®

Check for
updates

Constraint Based Clustering Technique for Web
Services

Sumathi Pawar®™, Manjula Gururaj, Roopa, Nirajan N. Chiplunkar,
and RajaLaxmi Samaga

Nitte (Deemed to be University), NMAMIT, Karkala, Karnataka, India
pawarsumathi@gmail.com

Abstract. Web services are loosely coupled methods which need to be located
and used according to the requirement. Loose coupling nature of Web services
made the system to integrate or combine constituent Web services of a stan-
dalone business. A Web service application that can compose the Web service
from different organizations will have transactions that span the multiple services.
It is difficult for an application to create a software component and use it if it
is unlikely to be reused. Therefore, this system provides reusability feature that
allowed composing the Web services and these composable services are integrated
into an application. Service composing is an ability to combine Web Services into
complex applications to get the coarser grained behavior. The Web services may
contain more than one operation. These operations are required to be clustered
according to the required constraints. This paper is focused on constraint-based
clustering to group the Web services according to user request for faster access.
Constraint based clustering is a technique to integrate Web services according to
required constraints. The system performance is checked with real time available
Web Services during dynamic composition. This is a novel approach of clustering
due to dynamic technique of collecting data during run-time.

Keywords: Constraint based clustering - Web services - WSDL - Composite
services

1 Introduction

Constraint based clustering is a process of grouping the service operations according
to assumed conditions. Integration of operations is the process of connecting the oper-
ations according to the input requirements [16, 17]. To get large information through
a flow, it is required to compose Web services. Service designers create services for
independent reuse using bottom-up design. So single web service may not be sufficient
to satisfy user requests. Therefore, integration or composition of these modular Web
services/operations is necessary to develop an application for user requirement. For
example “invoice processing” service is a complex service which uses a “bank service”,
a “customer service”, and description of an item ordered. These services can be used
separately or together as complex service. The interaction among these services should

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Woungang et al. (Eds.): ANTIC 2022, CCIS 1797, pp. 89-107, 2023.
https://doi.org/10.1007/978-3-031-28180-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28180-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-28180-8_7

90 S. Pawar et al.

take care about service parameters like pre-condition, post-condition, type of web service
composition.

The core of the service composition is sequencing and correlation. If the system has
to understand the step by step operations of the business, the user must provide these
steps of operations and system must provide a technique to maintain information across
operations invoked, which is called as correlation. To fully automate the creation of a
composed Web Service application, the user need additional information such as service
availability, response time and service quality information. It is difficult to get these
information without service execution (no UDDI). In early days QoS information of the
Web services was stored by UDDI. Because of the absence of UDDI it is possible to get
QoS information such as availability, response time and security information only after
execution of the services.

The existing systems used to pass the transaction context from service to service
are Business Transaction Protocol (BTP) from OASIS, WS-Transaction from IBM and
Microsoft and Activity Service from OMG that provide reliable outcomes. JTS and JTA
transaction managers are used to manage and coordinate distributed, ACID transactions.

1.1 Web Service Composition

In this research, Web service composition is also referred as integration. Composition
models are organized into three dimensions-orchestration, choreography and coordina-
tion. Composition language like WS-BPEL (Web Service Business Process Extraction
Language) can be relatively translated onto classes of formalism like automata, Petri
net, process alzebra and other formalisms.

But the proposed research is not using UDDI registry as the third party because of
unavailability of public UDDI registries. [16, 17] Instead, this research is using Bingo
search engine technique. The user of the proposed system gives the required functional
word as a query to the search engine in the form “functional_word?wsdl” during run-
time. Then the search engine returns various links of WSDL to related services. The input
parameters of the operations of these WSDL are compared with user queried parameters
and those having non-zero support value are considered.

1.2 Web Service Description Language

The WSDL describes the service which belongs to service description layer.
This layer describes the three aspects of the web services.

e Operations of a Web Service
e Messages of the service that accepts
e Binding protocols to access the service

Web services are described by the Web Service Description Language (WSDL)
by which the service consumer is able to discover a set of useful operations. In this
research, WSDL’s abstract descriptions and concrete descriptions are processed to get
service information for satisfying the user request or for integration of the service.

Constraint Based Clustering Technique for Web Services 91

1.3 Location Transparency

According to the Web service concept, service environment achieves location trans-
parency because the location of Web service is stored in a registry. But service registry
UDDI is not public as specified in the literature review. In this research UDDI is not used.
But location transparency is achieved by the Bingo search engine which finds the ser-
vice even though the service is moved from one location to another. Bingo searches the
WSDL of the service and even though service is moved from one plat-form to another,
no changes to the client application is necessary.

1.4 Scalability and Availability

This system is scalable because at the client side, client only knows interface of the
service and not its implementation. At the server side any number of services can be
added without overhead at the client application. In this system, availability of the service
is high because even though one service fails, other similar service’s information are
stored in the cluster and used for satisfying the user request.

1.5 Dynamic Web Service Discovery

The constraint based clustering is helpful in discovering Web services dynamically.
Exiting researches were discovering Web services using UDDI. According to the sur-
vey conducted, it is practically checked that UDDI is absent since the year 2006. This
motivated our research to use search engines. The search engine used in this system is
Bingo. The search result retrieved from the Bingo gives discovered information of the
Web services from all the servers in World Wide Web in the form of WSDL. The search
query that can be given to the search engine is prepared according to the user given
request during run time, which makes the system dynamic.

1.6 Dynamic Web Service Invocation

Clusters which stores the operations are helpful in dynamic service invocation which
is done at run time by filling the required parameters for invocation of the Web service
dynamically. The parameters need to be filled are according to the user requested function
and matched parameters are extracted from suitable WSDL of the Web services and
populated in the place of the unknown parameters. The entire process is automatically
executed and input parameters are asked from the user if user knows it. In the proposed
research, human interaction is required only to enter the input parameter’s value if input
is known to the user. Or else, this system automatically searches the unknown input
by using available Web services. These values are searched automatically in the online
World Wide Web to satisfy the user requests. This reduces the burden of the user filling
the unknown parameters of the required Web services.

92 S. Pawar et al.

1.7 Automatic and Dynamic Web Service Composition or Integration

The proposed constraint algorithm is also helpful in integration of the Web services
that involves the task of service search, service selection and the connecting required
operations of the Web services. The connecting of different operations is done only
when it is required to resolve the values of unknown parameters which are resulted into
the Web service composition. Many existing researches did service composition using
different techniques, which need some prior information about the selection of services.
But in the proposed research, without any knowledge-base, Web services are composed
or integrated according to the requirement of the user which makes the system fully
dynamic. In the proposed system, to overcome dynamic nature of the Web services,
search of composable service is performed automatically by using search engines to get
the available online Web service operations through clusters.

1.8 Automatic Web Service Execution Monitoring

The proposed provides clusters with input parameters and operation names of Web
services. In the existing researches, the automatic service execution is not resolved by
filling the parameters dynamically. The monitoring of the service execution is necessary
to get information about the availability of services and the response time. Now a day
due to absence of UDDI, no source like UDDI gives information about the QoS of the
services. This information are noted during execution of Web services and stored in the
repository, so that these information are used in the future during the composition of the
Web services. The failing of the service execution is also recorded, so that in future the
same service is not used and instead other similar services may be used. The composition
plan generated in this system is tested for availability and response time and gives QoS
to future requests.

1.9 Scope of the System

The proposed system is implemented as client for using existing online Web services.
This research is implemented for information retrievable online Web services and not
for transactional Web services. Because transactional operations cannot be implemented
without co-ordination between executions of operations and there are no such free
transactional Web services.

There are very limited WSDL described Web services available in the online nowa-
days and most of these services are information retrievable Web services. Therefore
scope of the system is information retrievable Web services and the present system is
beneficial only when there are composable Web services available in the online. By con-
sidering the atomicity of the operations, Web services are maintaining fine grained level
of information. Hence scope of this system is, also to get coarse grained information by
dynamically composing the operations.

2 Literature Survey

[1] Authors proposed Ontology based context models for context aware applications.
They provided a discovery algorithm which matches the requested word with service

Constraint Based Clustering Technique for Web Services 93

Ontology and which gives best matched service to the user. Authors considered location,
time, person or agent as key contexts and included service Ontology in Context broker
architecture.

[2] Each incoming request randomly chooses the one k dominating services to
respond to the request. The Web services selected by top-k dominating services reduce
the computation space instead of selecting the best solution. When concurrent requests
are given to the same service, response time of that service may reduce due to many
reasons. But in this system as k increases, the time of retrieving top-k dominating service
also increases. Hence the response time of this system also increases. Authors provided
an algorithm for selection of top k dominating Web services by calculation of the scores.
But the cost of calculating the score of the Web services depends upon the efficiency of
the algorithm and in order to quickly obtain the top k dominating services, they aggregate
R-tree (aRtree). But in the proposed research, selection of Web services depend on user
opinion, and hence user interaction is very important in the selection of Web services.

[3] The quality of Service is a factor to enhance the efficiency of Web Services. Tech-
nical quality and managerial quality are 2 kinds of qualities of Web services. The opera-
tional aspects of Web services are called technical quality. Technical quality deals with
performance, response time, reliability, latency, execution time, throughput, depend-
ability, availability, reliability, failure semantics, failure masking, operation semantics,
exception handling, compensation, robustness/ flexibility, capacity, scalability, security,
continuous availability, compliance, reputation/positive feedback and network related
QoS. The managerial qualities deal with management information such as ownership,
contact, payment etc.

But no such QoS parameters are available nowadays for real-time Web services
because of a permanent shutdown of UDDIs. Therefore the proposed system could
not use QoS parameters, instead it gives user satisfaction as feedback to rank the Web
services.

[4] Depending on the nearest location of the service, service invocation is done to
minimize data transmission time and cost. They did it by first selecting the k number of
abstract services’ service library, and then from each group selecting the one candidate
service. But they assumed that service is gathered as a set of services within one area
and not randomly distributed. By considering the returning time of service result, they
calculated the distance of the service from the consumer.

[5] Maintenance of RESTful Web service is easier than the maintenance of SOAP-
WSDL Web services. RESTful web services communicate using XML files and HTTP-
GET and SOAP-WSDL Web services communicate using HTTP-POST. Authors proved
that maintenance of RESTful web services at server side is easier than SOAP-WSDL
Web services because they are light weight.

[6] TESSI, a tool based on TASSA, is a solution for WSDL-based testing of both
single and composite web services. Test cases are defined in the XML form and each test
case has two parameters, test case name and test case template. TASSA carries out the
tasks such as identification of service operations, the creation of SOAP request messages,
the definition of assertions at BPEL variable level, execution of test cases with sending
and receiving of SOAP messages and collection of test outputs for result analysis.

TASSA framework tests the Web services for not only functional correctness but also
for performance. Black box testing for BPEL is also followed which checks end-point
orchestrations. Execution of test cases provides details about the behavior of the service.

94 S. Pawar et al.

Isolation tool, Data Dependency Analysis tool, Value Generation Tool, Injection tool
and Test Case Generation tool are different tools available in TASSA framework. But
the tool is applied only during design time testing of service Oriented Applications.

[7] The network usage is better than WS-Management, because the size of SOAP
request and response messages is larger in WS-Management than in SNMP. But in Web
Service-based management middle-ware models they managed single service at a time
and not considered complex composite services. In the proposed research, the network
load will be reduced because of usage of MOLAP to handle big size of WSDL of single
Web services.

BPMN [8] modelor and tactic models are created to specify different steps of the com-
position and each tactic is implemented by service operations. Discovering the require-
ments are affected by unknown context is handled by creation of rule. Observation of
context and collection of context information is done by Evalution planners.

But creation of composition models is static in nature which does not handle the
dynamic requirements without the knowledge of context. The proposed research handles
dynamic requirement by dynamic searching of Web services and by generating dynamic
composition plans.

[9] In a sensor network performance of REST is better compared to SOAP, and it
is recommended by equipment vendors to use RESTful Webservices for applications
consuming embedded resources. But the proposed system works on only information
retrievable services which are able to provide secured data transfer for future works.
Therefore this system is not using RESTful Web services.

[10] The combinatorial optimization problem is composed by many services to build
Service Networks that satisfy many requirements based on cost-effectiveness. Execution
Time, reliability and price of services are used as QoS parameters. The performance is
measured based on single requirement and also based on multiple requirement. This
system uses Service Network as a tool which gives number of connections between
services and the QSC approaches, which provides global QoS performance. Performance
of the system is measured with total benefit and execution time. But in the proposed
research, service execution performance is increased using MOLAP data model.

Due to removal of some Web services and change of information such as change of
transaction fees, the authors created the concept of [11] change management of long term
composition [12]. The failure in distribution of reputation values is that, the component
Web service is never be penalized for poor performance of other peer component Web
services. This is done by reputation propagation by changing the behavior of the indi-
vidual services and thus increasing the reputation of the composite Web services. They
divided the service composition into horizontal composition, vertical composition and
hybrid composition. Web service composition is done by an agency which distributes
the reputation values fairly. Here reputation is consumers perception about Quality of
Service such as performance, reliability and availability, about the service they invokes.
But when the consumer invokes composite Web service, their perception will be about
composite Web services and these perceptions will not be about component Web ser-
vices. Therefore average of reputation value is computed and distributed to component
Web services. Reduction of reputation values are handled by composition orchestrator
and perform the decision in finding the malicious Web services. It is a very important
role of orchestrator to make decision.

Constraint Based Clustering Technique for Web Services 95

[13] Another important issue of QoS is Trust based management of Web service
which is divided into different types-Policy-based trust, Reputation-based trust etc. Trust
Metrics given for the Web services are Execution Time, Response Time, Latency, Avail-
ability, Reliability and Remedies. As given in the survey WS-POLICY is the policy
document that provides the policy-information and reputation is based on user percep-
tion reputation of the Web services [14]. In existing system, term pairs are entered in
the Google search engine and snippet retrieved from Google search engine is used to
get association of words such as “apple computer”, “hardware software” etc. They cat-
egorized those terms into particular contexts and then generated the context vectors by
computing the TDF/IDF values. This context is used to calculate the service similarity.

In proposed system, after extracting the WSDL elements of Web services, the ele-
ments such as service name, operation name, input and output features are compared
to the service elements of the cluster of the Web services. Precision, recall and F-
Measure are the factors used to measure the performance of the system. In the proposed
research, every component Web services’ availability and performance time is recorded
and do not depend on one centralized system. In the proposed system, QoS factors are
recorded during each Web service composition and current values are considered for
next transaction.

3 Clustering Web Services with Constraint-Based Clustering

In this algorithm the WSDL links of each requested functional words are given as input
to the procedure named constraint Based Clustering. The operations of each service are
compared with each other for exact, partial and synonym matching factors and stored in
the appropriate clusters as given in the pseudo-code below.

Procedure constraintBasedClustering(RetrievedWSDL _Links)

Step 1: Initialize I to 0

Step 2: For each WSDL_Links of RetrievedWSDL_Links extract i" service name

Step 3: Extract operation names for i service

Step 4: Keep the operations in the i" cluster : i=i+1

Endfor

Step 5: initialize j to 0

Step 6: For each j" operation of cluster

Step 7 : Apply Decomposition Rules on j" operation and store functional part of operation name in sourceOp:
k=0

Step 8: for each K" operation of the cluster

Step 9 : Apply Decomposition Rules on k" operation and store functional part of operation name in destOp

Step 10 : If sourceOp and destOp exactly matches then

Step 11 : store destOp in ExactMatchingCluster(j) : j=j+1

Else

Step 12: if sourceOp and destOp matches partially then

Step 13: store destOp in partialMatchingClusters(i) : j=j+1

else

Step 14: Retrieve words similar to destOp from Wordnet and store it in SynonymWords

Step 15: For each synonym of SynonymWords

Step 16: Compare sourceOp to synonym

Step 17: If matches then store destOp in synonymMatchingClusters(j) ;j=j+1

Step 18 : Break :Endif: Endfor: Endif : Endif : k=k+1: Endfor: Endfor : End Procedure

Fig. 1. Constraint based clustering

96 S. Pawar et al.

The constraint-based clustering is algorithm shown in the Fig. 1. The flow of this
clustering process is shown in the Fig. 2. In this clustering, the operation names of
retrieved WSDL links of requested functional word are stored in the cluster C1 initially.
After applying decomposing process to operation names of each operation, the clusters
are formed as shown in the pseudo code of the Fig. 2.

As an example input to the proposed system, consider the user requested function
is “Weather”. The different WSDL links retrieved for this request are given in the Table
1 of Sect. 5. Among the operations of the “GlobalWeather” service, the operations
“GetWeather” and “GetCitiesByCountry” are to be tokenized using decomposition rule.
The sets generated are S1 = {Get, Weather} and S2 = {Get, Cities}. In the operation
“GetCitiesByCountry” the token after the stop word “By” is “Country”. This token is
considered as input token and stored in the input set of this operation.

The requested function “Weather” is compared with the tokens of first set S1. If it
matches exactly to any token, then the <operation> name belong to this set is stored
in the exact matching cluster of this service. Otherwise if it matches partially, then the
<operation> name belong to this set is stored in the partially matched clusters of this
service.

If in both situations if the requested token does not match, then words similar to
the <operation> name element is retrieved from the Wordnet dictionary and compared
against the user requested functional word. If any of the synonym word matches to the
user requested function exactly, then this <operation> element is stored in the synonym
matching clusters of this service. Finally all the exact matching clusters are merged
together. Similarly the partially matching and synonym matching clusters also merged.

In the “getWeather” operation, the “Weather” token of the set S1 is matched with the
requested functional word “Weather” exactly. Since “GetWeather” operation is stored in
the exact matching clusters. There are no matching tokens in the set S2 for the requested
functional word.

Each operation name is Decomposed first. Care is taken when stop words are removed
because the operation name “GetWeatherByZipcode” and “ZipcodeToCityState” are not
similar operations even though it contain “zipcode” as common word. Therefore when
tokenizing the operation names, the words like “By”, “To” are interpreted properly. The
operation names which have tokens before “By” are interpreted as operation name and
tokens which come after “By” are interpreted as input names. The names of the operations
which come before the “To” are treated as input parameter name and parameters which
come after the “To” are operation names. Therefore these two operations belong to
different clusters.

The operations of other semantically matched service for “Weather” request are
operations of “WeatherForecast” service i.e. “GetWeatherByZipCode” and “GetWeath-
erByPlaceName”. Here token sets of these operations are S1 = {“Get”, “Weather”} and
S2 = {“Get”, “Weather”} respectively. These tokens exactly match with the requested
functional word and stored in the exact matched clusters. Tokens after the stop word
“By” are “ZipCode” and “PlaceName” are considered as sets of inputs of respective
operations.

The flow of forming the cluster of operations of retrieved WSDL links are shown in
the pseudo code of Fig. 2.

Constraint Based Clustering Technique for Web Services 97

C1 = Cluster of Retrieved WSDL links of requested functional word.

CO(k) = k™ Cluster of operations of services of k™ WSDL link where k ranges from 1
to n and n is an element of finite set of natural number.

CEM(k) = k' Cluster of exactly matching operations to the functional word.

CPM(k) = k'™ Cluster of partially matching operations to the functional word.
CSM(k) = k' Cluster of synonym matching of operations of this service to requested
functional word.

Here exact matching (CEM(k)), partial matching (CPM(k)) and synonym (CSM(k))
matching clusters are three constraint based clusters formed through this process.

The clustering process with score is shown in the Fig. 3.

At first each of the WSDL link is considered to extract operation names. Each
operation name is decomposed and requested functional word is compared with decom-
posed tokens. The cluster of exactly matching services CEM(k) stores the operations
which exactly matches to the requested functional word. The weight given to the
tokens/operations matches exactly is 0.5. The partially matching operations to the func-
tional word are given by weight 0.3 and stored in the cluster CPM(k). The synonym
matched operations to requested functional words are stored in the cluster CSM(k) and
weight given to synonym match is 0.2.

Initially all the operations of the service; to service, of retrieved WSDL links are
stored in the cluster called C; to C, Where n is the element of finite set of natural
numbers.

Then requested functional word is compared with the decomposed operation names
of Cx and if requested functional word matches exactly then that operation name will
be stored in the CEM(k).

If Requested functional word does not match exactly to any operation of Ci then
CPM(k) and CSM(k) are formed for partial matching and synonym matching where k
is the element of finite set of natural numbers.

All exactly matching operations are merged into exact matching clusters. This CEM
cluster gives all exactly matching operations to the requested functional word. All syn-
onym matching operations are merged into synonym matching clusters and all partial
matching clusters are merged into partial matching clusters. If exactly matching clusters
are empty for a functional word then partial matching clusters are considered. If partial
matching clusters are also empty then synonym matching clusters are considered. If all
the clusters are empty then it is concluded that requested functional words does not exist
as Web services in the online.

During selection of matched operations, if no operation is matched exactly then the
partial matching operations are retrieved from already framed partial matching clusters.
If partial matching clusters are empty then operations from synonym matching clusters
are retrieved.

3.1 Clustering for Integration of Web Services

Some of the operations of a service can form a cluster because these operations are linked
to each other and are integrated according to the user requirement. Different types of
clusters formed are given in the following sections.

98 S. Pawar et al.

Store Retrieved WSDL links of requested

functional word in Cluster C1 and initialize k to 1

1l

N Apply decomposition rule to all operations
of service of k™ WSDL link to get functional

10

Form the Cluster CO(k) for the
operations of services of k™ WSDL link
M
= >

Form the cluster CEM(k) for exactly

matching onerati(ms,m' the functional word

Form the cluster CPM(k) for partially

matching operations 't_o| the functional word

Form the cluster CSM(k) for the synonym

matching operations to the functional word
1

Is k<=number
of services of Cl

A

Increment k by 1 and repeat | Merge all CEM clusters |

the above processes ¢

| Merge all CPM clusters |

!

| Merge all CSM clusters |

v

Merge all CEM, CPM, CSM

clusters into single respective

matching clusters

Fig. 2. Flow of process of clustering of operations which matches functional word through
constraint-based clustering.

3.1.1 Self link Clusters

One of the constraint used in this research is, all operations of a service which are
supplement to each other are belong to the same cluster. This is shown in Table 2
where all operations of a particular Web service are given together. For example in

Constraint Based Clustering Technique for Web Services 99

Decomposed functional word of

operation names of retrieved WSDL links

Cluster

Cluster of
Operation of

Operation of

. servicen — Cn
servicel - C1

Merged
CSM

Fig. 3. Exact, partial and synonym matched constraint based Clustering

“GlobalWeather” service the operation “GetWeather” and “GetCitiesByCountry” are
related because for GetWeather operation inputs are “CityName” and “CountryName”.

To get information about names of cities of different countries it is required to
invoke the operation “GetCitiesByCountry”. Therefore both “GetWeather” and “GetC-
itiesByCountry” will be belonging to one link-based cluster. This is justified by
comparing input elements of “GetWeather” with <operation>/<output> elements of
“GetCitiesByCountry”.

Each input element of the all the operations of the required service are compared with
<operation>/<output> elements of all the remaining operations of the same service.
Clusters will be framed for operations which are supplement to each other within the
same service for getting the value of input of operations. This type of clustering is called
self-link clustering. In the self link clustering the input of particular operation is satisfied
by output of other operations of same services (Fig. 4).

3.1.2 Output-to-Input Linked Clustering

The output-input linked clusters contain operations which are linked together. The ser-
vices which require to get the input from the output of operations of other services are
gathered into a cluster called output-input linked clusters. Comparing the input elements
to the <operation>/<output> elements is done by exact matching function.

In the Fig. 5 the following abbreviations used.

CS — Composit Service.
CS1 — “Inputl of the Composit Service”.
CS2 — “Input2 of the Composit Service”.

100 S. Pawar et al.

Servicel

Fig. 4. Self-link clusters

CEM(O1) of similar

operations O11, 021..0nl

Output of
Selected Operation
to input1(O1) of CS

CEM(02) of similar
012, 022..0n2

Output of

Selected Operation to
input2(02) of CS

Fig. 5. Output to input linked clusters

CEM(O1) — “Cluster of exact matching operations which has matching output to the
inputl of composit service”.

CEM(02) — “Cluster of exact matching operations which has matching output to the
input2 of composit service”.

CEM(O111) — “Cluster of similar operations which matches inputl of operation O11”.
O1 — “Operationl which matches inputl of CS”.

02 — “Operation2 which matches input2 of CS”.

O1111 — “Operation] which matches inputl of the operation11”.

Onl11 — “Operation which matches inputl of the operation11”.

01122 — “Operation] which matches input2 of the operation12”.

On122 — “Operation which matches input2 of the operation12”.

Constraint Based Clustering Technique for Web Services 101

The above Fig. 5 shows the output-input link based clusters which have similar
services of different community. Consider the composite service CS which has unknown
input value for both inputl and input2. When there is a search for inputl it is called as
composit search1 (CS1) for inputl and when there is a search for input2, then it is called
as composit search2 (CS2) for input2.

In the Fig. 5 which shows output-input link based clustering, the similar operations
which match the inputl of CS (complex service), form the cluster CEM (O1). From this
cluster, suitable operation is selected by using weight matrix of WSDL. The cluster CEM
(O1) gives similar operations O11, O21...0nl which matches the inputl of complex
service CS. The value of another input of complex service (CS2) is also unknown. The
cluster CEM (02) includes similar operations O12, 022..0n2 (n operations) which have
matching output to the input2 of complex service(CS). The cluster of similar operations
CEM (O111) gives matching operations which have the output that matches to the name
of inputl of the operation O11.

4 Implementation

This research is implemented by using existing Web services in the online. The Web
services can also be created in the local server. To create the Web services in the local
server the Tomcat server is used in the proposed system. In one Tomcat instance, one
service is started. Number of Web services is kept in the run mode in different instances
of Tomcat Web server. Each Web service is running in the one instance of the Tomcat.
But because of bottleneck of the capacity of the server, thousands of Web services cannot
be kept in the run-mode simultaneously. For this purpose number of servers are required.
Therefore it is recommended to use available online Web services. But available online
Web services consume enough bandwidth to retrieve WSDL and more storage space to
process and store the WSDL elements.

This research is implemented in Java Eclipse framework with 8 GB Ram and i5
processor. Code is written and executed for real time Web services. To store the operation
elements of WSDL in the, it is required to extract operation elements from the WSDL.
The <operation> element is extracted from the WSDL using.

WSDLHelper.GetOperations(portTypes) statement.

The portTypes is the element of WSDL which contains set of operation elements.
The portTypes is extracted by using the statement.

portTypes = WSDLHelper.getPortTypes(WSDLdefinition).

Each operation is to be iterated and stored in the cluster using opera-
tion_keylevel2[cnt][count] = Searchops.get(count).getName() statement.

The input parameters are stored using the statement.

inputlevel3[cnt][count][j] = WSDLHelper.getinMessageParts(Searchops.get
(count)).

The above statement stores the input parameters of the searched operations. If the
input parameters store correct parameter names, then it is helpful to the user to enter
the value of input parameters. If the input parameter names are given as “parameters”
in WSDL, then the real input parameters’ names are obtained by mining same opera-
tion name’s binding information. It is already observed from the WSDL data set that,

102 S. Pawar et al.

unknown input parameters can be mined by different binding information of the same
operation.

Code snippet to interpret the input parameter names from the <operation> element

String s = Searchops.get(count). ge[Name(;. toString(); //To get searched operation
String[] r = s.split("(?=\\p{Upper})"); // To split according to Camel Case
Sor(int i=0;i<r.length;i++)

{

iftr[i].equalsignoreCase("By"))

{String[] r2 = s.split("By");
inpString=r2[1];
break;}

else
iftr[i].equalsignoreCase("To"))
{String[] r2 = s.split("To");
inpString=r2[0];
break;}
else
inpString="parameters"; }}
else

inpString=Require_Input_List.get(j).getName();

Fig. 6. Code snippet to extract input parameters from operation names of the Web servic

This code snippet of Fig. 6 splits the operation name according to the camel case.
For example if the operation name is “GetWeatherByZipcode” then it is splitted as Get
Weather By Zipcode. If the operation name is “CityStateToZipcode” then it is splitted
as City State To Zipcode. Here the word after “By” and word before the “To” are input
parameter. This word is stored in the place of unknown parameter name.

As a search result, Web services with “UsZip” and “AddressLookup” services
are received as results. In this “UsZip” service is matched partially to the “zipcode”.
Therefore the operations of this service “GetInfoByAreaCode”, “GetInfoByZIP”, “Get-
InfoByCity” and “GetInfoByState” are listed and shown to the user. Among these oper-
ations if the user selects “GetInfoByZIP” then the input parameter “UsZip” is unknown
to the user. Therefore, this operation cannot give required output and the user has to
select “GetInfoByCity” where the output parameter is “Zipcode” and input parameter is
“City”. This operation matches with the unknown element because the search technique
found the unknown input in the output of this operation element.

When the operation selected by the user is “GetInfoByCity”, then the input parameter
of this service “UsCity” is shown to the user and user is allowed to enter the city name. If
the city name is entered by the user then the system invokes “GetInfoByCity” operation
of the “USZip” service and returns the result. The returned results are very large and are
in the XML form which has more than 300 rows of zipcodes of different areas. But there
will be a deserialization problem in getting these results because some of the XML data

Constraint Based Clustering Technique for Web Services 103

types of these results cannot be deserialized by the java data types. Therefore invocation
of “UsZip” service results in the exception and fails in returning results. Hence the query
for the same service with populated operation name and input parameters are given as
URL in the browser in the following form.

URL = http://www.webservicex.net/uszip.asmx/GetInfoByCity?UsCity=Washin
gton

At first the above query is stored in the URL object and given through the J2EE API
as

BufferedReader in
(URL.openStream()));

The above method creates the buffer to store the results and XML results will be
processed to extract suitable data.

new BufferedReader(new InputStreamReader

5 Results

The below Table 1 shows the links retrieved for the request and returned results’ operation
names are clustered using constraint-based clustering technique. Support and confidence
of search precision is calculated.

Table 1. Links of retrieved WSDL links for request Weather?wsdl

Requested word | Service name Retrieved WSDL links
Weather GlobalWeather http://www.webservicex.com/globalweather.
asmx?WSDL

TemperatureConversions | http://webservices.daehosting.com/services/Tem
peratureConversions.wso?WSDL

WeatherForecast http://www.webservicex.net/WeatherForecast.
asmx?WSDL

CurrencyConvertor http://www.webservicex.net/CurrencyConvertor.
asmx?WSDL

Service http://www.ejse.com/WeatherService/Service.
asmx?WSDL

Servicel http://www.tempe.gov/wx/Default.asmx?WSDL

Figure 7 shows the graph of support(S) value of integrated/composed web services to
give result of complex web services. Here request given by user is weather of a country
of unknown input parameter value. Then this unknown input parameter will be resolved
by the system with the help of constraint-based clustering. The result gives 40%, 60%
and 40% support values with the real time web services for different composition plans.
Support and confidence value of composition is increased if there is a greater number
of similar services available during runtime.

http://www.webservicex.net/uszip.asmx/GetInfoByCity?UsCity=Washington
http://www.webservicex.com/globalweather.asmx?WSDL
http://webservices.daehosting.com/services/TemperatureConversions.wso?WSDL
http://www.webservicex.net/WeatherForecast.asmx?WSDL
http://www.webservicex.net/CurrencyConvertor.asmx?WSDL
http://www.ejse.com/WeatherService/Service.asmx?WSDL
http://www.tempe.gov/wx/Default.asmx?WSDL

104 S. Pawar et al.

Table 2. Cluster of Operations and input parameters of retrieved WSDL links for request

Weather?wsdl

Service key Operation name Input parameters

Weather Get_Weather Parameters
Get_Cities_By_Country Parameters
Get_Weather CountryName CityName
Get_Cities_By_Country Country
Get_Weather CountryName CityName
Get_Cities_By_Country Country

WeatherForecast GetWeatherbyPlaceName Parameters PlaceName
GetWeatherbyPlaceName PlaceName
GetWeatherbyPlaceName Parameters
GetWeatherbyZipcode Zipcode
GetWeatherbyZipcode Zipcode
GetWeatherbyZipcode

Composable Web services for "weather" request

70%
60%
50%
40%
30%
20%
10%

0%

u CityStatetoZipCode-->
GetWeatherByZipCode

u GetCitiesByCountry-->
GetWeater

GetInfoByState-->
GetHumidity

Support

Fig. 7. Support of multiple composition plans using constraint based clustering

Precision, recall and f-measure are calculated using Eqs. 4, 5 and 6. As shown in
the graph of Fig. 8, performance is calculated in percentage values. Precision is 58%,
recall is 59% and F-measure is 52% for a particular request. This performance varies for
different requested Web services according to user requirement.

Constraint Based Clustering Technique for Web Services 105

Performance of Constraint Based Clustering

60
58
56
54
52
50
48
46
44

Percentage values

Precesion Recall F-Measure

Fig. 8. Performance of constraint based clustering

6 Analysis

In this research using constraint-based clustering, service composition is achieved with
following performance factors.

6.1 Support and Confidence of Search Precision

To measure the precision of WSDL retrieval, support and confidence factors are used.
The precision is given with the following equation
Retrieved N relevant

Precision = . (D
retrieved

The search precision of retrieved matched WSDL from the Bingo search engine is
calculated as dividing the count of relevant WSDL by count of retrieved WSDL.

In the same way support and confidence of matched operation in the retrieved Web
services are calculated in Eq. 2 and Eq. 3 as

count of matched term in any element of WSDL

S t = 2
UPpor count of retrieved WSDL @
Count of requested functionality in operation element

Confidence = - 3)

total number of operations

Retrieved N relevant
Recall = “4)
relevant
2«xPrecision * Recall

F-Measure = (®))

(Precision + Recall)

Performance of this system varies according to real time available services because
this is dynamic real time Web service clustering system.

106 S. Pawar et al.

Equation 6 gives support(S) of multiple composition plans [1] of real time Web
services using constraint based clustering

Number of Web services invloved in the composition

S = - . (6)
Total retrieved WSDL links

It is found that constraint-based clustering is a novel approach and constraint can
be changed according to the requirement. Other techniques for integrating the web
services includes WS-BPEL which requires separate tool and also it is static version of
the composition. But our proposed research is dynamic version of composition method
which produces output according to run-time requirement of user.

7 Conclusions

Existing systems are focused on clustering of Web services using machine learning
which produces models of context from the terms retrieved from the Web. The training
of SVM is done separately for each domain. This system uses the result snippet of the
search engines manually such as Wikipedia and Google to get retrieved results. But the
proposed system processes the search results of search engine automatically and uses
search precision and response time for measure the performance of the system.

The usage of constraint-based clustering in the proposed system not only increases
the performance in terms of speed but also saves the storage space. WSDL is big in size
which has several elements. Storing all the retrieved WSDL elements consumes more
storage space. Retrieving WSDL every time through the internet increases the bandwidth
consumption. Hence the proposed system saves the usage of internet in retrieving the
remote WSDL and made the system more efficient compared to other systems. Invocation
of Web services requires service name element, operation element, input element, target
namespace and WSDL link of the suitable Web services. The usage of this technique
to store these elements makes the system more efficient because this occupies very less
space. It is known that service has different operations and the operation has different
input elements which are stored in the cluster. Retrieval of elements of cluster is fast
because no need to process the entire WSDL to extract the required elements.

References

1. Sumathi, Pandith, K., Chiplunkar, N., Shetty, S.: Dynamic search and integration of Web
services. In: Choudrie, J., Mahalle, P., Perumal, T., Joshi, A. (eds.) IOT with Smart Systems.
Smart Innovation, Systems and Technologies, vol. 312, pp. 613-625. Springer, Singapore
(2023). https://doi.org/10.1007/978-981-19-3575-6_60

2. Zhang,J.,Zhong, F., Yang, Z.: Efficient approach to top-k dominating queries on service selec-
tion. In: Proceedings of the 6th IEEE Joint IFIP Wireless and Mobile Networking Conference
(WMNC), Dubai, pp. 1-8(2013)

3. R-tree an Article About Data Structure. https://en.wikipedia.org/wiki/R-tree. Accessed 25
Oct 2013

4. Li, Y., Luo, Z., Yin, J.: A location-aware service selection model. Int. J. Serv. Comput. 1(1),
52-66 (2013). IEEE

https://doi.org/10.1007/978-981-19-3575-6_60
https://en.wikipedia.org/wiki/R-tree

13.

14.

15.

Constraint Based Clustering Technique for Web Services 107

. de Oliveira, R.R., Sanchez, R.V.V.: Comparative evaluation of the maintainability of RESTful

and SOAP-WSDL web services. In: Proceedings of 7th IEEE International Symposium on
the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA),
Eindhoven, Netherlands, pp 40-49 (2013)

. llieva, S., Pavlov, V., Manova, 1., Manova, D.: A framework for design-time testing of service-

based applications at Bpel level. Serdica J. Comput. 5, 367-384 (2011)

. Lu, Z., Jie, W., Patrick, H.: Web services standard-based system resource management mid-

dleware model, scheme and test. Int. J. Serv. Comput. (IISC) 2(1), 25-44 (2015). ISSN
2330-4472

. BPMN2 Modeler. https://www.eclipse.org/bpmn2-modeler/. The Eclipse Foundation Copy-

right© 2016. Accessed 12 Mar 2013

. Lee, S., Jo, J.-Y., Kim, Y.: Environmental sensor monitoring with secure restful web service.

Int. J. Serv. Comput. 2(3), 3043 (2014). ISSN 2330-4472

. Wang, Z., Jing, N., Xu, F, Xu, X.: Cost-effective service network planning for mass

customization of services. Int. J. Serv. Comput. 2(4), 15-27 (2014). ISSN 2330-4472

. Liu, X., Bouguettaya, A., Yu, Q., Malik, Z.: Efficient change management in long-term

composed services. Int. J. Serv. Orientat. Comput. Appl. (SOCA) 5(2), 87-103 (2010).
Springer

. Nepal, S., Malik, Z., Bouguettaya, A.: Reputation management for composite services in

service-oriented systems. Int. J. Web Serv. Res. 8(2), 1-26 (2011)

Joseph Manoj, R., Chandrasekar, A.: A literature review on trust management in web services
access control. Int. J. Web Serv. Comput. (IJWSC) 4(3), 1-18 (2013)

Kumara, B.T.G.S., Paik, 1., Koswatte, K.R.C., Chen, W.: Improving web service clustering
through post filtering to bootstrap the service discovery. Int. J. Serv. Comput. 2(3), 1-13
(2014). ISSN 2330-4472

Sumathi, Chiplunkar, N.N., Ashok Kumar, A.: Dynamic discovery of web services. IJITCS
6(10), 56-62 (2014). ISSN: 2074-9015. https://doi.org/10.5815/ijitcs.2014.10.08

. Sumathi, Chiplunkar, N.N.: Necessity of dynamic composition plan for web services. In:

Proceedings of 2015 International Conference on Applied and Theoretical Computing and
Communication Technology (iCATccT), Davangere, pp. 737-742 (2015)

. Sumathi, Chiplunkar, N.N.: Populating parameters of web services by automatic composition

using search precision and WSDL weight matrix. IICSE (2018, in press). ISSN:1742-7193

https://www.eclipse.org/bpmn2-modeler/.
https://doi.org/10.5815/ijitcs.2014.10.08

	Constraint Based Clustering Technique for Web Services
	1 Introduction
	1.1 Web Service Composition
	1.2 Web Service Description Language
	1.3 Location Transparency
	1.4 Scalability and Availability
	1.5 Dynamic Web Service Discovery
	1.6 Dynamic Web Service Invocation
	1.7 Automatic and Dynamic Web Service Composition or Integration
	1.8 Automatic Web Service Execution Monitoring
	1.9 Scope of the System

	2 Literature Survey
	3 Clustering Web Services with Constraint-Based Clustering
	3.1 Clustering for Integration of Web Services

	4 Implementation
	5 Results
	6 Analysis
	6.1 Support and Confidence of Search Precision

	7 Conclusions
	References

