
Chapter 9 
A Joint Data-Physics-Knowledge Driven 
Strategy for Electric Heating Load 
Forecasting and Scheduling 

Jie Zhang , Hao Shen, Ling Qi, and Yongjie Chen 

Abstract In the background of double carbon, electric heating technology is the 
development trend of heating method, which is conducive to energy saving and 
emission reduction. As the heating load is random, volatile, and not easy to regu-
late, a fused electric heating scheduling method is proposed. First, clustering is 
carried out according to load characteristics, and a power prediction algorithm is 
designed based on historical data, load demand, and heating trends with a fused 
data-physics-knowledge inference model. Then, a load scheduling model is designed 
at the dispatching end, with economy and comfort indicators as the objective func-
tions. In the platform, a control terminal is installed at the user end to implement the 
dispatching strategy. The method can be used as a reference for the design of load 
scheduling strategies under the heating transition period. 

Keywords Electric heating loads · Load forecasting · Heating demand ·
Scheduling indicator sets · Load scheduling 

9.1 Introduction 

China is in the stage of accelerated urbanization and the demand for heating is 
growing fast. At present, remote areas are mainly heated by burning coal and fire-
wood, which has the problems of high heating costs and environmental pollution. 
Some areas use gas heating, which has the advantages of high energy utilization, 
high reliability of power supply, and low environmental pollution, but requires high 
architectural design and has safety risks (Nan et al. 2021). As a new type of heating 
technology, electric heating technology can reduce heating costs compared to tradi-
tional methods, and also has the advantages of cleanliness and automation, which 
helps to save energy and reduce emissions, and is a development trend (Zhongqi 
et al. 2021).
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When the weather is cold, electric heating loads can cause shocks when they 
are connected to the grid on a large scale for a short period, so there is a need 
to study electric heating load scheduling technology. The research focuses on load 
forecasting and scheduling. The literature (Qing et al. 2019) proposes an RBF neural 
network prediction model based on ridge regression estimation, which can effectively 
eliminate the input multicollinearity problem and improve the prediction accuracy; 
the literature (Yi et al. 2019) proposes a digital building electricity model construction 
method based on physical and data fusion modeling, which can achieve refined energy 
efficiency analysis of electricity consumption; the literature (Yi et al. 2021) studies 
the progress of data and knowledge research progress of joint-driven methods and 
put forward the prospect of application in power systems. The above are relatively 
representative studies that have improved the accuracy of load prediction to a certain 
extent by means of neural networks, artificial intelligence, model fusion, etc. 

In terms of load scheduling, existing research includes regulation and control of 
equipment, load, electricity price, scheduling index, etc. Literature (Shuai et al. 2017) 
optimizes the operation of heating equipment according to user comfort and realizes 
collaborative optimization of distributed load; literature (Yulong et al. 2020) estab-
lishes a distributed electric heating load model and realizes regulation and control 
of electric heating load by using the group control method; literature (Ning 2013) 
studies direct control of centralized load process; literature (Zhiqiang et al. 2019) 
proposes a modeling method for aggregated load characteristics of multiple types 
of users, which improved the accuracy of solving the thermal load characteristics; 
literature (Zhang et al. 2021) studies the evaluation method of the benefits of electric 
heating loads, and proposed evaluation indexes and evaluation models from various 
aspects such as comfort and policies. 

Most of the above studies are direct load regulation, failing to adjust the strategy 
according to the dynamic demand and satisfaction of the load. The article, therefore, 
investigates load forecasting and scheduling strategies, firstly clustering multi-modal 
loads, then establishing forecasting algorithms that consider load forecasts, heating 
demand, and trends, followed by designing scheduling indicator sets and scheduling 
models to complete load schedules. 

9.2 Electric Heating Load Forecasting Algorithm 

9.2.1 Load Forecasting Model Architecture 

The scheduling of electric heating loads relies on accurate heating power prediction 
techniques. Most of the existing prediction techniques use data models to train a 
large amount of historical power data and predict short-time power, but the prediction 
accuracy is not high. Therefore, the article uses the K-Means algorithm to cluster 
heating users, and then builds a fusion prediction model based on the data model 
(Weizhao et al. 2020).
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Fig. 9.1 Power forecasting based on physical data fusion 

The process of the power forecasting algorithm is shown in Fig. 9.1. Firstly, a load 
forecasting data model based on generalized regression neural network (GRNN) and 
historical data of heating power is built to output power forecasting data, and is 
denoted as Pdata ; then a physical model based on time-of-use tariff and load demand 
elasticity coefficient is built to output heating demand data; then a load heating trend 
projection model based on knowledge inference algorithm is built to output heating 
trend data; finally, the data model is modified by fusing demand data and trend 
inference data to output short-time power forecasting data. 

9.2.2 Physical Modelling in Heating Demand Forecasting 

Under the influence of weather, electricity price, and other factors, there is a sudden 
increase and decrease in user demand for heating, and the prediction accuracy of the 
data model will decrease. 

First, the time-sharing price calculation method on the user side is designed based 
on the load proportion factor. Select typical days that can reflect the user’s heating 
condition in a certain period, and then set up the calculation formula of electricity
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price according to the purchase cost C1, transmission and distribution loss C2, trans-
mission and distribution price C3, and government fund C4, as shown  in  Eq. (9.1) 
(Yujie 2019): 

Ci,t = 
24 × Pi,t
Σ

Pi,t 
× (C1 + C2 + C3 + C4) (9.1) 

where Ci,t denotes the real-time tariff of load i at moment t; Pi,t denotes the real-time 
power of load i at moment t. 

The price elasticity coefficient E is introduced to characterize the relationship 
between the load’s heating demand and the real-time electricity price. According 
to the effect of the fluctuation of the electricity price at time t on the electricity 
demand at time t and time h, the price elasticity coefficient can be divided into the 
self-elasticity coefficient and the other elasticity coefficient, which are denoted by 
E(t, t) and E(t, h) respectively: 

E(t, t) = 
Ci, t 

Pi, t = 0 
× 

∂ Pi, t 
∂Ci, t 

, E(t, h) = Ci, h 
Pi, h = 0 

× 
∂ Pi, h 
∂Ci, h 

(9.2) 

where Pi,t−0 represents the power at the initial moment (t = 0) of the i-th load. 
Based on real-time electricity prices and load demand elasticity coefficients, the 

heating demand data of the load at moment t under the influence of electricity price 
fluctuations is calculated using Eq. (9.3), and is denoted as Pphy, which reflects 
the impact of real-time electricity prices on customer demand and can correct the 
electric heating load power forecast data output by the data model. 

Pphy = Pi,t ×
(

1 + E(t, t) ×
[
Ci,t − Ci,t=0

]

Ci,t=0

)

+ Pi,t 

× 
24Σ

h = 1 
h /= t 

E(t, h) ×
[
Ci,h − Ci,h=0

]

Ci,h=0 

(9.3) 

9.2.3 Knowledge Modelling in Heating Demand Forecasting 

Due to the influence of electricity price, temperature and other factors, the instan-
taneous trend change of heating power of different electric heating loads is not 
consistent, the knowledge inference algorithm can reason about the users’ heating 
trend according to the change of temperature, electricity price, etc. Therefore, the 
article designs a heating trend inference model based on the knowledge inference
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algorithm, including the knowledge inference model with and without rules (design 
intelligent algorithm), to obtain the users’ heating trend inference data. 

Knowledge Base on Changes in Heating Trends. The article constructs an incre-
mental knowledge base for describing the links between historical data on electric 
heating loads, heating trends, and external environmental factors to form a knowledge 
system, including a rule base, a fact database, and a model algorithm base (Chunlei 
et al. 2010). 

The rule base consists of two parts, premises and conclusions, and is represented 
using the concept of a triad, specifically a knowledge graph containing n entities, m 
relationships, and facts stored as a triad D = {(h, r, t)|h ∈ E, r ∈ R, t ∈ E}, each 
triple consists of a head entity h ∈ E , a tail entity t ∈ E and a relationship r ∈ R 
between them, where E denotes the set of entities and R the set of relationships. 
The article defines the following triad to construct the incremental knowledge base 
based on the relationship between real-time temperature Ti, load power di, real-time 
electricity price P(h) and load trend P1(t), as shown in Fig. 9.2. 

The factual database uses the historical data collected to store information on the 
process of scheduling policy and user changes, with the following formula. 

F = 

⎡ 

⎣ 
T1 ... Tn 
C1 ... Cn 

P1 ... Pn 

⎤ 

⎦ (9.4) 

where T denotes the external temperature, C denotes the change in dynamic tariff in 
the dispatch strategy and P denotes the change in the customer’s heating power. 

The library of model algorithms includes inference algorithms, i.e. the ability to 
use existing knowledge from the rule base and fact database to reason about load 
heating trends when the electric heating load is influenced by environmental and 
self-inflicted factors, as well as the ability to optimize the internal parameters of the 
model using heuristic knowledge and experience in the inference process. 

Knowledge-based Reasoning on Heating Trend. In the constructed knowledge 
inference model, both regular and irregular cases are included. If the knowledge base 
already contains relevant knowledge, the information available in the knowledge base 
is used to reason about the trend in heating power. 

Regular inference includes the following types: (1) Consistent matching: The data 
to be inferred and the head entity of the knowledge are matched exactly, the content
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includes quarter, month, hour, temperature, and average temperature; (2) Domain 
value range matching: When the input quarter, month, hour, temperature, average 
temperature data is matched within a certain domain value range, within the set range 
is to be converted into the input value defined by the rule, for the more volatile data 
to be inferred, there are different matching objects and domain value ranges. 

When consistent matching and threshold matching are not possible, a knowledge 
inference model based on a long and short-term memory neural network (LSTM) is 
used (Zhongwei et al. 2019), with the model inputs being temporal data, temperature 
data, and load power and the outputs being load heating trend prediction data. The 
LSTM model uses a cellular structure as shown in Fig. 9.3 and includes three controls, 
the forgetting gate, the input gate, and the output gate, corresponding to parts A, B 
and C in the figure. In the forgetting gate, the load information is selectively allowed 
to pass forward through a neural layer using a sigmoid function and a point-by-point 
multiplication operation. The input gate is used to determine the load information to 
be added inside the cell state. The output gate is box C in Fig. 9.3, where a sigmoid 
function is used to determine the fraction of cell states that need to be output, and 
then the tanh function is used to process the cell states and output the load trend 
results. 

9.2.4 Data-Physics-Knowledge Fusion Power Prediction 
Algorithm 

Combining the data, physical and knowledge models in Fig.n9.1, we can obtain the 
accurately predicted power of the electric heating load. The output of the power 
prediction model based on historical data is denoted as Pdata(t), which represents 
the power prediction data at time t. The physical model outputs the heating demand 
power data of users under the influence of real-time electricity price, which is denoted 
as Pphy(t), and during the experimental process, there may be random errors caused 
by environmental conditions and unstable measuring instruments, so random errors 
δ1 are added; the knowledge inference model outputs the heating trend data of users
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under the influence of electricity price, time and temperature, which is denoted as 
Pknow(t), and random errors δ2 are added, and Eq. (9.5) is used for fusion calculation. 

Pf use(t) = Pdata(t) × m/p + P ,
phy(t) × n/p + P ,

know(t) × k/ p (9.5) 

In formula (9.9), P ,
phy(t) represents the sum of Pphy(t) and δ1; P ,

know(t) denotes 
the sum of Pknow(t) and δ2; m、n、k are the ratios of Pdata(t), P ,

phy(t) and P ,
know(t), 

and p is the sum of the three. The scale coefficients predicted by the model are fused 
and used as the fused predicted power output. 

9.3 The Scheduling Strategy for Electric Heating Loads 

9.3.1 Electric Heating Load Dispatch Model Architecture 

The designed load scheduling model includes two parts, the scheduling layer, and 
the user layer, as shown in Fig. 9.4. 

The scheduling layer deploys a load scheduling model, which consists of three 
parts: Load prediction, calculation of dispatch indicator set, and optimal power 
allocation. First, the fusion algorithm is used to predict the heating power of the 
electric heating load and calculate the value of the dispatch indicator based on the
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real-time heating power fed back from the load control. Then, using the particle 
swarm optimization algorithm, the power prediction value is used as the initial power 
dispatch value, and the data of the dispatch indicator is set as the constraint. The final 
model outputs the power allocation result that maximizes the dispatching benefit and 
uploads it to the provincial dispatching cloud; the provincial dispatching cloud then 
issues the heating power Pall  according to the uploaded dispatching demand. 

9.3.2 Scheduling Indicator Set 

Economic Indicator. The economy indicator reflects the economic consumption of 
the customer in terms of heating before and after the use of the scheduling strategy. 
The article uses the consumption with the scheduling strategy in place and without 
the heating equipment participating in the scheduling to calculate it, as shown in 
Eq. (9.6). The smaller the value of this value, the lower the cost of heating at the 
current moment after the scheduling. 

Ecost = 
[Ci,t P(i, t) + Ci,t L f i t ]Δt 

[Ci,t P f i t  + Ci,t L f i t ]Δt 
(9.6) 

where Ecost is the electricity economy indicator; Ci,t is the real-time electricity price 
for load i at moments t; P(i, t) is the load consumed by the heating equipment at 
moment t; P f  i t  and is the operating power of heating and other equipment under 
non-participating dispatch, respectively; Δt is 60 min. 

Comfort Indicator. Electricity comfort is the average percentage error between 
the dispatched power and the power consumed by the equipment in normal oper-
ation after the dispatch strategy has been implemented. Electricity comfort can be 
expressed as Eq. (9.7). 

E f i t  = 
P(i, t) − Pf it  

P f i t  
(9.7) 

where P f  i t  is the power consumption of the heating equipment running all the time, 
P(i, t) is the dispatching power, E f i t  is less than 0, and the smaller it is the less 
the dispatching power is sent down to meet the heating demand and the lower the 
comfort level of the user. 

Scheduling Strategy Implementation. The article designs a particle swarm 
algorithm-based load optimization scheduling model. In the implementation of the 
load scheduling strategy, the load control terminal at the user layer sends the real-
time heating power of the user to the scheduling layer, and the load scheduling model 
at the scheduling layer predicts the short-time heating power using a data-physics-
knowledge inference model. The particle swarm algorithm in the scheduling model 
then takes the short-time heating power as the initial scheduling value and uses the
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set of scheduling indicators as the model constraint to output a power scheduling 
value that meets the objective function. 

Taking into account the economic and comfort requirements of users with heating, 
the objective function used in the scheduling model is as follows, where F is the output 
of the objective function, and the larger the value, the better the scheduling effect. 

F = 1/Ecost + E f i t  (9.8) 

When implementing the scheduling strategy, the constraints of the particle swarm 
algorithm include the following three: (1) Economical index requirements, the 
economical index reflects the consumption ratio after optimization and before opti-
mization, the index range needs to be 0.5–1.5 to guarantee the economic benefits of 
the scheduling layer and the user layer in an integrated manner. (2) Fairness indicator 
requirements. The fairness indicator is used to avoid the situation where the heating 
is turned off for too long when the heating demand is high, and the value should be 
in the range of 0–1. 

0.5 ≤ E f i t  ≤ 1.5 
C = Ci, t + ΔCi, t 

(9.9) 

where, ΔCi, t is the amount of tariff adjustment, when the comfort level is less than 
1, reduce the heating tariff, otherwise increase the tariff appropriately, so that the 
comfort index is maintained at around 1. 

9.4 Algorithm Simulation 

To verify the dispatching strategy proposed in the article, a customer load in a region 
of Northern Europe was selected for testing, where the energy meter is used as a 
load control terminal to collect data such as voltage, current, power and ambient 
temperature, and can issue control commands to the circuit breaker for the throwing 
and cutting control of controllable loads. 

9.4.1 Load Forecasting Experiment 

The article called the K-means algorithm package of the SK-learn library to classify 
the loads into four categories. Then for each class of load, a prediction algorithm was 
used for power prediction. As shown in Fig. 9.5, the load raw data curve form “-” 
and the data model prediction results are shown in the figure in the curve form “.”; 
the physical model corrects the data and the correction results are in the form of the 
curve “-.”; the data is then corrected with the knowledge-based inference of the load
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Fig. 9.5 Load forecast results of the next day 

Table 9.1 Comparison of 
prediction standard deviation 

Methods Prediction standard deviation 

Traditional forecasting 
method 

4.948 

Data-Physics Fusion 0.859 

Data-Physics-Knowledge 
Inference 

0.867 

heating trend data in the form of the curve “–”. The predicted standard deviations 
are shown in Table 9.1. 

Combined with the graphical analysis, the fusion forecasting algorithm is more 
accurate. In addition, the prediction accuracy of the modified knowledge inference 
model is not significantly different from the physical model correction, but the knowl-
edge inference model is more accurate for the inference of the heating trend of the 
load, and better reflects the change of the load trend between 17:00 and 21:00. 

9.4.2 Scheduling Strategy Model Solver 

The particle swarm algorithm is used to solve the scheduling model, and the solution 
results are shown in Fig. 9.6, where the red and blue curves are the heating power 
data before and after optimization respectively. It can be seen that after using the 
scheduling strategy, the load power fluctuation situation is reduced and the power 
mutation is less, which is conducive to the stable operation of the grid.

In addition, according to the set of scheduling indicators designed in the article, 
the implementation of the strategy was analyzed. Taking the 7th h as an example, the
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Fig. 9.6 Scheduling strategy model solving

user’s power before scheduling was 4.67 kWh with a consumption of 5.51 RMB, and 
after scheduling was 3.035 kWh with consumption of 1.902 RMB, the value of the 
user’s economic indicator was 0.345, indicating that the user’s heating consumption 
expenditure situation had decreased; the comfort indicator was 0.65, indicating that 
the scheduling strategy was effective in ensuring The final calculated W value is 
3.549, which is greater than 1, indicating that the scheduling strategy is effective. 
Compared with traditional methods, the dispatching strategy proposed in the article 
can reduce consumption to a greater extent and meet the requirements of economy 
and comfort while ensuring user satisfaction. 

9.5 Conclusion 

To address the existing scheduling challenges of electric heating loads, the paper inno-
vatively proposes a joint data-physics-knowledge inference model-driven electric 
heating load scheduling strategy, which improves the accuracy of load power predic-
tion by jointly modifying the power prediction results of traditional load prediction 
algorithms through physical models and knowledge inference models. In addition, 
the paper proposes an optimal scheduling strategy based on the particle swarm algo-
rithm by fusing power prediction data and index set data and implements the optimal 
scheduling of electric heating loads in combination with load control terminals. The 
results show that the algorithm can output more accurate load power prediction 
information, and the two-tier scheduling strategy can meet the requirements of the 
scheduling indexes and obtain better scheduling results. 

The load prediction algorithm and the scheduling strategy designed in the 
paper can provide more accurate power prediction data and scheduling data for 
grid dispatching companies and load aggregators and provide loads with more 
comfortable and less expensive heating methods.
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