
A General Method for Representing Sets
of Relations by Vectors

Rudolf Berghammer1 and Michael Winter2(B)

1 Institut für Informatik, Universität Kiel, 24098 Kiel, Germany
2 Department of Computer Science, Brock University, St. Catharines, ON, Canada

mwinter@brocku.ca

Abstract. We present a general method for computing vector represen-
tations r of sets of relations. This method is used for obtaining r from an
inclusion R ⊆ S, where R and S are relation-algebraic expressions over
a relation rather than its vector representation. The core of the method is
a theorem that shows how r can be obtained from R ⊆ S in one step. As
applications we consider some problems concerning kernels of relations.

1 Introduction

Reduced ordered binary decision diagrams (ROBDDs) are a very efficient data
structure for representing sets and relations. This has been shown by numerous
applications of RelView, a ROBDD-based tool for the manipulation and visu-
alization of relations and relational programming (see [1]). The use of ROBDDs
often leads to an amazing computational power, in particular, if a hard prob-
lem is solved by computing a very large set of ‘interesting objects’ or ‘potential
solutions’ and subsequently selecting an (optimal) solution among them.

In many applications the set of potential solutions is a subset R of the power
set 2X for some set X. A method for solving such a task is to start with a logical
formula ϕ(Y) that characterizes whether a set Y ∈ 2X belongs to R or not.
This formula is then transformed (using correspondences between logical and
relation-algebraic constructions) into the form rY , where r is a relation-algebraic
expression that evaluates to a relational vector in the sense of [10]. Finally, r is
translated into the programming language of RelView for execution. For some
typical examples, see [2,3,5]. When Y is represented by a vector v, then very
often ϕ(Y) is equivalent to an inclusion v ⊆ w, where v and w are relation-
algebraic expressions over v with a close or simple relationship between the
inclusion and the expression r. Based on this observation, in [4] a general method
was developed that allows obtaining the expression r directly from the inclusion
v ⊆ w if v and w are of a specific syntactic form, called column-wise extendible
vector expressions. Normally this leads to a substantial simplification of the
development of r.

M. Winter—The author gratefully acknowledges support from the Natural Sciences
and Engineering Research Council of Canada (283267).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Glück et al. (Eds.): RAMiCS 2023, LNCS 13896, pp. 34–51, 2023.
https://doi.org/10.1007/978-3-031-28083-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28083-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-28083-2_3

A General Method for Representing Sets of Relations by Vectors 35

In certain situations X is a Cartesian product X1×X2 which means that R
is a subset of the set of relations with source X1 and target X2. Examples can
be found in [5,7], where the original logic-based development method is applied
to get r, and in [4,6], where the method of [4] is used instead. In particular the
examples of [6] demonstrate the superiority of the method of [4] with regard to
the logic-based method. However, the method of [4] has an obvious disadvantage.
It requires that both sides of the inclusion v ⊆ w describing the property R ∈ R
are relation-algebraic expressions over a vector representation of R and not over
R itself, which is usually given and much simpler.

In this paper we present a new and very general method for computing vec-
tor representations r of sets R of relations. This overcomes the just mentioned
problem, i.e., it can be used for computing r from an inclusion R ⊆ S, where
both sides are relation-algebraic expressions over a relation R and not over a
vector representation of R. Decisive for this method is an equation that reduces
the vector representation of a composition R;S of relations to those of R and S.
Together with known results concerning the remaining relation-algebraic oper-
ations, this allows the computation of vector representations via a recursive
function νr and the proof of a theorem that shows how r can be obtained from
R ⊆ S directly. As applications we treat some of the problems of [7] with the
new method.

2 Relational Preliminaries

In this section we want to recall some basic facts about (binary, set-theoretic)
relations and their operations that are used throughout this paper. For more
details on relation algebras, see [10,11] for example.

Given sets X and Y , the power set 2X×Y of X×Y is the set of relations
with source X and target Y , which we will denote by [X ↔Y]. We will write
R : X ↔Y instead of R ∈ [X ↔Y] and call X ↔Y the type of R. If X and Y are
finite, then we may represent any relation R : X ↔Y by a Boolean matrix, in
which an entry ‘true’ (or 1) in the row corresponding to x ∈ X and in the column
corresponding to y ∈ Y indicates that (x, y) ∈ R. Analogously, the entry ‘false’
(or 0) indicates that the elements are not in relation R, i.e., (x, y) �∈ R. This
matrix interpretation is also used by the RelView system to visualize relations.
In addition, we will often use Boolean matrix notation and terminology in the
remainder of this paper. In particular, we write Rx,y instead of (x, y) ∈ R. Then
we speak of a point-wise notation.

The following basic operations on relations will be used: R (complement),
R ∪ S (union), R ∩ S (intersection), RT (transposition or converse), and R;S
(composition). We assume that transposition and complementation bind stronger
than composition and composition binds stronger than union and intersection.
In addition, we have the constants O (empty relation), L (universal relation) and
I (identity relation). Note that these constants are polymorphic, e.g., there is an
identity relation of type X ↔X for all X. We also will use R ⊆ S to indicate that
R is included in S. We assume that the reader is familiar with these concepts.

36 R. Berghammer and M. Winter

As derived operation we will use syq(R,S) := RT;S ∩ R
T
;S, the symmetric

quotient of R : X ↔Y and S : X ↔Z. It easily can be shown that syq(R,S) has
type Y ↔Z and for all y ∈ Y and z ∈ Z it holds syq(R,S)y,z iff for all x ∈ X it
holds Rx,y iff Sx,z.

Besides the well-known lattice theoretic properties and basic properties of
composition and transposition, i.e., Q; (R ∪ S) = Q;R ∪ Q;S, Q; (R ∩ S) ⊆
Q;R ∩ Q;S, (R ∪ S)T = RT ∪ ST, (R ∩ S)T = RT ∩ ST, (R;S)T = ST;RT,
(RT)T = R and RT = R

T
, relations also satisfy the so-called modular inclusion

Q;R ∩ S ⊆ Q; (R ∩ QT;S), and the so-called Schröder equivalences QT;S ⊆ R
iff Q;R ⊆ S iff S;RT ⊆ Q. In the remainder of the paper we will use these
properties without mentioning. Some additional properties are summarized in
the following lemma. A proof can be found in [10,11].

Lemma 2.1. Let be Q : X ↔Y , R : X ↔Z, S : Y ↔Z, and T : X ↔Z. Then
we have

(1) (Q ∩ R; L);S = Q;S ∩ R; L,
(2) (Q;S ∩ T); L = (Q ∩ T ;ST); L.

An important class of relations are given by maps (or functions). We call a
relation Q : X ↔Y univalent (or a partial function) iff QT;Q ⊆ I, total iff
I ⊆ Q;QT, injective iff QT is univalent, surjective iff QT is total, and a map iff Q
is total and univalent. The following lemma collects some important properties
of univalent relations.

Lemma 2.2. Assume f : X ↔Y to be univalent. Furthermore, let be Q,R :
Y ↔Z, S : W ↔X, T : W ↔Y , and U : X ↔Y . Then we have

(1) f ; (Q ∩ R) = f ;Q ∩ f ;R,
(2) (S ∩ T ; fT); f = S; f ∩ T ,
(3) f ∩ (f ∩ U); L = f ∩ U .

Another important concept is the notion of pairs and the projection relations
π : X×Y ↔X and ρ : X×Y ↔Y . The projection relations have the Cartesian
product X×Y as source and X resp. Y as target and are defined by π(u1,u2),x iff
u1 = x and ρ(u1,u2),y iff u2 = y, for all (u1, u2) ∈ X×Y , x ∈ X and y ∈ Y . These
relations and the corresponding object X×Y can also be defined abstractly (up
to isomorphism) by the formulas πT;π ⊆ I, ρT; ρ ⊆ I, π;πT ∩ ρ; ρT = I and
πT; ρ = L, see [13]1. To enhance presentation, in the remainder of this paper we
will overload the projection relations, i.e., consider them as polymorphic. In all
such cases it is easy to determine their types from the context using the typing
rules of the operations of relation algebra.

1 In [10,11] instead of inclusions the first two axioms are equations. This leads to
difficulties if precisely one of the sets of X×Y is empty. If e.g., X �= ∅, then π :
X×Y ↔ X is not surjective, whereas πT; π = I implies surjectivity. The weaker notion
used here already implies the uniqueness of the construction up to isomorphism.

A General Method for Representing Sets of Relations by Vectors 37

Based upon the projection relations we can define the left pairing of two
relations R : X ↔Z and S : Y ↔Z by [[R,S] := π;R ∩ ρ;S of type X×Y ↔Z.
When using a point-wise notation we have [[R,S](u1,u2),z iff Ru1,z and Su2,z, for
all (u1, u2) ∈ X×Y and z ∈ Z. Similar to the left pairing we can define the right
pairing of two relations R : Z ↔X and S : Z ↔Y by [R,S]] := R;πT ∩ S; ρT.
Here we obtain Z ↔X×Y as type and that [R,S]]z,(u1,u2) iff Rz,u1 and Sz,u2 ,
for all (u1, u2) ∈ X×Y and z ∈ Z. Finally, the parallel composition (or product)
R ‖ S : X×X ↔Y ×Y ′ of two relations R : X ↔Y and S : X ′ ↔Y ′ is defined
by R ‖ S := π;R;πT ∩ ρ;S; ρT, i.e., we have (R ‖ S)(u1,u2),(v1,v2) iff Ru1,v1 and
Su2,v2 , for all (u1, u2) ∈ X×X ′ and (v1, v2) ∈ Y ×Y ′. As a consequence we have
R‖S = [π;R, ρ;S]] = [[R;πT, S; ρT], where the right pairing is formed w.r.t. the
projection relations of Y ×Y ′ and the left pairing is formed w.r.t. the projection
relations of X×X ′.

From Lemma 2.2(2) we obtain

[Q,R]];π = (Q;πT ∩ R; ρT);π = Q ∩ R; ρT;π = Q ∩ R; L,

so that [Q,R]];π = Q follows if R is total. Analogously, we get [Q,R]]; ρ = R if
Q is total and similar results for the left pairing and the parallel composition.

The sharpness property of relational products is the question whether the
following equation

[Q,R]]; [[S, T] = Q;S ∩ R;T

holds for all relations Q, R, S and T of suitable types. Note that the equation only
involves one Cartesian product, and is easy to verify for set-theoretic relations.
However, the equation does not follow from the axioms of a relation algebra and
of the corresponding projection relations alone. But if we require sufficient addi-
tional structure, i.e., the existence of at least one additional Cartesian product,
we are able to show sharpness. The lemma below generalizes the equation above
slightly. If instantiated with S1 = π and S2 = ρ it verifies sharpness under the
assumption of the existence of the additional Cartesian product W × X. The
lemma itself is an immediate consequence of the approach developed in [8].

Lemma 2.3. Let be Q1 : W ↔X, Q2 : W ↔Y , R1 : X ↔Z, R2 : Y ↔Z,
S1 : V ↔X, and S2 : V ↔Y with S1 and S2 univalent and

QT
1 ;Q2 ∩ RT

1 ;R2 ⊆ ST
1 ;S2.

Furthermore, assume that the Cartesian product W × X exists. Then we have

(Q1;ST
1 ∩ Q2;ST

2); (S1;RT
1 ∩ S2;RT

2) = Q1;RT
1 ∩ Q2;RT

2 .

In the remainder of this paper we will assume that the Cartesian product for
every pair of sets (objects) exists, together with the corresponding projection
relations, such that we will always have sharpness.

The relation SX,X′
: X×X ′ ↔X ′ × X is defined by SX,X′

:= [ρ, π]] =
[[ρT, πT]. As usual we will drop the sets X and X ′ and write simply S instead
of SX,X′

if the sets of the Cartesian products are clear from the context.

38 R. Berghammer and M. Winter

The relation exchanges the two components of a pair, i.e., we get S(u1,u2),(v1,v2)

iff u1 = v2 and u2 = v1, for all (u1, u2) ∈ X×X ′ and (v1, v2) ∈ X ′×X. Fur-
thermore, we have ST = S and S;S = I, where the two occurrences of S in both
equations are different versions of the polymorphic relation.

The partial identity I∩π; ρ;πT; ρT has source and target (X ×Y)× (Y ×Z).
From this type information we can infer that the first occurrence of π denotes the
first projection relation of the Cartesian product (X × Y) × (Y × Z), whereas
the second occurrence of π denotes the first projection relation of the Carte-
sian product Y × Z, and the first occurrence of ρ denotes the second projection
relation of X × Y , whereas the second occurrence of ρ denotes the second pro-
jection relation of (X × Y) × (Y × Z). The relation I ∩ π; ρ;πT; ρT acts as a
filter when composing it with a suitable relation. Using point-wise notation, a
quadruple ((u1, u2), (v1, v2)) ∈ (X × Y) × (Y × Z) is related to itself by the
relation I ∩ π; ρ;πT; ρT iff u2 = v1, representing the condition under with the
pair (u1, v2) ∈ X × Z would be in the composition of two relations, where the
first relation contains the pair (u1, u2) ∈ X ×Y and the second relation contains
the pair (v1, v2) ∈ Y × Z. Note that we have

I ∩ π; ρ;πT; ρT = (I ∩ π; ρ;πT; ρT)
T

= I ∩ ρ;π; ρT;πT.

By means of the partial identity I∩π; ρ;πT; ρT we now define the relation CX,Y,Z

of type (X × Y) × (Y × Z) ↔X × Z by CX,Y,Z := (I∩ π; ρ;πT; ρT); (π‖ρ). This
relation removes the common intermediate element. Again, we will usually drop
the three sets X, Y and Z of CX,Y,Z and overload the relation.

In the next sections we also will use the relation-level equivalents of the
set-theoretic symbol ‘∈’ as basic relations. These are the (again polymorphic)
membership relations M : X ↔ 2X , which are point-wisely described by Mx,Y iff
x ∈ Y , for all elements x ∈ X and sets Y ∈ 2X . There exists a relation-algebraic
axiomatization of membership relations which specifies these up to isomorphism.
See [11], for example. But for the applications of the present paper the above
point-wise description suffices.

3 Vector Representation of Relations

Relational vectors are relations v : X ↔Y with v; L = v. Such a v can be
interpreted as a subset of X in the following sense: If represented by a Boolean
matrix, the relation v is a matrix in which every row consists completely either
of 1’s (or ‘true’-entries) or of 0’s (or ‘false’-entries) indicating that the element
corresponding to that row either belongs to the subset of X or not. Since Y is
irrelevant in this representation we will always consider vectors with target 11,
where 11 = {⊥} is a specific singleton set. In this case all relations in the set
[X ↔11] of relations are vectors since for a singleton set we have L = I. Note that
a singleton set can also be defined abstractly (up to isomorphism) as a so-called
unit. A unit is an object 11 such that L = I for L : 11↔11 and L : X ↔11 is total
for every X.

A General Method for Representing Sets of Relations by Vectors 39

Relations are specific sets. In the following we concentrate on their represen-
tations by means of vectors.

The first step in providing a vector representation of arbitrary relations is to
establish a Boolean lattice isomorphism between the set of relations R : X ↔Y
and the set of vectors v : X×Y ↔11. Given a relation R : X ↔Y and a vector
v : X×Y ↔11 we define vec(R) : X×Y ↔11 and Rel(v) : X ↔Y as shown in the
following figure (Fig. 1).

Fig. 1. Definition of functions vec and Rel

The functions vec : [X ↔Y] → [X×Y ↔11] and Rel : [X×Y ↔11] → [X ↔Y]
are inverse to each other, i.e., we have Rel(vec(R)) = R and vec(Rel(v)) = v,
for all R : X ↔Y and v : X×Y ↔11. Furthermore, vec and Rel are monotone
w.r.t. inclusion, i.e., R ⊆ S implies vec(R) ⊆ vec(S), for all R,S : X ↔Y , and
v ⊆ w implies Rel(v) ⊆ Rel(w), for all v, w : X×Y ↔11. We even have R ⊆ S
iff vec(R) ⊆ vec(S), for all R,S : X ↔Y , and v ⊆ w iff Rel(v) ⊆ Rel(w), for all
v, w : X×Y ↔11. Proofs of these facts can be found in [10], for example.

The next lemma shows how the five basic operations of relation algebra can be
performed directly on the corresponding vectors. Together with the bijectivity
properties (1), (3) and (4) of Lemma 3.1 imply that the function vec is an
isomorphism from the Boolean lattice [X ↔Y] of all relations between X and Y
to the Boolean lattice [X×Y ↔11] of all vectors with source X×Y , with vec−1 =
Rel, such that vec(O) = O, vec(L) = L, Rel(O) = O and Rel(L) = L immediately
follows.

Lemma 3.1. Let be Q,R : X ↔Y and S : Y ↔Z. Then we have

(1) vec(Q) = vec(Q),
(2) vec(QT) = S; vec(Q),
(3) vec(Q ∪ R) = vec(Q) ∪ vec(R),
(4) vec(Q ∩ R) = vec(Q) ∩ vec(R),
(5) vec(R;S) = CT; [[vec(R), vec(S)].

Proof. The four properties (1) to (4) were already shown in [10]. In order to prove
property (5), we would like to show that the composition CT; [[vec(R), vec(S)]
can basically be written as the left-hand side of the equation in Lemma 2.3
for suitable S1 and S2, and then apply that lemma. Therefore, we will use the
following abbreviations

i := I ∩ π; ρ;πT; ρT, π̃ := π ∩ ρ;π; ρT,

f := π; ρ ∩ ρ;π, ρ̃ := ρ ∩ π; ρ;πT.

40 R. Berghammer and M. Winter

Obviously, all four relations are univalent and we have i;π = π̃, i; ρ = ρ̃, π̃; ρ = f
and ρ̃;π = f , where the last four equations follow immediately from Lemma
2.2(2). Furthermore, we have π̃; [[R, I] ⊆ π̃; ρ = f and

ρ̃; [[S, I]; L ∩ f = ρ̃; (π;S ∩ ρ); L ∩ f

= ρ̃; (π ∩ ρ;ST); L ∩ f Lemma 2.1(2)

= (ρ̃;π ∩ ρ̃; ρ;ST); L ∩ f Lemma 2.2(1)

= (f ∩ ρ̃; ρ;ST); L ∩ f

= f ∩ ρ̃; ρ;ST Lemma 2.2(3)

= ρ̃;π ∩ ρ̃; ρ;ST

= ρ̃; (π ∩ ρ;ST) Lemma 2.2(1)

= ρ̃; [[I, ST].

These two properties imply

i; [[vec(R), vec(S)] = i;π; [[R, I]; L ∩ i; ρ; [[S, I]; L Lemma 2.2(1)
= π̃; [[R, I]; L ∩ ρ̃; [[S, I]; L
= (π̃; [[R, I] ∩ ρ̃; [[S, I]; L); L Lemma 2.1(1)
= (π̃; [[R, I] ∩ f ∩ ρ̃; [[S, I]; L); L see above

= (π̃; [[R, I] ∩ ρ̃; [[I, ST]); L see above.

On the other hand, we have

C = i; (π‖ρ)

= i; (π;π;πT ∩ ρ; ρ; ρT)

= i;π;π;πT ∩ i; ρ; ρ; ρT Lemma 2.2(1)

= π̃;π;πT ∩ ρ̃; ρ; ρT

so that the composition CT; [[vec(R), vec(S)] in fact can be written as the left-
hand side of Lemma 2.3 with S1 = π̃ and S2 = ρ̃.

The following calculation now shows that the additional assumption of
Lemma 2.3 is satisfied:

A General Method for Representing Sets of Relations by Vectors 41

[[R, I]; [[I, ST]
T ∩ (π;πT)

T
; ρ; ρT

= [[R, I]; [[I, ST]
T ∩ π;πT; ρ; ρT

= [[R, I]; [[I, ST]
T ∩ π; L; ρT

= [[R, I]; [[I, ST]
T

π and ρ total

⊆ ρ;πT

= ρ;πT ∩ ρ;πT

= [I, ρ;πT]]; [[ρ;πT, I] sharpness

= (πT ∩ ρ;πT; ρT); (ρ ∩ π; ρ;πT)

= π̃T; ρ̃,

As a consequence we conclude

(π;πT; π̃T ∩ ρ; ρT; ρ̃T); (π̃; [[R, I] ∩ ρ̃; [[I, ST]) = π;πT; [[R, I] ∩ ρ; ρT; [[I, ST].

We finally obtain

vec(R;S)
= [[R;S, I]; L
= (π;R;S ∩ ρ); L

= (π;R ∩ ρ;ST); L Lemma 2.1(2)

= (π;πT; [[R, I] ∩ ρ; ρT; [[I, ST]); L

= (π;πT; π̃T ∩ ρ; ρT; ρ̃T); (π̃; [[R, I] ∩ ρ̃; [[I, ST]); L see above

= CT; i; [[vec(R), vec(S)]

= CT; [[vec(R), vec(S)], iT; i = i; i = i = iT

i.e., the desired property (5). ��
The relation C allows us to express a composition of two relations as an operation
on their corresponding vectors. Sometimes, when computing all relations that
satisfy a certain property, it is sufficient to convert only one relation in a series
of compositions into a vector. Quite often this even leads to a more efficient
implementation (e.g., in RelView) of testing the property. The following lemma
was shown in [9] and provides exactly such a translation.

Lemma 3.2. Let Q : W ↔X, R : X ↔Y , and S : Y ↔Z. Then we have

vec(Q;R;S) = (Q‖ST); vec(R).

As specific cases we get vec(Q;R) = (Q ‖ I); vec(R) by taking S as identity
relation and vec(R;S) = (I‖ST); vec(R) by taking Q as identity relation.

42 R. Berghammer and M. Winter

4 Vector Representation of Sets of Relations

In [9] so-called vector predicates are introduced for the relational treatment of
evolutionary algorithms. They are functions in the usual mathematical sense on
relations and model those sets of relations which are built from vectors using
as operations only complementation, union, intersection and a restricted version
of composition. This approach is continued and refined in [4] in view of the
specification of vectors v : 2X ↔11 which represent subsets R of given power sets
2X . The aim is to avoid lengthy and complex logical calculations and to work
rather with relation-algebraic specifications of the elements of R via inclusions
v ⊆ w such that v can be obtained from v ⊆ w in one step using a general
procedure. Decisive for this is that both sides of the inclusions are so-called
column-wise extendible vector expressions. These are specific relation-algebraic
expressions which can be seen as syntactical counterpart of vector predicates.
Formally, they are defined as follows.

Definition 4.1. Given a variable v of type X ↔11, the set VEv of typed column-
wise extendible vector expressions over v is inductively defined as follows:

(1) We have v ∈ VEv and its type is X ↔11.
(2) If w : Y ↔11, then w ∈ VEv and its type is Y ↔11.
(3) If v ∈ VEv is of type Y ↔11, then v ∈ VEv and its type is Y ↔11.
(4) If v,w ∈ VEv are of type Y ↔11, then v ∪ w ∈ VEv and v ∩ w ∈ VEv and

their types are Y ↔11.
(5) If v ∈ VEv is of type Y ↔11 and R is a relation-algebraic expression of type

Z ↔Y in which v does not occur, then R; v ∈ VEs and its type is Z ↔11.

So, the vector expressions from VEv are built from the variable v using vec-
tors and as operations only complementation, union, intersection and left-
composition with a relation-algebraic expression in which v does not occur.
Note that v is the only variable in such an expression. In the following we also
allow the use of derived operations like symmetric quotients and pairings, but
these are only seen as abbreviations. For example, R; [[v, S; v] is considered as a
column-wise extendible vector expression over the variable v since unfolding the
definition of the left pairing yields R; (π; v ∩ ρ;S; v).

In a column-wise extendible vector expression v over v the variable v can be
replaced by a relation R with the same source as v. The result is denoted as
v[R/v] and is inductively defined as follows.

Definition 4.2. Given a variable v of type X ↔11, v ∈ VEv and R : X ↔Z,
we define v[R/v] as follows, using induction on the structure of v:

(1) v[R/v] = R.
(2) w[R/v] = w; L, with L : 11↔Z.
(3) w[R/v] = w[R/v].
(4) (w ∪ u)[R/v] = w[R/v] ∪ u[R/v] and (w ∩ u)[R/v] = w[R/v] ∩ u[R/v].
(5) (R;w)[R/v] = R; (w[R/v]).

A General Method for Representing Sets of Relations by Vectors 43

For example, for the variable v of type X ↔11, S : Y ↔X and w : Y ↔11 we
have S; v ∩w ∈ VEv. A replacement of v in S; v ∩w by the membership relation
M : X ↔ 2X then yields S;M ∩ w; L, which has type Y ↔ 2X .

The general procedure to obtain the vectors v : 2X ↔11 from the inclusions
v ⊆ w, that we have mentioned above, is shown in [4] as Theorem 1. If we
instantiate this theorem in such a way that instead of a general power set 2X a
power set of a Cartesian product X×Y is taken, i.e., a vector v : [X ↔Y] ↔11
representing a subset R of the set [X ↔Y] of relations is to be computed, then
we get the following result.

Theorem 4.1. Let the subset R of the set [X ↔Y] of relations be specified
as R = {Rel(r) | r ∈ [X×Y ↔11] ∧ v ⊆ w}, where v,w ∈ VEr. Using the
membership relation M : X×Y ↔ [X ↔Y] the set R is represented by the vector

v := L; (v[M/r] ∩ w[M/r])
T

: [X ↔Y] ↔11.

Using this result, in [6] a lot of vectors are obtained which represent important
classes of relations. A certain disadvantage of Theorem 4.1 is that it works not
directly with relations but with their vector representations. If, e.g., R is the
set of all transitive relations on a set X, then one would like to specify that R
is a member of R by R;R ⊆ R instead of by CT; [[r, r] ⊆ r as in [6], where r
is the vector representation of R. Using the properties of the two functions vec
and Rel given in Sect. 3, it is not hard to calculate the inclusion CT; [[r, r] ⊆ r
(between column-wise extendible vector expressions over r) from the common
specification Rel(r);Rel(r) ⊆ Rel(r) of Rel(r) to be transitive.

In the following we generalize the example of transitive relations and consider
arbitrary inclusions R ⊆ S, where R and S are relation-algebraic expressions
that are constructed from a variable R of type X ↔Y using certain relations
(e.g., membership relations and projection relations) and the constants and
operations (including again also derived ones) of relation algebra. We denote
the set of all these relation-algebraic expressions as RER. Note that R is the
only variable in such an expression. Our aim is to get from the specification
R = {R ∈ [X ↔Y] | R ⊆ S} a vector representation of this set in one step simi-
lar to Theorem 4.1. Decisive is the following function that transforms expressions
from RER into expressions from VEr, where r : X×Y ↔11.

Definition 4.3. Given a variable r of type X×Y ↔11 and a variable R of type
X ↔Y , we define the function νr : RER → VEr as follows, using induction on
the structure of the argument:

(1) νr(R) = r.
(2) νr(S) = vec(S) for all relations S.
(3) νr(R) = νr(R).
(4) νr(RT) = S; νr(R).
(5) νr(R ∪ S) = νr(R) ∪ νr(S).
(6) νr(R ∩ S) = νr(R) ∩ νr(S).
(7) νr(R;S) = CT; [[νr(R), νr(S)].

44 R. Berghammer and M. Winter

In the next lemma we verify that νr in fact yields a column-wise extendible vector
expression over the variable r. Furthermore, we show that if r is instantiated as
vec(R), then νr equals the function vec.

Lemma 4.1. Let be a variable r of type X×Y ↔11 and a variable R of type
X ↔Y . For all R ∈ RER we then have νr(R) ∈ VEr and, provided r is instan-
tiated as vec(R), also νr(R) = vec(R).

Proof. We use induction on the structure of the expression R.
The induction base is that R is the variable R or a relation S. In the first

case we have νr(R) = r ∈ VEr and νr(R) = r. So, if r is instantiated as vec(R),
then νr(R) = vec(R). The case that R is a relation S is trivial.

In the first case of the induction step, assume R to be of the form S and
that the induction hypothesis holds for the expression S. Then νr(S) ∈ VEr

and Definition 4.3(3) yield νr(S) ∈ VEr. If r is instantiated as vec(R), we have
νr(S) = vec(S) and we obtain

νr(S) = νr(S) = vec(S) = vec(S)

using Definition 4.3(3) and Lemma 3.1(1). Next, let R be of the form ST and
the induction hypothesis hold for the expression S. Here νr(S) ∈ VEr and
Definition 4.3(4) show νr(ST) ∈ VEr. As an instantiation of r as vec(R) yields
νr(S) = vec(S), we get

νr(ST) = S; νr(S) = S; vec(S) = vec(ST),

using Definition 4.3(4) and Lemma 3.1(2). In the same way the cases can be
treated where R is a union, an intersection and a composition of expressions.
When R is a union, Definition 4.3(5) and Lemma 3.1(3) apply, when it is an
intersection, Definition 4.3(6) and Lemma 3.1(4) apply, and when it is a compo-
sition, Definition 4.3(7) and Lemma 3.1(5) apply. ��
Now, we are able to prove the following variant of Theorem 4.1. The main
difference in this modified version is that the elements of the set of relations
are specified by an inclusion of relation-algebraic expressions over the variable R
rather than as an inclusion between column-wise extendible vector expressions
over a variable r that stands for the vector representation of R.

Theorem 4.2. Let the subset R of the set [X ↔Y] of relations be specified as
R = {R ∈ [X ↔Y] | R ⊆ S}, where R,S ∈ RER. Taking a variable r of type
X×Y ↔11 and using the membership relation M : X×Y ↔ [X ↔Y], the set R
is represented by the vector

v := L; (νr(R)[M/r] ∩ νr(S)[M/r])
T

: [X ↔Y] ↔11.

Proof. First, we prove that the original specification of the set R is equivalent
to the specification

R = {Rel(r) | r ∈ [X×Y ↔11] ∧ νr(R) ⊆ νr(S)}.

A General Method for Representing Sets of Relations by Vectors 45

Let R : X ↔Y be given. We have to verify that R ⊆ S holds iff there exists
r : X×Y ↔11 such that νr(R) ⊆ νr(S) and R = Rel(r). Here is the proof, where
r ranges over [X×Y ↔11]:

R ⊆ S ⇐⇒ vec(R) ⊆ vec(S) see Sect. 3
⇐⇒ νvec(R)(R) ⊆ νvec(R)(S) by Lemma 4.1
⇐⇒ ∃r : r = vec(R) ∧ νr(R) ⊆ νr(S)
⇐⇒ ∃r : R = Rel(r) ∧ νr(R) ⊆ νr(S) see Sect. 3

From Lemma 4.1 we also get that both sides of the inclusion of the second
specification of R are column-wise extendible vector expressions over r. Hence,
Theorem 4.1 is applicable and yields the desired result. ��
As an example for applying the previous theorem, we consider again transitive
relations, i.e., we use the specification

R = {R ∈ [X ↔X] | R;R ⊆ R}.

For arbitrary R : X ↔X and r : X×X ↔11 we get for the left-hand side of the
inclusion R;R ⊆ R that νr(R;R) = CT; [[νr(R), νr(R)] = CT; [[r, r], such that
νr(R;R)[M/r] = CT; [[M,M], with M : X×X ↔ [X ↔X] as membership relation.
In case of the right-hand side of R;R ⊆ R we have νr(R) = r, and this yields
νr(R)[M/r] = M. So, Theorem 4.2 implies that the vector

trans := L; (CT; [[M,M] ∩ M)
T

of type [X ↔X] ↔11 represents R, i.e., the set of transitive relations on X.

5 Applications: Kernels and Richardson’s Criterion

A directed simple graph, i.e., a directed graph without multiple edges between
the same pair of vertices, on a set of vertices X can be represented by a relation
R : X ↔X. A subset K of X is a kernel of R if for all x ∈ X it holds x /∈ K
iff there exists y ∈ K such that Rx,y. Kernels have been introduced in [12] as
a generalization of a solution of a cooperative game. Not every relation has a
kernel and it is known that determining whether a relation has a kernel is a
NP-complete problem.

There exist a series of sufficient criteria for the existence of kernels which can
be tested efficiently. In [7] it was investigated how well these criteria characterize
the class of relations that have kernels. This was done by computing the number
of relations with a kernel for all sets X up to 7 elements using RelView. Then
the four most popular criteria of the above mentioned series were considered and
for each of them the number of relations satisfying the criteria was computed –
again for all X with |X| ≤ 7 using RelView. The numerical data of [7] show
that even in case of the most general of the criteria, the absence of odd cycles

46 R. Berghammer and M. Winter

(Richardson’s criterion), only a very small portion of the relations with kernels
satisfy this property. So, the criteria are very far away from characterizing the
class of relations with kernels. The data also led to the following conjecture for
finite sets X: The probability that a relation selected uniformly at random from
[X ↔X] has a kernel tends to zero if |X| tends to infinity.

The key for getting the data of [7] are relation-algebraic specifications of five
vectors of type [X ↔X] ↔11 which represent the set of relations on X having
kernels and the set of relations on X satisfying one of the criteria. The Rel-
View-programs then are nothing else than translations of the specifications into
the programming language of the system. Each vector is obtained from a logical
description of the relations in question and its transformation into an equivalent
relation-algebraic expression. Especially in case of Richardson’s criterion the
development is rather technical and complex. In the following we solve two of
the problems of [7] using the new method. A comparison with [7] shows that the
new solutions are much more simple and many steps are very straight-forward.

We start with the characterization of relations having kernels. Assume
R : X ↔X and K ⊆ X. Using the definition of a kernel and the point-
wise description of symmetric quotients, we have that K is a kernel of R iff
syq(M, R;M)K,K , where M : X ↔ 2X is a membership relation. As a conse-
quence R has a kernel iff syq(M, R;M) ∩ I �= O. Thus, R has no kernel iff
syq(M, R;M) ⊆ I. In order to obtain a vector kernel : [X ↔X] ↔11 that rep-
resents the set of relations on X with a kernel, we use our method to transform
the inclusion syq(M, R;M) ⊆ I into a vector nokernel : [X ↔X] ↔11 and define
kernel as complement of nokernel.

For the development of the vector nokernel, assume an arbitrary r :
X×X ↔11 to be given. Using the definition of the symmetric quotient, the defi-
nition of the function νr and Lemma 3.1 in combination with the abbreviations
m := vec(M) and mt := vec(MT), we get

νr(syq(M, R;M))

= νr(M
T
;R;M ∩ M

T
;R;M)

= νr(M
T
;R;M) ∩ νr(MT;R;M)

= νr(M
T
;R;M) ∩ νr(MT;R;M)

= CT; [[νr(M
T
), νr(R;M)] ∩ CT; [[νr(MT), νr(R;M)]

= CT; [[vec(M
T
), νr(R;M)] ∩ CT; [[vec(MT), νr(R;M)]

= CT; [[vec(MT),CT; [[νr(R), νr(M)]] ∩ CT; [[vec(MT),CT; [[νr(R), νr(M)]]

= CT; [[vec(MT),CT; [[r, vec(M)]] ∩ CT; [[vec(MT),CT; [[r, vec(M)]]

= CT; [[mt,CT; [[r,m]] ∩ CT; [[mt,CT; [[r,m]]

A General Method for Representing Sets of Relations by Vectors 47

for the left-hand side of the inclusion syq(M, R;M) ⊆ I, hence

νr(syq(M, R;M))[M/r] = CT; [[mt; L,CT; [[M,m; L]] ∩ CT; [[mt; L,CT; [[M,m; L]]

for the replacement of r by the membership relation M : X×X ↔ [X ↔X]. In
case of the right-hand side of the inclusion syq(M, R;M) ⊆ I we have νr(I) =
vec(I) = vec(I) and with the abbreviation i := vec(I) we get

νr(I)[M/r] = i; L = i; L

for the replacement of r by M. Now, Theorem 4.2 immediately yields

nokernel := L; (CT; [[mt; L,H] ∩ CT; [[mt; L,H] ∩ i; L)
T

, where H := CT; [[M,m; L].

Next, we consider Richardson’s criterion and assume, as in [7], a finite set X
with |X| ≤ 7. To compute a vector that represents the set of relations on X with-
out odd cycles, in [7] four vectors cyc1, cyc3, cyc5 and cyc7 of type [X ↔X] ↔11
were developed which represent the set of relations on X having a cycle of length
1, 3, 5 and 7, respectively. Then the intersection of cyc1, cyc3, cyc5 and cyc7
yielded the desired vector. The developments of cyc5 and especially of cyc7 are
very technical and complex. For example, in case of cyc7 the relation-algebraic
expression describes that for a given relation R : X ↔X there exist three pairs
(u1, u2) ∈ X×X, (v1, v2) ∈ X×X and (w1, w2) ∈ X×X and an element x ∈ X
such that the tuples (u2, u1, x, v2, v1) and (v1, w1, w2, u2) are paths in R and,
therefore, the tuple (u2, u1, x, v2, v1, w1, w2, u2) is a cycle of length 7 in R.

A relation R : X ↔X has no cycle of length 1 if R ⊆ I, no cycle of length
3 if R3 ⊆ I, no cycle of length 5 if R5 ⊆ I and no cycle of length 7 if R7 ⊆ I,
where powers are defined as usual. The method of this paper allows using these
specifications directly leading to four vectors nocyc1, nocyc3, nocyc5 and nocyc7
of type [X ↔X] ↔11 which represent the set of relations on X having no cycle
of length 1, 3, 5 and 7, respectively. Then the intersection of nocyc1, nocyc3,
nocyc5 and nocyc7 yields the vector we are looking for.

For the following, let an arbitrary r : X×X ↔11 be given. With regard to
the inclusion R ⊆ I we have νr(R) = r and νr(I) = vec(I) = vec(I), hence
νr(R)[M/r] = M and νr(I)[M/r] = vec(I); L = vec(I); L for the replacement of r
by the membership relation M : X×X ↔ [X ↔X]. So, Theorem 4.2 yields

nocyc1 := L; (M ∩ vec(I); L)
T
.

In case of the inclusions R3 ⊆ I, R5 ⊆ I and R7 ⊆ I we work with the equivalent
inclusions (R2)T ⊆ R, (R3)T ⊆ R2 and (R4)T ⊆ R3 since these lead to more
efficient RelView-programs than the original inclusions. For (R2)T ⊆ R we get

νr((R2)
T
) = S; νr(R;R) = S;CT; [[νr(R), νr(R)] = S;CT; [[r, r]

and, hence, νr((R2)T)[M/r] = S;CT; [[M,M] for the left-hand-side, and

νr(R) = νr(R) = r

48 R. Berghammer and M. Winter

and, hence, νr(R)[M/r] = M for the right-hand-side. If we apply Theorem 4.2 to
these results, we obtain the vector

nocyc3 := L; (S;CT; [[M,M] ∩ M)
T

.

The remaining inclusions can be treated analogously. From (R3)T ⊆ R2 we get

nocyc5 := L; (S;CT; [[M,H] ∩ H)
T

, where H := CT; [[M,M],

and inclusion (R4)T ⊆ R3 leads to

nocyc7 := L; (S;CT; [[H,H] ∩ CT; [[M,H])
T

, where H := CT; [[M,M].

We have implemented the relation-algebraic specifications developed in this
section in RelView and have compared the running times with those given
in [7]. Doing so, we have used the same environment as mentioned in [7], i.e.,
version 8.2 of RelView2 on a PC with 2 CPUs of type Intel R© Xeon R© E5-
2698, each with 20 cores and 3.60 GHz base frequency, 512 GByte RAM and
running Arch Linux 5.2.0. We only present the data for |X| = 7. Using the
RelView-programs resulting from [7], it takes 138.67 s to compute the vector
that represents the set of 188 553 949 010 868 relations on X which have a kernel
and 32 220.55 s to compute the vector that represents the set of 16 230 843 049
relations on X which satisfy Richardson’s criterion. The RelView-programs we
have obtained from the specifications of this paper need 201.31 s for computing
the first vector and 18 843.34 s for computing the second one.

From Lemma 3.2 we get νr(R;R;S) = (R ‖ ST); νr(R) for all R : X ↔Y
and R,S ∈ RER, where r := vec(R). In Sect. 3 we have mentioned that this
often leads to more efficient implementations. If we proceed the above pre-
sented calculation for νr(syq(M, R;M)) with νr(R;M) = (I‖MT); νr(R) and
νr(MT;R;M) = (MT ‖MT); νr(R) after the third step, we obtain the variant

nokernel := L; (CT; [[mt; L, (I‖MT);M] ∩ (MT ‖MT);M ∩ i; L)
T

the RelView-implementation of which allows to compute the vector represen-
tation of the set of relations on X having kernels for |X| = 7 in 189.89 s.

6 Further Applications

We have applied our method to many other classes of specific relations. These
include the remaining three criteria for the existence of kernels treated in [7], i.e.,
bipartite relations, progressively finite relations and symmetric and irreflexive
relations. Also many of the vectors presented in [6] have been redeveloped using
2 This is the newest version of the tool. It is described at the Web-site [14] and the

source code is available from Github via [15] and from Zenodo via [16].

A General Method for Representing Sets of Relations by Vectors 49

the new method. We also have applied the new method to classes of relations not
treated so far, viz. lattices, bounded partial orders, finite directed acyclic graphs
and arborescences, tournaments, rectangular relations, difunctional relations,
general Ferrers relations, strongly connected relations and maps having fixpoints.

Sometimes the specification of a property P (R) of a relation R leads to an
inequation R �= O, with a relation-algebraic expression R ∈ RER. An example
is the specification of R to have a kernel by syq(M, R;M)∩ I �= O in Sect. 5. Also
the specification of R to be a bounded partial order and of R to be a map with
a fixed point leads to such inequations, viz. to R; L �= O (existence of a least

element) and RT; L �= O (existence of a greatest element) in the first case and to
R ∩ I �= O (existence of a reflexive element) in the second case.

To cope with the inequation syq(M, R;M) ∩ I �= O, in Sect. 5 we consider
the equation syq(M, R;M) ∩ I = O instead, which specifies R to have no kernel.
Then we transform it into the equivalent inclusion syq(M, R;M) ⊆ I, apply our
method to the latter and, finally, form the complement of the result to obtain
the vector we are actually interested in. Since the carrier set of R is non-empty,
syq(M, R;M) ∩ I �= O holds iff L ⊆ L; (syq(M, R;M) ∩ I); L. We have applied our
method also to that inclusion. But the corresponding RelView-program proved
to be less efficient than that we have obtained from the approach of Sect. 5.

That the inequation R �= O is equivalent to the inclusion L ⊆ L;R; L for rela-
tions on non-empty carrier sets we also have used to get vector representations
of the set of bounded partial orders and of maps with fixed points. In each case
the specific form of the expression R allows to apply Lemma 3.2 for computing
νr(L;R; L). E.g., for the inclusion L ⊆ L; (R ∩ I); L we get νr(L) = L for the left-
hand side and νr(L; (R ∩ I); L) = (L‖LT); νr(R ∩ I) = L; (r ∩ vec(I)) for the right-

hand side. In combination with Theorem 4.2 this yields L; L; (M ∩ vec(I); L)
T

as
vector representation of the set of relations with a reflexive element, which still
can be simplified to (L; (M ∩ vec(I); L))T. With the RelView-program obtained
from the simplified specification and the vectors of [6] for the classes of univa-
lent and total relations, respectively, we have been able to compute the vector
representation of the set of maps on X having fixed points up to |X| = 240. For
240 elements 5.55 s are needed to get the result and to store it in a ROBDD with
229 439 vertices. Our RelView-experiments show that the percentage of maps
having fixed points decreases from 100% if |X| = 1 to 63.284 if |X| = 240. This
is in accordance with the well-known result that, if Pn denotes the probability
that a map on an n-element set selected uniformly at random has a fixed point,
then Pn tends to 1 − 1

e if n tends to infinity.

7 Concluding Remarks

The computational power obtained by the use of ROBDDs and RelView
becomes clear if we compare the running times mentioned in Sect. 5 and 6 with
the times needed in case of a “classical” brute-force approach. E.g., if we assume
that some algorithm could generate every map on a given finite set X and test

50 R. Berghammer and M. Winter

the existence of a fixed point in, say, 10−6 seconds, it would take 2.82 · 1011 sec-
onds (i.e., more than 9000 years) for this task already if |X| = 15, since in this
case there are 282 325 794 823 047 151 maps on X having a fixed point. RelView
only needs 0.019 s to compute a vector representing this set.

Membership relations M : X×Y ↔ [X ↔Y] play a central role in our app-
roach. The variable ordering used in RelView allows to implement M by a
ROBDD the number of vertices is linear in the size of X×Y . Besides the very
efficient ROBDD-implementation of the relational operations this specific feature
of the tool seems to be the main reason for the amazing computational power in
case of problems that deal with the computation of a subset of a powerset.

In addition to applying the theory to further examples and applications,
there are at least two theoretical topics related to the material of this paper we
would like to investigate in the future. The first topic is the question whether it is
possible to find for any property P (R) of relations R : X ↔Y expressed in second
order logic an equivalent finite set of inclusions Ri ⊆ Si with Ri,Si ∈ RER

for all i. If this is the case, then the method of this paper could be applied
immediately to the inclusions to get a vector that represents the set of all these
relations. If this is not the case, it would be interesting to characterize the second
order properties for which an equivalent description by a finite set of inclusions
{R1 ⊆ S1, . . . ,Rn ⊆ Sn} is possible, i.e., for which our method is applicable.
The second topic is the above mentioned conjecture about the probability of
a relation selected uniformly at random from [X ↔X] to have a kernel. The
conjecture states that this probability tends to zero if |X| tends to infinity. So
far we only have been able to prove that, given any (but fixed) k ∈ N, the
probability of a relation selected uniformly at random from [X ↔X] to have a
kernel with at most k elements tends to zero if |X| tends to infinity.

Acknowledgement. We thank the referees for their very valuable remarks.

References

1. Berghammer, R., Neumann, F.: RelView – an OBDD-based computer algebra
system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC
2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555964 4

2. Berghammer, R.: Applying relation algebra and Rel View to solve problems on
orders and lattices. Acta Infor. 45, 211–236 (2008)

3. Berghammer, R.: Relation-algebraic modeling and solution of chessboard indepen-
dence and domination problems. J. Logic and Alg. Progr. 81, 625–642 (2012)

4. Berghammer, R.: Column-wise extendible vector expressions and the relational
computation of sets of sets. In: Hinze, R., Voigtländer, J. (eds.) MPC 2015. LNCS,
vol. 9129, pp. 238–256. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19797-5 12

5. Berghammer, R.: Tool-based relational investigation of closure-interior relatives
for finite topological spaces. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS
2017. LNCS, vol. 10226, pp. 60–76. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57418-9 4

https://doi.org/10.1007/11555964_4
https://doi.org/10.1007/11555964_4
https://doi.org/10.1007/978-3-319-19797-5_12
https://doi.org/10.1007/978-3-319-19797-5_12
https://doi.org/10.1007/978-3-319-57418-9_4
https://doi.org/10.1007/978-3-319-57418-9_4

A General Method for Representing Sets of Relations by Vectors 51

6. Berghammer, R.: Relational computation of sets of relations. In: Fahrenberg, U.,
Gehrke, M., Santocanale, L., Winter, M. (eds.) RAMiCS 2021. LNCS, vol. 13027,
pp. 54–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88701-8 4

7. Berghammer, R., Kulczynski, M.: Experimental investigation of sufficient criteria
for relations to have kernels. In: Fahrenberg, U., Gehrke, M., Santocanale, L.,
Winter, M. (eds.) RAMiCS 2021. LNCS, vol. 13027, pp. 72–89. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88701-8 5

8. Desharnais, J.: Monomorphic characterization of n-ary direct products. Inf. Sci.
119(3–4), 275–288 (1999)

9. Kehden, B.: Evaluating sets of search points using relational algebra. In: Schmidt,
R.A. (ed.) RelMiCS 2006. LNCS, vol. 4136, pp. 266–280. Springer, Heidelberg
(2006). https://doi.org/10.1007/11828563 18

10. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer, Heidelberg (1993)
11. Schmidt, G.: Relational Mathematics. Cambridge University Press, Cambridge

(2010)
12. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour.

Princton University Press, Princeton (1944)
13. Winter, M.: Goguen Categories - A Categorical Approach to L-Fuzzy Relations.

Trends in Logic, vol. 25. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
1-4020-6164-6

14. https://www.rpe.informatik.uni-kiel.de/en/research/relview
15. https://github.com/relview
16. https://zenodo.org/record/4708085#.YICAmS0RppR

https://doi.org/10.1007/978-3-030-88701-8_4
https://doi.org/10.1007/978-3-030-88701-8_5
https://doi.org/10.1007/11828563_18
https://doi.org/10.1007/978-1-4020-6164-6
https://doi.org/10.1007/978-1-4020-6164-6
https://www.rpe.informatik.uni-kiel.de/en/research/relview
https://github.com/relview
https://zenodo.org/record/4708085#.YICAmS0RppR

	A General Method for Representing Sets of Relations by Vectors
	1 Introduction
	2 Relational Preliminaries
	3 Vector Representation of Relations
	4 Vector Representation of Sets of Relations
	5 Applications: Kernels and Richardson's Criterion
	6 Further Applications
	7 Concluding Remarks
	References

