
Continuous Integration for Reproducible
Shared Tasks with TIRA.io

Maik Fröbe1(B), Matti Wiegmann2, Nikolay Kolyada2, Bastian Grahm3,
Theresa Elstner3, Frank Loebe3,4, Matthias Hagen1, Benno Stein2,

and Martin Potthast3,4

1 Friedrich-Schiller-Universität Jena, Jena, Germany
maik.froebe@uni.jena.de

2 Bauhaus-Universität Weimar, Weimar, Germany
3 Leipzig University, Leipzig, Germany

4 ScaDS.AI, Leipzig, Germany

Abstract. A major obstacle to the long-term impact of most shared
tasks is their lack of reproducibility. Often only the test collections and
the papers of the organizers and participants are published. Third par-
ties who want to independently evaluate the state of the art for a task
on other data must re-implement the participants’ software. The tools
developed to collect software from participants in shared tasks only par-
tially verify its reliability at the time of submission, much less long-term,
and do not enable third parties to reuse it later. We have overhauled the
TIRA Integrated Research Architecture to address all of these issues. The
new version simplifies task setup for organizers and software submission
for participants, scales from a local computer to the cloud, supports on-
demand resource allocation up to parallel CPU and GPU processing,
and enables export for local reproduction with just a few lines of code.
This is achieved by implementing the TIRA protocol with an industry-
standard continuous integration and deployment (CI/CD) pipeline using
Git, Docker, and Kubernetes.

1 Introduction

A shared task is a collaborative laboratory experiment to evaluate state-of-the-
art computational solutions to a problem, the task. A reproducible shared task
gathers the resources needed by third parties to reproduce the evaluation results.
Reproducibility is only guaranteed if the datasets of the shared tasks and the
software of the individual participants are available. However, most participants
in shared tasks do not publish their software, and most organizers do not have the
time or resources to collect it. Therefore, the results of shared tasks are usually
difficult for third parties to reproduce after a shared task has been completed.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13982, pp. 236–241, 2023.
https://doi.org/10.1007/978-3-031-28241-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28241-6_20&domain=pdf
https://tira.io
https://doi.org/10.1007/978-3-031-28241-6_20

Continuous Integration for Reproducible Shared Tasks 237

Fig. 1. UML activity diagram of the control flow (rounded boxes) and the data flow
(rectangular boxes). All run artifacts (highlighted middle “row”) are persisted through
the provisioning steps in the shared task repository. The user software and evaluator
are “untrusted” software and therefore run in a sandbox without network access.

In information retrieval, many initiatives have been launched to promote the
reproducibility of experiments and software. These include, among others, the
reproducibility and resource tracks at the IR conferences, the OSIRRC work-
shop [2], as well as the CENTRE lab held in close succession at CLEF [4],
TREC [13], and NTCIR [12]. Moreover, the ACM SIGIR Artifact Badging
Board [3] awards badges of honor to especially reproducible papers. With respect
to reproducible experiments and shared tasks, a requirements catalog has been
developed at the Evaluation-as-a-Service (EaaS) workshop [7], drawing inspira-
tion from existing tools [5,6,14,15], as a guide to future ones [1,8,10,11,16].

In this paper, we present a new approach to make shared tasks reproducible
based on continuous integration and deployment (CI/CD), a widely used indus-
try standard in software engineering. In the context of research software engi-
neering for shared tasks, CI refers to the reproducible evaluation of each software
version (cf. Sect. 2), while CD refers to the automatic archiving of each evalu-
ated software version in a centralized shared task repository (cf. Sect. 3). Our
new approach is based on modern, widely used industry-standard tools, including
GitHub and/or GitLab, Docker, and the cluster computing framework Kuber-
netes. This minimizes the effort for organizers and participants alike and allows
for instant reproduction, all with just a few lines of code.

2 Snapshotting Software on Every Run

Reproducibility is always a trade-off between cost and benefit: Perfect repro-
ducibility may, in extreme cases, require persistence of the hardware on which
a piece of software was executed. However, implementing a practical form of
reproducibility is already quite a challenge. Originally, TIRA persisted software
through virtual machine snapshots [5], which was prone to scaling errors due
to the VirtualBox implementation, sometimes requiring costly manual interven-
tion. Recent progress in DevOps and continuous integration and deployment,
well integrated with Git, provide all the components for automating reproducible
shared tasks with mature and cloud-native tools. Consequently, our new backend

238 M. Fröbe et al.

for TIRA is cloud-native and based on a privately hosted GitLab, its container
registry (12.4PB HDD storage), and a Kubernetes cluster (1,620 CPU cores,
25.4TB RAM, 24 GeForce GTX 1080 GPUs).

Figure 1 provides an overview of TIRA’s new workflow for shared tasks. The
workflow is based on a Git repository for shared tasks and uses the tools built
into Git platforms: (1) a user code repository with a dedicated container reg-
istry where participants upload Docker images, (2) continuous integration run-
ners that execute the five phases of the pipeline, (3) Kubernetes to orchestrate
(provision, scale, and distribute) the runners in the cluster, and (4) a storage
platform that provides access to the datasets.

First, users upload their software (in a Docker image) to the container reg-
istry in their private code repository, which is maintained on the Git platform.
Access is granted at the time of login to TIRA via an automatically generated
authentication token. Then, users can add their software to TIRA by specifying
the command to execute the software in the Docker image. Any software added
in this way is immutable: the command and Docker image cannot be changed
afterwards (participants can upload as many pieces of software as they like). The
container registry has a lower memory footprint compared to virtual machines.
It is also private during the task (only the user and TIRA have access) to avoid
premature publication [9].

The workflow for executing and evaluating software is specified via the declar-
ative continuous integration API in the shared task’s Git repository, which also
contains a registry for the evaluator images. The workflow is triggered by a spe-
cial commit in the shared task repository (specifying the software to be executed;
done via the TIRA website or the command line) and consists of five steps:

1. Provisioning I: Prepares the execution environment by branching and cloning
the shared task repository and copying the test data to the execution envi-
ronment; all operations are trusted.

2. Execution: In the prepared execution environment with the test data, this
step moves the user software into a sandbox and then executes it to generate
its output as a so-called run file. Sandboxing cuts off the internet connection
(using egress and ingress rules in Kubernetes) to ensure that (untrusted) user
software does not leak test data. This enforces blind evaluation and ensures
that the software is mature enough to run unattended in its Docker image
(i.e., the software cannot download any data while it is running).

3. Provisioning II: Persists the run files and logs, and copies the test ground
truth to the execution environment for evaluation; all operations are trusted.

4. Evaluation: In the prepared execution environment with the run files and the
test truth, the evaluator is executed in a sandbox to generate the evaluation
results. The evaluator is not trusted since it is an external software.

5. Provisioning III: Persists the evaluation results and logs and merges the exe-
cuted software’s branch into the main branch (all operations are trusted).

This workflow ensures that only the data of successfully executed and evaluated
software is in the main branch of the Git repository of the shared task. Branches
indicate queued or running software. Since the software itself is immutable, every
software is snapshotted on every run.

Continuous Integration for Reproducible Shared Tasks 239

import tira
df = tira.load_data(‘<dataset -name >’)
df can be manipulated for ablation/replicability/reproducibility studies
predictions , evaluation = tira.run(

‘<task -name >/<user -name >/<software -name >’,
data=df, evaluate=‘<evaluator -name >’

)

Listing 1: The software <software-name> by user <user-name> submitted in the
<task-name> shared task is executed and evaluated on a pandas DataFrame df of
dataset <dataset-name>. Demo available at tira.io/t/post-hoc-experimentation.

3 Repeat, Replicate, and Reproduce in One Line of Code

Through continuous deployment (CD), our new version of TIRA provides orga-
nizers with a self-contained Git repository that contains all shared tasks artifacts
and is ready to be published. It contains all datasets, runs, evaluation results,
logs, metadata and software snapshots. This “shared task repository” also con-
tains utility scripts that allow all software submitted to the shared task to be run
on the existing datasets, but also on other datasets as long as their formatting
is the same. Listing 1 illustrates this by loading a (new or additional) dataset
into a Pandas DataFrame, which then serves as input to software submitted to
the shared task while the run output is evaluated directly. The utility script
tira that enables this replication is in the repository; Docker and Python 3 are
the only external dependencies. When archiving the shared task, all pieces of
software are published to Docker Hub so that they can be loaded ad-hoc during
replications (TIRA also maintains a local archive).

The final shared task repository can be easily published and serves as a
natural entry point for a variety of follow-up studies. All researchers can fork such
a repository and make contributions that can increase the impact of a shared task
through additional material (e.g., additional datasets, evaluations, ablations,
software, etc.). None of this was previously possible with the old version of
TIRA or any other related tool to support reproducible experiments.

4 Conclusion

Our new version of TIRA enables reproducible shared tasks with software sub-
missions in a cloud-native environment and is currently being used in two shared
tasks at SemEval 2023. Cloud-native orchestration reduces the burden of organiz-
ing shared tasks with software submissions. Therefore, we plan to spread TIRA
further, to collect more shared tasks on the platform for which post-hoc experi-
ments are then possible, and to further encourage the submission of software in
shared tasks.

http://www.tira.io/t/post-hoc-experimentation

240 M. Fröbe et al.

In the future, we will port our pipeline to support more and also proprietary
vendors (GitHub, AWS/Azure), which will make TIRA more accessible. In addi-
tion, we aim for one-click deployments that use private repositories in GitHub
or (self-hosted instances of) GitLab as the backend for shared tasks.

Acknowledgments. This work has received funding from the European Union’s Hori-
zon Europe research and innovation programme under grant agreement No 101070014
(OpenWebSearch.EU, https://doi.org/10.3030/101070014).

References

1. Breuer, T., Schaer, P., Tavakolpoursaleh, N., Schaible, J., Wolff, B., Müller,
B.: STELLA: Towards a Framework for the Reproducibility of Online Search
Experiments. In: Proceedings of the Open-Source IR Replicability Challenge
OSIRRC@SIGIR 2019, pp. 8–11 (2019)

2. Clancy, R., Ferro, N., Hauff, C., Lin, J., Sakai, T., Wu, Z.Z.: The SIGIR 2019 Open-
Source IR Replicability Challenge (OSIRRC 2019). In: Proceedings of SIGIR 2019,
pp. 1432–1434 (2019)

3. Ferro, N., Kelly, D.: SIGIR initiative to implement ACM artifact review and badg-
ing. SIGIR Forum 52(1), 4–10 (2018)

4. Ferro, N., Maistro, M., Sakai, T., Soboroff, I.: Overview of CENTRE@CLEF 2018:
A First Tale in the Systematic Reproducibility Realm. In: CLEF, pp. 239–246
(2018)

5. Gollub, T., Potthast, M., Beyer, A., Busse, M., Rangel, F., Rosso, P., Stamatatos,
E., Stein, B.: Recent Trends in Digital Text Forensics and its Evaluation. In: Pro-
ceedings of CLEF 2013, pp. 282–302 (2013)

6. Hopfgartner, F., et al.: Benchmarking news recommendations: the CLEF News-
REEL use case. SIGIR Forum 49(2), 129–136 (2015)

7. Hopfgartner, F., et al.: Evaluation-as-a-Service for the Computational Sciences:
Overview and Outlook. ACM J. Data Inf. Qual. 10(4), 15:1–15:32 (2018)

8. Jagerman, R., Balog, K., de Rijke, M.: OpenSearch: Lessons Learned from an
Online Evaluation Campaign. ACM J. Data Inf. Qual. 10(3), 13:1–13:15 (2018)

9. Lin, J., Campos, D., Craswell, N., Mitra, B., Yilmaz, E.: Fostering Coopetition
While Plugging Leaks: The Design and Implementation of the MS MARCO Leader-
boards. In: Proceedings of SIGIR 2022, pp. 2939–2948 (2022)

10. Pavao, A.: CodaLab Competitions: An Open Source Platform to Organize Scientific
Challenges. Université Paris-Saclay, France, Tech. rep. (2022)

11. Potthast, M., Gollub, T., Wiegmann, M., Stein, B.: TIRA integrated research
architecture. In: Information Retrieval Evaluation in a Changing World. TIRS,
vol. 41, pp. 123–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22948-1_5

12. Sakai, T., Ferro, N., Soboroff, I., Zeng, Z., Xiao, P., Maistro, M.: Overview of the
NTCIR-14 CENTRE Task. In: Proceedings of NTCIR-14 (2019)

13. Soboroff, I., Ferro, N., Sakai, T.: Overview of the TREC 2018 CENTRE Track. In:
Proceedings of TREC 2018 (2018)

14. Tsatsaronis, G., et al.: An Overview of the BIOASQ Large-scale Biomedical Seman-
tic Indexing and Question Answering Competition. BMC Bioinform. 16, 138:1–
138:28 (2015)

https://doi.org/10.3030/101070014
https://doi.org/10.1007/978-3-030-22948-1_5
https://doi.org/10.1007/978-3-030-22948-1_5

Continuous Integration for Reproducible Shared Tasks 241

15. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

16. Yadav, D., et al.: EvalAI: Towards Better Evaluation Systems for AI Agents. arXiv
1902.03570 (2019)

	Continuous Integration for Reproducible Shared Tasks with TIRA.io
	1 Introduction
	2 Snapshotting Software on Every Run
	3 Repeat, Replicate, and Reproduce in One Line of Code
	4 Conclusion
	References

