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Abstract. Facial expression recognition (FER) is vital in pattern recog-
nition, artificial intelligence, and computer vision. It has diverse applica-
tions, including operator fatigue detection, automated tutoring systems,
music for mood, mental state identification, and security. Image data
collection, feature engineering, and classification are vital stages of FER.
A comprehensive critical review of benchmarking datasets and feature
engineering techniques used for FER is presented in this paper. Further,
this paper critically analyzes the various conventional learning and deep
learning methods for FER. It provides a baseline to other researchers
about future aspects with the pros and cons of techniques developed so
far.
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1 Introduction

Facial expressions are crucial for social communication. Verbal and nonverbal com-
munication are standard. Facial expressions communicate non-verbally. Mehra-
bian [40] revealed that 55% of information passes between people through facial
expressions, 38% via voice, and 7%via language [66]. Facial expression recogni-
tion has evolved into an outstanding and demanding field of computer vision. Dis-
gust, anger, happiness, fear, surprise, and sadness are fundamental emotions [13].
Humans are highly skilled at identifying a person’s emotional state; a computer
would have difficulty doing so. It is caused by a variation in occlusion, head pos-
tures, changes in lighting, and computing complexity. FER applications include
operator tiredness detection, [77], automobile, healthcare, automated tutoring sys-
tems [67], mental state recognition [39], security [6], music for mood [12], and
rating products or services in banks, malls, and showrooms. With the help of a
FER, users can also study how well students interact in a classroom or talk with
teachers. [56]. FER inbuilt mobile applications can help visually impaired per-
sons (VIPs) to communicate daily. FER systems can detect the driver’s fatigue
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state and stress level to make better decisions about driving safely. Facial image
acquisition, pre-processing, feature engineering, training, and classification are
typical FER stages. The Fig. 1 depicts face expression recognition steps. Pre-
processing is used to remove noise. Feature engineering extracts distinct visual
characteristics. The popular feature engineering techniques are, Histogram of Gra-
dient(HOG) [10], Local Directional Pattern (LDP) [23], Gabor filters [61], Local
Binary Patterns (LBP) [52], Principal Component Analysis (PCA) [2], Indepen-
dent Component Analysis (ICA), and Linear Discriminant Analysis(LDA) [5].
Extracted features are utilized for training a classifier using expression class labels.
FERapproaches are deep learning and conventional learning based on feature engi-
neering. In deep learning huge number of examples and images are used to learn
and tune feature extraction parameters, while conventional learning uses algo-
rithms to extract hand-crafted features. Deep learning classifiers contain a sig-
moid or softmax layer on the classification stage with Fully connected layers. K-
nearest neighbor (KNN)and support vector machine(SVM)are well-known clas-
sifiers in conventional learning. The FER system’s accuracy depends on captured
data variability, feature extraction, classification, and fine-tuning. Model inference
time depends on camera resolution, feature engineering, classifier, and hardware
computation capabilities.

Fig. 1. Different steps of facial expression recognition system

This work primarily concerns various FER approaches, with three primary
processes: pre-processing, feature engineering, and classification. This paper also
demonstrates the benefits of different FER methods and a performance analysis
of various FER methods. Only image-based FER approaches are used in this
work for the literature review; video-based FER techniques are not used. FER
systems often deal with illumination fluctuations, skin tone variations, lighting
variations, occlusion, and position variations. This work also provides a vital
research suggestion for future FER research. The remaining research paper is
organized into five 6 sections, including an introduction. Section 2 represents
the related research work, including state-of-the-art for FER. Section 3 lists the
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most often used benchmarking datasets for FER. Section 4 provides an overview
of FER feature engineering. Section 5 compares the performance of different FER
systems. Finally, Sect. 6 offers a conclusion.

2 Related Work

FER has a wide range of applications in computer vision. Because of differences
in position, illumination, scale, and orientation, recognizing facial expressions can
be difficult. The primary goal of feature engineering is to find robust features that
can improve the robustness of expression recognition. The feature extraction and
classification stages are critical in FER. There are two kinds of feature extrac-
tion: geometric and appearance-based. Geometrically-based feature extraction
includes the eye, mouth, nose, brow, ear, and other facial components, whereas
appearance-based feature extraction includes the exact region of the face [66].

Abdullah et al. [1] reduced the face picture into a small feature set called
eigenface and utilized PCA to extract facial features like eigenfaces into a class
of finite feature descriptions. Yadav et al. [70] extracted facial features using
Gabor filters and two-dimensional PCA. ICA is used to identify characteris-
tics from statistically independent local faces [59]. Lee et al. [30] used ICA to
extract statistically autonomous features from local face parts in various facial
expressions. Mehta and Jadhav [41] classified human emotions using the Gabor
filter. Islam et al. [22] used HOG and LBP to extract local characteristics.
LBP features are easy to compute. ICA is less tolerant of illumination fluc-
tuations than LBP. Edge pixels are needed to extract face features from an
image. Local Directional Pattern (LDP) shows visual gradients. In FER, LDP
represents gradient-based properties of the local face in the pixel’s eight prime
directions [23].

In classic LDP features, the highest edge strengths determine binary values,
which vary by experiment. LDP ignores a pixel’s direction strength sign, differen-
tiating edge pixels with comparable strengths but opposite signs. Uddin et al. [60]
overcame this LDP problem by grouping pixels’ major edge strengths in decreas-
ing order and using their signs to build stable features. Many recent attempts
have been made to recognize facial expressions from videos or images using deep
learning. To learn appearance features from video frames and geometric fea-
tures from raw face landmarks, Jung et al. [24] merged two deep learning-based
models. Then, a joint learning method was used to connect the two models’ out-
puts. Zeng et al. [75] improved the performance by incorporating hand-picked
features into the deep network training. Recently several deep learning meth-
ods have been developed for FER and applied in real-time images. Wang et al.
[63] introduced Region Attention Network (RAN) for pose variant and occluded
face FER. In this paper, region-biased loss and region attention mechanisms are
employed to capture the importance of pose variant and occluded facial images.
Wang et al. [62] proposed a ResNet-18 CNN model in which uncertainties caused
by low-quality images are suppressed by CNN architecture Self-Cure Network
(SCN). Li et al. [32] proposed a model that includes an attention mechanism in
CNN to recognize expression from a partially occluded face.
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3 Review Analysis of Facial Expression Dataset

This section describes FER benchmark datasets. The summary of these datasets,
i.e., collection condition, environment challenges, expression distribution, and
the number of images and subjects, is shown in Table 1. In the CK+ dataset,
training, testing, and validation sets are not specified. Due to non-uniform
expressive representation, MMI contains substantial interpersonal discrepancy.
The JAFFE dataset has fewer samples per subject expression. AFEW is a multi-
model, temporal dataset containing environmental conditions. CMU Multi-PIE
and BU-3DFE examine multi-view face expressions.

Table 1. Benchmarking datasets for facial expression recognition

Dataset Images, subjects Expression Environment challenges Collection

JAFFE [25] 213, 10 6 basic exp + neutral Pos Lab

CK+ [37] 593, 123 6 basic exp, Natural,
contempt

Sp, Pos Lab

SFEW [11] 1766, 95 6 basic exp Sp, Pos Movie

MMI [48] 740, 25 6 basic exp Pos Lab

CMU-MultiPIE [17] 755370, 337 Neutral, disgust, smile
surprised, scream, squint

Pos Lab

FER 2013 [8] 35887 6 basic exp Sp, Pos Web

RAF-DB [31] 29672 6 basic, 12 compound
exp

Sp, Pos Internet

EmotioNet [14] 1,000,000 6 basic, 17 compound
exp

Sp, Pos Internet

AffectNet [43] 450, 000 6 basic exp Sp, Pos Internet

ExpW [78] 91, 793 6 basic exp Sp, Pos Internet

RaFD [29] 1608,67 6 basic, 12 compound
exp

Pos Lab

BU3DFE [73] 2500, 100 6 basic exp + neutral Pos Lab

TFD [55] 112234 6 basic exp + neutral Pos Lab

4 Review of Feature Engineering Technique

FER accuracy depends on feature engineering. Feature engineering can be hand-
picked or deep-learned. Single-task learning (STL) includes hand-picked features,
whereas deep learning techniques are iterative. FER’s traditional feature engi-
neering methodologies are as follows:

4.1 Gaussian Mixture Model

Gaussian Mixture Model groups data into a cluster that is distinct from each
other. A distribution models data points within a cluster. A weighted total of
Gaussian functions can approximate many probability distributions. A Gaussian
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mixture model is the sum of k component Gaussian densities for vector x, as
shown in Eq. 1.

p(x) =
k∑

j=1

wjp(x|j) (1)

where x is a data vector of D dimension; wj = 1, 2 . . . k, are the weights of the
mixture; p(x|j) = Gaussian Density Model for jth Component,

Gaussian one-dimensional probability density function is represented in Eq. 2.

G(X|μ, σ) =
1

σ
√

2π
e−(x−μ)2/2σ2

(2)

Here μ represents the mean, and σ2 represents the distribution variance.
Multivariate Gaussian distribution probability density function is given by

Eq. 3 [19].

G(X|μ,Σ) =
1√

2πd|Σ|
exp(−1

2
(x − μ)T Σ−1(X − μ)) (3)

where μ is a d dimensional vector denoting the mean of the distribution and
Σ is the d × d covariance matrix. The Expectation-Maximization (EM) method
estimates model parameters.

4.2 Local Binary Pattern (LBP) Based Features

LBP captures local spatial patterns and the contrast in the facial image. LBP
labels image pixels by thresholding the nearby pixel and gives a binary num-
ber [47]. LBP is computed in four steps as follows:

– For each pixel (x, y) in an image I, P neighboring pixels are chosen at a radius
R.

– Intensity difference of the P adjacent pixels is determined.
– Positive intensity differences are assigned one (1) and negative intensity dif-

ferences are assigned zero (0).
– Convert the P-bit vector to decimal. LBP descriptor is shown in Eq. 4.

LBP operator LBPP,R, here subscript represents the operator used in (P,R)
neighborhood.

LBP (P,R) =
p−1∑

p=0

f(ip − ic)2p (4)

where P denotes the number of neighboring pixels chosen at a radius R. ic
and ip represent the intensity of the center and neighboring pixel, respectively.
Thresholding function f is as follows:

f(x) =

{
0 x < 0
1 x ≥ 0

(5)
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The LBP histogram is defined as:

Hj =
∑

x,y

I{fI(x, y} = j, j = 0, . . . , n − 1 (6)

where n is the number of labels created by the LBP operator.

I(M) =

{
1, if M is true
0, if M is false

(7)

Different-sized image patches are normalized using Eq. 8.

Nj =
Hj∑n−1

k=0 Hk

(8)

4.3 Gabor Filter Feature Extraction Technique

Edges and texture are essential features in the face image. The convolution
of the face image and Gabor filter kernel creates these features. Gabor is an
illumination-invariant Gaussian sinusoidal. Gabor filter kernel [65] is defined in
Eq. 11. The Gabor filter components are the following: φ (Phase), λ (Wave-
length), θ (Orientation) specify the number of cycles, angle of the normal to the
sinusoidal plane, and offset of a sinusoidal. The frequency bandwidth of Gabor
is:

b = log2
(σ/λ)π +

√
log 2/2

(σ/λ)π − √
log 2/2

(9)

σ

λ
= (1/π)

√
log 2/2

2b + 1
2b − 1

(10)

The bandwidth b affects σ value. Convolution of Face image I(x, y) with Gabor
kernel Ψ(θ, λ, γ, φ) produces Gabor texture-edge features, shown in Eq. 13 [18].
Gabor kernel Ψ(θ, λ, γ, φ) is composite number as shown in Eq. 14. Gabor real
(GIR) and imaginary (GIIm) components are created by convolution between
Gabor kernel Ψ and image I(x, y) for real R(Ψ) and imaginary Im(Ψ) as shown
in Eq. 15 and 16. Equation 17 shows amplitude features G(x, y) of the Gabor
kernel. Gabor filter has the problem of redundant features and high dimensions;
PCA and ICA can fix this issue.

Ψθ,λ,γ,φ(x, y) = exp
(

− a′2 + γ2b′2

2σ2

)
ej 2πa′

λ (11)

Here, a′, b′ are direction coefficients and θ represents projection angle.

a′ = a cos θ + b sin θ and b′ = a cos θ + b sin θ (12)

GI = I(x, y) ∗ Ψ(θ, λ, γ, φ) (13)



Facial Expression Recognition 583

Ψ(θ, λ, γ, φ) = R(Ψ(θ, λ, γ, φ) + Im(Ψ(θ, λ, γ, φ) (14)

GIR(θ, λ, γ, φ) = I(x, y)) ∗ R(Ψ(θ, λ, γ, φ) (15)

GIIm(θ, λ, γ, φ) = I(x, y) ∗ Im(Ψ(θ, λ, γ, φ)) (16)

GF (θ, λ) = (GIR(θ, λ, γ, φ)2 + (GIIm(θ, λ, γ, φ)2)1/2 (17)

4.4 SIFT-Scale Invariant Feature Transform

SIFT Features are invariant to the scale of the image. The steps for calculating
SIFT features are following.

1. Scale-space extrema detection: Gaussian difference finds scale- and rotation-
invariant nearest points. Scale and image location are computed.

2. Key point localization: Only solid and fascinating points are selected based
on intensity.

3. Orientation assignment: Key points are formed based on the gradient’s direc-
tion.

4. Key point descriptor: SIFT descriptions around important points are used to
describe the local appearance of key points.

5. Keypoint matching: Two images’ nearest neighbors are matched.

4.5 Histogram of Oriented Gradient (HOG) Feature Extraction

Facial characteristics vary. A woman’s face is rounder than a man’s, which helps
distinguish gender. HOG extracts picture curvature direction. Edge directions
define the shape and local appearance [10]. The image is divided into blocks,
and HOG features are computed for each block. All HOG features are integrated
into one vector. HOG computation process: Calculate image gradient. For a face
image F,

Fx = F (r, c + 1) − F (r, c − 1), Fy = F (r − 1, c) − F (r + 1, c) (18)

here r and c represent rows and columns, respectively.
The magnitude (G) and orientation (θ) of the gradient is computed by

| G |=
√

Fx
2 + Fy

2 and θ = tan−1 Fy

Fx
(19)

Orientation range (0–360◦) for signed gradients and (0–180◦) for unsigned gradi-
ents. After determining the size and orientation of each cell’s pixel, the histogram
is normalized using a block pattern. Combining HOG features creates a feature
vector.
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4.6 Discrete Wavelet Transform (DWT)

DWT can be computed by first evaluating 1D-DWT on rows of the 2D image
matrix, then on the column of evaluated 1D-DWT. LL(low frequency), LH,
HL, and HH (high frequency) represent approximation, horizontal, vertical,
and diagonal frequency blocks, respectively, in DWT. LL block approximates
low-resolution images by deleting extraneous details. Low-frequency band (LL)
smooths input image while high frequency creates edge patterns [54]. Iteratively
utilizing 2D-DWT on the LL band helps to reduce feature size.

4.7 Principle Component Analysis (PCA)

PCA finds correlations across attributes and uses a strong variance pattern to
reduce data dimensions. In PCA, the given image is subtracted from the mean;
the covariance matrix is calculated using FMT , then eigenvalues and eigenvec-
tors are calculated. Eigenvectors that match up with certain high-magnitude
eigenvalues at a certain significant level are essential information about the
image’s variance. Equation 20 is used to figure out the PCA significance level.

ε =
∑m

i=1 λi∑n
i=1 λi

m ≤ n and 0 ≤ ε ≥ 1 (20)

here λi depicts the eigen value of ith order in order of amplitude and m ≤ n.

4.8 Deep-Learning Feature Engineering

Recent research has emphasized deep learning. Deep learning features are
extracted using a convolution neural network (CNN). A DNN was proposed to
retrieve patterns from high-dimensional data [27]. DNNs train slowly and over-
fit. Deep Belief Network [35]is used to tackle DNN challenges, with Restricted
Boltzmann Machine (RBM) for training features [42]. A joint learning algorithm
is used to combine geometry and appearance features [24].

5 Performance Analysis of Different FER Systems

The performance analysis of this review is based on the pre-processing, recogni-
tion accuracy on various datasets, feature extraction methods, contribution, and
advantages of different FER techniques. Table 2 shows a comparative analysis of
facial expression recognition techniques to better understand how complicated
and accurate the method is.

5.1 Conventional Learning-Based FER Analysis

LBP feature extraction and paired classification outperformed JAFFE with 99.05
accuracy [9]. Pairwise classifiers select features by class pair. Feature extraction
is more dependable because it doesn’t rely on manually or automatically assigned
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Table 2. Performance comparison based on different hand-picked feature engineering
(conventional learning) and deep learning approaches for facial expression recognition.

Authors Feature extraction, classification Dataset Accuracy
(%)

Conventional learning Islam et al. [22] HOG+LBP, ANN JAFFE
CK+

93.51
99.67

Kumar et al. [28] WPLBP, SVM JAFFE 98.15

Cossetin et al. [9] LBP, Pairwise Classifier JAFFE 99.05

Mehta and Jadhav [41] Log Gabor-+PCA-CNN JAFFE 93.57

Mollahosseini et al. [42] Intra Face DNN FER-2013 66.4

Xu and Zhao [69] LBP-CNN FER-2013 94.73

Aghamaleki et al. [3] LBP+Sobel-multistream CNN CK+ 98.18

Shan et al. [53] Haar like features, CNN JAFFE 76.74

Nazir et al. [44] HOG+DCT, KNN MMI 99.4

Kar et al. [26] HOG+PCA+LDA CK+ 99.2

Liu et al. [36] LBP+HOG CK+ 99.6

Tsai and Chang [57] DCT+Gabor Filter, SVM JAFFE 97.10

Ryu et al. [50] LDTP, SVM JAFFE
MMI

94.8
99.8

Nigam et al. [46] DWT+HOG, SVM JAFFE 71.43

Deep learning Alam et al. [4] Sparse deep recurrent model
(S-DSRN)

CK+ 99.23

Liu et al. [35] Boosted deep belief network (BDBN) CK+
JAFFE

96.70
93

Liu et al. [33] 3D CNN with deformable action
parts (3D-CNN-DAP)

CK+ 92.40

Liu et al. [34] CNN +SVM CK+ 93.50

Zhang et al. [76] Deep spatial-temporal networks CK+ 98.5

Kim et al. [27] Hierarchical DNN JAFFE
CK+

91.27
96.46

Happy et al. [21] Salient Facial Patches CK+ 94.09

Xie and Hu [68] DCMA-CNN CK+ 93.46

Yang et al. [72] De-expression Residue Learning
(DeRL)

CK+ 97.3

Yu et al. [74] Deeper Cascaded Peak- piloted
Network (DCPN)

CK+ 99.6

Pramerdorfer et al. [49] CNN FER-2013 75.2

Wang et al. [64] Pose generative-adversarial network
(PGAN)

FER-2013
JAFFE

71.1
95.7

Mahmoudi et al. [38] CNN based bilinear model FER 2013 77.81

Saurav et al. [51] Dual integrated convolution neural
network (DICNN)

FER 2013
CK+

72.77
96.68

Liu et al. [35] Boosted DeepBelief Net (BDBN) JAFFE
CK+

93
96.7

Turan et al. [58] Soft Locality Preserving Map
(SLPM)

CK+
JAFFE

96.10
91.8

Hamester et al. [20] Multi-channel Convolutional Neural
Network (MCCNN)

JAFFE 95.8

Gonzalez [16] CNN+SVM linear JAFFE 92

Ng et al. [45] CNN SFEW 55.6

Cai et al. [7] CNN SFEW 59.41

Zhao et al. [79] Global multi-scale and local
attention network (MA-Net)

SFEW 59.4

Fan et al. [15] Fusion of RNN and 3D CNN AFEW 59.02

Yan et al. [71] CNN and bidirectional RNN AFEW 56.66
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fiducial points. Islam et al. [22] used HOG, LBP features, artificial neural net-
work(ANN) classifier to get 99.67% accuracy on CK+ dataset. Feature fusion
gives promising results, and ANN employs the limited memory (L-BFGS) tech-
nique for weight optimization but the dimension increases. Principle Component
Analysis(PCA) is used to reduce dimension. Ryu et al. [50] extracted features
via Local Directional Ternary Pattern(LDTP), used classifier as Support vector
machine (SVM) and got accuracy 99.8% on MMI dataset.

5.2 Deep Learning-Based FER Analysis

Deeper Cascaded Peak-piloted Network (DCPN) [74] is achieved best accuracy
99.6% on the CK+ dataset, which is greater than other approaches in Table 2.
Mahmoudi et al. [38] developed a CNN-based bilinear model and outperformed
on FER-2013 dataset (unconstrained dataset) with 77.81% accuracy.

6 Conclusions

This paper present review of different features engineering techniques and pro-
vides detailed analysis including pros and cons of each techniques and compara-
tive study of benchmarking dtaset. The techniques are categorized into conven-
tional learning and deep-learning. Conventional learning including LBP, PCA,
Gabor filter, HOG, DCT, DWT etc. feature extraction techniques while deep
learning includes convolution neural networks and its variant for facial expres-
sion recognition. FER systems based on conventional learning and deep learning
are presented with the help of bench-marking datasets based accuracy. Hybrid
features provide a better recognition rate as compared to single features. This
paper analyzed the different FER techniques according to pre-processing, feature
engineering, classification, recognition accuracy, and critical contributions. The
success of the FER approach depends on pre-processing of the facial images due
to illumination and prominent feature engineering. Deep learning model perfor-
mance is significantly better than conventional learning for real-time datasets
but needs a huge amount of datasets and variability of images. The performance
of these algorithms improves with the amount of the dataset. JAFFE and CK+
datasets are most frequently used in FER systems, but they do not contain all
variability of real-time images. Although much research has been done on FER,
Identifying facial expressions in real life is difficult due to frequent movements
of the head and subtle facial deformations, and other real-time variability that
motivate researchers to provide their efforts to find a possible solution.
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