
Stat-Weight: Improving the Estimator
of Interleaved Methods Outcomes
with Statistical Hypothesis Testing

Alessandro Benedetti(B) and Anna Ruggero

Sease Ltd., London, UK
{a.benedetti,a.ruggero}@sease.io

Abstract. Interleaving is an online evaluation approach for information
retrieval systems that compares the effectiveness of ranking functions in
interpreting the users’ implicit feedback. Previous work such as Hofmann
et al. (2011) [11] has evaluated the most promising interleaved methods
at the time, on uniform distributions of queries. In the real world, usu-
ally, there is an unbalanced distribution of repeated queries that follows
a long-tailed users’ search demand curve. This paper first aims to repro-
duce the Team Draft Interleaving accuracy evaluation on uniform query
distributions [11] and then focuses on assessing how this method gen-
eralises to long-tailed real-world scenarios. The replicability work raised
interesting considerations on how the winning ranking function for each
query should impact the overall winner for the entire evaluation. Based
on what was observed, we propose that not all the queries should con-
tribute to the final decision in equal proportion. As a result of these
insights, we designed two variations of the ΔAB score winner estimator
that assign to each query a credit based on statistical hypothesis testing.
To reproduce, replicate and extend the original work, we have developed
from scratch a system that simulates a search engine and users’ inter-
actions from datasets from the industry. Our experiments confirm our
intuition and show that our methods are promising in terms of accuracy,
sensitivity, and robustness to noise.

Keywords: Interleaved comparison · Interleaving · Implicit feedback ·
Online evaluation · Academia-Industry collaborations

1 Introduction

In information retrieval, online evaluation estimates the best ranking function for
a system, targeting a live instance with real users and data. In previous works
interleaved methods have been evaluated on a uniform distribution of queries
[11]. In real-world applications, the same query is executed multiple times by
different users and in different sessions, leading to a distribution of collected
implicit feedback that is not uniform across the query set.

This paper aims to reproduce and then replicate the Team Draft Interleav-
ing experiments from Hofmann et al. (2011) [11], investigating the effect that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Kamps et al. (Eds.): ECIR 2023, LNCS 13982, pp. 20–34, 2023.
https://doi.org/10.1007/978-3-031-28241-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28241-6_2&domain=pdf
http://orcid.org/0000-0002-8781-8619
http://orcid.org/0000-0003-1733-1132
https://doi.org/10.1007/978-3-031-28241-6_2


Improving Interleaved Methods with Statistical Hypothesis Testing 21

different query distributions have on the accuracy of this approach. The reason
we chose this work [11] is that it is one of the most prominent surveys on inter-
leaved methods and presents an experimental setup that felt perfect to evaluate
the long-tailed real-world scenario. Specifically, three research questions arise:

– RQ1: Is it possible to reproduce the original paper experiments?
– RQ2: How does the original work generalise in the real-world scenario where

queries have a long-tailed distribution?
– RQ3: Does applying statistical hypothesis testing improve the evaluation

accuracy in such a scenario?

Thanks to the insights collected during the replicability work, we designed
two novel methods that enrich the interleaving scoring estimator with a pre-
liminary statistical analysis: stat-pruning and stat-weight. The idea is to weigh
differently the contribution of each query to the final winner of the evaluation.
We present a set of experiments to show interesting perspectives on the original
work’s reproducibility, confirm that the original work generalises quite accurately
to the considered real-world scenario, and validate the intuition that our statis-
tical analysis-based methods can improve the accuracy. The concepts ‘ranking
function’, ‘ranking model’, and ‘ranker’ are used interchangeably.

The paper is organized as follows: Sect. 2 presents the related work. Section 3
details the experimental setup, datasets, and runs used for reproduction and
replication. Section 4 introduces the theory behind the proposed improvements
and describe our stat-pruning and stat-weight implementations. Section 5 dis-
cusses the experiments’ runs and the obtained results. The paper’s conclusions
and future directions are listed in Sect. 6.

2 Related Work

Evaluation of Information Retrieval systems follows two approaches: offline and
online evaluation.

For the offline, the most commonly used is the Cranfield framework [4]: an
evaluation method based on explicit relevance judgments. The relevance judg-
ments are provided by a team of trained experts and this is why this process
is expensive. Collecting these judgments requires a lot of effort and there is the
possibility that they do not reflect the same document relevance perceived by the
common users. Users’ interactions are easier to obtain and come with a minimal
cost. Being performed directly by the end-users, they can be used to represent
their intent closely, bypassing the domain experts’ indirection. Implicit feedback
is a very promising approach but, as a drawback, it could be noisy and therefore
requires some further elaboration [2,3,21,24].

Implicit feedback is collected in real-time and it’s at the base of the interleav-
ing process. Despite the fact that the most common method of online evaluation
is still AB testing, interleaving is experiencing a growing interest in research. This
type of testing uses a smaller amount of traffic, with respect to the commonly



22 A. Benedetti and A. Ruggero

used AB testing, without losing accuracy in the obtained result [2,16,23]. Inter-
leaving was introduced by Joachims [14,15] and from then, many improvements
followed [2,20–22,24].

Team-Draft Interleaving is among the most successful and used interleaving
approaches [21] because of its simplicity of implementation and good accuracy.
It is based on the strategy that captains use to select their players in team
matches. TDI produces a fair distribution of ranking functions’ elements in the
final interleaved list. It has also been shown to overcome issues of a previously
implemented approach, Balanced interleaving, in determining the winning model
[2]. Other types of interleaved methods are Document Constraint [9], Probabilis-
tic Interleaving [11], and Optimized Interleaving [20].

Document constraint infers preference relations between pairs of documents,
estimated from their clicks and ranks. The method compares the inferred con-
straints to the original result lists and assesses how many constraints are violated
by each. The list that violates fewer constraints is deemed better. This method
proved more reliable than either balanced interleave or team draft on synthetic
data, but it’s more computationally expensive.

In probabilistic interleaving, both the choice of the model that contributes
to the interleaving list and the document to put in the list, are selected based
on probability. This approach is more complex but shows higher reliability, effi-
ciency, and robustness to the noise with respect to the others.

Optimized interleaving proposes to formulate interleaving as an optimization
problem that is solved to obtain the interleaved lists that maximize the expected
information gained from users’ interactions.

It’s worth mentioning that a generalized form of the team draft interleaving
has been proposed [17] and that additional research has been performed by
Hofmann et al. with a new interleaving approach that aims to reduce the bias
related to the way results are presented to the users [10] and studies on the
fidelity, soundness, and efficiency of interleaved methods [11].

In the studies mentioned so far, ad hoc uniform query distributions are gen-
erally used when evaluating ranking models. Balog et al. [1] address the issue
of real-world long-tailed query distributions by reducing the evaluation to the
most popular queries, the ones that effectively provide a good amount of data
to work on, reserving an analysis of the totality of queries for the future.

3 Experiments

This paper aims to reproduce and then replicate under different scenarios exper-
iment 1 from one of the most prominent surveys on interleaved methods [11].

In the first set of experiments, we address RQ1 with the same settings and
data as the original work (uniform query distribution). Despite the original paper
showing the probabilistic interleaving to be superior, as a baseline, we evaluate
the Team Draft Interleaving (TDI) method only. The choice has been made
because it is much simpler to implement and more popular in the industry. Fur-
thermore, our focus is on the ΔAB score estimator which is in common between



Improving Interleaved Methods with Statistical Hypothesis Testing 23

the two approaches. We examine if the accuracy of the TDI method matches the
published results and discuss the details that we found to hold up, and the ones
that could not be confirmed. In addition, we assess how the traditional TDI accu-
racy compares with two novel methods for ΔAB score calculations (stat-pruning
and stat-weight) under the uniform distribution conditions.

In the second set of experiments, we address RQ2 and RQ3 introducing
a long-tailed query distribution. The aim is to examine how well the tradi-
tional TDI method generalises to real-world query distributions extracted from
anonymized query logs and how stat-pruning and stat-weight perform for com-
parison.

Finally, the last set of experiments introduces a realistic click model simulator
to assess how well TDI, stat-pruning and stat-weight methods respond to noise.

The datasets used are detailed in Sect. 3.1. The experimental setup is
described in Sect. 3.2 and the experiment runs are explained in Sect. 3.3.

3.1 Datasets

All experiments make use of the MSLR-WEB30k Microsoft learning to rank
(MSLR) dataset1. It consists of feature vectors extracted from query-document
pairs along with relevance judgment labels. The relevance judgments take 5
values from 0 (irrelevant) to 4 (perfectly relevant). The experiments use the
training set of fold 1. This set contains 18, 919 queries, with an average of 119.96
judged documents per query. The average number of judged documents differs
from what has been written by Hofmann [11] and the authors confirmed it was
a mistake in the original paper. For each feature, we define a ranker (identified
by the feature id) that sorts the search results descending by the feature value.

The experiments involving the long-tailed distributions use an industrial
dataset we call long-tail-1. It consists of a list of anonymised query executions
extracted from the query log of an e-commerce search engine, over a period of
time. Each query is associated with the number of times it was executed. The
amount of users collected per query is capped to 1, 000. This threshold has been
chosen to maintain a realistic long-tailed distribution while keeping a sustainable
experimental cost.

From this dataset, we derive the long tail in Fig. 1.

3.2 Experimental Setup

To reproduce the original experiments we designed and developed a system2 that
simulates a search engine with users submitting queries and interacting with the
results (clicks). The experiments are designed to evaluate the interleaved meth-
ods’ ability to establish the better of two ranking functions based on (simulated)
user clicks.

1 Download from http://research.microsoft.com/en-us/projects/mslr/default.aspx.
2 https://github.com/SeaseLtd/statistical-interleaving.

http://research.microsoft.com/en-us/projects/mslr/default.aspx
https://github.com/SeaseLtd/statistical-interleaving


24 A. Benedetti and A. Ruggero

Fig. 1. Total unique queries: 1 861, total
executions:156 550

Fig. 2. Long-tailed query distributions
used in the experiments

Each experiment run repeats a number of simulations. When an experiment
evaluates r ranking functions, it evaluates the first r, ordered by ascending id.
Specifically, given a set of ranking functions, the number of simulations s in the
run is the number of unique pairs in the set, where the pairs are subject to the
commutative property (AB = BA). The system simulates a user submitting a
query from the set of available queries in the distribution (in long-tailed dis-
tributions each query is submitted multiple times). The search engine responds
with an interleaved result list that is presented to the user. The user clicks are
randomly generated following the probability distribution that the click model
assigns to the relevance judgments provided. Once the simulation completes,
the ranking function preference of each click collected is evaluated and the ΔAB

score is computed to establish the winner. The ground truth winner is calculated
as the ranking function with the best Normalised Discounted Cumulative Gain
(NDCG) [12,13] averaged over the query set, using the explicit relevance judg-
ments provided with the dataset MSLR. The winning ranker identified by the
ΔAB score is compared to the ground truth winner: when they match we have
a correct guess. To assess the accuracy of the interleaved evaluation method we
count the number of correct guesses over the total number of simulations s in
the run showing at least one click.

Below we describe the query distributions, the click models, and the NDCG
we used in our experiments.

Query Distributions. The query distribution in input to the simulation estab-
lishes the number of queries submitted to the system. We use two types of query
distributions in our experiments: uniform and long-tailed.

In the uniform query distribution, each unique query is executed a constant
number of times.

In the long-tailed query distribution, each query is executed a variable num-
ber of times. Starting from the long-tail-1 distribution from the industry, we
scaled down the number of queries and their executions by a factor u ≤ 1 (see
Fig. 2, Table 1). u ≤ 1 has been introduced to experiment with different instances
of realistic long-tailed distributions and to act within our computational limits.



Improving Interleaved Methods with Statistical Hypothesis Testing 25

Table 1. Scaling the query executions

u Unique queries Total executions

0.020 283 1 247

0.125 472 7 681

0.250 455 14 449

Click Models. The click model simulates user interactions according to the
Dependent Click Model (DCM) [7,8], an extension of the cascade model [5].
It establishes the probability of a search result being clicked given its explicit
relevance label (ground truth).

We use two models proposed by the original research [11]: the perfect and
the realistic model.

NDCG. The NDCG metrics we use in our experiments are the complete NDCG
(the complete search results list for a query) and the NDCG@10 (cut-off at 10).
Using NDCG@10 is quite common in the industry as many search engines show
10 documents on their first page. When comparing the complete NDCG with
NDCG@10 we noticed that the average difference between the pair of rankers
to evaluate is smaller, making it more difficult for the interleaved methods to
correctly guess the best ranker.

3.3 Runs

We divided the runs into four groups: reproduction, uniform query distribution,
long-tailed query distribution, and realistic click model. When considering q
queries in a run, we refer to the first q query ids, in the same order as they
appear in the dataset MSLR rows. We define a ranker for each of the 136
individual features provided with the MSLR dataset. The results report the
percentage of pairs for which the methods correctly identified the better ranker.

Reproduction. The scope of this set of runs is to reproduce experiment 1 from the
original research and answer RQ1. We exhaustively compare all 9, 180 distinct
pairs derived from the 136 rankers. For each ranker pair, the user submits 1, 000
queries. The click model used is the perfect model.

– Run 1: exactly reproduce the original experiment, users click on the top-10
results for each query, to determine NDCG for the ground truth we use the
complete NDCG.

We observed some inconsistencies with the original work results so we added to
this group two additional runs:

– Run 2: users click on the complete list of search results for each query. To
determine NDCG for the ground truth we use the complete NDCG.

– Run 3: users click on the top-10 results for each query. To determine NDCG
for the ground truth we calculate NDCG@10.



26 A. Benedetti and A. Ruggero

Uniform Query Distribution The scope of this set of runs is to evaluate how
the stat-pruning and stat-weight methods compare with the TDI baseline. We
exhaustively compare all 9, 180 distinct pairs derived from the 136 rankers. The
query distribution used is uniform, each run uses a different number q of queries.
The click model used is the perfect model. Users click on the top-10 results for
each query. Unless stated otherwise, to determine NDCG for the ground truth
we calculate NDCG@10.

– Run 4: the query set consists of 1, 000 queries. Each query is executed once.
– Run 5: the query set consists of 100 queries. Each query is executed once.
– Run 6: the query set consists of 100 queries. Each query is executed 10 times.
– Run 7: the query set consists of 100 queries. Each query is executed 10 times.

To determine NDCG for the ground truth we use the complete NDCG.

Long-Tailed Query Distribution. The scope of this set of runs is to evaluate
how the stat-pruning and stat-weight methods compare with the TDI baseline
over long-tailed query distributions and answer RQ2 and RQ3. Unless stated
otherwise, we exhaustively compare all 9, 180 distinct pairs derived from the 136
rankers and calculate NDCG@10 to determine NDCG for the ground truth. The
click model used is the perfect model. Each run uses a different long-tailed query
distribution. Users click on the top-10 results for each query.

– Run 8: the query set consists of 283 unique queries repeated following the
long-tailed distribution with u = 0.020.

– Run 9: the query set consists of 472 unique queries repeated following the
long-tailed distribution with u = 0.125.

– Run 10: the query set consists of 455 unique queries repeated following the
long-tailed distribution with u = 0.250. We exhaustively compare all 2, 415
distinct pairs derived from the first 70 rankers.

– Run 11: the query set consists of 283 unique queries repeated following the
long-tailed distribution with u = 0.020. To determine NDCG for the ground
truth we use the complete NDCG.

Realistic Click Model. The scope of this set of runs is to evaluate how the
stat-pruning and stat-weight methods compare with the TDI baseline over long-
tailed query distributions with noisier clicks. We exhaustively compare all 9, 180
distinct pairs derived from the 136 rankers. The click model used is the realistic
model. The query distribution used is long-tailed. The query set consists of 283
unique queries repeated following the long-tailed distribution with u = 0.020.
Users click on the top-10 results for each query.

– Run 12: to determine NDCG for the ground truth we calculate NDCG@10.
– Run 13: to determine NDCG for the ground truth we use the complete

NDCG.



Improving Interleaved Methods with Statistical Hypothesis Testing 27

4 Improving the Overall Winner Decision

In TDI, all the winners (i.e., all the queries) are considered equal when aggregat-
ing the results to establish the overall winning ranker (Eq. 1). This may include
preferences that are obtained with few clicks or preferences that are not strong
enough given the number of clicks collected.

To mitigate this problem, this paper proposes two variations for the ΔAB

score: stat-pruning and stat-weight. They assign to each query a credit inversely
proportional to the probability of obtaining by chance at least the same number
of clicks, assuming the two rankers are equivalent.

4.1 Statistical Hypothesis Testing

In classic TDI, to assess the overall winner between rankerA and rankerB, the
ΔAB score is computed as [2]:

ΔAB =
wins(A) + 1

2 ties(A,B)
wins(A) + wins(B) + ties(A,B)

− 0.5 (1)

where:

– wins(A) is the number of queries in which rankerA is the winner
– wins(B) is the number of queries in which rankerB is the winner
– ties(A,B) is the number of queries in which the two rankers have a tie

A ΔAB score < 0 means rankerB is the overall winner, a ΔAB score = 0 means
a tie, a ΔAB score > 0 means rankerA is the overall winner. While performing
our replicability research we observed two problems:

– some queries have many interactions, but a very weak preference for the
winning ranker

– some queries have a strong preference for the winning ranker but few inter-
actions (the long tail)

The overall winner decision may be polluted by the aforementioned queries. The
approach we suggest is to assign a different credit to each query. The idea is to
exploit statistical hypothesis testing to estimate if the observations for a query
are reliable and to what extent. This happens after the computation of the clicks
per ranker (ha and hb [2]) and before the computation of the ΔAB score. The
theory behind our approach is statistical hypothesis testing [25]. A statistical
test verifies or contradicts a null hypothesis based on the collected samples. A
result has statistical significance when it is very unlikely to have occurred given
the null hypothesis [18].

The p-value of an observed result is the probability of obtaining a result at
least as extreme, given that the null hypothesis is true. The result is statistically
significant, by the standards of the study, when

p-value <= α



28 A. Benedetti and A. Ruggero

Such a scenario leads to the rejection of the null hypothesis and acceptance
of the alternate hypothesis. The significance level, denoted by α is assigned at
the beginning of a study [6].

To run this test we need a null hypothesis, a p-value, and a significance level.
Our null hypothesis is that the two ranking functions we are comparing are
equivalent i.e. the probability of each ranking function winning is 0.5.

For each query:

– n is the total number of clicks collected
– the winning ranker is the ranker that collected more clicks
– k is the clicks collected by the winning ranker.
– p is 0.5 (null hypothesis).

Given we are limiting our evaluation to two ranking functions:

k ≥ n

2
When k = n

2 , there is a draw, the query doesn’t show any preference since
each ranker collected the same amount of clicks.

The p-value is calculated through a binomial distribution as the probability
of obtaining exactly that number of clicks k assuming the null hypothesis is true:

P (X = k) =
(

n

k

)
pk(1 − p)n−k (2)

When k > n
2 , the query shows a preference for a ranking function. We are

testing whether the clicks are biased towards the winning ranking function, a
single-tailed test is used because the winner is known already.

The p-value is calculated through a binomial distribution as the probability,
for the winning model, to obtain at least that number of clicks k assuming the
null hypothesis is true:

P (X ≥ k) = 1 − P (X < k)

= 1 −
k−1∑
i=0

(
n

i

)
pi(1 − p)n−i

(3)

4.2 Stat-Pruning

The first approach we designed is the simplest and most aggressive: the statis-
tical significance of each query is determined by comparing the p-value with a
significance level α = 0.05. This is the standard threshold used in most statistical
tests. If the p-value is below the threshold, the result is considered significant.
The queries not reaching significance are discarded before the ΔAB score calcula-
tion. The downside of this approach is that is strictly coupled to the significance
level α hyper-parameter. Other works explore this aspect [19,26].



Improving Interleaved Methods with Statistical Hypothesis Testing 29

4.3 Stat-Weight

The credit associated with each win or tie in the original ΔAB score formula
(Eq. 1) is a constant 1. The idea is to assign a different credit to each win and
tie. This credit is the estimated probability of the win/tie to have happened not
by chance.

credit(qx) = 1 − p-value(qx)

The p-value for a query qx that presents a tie is calculated with the Eq. 2.
The p-value for a query qx that presents a win is calculated with the Eq. 3

and it is normalised with a min-max normalization (min = 0 and max = 0.5)
to be between 0 and 1.

The proposed updates to the ΔAB score formula are the following:

wins(A) ⇒
wins(A)∑

a=0

credit(qa)

wins(B) ⇒
wins(B)∑

b=0

credit(qb)

ties(A,B) ⇒
ties(A,B)∑

t=0

credit(qt)

qa is in the query set showing a preference for the rankerA.
qb is in the query set showing a preference for the rankerB.
qt belongs to the query set showing a tie.

5 Results and Analysis

5.1 Reproduction

Table 2. Query distribution: uniform 1, 000 queries, click model: perfect model, 136
rankers (9, 180 pairs)

id NDCG Clicks Accuracy Original-accuracy

1 complete top-10 0.852 0.898

2 complete complete 0.825 0.898

3 top-10 top-10 0.902 0.898

run-1 follows the same experimental setup, dataset, and parameters from the
original research, but it fails to reproduce the originally recorded accuracy of
TDI (see Table 2). We think that the difference can be caused by a dis alignment
between the published paper and the NDCG and clicks generation parameters



30 A. Benedetti and A. Ruggero

Table 3. Complete NDCG and NDCG@10 averaged over the 1, 000 queries vs original-
paper NDCG

ranker NDCG NDCG@10 Original-paper NDCG

1 0.550 0.195 0.231

14 0.536 0.179 0.201

64 0.600 0.294 0.301

84 0.574 0.239 0.256

97 0.564 0.234 0.303

106 0.606 0.295 0.253

134 0.614 0.333 0.341

used at run-time. For these reasons we executed two additional runs, trying
to explain the possible causes of this failed reproduction. The closer we got to
the originally recorded accuracy is with run-3, but not exactly the same (see
Table 2).

The average ground truth NDCGs calculated for the rankers, do not align
with the ones reported by the original paper (Table 3).

Also, the average NDCG@10 over the 1, 000 queries are closer but not exactly
matching the original work ones (Table 3).

After long discussions with the original authors, we could ascertain that the
NDCG formula used is the same as ours. However, we weren’t able to check if the
query set or NDCG cut-off correspond since it has not been possible to access
the original paper code. Our best guesses are therefore the following:

– NDCG: the published paper clearly specifies it is the complete NDCG, but
the original experiments used a different cut-off. This could explain why
NDCG@10 scores are much closer to the reported ones.

– Queries: the query set used is not the same as our runs i.e., not the first
distinct 1, 000 queries as occurring in the MSLR dataset rows. This could
explain why NDCG@10 scores are closer but not exactly the same as the
reported ones.

5.2 Uniform Query Distribution

Table 4. Clicks: top-10, click model: perfect model, 136 rankers (9, 180 pairs)

Accuracy

id NDCG Queries Users TDI stat-pruning stat-weight

4 top-10 1 000 1 0.902 N/A 0.886

5 top-10 100 1 0.812 N/A 0.790

6 top-10 100 10 0.857 0.853 0.883

7 complete 100 10 0.828 0.839 0.857



Improving Interleaved Methods with Statistical Hypothesis Testing 31

From Table 4, run-4 and run-5 show a better accuracy for the original TDI
method. In these scenarios there are very few clicks per query, the accuracy for
stat-pruning is not available as it removes aggressively all the queries as deemed
not significant. stat-weight does not shine as well: it has too few clicks per query
to work on. So run-6 explores what happens if the distribution is uniform and
each query is executed 10 times.

In this scenario, stat-weight does better than the baseline, with a 3% increase
in accuracy (it correctly guessed 239 additional pairs). Comparing run-5 and
run-6 we notice that by increasing the number of users running the queries
uniformly, all the methods improve their accuracy and converge more quickly.
This is expected as we get more clicks per query and it’s interesting to notice
that stat-weight is able to better handle the additional interactions discerning
where they are reliable or not to identify the best ranker.

run-7 makes the task more difficult as the complete NDCG presents less dif-
ference between the rankers, so it’s more challenging for the interleaving methods
to guess correctly. stat-weight demonstrated to be more sensitive in this chal-
lenging scenario identifying correctly 267 additional pairs.

5.3 Long-Tailed Query Distribution

Table 5. Clicks: top-10, click model: perfect model

Accuracy

id NDCG u rankers TDI stat-pruning stat-weight

8 top-10 0.020 136 0.880 0.860 0.897

9 top-10 0.125 136 0.892 0.900 0.904

10 top-10 0.250 70 0.904 0.910 0.911

11 complete 0.020 136 0.827 0.817 0.837

From Table 5, run-8, run-9 and run-10 explore different long-tailed distributions.
Due to computational limits we had to limit the amount of rankers, the closer
we were getting to the original long-tailed-1 distribution.

The steepest the long-tail, the better stat-pruning performs. This is expected
as we assume the long part of the tail to add uncertainty for TDI, an uncertainty
that is cut by the stat-pruning and mitigated by the stat-weight approach. This
confirms the intuition that statistical hypothesis testing improves the classic TDI
ΔAB score accuracy in the long-tailed scenario.

run-11 explores again the harder problem of closer rankers with the complete
NDCG. We can see that stat-weight confirms its sensitivity and it is able to
identify correctly 91 additional pairs.



32 A. Benedetti and A. Ruggero

Table 6. Query distribution: long-tailed u = 0.020, clicks: top-10, click model: realistic
model, 136 rankers (9, 180 pairs)

Accuracy

id NDCG TDI stat-pruning stat-weight

12 top-10 0.818 0.708 0.833

13 complete 0.782 0.693 0.795

5.4 Realistic Click Model

From Table 6, run-12 introduces noisier and fewer clicks. stat-weight demon-
strated to be robust to noise with a 1.8% increase (137 additional pairs) in
comparison to the classic TDI. Finally, run-13 tests the methods with the com-
plete NDCG. The overall scores across the three methods are smaller, but the
stat-weight keeps consistently the lead.

6 Conclusions and Future Directions

RQ1 has not been satisfied. Reproducing the original research turned out to
be challenging from many angles: it was easy to align with the datasets but it
required a substantial amount of work and discussions with the original authors
to try to figure out the exact parameters and code used in the original runs.
We had to design and develop from scratch the experiment code to cover all the
necessary scenarios. Unfortunately, it was not possible to exactly reproduce the
reported accuracy for TDI due to missing information and code unavailability.

RQ2 has been satisfied. We verified that it is possible to generalise the original
TDI evaluation to long-tailed query distributions with good accuracy.

RQ3 has been satisfied. Applying statistical hypothesis testing has shown to
be promising: it adapts quite well to various real-world scenarios and doesn’t
add any big overhead in terms of performance. stat-weight performs consistently
well across realistic uniform and long-tailed query distributions, it’s sensitive
to small differences between the rankers and it is robust to noise. stat-pruning
performs well in some realistic scenarios, but it felt generally too aggressive and
too coupled with the hyper-parameter α that can be tricky to tune.

We validated the intuitions of our analysis and our proposed methods using
experiments based on a simulation framework developed from scratch.

Applying stat-weight to other interleaved methods in real-world scenarios is
an interesting direction for future works. Also calculating the query credit with
different statistical approaches and normalizations could be explored. Finally, it
would be interesting to run experiments with bigger numbers and many seeds
to see how the different evaluation methods perform.



Improving Interleaved Methods with Statistical Hypothesis Testing 33

References

1. Balog, K., Kelly, L., Schuth, A.: Head first: living labs for ad-hoc search evalua-
tion. In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pp. 1815–1818 (2014)

2. Chapelle, O., Joachims, T., Radlinski, F., Yue, Y.: Large-scale validation and anal-
ysis of interleaved search evaluation. ACM Trans. Inf. Syst. (TOIS) 30(1), 1–41
(2012)

3. Chuklin, A., Serdyukov, P., De Rijke, M.: Click model-based information retrieval
metrics. In: Proceedings of the 36th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 493–502 (2013)

4. Cleverdon, C.W., Mills, J., Keen, E.M.: Factors determining the performance of
indexing systems, (Volume 1: Design), p. 28. College of Aeronautics, Cranfield
(1966)

5. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of
click position-bias models. In: Proceedings of the 2008 International Conference on
Web Search and Data Mining, pp. 87–94 (2008)

6. Dalgaard, P.: Power and the computation of sample size. In: Introductory Statis-
tics with R, pp. 155–162. Springer, Cham (2008). https://doi.org/10.1007/0-387-
22632-X 8

7. Guo, F., Li, L., Faloutsos, C.: Tailoring click models to user goals. In: Proceedings
of the 2009 workshop on Web Search Click Data, pp. 88–92 (2009)

8. Guo, F., Liu, C., Wang, Y.M.: Efficient multiple-click models in web search. In:
Proceedings of the Second ACM International Conference on Web Search and Data
Mining, pp. 124–131 (2009)

9. He, J., Zhai, C., Li, X.: Evaluation of methods for relative comparison of retrieval
systems based on ClickThroughs. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, pp. 2029–2032 (2009)

10. Hofmann, K., Behr, F., Radlinski, F.: On caption bias in interleaving experiments.
In: Proceedings of the 21st ACM International Conference on Information And
Knowledge Management, pp. 115–124 (2012)

11. Hofmann, K., Whiteson, S., De Rijke, M.: A probabilistic method for inferring
preferences from clicks. In: Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, pp. 249–258 (2011)

12. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

13. Järvelin, K., Kekäläinen, J.: IR evaluation methods for retrieving highly relevant
documents. In: ACM SIGIR Forum, vol. 51, pp. 243–250. ACM New York, NY,
USA (2017)

14. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 133–142 (2002)

15. Joachims, T., et al.: Evaluating retrieval performance using clickthrough data
(2003)

16. Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: Using historical click data
to increase interleaving sensitivity. In: Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management, pp. 679–688 (2013)

17. Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: Generalized team draft
interleaving. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 773–782 (2015)

https://doi.org/10.1007/0-387-22632-X_8
https://doi.org/10.1007/0-387-22632-X_8


34 A. Benedetti and A. Ruggero

18. Myers, J.L., Well, A.D., Lorch, J.: Developing the fundamentals of hypothesis
testing using the binomial distribution. Research Design and Statistical Analysis,
pp. 65–90 (2010)

19. Queen, J.P., Quinn, G.P., Keough, M.J.: Experimental Design and Data Analysis
for Biologists. Cambridge University Press, Cambridge (2002)

20. Radlinski, F., Craswell, N.: Optimized interleaving for online retrieval evaluation.
In: Proceedings of the Sixth ACM International Conference on Web Search and
Data Mining, pp. 245–254 (2013)

21. Radlinski, F., Kurup, M., Joachims, T.: How does clickthrough data reflect retrieval
quality? In: Proceedings of the 17th ACM Conference on Information and Knowl-
edge Management, pp. 43–52 (2008)

22. Schuth, A., et al.: Probabilistic multileave for online retrieval evaluation. In: Pro-
ceedings of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 955–958 (2015)

23. Schuth, A., Hofmann, K., Radlinski, F.: Predicting search satisfaction metrics with
interleaved comparisons proceedings of the 38th international ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Santiago, Chile,
9–13 August 2015, Ricardo. ACM (2015)

24. Schuth, A., Sietsma, F., Whiteson, S., Lefortier, D., de Rijke, M.: Multileaved com-
parisons for fast online evaluation. In: Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, pp. 71–80
(2014)

25. Sirkin, R.M.: Statistics for the Social Sciences. Sage, London (2006)
26. Sproull, N.L.: Handbook of Research Methods: A Guide for Practitioners and Stu-

dents in the Social Sciences. Scarecrow Press, Metuchen (2002)


	Stat-Weight: Improving the Estimator of Interleaved Methods Outcomes with Statistical Hypothesis Testing
	1 Introduction
	2 Related Work
	3 Experiments
	3.1 Datasets
	3.2 Experimental Setup
	3.3 Runs

	4 Improving the Overall Winner Decision
	4.1 Statistical Hypothesis Testing
	4.2 Stat-Pruning
	4.3 Stat-Weight

	5 Results and Analysis
	5.1 Reproduction
	5.2 Uniform Query Distribution
	5.3 Long-Tailed Query Distribution
	5.4 Realistic Click Model

	6 Conclusions and Future Directions
	References




