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Abstract. Text retrieval using dense–sparse hybrids has been gaining
popularity because of their effectiveness. Improvements to both sparse
and dense models have also been noted, in the context of open-domain
question answering. However, the increasing sophistication of proposed
techniques places a growing strain on the reproducibility of results. Our
work aims to tackle this challenge. In Generation Augmented Retrieval
(GAR), a sequence-to-sequence model was used to generate candidate
answer strings as well as titles of documents and actual sentences
where the answer string might appear; this query expansion was applied
before traditional sparse retrieval. Distilling Knowledge from Reader to
Retriever (DKRR) used signals from downstream tasks to train a more
effective Dense Passage Retrieval (DPR) model. In this work, we first
replicate the results of GAR using a different codebase and leveraging
a more powerful sequence-to-sequence model, T5. We provide tight inte-
gration with Pyserini, a popular IR toolkit, where we also add support
for the DKRR-based DPR model: the combination demonstrates state-
of-the-art effectiveness for retrieval in open-domain QA. To account for
progress in generative readers that leverage evidence fusion for QA, so-
called fusion-in-decoder (FiD), we incorporate these models into our
PyGaggle toolkit. The result is a reproducible, easy-to-use, and pow-
erful end-to-end question-answering system that forms a starting point
for future work. Finally, we provide evaluation tools that better gauge
whether models are generalizing or simply memorizing.
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1 Introduction

The past few years have seen open-domain QA progress at a breakneck pace.
Given the rapid advancement of NLP and IR, both critical aspects of the over-
all task, this comes as little surprise. Often work needs to come along that can
re-examine some of the critical papers, adding veracity to their claims and ensur-
ing that we build on a firm foundation. For instance, Ma et al. [15] confirmed
that DPR [9], a foundational work in open-domain QA, is indeed an effective
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dense retrieval approach, but further discovered that the original authors under-
reported the effectiveness of BM25 and thus incorrectly arrived at the conclusion
that dense–sparse hybrids are worse for popular datasets like Natural Questions
(NQ) [10].

As expected, significant progress has been made since the introduction of
DPR in the direction of better retrievers, both sparse and dense, and better
readers. Our work aims to tackle a broad set of reproducibility and replicability
challenges in this context, and all our efforts result in code contributions to our
group’s Pyserini IR toolkit and PyGaggle open-source library.

For sparse retrieval, Generation Augmented Retrieval (GAR) trained query
expansion BART models to generate answers, titles, and sentences relevant to
the question. These were then used to enhance the sparse representation of the
query. In this work, we train a more powerful GAR model, taking inspiration
from the success of T5 [20] in similar information retrieval tasks [18]. We also
examine which aspects of a GAR model contribute more to its success, from
answer, title, and sentence prediction.

For dense retrieval, Izacard and Grave [4] proposed using signals from down-
stream reading comprehension to train a more effective DPR, called DPRDKRR.
We perform experiments to replicate this work, integrating this retriever into
Pyserini with corresponding prebuilt indexes. Given these strong sparse and
dense retrieval models, we can obtain a state-of-the-art hybrid retrieval system
with little effort.

On the reader side, we integrate the popular FiD [5] model that aggregates
and combines evidence from various documents to generate an answer string in
a sequence-to-sequence fashion. We replicate this work in PyGaggle.

Finally, work by Lewis et al. [12] broke down popular open-domain QA bench-
marks into subsets to properly examine the source of the gains, be it through
training data memorization or true model generalization. To gear our systems
and resources to be future-proof, we also integrate scripts that score models
based on per-subset effectiveness at the retrieval and the end-to-end QA level;
we are the first to consider this on the retrieval side.

To summarize, the main contribution of this work is the integration of a pow-
erful open-domain QA system into an easy-to-use ecosystem that has tightly knit
components of query expansion using our proposed, GAR-T5, dense retrieval
using DPRDKRR, dense–sparse hybrid retrieval, and generative reading compre-
hension with FiD.

Code related to our dense–sparse hybrid retrieval experiments and evaluation
is packaged in Pyserini, and code related to our generative reading comprehen-
sion model as well as end-to-end QA is added to PyGaggle.

2 Data Description and Metrics

We evaluate retrieval and end-to-end QA effectiveness on the open-domain ver-
sions of Natural Questions (NQ) [10] and TriviaQA [8]. These two datasets have



150 R. Pradeep et al.

Table 1. Number of instances in the different subsets of the NQ and TriviaQA test
set.

Method Total Question overlap Answer overlap only No overlap

(a) NQ 3610 324 315 357
(b) TriviaQA 11313 336 411 254

emerged as the most popular datasets for evaluation, and most open-domain QA
papers evaluate the effectiveness of their models on them.

However, specifically for the NQ dataset, there have been some inconsisten-
cies in the pre-processing scripts for the queries and answers, leading to discrep-
ancies in the retrieval effectiveness. Papers before Min et al. [17], building on
DPR [9], used their topic sets, which have a few words pre-processed differently.
Some that we could discern are words like “don’t”, “wanna”, and “gonna” that
took on a new life in “do n’t”, “wan na”, and “gon na”, respectively. Another
was in the way quotation marks are handled. While these do not seem signifi-
cant, we find that they bring about a noticeable drop in retrieval effectiveness
in Sect. 4 and hence a clear spot where models have invisibly gained or dropped
in effectiveness points based on the topic set used.

We integrate both these variants into Anserini and Pyserini, the DPR vari-
ants called dpr-nq-dev and dpr-nq-test, and the NQ variants called nq-dev and
nq-test, the latter of which incorporates the fixes mentioned.

A detailed study by Lewis et al. [12] found that in NQ and TriviaQA, around
33% of the test queries have a near-duplicate paraphrase in their corresponding
training set. Similarly, 60–70% of the answers occur somewhere in the training set
answers. These observations suggest that many open-domain QA models might
have memorized these as facts from training, and a thorough per-category effec-
tiveness check is required to gain deeper insights into a model’s generalization
capabilities. The main subsets considered by most of the literature are:

– Question Overlap (QO), where for any query, there exists some paraphrase
query in the training set.

– Answer Overlap Only (AOO), where there is no question overlap, but for the
example’s ground truth answer set, at least one of the answers is part of some
answer set in the training set.

– No Overlap (NO), where there is no train-test overlap. This set probes for
open-domain QA generalization.

Table 1 reports how many instances are in each subset of the NQ and Trivia-
QA test set. Note that the authors only curate these annotations for around 1k
examples of each test set. While Lewis et al. [12] only evaluated end-to-end QA
effectiveness under these settings, we think it is critical to also look at retrieval
effectiveness under this light. To this end, we integrate a tool to measure per-
subset retrieval effectiveness into Pyserini and end-to-end QA effectiveness into
PyGaggle. The metric used for retrieval effectiveness is the top-k accuracy, i.e.,
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a score of 1 if any top-k document is relevant and 0 otherwise. We leverage the
popular exact match (EM) score for end-to-end QA effectiveness.

3 Methods

The retriever–reader pipeline using neural readers was proposed by Chen et al. [1]
for open-domain QA tasks. There are two modules, the retriever, which locates
relevant passages given the query, and the reader, which processes the retrieved
documents to generate an answer.

3.1 Retriever

Given a corpus C (Wikipedia segments from DPR [9]), the retriever is tasked to
return a list of the k most relevant documents (k << |C|). Here, a document is
relevant if it contains one of the answer strings as a span up to normalization. In
this study, the corpus refers to an English Wikipedia dump from 12/20/2018, and
“documents” are non-overlapping 100-word segments of the Wikipedia articles
used in DPR [9].

Karpukhin et al. [9] showed that switching the retrieval component out for
dense representations learned by a BERT encoder (DPR) results in a significant
retrieval effectiveness boost. They also investigated hybrid retrieval, combining
results from dense retrieval (DPR) and sparse retrieval (BM25) but failed to
find any improvements in retrieval effectiveness. However, later work [15] found
that DPR under-reported the BM25 effectiveness and hence incorrectly arrived
at the conclusion that hybrid retrieval does not result in better retrieval and
end-to-end QA effectiveness. We explore how to build better sparse and dense
baselines.

Sparse Methods. The focus here is Generation-Augmented Retrieval (GAR)
by Mao et al. [16], a neural query expansion technique. By no means was this
the first work to look into query expansion, RM3 [6] is a traditional technique
employed to expand the query with terms from the top retrieved documents after
an initial retrieval step. However, GAR is a powerful neural method to enhance
retrieval in open-domain QA. They leveraged a pretrained sequence-to-sequence
language model, BART [11], to enhance the sparse representation of the query
through expansion. More specifically, they first trained three separate models
that take as input the query and generate:

1. The default target answers. This is similar to recent work in closed-book
QA where models generate answers to questions without access to external
knowledge [21]. In this case, the model generates all possible answers sepa-
rated by a special delimiter.

2. A sentence containing the target answer. They use as the target, the
sentence from the highest BM25 ranked document (based on the original
query) containing some ground-truth answer. This is an attempt to train the
model to generate other words relevant to the question and target answer
and help better match results with the sentence-augmented query. While this
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method is not infallible to negatives, we leave further exploration to future
work.

3. Titles of passages containing any target answer. Here, the model is
trained to generate all titles in the top retrieved documents that contain one
of the target answers. The titles are separated by a special delimiter too. Like
sentences, these too might contain additional keywords or entities besides the
answers that might help the augmented query pull up more relevant results.

During inference, for a particular query q, they generate three separate expanded
queries qanswer, qsentence, and qtitle. Then, sparse retrieval with BM25 (default
parameters) is independently performed on each query using Pyserini [14].
Finally, the top-1k results of the three queries are combined using reciprocal
rank fusion (RRF) [2] to return a single ranked list. Since they provide their
training code, we first try to reproduce their training and inference results. We
dub this GAR-BART.

Given the success of the pretrained sequence-to-sequence transformer model
T5 [20] in the similar task of document expansion for passage ranking [18], we
also replicate their results using the powerful T5-3B model instead. Our training
and generation replication uses Google’s mesh-tensorflow T5 implementation.1
We call this model GAR-T5. We train each GAR-T5 model on a Google TPU
v3-8 with a constant learning rate of 1 · 10−3 for 25k iterations with batches of
256. This corresponds to roughly 80 epochs on the training sets. We always use
a maximum of 64 input tokens for the query and a maximum of 64, 128, and
128 output tokens for the answer, sentence, and title generation, respectively.

Dense Methods. In this subsection, we build towards the DPRDKRR [4] model,
a state-of-the-art dense retriever for open-domain QA retrieval. We begin with
the pivotal DPR model that employs a separate query encoder and a passage
encoder, both using BERT [3] as the backbone model. However, Izacard and
Grave [4] only use a single encoder instead of two and signal a query by prepend-
ing the query string with “question:” and signal a document D using the template
“title: Dtitle context: Dtext”. Queries and passages are encoded as dense vectors
separately, and the relevance score of a query document pair is computed by their
inner product. The retriever functionally performs a nearest neighbor search over
the representations using Facebook’s Faiss library [7].

Izacard and Grave [4] use this DPR model to initialize their retriever and
leverage the Fusion-in-Decoder (FiD) reader described in Sect. 3.2. They use
an iterative training pipeline where they first train a reader, use it to compute
the aggregated cross-attention scores, and leverage them to finetune a retriever.
Following this procedure for multiple iterations, they arrive at the more effective
DPRDKRR retriever.

We integrate the DPRDKRR retrievers provided by the authors for both NQ
and TriviaQA in Pyserini. We also provide prebuilt indexes after the correspond-
ing retriever encodes the entire Wikipedia corpus.

1 https://github.com/google-research/text-to-text-transfer-transformer.

https://github.com/google-research/text-to-text-transfer-transformer


PyGaggle: A Gaggle of Resources for ODQA 153

Karpukhin et al. [9] and Ma et al. [15] calculate hybrid scores by linear
combinations of dense and sparse scores. Here, we use reciprocal rank fusion
(RRF) [2] without any task-specific tuning to fuse the GAR (sparse) and the
DPRDKRR (dense) ranked lists. We find that this allows us to get roughly the
same effectiveness without the expensive tuning step on the development set.

3.2 Reader

As is expected in a retriever–reader paradigm, for each query q, the retriever
selects k candidate documents. The reader returns the final answer span from
the candidate contexts, where each document Di contains the Wikipedia article
title Dtitle

i and its content Dtext
i .

The reader used in DPR [9] was a BERT-base and takes as input each can-
didate context Ci concatenated to the question q and is trained to “extract”
candidate spans by predicting the start and end tokens of the target answer
span. Such readers are generally called “extractive” readers.

In this paper, we use Fusion-in-Decoder (FiD) [5], a state-of-the-art gener-
ative reader that uses as backbone a generative model, T5 [20]. This model
takes as input the query q and each of the top-100 retrieved documents. More
precisely, each query q and document Di are concatenated and independently
run through the encoder to get an encoded representation. These representa-
tions across the ranked candidate document list are then concatenated, and the
decoder attends over the resulting final encoding. Thus evidence fusion happens
only in the decoder, and hence the name.

The authors experimented with both the T5-base and T5-large variants and
trained them in tandem with DPRDKRR as described in Sect. 3.1. They trained
each of these models for 10k iterations with a batch size of 64 using 64 × V100s.
This training requires significant compute beyond the scope of our paper. Infer-
ence, however, can be run on a single Tesla P40. Thus, we integrate it into
PyGaggle, an inference-focused library for knowledge-intensive tasks like open-
domain QA.

4 Results

4.1 Retriever

In Table 2, we report retrieval accuracy on both the NQ and TriviaQA datasets.
Rows (a)–(e) showcase sparse methods, some of which we augment with query
or document expansion, rows (f)–(g) denote dense ones, and rows (h)–(i) denote
hybrid ones.

Row (a) represents the BM25 effectiveness using the dpr-nq-test topic set,
which as mentioned earlier, we move away from, to the better-processed nq-test
topic set (row (b)). This shift leads to an improvement in retrieval accuracy,
highlighting the importance of using the cleaner topic set, and suggesting that
previously overlooked gains may merit further examination. Hence, for the rest
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Table 2. Retrieval effectiveness comparing different methods on both the NQ and
TriviaQA datasets.

Method NQ TriviaQA
top5 top20 top100 top500 top1000 top5 top20 top100 top500 top1000

Sparse
(a) BM25’ [15] 43.77 62.99 78.23 85.60 88.01 – – – – –
(b) BM25 44.82 64.02 79.20 86.59 88.95 66.29 76.41 83.14 87.35 88.50
(c) BM25 + RM3 44.16 62.91 77.76 86.01 88.73 62.68 73.12 80.69 85.62 87.17
(d) GAR-BARTRRF (repro) 61.16 76.87 86.18 91.08 92.55 71.45 79.47 85.13 88.56 89.51
(e) GAR-T5RRF 64.62 77.17 86.90 91.63 92.91 72.82 80.66 85.95 89.07 90.06
Dense
(f) DPR [9] 68.61 80.58 86.68 90.91 91.83 69.80 78.87 84.79 88.19 89.30
(g) DPRDKRR 73.80 84.27 89.34 92.24 93.43 77.23 83.74 87.78 89.87 90.63
Hybrid
(h) DPRHybrid [15] 72.52 83.43 89.03 92.16 93.19 76.01 82.64 86.55 89.12 89.90
(i) RRF(GAR-T5RRF, DPRDKRR) 74.57 84.90 90.86 93.35 94.18 78.63 85.02 88.41 90.29 90.83

of the results, we default to using this “cleaner” topic set, deviating slightly from
prior work [9,16] that used the former topic set.

Row (c) denotes BM25+RM3, a strong traditional IR baseline involving
query expansion. We observe that the retrieval accuracy of BM25+RM3 (row
(c)) is slightly lower than that of BM25 (row (b).

Rows (d) and (e) represent the BART and T5-based GAR models, respec-
tively. GAR-BARTRRF is a reproduction of the entire training and inference
pipeline provided by Mao et al. [16]. We find that the retrieval effectiveness of
both models is significantly higher than that of the standard BM25 method (row
(b)). Comparing the two GAR models, we find that GAR-T5 performs consis-
tently better in both datasets. This improvement is unsurprising, given that T5
is larger and pretrained on a diverse set of tasks, increasing its ability to general-
ize to new ones. Since our generative reader takes as input the top-100 passages,
we aim to maximize the top-100 retrieval accuracy. We find that GAR-T5RRF
achieves retrieval effectiveness on par with DPR, a dense model (row (f)).

Row (f) shows the effectiveness of the DPR retriever provided by Karpukhin
et al. [9], although we use the nq-test topic file instead. A more detailed anal-
ysis of the effectiveness of this model is found in Ma et al. [15]. The effective-
ness of DPRDKRR is reported in row (g). This model outperforms vanilla DPR
(row (f)) across all values of retrieval effectiveness tested for both datasets. It
demonstrates a solid ability to retrieve relevant documents, even in early pre-
cision settings. The strong top-5 retrieval effectiveness validates this behavior.
DPRDKRR also outperforms all the sparse methods considered and performs con-
sistently better than a previous hybrid model described in Ma et al. [15] (row
(h)). This DPRHybrid run is obtained by fusing results from DPR and BM25
using a weighted combination.

Finally, we look at our hybrid model (row (i)) that is obtained by fusing the
results of GAR-T5RRF (row (e)) and DPRDKRR (row (g)). This model consis-
tently achieves higher effectiveness than all the other methods considered across
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Fig. 1. Top-k accuracy of sparse, dense, and hybrid methods on NQ (left) and TriviaQA
(right) as we vary the number of retrieved passages.

Table 3. Comparing the top-100 retrieval accuracy on different QA overlap subsets [12]
of the test set for NQ and TriviaQA.

Condition NQ TriviaQA
QO AOO NO QO AOO NO

(a) GAR-T5RRF 96.30 88.57 77.59 97.92 93.19 68.50

(b) DPRDKRR 95.06 89.84 80.95 97.32 95.13 70.87

(c) RRF(GAR-T5RRF, DPRDKRR) 96.91 92.38 84.03 98.21 96.10 72.44

all evaluation settings. In fact, a literature survey finds that this model has the
highest retrieval accuracy for k = 100, the setting we want to maximize for the
FiD readers. This demonstrates that hybrid methods continue to play a crucial
role in knowledge-intensive tasks. Our results also suggest that sparse methods
are less effective than dense methods, and we believe leveraging some learned
sparse representations might bridge this gap and lead to better hybrid methods.

Figure 1 primarily shows the effectiveness of various ablations of GAR-T5.
Among the individual query expansion models, GAR-T5answer demonstrates
effectiveness on par with GAR-T5sentence in NQ and better in TriviaQA, both
of which consistently outperform GAR-T5title. This drop is perhaps because, in
the sentences and titles cases, the model is also more prone to hallucinating
additional keywords that might not be relevant to the query. Besides this, the
tasks are considerably more challenging, given the lack of context provided to the
model. GAR-T5concat, which involves just a single query where the answer, sen-
tence, and title are all appended to the original question, displays better effective-
ness than each of the individual GAR-T5 models in the NQ case, but it performs
worse than GAR-T5answer in TriviaQA. The gap between GAR-T5concat and
GAR-T5RRF (where we take the RRF of GAR-T5answer, GAR-T5title, and GAR-
T5sentence) in the NQ test set is small, however, in the TriviaQA dataset, the gap
is substantial and hence GAR-T5RRF stands as the most effective sparse method.
The story with DPRDKRR and the hybrid method is the same as earlier, display-
ing considerably improved effectiveness compared to the sparse techniques.
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Table 4. End-to-end QA effectiveness in terms of the exact match score, comparing
different answer span scoring techniques. The “orig” and “repl” columns denote the
original and replicated results, respectively.

Condition NQ TriviaQA
orig repl orig repl

DPR-reader [15]
(a) DPR 43.5 – 59.5 –
(b) BM25 38.4 – 61.6 –
(c) DPRHybrid 44.0 – 61.7 –
FiD-base [5]
(d) DPRDKRR 50.1 49.9 69.3 68.3
(e) GAR-T5 – 49.9 – 66.8
(f) RRF(GAR-T5RRF, DPRDKRR) – 50.8 – 69.4
FiD-large [5]
(g) DPRDKRR 54.4 54.7 72.5 72.2
(h) GAR-T5 – 53.3 – 70.4
(i) RRF(GAR-T5RRF, DPRDKRR) – 55.0 – 72.9

Table 3 reports top-100 retrieval accuracy of our highest scoring sparse, dense,
and hybrid models on different QA overlap subsets [12] of the NQ and TriviaQA
test set. Here, we gain some more insights into our sparse and dense methods.

Row (a) presents the scores of GAR-T5RRF, and as we can see in terms ofQues-
tion Overlap this model performs better than our effective dense retrieval model
(row (b)). As the queries in this setting are paraphrases of some of the questions in
the training set, we believe that the higher scores come from the GAR-T5 models
remembering the target answers, titles, and sentences and thus generating them
verbatim. As a result, it would be relatively easy for a sparse lexical retrieval model
which relies on exact matches to pull up relevant documents.

Row (b) presents the scores of DPRDKRR, and as shown, this model demon-
strates better effectiveness than GAR-T5RRF in terms of Answer Overlap Only
and No Overlap. In these settings, since we are looking more for model generaliza-
tion, it makes sense how more powerful dense methods exhibit higher effectiveness.

Finally, we look at the hybrid model in row (c), and it clearly shows the
highest retrieval effectiveness across all settings. The gains are the most in the
No Overlap subsets, the main testbed of model generalization.

4.2 Reader

Table 4 presents the end-to-end open-domain QA effectiveness in terms of the
primary metric, the EM score, for both the NQ and TriviaQA test sets. Here,
“orig” refers to the original results in the paper or official repository reported by
the authors, and “repl” reports the results we note in our systems.

Rows (a)–(c) report results described in Ma et al. [15] using the extractive
reader provided with DPR and varying the retrieval method used. Note that



PyGaggle: A Gaggle of Resources for ODQA 157

Table 5. End-to-end QA effectiveness in terms of the exact match score over some of
the QA Overlap subsets.

Condition NQ TriviaQA
QO AOO NO QO AOO NO

FiD-large [5]
(a) DPRDKRR 77.2 49.5 38.1 92.0 74.5 52.4
(b) GAR-T5 76.5 45.1 36.4 92.6 70.6 52.0
(c) RRF(GAR-T5RRF, DPRDKRR) 77.8 48.9 39.2 93.8 74.5 54.7

these were the highest scores obtained in the paper and involved various compo-
nents that include post-processing the spans selected by the reader and tuning
the weights assigned to each span. Their use of hybrid retrieval methods (row
(c)) notes higher end-to-end effectiveness than using the sparse or dense models
independently (rows (a), (b)).

Rows (d)–(e) denote the end-to-end effectiveness of the highest-scoring dense,
sparse, and hybrid methods described paired with the FiD-base reader model and
rows (f)–(h) with the FiD-large reader model. First, we note that the effectiveness
of FiD integrated into PyGaggle while in a similar range does not perfectly match
the original scores reported on their GitHub page.2 This difference perhaps has
to do with the different implementation choices and modifications to get the
reader integrated into PyGaggle that uses HuggingFace Transformers v4.10.0
(vs. the original repository using v3.0.2).

In general, we find that leveraging dense retrieval instead of sparse retrieval
results in better end-to-end open-domain QA effectiveness (rows (d) vs. (e) and
rows (g) vs. (h)). This boost comes as little surprise as the top-100 retrieval
effectiveness is much higher in the dense methods. However, with the FiD-base
trained on NQ, this surprisingly does not bring improvements. We see similar
phenomena in other knowledge-intensive tasks like multi-stage relevance ranking
where improved first-stage retrieval effectiveness does not necessarily translate
to better end-to-end effectiveness [19].

Similarly, hybrid retrieval shows even higher end-to-end effectiveness in all
cases (rows (f) and (i)). This dominance confirms previous findings in Ma et
al. [15] although, in this case, with considerably more effective sparse and dense
retrievers.

Finally, moving from the FiD-base (rows (d)–(f)) to the FiD-large variant
(rows (g)–(i)) results in an effectiveness boost, as one would expect with bigger
language models. Our most effective system involving hybrid retrieval and the
FiD-large reader (row (i)) gains 11 points compared to the comparable retriever–
reader pipeline in Ma et al. [15] (row (c)) and forms an effective and easy-to-
reproduce baseline for the community.

In Table 5, we report the end-to-end open-domain QA accuracy of the QA
Overlap [12] subsets when using the FiD-large reader and varying the retrieval

2 https://github.com/facebookresearch/FiD.

https://github.com/facebookresearch/FiD
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method. Dense generally improves over sparse retrieval (rows (a) vs. (b)), and
hybrid methods display even higher effectiveness (row (c)). Most of these gains
are likely from the improved first-stage retrieval of documents fed into the gen-
erative reader. The No Overlap subset has huge gains when moving to hybrid
retrieval across the datasets. This boost could imply better model generalization
capabilities. However, a surprising finding here is that the Answer Overlap Only
subset sees a drop in effectiveness scores in the NQ case and remains the same
in the TriviaQA case. A more thorough analysis of why we note such behavior
is needed. Also, as expected, all methods demonstrate the highest effectiveness
in the Question Overlap subset and the lowest effectiveness in the No Overlap
subset.

5 Resources

In this section, we discuss the three main types of resources we provide for
working with open-domain QA on Wikipedia.

5.1 GAR-T5 Query Expansions

We provide the Generation Augmented Retrieval (GAR) query expansions
for NQ and TriviaQA in the widely popular HuggingFace Datasets [13].
This integration comes with various benefits - a unified interface for down-
loading and wrangling the expansions, single-line data loaders, and easy-to-
use integration with HuggingFace Transformers [22]. These expansions for
NQ and TriviaQA can be found at castorini/nq_gar-t5_expansions and
castorini/triviaqa_gar-t5_expansions, respectively.

5.2 Reproduction Guides and Commands

Our reproduction guides for both the sparse and dense retrieval methods are
linked on the main landing page of Pyserini.

For the main dense retriever evaluated in this paper, the DPRDKRR model,
we provide the retrieval and evaluation instructions for the two test sets.3 To
allow this functionality, we also convert the checkpoints provided by Izacard and
Grave [4] to HuggingFace-compatible checkpoints and upload them to the Hug-
gingFace Hub. Given these checkpoints, we encode the entire Wikipedia corpus
and provide it as a prebuilt index compatible with Pyserini. Dense retrieval on
this index can be performed using a single command:

python -m pyserini.search.faiss --topics nq-test \
--index wikipedia-dpr-dkrr-nq \
--encoder castorini/dkrr-dpr-nq-retriever \
--output runs/run.nq-test.dkrr.trec --query-prefix question:

3 https://github.com/castorini/pyserini/blob/master/docs/experiments-dkrr.md.

https://github.com/castorini/pyserini/blob/master/docs/experiments-dkrr.md
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For the sparse retrieval methods considered, i.e., GAR-T5 augmented BM25,
the reproduction guide for retrieval and evaluation is provided.4 We also include
instructions for hybrid retrieval using RRF [2]. Given this hybrid run, we also
provide a script that can evaluate the per-subset [12] top-k retrieval effectiveness
(the evaluation metric we introduced in Sect. 2). We provide a webpage with a
two-click (copy and paste) reproduction matrix,5 that provides commands for
reproducing our experimental results in the current or any future version of the
Pyserini toolkit. We also include a regression test script which can be easily
executed using the following command from Pyserini:

python scripts/repro_matrix/run_all_odqa.py --topics <nq or tqa>

Our reproduction guides for end-to-end open-domain QA with the generative
FiD reader models can be found in the PyGaggle toolkit. This toolkit is the
same one where a previous study [15] integrated the extractive reader modules
of DPR.

We provide instructions to run reader inference for the NQ and TriviaQA
datasets.6 We can use the following command to run reader inference given the
hybrid retrieval file from Pyserini:

python -um pygaggle.run.evaluate_fid_reader \
--model-name nq_reader_large \
--retrieval-file data/run.nq-test.dkrr.gar.hybrid.json \
--output-file data/fid_large.nq-test.dkrr.gar.hybrid.out

Given this FiD-large reader output file, we integrate scripts that can calculate
the per-subset level end-to-end exact match (EM) scores, as described in Sect. 2.

5.3 Interactive End-to-End System

A user can query this system in an end-to-end fashion by issuing the following
command:

python pygaggle.qa --type openbook --qa-reader fid \
--reader-model nq_reader_base \
--retriever-model castorini/dkrr-dpr-nq-retriever \
--retriever-index wikipedia-dpr-dkrr-nq \
--retriever-corpus wikipedia-dpr

This command pulls up an interactive demo, where a user can ask questions and
have the open-domain QA model return answers. The following is an interaction
with the system:

Enter a question: which concept album by pink floyd was adopted
into a movie
Answer: The Wall
Enter a question: which year did the movie casablanca come out
Answer: 1942
4 https://github.com/castorini/pyserini/blob/master/docs/experiments-gar-t5.md.
5 https://castorini.github.io/pyserini/2cr/odqa.html.
6 https://github.com/castorini/pygaggle/blob/master/docs/experiments-fid-reader.

md.

https://github.com/castorini/pyserini/blob/master/docs/experiments-gar-t5.md
https://castorini.github.io/pyserini/2cr/odqa.html
https://github.com/castorini/pygaggle/blob/master/docs/experiments-fid-reader.md
https://github.com/castorini/pygaggle/blob/master/docs/experiments-fid-reader.md
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6 Conclusion

We address the challenge of reproducibility in increasingly sophisticated open-
domain QA systems by developing a state-of-the-art end-to-end pipeline involv-
ing a hybrid of sparse and dense retrieval and generative readers.

First, we train a more effective GAR model [16] based on T5, which expands
the queries with generated predictions for answers, sentences, and titles and
incorporate them into the popular open-source IR toolkit, Pyserini. Second, we
replicate the results of the widely-used dense method, DPRDKRR [4] retriever and
provide search capabilities and prebuilt indexes through Pyserini. As a result,
we can effortlessly put together a state-of-the-art hybrid retrieval system.

We incorporate the Fusion-in-Decoder generative reader into our suite of
reading comprehension systems in PyGaggle. This addition allows us to provide
a very effective end-to-end open-domain QA system.

The tight integration of Pyserini and PyGaggle allows users to interact
directly with our systems and pose factoid questions. Following Lewis et al. [12],
we also provide evaluation tools that break down effectiveness across various
categories to investigate model generalization and memorization.

We believe that it will be hugely beneficial to the research community to
have an effective, easy-to-use, and reproducible open-domain QA baseline and
the tools to interact with these systems directly and evaluate model capabilities
like the true generalization of the retriever and reader components.
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