of interleaving
methods. We begin by designing a simple interleaving method similar
to ordinary interleaving methods. Then, we explore a condition under
which the interleaving method is more efficient than A/B testing and
find that this is the case when users leave the ranking depending on
the item’s relevance, a typical assumption made in click models. Finally,
we perform experiments based on numerical analysis and user simula-
tion, demonstrating that the theoretical results are consistent with the
empirical results.

Keywords: Interleaving · Online evaluation · A/B testing

1 Introduction

Online evaluation is one of the most important methods for information retrieval
and recommender systems [8]. In particular, A/B tests are widely conducted in
web services [10,18]. Although A/B testing is easy to implement, it may nega-
tively impact service experiences if the test lasts a long time and the alternative
system (B) is not as effective as the current system (A). In recent years, inter-
leaving methods have been developed to mitigate the negative impacts of online
evaluation, as interleaving is experimentally known to be much more efficient
than A/B testing [3,24].

Although interleaving methods have already been applied to production sys-
tems, the source of their high efficiency has not been sufficiently studied. Hence,
this study presents a theoretical analysis of the efficiency of interleaving meth-
ods. A precise understanding of what makes interleaving efficient will enable
us to distinguish properly the conditions under which interleaving should and
should not be employed. Furthermore, the theoretical analysis could lead to the
further development of interleaving methods.
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The following example intuitively explains the efficiency of interleaving. Let
us consider the case of evaluating the rankings A and B, where A has higher
user satisfaction than B. Interleaving presents an interleaved ranking of A and
B to the user and evaluates these rankings based on the number of clicks given
to the items from each ranking. For example, A is considered superior to B if
more items from A in the interleaved ranking are clicked than those from B. In
the interleaved ranking, an item from A can be placed ahead of one from B and
vice versa. If the user clicks on an item and is satisfied with the content, the
user may leave the ranking and not click on the other items. Because we assume
items from ranking A are more satisfactory than those from ranking B, items
from B have a lesser chance of being clicked when ranking B alone is presented.
Thus, interleaving enables a superior ranking to overtake implicitly the click
opportunities of the other ranking, making it easier to observe the difference in
the ranking effects on users’ click behaviors.

Following this intuition, this study analyzes the efficiency of interleaving from
a theoretical perspective. We begin by designing a simple interleaving method to
generalize representative interleaving methods. Then, we probabilistically model
our interleaving method by decomposing an item click into an examination prob-
ability and the item’s relevance. By analyzing the model, we show that inter-
leaving has a lower evaluation error rate than A/B testing in cases when users
leave the ranking depending on the item’s relevance.

We conduct experiments to validate the theoretical analysis, the results of
which confirm that the efficiency of interleaving is superior to that of A/B testing
when users leave the ranking based on the item’s relevance. The results are con-
sistent with those of the theoretical analysis. Therefore, this study theoretically
and empirically verifies the source of the efficiency of interleaving.

The contributions of this study can be summarized as follows:

– We discuss the nature of the efficiency of interleaving, focusing on the theo-
retical aspects on which the literature is limited.

– We identify the condition under which interleaving is more efficient than A/B
testing according to theoretical analysis.

– Our experiments confirm that the theoretical analysis results are consistent
with the empirical results.

The structure of this paper is as follows. Section 2 describes the related
research. Section 3 introduces the notations and other preparations. Section 4
analyzes the efficiency of interleaving. Sections 5 and 6 describe the numerical
analysis and the user simulation experiments. Finally, Sect. 7 summarizes the
study.

2 Related Works

2.1 User Click Behavior

Among the various types of user feedback, modeling of click behavior has been
extensively studied. The user behavior model concerning clicks in the information
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retrieval area is called the click model, and it helps simulate user behaviors in
the absence of real users or when experiments with real users would interfere
with the user experience. The term click model was first used in the context
of the cascade click model introduced by Craswell et al. [7]. Thereafter, basic
click models [4,9,11] were developed and are still being improved in different
ways. Our study uses examination and relevance, as defined in the click model,
to model the interleaving method. The examination represents a user behavior
in that the user examines an item on a ranking and relevance concerns how well
an item meets the information needs of the user.

2.2 Online Evaluation

Online evaluation is a typical method used to perform ranking evaluations.
Among the various methods of online evaluation, A/B testing is widely used
and is easy to implement. It divides users into groups A and B and presents the
ranking A and ranking B to each group of users. As an extension of A/B testing,
improved methods exist that reduce the variance of the evaluation [8,20,21,27].

Another method of online evaluation is interleaving [2,12,14–17,24], which
involves evaluating two rankings, whereas multileaving involves evaluating
three or more rankings [2,19]. In particular, Pairwise Preference Multileav-
ing (PPM) [19] is a multileaving method that has a theoretical guarantee about
fidelity [13] that is related to this study. Some studies suggest that interleav-
ing methods are experimentally known to be 10 to 100 times more efficient than
A/B testing [3,24]. However, the discussion concerning from where this efficiency
comes is limited. Related to the analysis in this study, Oosterhuis and de Rijke
showed that some interleaving methods can cause systematic errors, including
bias when compared with the ground truth [20]. In this study, we present the
cases in which the examination probability of interleaved rankings affects the
efficiency of the interleaving method.

3 Preliminary

In this section, we first introduce a simple interleaving method for analysis. We
then define the notations to model A/B testing and the interleaving method.
Finally, we define the efficiency.

3.1 Interleaving Method for Analysis (IMA)

Because theoretically analyzing existing interleaving methods is difficult, we
introduce an interleaving method for analysis (IMA), which is a simplified ver-
sion of existing interleaving methods. In the remainder of this paper, the term
interleaving will refer to this IMA. Our method performs for each round l as
follows. Items are probabilistically added according to the flip of a coin. If the
coin is face up, the l-th item in ranking A is used as the l-th item in the inter-
leaved ranking I. If the coin is face down, the l-th item in ranking B is used as
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the l-th item in the interleaved ranking I. A set of items selected from A (or B)
is denoted by TeamA (or TeamB), and this continues until the length of the
interleaved ranking reaches the required length, which we assumed to be same
for the input ranking length. In this study, we also assume that no duplication
items exist in the ranking A and B to simplify the discussion.

We use almost the same scoring as that in Team Draft Interleaving (TDI) [24]
to derive a preference between A and B from the observed clicking behavior
in I. We let cj denote the rank of the j-th click in the interleaved ranking
I = (i1, i2, . . .). Then, we attribute the clicks to ranking A or B based on which
team generated the clicked result. In particular, for the u-th impression, we
obtain the score for IMA as follows:

scoreu
I,A = |{cj : icj ∈ TeamAu}|/|I| (1)

and scoreu
I,B = |{cj : icj ∈ TeamBu}|/|I|,

where TeamAu and TeamBu denote the team attribution of ranking A and rank-
ing B, respectively, at the u-th impressions and |I| is the length of the interleaved
ranking. Note that the scores scoreu

I,A and scoreu
I,B represent the expected val-

ues of the click per item in the interleaved ranking, as the scores are divided by
the ranking length. At the end of the evaluation, we score IMA using the formulas
scoreI,A =

∑n
u=1 scoreu

I,A/n and scoreI,B =
∑n

u=1 scoreu
I,B/n, where n is the

total number of impressions. We infer a preference for A if scoreI,A > scoreI,B ,
a preference B if scoreI,A < scoreI,B , and no preference if scoreI,A = scoreI,B .

An interleaved comparison method is biased if, under a random distribution
of clicks, it prefers one ranker over another in expectation [12]. Some exist-
ing interleaving methods were designed so that the interleaved ranking would
not be biased. For example, Probabilistic Interleaving (PI) [12], TDI [24], and
Optimized Interleaving (OI) [23] were proven unbiased [12,19]. Our IMA is also
unbiased, because every ranker is equally likely to add an item at each location
in the ranking; in other words, the interleaved ranking is generated so that the
examination probabilities for the input rankings will all be the same.

3.2 A/B Testing

In this paper, we re-define an A/B testing method for compatibility with the
IMA. We use Eq. (1) for each u-th impression to score A/B testing, denoted as
scoreu

AB,A and scoreu
AB,B . At the end of the evaluation, we score A/B testing

using scoreAB,A =
∑n

u=1 scoreu
AB,A/n and scoreAB,B =

∑n
u=1 scoreu

AB,B/n,
where n is the total number of impressions, the same as in IMA. The difference
between A/B testing and the IMA is the policy for generating rankings. All items
in the interleaved ranking are selected from either ranking A only or ranking B
only in the A/B testing. In other words, the probability of selecting A or B is
fixed to 1 when generating a single interleaved ranking, or either ranking A or
B is presented to the user at an equal probability.
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3.3 Notation

First, we introduce the notations of random variables. We denote random vari-
ables for clicks as Y ∈ {0, 1}, the examination of the item on the ranking as
O ∈ {0, 1}, and the relevance of the item as R ∈ {0, 1}. The value O = 1 means
a user examines the item on the ranking. This study assumes Y = O · R, mean-
ing the user clicks on an item only if the item is examined and relevant. We
denote the probability of some random variable T as P (T ), the expected value
of T as E(T ), and the variance in T as V (T ). In addition, the expected value of
and variance in the sample mean for Ti of each i-th impression over n times are
denoted as E(T̄n) and V (T̄n), respectively.

Next, we introduce the notations of random variables for the rankings. In this
study, we evaluate two rankings, A and B, and we do not distinguish between
ranking and items to simplify the notations. We denote the random variable
of clicks in TeamA as YA and the random variable of relevance for ranking A
as RA. OAB,A and OI,A are defined as the random variables of the examina-
tion of A/B testing and of interleaving, respectively. Ranking A and ranking B
are interchangeable in the above notations. We also use • to denote ranking A
or B. For example, OI,• refers to the random variable for the examination of
interleaving when ranking A or B.

Probabilistic Models. This study assumes the probabilistic models of A/B
testing and interleaving as follows:

– YAB,A = SAB,A · OAB,A · RA holds where a random variable for ranking
assignment in A/B testing is denoted as SAB,A ∈ {0, 1}, where SAB,A = 1
if ranking A is selected via A/B testing. We note that E(SAB,A) = 1/2, as
ranking A or B is randomly selected.

– YI,A = SI,A ·OI,A ·RA holds where a random variable for ranking assignment
in interleaving is denoted as SI,A ∈ {0, 1}, where SI,A = 1 if the item belongs
to TeamA. We note that E(SI,A) = 1/2, as the item is selected randomly at
each position in I from ranking A or B.

We assume Y i
AB,A, a random variable for clicks in the i-th impression, follows

the Bernoulli distribution B(pAB,A), where pAB,A = E(YAB,A). Then, Ȳ n
AB,A is

defined as Ȳ n
AB,A = 1

n

∑n
i=1 Y i

AB,A. In this definition, Ȳ n
AB,A follows a binomial

distribution, and Ȳ n
AB,A can be considered as a random variable that follows

normal distribution when n → ∞. We note that

E(Ȳ n
AB,A) = E(

1
n

n∑

i=1

Y i
AB,A) =

1
n

n∑

i=1

pAB,A = E(YAB,A), (2)

V (Ȳ n
AB,A) = V (

1
n

n∑

i=1

Y i
AB,A) =

1
n2

n∑

i=1

pAB,A(1 − pAB,A) =
1
n

V (YAB,A) (3)

holds. The same holds for Ȳ n
AB,B, Ȳ n

I,A, and Ȳ n
I,B . In addition,

E(YAB,A) = E(SAB,A)E(OA · RA) = E(SAB,A)E(YA) (4)
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holds, as YAB,A = SAB,A ·OAB,A ·RA = SAB,A ·OA ·RA, and SAB,A is indepen-
dent of OA and RA. Finally, note that E(Ȳ n

AB,A) = scoreAB,A holds from the
definition. In the above equation, ranking A and ranking B are interchangeable.

3.4 Definition of Efficiency

In this study, efficiency is defined as the level of evaluation error probabil-
ity, denoted as P (Error). The efficiency reflects that the error probability is
small, given the statistical parameters. We demonstrate below that interleav-
ing is more efficient; P (ErrorI) < P (ErrorAB) holds with some conditions.
More formally, the error probability for A/B testing can be defined as follows:
if E(YA) − E(YB) > 0 and Ȳ n

AB,• ∼ N (E(Ȳ n
AB,•), V (Ȳ n

AB,•)) for n is sufficiently
large, then:

P (ErrorAB)
= P (Ȳ n

AB,A − Ȳ n
AB,B ≤ 0)

=
∫ 0

−∞
N (x|E(Ȳ n

AB,A) − E(Ȳ n
AB,B), V (Ȳ n

AB,A) + V (Ȳ n
AB,B))dx

=
∫ −(E(Ȳ n

AB,A)−E(Ȳ n
AB,B))

−∞
N (x|0, V (Ȳ n

AB,A) + V (Ȳ n
AB,B))dx.

The second line to the third line uses the reproductive property of a normal dis-
tribution. In the above equation, ranking A and ranking B are interchangeable,
and the error probability of interleaving P (ErrorI) is also given in the same
way.

4 Theoretical Analysis

This section discusses the theoretical efficiency of interleaving. From the defini-
tion of efficiency given in Sect. 3.4, we see that the A/B testing and interleaving
error probability rates depend on the sum of the variances and the difference
between the expected click values. In particular, the smaller the sum of the vari-
ances, the smaller the error probability, and the larger the difference between
the expected click values, the smaller the error probability. We investigate the
relationship between the variance and difference in the expected click values in
the following two cases: when the examination probability is constant and when
it is relevance-aware.

Case of Constant Examination. The case of constant examination means
the examination probability is constant for the relevance; in other words, the
examination probability does not depend on the relevance of a ranking. For
example, a position-based click model [5] in which the examination probability
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depends only on the item’s position in the ranking is a constant case. Another
example is a perfect click model in the cascade click model used in Sect. 6.

We show that interleaving has the same efficiency as A/B testing for the case
of constant examination based on two theorems under the following conditions.

Condition 1. E(OAB,A) = E(OI,A) = E(OAB,B) = E(OI,B) = c: The
expected value of the examination is constant and the same between A/B testing and
interleaving.

Condition 2. O ⊥ R: The random variable of the examination O and the ran-
dom variable of the relevance R are independent from each other.

Theorem 1. If conditions 1 and 2 are satisfied, E(Ȳ n
AB,A) − E(Ȳ n

AB,B) =
E(Ȳ n

I,A) − E(Ȳ n
I,B) holds.

Proof. When E(OAB,A) = E(OI,A) from condition 1,

E(YAB,A) = E(YI,A) (5)

holds because E(YAB,A) = E(SAB,A · OAB,A · RA) =
E(SAB,A)E(OAB,A)E(RA) = E(SI,A)E(OI,A)E(RA) = E(YI,A) from condi-
tion 2 and E(SAB,A) = E(SI,A) = 1

2 . The same holds for ranking B, as
E(YAB,B) = E(YI,B). Thus, E(YAB,A) − E(YAB,B) = E(YI,A) − E(YI,B).
Therefore, E(Ȳ n

AB,A) − E(Ȳ n
AB,B) = E(Ȳ n

I,A) − E(Ȳ n
I,B) holds, as E(Ȳ n

AB,A) =
E(YAB,A), E(Ȳ n

AB,B) = E(YAB,B), E(Ȳ n
I,A) = E(YI,A), and E(Ȳ n

I,B) = E(YI,B)
from Eq. (2).

Theorem 2. If conditions 1 and 2 are satisfied, V (Ȳ n
AB,A) + V (Ȳ n

AB,B) =
V (Ȳ n

I,A) + V (Ȳ n
I,B) holds.

Proof. From Eqs. (3) and (5), V (Ȳ n
AB,A) = 1

nE(YAB,A)(1 − E(YAB,A)) =
1
nE(YI,A)(1 − E(YI,A)) = V (Ȳ n

I,A). Similarly, V (Ȳ n
AB,B) = V (Ȳ n

I,B). Thus,
V (Ȳ n

AB,A) + V (Ȳ n
AB,B) = V (Ȳ n

I,A) + V (Ȳ n
I,B) holds.

From Theorems 1 and 2, both the difference and variance in the expected click
values are the same for interleaving and A/B testing. Thus, interleaving has the
same efficiency as A/B testing when the examination is constant.

Case of Relevance-Aware Examination. In the case of relevance-aware
examination, the examination probability depends on the relevance of a rank-
ing. For example, the navigational click model [5] is a relevance-aware case in
which the click action depends on the relevance, and the click action affects the
examination.

We consider the error rate when the examination is relevance-aware under
the following conditions.

Condition 3. E(RA) > E(RB) ∧ E(YA) > E(YB): The expected value of the
relevance and the click of ranking A is greater than the expected value of the
relevance and the click of ranking B.
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Condition 4. E(OI,• · R•) 	 f(max[E(RA), E(RB)])E(R•), where f is a
monotonically decreasing function.

The second condition in function f reflects that the user is more likely to
leave the ranking after clicking on an item with high relevance. In particular,
a decreasing condition in f means the user is leaving the ranking, and max
in f means the leaving behavior is affected more by higher relevance items.
For example, users leave the ranking after interacting with the high relevance
items in the navigational click model [5]. We show below that interleaving is
more efficient than A/B testing when these two conditions hold, based on the
following two theorems.

Theorem 3. If conditions 3 and 4 are satisfied, then E(Ȳ n
I,A) − E(Ȳ n

I,B) >

E(Ȳ n
AB,A) − E(Ȳ n

AB,B). In other words, the difference in the expected click value
of the interleaved comparison is greater than the A/B testing value.

Proof. From conditions 3 and 4, E(OI,A · RA) = f(max[E(RA), E(RB)])
E(RA) = f(E(RA))E(RA). By interpreting the A/B test as mixing the same
input rankings together, E(OAB,A · RA) = f(max[E(RA), E(RA)])E(RA) =
f(E(RA))E(RA).

Thus,
E(YI,A) = E(YAB,A), (6)

as E(OI,A · RA) = E(OAB,A · RA) holds. Similarly, E(OAB,B · RB) =
f(E(RB))E(RB) holds by interpreting the A/B test as mixing the same
input rankings. In addition, E(OI,B · RB) = f(max[E(RA), E(RB)])E(RB) =
f(E(RA))E(RB). Then, E(OAB,B · RB) > E(OI,B · RB) holds because f is a
monotonically decreasing function and E(RA) > E(RB). Therefore,

E(YAB,B) > E(YI,B). (7)

Furthermore,
E(YAB,A) > E(YAB,B), (8)

as E(YAB,A) = 2E(YA) > 2E(YB) = E(YAB,B) holds from Eq. (4) and condition
4.

From Eqs. (6), (7), and (8), E(YI,A) = E(YAB,A) > E(YAB,B) > E(YI,B)
holds. Using this relationship, we get E(Ȳ n

I,A)−E(Ȳ n
I,B) > E(Ȳ n

AB,A)−E(Ȳ n
AB,B),

as E(Ȳ n
AB,A) = E(YAB,A), E(Ȳ n

AB,B) = E(YAB,B), E(Ȳ n
I,A) = E(YI,A) and

E(Ȳ n
I,B) = E(YI,B) from Eq. (2).

Next, we show that the sum of the variances of interleaving is less than that
of A/B testing.

Theorem 4. If conditions 3 and 4 hold, V (Ȳ n
AB,A) + V (Ȳ n

AB,B) > V (Ȳ n
I,A) +

V (Ȳ n
I,B).

Proof. Recall that V (Ȳ n
AB,•) = 1

nE(YAB,•)(1−E(YAB,•)) from Eq. (3). We note
that V (Ȳ n

AB,•) is monotonically increasing according to E(YAB,•) if the value
of E(YAB,•) is less than or equal to 1

2 . In fact, E(YAB,•) is less than or equal
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to 0.5 because E(YAB,•) = E(SAB,• · OAB,• · R•) = E(SAB,•)E(OAB,• · R•),
where E(SAB,•) = 1

2 and E(OAB,• · R•) ≤ 1. The same holds for E(YI,•). From
equation E(YI,A) = E(YAB,A) in (6), we get V (Ȳ n

AB,A) = V (Ȳ n
I,A). Furthermore,

from equation E(YAB,B) > E(YI,B) in (7), we get V (Ȳ n
AB,B) > V (Ȳ n

I,B). Thus,

V (Ȳ n
AB,A) + V (Ȳ n

AB,B) > V (Ȳ n
I,A) + V (Ȳ n

I,B).

Based on Theorems 3 and 4, the difference in the expected click values is
greater and the variance is lesser in interleaving than in A/B testing. Thus,
interleaving is more efficient than A/B testing when the examination probability
depends on the relevance and when the user leaves the ranking according to the
relevance.

5 Numerical Analysis

Fig. 1. Shape of the examina-
tion probability f

Fig. 2. Difference in
the error probability
between A/B testing
and interleaving

Fig. 3. Error probability of
A/B testing and interleav-
ing

This section investigates how the examination probability function f affects
the error probability in A/B testing and interleaving. We set f(x) = 1

αx+1 , where
α ∈ {1, 100} controls how likely a user is to leave the ranking based on the item’s
relevance. This function has the following properties that represent actual user
behavior:
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Table 1. Click Models

P (click = 1|R) P (stop = 1|R)

R 0 1 2 0 1 2

Perfect 0.0 0.5 1.0 0.0 0.0 0.0

Navigational 0.0 0.5 1.0 0.0 0.5 1.0

– f(0) = 1; users must examine the item on the ranking at position k +1 when
the top-k items are irrelevant;

– f is a monotonically decreasing function; users leave the ranking based on its
relevance.

Figure 1 shows the shape of function f , where the x-axis is the level of rel-
evance and the y-axis is the examination probability. The bottom figure with
α = 100 represents cases when users are most likely to leave the ranking; the
top figure with α = 1 represents cases when they are least likely to do so.

Figure 2 shows the difference in the error probability between A/B testing
and interleaving, that is, P (ErrorAB) − P (ErrorI), where the x-axis is the rel-
evance E(RA) and the y-axis is the relevance E(RB). We observe that when α
is larger, the P (ErrorAB) − P (ErrorI) level increases. Figure 2 also shows that
a greater difference between relevances E(RA) and E(RB) indicates a greater
difference between P (ErrorAB) and P (ErrorI) when α = 100, whereas the
lesser the difference between relevance E(RA) and E(RB), the greater the dif-
ference between P (ErrorAB) and P (ErrorI) at α = 1. This result implies that
interleaving is more efficient than A/B testing if the user is likely to leave the
ranking based on relevance and if the difference in the relevance is large. We
further validate these results using user simulations in Sect. 6.

Figure 3 shows the error probability of A/B testing and interleaving, where
the relevance E(RA) is fixed at 1.0, the x-axis is the relevance E(RB), and the
y-axis is the error probability. When α = 100, the error probability of A/B
testing is around 0.5 even if E(RB) is at 0.2, whereas the error probability of
interleaving is around 0.0. Figure 3 implies that evaluating the difference in the
expected click value using A/B testing is difficult if the user is likely to leave the
ranking based on a small relevance level. In contrast, the interleaving method
more stably evaluates the difference in the expected click value.

6 User Simulation

In this section, we present the results of our user simulations to answer the
following research questions (RQs):

– RQ1: How does the user click model affect the efficiency of A/B testing and
interleaving?

– RQ2: How does the variability in the relevance of the input rankings affect
the error rate?
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6.1 Datasets

We use multiple datasets previously adopted in interleaving research [19]. Most
of the datasets are TREC web tracks from 2003 to 2008 [6,22,26]. HP2003,
HP2004, NP2003, NP2004, TD2003, and TD2004 each have 50–150 queries and
1, 000 items. Meanwhile, the OHSUMED dataset is based on the query logs of the
search engine MEDLINE, an online medical information database, and contains
106 queries. MQ2007 and MQ2008 are TREC’s million query track [1] datasets,
which consist of 1, 700 and 800 queries, respectively. The relevance labels are
divided into three levels: irrelevant (0), relevant (1), and highly relevant (2).

We generate the input rankings A and B by sorting the items with the fea-
tures used in past interleaving experiments [19,25]. We use the BM25, TF.IDF,
TF, IDF, and LMIR.JM features for MQ2007. For the other datasets, we use
the BM25, TF.IDF, LMIR.JM, and hyperlink features. Note that each feature’s
value is included in the dataset. We then generate a pair of input rankings A
and B with |I| = 5 for all pairs of features. The source code of the ranking
generations and user simulations are available in a public GitHub repository.1

6.2 User Behavior

User behavior is simulated in three steps. First, the ranking is displayed after
the user issues a query. Next, the user decides whether to click on the items in
the ranking. If the user clicks on an item, they will leave the ranking according
to its relevance label. The details of this user behavior are as follows.

Ranking Impressions. First, the user issues a pseudo-query by uniformly sam-
pling queries from the dataset. The interleaving model generates an interleaved
ranking and displays the ranking to the user. The IMA was used as the inter-
leaving method in this experiment. In each ranking impression, up to five items
are shown to the user. After this ranking impression, the user simulates a click
using the click model.

Click Model. The cascade click model is used to simulate clicks. Table 1
presents the two types of the cascade click model, where P (click = 1|R)
represents how the user clicks the item according to the relevance R, and
P (stop = 1|R) represents how the user leaves the ranking according to the rele-
vance after the click. The perfect click model examines all items in the ranking
and clicks on all relevant items. The navigational click model simulates a user
looking for a single relevant item.

6.3 Results

RQ1: How Does the User Click Model Affect the Efficiency of A/B
Testing and Interleaving? Figure 4 presents the error rate over impressions,
that is, the efficiency of each click model. The x-axis represents the number
1 https://github.com/mpkato/interleaving.

https://github.com/mpkato/interleaving
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Fig. 4. Efficiency over impressions.

Fig. 5. Error rate for the nDCG difference between rankings.

of ranking impressions, and the y-axis represents the error rate. The values in
Fig. 4 show the average values. The maximum number of impressions is 1, 000,
and each impression corresponds to a randomly selected query, i.e., one query has
one impression. This evaluation procedure is repeated 10 times for each dataset.

The results show that interleaving is more efficient and has fewer evaluation
errors than A/B testing. The results are consistent with those of the efficiency
analysis, as explained in the numerical experiment showing that interleaving is
more efficient than A/B testing if the user is likely to leave the ranking after
clicking on the item with the highest relevance. Thus, the answer to RQ1 is
that interleaving is efficient for the navigational click model, where users leave
a ranking according to relevance.

RQ2: How Does the Variability in the Relevance of the Input Rank-
ings Affect the Error Rate? Figure 5 presents the error rate for the nDCG
difference between each pair of ranking A and B. The x-axis represents the
nDCG difference, and the y-axis represents the error rate. The values in Fig. 5
show the average values for all queries. We randomly select 1, 000 queries that
allow query duplication for each dataset. The number of impressions is 1, 000
for each query, i.e., one query has 1, 000 impressions, and the evaluation error is
calculated after 1, 000 impressions for each query. This evaluation procedure is
repeated 10 times for each dataset.
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The navigational click model shows a lower error rate for interleaving than
for A/B testing. The greater difference between the relevances of ranking A and
B corresponds to the greater difference in error rates between interleaving and
A/B testing. These results are consistent with those of our previously illustrated
numerical experiment, which shows that interleaving has a lower error rate than
A/B testing when the difference in the relevance is large and the user is likely to
leave the ranking with relevance, whereas the perfect click model shows a small
or equal difference in the error rate. From the above analysis, the answer to RQ2
is that based on the navigational click model, interleaving has a low error rate
when the ranking pair has a large difference in relevance.

7 Conclusion

This study presented a theoretical analysis on the efficiency of interleaving, an
online evaluation method, in the information retrieval field. We first designed a
simple interleaving method similar to other interleaving methods, our analysis
of which showed that interleaving is more efficient than A/B testing when users
leave a ranking according to the item’s relevance. The experiments verified the
efficiency of interleaving, and the results according to the theoretical analysis
were consistent with the empirical results.

Our theoretical analyses are limited in that they assume no duplication items
exist in the A and B rankings. Item duplication might further contribute to effi-
ciency in some cases beyond our analysis. However, we believe our basic analysis
could be a first step toward discussing the efficiency of more general interleaving
settings. The next challenge includes investigating what other examination prob-
ability functions satisfy the efficiency of interleaved or multileaved comparisons.
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Abstract. We tackle Question Paraphrasing Identification (QPI), a
task of determining whether a pair of interrogative sentences (i.e., ques-
tions) are paraphrases of each other, which is widely applied in infor-
mation retrieval and question answering. It is challenging to identify the
distinctive instances which are similar in semantics though holding differ-
ent intentions. In this paper, we propose an intention-aware neural model
for QPI. Question words (e.g., “when”) and blocks (e.g., “what time”) are
extracted as features for revealing intentions. They are utilized to reg-
ulate pairwise question encoding explicitly and implicitly, within Con-
ditional Variational AutoEncoder (CVAE) and multi-task VAE frame-
works, respectively. We conduct experiments on the benchmark corpora
QQP, LCQMC and BQ, towards both English and Chinese QPI tasks.
Experimental results show that our method yields generally significant
improvements compared to a variety of PLM-based baselines (BERT,
RoBERTa and ERNIE), and it outperforms the state-of-the-art QPI
models. It is also proven that our method doesn’t severely reduce the
overall efficiency, which merely extends the training time by 12.5% on a
RTX3090. All the models and source codes will be made publicly avail-
able to support reproducible research.

Keywords: Information retrieval · Natural language processing ·
Paraphrase identification · Deep learning

1 Introduction

QPI aims to determine whether two interrogative sentences induce the same
answer [25]. It serves as a crucial and practical technique in the field of factoid
question answering, dialogue systems and information retrieval [1,13,23,24].

QPI can be boiled down to a binary classification task that determines either
mutually-paraphrased cases or non-paraphrased. Different from the naive para-
phrase identification, however, QPI is required to verify not only semantic equiv-
alence of contexts but the consistency of intentions. For example, the two ques-
tions in 1) imply different intentions (i.e., Person and Definition), although their
contexts are closely similar in semantics, where solely detecting semantic equiv-
alence is not reliable enough for determination.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13980, pp. 474–488, 2023.
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(a) Attention distributions produced
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The red rectangle " " denotes the interactive attention distribution
between question word and context across questions.

Fig. 1. Attention heat-maps obtained by different BERT-based QPI models. A lighter
color indicates lower attention.

1) Q1: Who exactly is successful? [Intention: Person]
Q2: What exactly is success? [Intention: Definition]

A variety of sophisticated neural QPI approaches have been proposed [4,8,
15,18,27,31]. Recently, the large Pre-trained Language Models (abbr., PLMs)
are leveraged as crucial supportive encoders for neural QPI [6,7,20,21,26,32].
All the aforementioned arts achieve significant improvements, which increase
QPI performance up to the accuracy rates of 91.6%, 88.3% and 85.3% on the
benchmark corpora QQP, LCQMC and BQ.

We suggest that the existing PLM-based QPI models can be further enhanced
by appropriately highlighting the interaction information of question words. This
is motivated by the findings as below:

– Error analysis shows that there are at least 32.5% QPI errors occurred due
to the failure to perceive intentions.

– Lower perception of intentions is ascribed to the negligible interactive atten-
tion between question words and contexts, such as that occurred in the inter-
action representation produced by the widely-used BERT-based QPI base-
lines [3,21,32]. Figure 1-(a) offers an example of underestimated interactive
attention which is marked with red rectangles.

In this study, we propose an intention-aware approach to enhance PLM-
based QPI models. An heuristic intention extractor is designed to determine
intention classes in terms of question words or blocks. On the basis, the semantic
representations of questions produced by PLMs will be reformulated with the
intervention of intention classes, where Variational AutoEncoder (VAE) is used.
It has been proven effective in answer-aware QPI [30] due to the resultant
adaptation to vagueness. It is noteworthy that we tackle answer-unaware QPI,
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where there isn’t any available ground-truth answer in the benchmarks. In our
case, VAE-based reformulation is undergone merely using intention classes as
additional conditions, thus, it performs in the way of Conditional VAE (CVAE).

In addition, we develop a user-friendly version which is constructed using
Multi-task VAE (MVAE). Instead of an in-process condition, MVAE takes inten-
tion classes as the label sets of an additional task (i.e., intention prediction). It
learns to predict them in a separate decoding channel during training, with the
aim to implicitly regulate the encoding process conditioned on intention classes.
During test, intention extraction won’t be involved into the QPI process.

All in all, both CVAE and MVAE-based intention-aware networks are
designed to sensitively perceive and effectively represent the interaction between
question words and contexts across the questions, such as the effects marked by
red rectangles in Fig. 1-(b).

An error analysis is conducted to support our motivation. Firstly, the wrong
cases are filtered by different intentions which are extracted by our Intention
Extraction module. After that, we manually annotate the cases with similar
content but different intentions like case 1) did. Experiments on the benchmarks
of English QQP as well as Chinese LCQMC and BQ show that our approach
improves a broad set of PLM models like BERT [7], RoBERTa [20], ERNIE [26]
and their variants [6]. Besides, it outperforms the state-of-the-art QPI models
without using any external data. Our contributions can be summarized as below:

– The proposed intention-aware network improves the current PLMs-based QPI
models.

– We provide a user-friendly version, i.e., the MVAE-based network. It per-
forms slightly worse than the CVAE-based version, though it dispenses with
intention extraction and in-process intention encoding during test.

– Both CVAE and MVAE-based networks are vest-pocket (Sect. 4). Each of
them extends the training time by no more than 3 h on a RTX3090.

The rest of the paper is organized as follows. Section 2 overviews the related
work. We briefly introduce the fundamental of VAE as well as our heuristic
intention extractor in Sect. 3. We present our intent-aware networks and QPI
models in Sect. 4. Section 5 provides the experimental results and analysis. We
conclude the paper in Sect. 6.

2 Related Work

QPI has been widely studied due to its widespread application in downstream
tasks. The existing approaches can be divided into two categories: representation-
based approaches and interaction-based approaches.

The representation-based approaches generally leverages a Siamese architec-
ture to separately encode two questions into different vectors of high-level fea-
tures. On this basis, the semantic-level similarity is computed between their
feature vectors. He et al. [9] propose a siamese Convolutional Neural Net-
work (CNN) for encoding, and they verify the effectiveness of cosine similarity,
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(a) Variational Autoencoder (VAE)

 Encoder  

(b) Conditional VAE (CVAE) (c) Multi-task VAE (MVAE) 

Task1

 Decoder  Encoder   Decoder  Encoder   Decoder

Task2

Fig. 2. Architectures of VAE, CVAE and MVAE.

Euclidean distance and element-wise difference. Wang et al. [28] decompose two
questions to the sets of similar and different tokens. They use CNN to extract
shareable and distinguishable features respectively from such token sets, so as
to improve the reliability of feature vectors for similarity measurement. Lai et
al. [18] intend to resolve the ambiguity caused by Chinese word segmentation
and propose a lattice based CNN model (LCNs). LCNs successfully leverages
multi-granularity information inherently implied in the word lattice.

Basically, an interaction-based QPI model is designed to perceive interac-
tion information between questions, and incorporate such information into the
representation learning process. Specifically, Wang et al. [27] propose a BiMPM
model under the matching-aggregation framework. A variety of one-to-many
token-level matching operations are conducted bidirectionally to obtain cross-
sentence interaction information for every encoding time step. Chen’s ESIM
[4] model performs interactive inference based on LSTM representations, where
element-wise dot product and subtraction are used to sharpen the interaction
information. Inspired by ResNet [10], Kim et al. [15] propose a densely-connected
recurrent and co-attentive Network (DRCN). It combines RNN with attention
interaction and residual operation. Nowadays, PLMs are successfully leveraged
in QPI. Fundamentally, they appear as a kind of distinctive interaction-based
models due to their interactive attention computation among tokens. Zhang et
al. [32] propose a Relation Learning Network (R2-Net) based on BERT, i.e., a
prototypical transformer-based PLM that contains multi-head interactive atten-
tion mechanism. R2-Net is characterized by interactive relationship perception
of multi-granularity linguistic units (tokens and sentences). Lyu’s LET-BERT
[21] model perceives multi-granularity interaction based on words lattice graph,
where graph attention networks and external knowledge of HowNet are used.

3 Preliminary

To facilitate the understanding of our approach, we briefly introduce the family of
VAE models (VAE, CVAE and MVAE) and the method of intention extraction.

3.1 VAE, CVAE and MVAE

VAE [16] is developed as encoder-decoder networks (as shown in Fig. 2-a),
which possesses an encoder network Qφ(Z|H) and a decoder network Pθ(H|Z)
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(φ and θ are learnable parameters of the networks). When dealing with a certain
sequence, VAE encoder Qφ(Z|H) generates a latent variable Z={z1, z2, ..., zt}
for the hidden states H of the input sequence, while VAE decoder Pθ(H|Z)
reconstructs H using Z. In general, the reconstructed hidden states are denoted
as Ĥ because they are slightly different from the original H.

During a self-supervised training process, VAE encoder learns to produce Z
by random sampling from the variable distributions, the ones qualified by prob-
ability density function F (H), which are not only akin to H, but approximate
the contrastive distribution P (Z) (e.g., Gaussian distribution). This enables VAE
encoder to produce various homogeneous representations (i.e., variables Zs) for
the same input (due to the uncertainty of random sampling). Therefore, VAE
helps to improve training effects when training data is sparse or the training set
is full of redundant and duplicate samples. More importantly, the variations of
representations enable the decoder to adapt to vagueness.

CVAE [17] is a variant of VAE. As shown in Fig. 2.(b), CVAE utilizes an
extra condition C as the additional input to regulate the encoding and decod-
ing processes: Qφ(Z|H,C) and Pθ(H|Z,C). The distribution of resultant latent
variable Z of CVAE is inclined to the information of C, more or less.

MVAE involves VAE into a multi-task learning architecture. The latent
variable Z is shareable by VAE decoder and other task-specific decoders, as
shown in Fig. 2 (c). During training, the reconstruction loss (same as VAE) and
task-oriented losses are combined to collaboratively optimize VAE encoder.

In our experiments, both encoders and decoders of the aforementioned VAE,
CVAE and MVAE are constructed with BiGRU [5].

3.2 Heuristic Intention Extraction

Our approach relies on the intention extraction which classifies questions into
different intention classes. In our experiments, the intention of an English ques-
tion is extracted in terms of question word or block (e.g., “When”, “Why”, “How”,
etc.) and fixed patterns. We consider eight intention classes, including Approach,
Reason, Location, Time, Definition, Choice, Person and Normal. For example,
the questions that begins with “What’s a good way” and “How” are classified
into the “Approach”-type intention. A series of predefined regular expressions
are used to extract the intentions, such as the case in 2).

2) “What .* way .* ?” [Regular expression]
"What would be the best way to control anger?” [Note: the underlined text
span matches the expression]

To be specific, Normal is mainly kind of questions with Yes or No. We group
questions outside the other seven types as Normal. However, it is challenging
to extract intentions from Chinese questions due to the omission of explicit
and canonical question words. Far more serious than time consuming, manually
designing regular expressions for Chinese questions is not generally applicable.
To address the issue, we utilize an off-the-shelf Machine Translation (MT) system
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Fig. 3. CVAE-based intention-aware QPI model. Note that all components are consid-
ered during training, though CVAE decoder is disabled in the test phase.

to translate Chinese questions into English. On the basis, we use English regular
expressions to extract intentions. The intention class will be used in the CVAE
and MVAE-based networks (see next section).

4 Approach

Let us first define QPI task in an accurate way. Given a pair of questions
X1={x1

1, x
1
2, ...x

1
n} and X2={x2

1, x
2
2, ...x

2
m}, a QPI model determines whether X1

and X2 are paraphrases of each other. During training, each input can be repre-
sented as (X1,X2, y), where y is a ground-truth label indicating the relationship
between X1 and X2: either Paraphrase or Non-paraphrase. The goal of training
is to optimize the QPI model f(X1,X2) by minimizing prediction loss.

We develop two intention-aware QPI models using the variants of VAE,
including CVAE and MVAE. The CVAE-based version utilizes the extracted
intention class as an external condition to regulate VAE encoder during both
the training and test phases. By contrast, the MVAE-based version regards the
extracted intention classes as pseudo ground truth, and uses them to collabo-
ratively regulate VAE encoder in an auxiliary task (intention prediction task)
during training. During test, the invocation of the auxiliary task is cancelled for
the purpose of increasing the efficiency.

4.1 CVAE-Based Intention-Aware QPI

We show the architecture of CVAE-based QPI in Fig. 3(a). It comprises three
primary modules, including PLM-based embedding layer, intention-aware CVAE
and binary classification for QPI.
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PLM Embedding Layer. Given two questions X1 and X2, we use the inten-
tion extractor to obtain their intention class labels C1 and C2. On this basis, we
concatenate the word sequences of questions and their intention class tags, in
the form of Xc={[CLS],X1, C1, [SEP ],X2, C2, [SEP ]}, where [CLS] and [SEP ]
serve as special tokens. Further, we feed Xc into a PLM to produce its initial
embeddings H. PLM enables the information of C1 and C2 (i.e., signals of inten-
tions) to be fused into the initial embeddings H.

In our experiments, we examine the effects of different PLMs, all of which
are grounded on the transformer encoder. For English QPI, we apply BERT [7]
and RoBERTa [20] as the embedding layer. For Chinese QPI, BERT [7], BERT-
wwm, BERT-wwm-ext [6] and ERNIE [26] are adopted. Note that the special
tokens of Xc is replaced with < s > and < /s > when RoBERTa is used.

CVAE Module. We feed the initial representation H into the CVAE encoder
Qφ(Z|H,C) which serves to generate the latent variable Z (Z={hz

1, ..., h
z
t }). The

variable will be taken by CVAE decoder Pθ(H|Z,C) for reconstructing H. The
reconstruction loss and Kullback-Leible (KL) divergence [12] are computed for
optimizing CVAE networks, where KL divergence is estimated by comparing to
normal Gaussian distribution PGaus(Z):

LCV AE(θ, φ;H,C) = E[logPθ(H|Z,C)] − DKL[Qφ(Z|H,C)||PGaus(Z)] (1)

Classification for QPI. We adopt the variable Z as the intention-aware repre-
sentation of the question pair. We feed Z into a two-layer fully-connected (FC)
network which serves as the binary classifier. The FC network estimates the
probabilities p(ŷ|Z) that the questions are paraphrases of each other. Softmax is
computed for binary classification over the probabilities {p(ŷ|Z), 1-p(ŷ|Z)}. The
optimization objective of QPI is to minimize the cross-entropy loss as below:

LQPI = −(y ∗ log(p(ŷ|Z))
+(1 − y) ∗ log(1 − p(ŷ|Z))).

(2)

Training. We perform both CVAE and QPI for each batch of data during
training. And both the losses LCV AE and LQPI are considered in the process of
back propagation for optimization. Scale factors α and β are used to reconcile
the losses in the synthetic optimization objective: Loss = αLCV AE + βLQPI .
During test, the CVAE decoder is pruned, which will not affect QPI.

4.2 MVAE-Based Intention-Aware QPI

The CVAE-based model suffers from the inconvenience that intention extraction
needs to be conducted for each input, no matter whether QPI performs in the
training or test phases. This leads to inefficiency for practical application.
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Therefore, we additionally develop a user-friendly version using MVAE as
the backbone. It regards the heuristically-extracted intention labels as pseudo
ground truth for intention prediction. Multi-task learning is conducted dur-
ing training to optimize the shareable VAE encoder, where the tasks of self-
supervised VAE, intention prediction and QPI are considered. Figure 3(b) shows
its architecture. During test, both VAE decoder and the channel of intention pre-
diction is pruned. This model avoids the inconvenient run-time intention extrac-
tion. The computational details are as below.

PLM Embedding Layer. The embedding layer concatenates the word
sequences of the questions: X = {[CLS],X1, [SEP ],X2, [SEP ]}. We feed X
into a PLM to produce the initial representation H. The applied PLM models
are the same with those in the CVAE-based version.

MVAE Module. We feed H into VAE encoder Qφ(Z|H) to generate latent
variable Z. Different from CVAE encoder Qφ(Z|H,C), in this case, we exclude
the condition C, and the signals of intentions are not directly fused into H and
Z. The decoder network Pθ(H|Z) reconstructs H from Z. The optimization
objective function is simplified as below:

LMV AE(θ, φ;H) = E[logPθ(H|Z)]
−DKL[Qφ(Z|H)||PGaus(Z)]

(3)

Multi-task Learning. There are two tasks considered besides the self super-
vised VAE, including QPI and intention prediction. For QPI, the latent variable
Z is fed into the two-layer FC network, and the probability p(ŷ|Z) of mutual
paraphrasing is estimated. We adopt the same optimization objective as Eq(2).

For intention prediction, we construct a simple neural intention classifier
which merely possesses two FC layers with Softmax. We feed the latent variable
Z into the classifier to perform 8-class intention classification (see the classes in
Sect. 3.2). In this case, the heuristically-extracted intentions are used as pseudo
ground truth to lead the supervised learning of intention prediction and VAE
encoding. We hope that VAE encoder can learn to perceive intentions and high-
light such signals in the representation Z. Cross-entropy loss LINT is used for
optimizing the predictor and shareable VAE encoder during back propagation.

Training. We perform MVAE for each batch of data during training, where
the tasks are conducted in the order of VAE, intention predictor and QPI.
Another scale factor γ is introduced into the reconciliation among the losses
of different tasks. Correspondingly, the optimization objective is computed as:
Loss=αLMV AE + βLQPI + γLINT .

5 Experimentation

In this section, experimental settings and result analysis will be detailed intro-
duced. Advanced methods of previous research are compared with our approach
to verify the effectiveness of proposed methods.
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Table 1. Statistics for LCQMC, BQ and QQP

Dataset Size Pos:Neg Domain

LCQMC 260,068 1:0.7 Open-Domain
BQ 120,000 1:1 Bank
QQP 404,276 1:2 Open-Domain

5.1 Corpora and Evaluation Metrics

We evaluate our QPI models on three benchmark corpora, including English
QQP [14], as well as Chinese LCQMC [19] and BQ [2].

Both QQP and LCQMC are large-scale open-domain corpora, where ques-
tion pairs are natural as they are collected from QA websites (e.g., Zhihu and
Quora) without rigorous selection. By contrast, BQ is a domain-specific corpus
which contains various banking business questions. Each instance in all the three
corpora is specified as a pair of sentence-level questions. The binary labels of
paraphrase and non-paraphrase are provided. Table 1 shows the statistical infor-
mation of the corpora. We strictly adhere to the canonical splitting method of
training, validation and test sets for the corpora. Besides, we evaluate all the
models in the experiments using accuracy (ACC.) and F1-score.

5.2 Hyperparameter Settings

We set our experiments on the HuggingFace’s Transformers Library [29] with
Pytorch version. We adopt an Adam optimizer with epsilon of 1e-8, and the
number of BiGRU layers in both VAE/CVAE encoder and decoder is set to
2. For Chinese tasks, we set the learning rate to 1e-5 and batch size to 16
for LCQMC, and 2e-5 and 32 for BQ. The fine-tuning epoch is set to 5 for
both datasets. For English QPI, we fine-tune the models for 50K steps, and
checkpoints are evaluated every 1,000 steps. The learning rate is set to 2e-5 and
batch size is 64. The others are set same as Chinese task. The hidden size of basic
PLMs is 768, while that of large PLMs is 1,024. The hyper-parameters used to
reconcile the loss are respectively set as below: α = 0.01, β = 0.99, γ = 0.1. The
hyperparameters settings are depending on our experience and intuition. We
conduct simple experiments on adjusting them, it may still have better settings
yet. All experiments are conducted on a single RTX 3090 GPU.

5.3 Main Results

Table 2 shows the main results on LCQMC, BQ and QQP. The reported perfor-
mance of our models are average scores obtained in five random runs.

Chinese QPI. Our CVAE and MVAE-based QPI models yield significant
improvements (p-value < 0.05 in statistical significance test) compared to the
PLMs baselines. This demonstrates that our approaches generalize well when
cooperating with different PLMs. In addition, our QPI models outperform all
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Table 2. Comparison to the performance (%) of baselines and previous work on
Chinese LCQMC, BQ and English QQP. The mark “♦” denotes the PLM-based QPI
baselines, while “♣” denotes our CVAE and MVAE-based QPI models that obtain
significant improvements (p-value < 0.05 in statistical significance test) over baselines.

Chinese Task English Task
Models LCQMC BQ Models QQP

ACC F1 ACC F1 ACC F1
Text-CNN [11] 72.8 75.7 68.5 69.2 CENN [31] 80.7 \
BiLSTM [22] 76.1 78.9 73.5 72.7 L.D.C [28] 85.6 \
Lattice-CNN [18] 82.1 82.4 78.2 78.3 BiMPM [27] 88.2 \
BiMPM [27] 83.3 84.9 81.8 81.7 DIIN [8] 89.1 \
ESIM [4] 82.5 84.4 81.9 81.9 DRCN [15] 90.2 \
LET-BERT [21] 88.3 88.8 85.3 84.9 R2-Net [32] 91.6 \
BERT [7]♦ 85.7 86.8 84.5 84.0 BERT [7]♦ 90.9 87.5
+ MVAE♣ 88.8 88.9 85.6 85.5 + MVAE♣ 91.5 88.7
+ CVAE♣ 89.2 89.3 85.8 85.5 + CVAE♣ 91.6 88.7
BERT-wwm [6]♦ 86.8 87.7 84.8 84.2 BERTlarge [7]♦ 91.0 87.7
+ MVAE♣ 88.7 88.9 85.7 85.6 + MVAE♣ 91.8 89.0
+ CVAE♣ 88.9 89.2 85.8 85.8 + CVAE♣ 91.8 89.0
BERT-wwm-ext [6]♦ 86.6 87.7 84.7 83.9 RoBERTa [20]♦ 91.4 88.4
+ MVAE♣ 88.9 89.1 85.5 85.5 + MVAE♣ 91.8 89.1
+ CVAE♣ 89.2 89.4 85.5 85.5 + CVAE♣ 91.8 89.2
ERNIE [26]♦ 87.0 88.0 84.7 84.2 RoBERTalarge [20]♦ 91.9 89.1
+ MVAE♣ 88.9 89.1 85.4 85.3 + MVAE♣ 92.3 89.6
+ CVAE♣ 89.1 89.3 85.5 85.3 + CVAE♣ 92.3 89.6

the state-of-the-art models, including the recently-proposed LET-BERT [21].
The issues of complex Chinese word segmentation and ambiguity are success-
fully addressed to some extent by the use of external knowledge base HowNet. By
contrast, our intention-aware approaches stably outperforms LET-BERT with-
out using any external data. Therefore, we suggest that being aware of question
intentions is as important as the contextual semantics for Chinese QPI.

English QPI. The previous work didn’t report F1-scores on QQP. We evaluate
our models with the F1 metric and report the performance to support the future
comparative study. It can be observed that, similarly, CVAE and MVAE produce
general improvements compared to the PLM-based baselines. The state-of-the-
art approach R2-Net [32] contains both CNN and BERT and is additionally
trained in a scenario of congeniality recognition among multiple instances. Our
approach achieves comparable performance to R2-Net when BERT is used as
the backbone. Besides, CVAE and MVAE-based QPI models outperform the
advanced models when large PLMs (BERTlarge, RoBERTa and RoBERTalarge)
are used as backbones.

Comparing the performance between Chinese and English, we observe that
the improvements we produce for English QPI are not as good as that for Chi-
nese. It is most probably because that, different from English questions, the
intentions of Chinese questions are generally obscure due to the lack of explicit
question words. Therefore, the prior intention extraction and straight induction
of intentions for encoding easily make positive effects on Chinese QPI.



484 Z. Jin et al.

Table 3. Ablation experiments on all benchmarks.

Models LCQMC BQ QQP
ACC F1 ACC F1 ACC F1

BERT 85.7 86.8 84.5 84.0 90.9 87.5

+ intention 87.3 88.1 85.1 84.6 91.2 88.2
+VAE 86.3 87.2 84.8 84.4 90.9 87.7

+CVAE+intention 89.2 89.3 85.8 85.5 91.6 88.7
+MVAE+intention 88.8 88.9 85.6 85.5 91.5 88.7

Fig. 4. Performance comparison between intention Unaware and intention Aware
scenarios for all intention classes.

5.4 Ablation Experiments

We conduct ablation experiments using BERT as the baseline, which is con-
nected with the two-layer FC-based classifier. There are four expanded models
considered in the ablation experiments, including 1) “+intention” that merely
concatenates the intention class with the input questions at the BERT-based
embedding layer, 2) “+VAE” couples BERT with VAE before connecting it with
the classifier, where intentions are disabled, 3) “+CVAE+intention” combines
CVAE with BERT, where intentions are used for inducing the encoding pro-
cess (as shown in Fig. 3.(a)), and 4) “+MVAE+intention” performs multi-task
learning using intentions as pseudo ground truth (as shown in Fig. 3.(b)).

Table 3 shows the ablation performance. It can observed that merely connect-
ing BERT with VAE produces insignificant improvements. By contrast, simply
incorporating intention information into embeddings of questions yields substan-
tial improvements. Besides, the utilization of CVAE and MVAE further improves
the performance.

We also prove that the performance of MVAE is slightly worse than CVAE. It
demonstrates that straight induction by intention class (CVAE) is more effective
than indirect supervision from an auxiliary task (MVAE). Though, MVAE is
more user-friendly for dispensing with intention extraction during test.
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5.5 Effectiveness Analysis

We separate the LCQMC and QQP datasets into eight classes according to inten-
tion classes extracted by our automatic intention extraction. Then we compare our
Intention-Aware BERT (CVAE) with the original fine-tuned BERT on different
intention types of data to see the performance changes.

As shown in Fig. 4, our intention-aware model outperforms BERT in every
category on both Chinese and English corpora. We can find that our strategy
gains more benefits on Chinese tasks than English. For one thing, it contributes
to reducing the difficulty in Chinese tasks. It is challenging for the model to notice
the intent features in Chinese sentences due to the complex syntax and grammar,
while the heuristic intention extraction helps alleviate this problem. For another,
the semantic representing ability of Chinese PLMs are still need to be improved,
which are deeply influenced by problems of Chinese word segmentation [3] and
polysemy phenomenon [21]. Pre-training that are more in line with Chinese
grammar and syntax are still under intensive research, such as BERT-wwm [6]
and ERNIE [26]. In general, our experimental results show that query intention
plays an important role in judging semantic relations.

5.6 Case Study

As shown in Table 4, we select several cases to reveal the effect of inten-
tion enhancement. We compare the Intention-Aware BERT (CVAE) with the
Intention-Unaware model (fine-tuned BERT) on these cases. The fine-tuned
BERT without integrating intentions fails to make the right predictions. In con-
trast, our model is able to notice the key intention information and works well
on them.

Specifically, The No.1, No.2 and No.4 cases are remarkably similar in con-
tent but holding different intentions. In No.1 and No.2, models hardly capture
the intent features due to diverse Chinese pragmatics, while it is easy for the

Table 4. Error analysis of Chinese QPI for fine-tuned BERT in the intention-Unaware
and intention-Aware scenarios.

ID Sentences Label Prediction
Unaware Aware

1 怎样做一个好人？ (How to be a good man?) False True False
什么算一个好人？ (What is a good man like?)

2 语文考试应该怎样复习？ (How should I review for the Chinese test?) False True False
语文考试应该复习什么？ (What should I review for the Chinese test?)

3 什么时候可以发贷？ (What time can I get a loan?) True False True
何时能贷？ (When can I get a loan?)

4 Who exactly is successful? False True False
What exactly is success?

5 What’s the best way to forgive people? True False True
How do you forgive other people?
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Intention-Aware model to perceive them through our heuristic intention extrac-
tion. Though the intentions are obviously revealed by the question words in No.4,
as aforementioned, models hardly make interactive attention for question words.
Thus, we suggest appropriately highlight the intention information.

We also show cases that are semantically equivalent but literally different,
as No.3 and No.5, which makes models easily confused. We extract intent fea-
tures through our designed heuristic approach, which will classify sentences with
“What’s the best way” pattern as an “Approach” type question. In this way, our
Intention-Aware BERT is able to clearly capture the intent information instead
of being confused by diverse sentence patterns with same intention.

6 Conclusion

In this work, we focus on the situation that advanced models are suffering from
weak perception of intention. To alleviate this problem, we propose the Intention-
aware approaches, which extracts intention classes and utilizes VAE-based mod-
els to integrate them with contextual representations. The proposed methods are
evaluated on three benchmarks, including two Chinese and one English datasets.
The experimental results demonstrate that our strategy is an effective way to
alleviate the aforementioned problem, yielding significant improvements and out-
performing state-of-the-art approaches.
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Abstract. Probabilistic models such as BM25 and LM have established
themselves as the standard in atomic retrieval. In structured document
retrieval (SDR), BM25F could be considered the most established model.
However, without optimization BM25F does not benefit from the docu-
ment structure. The main contribution of this paper is a new field weight-
ing method, denoted Information Content Field Weighting (ICFW). It
applies weights over the structure without optimization and overcomes
issues faced by some existing SDR models, most notably the issue of sat-
urating term frequency across fields. ICFW is similar to BM25 and LM
in its analytical grounding and transparency, making it a potential new
candidate for a standard SDR model. For an optimised retrieval scenario
ICFW does as well, or better than baselines. More interestingly, for a
non-optimised retrieval scenario we observe a considerable increase in
performance. Extensive analysis is performed to understand and explain
the underlying reasons for this increase.

Keywords: Retrieval models · Structured documents

1 Introduction

The majority of data is inherently structured. Whether it is websites, product
catalogues, or specific databases, the data has an underlying structure. Proba-
bilistic models, such as the BM25 and LM have become the standard for non-
structured (atomic) retrieval, especially if the use of learn-to-rank models is
not warranted. However, no such widely accepted standard exists for structured
document retrieval (SDR). One possible reason for this is that many of the exist-
ing SDR models do not work well without optimization. For example, even the
most prominent candidate—BM25F—reverts back to considering the document
as atomic if it is not optimized. This means that in some scenarios the rankings
it produces are far from intuitive [14]. The main contribution of this paper is a
field weighting method, denoted Information Content Field Weighting (ICFW).
The method applies weights over the field-based scores produced by any atomic
retrieval model (e.g. BM25, LM etc.) without optimization. By setting model
parameters analytically, ICFW is able to overcome issues faced by some existing
SDR models, most notably saturating term frequency across fields. ICFW is sim-
ilar to the standard atomic models in its analytical grounding and transparency,
making it a potential new candidate for a standard SDR model.
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A key aspect of many SDR models is the setting of weights over the document
fields. Most of these models are characterized by one of two underlying aggre-
gation functions: 1. Field Score Aggregation (FSA), where the weights are
applied over field-based retrieval scores (meta-search) or 2. Term Frequency
Aggregation (TFA), where the weights are applied to within-field term fre-
quencies and the score is calculated over a flattened document representation,
i.e. the document is seen as atomic (BM25F and MLM) [14,18,20]. In order to
benefit properly from the structure, these models require the optimization of
field weights and other parameters, either based on training data, or some other
type of prior knowledge. ICFW is able to leverage the document structure with-
out any such knowledge. Furthermore, by using the field based scores, as done
by FSA-based models, whilst saturating term frequency across fields, as done by
TFA-based models, ICFW is able to overcome some of the issues existing models
face. By analytically setting the scale of term frequency saturation across fields,
ICFW satisfies more of the SDR constraints introduced by [14] than existing
models, thus producing more intuitive rankings.

The experimentation focuses on the BM25 as the underlying model for the
baselines and the proposed model. However, ICFW could be used together with
any atomic retrieval model (LM, DFR etc.). The experimentation considers two
retrieval scenarios, one with training data and one without. For the former task
ICFW does as well, or slightly better than the baselines (various versions of
BM25F and FSA-BM25). For the latter—and arguably the more difficult one,
as no user preferences are known—ICFW significantly outperforms the base-
lines. Significant increases in a accuracy, coupled with an in-depth analysis as
to their underlying reasons, demonstrates in practical terms the contribution of
this paper to establishing reliable standards for analytical SDR.

2 Background

There are many constraints for (atomic) retrieval [4–7]. This line of research
allows for analytical evaluation of any retrieval model. In a similar fashion, [14]
recently introduced formal constraints for SDR. They present three constraints
with both formal and intuitive definitions. The intuitive definitions are presented
below, we direct the reader to see the original paper for the formal definitions.
Field Importance: A model should be able to boost, or decrease the weight
given to a field based on some notion of field importance.
Field Distinctiveness: Adding a query term to a new field should increase the
retrieval score more than adding it to a field where it already occurs
Term Distinctiveness: Adding unseen query terms to a document should
increase the retrieval score more than adding query terms already considered

[14] points out that none of the widely used analytical SDR models (BM25F,
MLM [18], FSDM [29], PRMS [15], FSA) satisfy all three constraints. TFA-based
models (BM25F, MLM) fail to satisfy the field distinctiveness constraint as they
consider the document as atomic after applying the field weights and FSA-based
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models (FSA, PRSM) fail to satisfy the term distinctiveness constraint because
they do not saturate term frequency across fields (something also noted by [20]).

There are a multitude of SDR models other than those listed above. Older
approaches—especially within the INEX initiative—tend to consider the struc-
ture and its semantics explicitly [2,12,16,24]. Some focus on what we might call
Term Importance, i.e. taking into account that the importance of a term can
vary across fields [22,26]. More recent work has focused on applying the lessons
from atomic deep learn-to-rank models to SDR [3,27]. The most relevant app-
roach to this work is the BM25-FIC, where the underlying idea is that more
weight should be given to document fields with higher information content [13].

Definition 0 (BM25-FIC RSV). Let q be a query, d be a document, t a term,
m the number of fields, Fi a collection field (e.g. all titles in the collection), and fi

a document field (e.g. a title of a document). fi is part of exactly one document.
|Fi| is the number of document fields for collection field type i. df(t, Fi) is the
document (field) frequency, i.e. the number of fields (e.g. titles) in which the
term occurs. The BM25-FIC RSV is defined as the weighted sum of field-based
scores where the weight is proportional to the sum of field-based IDFs.

P (t ∈ fi|Fi) =
df(t, Fi)

|Fi| (1)

w(fi, q) := −
∑

t∈q∩fi

log(P (t ∈ fi|Fi))

⎛

⎝∝
∑

t∈q∩fi

IDF(t, Fi)

⎞

⎠ (2)

RSVBM25-FIC(d, q, c) :=
m∑

i=1

w(fi, q) RSVBM25(fi, q, c) (3)

Definition 0 is central to this paper as the proposed ICFW method has the same
underlying idea of using information content (understood as the negative log of
probability) for field weighting. However, unlike the BM25-FIC, ICFW saturates
term frequency across fields, leading to better performance.

3 Information Content Field Weighting (ICFW)

ICFW leverages the information contained in the document structure without
the need for optimization. Furthermore, due to its analytical nature and its rela-
tionship to the SDR constraints it is highly transparent. These are characteristics
the ICFW shares with its counter parts in atomic retrieval (BM25, LM etc.) and
what make it robust across different structure types and retrieval scenarios.

3.1 Model Specification

ICFW aggregates the field-based retrieval scores of a document by multiplying
each by their information content-based field weight and summing these weighted
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scores together. The field weight is calculated as a combination of collection field-
based information content and document field-based information content, where
a scale parameter λ determines the weight given to the latter.

Definition 1 (Term Probabilities). Let ff(t, d) be the field frequency;
i.e. number of fields in d that contain term t. ||Fi|| := {f ||f | > 0} is the number
of non-empty document fields. Let m(d) := |{f |f ∈ d}| denote the number of
fields in document d. The probability of a term occurring in a document field fi

(of type i) given collection field Fi is denoted P (t ∈ fi|Fi). The probability of a
term occurring in a document field fi given document d is denoted P (t ∈ fi|d).

P (t ∈ fi|Fi) :=
df(t, Fi)

||Fi|| (4)

P (t ∈ fi|d) :=
ff(t, d)
m(d)

(5)

Note that Eq. (4) corresponds to Eq. (1), except empty fields are considered.

Definition 2 (Field Probabilities). The probability of q and fi given collec-
tion field Fi is denoted P (q, fi|Fi). The probability of q and fi given document d
is denoted P (q, fi|d).

P (q, fi|Fi) =
∏

t∈q∩fi

P (t ∈ fi|Fi) (6)

P (q, fi|d) =
∏

t∈q∩fi

P (t ∈ fi|d) (7)

Definition 3 (ICF and ICD). The collection field-based information con-
tent of a document field fi is denoted ICF(q, fi, Fi, d) and the document-based
information content of fi is denoted ICD(q, fi, d). The information content of
an event is defined as its negative log probability as proposed by [10] and used
previously in the DFR model by [1].

ICF(q, fi, Fi, d) := −log P (q, fi|Fi) (8)
ICD(q, fi, d) := −log P (q, fi|d) (9)

If q is implicit and as Fi follows from fi, ICF(q, fi, Fi, d) is shortened to
ICF(fi, d) and ICD(q, fi, d) to ICD(fi, d).

Definition 4 (ICFW and Scale Parameter Lambda). Let �λ =
(λ1, . . . , λm) be a vector of scaling parameters where each λi reflects the impor-
tance given to the document-based information content ICD for field fi. λi >= 0.

wicfw,λi
(fi, Fi, d, q) := ICF(q, fi, Fi, d) + λi · ICD(q, fi, d) (10)

where not ambiguous wicfw(fj , d) is short for wicfw,λi
(fi, Fi, d, q). Note that if

∀iλi = 0, ICFW is equal to BM25-FIC (apart from the ||F || variable).
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Definition 5 (ICFW RSV). Let RSVM (q, fi, c) a be retrieval score of a
field where M is the retrieval model. Given document d, query q, �λ, collec-
tion c and retrieval model M , the score (retrieval status value) of d is denoted
RSVICFW,�λ,M (d, q, c).

RSVICFW,�λ,M (d, q, c) :=
m∑

i=1

wicfw,λi
(fi, Fi, d, q)

∑

t∈q

RSVM (fi, q, c) (11)

The λ parameter scales the impact of the document-based information content.
How to best set λ is one of the central research questions in this paper and will
be discussed in the next section.

3.2 Setting the Scale Parameter Lambda

The parameter λ scales the impact of the document-based information content.
If λ is set to 0, wicfw,λi

is defined only through information-content based on
the collection field Fi, i.e. term occurrences would be considered independent
between the fields as done in [13]. As discussed earlier in this paper and exten-
sively by [20], this is not a good assumption and results in the term distinctive-
ness constraint not being satisfied.

However, as λ increases, term frequency is saturated more across fields:
Higher λ puts more emphasis on ICD (Eq. (10)), meaning it gives more weight
to document fields with distinct terms, rather than ones re-appearing. I.e. the
second occurrence of a term increases the retrieval score less than the first one,
no matter what field it is in (assuming similar IDFs across fields). The size of λ
defines the scale of this cross field term frequency saturation.

The simplest way of setting lambda is to have it as a constant for the collec-
tion. In this way the term frequency saturation across fields is constant, same as
for BM25F. Setting lambda this way will be considered in the experimentation.
However, to find an appropriate value for lambda, optimization is needed. One
of the main aims for this paper was to provide a field weighting method that
does not need optimization. The following will describe an alternative approach
to setting λ that analytically considers the scale of term frequency saturation
with respect to the Term Distinctiveness constraint by [14].

The TFA-based models (BM25F etc.) satisfy the Term Distinctiveness con-
straint because they saturate the term frequency across fields, however in doing
so they break the Field Distinctiveness constraint [14,20,28]. See [14] for a more
in-depth discussion. ICFW does not have this same problem, as term frequency
can be saturated across fields, without reverting back to considering the docu-
ment as atomic, as done by TFA-based models. Lambda can be set for each query
analytically, making sure the term frequency saturation is strong enough for the
model to satisfy the term distinctiveness constraint. The following definitions
and discussion will show how lambda is set to achieve this.

Definition 6 (Score Contribution of a Term). Let f denote a document
field with occurrences of t and f̄ denote an amended version of document field f
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without occurrences of t. The score contribution of a term t occurring in a field f
is denoted as Scontr,M (t, f, q, c). Where not ambiguous Scontr(t, f, d) is short for
Scontr,M (t, f, q, c).

Scontr,M (t, f, q, c) := SM (q, f, c) − SM (q, f , c) (12)

Definition 7 (Score Contribution Ratios). Given terms ta and tb and doc-
ument d, the cross-term score contribution ratio, i.e. the ratio of the score con-
tributions (Scontr) of terms ta and tb is denoted Z(ta, tb, fi, fj , d). Given term t,
fields fi and fj, the cross-field score contribution ratio, i.e. the ratio of the score
contributions of t in fields fi and field fj, is denoted x(t, fi, fj, d).

Z(ta, tb, fi, fj , d) :=
Scontr(ta, fi, d)
Scontr(tb, fj , d)

(13)

x(t, fi, fj, d) :=
Scontr(t, fi, d)
Scontr(t, fj, d)

(14)

Definition 8 (Scale Threshold - Two Terms). Let q = {t1, . . . , tn}, d a
document with occurrences of term ta in field fi and occurrences of term tb in
field f . Let d be an amended version of document d, where the occurrences of
tb in field f are replaced by further occurrences of term ta. For presentation
purposes Z(ta, tb, fi, f , d) is shortened to Z and x(ta, f , fi, d) to x.

λthreshold(ta, tb, d, fi) :=
log df(tb,F )|F |Zx

df(ta,F )Zx|F |

log mZ+1 ff(ta,d)Z(x+1)

mZ(x+1) ff(ta,d)Z+1

(15)

λthreshold defines the λ value above which score(d) > score(d). This is the λ above
which the ICFW satisfies the term distinctiveness constraint with respect to ta
and tb. See Appendix A for formal theorem and proof.

Definition 9 (Scale Threshold - Query). In order to generalize Defini-
tion 8 to the entire query, rather than two query terms and fi, we need to con-
sider the rarest and most common query terms and the field with the smallest
Scontr(ta, fi, d). Let tra be the rarest query term, tco the most common query
term and fmin the field with the smallest score contribution (Scontr(tra, fi, d)) for
term tra.

λthreshold(q, d) := λthreshold(tra, tco, d, fmin) (16)

Setting ta = tra, tb = tco, fi = fmin ensures score(d) > score(d) for the entire
document and query. This is because changing the most common term to the
rarest term in f has the highest impact on the retrieval score, which needs
to be offset by the ICD component and therefore a larger value for λ. If λ >
λthreshold(q, d), ICFW satisfies the term distinctiveness constraint for any q and
d. As ICFW already satisfies the field distinctiveness constraint, to the best of
our knowledge it is the first SDR model to satisfy all three constraints by [14].
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3.3 Approximating Appropriate Values for Lambda Threshold

If used directly Definition 9 is highly sensitive to rare terms. A single query term
(tra) that is very rare in one of the fields defines λ for all documents. This is
because Definition 9 sets λ so that an occurrence of the most common query
term (tco) would be enough to offset a second occurrence of tra, even if this is
not feasible. Therefore, Definition 9 should not be viewed as an optimal lambda
value, but as a good starting point with an intuitive explanation. With this in
mind the calculation of λthreshold(q, d) is made less sensitive to large variations
of score contributions in Eqs. (13) and (14): Firstly, we assume that x = 1, i.e.
the score contribution of a term is assumed to be the same in all fields. This is
done as we do not want λ to become too sensitive to variations in Scontr values
for a single term across fields. Rather we are interested in satisfying the term
distinctiveness constraint and thus care more about the ratio of Scontr values
across terms. Secondly, we assume that the score contribution in Eq. (13) is
calculated based on the first occurrence of a term in a field. With respect to
BM25 this means is that we are only considering the contribution of the IDF to
the score (Scontr,BM25(t, f, d) = IDF(t, F )). Finally, the effect of metrics based on
singular terms and fields needs to be smoothed using the rest of the query terms
and the collection. The three proposed methods for this smoothing approximate
the df values in Definition 8 in terms of df(tra), df(tco) and in terms of the IDF
values in Z resulting in three proposed models.

Definition 10 (ICFW-Global (ICFW-G)).

dfICFW-G(tra, Fi) := min({df(t, c) : t ∈ q}) (17)
dfICFW-G(tco, Fi) := max({df(t, c) : t ∈ q}) (18)

Definition 11 (ICFW-Global-Average (ICFW-GA)). Let tmax be the
most common query term in the collection

dfICFW-GA(tra, Fi) :=

∑
t∈q\tmax

df(t, c)

|{t ∈ q \ tmax}| (19)

dfICFW-GA(tco, Fi) := max({df(t, c) : t ∈ q}) (20)

Definition 12 (ICFW-Local-Average (ICFW-LA)).

dfICFW-LA(tra, Fi) :=

∑
t∈q\tmax

df(t, Fi)

|{t ∈ q \ tmax}| (21)

dfICFW-LA(tco, Fi) := max({df(t, c) : t ∈ q}) (22)

ICFW-G uses the document frequency values over the whole collection. ICFW-
GA further smooths the effect of rare query terms by estimating df(tra, c) as the
mean of collection level document frequencies of terms that are not the most
common. ICFW-LA is similar to ICFW-GA, except the calculations are done at
the collection field level, rather than the collection level (F vs. c). For the first
two smoothing methods the value of lambda is the same for all fields, for the
third one the value varies across fields.
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3.4 Optimising ICFW

Even though the focus in this paper is on non-optimised SDR models, sometimes
training data is available. In its current form Definition 5 does not offer many
options for optimization, other than the parameters of the underlying model.
Therefore we add an additional static field weight that can be optimised.

RSVICFW-opt,�λ,M,�wstat
(d, q, c) :=

m∑

i=1

wstat,i · wicfw,λi
(fi, Fi, d, q)

∑

t∈q

RSVM (q, fi, c) (23)

The training optimises the underlying model parameters (k1 and b for BM25), the
static fields weights wstat,i and lambda. We consider two methods for optimising
lambda: ICFW-Lambda-Const (ICFW-LC) where lambda is optimised for
each field as a constant and ICFW-Lambda-Est (ICFW-LE) where lambda is
estimated based on the mean and variation of global query term idf values in a
linear regression manner: λ = B0 + B1 mean(IDF(q, c)) + B2 var(IDF(q, c)).

4 Experimentation and Analysis

RQ1: How does saturating term frequency affect ICFW performance?
RQ2: How well can lambda be estimated without optimization?
RQ3: How do the ICFW optimized candidates compare to baselines?

The experimentation considers two retrieval scenarios: A non-optimised one,
where optimization using training data is not used and, an optimised one where
it is. By not focusing solely on optimised versions of the baselines and proposed
models this paper aims to provide a broader picture of the quality of the ICFW
method. As the main question in this paper is about automatic weighting of
fields for SDR, it makes sense to compare the non-optimised ICFW to other
non-optimised SDR methods. Still, if training data is available models should be
optimised. Therefore we also compare optimised versions of the baselines to an
optimised version of ICFW. The experimentation is available on Github1.

4.1 Data Collections

The collections in the experimentation are DBpedia [9], Homedepot2 and Trec-
8-Small-Web3 (Trec-Web). A key objective of the experimentation is to demon-
strate the robustness of ICFW on a variety of retrieval task types and a variety
of document structure types. The retrieval task types are web search (Trec-
Web), product search (Homedepot) and entity search (DBpedia). These collec-
tion structure types vary from the simple {title, body} of Trec-Web to the more
1 https://github.com/TuomasKetola/icfw-for-SDR.
2 https://www.kaggle.com/c/home-depot-product-search-relevance.
3 https://trec.nist.gov/data/t8.web.html.

https://github.com/TuomasKetola/icfw-for-SDR
https://www.kaggle.com/c/home-depot-product-search-relevance
https://trec.nist.gov/data/t8.web.html
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complex {categories, related entities, similar entities, label and attributes} of
DBpedia. The collections sizes are 4.6 million for DBpedia, 200 k for Trec-Web
and 55 k for Homedepot. More important than number of documents, is variety
in structure complexity. In total Homedepot has 10 k+ queries. We have limited
the number of queries by choosing 1000 with the most relevance judgements.

4.2 Baselines and Methodology

It is not our aim to demonstrate that ICFW combined with BM25 outperforms
all SDR models. Instead we wish to show that ICFW is able to leverage the
structure of the data in ways that existing analytical models are not. As we are
comparing ICFW with existing field weighting methods, rather than existing
SDR models, the experimentation will not include all the models in Sect. 2.
Instead we will focus on the BM25 retrieval model and its various fielded versions.
FSA-BM25: Linear sum of BM25 scores. FSA-BM25-catchall: Linear sum
of BM25 scores with an additional catchall field that concatenates all fields
together. BM25F: Fielded BM25 model where document length normalization
is applied at a field level [28]. BM25F-Simple: A BM25 model where document
length normalization is applied over the concatenated document [20]. No catchall
field considered as BM25F already concatenates the fields. For the non-optimized
task the field weights for all models are set as uniform. The BM25 hyperameters
are set as b = 0.8 and k1 = 1.6 (mid point in the recommended range [1.2–2.0]
[21]). For the optimised task, models are optimised using coordinate ascent and
5-fold cross validation [17] for NDCG@100. The underlying BM25 model for all
the approaches is the original one by Robertson et al. [11,19].

Table 1 shows the results. A significance test has been applied, even though
there are different views on the methodology. [8,23] make the case that signifi-
cance tests should not be used on multiple hypothesis (without correction) and
that simple significance tests should not be applied to re-used test collections.
Though the authors share similar views, significance tests are still often consid-
ered a must-have. Furthermore, some test collection are not reused (Homedepot)
and the proposed models are similar, meaning as features they are correlated.

4.3 RQ1: The Effect of Term Frequency Saturation on Performance

Figure 1 shows the effect of lambda, i.e. cross field term frequency saturation on
NDCG@100. For RQ1 it is worth only considering the top three graphs, as the
bottom ones have inherent saturation due to the catchall field. ICFW-const-λ
shows the accuracy for a ICFW-model where a single value for lambda is opti-
mised. At λ = 0, the ICFW-const-λ model corresponds to the BM25-FIC [13].
We can see that for all the datasets (without catchall field), the optimal value
of λ is greater than 0, albeit for Homedepot even at λ = 0, ICFW outperforms
baselines clearly. This explains the results in [13]. So we can conclude that sat-
urating term frequency across fields is indeed important. It is likely to be more
important for data structures such as {title, body}, where there is greater depen-
dence between term occurrences. This is evident in Fig. 1 from the high value of
optimal lambda for Trec-Web.
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Fig. 1. Estimating λ analytically. +catchall denotes the use of a catchall field by the
ICFW and FSA models. ICFW-const-λ shows change in accuracy for different levels of
lambda. ICFW-best is the best non-optimised ICFW (Sect. 3.3) for a given dataset.

4.4 RQ2: Estimating Lambda Analytically

Figure 1 demonstrates that lambda can be estimated well analytically. We observe
that the best performing smoothing method for each dataset from Sect. 3.3
(ICFW-best) is able to locate the maximum point of ICFW-const-λ well, even for
very different values of lambda (0 for Homedepot+catchall vs. 16.5 for Trec-Web).
The upper half of Table 1 shows the results for the non-optimized retrieval task.
It is clear that ICFW generally outperforms all four baselines, independent of the
smoothing method. ICFW-best is different for all the datasets: ICFW-LA, ICFW-
G and ICFW-LA for DBpedia, Trec-Web and Homedepot respectively with no
catchall field and ICFW-GA-all, ICFW-G-all and ICFW-LA-all with the catchall
field. Out of the three smoothing methods for df, ICFW-G is the most straight-
forward one and its performance is therefore also reported in Fig. 1. It only falls
significantly short of ICFW-best for Homedepot.

To put the performance increase in perspective consider the increase in
accuracy gained from optimizing BM25F-Simple. The increases in MAP are
approximately 0.05, 0.05 and 0.1 for DBpedia, Homedepot and Trec-Web respec-
tively. The increases for moving from a non-optimised BM25F-Simple to the
best ICFW version (ICFW-GA-all, ICFW-LA and ICFW-G-all respectively)
are 0.03, 0.02 and 0.06, meaning we get around half of the accuracy gains by
moving from BM25F-Simple to ICFW, compared to optimizing BM25F-Simple.
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Table 1. Experimental results. The best performing baseline is underlined and the
best performing model is in bold. * and ** denote significance at p < 0.05 and p < 0.01
respectively for a Wilcoxon signed ranks test. +all means the model considers a catchall
field with all document fields concatenated together.

Dataset DBpedia Trec-Web Homedepot

Metric map ndcg@100 map ndcg@100 map ndcg@100

Non-optimized

Baseline Models

FSA-BM25 0.226 0.351 0.164 0.290 0.252 0.452
BM25F 0.295 0.444 0.229 0.377 0.249 0.440
BM25F-Simple 0.284 0.433 0.229 0.378 0.238 0.429
FSA-BM25+all 0.256 0.393 0.205 0.349 0.258 0.458

Proposed Models

ICFW-G 0.299 0.448 0.243 0.391∗ 0.290∗∗ 0.486∗∗

ICFW-GA 0.302 0.449 0.241 0.389 0.297∗∗ 0.496∗∗

ICFW-LA 0.304∗ 0.453 0.233 0.378 0.299∗∗ 0.498∗∗

ICFW-G+all 0.305∗ 0.459∗ 0.251∗∗ 0.406∗∗ 0.277∗∗ 0.470∗∗

ICFW-GA+all 0.313∗∗ 0.468∗∗ 0.249∗∗ 0.403∗∗ 0.285∗∗ 0.482∗∗

ICFW-LA+all 0.310∗∗ 0.464∗∗ 0.249∗∗ 0.402∗∗ 0.289∗∗ 0.487∗∗

Optimized

Baseline Models

FSA-BM25 0.317 0.473 0.286 0.449 0.352 0.538
BM25F 0.338 0.494 0.279 0.444 0.354 0.544
BM25F-Simple 0.330 0.483 0.279 0.441 0.337 0.526
FSA-BM25+all 0.334 0.492 0.286 0.451 0.358 0.547

Proposed Models

ICFW-LC 0.335 0.489 0.287 0.450 0.358 0.547
ICFW-LE 0.336 0.489 0.285 0.448 0.356 0.545
ICFW-LC+all 0.344∗ 0.500 0.281 0.442 0.358 0.547
ICFW-LE+all 0.344∗ 0.499 0.280 0.441 0.360 0.548

This is a significant finding since optimizing BM25F requires relevance informa-
tion and optimization, whereas ICFW does not.

4.5 RQ3: Optimized ICFW Performance

The lower half of Table 1 presents the results for the optimised task. It is clear
from the results that the differences between retrieval accuracy of the models,
both between the baselines and the ICFW-models, are much smaller than they
were for the non-optimised task. None of the baselines is clearly better than
others across data collections. Interestingly, BM25F—which is usually considered
state of the art for analytical SDR models—is the best only for DBpedia. Even
there, the difference to FSA-BM25+all is marginal. There are few cases where we
observe significant differences in retrieval behaviour between the baselines and
ICFW. In general, the findings seems to correspond to the observation made by
[25] for atomic retrieval, that once hyperparameter optimization is used, bag-of-
words-based analytical models do not differ significantly in accuracy.
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5 Conclusion

This paper has introduced ICFW: an information content-based field weighting
method for SDR. The proposed method has two strengths compared to previ-
ous analytical SDR models: Firstly, it assigns weights automatically over the
structure. Secondly, the model saturates term frequency across fields, without
considering the document as atomic. The degree of this cross field term frequency
saturation is controlled by the scale parameter λ. The experimentation first con-
siders a constant level of λ, where the parameter was set to optimize NDCG@100.
It is shown that a level of λ greater than 0 is beneficial and that the optimal level
varies between datasets. However, as the underlying motivation for the paper was
an automatic and analytical method, another approach to setting lambda was
also considered: Sect. 3.2 introduces an analytical method (no optimization) for
defining what we call lambda-threshold for any query. Lambda-threshold defines
a level of λ above which the term distinctiveness constraint by [14] is satisfied.
The analysis goes onto show that if λ is set in this way, retrieval performance is
as good as if it was optimised and much better than the performance of estab-
lished baselines (different fielded versions of the BM25). These results strongly
suggest that ICFW leverages the structure in ways existing models do not.

Overall this paper contributes to the research area of proposing analytical
standards for SDR. It has done so by introducing a method with the necessary
transparency for advancing search systems used with structured data.

Acknowledgements. We would like to thank the reviewers for their comments, in
particular regarding the presentation of the proposed models and candidate models, as
well as the methodology of significance testing.

A Scale Parameter Threshold

The underlying idea of the scale threshold theorem is that there exists a threshold
for λ, above which the model satisfies the term distinctiveness constraint.

Let q = {t1, . . . , tn} be a query, d be a document with n(ta, fi, d) occurrences
of query term ta in field fi and n(tb, f , d) occurrences of query term tb in an
average field f . Let d be an amended version of document d where the occurrences
of tb are replaced with occurrences of ta.

Theorem 1. Given terms ta and tb, if λ>λthreshold, then RSV(d)>RSV(d).

∀(ta, tb) ∈ q : λ>λthreshold(ta, tb, d, fi) =⇒ (24)
RSVICFW,�λ(q, d, c)>RSVICFW,�λ(q, d, c)

Proof. Following Definition 8 for λthreshold, the inequality becomes:

λ >
log df(tb,F )|F |Zx

df(ta,F )Zx|F |

log mZ+1 ff(ta,d)Z(x+1)

mZ(x+1) ff(ta,d)Z+1

(25)
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Considering the numerator first:

log
df(tb, F )|F |Zx

df(ta, F )Zx|F | = log
df(tb,F )

|F |
df(ta,F )Zx

|F |Zx

(26)

Following Eq. (4) for the definition of probabilities and Eq. (26) we obtain,

log
P (tb, f |F )

P (ta, f |F )Zx
= log P (tb, f |F ) − Zx log P (ta, f |F ) (27)

Following Definition 3 we can re-write Eq. (27) to obtain,

log P (tb, f |F ) − Zx log P (ta, f |F ) = Zx ICF(f, d) − ICF(f, d) (28)

Moving onto the denominator,

log
mZ+1 ff(ta, d)Z(x+1)

mZ(x+1) ff(ta, d)Z+1
= log

[ff(ta,d)
m ]Z(x+1)

[ff(ta,d)
m ]Z+1

(29)

Inserting Eq. (5) to Eq. (29) and transforming the log expression we obtain,

log
P (fi|d)Z(x+1)

P (fi|d)Z+1
= Z(x + 1) log P (ta, fi|d) − Z log P (ta, fi|d) − log P (ta, f |d)

(30)

Following Definition 3 we can re-write Eq. (30) to obtain

log
P (fi|d)Z(x+1)

P (fi|d)Z+1
= −Z(x + 1) ICD(fi, d) + Z ICD(fi, d) + ICD(f, d) (31)

Inserting Eqs. (28) and (31) to Eq. (25) and solving for Z we obtain,

Z <
ICF(f, d) + λ ICD(f, d)

λ(x + 1) ICD(fi, d) − λ ICD(fi, d) + x ICF(f, d)
(32)

Expanding the denominator we obtain,

Z <
ICF(f, d) + λ ICD(f, d)

ICF(fi, d) + λ ICD(fi, d) + x ICF(f, d)
+ xλ ICD(fi, d) − ICF(fi, d) − λ ICD(fi, d)

(33)

Following Eqs. (13), (14), (8) and (9) (33) is re-written:

Scontr(ta, fi, d)
Scontr(tb, f , d)

<
wicfw(f, d)

wicfw(fi, d) + xwicfw(f, d) − wicfw(fi, d)
(34)
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Rearranging Eq. (34) we obtain,

wicfw(f, d) Scontr(tb, f , d) + wicfw(fi, d) Scontr(ta, fi, d) >

wicfw(fi, d) Scontr(ta, fi, d) + wicfw(f, d) Scontr(ta, f , d) (35)

Assuming the term frequencies from the theorem, the retrieval score difference
is only dependent on the score contributions of term ta in field fi and term tb
in field f . For d the same is true for the score contributions of term ta in field fi

and term ta in field f . Following Definition 5 we rewrite Eq. (35) and obtain the
implicated inequality from the theorem.

��
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Abstract. Finetuning Pretrained Language Models (PLM) for IR has
been de facto the standard practice since their breakthrough effective-
ness few years ago. But, is this approach well understood? In this paper,
we study the impact of the pretraining collection on the final IR effec-
tiveness. In particular, we challenge the current hypothesis that PLM
shall be trained on a large enough generic collection and we show that
pretraining from scratch on the collection of interest is surprisingly com-
petitive with the current approach. We benchmark first-stage ranking
rankers and cross-encoders for reranking on the task of general passage
retrieval on MSMARCO, Mr-Tydi for Arabic, Japanese and Russian, and
TripClick for specific domain. Contrary to popular belief, we show that,
for finetuning first-stage rankers, models pretrained solely on their col-
lection have equivalent or better effectiveness compared to more general
models. However, there is a slight effectiveness drop for rerankers pre-
trained only on the target collection. Overall, our study sheds a new light
on the role of the pretraining collection and should make our community
ponder on building specialized models by pretraining from scratch. Last
but not least, doing so could enable better control of efficiency, data bias
and replicability, which are key research questions for the IR community.

Keywords: Pretrained language models · Transformers · IR

1 Introduction

Transformers models are the main breakthrough in artificial intelligence over
the past five years. Pretraining transformers models with Masked Language
Modeling (MLM), a form of self-supervision, as proposed in the seminal BERT
model [11] led to major improvement in natural language processing, computer
vision and other domains. Pretraining and self-supervision have then paved the
way to a race on bigger foundation models. Information Retrieval (IR) followed
the same trajectory, where Pretrained Language Models (PLM) have largely out-
perform previous neural model [13,15,23,30] but also traditional bag-of-words
approaches such as BM25 [46]. These advances were all made possible by a com-
bination of large datasets, PLMs such as BERT, but also priors coming from
traditional IR methods such as BM25.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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However, these PLMs do not perform well out-of-the box for Information
Retrieval (on the contrary to NLP1) as they require a significant fine-tuning
procedure. In IR, there are two types of PLM: the cross-encoders for reranking a
set of top k documents and the dual encoders to deal with an efficient first-stage
retrieval [30]. However, the standard pretraining MLM task may not be the best
task for IR as argued in [14]. More-so, a growing tendency is to introduce a
“middle-training” step [14] to bridge this gap and adapt the PLM not only to
the retrieval domain, but also to the way the sentences will be encoded. For
example [14,15,34] adapt the Masked Language Modeling (MLM) loss, so that
the model learns to condense information on the CLS token, which will be used
as the de-facto sentence embedding during fine-tuning. Similarly, several middle
training tasks have been proposed to better fit the IR tasks or by using weak
supervision.

On the one hand, it seems that there is a widespread belief that the down-
stream effectiveness is essentially due to pretraining on a large external collec-
tion. For instance, the foundation models report [4] state that ‘AI is undergoing
a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream
tasks.’ On the other hand, the middle training process seems to contradict the
former. This is why, in this paper, we aim to investigate the following questions:
do we actually need large scale pretraining for Neural IR? How much knowledge
is actually encoded from the large pretraining collection? Besides, what is known
about pretraining in IR is largely limited by the MSMARCO setting and there-
fore a related question is how one shall address pretraining language models for
new languages or new domains when it comes to IR.

In this paper, we aim to verify if these preconceived notions are needed,
or if we could just have combined the pretraining and middle training steps
to generate PLMs that are already adapted to the problem at hand with a
smaller cost than doing both separately. Overall, this paper makes the following
contributions:

1. We study pretrained transformers from scratch on IR collections;
2. We show that first-stage rankers, pretrained on MSMARCO, are as effective

or even better in-domain (MSMARCO), while out-of-domain those models
generalize as well (sparse retrieval) or worse (dense retrieval);

3. We evaluate cross encoders that are pretrained from scratch and verify that
they actually benefit from external pretraining;

4. We show that first-stage retrievers, trained from scratch on the target collec-
tion, are competitive or outperform domain specific models (e.g. SciBERT on
TripClick) and multilingual models (e.g. MContriever on Mr. TiDy);

5. Variants of Transformers architectures, such as DeBERTa, alleged to be better
in NLP benchmarks do not bring benefits to IR, even when trained from
scratch.

1 For instance, freezing the BERT encoding and learning an additional linear layer is
sufficient to obtain good performance in NLP [11], while such approach is not as
effective in IR.
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2 Related Work

PLMs in IR: today, the standard practice of many IR researchers is to simply
download an existing pretrained model in order to finetune it on their retrieval
task. After their success on reranking, PLMs have been adopted for first-stage
ranking with a bi-encoder network to tackle efficiency requirements [25,30,43]
or with late interaction [26]. Several training strategies have been proposed to
improve the effectiveness of bi-encoders, such as distillation [20,22,31,48] and
hard negative mining [42,45,53]. Parallel to these developments, another research
direction aimed at learning sparse representations from PLM to behave as lex-
ical matching. COIL [16] (later improved in uniCOIL [29]) learns term-level
dense representations to perform contextualized lexical match. SPLADE [13,28]
directly learns high-dimensional sparse representation thanks to the MLM head
of the PLM and the help of sparse regularization. Most notably, SPLADE
achieved state-of-the art effectiveness on the zero-shot benchmark BEIR [51],
being later surpassed by other methods with much more compute [36].

Rise of Middle Training: Several works recently proposed to perform an addi-
tional step of pretraining, before the final finetuning stage, a procedure that
we will call here middle training. The rationale is that the PLM weights or its
CLS pooling mechanism are not well-suited for retrieval or similarity tasks often
used in IR. Two main ideas emerge from this literature: i) using a contrastive
loss on different document spans, and ii) using an information bottleneck to
better pre-condition the network to rely on its CLS representation to perform
predictions [27]. In [6], the paper compares the Inverse Cloze Task, Wiki Link
Prediction and Body First Selection. Their result show that a combination of all
these tasks was beneficial compared to MLM pretraining only. In [35], hyperlinks
are used for pretraining. Another pretraining relies on web page structure and
their DOM in the WebFormer model [18]. Furthermore, Contriever [23] relies on
contrastive loss from different text spans, similarly to Co-Condenser [15]. Co-
Condenser extends the Condenser [14] idea which focuses on middle training the
CLS token. Very recently, Retro-MAE [32] revisits the same idea, by masking
twice an input passage so that the first masking produce a CLS representation
reused for decoding the second masking of the passage. Pretraining for sparse
models has been recently investigated in [28] to better condition the network
with SPLADE finetuning. The idea is to reuse the FLOPS [41] regularization
used during finetuning within the MLM middle training. In [1], 14 different pre-
training tasks are compared when training BERT models, including predicting
the tfidf scores of a document, which was shown to be beneficial. They then
evaluate on several NLP tasks, including sentence similarity. In addition, [33,34]
propose pretraining with representative word predictions: for each document a
set of important word is defined by several heuristics and the model is pretrained
to predict that set of words.

While pretraining for IR seems very trendy, the idea of pretraining repre-
sentation for IR tasks can actually be traced before the advent of PLM (or
Foundation Models). For instance, more than ten years ago, the supervised



Pretraining Transformers from Scratch 507

semantic indexing model [2], used hyperlinks anchor to build triplets in a con-
trastive task, which can be viewed as an ancestor to the pretrainings tasks on
Wikipedia. Similarly, weak supervision coming from BM25 was used to pretrain
neural IR models [10] before the use of PLM.

Foundational Models and Architectures: A loosely related line of work is the
scaling laws literature for large pretrained language models [24]. The scaling law
aims to understand how the architecture and model size influence the perplexity
and accuracy of the language model. In [50], Tay et al. showed that perplexity was
a poor predictive measure of downstream effectiveness and propose to favor depth
rather than just width (i.e. hidden size) in a pattern they named deep-narrow
architectures. While this question could be interesting to our work, most of the
literature is focusing on the large data and model regime, while in IR we look to
the other side of the spectrum with small or moderate size collections/models
for efficiency purposes.

Finally, a very interesting work by Tay et al. [49] argued that pre-training
and architectural advances have been conflated. In addition, they show that
convolutional models are in fact competitive with transformers when they are
pre-trained on the same collection and for tasks which do not require cross atten-
tion between two sentences (e.g. a bi-encoder network). Finally, they argued that
the current approach is misguided and that both architecture and pretraining
should be considered independently. Finally, [7] studies the impact of the pre-
training collection for machine translation and in [12] for image related tasks
with large models. Our work is related to those, as we study the impact of the
pretraining collection for the final effectiveness of an IR system.

3 Pretraining from Scratch

All in all, the role of finetuning representation or performing a middle training
seems important for IR systems. The PLM representations seem critical but for
good effectiveness, the impact of the pretraining collection on the final effective-
ness is unclear since these representations are then finetuned by diverse means.
Is the effectiveness heavily influenced by the pretraining collection and its co-
occurrence statistics? To investigate this question, we experiment with several
PLM models trained from scratch on the target collection. This way, we will
be able to measure the effectiveness gains obtained by pretraining on a larger
external collection and answer the following questions: is there an advantage in
pretraining directly and only on the target collection? When and what are the
advantages of pretraining on a different larger collection?

On the one hand, pretraining from scratch on the target collection could
have the advantage of better modelling the target collection by having more
informative co-occurrence statistics between tokens. Moreover, ‘smaller’ sized
models may be able to reach the same level of effectiveness, i.e. one can also
include efficiency requirements when training these models from scratch. On the
other hand, pretraining on a larger collection may lead to more robust/generic as
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the model has seen more domains, different token usages and could have ‘more’
knowledge.

Therefore, by comparing these two approaches, we hope to better understand
how large external pretraining contributes to the final effectiveness. In this paper,
our research question deals with general-purpose vs specific-purpose model. The
mainstream approach is to adopt the general purpose model, by simply adapting
it to an IR task. On contrary, this paper investigates specific purpose models
to assess their effectiveness (cf. Fig. 1). In a nutshell, would pretraining from
scratch work for IR models? More specifically, we look at the following research
questions:

1. Do we need an external pretrained language model for Information Retrieval?
2. Do models pretrained on target collections generalize to other domains and

tasks?
3. Can we take advantage of pretraining for specialized domains and non-English

languages?
4. Does efficient pretraining allow us to use recent architectural advances of

transformers?

Fig. 1. Pretraining from Scratch: MLM is only performed on the retrieval collection.

To answer these questions, we compare the performance of standards mod-
els, such as BERT pretrained in Wikipedia and Book Corpus, to pretrain-
ing for scratch on the retrieval collections. For instance, we use the classical
MSMARCO [39] dataset. By pretraining only on MSMARCO, we observe if
there is indeed a benefit when pretraining on Wikipedia. Furthermore, we assess
whether such models still generalise well on the BEIR dataset [51]. Indeed, one
advantage of pretraining on a large collection could be that the neural retrievers
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Table 1. Model comparison.

BERT DistilBERT MLM 6L MLM 12L

MLM collection Wikipedia, BookCorpus Wikipedia, BookCorpus MSMARCO or Mr. TyDi or TripClick

Pretraining size (words) 3,300M 3,300M From 100M to 500M

# params 110M 66M 67M 110M

# Layers 12 6 6 12

# number heads 12 16 16 12

generalise better in zero shot settings. For specialized domains, such as health
and biomedical data, we use the TripClick [44] dataset and compare pretrain-
ing from scratch to the performance of SciBERT [3] and PubMedBERT [17].
Similarly, by pretraining models only TripClick, we compare the performance of
models trained on a much larger collection (i.e. PubMed). Finally, we will extend
the previous experiments on non-English datasets, on Mr. TyDi [54] dataset with
comparison with MContriever [23], which relied on a pretraining on large dataset
with many languages. By conducting those experiments, we can assess whether
an external pretrained language model is needed for Information Retrieval and
if pretraining from scratch is an interesting alternative.

We will focus our study on BERT [11] and DistilBERT [47] architectures since
they are the most popular ones in IR. Furthermore, we will measure the effec-
tiveness of different architecture: dense bi-encoders [30,43], SPLADE, a state of
the art sparse model [13,28] and cross-encoders for reranking [40].

3.1 Pretraining

In the following we always pretrain at least two types of models from scratch: a
model with 12 layers based on the BERT architecture [11] and one with 6 layers
based on DistilBERT [47]. We use BERT and DistilBERT as baselines all along
the article. Table 1 summarises the main model characteristics we will consider.
For pretraining from scratch, we always fix the vocabulary size to 32k (slightly
larger than BERT’s 30.5k), using wordpiece [52] to find the most common tokens
of the target collection. We refer to those models as MLM 12L and MLM 6L.

We also use 2 models built on a setting called, MLM+FLOPS 12L and
MLM+FLOPS 6L, by adding the FLOPS regularization [41], which helps to
(pre)condition PLM for usage with SPLADE as proposed in [28]. The standard
MLM loss is modified as follows: the MLM logits go through the SPLADE acti-
vation function (i.e. log(1 + ReLU(ylogits))), which defines an MLM loss over
a sparse set of logits. Finally, another term (FLOPS regularization) is added
to force the logits to not only be nonnegative, but actually be sparse. As in
SPLADE, a max pooling of the overall sentence is done to get a representation
at the word level. On this final representation, the FLOPS regularization forces
sparsification (and uniformity) over the overall vocabulary. The total loss is given
by �MLM + �MLM-SPLADE + �FLOPS.

Pretaining time is between 6 h to 1 day depending on the models and collec-
tions on 8 NVIDIA A100 80 Gb, compared to the original computational cost of
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BERT (3 days using 64 TPUs), and the cost of finetuning (around 1 day on 4
V100 32 Gb), we consider our pretraining cost to be reasonable.

4 Experiments

Our research question is to assess whether models fully trained on the target
collection perform as well as the generic DistilBERT or BERT models. First,
we check the results on the general collection MSMARCO [39] (RQ1) and how
the models trained on it generalize (RQ2) to a zero-shot scenario in BEIR [51].
We then verify if the results generalize to more specialized collections and non-
English languages (RQ3). Finally, we take advantage of the fact that we are
training models from scratch to test variants of transformer architectures (RQ4).
Additional finetuning details are available at the end of the respective sections.

Experimental Setup. Pretraining is performed using 8 NVIDIAs A100 80 Gb
either on MS-MARCO (RQ1 and RQ2), or TripClick (RQ3), or Mr. TyDi dataset
(RQ3). We always use a learning rate of 1e-4. In the case of the MSMARCO
collection, we pretrain using MLM and MLM+FLOPS using the entire passage
collection (8.8M) combined with the training queries (8̃00k) for a total of (9.6M
“documents”), while for TripClick we separate the documents into training and
validation (90/10 split). For all collections, the batch size per GPU is either
150 (12L) or 200 (6L). We use an exponential warmup for FLOPS of 5k steps,
a warmup of 1k steps for the logits and a learning rate warmup of 10k steps.
The λ factor of FLOPS is set to 1e − 3, the max length before truncation to
256 tokens and the networks are pretrained for 125k steps. For Mr. TyDi, we
pretrain 3 networks (Arabic, Russian, Japanese) using MLM+FLOPS on the
entire language’s passage collection (2M for Arabic, 7M for Japanese and 9.6M
for Russian) with a batch size per GPU of 200. Finally for TripClick, the only
difference is the number of epochs: 60 epochs, and the batch size per GPU is
256 for the 6L models, and 128 for the 12L models.

For finetuning, we used 4 V100 32 gb for a sparse model (SPLADE) and a
dense neural bi-encoder model. Please note that we do not use distillation
from a reranker as it would entail transferring information from an existing
PLM. For SPLADE, we use the L1 regularization over queries (following [28])
with λq = 1e − 3, and for documents a FLOPS regularisation with λd = 1e − 3
(λd = 5e − 4 on TripClick) following [28]. The learning rate is set up to 2e−5.
In all of our tables, superscripts denote significant differences according to
a paired Student’s t-test with Bonferroni’s correction and p ≤ 0.05 with the
corresponding table row; MRR@10 and nDCG@10 have been multiplied by 100.

4.1 RQ1: Are Models Fully Trained on MSMARCO as Good
as Models Pretrained on a Diverse Collection Set?

The first question we want to address is whether models that are solely trained
on MSMARCO are as good as models that have used external corpora for
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Table 2. Comparison on MSMARCO of first stage sparse neural (SPLADE) models.
† indicates a method pretrained solely on MSMARCO.

# Pretrained model R-FLOPS MSMARCO dev TREC DL 19 TREC DL 20

MRR@10 R@1k nDCG@10 R@1k nDCG@10 R@1k

a Distilbert 1.10 0.373 0.975b 0.732 0.853 0.708 0.867b

b BERT 1.32 0.367 0.968 0.727 0.832 0.699 0.842

c MLM 6L† 8.2 0.370 0.982ab 0.701 0.847 0.700 0.877

d MLM+Flops 6L† 0.72 0.382abc 0.979b 0.698 0.836 0.701 0.872

e MLM+Flops 12L† 0.97 0.379bc 0.980ab 0.709 0.835 0.709 0.865

pretraining (i.e. BookCorpus and Wikipedia). We first investigate models trained
as first stage rankers, either using a dense bi-encoder [25,30] or sa SPLADE
model.

We finetuned the models using negatives that were sampled from a previously
trained SPLADE model. For each V100 we use a batch of the maximum size
that does not exceed the total memory. Batches are constructed such that “one
element” of the batch is composed of the query itself, a positive passage related
to the query and 16 or 32 negatives, depending on the network size (the actual
batch sizes per GPU varies from 54 to 102 depending on the pretrained model
size). Finetuning is considered finished after two epochs (arbitrary decision based
on initial experiments with a validation set). Note that the finetuning setting for
both first stage and cross-encoders are almost the same, except for the fact that
cross-encoders do not use in-batch negatives and use a learning rate of 1e-4.

We reports the retrieval flops (noted R-FLOPS) for SPLADE models, i.e.,
the number of floating point operations on the inverted index to return the list
of documents for a given query. The R-FLOPS metric is defined by an estima-
tion of the average number of floating-point operations between a query and a
document which is defined as the expectation Eq,d

[∑
j∈V p

(q)
j p

(d)
j

]
where pj is

the activation probability for token j in a document d or a query q. It is empir-
ically estimated from a set of approximately 100k development queries, on the
MS MARCO collection. It is thus an indication of the inverted index sparsity
and of the computational cost for a sparse model (which is different from the
inference cost of the model).

First stage retrievers results are described in Table 2 for sparse models and
Table 3 for dense models. Surprisingly, models trained solely on MSMARCO with
MLM+FLOPS actually can perform statistically significantly better than
their counterparts pretrained over larger collections, in both sparse and dense
scenarios, while there’s no statistically significant difference when considering
just MLM on MSMARCO vs MLM on larger corpora. This shows that not only
pretraining does not seem to care for a diverse collection, but that by focusing
only on “off-the-shelf models” we could be losing possible performance gains of
better initialized models. Also note that less computing was used to pretrain
MLM+FLOPS 6L compared to its DistilBERT counterpart.
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Table 3. Comparison on MSMARCO of first stage dense neural (DPR) models. †

indicates a method pretrained solely on MSMARCO.

# Pretrained model MSMARCO dev TREC DL 19 TREC DL 20

MRR@10 R@1k nDCG@10 R@1k nDCG@10 R@1k

a Distilbert 0.342 0.961 0.673 0.774 0.670 0.816

b BERT 0.347 0.961 0.697 0.785 0.682 0.809

c MLM 6L† 0.346 0.968ab 0.664 0.783 0.657 0.818

d MLM+FLOPS 6L † 0.349 0.968ab 0.670 0.781 0.668 0.837

e MLM+FLOPS 12L† 0.352a 0.969ab 0.672 0.800 0.680 0.848bc

Table 4. Comparison of rerankers on MSMARCO. Models with † were pretrained
solely on MSMARCO.

# Pretrained model MSMARCO dev TREC DL 2019 TREC DL 2020

MRR@10 nDCG@10 nDCG@10

a Without reranking (First stage) 0.384 0.718 0.737

b Distilbert 0.396af 0.764 0.734

c Bert 0.404abf 0.750 0.737

d MLM 6L † 0.398af 0.743 0.716

e MLM+Flops 6L † 0.396af 0.724 0.736

f MLM+Flops 12L † 0.381 0.730 0.722

Finally, we also test in the case of reranking using cross-encoders. Results are
available in Table 4. Overall there’s no statistical significant gain on the models
pretrained with external collections.

4.2 RQ2: Do Models Pretrained in MSMARCO Generalize Well
on Other Collections?

In the previous section, we considered only in-domain results. While they have
shown that we can outperform (or at least keep comparable effectiveness) using
solely the target collection, they could be masking a possible gap in out-of-
domain data. In order to verify that models solely pretrained and fine-tuned on
MSMARCO do not lose effectiveness in out-of-domain data, we report results
under the zero-shot BEIR benchmark in Table 5. We actually observe a small
boost in effectiveness on sparse retrieval when using models solely trained on
MSMARCO, while on Dense there’s a more apparent decrease of performance.
The biggest difference for dense models is on the TREC Covid dataset which is
far from the MSMARCO collection. Given the nature of the BEIR benchmark
(mean over 13 datasets), those differences may not be significative.2

2 We could not find in the literature an easy/practical way to perform statistical
significance testing over BEIR.
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Table 5. Experiments on zero-shot retrieval on BEIR (nDCG@10) with models fine-
tuned on MSMARCO. Models with † were pretrained solely on MSMARCO.

SPLADE Dense

Distilbert Bert M 6L† M+F 6L† M+F 12L† Distilbert Bert M 6L† M+F 6L† M+F 12L†

arguana 45.30 44.30 46.90 42.90 45.40 34.00 37.30 40.20 37.40 40.70

climate-fever 14.90 15.30 14.50 15.70 15.40 16.50 15.90 15.40 15.30 17.50

dbpedia-entity 39.10 38.80 38.30 38.80 37.90 31.50 31.70 31.10 31.70 30.60

fever 73.40 71.20 68.60 72.30 70.70 70.80 70.20 59.10 59.90 56.10

fiqa 31.20 29.90 33.20 32.30 31.70 25.70 24.10 27.30 27.00 27.60

hotpotqa 66.90 65.50 64.00 67.30 67.60 49.70 50.20 47.30 46.40 47.60

nfcorpus 33.40 31.30 35.40 35.90 34.70 26.40 25.80 28.80 28.70 28.80

nq 51.40 50.60 48.50 49.20 49.40 46.00 47.10 41.90 41.50 42.90

quora 77.20 76.60 80.40 78.10 73.80 78.50 82.20 82.20 83.30 80.30

scidocs 14.90 14.90 14.40 15.10 14.50 11.40 11.80 10.70 11.20 11.00

scifact 66.00 64.70 69.20 69.20 69.00 52.00 54.80 56.70 57.30 56.50

trec-covid 67.60 69.10 65.60 64.70 68.00 66.10 65.70 56.00 48.90 49.90

webis-touche2020 27.60 27.00 24.70 28.50 26.20 22.20 23.50 23.20 19.70 19.30

Mean 46.84 46.09 46.43 46.92 46.48 40.83 41.56 39.99 39.10 39.14

4.3 RQ3: Can We Take Advantage of that Pretraining from Scratch
in Collections of Specialized Domains/Languages

Domain Specific IR on TripClick. The TripClick collection [44] contains
approximately 1.5 millions MEDLINE documents (title and abstract), and
692,000 queries. The test set is divided into three categories of queries: Head,
Torso and Tail (decreasing frequency), which contain 1,175 queries each. For
the Head queries a DCTR click model [9] was employed to created relevance
signals, the other two sets use raw clicks. [21] showed that the original triplets
were too noisy, and released a new training set which we use in this experiment
(10 millions triplets).

As pretrained models, we use the off-the-shelf BERT, DistilBERT models,
and similarly to [21] SciBERT [3] and PubMedBERT [17] which are both using
a similar architecture to Bert (12 layers) and were pretrained using scientific
documents (from where they extract their vocabulary). We consider them as
off-the-shelf domain-specific models. While for finetuning, we use a batch size of
200 queries and only one negative per query, taking advantage solely of in-batch
negatives for 90,000 iterations, which is equivalent to 1.8 epochs.

As Table 6 shows, models pretrained from scratch compete well against
generic off-the-shelf models as well as against specialized ones. For this collection,
the dense models perform better than the sparse ones. The conclusions depend
on the model type: sparse or dense. For the sparse models, we see that at least
one model based on pre-training from scratch outperforms off-the-shelf models
such as BERT and DistilBERT, as well as both off-the-shelf domain-specific mod-
els (Scibert, PubMedBert). Regarding the dense architecture, pretrained models
from scratch are on par with off-the-shelf domain-specific models which required
much more training data (1.4B tokens for Scibert against 300M for TripClick).
Pre-training from scratch allows for selecting the most suitable language model
according to the fine-tuning architecture (sparse or dense). In our case a 6 layer
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Table 6. Experiment on Tripclick with sparse (SPLADE) and dense models.† indicates
a method pretrained solely on Tripclik.

# Pretrained model SPLADE Dense

Headdctr Head Torso Tail Headdctr Head Torso Tail

a Distilbert 22.1b 30.3bd 23.9b 24.8bd 24.9 34.8 29.2 27.5

b BERT 10.6 14.4 9.6 7.8 25.3 35.3 29.4 28.8a

c PubMedBert 22.5bd 31.0bd 24.5b 24.3bd 27.1abef 37.6abef 29.9e 30.8a

d Scibert 21.1b 28.4b 23.0b 22.2b 27.8abef 38.1abef 29.2 30.3a

e MLM+F 6L† 26.9abcdfgh 36.7abcdfgh 27.7abcdfgh 27.2bcdfh 25.7 35.7 28.3 29.7

f MLM 6L† 23.1bd 31.9bd 24.7b 23.4b 25.8 36.0 28.9 29.3

g MLM+F 12L† 23.7abd 32.5abd 26.2abd 26.6bdf 26.7ab 37.5abef 29.9e 30.1a

h MLM 12L† 24.0abcd 32.6abcd 24.8bd 24.6bdf 28.0abefg 38.6abef 30.2e 30.4a

Scibert [21] – – – – 24.3 – – –

PubMebBert [21] – - - – 23.5 – – –

BM25 [21] – – – – 14.0 - - –

language model is far better for SPLADE while a 12 layer better fits a dense
model. We added at the bottom of Table 6 the results from [21], which show that
our implementation choices are very competitive3 for the sparse as well as for
the dense models.

Mr. TyDi. is a multilingual dataset for monolingual retrieval composed of
11 typologically diverse languages [54]. For this study we focus on the three
non-English languages with the most training data on Mr. TyDi: i) Arabic; ii)
Russian; iii) Japanese. Note that, there is a large amount of data available for
these languages (even outside of Mr. TyDi), but PLMs are not as well studied
as in English. The main consensus seems to be that in this case one should focus
on multi-lingual data, for which most is based on english as an anchor, as it is
the case for many previous works [8,23,37,38,54]. We challenge this notion, by:
a) using monolingual models; b) pretraining solely on Mr. TyDi.

We follow the fine-tuning protocol of MContriever [23], where they first fine-
tune the model for retrieval on MMarco [5], a translated version of MSMARCO
in multiple languages, for which we only use the target language for a given
model (Arabic, Russian or Japanese) and then finally fine-tune on the Mr. TyDi
collection. In our case we perform a three-step training, first step on MMarco
using negatives sampled with the pretrained model (or MContriever for the base-
line). We then perform two steps of training on Mr. TyDi, first using negatives
extracted first from the MMarco finetuned model and second from the first stage
of Mr.TyDi finetuning. Batch composition follows the previous MSMARCO fine-
tuning, with a batch size of 3 queries 32 negatives (the actual batch sizes per
GPU is thus 102). Finetuning stopped after two epochs.

3 We were not able to find the parameters used in the experiments.
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Results are available in Table 7. Compared to the previous state of the
art [23]4, which is a dense retriever pretrained in a specific fashion on a much
larger collection5, we show statistically significant improvements on all languages
while using solely the Mr. TyDi and MMarco collections on the target language.
However, it is important to note that differently from [23] we did not actually
test yet on all languages and thus can only evaluate the pretraining effect on
these three languages, which are the three largest from Mr. TyDi.

Table 7. Comparison, on the Mr.TyDi dataset, of models trained from scratch against
models pretrained in a large external collection with Contriever.† means a method
pretrained solely on MrTiDy.

# Pretrained model Arabic Russian Japanese

MRR@100 R@100 MRR@100 R@100 MRR@100 R@100

MContriever [23] 72.4 94.0 59.7 92.4 54.9 88.8

a MContriever (reproduced) 72.7 93.6 59.9b 91.6 49.9b 85.2b

b MLM+FLOPS 6L DPR† 73.4 94.9 56.2 91.6 32.9 62.0

c MLM+FLOPS 6L SPLADE† 75.7ab 94.2 65.0ab 93.4ab 56.3ab 88.9ab

4.4 RQ4: Impact of Architectures

Finally, one advantage of pretraining models from scratch is the fact that we
can more easily experiment with different architectures. Indeed, considering that
most IR works use a variant of BERT (either RoBERTA, DistilBERT or BERT)
it raises a question whether variants of transformer architectures, benchmarked
in NLP, could actually improve IR. To address this question, we use the sparse
retrieval setting from RQ1, but this time also consider using the DeBERTa archi-
tecture [19] which beats BERT on many NLP tasks. Results are presented in
Tables 8 and 9. Much to our dismay, we did not actually see major improve-
ments using these architectural changes, we thus leave as future work how to
better include these changes within first stage rankers.

Table 8. Comparison on MSMARCO of first stage sparse neural (SPLADE) models
using different architectures. All methods are pretrained solely on MSMARCO.

# Pretrained model R-FLOPS MSMARCO dev TREC DL 19 TREC DL 20

MRR@10 R@1k nDCG@10 R@1k nDCG@10 R@1k

a BERT MLM+FLOPS 6L 0.72 0.382d 0.979 0.698 0.836 0.701 0.872

b BERT MLM+FLOPS 12L 0.97 0.379 0.980 0.709 0.835 0.709 0.865

c DeBERTa MLM+FLOPS 6L 0.81 0.376 0.979 0.700 0.845 0.701 0.863

d DeBERTa MLM+FLOPS 12L 0.79 0.373 0.978 0.716 0.839 0.735 0.871

4 Note that MContriever TyDi (first row) is not available, statistical tests cannot be
performed. We do our best to evaluate fairly under our training setting (second row).

5 We suspect they use more compute, but could not find accurate compute information.
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Table 9. Comparison on TripClick of first stage sparse (SPLADE) and dense models
using different architectures. All methods are pretrained solely on TripClick.

# Pretrained model SPLADE Dense

Headdctr Head Torso Tail Headdctr Head Torso Tail

a BERT MLM+FLOPS 6L 26.9bcdefh 36.7bcdfh 27.7bdfh 27.2bdfh 25.7e 35.7e 28.3 29.7e

b BERT MLM 6L 23.1 31.9 24.7 23.4 25.8e 36.0e 28.9 29.3

c BERT MLM+FLOPS 12L 23.7f 32.5f 26.2fh 26.6bfh 26.7ef 37.5abef 29.9aef 30.1e

d BERT MLM 12L 24.0fh 32.6f 24.8 24.6 28.0abcefgh 38.6abefgh 30.2aeh 30.4e

e DeBERTa MLM FLOPS 6L 26.1bcdfh 35.9bcdfh 29.0bcdfh 28.4bcdfh 24.3 34.0 27.8 27.5

f DeBERTa MLM 6L 22.2 30.7 23.3 23.3 24.9 34.7 28.7 28.9

g DeBERTa MLM FLOPS 12L 27.0bcdfh 37.5bcdefh 29.4abcdfh 28.7abcdfh 26.6ef 36.7ef 29.2 29.5

h DeBERTa MLM 12L 22.6 31.3 23.8 23.3 26.4ef 36.4ef 28.6 29.0

5 Conclusion

Foundation models come with the promise to be highly general and modular.
It is believed that they contain a wide “knowledge” due to their pretraining
on a large collection, which is then believed to be the source of their improved
performance. We have examined how this pretraining collection influence the
performance of IR models. Our research question was to assess how much of this
implicit knowledge, beneficial to the final performance, comes from pretraining
on a large external collection. This is why we have experimented on a variety
of collections, domains and languages to study how pretraining from scratch
actually performed compared to their de facto approach of simple finetuning.

While we were expecting the standard pretrained models to work better, we
surprisingly revealed that pretraining from scratch works better for first-stage
retrieval on MSMARCO, TripClick and several non-English languages on the Mr.
TyDi benchmark. In particular, the FLOPS regularization played a critical role
in those results, suggesting that regularization or better pretraining techniques
could further improve the results. Furthermore, pretrained models from scratch
also behave well in the zero shot scenario for sparse models such as SPLADE.
Nevertheless, pretraining from a large collection has a slight advantage when
training rerankers.

Overall, these results, specific to IR, challenge the foundation model hypoth-
esis for small models, i.e. that a more general model encapsulating the world
knowledge would be better than a smaller one in a specific domain application.
Furthermore, our study makes a contribution to the debate between general pur-
pose and specific purpose models. In a way, our experiments showed that less is
more. In addition, pretrained language models come also with many challenges
such as the societal bias in the data they have been trained on. We hope that our
study could convince practitioners, both from industry and academia, to recon-
sider specific purpose models by pretraining from scratch. Last but not least,
doing so enable to better control efficiency, data bias and replicability, which are
key research questions for the IR community.
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Abstract. Providing access to information across languages has been a goal of
Information Retrieval (IR) for decades. While progress has been made on Cross
Language IR (CLIR) where queries are expressed in one language and documents
in another, themultilingual (MLIR) task to create a single ranked list of documents
across many languages is considerably more challenging. This paper investigates
whether advances in neural document translation and pretrained multilingual neu-
ral language models enable improvements in the state of the art over earlier MLIR
techniques. The results show that although combining neural document transla-
tion with neural ranking yields the best Mean Average Precision (MAP), 98%
of that MAP score can be achieved with an 84% reduction in indexing time by
using a pretrained XLM-R multilingual language model to index documents in
their native language, and that 2% difference in effectiveness is not statistically
significant. Key to achieving these results for MLIR is to fine-tune XLM-R using
mixed-language batches from neural translations of MS MARCO passages.

Keywords: Multilingual ad-hoc retrieval · ColBERT-X · DPR-X · Multilingual
training of MPLM

1 Introduction

With advances in neural models for machine translation (MT) and Information Retrieval
(IR), it is time to revisit the problem of Multilingual IR (MLIR). Soon after Cross-
Language IR (CLIR) was proposed as an information retrieval task, research began on
MLIR [34]. MLIR seeks to produce a total ordering over retrieved documents, regard-
less of language, such that the most useful documents appear at the top of the ranking.
Assuming a searcher can consume multilingual information (either directly or using
MT), the search engine should be able to return useful information regardless of the
language of the document.

Much prior work on MLIR has involved subsetting documents by language, per-
forming CLIR on each document set, and merging the results [37]. The advent of neu-
ral machine translation and neural IR using Multilingual Pretrained Language Models
(MPLMs) creates new opportunities for MLIR that we study here.

If MT were perfect, translating all documents into the query language and searching
monolingually might suffice. Indeed, our experiments confirm that for the high-resource
languages with which we have experimented (English, French, German, Italian, and
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Spanish), using neural machine translation to convert each document into the query lan-
guage is effective when used with neural ranking (in our experiments, ColBERT [26])
fine-tuned on MS MARCO [2]. However, using neural MT in that way incurs substan-
tial indexing costs because a GPU is required first to translate the document and then
again to encode it into dense vectors for neural IR. Alternatively, we can use transla-
tions of MS MARCO to fine-tune an MPLM; that approach is nearly as effective, not
statistically different, and considerably faster at indexing time. Our use of MSMARCO
makes English a natural choice as the query language, but our approach is extensible to
any query language for which suitable fine-tuning data exists.

This paper makes the following contributions: (1) Using a collection containing five
high-resource European languages, we show that neural MT with neural IR achieves
higher MAP and Precision at 10 scores than any other known MLIR technique, but that
reliance on neural MT greatly increases the time required to index a collection. (2) We
show that extending the ColBERT-X [32] Translate-Train (TT) CLIR model to multiple
languages achieves equivalent retrieval effectiveness with less than half the indexing
time when used with mixed-language fine-tuning. (3) We show that some language bias
in favor of query-language documents is present with all approaches, but that query-
language bias is smaller with our Multilingual Translate-Train (MTT) implementation
of ColBERT-X.

2 Background

We provide an overview of MLIR, followed by a brief review of traditional and neural
IR. The term “multilingual” has been used in several ways in IR. Hull and Grefenstette
[22], for example, note that it has been used to describe monolingual retrieval in multi-
ple languages, as in Blloshmi et al. [5], and it has also been used to describe CLIR tasks
that are run separately in several languages [7–9,27,31]. We adopt the Cross-Language
Evaluation Forum (CLEF)’s meaning of MLIR: using a query to construct one ranked
list in which each document is in one of several languages [36]. We note that this defi-
nition excludes mixed-language queries and mixed-language documents, which are yet
other cases to which “multilingual” has been applied.

Five broad approaches to MLIR have been tried. Among the earliest, Rehder et al.
[39] represented English, German and French documents in a learned trilingual embed-
ding space, represented the query in the same embedding space, and then computed
query-document similarity in the embedding space. The techniques and training data
for creating multilingual embeddings were, however, too limited at the time to get good
results from that technique. More recently, Sorg and Cimiano [44] garnered substan-
tial attention by training embeddings on topically-related Wikipedia pages in English,
German, French and Spanish. This paper extends this line of work.

A second approach by Nie and Jin [33] indexed terms from all documents in their
original language then created queries containing translations of the query terms in all
target languages. With many document languages, this can lead to long queries. A third
approach is to translate indexed terms into the query language at indexing time; the
original queries can then be used directly to find similar (translated) content [18,29,38].
We experiment with this approach as well. This approach is, however, only practical
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when just a few query languages are to be supported. To address that limitation, the
second and third approaches can be combined to create a fourth approach in which
documents and query terms are each converted into one of a small number of indexing
languages. This has been called a “pivot language” approach, because in the limit all
documents and queries can be translated into a single language.

The fifth, and most widely studied, approach is to first use monolingual or bilingual
retrieval to create a ranked list for each document language, and then to merge those
ranked lists to construct a single result list [37,43,45]. While this approach is architec-
turally similar to collection sharding, a widely-used approach to address efficiency, dif-
ferences in collection statistics result in incompatible scores that require normalization
prior to late fusion. Unfortunately, normalizing scores for collections across languages
has been shown to be challenging [37].

Finally, one can simply show one ranked list per language to the user, as is done in
the 2lingual search engine.1 This approach does not scale well beyond a small number
of languages, but it has the advantage of making it fairly clear to the searcher what the
search engine has done.

EveryMLIR ranked retrieval model must rank the indexed documents given a query.
Traditional ranking methods such as computing inner products between the query and
each indexed document containing a query term using sparse BM25 [40] term weights
are fast, but neural IR methods yield better rankings [24,26,32] with more relevant
documents earlier in the ranked list.

This paper focuses on tradeoffs between effectiveness and efficiency. Each tech-
nique described in this paper achieves ranking latency sufficient for interactive use
(below 300 ms) on the collections that we experiment with, but the time required to
index the documents varies. Indexing time consists of three components: text processing
(e.g., casing and tokenization), machine translation, and representation (e.g., McCarley
[30] and Magdy and Jones [29]). Of these, neural MT is the slowest, so IR methods that
do not require neural MT at indexing time have a substantial indexing time advantage
(e.g., Aljlayl and Frieder [1]). Our principal MLIR result is that MPLMs can achieve
MAP close to the best results while producing substantial savings in indexing time.

We achieve this by extending the ColBERT-X [32] CLIR model to perform MLIR.
ColBERT-X combines three key ideas. First, drawing insight from BERT [15], it repre-
sents documents using contextual embeddings, which better represent meaning than
simple term occurrence. Second, using both multilinguality and improved pretrain-
ing from either multilingual BERT [47] or XLM-R [11], ColBERT-X generates sim-
ilar contextual embeddings for terms with similar meaning, regardless of language.
Third, drawing its structure from ColBERT [26], ColBERT-X limits ranking latency
by separating query and document transformer networks, allowing offline indexing.
ColBERT scores documents by focusing query term attention on the most similar con-
textual embedding in each document. Our experiments confirm that this approach yields
better MLIR MAP than does computation of inner products between classification
tokens for the query and each document, an approach known as Dense Passage Retrieval
(DPR) [24].

1 https://www.2lingual.com/.

https://www.2lingual.com/
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3 Fine-Tuning MPLMs for MLIR

Following Nair et al. [32] we consider two high-level approaches to fine-tuning for
generalizing neural retrieval models to MLIR. Both approaches use existing MPLMs
such as XLM-R [11] to encode queries and documents in multiple languages. We adapt
the MPLM to MLIR via task-specific fine-tuning. These approaches are applicable to
any retrieval model that is able to encode text using an MPLM.

Consider a set of queries in a source language Ls and a set of documents in m target
languages Lt = ∪m

i=iLi. We want to train a scoring function MΘ(q(s), d(t)) → R

for ranking documents with respect to a query. This paper denotes the language of an
instance as a subscript •(l).

3.1 English Training (ET)

SinceMPLMs can encode text frommany languages, we follow Nair et al. [32] and only
fine-tune the model monolingually. When processing queries, we transfer the model to
MLIR zero-shot. Specifically, consider a loss function L (for example, cross-entropy),

Θ = argmin
θ

∑

q,d

Lθ(q(s), d(s), rq,d)

where q(s) and d(s) are representations of the queries and documents and rq,d is the rele-
vance judgment of document d on query q, both in language Ls, encoded by an MPLM.
We use English as our query language because that is the language of MS MARCO.
We refer to this approach as “English Training” or ET. However, this approach could
equally well use any language for which similar extensive training data is available.

Despite only exposing the model to text in Ls during fine-tuning, the multilingual
model can transfer its task model to other languages, as has been seen in prior CLIR
work [32]. However, such zero-shot language transfer is suboptimal because of (1) the
lack of alignment objectives between languages during pretraining [48]; and (2) differ-
ences in the representation of each language by the MPLM, which has been called the
curse of multilinguality [11,46]. As we show in Sect. 6.1, such zero-shot transfer not
only produces suboptimal retrieval effectiveness, it can also lead to language bias.

3.2 Multilingual Translate Training (MTT)

To mitigate those issues, we propose a Multilingual Translate-Train (MTT) approach
that generalizes the CLIR Translate-Train (TT) approach to MLIR [32,42]. To expose
target languages L1...Lm to the model, we translate the monolingual training docu-
ments into each target language using MT. Specifically, the training objective can be
expressed as

Θ = argmin
θ

∑

q,d

m∑

l=1

Lθ(q(s), d(l), rq,d)

This objective exposes the retrieval model to language pairs that it might see when
processing queries, resulting in a more effective, better-balanced model. We experi-
ment with two batching approaches. In Mixed-language (MTT-M), each batch contains
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Table 1. Dataset statistics of CLEF 2001, 2002, and 2003. CLEF 2001 and 2002 share the doc-
ument collection but have different queries. Numbers in parentheses are the number of topics
in each query set. We report the number of documents judged relevant over all the topics in a
particular year.

Query set
English German Spanish French Italian Total

# Rel. # Docs # Rel. # Docs # Rel. # Docs # Rel. # Docs # Rel. # Docs # Rel. # Docs

2001 (50) 856
113,005

2,130
225,371

2,694
215,738

1,212
87,191

1,246
108,578

8,138
749,883

2002 (50) 821 1,938 2,854 1,383 1,072 8,068

2003 (60) 1,006 169,477 1,825 294,809 2,367 454,045 946 129,806 – – 6,144 1,048,137

documents in multiple languages, which encourages the model to learn similarity mea-
sures for all languages simultaneously.2 With Single-language (MTT-S), each batch
contains only documents in one language, helping the model to learn retrieval for one
language pair at a time. We found that MTT-M yields better retrieval effectiveness;
thus, we present MTT-M as our main result. Section 5.1 compares the two approaches.
In Sect. 6.1, we also demonstrate that MTT-M reduces language bias in MLIR. Imple-
mentation details can be found in Appendix A

4 Experiments

One of the few test collections that currently supports MLIR evaluation with rele-
vance judgments across multiple languages is from the Cross-Language Evaluation
Forum (CLEF). Following Rahimi et al. [38] we use five document languages in the
CLEF 2001–2002 collections [7,8] and four languages in the CLEF 2003 collec-
tion [9]. Table 1 shows collection statistics. We report performance for both title and
title+description queries, also following Rahimi et al. [38]. Because the number of
query elements (subwords) is limited when encoding a query for dense retrieval, we
remove stop structure to ensure that no query exceeds the length limit. Stop structure
includes phrases such as “Find documents” and a limited stop-word list including “on,”
“the,” and “and.”3

4.1 Neural Retrieval Models

We evaluate our proposed training approaches on two retrieval models – ColBERT-
X [32] and DPR-X [48,49], which are multilingual variants of ColBERT [26] and
DPR [24]. Nair et al. [32] generalized the ColBERT [26] model to CLIR, calling
it ColBERT-X, by modifying the vocabulary space and replacing the monolingual
pretrained language model with the MPLM XLM-RoBERTa (XLM-R) Large (550M
parameters) [11]. With proper training, ColBERT-X achieves state-of-the-art effective-
ness in CLIR. In this study, we integrate our proposed fine-tuning approaches with the
ColBERT-X XLM-R implementation, which is based on the ColBERTv1 code base.

2 Batches include the same query paired with document passages translated into each language.
3 For a complete list: https://github.com/hltcoe/ColBERT-X/blob/main/scripts/stopstructure.txt.

https://github.com/hltcoe/ColBERT-X/blob/main/scripts/stopstructure.txt
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We similarly adapted DPR [24,48], a neural retrieval model that matches a single dense
query vector to a single dense document vector. We name this model DPR-X. We use
Tevatron [17], an open-source implementation of several neural end-to-end retrieval
models in Python, for training, indexing, and retrieval.

For training data, we use MS MARCO-v1 [2], a commonly-used question-
answering collection in English for fine-tuning neural retrieval models. For MTT, we
use the publicly available mMARCO translations of MSMARCO [6], fine-tuning using
the “small training triple” (query, positive and negative document) file released by
mMARCO’s creators. We trained all retrieval models with four GPUs (NVIDIA DGX
and v100 with 32GB Memory) with a per-GPU batch size of 32 triples for 200,000
update steps. All models are trained with half-precision floating points and optimized
by the AdamW optimizer with a learning rate of 5 × 10−6.

During indexing, documents are separated into overlapping spans of 180 tokens
with a stride of 90 [32]. We aggregate by MaxP [3,13], which takes the maximum score
among the passages in a document as the document score.

4.2 Evaluation

We report previously published results for the state-of-the-art MULM [38] system as
a baseline for models that do not perform MT on the full collection. MULM is essen-
tially an MLIR version of Probabilistic Structured Queries (PSQ) [14]. PSQ maps term
frequency vectors from document to query language using a matrix of translation prob-
abilities generated using statistical machine translation. For MLIR, a translation matrix
is created for each query-document language pair. The query likelihood model is used to
score documents. Three key decisions led to good performance: (1) estimating collec-
tion statistics based on translation probabilities; (2) estimating document length based
on the translation and using that for smoothing; and (3) truncating the translation list
at three. As another baseline, we use BM25 (b = 0.4, k1 = 0.9) as implemented in
Patapsco [12] over neural machine translated documents (abbreviated ITD for Indexed
Translated Documents). For BM25, English queries and documents are tokenized by
spaCy [21] and stemmed by the NLTK [4] Porter stemmer (all supported by Patapsco).

For approaches that require document translation, we use directional MT models
built on a transformer architecture (6-layer encoder/decoder) using Sockeye 2 [16,19].
Measured by BLEU [35], Sockeye 2 achieves state-of-the-art effectiveness in each trans-
lation direction. Optimizations cut decoding time in half compared to Sockeye 1 [20].
We chose Sockeye 2 for its good trade-off between efficiency and effectiveness.

To evaluate effectiveness on multiple languages in CLEF 2001–2002 and CLEF
2003, we combine the relevance judgments (qrels) for all languages for each query.
In general, different languages have different numbers of relevant documents for each
query. To evaluate models trained with English training data, we also translate the doc-
ument sets into English with MT for indexing. Our main effectiveness measures are
Mean Average Precision (MAP) and Precision at 10 (P@10). Both measures focus on
the top of the rankings, and both were used by Rahimi et al. [38], facilitating compari-
son between the neural approaches presented herein and prior state-of-the-art results.

To evaluate language bias, we count the number of relevant documents for a query
across all languages, and calculate recall at that level. To compute the measure for a
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Table 2. Configurations of experiments identifying the pre-trained language model when appli-
cable, the fine tuning data and process, the retrieval model, and the language of the indexed
documents. Under Fine-Tuning Data, MS MARCO refers to English MS MARCOv1, while
mMARCO includes the translations into the various languages as well as the original English
MS MARCOv1. A model that lists either under its Indexing Language can index either machine
translated document (translation) or native documents in their various languages.

Name Language model Fine-tuning data Fine-tuning process Retrieval model Indexing language

MULM – – – PSQ Native

BM25-ITD – – – BM25 Translation

ColBERT-X(ET) XLM-R MS MARCO ET ColBERT-X Either

ColBERT-X(MTT-M) XLM-R mMARCO MTT-M ColBERT-X Either

ColBERT-X(MTT-S) XLM-R mMARCO MTT-S ColBERT-X Either

DPR-X(ET) XLM-R MS MARCO ET DPR-X Either

DPR-X(MTT-M) XLM-R mMARCO MTT-M DPR-X Either

ColBERT(ET) BERT MS MARCO ET ColBERT Translation

specific language, we keep this level constant, but ignore all documents in other lan-
guages (both in the MLIR results and in the relevance judgments). We call the mean of
this measure over all queries Recall@MLIR-Relevant. When computing the mean, we
omit from the calculation cases in which no relevant documents in that language are
known (recall is undefined in such cases). This measure lies between 0 and 1, and val-
ues across that full range are achievable. We use the open source ir-measures [28]4

package to compute all effectiveness measures.

5 Results

We experiment with the Multilingual Translation Training (MTT) using two retrieval
models and compare them to two strong baseline retrieval models: BM25-ITD index-
ing translated documents and MULM indexing native documents; these represent the
state of the art on our test collections. Since per-query results for MULM have not been
published we perform significance tests only between our systems and the BM25+ITD
baseline (the stronger of the two baselines). Table 2 summarizes the experiments that
facilitate this analysis. We first compare the effectiveness of our two batching strate-
gies for MTT before examining their effectiveness relative to the baselines. Finally, we
consider the trade-off between effectiveness and indexing time.

5.1 Multilingual Batching for Fine-Tuning

We compare two alternatives for fine-tuning the MTT condition and summarize the
results with title+description queries in Table 3. In all cases, mixed-language batches
(MTT-M) produce more effective retrieval models than single-language (MTT-S). This
is likely because, in MLIR, the model must rank documents from different languages
together instead of transferring trained models to other languages. The outcome might
be different if our goal were to perform CLIR over monolingual document collections.

4 https://ir-measur.es/.

https://ir-measur.es/
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Table 3. ColBERT-XMTT for Multiple or Single language training batches, indexing documents
in their native language using title+description queries. † indicates significant improvement over
MTT-S by paired t-test with 3-test Bonferroni correction (p < 0.05).

MAP P@10

2001 2002 2003 2001 2002 2003

MTT-M 0.462† 0.462† 0.461† 0.704 0.752 0.653

MTT-S 0.422 0.405 0.433 0.696 0.702 0.649

5.2 Effectiveness Relative to Baselines

Our main effectiveness results are shown in Table 4. For ColBERT-X and DPR-X, MTT-
M consistently improves effectiveness when retrieving documents in their native lan-
guage (i.e., without document MT) compared to English Training (ET). Such improve-
ments are seen in all three query sets, and for both Title (T) and Title+Description
(T+D) queries. Differences are larger for MAP than P@10, indicating that MTT-M
affects more than just the top ranks.

ColBERT-X MTT-M numerically outperforms MULM for both query types and
over all collections in MAP and nearly all collections in P@10. With longer, more fluent
title+description queries, ColBERT-XMTT-M gives a larger improvement over MULM
in both MAP and P@10, indicating that XLM-R favors queries with more context.
Since DPR-X is less effective [48], MTT-M only brings its performance up to par with
MULM.

With modern MT models, we can improve MLIR effectiveness. A common, yet
strong, baseline of using BM25 to search over translated documents yields substan-
tial improvement over MULM in both MAP and P@10 with both query types. We
argue that BM25+ITD is a proper baseline to which future MLIR experiments should be
compared.

We can also reduce neural IR to the monolingual case, training our retrieval model
with English training and searching documents represented by English machine transla-
tions. For both ColBERT and DPR, an English-trained model (ET) indexing translated
documents often yields better effectiveness than MTT-M indexing translated documents
(ITD). Furthermore, an English trained model indexing translated documents yields bet-
ter effectiveness than MTT-M indexing documents in their native language; however,
these differences are only statistically significant for CLEF 2002 on Title queries using
a paired t-test with 3-test Bonferroni correction (p < 0.05). We observe similar results
with ColBERT using the BERT-Large pretrained LM trained under the same condi-
tions except for using a learning rate of 3 × 10−6 (the value suggested by the authors).
Compare Table 5 to ColBERT-X with English training, presented in Table 4.

5.3 Preprocessing and Indexing Time

Applying machine translation to entire document collections is expensive. Table 6
summarizes the cost for preprocessing and indexing the collection in GPU-hours for
ColBERT-X and BM25. We omit consideration of query latency here since all of our
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Table 4. MAP and P@10 on CLEF Title and Title+Description queries. Bold are best among
a year; italics are best in a row (i.e., with and without neural machine translation), † indicates
significant difference from BM25+ITD by paired t-test with 16-test Bonferroni correction (p <
0.05).

Query set ITD MAP P@10

MULM BM25 ColBERT-X DPR-X MULM BM25 ColBERT-X DPR-X

MTT-M ET MTT-M ET MTT-M ET MTT-M ET

Title queries

2001 ✓ – 0.398 0.377 0.391 0.338 0.344 – 0.648 0.612 0.596 0.548 0.584

✗ 0.349 – 0.360 0.322 0.327 0.298† 0.650 – 0.600 0.588 0.592 0.570

2002 ✓ – 0.337 0.367 0.389 0.287 0.304 – 0.618 0.606 0.670 0.530 0.596

✗ 0.276 – 0.352† 0.333 0.282 0.277 0.592 – 0.614† 0.622 0.544 0.556

2003 ✓ – 0.349 0.337 0.349 0.276† 0.266† – 0.595 0.542 0.573 0.517 0.497†
✗ 0.305 – 0.332† 0.290 0.273† 0.247† 0.497 – 0.546 0.541 0.527 0.492†

All ✓ – 0.361 0.359 0.375 0.299† 0.302† – 0.619 0.583 0.611 0.531† 0.554†
✗ 0.310 – 0.347 0.314† 0.293† 0.273† 0.575 – 0.584† 0.581 0.553† 0.536†

Title + Description queries

2001 ✓ – 0.436 0.472 0.477 0.365 0.356 – 0.704 0.718 0.754 0.658 0.650

✗ 0.387 – 0.462 0.405 0.358 0.324† 0.700 – 0.704† 0.744 0.658 0.644

2002 ✓ – 0.398 0.470† 0.480† 0.347 0.332 – 0.696 0.774 0.770 0.664 0.620

✗ 0.347 – 0.462 0.410 0.335 0.310 0.666 – 0.752 0.720 0.672 0.640

2003 ✓ – 0.394 0.419 0.410 0.343 0.328† – 0.615 0.646 0.661 0.620 0.600

✗ 0.376 – 0.409 0.358 0.338 0.302† 0.563 – 0.653 0.637 0.622 0.575

All ✓ – 0.408 0.451† 0.453† 0.351† 0.338† – 0.669 0.709 0.725† 0.646 0.622

✗ 0.368 – 0.442 0.390 0.343† 0.312† 0.643 – 0.700† 0.697 0.639 0.617

Table 5. Monolingual ColBERT model using BERT-Large trained with ET and evaluated with
translated documents.

Queries MAP P@10

2001 2002 2003 All 2001 2002 2003 All

T 0.397 0.367 0.362 0.375 0.592 0.646 0.583 0.606

T+D 0.439 0.413 0.420 0.424 0.736 0.714 0.673 0.706

systems are sufficiently fast at query time for interactive use on collections of this size.
We refer the interested reader to Santhanam et al. [41].

This table reveals that differences in total indexing time between searching native
and translated documents range from four to 6.5 times depending on collection size and
model.5 Despite that searching translated documents with monolingual retrieval models
is more effective, the computational cost of MT at indexing time is significantly higher;
one might choose not to bear this cost in exchange for the small and not statistically
significant numerical gain in measured effectiveness over searching documents in their
native language with MTT-M fine-tuning for title+description queries.

5 Although Marian [23] is faster than Sockeye 2, benchmark results from Sockeye 1 [20] and
Sockeye 2 [19] confirm that Sockeye 2 is within a factor of 2 to 3 of Marian’s speed, leaving
our conclusions unchanged.
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Table 6. ColBERT-X GPU hours for translating and indexing. BM25 does not use GPU.

Model ITD CLEF2001-2002 CLEF2003

Translation Index Total Translation Index Total

BM25 ✓ 55.0 – 55.0 68.6 – 68.6

ET ✓ 55.0 9.3 64.3 68.6 12.3 80.9

✗ – 9.9 9.9 – 12.4 12.4

MTT-S ✓ 55.0 16.9 71.9 68.6 19.0 87.6

✗ – 16.7 16.7 – 21.9 21.9

MTT-M ✓ 55.0 17.3 72.3 68.6 20.1 88.7

✗ – 15.1 15.1 – 19.3 19.3

We also see this trade-off on a per-document basis. Figure 1 shows that ColBERT-X
with English training searching translated documents (ColBERT-X(ET)+ITD) achieves
the best effectiveness with both title (0.375 MAP) and title+description (0.453 MAP)
queries. However, it has a high preprocessing cost of 0.32 s per document, whereas
ColBERT-X trained with MTT-M searching documents in their native languages
(ColBERT-X(MTT-M)) requires under 0.05 s per document. This is an 84% reduction
in preprocessing cost at an apparent (but not statistically significant) cost of only 2% in
MAP with title+description queries.

6 Analysis

This section investigates our experimental results by breaking down the collection in
two ways – by document language, and by topic.

6.1 Language Bias

SinceMPLMs are known to exhibit language biases [10,25], we investigate how retrieval
models fine-tuned with our training schemes inherit or alleviate these biases. In MLIR

Fig. 1. Effectiveness (MAP) vs. efficiency (per-document GPU indexing time in seconds) trade-
off on CLEF 2001–2003. MAP scores (y-axis) for Title and Title+Description queries are disjoint
ranges. The upper left is the optimal part of the chart.
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we consider a model biased if it ranks a language’s documents systematically higher or
lower than those of another language. While MLIR is not a new task, we are not aware
of prior work that has examined language bias. Therefore we introduce two approaches
to studying this phenomenon. The first approach examines rates of relevant documents.
Since relevant documents are unevenly distributed across languages (e.g., Spanish has
more than three times as many known relevant documents as English among the CLEF
2001 topics, averaging 54 vs. 17 relevant documents per topic, respectively), meaning-
ful comparisons require us to focus on rates rather than on counts. In this analysis, we
focus on Recall@MLIR-Relevant (see Sect. 4.2), illustrating our analysis using the 100
title+description queries in CLEF 2001–2002 topics to characterize the coverage of rel-
evant documents in each language (results on CLEF 2003 topics are similar).

Figure 2 shows distributional statistics of Recall@MLIR-Relevant over topics by
language and condition that have at least one known relevant document in that lan-
guage (96 for German, 97 for Spanish, 94 for Italian, 90 for French, 73 for English).
When transferring a ColBERT-X model fine-tuned zero-shot with English training (i.e.,
ColBERT-X(ET)) to other languages, the model favors English documents due to the
fine-tuning condition. This results in a strong language bias in the retrieval results.
Such biases can be ameliorated by fine-tuning with MTT. MTT-M appears to have
more consistent behavior across languages compared to MTT-S, although the small
apparent difference is not statistically significant. When indexing translated documents,
Recall@MLIR-Relevant tends to be lower for English compared to other languages
(though also not significantly). Since documents were translated sentence-by-sentence,
we hypothesize that indexing translated documents provides more synonym variety
when decoding similar terms, resulting in document expansion; this hypothesis requires
more investigation, which we leave for future work.

An alternative approach to investigating language bias is to assume that in a bias-
free approach to MLIR, the scores for relevant documents would be drawn from the
same underlying distribution. Using the 2-sample Kolmogorov-Smirnov test, the null
hypothesis is that the two samples are drawn from the same distribution. For this anal-
ysis, we chose English as a reference and tested each topic with at least three relevant

Fig. 2. R@MLIR-Relevant of BM25 and ColBERT-X variants for each language in CLEF2001-
2002 with title+description queries. The yellow dashed line is the average over all languages, i.e.,
the R-Precision in MLIR. Outliers are defined as values beyond 1.5×interquartile range. Horizon-
tal black bars indicate the median and white circles indicate the mean. (Color figure online)
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Fig. 3. Average Precision (AP) of BM25 and ColBERT-X on selected topics using title queries.

documents in each language. We then adjusted the p-values to account for multiple
comparisons. We found that we could reject the null hypothesis for all languages and
all configurations, indicating the document scores are not drawn from the same distri-
bution based on language. Although some of this difference could result from differ-
ences in collection statistics (i.e., with some languages better supporting the queries
than others based on the numbers of relevant documents), the differences we observe
across retrieval models indicate that there are retrieval model effects as well. Notably,
ColBERT-X(ET) retrieving documents in the native language has the largest percentage
of topics with bias (from 15% to 30% depending on language pair), while all other con-
figurations have no more than 12% of topics exhibiting biased scores. This confirms the
qualitative analysis above, which revealed that ColBERT-X(ET) over the documents in
their native language had the most skewed rates of relevant documents. Future research
will need to address language bias in document scores.

6.2 Example Queries

For more insight into differences among the algorithms, we show effectiveness on indi-
vidual queries in Fig. 3. Our query selection here is not meant to be representative,
but rather illustrative of phenomena that we see. For two topics on which ColBERT-X
outperformed BM25 (topics 158 and 118), the queries include terms that likely benefit
from ColBERT-X soft term-matching – “soccer” and “commissioner” respectively. This
term expansion effect has also been observed in monolingual retrieval with ColBERT.

MT is particularly helpful for topics 63 and 88, likely due to the quality of the
translation for documents on these topics. Especially for topic 88, English monolingual
retrieval produces strong results. Such behaviors indicate that the multilingual term
matching in ColBERT-X is still not as effective on less common concepts like “mad
cow” as is machine translation.

Topic 58 is an outlier. The term “euthanasia” is tokenized as a single token for BM25
but separated into _eu, thana, and sia by the XLM-R tokenizer; combined with the
minimal context provided by a query, this prevents ColBERT-X frommatching properly
across languages. Such diverse behaviors suggest room for further MLIR improvements
using system combination.
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7 Conclusion and Future Work

This paper proposes the MTT training approach to MLIR that uses translated MS
MARCO.When searching non-English documents, fine-tuning with MTT using mixed-
language batches (MTT-M) enables neural models such as ColBERT and DPR to be
more effective than if fine-tuned on English MS MARCO. ColBERT-X with MTT-M is
not statistically different from monolingual English models applied to neural indexing-
time translation of the collection into English, yet it achieves substantially better index-
ing time efficiency. These results may not hold for more diverse sets of languages or
when MT is less effective; future work will examine the multilingual topics from the
TREC 2022 the NeuCLIR track,6 which judges the relevance of documents written in
Chinese, Persian, and Russian. Our observation that the retrieval method that yields the
best retrieval effectiveness is query-dependent suggests future work on system combi-
nation, but our focus on efficiency and on language bias also calls attention to issues
beyond retrieval effectiveness that will merit consideration in such a study.

A MTT Implementation Details

As described in Sect. 3.2, MTT-M consists of examples with different languages in the
training batches. We implement it by mixing the translated MS-MARCO triples round-
robin. Specifically, each triple consists of an English query and positive and negative
passages translated into the target languages. We constructed such triples using the
translated documents provided by mMARCO [6]. Each language results in a triple file
of the same structure as triples.train.small.tar.gz.7 The following Bash
command creates a combined triple file that mixes all languages:

paste −d ’\n’ <(cat ./original_msmarco/triples.train.small.tsv) \

<(cat ./mmarco/french/triples.train.small.tsv) \

<(cat ./mmarco/german/triples.train.small.tsv) \

<(cat ./mmarco/italian/triples.train.small.tsv) \

<(cat ./mmarco/spanish/triples.train.small.tsv) \

| cat > combined.tsv

Training with four GPUs and a per-GPU batch size of 32 triples guarantees that each
batch consists of examples in different languages based on ColBERT-X’s8 batching
scheme.

For MTT-S, we modified the ColBERT-X batching mechanism to load multiple
triple files and supply a batch of examples from only one source file whenever the
training process requests one. After each request, we switch the source triple file to
ensure all languages are presented equally to the model during training.

6 https://neuclir.github.io/.
7 https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz.
8 https://github.com/hltcoe/ColBERT-X/blob/main/xlmr_colbert/training/lazy_batcher.py.

https://neuclir.github.io/
https://msmarco.blob.core.windows.net/msmarcoranking/triples.train.small.tar.gz
https://github.com/hltcoe/ColBERT-X/blob/main/xlmr_colbert/training/lazy_batcher.py


534 D. Lawrie et al.

References

1. Aljlayl, M., Frieder, O.: Effective Arabic-English cross-language information retrieval via
machine-readable dictionaries and machine translation. In: Proceedings of the Tenth Inter-
national Conference on Information and Knowledge Management, pp. 295–302 (2001)

2. Bajaj, P., et al.: MS MARCO: a human generated machine reading comprehension dataset.
arXiv preprint arXiv:1611.09268 (2016)

3. Bendersky, M., Kurland, O.: Utilizing passage-based language models for document
retrieval. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR
2008. LNCS, vol. 4956, pp. 162–174. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78646-7_17

4. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text
with the Natural Language Toolkit. O’Reilly Media, Inc., Sebastopol (2009)

5. Blloshmi, R., Pasini, T., Campolungo, N., Banerjee, S., Navigli, R., Pasi, G.: IR like a
SIR: sense-enhanced information retrieval for multiple languages. In: Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 1030–1041,
Association for Computational Linguistics, Online and Punta Cana, Dominican Republic,
November 2021. https://doi.org/10.18653/v1/2021.emnlp-main.79, https://aclanthology.org/
2021.emnlp-main.79

6. Bonifacio, L.H., et al.: mMARCO: a multilingual version of MS MARCO passage ranking
dataset. arXiv preprint arXiv:2108.13897 (2021)

7. Braschler, M.: CLEF 2001 — overview of results. In: Peters, C., Braschler, M., Gonzalo,
J., Kluck, M. (eds.) CLEF 2001. LNCS, vol. 2406, pp. 9–26. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45691-0_2

8. Braschler, M.: CLEF 2002 — overview of results. In: Peters, C., Braschler, M., Gonzalo,
J., Kluck, M. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 9–27. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45237-9_2

9. Braschler, M.: CLEF 2003 – overview of results. In: Peters, C., Gonzalo, J., Braschler, M.,
Kluck, M. (eds.) CLEF 2003. LNCS, vol. 3237, pp. 44–63. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30222-3_5

10. Choudhury, M., Deshpande, A.: How linguistically fair are multilingual pre-trained language
models? In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp.
12710–12718 (2021)

11. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–
8451. Association for Computational Linguistics, Online, July 2020. https://aclanthology.
org/2020.acl-main.747

12. Costello, C., Yang, E., Lawrie, D., Mayfield, J.: Patapasco: a Python framework for cross-
language information retrieval experiments. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS,
vol. 13186, pp. 276–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99739-
7_33

13. Dai, Z., Callan, J.: Deeper text understanding for IR with contextual neural language mod-
eling. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 985–988 (2019)

14. Darwish, K., Oard, D.W.: Probabilistic structured query methods. In: Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 338–344 (2003)

15. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the

http://arxiv.org/abs/1611.09268
https://doi.org/10.1007/978-3-540-78646-7_17
https://doi.org/10.1007/978-3-540-78646-7_17
https://doi.org/10.18653/v1/2021.emnlp-main.79
https://aclanthology.org/2021.emnlp-main.79
https://aclanthology.org/2021.emnlp-main.79
http://arxiv.org/abs/2108.13897
https://doi.org/10.1007/3-540-45691-0_2
https://doi.org/10.1007/978-3-540-45237-9_2
https://doi.org/10.1007/978-3-540-30222-3_5
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.1007/978-3-030-99739-7_33
https://doi.org/10.1007/978-3-030-99739-7_33


Neural Approaches to Multilingual Information Retrieval 535

North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Association for
Computational Linguistics, Minneapolis, June 2019. https://aclanthology.org/N19-1423

16. Domhan, T., Denkowski, M., Vilar, D., Niu, X., Hieber, F., Heafield, K.: The Sockeye 2
neural machine translation toolkit at AMTA 2020. In: Proceedings of the 14th Conference
of the Association for Machine Translation in the Americas (Volume 1: Research Track), pp.
110–115, Association for Machine Translation in the Americas, Virtual, October 2020

17. Gao, L., Ma, X., Lin, J.J., Callan, J.: Tevatron: an efficient and flexible toolkit for dense
retrieval. arXiv preprint arXiv:2203.05765 (2022)

18. Granell, X.: Multilingual Information Management: Information, Technology and Transla-
tors. Chandos Publishing, Cambridge (2014)

19. Hieber, F., Domhan, T., Denkowski, M., Vilar, D.: Sockeye 2: a toolkit for neural machine
translation. In: EAMT 2020 (2020). https://www.amazon.science/publications/sockeye-2-a-
toolkit-for-neural-machine-translation

20. Hieber, F., et al.: Sockeye: a toolkit for neural machine translation. arXiv preprint
arXiv:1712.05690 (2017)

21. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: industrial-strength natural
language processing in Python. Technical report, Explosion (2020)

22. Hull, D.A., Grefenstette, G.: Querying across languages: a dictionary-based approach to mul-
tilingual information retrieval. In: Proceedings of the 19th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 49–57 (1996)

23. Junczys-Dowmunt, M., Heafield, K., Hoang, H., Grundkiewicz, R., Aue, A.: Marian: cost-
effective high-quality neural machine translation in C++. arXiv preprint arXiv:1805.12096
(2018)

24. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781. Association for Computational Linguistics, Online, November
2020. https://aclanthology.org/2020.emnlp-main.550

25. Kassner, N., Dufter, P., Schütze, H.: Multilingual lama: investigating knowledge in multilin-
gual pretrained language models. arXiv preprint arXiv:2102.00894 (2021)

26. Khattab, O., Zaharia, M.: ColBERT: efficient and effective passage search via contextualized
late interaction over BERT. In: Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 39–48 (2020)

27. Lawrie, D., Mayfield, J., Oard, D.W., Yang, E.: HC4: a new suite of test collections for ad
hoc CLIR. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 351–366. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99736-6_24

28. MacAvaney, S., Macdonald, C., Ounis, I.: Streamlining evaluation with ir-measures. In:
Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13186, pp. 305–310. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99739-7_38

29. Magdy, W., Jones, G.J.F.: Should MT systems be used as black boxes in CLIR? In: Clough,
P., et al. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 683–686. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20161-5_70

30. McCarley, J.S.: Should we translate the documents or the queries in cross-language informa-
tion retrieval? In: Proceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 208–214 (1999)

31. Mitamura, T., et al.: Overview of the NTCIR-7 ACLIA tasks: advanced cross-lingual infor-
mation access. In: NTCIR (2008)

32. Nair, S., et al.: Transfer learning approaches for building cross-language dense retrieval mod-
els. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 382–396. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99736-6_26

https://aclanthology.org/N19-1423
http://arxiv.org/abs/2203.05765
https://www.amazon.science/publications/sockeye-2-a-toolkit-for-neural-machine-translation
https://www.amazon.science/publications/sockeye-2-a-toolkit-for-neural-machine-translation
http://arxiv.org/abs/1712.05690
http://arxiv.org/abs/1805.12096
https://aclanthology.org/2020.emnlp-main.550
http://arxiv.org/abs/2102.00894
https://doi.org/10.1007/978-3-030-99736-6_24
https://doi.org/10.1007/978-3-030-99739-7_38
https://doi.org/10.1007/978-3-642-20161-5_70
https://doi.org/10.1007/978-3-030-99736-6_26


536 D. Lawrie et al.

33. Nie, J.-Y., Jin, F.: A multilingual approach to multilingual information retrieval. In: Peters,
C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 101–110.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45237-9_8

34. Oard, D.W., Dorr, B.J.: A survey of multilingual text retrieval. Technical report, UMIACS-
TR-96019 CS-TR-3615, UMIACS (1996)

35. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of
machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Com-
putational Linguistics, pp. 311–318. Association for Computational Linguistics, Philadelphia
, July 2002. https://doi.org/10.3115/1073083.1073135, https://aclanthology.org/P02-1040

36. Peters, C., Braschler, M.: The importance of evaluation for cross-language system develop-
ment: the CLEF experience. In: LREC (2002)

37. Peters, C., Braschler, M., Clough, P.: Multilingual Information Retrieval: From Research to
Practice. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23008-0

38. Rahimi, R., Shakery, A., King, I.: Multilingual information retrieval in the language model-
ing framework. Inf. Retrieval J. 18(3), 246–281 (2015). https://doi.org/10.1007/s10791-015-
9255-1

39. Rehder, B., Littman, M.L., Dumais, S.T., Landauer, T.K.: Automatic 3-language cross-
language information retrieval with latent semantic indexing. In: TREC, pp. 233–239. Cite-
seer (1997)

40. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: BM25 and
beyond. Found. Trends R© Inf. Retrieval 3(4), 333–389 (2009)

41. Santhanam, K., Khattab, O., Potts, C., Zaharia, M.: PLAID: an efficient engine for late inter-
action retrieval. arXiv preprint arXiv:2205.09707 (2022)

42. Shi, P., Lin, J.: Cross-lingual relevance transfer for document retrieval. arXiv preprint
arXiv:1911.02989 (2019)

43. Si, L., Callan, J., Cetintas, S., Yuan, H.: An effective and efficient results merging strategy
for multilingual information retrieval in federated search environments. Inf. Retrieval 11(1),
1–24 (2008)

44. Sorg, P., Cimiano, P.: Exploiting Wikipedia for cross-lingual and multilingual information
retrieval. Data Knowl. Eng. 74, 26–45 (2012). ISSN 0169-023X, https://www.sciencedirect.
com/science/article/pii/S0169023X12000213, Appl. Nat. Lang. Inf. Syst

45. Tsai, M.F., Wang, Y.T., Chen, H.H.: A study of learning a merge model for multilingual infor-
mation retrieval. In: Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 195–202 (2008)

46. Xu, H., Van Durme, B., Murray, K.: BERT, mBERT, or BiBERT? A study on contextual-
ized embeddings for neural machine translation. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 6663–6675. Association for
Computational Linguistics, Online and Punta Cana, Dominican Republic, November 2021.
https://aclanthology.org/2021.emnlp-main.534

47. Xu, Y.: Global divergence and local convergence of utterance semantic representations in
dialogue. In: Proceedings of the Society for Computation in Linguistics 2021, pp. 116–124.
Association for Computational Linguistics, Online, February 2021. https://aclanthology.org/
2021.scil-1.11

48. Yang, E., Nair, S., Chandradevan, R., Iglesias-Flores, R., Oard, D.W.: C3: continued pretrain-
ing with contrastive weak supervision for cross language ad-hoc retrieval. In: Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR) (2022). https://arxiv.org/abs/2204.11989

49. Zhang, X., Ma, X., Shi, P., Lin, J.: Mr. TyDi: a multi-lingual benchmark for dense retrieval.
In: Proceedings of the 1st Workshop on Multilingual Representation Learning, pp. 127–137.
Association for Computational Linguistics, Punta Cana, Dominican Republic, November
2021. https://aclanthology.org/2021.mrl-1.12

https://doi.org/10.1007/978-3-540-45237-9_8
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://doi.org/10.1007/978-3-642-23008-0
https://doi.org/10.1007/s10791-015-9255-1
https://doi.org/10.1007/s10791-015-9255-1
http://arxiv.org/abs/2205.09707
http://arxiv.org/abs/1911.02989
https://www.sciencedirect.com/science/article/pii/S0169023X12000213
https://www.sciencedirect.com/science/article/pii/S0169023X12000213
https://aclanthology.org/2021.emnlp-main.534
https://aclanthology.org/2021.scil-1.11
https://aclanthology.org/2021.scil-1.11
https://arxiv.org/abs/2204.11989
https://aclanthology.org/2021.mrl-1.12


CoSPLADE: Contextualizing SPLADE
for Conversational Information Retrieval

Nam Hai Le1(B) , Thomas Gerald2, Thibault Formal1,3, Jian-Yun Nie4,
Benjamin Piwowarski1 , and Laure Soulier1,2

1 Sorbonne Université, CNRS, ISIR, 75005 Paris, France
{hai.le,thibault.formal,benjamin.piwowarski,

laure.soulier}@sorbonne-universite.fr
2 Université Paris-Saclay, CNRS, SATT Paris Saclay, LISN, 91405 Orsay, France

{thomas.gerald,laure.soulier}@lisn.upsaclay.fr
3 Naver Labs Europe, Meylan, France
thibault.formal@naverlabs.com

4 University of Montreal, Montreal, Canada
nie@iro.umontreal.ca

Abstract. Conversational search is a difficult task as it aims at retriev-
ing documents based not only on the current user query but also on the
full conversation history. Most of the previous methods have focused on
a multi-stage ranking approach relying on query reformulation, a criti-
cal intermediate step that might lead to a sub-optimal retrieval. Other
approaches have tried to use a fully neural IR first-stage, but are either
zero-shot or rely on full learning-to-rank based on a dataset with pseudo-
labels. In this work, leveraging the CANARD dataset, we propose an
innovative lightweight learning technique to train a first-stage ranker
based on SPLADE. By relying on SPLADE sparse representations, we
show that, when combined with a second-stage ranker based on T5Mono,
the results are competitive on the TREC CAsT 2020 and 2021 tracks.
The source code is available at https://github.com/nam685/cosplade.git.

Keywords: Information retrieval · Conversational search · First-stage
ranking

1 Introduction

With the introduction of conversational assistants like Siri, Alexa or Cortana,
conversational Information Retrieval, a variant of adhoc IR, has emerged as
an important research domain [5,7]. In conversational IR, a search is conducted
within a session, and the user’s information need is expressed through a sequence
of queries, similarly to natural conversations – thus introducing complex inter-
dependencies between queries and responses.

Not surprisingly, neural IR models have been shown to perform the best on
conversational IR [6,8]. Most prior works rely on a Historical Query Expansion
step [39], i.e. a query expansion mechanism that takes into account all past
queries and their associated answers. Such query expansion model is learned on
the CANARD dataset [9], which is composed of a series of questions and their
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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associated answers, together with a disambiguated query, referred to as gold
query in this paper. However, relying on a reformulation step is computationally
costly and might be sub-optimal as underlined in [15,18]. Krasakis et al. [15]
proposed to use ColBERT [14] in a zero-shot manner, replacing the query by the
sequence of queries, without any training of the model. Lin et al. [18] proposed
to learn a dense contextualized representation of the query history, optimizing
a learning-to-rank loss over a dataset composed of weak labels. This makes the
training process complex (labels are not reliable) and long.

In this work, we follow this direction of research but propose a much lighter
training process for the first-stage ranker, where we focus on queries and do
not make use of any passage – and thus of a learning-to-rank training. It more-
over sidesteps the problem of having to derive weak labels from the CANARD
dataset1. Given this strong supervision, we can consider more context – i.e.
we use the answers provided by the system the user is interacting with, which
allows to better contextualize the query, as shown in our experiments. The train-
ing loss we propose leverages the sparse representation of queries and documents
provided by the SPLADE model [10]. In a nutshell, we require that the repre-
sentation of the query matches that of the disambiguated query (i.e. the gold
query). Our first-stage ranker achieves high performances, especially on recall –
the most important measure in a multi-stage approach, comparable to the best
systems in TREC CAsT [8], but also on precision-oriented measures – which
shows the potential of our methodology.

Finally, to perform well, the second-stage ranker (i.e. re-ranker) needs to
consider the conversation as well, which might require a set of heuristics to select
some content and/or query reformulation such as those used in [20]. Leveraging
the fact that our first-stage ranker outputs weights over the BERT vocabulary,
we propose a simple mechanism that provides a conversational context to the
re-ranker in the form of keywords selected by SPLADE.

In summary, our contributions are the following:

1. We propose the CoSPLADE (COntextualized SPLADE) model based on a
new loss to optimize a first-stage ranker resulting in a lightweight training
strategy and state-of-the-art results in terms of recall;

2. We show that, when combined with a second-stage ranker based on a context
derived from the SPLADE query representation of the first stage, we obtain
results on par with the best approaches in TREC CAsT 2020 and 2021.

2 Related Works

The first edition [6] of the TREC Conversational Assistance Track (CAsT ) was
implemented in 2019, providing a new challenge on Conversational Search. The

1 Note that for the second stage, we rely on weak labels since our model is similar
to previous works. Given that the gap between first-stage and second-stage rankers
continues to decrease, training a second-stage ranker might not be necessary in the
future.
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principle is the following: a user queries the system with questions in natural
language, and each time gets a response from the system. The challenge differs
from classical search systems as involving previous utterances (either queries or
answers) is key to better comprehending the user intent. In conversational IR,
and in TREC CAsT [6–8] in particular, the sheer size of the document collection
implies to design an efficient (and effective) search system.

Conversational IR is closely related to conversational Question-Answering
[28–30] in the sense that they both include interaction turns in natural language.
However, the objective is intrinsically different. While the topic or the context
(i.e., the passage containing answers) is known in conversational QA, conversa-
tional IR aims to search among a huge collection of documents with potentially
more exploratory topics. With this in mind, in the following, we focus on the
literature review of conversational IR.

We can distinguish two lines of work in conversational search. The first one
[4,34,35,37] focuses on a Contextual Query Reformulation (CQR) to produce
a (plain or bag-of-words) query, representing ideally the information need free
of context, which is fed into a search model. One strategy of CQR consists in
selecting keywords from previous utterances by relying on a graph weighted by
either word2vec similarity [34], term-based importance using BM25 [21], or clas-
sification models [35]. Other approaches [16,20,21,33,38] leverage the potential
of generative language models (e.g., GPT2 or T5) to rewrite the query. Such
approaches are particularly effective, reaching top performances in the TREC
CAsT 2020 edition [6]. Query reformulation models also differ in the selected
evidence sources. Models either focus on the early stage of the conversation [1],
on a set of the queries filtered either heuristically [2] or by a classification model
[23], or on both previous queries and documents [36]. Finally, to avoid the prob-
lem of generating a single query, [16,22] have proposed to use different generated
queries and aggregate the returned documents.

The reformulation step is however a bottleneck since there is no guarantee
that the “gold query” is optimal and thus generalizes well [15,18]. Moreover,
generating text is time-consuming. To avoid these problems, the second line of
work aims to directly integrate the conversation history into the retrieval model,
bypassing the query reformulation step. As far as we know, only a few stud-
ies followed this path in conversational search. Qu et al. [26] compute a query
representation using the k last queries in the dialogue [17]. Similarly, Lin et
al. [18] average contextualized tokens embeddings over the whole query history.
The representation is learned by optimizing a learning-to-rank loss over a collec-
tion with weak labels, which requires much care to ensure good generalization.
Finally, Krasakis et al. [15] use a more lexical neural model, i.e. ColBERT [14],
to encode the query with its context – but they do not finetune it at all. In
this work, we go further by using a sparse model SPLADE [10], using a novel
loss tailored to such sparse representations, and by using a lightweight train-
ing procedure that does not rely on passages, but only on a dataset containing
reformulated queries.
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3 Model

In TREC CAsT [6,8], each retrieval session contains around 10 turns of exchange.
Each turn corresponds to a query and its associated canonical answer2 is pro-
vided as context for future queries. Let us now introduce some notations that
we use to describe our model. For each turn n ≤ N , where N is the last turn of
the conversation, we denote by qn and an respectively the corresponding query
and its response. Finally, the context of a query qn at turn n corresponds to
all the previous queries and answers, i.e. q1, a1, q2, a2, ..., qn−1, an−1. The
main objective of the TREC CAsT challenges is to retrieve, for each query qn
and its context, the relevant passages. In the next sections, we present our first-
stage ranker and second-stage re-ranker, along with their training procedure,
both based, directly or indirectly, on the SPLADE (v2) model described in [10].
SPLADE has shown results on par with dense approaches on in-domain collec-
tions while exhibiting stronger abilities to generalize in a zero-shot setting [10].
Moreover, it outputs a sparse representation of a document or a query in the
BERT vocabulary, which is key to our model during training and inference. This
explains why we did not consider interaction models such as ColBERT [32] or
dense approaches [13]. The SPLADE model we use includes a contextual encod-
ing function, followed by some aggregation steps: ReLU, log saturation, and max
pooling over each token in the text. The output of SPLADE is a sparse vector
with only positive or zero components in the BERT vocabulary space R

|V |. In
this work, we use several sets of parameters for the same SPLADE architecture
and distinguish each version by its parameters θ, and the corresponding model
by SPLADE(. . . ; θ).

3.1 First Stage

The original SPLADE model [10] scores a document using the dot product
between the sparse representation of a document (d̂) and of a query (q̂):

s(q̂, d̂) = q̂ · d̂ (1)

In our work, like in [18], we suppose that the document representation has
been sufficiently well-tuned on the standard ad-hoc IR task. The document
embedding d̂ is thus obtained using the pre-trained SPLADE model, i.e. d̂ =
SPLADE([CLS] d; θSPLADE) where θSPLADE are the original SPLADE param-
eters obtained from HuggingFace3. These parameters are not fine-tuned during
the training process. We can thus use standard index built from the original
SPLADE document representations to retrieve efficiently the top-k documents.
In the following, we present how to contextualize the query representation using
the conversation history. Then, we detail the training loss aiming at reducing
the gap between the representation of the gold query and the contextualized
representation.
2 Selected by the organizer as the most relevant answer of a baseline system.
3 The weights can be found at https://huggingface.co/naver/splade-cocondenser-

ensembledistil.

https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/naver/splade-cocondenser-ensembledistil
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Query Representation. Like state-of-the-art approaches for first-stage conversa-
tional ranking [15,18], we contextualize the query with the previous ones. Going
further, we propose to include the answers in the query representation process,
which is easier to do thanks to our lightweight training.

To leverage both contexts, we use a simple model where the contextual query
representation at turn n, denoted by q̂n,k, is the combination of two representa-
tions, q̂queriesn which encodes the current query in the context of all the previous
queries, and q̂answers

n,k which encodes the current query in the context of k the
past answers4. Formally, the contextualized query representation q̂n,k is:

q̂n,k = q̂queriesn + q̂answers
n,k (2)

where we use two versions of SPLADE parameterized by θqueries for the full
query history and θanswers,k for the answers. These parameters are learned by
optimizing the loss defined in Eq. (8).

Following [18], we define q̂queriesn to be the query representation produced by
encoding the concatenation of the current query and all the previous ones:

q̂queriesn = SPLADE([CLS] qn [SEP] q1 [SEP] . . . [SEP] qn−1; θqueries) (3)

using a set of specific parameters θqueries.
To take into account the answers that the user had access to, we need to

include them in the representation. Following prior work [2], we can consider a
various number of answers k, and in particular, we can either choose k = 1 (the
last answer) or k = n − 1 (all the previous answers). Formally, the representa-
tion q̂answers

n,k is computed as the mean of the representations of query-answer
pairs. This allows to evade the token-length limits imposed by language models.
Formally,

q̂answers
n,k =

1
k

n−1∑

i=n−k

SPLADE(qn [SEP] ai; θanswers,k) (4)

Training. Based on the above, training aims at obtaining a good representation
q̂n for the last issued query qn, i.e. to contextualize qn using the previous queries
and answers. To do so, we can leverage the gold query q∗

n, that is (hopefully), a
contextualized and unambiguous query. We can compute the representation q̂∗

n

of this query by using the original SPLADE model, i.e.

q̂∗
n = SPLADE(q∗

n; θSPLADE) (5)

For example, for a query “How old is he?” the matching gold query could be
“How old is Obama?”. The representation of the latter given by SPLADE would
be as follows:

[(“Obama”, 1.5), (“Barack”, 1.2), (“age”, 1.2), (“old”, 1.0), (“president”, 0.8), ...]
4 In the experiments, we also explore an alternative model where answers and queries

are considered at once.
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where the terms “Obama” and “Barack” clearly appear alongside other words
related to the current query (“old” and the semantically related “age”).

We can now define the goal of the training, which is to reduce the difference
between the gold query representation q̂∗

n and the representation q̂n,k computed
by our model. An obvious choice of a loss function is to match the predicted
and gold representations using cosine loss (since the ranking is invariant when
scaling the query). However, as shown in the result section, we experimentally
found better results with a modified MSE loss, whose first component is the
standard MSE loss:

LossMSE(q̂n,k, q̂∗
n) = MSE(q̂n,k, q̂∗

n) (6)

In our experiments, we observed that models trained with the direct MSE do
not capture well words from the context, especially for words from the answers.
The reason is that the manually reformulated gold query usually only contains a
few additional words from the previous turns that are directly implied by the last
query. Other potentially useful words from the answers may not be included. This
is a conservative expansion strategy which may not be the best example to follow
by an automatic query rewriting process. We thus added an asymmetric MSE,
designed to encourage term expansion from past answers, but avoid introducing
noise by restricting the terms to those present in the gold query q∗

n. Formally,
our asymmetric loss is:

Lossasym(q̂answers
n,k , q̂∗

n) =
(
max(q̂∗

n − q̂answers
n,k , 0)

)2 (7)

where the maximum is component-wise. This loss thus pushes the answer-biased
representation q̂answers

n,k to include tokens from the gold query. Contrarily to
MSE, it does not impose (directly) an upper bound on the components of the
q̂answers
n,k representation – this is done indirectly through the final loss function

described below.
The final loss we optimize is a simple linear combination of the losses defined

above, and only relies on computing two query representations:

Loss(q̂n,k, q̂∗
n) = LossMSE(q̂n,k, q̂∗

n) + Lossasym(q̂answers
n,k , q̂∗

n) (8)

There is an interplay between the two components of the global loss. More pre-
cisely, Lossasym pushes the q̂answers

n,k representation to match the golden query
representation q̂∗

n if it can, and LossMSE pushes the queries-biased representa-
tion q̂n,k to compensate if not. It thus puts a strong focus on extracting infor-
mation from past answers, which is shown to be beneficial in our experiments.

Implementation Details. For the first-stage, we initialize both encoders (one
encoding the queries, and the other encoding the previous answer) with pre-
trained weights from SPLADE model for adhoc retrieval. We use the ADAM
optimizer with train batch size 16, learning rate 2e-5 for the first encoder and
3e-5 for the second. We fine-tune for only 1 epoch over the CANARD dataset.



CoSPLADE: Contextualizing SPLADE for Conversational IR 543

3.2 Reranking

We perform reranking using a T5Mono [24] approach, where we enrich the raw
query qn with keywords identified by the first-stage ranker. Our motivation is
that these words should capture the information needed to contextualize the raw
query. The enriched query q+n for conversational turn n is as follows:

q+n = qn. Context : q1 q2 . . . qn−1. Keywords : w1, w2, ..., wK (9)

where the wi are the top-K most important words that we select by leveraging
the first-stage ranker as follows. First, to reduce noise, we only consider words
that appear either in any query qi or in the associated answers ai (for i ≤ n−1).
Second, we order words by using the maximum SPLADE weight over tokens
that compose the word.5

We denote the T5 model fine-tuned for this input as T5+. As in the original
paper [24], the relevance score of a document d for the query qn is the proba-
bility of generating the token “true” given a prompt pt(q+n , d) = “Query: q+n .
Document: d. Relevant:”:

score(q+n , d; θ) =
pT5(true|pt(q+n , d); θ)

pT5(true|pt(q+n , d); θ) + pT5(false|pt(q+n , d); θ)
(10)

where θ are the parameters of the T5Mono model.
Differently to the first stage training, we fine-tune the ranker by aligning the

scores of the documents, and not the weight of a query (which is obviously not
possible with the T5 model). Here the “gold” score of a document is computed
using the original T5Mono with the gold query q∗

n. The T5 model is initial-
ized with weights made public by the original authors6, denoted as θT5. More
precisely, we finetune the pre-trained T5Mono model using the MSE-Margin
loss [12]. The loss function for the re-ranker (at conversation turn n, given doc-
uments d1 and d2) is computed as follows:

LR =
[(

s(q+n , d1; θT5+) − s(q+n , d2; θT5+)
) − (s(q∗

n, d1; θT5) − s(q∗
n, d2; θT5))

]2

We optimize the θT5+ parameters by keeping the original θT5 to evaluate the
score of gold queries.

Implementation details. We initialize θT5+ as θT5, and fine-tune for 3 epochs,
with a batch size of 8 and a learning rate 1e-4. We sample pairs (d1, d2) using the
first-stage top-1000 documents: d1 is sampled among the top-3, and d2 among
the remaining 997 to push the model to focus on important differences in scores.

5 To improve coherence, we chose to make keywords follow their order of appearance
in the context, but did not vary this experimental setting.

6 We used the Huggingface checkpoint https://huggingface.co/castorini/monot5-base-
msmarco.

https://huggingface.co/castorini/monot5-base-msmarco
https://huggingface.co/castorini/monot5-base-msmarco
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4 Experimental Protocol

We designed the evaluation protocol to satisfy two main evaluation objectives:
(i) Evaluating separately the effectiveness of the first-stage and the second-stage
ranking components of our CoSPLADE model; (ii) Comparing the effectiveness
of our CoSPLADE model with TREC CAsT 2020 and 2021 participants.

4.1 Datasets

To train our model, we used the CANARD corpus7, a conversational dataset
focusing on context-based query rewriting. More specifically, the CANARD
dataset is a list of conversation histories, each being composed of a series of
queries, short answers (human-written), and reformulated queries (contextual-
ized). The training, development, and test sets include respectively 31.538, 3.418,
and 5.571 contextual and reformulated queries.

To evaluate our model, we used the TREC CAsT 2020 and 2021 datasets
which include respectively 25 and 26 information needs (topics) and a document
collection composed of the MS MARCO dataset, an updated dump of Wikipedia
from the KILT benchmark, and the Washington Post V4 collection. For each
topic, a conversation is available, alternating questions and responses (manually
selected passages from the collection, aka canonical answers). For each question
(216 and 239 in total), the dataset provides its manually rewritten form as well
as a set of about 20 relevant documents. We use the former to define an upper-
bound baseline (Splade_GoldQuery).

4.2 Metrics and Baselines

We used the official evaluation metrics considered in the TREC CAsT 2020 and
2021, namely nDCG@3, MRR, Recall@X, MAP@X, nDCG@X, where the cut-off
is set to 1000 for the CAsT 2020 and 500 for the CAsT 2021. For each metric,
we calculate the mean and variance of performance across the different queries
in the dataset. With this in mind, we present below the different baselines and
scenarios used to evaluate each component of our model.

First-Stage Ranking Scenarios. To evaluate the effectiveness of our first-
stage ranking model (Sect. 3.1), we compare our approach CoSPLADE, based
on the query representation of Eq. (2) with different variants (the document
encoder is set to the original SPLADE encoder throughout our experiments):
SPLADE_rawQuery(lower bound): SPLADE [11] using only the original
and ambiguous user queries qn; SPLADE_goldQuery(kind of upper bound):
SPLADE using the manually rewritten query q∗

n; CQE [18], a state-of-the-art
dense contextualized query representation learned using learning-to-rank on a
dataset with pseudo-labels. While the two former aim at evaluating how much

7 https://sites.google.com/view/qanta/projects/canard.

https://sites.google.com/view/qanta/projects/canard
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our model captures contextual information, the latter is a TREC CAsT partici-
pant closely related to our work.

To model answers when representing the query using q̂answers
n,k , we used two

historical ranges (“All” with k = n−1 answers and “Last” where we use only the
last one, i.e. k = 1) and three types of answer inputs: Answer in which answers
are the canonical answers; Answer-Short in which sentences are filtered as
in the best performing TREC CAsT approach [20]. This allows for consistent
input length, at the expense of losing information; Answer-Long As answers
from CANARD are short (a few sentences extracted from Wikipedia – contrarily
to CAsT ones), we expand them to reduce the discrepancy between training and
inference. For each sentence, we find the Wikipedia passage it appears in (if it
exists in ORConvQA [25]), and sample a short snippet of 3 adjacent sentences
from it.

Finally, we also conducted ablation studies (on the best of the above vari-
ants) by modifying either the way to use the historical context or the training
loss: flatContext a one-encoder version of our SPLADE approach in which we
concatenate all information of the context to apply SPLADE to obtain a single
representation of the query (instead of two representations q̂queriesn and q̂answers

n,k

as in Eqs. 2 and 3) trained using a MSE loss function (Eq. 6) since there are no
more two representations. MSE the version of our SPLADE approach trained
with the MSE loss (Eq. 6) instead of the proposed one (Eq. 8); cosine the version
of our SPLADE approach trained with a cosine loss instead of the proposed loss
(Eq. 8). The cosine loss is interesting because it is invariant to the scaling factor
that preserves the document ordering (Eq. 1).

Second-Stage Ranking Scenarios. We consider different scenario for our
second-stage ranking model: T5Mono_RawQuery the T5Mono ranking model
[24] applied on raw queries; T5Mono_GoldQuery the T5Mono ranking model
applied on gold queries; T5Mono_CQR the T5Mono ranking model applied
on query reformulation generated with a pre-trained T5 (using the CANARD
dataset); CoSPLADE_[context]_[number]: different versions of our second-
stage ranking model input (Eq. 9), varying 1) the presence or absence of the past
queries within the reformulation, and 2) the number K of keywords identified as
relevant by the first-stage ranker: 5, 10, 20.

TREC Participant Baselines. For each evaluation campaign (2020 and
2021), we also compare our model with the best, the median and the lowest
TREC CAsT participants presented in the two overviews [6,8], where partici-
pants are ranked according to the nDCG@3 metric. Please note that we are not
able to assess if results are significant since we report the effectiveness metrics
presented in the TREC overview [7,8].
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Table 1. Effectiveness of different scenarios of our first-stage ranking model on the
TREC CAsT 2021.

Recall@500 MAP@500 MRR nDCG@500 nDCG@5 nDCG@3

Baselines
SPLADE_rawQuery 30.8± 2.7 5.5± 0.9 21.3± 2.9 17.8± 1.8 12.8± 1.9 13.1± 2.1
SPLADE_goldQuery 68.8± 2.0 16.1± 1.2 55.5± 3.3 42.8± 1.7 35.2± 2.4 38.3± 2.8
CQE [19] from [8] 79.1 28.9 60.3 55.7 – 43.8
Effect of answer processing: CoSPLADE_. . .

AllAnswers 79.5± 2.2 28.8± 1.7 61.7± 3.1 55.3± 2.0 44.1± 2.6 46.5± 2.9
AllAnswers-short 72.8± 2.6 25.7± 1.9 54.4± 3.3 49.5± 2.3 38.6± 2.7 40.1± 3.0
AllAnswers-long 80.4± 2.1 29.3± 1.8 62.0± 3.2 55.6± 2.1 46.3± 2.7 48.9±3.0
LastAnswer 83.4± 2.0 31.2± 1.8 61.8± 3.1 58.1± 2.0 46.0± 2.7 47.4± 3.0
LastAnswer-short 79.2± 2.2 28.1± 1.8 61.4± 3.3 54.3± 2.1 44.7± 2.7 46.4± 3.0
LastAnswer-long 85.2±1.8 32.0±1.7 64.3±03.0 59.4±1.9 47.7± 2.6 48.6± 3.0
CoSPLADE_LastAnswer-long variants
flatContext 77.0± 2.0 26.0± 2.0 55.0± 3.0 52.0± 2.0 41.0± 3.0 42.0± 3.0
MSE loss 70.9± 2.4 21.6± 1.7 48.7± 3.4 45.2± 2.3 34.9± 2.8 36.9± 3.1
cosine loss 70.4± 2.5 22.6± 1.7 52.5± 3.3 46.9± 2.2 37.5± 2.7 39.0± 3.0

5 Results

5.1 First-Stage Ranking Effectiveness

In this section, we focus on the first-stage ranking component of our CoSPLADE
model. To do so, we experiment different scenarios aiming at evaluating the
impact of the designed loss (Eq. 8) and the modeling/utility of evidence sources
(Eqs. 3 and 4). Results of these different baselines and scenarios on the TREC
CAsT 2021 dataset are provided in Table 1 – similar trends are observed on CAsT
2020. We provide detailed results (at query level) in the GitHub repository.

In general, one can see that all variants of our approach (CoSPLADE_*
models) outperform the scenario applying the initial version of SPLADE on raw
and, more importantly, gold queries. This is very encouraging since this latter
scenario might be considered an oracle, i.e. the query is manually disambiguated.
Finally, we improve the results over CQE [18] for all the metrics – showing that
our simple learning mechanism, combined with SPLADE, allows for achieving
SOTA performance.

LeveragingQueries andAnswers History Better Contextualizes the Current Query.
The results of the flatContext scenario w.r.t. to the SPLADE_goldQuery allow
comparing the impact of evidence sources related to the conversation since they
both use the same architecture (SPLADE). We can observe that it obtains better
results than SPLADE_goldQuery (e.g., 77 vs. 68.8 for the Recall@500 metric),
highlighting the usefulness of context to better understand the information need.

More Detailed Answers Perform Better. Since answers are more verbose than
questions, including them is more complex, and we need to study the different
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possibilities (CoSPLADE_AllAnswers* and CoSPLADE_LastAnswer*). One
can see that: 1) trimming answers (*-short) into a few keywords is less effec-
tive than considering canonical answers, but 2) it might be somehow effective
when combined with the associated Wikipedia passage (*-long). Moreover, it
seems more effective to consider only the last answer rather than the whole set
of answers in the conversation history8. Taking all together, these observations
highlight the importance of the way to incorporate information from answers
into the reformulation process.

Dual Query Representation with Asymmetric Loss Leverages Sparse Query Rep-
resentations. The results of the flatContext scenario show that considering at
once past queries and answers perform better (compared to the MSE loss sce-
nario which is directly comparable). However, if we separate the representations
and use an asymmetric loss function, the conclusion changes. Moreover, the
comparison of our best scenario CoSPLADE_LastAnswer-long with a similar
scenario trained by simply using a MSE or a cosine losses reveals the effec-
tiveness of our asymmetric MSE (Eq. 7). Remember that this asymmetric loss
encourages the consideration of previous answers in the query encoding. This
reinforces our intuition that the conversation context, and particularly verbose
answers, is important for the conversational search task. It also reveals that the
context should be included at different levels in the architecture (input and loss).

5.2 Second-Stage Ranking Effectiveness

In this section, we rely on the CoSPLADE_LastAnswer-long model as a first
stage ranker, and evaluate different variants of the second-stage ranking method
relying on the T5Mono model. For fair comparison, we also mention results
obtained by a T5Mono ranking model applied on raw and gold queries, as well
as query reformulated using a T5 generative model. Results on the TREC CAsT
2021 dataset are presented in Table 2.

The analysis of the CoSPLADE model variants allows to highlight differ-
ent observations regarding the usability of the context and the number of key-
words added to the query. First, adding the previous questions to the current
query in the prompt (i.e., “Context”) seems to improve the query understand-
ing and, therefore, positively impacts the retrieval effectiveness. For instance,
when 5 keywords are added, the context allows reaching 51.5% for the nDCG@3
against 45.9% without context. Second, the performances tend to increase with
the number of additional keywords, particularly for scenarios without context,
which is sensible. This trend is less noticeable for the scenarios with context since
the best scores are alternatively obtained considering either 10 or 20 keywords.
Notice that adding 10 or 20 keywords is more effective than only considering 5
keywords (e.g. 54.4% vs. 51.5% for the nDCG@3 metric). Thus, It seems that
keywords help to reformulate the initial information need but they can lead to
saturation when they are too numerous and combined with other information.
8 This might be due to the simple way to use past answers, i.e. Equation 4, but all the

other variations we tried did not perform better.
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Table 2. Effectiveness of different scenarios of our second-stage ranking model on
TREC CAsT 2021.

Recall@500 MAP@500 MRR nDCG@500 nDCG@5 nDCG@3

Baselines
T5Mono_RawQuery 78.4± 2.3 21.0± 1.8 39.6± 3.2 45.9± 2.1 29± 2.9 28.4± 3.0
T5Mono_GoldQuery 86.1± 1.7 44.1± 1.9 78.7± 2.7 68.5± 1.8 63.2± 2.7 64.6± 2.8
T5Mono_CQR 80.4± 2.2 30.0± 1.9 58.2± 3.4 55.3± 2.1 43.6± 3.0 44.6± 3.2
coSPLADE-based second stage variants
CoSPLADE_NoContext_5 84.3± 1.8 31.7± 2.0 61.6± 3.3 58.1± 2.0 45.5± 2.8 45.9± 3.1
CoSPLADE_NoContext_10 83.1± 1.9 32.0± 1.7 66.0± 3.1 59.1± 1.9 48.5± 2.6 49.8± 2.9
CoSPLADE_NoContext_20 84.8± 1.7 33.4± 1.8 66.0± 3.0 60.4± 1.8 47.4± 2.6 49.6± 2.9
CoSPLADE_Context_5 85.0±1.7 35.0± 1.8 68.4± 3.0 61.7± 1.9 51.5± 2.6 51.5± 02.9
CoSPLADE_Context_10 84.8± 1.7 36.5±1.9 67.8± 3.1 63.0±1.9 52.0± 2.7 53.3± 3.1
CoSPLADE_Context_20 84.9± 1.7 35.5± 1.8 69.8±3.0 62.2± 1.9 51.9± 2.6 54.4±2.9

Table 3. TREC CAsT 2020 and 2021 performances regarding participants

TREC CAsT 2020 Recall@1000 MAP@1000 MRR nDCG@1000 nDCG@5 nDCG@3

TREC participant (best) 63.3 30.2 59.3 52.6 – 45.8
TREC participant (median) 52.1 15.1 42.2 36.4 – 30.4
TREC participant (low) 27.9 1.0 5.9 11.1 – 2.2
CoSPLADE 82.4± 2.0 26.9± 1.5 58.1± 2.9 54.2± 1.8 41.2± 2.4 44.0± 2.7
TREC CAsT 2021 Recall@500 MAP@500 MRR nDCG@500 nDCG@5 nDCG@3
TREC participants 1 (best) 85.0 37.6 67.9 63.6 – 52.6
TREC participants 2 (median) 36.4 17.6 53.4 33.6 – 37.7
TREC participants 3 (low) 58.9 7.6 27.0 31.4 – 15.4
CoSPLADE 84.9± 1.7 35.5± 1.8 69.8± 3 62.2± 1.9 51.99± 2.6 54.4± 2.9

By comparing the best model scenarios with the more basic scenarios apply-
ing the T5Mono second-stage ranker on raw and gold queries, we can observe that
our method allows improving the retrieval effectiveness regarding initial queries
but is not sufficient for reaching the performance of T5Mono_GoldQuery. How-
ever, results obtained when applying T5Mono on queries reformulated by T5
highlight that the contextualization of an initial query is a difficult task. Indeed,
the T5Mono_CQR scenario is less effective than the T5Mono_GoldQuery one,
depending on the metrics, the scores differ from 6 to 20 points.

Moreover, it is interesting to notice that the SPLADE model applied on
raw and gold queries (first-stage ranking in Table 1) obtains lower results than
the T5Mono model on the same data (second-stage ranking in Table 2). It can
be explained by the different purposes of those architectures: SPLADE is a
sparse model focusing on query/document expansion while T5Mono is particu-
larly devoted to increase precision. However, it is worth noting that combining
SPLADE and T5Mono as first and second-stage rankers reaches the highest
effectiveness results in our experimental evaluation. This demonstrates the effec-
tiveness of the CoSPLADE approach to both contextualize queries and effectively
rank documents.
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5.3 Effectiveness Compared to TREC CAsT Participants

We finally compare our approach with TREC CAsT participants for the 2020
and 2021 evaluation campaigns (Table 3). For both years, we reached very close
or better performances than the best participants. Indeed, CoSPLADE outper-
forms the best TREC participant for the 2020 evaluation campaign regarding
Recall@1000 and nDCG@1000. For 2021, our model obtains better results than
the best one for the MRR and nDCG@3 metrics. For both years, the best partic-
ipant is the h2oloo team [8,20] where they use query reformulation techniques,
using T5. Our results suggest that our approach focusing on a sparse first-stage
ranking model allows combining the benefit of query expansion and document
ranking in a single model that eventually helps the final reranking step. In other
words, simply rewriting the query without performing a joint learning document
ranking can hinder the overall performance of the search task.

5.4 Efficiency

The first stage ranker is based on SPLADE, a sparse retrieval model and is
therefore efficient. Detailed analysis in terms of FLOPs can be found in [10]. As
our loss does not include any regularization loss to preserve sparsity, it is inter-
esting to look at how they evolve compared to SPLADE. The average number of
non-zero entries increases only for our AllAnswers variants (from around 60 for
gold/raw to 80), showing that in the future we might benefit from controlling
sparsity to improve the CoSPLADE efficiency. Interestingly, the LastAnswers
variants have a slightly higher sparsity and perform better.

6 Conclusion

In this paper, we have shown how a sparse retrieval neural IR model, namely
SPLADE [10], could be leveraged together with a lightweight learning process
to obtain a state-of-the-art first-stage ranker. We further showed that this first-
stage ranker could be used to provide context to the second-stage ranker, lead-
ing to results comparable with the best-performing systems. Future work may
explore strategies to better capture the information from the context or to explic-
itly treat user feedback present in the evaluation dataset. We also envision to
evaluate our approach on other conversational QA datasets, such as CoQA [31],
OR-ConvQA [27], or ConvMix [3].
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Abstract. Systematic reviews (SRs) are a crucial component of
evidence-based clinical practice. Unfortunately, SRs are labor-intensive
and unscalable with the exponential growth in literature. Automating
evidence synthesis using machine learning models has been proposed but
solely focuses on the text and ignores additional features like citation
information. Recent work demonstrated that citation embeddings can
outperform the text itself, suggesting that better network representation
may expedite SRs. Yet, how to utilize the rich information in hetero-
geneous information networks (HIN) for network embeddings is under-
studied. Existing HIN models fail to produce a high-quality embedding
compared to simply running state-of-the-art homogeneous network mod-
els. To address existing HIN model limitations, we propose SR-CoMbEr,
a community-based multi-view graph convolutional network for learn-
ing better embeddings for evidence synthesis. Our model automatically
discovers article communities to learn robust embeddings that simulta-
neously encapsulate the rich semantics in HINs. We demonstrate the
effectiveness of our model to automate 15 SRs.

Keywords: Systematic review · Network embedding · Heterogeneous
information network · Multi-view learning · Graph convolution network

1 Introduction

Systematic reviews (SRs) serve as a cornerstone of evidence-based medicine
and bridge the research-to-practice gap by ensuring all the available evidence
is accessible to decision-makers. An excellent SR carefully synthesizes individ-
ual studies such as clinical trial results to guide and inform clinical practice. As
a motivating example, a SR was used to synthesize findings from randomized
intervention studies to determine the impact of angiotensin-converting-enzyme
(ACE) inhibitors for treating high blood pressure [7]. As a result, ACE inhibitors
now are commonly prescribed to treat hypertension, heart failure, and various
other heart conditions. Unfortunately, conducting a SR is an extremely time-
consuming and complex task [12]. Established methodologies for performing a
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Fig. 1. A simplified illustration of the SR screening process using “ACEInhibitors” from
Cohen [7] dataset.

SR require a comprehensive search to identify all the relevant studies for inclusion
[5]. Yet these broad searches yield imprecise search results (e.g., <2% relevant
documents). Figure 1 provides an example of the laborious citation screening
process for ACE inhibitors. Only 1.19% of the articles were selected for full-text
review based on the title and abstract of which 1.61% were included (i.e., ana-
lyzed and evaluated) in the actual review itself. Thus current estimates for the
average time to conduct a SR is 67 weeks from registration to publication [3].
Clearly, this process is unsustainable nor scalable, especially given the exponen-
tial growth of biomedical literature [2].

Given the importance of SR and the labor-intensive work it entails, research
on machine learning and text mining methods to automate the evidence synthesis
while maintaining the rigor of a traditional SR have been proposed [28]. In par-
ticular, semi-automation can help speed up the screening process, an extremely
tedious endeavor due to a large number of articles [25]. The standard method-
ology for automating the screening process focuses predominately on the text
itself using representations like bag-of-words or word embeddings [15,19,24].
Yet, recent work demonstrated that the rich citation structure can be utilized
to improve the screening process [20]. Their work used a homogeneous network
embedding technique, LINE, to learn the citation network representations and
these representations were able to outperform the text itself on 10 of the 15
SRs. These promising results suggest that better network representation may
expedite evidence synthesis.

Citation networks can be represented as a graph structure that includes arti-
cles (nodes) and references (edges). This representation is used across many
application domains including social networks, the world wide web, and knowl-
edge graphs. As real-world networks can be huge and complex, it is difficult to
directly analyze the graph, thus learning meaningful low-dimensional vectors of
the nodes and edges, or network embeddings have been proposed while preserving
the features of the network [21]. Recently, there has been an emergence of deep
learning-based models such as graph neural networks (GNN) to learn the net-
work embeddings [11,22,31]. One popular method is Graph Convolutional Net-
work (GCN) [17] which can efficiently learn the structural dependencies through
convolutional operations on the graph. However, GCN is designed for a homoge-
neous network, whereas the biomedical citation graph contains multiple objects
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(nodes) and link types (edges) including author information, venue information,
and Medical Subject Headings (MeSH) terms that are used for indexing articles.

Since many real-world networks are heterogeneous information networks
(HIN) with multiple objects and link types, several variations of GNN and GCN
models have been proposed for HIN embeddings. However, existing models have
focused on preserving the meta-path structure (i.e., the path with various object
types and edge types that captures the semantics of the network) by transform-
ing the HIN into several homogeneous networks to learn the representations
[9,33,42]. Unfortunately, the defined meta-path impacts the embedding quality.
Thus, ie-HGCN [40] automatically evaluates all possible meta-paths and projects
the representations of different types of neighbor objects into a common semantic
space. Yet, ie-HGCN is susceptible to noise in the graph.

We propose SR-CoMbEr, a Community Multi-view based Enhanced Graph
Convolutional Network for Systematic Review. SR-CoMbEr constructs multi-
ple local GCNs, each centered around a community. To learn from the different
object and link types, each community adopts a multi-view approach where a
view-specific representation is learned to capture the complex structure infor-
mation for each relation type. Moreover, we pose the multiple community GCN
aggregation problem as a multi-modal problem to yield a robust final embedding
that reflects the different community representations. Our main contributions of
this work are:

– We pose the problem of HIN representation as a multi-view learning problem
to avoid specification of the meta-path while automatically capturing the
network semantics.

– We propose an innovative multiple, community-based multi-view GCN to
capture the structural heterogeneity that is useful for downstream tasks.

– We conduct extensive experiments on SR screening to demonstrate the supe-
rior performance of SR-CoMbEr over HIN baselines.

2 Preliminaries

In this section, we introduce the heterogeneous information network, or HIN, and
Graph Convolutional Network, or GCN, a state-of-the-art network embedding
model.

2.1 Heterogeneous Information Network

A HIN contains multiple types of objects and links. Formally, such a network is
defined as follows.

Definition 1. HIN. A HIN is defined as G = (V, E , φ, ψ), where V is the set
of objects, E is the set of links, φ is the object type mapping function, and ψ
is the link mapping function. φ is defined as φ : V → A, and ψ is defined as
ψ : E → R. A and R denotes predefined object and link types respectively where
|A| + |R| > 2.
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A homogeneous network contains a single object and relation type such as a
social network with User (U) as an object type and a single type of link U – U. On
the other hand, HIN contains multiple types of objects such as a bibliographic
network which has four types of objects (i.e., Author (A), Paper (P), Venue (V),
and MeSH terms (M) and three link types, A – P, P – V, and P – M.

2.2 Graph Convolutional Networks

GCNs have been extensively studied and used for a wide range of tasks (see
[17] for a survey). Formally, GCNs can be defined as follows. Suppose Hk is the
feature representation of the k -th layer in GCN, the propagation becomes

Hk = σ(D̃− 1
2 ÃD̃− 1

2 Hk−1W k) (1)

where Ã = A + I ∈ RN×N is the adjacency matrix A with a self connection. D̃
is the degree matrix of Ã which is formally defined as D̃ii =

∑
i Ãij . And W k

is a trainable weight matrix. As shown in Eq. (1), the convolution operation is
determined by the given graph structure and GCN only learns the node-wise
linear transform Hk−1W k. Thus, the convolution layer can be interpreted as the
composition of a fixed convolution followed by an activation function σ on the
graph after the node-wise linear transformation.

3 Related Works

Methods for semi-automating the citation screening step of SRs have been widely
studied [28]. Most of these models use bag-of-words and their combinations
as input representations to a supervised learning model (e.g., support vector
machine or random forest) [7,15]. For example, Cohen et al. [6] proposed to use
uni-grams and bi-grams to treat each of them as a single word, and Bannach-
Brown et al. [1] used tri-gram and NLP tagger prior to extracting uni-grams.

However, articles contain rich information besides the text, such as citations,
author, venue, and keywords. This information can be captured using a HIN
where network embeddings can serve as the article representation. Several HIN
network embedding methods have been proposed. Existing work focuses on pre-
serving the meta-path structure which contains the semantic information of the
graph. For example, ESim [33] uses multiple user-defined meta-path to learn
representations in the user-preferred embedding space, and metapath2vec [9] is
a skip-gram model that uses meta-path based random walk. Some works extend
Graph Neural Networks (GNNs) for modeling HIN. For example, HAN [38] trans-
forms the given HIN into a homogeneous network based on the meta-path and
uses GNN based on hierarchical attention.

However, these models require manually selected meta-path or only accept
one meta-path which may cause an information loss by not capturing all mean-
ingful relations. Thus, some recent works proposed learning the meta-path.
GTN [41] learns the meta-path to generate multiple new graphs based on the
defined meta-path to apply GCN, and ie-HGCN [40] learns the weights of the
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meta-paths to select the best meta-path for their model. While HIN embedding
methods are proposed by enhancing GCN by learning meta-path, some research
attempts to use multi-view learning for HIN embedding. For example, Zhang et
al. [43] propose to use a fusion of multiple GCNs modalities of brain images in
relationship prediction, and Ma et al. [23] uses multi-view graph auto-encoder
to capture the similarities of drug features.

4 SR-CoMbEr

SR-CoMbEr is inspired by the multiple-filtering local GCN model [39], which
constructs multiple local versions of a homogeneous network to capture different
aspects of the node attributes while providing robustness to noise. Yet, the local
versions of the multiple GCN approach may fail to capture the complex neigh-
borhood structure when solely focusing on a homogeneous network. Moreover,
the model can be sensitive to the number of local filters. We address these lim-
itations using three parts: (1) automatic identification of communities in HIN,
(2) community multi-view learning to capture information from each link type,
and (3) global consensus across the communities. Figure 2 depicts SR-CoMbEr’s
overall architecture, where the goal is to learn the representation of the target
object α (i.e., circle node (P)).

4.1 Heterogeneous Community Detection

The ability to capture the neighborhood information is a crucial aspect of ensur-
ing the quality of the network embedding. Many network embedding methods
use random walks to capture the neighborhoods before passing them to a deep
learning model. For example, the multiple-filtering local GCN model [39] uses
random walk to construct M local networks are constructed. However, sampling
of a single link type may not encapsulate the community structure via other
link types while sampling multiple links may not be sufficient to capture the
complicated structure [42]. However, utilizing the entire HIN can pose computa-
tional problems for large networks as well as limit their generalizability to unseen
data [39]. Instead, we propose to utilize the community structure ubiquitous in
networks, where a group of nodes exhibits more intra-connections than inter-
connections with external nodes [10], to determine the construction of the local
networks. Given a set of communities, a random walk is initiated using the nodes
belonging to the community. Thus each local GCN version learns a better local
embedding by integrating information found in the community structure. It is
important to note that SR-CoMbEr does not restrict the random walk to just
links between community nodes, therefore the local network may contain neigh-
borhood information of nodes outside the community. Moreover, since a node
may be part of multiple communities, the combination of multiple local GCNs
will thereby reflect different neighborhood information for the same object.
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Fig. 2. The framework overview of the SR-CoMbEr. The input network is a toy exam-
ple of a PubMed Network which contains four node types and three edge types. Four
node types are Paper (P), Author (A), Venue (V), and MeSH Terms (M), and three
edge types are P – A, P – V, and P – M. The target node is set to P which is used for
the node classification task.

The community-based focus of each local GCN lends itself naturally to auto-
matic detection of the “optimal” number of local filters, M. While there are many
types of community detection methods including clustering-based methods [26]
and modularity-based methods [27], many of these models are developed for the
homogeneous setting. Instead, SR-CoMbEr uses Tucker decomposition [35], a
popular tensor factorization model, to identify the community structure and the
number of optimal filters in the HIN setting. Tucker decomposition can be viewed
as a generalization of singular value decomposition (SVD) which can detect com-
munities in homogeneous networks [30]. The HIN tensor, X , is a higher-order
tensor where each object type serves as a mode of the tensor and the entries
in the tensor capture the status of the links between the different modes of the
tensor. For Fig. 2, a paper by author by venue by term tensor (4-mode tensor),
can be constructed where each element captures who authored a paper, where
it was published, and what terms were present in that paper. Thus, the tensor
succinctly encapsulates the relations between different object types.

Formally, for a 3rd order tensor, X ∈ R
I×J×K , Tucker decomposition approx-

imates the tensor into a core tensor, H ∈ R
P×Q×S multiplied by a factor matrices

along each mode, A ∈ R
I×P , B ∈ R

J×Q, C ∈ R
K×S :

X ≈ H ×1 A ×2 B ×3 C. (2)

The core tensor, H captures the level of interactions between the different com-
ponents, and the factor matrices, A,B,C, are often assumed to be column-wise
orthonormal. We note that Tucker decomposition generalizes to any N -mode
tensor, does not impose column-wise orthonormal factor matrices nor does the
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core tensor have decreasing Frobenius norm along each matrix slice. The gen-
eral Tucker properties deviate from the SVD assumptions but can be integrated
through the algorithmic choice for computing the decomposition. In addition,
the column rank of each factor matrix can be different (i.e., P �= Q �= S) in the
Tucker decomposition. We refer the reader to [18,29] for additional details.

Since each local filter encapsulates a community, the column rank of each
factor matrix is set to be the same, P = Q = S. To compute the Tucker decom-
position, we use the higher-order orthogonal iteration (HOOI) algorithm as it is
one of the more efficient techniques. HOOI uses SVD to compute the orthonor-
mal basis of each factor matrix [8]. Moreover, the resulting core tensor and factor
matrices can be seen as the generalized counterparts of the matrix SVD. Thus,
the superdiagonal entries of the core tensor (Hiii,∀i ∈ [1, R]) is comparable to
the singular values of SVD (i.e., diagonal entries in Σ). As a result, the number
of communities can be calculated as the point in which the superdiagonal values
converge, similar in fashion to using the Σ matrix in SVD to find the number
of communities in a homogeneous network [30]. This eliminates the need for the
user to grid search the number of filters M.

The next step is to identify the nodes that belong to each community. With-
out loss of generality, we assume that the target object, α, corresponds to the first
mode of the tensor. Each object can then be represented in a low-dimensional
vector space (i.e., P << I) using the row vectors of the corresponding fac-
tor matrix A. Spectral clustering is performed on A to identify the community
members using M for each node in the target object α. For simplicity of imple-
mentation, SR-CoMbEr uses the k-means algorithm to generate a hard clus-
ter assignment but the framework can use any spectral clustering method. The
graph for each community (local) filter is then obtained by performing a fixed-
size random walk starting with only nodes within the community. Note that the
community filters can contain not just nodes within the same community but
also other nodes that are connected during the random walk process. The entire
community detection process is summarized in Algorithm 1.

4.2 Community Multi-view Learning

Since random walk of G directly may fail to capture the complex structure,
SR-CoMbEr treats each link type as a different view of the network. For each
link type containing the target object α, a view of the community is created
by performing the fixed-size random walk using only this link type. For each
community GCN m, a view is constructed from each link type thus yielding
|R| different representations, Xm

1 , · · · ,Xm
|R|. As an example, three views are

constructed for Fig. 2 with a different link type (e.g., P–A, P–V, P–M). Thus,
rather than having a single community GCN, each community will have multiple
view-specific filters of the network.

Although each view contains a single link type, GCN still cannot be applied
directly because the neighbors of an object are of different types. Moreover, the
adjacency matrix is not a square matrix and thus cannot be fed into Equation (1),
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Algorithm 1: Heterogeneous Community Detection in SR-CoMbEr.
Input: Graph G = (V, E , φ, ψ), φ : V → A, ψ : E → R
Output: Number of filters M, Communities C1, ..., CM

1 Construct tensor X from G;
2 Compute X ≈ H ×1 A ×2 B ×3 C using HOOI;
3 Set M based on convergence of values in the superdiagonal entries of H;
4 Detect communities of α, C1, C2, . . . , CM , using spectral clustering of A;
5 return M, C1, C2, . . . , CM ;

where Ã is the square matrix. We thus use the idea of projection, introduced in ie-
HGCN [40], to ensure both object types are in the same space. Suppose the view
captures the link α–β, where Vα and Vβ represent the set of objects in the α and
β node type, respectively. Let Aα−β ∈ R|Vα|×|Vβ | denote the adjacency matrix
between α and β and the degree matrix Dα−β = diag(

∑
j Aα−β

ij ) ∈ R|Vα|×|Vα|.
Every object is then projected into the same space and passed to the GCN:

Ãα−β = (Dα−β)−1 · Aα−β

Xα−β = Ãα−β · Wα−β (3)

where Ãα−β is the row-normalized matrix and Wα−β is the trainable convolution
weight matrix of α–β relation.

The community embedding, Xm, should capture all the information from
the |R| views while reducing information redundancy that may be present in
the views. Moreover, certain views may learn better representations of the com-
munity. Thus, to summarize the different view modalities simultaneously, SR-
CoMbEr adopts the multi-modal stacked autoencoder (MAE) [4]. MAE takes
multiple input representations, concatenates the input together, and then passes
this to an autoencoder to induce a succinct, shared representation from which
to reconstruct the original (concatenated) inputs. Formally, the global consensus
process for the shared representation in the mth community GCN is:

Hm = MAE(Xm
1 ,Xm

2 , . . . , Xm
|R|). (4)

4.3 Global Consensus

Since each community multi-view GCN representation Hm, captures
community-specific information, the learned representation can differ. We for-
mulate the aggregation of the community multi-view GCN representation as a
multi-modal problem. Although the final shared representation can be computed
as the average of the community representations, this assumes each community
is equivalent. In practice, some community representations are of higher quality
and thereby should have higher weights. MAE is used again to learn the final
representation across the M communities:

H = MAE(H1,H2, . . . , HM) (5)
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Algorithm 2: The pseudocode of SR-CoMbEr.
Input: Graph G = (V, E , φ, ψ), φ : V → A, ψ : E → R

Number of localized filters M
Output: Final representation H

1 Compute M, C1, C2, . . . , CM using Algorithm 1;
/* Loop through the communities */

2 for i=1, ..., M do
/* Loop through the views */

3 for α − β ∈ R do
4 Run random walk on objects ∈ Cα

i and ∈ Cβ
i ;

5 Compute Xα−β according to Eq. (3);
6 end
7 Compute Hi according to Eq. (4);
8 end
9 Compute loss and update parameters;

10 return H according to Eq. (5);

The final embedding representation, H, is then used for a variety of tasks
such as classification, clustering, etc., where the loss function is tailored towards
the specific task. For example, in a multi-class node classification task, H is
passed to a fully connected layer with softmax activation, and the loss is defined
as the cross-entropy over the object type. The weights are then learned using
stochastic gradient descent with backpropagation. Algorithm 2 shows the overall
training procedure of SR-CoMbEr.

5 Experimental Design

5.1 Dataset

We evaluate our model on the publicly available dataset provided by Cohen et al.
[7]. The dataset includes 15 SRs (or topics) concerning different drug efficacies
which were performed by members of evidence-based practice centers (EPCs). In
the dataset, each SR topic contains a set of PubMed article identifiers (PMID)
and their associated title/abstract screening status (i.e., whether or not the arti-
cle passed the title/abstract screening stage). The PMID allows us to retrieve the
metadata (citation, author, venue, and MeSH terms) from the PubMed database.
There exist other SR datasets [32], however, the dataset does not contain the
PMID. We extract a subset of articles from the PubMed database using Entrez
API1. Including all the articles from the Cohen dataset and using Entrez API, we
trace articles up to 2-hops based on the citation information and retrieve about
7.6M articles with the meta-data including author, venue, and MeSH terms. The
number of articles screened ranged from 310 (Antihistamines) to 3465 (Statins)

1 https://www.ncbi.nlm.nih.gov/books/NBK25501/.

https://www.ncbi.nlm.nih.gov/books/NBK25501/
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Table 1. Comparison of baseline characteristics. The * symbol next to the model name
denotes a homogeneous network model. The columns MP, SS, and MVF represent
meta-path specification, subgraph sampling, and multi-view fusion, respectively.

MP SS MVF Module Supervision

LINE∗ ✗ ✗ ✗ Skip-gram ✗

GCN∗ ✗ ✗ ✗ GCN ✓

HAN ✓ ✗ ✗ Transformer ✓

GAHNE ✗ ✓ ✓ GCN ✓

ie-HGCN ✗ ✓ ✓ GCN ✓

SR-CoMbEr ✗ ✓ ✓ GCN ✓

with anywhere from 2.07% (SkeletalMuscleRelaxants) to 32.49% (Triptans) pass-
ing the abstract screening process. This demonstrates a relatively large degree
of imbalance.

5.2 Baselines

We compare with five baselines spanning both homogeneous and HIN embedding
methods in the SR task. Table 1 compares the characteristics of baseline models.

– LINE [34]. A conventional network embedding method that is using first-
and second-proximity. Since it is designed for a homogeneous network, we
transform the HIN by considering collapsing the object and link types as a
single type and use LINE to learn the representation of the whole HIN.

– GCN [17]. A semi-supervised graph convolutional network that is designed
for a homogeneous network. Similar to LINE, we ignore the heterogeneity of
the network and collapse it into a homogeneous network..

– HAN [38]. A model to learn representations for HIN. It transforms the
HIN into several homogeneous sub-networks by user-defined meta-paths. For
object-level aggregation, it uses GAT [36], then uses an attention mechanism
to fuse object representations from each sub-networks.

– GAHNE [21]. A model to learn representations for HIN. It converts the
network into a series of homogeneous sub-networks to capture the semantic
information. Then an aggregation mechanism fuses the sub-networks with
supplemental information from the whole network.

– ie-HGCN [40]. A HIN embedding model that evaluates all possible meta-
paths and projects the representations of different types of neighbor objects
into a common semantic space using object- and type-level aggregation.

5.3 Evaluation Metrics

The recent trend for evaluating a SR task uses the area under the receiver
operating curve (AUC) for predicting whether or not the abstract was screened
or not to report the results [6,24]. Thus we evaluate the models using AUC.
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5.4 Implementation Details

Our method is implemented in Keras and the source code is publicly available2.
The source codes of the other baselines are provided by their authors and are
implemented in either PyTorch or TensorFlow. All experiments are conducted
on a machine with 1 Nvidia GeForce GTX 1080Ti and 11GB GPU memory. For
each SR task, we randomly split the articles in the SR into train-validation-test
as 50%−25%−25%, and use the validation set for the hyperparameter tuning.
Articles not in the target SR task are marked as irrelevant in the training process.

For the baseline models, we adopt the same hyperparameter settings intro-
duced in their respective papers. For LINE [34], we use a dimension of 128 for
each first- and second-order proximity resulting a dimension of 256 for the final
embedding. For GCN [17], we use the learning rate of 0.01, the dropout rate
of 0.5, and the L2 penalty weight decay of 0.0005. For HAN [38], the number
of attention heads is set to 8, and the meta-paths PAP, PMP, and APVPA are
used (P: Paper, A: Author, M: MeSH terms, and V: Venue). For GAHNE [21],
we used a learning rate of 0.005, a dropout of 0.5, an L2 penalty of 0.001, and
a dimension of 128. For ie-HGCN [40], the number of layers is set to 5, and the
dimension for the four hidden layers starting from the second layer is set to 64,
32, 16, and 8. For SR-CoMbEr, we use M = 12, set the random walk length to
20, and the embedding dimension to 128. The Adam optimizer [16] is used with
a learning rate of 0.01 and all parameters are initialized randomly. Dropout is
used for all layers except the output layer with a dropout rate of 0.5.

6 Experimental Results

6.1 Systematic Review

The AUC on the Cohen dataset is reported in Table 2 for each SR. The best
results are bolded and the second-best results are underlined. The results show
that HIN embedding outperforms homogeneous network embedding (LINE and
GCN). This demonstrates citation information and other node types (author,
venue, and MeSH terms) help to improve the performance of the SR task.

From the table, we observe SR-CoMbEr outperforms all other baselines from
0.002 to 0.018 by comparing with the second-best AUC score. This indicates the
importance of effectively modeling the HIN and demonstrates the effectiveness of
SR-CoMbEr in the SR task. Between the existing HIN models, HAN shows the
limitation of the user-defined meta-path. The results suggest that there are more
hidden but important paths that are difficult for users to define. In contrast, the
performance between GAHNE and ie-HGCN is similar. GAHNE performs better
when there are more papers excluded from the abstract screening process. For
example, the “SkeletalMuscleRelaxants” dataset has a total of 1643 articles in
the beginning but only 34 articles are selected from the abstract screening which
is only 2%. While GAHNE performs better in cases when fewer articles are

2 https://github.com/ewhlee/SR-CoMbEr.

https://github.com/ewhlee/SR-CoMbEr
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Table 2. Performance results (AUC score) for the SR task. The best score for each
SR is bolded and the second highest is underlined.

SR LINE GCN HAN GAHNE ie-HGCN SR-CoMbEr

ACEInhibitors 0.622 0.627 0.649 0.662 0.667 0.672
ADHD 0.597 0.605 0.621 0.644 0.646 0.659
Antihistamines 0.541 0.544 0.567 0.588 0.586 0.593
AtypicalAntipsychotics 0.601 0.607 0.617 0.638 0.636 0.641
BetaBlockers 0.629 0.632 0.658 0.671 0.677 0.684
CalciumChannelBlockers 0.636 0.64 0.662 0.67 0.666 0.688
Estrogens 0.577 0.583 0.607 0.629 0.626 0.631
NSAIDs 0.637 0.639 0.662 0.691 0.685 0.697
Opioids 0.632 0.635 0.654 0.667 0.671 0.686
OralHypoglycemics 0.555 0.559 0.582 0.591 0.583 0.598
ProtonPumpInhibitors 0.638 0.641 0.664 0.677 0.681 0.687
SkeletalMuscleRelaxants 0.64 0.643 0.658 0.672 0.677 0.684
Statins 0.606 0.609 0.633 0.653 0.659 0.665
Triptans 0.617 0.624 0.64 0.652 0.66 0.671
UrinaryIncontinence 0.633 0.639 0.658 0.678 0.675 0.683

selected, ie-HGCN performs better in cases when more papers are selected. For
example, “AtypicalAntipsychotics” has a total of 1120 articles in the beginning
and 363 articles passed the screening which is 32%.

6.2 Ablation Study

We assess the importance of each component in SR-CoMbEr for the final embed-
ding. LMV is a localized, multi-view model that does not use the heterogeneous
community detection component (i.e., Sect. 4.1). Each localized, multi-view filter
is subsampled using a random walk of all the nodes in the graph. Then the local
representations are aggregated using an average function. CoAvg extends LMV
by using the community detection module to construct the localized, multi-view
filters. However, unlike the SR-CoMbEr, it does not use the MAE to learn the
shared representation from the community filters (i.e., Eq. (5) is replaced with
H = AV G(H1,H2, ...,HM )). Table 3 summarizes the AUC scores on the test
set of the two different multi-view learning techniques on the ACEInhibitors SR
task. As shown in the table, incorporating the community information improves
the performance (see CoAvg versus LMV). By leveraging the community struc-
ture, the embedding model can capture different neighborhood information to
learn a better representation. While the overall results suggest that although
the performance boost is less compared to the community detection component,
MAE is beneficial to automatically learn the weights from each of the community
representations for the final embedding.

To better understand the importance of the community detection algorithm,
we compared the performance using SVD to identify the communities using just
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Table 3. Comparison of the AUC score using different community detection algorithms
on ACEInhibitors from the SR task.

LMV CoAvg CP SVD SR-CoMbEr

0.658 0.665 0.668 0.662 0.672

one view of the network [30] and CANDECOMP-PARAFAC (CP), a special
case of Tucker decomposition where the core tensor only has values along the
superdiagonal entries [18]. For SVD, let F ∈ R

m×n denote the adjacency matrix
of the link type with the largest number of nodes and the target node α. Under
SVD, F = UΣV ∗, where U ∈ R

m×p, V ∈ R
n×p matrix, and Σ ∈ R

p×p. Spectral
clustering is then performed in a similar fashion using M as the number of
clusters on the target object, α, and U as the low-dimensional embedding. For CP
decomposition, the alternating least square method is used to find the leading left
singular values [13]. As shown in the table, SR-CoMbEr (using HOOI algorithm)
for community detection outperforms other techniques (see CP and SVD). While
we identify 12 local filters for SR-CoMbEr using HOOI, SVD identifies 9 and
CP identifies 14. This shows the importance of identifying the optimal number
of filters as too many or too few filters can degrade the performance.

7 Conclusion

In this paper, we propose SR-CoMbEr to learn citation network representa-
tions for SRs. To avoid defining the meta-path, we formulate the problem using
multi-view learning to automatically capture the semantics of HIN. To encode
the structural heterogeneity and neighborhood information, we use community
detection and multiple community-based views of the network and fuse the repre-
sentations to obtain the final representation. We also introduce the use of HOOI
to compute the optimal number of filters in concert with community detection.
The experiments on 15 SRs show that SR-CoMbEr outperforms several state-
of-the-art HIN embedding models.

There are several limitations to our study. First, the improvements in results
are not substantially better even after all the extensive modeling. This is typical
in SR automation as the evaluation measures may be ill-suited for capturing
major improvements due to the dominance of irrelevant documents. Second,
our evaluation was limited in the number of topics considered. There are other
evaluation resources such as the CLEF eHealth TAR data, clinical outcomes [37],
SIGIR 2017 SysRev Query Collection [32], and the SWIFT-review dataset [14]
that can be explored for future work. Other promising future directions include
the incorporation of the article text as well as the structure of the PubMed HIN.

Acknowledgements. We thank the reviewers for their insightful suggestions and
comments. This work was supported by the National Science Foundation award IIS-
1838200 and IIS-2145411.
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Abstract. We present a new pre-training method, Multimodal Inverse
Cloze Task, for Knowledge-based Visual Question Answering about
named Entities (KVQAE). KVQAE is a recently introduced task that
consists in answering questions about named entities grounded in a visual
context using a Knowledge Base. Therefore, the interaction between the
modalities is paramount to retrieve information and must be captured
with complex fusion models. As these models require a lot of training
data, we design this pre-training task, which leverages contextualized
images in multimodal documents to generate visual pseudo-questions.
Our method is applicable to different neural network architectures and
leads to a 9% relative-MRR and 15% relative-F1 gain for retrieval and
reading comprehension, respectively, over a no-pre-training baseline.

Keywords: Visual question answering · Pre-training · Multimodal
fusion

1 Introduction

Knowledge-based Visual Question Answering about named Entities (KVQAE) is
a challenging task recently introduced in [50]. It consists in answering questions
about named entities grounded in a visual context using a Knowledge Base
(KB). Figure 1 provides two examples of visual questions along with relevant
visual passages from a KB. To address the task, one must thus retrieve relevant
information from a KB. This contrasts with standard Visual Question Answering
(VQA [1]), where questions target the content of the image (e.g. the color of an
object or the number of objects) or Knowledge-based VQA (about coarse-grained
object categories) [40], where one can rely on off-the-shelf object detection [17].
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Fig. 1. Example of visual questions about named entities from the ViQuAE dataset
along with relevant visual passages from its Knowledge Base [32].

In KVQAE, both text and image modalities bring useful information that must
be combined. Therefore, the task is more broadly related to Multimodal Infor-
mation Retrieval (IR) and Multimodal Fusion.

There are two paradigms for multimodal IR and for multimodal learning
more generally: early fusion (data- and feature-level) and late fusion (score- and
decision-level) [30]. On the one hand, late fusion is more straightforward as both
Natural Language Processing and Computer Vision techniques can be applied
independently. However, it neglects interactions between modalities. For exam-
ple, in Fig. 1, attempting to recognize Harold Macmillan without accounting for
him being a Prime Minister is suboptimal. On the other hand, the richness of
early fusion often comes at the cost of increasing complexity and model param-
eters. This adds an extra challenge for KVQAE, where the two existing datasets
are either small, because of a costly annotation process (ViQuAE [32]), or gen-
erated automatically (KVQA [50]), which leads to several limitations discussed
in [32]. To address this challenge, we propose the multimodal Inverse Cloze Task
(ICT) for pre-training the two early fusion models we define in this article for
tackling KVQAE. Multimodal ICT consists in considering a sentence paired with
a nearby image as a visual pseudo-question and its multimodal context as a rel-
evant visual passage. It is related to the visual cloze task proposed by [61], a
downstream task that requires modeling temporal events. Textual ICT was first
introduced in [31] to pre-train a neural retriever for textual Question Answering
(QA) and can be seen as a generalization of the skip-gram objective [41].

Our main contributions are: (i) Multimodal ICT, a new pre-training method
that allows tackling KVQAE, even for small datasets as ViQuAE; (ii) a multi-
modal IR framework for KVQAE; (iii) experiments with different neural network
architectures, including recently proposed multimodal BERTs.
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2 Related Work

Dense Retrieval. Dense Retrieval is a rapidly evolving field, surveyed in
[11,36], with new pre-training tasks, optimizing methods, and variants of the
Transformer architecture emerging [14,15,23,47]. [31] were the first to outper-
form sparse bag-of-words representations such as BM25 with dense representa-
tions for QA. Their approach relies on three components: (i) pre-trained language
models such as BERT [10], which allow to encode the semantic of a sentence in a
dense vector; (ii) a contrastive learning objective that optimizes the similarities
between questions’ and text passages’ embeddings (see Sect. 3); (iii) an unsuper-
vised training task, ICT (see Sect. 1). [27] criticize the latter for being computa-
tionally intensive1 and argue that regular sentences are not good surrogates of
questions. Instead, they propose DPR, which takes advantage of (i) the heuristic
of whether the passage contains the answer to the question to deem it relevant;
(ii) unsupervised IR methods such as BM25 to mine hard negatives examples,
which proved to be the key of their method’s success. We aim to take advan-
tage of both approaches by (i) pre-training our model on text QA datasets like
DPR; (ii) incorporating multimodality into this hopefully-well-initialized model
by adapting the ICT of [31] to multimodal documents.

Multimodal Fusion and Pre-training. The success of BERT in NLP [10],
which relies on the easily-parallelizable Transformer architecture [57], an unsu-
pervised training objective, and a task-agnostic architecture, has concurrently
inspired many works in the VQA and cross-modal retrieval fields [7,34,35,38,55,
56]. These models are unified under a single framework in [5] and partly reviewed
in [28]. All of these models rely on the Transformer architecture, often initialized
with a pre-trained BERT, in order to fuse image and text. The training is weakly
supervised, based upon image caption datasets such as COCO [37] or Concep-
tual Captions [51], and pre-trained object detectors like Faster R-CNN [48].
[22] show that these models learn nontrivial interactions between the modali-
ties for VQA. Multimodal BERTs can be broadly categorized into single-stream
and multi-stream. Single-stream models feed both text tokens’ embeddings and
image regions’ embeddings to the same Transformer model, relying on the self-
attention mechanism to fuse them. Instead, in the multi-stream architecture,
text and image are first processed by two independent Transformers before using
cross-attention to fuse the modalities. Both architectures have been shown to
perform equally well in [5]. In this work, we use a single-stream model to take
advantage of pre-training on text-only (on QA datasets). Also note that, while
inspired by these work, we do not use the same training objectives or data,
which are arguably unsuited for named entities’ representations, as explained in
the next section.

1 [31] use a batch size of over 4K questions.
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Multimodal Information Retrieval and KVQAE. Multimodal IR has
largely been addressed using late fusion techniques (see [9] for a survey) but
we are mostly interested in early fusion techniques in this work.

[9] review first attempts at early fusion. It was then systematically done by
concatenating the features of both modalities in a single vector, with a focus
on the feature weighting scheme. Concatenation is confronted with the curse of
dimensionality as the resulting feature space equals the sum of the dimensions
of each modality’s features.

[44] and [39] concurrently proposed an approach quite similar to ours for
Knowledge-based VQA. They adapt DPR [27] by replacing the question encoder
with LXMERT [56], which allows to fuse the question and image. However, unlike
us, they keep the passage encoder based on text-only and use the same pre-
training objectives as [56], namely Masked Language Modeling, Masked Region
Modeling, and Image-Text Matching. We expect that these objectives are suited
to learn representations of coarse-grained object categories but not named enti-
ties. In other words, they are suited for standard VQA but not KVQAE. For
example, Masked Region Modeling relies on an object detector, which is not
applicable to KVQAE. While both [44] and [39] experiment on OK-VQA [40],
their results are inconsistent: [44] show that their model is competitive with a
BM25 baseline that takes as input the question and the human-written cap-
tion of the image while the model of [39] is outperformed by BM25 with an
automatically-generated caption. The discrepancies between these works can be
explained because they use neither the same KB nor the same evaluation metrics.
[19] also experiment with different multimodal BERTs but dispense passage-level
annotation for an end-to-end training of the retriever and answer classifier2.

Although they experiment with KVQA [50], we do not consider the work
of [16,21] as their systems take a human-written caption as input, which makes
the role of the image content unclear. [50] follow a late fusion approach at the
decision-level. First, they detect and disambiguate the named entity mentions
in the question. Then, they rely on a face recognition step as their dataset,
KVQA, is restricted to questions about person named entities. Facts from both
textually- and visually-detected entities are retrieved from Wikidata3 and pro-
cessed by a memory network [59]. In contrast, our work is in line with [32], who
use unstructured text from Wikipedia as KB. Unlike the late fusion approach
of [32], which considers the question and the image independently, we aim at a
unified representation of the text and image, both on the visual question and
KB sides.

3 Methods

In this section, we first formalize our KVQAE framework, then describe the
models before diving into the three training stages: (i) DPR for textual Ques-
tion Answering; (ii) Multimodal Inverse Cloze Task, our main contribution;
2 Standard (Knowledge-based) VQA is often treated as a classification task.
3 https://www.wikidata.org/.

https://www.wikidata.org/
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(iii) Fine-tuning for KVQAE. Finally, we discuss the inference mechanism and
implementation details.

3.1 Information Retrieval Framework

In our multimodal setting, both visual questions (from the dataset) and visual
passages (from the KB) consist of a text-image pair (t, i), as in Fig. 1. Our goal is
to find the optimal model E to encode adequate representations q = E(tq, iq) and
p = E(tp, ip) such that they are close if (tp, ip) is relevant for (tq, iq) (denoted
with the superscripts (+) and (−)). Search then boils down to retrieving the
K closest visual passages to the visual question. When computing the similarity
between two vectors, here with the dot product, the objective used throughout all
the training stages (Sect. 3.3) is to minimize the following negative log-likelihood
loss for all visual questions in the dataset (see Fig. 2) [27,31].

− log
exp (q · p+)

exp (q · p+) +
∑

j exp (q · p−
j )

(1)

This contrastive objective allows to efficiently utilize passages relevant to other
questions in the batch as in-batch negatives, since computing the similarity
between two vectors is rather inexpensive compared to the forward pass of the
whole model. We present two different models E in the next section according
to their fusion mechanism.

3.2 Models

All of the models described in this section take advantage of CLIP4 [46] to
represent images and BERT5 [10] to represent either text or multimodal data.
BERT is trained for masked language modeling and next sentence prediction
on Wikipedia and BooksCorpus [62]. CLIP has been trained with a contrastive
objective in a weakly-supervised manner over 400M image and caption pairs. It
has demonstrated better generalization capacities than fully-supervised models
and is efficient for KVQAE, as empirically demonstrated in [32]. We experiment
with two different fusion techniques: ECA and ILF.

Early Cross-Attention fusion (ECA) is carried out by a single-stream Trans-
former model like the multimodal BERTs described above (e.g. UNITER [7]).
However, instead of relying on a fixed object detector such as Faster R-CNN, we
take advantage of CLIP, as motivated above. To enable early fusion, the visual
embedding produced by CLIP is projected in the same space as the text using a
linear layer with Wc ∈ R

c×d parameters trained from scratch: ec = CLIP(i)·Wc.
The resulting embedding is then concatenated with the word embeddings of the
text, acting as an additional “visual token”. Those embeddings, noted [t; ec],
are then fed to the Transformer model, where the attention mechanism should

4 With a ResNet-50 backbone [20].
5 Uncased “base” 12-layers version available at https://huggingface.co.

https://huggingface.co
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Fig. 2. Overview of Multimodal Inverse Cloze Task via Wikipedia/WIT.

enable interaction between the modalities. The final embedding corresponds to
the special [CLS] token: ECA(t, i) = BERT([t; ec])[CLS]. The Transformer model
is first initialized from BERT.

Intermediate Linear Fusion (ILF) introduces an additional Wt ∈ R
d×d

parameters trained from scratch used to simply project the representation of
the [CLS] token in the same space as the CLIP embedding before summing the
two6: ILF(t, i) = BERT(t)[CLS] · Wt + ec.

Because both ECA and ILF produce multimodal representations q and p,
ranking is done directly using their similarity q · p. As a baseline, we fol-
low [32] and linearly combine text and image similarities after zero-mean and
unit-variance normalization (omitted in the following equation):

α × BERT(tq)[CLS] · BERT(tp)[CLS] + (1 − α) × cos(CLIP(iq),CLIP(ip)) (2)

The interpolation hyperparameter α is optimized on the validation set using
grid search to maximize Mean Reciprocal Rank. The left term (text similarity)
is referred to as DPR in the rest of the paper.

3.3 Training Stages

The models are trained sequentially in three stages. The first two stages cor-
respond to pre-training stages: the first one is dedicated to IR for Question
Answering while the second one focuses on multimodal IR. The last stage cor-
responds to the training for our target task of IR for KVQAE.
6 Note that this is equivalent to concatenating both before projecting like

[BERT(t)[CLS]; CLIP(i)] · [Wt;Wc].
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Stage 1: DPR for Textual Question Answering. Leaving visual represen-
tations aside, a DPR model is trained starting from the BERT initialization [27].
DPR consists of two BERT encoders: one for the question tq and one for the
text passage tp. We use the model pre-trained by [32] on TriviaQA, filtered of all
questions used in their dataset, ViQuAE. They use the KILT [43] version of Triv-
iaQA and Wikipedia, which serves as KB at this stage. Each article is then split
into disjoint passages of 100 words for text retrieval, while preserving sentence
boundaries, and the title of the article is appended to the beginning of each pas-
sage. This yields 32M passages, that is ≈ 5.4 passages per article. Following [27],
irrelevant passages (i.e. hard negatives) are mined using BM25 [49].

Stage 2: Multimodal Inverse Cloze Task. This is the main contribution
of the paper. We propose to extend the ICT of [31] to multimodal documents.
ICT consists in considering a sentence as a pseudo-question tq and its context
as a relevant passage t+p . Note that the title of the article is appended to the
beginning of each passage tp (as in Stage 1). We extend it using the contextual
images of Wikipedia paragraphs for the pseudo-question and the infobox image
for the passage (see Fig. 2). [31] empirically demonstrated that a key success of
their approach was to leave the pseudo-question in the relevant passage in 10%
of the training samples so that the model will learn to perform word matching,
as lexical overlap is ultimately a very useful feature for retrieval. In our case,
however, we argue that it is neither necessary, as the model should be strongly
initialized from Stage 1 training on TriviaQA, nor beneficial, as the model could
then ignore the image modality. Question and passage encoders pre-trained in
Stage 1 are used to initialize the visual question and visual passage encoders,
respectively.

The process is eased thanks to the WIT dataset [53]. WIT consists of mil-
lions of images with associated text from Wikipedia and Wikimedia Commons
in 108 different languages. We are, however, only interested in English for this
work. While [53] have multiple strategies to find text related to a given Wikipedia
image, such as its Commons’ caption, we use only the contextual paragraph as text
source in order to mimic the downstream KVQAE setting. The resulting English
subset of WIT yields 400K infobox images/articles that correspond to 1.2M para-
graphs/images. Those 1.2M paragraphs consist of 13.6M sentences, i.e. potential
pseudo-questions, which are 26 words long on average. Therefore, to stick as close
as possible to stages 1 and 3, where passages are up to 100 words long, passages
consist of four sentences. This slightly differs from [31] who consider passages of
up to 288 wordpieces, prior to the pseudo-question masking.

Because both ViQuAE and WIT images are taken from Wikimedia Com-
mons7, we can estimate from the image URLs that 14% of ViQuAE images
overlap with WIT. This might lead to a bias that we analyze in Sect. 4.1.

Inspired by [2], to prevent catastrophic forgetting and enforce a modality-
invariant representation of the entities, the last l layers of BERT are frozen
during this stage. In this way, we tune only the first, modality-specific layers
7 https://commons.wikimedia.org/.

https://commons.wikimedia.org/
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of ECA, the intuition being to “replace” the text-named entities learned during
Stage 1 with the “visual” entities present in the images. ILF fully freezes BERT
during this stage, relying only on the Wt parameters to tune the text represen-
tation. Furthermore, CLIP is systematically frozen throughout all stages.

We do not have a straightforward way of mining irrelevant visual passages
at this stage. In early experiments, we tried to synthesize them by permuting
images in the batch: (t+p , i+p ) ← (t+p , i−p ), but it did not improve the results.

After filtering corrupted images or images with inappropriate image formats
(e.g. .svg) and paragraphs with a single sentence, we end up with 975K para-
graphs/images. We refer to it as WIT in the rest of the paper. It is split into
train (878K), validation (48K, to tune hyperparameters), and test (48K, as a
sanity check) subsets such that there is no overlap between articles.

Stage 3: Knowledge-Based Visual Question Answering About Named
Entities. This stage consists in fine-tuning the model on a downstream KVQAE
dataset, which provides visual questions (tq, iq) and relevant visual passages
(t+p , i+p ). Following [2], all layers of the model are tuned during this stage.

A subtlety of this stage is the selection of irrelevant visual passages (t−p , i−p ).
As mentioned in Sect. 2, it was shown to be essential to DPR [27], and it is more
generally important for contrastive learning [26]. In [32], irrelevant passages are
mined with BM25 to train DPR. However, we suppose that this is suboptimal
for ECA and ILF as BM25 will only mine textually-plausible passages but not
visually-plausible ones. Therefore, we use the system provided by [32] to mine
irrelevant passages. It is a late-fusion of DPR, ArcFace [8], CLIP, and ImageNet-
ResNet [20]. This leads to different training setups between DPR (used as a
baseline) and our models. However, we have experimented both for DPR and
found no significant differences8.

We use the same KB as [32], which is based upon KILT’s Wikipedia and
Wikidata images of the corresponding entities. It consists of 1.5M articles (thus
images/entities) split into 12M passages of at most 100 words as in Stage 1.

Visual questions in ViQuAE are split into train (1,190), validation (1,250),
and test (1,257) without overlap between images’ URLs [32]. We do not experi-
ment with KVQA [50] for the following reasons: (i) it is generated automatically
from Wikidata so our text-based KB has a poor coverage of the answers; (ii)
it comprises yes/no questions for which passage relevance cannot be assessed
automatically.

3.4 Inference

For efficient retrieval, every passage in the KB is embedded along with its cor-
responding image by the visual passage encoder beforehand. Given a question
grounded in an image, both are embedded by the visual question encoder. Search
is then carried out with maximum inner product search using Faiss [25].

8 Evaluation methods are detailed in Sect. 4.
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3.5 Implementation Details

Our code is built upon PyTorch [42], Hugging Face’s transformers [60] and
datasets [33] (itself wrapping Faiss). It is freely available along with the data
and trained models9.

To train ECA, we use the same hyperparameters as [32] for DPR, them-
selves based upon [27]. In particular, we use a learning rate of 2 × 10−5 along
with the Adam optimizer [29]. It is scheduled linearly with 100 and 4 warm-up
steps for stages 2 and 3, respectively. However, for ILF, we found, based on the
validation set, that it converged faster with a learning rate of 2 × 10−3 and a
constant scheduler during Stage 2. We believe this is because ILF fully freezes
BERT in Stage 2, so it does not require careful scheduling or a small learn-
ing rate. Dropout [54] is applied in BERT and after projecting embedding with
Wc and Wt with a probability of 0.1 (as in the standard BERT configuration).
Likewise, layer normalization [3] is applied in BERT and after summing the two
embeddings in ILF. Gradients’ norms are clipped at 2.

Models in stages 2 and 3 are trained with a batch size of 512 and 298 visual
questions, respectively. The success of contrastive learning partly relies on a
large number of in-batch negatives and, therefore, a large batch size [45]. We
found that gradient checkpointing [6] enables the use of much larger batch sizes.
Instead of [32] who use four NVIDIA V100 GPUs with 32 GB of RAM each for
a total batch size of 128 questions, we are able to fit a batch of 298 questions (as
stated above) in a single V100 GPU. Stage 2 takes most of the compute budget,
with most models converging after ≈ 8K steps, which takes around three days10.
Checkpoint selection is made based on the validation in-batch Mean Reciprocal
Rank, for all stages. In-batch means that only the other visual passages in the
batch are ranked and that each visual question is paired with only one relevant
visual passage (as during training).

4 Results

The retrieval models are evaluated in two different ways: (i) by computing stan-
dard IR metrics on visual passage retrieval; (ii) by feeding retrieved visual pas-
sages to a reader module that is tasked with extracting the concise answer to
the question, thus achieving KVQAE. Put differently, either evaluate whether
the system is able to retrieve a relevant passage for the question or whether it is
able to answer the question. We find both metrics to correlate. Ablation studies
are carried out with IR metrics.

ViQuAE is based upon TriviaQA, so it is only distantly supervised: the answer
is considered correct if it string-matches the ground truth and, likewise, a passage

9 https://github.com/PaulLerner/ViQuAE.
10 Jean Zay GPUs consume 0.482 kW (or 0.259 kW after heat recovery) in France, which

has an average grid emission factor of 0.0569 kgCO2e/kWh according to https://
bilans-ges.ademe.fr/en.

https://github.com/PaulLerner/ViQuAE
https://bilans-ges.ademe.fr/en
https://bilans-ges.ademe.fr/en
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Table 1. IR evaluation on ViQuAE. l: Number of frozen layers during Multimodal
ICT. Superscripts denote significant differences in Fisher’s randomization test with
p ≤ 0.01. Hits@1 is omitted as it is equivalent to P@1.

# Model Multimodal ICT MRR@100 P@1 P@20 Hits@20

a DPR NA 32.8 22.8 16.4 61.2

b DPR + CLIP NA 34.5a 24.8a 15.8 61.8

c ECA (l = NA) ✗ 34.6 25.9a 17.2ab 61.6

d ECA (l = 6) ✓ 37.8abce 26.7a 19.5abce 67.6abce

e ECA (l = 0) ✓ 35.1 24.7 17.6b 63.7

f ILF (l = 12) ✓ 37.3a 26.8a 19.1abce 66.9abc

is deemed relevant if it contains the ground truth11. Moreover, Wikipedia aliases
of the ground truth are considered to be valid answers.

4.1 Information Retrieval

Because of the setting of ViQuAE, it is impossible to get complete coverage of
relevant passages. Therefore we do not use any metric based on recall (e.g. R-
Precision, mAP, etc.). Instead, we evaluate the models with Precision@K (P@K),
Mean Reciprocal Rank (MRR), and Hits@K. Hits@K is the proportion of ques-
tions for which IR retrieves at least one relevant passage in top-K. Statistical
significance tests are conducted using Fisher’s randomization test [12,52]. Met-
rics and statistical tests are computed with ranx [4] and are reported in Table 1.

The best models pre-trained with Multimodal ICT (d and f) outperform
the text-only (a) and late-fusion (b) baselines on all metrics. Some qualitative
examples are shown in Fig. 3. In the first row, we can see evidence of cross-
input cross-modal interactions between the image depicting Winston Churchill
and the passage that mentions him (while being illustrated by a totally different
image). In contrast, the late fusion baseline exhibits textual bias by returning
a passage that mentions several English palaces (highlighted in red). The same
observation can be made for the second row, where St Paul’s Cathedral is only
mentioned in the relevant passage but not depicted in the contextual image.
Cross-modal interactions prove useful in this case because of the heterogeneity
of visual depictions: Winston Churchill is depicted by a statue in the visual
question but by a photograph in the KB.

We can see that Multimodal ICT is essential to ECA (c vs. d). Without it,
it performs on par with late fusion. We believe this is because of overfitting on
the small training set of ViQuAE. However, we find that fine-tuning on ViQuAE
is also essential to ECA, which exhibits catastrophic forgetting because of the
sequential learning setup: indeed, after Stage 2, it falls behind DPR (not shown in
the table). We see that the freezing technique of [2] helps to prevent catastrophic
forgetting to some extent (d vs. e). It is also visible in the upstream WIT pre-
training where ECA achieves 91.6 and 92.9 in-batch MRR on WIT’s test set
11 After standard preprocessing (lowercasing, stripping articles, and punctuation).
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Fig. 3. Qualitative examples where ECA (l = 6) finds a relevant visual passage in top-1
but late fusion falls behind (column on the right). We can see evidence of cross-input
cross-modal interactions with ECA.

Table 2. In-batch results (re-ranking 1024 visual passages) on the upstream WIT test
set.

# Model In-batch MRR In-batch P@1

d ECA (l = 6) 91.6 86.6

e ECA (l = 0) 92.9 88.3

f ILF (l = 12) 87.1 79.9

with l = 6 and l = 0, respectively: fitting WIT better leads to further forgetting
(cf. Table 2).

Unlike what is suggested by related work (Sect. 2), we find that the linear
fusion model performs on par with the more early, cross-attention based, fusion
model (f vs. d in Table 1). This suggests that the improvement over the late
fusion baseline indeed comes from the Multimodal ICT pre-training, which is not
very sensitive to the model’s architecture. Interestingly, cross-input cross-modal
interactions (as shown in Fig. 3) are possible with both ECA and ILF. So they
may be the primary reason for performance improvement. Moreover, the archi-
tecture of ILF allows to fully freeze BERT during Stage 2, which circumvents
catastrophic forgetting12. We leave other training strategies (e.g. multi-tasking,
using adapters [24]) for future work.

12 ILF only achieves 87.1 in-batch MRR on WIT’s test set because of the freezing.
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Table 3. Reading Comprehension evaluation on ViQuAE, averaged over 5 runs of the
reader. l: Number of frozen layers during Multimodal ICT.

# IR Model Multimodal ICT Exact Match F1

a DPR NA 16.9 ± 0.4 20.1 ± 0.5

b DPR + CLIP NA 19.0 ± 0.4 22.3 ± 0.4

c ECA (l = NA) ✗ 17.7 ± 0.6 21.2 ± 0.8

d ECA (l = 6) ✓ 20.6 ± 0.3 24.4 ± 0.2

e ECA (l = 0) ✓ 20.8 ± 0.8 24.3 ± 0.9

f ILF (l = 12) ✓ 21.3 ± 0.6 25.4 ± 0.3

Nothing suggests that ECA is better on the 14% of ViQuAE images that
overlap with WIT. ECA is better on the out-of-WIT subset (38.0 vs. 36.5 MRR),
but it is the other way around for DPR and late fusion.

4.2 Reading Comprehension

To extract the answers from the retrieved passages, we keep the same model
as [32]. It uses the Multi-passage BERT architecture [58] and is thus based on
text only because once the relevant passage has been retrieved, the question may
be answered without looking at the image. To limit the variations due to training
and the number of experiments, we use the model trained by [32] off-the-shelf
and simply change its input passages. It takes the top-24 passages as input. The
model was first trained on TriviaQA (filtered of all questions used in ViQuAE),
then fine-tuned on ViQuAE, much like stages 1 and 3. The authors provide five
different versions of the model that correspond to different random seeds.

We use Exact Match and F1-score (at the bag-of-words level) to evaluate the
extracted answers. In Table 3 we can verify that more relevant passages indeed
lead to better downstream answers. The only difference with the IR evaluation
is the role of the freezing technique of [2] (d vs. e), which is less clear here.

5 Generic vs. Specialized Image Representations

Numbers reported in the previous section are actually on par with the best results
of [32]. This is because the latter is based on ArcFace and ImageNet-ResNet,
in addition to DPR and CLIP. In particular, [32] have a heuristic for taking
advantage of the face representations provided by ArcFace: they use ArcFace if
faces are detected and a combination of CLIP and ImageNet-ResNet otherwise.
They show that this method improves retrieval precision for questions about
persons (for which face representations are relevant). However, this approach
is not scalable for two reasons: (i) there are near 1,000 different entity types
in ViQuAE (according to Wikidata’s ontology), and not all can benefit from
specialized representations; (ii) combining several representations (e.g. CLIP and
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ImageNet-ResNet) for the same entity type is computationally expensive and
quickly saturates. To provide a comparable system to the late fusion of [32], we
have tried integrating ArcFace and ImageNet-ResNet in ECA. However, we have
failed to outperform the CLIP-only version of ECA. Intuitively, we think that
ECA dilutes the specialized representations of ArcFace and is unable to preserve
them throughout all twelve layers of BERT. Therefore, in this setting, ECA is
overall on par with late fusion (37.7 vs. 37.9 MRR, not significant) but better
on questions about non-persons (39.3 vs. 35.7 MRR), which again suggests that
it is unable to exploit ArcFace’s representations.

6 Conclusion and Perspectives

We have presented a new pre-training method, Multimodal Inverse Cloze Task,
for Knowledge-based Visual Question Answering about Named Entities. Multi-
modal ICT leverages contextual images in multimodal documents to generate
visual pseudo-questions. It enables the use of more complex multimodal fusion
models than previously proposed late fusion methods. Consequently, our method
improves retrieval accuracy over the latter by 10% relative-MRR, leading to a
9% relative-F1 improvement in downstream reading comprehension (i.e. answer
extraction), on the recently introduced ViQuAE dataset. We believe it is thanks
to cross-modal interactions, which are prohibited by late fusion. More precisely,
we qualitatively observed that cross-input interactions occurred between the
image of the visual question and the text of the KB, which counteracts the
heterogeneity of visual depictions.

We have experimented our pre-training method with two different neural
networks architectures: (i) ECA, which follows recently proposed Multimodal
BERTs by fusing modalities Early via Cross-Attention; (ii) ILF, a more standard
model that fuses modalities through a linear projection. We found that both
perform equally well, unlike in standard VQA and cross-modal retrieval. We
argue that it might be because cross-input cross-modal interactions are the most
important and may be captured by both models. However, further investigations
are required, it might also be because of their different training settings, which
leads ECA to catastrophic forgetting.

While aiming for generic multimodal representations of named entities, we
found that integrating specialized representations in our models, such as ArcFace
for faces, was not beneficial. We hypothesize that the studied architectures may
be inappropriate but we leave this issue for future studies.

For future work, we think that generalizing Multimodal ICT for re-ranking
(processing (tq, iq) and (tp, ip) simultaneously) and reading comprehension (gen-
erating or extracting the answer from (tp, ip)) is an exciting research lead. Indeed,
there is evidence that sharing the same model for IR and reading comprehen-
sion, or IR and re-ranking, is beneficial for textual QA [13] and cross-modal
retrieval [18], respectively: two tasks that closely relate to KVQAE.
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Abstract. POI-level geo-information of social posts is critical to many
location-based applications and services. However, the multi-modality,
complexity, and diverse nature of social media data and their platforms
limit the performance of inferring such fine-grained locations and their
subsequent applications. To address this issue, we present a transformer-
based general framework, which builds upon pre-trained language models
and considers non-textual data, for social post geolocation at the POI
level. To this end, inputs are categorized to handle different social data,
and an optimal combination strategy is provided for feature represen-
tations. Moreover, a uniform representation of hierarchy is proposed to
learn temporal information, and a concatenated version of encodings is
employed to capture feature-wise positions better. Experimental results
on various social media datasets demonstrate that the three variants of
our proposed framework outperform multiple state-of-art baselines by a
large margin in terms of accuracy and distance error metrics.

Keywords: Location prediction · Geolocation · Social media ·
Twitter · Transformer

1 Introduction

Knowing the posting location of social media data is important for many useful
applications, including local event/place recommendations [8,24], location-based
advertisements [6,11], emergency location identification and disaster response
[23,44]. However, geotagged social posts are very limited as less than 1% of tweets
are labeled with geo-coordinates [1]. This constraint motivates our research on
geolocation, which is a topic that has received significant attention in the past
decade. However, most prior studies concentrate on user geolocation, which is
estimating the home location of users [34,39,45,46]. This type of geo-information
is insufficient for applications like emergency location identification and natural
disaster response [21], which require the location of individual posts. Hence,
in this paper, we focus on the problem of social post geolocation to infer the
locations of individual posts.
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For social post geolocation, previous efforts typically aim at inferring loca-
tions at the city level [2,21,43]. Although there is good performance at the city
level, location information at such a coarse-grained level is still insufficient for the
various applications mentioned earlier. While some researchers studied the task
of geo-coordinates estimation, it is challenging to achieve high accuracy [28,31].
In real-life scenarios, semantic toponyms are more practical and understandable
compared to numerical latitude and longitude [42]. Therefore, we study the prob-
lem of social post geolocation at the Point-Of-Interest (POI) level, a fine-grained
semantic level.

However, Social Post Geolocation at the POI level is a challenging problem
due to the complexity, multi-modality, and diverse nature of social media data
and their platforms. Firstly, the user-generated textual content is short, free-
form, and often noisy, containing acronyms, misspellings, and special tokens. It
is non-trivial to understand such complex text precisely for location estimation.
Secondly, there are other non-textual contents such as time, social networks,
images, and videos, which can be used for this task but also lead to the multi-
modality issue. The ability to represent and fuse different data types is vital for
geolocation. Lastly, it is increasingly important to develop a geolocation frame-
work with a generalization ability to deal with the emergence of diverse social
platforms, like photo-sharing and micro-blogging platforms. Many works focus
on a single social platform with specific inputs, thus limiting their performance
on other social platforms due to the difference in data fields. For better gen-
eralizability across platforms, some approaches utilize text content solely for
geolocation but at the expense of missing out on other non-textual content and
limiting performance.

To address these limitations, we present a transformer-based model, named
transTagger, for POI-level social post geolocation, which is a general framework
that builds upon the Bidirectional Encoder Representations from Transformers
(BERT) model with good generalization ability across different social platforms
for accurate fine-grained location inference. The main contributions of this work
can be summarized as follows:

– We design a general categorization to tackle the multi-modality and diverse
nature of social media data and their platforms and provide four datasets
with ground truth covering two cities and two platforms.

– We fuse features and learn their correlations using transformer encoders with
a concatenated version of positional encodings, along with a novel temporal
representation to provide an optimal combination strategy of representations
for multi-modality fusion. We denote this model, transTagger.

– We construct two additional variants, hierTagger and mtlTagger, by incorpo-
rating the hierarchy of locations into transTagger, and experimental results
demonstrate that our models outperform state-of-the-art baselines by a con-
siderate margin in terms of accuracy and distance error metrics.1

1 Our code and dataset are made publicly available at https://github.com/lazylml/
transTagger.

https://github.com/lazylml/transTagger
https://github.com/lazylml/transTagger
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The rest of the paper is organized as follows. In Sect. 2, we review the criti-
cal related work in the geolocation field and briefly introduce hierarchical clas-
sification techniques. In Sect. 3, we first present the problem formulation and
then describe our proposed model transTagger and two variants in detail. Then
Sect. 4 introduces the experimental setting, while Sect. 5 presents and discusses
our experimental results. Following that, we summarize and conclude this paper
in Sect. 6.

2 Related Work

In this section, we review two main categories of work that are related to our
research, namely social post geolocation and hierarchical geolocation works.

2.1 Post Geolocation

Post geolocation focuses on estimating the originating locations of social posts.
Unlike user geolocation, which leverages a user’s entire posting history, post
geolocation considers only an individual post or tweet and uses that as input.
For example, the work [13] uses the convolutional mixture density network for
location estimation with single tweet content. Term co-occurrences in tweets,
which exhibit spatial clustering or dispersion tendency, are detected and used to
extend feature space in probabilistic language models [32]. For location predic-
tion during disaster events, Ouaret et al. [31] present an iterative Random For-
est fitting-prediction framework to learn semi-supervised models. A name entity
recognizer [28] is developed for geolocating tweets with the help of GeoNames
gazetteer. Kulkarni et al. [19] present a multi-level geocoding model that learns
to associate texts with geographical locations and represent locations using S2
hierarchy. Others propose to locate tweets based on BERT architecture with
different tokenization settings, like vocabulary sizes [36]. In special cases, his-
torical locations of users are involved to boost location inference performance,
like using the Markov model to formalize tweet geolocation in a flood-related
disaster based on history tweets [38].

Many researchers consider metadata to infer tweet locations [2,17,20]. Pli-
akos and Kotropoulos construct a hypergraph based on images, users, geotags
and tags of Flickr, which is further used for simultaneous image tagging and
geolocation prediction [33]. A refined language model that is learned from mas-
sive corpora of social content, including tags, titles, descriptions, user ids, and
image ids, is proposed to estimate the location of a post [16]. Miura et al. [29]
propose a simple neural network structure with fully-connected layers and an
average pooling process based on message text and user metadata for geoloca-
tion prediction. To classify the microblogs of WeiBo into 8 semantic categories,
the work [42] explores the effect of user attributes and designs a neural network-
based architecture with 4 feature fusion strategies.
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2.2 Hierarchical Geolocation

Although the class hierarchy has been shown to be effective in closely relevant
fields, like text classification [12,18,27,48], this problem has not thus far received
the attention it deserves. Only a handful of existing works estimate the locations
of tweets and explore geolocation performance using hierarchical locations. Pre-
vious efforts [26,43] represent locations as a tree and construct a local classifier
for each parent node to infer locations, which corresponds to a typical hierar-
chical classification technique, Local Classifier per Parent Node (LCPN) [37].
Multi-Task Learning (MTL) is incorporated to combine losses across multiple
levels and predict locations at each level simultaneously [9,19]. Most of these
works aim at user location inference, whereas we study post geolocation.

Similar to our work, some research has attempted to infer fine-grained loca-
tions of tweets [3,4,30]. By investigating two properties, spatial focus and spatial
homophily, a learning-to-rank framework [3,4] is designed by ranking candi-
date venues. The work [30] extracts semantic similarities between tweets and
POI reviews locally and globally to provide a Spatially-aware Geotext Match-
ing model building upon MLP. Both methods need to compute similarity fea-
tures explicitly with additional datasets, like check-in data or POI reviews from
Foursquare, which is non-trivial and time-consuming to collect. While these
works advance the task of tweet geolocation, our work differs from these earlier
works in various ways, which we discuss next. Our method takes in tweet content
and metadata of the Twitter dataset directly as inputs, building upon BERT and
using transformer encoders to learn correlations among features. Additionally,
we employ a uniform representation of decomposed hierarchical time elements to
further boost performance as the importance of temporal features is highlighted
by many studies [21,25,30,38]. Moreover, we explore the effect of location hier-
archy on the post geolocation performance by leveraging LCPN and MTL in our
proposed models.

3 Method

3.1 Problem Formulation

The Social Post Geolocation problem is defined as estimating the originating
location of tweets. In the same spirit as prior studies [21,42,43], the task is
formulated as a classification problem where the predicted target is a location.
Unlike these earlier works, which classify posts into countries or cities, we aim
at inferring locations at a finer-granularity level, that is at the landmark or POI
level. More specifically, the social post geolocation problem is represented as
inferring POIs, given text and metadata of social media as input.

3.2 Method Overview

The overall structure of our proposed model, transTagger, is shown in Fig. 1. To
tackle the inconsistency of different social platforms, we classify the inputs of
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Fig. 1. The architecture of our proposed model transTagger

social media data into three categories. Information contained in social media
data can be divided into user-generated and system-generated according to
sources. The user-generated content is of free form and could be very noisy.
Besides posting text, the user-generated content also includes user locations, user
descriptions and so on. They form the first category of inputs and we denote it
Text. System-generated content comprises textual fields and numerical fields.
The former is mostly categorical text, like source (indicating whether the tweet
is posted from the phone or web platform), which falls into the second category
of inputs: Categorical Text (CT). For the latter, numerical fields, a typical
one is the time (when the post is created), and others are less explored and
employed in post geolocation and we leave them for future research. The third
category is Time and we discuss the various representation techniques used in
later sections. Text, CT, and Time are depicted in orange, green, and blue,
respectively in Fig. 1.

Our model applies BERT to learn semantic information and contextual infor-
mation of Text and CT and maps features into a word embedding space. Fol-
lowing that, the representations of [CLS] tokens are extracted from all textual
features and combined with embeddings of Time. Then we use several layers of
transformer encoders to learn the correlation of all features. The POI probabil-
ity of each post is calculated using a fully-connected layer with softmax as the
activation function.

3.3 Feature Representation

We apply the pre-trained model by plugging in the post geolocation task-specific
inputs and outputs into BERT. At the architecture level, BERT is an L-layer
bi-directional transformer encoder [5]. The hidden size and the number of self-
attention heads for each component are denoted as H and A, respectively.



Transformer-Based Framework for POI-Level Social Post Geolocation 593

Text, including posting texts, user locations, user descriptions, and CT,
like sources, are all used as inputs. Here a degenerate text-∅ pair corresponds
to sentence A and sentence B since we formulate the post geolocation task as
a classification problem and there is no “sentence” pair. An input sample is
regarded as a sentence in this paper although it may actually contain multi-
ple sentences. During tokenization, each sentence is converted into a sequence
of tokens and a special classification token, [CLS], is injected in front of every
input sample [5]. Then the first token becomes [CLS]. Apart from the above token
embedding, other embeddings are utilized to take the position information inside
sentences or between sentence pairs into consideration. Position embedding rep-
resents the position of each token in a sentence. In contrast, segment embedding
is used to distinguish sentences A and B and thus is set to all zero in our case.
The element-wise addition of token, position and segment embeddings forms the
input representation [5].

We denote the learned embedding in the final hidden layer of each input sam-
ple as E ∈ R

N×H where N is the sentence length. The corresponding embed-
ding of the [CLS] token is represented as C ∈ R

H . This token embedding can
be seen as the aggregation of sentence representation, which is used for subse-
quent applications. Note that all the parameters are fine-tuned in an end-to-end
manner based on our task, post geolocation.

Time is a vital factor in relation to human mobility and thus, of great impor-
tance for location inference. However, most works simply represent it as one-hot
encoding based on the timestamp, which does not capture the full extent of
temporal information and ignores the hierarchy of time elements, like hours
and months. Inspired by this work [47], we propose a uniform representation of
hierarchical time elements, UniHier, to learn temporal information. Hierarchical
time elements are extracted from Time, including hours, weekdays, and months.
Then each element is represented as a learnable embedding vector with dimen-
sion H and limited vocab size. A uniform representation of time is constructed
by the element-wise addition of all embedding vectors.

3.4 Feature Fusion

Assuming that Text contains m fields, CT contains n fields, we extract [CLS]
token vectors of Text and CT, and concatenate them with the UniHier repre-
sentation of Time, then a feature matrix F ∈ R

(m+n+1)×H is generated.
To learn the correlation of all features, we employ a multi-layer transformer

encoder as described in the work [41]. Positional encodings are represented using
sine and cosine functions of different frequencies as below and pos is the position,
i is the dimension:

PE(pos,2i) = sin(pos/100002i/H) (1)

PE(pos,2i+1) = cos(pos/100002i/H) (2)

These positional encodings are fixed during training and with dimension H. In
contrast to the now ubiquitous transformer encoder that sums feature represen-
tations and the corresponding positional encodings, we concatenate them and
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term it the concatenated version of positional encodings. Experiments demon-
strate that this approach improves performance.

After concatenating with positional encodings, this feature matrix is utilized
to calculate POI probabilities with a softmax layer. This model is then trained
using the Adam update rule as the optimizer.

3.5 Hierarchical Prediction

The hierarchy of locations enables the application of hierarchical prediction and
thus improves the performance of post geolocation. We incorporate LCPN, a
typical hierarchical classification approach, with transTagger, and construct a
variant, hierTagger. By combining the class hierarchy with MTL, we build upon
our earlier described transTagger and propose another variant, mtlTagger. Due
to space constraints, we briefly describe how to build these two variants and refer
interested readers to our released source code for the implementation details.

HierTagger. The LCPN approach aims to train a multi-class classifier for each
parent node in the class hierarchy, to distinguish between its child nodes [37].
The class hierarchy is typically a tree or a Direct Acyclic Graph (DAG), which
is represented as a tree in our case. We build the tree of toponyms at different
scales, from coarse to fine, starting from a root node that covers the whole
research area. For every parent node in this tree, we employ transTagger to
construct a local classifier, which is trained independently. Then a top-down
class prediction approach is applied during the testing phase.

mTLTagger. MTL provides models with better generalization ability by shar-
ing representations between related tasks [35]. The predictions of post location
at coarser levels are designed as auxiliary tasks. We incorporate transTagger
with hard parameter sharing, a commonly used approach with MTL in neural
networks, to predict post location at different scales, from coarse to fine. The
prediction result for the coarser level, denoted as q, is further utilized to con-
strain the finer level prediction by adding q to the loss function of the finer level.
A correlation matrix between the two levels is employed to help the loss function
of the finer level better understand the coarser level’s prediction result.

4 Experimental Setting

4.1 Datasets

We perform our experiments using datasets from two different social media plat-
forms, Flickr and Twitter, for two cities of Melbourne and Singapore.
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Twitter. We collected 266,614 geotagged tweets that were posted in Melbourne
from 2010 to 2018, and 482,765 geotagged tweets that were posted in Singapore
from 2018 to 2022. We also combined tweets from Melbourne and Singapore
for experiments to test the robustness of our models. The Twitter datasets of
Melbourne, and Singapore, and their combination are denoted as Twitter-Mel,
Twitter-SG, and Twitter-SM, respectively.

Flickr. The Flickr dataset comprises 78,131 geotagged images that were posted
in Melbourne from 2004 to 2020, extracted using the Flickr API or from the
Yahoo! Flickr Creative Commons 100M (YFCC-100M) [40]. We further aug-
mented this dataset by collecting the metadata of Flickr users. This dataset is
denoted as Flickr-Mel.2

A list of POIs and their categories are obtained using the Google Place API.3

For Singapore, our research area is the whole country/city and there are 9,666
POIs. For Melbourne, we concentrate on the central city area and there are 242
POIs. To implement hierarchical prediction, POI themes and POI sub-themes
are involved as labels to construct the class hierarchy. Specifically, there are 16
POI themes (e.g., Leisure/Recreation), 49 POI sub-themes (e.g., Park/Garden),
and 242 POIs (e.g., Batman Park).

Our work aims to predict the specific POI where a post is sent from, in
contrast to existing efforts that focus on coarse-level predictions at the city,
country, or even continent level. To this end, we label a tweet tw in the Twitter
dataset (or image im in the case of the Flickr dataset) as one and only one POI.
Following the proximity principle [22], we compare the distance between tw (or
im) and the POI location using their latitude and longitude coordinates, and
label it with the POI if their distance differs by less than 100 m. Any tw (or
im) that is not assigned a POI label is then filtered out. Note that the above
statistics of the Twitter and Flickr datasets are computed after POI-labelling
preprocessing.

Our two variants involve the use of class hierarchy of POIs. For example,
hierTagger utilizes POI-theme level and POI-level labels, while mtlTagger con-
tains three loss functions that are designed for POI theme, POI sub-theme, and
POI predictions, respectively.

4.2 Evaluation Metrics

We use two evaluation metrics that are frequently used in geolocation tasks,
namely accuracy and distance error. Accuracy, denoted as acc@k, reflects the
proportion of correct predictions based on the top-k results and we evaluate
with k as 1, 5, 10, and 20. Mean distance error, represented as mean, measures
the mean distance between the predicted location and actual POI location. We
also experimented using median distance error and observe that our models
2 We also collected a Flickr dataset for Singapore but excluded it for further experi-

mentation due to a low number of data points.
3 https://developers.google.com/maps/documentation/places/web-service/overview.

https://developers.google.com/maps/documentation/places/web-service/overview
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achieve 0 error, thus we do not report the results for concision. Unless otherwise
specified, all results reported in this paper are at the POI level to make our
models comparable.

4.3 Parameter Setting

In our experiments, the max sequence length for text and other textual features is
100. To represent Time inputs using UniHier, they are randomly initialized from
a uniform distribution U(−1.0, 1.0) with dimension 128 (this value corresponds
to the dimension of word embeddings) and vocab size is limited to 60 since
the finest granularity is a minute. These embeddings are then learned during
training.

The hyperparameter tuning is conducted using Bayesian optimization on the
learning rate, the number of encoder layers, the number of heads, hidden size,
and batch size. The number of layers, the number of attention heads, and the
hidden size of the transformer encoder before the softmax layer are set as 3, 48,
and 1300, respectively. The training of our model is performed using Adam with
an initial learning rate of 3e–4 and a batch size of 128. We train the model with
4 epochs. Additionally, the block threshold for hierTagger is set as 0.01 and the
loss weights for mtlTagger are 0.1, 0.1, and 1.

4.4 Baselines

We compare our proposed model and two variants with various popular
geolocation models, including MNB-Ngrams (Multinomial Naive Bayes with
Uni/Bi/Tri-grams) [2,4,7,26,32], CNN-TT (Convolutional Neural Network
with Text and Time) [22], and HLPNN (Hierarchical Location Prediction Neu-
ral Network) [9]. The CNN text classification model [15] is widely used for geolo-
cation [10,13,25], which we include as a baseline CNN in our experiments, along
with its variant that uses one-hot encoding CNN-1Hot [14]. Besides HLPNN,
another hierarchical classification model, HDLTex (Hierarchical Deep Learning
for Text Classification) [18] is utilized as one of baselines. Our two proposed
variants, hierTagger and mtlTagger, are also involved in comparisons.

Table 1. Baseline comparison on Flickr-Mel and Twitter-Mel

Flickr-Mel Twitter-Mel

Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (m)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (m)↓
HLPNN 68.68 83.62 88.95 93.87 247.6 61.45 76.7 81.85 87.05 433.2

HDLTex 56.89 64.71 66.49 70.14 604 56.2 64.67 66.33 67.69 512.5

CNN-TT 75.49 87.63 90.83 94.14 241 67.85 80.69 84.93 89.19 351.9

CNN 59.4 74.19 81.16 88.43 528 60.45 77.27 83.45 88.54 408.5

CNN-1Hot 59.91 76.69 83.25 90.14 697.7 63.08 76.89 80.92 85.43 362

MNB-Ngrams 54.35 71.71 79.93 88.61 1071 49.82 73.6 79.05 84.62 500.7

transTagger 77.88 89.85 93.05 93.05 175.8 71.96 84.64 88.2 88.2 303.3

hierTagger 77.59 90.13 92.91 95.87 183.5 71.42 84.34 88.12 91.49 319.5

mtlTagger 77.22 89.44 92.86 95.73 182.9 71.84 84.67 88.03 91.44 317.9
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Table 2. Baseline comparison on Twitter-SG and Twitter-SM

Twitter-SG Twitter-SM

Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (km)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (km)↓
CNN-TT 53.76 67.27 70.29 72.81 2.617 54.8 68.64 72.41 75.7 154.3

CNN 49.77 62.04 64.72 67.66 2.949 48.98 62.11 65.5 69.09 542.7

CNN-1Hot 38.34 50.11 52.96 55.86 3.536 38.85 52.05 55.54 59.21 882.9

transTagger 61.94 73.75 76.75 76.75 2.215 64.88 76.8 80.08 80.08 3.69

5 Experimental Results

5.1 Baseline Comparison

To verify the effectiveness of our proposed models, experiments are designed to
compare the performance of three variants and various baselines on the Flickr-
Mel and Twitter-Mel datasets, as shown in Table 1. Similar experiments are
conducted on the Twitter-SG and Twitter-SM datasets as well as to further
examine the robustness of geolocation performance, as presented in Table 2. We
only report results for transTagger and three baselines as the hierarchical labels
are not available for the latter two datasets.

Overall, transTagger, hierTagger, and mtlTagger outperform all baselines,
including the hierarchical ones, across all four datasets. Compared with a strong
baseline like CNN-TT, transTagger outperforms by a substantial margin, obtain-
ing an improvement of 2.39%, 4.11%, 8.18% and 10.08% in accuracy (acc@1) on
Flickr-Mel, Twitter-Mel, Twitter-SG, and Twitter-SM, respectively. The latter
two datasets contain many more POIs and the improvement of transTagger over
the baselines is even larger. This indicates that our model is versatile enough
to handle a large number of classes (POIs) well. In addition to accuracy, the
mean distance error is also greatly reduced. To be specific, transTagger reduces
the mean distance error by 65.2, 48.6, 402, and 1174 m, compared with CNN-
TT. In contrast to Table 1, we use kilometers (km) to denote distance in Table 2
because Twitter-SG and Twitter-SM cover much larger areas and thus values of
mean distance error are relatively higher. In addition, the distance calculation of
Twitter-SM involves two cities and thus is quite sensitive to prediction accuracy
as this dataset is a mixture of Twitter-SG and Twitter-Mel. Therefore, the dis-
tance errors would increase greatly in comparison to the corresponding accuracy
that decreases slightly, as shown in Table 2 and Table 4.

The overall results show that our proposed models provide superior perfor-
mance for POI-level post geolocation across all cities and platforms, compared
to the various baselines.

5.2 Representation Combination Selection

Taking generalization into consideration, we categorize inputs into three types:
Text, CT, and Time, and performed a representation for each type, as previ-
ously described in Sect. 3. However, there are multiple ways to represent each
input type. For CT, one way is to treat categorical texts as normal texts and
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Table 3. Representation combination selection on Flickr-Mel and Twitter-Mel

Flickr-Mel Twitter-Mel

Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (m)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (m)↓
transTagger

Text-Text 77.88 89.85 93.05 93.05 175.8 71.96 84.64 88.2 88.2 303.3

1Hot-Text 77.88 89.85 93.05 93.05 175.8 71.69 84.6 88.29 88.29 322.1

Text-UniHier 78.04 90.16 93.28 93.28 171.6 70.03 84.32 88.09 88.09 313.8

1Hot-UniHier 78.04 90.16 93.28 93.28 171.6 69.69 84.25 87.87 87.87 308.3

Text-1Hot 77.49 89.66 92.99 92.99 184.1 69.91 84.13 87.71 87.71 316.9

1Hot-1Hot 77.49 89.66 92.99 92.99 184.1 69.5 84.26 88.04 88.04 321.6

hierTagger

Text-Text 77.59 90.13 92.91 95.87 183.5 71.42 84.34 88.12 91.49 319.5

1Hot-Text 77.59 90.13 92.91 95.87 183.5 71.49 84.45 88.15 91.56 324.5

Text-UniHier 78.18 89.94 93.15 95.83 169.5 70.03 84.29 88.03 91.52 314.4

1Hot-UniHier 78.18 89.94 93.15 95.83 169.5 69.6 84.18 87.78 91.07 308.8

Text-1Hot 77.23 89.43 92.82 95.56 190.2 69.82 84.04 87.57 91.16 316.7

1Hot-1Hot 77.23 89.43 92.82 95.56 190.2 69.35 84.19 87.96 91.46 321.9

mtlTagger

Text-Text 77.22 89.44 92.86 95.73 182.9 71.84 84.67 88.03 91.44 317.9

1Hot-Text 77.22 89.44 92.86 95.73 182.9 71.48 84.45 88.04 91.64 315.1

Text-UniHier 78.93 90.18 93.31 95.97 168.3 69.91 84.3 87.94 91.52 312.9

1Hot-UniHier 78.93 90.18 93.31 95.97 168.3 69.16 84.06 88.01 91.39 314.2

Text-1Hot 77.84 89.9 93.36 96.26 179.1 69.62 84.18 87.83 91.35 317.3

1Hot-1Hot 77.84 89.9 93.36 96.26 179.1 69.39 84 87.72 91.33 314.9

use BERT or other language models to generate representations, and we call
this Text embedding. Another commonly used approach is one-hot encoding.
For Time, one way is to treat date/time as a standard text and generate tem-
poral embedding using language models. Hence, there are two ways to represent
CT: text and one-hot, and three ways for Time: text, one-hot, and UniHier.
This results in six combinations of these representation methods, which we fur-
ther experiment to find an optimal representation combination strategy. The
results are illustrated in Tables 3 and 4, where Text denotes Text embedding,
and Text-UniHier refers to using Text embedding for CT and UniHier represen-
tation for Time, and so forth. Note that the results of Text-Text and 1Hot-Text
are duplicated for Flickr since there are no CT fields. Similarly for Text-UniHier
and 1Hot-UniHier, Text-1Hot and 1Hot-1Hot.

The results show that Text-Text delivers the overall best performance across
all Twitter datasets. However, Text-UniHier (or 1Hot-UniHier) outperforms
others for the Flickr dataset. One possible reason is that Flickr contains more

Table 4. Representation combination selection of transTagger on Twitter-SG and
Twitter-SM

Twitter-SG Twitter-SM

Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (km)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (km)↓
Text-Text 61.94 73.75 76.75 76.75 2.215 64.88 76.8 80.08 80.08 3.69

1Hot-Text 61.37 73.26 76.36 76.36 2.292 64.84 76.88 80.06 80.06 3.263

Text-UniHier 58.1 72.71 75.92 75.92 2.318 61.9 76.1 79.55 79.55 56.63

1Hot-UniHier 57.82 72.63 75.94 75.94 2.332 61.53 76.13 79.48 79.48 69.64

Text-1Hot 58.13 72.71 75.92 75.92 2.334 61.74 76 79.33 79.33 67.52

1Hot-1Hot 57.3 72.43 75.65 75.65 2.349 61.21 75.8 79.24 79.24 58.33
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time fields, including photo taken time and photo posted time, compared to
Twitter that only contains tweet created time. Therefore, the best represen-
tation combination is Text-Text. In the event where multiple time inputs are
involved, it is recommended to represent temporal inputs using UniHier.

We further compare the performance of three variants. Contrary to our
expectations, hierTagger and mtlTagger show no distinct advantage, except for
acc@20. Hence, these two variants are recommended when this specific metric is
important. The intuition of utilizing hierarchical locations is that the prediction
results at coarser level can help guide the geolocation at target level. However,
this process might involve error propagation and thus impair the expressive
power of the whole architecture. An effective mechanism for correcting these
prediction errors is a promising direction to boost geolocation performance, and
we leave this for future work.

Table 5. Ablation study on Twitter-SG and Twitter-SM

Twitter-SG Twitter-SM

Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (km)↓ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Mean (km)↓
transTagger 61.94 73.75 76.75 76.75 2.215 64.88 76.8 80.08 80.08 3.69

w/o transformer 60.3 72.44 75.64 75.64 2.338 63.92 76.7 80.1 80.1 6.108

w/o position 61.28 73.01 75.96 75.96 2.292 64.39 76.43 79.75 79.75 4.917

5.3 Ablation Study

We compare transTagger with two ablations to examine the effectiveness of
two model components, namely transformer encoders and position encodings.
Table 5 shows the performance breakdown on Twitter-SG and Twitter-SM. For
w/o position, we replace the concatenation version of positional encodings with
the commonly used add-on version. The w/o transformer ablation removes the
transformer encoders which are used to learn the correlation of features. The
results demonstrate that all components contribute to improving the post geolo-
cation performance of transTagger. Among all components, encoders have the
greatest effect as shown by how it increases accuracy (including acc@1, acc@5,
acc@10, and acc@20) and reduces the mean distance error by the largest margin.

Table 6. Coarse-Level Geolocation

Flickr-Mel(POI-Theme) Flickr-Mel(POI)

Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑ Acc@1↑ Acc@5↑ Acc@10↑ Acc@20↑
HLPNN 79.92 97.16 100 100 68.68 83.62 88.95 93.87

hierTagger 83.22 97.93 100 100 77.59 90.13 92.91 95.87

mtlTagger 81.57 97.49 99.97 100 77.22 89.44 92.86 95.73
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5.4 Coarse-Level Geolocation

We now study the prediction results of coarse-level geolocation since our two
hierarchical variants both incorporate the toponym hierarchy. Although mtlT-
agger is capable of inferring locations at three levels, only the results of POI
theme and POI are listed in Table 6 to make mtlTagger consistent and compa-
rable with hierTagger. We observed that our models not only outperform at the
target level (POI) by a large margin but also present outstanding coarse-level
(POI theme) performance, even when compared with the competitive hierar-
chical geolocation algorithm HLPNN [9]. Furthermore, hierTagger obtained an
absolute improvement of almost 2 points compared to mtlTagger (acc@1) for
POI-theme geolocation even though the two have a similar capability of esti-
mating POI-level locations. To force the model to focus more on our target task,
POI geolocation, we set the weights of mtlTagger as 0.1, 0.1, and 1, for the loss
functions of POI theme, POI sub-theme, and POI, respectively. In turn, this
might be the cause of a negative impact on coarse-level prediction.

6 Conclusion

In this paper, we propose a transformer-based general framework, transTagger,
for POI-level post geolocation. The inputs are categorized into three types: Text,
CT, and Time to handle different social data, and the optimal representation
combination, Text-Text, is provided by experimenting with all combinations. A
novel representation of time, UniHier, is presented and verified to be useful in the
case of multiple temporal inputs. Transformer encoders are employed to enhance
geolocation performance and a concatenated version of encodings is incorporated
to capture feature-wise positions. The effectiveness and robustness of our model
are demonstrated on four datasets, covering two cities and two social platforms.
Two variants, hierTagger and mtlTagger, by incorporating respective LCPN and
MTL with transTagger, are shown to lift acc@20 effectively.

While these results are encouraging, we believe our approach can be further
improved via two future directions. Firstly, we can explore more representation
methods for different inputs, like numeral embeddings to extract time entities
accurately. Secondly, we can also incorporate other modalities in addition to
text and numbers, such as images and videos to provide more comprehensive
knowledge.
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36. Scherrer, Y., Ljubešić, N.: Social media variety geolocation with geoBERT. In:
Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and
Dialects. The Association for Computational Linguistics (2021)

37. Silla, C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Min. Knowl. Disc. 22(1), 31–72 (2011)

38. Singh, J.P., Dwivedi, Y.K., Rana, N.P., Kumar, A., Kapoor, K.K.: Event classifica-
tion and location prediction from tweets during disasters. Ann. Oper. Res. 283(1),
737–757 (2019)

39. Tao, H., Gao, Y., Wang, Z., Khan, L., Thuraisingham, B.: An episodic learning
based geolocation detection framework for imbalanced data. In: 2021 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

40. Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun.
ACM 59(2), 64–73 (2016)

41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems 30 (2017)

42. Wang, N., et al.: Semantic place prediction with user attribute in social media.
IEEE Multimedia 28(4), 29–37 (2021)

43. Wing, B., Baldridge, J.: Hierarchical discriminative classification for text-based
geolocation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 336–348 (2014)

44. Zheng, X., Han, J., Sun, A.: A survey of location prediction on twitter. IEEE
Trans. Knowl. Data Eng. 30(9), 1652–1671 (2018)

45. Zhong, T., Wang, T., Zhou, F., Trajcevski, G., Zhang, K., Yang, Y.: Interpret-
ing twitter user geolocation. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 853–859 (2020)

46. Zhou, F., Qi, X., Zhang, K., Trajcevski, G., Zhong, T.: MetaGeo: a general frame-
work for social user geolocation identification with few-shot learning. IEEE Trans-
actions on Neural Networks and Learning Systems (2022)

https://doi.org/10.1007/978-3-319-76941-7_37
http://arxiv.org/abs/1702.07281
http://arxiv.org/abs/1706.05098


604 M. Li et al.

47. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series
forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 11106–11115 (2021)

48. Zhou, J., et al.: Hierarchy-aware global model for hierarchical text classification.
In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 1106–1117 (2020)



Document-Level Relation Extraction
with Distance-Dependent Bias Network

and Neighbors Enhanced Loss

Hao Liang1,2 and Qifeng Zhou1,2(B)

1 Department of Automation, Xiamen University, Xiamen 361005, China
lianghao6@stu.xmu.edu.cn, zhouqf@xmu.edu.cn

2 Xiamen Key Laboratory of Big Data Intelligent Analysis and Decision-making,
Xiamen 361005, China

Abstract. Document-level relation extraction (DocRE), in contrast to
sentence-level, requires additional context to be considered. Recent stud-
ies, when extracting contextual information about entities, treat infor-
mation about the whole document equally, which inevitably suffers from
irrelevant information. This has been demonstrated to make the model
not robust: it predicts correctly when an entire document is fed but errs
when non-evidence sentences are removed. In this work, we propose three
novel components to improve the robustness of the model by selectively
considering the context of the entities. Firstly, we propose a new method
for computing the distance between tokens that reduces the distance
between evidence sentences and entities. Secondly, we add a distance-
dependent bias network to each self-attention building block to exploit
the distance information between tokens. Finally, we design an auxiliary
loss for entities with higher attention to close tokens in the attention
mechanism. Experimental results on three DocRE benchmark datasets
show that our model not only outperforms existing models but also has
strong robustness.

Keywords: Relation extraction · Self attention · Pre-training model

1 Introduction

Relationship extraction (RE) aims to find predefined relations between entities
from the texts. It is the fundamental of knowledge graph [2,38], question answer-
ing [7], and information extraction [17,28]. Early RE focused on the sentence-
level [18,39], but realistic application scenarios often span across sentences, thus
it is natural to shift to Document-level RE (DocRE) [31,32,43]. DocRE requires
finding useful information from a large amount of context for logical reasoning,
which is highly challenging.

Identifying the relation of an entity pair within a document by focusing on
only a portion of the document is quite intuitive. Huang et al. [6] proposed a
heuristic method to select three sentences for each pair of entities instead of
inputting the whole document, which is effective but will delete a lot of helpful
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William B. Maclay
[1] William was a United States Representative from New York .

...

[4] Born in New York City , he received private instruction and was 

graduated from the New Y ork University in 1836 ...

Entity Pair: (William, New Y ork)

Relation:  place of bir th

Evidence set: {1, 4}

Mentions location set: {1, 4}

(William, New Y ork University)

 educated at

 {1, 4}

 {1, 4}

Fig. 1. An illustration on the DocRED dataset. New York and New York City are
mention of the same entity.

contexts. Xu et al. [32] gives a weight to each sentence when identifying entity
pairs, but the model requires two forward propagations to identify each pair of
entities, which is not efficient. Nevertheless, these works point in a direction to
improve the robustness and performance of the DocRE model, that is, the model
should focus more on evidence sentences rather than non-evidence sentences.

The DocRED dataset [34] is labeled with the evidence sentences of an entity
pair and all mentions of entities, Fig. 1 is an example. The entity pair (William,
New York) has relation a place of birth. A human identifies this relation only by
the sentences 〈1〉 and 〈4〉 (evidence sentences), that is, the Evidence set {1, 4},
denoted as set E. The Mentions location set is a set of sentences where all the
mentions of this entity pair are located, denoted as set M . In this case, E ⊆ M ,
does this mean that we only need to consider the sentences in which the entities
mention are located? In this regard, we made a statistic for DocRED dataset, see
Table 1. "0" in the table means that for an entity pair, if we consider only the
sentences in M , the percentage of E ⊆ M is 90.9%. Now we extend one sentence
outward with M as the center, that is, if M is {3}, it will be extended to {2, 3, 4},
then the percentage of E ⊆ M is 96.4% as shown in "1" in the Table 1, and the
rest of the values in the table have the same meaning in turn. From the Table 1,
we may observe that the percentage growth is not significant as the number of
considered sentences becomes larger. This represents that for an entity pair, the
more distant token, the more noise and the less helpful information. Therefore,
we assume that the DocRE model should pay differential attention to tokens at

Table 1. The percentage that E ⊆ M as M expands in the DocRED dataset.

Expand number 0 1 2 3 4 5 6 7 . . . 13

Probability 90.9% 96.4% 98.1% 98.9% 99.3% 99.6% 99.7% 99.8% . . . 100%
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different distances when identifying the relation of entity pairs, and the closer
the token is, the more valuable it will be.

To this end, we propose Self-Attention with Distance-dependent Bias
Network (SDBN) and Neighbors Enhanced Loss (NEL). Specifically, we design a
Bias Network that can improve the self-attention mechanism by using the mutual
distance between tokens within a document as prior knowledge. Meanwhile, we
design an auxiliary NEL to encourage the model to have a higher attention score
for tokens that are closer to an entity pair. In addition, we use crossing-distance
in our model, that is, the distance of an entity from other tokens is determined
by the closest distance between the token and the entity mentions. Take Fig. 1 as
an illustration, the distance between New York City in sentence 〈4〉 and William
in sentence 〈1〉 is 3 (three sentences apart), but since New York in sentence 〈1〉
and New York City belong to the same entity, we define the crossing-distance
between New York City and William as 0, which can be seen as the context of
New York City is enhanced from 〈4〉 to 〈1, 4〉.

2 Methodology

2.1 Crossing-Distance Calculation

In identifying the relation of an entity pair, tokens with different distances have
different bias network parameters to generate attention preferences. Thus we
create an adjacency matrix to record the distance between tokens according to
the following distance calculation.

Given a document D = {s1, s2, ..., sN}, containing a set of entities {ei}n
i=1,

where each sentence si is a sequence words. We convert D into a sequence of
tokens x = (x1, x2, ..., xn), and a sequence l = (l1, l2, ..., ln), li ∈ {1, 2, ..., N} that
records the sentence in which the token is located. Each entity may have multiple
mentions, and each mention may consist of many tokens. Thus for each entity,
we use a set

{
lik

}Nei

k=1
to note in which sentences this entity is in. We classify all

tokens into the following two categories.

– Entity token: Token that belongs to an entity.
– Non-entity token: Token that does not belong to any entity.

For set operations, we define the function F (A,B), which works to determine
the absolute minimum of the difference between the elements of A and B. There
are three distance calculation methods derived between the two types of tokens:

Entity token and Entity token:

min(F (
{
lik

}Nei

k=1
,
{

ljk

}Nej

k=1
), μ) (1)

where ei and ej represent the entities to which the two tokens belong, respec-
tively, and μ is a hyper-parameter, the distance beyond μ is considered as μ.
Shaw et al. [19] and Lee et al. [9] have done similar clipping in the calculation
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Fig. 2. The overall architecture of SDBN, when μ = 5. Left illustrates structured self-
attention as its basic building block. Right explains our bias network. This example
consists of six sentences: S1, S2, S3, S4, S5, S6, and three entities: E1, E2, and E3. N
denotes non-entity tokens. Element in row i and column j represents the distance of
query token xi to key token xj , we use different graphic shapes to distinguish different
distances.

of relative distances, which allows the model to be generalized to any sequence
length.

Entity token and Non-entity token:

min(F (
{
lik

}Nei

k=1
, {lj}), μ) (2)

Non-entity token and Non-entity token:

min(F ({li} , {lj}), μ) (3)

For explanation, we assume that μ = 5. Using (1)(2)(3), we construct the
distance information of the entire document from each other as an adjacency
matrix with elements from a finite set:{0, 1, 2, 3, 4, 5}.

2.2 SDBN

SDBN inherits the architecture of Transformer [23] encoder, which is a stack of
the identical building block. As its core part, we added a bias network that can
utilize the distance information in the self-attention mechanism. It makes the
model generate entity representation with attention preferences for contexts of
different distances.

A token sequence x = (x1, x2, . . . , xn) is provided as input, following the
calculate of Sect. 2.1, we introduce A = {aij} to represent adjacency matrix,
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where i, j ∈ {1, 2, . . . , n} and aij ∈ {0, 1, 2, 3, 4, 5} is a discrete variable denotes
the distance from xi to xj .

The input representation xm
i ∈ R

din is first projected into the query/key/
value vector respectively in each layer m.

qm
i = xm

i WQ
m ,km

i = xm
i WK

m ,vm
i = xm

i WV
m (4)

where WQ
m ,WK

m ,WV
m ∈ R

din×dout . Based on these inputs and the distance adja-
cency matrix A, we compute the raw attention scores and distance-dependent
attention biases, then aggregate them together as the final attention scores to
engage in the self-attention mechanism.

The raw attention score is produced by query-key product as in standard
self-attention:

em
ij =

qm
i km

j√
d

(5)

To model the distance dependency based on their contextualized query / key
representations, we use an additional module in parallel to it. We parameterize
it as bias network that transforms aij , together with the query and key vectors
qm

i and km
j , into an attentive bias, then apply it to em

ij :

ẽm
ij = em

ij +
bias network

(
qm

i ,km
j , aij

)

√
d

(6)

The proposed bias network regulates the attention flow from xi to xj . As a
result, the model gains from the information provided by distance dependencies.

After obtaining the regulated attention scores ẽm
ij , a softmax operation is

used to aggregate the value vectors.

zm+1
i =

n∑

j=1

exp ẽm
ij∑n

k=1 exp ẽm
ik

vm
j (7)

here zm+1
i ∈ R

dout is the updated contextual representation of xm
i . Figure 2 gives

the overview of SDBN. In the next section, we describe the bias network.

2.3 Bias Network

We instantiate each discrete distance aij as neural layers with particular param-
eters, train, then apply them in a compositional manner to include them into an
end-to-end trainable deep model. As a consequence, we get a structured model
composed of corresponding layer parameters for each input adjacency matrix A
made up of aij . Regarding the specific layout of these neural layers, we apply
two options: Bilinear Transformation and Decomposed Linear Transformation.

biasmij = Bilinear
(
aij , q

m
i ,km

j

)

or

= Decomp
(
aij , q

m
i ,km

j

)
(8)
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Bilinear Transformation. Lin et al. [12] proposed bilinear to combine the
features of two images, which simplifies the gradient calculation and can be
directly applied to our bias network.

bias m
ij = qm

i WB
m,aij

kmT

j + bm,aij
(9)

here, aij is parameterized as a trainable neural layer WB
l,aij

∈ R
dout ×1×dout ,

which projects the query and key vector into a single-dimensional bias. Regarding
the second term, we directly represent prior bias for each distance, regardless of
its context, in bm,aij

.

Decomposed Linear Transformation. We introduce bias on the query and
key vector respectively, according to Xu et al. [31], thus the bias is decomposed
into:

biasl
ij = qm

i KT
m,aij

+Qm,aij
km

j + bm,aij
(10)

where Km,aij
,Qm,aij

∈ R
d are also trainable neural layers.

So the overall computation of ditance-dependent self-attention is:

ẽm
ij =

qm
i kmT

j + bias network
(
qm

i ,km
j , aij

)

√
d

=
qm

i kmT

j + qm
i WB

m,aij
km

j + bm,aij√
d

or

=
qm

i kmT

j + qm
i KT

m,aij
+Qm,aij

KmT

j + bm,aij√
d

(11)

Adaptive distance dependencies aren’t shared between different layers or
attention heads since Bias Network model them based on context.

2.4 Neighbors Enhanced Loss

The proposed SDBN model takes the document text D as input and builds
its contextual representation within and throughout the encoding stage, guided
by the distance. We create a fixed dimensional representation for each target
entity using average pooling after the encoding stage. The entity representation
is denoted as ei ∈ R

de . Thus for the ith entity pair in D, to determine whether
there is a relation j, we have the following equation:

Pij = sigmoid(eihWjeit) (12)

where Wj ∈ R
de×de ,eih is the head entity and eit is the tail entity. The model

is trained using a loss consisting of two components: Binary Cross-Entropy Loss
and Neighbors Enhanced Loss.
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Binary Cross-Entropy Loss. This loss function is widely adopted and we
also use it as part of the loss function.

L1 = −
∑

ih �=it

∑

j∈R
(rij logPij

+ (1 − rij) log(1 − Pij))
(13)

where R denotes the set of relation types and rij ∈ {0, 1} is the groundtruth
label regarding entity pair i and relation j.

Neighbors Enhanced Loss. Based on our findings in Sect. 1, the closer the
context is to an entity, the greater its value to that entity, especially after
crossing-distance was used to enhance the entity context. To give the model
this tendency, we designed Neighbors Enhanced loss. Since we use SDBN as
an encoder, which has learned the crossing-distance dependencies at the token
level, directly using their attention heads to enhance the attention to neighbors
is appropriate.

Specifically, given a pre-trained multi-head attention matrix G ∈ R
H×n×n,

where Gkij indicates attention score from token i to token j in the kth atten-
tion head; n is the length of the input token sequence. Previously we have
recorded the distance between token i and token j using aij . Suppose we
want token i to pay more attention to contexts within the distance β(β ≤
μ, β is a hyper-parameter.), we only need to use aij ≤ β to find the attention
score of token i to these contexts. Therefore we use the following loss:

L2 = −log(

∑
k∈H

∑
aij≤β G

∑
k∈H

∑
aij∈A G

) (14)

L2 will push the attention score of aij ≤ β higher than the other attention scores.
In our experiments, we use the attention matrix of the last SDBN layer, which
avoids damaging the attentional flow and serves as a guide. Thus the total loss
is:

L = L1 + λL2 (15)

where λ is a hyper-parameter to control the attention flow.

3 Experiment

3.1 Datasets

DocRED. DocRED [34] is a relation extraction dataset created from Wikipedia
and Wikidata. The dataset’s documents are each annotated by humans with ref-
erences to named entities, coreference data, intra- and inter-sentence relations,
and supporting documentation. The dataset also offers vastly distantly super-
vised data in addition to human-annotated data. The two major metrics for
evaluation are Ign F1 and F1 score according to Yao et al. [34], where Ign F1
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is the F1 score that excludes triples from the annotated training data. The test
results need to be submitted to the official Codalab.1

CDR. CDR [11] is a human-annotated chemical-disease relation extraction
dataset in biomedicine, consisting of 500 documents, which is tasked with pre-
dicting binary interactions between chemical and disease concepts.

GDA. GDA [29] is a large-scale dataset in the biomedical domain and its task
is to predict the binary interactions between genes and disease concepts. It con-
tains 29192 documents for training, and we took 20% of the training set as the
development set.

3.2 Implementation Details

Our model is implemented based on the Huggingface Transformers [27], using
the pre-trained models Roberta-large [14] and Bert-large [4] and SciBERT-base
[1]. For the DocRED dataset, we first train using the distantly supervised dataset
to initialize the bias network. All hyper-parameters are grid searched and the
best performers are used on the test set. The optimizer used for all experiments
is Adam. The model is trained on a single NVIDIA V100 GPU with 32 GB
memory.

3.3 Compared Methods

Due to the effectiveness of the pre-trained model, many models are constructed
based on it, including ours. We mainly compare with these Transformer-based
models.

– Wang et al. [26] built an enhanced Bert baseline using a two-stage prediction
approach.

– Ye et al. [35] proposed a CorefBERT, which can help pre-trained models to
better exploit co-reference relations in the context.

– Xu et al. [33] explicitly created paths such as logical reasoning and co-
reference disambiguation in DocRE.

– Zhou et al. [43] proposed a method to enhance the entity context and intro-
duce an adaptive threshold to solve the multi-label problem.

– Xu et al. [32] was designed with a loss function that allows the model to
focus more on evidence sentences, which can reduce noise and improve the
robustness of the model.

– Xie et al. [30] designed a lightweight model for extracting evidence sentences
to be trained jointly with the RE model to help the RE model focus on
evidence sentences.

1 https://competitions.codalab.org/competitions/20717. Our model is named SDBN-
DF.

https://competitions.codalab.org/competitions/20717
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– Zhang et al. [37] used the U-shaped Network in computer vision on DocRE
to get global information at the entity-level.

– Xu et al. [31] used prior knowledge of entity structure to help model inference,
which inspired our work.

Table 2. Results on DocRED. Subscript DL and BL refer to Decomposed Linear
Transformation and Bilinear Transformation.

Models Dev Test
Ign F1 F1 Ign F1 F1

Coref-Roberta large [35] 57.35 59.43 57.90 60.25
BERT Two-stage [26] – 54.42 – 53.92
GAIN+SIEF [32] 59.82 62.24 59.87 62.29
ATLOP-Roberta large [43] 61.46 63.37 61.39 64.40
DRN-Bert base [33] 59.33 61.39 59.15 61.37
EIDER-Roberta large [30] 62.48 64.37 62.85 64.79
DocuNet-Roberta large [37] 62.35 64.26 62.39 64.55
SSAN+Adaptation [31] 63.76 65.69 63.78 65.92
SDBNDL+Bert large 63.32 65.38 63.38 65.42
SDBNBL+Bert large 63.47 65.34 63.58 65.46
SDBNDL+Roberta large 64.38 66.92 64.62 67.03
SDBNBL+Roberta large 64.72 67.26 64.88 67.12

3.4 Main Results

Table 2 shows the main results on the DocRED dataset. We used Bert large
and Roberta large pre-trained models on DF and BL, respectively. Similar to
the results of other papers, Roberta large gives a significantly better result than
Bert large. BL gives a slightly better result than DL, indicating that the former
is better adapted to the introduced crossing-distance.

We compared the model EIDER-Roberta large [30], which also utilizes evi-
dence sentences, and obtained a 2.03/2.33 boost on the test set of lgnF1/F1.
Meanwhile, we compared SSAN [31], which also introduces attention bias, and
obtained a 1.1/1.2 improvement on lgnF1/F1 of the test set. The comparison
with other models demonstrates the effectiveness of our SDBN. Table 3 shows
the main results of CDR and GDA datasets. We use the SciBERT base as a pre-
trained model, which has a better performance in the biomedical domain. On the
CDR and GDA test set, we improved by 2.10/1.72 over CGM2IR-SciBERT [41]
on F1, which is already outperforming all existing work. These results demon-
strate that our approach is highly applicable and generalizable.

3.5 Ablation Study

On DocRED, we conducted an ablation study of the best-performing method,
SDBNBL+Roberta large, by turning off one component at a time. The results
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of the model ablation study are shown in Table 4. It is obvious that the results
of the model decrease significantly when there is no Bias Network in the model.
However, when the NEL is removed, the Bias Network alone also gets better
results. It implies that our proposed crossing-distance is a better guide to the
attention flow and the model benefits from it.

The NEL enhancement is not apparent, because the context at close range,
although helpful, also contains distracting information. However, NEL can influ-
ence the tendency of attention bias in the Bias Network, and the two complement
each other to achieve better results.

Table 3. Results on CDR and GDA.

Model CDR GDA

ATLOP-SciBERT [43] 69.4 83.90

EIDER-SciBERT [30] 70.6 84.54

CGM2IR-SciBERT [41] 73.8 84.70

SSAN-SciBERT [31] 68.7 83.70

SDBNDL+SciBERT base 75.9 86.08

SDBNBL+SciBERT base 75.2 86.42

Table 4. Ablation Study of SDBN on
DocRED. We turn off different compo-
nents of the model one at a time.

Model Ign F1 F1

SDBNBL+Roberta large 64.88 67.12

- Bias Network 61.82 63.38

- Neighbors Enhanced Loss 63.62 66.24

- both 59.47 61.42

3.6 Robustness Analysis

We designed an experiment to verify the robustness of our model. In the training
stage, we make no changes and input the whole document. During the testing
stage, we randomly remove two of the non-evidence sentences that are not evi-
dence of any entities from each document in the development set. Every 5 epochs,
the result of F1 is compared to the performance of the model without deleting
sentences, and the absolute value of the difference is recorded.

Our approach is compared with Xie et al. [30] and Xu et al. [32], both of
which share the central notion of making the model concentrate more on the
evidence sentences. The comparison results are shown in Fig. 3. Obviously, our
SDBN changes the least after randomly deleting two non-evidence sentences,
since this does not change the crossing-distance of the evidence sentences from
the entity. This shows the robustness of our model, as it is less sensitive to
non-evidence sentences for DocRE.

3.7 Hyper-parameter Analysis

Our model has two hyper-parameters μ and β. μ is a maximum distance cut
when computing the crossing-distance, and distance exceeding μ will be cut to
μ. The meaning of β is that the token needs to be more focused on the context
within β distance.

The best result of our grid search is μ = 5 and β = 3. Therefore, our exper-
iments on F1 score fix one of the hyperparameters and then change the other
one. The experimental results are in Fig. 4. Since β ≤ μ, the part of β > μ in
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Fig. 3. Robustness of DocRE models.

Fig. 4. Performances of the classification (in F1 score) on the development set of dif-
ferent hyper-parameter β and μ.

Fig. 5. Case study on DocRED dataset.
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Fig. 4 we replace with the value of β = μ. As seen, the performance of the model
starts to degrade for μ > 5, which is because the larger μ is, the worse the ability
of our model to scale to arbitrary sequence lengths.

3.8 Case Study

We visualize the attention score of William to other tokens when identifying the
relation of an entity pair (William, New York) in the example of Fig. 1. As shown
in Fig. 5, William gives high weight to Born and graduated. Born is evidence
for the relation place of birth. The reason why the weight of graduated is also
high is perhaps due to the similarity of New York and New York University
in terms of word embedding. The visualization demonstrates that our proposed
three components do not compromise the attention mechanism. Entities are still
able to pay attention to the evidence properly even if they are several sentences
apart.

4 Related Work

DocRE models can be broadly classified into the following three categories:

Sequence-Based Models. These models encode the whole document using
neural architectures like CNN [13,16] and bidirectional LSTM [20,21], then
obtain entity embeddings and predict relations for each entity pair utilizing
bilinear function. Such sequence models do not work very effectively for model-
ing complex contexts and are relatively obsolete work.

Graph-Based Models. These models construct graphs based on the mention,
sentence, and paragraph of the document and employ a variety of graph networks
for inference [3,5,8,10,15,24,25,36,40,42]. The essence of Graph Convolutional
Networks (GCN) is to learn the manner of aggregating neighbors, and to some
extent can learn the way of aggregation at different distances. But this aggre-
gation depends on the construction method and depth of the graph network,
and will not personalize the aggregation in various ways according to different
nodes. The Graph Attention Networks (GAT) will be personalized to calculate
aggregation weights based on node information, but the distance information is
weakened. Our work can be seen as a neutralization of GCN and GAT, calculat-
ing the attention of one token to another token considering both the personalized
embedding of the two as well as the distance between them.

Transformer-Based Models. Without using graph structures, these models
adapt pre-trained language models directly to DocRE [22,26,33,35,37,43]. These
models achieve great performance based on the strong adaptability of the pre-
trained models.
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Xu et al. [31] used a priori information on entity structure to guide the
attention flow of the pre-trained model, which inspired our work. Unlike it, we
propose a new distance calculation method to guide the attention flow and design
an auxiliary loss to help the model make better utilization of the attention bias.

5 Conclusion

In this work, we propose three novel techniques SDBN and NEL, as well as a new
way of computing the distance between tokens. The new distance enhances the
context of entities; SDBN allows tokens to have different attention preferences
for contexts of different distances; NFL allows tokens to pay more attention to
closer contexts. The three can be perfectly combined to enable the model to pay
more attention to useful contexts. This will reduce the interference of irrelevant
information when identifying the relation of entity pairs.

Pronouns do not belong to any entity, hence they cannot benefit from
crossing-distance. The model can only rely on the powerful encoding capabil-
ities of self-attention to implicitly exploit pronoun information. In the future, we
intend to refer to Ye et al. [35], which explicitly exploits pronoun information.

Acknowledgement. We would like to thank the anonymous reviewers for their
insightful feedback and comments. This work is partially supported by China Natural
Science Foundation under grant (No. 62171391) and the Natural Science Foundation
of Fujian Province of China under grant (No. 2020J01053).

References

1. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scien-
tific text. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 3615–3620. Association for Compu-
tational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-
1371. https://aclanthology.org/D19-1371

2. Cao, Y., Ji, X., Lv, X., Li, J., Wen, Y., Zhang, H.: Are missing links predictable?
an inferential benchmark for knowledge graph completion. In: Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 6855–6865. Association for Computational Linguistics, Online
(2021). https://doi.org/10.18653/v1/2021.acl-long.534. https://aclanthology.org/
2021.acl-long.534

3. Christopoulou, F., Miwa, M., Ananiadou, S.: Connecting the dots: document-
level neural relation extraction with edge-oriented graphs. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4925–4936. Association for Computational Linguistics, Hong Kong,
China (2019). https://doi.org/10.18653/v1/D19-1498. https://aclanthology.org/
D19-1498

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/D19-1371
https://doi.org/10.18653/v1/2021.acl-long.534
https://aclanthology.org/2021.acl-long.534
https://aclanthology.org/2021.acl-long.534
https://doi.org/10.18653/v1/D19-1498
https://aclanthology.org/D19-1498
https://aclanthology.org/D19-1498


618 H. Liang and Q. Zhou

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018). https://arxiv.org/abs/1810.04805

5. Guo, Z., Zhang, Y., Lu, W.: Attention guided graph convolutional networks for
relation extraction. In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 241–251. Association for Computational Lin-
guistics, Florence, Italy (2019). https://doi.org/10.18653/v1/P19-1024. https://
aclanthology.org/P19-1024

6. Huang, Q., Zhu, S., Feng, Y., Ye, Y., Lai, Y., Zhao, D.: Three sentences are all
you need: local path enhanced document relation extraction. In: Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume
2: Short Papers). pp. 998–1004. Association for Computational Linguistics, Online
(2021). https://doi.org/10.18653/v1/2021.acl-short.126. https://aclanthology.org/
2021.acl-short.126

7. Jia, R., Lewis, M., Zettlemoyer, L.: Question answering infused pre-training of
general-purpose contextualized representations. In: Findings of the Association
for Computational Linguistics: ACL 2022, pp. 711–728. Association for Computa-
tional Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.
findings-acl.59. https://aclanthology.org/2022.findings-acl.59

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016). https://arxiv.org/abs/1609.
02907

9. Lee, B.K., Lessler, J., Stuart, E.A.: Weight trimming and propensity score weight-
ing. PLoS ONE 6(3), e18174 (2011)

10. Li, B., Ye, W., Sheng, Z., Xie, R., Xi, X., Zhang, S.: Graph enhanced dual
attention network for document-level relation extraction. In: Proceedings of the
28th International Conference on Computational Linguistics. pp. 1551–1560. Inter-
national Committee on Computational Linguistics, Barcelona, Spain (Online)
(2020). https://doi.org/10.18653/v1/2020.coling-main.136. https://aclanthology.
org/2020.coling-main.136

11. Li, J., Sun, Y., et al.: BioCreative V CDR task corpus: a resource for chemical
disease relation extraction. Database 2016, baw068 (2016)

12. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained
visual recognition. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 1449–1457 (2015)

13. Liu, C.Y., Sun, W.B., Chao, W.H., Che, W.X.: Convolution neural network for
relation extraction. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang,
W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 231–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-53917-6_21

14. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019). https://arxiv.org/abs/1907.11692

15. Nan, G., Guo, Z., Sekulic, I., Lu, W.: Reasoning with latent structure refinement
for document-level relation extraction. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 1546–1557. Association for
Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-
main.141. https://aclanthology.org/2020.acl-main.141

http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/P19-1024
https://aclanthology.org/P19-1024
https://aclanthology.org/P19-1024
https://doi.org/10.18653/v1/2021.acl-short.126
https://aclanthology.org/2021.acl-short.126
https://aclanthology.org/2021.acl-short.126
https://doi.org/10.18653/v1/2022.findings-acl.59
https://doi.org/10.18653/v1/2022.findings-acl.59
https://aclanthology.org/2022.findings-acl.59
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.18653/v1/2020.coling-main.136
https://aclanthology.org/2020.coling-main.136
https://aclanthology.org/2020.coling-main.136
https://doi.org/10.1007/978-3-642-53917-6_21
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.141
https://doi.org/10.18653/v1/2020.acl-main.141
https://aclanthology.org/2020.acl-main.141


Distance-Dependent Bias Network and Neighbors Enhanced Loss 619

16. Nguyen, T.H., Grishman, R.: Relation extraction: Perspective from convolutional
neural networks. In: Proceedings of the 1st Workshop on Vector Space Modeling
for Natural Language Processing, pp. 39–48. Association for Computational Lin-
guistics, Denver, Colorado (2015). https://doi.org/10.3115/v1/W15-1506. https://
aclanthology.org/W15-1506

17. Papanikolaou, Y., Staib, M., Grace, J.J., Bennett, F.: Slot filling for biomedi-
cal information extraction. In: Proceedings of the 21st Workshop on Biomed-
ical Language Processing, pp. 82–90. Association for Computational Linguis-
tics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.bionlp-1.7. https://
aclanthology.org/2022.bionlp-1.7

18. Park, S., Kim, H.: Improving sentence-level relation extraction through curricu-
lum learning. arXiv preprint arXiv:2107.09332 (2021), https://arxiv.org/abs/2107.
09332

19. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position represen-
tations. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pp. 464–468. Association for Computational Linguistics,
New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2074. https://
aclanthology.org/N18-2074

20. Song, L., Zhang, Y., Wang, Z., Gildea, D.: N-ary relation extraction using graph-
state LSTM. In: Proceedings of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 2226–2235. Association for Computational Linguis-
tics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/D18-1246. https://
aclanthology.org/D18-1246

21. Sorokin, D., Gurevych, I.: Context-aware representations for knowledge base rela-
tion extraction. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pp. 1784–1789. Association for Computational Lin-
guistics, Copenhagen, Denmark (2017). https://doi.org/10.18653/v1/D17-1188.
https://aclanthology.org/D17-1188

22. Tang, H., et al.: HIN: hierarchical inference network for document-level relation
extraction. In: Lauw, H.W., Wong, R.C.-W., Ntoulas, A., Lim, E.-P., Ng, S.-K.,
Pan, S.J. (eds.) PAKDD 2020. LNCS (LNAI), vol. 12084, pp. 197–209. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-47426-3_16

23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems 30 (2017)

24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

25. Wang, D., Hu, W., Cao, E., Sun, W.: Global-to-local neural networks for document-
level relation extraction. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 3711–3721. Association
for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.
emnlp-main.303. https://aclanthology.org/2020.emnlp-main.303

26. Wang, H., Focke, C., Sylvester, R., Mishra, N., Wang, W.: Fine-tune bert for
DocRED with two-step process. arXiv preprint arXiv:1909.11898 (2019)

27. Wolf, T., et al.: Transformers: State-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pp. 38–45. Association for Computa-
tional Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-demos.
6. https://aclanthology.org/2020.emnlp-demos.6

https://doi.org/10.3115/v1/W15-1506
https://aclanthology.org/W15-1506
https://aclanthology.org/W15-1506
https://doi.org/10.18653/v1/2022.bionlp-1.7
https://aclanthology.org/2022.bionlp-1.7
https://aclanthology.org/2022.bionlp-1.7
http://arxiv.org/abs/2107.09332
https://arxiv.org/abs/2107.09332
https://arxiv.org/abs/2107.09332
https://doi.org/10.18653/v1/N18-2074
https://aclanthology.org/N18-2074
https://aclanthology.org/N18-2074
https://doi.org/10.18653/v1/D18-1246
https://aclanthology.org/D18-1246
https://aclanthology.org/D18-1246
https://doi.org/10.18653/v1/D17-1188
https://aclanthology.org/D17-1188
https://doi.org/10.1007/978-3-030-47426-3_16
http://arxiv.org/abs/1710.10903
https://doi.org/10.18653/v1/2020.emnlp-main.303
https://doi.org/10.18653/v1/2020.emnlp-main.303
https://aclanthology.org/2020.emnlp-main.303
http://arxiv.org/abs/1909.11898
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6


620 H. Liang and Q. Zhou

28. Wu, X., Zhang, J., Li, H.: Text-to-table: a new way of information extraction.
In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 2518–2533. Association for Computa-
tional Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.acl-
long.180. https://aclanthology.org/2022.acl-long.180

29. Wu, Y., Luo, R., Leung, H.C.M., Ting, H.-F., Lam, T.-W.: RENET: a deep learning
approach for extracting gene-disease associations from literature. In: Cowen, L.J.
(ed.) RECOMB 2019. LNCS, vol. 11467, pp. 272–284. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17083-7_17

30. Xie, Y., Shen, J., Li, S., Mao, Y., Han, J.: Eider: Empowering document-level
relation extraction with efficient evidence extraction and inference-stage fusion.
In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 257–
268. Association for Computational Linguistics, Dublin, Ireland (2022). https://
doi.org/10.18653/v1/2022.findings-acl.23. https://aclanthology.org/2022.findings-
acl.23

31. Xu, B., Wang, Q., Lyu, Y., Zhu, Y., Mao, Z.: Entity structure within and through-
out: modeling mention dependencies for document-level relation extraction. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 14149–
14157 (2021). https://arxiv.org/abs/2102.10249

32. Xu, W., Chen, K., Mou, L., Zhao, T.: Document-level relation extraction with sen-
tences importance estimation and focusing. In: Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2920–2929. Association for Computational Lin-
guistics, Seattle, United States (2022). https://aclanthology.org/2022.naacl-main.
212

33. Xu, W., Chen, K., Zhao, T.: Discriminative reasoning for document-level relation
extraction. In: Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 1653–1663. Association for Computational Linguistics, Online
(2021). https://doi.org/10.18653/v1/2021.findings-acl.144

34. Yao, Y., et al.: DocRED: a large-scale document-level relation extraction
dataset.In: Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 764–777. Association for Computational Linguistics, Flo-
rence, Italy (2019). https://doi.org/10.18653/v1/P19-1074. https://aclanthology.
org/P19-1074

35. Ye, D., Lin, Y., Du, J., Liu, Z., Li, P., Sun, M., Liu, Z.: Coreferential Reason-
ing Learning for Language Representation. In: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pp.
7170–7186. Association for Computational Linguistics, Online (2020). https://
doi.org/10.18653/v1/2020.emnlp-main.582. https://aclanthology.org/2020.emnlp-
main.582

36. Zeng, S., Xu, R., Chang, B., Li, L.: Double graph based reasoning for document-
level relation extraction. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1630–1640. Association
for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.
emnlp-main.127. https://aclanthology.org/2020.emnlp-main.127

37. Zhang, N., et al.: Document-level relation extraction as semantic segmentation.
arXiv preprint arXiv:2106.03618 (2021). https://www.ijcai.org/proceedings/2021/
0551.pdf

https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/2022.acl-long.180
https://aclanthology.org/2022.acl-long.180
https://doi.org/10.1007/978-3-030-17083-7_17
https://doi.org/10.18653/v1/2022.findings-acl.23
https://doi.org/10.18653/v1/2022.findings-acl.23
https://aclanthology.org/2022.findings-acl.23
https://aclanthology.org/2022.findings-acl.23
https://arxiv.org/abs/2102.10249
https://aclanthology.org/2022.naacl-main.212
https://aclanthology.org/2022.naacl-main.212
https://doi.org/10.18653/v1/2021.findings-acl.144
https://doi.org/10.18653/v1/P19-1074
https://aclanthology.org/P19-1074
https://aclanthology.org/P19-1074
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://aclanthology.org/2020.emnlp-main.582
https://aclanthology.org/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://doi.org/10.18653/v1/2020.emnlp-main.127
https://aclanthology.org/2020.emnlp-main.127
http://arxiv.org/abs/2106.03618
https://www.ijcai.org/proceedings/2021/0551.pdf
https://www.ijcai.org/proceedings/2021/0551.pdf


Distance-Dependent Bias Network and Neighbors Enhanced Loss 621

38. Zhang, Y., Li, P., Liang, H., Jatowt, A., Yang, Z.: Fact-tree reasoning for N-
ary question answering over knowledge graphs. In: Findings of the Association for
Computational Linguistics: ACL 2022, pp. 788–802. Association for Computational
Linguistics, Dublin, Ireland (2022). https://doi.org/10.18653/v1/2022.findings-acl.
66. https://aclanthology.org/2022.findings-acl.66

39. Zhang, Y., Qi, P., Manning, C.D.: Graph convolution over pruned dependency trees
improves relation extraction. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2205–2215. Association for Compu-
tational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/D18-.
https://aclanthology.org/D18-1244

40. Zhang, Z., Yu, B., Shu, X., Liu, T., Tang, H., Yubin, W., Guo, L.: Document-
level relation extraction with dual-tier heterogeneous graph. In: Proceedings of
the 28th International Conference on Computational Linguistics, pp. 1630–1641.
International Committee on Computational Linguistics, Barcelona, Spain (Online)
(2020). https://doi.org/10.18653/v1/2020.coling-main.143. https://aclanthology.
org/2020.coling-main.143

41. Zhao, C., Zeng, D., Xu, L., Dai, J.: Document-level relation extraction with
context guided mention integration and inter-pair reasoning. arXiv preprint
arXiv:2201.04826 (2022)

42. Zhou, H., Xu, Y., Yao, W., Liu, Z., Lang, C., Jiang, H.: Global context-
enhanced graph convolutional networks for document-level relation extraction.
In: Proceedings of the 28th International Conference on Computational Lin-
guistics, pp. 5259–5270. International Committee on Computational Linguistics,
Barcelona, Spain (Online) (2020). https://doi.org/10.18653/v1/2020.coling-main.
461. https://aclanthology.org/2020.coling-main.461

43. Zhou, W., Huang, K., Ma, T., Huang, J.: Document-level relation extraction with
adaptive thresholding and localized context pooling. In: Proceedings of the AAAI
Conference on Artificial Intelligence vol. 35, pp. 14612–14620 (2021). https://arxiv.
org/abs/2010.11304

https://doi.org/10.18653/v1/2022.findings-acl.66
https://doi.org/10.18653/v1/2022.findings-acl.66
https://aclanthology.org/2022.findings-acl.66
https://doi.org/10.18653/v1/D18-
https://aclanthology.org/D18-1244
https://doi.org/10.18653/v1/2020.coling-main.143
https://aclanthology.org/2020.coling-main.143
https://aclanthology.org/2020.coling-main.143
http://arxiv.org/abs/2201.04826
https://doi.org/10.18653/v1/2020.coling-main.461
https://doi.org/10.18653/v1/2020.coling-main.461
https://aclanthology.org/2020.coling-main.461
https://arxiv.org/abs/2010.11304
https://arxiv.org/abs/2010.11304


Investigating Conversational Agent Action
in Legal Case Retrieval

Bulou Liu1, Yiran Hu2, Yueyue Wu1, Yiqun Liu1(B), Fan Zhang3,
Chenliang Li4, Min Zhang1, Shaoping Ma1, and Weixing Shen2

1 Quan Cheng Laboratory, Department of Computer Science and Technology,
Institute for Internet Judiciary, Tsinghua University, Beijing, China

yiqunliu@tsinghua.edu.cn
2 School of Law, Tsinghua University,Beijing, China

3 School of Information Management, Wuhan University,Wuhan, China
4 School of Cyber Science and Engineering, Wuhan University,Wuhan, China

Abstract. Legal case retrieval is a specialized IR task aiming to retrieve
supporting cases given a query case. Existing work has shown that the
conversational search paradigm can improve users’ search experience in
legal case retrieval with humans as intermediary agents. To move further
towards a practical system, it is essential to decide what action a com-
puter agent should take in conversational legal case retrieval. Existing
works try to finish this task through Transformer-based models based on
semantic information in open-domain scenarios. However, these methods
ignore search behavioral information, which is one of the most important
signals for understanding the information-seeking process and improv-
ing legal case retrieval systems. Therefore, we investigate the conversa-
tional agent action in legal case retrieval from the behavioral perspec-
tive. Specifically, we conducted a lab-based user study to collect user
and agent search behavior while using agent-mediated conversational
legal case retrieval systems. Based on the collected data, we analyze the
relationship between historical search interaction behaviors and current
agent actions in conversational legal case retrieval. We find that, with
the increase of agent-user interaction behavioral indicators, agents are
increasingly inclined to return results rather than clarify users’ intent,
but the probability of collecting candidates does not change significantly.
With the increase of the interactions between the agent and the system,
agents are more inclined to collect candidates than clarify users’ intent
and are more inclined to return results than collect candidates. We also
show that the agent action prediction performance can be improved with
both semantic and behavioral features. We believe that this work can
contribute to a better understanding of agent action and useful guidance
for developing practical systems for conversational legal case retrieval.
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Fig. 1. An example of the three kinds of agent actions in conversational legal case
retrieval.

1 Introduction

In recent years, legal case retrieval has attracted much attention in the IR
research community. It aims to retrieve supporting cases for a given query case
and contributes to better legal systems. Existing works show that an automatic
system not only performs the legal case retrieval tasks with higher performance
than lawyers, but also performs more efficiently [15]. Under traditional legal case
retrieval systems, users need to issue queries to express their complex informa-
tion needs [6,14], which requires sufficient domain knowledge [12,19,23]. Liu et
al. [8,9] show that conversational search paradigm, where human experts play
the role of intermediary conversational agents, can be adopted to improve users’
legal case retrieval experience in terms of query formulation, result examination,
and users’ satisfaction and search success.

The conversational agent action prediction task aims to decide what action
the agents will take based on the context of the conversation and helps provide
useful and meaningful responses in conversational search systems [2]. As shown in
Fig. 1, there are three kinds of conversational agent actions in legal case retrieval:

– Intent Understanding (IU): The agents ask clarifying questions to under-
stand users’ search intent better.
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– Candidate Collecting (CC): The agents submit queries to a legal case
ad-hoc search system and collect candidate cases.

– Result Returning (RR): The agents select relevant cases from candidates
and return them to users as results.

It is essential to understand human conversational agent action and decide
what action to take automatically before we move further towards a practical
conversational search system (that is, to use an automated agent instead of a
human expert) for legal case retrieval. Existing works try to solve the conversa-
tional agent action prediction problem through Transformer-based models [5,10]
which exploit semantic information in open-domain scenarios [22]. However,
behavioral information, which is one of the most important signals for under-
standing the information-seeking process [3] and providing implicit feedback for
legal case retrieval system [19], has not been incorporated into conversational
agent action prediction in legal case retrieval.

This paper investigates the conversational agent action in legal case retrieval
from the behavioral perspective. Different from traditional search systems, con-
versational search systems contain two kinds of behavioral information (i.e., user
and agent behaviors). Specifically, we analyze the relationship between the his-
torical interaction behaviors and the current agent actions in legal case retrieval
from two aspects: agent-user interactions and agent-system interactions. Fur-
thermore, we try to utilize behavioral features to predict which action the agent
would like to take. Our research questions are as follows:

– RQ1: What is the relationship between the historical behaviors and the cur-
rent agent actions in legal case retrieval?

– RQ2: Can we improve the conversational agent action prediction performance
with behavioral features involved in legal case retrieval?

To shed light on these research questions, we conducted a lab-based user
study with 106 tasks to collect user and agent search behavior using agent-
mediated conversational legal case retrieval systems. It’s worth noting that no
available conversational legal case retrieval system exists currently. Therefore,
we recruit legal experts as intermediary agents to complete the procedure in
a wizard-of-oz fashion. To answer RQ1, we compare the differences in user and
agent historical behaviors w.r.t. different conversational agents’ actions. Further-
more, we define the conversational agent action prediction as a classification task
and demonstrate the effectiveness of features extracted from the user and agent
behaviors for RQ2.

2 Related Work

Legal case retrieval is a specialized IR task that differs from general web search
in various aspects, such as the needs for data authority [1] and the definition
of relevance [6,7,11,18]. Behavior information plays an important role in legal
case retrieval. [19] investigated user behavior in legal case retrieval. They found
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that users of legal case retrieval devote more search effort and appear to be more
patient and cautious. They further applied the behavioral features to relevance
prediction. [8] have shown that conversational search paradigm can be adopted
to improve users’ legal case retrieval experience in terms of query formulation,
result examination, and users’ satisfaction and search success. They revealed
that it is necessary to develop conversational legal case retrieval systems.

And agent action prediction is important for develop practical conversational
systems. [16] proposed a hierarchical deep reinforcement learning approach to
learning the dialogue policy at different temporal scales. [21] presented an agent
that efficiently learns dialogue policy from demonstrations through policy shap-
ing and reward shaping. [22] proposed a Transformer-based model to predict
agent action in conversational search systems in open-domain scenarios.

Compared to these studies, our work focuses on the behavioral perspective
of the conversational agent action in legal case retrieval.

3 User Study

To investigate the relationship between the historical behaviors and the current
agent actions in conversational legal case retrieval, we conducted a lab-based
user study with 106 tasks. We show the details in this section.

3.1 Conversational Legal Case Retrieval

It’s worth noting that no available conversational legal case retrieval system
exists currently. We add an intermediary agent to complete the procedure in a
wizard-of-oz fashion. The agent needs to understand users’ intents via conver-
sations, construct queries and pick cases from SERPs for the user. Specifically,
the procedure contains the following steps:

1. The user submits a legal issue question to the agent in natural language.
2. The agent asks clarifying questions until the background information of the

search issue is sufficient.
3. The agent submits queries to the legal case retrieval system. She then selects

cases from the SERPs and responds to the user with the selected ones.

In particular, the conversational legal case retrieval procedure contains rich
logs of behavioral information. On the one hand, it contains agents’ interactions
with users, such as search questions, clarifying questions, and the cases returned
by the agent. On the other hand, it includes agents’ interactions with the system,
such as queries and clicks. Therefore, we extracted ten behavioral features from
two aspects: agent-user interactions and agent-system interactions, which are
shown in Table 1. In detail, as for agent-user interaction behaviors, we focus
on conversational input behaviors and agent answering behaviors. As for agent-
system interactions, we concentrate on query formulation and the search engine
result page (SERP) examination behaviors, especially the examination behaviors
in the SERPs from the last query. Note that there were no users’ interactions
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with the system because the user study dataset was collected in a wizard-of-oz
approach. And we just kept behavioral information before the current action for
analysis, i.e., the same setting for the action prediction task.

Table 1. The list of 10 behavioral features extracted from the agent-user interactions
and agent-system interactions.

Group Behavioral Features

Agent-User Number of utterances/words in conversations
Number of returned results/returned cases

Agent-System Number of queries/query words
Number of clicks in all queries/in last query
Avg./Max. click rank in last query

3.2 Tasks and Participants

We collected 106 search tasks from legal practitioners’ real information need
via online forums and social networks, covering 3 legal domains: 34 civil tasks
(involving 10 topics, such as “Inheritance”, “Personality rights”, “Contracts” and
“Marriage”), 35 criminal tasks (involving 7 topics, such as “Robbery”, “Fraud”,
“Bribery”, “Forcible Rape” and “Traffic accident”) and 37 commercial tasks
(involving 9 topics, such as “Company”, “Expertise Bankruptcy” and “Insur-
ance”). Compared with existing user studies for legal case retrieval or conver-
sational search [19,20], we believe that the number of tasks is enough for a
between-subjects analysis. Each task contained a query case description and a
legal issue. Users were expected to retrieve legal cases which may help to answer
the issue question.

There were two kinds of participants: users and agents. As for users, we
recruited 30 participants (12 males and 18 females) via online forums and social
networks. They were all native Chinese speakers and college law students. All
users had no previous experience with conversational search systems. No users
conducted two tasks in the same topic, which also can avoid the task learning
effects on the results. Note that the tasks have negligible or no learning effects
on each other even in the same domain if they are not in the same topics.

We recruited 15 graduate students from law school (5 for civil law, 5 for
criminal law and 5 for commercial law) to be agents. They were all native Chinese
speakers and qualified in legal practice1. To ensure an adequate level of domain
expertise, they only participated in the task related to their research fields. In
addition, they all achieved a score of 95 or more in the courses corresponding
to their experimental topics. This can reduce the effect of individual variability.
And they were trained with 5 auxiliary search tasks beforehand to familiarize
with the query construction skills in the legal case retrieval system, guaranteeing
an adequate level of search expertise.
1 They had passed the “National Uniform Legal Profession Qualification Examination”.
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Table 2. Statistics of agent actions in the user study dataset.

#Tasks #Intent
Understanding

#Candidate
Collecting

#Result
Returning

106 437 385 208

As for the legal case retrieval system, we choose a leading commercial legal
search engine2 in China. Users and agents had a conversation (just in text form)
via Zoom3.

3.3 Procedure

Before the experiments, we firstly requested each participant to complete a
warm-up search task. We then introduce the details of the procedure as follows:

Query Case and Issue Reading. In the first step, the user read the query
case description and the legal issue carefully. She could refer to the query case at
any time during the session, so she did not need to memorize the case description
at this step.

Pre-task Questionnaire. Next, the user was asked to finish a pre-search ques-
tionnaire, including: domain knowledge level, task difficulty level, and prior inter-
est level of the task with a 5-point Likert scale (1: not at all, 2: slightly, 3:
somewhat, 4: moderately, 5: very).

Task Completion. After that, the user started performing searches with the
agent. At this step, we collected the agent’s interactions with the system, includ-
ing queries, clicks, etc. Moreover, we recorded the conversation contents, including
users’ legal questions, agents’ clarifying questions, the cases returned by the agent.

Post-task Questionnaire. After examining the supporting cases returned by
the agent, the user was required to complete a post-task questionnaire. At this
step, we collected explicit feedback signals with respect to the search experience,
including five-grade workload and satisfaction.

Result Assessment. After completing the post-task questionnaire, the user
was further asked to annotate the cases that agents clicked in the SERPs. That
is, a relevance score is annotated to each case (1: irrelevant, 2: relevant). As for
the cases that weren’t clicked, we simply regarded them as irrelevant.

To drive the conversational legal case retrieval process, the intermediary
agents can take three kinds of actions (i.e., Intent Understanding, Candidate
Collecting, and Result Returning). Through these actions, the agents understand
user intent by clarifying questions, collect candidate cases from the traditional
legal search system by submitting queries, and return relevant cases from can-
didates to users, respectively. Table 2 shows distribution of each agent action in
the user study dataset.
2 https://ydzk.chineselaw.com/case.
3 https://zoom.us/.

https://ydzk.chineselaw.com/case
https://zoom.us/
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4 Results

4.1 Analysis on Conversational Agent Action

To address RQ1, we report the relationship between the historical interaction
features and the current agent action using box plots. Specifically, we compare
the differences in users’ and agents’ historical behaviors given different conversa-
tional agents’ actions from two aspects: agent-user interactions and agent-system
interactions. We also perform a series of one-way ANOVA tests [4] and pairwise
t-tests [17] to determine the significance.

Comparison of Agent-User Interactions. Firstly, we compare historical
agent-user interaction behaviors w.r.t. different agent actions. Here, we focus
on conversational input behaviors and agent answering behaviors. The results
of ANOVA tests (ANOVA-p) are reported in Fig. 2. We can make the following
observations.

From the first line in Fig. 2, we can observe that the conversational input
behavioral indicators (i.e., the number of utterances and words) show significant
differences between the three agent actions (ANOVA-p < 0.05). Moreover, we
find that the number of utterances and words under “Result Returning” action
is significantly more than that under “Intent Understanding” action (p < 0.05).
However, there are no significant differences according to pairwise t-tests in con-
versational input behaviors between the “Candidate Collecting” action and the
other actions. This illustrates that the agent tends to adopt the “Intent Under-
standing” action when the conversation length is short and tends to adopt the
“Result Returning” action when the conversation contains sufficient information.
Furthermore, the agents may take the “Candidate Collecting” action regardless
of the length of the conversation.

We further investigate the agent answering behaviors (i.e., the number of
returned results and returned cases), and the results of ANOVA tests are shown
in the second line in Fig. 2. There are also significant differences in these two
indicators before agents adopt the three actions (ANOVA-p < 0.01). Further-
more, we find that the number of returned results and returned cases before
agents take the “Intent Understanding” action are significantly less than that
before agents take the other two actions (p < 0.01). And these two indicators do
not show significant differences before the “Candidate Collecting” action and the
“Result Returning” action. These indicate that as the agent answering behavioral
indicators increases, the agent will decrease the probability of taking the “Intent
Understanding” action and prefer to take the other two actions.

Comparison of Agent-System Interactions. Then we compare historical
agent-system interaction behaviors w.r.t. different agent actions. Specifically, we
concentrate on query formulation and SERP examination behaviors. The results
of ANOVA tests (ANOVA-p) are reported in Fig. 3. We can make the following
observations.
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Fig. 2. Comparison of historical agent-user interaction behavioral measures given dif-
ferent current agent actions.

Overall, we find that the historical agent-system interaction behavioral indi-
cators before the three conversational agent actions follow the following relative
order: “Intent Understanding” < “Candidate Collecting” < “Result Returning”
(shown in Fig. 3). We can observe that agents submitted fewer queries and query
words before “Intent Understanding” actions than those before another action
(p < 0.001). And the number of queries and query words before taking “Can-
didate Collecting” actions are less than those before taking “Result Returning”
actions (p < 0.001). The above phenomenons also exist for the number of clicks,
especially in the last query. This suggests that with the increase of the inter-
actions between the agent and the system, agents are more inclined to collect
candidates than clarify users’ intent and are more inclined to return results than
collect candidates.

Furthermore, we investigate two indicators related to the examination behav-
iors in the last SERP: the average/maximum click rank in the last query.
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Fig. 3. Comparison of historical agent-system interaction behavioral measures given
different current agent actions.
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The results of ANOVA tests are shown in the last line in Fig. 3. Similarly,
these two indicators show significant differences between the three actions
(ANOVA-p < 0.001). And we can observe that the click rank is larger before
the“Result Returning” action than that before the other two actions significantly
(p < 0.001). It shows that the agents are more inclined to return results when
they examine and click on the results with a larger rank. Because they are more
convinced that they have understood user intent and submitted accurate queries.

Summary. To answer RQ1, our findings are as follows: 1) With the increase of
agent-user interaction behavioral indicators, agents are increasingly inclined to
return results rather than clarify users’ intent, but the probability of collecting
candidates does not change significantly; 2) With the increase of the interactions
between the agent and the system, agents are more inclined to collect candidates
than clarify users’ intent and are more inclined to return results than collect
candidates.

4.2 Conversational Agent Action Prediction

To address RQ2, we try to improve the conversational agent action prediction
with behavioral features. Two groups of features are adopted in the experiments:
agent-user behaviors and agent-system behaviors (ref. Table 1). We define the
prediction task as a multi-class classification task and use Macro-F1 for evalua-
tion. Furthermore, we further analyze the effect of these features through three
binary classification tasks: IU vs. CC, IU vs. RR and CC vs. RR. We use the
F1-score to evaluate the three classification tasks.

We first investigate the prediction performance without semantic features.
Random is the baseline which decides actions randomly. As this task can be
treated as a multi-class classification problem, we apply a gradient boosting clas-
sifier [13] and perform 5-fold cross-validation. The results are shown in Table 3.
We can observe that using both groups of features achieves the best perfor-
mance on all classification tasks and using agent-system interaction behavioral
features also outperforms Random significantly. These suggest that both groups
of features are useful for the conversational agent action prediction in legal case

Table 3. Performance comparison of conversational agent action prediction task. AU
and AS denotes that the method incorporates agent-user and agent-system behavioral
features, respectively. Best results are in boldface. † indicates that the difference to
Random is statistically significant at 0.05 level from the student t-test.

Method Overall IU vs. CC IU vs. RR CC vs. RR

Random 0.3607 0.5259 0.5158 0.5112
AU 0.4018 0.5625 0.8087† 0.6182
AS 0.5142† 0.7775† 0.8171† 0.6971†

AU+AS 0.5265† 0.8058† 0.8260† 0.7043†
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retrieval. And agent-user behaviors only significantly improve the performance
of IU vs. RR task, suggesting that they do not provide much information to
distinguish whether to take the Candidate Collecting action.

Existing works try to solve the conversational agent action prediction prob-
lem through Transformer-based models based on semantic information. To fur-
ther investigate the prediction performance with semantic features, we concate-
nated all the utterances in the conversation together and used LawFormer [24]
as the encoder. Here LawFormer is a Longformer-based pre-trained language
model for Chinese legal long documents understanding. Then we fed the [CLS]
embedding into full connected layers and fine-tuned LawFormer for each tasks
as the baseline. The model is optimized by the cross-entropy loss. We performed
5-fold cross-validation and the results are shown in Table 4. We can find Law-
Former outperforms all the methods without involving semantic features (shown
in Table 3). It illustrates that semantic information is also very useful for the
conversational agent action prediction in legal case retrieval.

Then we regarded the probability distribution (i.e., the probabilities of tak-
ing the three actions, 3-dimensional in total) of the full connected layers’ output
as semantic features. We combine the semantic features with behavioral features
together and also apply a gradient boosting classifier to obtain the final agent
action prediction results. Note that we just utilize the LawFormer fine-tuned in
the baseline and do not take further fine-tuning strategies. And the model frame-

Fig. 4. Combining semantic and behavioral features for the conversational agent action
prediction. u1, u2, ..., un denote all the utterances in the conversation. FC denotes the
full connected layers. pIU , pCC , pRR denote the probabilities of taking the three actions
predicted by the LawFormer baseline.
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work is shown in Fig. 4. As for the three binary classification tasks: IU vs. CC, IU
vs. RR and CC vs. RR, the semantic features change from three-dimensional to
two-dimensional as the output of the fully connected layer changes. Other experi-
mental settings remain the same and the results are shown in Table 4. AU and AS
denotes that the method incorporates agent-user and agent-system behavioral
features, respectively. We find that combining behavioral features with semantic
features achieves significantly better classification performance than LawFormer,
especially in the IU vs. CC task and the CC vs. RR task. This illustrates that
historical behaviors are useful supplementary information for semantic features
to distinguish whether to take the Candidate Collecting action.

Table 4. Performance comparison of conversational agent action prediction task with
using semantic features. AU and AS denotes that the method incorporates agent-
user and agent-system behavioral features, respectively. Best results are in boldface. †
indicates that the difference to LawFormer is statistically significant at 0.05 level from
the student t-test.

Method Overall IU vs. CC IU vs. RR CC vs. RR

LawFormer 0.5425 0.8232 0.8739 0.7335
LawFormer+AU 0.5675 0.8318 0.8844 0.7398
LawFormer+AS 0.5828 0.8428 0.8462 0.7564
LawFormer+AU+AS 0.6177† 0.8669† 0.8870 0.8015†

Concerning RQ2, we find that behavioral features can improve the conver-
sational agent actions prediction performance in legal case retrieval whether
semantic features are involved or not.

5 Conclusion

In this paper, we investigate three kinds of conversational agent actions (i.e.,
Intent Understanding, Candidate Collecting, and Result Returning) in legal case
retrieval from a behavioral perspective. We find that with the increase of agent-
user interaction behavioral indicators, agents are increasingly inclined to return
results rather than clarify users’ intent, but the probability of collecting can-
didates does not change significantly. Moreover, with the increase of the inter-
actions between the agent and the system, agents are more inclined to collect
candidates than clarify users’ intent and are more inclined to return results than
collect candidates. We further show that the agent action prediction perfor-
mance can be improved with both semantic and behavioral features in legal case
retrieval. We believe that this work can contribute to a better understanding of
agent action and useful guidance for developing practical systems for conversa-
tional legal case retrieval.

As for future work, we firstly plan to utilize more sophisticated algorithms
(e.g., reinforcement learning) to incorporate behavioral information into the legal
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conversational agent action prediction task more effectively. Secondly, we pre-
pare to take more fine-grained behavioral information (e.g., mouse movements,
hovers and so on) into consideration. At last, we also try to improve retrieval
performance through more accurate action prediction in conversational legal case
retrieval.
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Abstract. Pre-trained Language Models have recently emerged in
Information Retrieval as providing the backbone of a new generation
of neural systems that outperform traditional methods on a variety of
tasks. However, it is still unclear to what extent such approaches general-
ize in zero-shot conditions. The recent BEIR benchmark provides partial
answers to this question by comparing models on datasets and tasks that
differ from the training conditions. We aim to address the same ques-
tion by comparing models under more explicit distribution shifts. To this
end, we build three query-based distribution shifts within MS MARCO
(query-semantic, query-intent, query-length), which are used to evalu-
ate the three main families of neural retrievers based on BERT: sparse,
dense, and late-interaction – as well as a monoBERT re-ranker. We fur-
ther analyse the performance drops between the train and test query
distributions. In particular, we experiment with two generalization indi-
cators: the first one based on train/test query vocabulary overlap, and
the second based on representations of a trained bi-encoder. Intuitively,
those indicators verify that the further away the test set is from the
train one, the worse the drop in performance. We also show that mod-
els respond differently to the shifts – dense approaches being the most
impacted. Overall, our study demonstrates that it is possible to design
more controllable distribution shifts as a tool to better understand gener-
alization of IR models. Finally, we release the MS MARCO query subsets,
which provide an additional resource to benchmark zero-shot transfer in
Information Retrieval.

Keywords: Neural IR · Zero-shot retrieval · Distribution shift

1 Introduction

The ability of machine learning models to generalize to unseen cases under dis-
tribution shifts remains a major challenge and concern for systems deployed
in the real world [8]. In Information Retrieval (IR), the question of generaliza-
tion has often been eluded, due to the robust and long-standing performance
of term-based approaches [51]. However, with the recent advent of neural IR
based on Pre-trained Language Models (PLM) like BERT [10], the generaliza-
tion issue has become as relevant as ever, as recently shown in the zero-shot
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13980, pp. 636–652, 2023.
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BEIR benchmark [43]. By comparing various types of BERT-based models on
different domains and tasks, Thakur et al. show how cross-encoders, as well as
retrieval models with lexical priors such as doc2queryT5 [32] or ColBERT [24],
tend to be more robust, while dense bi-encoders such as DPR [23] or TAS-B [20]
seem to suffer more from domain shifts – with performance lower than BM25
overall. Knowing that many production systems use (or will use) models based
on PLM (e.g. [50]), while being exposed to new documents and queries every
day, robustness is thus a critical aspect that must be assessed.

Outside of the IR field, Wiles et al. [47] propose a framework to evaluate
computer vision models under various distribution shifts, in order to assess
the important aspects for which robustness is required, and which models are
effectively robust. Intuitively, a dataset is composed of samples with various
attributes (for instance, color, shape, or lightning), where some attribute values
would be seen at training time – and others not. The objective is then to be able
to learn representations that are invariant to such variations, to better transfer
to unseen attributes. Our objective echoes the same research question, from the
IR point of view, where terms constitute the unit of variation – their frequency in
a training dataset having a potential impact on model effectiveness. Even if the
BEIR benchmark implicitly defines various distribution shifts, we would like to
explicitly control the shifts to understand which of those are critical to evaluate
robustness. In particular, we show that within MS MARCO, we can construct
several distribution shift experiments that we believe will ease the study of these
phenomena. Our main contributions are as follows:

– We design and release multiple distribution shifts based on MS MARCO
query attributes to help analysing the robustness to unseen attributes1;

– We compare the three main families of first-stage retrievers based on BERT
(dense or sparse bi-encoders, and late interaction), as well as a cross-encoder
in those controlled shifts, and show that dense models are the most impacted;

– We analyse how the drops in effectiveness can be linked to the “distance”
between train and test query distributions, in particular with two possible
generalization indicators (term- and model-based).

The structure of the paper is organized as follows: Sect. 2 outlines prior works
on generalization in IR. Section 3 details our methodology, while Sect. 4 contains
the experimental setting. Results and analyses are reported in Sect. 5. Section 6
summarizes the main conclusions and future research directions.

2 Related Work

Pre-trained Language Models (PLM) have impacted IR at its very core, owing
to their ability to model complex semantic relevance signals, which makes them
appealing to replace traditional term-based approaches in modern search engines.

1 Splits of MS MARCO queries available at https://github.com/naver/ms-marco-
shift.

https://github.com/naver/ms-marco-shift
https://github.com/naver/ms-marco-shift
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From re-rankers like monoBERT [31] to models that directly tackle first-stage
ranking – including dense [20,23,25,35,50] and sparse [12,14] bi-encoders, as
well as late-interaction models [24,39], the effectiveness gains offered by such
approaches is quite impressive. Initially evaluated on in-domain settings (like
MS MARCO [4]), where train and test queries follow the same distribution,
conclusions became more contrasted when Thakur et al. released the zero-shot
BEIR benchmark [43] – in which some models like DPR [23] achieve lower overall
performance than (unsupervised) BM25. In more detail, the BEIR benchmark
consists of a test suite of 18 datasets – each containing documents, queries, and
corresponding qrels – that are used to evaluate models in zero-shot, i.e., without
any sort of training based on those datasets. The selected datasets were chosen
by three factors: diversity in tasks, domains, and difficulty. This makes BEIR
really challenging as, differently from classical evaluation settings where the col-
lection usually stays unchanged, here both queries and documents are “new”.
Furthermore, the task may also vary from the initial training objective (e.g.,
Question-Answering or Fact-Checking). By measuring the similarity between
datasets/domains – relying on the weighted Jaccard similarity [22] between the
document collections – the authors argued that BEIR indeed contains a diverse
set of tasks, and is perfectly suited for zero-shot evaluation of neural IR models.

In the meantime, other works have investigated various aspects of robust-
ness or generalization capabilities of re-ranker models, in order to uncover their
weaknesses or failure cases. First, there have been several works on the sys-
tematic testing of transformer-based rankers [6,29,34,44]. More specific to the
IR field, the impact of shifting trends in search engines was studied on neural
re-rankers as well (pre- and post-BERT), under the lens of catastrophic forget-
ting [27] and lifelong learning [18]. Penha et al. [33] also analysed the robustness
of various re-ranking models to typos (i.e. variations without changes of seman-
tic) – as search engines directly interact with users and may be exposed to such
issues. Following works further complement the findings for dense bi-encoders
against misspellings and paraphrasing [40,55–57]. From a different perspective,
various neural IR models (mostly re-rankers) have been shown to be vulnera-
ble under adversarial attacks – usually by substituting words in documents or
queries [26,41,46,48,49]. Overall, such studies usually focus on a single type of
model, and lack the comparison between the various architectures proposed to
tackle first-stage ranking, for which robustness might even be more critical.

A few works recently analysed the generalization (or zero-shot properties)
of BERT-based first-stage rankers [37]. Lexical matching has been shown to be
architecture-dependent, especially in zero-shot [15]. Using the two train sets of
MS MARCO and Natural Question, Ren et al. [36] identify key factors that affect
the zero-shot properties of dense models – including the overlap between the
source and target query sets, as well as the query type distribution. We simi-
larly study the role of such overlap, but we rely on our explicit shifts built within
MS MARCO. Zhan et al. [54] provide a thorough analysis on MS MARCO by
(i) identifying a strong train/test overlap within the dataset, that plagues the
current evaluation of neural rankers, (ii) fixing this issue, relying on two new
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Table 1. Examples of queries from the topic clusters. We identified the following
topics: Names and Public Figures, Dated Events, Pricing/Units, Medical Treatments
and Biology/Physics.

Topic Queries

C0 +what does the name brooke mean ; Camel Two Humps called ;

How Did George Peppard Die ; How Much is Bobby Brown Worth

C1 +when is mardi grai ; +which president has Living grandsons ; 23 is

What day of 2016 ; 2015 ncca footbal rankings

C2 1 cm is how many millimeters ; . what is the major Difference between

a treaty and an executive agreement? ; 1 point perspective definition

C3 ECT is a treatment that is used for ; The ABO blood Types are examples

of ; The vitamin that prevents beriberi is ; 1.5 g of sodium per day

C4 Ebolavirus is an enveloped virus, which means ; % of earths crust is

dysprosium ; +what is forbs as a food for animals?

resampling strategies that allow to accurately compare zero-shot properties of sev-
eral retrieval architectures, on datasets without train/test overlaps, (iii)showing
that bi-encoders fail to properly generalize compared to cross-encoders. While also
being related, our work differs in that we aim to create controllable subsets that
would not only avoid train/test overlaps, but would also help to analyse the link
between effectiveness drops and train/test similarity. Similar findings on leakages
between Robust04 and MS MARCO have been recently outlined [16], which fur-
ther motivates the need to build datasets with controlled shifts that do not con-
tain such leakages. Other related works also investigated particularities of the MS
MARCO collection, and possible bias the dataset could contain [3,19,30]. Finally,
several methods have been proposed to adapt neural rankers to new domains or
tasks – usually without requiring supervised annotations on the targeted distri-
butions [9,42,45,52,53]. Such works which try to fix – rather than understand the
causes of – generalization issues, are out of scope for our work, even though they
can indirectly help on the understanding of generalization.

3 Methodology

3.1 Distribution Shifts

To investigate the behavior of models facing different types of shifts, we start
from the MS MARCO passage dataset [4], which contains approximately 8.8M
passages and 500k training queries. We then build upon it three shifts – defined
as a change of attributes distribution between train and test distribution – from
queries. Our goal is to cover all three lexical (inferred from terms), semantic
(connected to meaning), and syntactic shifts (related to word structure). Addi-
tionally, note that shifts on training queries implicitly entail a shift in documents,
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Fig. 1. t-SNE on the query topics, where each cluster contains both training and eval-
uation queries. Clusters 3 and 4 are close to each other but correspond to resp. Medical
Treatments (red) and Biology/Physics (purple), the other cluster are well separated.
(Color figure online)

as both relevant and negative-sampled documents used for training won’t follow
the same distribution.

Query Topics. We first propose to separate queries into five semantic clusters,
referred to as (Ci)i∈�0,4�, alongside their complements Ci = {Cj |j ∈ �0, 4�; j �= i}.
Formally, we proceed in three steps: (i) use a k-means algorithm on the [CLS]
DistilBERT representations of MS MARCO queries to build 100 initial clus-
ters2, (ii) select the five clusters that maximize the sum of pairwise �2 distances
between their respective centroids, (iii) expand those five native clusters by
joining nearest clusters, until we have groups of ≈25k queries (without overlap).
This process differs from a classical k-mean algorithm as the final clusters do not
form a partition of the entire set of queries (|⋃i Ci| � 125k<<500k), resulting
in larger boundaries between clusters compared to the works from [54]. Addi-
tionally, starting from 100 clusters enables us to define more specific topics from
the start (we also experimented with larger values for k, but didn’t notice any
improvements in the quality of the clustering). Finally, we split each cluster into
train and test sets, allowing us to compare both in-domain and out-of-domain
performance. Training is done on the train set of each Ci, referred to as Ci

t
. It

contains ≈100k queries, for which we sample 100 negatives using BM25, result-
ing in approximately 10M triplets in total. Models are evaluated on the test
sets of the Ci (referred to as Ce

i , containing 6200 queries each). We provide a
t-SNE [28] visualization of the resulting clusters in Fig. 1: we observe that clus-
ters are clearly distinct from each other in the embedding space. We additionally
provide examples from each cluster in Table 1: clusters correspond to different
topics, so the distribution shift here is more semantic.

2 We consider a pre-trained DistilBERT [38] that has not been fine-tuned.
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Fig. 2. Zero-shot evaluation procedure. Lines correspond to models trained on different
clusters, and columns to evaluation sets. For C0, we define Avg In as the mean test

performance on Ce
0 for models trained on C1

t
, C2

t
, C3

t
and C4

t
, and Rel Loss as the

relative difference between the Avg In and the zero-shot performance (i.e. trained on

C0
t

and evaluated on Ce
0).

WH-Words Queries. Besides query topics, we investigate queries styles and
goals, through an analysis of question words [36,58]. In comparison to Natu-
ral Language Processing, question words in IR are a much stronger signal, as
they define the query intent recently studied in [5], such as: instruction, reason,
evidence-based, comparison, experience or debate. In order to evaluate models on
such shifts, we manually build three clusters (wha, how, who, also referred to
as (Wi)i=0,1,2), for queries respectively related to definitions (“what”, “defini-
tion”), instructions (“how”) and finally more general questions linked to persons,
locations or context (“who”, “when”, “where”, “which”). This shift is entirely
rule-based, as we separate queries on the above lists of fixed terms. Similarly,
we split each cluster into train/test splits, and we train models on the training
sets of the complements (containing 10M triplets in total). We evaluate models
on the test Wi, each containing 6500 queries.

Short and Long Queries. Query length is known to greatly impact retrieval –
for instance, aggregating information from long queries has been deemed difficult
for both traditional and neural IR methods [43]. We thus define the last shift
on this attribute. To analyse this effect, we split the train set into groups of
short and long queries, from the median query length at the word level (6 for
MS MARCO). Train/test sets contain respectively 10M training triplets and
3500 queries for evaluation.
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3.2 Evaluation Procedure

We perform leave-one-out on all the shifts in order to evaluate the in-domain and
zero-shot effectiveness of various models. For instance, let’s consider the topic
clusters. For i ∈ �0, 4�, we independently train a model Mi on Ci

t
, and evaluate

it on the test set of each cluster. It, therefore, creates a zero-shot experiment
on Ce

i , as its distribution was out-of-training. We also have access to in-domain
evaluation on the Ce

j for j �= i. Similarly with wh-words, we train on wha
t
, how

t

and who
t
, and test each time on respective test sets. Note that, in addition to

the leave-one-out rotation on clusters, we also rely on train/test splits inside
each cluster, in order to have access to both in-domain and out-of-domain per-
formances. We, therefore, report Avg In as the average performance measure,
when the distribution of the evaluated cluster is seen at training time, and Rel
Loss as the relative loss between the above average measure, and the zero-shot
performance, i.e. when the evaluated cluster is out of the training distribution.
Figure 2 illustrates the overall evaluation procedure. Note that, as some clusters
may intrinsically contain harder queries, what we are really interested in here is
the comparison of the performance inside a column (i.e., on the same evaluation
set, with different training sets). In general, the lowest performance is achieved
on the diagonal (as it corresponds to zero-shot evaluation).

4 Experimental Setup

We compare three first-stage ranking models: (i) a standard dense
bi-encoder [23] which represents queries and documents in a dense low dimen-
sional space by the means of the [CLS] embedding, (ii) the late-interaction
ColBERT [24], (iii) and the sparse bi-encoder SPLADE-max [13] which represents
queries and documents as sparse high-dimensional bag-of-words vectors. Those
models represent the three main families of representation-based models in IR,
and we are thus interested in their behavior with respect to zero-shot generaliza-
tion. Finally, we also include BM25 as a reference point, as well as a monoBERT
cross-encoder [31] re-ranking BM25 top-1000 documents. All models rely on a
pre-trained DistilBERT [38] backbone model, and are fine-tuned on a particu-
lar query subset. We limit ourselves to a standard training procedure, relying on
contrastive learning and BM25/in-batch negatives [23], without further improve-
ments such as distillation [21], hard negative mining [50] or middle-training [17],
as those techniques are more general, and may be applied to any baseline model.
For evaluation, we report MRR@10 – the official MS MARCO performance mea-
sure. We also report the Atomized Search Length3 (ASL) [1], as it complements
MRR@10 by not focusing on top of the ranking. In a nutshell, it is defined, for
a given query, as the average number of irrelevant documents ranked before a
relevant one. The dense and sparse bi-encoders are fine-tuned on 4 V100 GPUs,
for 100k iterations, with a batch size of 128, using the MS MARCO triplets

3 We used a 100 bounded ASL.
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Table 2. Comparison of the average performance and relative loss (MRR@10) from
seen to unseen clusters. In bold are the best on each cluster (in terms of performance
and loss). All losses between the Avg In and Out, for each model, are statistically
significant with p-value< 0.05 for paired t-test.

Models Ce
0 Ce

1 Ce
2 Ce

3 Ce
4

BM25 19.2 25.9 16.4 18.1 17.5

Bi-encoder Avg in 33.2 37.2 28.5 21.5 21.4

Out 30.4 30.5 25.9 19.0 19.6

Rel loss 8.3% 18.0% 9.0% 11.5% 8.6%

SPLADE Avg in 36.8 38.7 31.2 26.2 25.0

Out 34.5 34.0 30.2 24.5 24.7

Rel loss 6.3% 12.2% 3.2% 6.4% 1.4%

ColBERT Avg in 39.7 42.3 34.6 28.8 27.7

Out 38.6 38.7 33.4 27.7 27.1

Rel loss 2.7% 8.5% 3.4% 3.7% 2.2%

monoBERT Avg in 39.4 42.7 33.4 27.1 26.3

Out 38.6 38.4 31.8 25.9 25.7

Rel loss 2.1% 10.2% 4.8% 4.5% 2.4%

from our shifts. ColBERT and monoBERT are both trained for 150k iterations
with a default batch size of 32, on 2 V100 GPUs. For the bi-encoders, best
checkpoints are selected using an approximated early stopping [20] relying on
a validation set composed of 1600 queries, which is not subject to the shifts.
From our observations, the best checkpoints would generally correspond to 40k
iterations, resulting in about 5M training triplets (using bs = 128). ColBERT
and monoBERT, on the other hand, do not rely on early stopping, but overall
see the same number of training samples (5M , in 150k iterations with bs = 32).
Thus, both training procedures are very similar. For all other parameters, we
adopt the default values reported in the original papers.

5 Results and Analysis

In this section, we first compare the drops in performance of different architec-
tures when subject to the shifts. We then link those results with two indicators
we define in Sect. 5.2, which can be used to analyse the behavior of different
models regarding their zero-shot capability.

5.1 Performance Evaluation on Distribution Shifts

Query Topics. Table 2 reports the performance of models on both in-domain
(Avg In) and out-of-domain (Out), as well as the relative (Rel Loss) due to
the shift, on each topic cluster. We first notice that drops in performance can
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Table 3. Comparison of the avg. MRR@10 and relative losses in zero-shot for wh-words
and query length. All losses have p-value<0.05 for paired t-test.

Models whae howe whoe shorte longe

BM25 18.2 14.7 22.3 19.0 18.5

Bi-encoder Avg in 27.8 26.0 33.1 34.0 27.1

Out 23.4 19.6 27.9 29.8 25.2

Rel loss 15.8% 24.8% 15.8% 12.5% 7.0%

SPLADE Avg in 30.3 28.9 37.7 34.9 30.3

Out 28.6 21.2 32.5 33.5 27.1

Rel loss 5.5% 26.8% 13.7% 3.9% 10.4%

ColBERT Avg in 33.5 31.7 40.0 38.4 32.5

Out 31.8 27.3 36.6 36.4 31.6

Rel loss 5.2% 14.0% 8.6% 5.1% 2.7%

monoBERT Avg in 33.9 30.5 40.1 37.7 32.6

Out 31.1 26.4 37.1 32.3 28.9

Rel loss 8.3% 13.5% 7.5% 14.3% 11.3%

be significant (up to 18% for the dense bi-encoder). Overall, we observe that
dense models are the most impacted by the shifts across clusters, followed by
SPLADE, and finally ColBERT and monoBERT. Interaction approaches also
demonstrate both better performance on in-domain and out-of-domain – com-
pared to representation-based models. All in all, the results are in line with the
ones reported in [43]. However, contrary to the results reported in [54], SPLADE
seems here to be substantially more robust than dense bi-encoders, and this on
every cluster. Note that, the average query/document sizes for SPLADE (which
correspond to the number of non-zero dimensions in the sparse representations)
are respectively 24 and 130, which is already way below the dense representations
([CLS] vector of size 768) – despite its better performance overall. Moreover, as
opposed to the BEIR benchmark, no model here performs lower than BM25
under zero-shot evaluation. This phenomenon is likely due to the fact that we
“stay” within MS MARCO, tackling the same retrieval task. BM25 performance
also indicates to some extent the difficulty of each cluster – some of them (e.g.
Ce

1) supposedly relying more on word matching than others. Finally, note that
all the drops (between in- and out-of-domain) are statistically significant, with
p-values<0.05.

WH-Words Queries. Table 3 shows the results on wh-words and query length
shifts. On the former (left columns), drops in effectiveness are on average much
more important compared to topic clusters – with up to 26.8% on the howe clus-
ter for SPLADE. However, the overall comparison between architectures remains
the same. We also notice that models with higher Avg In are also the ones with
the lowest relative losses – ruling out overfitting as the cause of better in-domain
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performance. Alexander et al. [2] conduct a study on query taxonomies. In par-
ticular, they refer to how queries as having an instrumental intent (“how”,
“how to”, “how do”), in contrast to usual queries which have factual intents
(e.g. “who”, “when”, “where”, “which”, “what”, “definition”). We notice in our
results the same pattern on those queries, with both higher drops, as well as
lower BM25 results. Those queries tend to rely less on word matching, and more
on a general understanding of the given situation – it is thus harder for models
to accurately perform on such a cluster in zero-shot.

Length. Concerning the length-based shift (Table 3, right columns), we first see
that short queries are easier than longer ones: a model trained on long queries
will be better on the short than on the long evaluation set. Interestingly, we
notice that short and long queries are somewhat complementary in a training
set – a model cannot be trained with long queries only. Besides, we also observe
that models trained on long queries tend to have a higher recall (not reported),
while models trained on short queries a higher precision.

5.2 Train/Test Distribution Similarity

From our previous experiments, it is difficult to estimate a priori the strength
of a shift on the downstream performance. We thus consider in the following
two measures of similarities between train and test queries, that partially cor-
relate with the zero-shot performance drop – and so the strength of the shift –
and that can easily be interpreted: (i) a term-based similarity, which measures
the vocabulary overlap between out-of-domain and in-domain query sets, (ii)
a model-based similarity, which takes advantage of internal representations of
trained models.

Jaccard Similarity. The weighted Jaccard [22] can be used to measure the
vocabulary overlap between two sets of documents or queries [11,43]. More for-
mally, given a source and a target collection, it is defined as:

J(S, T ) =
∑

V min(Sk, Tk)∑
V max(Sk, Tk)

where Sk and Tk are the normalized frequencies of word k in source and target
datasets respectively, and V is the union vocabulary. In our case, we aim to
measure the similarity J(Ci, Ci) between queries from cluster Ci (out-of-domain)
and its complement Ci (in-domain)4. Intuitively, we are trying to quantity to
which extent a given out-of-domain query set is far for the training set, based
on term statistics. This metric is computed at the cluster level, such that we can
associate it with the overall out-of-domain loss.

4 Formally, we should compute J(Ce
i , Ci

t
), but terms statistics at the cluster level for

train and eval sets are very similar.
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Fig. 3. Relative loss on zero-shot clusters with respect to weighted Jaccard similarities
between train and test query distributions. Leftmost part: low similarities and high
losses. Rightmost part: high similarities and small losses.

We plot in Fig. 3 the relative loss on each of the out-of-domain cluster, with
respect to the weighted Jaccard J(Ci, Ci) and J(Wi,Wi). From the figure, we
observe that, as the Jaccard similarity increases – and so, the terms overlap –
the relative loss in performance diminishes. Such a measure is thus indicative
when it comes to predicting generalization capabilities of neural models. An
important point is that the behavior is common for both Query Topics and
WH-Words Queries, suggesting that this pattern may be independent of the
nature of the shifts. With the hypothesis that all models still partly rely on
term matching, it also shows that they tend to have issues when learning the
general pattern of word matching, independently from the terms themselves.
This extends the observation made for dense models in [36], and supports [15]
about generalization to unseen words. We further notice that, for the clusters
with the highest Jaccard (Ce

2 and Ce
4), the relative loss is lower for SPLADE,

compared to ColBERT. We hypothesize that, as sparse models rely more on
lexical components (through the BoW representation), they are better able to
transfer when the query vocabulary distributions are closer. Finally, the same
relation can be observed for ASL (instead MRR@10) – although not reported
here – indicating the quality of the indicator for recall-oriented metrics.

Model-Based Similarity. To complement the above lexical indicator, we addi-
tionally introduce a semantic measure of similarity, which relies on the internal
representations of a trained bi-encoder. Intuitively, for a model trained on a
given set of queries, we compute the distances between those training queries
and a targeted test query. More formally, we compute the mean retrieval score
of a dense bi-encoder Mi between a test query qe ∈ Ce

i and the training queries
from Ci

t
, as follows:

R(qe, Ci
t
) =

1

|Ci
t|

∑

qt∈Ci
t

sMi
(qe, qt) (1)
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Fig. 4. Distributions of query scores. R
similarity gives an estimation of how
close each query is to the training set.

Fig. 5. Relative MRR@10 loss on zero-
shot queries with respect to different
intervals of R similarities.

where sMi
is the output score of the dense bi-encoder Mi trained on Ci

t
(in

our case, sMi
is a dot product between query embeddings). We use trained

dense bi-encoders as the baseline for the similarity computation, as their sym-
metric nature makes it more natural to compute similarities between queries.
This representation-based similarity thus enables to quantify how far is a test
query from the training set. Contrary to the Jaccard similarity, this indicator
is, however, defined at the query level – such that it is possible to link it to
the loss associated with each query. Moving away from cluster-based to query-
level indicators is interesting from a practical standpoint. Given a query from
a new domain, we would like to be able to infer model performance. We note
the interesting parallel that can be made with the vast literature around Query
Performance Prediction, where the goal is to estimate the performance of an IR
system without relevance judgements [7].

We show on Fig. 4 the distributions of the above similarity R(qe, Ci
t
) and

R(qe,Wi
t
) for all {(qe, Ci

t
)|i ∈ �0, 4�, qe ∈ Ce

i } and {(qe,Wi
t
)|i ∈ �0, 2�, qe ∈

W e
i }, for the dense bi-encoder. Then, in Fig. 5, we plot the average relative

loss in terms of MRR@10 with respect to different intervals of R similarities –
corresponding to zero-shot queries from topics and wh-words clusters. Overall,
those intervals represent the spectrum of queries that are the further away from
the train set (leftmost part, low similarity) to the closest ones (rightmost part,
high similarity). For the three architectures, the farther the out-of-domain test
query is, the highest the loss. When comparing models, ColBERT seems to
generalize better on the most distant queries compared to SPLADE and the
dense bi-encoder. Results are aligned with the ones observed for the Jaccard –
but for a semantic notion of distance. It is also interesting to see that the trend
holds for SPLADE and ColBERT, given that the similarity is entirely based
on the dense bi-encoder representations. We can thus infer that the knowledge
accumulated by dense bi-encoders at training time could be used as a potential
signal to predict performance, without additional supervision.
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Fig. 6. Boxplots of the MRR@10 and ASL relative loss with respect to R similarity
(Median indicated in orange). Left: MRR@10 (↑). Right: For ASL (↓), the lower the
better, so the higher the relative losses, the better. Both metrics indicate better perfor-
mances on queries close to the training distribution (rightmost parts of both graphs).
(Color figure online)

In addition, in Fig. 6, we represent the same intervals with boxplots, to anal-
yse the variance of the MRR@10 and ASL (as those metrics are initially defined
at the query level). Looking at the variance of the MRR@10, we see that it
decreases as we go further away from the training set, implying that the losses
on the top of the ranking will be high for distant queries. On the other hand,
with ASL, the variance behaves differently: we have high confidence in the closest
queries, on which the ASL will improve (decrease), while performance on distant
queries is uncertain. ASL being a more recall-oriented metric, both results are
thus complementary and give an overview of the behavior at both the very top
of the ranking with MRR@10, and at deeper ranks with ASL.

6 Conclusion

In this work, we focus on zero-shot evaluation of neural IR models. We propose
to benchmark neural retrievers based on PLM against three controlled distri-
bution shifts, created by partitioning MS MARCO training queries – based on
different characteristics (semantic, intent, and length). Overall, we observe that
interaction approaches are more robust than representation-based models, and
this across all shifts. We further link the observed drops in performance to two
indicators which verify that, the further away the test set is from the train
one, the worse the drop in performance. Our analysis seems to suggest that a
model-based similarity could possibly be used as unsupervised predictors of per-
formance. We believe it opens the path to future research directions that need
to be investigated in, and foster open questions for the IR community on how to
measure model robustness. Furthermore, the effect of techniques such as distil-
lation or pre-training remains yet to be analysed, as they could possibly correct
model biases and lead to better generalization.
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Abstract. This paper proposes a novel approach towards better interpretability
of a trained text-based ranking model in a post-hoc manner. A popular approach
for post-hoc interpretability text ranking models are based on locally approximat-
ing the model behavior using a simple ranker. Since rankings have multiple rele-
vance factors and are aggregations of predictions, existing approaches that use a
single ranker might not be sufficient to approximate a complex model, resulting in
low fidelity. In this paper, we overcome this problem by considering multiple sim-
ple rankers to better approximate the entire ranking list from a black-box ranking
model. We pose the problem of local approximation as a GENERALIZED PREF-
ERENCE COVERAGE (GPC) problem that incorporates multiple simple rankers
towards the listwise explanation of ranking models. Our method MULTIPLEX

uses a linear programming approach to judiciously extract the explanation terms,
so that to explain the entire ranking list. We conduct extensive experiments on
a variety of ranking models and report fidelity improvements of 37%–54% over
existing competitors. We finally compare explanations in terms of multiple rele-
vance factors and topic aspects to better understand the logic of ranking decisions,
showcasing our explainers’ practical utility.

Keywords: Explanation · Neural · Ranking · Post-hoc · List-wise

1 Introduction

Recent approaches for ranking text documents have focused heavily on neural mod-
els [12,16,17]. Neural rankers learn the complex and often non-linear relationships
between the query and document that are difficult to encode using closed-form analyt-
ical ranking functions like BM25 [2]. However, the superior ranking performance of
such models comes at the expense of reduced interpretability, thus increasing the risk
of encoding spurious correlations and undesirable biases [25,32]. In parallel to devel-
oping better rankers, there has been an increased focus on interpreting neural ranking
models [7,23–25] that specifically aim at explaining the rationale behind the ranking
decisions.

This paper aims to propose post-hoc approaches to interpret neural text rankers.
Post-hoc methods explain already-trained models and do not compromise on the accu-
racy of the learned model, hence making them popular choices for interpreting machine
learning models. One prevalent strategy in post-hoc interpretability is to locally approx-
imate a trained model with a simple and interpretable proxy or a surrogate model.
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Fig. 1. Explaining the query bobcat with multiple relevance factors – (i) “charlotte-bobcat
basketball club”; (ii) “learn to hunt bobcat”; (iii) “animal bobcat” and (iv) “bobcat mechanical
retailer”. MULTIPLEX carefully chooses from multiple relevance factors to explain a ranking. See
Fig. 6 for more examples.

The degree of approximation is called fidelity and the objective is to maximize the
fidelity between the proxy model and the underlying black-box model. Post-hoc meth-
ods for rankings entail using simple rankers to locally approximate (on a per-query
basis) complex rankers such that the simple ranker has a high rank correlation (or high
fidelity) with the complex ranking. Adapting this general post-hoc framework to rank-
ing models has two specific challenges – how do we aggregate multiple decisions inher-
ent in a single ranking? And how do we explain ranking decisions with different inher-
ent relevance factors?

Rankings as Aggregations of Decisions. Text ranking models output a ranked list of
documents for a given query. Unlike other learning tasks (e.g. regression and classifi-
cation) that deal with a single decision, the ranking task can be viewed as an aggrega-
tion of multiple pointwise or pairwise decisions [1]. Any interpretability approach or
explainer should therefore explain the reasoning behind the ranking list, or multiple-
preference pair predictions. Therefore existing explanation techniques such as feature-
attribution methods [21,22,28] that explain a single decision (pointwise) cannot be
seamlessly used for rankings. Instead, a listwise explanation method that intends to
cover all individual decisions in the entire ranking list is needed for rankings.

Different Explanations for Different Relevance Factors. Secondly, it is well-known
that when ranking text, multiple relevance factors (also called ranking heuristics or
axioms) determine the relevance of a document to a query, e.g., lexical matching, seman-
tic similarity, term proximity etc. Unlike traditional models that explicitly encode each
of these relevance factors, neural rankers automatically learn them from data. The next
challenge in explaining rankings is ascertaining the relevance factor that best explains a
given decision. Informally, there might not exist a single relevance factor that explains
or satisfies all preferences di � dj in a given ranking. Therefore trying to approximate
a ranking with a single relevance factor might result in low fidelity. A notable example
is the listwise explanation approach [25] that considers covering multiple ranking deci-
sions, but uses a single explainer which captures only one relevance factor (i.e., term
matching), resulting in low-fidelity explanations due to the mismatch of exact terms.

In this paper, we define an explanation to be a combination of the underlying rel-
evance factors along with the actual machine intent. In this paper, we firstly consider
multiple simple rankers or explainers(formally defined in Sect. 3.1), which rely on dif-
ferent well-known and human-understandable (to system designers, or IR practitioners)
relevance heuristics. Secondly, we explain the machine intent in terms of expansion
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terms (in addition to the query terms) such that the simple ranker explains a com-
plex black-box model by inducing a similar ranking list. Thus a combination of simple
rankers that represents a relevance factor, along with its expanded query terms (also
called explanation terms) is the listwise explanation of the reasoning behind the rank-
ing.

Approach wise, we carefully select a small set of explanation terms sourced from the
documents of the ranked list to maximize the explanation’s approximation ability (i.e.
fidelity). Specifically, we define the GENERALIZED PREFERENCE COVERAGE (GPC)
framework, on which we optimize the preference coverage using approximated inte-
ger linear programming. Our method MULTIPLEX is shown to be able to improve the
fidelity, and more interestingly combine terms from multiple explainers, implicitly cov-
ering multiple topics for an ambiguous query. Figure 1 shows an example of explanation
terms extracted by each single explainer and MULTIPLEX can cover terms of multiple
aspects. Note the aspects of terms are specified by manual observation.

We conduct extensive experiments using datasets from the TREC test collections
– TREC-DL and Clueweb09 with three neural rankers to evaluate MULTIPLEX. We
report fidelity improvements of 37%–54% over existing competitors. We also present
anecdotal examples that showcase the practical utility of MULTIPLEX in understanding
neural rankers. The datasets and source code are publicly available1.

2 Related Work

Feature Attribution for Ranking Models. The earliest works of interpreting ranking
models were simple extensions to existing pointwise explanation techniques – explain
a single instance given a trained ML model for general machine learning tasks in vision
and language. [24,29] adapted the popular surrogate-based LIME [20] to generate terms
as the explanation for a trained black-box ranker. On the other hand, [7] applied a game-
theory feature attribution method [15] to interpret the relevance score of a document
given a query. Alternatively, other prevalent gradient-based feature attribution meth-
ods [21,22,28] can be adapted in the same way to attribute the relevance prediction to
the textual input elements. All these methods provide pointwise explanations (why is
doci relevant?) or pairwise explanations (why is doci ranked higher than docj?). We
instead focus on listwise explanations or explaining the entire ranked list.

Listwise Explanations for Ranking Models. There is limited work on listwise expla-
nations, i.e., explaining the entire ranking list. LiEGe [33] tackles the task as text genera-
tion. Specifically, LiEGe employs a Transformer-style model to generate terms for each
document in a ranked list, and the explanation contains all generated terms. However,
this method presupposes documents with labeled explanation terms, which is unrealis-
tic in most application scenarios. Additionally, the explanation generator is not human-
understandable, hindering understanding of the explanation generation process. In con-
trast, GreedyLM [25] uses a simple ranker to replicate the ranking list of a complex
black-box model by expanding the query terms. The simple ranker and expanded query

1 https://github.com/GarfieldLyu/RankingExplanation.

https://github.com/GarfieldLyu/RankingExplanation
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terms constitute the explanation for the complex model. We follow the same philoso-
phy that the explanation terms along with the explanation generation process should
be human interpretable. However, a limitation of [25] is that it assumes that a single
relevance factor (modeled by a simple surrogate ranker) is adequate to explain an entire
ranking. We challenge this assumption in this paper and use multiple simple explainers
instead.

Axioms as Explanations. Another line of work uses IR axioms (or ranking heuristics)
to ground the decisions of complex models. Axioms are well-understood, interpretable,
and deterministic sets of rules that lay down the fundamental relevance factors of docu-
ments given a query. Recent works [4,19] diagnosed a group of ad-hoc neural rankers
with a set of axioms and found out that neural models only to a limited extent adhere to
the IR axioms. Similarly, [30] also found it hard to characterize BERT models in terms
of IR axioms. The hypothesis is axiomatic approaches are limited to using just the query
terms, resulting in low fidelity. In this work, we consider a much larger vocabulary of
explanation terms to optimize the fidelity of our explanations.

In parallel, there are other works dealing with explaining learning-to-rank
(LTR) [23,26], probing contextual ranking models [27,31], and intrinsic methods for
extractive explanations [10,14,34]. We point the readers to a recent survey [3] in
explainable information retrieval for a more detailed overview. In this work, we operate
on text rankers and generate term-based explanations in a post-hoc manner.

3 Background and Preliminaries

We start with the notion of a ranker Φ that takes as input a keyword query Q to output
an ordering π over a set of documents π = (d1 � d2 � . . . � dn) based on the
relevance of the documents to the query, i.e., Φ(Q) → π. We aim to interpret Φ in a
model-agnostic manner, using simple proxy rankers (called explainers Ψ). Note that
the output of a ranker can be viewed as a set of preferences over the documents, or
w.l.o.g π = {(di � dj)}. Therefore explaining a ranking π is akin to explaining all or
most of the preference pair decisions in π. An example of a single decision is whether
the preference pair (di � dj) is true/false.

3.1 Explainers for Ranking

The explainer Ψ mimicking a black-box ranking model is essentially a simple ranker
operating based on human-understandable closed form formulae (i.e. ranking heuris-
tics). A popular example of such interpretable rankers is BM25 [2] model, which ranks
documents for a given query by measuring the term-matching frequency of query terms
in each document. Apart from term matching, there are also other factors or heuristics
that might affect the relevance judgment such as the term position. Specifically, in news
articles, the title and the introductory paragraphs are regarded to be more important. A
ranking model should then weigh the term matching that occurred in the earlier para-
graphs more than the rest. Additionally, semantic similarity is known to be crucial to
address the exact mismatch problem. This is particularly true in neural models with
embedding vectors as input. However, the semantic meaning of a term is less inter-
pretable as it can vary if the context changes due to different training procedures or
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datasets. In this regard, we draw the line of choosing the commonly-used context-free
embeddings (i.e. GloVe [18]) as human-understandable input representation, instead of
other contextualized embeddings (i.e., generated by BERT language model).

This set of simple ranking heuristics can be large given different granularities [4,
19]. In this work we start from three explainers to encode the above three ranking
heuristics. Note that our framework allows a flexible amount of explainers, and thus
more heuristics can be added if necessary. In summary, the explainers rank a document
(d) based on its relevance to a query (q) by:

Term Matching or Ψlm: Ψlm(q, d) = 1
|d|

∑
t∈q tf(t, d), where tf(t, d) denotes the

term frequency of t in d.

Position Aware or Ψpa: a position-aware term-matching model [8], Ψpa(q, d) =
∑

t∈d
1

|d|
∑

p∈d tf(t, p)
1
p , where p denotes the pth paragraph in d.

Semantic Similarity or Ψemb: Ψemb(q, d) = 1
|q|×|d|

∑
t∈q,w∈d cosine(t, w), where t

and w are represented by the pre-trained GloVe embedding vectors [18].

3.2 Explanations to a Ranking Model

Fig. 2. Explaining black-box model with simple rankers and query terms.

The output of an interpretability procedure is an explanation, which should be simple,
human-understandable, and faithful to the behavior ofΦ. For the ranking task, the expla-
nation can be decomposed into two parts: (1) a simple ranker whose decision-making
process is fully transparent; (2) the machine intent of Φ in terms of an expanded query.
The quality or fidelity(in XAI parlance) of the explanation can be evaluated by com-
paring the ranked lists induced by Φ and Ψ by standard rank-correlation metrics, e.g.,
Kendall’s tau or just counting concordant preference pairs.
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Take Fig. 2 as an example of interpreting the ranking induced by a black-box model.
The simple Term Matching explainer with the input terms (“keyboard” and “review”)
can be regarded as an explanation, with a fidelity of 1/3, as only one out of three
preference pairs agrees with the original ranking. It is common that the query term
is under-specified, and thus the simple ranker fails to extract the exact query intent. One
solution is to use query expansions (e.g., RM3 [11]) to improve ranking performance.
For instance, when adding “music” to the query, the explainer is aware of the musical
preference of the black-box ranker and improves the explanation fidelity to 2/3. The
questions we ask are: (1) which terms can be added to the query to maximize fidelity?,
and if more than one explainer is applied, (2) how can we combine multiple simple
explainers to cover as many pairs as possible?

Fidelity Variants. Note that rankings can be misleading because they do not show the
magnitude of the relevance difference. Sometimes the relevance scores of a preference
pair can be very close, and explaining such pair is challenging even to humans. There-
fore, to avoid uncertainty due to small score differences, we obtain a set of important
preference pairs after excluding the similar pairs whose prediction difference is below
some threshold. As Fig. 2 shows, suppose the black-box ranker predicts similar scores
for d2 and d3, then d2 � d3 is not considered for evaluation. As a result, the Term
Matching explainer, along with the input terms (“keyboard”, “review” and “music”),
can faithfully cover all pairs and get 100% fidelity. Given different choices of selecting
to-be-explained preference pairs, we introduce different variants of fidelity, which will
be further discussed in Sect. 5.3.

3.3 Problem Statement

We solve the explaining task as directly optimizing the fidelity, under the constraints of
pre-defined explainers and the associated terms. Formally, given a query Q, a complex
ranking model Φ and a set of simple ranking models {Ψ}, we aim to select a small set
of terms E ∈ V (where V is the vocabulary), to explain most of the preference pairs
{di � dj} from the original ranking π.

4 Generalized Preference Coverage

As mentioned earlier, choosing explanation terms to maximize fidelity can be formu-
lated as a coverage problem of the preference pairs. We briefly describe the preference
coverage (PC) framework as introduced in [25], using a single explainer as a precursor
to introducing the generalized PC problem.

4.1 The Preference Coverage Framework

Similar to [25], the PC framework operates on a preference matrix constructed with a
single Ψ. First, a set of n potentially important candidate terms X (X ⊆ V, |X | = n)
are extracted from the list of documents using simple statistics (e.g., tf-idf ). Then, m
preference pairs are sampled from π to create the preference matrix M ∈ R

n×m. Each
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Fig. 3. Approach overview of MULTIPLEX using multiple explainers.

cell in M represents the utility or degree of Ψ in explaining the preference dπ(i) �
dπ(j) with t as input, by computing a preference score f t

ij = Ψ(t, dπ(i))−Ψ(t, dπ(j)).
A positive f score means with t, the Ψ can explain or cover this pair, otherwise cannot.
Each t can now be viewed as anm-dimensional vector f , where each element represents
how well it explains a specific pair. The PC framework using a single Ψ aims to choose
a subset of rows E ⊆ X (equivalent to selecting terms) from M so as to maximize the
number of non-zero values in the aggregated vector. Since choosing or not choosing the
row/term is a boolean decision, we can formulate the PC objective as an Integer Linear
Program (ILP):

maximize
m∑

i=1

(
sign(x�M)

)
i
, s.t. x = [x1, · · · , xn] ; xi ∈ {0, 1} (PC)

x is a selection vector with boolean values where xi = 1 indicates selecting
term Xi, and xi = 0 otherwise. The sign is an element-wise operation. Namely,
E = {i|xi == 1}. This equation however is NP-hard and not solvable by the preva-
lent convex programming solvers (e.g., supported by CVXPY [6]) due to the non-
differentiable sign function. Next, we present an improved formulation of the PC
problem followed by a generalization to accommodate multiple explainers called the
GENERALIZED PREFERENCE COVERAGE problem.

4.2 Optimizing PC for Multiple Explainers

Compared to PC, our proposal should be (i) practically solvable, (ii) ensuring sparse
output x so that the explanation is human-understandable, and (iii) flexible to combine
multiple explainers or M.

Correspondingly, the first change we introduce is using tanh to approximate the
non-convex sign operator. Secondly, we add a �1-regularization ‖x‖ to enforce sparsity
constraints on the number of terms to be selected. A straightforward way to combine
all explainers is to sum up their scores, i.e., Ψmulti(t, d) =

∑
Ψ(t, d). However, differ-

ent explainers can have different output ranges and exhibit high variance. For instance,
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the term-matching score usually lies in [0, 1], whereas the position-aware score typi-
cally operates in a much larger range. Normalization these scores in the optimization
procedure is central to flexibly adding multiple explainers. We therefore formulate the
GENERALIZED PREFERENCE COVERAGE problem that intends to optimize multiple
matrices simultaneously as:

minimize

(

−
m∑

i=1

(tanh(v))i + ‖x‖
)

(GPC)

s.t. v =
p∑

j=1

tanh(x�Mj), 0 ≤ xi ≤ 1, a ≤
m∑

i=1

xi ≤ b

Like in PC, GPC also maximizes the number of positive elements in the aggregated
vector v, computed by summing up multiple vectors transposed from multiple M. Mj

denotes the matrix constructed by the jth explainer from the total p explainers. Note
that tanh is also element-wise. The sparsity constraint is ensured by a and b, namely
the lower/upper bound of the term-selection budget. The current formulation can now
be solved by the latest proposed solver GENO [13] that handles constraints with the
augmented lagrangian algorithm.

Picking the ith term will choose all ith row vectors simultaneously. Before summing
them up, each vector element is already transformed to the same range by tanh activa-
tion. This accounts for the variable range problem. Figure 3 briefly shows the coverage
computing when selecting “pueblo” and “outhouse” during optimization.

5 Experimental Setup

5.1 Datasets and Ranking Models

We choose two datasets: (1) Clueweb09 collection (category B), for all ranking mod-
els, we use 120/40/40 splits for train/dev/test, and the explanation experiments are con-
ducted on the test queries. (2) 40 randomly selected queries from Trec-DL 2019 pas-
sage ranking test set, and the ranking models are trained on the MS MARCO passage
ranking dataset. We focus on the following three neural ranking models:

DRMM [9] computes the term-document similarity histograms beforehand and then
jointly learns a matching and a term gate layer from the query and matching histograms.
We take the implementation from MatchZoo2.

BERT [5] takes the query and document separated by [SEP] as input and computes
the pooled ([CLS]) representation, on which a feed-forward layer predicts the final rele-
vance score. Both DRMM and BERTmodels are trained to optimize the margin between
the scores of a relevant/non-relevant input pair.

DPR [12] encodes the query and document by two separate BERT models. The rele-
vance is simply measured by the cosine similarity of the two pooled representations.
We use the pretrained checkpoints directly without fine-tuning.

2 https://github.com/NTMC-Community/MatchZoo.

https://github.com/NTMC-Community/MatchZoo
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5.2 Baseline and Competitors

We compare our approach named MULTIPLEX with the following methods:

QUERY-TERMS serves as the baseline by feeding only the query terms to our explainers.
By comparing this baseline, we argue that only the original query is insufficient to
discover the underlying ranking logic.

DEEPLIFT [21] is a popular white-box feature attribution method. To adapt it to ranking,
we first compute the importance of a word in a document using Captum3, then we take
the average across all documents and extract important terms as a listwise explanation
for a query. Note that we omit this baseline for DRMM since its input is a histogram,
thus the importance cannot be attributed to the word level.

GREEDY-LM [25] uses a term-matching explainer to approximate neural rankers. It
optimizes the preference coverage greedily. Our approach shares a similar pipeline of
generating candidate terms and preference matrices. By comparing this baseline, we
show the improvements of combining multiple explainers and approximated linear pro-
gramming optimization.

5.3 Metrics

Since multiple explainers are applied, a preference pair from the original ranking is
counted as explained as long as a single explainer can explain it. This evaluation does
not apply to GREEDY-LM as it generates explanation terms based on a single explainer.
For both GREEDY-LM and MULTIPLEX, we fix 200 candidate terms and 500 sampled
pairs for preference matrix construction. We also fix a maximum of 10 explanation
terms for all methods except QUERY-TERMS. For both datasets, we consider a ranking
depth (k) of 100.

Similar to [19], we measure fidelity by computing the fraction of the maintained
preference pairs by the explainers given the explanation terms. In other words, the
fidelity measures the coverage over the feasible preference pairs. As mentioned in
Sect. 3, depending on the choice of feasible preference pairs, we consider the follow-
ing three variants of fidelity:

Fidelity-global (Fglobal) includes all
(
k
2

)
pairs induced by a k-length ranking list.

Fidelity-sampled (Fsampled) considers the sampled pairs from the matrix construction.

Fidelity-diff (Fdiff) discards all pairs whose relevance score difference < g. The mag-
nitude of g is chosen based on the relevance score distribution of a particular model.
For BERT we set g = 2 as the prediction margin appears to be larger than the rest two
models, for which g = 0.05.

6 Evaluation Results

To show the effectiveness of our approach, we first present the quality of our approach
in terms of fidelity on all datasets and models compared to other competitors in Table 1.

3 https://github.com/pytorch/captum.

https://github.com/pytorch/captum
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Table 1. Fidelity (F ) results. The best results are in bold.

Model Clueweb09 Trec-DL

Method Fglobal Fdiff Fsampled Fglobal Fdiff Fsampled

BERT QUERY-TERMS 0.81 0.88 0.76 0.81 0.82 0.63

DEEPLIFT [21] 0.77 0.81 0.67 0.70 0.75 0.62

GREEDY-LM [25] 0.63 0.77 0.69 0.59 0.69 0.84

MULTIPLEX 0.88 0.97 0.93 0.86 0.93 0.97

DPR QUERY-TERMS 0.81 0.86 0.71 0.82 0.84 0.64

DEEPLIFT [21] 0.68 0.71 0.57 0.60 0.63 0.58

GREEDY-LM [25] 0.61 0.68 0.88 0.63 0.70 0.75

MULTIPLEX 0.87 0.93 0.87 0.87 0.92 0.96

DRMM QUERY-TERMS 0.82 0.85 0.72 0.80 0.81 0.59

DEEPLIFT [21] – – – – – –

GREEDY-LM [25] 0.57 0.60 0.72 0.53 0.54 0.34

MULTIPLEX 0.88 0.92 0.84 0.85 0.88 0.95

Then we show the improvements of adding multiple explainers by an ablation study
presented in Fig. 4. Finally, we discuss how our explanations can be used to explain a
specific preference pair, as well as other potential use cases.

6.1 Effectiveness of Explanations

In terms of fidelity (cf. Table 1), our method consistently outperforms other competitors.
Besides, for all methods the global fidelity (Fglobal) scores are always lower than Fdiff

where close, hence potentially noisy pairs are all excluded. This shows that all methods
and prominently MULTIPLEX can better explain document pairs with larger differences
in relevance scores.

Ranking Heuristics vs. Query Expansion. Though both factors constitute the expla-
nation of ranking, which one is more crucial? Take QUERY-TERMS and GREEDY-LM
as a comparison, note that QUERY-TERMS includes the given query terms but three
ranking heuristics, while GREEDY-LM on the contrary only relies on one term-matching
but richer query information. Their fidelity results show QUERY-TERMS outperforms
GREEDY-LM by a large margin, strongly suggesting that ranking heuristics particularly
semantic similarity, are more effective in explaining neural models.

The Importance of Explanation Aggregation.Applying simple aggregation strategies
(i.e. average) on the prevalent pointwise feature attribution methods is shown to be less
effective by the results of DEEPLIFT. Compared to QUERY-TERMS, the extra expanded
query terms extracted by DEEPLIFT seem unhelpful in enhancing fidelity but introduc-
ing noise. On the other hand, methods directly optimizing fidelity (i.e. GREEDY-LM and
MULTIPLEX) explicitly include the aggregation in the optimization loop. The Fsampled

results of DEEPLIFT and GREEDY-LM further confirm the importance of aggregation.
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Fig. 4. Fidelity-diff results of each single and combined explainer using our method.

Fig. 5.Query: keyboard review. Document pair: clueweb09-en0008-49-09140 (musical keyboard)
vs. clueweb09-en0010-56-37788 (technical keyboard). BERT prefers the former whereas DPR
prefers the latter, resulting in opposite explanations.

The Benefits of Our Optimization Solution. We also experimented with every single
Ψ to extract explanation terms with our approximated ILP objective shown in Fig. 4.
Comparing the fidelity results of term-matching (orange bar) with the Fdiff of GREEDY-
LM (using the same explainer) in Table 1, we show the superiority of our optimizing
strategy over the greedy-algorithm.

The Benefits of Combining Explainers.As Fig. 4 indicates, semantic explainer overall
generates the most faithful explanations than the rest. However, combining all explain-
ers can further improve the preference coverage and in turn increase the fidelity results.
When one explainer fails to explain a pair, it is still possible to be covered by other
explainers. Moreover, we also notice that combining multiple explainers in optimiza-
tion can generate explanation terms exhibiting multiple topic aspects, especially for
short and ambiguous queries. More examples are presented in Fig. 1 and Fig. 6.

6.2 Utility of Explanations

Explaining Document Preference. We now show how to explain a single preference
pair using MULTIPLEX, i.e., why does a model prefer di over dj? We start by construct-
ing preference scores for each candidate term as described in Sect. 4.1. Next, we select
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Fig. 6. Anecdotal examples show that each explainer selects terms from a different aspect. The
color highlights denote the explanation terms in Multiple are combined from different explain-
ers. For ambiguous query “adobe Indian houses”, Term Matching and Position Aware focus on
popular but ‘shallow’ terms indicating “adobe company“. For certain query “hp mini 2140”, the
semantic similarity suffers from OOV. Position Aware can capture the non-frequent yet important
terms based on their position, e.g., the official site for the query “ESPN sports”.

the important terms with significant scores. Figure 5 illustrates the explanation terms of
two opposing decisions by BERT and DPR respectively, for keyboard review.

Discovering Model Preference and Spurious Correlations. We believe that explana-
tion terms encode relevance factors that rank relevant documents over others. Based
on this assumption, we create a perturbed document by adding explanation terms to a
potentially non-relevant document (e.g. at the lowest rank). We then feed this modified
document to the black-box model and measure the rank improvement. Unsurprisingly,
the terms extracted by MULTIPLEX result in the maximum rank increase (cf. Fig. 7),
meaning our method can better identify the black-box model’s preference. Moreover,
we manually selected some ambiguous queries, and our initial observation of their
explanation terms suggests the ranking model shows some topic preference when rank-
ing the documents, while the explanation terms representing the preferred topics are
also shown dominant quantitively. Thus, it helps understand the model’s topic prefer-
ence more easily by analyzing the explanations instead of going through hundreds of
documents.

Another possible usage is model debugging, or finding spurious correlations in mod-
els or datasets, by analyzing explanation terms. One simple example is “Wikipedia”
which appears as an explanation term for many different queries. This is not surprising
as the Wikipedia entity pages are usually labeled as relevant. We leave a more system-
atic exploration of making use of ranking explanations to future work.
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Fig. 7. Average rank improvements. Left: on all test queries; Right: on hand-picked ambiguous
queries. Note that for each query the document size ≤ 100.

7 Conclusion and Outlook

This paper proposes a post-hoc model-agnostic framework to explain text ranking mod-
els using multiple explainers. Our method MULTIPLEX systematically combines mul-
tiple explainers to capture different relevance factors encoded in the ranking decisions.
The extensive experiments show that our method can generate high-fidelity explana-
tions for over-parameterized models like BERT, delivering up to 54% fidelity improve-
ments. Our method explains a ranking by a set of terms attributed to a union of multiple
explainers. It is interesting to examine which explainer (or ranking heuristic) contributes
to which extent using which particular terms for future work. We also plan to extend
our framework to account for n-grams and to make our explanation generation proce-
dure efficient enough to be used during query processing. Moreover, it is well known
that validating explanations is challenging, especially in the absence of ground-truth
data. We measure fidelity in this work, however, the fidelity might not reflect the real
underline logic of a complex model. Therefore, incorporating human perspectives into
the evaluation and meanwhile, balancing the cost of annotating numerous decisions in
a ranking are also worth exploring in future work.
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Abstract. Video retrieval has seen tremendous progress with the devel-
opment of vision-language models. However, further improving these
models require additional labelled data which is a huge manual effort.
In this paper, we propose a framework MKTVR, that utilizes knowl-
edge transfer from a multilingual model to boost the performance of
video retrieval. We first use state-of-the-art machine translation mod-
els to construct pseudo ground-truth multilingual video-text pairs. We
then use this data to learn a video-text representation where English and
non-English text queries are represented in a common embedding space
based on pretrained multilingual models. We evaluate our proposed app-
roach on four English video retrieval datasets such as MSRVTT, MSVD,
DiDeMo and Charades. Experimental results demonstrate that our app-
roach achieves state-of-the-art results on all datasets outperforming pre-
vious models. Finally, we also evaluate our model on a multilingual video-
retrieval dataset encompassing six languages and show that our model
outperforms previous multilingual video retrieval models in a zero-shot
setting.

Keywords: Video-retrieval · Multi-lingual · Multi-modal

1 Introduction

The task of text-to-video retrieval aims to retrieve videos that are semantically
similar to a given text query. In the last-few years, there has been a significant
progress in the area of video retrieval. These works were developed in two parallel
directions. The first line of work [3,15,22] focused on video-text pretraining on
large-scale datasets like Howto100M [31] and WebVid-2M [3]. While the second
line of work [29] focused on using pretrained image features like CLIP [33] for
video retrieval often surpassing the models pretrained on video datasets.

In Natural Language Processing, some works [9] explored the idea of using
multilingual data to improve the performance on monolingual English datasets.
Conneau et al. introduced a new pretraining objective: Translation Language
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State-of-the-
art video
retrieval
model

"a man is driving a car"

"a man is driving a car"

"un homme conduit une voiture"

Translation
model

Rank: 2

Rank:  47

Our model
(MKTVR)

Fig. 1. Illustration of the improved video retrieval ranking for a test sample in
MSRVTT dataset. For the current state-of-the-art video retrieval model, the rank of
the ground truth video is 47. When multilingual data is used as knowledge transfer,
the ranking of the ground truth video improved significantly from 47 to 2.

Modeling (TLM) in which random words were masked in the concatenated sen-
tences of English and multilingual data and the model predicts the masked
words. There, the objective was to use multilingual context to predict masked
English words if the English context was not sufficient and vice-versa.

Most of the current video retrieval datasets typically contain around 10k
videos and captions of maximum lengths ranging from 30 to 60. In video retrieval,
the text encoder projects the input text caption and videos into a common
embedding space. With longer captions, the text embeddings might lose required
contextual information resulting in incorrect video retrievals. One could address
this by incorporating more structured knowledge (e.g., parts of speech, depen-
dency graphs) in the text encoder [6]. However, a drop in performance is observed
[6] with the addition of structural knowledge in a text-to-video retrieval setting.
One could argue that the reason might be the smaller video retrieval datasets
and creating meaningful structural knowledge becomes a challenging task.

In this work, we are interested in improving the performance of video
retrieval using multilingual knowledge transfer. Multilingual data serves
as a powerful knowledge augmentation for monolingual models [9]. Nevertheless,
creating multilingual data requires huge human effort. To overcome this, we use
state-of-the-art machine translation models [37] to convert English text captions
into other languages. Specifically, we choose languages whose performance on
XNLI benchmark [10] is comparable to that of English (i.e., French, German,
Spanish). With this, we create high quality multilingual data without requiring
human labelling. To the best of our knowledge, this is the first work that uses
multilingual knowledge transfer to improve video retrieval.

We propose a model based on CLIP [33] to effectively utilize and adapt the
multilingual knowledge transfer. Our model takes a video, English text caption
and multilingual text caption as inputs and extracts joint video-text represen-
tations. The multilingual text representations should act as a knowledge aug-
mentation to the English text representations aiding in video-retrieval. For this
purpose, we introduce a dual cross-modal (DCM) encoder block which learns
the similarity between English text representations and video representations.
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In addition, the DCM encoder block also associates the video representations
with the multilingual text representations. In the common embedding space,
our model learns the important contextual information from multilingual rep-
resentations which is otherwise missing from the English text representations
effectively serving as knowledge transfer.

We validate our proposed model on five English video retrieval datasets:
MSRVTT-9k [44], MSRVTT-7k [44], MSVD [7], DiDeMo [2] and Charades [35].
We show that our approach achieves state-of-the-art results, outperforming pre-
vious models on most datasets. In addition to the evaluation on monolingual
video retrieval datasets, we also compare the performance of our model on mul-
tilingual MSRVTT dataset [18] in a zero-shot setting and demonstrate that our
framework surpasses the previous works by a large margin.

To summarize, our contributions are as follows: (i) We generate multilin-
gual data using external state-of-the-art machine translation models. (ii) We
propose a model that is capable of knowledge transfer from multilingual data
to improve the performance of video retrieval. (iii) We evaluate the proposed
framework on five English video retrieval benchmarks and achieve state-of-the-
art results in both text-to-video and video-to-text retrieval settings. (iv) Finally,
we demonstrate that our model significantly outperforms previous approaches
on multilingual video retrieval datasets in a zero-shot setting.

2 Related Work

2.1 Video Retrieval

The task of video retrieval has seen tremendous progress in the recent years. This
is partly due to the availability of large-scale video datasets like HowTo100M [31]
and WebVid-2M [3]. Besides the adaption of transformers to image tasks like
image classification [11] spurred the development of models based on transform-
ers. However, videos require computationally more memory and compute power
and can be infeasible to compute self-attention matrices. With the introduction
of more efficient architectures [4] large-scale pretraining on videos became a pos-
sibility. In this direction, several transformer based architectures [3,15,30] were
proposed and pretrained on large video datasets which achieved state-of-the-art
results on downstream video retrieval datasets in both zero-shot and fine-tuning
settings.

In a parallel direction, a few works [29] have adopted image level features
pretrained on large scale image-text pairs to perform video retrieval. Surpris-
ingly, these works have performed significantly better than the models that
are pretrained from scratch on large scale video datasets. Compared to these
models, our approach completely differs in the architecture and the training
methodology.

2.2 Multilingual Training

The recent success of multimodal image-text models on a variety of tasks, such as
retrieval and question-answering, has been mostly limited to monolingual models
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trained on English text. This is mainly due to the availability and high-quality
of English-based multimodal datasets. Recent work indicates that incorporating
a second language or a multilingual encoder, thus creating a shared multilingual
token embedding space, can improve monolingual pure-NLP downstream tasks
[9]. This concept was rapidly embraced for training multimodal models. Previous
works had used images as a bridge for translating between two languages, without
using a language-to-language shared dataset for training [7,34,36].

Recent work has focused on multimodal tasks, such as image retrieval, aim-
ing to add multilingual capabilities to multimodal models [5,17]. The work
often indicates that incorporating a second language during training of multi-
modal models, improves performance on single-language multimodal tasks such
as image retrieval, compared to multimodal models that were trained on a sin-
gle language [17,19,41]. MULE [19], which is a multilingual universal language
encoder trained on image-multilingual text pairs, showed an improvement on
image-sentence retrieval tasks of up to 20% compared to monolingual models.
Nevertheless, all these previous works focus on designing a universal model for
image and video retrieval. Our objective is to use multilingual knowledge transfer
to improve the performance on current video retrieval datasets.

3 MKTVR: Multilingual Knowledge Transfer for Video
Retrieval

In this section, we introduce our framework MKTVR: Multilingual Knowledge
Transfer for Video Retrieval. We first describe the problem statement, then the
multilingual data augmentation strategy and finally go over the proposed app-
roach that enables knowledge transfer from multilingual data for video retrieval.

3.1 Problem Statement

Given a set of videos V , their corresponding English text captions E and related
multilingual text captions M , our goal is to learn similarity functions s1(vi, ei)
and s2(vi,mi) (vi ∈ V , ei ∈ E and mi ∈ M). In other words, we propose a frame-
work MKTVR that enables end-to-end learning on a tuple of video, English text
caption and multilingual text caption by bringing closer the joint representa-
tions of those three elements. Specifically, for each video V and the English text
captions E, we generate the multilingual translations M using external state-of-
the-art machine translation models [37]. Next, we present the proposed approach
that facilitates the end-to-end learning using multilingual data.

3.2 Approach

Our model, illustrated in Fig. 2, is comprised of three components: (i) video
encoder (ii) text encoder (iii) dual cross modal encoder. Next, we describe the
framework in detail.
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Fig. 2. Illustration of the proposed MKTVR model. The model takes as input
a video, a corresponding English text query and a translated multilingual query. The
multilingual text query is obtained using the off-the-shelf machine translation model.
It is used only for the inference and is not part of the architecture. The video and
English text features are extracted using CLIP model whereas multilingual text features
are extracted using M-CLIP model. The features are then passed onto a cross-model
encoder to learn the association in a common embedding space. Cross-entropy loss is
then applied to measure the similarity between text features RE and RvE , RM and
RvM . The final loss is the sum of both the losses.

Video Encoder. Given a video V , we consider uniformly sampled clips
C ∈ RNv×H×W×3 where Nv is the number of frames, H and W are the spa-
tial dimensions of a RGB frame. We then use a pretrained CLIP-ViT image
encoder [33] to extract the frame embeddings Fv ∈ RNv×Dv where Dv denotes
the dimensions of the frame embeddings. The frame embeddings are concate-
nated to obtain the final representation for the video V .

Text Encoder. Let the inputs English text caption be E and multilingual
text caption M of lengths p and q respectively. We use a pretrained CLIP-ViT
text encoder to convert the English text caption into a sequence of embeddings
RE = REp×DE where DE denote the embedding dimensions. We consider the
representation of the token [EOS] as the final representation of English text cap-
tion. To encode multilingual text caption M , we use a M-CLIP1 model which is a
1 https://github.com/FreddeFrallan/Multilingual-CLIP.

https://github.com/FreddeFrallan/Multilingual-CLIP
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multilingual clip model pretrained on multilingual text and image pairs. Specif-
ically, the multilingual text caption is converted into a sequence of embeddings
RM = RMq×DM where DM denote the embedding dimensions. Similar to the
CLIP model, we consider the [EOS] representation as the final representation
of M-CLIP model.

Dual Cross-Modal Encoder (DCM). Our goal is to closely associate the
video embeddings Rv, English text embeddings RE and multilingual text embed-
dings RM in a common embedding space. For this purpose, we propose a dual
cross-modal encoder (DCM). To incorporate textual information into video fea-
tures and to learn video features that are semantically most similar to text
features, we use multi-head attention. The text features are used as the queries
whereas the video features are used as the keys and values.

rvE = Attention(TE , Fv, Fv) (1)

rvM = Attention(ME , Fv, Fv) (2)

where multi-head attention (Attention) is defined as:

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V (3)

Here Q, K and V are same as the original multi-head attention matrices in the
transformer encoder. We then apply a fully connected layer on the attention
outputs and finally layer normalization to obtain RvE and RvM .

RvE = LN(FC(rvE) + rvE) (4)

RvM = LN(FC(rvM ) + rvM ) (5)

where FC is the fully connected layer and LN is the layer normalization layer.

Loss. We use the standard video-text matching loss [42] to train the model. It
is measured as the dot product similarity between matching text embeddings
and video embeddings in a batch. First, we compute the loss LE between RvE

and RE and then compute the loss LM between RvM and RM . The final loss is
the sum of losses LE and LM .

L = LE + LM . (6)

where LE = Lt2v
E + Lv2t

E and LM = Lt2v
M + Lv2t

M

Lv2t
E = − 1

B

B∑

i=1

log
exp(RE

(i) · R(i)
vE)

∑B
j=1 exp(RE

(i) · R(j)
vE)

, (7)

Lt2v
E = − 1

B

B∑

i=1

log
exp(RvE

(i) · R(i)
E )

∑B
j=1 exp(RvE

(i) · R(j)
E )

. (8)
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Lv2t
M = − 1

B

B∑

i=1

log
exp(RM

(i) · R(i)
vM )

∑B
j=1 exp(RM

(i) · R(j)
vM )

, (9)

Lt2v
M = − 1

B

B∑

i=1

log
exp(RvM

(i) · R(i)
M )

∑B
j=1 exp(RvM

(i) · R(j)
M )

. (10)

Inference. During inference for English video retrieval datasets, we freeze the
multilingual text encoder and measure the retrieval performance only using RE

and RvE . Similarly, for multilingual datasets, we freeze the English text encoder
and calculate the retrieval score using RM and RvM .

4 Experiments

4.1 Datasets

We perform experiments on five standard text-video retrieval datasets:
MSRVTT-9k and MSRVTT-7k splits [44], MSVD [7], DiDeMo [2] and Charades
[35].

MSRVTT contains 10K videos with each video ranging from 10 to 32 s and
200K captions. We report the results both on MSRVTT-9k and MSRVTT-7k
datasets following [29].

MSVD consists of 1970 videos and 80K descriptions. We use the standard
training, validation and testing splits following [29].

DiDeMo is made up of 10K videos and 40K localized descriptions of
the videos. We concatenate all the sentences for each video and evaluate the
paragraph-to-video retrieval following [24,29].

Charades contains of 9848 videos and each video is associated with a cap-
tion. We use the standard training and test splits following [24].

MSRVTT multilingual is a multilingual version of MSRVTT in which
the English captions are translated into nine different languages. We use the
standard splits following [18].

4.2 Metrics

For evaluating the performance of models, we use recall at rank K (R@1, R@5,
R@10), median rank (MedR) and mean rank (MnR). Unless specified, the values
reported are the mean of three runs with different seeds.
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Table 1. Text-to-video and video-to-text retrieval results on MSR-VTT dataset 9k
split. Recall at rank 1 (R@1)↑, rank 5 (R@5)↑, rank 10 (R@10)↑, Median Rank (MdR)↓
and Mean Rank (MnR)↓ are reported. Results of other methods taken from mentioned
references. Our model surpasses previous state-of-the-art performance. In video-to-text
retrieval, our model achieved 1.6 points boost in performance.

Text-to-video retrieval Video-to-text retrieval

Type Model R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

Others JsFusion [45] 10.2 31.2 43.2 13.0 – – – – – –

HT [31] 14.9 40.2 52.8 9.0 – – – – – –

HERO [23] 20.5 46.8 60.9 – – – – – – –

CE [26] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1

ClipBERT [21] 22.0 46.8 59.9 – – – – – – –

SupportSET [32] 27.4 56.3 67.7 3.0 – – – – – –

VideoCLIP [43] 30.9 55.4 66.8 4.0 – – – – – –

FrozenInTime [3] 31 59.5 70.5 3.0 – – – – – –

CLIP [33] 31.2 53.7 2.6 4.0 – – – – – –

HIT [25] 30.7 60.9 73.2 2.6 - 32.1 62.7 74.1 3.0 –

AlignPrompt [22] 33.9 60.7 73.2 – – – – – – –

All-in-one [39] 34.4 65.4 75.8 – – – – – – –

MDMMT [12] 38.9 69.0 79.7 2.0 – – – – – –

CLIP based CLIP4Clip [29] 44.5 71.4 81.6 – 15.3 43.1 70.5 81.2 2.0 12.4

VCM [6] 43.8 71.0 80.9 2.0 14.3 45.1 72.3 82.3 2.0 10.7

MCQ [15] 44.9 71.9 80.3 2.0 15.3 – – – – –

MILES [16] 44.3 71.1 80.8 2.0 14.7 – – – – –

CAMoE [8] 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0

CLIP2Video [13] 45.6 72.6 81.7 2.0 14.6 43.5 72.3 82.1 2.0 10.2

CLIP2TV [14] 46.1 72.5 82.9 2.0 15.2 43.9 70.9 82.2 2.0 12.0

Ours MKTVR 46.6 72.6 82.2 2.0 13.9 45.5 73.4 84.7 2.0 8.07

4.3 Implementation Details

We use translations of French for the multilingual inputs to train the MKTVR
model. The video encoder and the English text encoder are initialized with CLIP-
ViT-B-32. The multilingual text encoder is initialized with M-CLIP-ViT-B-32.
The dimension size of the video, English caption and multilingual caption repre-
sentations is 512. The dual cross-model encoder is initialized randomly and trained
from scratch. The dimension size of the key, query and value projection layers is
512. The fully connected layer in the transformer has a size of 512 and a dropout
of 0.4 is applied on this layer. We use 16 frames for MSRVTT-9k, MSRVTT-7k
and MSVD datasets, 42 frames for DiDeMo and Charades datasets. The maximum
sequence length is set to 32 for MSRVTT-9k and MSRVTT-7k, 64 for DiDeMo and
30 for charades dataset. The model is trained using AdamW [28] a learning rate of
1e-4 and a cosine decay of 1e-6. The MSRVTT-9k and MSRVTT-7k datasets are
trained with a batch size of 32 and for 15 epochs. The MSVD dataset is trained
with a batch size of 32 and for 5 epochs. The DiDeMo and charades datasets are
trained with a batch size of 16 for 12 and 15 epochs respectively.
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5 Results and Discussion

5.1 Evaluation on English Video Retrieval Datasets

In Table 1 we report the results of our proposed approach on MSVRTT-9k dataset.
It can be observed that the difference between CLIP based models and other mod-
els is very significant (> 5%). Therefore, it explains the incentive to build our
model using CLIP features. On MSRVTT-9k split, our model significantly outper-
forms CLIP4Clip model on all the metrics in both text-to-video and video-to-text
retrieval settings. VCM employs a knowledge graph between video and text modal-
ities making its performance superior to other models in a video-to-text retrieval
task. Our model surpasses VCM significantly in all the metrics elucidating that
the multilingual representations serve as a powerful knowledge transfer. Moreover,
our approach outperforms MCQ and MILES which are pretrained on WebVid-2M
data, initialized with CLIP features, employing additional semantic information
like parts-of-speech. This validates that our model doesn’t require any pretraining
on videos and structural knowledge injection. The multilingual text representa-
tions in our model effectively serves this purpose.

In Tables 2, 3, 4 and 5 we report the results on MSRVTT-7k, MSVD, DiDeMo
and Charades datasets respectively. Our model outperforms all the previous
approaches across all the metrics on all the datasets. For the MSRVTT-7k split,
our model achieves a significant boost of 2.1%, 2.5% and 4.4% in R@1, R@5 and
R@10 respectively compared to the previous baselines. For the MSVD dataset,
we notice an improvement of 0.2%, 0.5% and 0.3% in R@1, R@5 and R@10
respectively. MSVD is a relatively smaller dataset with test size of 670 videos
and hence, the improvements are relatively marginal.

Table 2. Text-to-video retrieval results on MSR-VTT - 7k split. Recall at rank-1
(R@1), rank-5 (R@5), rank-10 (R@10), Median Rank (MdR) are reported. Results of
other methods taken from mentioned references.

Model R@1 (↑) R@5 (↑) R@10(↑) MdR (↓)

HowTo100M [31] 10.2 31.2 43.2 13.0

ActBERT [47] 8.6 23.4 33.1 36.0

NoiseE [1] 17.4 41.6 53.6 8.0

ClipBERT [21] 22.0 46.8 59.9 6.0

CLIP4clip- [29] 42.1 71.9 81.4 2.0

Singularity [20] 42.7 69.5 78.1 2.0

MKTVR 44.8 72.0 82.5 2.0

For the DiDeMo dataset, our model showed a marginal boost of 0.2% in R@1
but a significant boost of 4.3% and 2.9% in R@5 and R@10 respectively compared
to the previous approaches. For the Charades dataset, our model outperformed
previous approaches by 0.9% in R@1 and by a significant margin of 4.6%, 7.6%
and 6.0% in R@5, R@10 and MedianR respectively. ECLIPSE uses audio as
additional information for video retrieval. We showed that multilingual text acts
as a better knowledge transfer input.
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Table 3. Text-to-video retrieval results on MSVD dataset. Recall at rank-1 (R@1),
rank-5 (R@5), rank-10 (R@10), Median Rank (MdR) are reported. Results of other
methods taken from mentioned references.

Model R@1 (↑) R@5 (↑) R@10(↑) MdR (↓)
VSE [13] 12.3 30.1 42.3 14.0

CE [26] 19.8 49.0 63.8 6.0

SSML [1] 20.3 49.0 63.3 6.0

SUPPORT-SET [32] 28.4 60.0 72.9 4.0

FROZEN [3] 33.7 64.7 76.3 3.0

CLIP [33] 37.0 64.1 73.8 3.0

CLIP4Clip [29] 46.2 76.1 84.6 2.0

CLIP2Video [13] 47.0 76.8 85.9 2.0

MKTVR 47.2 77.3 86.2 2.0

Table 4. Text-to-video retrieval result on DiDeMo dataset. Recall at rank-1 (R@1),
rank-5 (R@5), rank-10 (R@10), Median Rank (MdR) are reported. Results of other
methods taken from mentioned references.

Model R@1 (↑) R@5 (↑) R@10 (↑) MdR (↓)
S2VT [38] 11.9 33.6 – 13.0

FSE [46] 13.9 36 – 11.0

CE [26] 16.1 41.1 – 8.3

ClipBERT [21] 20.4 48.0 60.8 6.0

FrozenInTime [3] 31.0 59.8 72.4 3.0

OA-Trans [40] 34.8 64.4 75.1 3.0

CLIP4clip [29] 43.4 70.2 80.6 2.0

CLIP2TV [14] 43.9 70.5 79.8 2.0

TS2-Net [27] 41.8 71.6 82.0 2.0

ECLIPSE [24] 44.2 70.0 80.2 2.0

MKTVR 44.4 74.3 83.1 2.0

Table 5. Text-to-video retrieval result on charades dataset. Recall at rank-1 (R@1),
rank-5 (R@5), rank-10 (R@10), Median Rank (MdR) are reported. Results reported
are taken from [24].

Model R@1 (↑) R@5 (↑) R@10 (↑) MdR MnR

ClipBERT [21] 6.7 17.3 25.2 32.0 149.7

FrozenInTime [3] 11.9 28.3 35.1 17.0 103.8

CLIP4clip [29] 13.9 30.4 37.1 14.0 98.0

ECLIPSE [24] 15.7 32.9 42.4 16.0 84.9

MKTVR 16.6 37.5 50.0 10.0 52.7

5.2 Evaluation on Multilingual Video Retrieval Datasets

In addition to the monolingual datasets, we also evaluate the proposed approach
on multilingual video retrieval datasets. Specifically, we use the model trained
only using French captions and test on 6 languages such as German (de), Czech
(cs), Chinese (zh), Swahili (sw), Russian (ru) and Spanish (es) in a zero-shot
setting. Table 6 shows the results on MSRVTT-multilingual dataset. Our model
achieved a significant boost of 8.2% (average) in R@1 in a zero-shot setting. It is
worth noting that our model in a zero-short evaluation outperformed the previ-
ous approaches fine-tuned on these languages by a huge margin of 6.1% (average).
MMP [18] is pretrained on the large scale multilingual dataset HowTo100M on 9
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languages. However, our model trained on just 1 language outperformed MMP.
This shows that our dual cross-modal (DCM) encoder block can effectively learn
the association among video, English and multilingual representations even when
large video pretraining is not involved.

Table 6. Text-to-video retrieval (R@1 metric) results on MSR-VTT - multilingual [18].
Results of other methods taken from [18]. Our model is trained on Charades dataset
and using only french language and evaluated in a zero-shot setting on MSRVTT
multilingual dataset. In zero-shot evaluation on other languages, our model significantly
outperforms previous models trained in both zero-shot and fine-tuning setting.

Model de cs zh ru sw es

m-BERT (zero-shot) 11.1 8.2 6.9 7.9 1.4 12

m-BERT MMP (zero-shot) 15 11.2 8.4 11 3.4 15.1

XLM-R (zero-shot) 16.3 16 14.9 15.4 7.7 17.3

XLM-MMP (zero-shot) 19.4 19.3 18.2 19.1 8.4 20.4

m-BERT (fine-tune) 18.2 16.9 16.2 16.5 13 18.5

XLM- R + MMP (fine-tune) 21.1 20.7 20 20.5 14.4 21.9

MKTVR - fr (zero-shot) 27.4 28.2 24.1 26.6 22.5 26.5

5.3 Ablation Studies

Effect of Multilingual Knowledge Transfer. We investigate the effect of
multilingual knowledge transfer on the video-retrieval performance. Precisely, we
train a model without the multilingual text encoder keeping the rest of the archi-
tecture intact. As shown in Fig. 3, using multilingual data as knowledge transfer
significantly improved the performance on DiDeMo and Charades datasets. The
improvement is 2.4% for DiDeMo and 3.62% for Charades datasets.

Fig. 3. Comparison of models with and without using multilingual data as input. The
first model takes as input only video and English text captions whereas the second
model takes video, English text and multilingual text captions as input. As shown in
the figure, using multilingual text data as knowledge transfer significantly improved
the performance.
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Fig. 4. Comparison of models consisting of only multilingual text encoder and multi-
lingual text encoder + English text encoder. Using a separate English text encoder for
encoding English text captions outperforms the model using multilingual text encoder
to encode English text captions

Fig. 5. Comparison of models with and without DCM block in the architecture. Using
DCM block in the architecture showed superior performance to models without the
DCM block.

Fig. 6. Comparison of MKTVR trained with different multilingual caption data. It is
evident from the figure that training with more languages improved the performance.
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Using only Multilingual Text Encoder. Next, we ablate the choice of using
an English text encoder. We validated previously that multilingual data improves
the performance of video retrieval. This raises the question: Why a separate
English text encoder is required if multilingual text encoder can be used for both
English text and multilingual text representations? In Fig. 4, we show the results
of two different model variants. The first model uses a separate English text
encoder to encode English text captions whereas in the second model, both
the English text and multilingual text are encoded using the same multilingual
text encoder. Results show that encoding English text captions using a separate
English text encoder surpasses the model using multilingual text encoder to
encode both English text and multilingual text. Multilingual pretraining employs
a part of English data whereas the English text encoder is pretrained on a
comparatively larger English data. Hence, leveraging a separate English text
encoder showed much superior performance to using multilingual text encoder
for English text.

Effectiveness of Dual Cross Encoder Block. Next, we ablate the effective-
ness of dual cross encoder block. We train a model without the DCM block and
directly compute the loss between video representations and English text repre-
sentations and video representations and multilingual text representations. From
Fig. 5, we can see that the model using DCM block achieves better performance
than the model without the encoder block. This justifies our motivation to use
DCM block in our model.

Training with More Languages. Next, we ablate training our model with
more than one language. Concretely we train our model with German (de) and
Spanish (es) captions. These languages are chosen because their performance
on XNLI dataset [10] is comparable to English. The results are shown in Fig. 6
and it is seen that training with more languages improved the performance on
video retrieval. These results validate that multilingual data act as an effective
knowledge transfer mechanism for improving video retrieval.

6 Conclusion

In this paper we introduced MKTVR, a multilingual knowledge transfer frame-
work to improve the performance of video retrieval. We constructed multilingual
captions using off-the-shelf state-of-the-art machine translation models. We then
proposed a CLIP-based model that enables multilingual knowledge transfer using
a dual cross-modal encoder block. Experiment results on five standard video
retrieval datasets showed that our framework achieved state-of-the-art results
on all the datasets. Finally, our model also showed superior performance to pre-
vious approaches on multilingual video retrieval datasets in a zero-shot setting.
In the future, we will focus on more efficient ways of multilingual knowledge
transfer for video retrieval.
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Abstract. Aspect-based sentiment analysis (ABSA) is a fast-growing
research area in natural language processing (NLP) that provides more
fine-grained information, considering the aspect as the fundamental item.
The ABSA primarily measures sentiment towards a given aspect, but does
not quantify the intensity of that sentiment. For example, intensity of pos-
itive sentiment expressed for service in service is good is comparatively
weaker than in service is excellent. Thus, aspect sentiment intensity will
assist the stakeholders in mining user preferences more precisely. Our cur-
rent work introduces a novel task called aspect based sentiment inten-
sity analysis (ABSIA) that facilitates research in this direction. An anno-
tated review corpus for ABSIA is introduced by labelling the benchmark
SemEval ABSA restaurant dataset with the seven (7) classes in a semi-
supervised way. To demonstrate the effective usage of corpus, we cast
ABSIA as a natural language generation task, where a natural sentence
is generated to represent the output in order to utilize the pre-trained lan-
guage models effectively. Further, we propose an effective technique for the
joint learning where ABSA is used as a secondary task to assist the primary
task, i.e. ABSIA. An improvement of 2 points is observed over the single
task intensity model. To explain the actual decision process of the proposed
framework, model explainability technique is employed that extracts the
important opinion terms responsible for generation (Source code and the
dataset has been made available on https://www.iitp.ac.in/~ai-nlp-ml/
resources.html#ABSIA, https://github.com/20118/ABSIA)

Keywords: Sentiment analysis · Absa · Aspect sentiment intensity ·
Explainability · Generation · Joint learning

1 Introduction

Aspect based Sentiment Analysis (ABSA) is an important research area in nat-
ural language processing (NLP), which aims to associate sentiments to the fine-
grained aspect terms [28]. The ABSA has mitigated the shortcomings of docu-
ment/sentence level sentiment analysis, which only provide coarse-grained senti-
ment information by ignoring the aspects in the text [10,20–22]. Aspects are the
attributes of an entity, for example, food of restaurant, ambience of restaurant,
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etc. In recognition of its tremendous potential in recommendation systems, a
number of ABSA resources and systems have been developed covering a vari-
ety of domains, including reviews of electronic products, such as laptops, digital
cameras, etc., and restaurants [2,8,28]. An attempt has also been made in legal
domain [24].

The very first benchmark setup of ABSA was proposed in SemEval 2014 [28],
which primarily focused on English language. In the subsequent attempt, this has
been extended to eight (8) more languages [26,27]. A few other challenges have
been introduced for ABSA, e.g., GermanEval for German ABSA [39] and TASS
for Spanish language [30]. Authors in [1–3] have explored ABSA in the Indian
context. Authors in [18] proposed a task in financial opinion mining to predict
the scores for each predefined targets. Sentiment scores are defined in contin-
uous numeric value ranging from -1 (negative) to +1 (positive). The dataset
contains limited number of news headlines or financial microblogs. There are
other attempts to measure the sentiment intensity [23,31,36]. However, these are
focused on document level sentiment analysis. Traditionally, neural based models
have shown promising results for ABSA, which models the relations of aspects
and their contextual words with the help of target connection LSTMs (Long
Short Term Memory), target dependent LSTMs [34], memory networks [4,19],
attention [5,17,37,38], and graph based models [11,13,25,35,42] etc. Recently,
transformers based models have also achieved promising results in almost every
of area of NLP, including ABSA [7,40]. These studies model the relations between
aspect and sentences by concatenating the aspect information at the end of the
sentence. Further, a new direction is introduced to cast different NLP problems
as the sequence generation tasks [6,14,29]. These studies leverage the pre-trained
knowledge present in the language models without adding additional parameters
to the model.

Existing ABSA systems in review domains classify the given aspect into one
of the sentiment classes, viz. positive, negative, neutral, or conflict. However,
it does not convey the fine-grained information such as strength or intensity of
sentiment expressed. The user may not only express the sentiment towards a
given aspect, but also the level of that sentiment. For example, sentence service
is good and food is excellent have positive sentiments for the aspects, service
and food, but both express different levels of sentiments for the aspects service
and food. The level of sentiment expressed for service is comparatively weaker
than food. Similarly, the level of positive sentiment expressed for aspect service in
service is wonderful is more than in service is nice. Thus, measuring the intensity
of sentiment is of foremost importance in analyzing the finer-level details of the
sentiments expressed towards a given aspect. Such analysis will be incredibly
helpful in mining user preferences while designing recommendation systems.

To mitigate the limitations of the existing literature, in this work we intro-
duce the novel task of aspect based sentiment intensity analysis (ABSIA). Fur-
ther, an ABSIA corpus is created by extending the benchmark SemEval-2014
restaurant domain dataset [28]. For this, we follow a two-step approach: the
document level sentiment intensity dataset [23] is utilized to weakly label the
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ABSA dataset for the seven classes, viz. low negative (-1), moderate negative
(-2), high negative (-3), neutral (0), low positive (1), moderate positive (2), and
high positive (3). This step is followed by manual verification by the linguists.
Motivated by the ability of pre-trained language models to solve various NLP
problems as well as ABSA subtasks [12,15,41], we cast ABSIA into a natural
language generation task. Our approach focuses on joint modeling for both the
ABSA and ABSIA tasks to share the knowledge between them. These tasks are
treated as sequence-to-sequence (Seq2Seq) tasks, where input to the encoder is
the review sentence, and output from the decoder is a natural language sentence
describing the sentiment or the sentiment intensity of the given aspect term. We
utilize the BART (Bi-directional Autoencoder Representation from Transform-
ers) pre-trained model, which consists of a bi-directional encoder and a decoder
[12]. Solving classification tasks as Seq2Seq tasks has following advantages: (i).
to solve classification task, neural network is added on top of pre-trained repre-
sentation, with separate network parameters; (ii). the addition of aspect terms
renders the aspect-specific input representation not exactly a natural language
sentence, which makes it different from the pre-training scenario. Intuitively,
linking pre-training and ABSA at a task level instead of at the representation
level would utilize the pre-trained knowledge effectively.

However, these models lack transparency, which makes it difficult to under-
stand their actual decision process. No attempt has been made so far to explain
the behavior of these models. We exploit the model explainability technique,
SHAP (SHapley Additive exPlanations) [16] to understand the behavior of our
proposed model by extracting the opinion terms responsible for generating the
output label. To the best of our knowledge, this is the very first attempt to intro-
duce intensity in aspect based sentiment analysis for the reviews. We believe that
our current work will attract the attention from community to deep dive into
aspect based sentiment intensity analysis (ABSIA).

We summarize the key contributions of our current work as follows:

– We propose a novel task named ABSIA, which quantifies the intensity of
sentiment expressed for a given aspect.

– We create a benchmark dataset for ABSIA following a semi-supervised app-
roach, which contains aspect terms, their corresponding sentiment and senti-
ment intensity labels.

– We propose a generative pre-trained language model to jointly learn two tasks,
where ABSIA is treated as the primary task and ABSA is the auxiliary task.

– To explain the decision process of our model, we harness the model explain-
ability technique SHAP. To the best of our knowledge, this is the very first
attempt towards explaining template based generation models.

2 Resource Creation

To construct the ABSIA corpus, we utilize the benchmark SemEval 2014 ABSA
dataset [28], annotated for aspect terms and their corresponding polarities. We
follow a two-step approach to annotate this dataset for the ABSIA task to reduce
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the manual annotation efforts. First, the existing document level sentiment inten-
sity dataset [23] is utilized to train the classifier, which is then used to assign
weak labels to the ABSA dataset.

Weak Labelling: SemEval 2018 shared task [23] considers document sentiment
intensity as an ordinal classification problem and provides the dataset for seven
intensity classes ranging from -3 to +3. The intensity value of -3 signifies the
high negative and +3 signifies the high positive sentiment intensity. There are
a total of 2567 instances in the dataset, out of which 1181 are for training, 449
for development, and 937 for testing. We opt to annotate sentiment intensities
as ordinal classes to reduce the error rate in weak labeling.

To train the sentiment intensity classifier, we leverage the pre-trained lan-
guage model BERT [7]. We fine-tune it by adding a fully connected layer on
top of it. Input to BERT model is a sequence of tokens present in the sentence
S = w1, w2, w3, ..., wn. BERT inserts a special token [CLS] at the beginning and
[SEP ] at the end of the sentence. The representation at [CLS] is considered as
final contextual representation of the S and is further passed to a fully connected
layer containing 7 neurons. This output layer returns the probability for each
class, and the class with the highest probability is selected as the final class. The
trained system is then used to assign weak labels to the SemEval 2014 ABSA
dataset. ABSA dataset contains sentences, aspects and corresponding sentiment
polarities. It contains total of 2892 positive, 1001 negative, 829 neutral, and 105
conflict instances. We ignore the conflict instances due to its relatively low num-
ber. In order to assign weak labels to each aspect of a sentence S, we create a
context window of size s around it, i.e., s words from the left and s words from
the right of the aspect. It is based on the intuition that opinion words related to
a given aspect are present nearby. For a review sentence S with n words and m
aspect terms, we create m context windows, each containing 2∗s+1 words. These
m context windows are passed to the trained BERT classifier which assigns a
sentiment intensity label to each aspect of S.

Manual Correction: To ensure the annotation quality of the dataset, we
engaged three linguists with sufficient subject knowledge and having experience
on the construction of supervised corpora. Two of them have doctoral degrees,
and one among them has masters. Linguists are asked to manually verify the
annotations of every aspect sentence pair. Every aspect is accompanied by a sen-
timent intensity class, viz. -1, -2, -3, 0, 1, 2, and 3. Guidelines along with some
examples were explained to the linguists before starting the verification process
[23]. They were provided with a few gold label samples to get an idea about the
actual annotations. Linguists are advised to annotate aspect aspi based on the
opinion terms associated with it. To aggregate the annotations from different
linguists, majority voting technique is used. We attained an overall Fleiss’ kappa
[32] score of 0.75 among the three linguists, which can be considered as reliable.
The use of weak labeling prior to actual annotation reduced the annotation time
and also helped in achieving the correct intensity labels. A few samples along
with their aspect sentiment intensity labels are shown in Table 1.
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Table 1. Samples from ABSIA corpus

Text Aspects Label

Largest and freshest
pieces of sushi, and
delicious!

Sushi 3

Food was decent, but not
great

Food 1

Our waiter was horrible;
so rude and disinterested

Waiter -3

The sashimi is cut a little
thinly

Sashimi -1

Fig. 1. Class-wise distribution

Data Distribution: ABSIA dataset contains 1478 low positive, 981 moderate
positive, 384 high positive, 682 low negative, 228 moderate negative, and 80
high negative aspects instances. Class-wise distribution of aspects for sentiment
and sentiment intensity is depicted in Fig. 1. There is a strong dominance of the
low positive class among the other two intensity classes of positive sentiment.
Similar to the positive class, the low negative class dominates the high negative
and moderate negative classes.

3 Methodology

We present a natural language generation based framework to classify the aspect
sentiment intensity into 7 classes, viz. -1, -2, -3, 0, 1, 2, and 3. The detailed
architecture is shown in Fig. 2. There are 2 components, viz., Seq2Seq generation
using BART and model explainability. In this section, we first formulate ABSIA
as a generation task, followed by presenting the details of model components.

Task Formulation: The ABSIA task aims to categorize the sentiment inten-
sity of a sentence S = w1, w2, w3, ....., wn towards a given aspect aspi into 7
classes, viz. -1, -2, -3, 0, 1, 2, and 3. ABSIA is formulated as a language model
ranking problem under a Seq2Seq framework, where we generate a natural sen-
tence to represent the output class. Output sentence is a pre-defined template
filled with given aspect and corresponding class label. For a given input sequence
S with aspect aspi, template Tint = t1, t2, ..., tm1 is the target sequence, with
m1 words. Tint is filled by given aspect aspi and corresponding aspect sentiment
intensity lr to obtain gold sequence Tintaspi,lr

, where r is the list of all sentiment
intensity labels. To effectively share the knowledge between ABSA and ABSIA
tasks, we propose joint modelling of ABSA and ABSIA tasks. Hence, ABSA task
is also formulated as a language model ranking problem. Aspect aspi and the cor-
responding sentiment label pc are used to fill the template Tpol = t1, t2, ....., tm2

to obtain a gold sequence Tpolaspi,pc
. Here, c is the list of all sentiment labels

and m2 is the number of words in Tpol.
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3.1 Seq2Seq Generation

We utilize the BART-base model, consisting of 6-layer encoder and 6-layer
decoder [12] for Seq2Seq learning.

Fig. 2. Proposed Framework

Template Creation: The output template contains the given aspect aspi and
its associated sentiment pc or sentiment intensity label lr. The template Tint

for ABSIA task is: The aspect < aspi > has < lr > intensity. As an example,
the output template for the sentence service is excellent, is The aspect service
has high positive intensity. Similarly, the template Tpol for ABSA task is The
sentiment polarity of aspect < aspi > is < pc >. Accordingly, the template for
the same example is: The sentiment polarity of aspect service is positive .

Model Training: Seq2Seq framework requires parallel data for training.
Firstly, we obtain the parallel data by generating the gold sequences as dis-
cussed above. We create input output pair (S, Tpol) and (S, Tint). Suppose there
are a aspects for S. Then, for both (pol and int) tasks, a gold sequences will be
created for S, one for each aspect. Given a sequence pair (S, T ) for task q (q can
be pol or int), the input sentence S is fed to BART tokenizer. < s > and < /s >
tokens will be added to the start and end of S, respectively, as shown in Fig. 2.
The tokenized input sequence is passed to BART encoder, which generates the
hidden representations of the sentence S as shown in Eq. 1.

henc = BART_ENC(S) (1)

This encoded representation is further fed to a decoder to generate the output
tokens. The decoder takes the encoder representation henc and previous output
tokens from the template T as input to generate the current output token. At
the kth time step of the decoder, the decoder yields a representation hdec

k by
applying attention over encoder hidden state henc and previous output tokens
t1:k−1 as shown in Eq. 2.

hdec
k = BART_DEC(henc, t1:k−1) (2)
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Finally, Softmax is applied over the decoder representation to obtain the prob-
ability vector over the whole vocabulary, as described in Eq. 3. The Eq. 3 gives
the conditional probability of word tk.

P (tk|t1:k−1) = Softmax(hdec
k W + b) (3)

where, W and b are weight and bias metrices having dimensions (dh, |V |) and
(|V |) respectively. Here, |V | is the vocabulary size of the pre-trained BART
model. The highest probability word is selected as the final word. Our model
is trained to minimize the cross-entropy loss between the output of the decoder
and the original template, as shown in Eq. 4.

Lossq =
m∑

k=1

logP (tk|t1,k−1, S) (4)

Here, m can be either m1 or m2, i.e., the number of output tokens either in the
template Tint or Tpol, respectively, based on the task q. Joint learning of ABSA
and ABSIA tasks update the parameters of the model for the loss produced by
both the tasks, Losspol and Lossint. Every mini-batch comprises of a different
task that the model learns and parameters are updated for each mini-batch. As
a result, both the tasks can share the information among themselves and help
ABSIA to improve its performance.

Model Inference: During model inference, we first obtain all the label values
for both the tasks. For a sentence S with aspect aspi, task int, we create r
templates by filling the aspi and sentiment intensity label lr to the pre-defined
template Tint. Then the trained BART model is used to assign a score to each
template Tintaspi,lr

as shown in Eq. 5.

f(Tintaspi,lr
) =

m1∑

k=1

logP (tk|t1,k−1,S) (5)

We calculate f(Tintaspi,lr
) for each ABSIA template and then choose the final

template having the largest score. Similarly, for ABSA task, we obtain c tem-
plates for a given sentence S and aspect aspi. We obtain score f(Tpolaspi,pc

) for
each sentiment template similar to Eq. 5 and choose the final sentiment template
with the largest score.

3.2 Model Explainability

Model explainability is introduced at the inferencing time to understand the
reason behind predictions. To achieve this goal, our first step towards it is to
find the contribution of each word for the output template generation. In general,
the word importance is computed as the difference between a prediction for a
given sentence S (with n words) and the expected prediction when the word wj

is not present in S and replaced by [MASK]. It is described in Eq. 6.

φj(S) = M(w1, . . . , wn) − E[M(w1, . . . , wj−1, [MASK], wj+1 . . . , wn)] (6)
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We use the Shapely algorithm, inspired by coalitional game theory, to determine
the relevance of each word in a given sentence [16]. Shapley calculates the rele-
vance score for each word based on possible coalitions for a particular prediction.
Equation 7 explains the computation using a value function, which calculates the
feature importance over the difference in prediction with or without wj , over all
combinations.

φj(w) =
∑

Q⊆S\j
|Q|!(|S|−|Q|−1)!

|S|!
(
v(Q∪{j})(w) − vQ(w)

)
(7)

vQ(w) (value function) is the payout function for coalitions of players (feature
values), which denotes the influence of a subset of feature values. It generalizes
(Eq. 6), in the following form

vQ(w) = E [M | Wi = wi,∀i ∈ Q] − E[M ] (8)

where M provides the prediction over the set of features provided, S is the
complete set of features, Q ∈ S is a subset of features, and |·| is the size of
feature set [33].

To adapt SHAP for the BART based generation model, we first obtain the
score for each template and choose the final output template for a given input
sentence S with aspect aspi as discussed above. We create an explicit word
masker to tokenize the sentence S into sentence fragments consisting of words,
which serves as a basis for word masking in SHAP (here mask refers to hiding
a particular word from the sentence). To explain the likelihood of generating
this output template for S, we wrap the BART model along with tokenizer and
output template with a teacher forcing scoring class (SC). Teacher forcing SC
forces the model to generate the provided output template. The input sentence
along with the designed masker and predicted output template is passed to
SHAP ex-plainer, which generates various masked combinations of the input
sentence. These masked combinations are passed to the teacher forcing scoring
class, generating output probabilities for the output template. These output
probabilities are returned to SHAP explainer, which returns the contribution of
each word (from S) for generating each word of the output template. Output
template for the ABSIA task contains two words (e.g. low positive) to describe
the final class lr (except neutral). We extract the relevance scores of each word
from S for generating these two output words. We then take the average of both
the score vectors to obtain the final relevance scores. ABSA task has only one
word in the output template to describe the output class. We directly extract
the relevance scores of the input sequence S, contributing to the generation of
output class pc.

4 Experiments and Analysis

We develop our models in Pytorch, a python based deep learning library1. All
the experiments were carried out on an NVIDIA GeForce GTX 1080 Ti GPU.
1 https://pytorch.org/.

https://pytorch.org/
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We split the dataset tuples as: train (70%), validation (10%) and test-set (20%).
Detailed data statistics are shown in Table 2. The batch size is set to 16 for all
the models. The number of epochs is set to 30 and learning rate is set to 3e-5.
Model parameters are optimized by Adam [9]. We use grid search to find the
best set of hyperparameters on validation set. Since ABSIA is our primary task,
we save the best model according to the development set accuracy of the ABSIA
task. We experimented with multiple loss weight values and got the best results
when loss weight values are 1 for both the tasks.

Baselines: We consider ABSIA as our primary task and try to enhance its
performance with joint learning of ABSA and ABSIA. So, we define the baselines
for the ABSIA task as mentioned below:

– TD LSTM: It uses two LSTM networks (left LSTM and right LSTM) to
model the contexts preceding and following the aspect term [34].

– TC LSTM: It adds a target connection component to TD-LSTM, to incorpo-
rate semantic relatedness between aspect terms and context words [34].

– Inter-aspect relation modeling with memory networks (IARM) [19]: IARM
learns the dependency of a given aspect with the other aspects in the sentence
using memory network.

– Single task BERT: The BERT-base model is fine-tuned on the ABSIA task
by adding a fully connected layer on top of it.

– Multi-task BERT: Multi-task system utilizes BERT as a shared encoder with
two task-specific layers on top of it to solve ABSA and ABSIA tasks jointly.

– Single task BART: BART model consisting of encoder and decoder is fine-
tuned for ABSIA task by adding a fully connected layer at decoder [12].

– Multi-task BART: This corresponds to the BART based multi-task system
for ABSA and ABSIA tasks. Two task specific layers are added on the top of
the decoder, one for each task.

– BART generation for ABSIA: Single task generation based model for inten-
sity.

– BART generation model joint learning: Joint learning of ABSA and ABSIA
tasks in generation framework.

4.1 Experimental Results

We evaluate the performance of our model using accuracy measure. Table 3 shows
the results of our primary task ABSIA. TC LSTM reports an accuracy of 58.12%
and TD LSTM outperforms TC LSTM. IARM reports improved performance,
indicating the effectiveness of considering the interrelation between aspects of the
same sentence. Further, single task BERT and BART outperform these models,
illustrating the effectiveness of transfer learning and contextual representations;
while, multi-task learning based frameworks outperform all the other models.
The improved performance demonstrates the role of the ABSA task in enhanc-
ing the performance of the ABSIA task. Our proposed intensity generation sin-
gle task model outperforms the single task BERT and BART based classifica-
tion models, which shows that it can detect multiple sentiment intensities in a
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Table 2. Data Statistics of ABSIA
dataset

Type -3 -2 -1 0 1 2 3

Train 51 170 477 0 1065 697 277

Dev 11 21 68 58 110 79 25

Test 18 37 137 0 303 205 82

Total 80 228 682 817 1478 981 384

Table 3. Results

Model Accuracy

TD LSTM 58.12

TC LSTM 59.04

IARM 60.17

ST BERT 61.93

ST BART 62.45

MT BERT 63.31

MT BART 63.89

Intensity generation 63.87

Joint generation 66.02

sentence towards different aspect terms. Joint modelling of ABSA and ABSIA
results in improved performance than all other baselines, showing the potential
of both joint learning and utilization of pre-trained knowledge at the task level
rather than at the representation level. We follow the paired T-test (significance
test), which validates the performance gain over all the baselines is significant
with 95% confidence (p-value<0.05).

Table 4. Impact of templates on ABSIA task

Template Accuracy

The sentiment intensity of < aspi > is lr 65.32%
The aspect < aspi > has sentiment intensity of lr 66.29%
The aspect < aspi > has < lr > sentiment intensity . 67.74%

Impact of Templates: We experiment with several templates to observe
their impact on the model performance. Table 4 shows the results of using
different templates on the development dataset. For example, the template
< The aspect < aspi > has sentiment intensity of < lr >, reports accuracy
value of 66.29% on development set. We select the final template with the high-
est accuracy on the development set.

4.2 Detailed Analysis

This section presents a detailed analysis of our results. The confusion matrix for
the ABSIA task for single task and joint learning framework is shown in Fig. 3.
We can see that joint model has improved the number of correct classifications
for almost every class. In joint model, it is observed that the majority of misclas-
sifications from low negative class are into neutral classes and from moderate
negative class into low negative class. Moderate and high positive classes are
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Fig. 3. Confusion matrix for single task ABSIA and joint model

often confused with low positive classes. This could be due to the close resem-
blance between different levels of a class and the higher number of instances of
low positive class.

Explaining Generation Framework: This section describes the actual deci-
sion process of proposed BART based template generation framework by extract-
ing the opinion terms responsible for generating the final output label. We first
explain how the intensity generation model derives its final predictions, followed
by explanation of the joint model. Consider the following example, service is
slow. The intensity generation model generates low negative sentiment intensity
for aspect service. However, the model predicts high negative intensity in case
of the sentence service is severely slow. Figures 4 and 5 explain the predictions
of the model. Tokens with red colour signify the terms which are responsible for
the final label generation (positive SHAP scores). In contrast, the words with
blue colour negatively influence the final generation (negative SHAP scores).
More intense colour signifies the greater influence of the term for final label gen-
eration. Figure 4 reveals that model generates intensity label with the help of
term slow. On the other hand, Fig. 5 illustrates the importance of severely over
slow to generate the high positive intensity label. Thus, our model is capable
of distinguishing between different levels of intensities, which are not explored
in the previous studies. Furthermore, we exploit the behavior of our proposed
model. We observe that ABSIA task benefits from the ABSA task to perform
better. Example cases are shown in Fig. 6 to demonstrate this observation. The
left side explains the SHAP predictions for the single task intensity model and
the right side describes the predictions of the joint learning framework. Exam-
ple 1 carry low negative sentiment intensity for aspect delivery. The single task
model generates the intensity as neutral. We can see that model’s focus is on
delivery followed by also ordered for. However, with joint learning of both tasks,
ABSA helps the model to shift its focus to forgot, which helps the ABSIA to
generate the correct class. Similarly, for example 2, the single task model predicts

Fig. 4. SHAP output: low intensity Fig. 5. SHAP output: high intensity
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Fig. 6. Explaining behavior of single task and joint learning for ABSIA task

intensity as low positive because of its less focus on atrocious. However, the joint
learning framework has shifted the model’s focus to atrocious and awful, which
helps for correct prediction. In example 4, for aspect reservation, the single task
model made predictions based on we, arrived, and for ; hence it predicts intensity
class as neutral. However, the joint learning framework helps the model to focus
on promptly, leading to correct prediction. Similarly, for example 5, the actual
label is neutral for aspect dimsum. However, the single task model pays more
attention to the negative term don’t, which leads to incorrect intensity predic-
tion. The ABSA task helps the ABSIA task to shift its focus to neutral terms
(walk, around, and with). To explain the limitations of our proposed framework,
we show samples misclassified by the joint learning framework in Fig. 7. SHAP
analysis shows that samples with implicit opinions are misclassified by our frame-
work (examples 1, 2, and 3). Sometimes the model cannot link correct opinion
terms to the aspect when there is stronger sentiment intensity expressed for the
other aspect (example 4). In example 4, model is focusing on word excellent
rather than words associated with aspect mayo.

Fig. 7. Explaining misclassified samples
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5 Conclusion

In this paper, we have introduced a new task of aspect based sentiment intensity
analysis, which would immensely benefit the organizations and enterprises to
mine the user preferences more precisely. We have developed a benchmark setup
to create the annotated corpus for the ABSIA task using a semi-supervised way.
To demonstrate the effective usage of the dataset, we cast ABSIA as a generation
task and proposed a template based generation framework for intensity predic-
tion. Further, we have proposed a joint framework to improve the performance of
ABSIA task with the help of ABSA. We further utilized the explainability tech-
nique to explain the predictions of single task and joint learning frameworks.
SHAP explains the decision process of our models by extracting the opinion
terms responsible for generating the output class. In the future we shall investi-
gate the usage of term importance information provided by SHAP to reduce the
misclassification rate. We would also focus how to augment this information to
minimise misclassifications without hampering the correct classifications.
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Abstract. With the tremendous growth in the volumeof informationpro-
duced online every day (e.g. news articles), there is a need for automatic
methods to identify related information about events as the events evolve
over time (i.e., information threads). In this work, we propose a novel unsu-
pervised approach, called HINT, which identifies coherent Hierarchical
Information Threads. These threads can enable users to easily interpret
a hierarchical association of diverse evolving information about an event
or discussion. In particular, HINT deploys a scalable architecture based
on network community detection to effectively identify hierarchical links
between documents based on their chronological relatedness and answers
to the 5W1H questions (i.e., who, what, where, when, why & how). On the
NewSHead collection, we show that HINT markedly outperforms existing
state-of-the-art approaches in terms of the quality of the identified threads.
We also conducted a user study that shows that our proposed network-
based hierarchical threads are significantly (p < 0.05) preferred by users
compared to cluster-based sequential threads.

1 Introduction

In the digital age, the rise of online platforms such as news portals have led to a
tremendous growth in the amount of information that is produced every day. The
volume of such information can make it difficult for the users of online platforms
to quickly find related and evolving information about an event, activity or dis-
cussion. However, presenting this information to the users as a hierarchical list of
articles, where each branch of the hierarchy contains a chronologically evolving
sequence of articles that describe a story relating to the event, would enable the
users to easily interpret large amounts of information about an event’s evolution.
For example, Fig. 1(a) presents different stories that are related to the event “Lira,
rand and peso crash” as separate branches of a hierarchical list. We refer to this
structure of information as a Hierarchical Information Thread. Figure 1(a) illus-
trates the following three characteristics of hierarchical threads: (1) all of the arti-
cles in the thread present coherent information that relates to the same event, (2)
different stories (i.e., branches) capture diverse information relating to the event,
and (3) the articles that discuss a story are chronologically ordered.

Compared to hierarchical threads, a sequential thread cannot simultaneously
capture both the chronology and the logical division of diverse information about
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Fig. 1. Comparative example of Hierarchical & Sequential Information Threads.

an event. For example in Fig. 1(b), a simple chronological order of the articles
cannot represent the articles about “Countermeasures” as a coherent story in the
thread. In contrast, hierarchical threads (Fig. 1(a)) can enable the users to find
diverse stories about the event’s evolution in an easily interpretable structure.

We propose a novel unsupervised approach, HINT,1 for identifying
Hierarchical Information Threads by analysing the network of related articles in
a collection. In particular, we leverage article timestamps and the 5W1H questions
(Who, What, Where, When, Why and How) [8] to identify related articles about
an event or discussion. We then construct a network representation of the articles,
and identify threads as strongly connected hierarchical network communities.

We evaluate the effectiveness of HINT on the NewSHead collection [7], in both
an offline setting and a user study. In our offline evaluation, we show that HINT
markedly improves the quality of the threads in terms of Normalised Mutual
Information (NMI) and Homogeneity (h) (up to +232.08% NMI & +400.71% h)
compared to different established families of related methods in the literature,
i.e., document threading [6] and event extraction [12] approaches. We also com-
pare the effectiveness of our hierarchical information threading approach with
a recent work on cluster-based sequential information threading [14], which we
refer to as SeqINT. In terms of thread quality, we show that HINT is more effec-
tive in generating quality threads than SeqINT (+10.08% NMI and +19.26% h).
We further conduct a user study to evaluate the effectiveness of HINT’s hierar-
chical threads compared to SeqINT’s sequential threads. Our user study shows
that the users significantly (p < 0.05) preferred the HINT threads in terms of
the event’s description, interpretability, structure and chronological correctness
than the SeqINT threads. We also analyse the scalability of HINT’s architecture
by simulating a chronologically incremental stream of NewSHead articles. We
show that the growth in the execution time of HINT is slower compared to the
growth in the number of articles over time.

2 Related Work

Existing tasks such as topic detection and tracking (TDT) [2] and event thread-
ing (ET) [13] broadly relate to the problem of identifying information about
events. TDT and ET tasks typically focus on identifying clusters of events to
capture related information about evolving topics or dependent events. However,
unlike hierarchical information threads, these clusters of events do not provide a

1 HINT’s code is available at: https://github.com/hitt08/HINT.

https://github.com/hitt08/HINT
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finer-grained view of an event’s evolving stories, which makes it difficult for the
users to find relevant stories based on their interests.

Topic Detection and Tracking (TDT) [2] is the task of identifying threads of
documents that discuss a topic, i.e., topic-based threads about the chronologi-
cal evolution of a topic. TDT approaches (e.g. [1,5,18,24]) focus on identifying
topical relationships between the documents to automatically detect topical clus-
ters (i.e., topics), and to track follow-up documents that are related to such top-
ics. These topics are often a group of many related events [24]. Differently from
topic-based threads about many related events, hierarchical information threads
describe evolving information about different stories that relate to a specific event.

Event threading approaches (e.g., [12,13,20]) first extract events as clusters
of related documents, and then identify threads of the event clusters. Differently
from event threading, our focus is to identify hierarchical information threads
of documents that describe different stories about a single event, activity or
discussion. We used the EventX [12] event extraction approach as a baseline in
our experiments, since it also identifies related documents about specific events.

Another related task is to identify a few specific document threads in a col-
lection such as threads about the most important events [6] or threads that
connect any two given documents in the collection [19]. Our work on hierar-
chical information threading is different in multiple aspects from the aforemen-
tioned document threading approaches that aim to identify specific threads in
a collection. First, we focus on identifying threads about all of the events in
a collection. Second, unlike document threading approaches that use document
term features, we focus on the 5W1H questions and chronological relationships
between documents to identify evolving information about events. Lastly, unlike
existing document threading approaches that generate sequential threads, we
propose hierarchical threading to describe various aspects about an event (e.g.
different stories).

Recently, Narvala et al. [14] introduced an information threading approach.
They deploy clustering to identify sequential threads using 5W1H questions and
the documents’ timestamps (we refer to this approach as SeqINT). Unlike the
cluster-based SeqINT approach, in this work, we focus on identifying threads of
hierarchically associated documents using network community detection meth-
ods to capture the evolving stories of an event. Moreover, the SeqINT approach
only supports static collections, whereas, our proposed network-based approach
can also be deployed to generate information threads in dynamic collections.

3 Proposed Approach: HINT

In this section, we present our proposed approach for identifying Hierarchical
Information Threads (HINT). Our approach leverages the chronological relation-
ships between documents, 5W1H questions’ answers along with the entities that
are mentioned in multiple documents in a collection, to define a directed graph
structure of the collection (i.e., a network of documents). We then deploy a com-
munity detection algorithm to identify coherent threads by identifying hierarchi-
cal links in the network of documents. Figure 2 shows the components of HINT,
which we describe in this section, i.e., (1) 5W1H Extraction, (2) Constructing a
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Fig. 2. Components of HINT

Document-Entity Graph, (3) Constructing a Directed Graph of the Documents,
(4) Nearest Parent Community Detection, and (5) Candidate Thread Selection.

5W1H Extraction: We first extract the phrases of text that answers the 5W1H
questions from each document in the collection using the Giveme5W1H app-
roach [8]. We then concatenate all of the 5W1H questions’ answers for each
document as a pseudo-passage (i.e., one pseudo-passage per document). To vec-
torise the pseudo-passages, we use transformer-based [23] contextual embeddings
to capture the context of the events described by the pseudo-passages. We use
these embeddings when constructing the Directed Graph of Documents.

Constructing Document-Entity Graph: After 5W1H extraction, we con-
struct an undirected document-entity graph, E , to identify the common entities
between the documents in the collection. The graph E comprises two types of
nodes, i.e., the entities and documents in the collection. We first identify the key
entities associated with an event by leveraging the 5W1H questions’ answers. In
particular, we re-use the available answers to the “who” and “where” questions,
which directly correspond to named-entities, i.e., “person/organisation” (who) and
“place” (where). In other words, we re-purpose the available named-entity infor-
mation from the 5W1H extraction to avoid needing an additional named-entity
recogniser. We then create an edge between the documents and their correspond-
ing entities, i.e., at most two edges per document node (who and/or where).

ConstructingaDirectedGraphofDocuments: Wethen use the 5W1Hques-
tions’ answers, the document-entity graph E along with the creation timestamps
of the documents to construct a document graph, D, from which we identify can-
didate hierarchical threads. In the graph D, the nodes are the documents in the
collections. We define directed edges between documents in D based on the docu-
ment timestamp such that the edges between two documents go forward in time. In
addition, we define weights for the edges based on the relatedness of the child node
to theparent node in adirected edgebetween twodocuments. In particular, to effec-
tively capture the relatedness of nodes based on the event they describe, the weight
of each edge is defined as: (1) the similarity between the 5W1H pseudo-passages of
the documents, (2) the chronological relationship between the documents, and (3)
the number of entities mentioned in both of the documents.

To calculate the edge weights of the graph, we first compute the cosine simi-
larity (cos(px, py)) of the 5W1H pseudo-passage embeddings, px & py (for docu-
ments x & y respectively). To capture the chronological relationship between x &
y, we compute the documents’ time-decay (inspired by Nallapati et al. [13]), i.e.,
the normalised time difference between the creation times of x & y, defined as:
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Fig. 3. Nearest Parent Community Detection

td(x, y) = e−α
|tx−ty|

T (1)

where tx & ty are the creation timestamps of documents x & y respectively, T is
the time difference between the oldest and latest document in the collection and
α is a parameter to factor in time decay. In a dynamic collection, the value of T
can be dynamically estimated based on the maximum time difference between
articles in the existing threads identified from the historical articles.

We then use the document-entity graph E to calculate an entity similarity score
for each pair of documents in the graph D. To compute an entity similarity score
for a pair of documents, x & y, we first identify the number of paths (|Pxy|) that
connect x & y in the graph E through exactly one entity node. Second, if |Pxy| = 0,
we identify the length of the shortest path (|sxy|) that connects x & y through mul-
tiple entities or other document nodes in E . Intuitively, for documents that have
common entities, a higher value of |Pxy| denotes a higher similarity between doc-
uments x & y, with respect to the entities that are mentioned in the documents.
In contrast, for documents that do not have any common entities (i.e., |Pxy| = 0),
a longer length of the shortest path, |sxy|, denotes less similarity between x & y.
Based on the aforementioned description of |Pxy| and |sxy|, we define the overall
entity similarity score between documents x & y as follows:

es(x, y) =
λ

2
(1 + (1 − e−γ

|Pxy|
M )) +

(1 − λ)
2

e−γ
|sxy|

N , λ =

{
1, if |Pxy| > 0
0, otherwise

(2)

where, M is the largest number of common entities between any two documents
in the collection, N is the largest shortest path in the collection, and γ is a
parameter to control the relative weights of the number of common entities or
the length of the shortest path between x & y.

Lastly, we define the edge weights in the document graph D (i.e., the distance
between x & y) using Eqs. (1) and (2), and the 5W1H cosine similarity, as:

w(x, y) = 1 − cos(px, py) · td(x, y) · es(x, y) (3)
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Algorithm 1: Nearest Parent Community Detection (NPC) Algorithm
input : Directed Graph of Documents D
output: Connected components of D as communities
foreach node n ∈ D do

if inDegree(n) > 1 then
Find the parent p′ that is nearest to n
foreach p ∈ parents(n) do

if p �= p′ then
Remove edge (p → n)

foreach connected component c ∈ D do
Compute outlier weight threshold for c using Equation (4).
foreach edge e ∈ c do

if weight(e) > threshold and outDegree(childNode(e)) > 1 then
Remove e from D

Nearest Parent Community Detection (NPC): From the Directed Graph
D, we identify hierarchically connected communities for thread generation. We
propose a Nearest Parent Community Detection (NPC) method that identi-
fies strongly connected components of graph D as communities of hierarchically
linked documents. The NPC algorithm is presented in Algorithm 1 and is illus-
trated in Fig. 3. To identify hierarchical links between document nodes, as shown
in Fig. 3(a), NPC first identifies the nodes that have multiple parents, and fol-
lows a greedy approach to keep only the edge that corresponds to the nearest
parent (i.e., the edge with the lowest weight; shown with dashed green arrow in
Fig. 3(a)). This selection of only the nearest parent node results in various hier-
archically connected components of graph D, as shown in Fig. 3(b). However,
the connected graph components may still have some weakly connected parent
and child nodes (i.e., edges with high weights). Therefore, to remove such weak
connections, we split the connected graph components by identifying edges that
have significantly higher weights based on the outlier detection method [22]. In
particular, within a connected graph component, we determine a threshold edge
weight. This threshold value corresponds to the outliers in the distribution of
the edge weights within a connected graph component defined as follows [22]:

threshold = P3 + 1.5 ∗ (P3 − P1) (4)

where P1 and P3 are respectively the values for the first and third quartiles
(i.e. 25 and 75 percentile) of the edge weight distribution, and (P3 − P1) is
the interquartile range. We compute this threshold for each connected graph
component. While pruning the outlier edges, we do not prune edges where the
child nodes do not have any outward edges so that the graph does not contain
any isolated nodes. Finally, as shown in Fig. 3(c), NPC outputs the connected
graph components (i.e., strongly connected communities) as candidate hierar-
chical threads.

Candidate Thread Selection: From the candidate threads identified by NPC,
we select the output threads based on thread coherence and diversity of infor-



Effective Hierarchical Information Threading 707

mation. Our focus is on selecting a maximum number of threads from the candi-
dates that are coherent and providing diverse information about their respective
events. However, popular metrics (e.g. Cv [16]) for directly computing coherence
for all threads in a large collection can be computationally expensive. Therefore,
following Narvala et al. [14], to efficiently select candidate threads, we define an
estimate of coherence and diversity using the following three measures: (1) The
number of documents in a thread T (i.e., the thread length |T|), (2) The time
period, Tspan, between the timestamps of the first and last documents in a can-
didate thread, and (3) The mean pairwise document cosine similarity, TMPDCS ,
of a candidate thread, T, calculated over all pairs of consecutive documents in
the candidate thread.

Following [14], we optimise a minimum and maximum threshold range of the
aforementioned measures based on coherence, diversity and the total number of
selected threads using a smaller sample of NewSHead articles. To compute coher-
ence and diversity, we use the Cv metric [16] and KL Divergence [10] respectively.

4 Experimental Setup

We now describe our experimental setup for the offline evaluation where we
evaluate the threads quality (Sect. 5), and for the user study where we evaluate
the effectiveness of hierarchical and sequential threads with real users (Sect. 6).

Dataset: There are very limited datasets available for evaluating information
threads. In particular, previous work (e.g. [6,13]) use manually annotated datasets
which are not publicly available. Moreover, classical text clustering datasets such
as 20 Newsgroups [11] only contain topic labels and not event labels, which are
needed to evaluate event-based information threads.

Therefore, we use the publicly available NewSHead [7] test collection, which
contains news story labels and URLs to news articles. Each of the NewSHead story
label corresponds to a group of 3–5 articles about a story of an event. For our experi-
ments,we crawled 112,794NewSHead articles that are associatedwith 95,786 story
labels. We combine the articles from multiple stories about an event into a single
set, and refer to these sets as the true thread labels. In particular, since the New-
SHead stories often share common articles (i.e., overlapping sets), we perform a
union of these overlapping story sets, to create the true thread labels. This resulted
in 27,681 true thread labels for the NewSHead articles (average of 4.07 articles
per thread). In addition, considering the scalability limits of some of the baseline
approaches that we evaluate, similar to Gillenwater et al. [6], we split the collec-
tion based on the article creation time into three test sets (37,598 articles each).
We execute the threading approaches on these test sets separately, and evaluate
their effectiveness collectively on all the three test sets.

Baselines: We compare the effectiveness of HINT to the following baselines:

• k-SDPP [6]: We first evaluate the k-SDPP document threading approach,
using the publicly available implementation of SDPP sampling [9]. Since the
length of k-SDPP threads are fixed, we specify k=4, based on the mean
length of the NewSHead threads. Moreover, k-SDPP samples a fixed number
of threads. We perform 200 k-SDPP runs with sample size 50 from each of the
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three test sets (i.e., 200∗50∗3 = 30, 000 threads, based on 27,681 NewSHead
threads).

• EventX [12]: Second, we evaluate the EventX event extraction approach,
using its publicly available implementation.

• SeqINT [14]: Third, we evaluate SeqINT to compare the effectiveness of
cluster-based sequential threading with our hierarchical information thread-
ing approach (HINT). We use the edge weight function defined in Equa-
tion (3) as the distance function for clustering in SeqINT. Unlike HINT,
SeqINT requires an estimate of the number of clusters. For our experiments,
we use the number of true thread labels in each of the three test sets as the
number of clusters in SeqINT.

HINT: We now present HINT’s implementation details and configurations.

• Pseudo-Passage Embedding: We evaluate two contextual embedding
models [15] for representing the 5W1H pseudo-passages namely: all-miniLM-
L6-v2 and all-distilRoBERTa-v1. We denote the aforementioned two embed-
ding models as mLM and dRoB, respectively, when discussing our results in
Sect. 5.1.

• Community Detection: We evaluate the effectiveness of NPC compared to
two widely-used community detection methods: Louvain [3] and Leiden [21].

• Parameters: We tune HINT’s parameters based on thread coherence and
diversity on a small sample of NewSHead (Sect. 3), using the following values:

◦ α; γ ⇒ {10i ∀ − 3 ≤ i ≤ 3; step = 1}}
◦ x ≤ |T| ≤ y ⇒ {x, y} ∈ {{3, i} ∀ 10 ≤ i ≤ 100; step = 10},
◦ x ≤ Tspan ≤ y ⇒ {x, y} ∈ {{0, i} ∀ 30 ≤ i ≤ 360; step = 30},
◦ x ≤ TMPDCS ≤ y ⇒ {x, y} ∈ {{0 + i, 1 − i} ∀ 0 ≤ i ≤ 0.4; step = 0.1}.

5 Offline Evaluation

Our offline evaluation compares the effectiveness of HINT in terms of the quality
of generated threads, compared to the baselines discussed in Sect. 4. We aim to
answer the following two research questions:

• RQ1: Is HINT more effective for identifying good quality threads than the
existing document threading and event extraction approaches?

• RQ2: Is our NPC component more effective at identifying communities for
thread generation than existing general community detection methods?

Evaluation Metrics: We evaluate thread quality based on the agreement of
articles in the generated threads with the NewSHead thread labels. However,
we note that thread quality cannot indicate whether the sequence of articles in
a thread is correct, which we evaluate later in our user study (Sect. 6). Intu-
itively, our offline evaluation considers threads as small clusters of articles. We
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use the following popular cluster quality metrics to measure the thread quality:
Homogeneity Score (h) [17] and Normalised Mutual Information (NMI) [4].

Since all of the NewSHead articles have an associated thread label, we com-
pute h and NMI using all of the articles in the collection to measure the thread
quality. Moreover, for each of the evaluated approaches, it is possible that the
approach will not include all of the NewSHead articles in the generated threads.
Therefore, we also report the number of generated threads along with the total
and mean of the number of articles (mean |T|) in each of the generated threads.

5.1 Results

Table 1 presents the number, length and quality of the generated threads. Firstly
addressing RQ1, we observe from Table 1 that the NPC configurations for HINT
markedly outperform the k-SDPP and EventX approaches from the literature
along with the SeqINT approach in terms of h and NMI (e.g. NMI; mLM-NPC:
0.797 vs k-SDPP: 0.190 vs EventX: 0.240 vs SeqINT: 0.724). Even though both
HINT and SeqINT use 5W1H questions, HINT’s NPC community detection
and graph construction using time decay and entity similarity contributes to
its higher effectiveness over SeqINT. Moreover, since we measure h and NMI
on the entire collection, the number of articles identified as threads (e.g. mLM-
NPC: 74.67% articles) is an important factor in HINT’s effectiveness compared to
existing methods. For example, EventX identified only 16.58% articles as threads,
which affects its overall effectiveness. To investigate this, we evaluate EventX and
HINT using only the NewSHead articles that are identified as threads (16.58%
& 74.67% respectively). Even for this criteria, HINT outperforms EventX (e.g.
0.927 vs 0.883 NMI). We further observe that the number of threads identified
are markedly higher for HINT (e.g. mLM-NPC: 18,340) compared to k-SDPP
(4,599), EventX (7,149), and SeqINT (13,690). Furthermore, we observe that
the mean number of articles per thread (mean |T|) for HINT (4.59) is the clos-
est to the true threads (4.07) in NewSHead. Therefore, for RQ1, we conclude
that HINT is indeed effective for generating quality information threads com-
pared to existing document threading (k-SDPP) and event extraction (EventX)
approaches as well as cluster-based information threading (SeqINT).

Moving on to RQ2, from Table 1 we observe that the Louvain and Leiden
configurations of HINT are the least effective. Upon further investigations, we
found that these general community detection methods identify comparatively
larger communities than NPC, which can affect the coherence of the generated
threads. Therefore, the candidate selection component in HINT when using Lou-
vain or Leiden selects a very small number of threads (e.g., mLM-Louvain: 20,
mLM-Leiden: 17, compared to mLM-NPC: 18,340). Therefore, in response to
RQ2, we conclude that our proposed NPC is the most suitable method to iden-
tify the strongly connected communities for effective thread generation.
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Table 1. Results for the Thread Quality of the evaluated approaches. (True #arti-
cles=112,794; #threads=27,681 and mean |T|=4.07).

Configuration h NMI #Articles #Threads mean |T|
K-SDPP 0.107 0.190 13,076 4,599 2.84
EventX 0.141 0.240 18,698 7,149 2.62
SeqINTmLM 0.592 0.724 69,430 13,690 5.07
SeqINTdRoB 0.541 0.684 63,336 12,522 5.06
HINTmLM-Louvain 0.001 0.003 207 20 10.35
HINTdRoB-Louvain 0.001 0.003 202 15 13.47
HINTmLM-Leiden 0.001 0.001 78 17 4.59
HINTdRoB-Leiden 0.001 0.001 69 14 4.93
HINTmLM-NPC 0.706 0.797 84,228 18,340 4.59
HINTdRoB-NPC 0.686 0.783 81,770 17,819 4.59

5.2 Ablation Study

We now present an analysis of the effectiveness of different components of HINT.
• Effect of Time-Decay and Entity Similarity: We first analyse the effec-
tiveness of the time-decay and entity similarity scores to compute the weights
of the edges in the Document Graph (D). In particular, we evaluate HINT in
two additional settings to compute the edge weights: (1) cosine similarity of the
5W1H pseudo-passages (i.e., by setting td(x, y) = es(x, y) = 1 in Equation (3)),
and (2) cosine similarity and time-decay (TD) (i.e., es(x, y) = 1). From Table 2,
we observe that our proposed configuration to compute the edge weights with
both time-decay and entity similarity (e.g. mLM-TD-ENT: 0.797 NMI) outper-
forms other configurations that include only cosine similarity (e.g. mLM: 0.759
NMI) or cosine and time-decay similarity (e.g. mLM-TD: 0.796 NMI). However,
we also observe that the improvements from including the time-decay similarity
are larger compared to including both time-decay and entity similarity. As future
work, we plan to investigate whether including an entity recognition component
in addition to the 5W1H extraction can further improve the thread quality.

Table 2. Effect of Time-Decay and
Entity Similarity on thread quality.

Configuration h NMI

mLM 0.657 0.759
dRoB 0.642 0.747
mLM-TD 0.705 0.796
dRoB-TD 0.686 0.783
mLM-TD-ENT 0.706 0.797
dRoB-TD-ENT 0.686 0.783

Fig. 4. Effect of Candidate Selection on NMI
and Diversity.
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• Effect of Candidate Thread Selection: We also analyse the effect of the
candidate selection on the quality and diversity of the generated threads. We use
KL divergence [10] to measure the threads’ diversity of information. For a given
thread, we hold-out each document from the thread and compute the KL diver-
gence between the probability distributions of the words in the held-out document
and the words in the rest of the documents in the thread. Since in this analysis we
are focused on the quality of the generated threads, we compute h and NMI using
only the articles that are identified as part of the generated threads.

Figure 4 shows the thread quality (NMI) and information diversity of the
candidate threads identified by the NPC and the final output threads from the
candidate selection component. We first observe that the quality of the candidate
threads and the final threads are comparable. However, the final threads are
significantly (Welch’s t-test; p < 0.05) more diverse than the candidate threads.
Therefore, our proposed candidate selection component can effectively select
quality information threads that describe diverse information about an event.

6 User Study

As we described in Sect. 3, our proposed HINT approach captures hierarchical
links between documents. These hierarchical links can present chronological hier-
archies and a logical division of diverse information, e.g. different stories that
are each related to the same event. However, unlike HINT’s hierarchical threads,
sequential threads (such as from SeqINT) may not be able to capture such logical
division of diverse information. Therefore, it is important to know which of these
presentation strategies (i.e., hierarchical or sequential) is preferred by users. We
conducted a user study that evaluates whether hierarchical information threads
are more descriptive and more interpretable to users than sequential threads.
In particular, we compared HINT with the best performing baseline from our
offline evaluation, i.e., SeqINT. We selected the best configurations of HINT and
SeqINT from our offline evaluation (i.e., HINTmLM-NPC & SeqINTmLM).

Our user study aims to answer the following two research questions:

• RQ3: Do users prefer the hierarchical threads that are generated by HINT
compared to the cluster-based sequential SeqINT threads?

• RQ4: Do the hierarchical links between articles in HINT threads effectively
present a logical division of diverse information about an event?

Experiment Design: We follow a within-subject design for our user study,
i.e., we perform a pairwise evaluation of the threads generated by the HINT and
SeqINT approaches. In other words, each user in the user study evaluates pairs of
threads, where each pair of threads is about the same event, but the threads are
generated from different threading approaches (i.e., HINT and SeqINT). When
selecting the threads to present to the users, we select the best pairs of threads
based on the threads’ precision scores calculated over both of the threads in a pair,
i.e., the ratio of the number of articles associated with a single true thread label to
the total number of articles in a thread. In addition, we select threads that have
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exactly 4 articles based on the mean number of articles in the NewSHead thread
labels. Overall, we selected 16 pairs of threads.We then distributed the selected
pairs into 4 unique sets (i.e., 4 pairs per set), such that each of our study par-
ticipants evaluates the pairs of threads from a particular set.

The user study participants were asked to select their preferred thread from
each of the pairs with respect to each of the following criteria: (1) the description
of an event in the thread, (2) the interpretability of the thread, (3) the structure
of the thread, and (4) the explanation of the event’s evolution in the thread. We
also asked participants to rate each of the threads with respect to the thread’s:
(1) coherence, (2) diversity of information, and (3) chronology of the presented
articles. We deployed a 4-point likert scale to capture the participants’ ratings.
The choice of a 4-point scale was based on the number of articles that we fix (i.e.
4) in each of the threads. Additionally, participants were asked to rate the HINT
threads with respect to the logical division of the information in the branches of
the thread (i.e., the logical hierarchies). The participants were presented with the
title of the articles in each of the threads, as illustrated in the example in Fig. 1.

Participant Recruitment: We recruited 32 participants using the MTurk
(www.mturk.com) crowdsourcing platform. The recruited participants were all
18+ years of age and from countries where English is their first language. From
the 32 participants, we first assigned 8 participants to each of the 4 sets of thread
pairs. We further created 4 participant groups for each of the sets (i.e., 2 partici-
pants per group-set combination), using balanced Latin square counterbalancing
by permuting the 4 pairs of threads in each set.

6.1 Results

Figure 5 shows our user study’s results in terms of the participants’ preferences
and ratings. We use the chi-square goodness-of-fit test to measure statistical
significance between the participants’ preferring the HINT or SeqINT threads,
as shown in Table 3. We also use a paired-samples t-test to measure the statistical
significance between the participants’ ratings for HINT and SeqINT (Table 4).

First, addressing RQ3, from Fig. 5(a) and Table 3, we observe that partic-
ipants significantly (chi-square test; p < 0.05) prefer our proposed HINT app-
roach compared to SeqINT, for all four criteria, i.e. description, interpretability,
structure and evolution. Further, from Fig. 5(b), we observe that the participants
rate the HINT threads higher for all of the three criteria, i.e., coherence, diver-
sity and chronology. Moreover, as shown in Table 4, the participants’ ratings for
HINT are significantly (t-test; p < 0.05) higher with respect to diversity and
chronology. However, the improvement in coherence ratings for HINT is not sig-
nificant compared to SeqINT. This shows that both HINT and SeqINT threads
can identify related articles about an event. However, HINT threads provide
significantly more diverse information about the event, as shown in Fig. 5(b).
Overall, for RQ3, we conclude that the participants significantly preferred hier-
archical HINT threads over the sequential SeqINT threads. Moreover, the par-
ticipants’ ratings show that the HINT threads provide significantly more diverse
and chronologically correct information about an event than the SeqINT threads.
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Table 3. Chi-square goodness-of-fit test
results.

Criteria χ2(1) Cohen’s w p Power

Description 13.781 0.328 < 0.001 96.00%

Interpretability 15.125 0.344 < 0.001 97.33%

Structure 11.281 0.297 0.001 91.93%

Evolution 12.500 0.313 < 0.001 94.30%

Table 4. Paired Samples t-test
results.

Criteria Cohen’s d p Power

Coherence 0.117 0.187 25.96%

Diversity 0.294 0.001 91.08%

Chronology 0.251 0.005 80.46%

Fig. 5. Pairwise participants’ preferences and ratings of the threading methods.

Moving on to RQ4, Fig. 5(c) shows the participants’ ratings for the logical
division of information by the different hierarchies in the HINT threads. From
Fig. 5(c), we observe that the majority of participants (44%) said that the hierar-
chies in the HINT threads are mostly logical. Moreover, none of the participants
said that the hierarchies in the HINT threads are not at all logical. Therefore,
for RQ4, we conclude that HINT threads present a logical presentation of diverse
information (i.e. distinct stories) about an event through the hierarchical asso-
ciation between related articles.

Overall, our user study shows that HINT’s hierarchical threads are signifi-
cantly preferred by users compared to sequential threads. Moreover, the study
shows that HINT can effectively present a logical hierarchical view of aspects
(e.g. stories) about the evolution of an event.

7 Identifying Incremental Threads

We now present an analysis on the scalability of the HINT’s architecture. This
analysis focuses on the overall efficiency of HINT’s novel components, i.e., the
document-entity graph (E), document graph (D), NPC, and candidate selection.

We deploy HINT to generate threads incrementally by simulating a chrono-
logical stream of NewSHead articles. NewSHead articles were published between
May 2018 and May 2019, i.e., over a period of 394 days [7]. We first generate
threads from the articles that were published in the first 30 days in the collection
(i.e., historical run). From the historical run, we store the NPC communities as
a single graph of hierarchically connected document nodes (D′), as illustrated in
Fig. 3(c). We then simulate three incremental article streams such that, in each
stream, documents from different sequential time intervals are input to HINT to
be added to existing threads or generate new threads, i.e., daily (every 1 day),
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weekly (every 7 days), and monthly (every 30 days). For each incremental run,
we extend the document graph D′ by computing the similarity between the new
articles in the stream and the existing articles in D′ using Equation (3). We then
perform community detection on D′ using NPC, followed by candidate selection
of the newly identified or extended threads.

Fig. 6. Incremental HINT on a simulated stream of NewSHead articles.

Figure 6 shows, for each of the incremental streams of the NewSHead articles,
the NMI of the generated threads, the total number of ingested documents and
HINT’s execution time. From Fig. 6(a), we observe that the quality (NMI) of the
HINT threads quickly increases during the initial 2 months of the incremental
runs (i.e., between May and July 2018) and remains comparable thereafter. This
shows that HINT is still effective when there are only a small number of articles.
Furthermore, Figs. 6(b) and (c) show that there is a linear increase in the execu-
tion time of HINT as the number of ingested articles increases. Most importantly,
we observe that the rate of increase in HINT’s execution time is slower than the
increase in ingested articles (e.g. 0.981 slope as the number of monthly ingested
documents increases vs 0.337 slope for the execution time in seconds). Addition-
ally from Fig. 6(c), we observe that the rate of increase in the daily execution
times is the highest, followed by the weekly and monthly execution times. This
suggests that the time taken for incremental executions of HINT can be reduced
by increasing the frequency of days between the incremental executions.

Overall, this analysis shows that HINT can effectively and efficiently identify
threads in a dynamic collection. Moreover, HINT’s architecture is scalable, as
the rate of increase in HINT’s execution time is slower compared to the increase
in the number of ingested articles (Figs. 6(b) and (c)).

8 Conclusions

We proposed a novel unsupervised approach, HINT, for hierarchical information
threading. The hierarchical threads generated by HINT can help users to easily
interpret evolving information about stories related to an event, activity or dis-
cussion. Our offline evaluation showed that HINT can effectively generate quality
information threads compared to approaches from the literature. In addition, our
user study showed that HINT’s hierarchical information threads are significantly
preferred by users compared to cluster-based sequential threads. Moreover, with
its scalable network community-based architecture, HINT can efficiently identify
threads in a dynamic collection to capture and track evolving information.
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Abstract. Many models have been proposed for vision and language
tasks, especially the image-text retrieval task. State-of-the-art (SOTA)
models in this challenge contain hundreds of millions of parameters. They
also were pretrained on large external datasets that have been proven
to significantly improve overall performance. However, it is not easy to
propose a new model with a novel architecture and intensively train it
on a massive dataset with many GPUs to surpass many SOTA mod-
els already available to use on the Internet. In this paper, we propose
a compact graph-based framework named HADA, which can combine
pretrained models to produce a better result rather than starting from
scratch. Firstly, we created a graph structure in which the nodes were
the features extracted from the pretrained models and the edges con-
necting them. The graph structure was employed to capture and fuse
the information from every pretrained model. Then a graph neural net-
work was applied to update the connection between the nodes to get
the representative embedding vector for an image and text. Finally, we
employed cosine similarity to match images with their relevant texts
and vice versa to ensure a low inference time. Our experiments show
that, although HADA contained a tiny number of trainable parameters,
it could increase baseline performance by more than 3.6% in terms of
evaluation metrics on the Flickr30k dataset. Additionally, the proposed
model did not train on any external dataset and only required a sin-
gle GPU to train due to the small number of parameters required. The
source code is available at https://github.com/m2man/HADA.

Keywords: Image-text retrieval · Graph neural network · Fusion
model

1 Introduction

Image-text retrieval is one of the most popular challenges in vision and lan-
guage tasks, with many state-of-the-art (SOTA) models recently introduced
[3,10,17–19,25,28]. This challenge includes two subtasks, which are image-to-
text retrieval and text-to-image retrieval. The former subtask utilises an image
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query to retrieve relevant texts in a multimodal dataset, while the latter is con-
cerned with text queries for ranked videos.

Most of the SOTA models in this research field share two things in com-
mon: (1) they were built on transformer-based cross-modality attention archi-
tectures [3,19] and (2) they were pretrained on the large-scale multimodal data
crawled from the Internet [13,17–19,28]. However, these things have their own
disadvantages. The attention structure between two modalities could achieve an
accurate result, but it costs a large amount of inference time due to the massive
computation required. For instance, UNITER [3] contained roughly 303 mil-
lion parameters, and it took a decent amount of time (more than 12 s for each
query on a dataset with 30000 images [31]) to perform the retrieval in real-time.
Many recent works have resolved this model-related problem by introducing
joint-encoding learning methods. They can learn visual and semantic informa-
tion from both modalities without using any cross-attention modules, which can
be applied later to rerank the initial result [18,25,31]. Figure 1 illustrates the
architecture of these pipelines. Regarding the data perspective, the large col-
lected data usually comes with noisy annotations, which could impact on to the
models trained on it. Several techniques have been proposed to mitigate this
issue [17–19]. However, training on a massive dataset still burdens computa-
tion, such as the number of GPUs required to train the model successfully and
efficiently [28].

Fig. 1. Two most popular pipelines of the SOTA for image-text retrieval challenge. (a)
A cross-modality transformer network is applied to measure the similarity between an
image and a text based on their features. (b) Each modality used their own transformer
network to get its global embedding.

It has motivated us to answer the question: Can we combine many SOTA
models, which are currently available to use, to get a better-unified model without
intensive training using many GPUs? In this paper, we introduce a graph-based
amalgamation framework, called HADA, which utilises a graph-based structure
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to fuse the features produced by other pretrained models. We did not use any
time-consuming cross-modality attention network to ensure fast retrieval speed.
A graph neural network was employed to extract visual and textual embedded
vectors from fused graph-based structures of images and texts, where we can
measure their cosine similarity. To the best of our knowledge, the graph structure
has been widely applied in the image-text retrieval challenge [7,21,26,27,35].
Nevertheless, it was utilized to capture the interaction between objects or align
local and global information within images. HADA is the first approach that
applies this data structure to combine SOTA pretrained models by fusing their
features in each modality. We trained HADA on the Flickr30k dataset without
using any large-scale datasets. Then, we applied the Momentum Distillation
technique [18], which has been shown to mitigate not only the harmful effect of
noise annotation, but also improve accuracy on a clean dataset. Our experiments
showed that HADA, with the tiny extra number of training parameters, could
improve total recall by 3.64% compared to the input SOTA, without training
with millions of additional image-text pairs as other models require. This is the
most crucial contribution since it is expensive to utilise multiple GPU, especially
for small and medium businesses or start-up companies. Therefore, we believe
that HADA can be applied in both academic and industrial domains.

Our main contribution can be summarised as follows: (1) We introduced
HADA, a compact pipeline that can combine two or many SOTA pretrained
models to address the image-text retrieval challenge. (2) We proposed a way to
fuse the information between input pretrained models by using graph structures.
(3) We evaluated the performance of HADA on the well-known Flickr30k dataset
[37] and MSCOCO dataset [20] without using any other large-scale dataset but
still improved the accuracy compared to the baseline input models.

2 Related Work

A typical vision-and-language model, including an image-text retrieval task, was
built using transformer-based encoders. In specific, OSCAR [19], UNITER [3],
and VILLA [10] firstly employed Faster-RCNN [29], and BERT [6] to extract
visual and text features from images and texts. These features were then fed into
a cross-modality transformer block to learn the contextualized embedding that
captured the relations between regional features from images and word pieces
from texts. An additional fully connected layer was used to classify whether the
images and texts were relevant to each other or not based on the embedding
vectors. Although achieving superior results, these approaches had a drawback
in applying them to real-time use cases. It required a huge amount of time to
perform the online retrieval, since models had to process the intensive cross-
attention transformer architecture many times for each query [31].

Recently, some works have proposed an approach to resolve that problem by
utilizing two distinct encoders for images and text. Data from each modality can
now be embedded offline and hence improve retrieval speed [13,17,18,25,28,31].
In terms of architecture, all approaches used the similar BERT-based encoder for
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semantic data but different image encoders. While LightningDOT [31] encoded
images with detected objects extracted by the Faster-RCNN model, FastnSlow
[25] applied the conventional Resnet network to embed images. On the other
side, ALBEF [18] and BLIP [17] employed the Vision Transformer backbone [8]
to get the visual features corresponding to their patches. Because these SOTA did
not use the cross-attention structure, which was a critical point to achieve high
accuracy, they applied different strategies to increase performance. Specifically,
pretraining a model on a large dataset can significantly improve the result [13,
18,19]. For instance, CLIP [28] and ALIGN [13] were pretrained on 400 million
and 1.8 billion image-text pairs, respectively. Another way was that they ran
another cross-modality image-text retrieval model to rerank the initial output
and get a more accurate result [18,31].

Regarding graph structures, SGM [35] introduced a visual graph encoder
and a textual graph encoder to capture the interaction between objects appear-
ing in images and between the entities in text. LGSGM [26] proposed a graph
embedding network on top of SGM to learn both local and global information
about the graphs. Similarly, GSMN [21] presented a novel technique to assess the
correspondence of nodes and edges of graphs extracted from images and texts
separately. SGRAF [7] built a reasoning and filtration graph network to refine
and remove irrelevant interactions between objects in both modalities.

Although there are many SOTAs with different approaches for image-text
retrieval problems, there is no work that tries combining these models, rather
they introduce a new architecture and pretrain on massive datasets instead.
Training an entirely new model from scratch on the dataset is a challenging
task since it will create a burden on the computation facilities such as GPUs. In
this paper, we introduced a simple method that combined the features extracted
from the pretrained SOTA by applying graph structures. Unlike other methods
that also used this data structure, we employed graphs to fuse the information
between the input features, which was then fed into a conventional graph neural
network to obtain the embedding for each modality. Our HADA consisted of a
small number of trainable parameters, hence can be easily trained on a small
dataset but still obtained higher results than the input models.

3 Methodology

This section will describe how our HADA addressed the retrieval challenge by
combining any available pretrained models. Figure 2 depicted the workflow of
HADA. We started with only two models (Nmodels = 2) as illustrated in Fig. 2 for
simplicity. Nevertheless, HADA can be extended with a larger Nmodels. HADA
began using some pretrained models to extract the features from each modality.
We then built a graph structure to connect the extracted features together, which
were fed into a graph neural network (GNN) later to update them. The outputs
of the GNN were concatenated with the original global features produced by the
pretrained models. Finally, simple linear layers were employed to get the final
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representation embedding features for images and texts, which can be used to
measure similarity to perform the retrieval. For evaluation, we could extract our
representation features offline to guarantee high-speed inference time.

Fig. 2. The pipeline of the proposed HADA. The red borders indicated trainable com-
ponents. The ITM and ITC infered the training tasks which will be discussed later.
(Color figure online)

3.1 Revisit State-of-the-Art Models

We only used the pretrained models without using the cross-modality trans-
former structure to extract features as depicted in Fig. 1 in order to reduce the
number of computations and ensure the high-speed inference time. Basically,
they used a unimodal encoder to get the features of an image or a text followed
by a transformer network to embed them and obtain the [CLS] embedding. This
[CLS] token was updated by one or many fully connected layers to become a
representative global feature that can be compared with that of the remaining
modality to get the similarity score.

HADA began with the output of the transformer layer from the pretrained
models. In detail, for an input image I, we obtained the sequence of patch tokens
from each model i denoted as v(i) = {v

(i)
cls, v

(i)
1 , v

(i)
2 , ..., v

(i)
Ni

}, where v
(i)
j ∈ R

d(i)
v

and Ni was the length of the sequence. This length depended on the architecture
of the image encoder network employed in the pretrained model. For example, it
could be the number of patches if the image encoder was a Vision Transformer
(ViT) network [8], or the number of detected objects or regions of interest if
the encoder was a Faster-RCNN model [29]. Additionally, we also extracted
the global visual representation feature h

(i)
v ∈ R

d
(i)
h from v

(i)
cls as illustrated in

Fig. 1. Regarding the semantic modality, we used the same process as that of the
visual modality. Specifically, we extracted the sequence of patch tokens w(i) =
{w

(i)
cls, w

(i)
1 , w

(i)
2 , ..., w

(i)
L } where w

(i)
j ∈ R

d(i)
w and L was the length of the text,



722 M.-D. Nguyen et al.

and the global textual representation embedding h
(i)
w ∈ R

d
(i)
h for an input text T

using the pretrained model i. The input model i matched a pair of an image I

and a text T by calculating the dot product 〈h(i)
v , h

(i)
w 〉 of their global features.

However, HADA used not only the global embedding but also the intermediate
transformer tokens to make the prediction. We used our learned [CLS] tokens
to improve the global features. In contrast, using the original global features
could ensure high performance of the pretrained models and mitigate the effect
of unhelpful tokens.

3.2 Create Graph Structure

Each pretrained model i produced different [CLS] features v
(i)
cls and w

(i)
cls for an

image and text, respectively. Since our purpose was to combine the models, we
needed to fuse these [CLS] tokens to obtain the unified ones for each modality
separately. In each modality, for example, the visual modality, HADA not only
updated v

(i)
cls based on v(i) solely but also on those of the remaining pretrained

models {v(j) | j �= i}. Because these v came from different models, their dimen-
sions would not be similar to each other. Therefore, we applied a list of linear
layers f

(i)
v : Rd(i)

v → R
dp to map them in the same dimensional space:

p(i) = {f (i)
v (x)|x ∈ v(i)} = {p

(i)
cls, p

(i)
1 , p

(i)
2 , ..., p

(i)
Ni

}

We performed a similar process for the textual modality to obtain:

s(i) = {f (i)
w (x)|x ∈ w(i)} = {s

(i)
cls, s

(i)
1 , s

(i)
2 , ..., s

(i)
L },where f (i)

w : Rd(i)
w → R

ds

We then used graph structures Gp = {Vp, Ep} and Gs = {Vs, Es} to connect
these mapped features together, where V and E denoted the list of nodes and
edges in the graph G accordingly. In our HADA, nodes indicated the mapped
features. Specifically, Vp = {p(i)} and Vs = {s(i)} for all i ∈ [1, Nmodels]. Regard-
ing edges, we symbolized ea→b as a directed edge from node a to node b in the
graph, thus the set of edges of the visual graph Ep and the textual graph Es were:

Ep = {e
x→p

(j)
cls

| x ∈ p(i) and i, j ∈ [1, Nmodels]}

Es = {e
x→s

(j)
cls

| x ∈ s(i) and i, j ∈ [1, Nmodels]}
To be more detailed, we created directed edges that went from every patch
feature to the [CLS] feature, including from the [CLS] itself, for all pretrained
models but not in the reverse direction, as shown in Fig. 2. The reason was that
[CLS] was originally introduced as a representation of all input data, so it would
summarize all patch tokens [2,6,8]. Therefore, it would be the node that received
information from other nodes in the graph. This connection structure ensured
that HADA could update the [CLS] tokens based on the patch tokens from all
pretrained models in a fine-grained manner.
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3.3 Graph Neural Network

Graph neural networks (GNN) have witnessed an increase in popularity over the
past few years, with many GNN structures having been introduced recently [1,5,
11,15,30,34]. HADA applied the modified Graph Attention Network (GATv2),
which was recommended to be used as a baseline whenever employing a GNN
[1], to fuse the patch features from different pretrained models together to get
the unified [CLS] features. Let Nk = {x ∈ V | ex→k ∈ E} be the set of neighbor
nodes from which there was an edge connecting to node k in the graph G. GATv2
used a scoring function se to weight every edge indicating the importance of the
neighbor nodes x in Nk before updating the node k ∈ R

d:

se(ex→k) = A�LeakyRELU(W1x + W2k])

where A ∈ R
d′

, W1 ∈ R
d′×d, and W2 ∈ R

d′×d were learnable parameters. These
weights were then normalized across all neighbor nodes in Nk by using a softmax
function to get the attention scores:

αex→k
=

exp(se(ex→k))∑
y∈Nk

exp(se(ey→k))

The updated node k′ ∈ R
d′

was then calculated based on its neighbors in Nk,
including k if we add an edge connect it to itself:

k′ = σ(
∑

x∈Nk

αex→k
· W1x),

where σ was a nonlinear activate function. Furthermore, this GATv2 network
could be enlarged by applying a multi-head attention structure, and improved
performance [34]. The output now was a concatenation of each head output,
which was similar to Transformer architecture [33]. An extra linear layer was
used at the end to convert these concatenated nodes to the desired dimensions.

We used distinct GATv2 structures with H attention heads for each modality
in this stage, as illustrated in Fig. 2. HADA took the input graphs Gp and Gs

with nodes Vp and Vs in the vector space of dp and ds dimensions and updated
them to V ′

p = {p′(i)} and V ′
s = {s′(i)} with dimensions of d′

p and d′
s. We

then concatenated the updated [CLS] nodes p′
cls and s′

cls from all pretrained
models with their corresponding original global embedding hv and hw. Finally,
we fed them into a list of linear layers to get our normalized global representation
hp ∈ R

dh and hs ∈ R
dh .

3.4 Training Tasks

Image-Text Contrastive Learning. HADA encoded the input image I and
text T to hp and hs, accordingly. We used a similarity function that was a dot
product S(I ,T ) = 〈hp, hs〉 = h�

p hs to ensure that a pair of relevant image-text
(positive pair) would have a higher similar representation compared to irrelevant
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pairs (negative pairs). The contrastive loss for image-to-text (i2t) retrieval and
text-to-image (t2i) retrieval for the mini-batch of M relevant pairs (Im,Tm)
were:

Li2t(Im) = −log
exp(S(Im,Tm)/τ)

∑M
i=1 exp(S(Im,T i)/τ)

Lt2i(Tm) = −log
exp(S(Tm, Im)/τ)

∑M
i=1 exp(S(Tm, I i)/τ)

where τ was a temperature parameter that could be learned during training.
Such contrastive learning has been used in many vision-and-language models
and has been proven to be effective [17,18,28,31]. In our experiment, we trained
HADA with the loss that optimized both subtasks:

LITC =
1
M

M∑

m=1

(Li2t(Im) + Lt2i(Tm))

Inspired by ALBEF [18], we also applied momentum contrast (MoCo) [12] and
their momentum distillation strategy for this unsupervised representation learn-
ing to cope with the problem of noisy information in the dataset and improve
accuracy.

Image-Text Matching. This objective was a binary classification task to dis-
tinguish irrelevant image-text pairs that had similar representations. This task
would ensure that they were different in fine-grained details. We implemented
an additional disciminator layer dc : R4dh → R on top of the final embedding
features hp and hs to classify whether the image I and the text T is a positive
pair or not:

dc(hp, hs) = sigmoid(W�[hp‖hs‖abs(hp − hs)‖hp � hs])

where W ∈ R
4dh was trainable parameters, ‖ indicated the concatenation, abs(.)

was the absolute value, and � denoted elementwise multiplication. We used
binary cross-entropy loss for this ordinary classification task:

Litm(I ,T ) = ylog(dc(hp, ds)) + (1 − y)log(1 − dc(hp, ds))

where y was the one-hot vector representing the ground truth label of the pair.
For each positive pair in the minibatch of M positive pairs, we sampled 1

hard negative text for the image and 1 hard negative image for the text. These
negative samples were chosen from the current mini-batch in which they were
not relevant based on the ground-truth labels, but have the highest similarity
dot product score. Therefore, the objective for this task was:

LITM =
1

3M

M∑

m=1

(Litm(Im,Tm) + Litm(Im,T ′
m) + Litm(I ′

m,Tm))
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where T ′
m and I ′

m were the hard negative text and image samples in the mini-
batch that were corresponding with the Im and Tm, respectively. The final loss
function in HADA was:

L = LITC + LITM

4 Experiment

4.1 Dataset and Evaluation Metrics

We trained and evaluated HADA on two different common datasets in the image-
text retrieval task, which are Flickr30k [37] and MSCOCO [20]. The Flickr30k
dataset consists of 31K images collected on the Flickr website, while MSCOCO
comprises 123K images. Each image contains five relevant texts or captions
that describe the image. We used Karpathy’s split [14], which has been widely
applied by all models in the image-text retrieval task, to split each dataset into
train/evaluate/test on 29K/1K/1K and 113K/5K/5K images on Flickr30k and
MSCOCO, respectively.

The common evaluation metric in this task was the Recall at K (R@K)
because many SOTA works used this metric [3,10,13,17–19,28,31]. This metric
scores the proportion of the number of queries that we found the correct relevant
output in the top K of the retrieved ranked list:

R@K =
1

Nq

Nq∑

q=1

1(q,K)

where Nq is the number of queries and 1(q,K) is a binary function returning 1
if the model finds the correct answer of the query q in the top K of the retrieved
output. In particular, for the image-to-text subtask, R@K is the percentage of
the number of images where we found relevant texts in the top K of the output
result. In our experiment, we used R@1, R@5, R@10, and RSum, which was the
sum of them.

4.2 Implementation Details

In our experiment, we combined two SOTA models that had available pretrained
weights fine-tuned on the Flickr30k dataset: ALBEF1 and LightningDOT2. None
of them used the cross-modality transformer structure when retrieved to ensure
the fast inference speed3. Although they used the same BERT architecture to
encode a text, the former model employed the ViT network to encode an image,
while the latter model applied the Faster-RCNN model. We chose these two

1 https://github.com/salesforce/ALBEF.
2 https://github.com/intersun/LightningDOT.
3 Indeed, these two models applied the cross-modality transformer network to rerank

the initial result in the subsequent step. However, we did not focus on this stage.

https://github.com/salesforce/ALBEF
https://github.com/intersun/LightningDOT
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models because we wanted to combine different models with distinct embedding
backbones to utilize the advantages of each of them.

Regarding ALBEF, their ViT network encoded an image to 577 patch tokens
including the [CLS] one (NALB = 576 and d

(ALB)
v = 768). This [CLS] was

projected to the lower dimension to obtain the global feature (d(ALB)
h = 256).

Because LightningDOT encoded an image based on the detected objects pro-
duced by the Faster-RCNN model, its NDOT varied depending on the number of
objects in the image. The graph neural network, unlike other conventional CNNs,
can address this inconsistent number of inputs due to the flexible graph struc-
ture with nodes and edges. Unlike ALBEF, the dimensions of image features and
global features from LightningDOT were the same with d

(DOT )
v = d

(DOT )
h = 768.

In terms of text encoder, the output of both models was similar since they used
the same BERT network: d

(ALB)
w = d

(DOT )
w = 768. We projected these features

to a latent space where dp = ds = 512, which was the average of their original
dimensions. We used a 1-layer GATv2 network with H = 4 multi-head atten-
tion to update the graph features while still keeping the input dimensions of
d′
p = d′

s = 512. We also applied Dropout with p = 0.7 in linear layers and
graph neural networks. In total, our HADA contained roughly 10M trainable
parameters.

The input pretrained models were pretrained on several large external
datasets. For example, ALBEF was pretrained on 14M images compared to only
29K images on Flickr30k that we used to train HADA. We used this advantage
in our prediction instead of training HADA in millions of samples. We modi-
fied the similarity score to a weighted sum of our predictions and the original
prediction of the input models. Therefore, the weighted similarity score that we
used was:

S(I ,T ) = (1 − α)〈hp, hs〉 + α〈h(ALB)
v , h(ALB)

w 〉
where α was a trainable parameter. We did not include the original result of the
LightningDOT model since its result was lower than ALBEF by a large margin
and, therefore, could have a negative impact on overall performance4.

We trained HADA for 50 epochs (early stopping5 was implemented) using
the batch size of 20 on one NVIDIA RTX3080Ti GPU. We used the AdamW
[23] optimizer with a weight decay of 0.02. The learning rate was set at 1e−4

and decayed to 5e−6 following cosine annealing [22]. Similarly to ALBEF, we
also applied RandAugment [4] for data augmentation. The initial temperature
parameter was 0.07 [36], and we kept it in the range of [0.001, 0.5] during train-
ing. To mitigate the dominant effect of ALBEF global features on our weighted
similarity score, we first trained HADA with α = 0. After the model had con-
verged, we continued to train but initially set α = 0.5 and kept it in the range
of [0.1, 0.9].

4 We tried including the LightningDOT in the weighted similarity score, but the result
was lower than using only ALBEF.

5 In our experiment, it converged after roughly 20 epochs.
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4.3 Baselines

We built two baselines that also integrated ALBEF and LightningDOT as input
to show the advantages of using graph structures to fuse these input models.

Baseline B1. We calculated the average of the original ranking results obtained
from ALBEF and LightningDOT and considered them as the distance between
images and text. This meant that the relevant pairs should be ranked at the top,
whilst irrelevant pairs would rank lower.

Baseline B2. Instead of using a graph structure to fuse the features extracted
from the pretrained models, we only concatenated their global embedding and
fed them into the last linear layers to obtain the unified features. We trained
this baseline B2 following the same strategy as described in Sect. 4.2 using the
weighted similarity score.

4.4 Comparison to Baseline

Table 1 illustrated the evaluation metrics of the different models in the Flickr30k
dataset. Similarly to LightningDOT, our main target was to introduce an image-
text retrieval model that did not implement a cross-modality transformer mod-
ule to ensure that it can perform in real time without any delay. Thus, we
only reported the result from LightningDOT and ALBEF that did not use the
time-consuming compartment to rerank in the subsequent step. If the model
has a better initial result, it can have a better-reranked result by using the
cross-modality transformer later. We also added UNITER [3], and VILLA [10]
to our comparison. These approaches both applied cross-modality transformer
architecture.

Table 1. Performance of models on Flickr30k Dataset. The symbol ✝ indicated the
results were originally reported in their research, while others were from our re-
implementation using their public pretrained checkpoints. The column �R showed
the difference compared to ALBEF.

Methods Image-to-Text Text-to-Image Total �R

R@1 R@5 R@10 RSum R@1 R@5 R@10 RSum RSum

UNITER✝ 87.3 98 99.2 284.5 75.56 94.08 96.76 266.4 550.9 �13.68

VILLA✝ 87.9 97.2 98.8 283.9 76.26 94.24 96.84 267.34 551.24 �13.34

LightningDOT 83.6 96 98.2 277.8 69.2 90.72 94.54 254.46 532.26 �32.32

LightningDOT✝ 83.9 97.2 98.6 279.7 69.9 91.1 95.2 256.2 535.9 �28.68

ALBEF 92.6 99.3 99.9 291.8 79.76 95.3 97.72 272.78 564.58 0

B1 90.7 99 99.6 289.3 79.08 94.5 96.94 270.52 559.82 �4.76

B2 91.4 99.5 99.7 290.6 79.64 95.34 97.46 272.44 563.04 �1.54

HADA 93.3 99.6 100 292.9 81.36 95.94 98.02 275.32 568.22 �3.64
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It was clear that our HADA obtained the highest metrics at all recall values
compared to others. HADA achieved a slightly better R@5 and R@10 in Image-
to-Text (I2T) and Text-to-Image (T2I) subtasks than ALBEF. However, the
gap became more significant at R@1. We improved the R@1 of I2T by 0.7%
(92.96 → 93.3) and the R@1 of T2I by 1.6% (79.76 → 81.36). In total, our
RSum was 3.64% higher than that of ALBEF (564.58 → 568.22).

The experiment also showed that LightningDOT, which encoded images
using Faster-RCNN, performed worse than ALBEF when its total RSum was
lower than that of ALBEF by approximately 30%. The reason might be that
the object detector was not as powerful as the ViT network, and LightningDOT
was pretrained on 4M images compared to 14M images used to train ALBEF.
Although also using object detectors as the backbone but applying a cross-
modality network, UNITER and VILLA surpassed LightningDOT by a large
margin at 15%. It proved that this intensive architecture made a large impact
on multimodal retrieval.

Regarding our two baselines, B1 and B2, both of them failed to get bet-
ter results than the input model ALBEF. Model B1, using the simple strategy
of taking the average ranking results and having no learnable parameters, per-
formed worse than model B2, which used a trainable linear layer to fuse the
pretrained features. Nevertheless, the RSum of B2 was lower than HADA by
5.18%. It showed the advantages of using a graph structure to fuse the informa-
tion between models to obtain a better result.

4.5 HADA with Other Input Models

To show the stable performance of HADA, we used it to combine two other
different pretrained models, including BLIP [17] and CLIP [28]. While CLIP is
well-known for its application in many retrieval challenges [9,24,31,32], BLIP is
the enhanced version of ALBEF with the bootstrapping technique in the training
process. We used the same configuration as described in 4.2 to train and evaluate
HADA in Flickr30k and MSCOCO datasets. We used the pretrained BLIP and
CLIP from the LAVIS library [16]. It was noted that the CLIP we used in this
experiment was the zero-shot model since the fine-tuned CLIP for these datasets
is not available yet.

Table 2. Performance of models on the test set in Flickr30k and MSCOCO datasets.
The column �R showed the difference compared to BLIP in that dataset.

Dataset Methods Image-to-Text Text-to-Image Total �R

R@1 R@5 R@10 RSum R@1 R@5 R@10 RSum RSum

Flickr30k BLIP 94.3 99.5 99.9 293.7 83.54 96.66 98.32 278.52 572.22 0

CLIP 88 98.7 99.4 286.1 68.7 90.6 95.2 254.5 540.6 �31.62

HADA 95.2 99.7 100 294.9 85.3 97.24 98.72 281.26 576.16 �3.94

MSCOCO BLIP 75.76 93.8 96.62 266.18 57.32 81.84 88.92 228.08 494.26 0

CLIP 57.84 81.22 87.78 226.84 37.02 61.66 71.5 170.18 397.02 �97.24

HADA 75.36 92.98 96.44 264.78 58.46 82.85 89.66 230.97 495.75 �1.49
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Table 2 showed the comparison between HADA and the input models. CLIP
performed worst on both Flickr30k and MSCOCO with huge differences com-
pared to BLIP and HADA because CLIP was not fine-tuned for these datasets.
Regarding the Flickr30k dataset, HADA managed to improve the RSum by more
than 3.9% compared to that of BLIP. Additionally, HADA obtained the highest
scores in all metrics for both subtasks. Our proposed framework also increased
the RSum of BLIP by 1.49% in the MSCOCO dataset. However, BLIP per-
formed slightly better HADA in the I2T subtask, while HADA achieved higher
performance in the T2I subtask.

5 Conclusion

In this research, we proposed a simple graph-based framework, called HADA, to
combine two pretrained models to address the image-text retrieval problem. We
created a graph structure to fuse the extracted features obtained from the pre-
trained models, followed by the GATv2 network to update them. Our proposed
HADA only contained roughly 10M learnable parameters, helping it become easy
to train using only one GPU. Our experiments showed the promise of the pro-
posed method. Compared to input models, we managed to increase total recall
by more than 3.6%. Additionally, we implemented two other simple baselines
to show the advantage of using the graph structures. This result helped us to
make two contributions: (1) to increase the performance of SOTA models in
image-text retrieval tasks and (2), to not require many GPUs to train on any
large-scale external dataset. It has opened the possibility of applying HADA in
the industry where large-scale GPU utilisaiton may be considered too costly in
financial or environmental terms.

Although we achieved a better result compared to the baselines, there are still
rooms to improve the performance of HADA. Firstly, it can be extended not only
by two pretrained models as proposed in this research but can be used with more
than that number. Secondly, the use of different graph neural networks, such as
the graph transformer [30], can be investigated in future work. Third, the edge
feature in the graph is also considered. Currently, HADA did not implement the
edge feature in our experiment, but they can be learnable parameters in graph
neural networks. Last but not least, pretraining HADA on a large-scale external
dataset as other SOTA have done might enhance its performance.
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Pęzik, Piotr III-518
Pfahl, Bela II-544
Pham, Ba II-655
Picek, Lukáš III-568
Pickelmann, Florian III-288
Pielka, Maren II-553
Piot-Pérez-Abadín, Paloma III-300
Piroi, Florina III-412, III-499
Piwowarski, Benjamin I-232, I-537

Planqué, Robert III-568
Plaza, Laura III-593
Pomo, Claudio I-33
Popel, Martin III-499
Popescu, Adrian III-557
Potthast, Martin I-313, III-236, III-242,

III-518, III-527
Potyagalova, Anastasia III-462
Poux-Médard, Gaël II-47, II-562
Pradeep, Ronak III-148, III-163
Pucknat, Lisa II-553
Pugachev, Alexander II-571
Purificato, Erasmo III-294
Putkonen, Aini II-62

Q
Qian, Hongjin II-79

R
Raiber, Fiana III-388
Rajapakse, Thilina C. II-94
Rangel, Francisco III-518
Ravenet, Brian III-527
Reagle, Joseph II-331
Reimer, Jan Heinrich III-527
Resch, Bernd III-398
Rieger, Alisa I-279
Riegler, Michael A. III-557
Robles-Kelly, Antonio I-394
Roelleke, Thomas I-489
Roha, Vishal Singh II-580
Rokhlenko, Oleg II-664
Rosso, Paolo I-118, I-200, III-518, III-593
Roy, Nirmal I-279
Rückert, Johannes III-557
Ruggeri, Federico III-506
Ruggero, Anna III-20

S
Saha, Sriparna II-125, II-141, II-580, III-349
Saha, Tulika III-349
Saini, Naveen II-580
Sajed, Touqir I-3
Salamat, Sara II-589, II-599, II-655
SanJuan, Eric III-536
Sanner, Scott I-3
Santosh, T. Y. S. S II-627



Author Index 739

Sanyal, Debarshi Kumar II-321
Scarton, Carolina I-361
Schäfer, Henning III-557
Schlatt, Ferdinand III-527
Schlicht, Ipek Baris I-118
Schmidt, Svetlana II-553
Schneider, Phillip II-608
Schöler, Johanna III-557
Schütz, Mina III-468
Sedmidubsky, Jan II-110
Sensoy, Murat III-362
Servajean, Maximilien III-568
Servan, Christophe III-499
Seyedsalehi, Shirin II-350, II-589, III-315
Shahania, Saijal III-294
Shani, Chen II-617
Shapira, Natalie II-617
Sharma, Karishma II-694
Sharma, Shubham II-125
Shen, Weixing I-622
Shrivastava, Manish I-150
Sidorov, Grigori III-546
Sifa, Rafet II-553
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