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Preface

This volume contains the proceedings of the 20th International Conference onRelational
and Algebraic Methods in Computer Science (RAMiCS 2023), which was held at the
Technologiezentrum Augsburg in Augsburg, Germany, on April 3–6, 2023.

The RAMiCS conferences series aims to bring together a community of researchers
to advance the development and dissemination of relation algebras, Kleene algebras, and
similar algebraic formalisms. Topics covered range from mathematical foundations to
applications as conceptual and methodological tools in computer science and beyond.
More than 30 years after its foundation in 1991 in Warsaw, Poland, RAMiCS, initially
named “Relational Methods in Computer Science”, remains a main venue in this field.
The series merged with the workshops on Applications of Kleene Algebra in 2003
and adopted its current name in 2009. Previous events were organized in Dagstuhl,
Germany (1994), Paraty, Brazil (1995), Hammamet, Tunisia (1997), Warsaw, Poland
(1998), Québec, Canada (2000), Oisterwijk, TheNetherlands (2001),Malente, Germany
(2003), St. Catharines, Canada (2005), Manchester, UK (2006), Frauenwörth, Germany
(2008),Doha,Qatar (2009),Rotterdam,TheNetherlands (2011),Cambridge,UK(2012),
Marienstatt, Germany (2014), Braga, Portugal (2015), Lyon, France (2017), Groningen,
The Netherlands (2018), Palaiseau, France (2020, online), andMarseille, France (2021).

RAMiCS 2023 attracted 26 submissions, of which 17 were selected for presentation
by the Program Committee. Each submission was evaluated according to high academic
standards by at least three independent reviewers, and scrutinized further during two
weeks of intense electronic discussion. The organizers are very grateful to all Program
Committee members for this hard work, including the lively and constructive debates,
and to the external reviewers for their generous help and expert judgments. Without this
dedication we could not have assembled such a high-quality program; we hope that all
authors benefitted from these efforts.

Apart from the submitted articles, this volume features the abstracts of the presenta-
tions of the three invited speakers, Alexander Knapp, John Stell, and Valeria Vignudelli.
We are delighted that all three invited speakers accepted our invitation to present their
work at the conference.

Last, but not least, we would like to thank the members of the RAMiCS Steer-
ing Committee for their support and advice. We gratefully acknowledge financial and
administrative support by the Zentrum für Leichtbauproduktions technologie of the
Deutsches Zentrum für Luft- und Raumfahrt, the Deutsche Forschungsgemeinschaft
and the Technologiezentrum Augsburg.
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We also appreciate the excellent facilities offered by the EasyChair conference
administration system, and Springer’s help in publishing this volume. Finally, we are
indebted to all authors and participants for supporting this conference.

January 2023 Roland Glück
Luigi Santocanale
Michael Winter
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Specifying Event/Data-based Systems

Alexander Knapp1

Universität Augsburg, Germany
knapp@informatik.uni-augsburg.de

Abstract. Event/data-based systems are controlled by events, their local
data state may change in reaction to events. Numerous methods and nota-
tions for specifying such reactive systems have been designed, though
with varying focus on the different development steps and their refine-
ment relations. We first briefly review some of such methods, like tem-
poral/modal logic, TLA, UML state machines, symbolic transition sys-
tems, CSP, synchronous languages, and Event-B with their support for
parallel composition and refinement. We then present E↓ -logic for cov-
ering a broad range of abstraction levels of event/data-based systems
from abstract requirements to constructive specifications in a uniform
foundation. E↓ -logic uses diamond and box modalities over structured
events adopted from dynamic logic, for recursive process specifications it
offers (control) state variables and binders from hybrid logic. The seman-
tic interpretation relies on event/data transition systems; specification
refinement is defined by model class inclusion. Constructive operational
specifications given by state transition graphs can be characterised by
a single E↓ -sentence. Also a variety of implementation constructors is
available in E↓ -logic to support, among others, event refinement and
parallel composition. Thus the whole development process can rely on
E↓ -logic and its semantics as a common basis.

1 Joint work with Rolf Hennicker, LMU München, Germany, and Alexandre Madeira, CIDMA,
U. Aveiro, Portugal



Algebra and Logic in Granularity

John G. Stell

University of Leeds, Leeds LS2 9JT, U.K
j.g.stell@leeds.ac.uk

Conceptually, a relation on a set can be understood as a lens through which subsets are
seen in different ways. For example, at different levels of detail. This idea underlies some
basic operations in mathematical morphology as used in image processing. In a more
abstract setting, the idea also fits one view of quantale modules [1], where a quantale
acting on a complete lattice models the operation of observing elements of the lattice
by means of the elements of quantale. This talk will consider the role of relations, and
their generalizations, in the development of a theory of granularity, or level of detail.
Starting frombasicmathematicalmorphology, algebraic and logical structuresmotivated
by extensions of this will be discussed.

To explain the starting point, mathematical morphology is a body of techniques used
in image processing since the 1960s. The algebraic basis of these techniques is already
well-known through the work of Serra, Heijmans [3], Ronse, and others. A black and
white image can be seen as a subset of a set of pixels. Operations mapping subsets
to subsets provide ways of modifying images. Such operations arise from relations on
the underlying set. Algebraically, a binary relation induces an adjunction yielding the
dilation (left, or lower, adjoint) and erosion (right, or upper, adjoint) operations used in
image processing. From these are derived openings and closings. Families of openings
and closings are used to build “alternating sequential filters”, “granulometries” and
further practically useful operations. Mathematical morphology was extended from sets
of pixels to graphs and subgraphs [2]. The appropriate notion of relation to deal with
this was identified [5], and these can be seen as quantale-enriched distributors. A quite
separate application of quantales to mathematical morphology was developed by Russo
[4]. The talk will discuss connections between these accounts.

References
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Math. Struct. Comput. Sci. 3, 161–227 (1993)

2. Cousty, J., Najman L., Dias, F., Serra, J.: Morphological filtering on graphs. Comput.
Vision Image Underst. 117, 370–385 (2013)
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Diego
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5. Stell, J. G.: Relations on Hypergraphs. In: Kahl, W., Griffin, T. G. (eds) Relational and
Algebraic Methods in Computer Science. RAMICS 2012. Lecture Notes in Computer
Science, vol 7560. Springer, Heidelberg. (2012). https://doi.org/10.1007/978-3-642-
33314-9_22

https://doi.org/10.1007/978-3-642-33314-9_22


Equational Theories and Distances for Computational
Effects

Valeria Vignudelli

CNRS/ENS Lyon, France

Computational effects such as nondeterminism and probabilities can be abstractly mod-
elled in category theory as monads, and can be syntactically described in universal
algebra via equational theories.

Equational theories allow us to reason on the equivalence of programs with com-
putational effects. In recent years, much work has been devoted to the development of
techniques to reasonnot only onprogramequivalence, but also onprogramdistances. The
correspondence between monads and equational theories has been extended to capture
such notions of distances, via the framework of quantitative equational theories.

In this talk, I will present such correspondence betweenmonads and equational theo-
ries, as well as recent results applying the framework of quantitative equational theories
to computational effects and distances on them. I will show several examples of axiom-
atizations, including more involved cases such as the combination of nondeterminism,
probabilities and termination.
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Amalgamation Property for Some
Varieties of BL-Algebras Generated
by One Finite Set of BL-Chains
with Finitely Many Components

Stefano Aguzzoli1 and Matteo Bianchi2(B)

1 Department of Computer Science, Università degli Studi di Milano,
Via Celoria 18, 20133 Milan, Italy

aguzzoli@di.unimi.it
2 Milan, Italy

matteob@gmail.com

Abstract. BL-algebras are the algebraic semantics of Basic logic BL,
the logic of all continuous t-norms and their residua. In a previous work,
we provided the classification of the amalgamation property (AP) for the
varieties of BL-algebras generated by one BL-chain with finitely many
components. As an open problem, we left the analysis of the AP for
varieties of BL-algebras generated by one finite set of BL-chains with
finitely many components. In this paper we provide a partial solution
to this problem. We provide a classification of the AP for the varieties
of BL-algebras generated by one finite set of BL-chains with finitely
many components, which are either cancellative hoops or finite Wajsberg
hoops. We also discuss the difficulties to generalize this approach to the
more general case.

Keywords: BL-algebras · Hoops · Amalgamation property · Ordinal
sums · Lattices of varieties

1 Introduction

Basic Logic BL was introduced by Petr Hájek in 1998 [15], and in [10] it was
shown that BL is the logic of all continuous t-norms and their residua. BL is
algebraizable in the sense of Blok and Pigozzi [8], and its equivalent algebraic
semantics is given by a variety of residuated lattices, called BL-algebras. The
lattice of varieties of BL-algebras L(BL) is mostly unknown, and a lot of research
has been devoted to study its structure, and the properties of subvarieties of BL-
algebras. Among them, the amalgamation property (AP) is an important one,
since it is well known that a variety of BL-algebras has the AP if and only if
the corresponding logic has the deductive interpolation property. The AP for

M. Bianchi—Independent Researcher.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Glück et al. (Eds.): RAMiCS 2023, LNCS 13896, pp. 1–16, 2023.
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BL and some of its subvarieties was shown in [17], and in [12] the analysis was
further extended. In [16] the case of GBL-algebras (a far-reaching generalization
of BL-algebras) was also tackled, by providing a partial classification. However, in
contrast to the case of MV-algebras, the analysis of the AP for the varieties of BL-
algebras is far from being complete. In our previous work [5] we provided a full
classification of the AP for varieties generated by one BL-chain with finitely many
components. As an open problem, we left the classification of the AP for all the
varieties generated by one finite set of BL-chains with finitely many components.
In this paper we provide a partial answer, by using some new results on the AP
presented in [14] namely, the connection with a generally weaker form, called
one-sided amalgamation property, 1AP. Our main result is the classification of
the AP for all the varieties generated by one finite set of BL-chains with finitely
many components which are either cancellative hoops or finite Wajsberg hoops.
As a corollary, we obtain the classification of the AP for all the varieties of BL-
algebras which are generated by one finite set of finite BL-chains. In the last
section we discuss open problems.

2 Preliminaries

2.1 BL-Algebras

Definition 1 ([15]). A BL-algebra is an algebra (A, ∗,⇒,∧,∨, 0, 1) such that:

i) (A,∧,∨, 0, 1) is a bounded lattice with minimum 0 and maximum 1.
ii) (A, ∗, 1) is a commutative monoid.
iii) (∗,⇒) forms a residuated pair: z ∗ x ≤ y iff z ≤ x ⇒ y for all x, y, z ∈ A.
iv) The following identities hold, for all x, y ∈ A:

(x ⇒ y) ∨ (y ⇒ x) = 1. (Prelinearity)
x ∧ y = x ∗ (x ⇒ y). (Divisibility)

A totally ordered BL-algebra is called a BL-chain.

Every algebra ([0, 1], ∗,⇒,min,max, 0, 1), where ∗ is a continuous t-norm, and
⇒ is its residuum, is a BL-algebra [11], called a standard BL-algebra. Two well-
known examples are the standard MV-algebra [0, 1]�L and the standard Gödel-
algebra [0, 1]G. In [0, 1]�L we have x ∗ y = max{0, x + y − 1}, and x ⇒ y =
min{1, 1 − x + y}. In [0, 1]G it holds that x ∗ y = min{x, y}, whilst x ⇒ y = 1 if
x ≤ y, and x ⇒ y = y if x > y. We define ¬x

def= x ⇒ 0.

2.2 BL-Algebras and Ordinal Sums

Every BL-chain can be decomposed as an ordinal sum of hoops. Before stating
the result, we need some preparation.

Definition 2 ([13]). A hoop is an algebra A = (A, ∗,⇒, 1) of type (2, 2, 0) such
that:
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(i) (A, ∗, 1) is a commutative monoid,
(ii) ⇒ is a binary operation satisfying the following properties:

– x ⇒ x = 1,
– x ∗ (x ⇒ y) = y ∗ (y ⇒ x),
– x ⇒ (y ⇒ z) = (x ∗ y) ⇒ z.

A bounded hoop is an algebra A = (A, ∗,⇒, 0, 1) such that (A, ∗,⇒, 1) is a hoop,
and 0 ≤ x for all x ∈ A. The binary relation ≤ on A is defined as x ≤ y if and
only if x ⇒ y = 1. It follows from the hoop axioms that this binary relation is
indeed a partial order. An unbounded hoop is a hoop without minimum.

A Wajsberg hoop is a hoop A satisfying

(x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x.

A cancellative hoop is a hoop satisfying

x ⇒ (x ∗ y) = y.

It is well known that bounded Wajsberg hoops are term-equivalent to MV-
algebras (see [1], and [9] for MV-algebras). We also recall that the variety of
Wajsberg hoops WH contains all cancellative hoops. In particular, the class of
totally ordered cancellative hoops coincides with the class of totally ordered
unbounded Wajsberg hoops. The class of all cancellative hoops forms a variety,
called CH. Of course CH � WH. BL-chains can be obtained by means of the
ordinal sum construction.

Definition 3. Let (I,≤) be a totally ordered set with minimum 0. For all i ∈ I,
let Ai = (Ai, ∗i,⇒i, 1) be a hoop such that for i �= j, Ai ∩ Aj = {1}. Then⊕

i∈I Ai is called the ordinal sum of the family {Ai}i∈I , whose universe is given
by

⋃
i∈I Ai, and whose operations1 ⇒, ∗ are given by:

x ⇒ y
def=

⎧
⎪⎨

⎪⎩

x ⇒i y if x, y ∈ Ai,

y if j < i, x ∈ Ai, y ∈ Aj ,

1 if i < j, 1 �= x ∈ Ai, y ∈ Aj .

x ∗ y
def=

⎧
⎪⎨

⎪⎩

x ∗i y if x, y ∈ Ai,

y if j < i, x ∈ Ai, 1 �= y ∈ Aj ,

x if i < j, 1 �= x ∈ Ai, y ∈ Aj .

The hoops Ai are called components. When I is finite, for example I =
{0, . . . , k}, we sometimes use the notation A0 ⊕ · · · ⊕ Ak, in place of

⊕
i∈I Ai.

As shown in [2] every BL-chain is canonically representable as an ordinal sum
of hoops.

1 The relation x ≤ y iff x ⇒ y = 1 equips
⊕

i∈I Ai with a total order. For every
x ∈ Ai, y ∈ Aj , x ≤ y iff x < 1 and i < j or i = j and x ≤i y.



4 S. Aguzzoli and M. Bianchi

Theorem 1 ([2]). For every BL-chain A there are a unique (up to order-
isomorphisms) totally ordered set (I,≤) with minimum 0 and a unique (up to
isomorphisms) family {Ai | i ∈ I} of non-trivial totally ordered Wajsberg hoops
whose first component A0 is bounded, such that A ∼=

⊕
i∈I Ai.

Observe that the idempotent elements in any ordinal sum of Wajsberg hoops are
exactly 1 and the bottoms of every component with minimum. Let A be a BL-
chain. With #A we denote the number of the components of A, i.e., #A = |I|,
in the decomposition of A described in Theorem 1. With (A)i we denote the
i-th component of A. Clearly (A)0 is an MV-chain, and (A)0 ↪→ A.

Remark 1. – By slight abuse of terminology we shall often consider ordinal
sums

⊕
i∈I Ai, where there are some Ai (with i �= min I) being MV-chains,

with the obvious meaning that we are actually considering the 0-free reduct
of each such Ai.

– By slight abuse of notation we shall sometimes consider ordinal sums
⊕

i∈I Ai

where two or more components have elements in common distinct from 1 (for
example, Ai = Aj for some i �= j ∈ I). In such cases we tacitly mean to
consider an ordinal sum

⊕
i∈I Bi, with Bi  Ai for every i ∈ I and Bi ∩Bj =

{1} for i �= j.
– Unless stated otherwise, from now on we assume that all the ordinal sums of

Wajsberg hoops that we consider have non-trivial components.

With 2 we denote the two element boolean algebra. The hoop C∞ = (C∞, ∗,⇒, 1)
is defined as follows, for x, y ∈ C∞ = {x ∈ Z : x ≤ 0}:

– 1C∞ = 0,
– x ∗C∞ y = x + y,

– x ⇒C∞ y =

{
0 if x ≤Z y,

y − x otherwise.

For k ≥ 2, we define Lk as the subalgebra of [0, 1]�L with carrier {0, 1
k−1 , . . . , k−1

k−1}.
For k ≥ 1 we define Pk as 2⊕ C∞ ⊕ · · · ⊕ C∞︸ ︷︷ ︸

k times

. For k ≥ 1, Pk generates a variety,

called Pk, where P1 is the variety of product algebras. We refer the reader to [4]
for further details. For k ≥ 2 we define Gk as 2 ⊕ · · · ⊕ 2

︸ ︷︷ ︸
k−1 times

. Gk is a Gödel-chain

(G-chain, for short) with k elements: see [11] for further details. With Gk we
denote V(Gk). With B = G2 we denote the variety of boolean algebras.

The radical of a totally ordered Wajsberg hoop (MV-chain) A, is the inter-
section of all the maximal filters of A, and will be denoted by Rad(A). Let A
be an MV-chain. We say that A has a finite rank if A/Rad(A)  Lk, for some
k (in this case rank(A) = k), whilst A has infinite rank if A/Rad(A) is an
infinite simple MV-chain. We can define mutatis mutandis the same notion for a
totally ordered Wasjberg hoop2: the only difference is that A/Rad(A) would be
2 Note that every non-trivial totally ordered cancellative hoop A does not have rank,

since A/Rad(A) is an infinite cancellative hoop.
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the 0-free reduct of a simple MV-chain (finite or infinite). Let A be a BL-chain
or a totally ordered Wajsberg hoop. With Ch(A) we denote the class of all the
non-trivial chains of V(A).

Lemma 1 ([2])

– Let
⊕

i∈I Ai be a non-trivial BL-chain. Then ISPu(
⊕

i∈I Ai) =
I(

⊕
i∈I SPu(Ai)), where

⊕
i∈I SPu(Ai) = {

⊕
i∈I Bi : Bi ∈ SPu(Ai)}.

– If A is an infinite totally ordered cancellative hoop, then ISPu(A) = Ch(CH).
– If A is a totally ordered Wajsberg hoop with infinite rank, and for every n ≥ 2,

Ln ↪→ A, then ISPu(A) = Ch(A).
– If A is a totally ordered Wajsberg hoop with rank(A) = n, and Ln ↪→ A, then

ISPu(A) = Ch(A). If in addition A is also finite, then3 ISPu(A) = IS(A) =
Ch(A).

Lemma 2. Let S be a finite set of BL-chains such that, for every A ∈ S.

– A has finitely many components.
– Each (A)i is either cancellative or it is a Wajsberg hoop with finite rank such

that (A)i/Rad((A)i) ↪→ (A)i.

Let L = V(S). Then the following hold.

1. Ch(L) = ISPu(S) =
⋃

T ∈S ISPu(T ).
2. In particular, for every A =

⊕k
i=0 Ai ∈ S such that (A)0 is finite, Ch(A) =

I(S(A0) ⊕
⊕k

i=1 SPu(Ai)).
3. If every A ∈ S is finite, then Ch(L) = IS(S) =

⋃
T ∈S IS(T ).

Proof. Let S be a finite set of BL-chains with finitely many components which
are cancellative or finite, and let L = V(S).

1. The first equality follows by [2, Theorem 7.6], and the first part of its proof.
The second equality follows by [6, Lemma 2].

2. This follows by Lemma 1, and [6, Lemma 2].
3. This follows by 1, and Lemma 1. ��

We recall that a BL-algebra A is subdirectly irreducible (SI) whenever the trivial
congruence Δ is strictly meet irreducible in the lattice of congruences Con(A).
We say that A is finitely subdirectly irreducible (FSI) whenever the trivial con-
gruence Δ is meet irreducible in the lattice of congruences Con(A). Subdirectly
irreducible and finitely subdirectly irreducible BL-algebras are related to BL-
chains, as the following theorem show.

Theorem 2 ([11])

– Every subdirectly irreducible BL-algebra is totally ordered.

3 The assumption that Ch(A) does not contain trivial chains is essential. Indeed, if A
is non-trivial, then ISPu(A) does not contain trivial algebras.
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– A BL-algebra is finitely subdirectly irreducible if and only if it is totally
ordered.

We conclude the section with some observations on the homomorphisms among
BL-algebras.

Lemma 3. Let A,B be MV-chains, where A is simple, and B is non-trivial. If

there is a homomorphism k from A to B, then A k
↪−→ B.

Proof. Let A,B as above, and suppose that there is a homomorphism k between
A and B. Then ker(k) is a congruence on A, which is a simple MV-chain. This
means that ker(k) ∈ {Δ,∇}. If ker(k) = ∇, this implies that k(a) = 1B, for
every a ∈ A. Therefore we have that k(0A) = 1B. However this is impossible, as
by the definition of homomorphism k(0A) = 0B, and since B is non-trivial we

must have 0B �= 1B. Therefore ker(k) = Δ, and this implies A k
↪−→ B. The proof

is settled. ��

Note that Lemma 3 does not hold for Wajsberg hoops, due to the lack of the
constant 0 in the signature.

Lemma 4. Let A,B be two non-trivial BL-chains, where (A)0 simple. If there

is a homomorphism k from A to B, then (A)0
k�(A0)

↪−−−−→ (B)0 and (A)0
k

↪−→ B.

Proof. Immediate by Lemma 3. ��

3 Amalgamation Property for Varieties Generated
by a Finite Set of BL-Chains with Finitely Many
Components

We start with some definitions.

Definition 4. Let L be a class of algebras. A V-formation is a tuple

(A,B, C, i, j) such that A,B, C ∈ L, A i
↪−→ B, and A j

↪−→ C.

– We say that L has the one-sided amalgamation property (1AP), whenever for
every V-formation (A,B, C, i, j) there is a tuple (D, h, k), called 1-amalgam,

such that D ∈ L, B h
↪−→ D, k is a homomorphism from C to D, and h◦i = k◦j.

– We say that L has the amalgamation property (AP), whenever for every V-
formation (A,B, C, i, j) there is a tuple (D, h, k), called an amalgam, such

that D ∈ L, B h
↪−→ D, C k

↪−→ D, and h ◦ i = k ◦ j.

Clearly the AP implies the 1AP. Interestingly, also the converse holds, if we
assume that the class of algebras L satisfies some properties. By LFSI we denote
the class of FSI algebras of L.

Theorem 3 ([14]). Let L be a variety with the congruence extension property
such that LFSI is closed under subalgebras. The following are equivalent:
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– L has the amalgamation property.
– L has the one-sided amalgamation property.
– LFSI has the one-sided amalgamation property.
– Every V-formation of finitely generated algebras from LFSI has an amalgam

in LFSI × LFSI = {A × B : A,B ∈ LFSI}.
– Every V-formation of finitely generated algebras from LFSI has an amalgam

in L.

Applying the previous theorem to the case of BL-algebras we obtain the following
result.

Theorem 4. A variety L of BL-algebras has the AP if and only if Ch(L) has
the 1AP.

Proof. Let L be a variety of BL-algebras. By Theorem 2 we have that LFSI

coincides with the class of all chains in L, and hence LFSI is closed under sub-
algebras. Moreover, as shown in [18, p. 42] every variety of BL-algebras has the
congruence extension property. Then the theorem’s claim follows by Theorem 3.
��

Proposition 1. Let L be a variety of BL-algebras. If L has the AP, then L∩MV

is single-chain generated.

Proof. Let L be a variety of BL-algebras having the AP. Suppose by con-
tradiction that L ∩ MV is not single-chain generated. Then, by [19] we have
that L ∩ MV does not have the AP. Pick a V-formation (A,B, C, i, j) with
A,B, C ∈ Ch(L ∩ MV). Since L has the AP, by Theorem 4 Ch(L) has the 1AP.
Then there exists an 1-amalgam (D, h, k), with D ∈ Ch(L), for (A,B, C, i, j).
Let E be the subalgebra of D generated by h(B)∪ k(C). Since h(B) and k(C) are
both MV-chains, then h(B) ∪ k(C) ⊆ (D)0. Then E is an MV-chain, and hence
E ∈ L ∩ MV. Then by Theorem 4, L ∩ MV has the AP, which is a contradiction.
Therefore we must conclude that if L has the AP, then L ∩ MV is single-chain
generated. The proof is settled. ��

Remark 2. The converse of Proposition 1 does not hold. For example G4∩MV =
B is single-chain generated, but G4 does not have the AP.

Theorem 5 ([5]). Let L be a variety of BL-algebras such that every chain has
finitely many components. If L contains G4 or P2, then L does not have the AP.

Corollary 1. Let L be a variety of BL-algebras such that every chain has finitely
many components. If L has the AP, then every A ∈ Ch(L) satisfies the following
properties.

– #A ≤ 3.
– If A is finite, then #A ≤ 2.
– If #A = 3, then one between (A)1, (A)2 is cancellative, and the other one is

finite.
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Theorem 6 ([5]). Let L be a variety of BL-algebras generated by one chain with
finitely many components. Then the following are equivalent:

(i) L has the AP.
(ii) Every BL-chain A =

⊕
i∈I Ai such that V(A) = L satisfies the following

conditions.
• |I| ≤ 3.
• There is at most one i ∈ I \ {0} such that Ai is infinite, and there is at

most one j ∈ I \ {0} such that Aj is bounded.
• If |I| ≥ 2 then the following hold.

∗ If A0 has infinite rank, then Lk ↪→ A0, for every k ≥ 2.
∗ If A0 is infinite and rank(A0) = k, then Lk ↪→ A0.

3.1 Minimal Set of Generators and Related Properties

Definition 5. A minimal set of generators (m-set) is a non-empty finite set of
non-trivial BL-chains with finitely many components, say S, such that V(T ) �

V(S), for every T � S.

The proof of the following result is straightforward.

Lemma 5. Let S be a non-empty finite set of non-trivial BL-chains with finitely
many components. Then there exists an m-set (not necessarily unique) T ⊆ S
such that V(T ) = V(S).

The m-sets have some interesting properties.

Lemma 6. Let L be a variety generated by one finite set of BL-chains with
finitely many components. Then,

– There exists an m-set S such that V(S) = L.
– If L is single-chain generated, then |S| = 1, for every m-set S such that

V(S) = L.
– If every chain in L is finite, then there is an m-set S containing only finite

BL-chains such that V(S) = L.
– Let S be an m-set such that V(S) = L. For every A ∈ S, if A ↪→ B, with

B ∈ Ch(L), then B ∈ Ch(A).

Proof. Let L be a variety generated by one finite set of BL-chains with finitely
many components.

– Immediate by Lemma 5.
– Let S be an m-set such that V(S) = L. Note that this set, which is finite,

necessarily exists, since L is generated by one BL-chain with finitely many
components. Suppose by contradiction that |S| ≥ 2. This means that L =∨

A∈S V(A), and since S is an m-set we have that V(A) � L, for every A ∈ S.
But then this would imply that L is not join irreducible in L(L), and by [3,
Theorem 5.1] this is a contradiction, since L is single-chain generated.
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– If every chain in L is finite, then L is generated by one finite set of finite
BL-chains, and the claim follows by Lemma 5.

– Let S be an m-set such that V(S) = L, and assume that A ↪→ B, for some
B ∈ Ch(L). We have that Ch(L) = Ch(S) =

⋃
C∈S Ch(C), where the last

equality follows by [6, Lemma 2], as S is finite. Since S is an m-set, we
have that A /∈ Ch(C), for every C ∈ S \ {A}. Then we must conclude that
B ∈ Ch(A). ��

Proposition 2. Let L be a variety of BL-algebras generated by an m-set S. If
L has the AP, then:

i) For every A ∈ S, #A ≤ 3.
ii) There exists A ∈ S such that (B)0 ∈ V((A)0), for every B ∈ S. Moreover,

V((A)0) = L ∩ MV.
iii) If S contains an MV-chain A, then V(A) = L ∩ MV, and every chain in

S \ {A} has at least two components.
iv) Suppose that the first component of every chain in S is finite. Then there

exists A ∈ S such that (B)0 ↪→ A, for every B ∈ S.
v) Suppose that the first component of every chain in S has finite rank. Then

there exists A ∈ S such that rank((B)0) − 1 divides rank((A)0) − 1, for
every B ∈ S.

Proof. Let L be a variety of BL-algebras generated by an m-set S. Assume that
L has the AP.

i) Immediate by Corollary 1.
ii) By Proposition 1 we know that there exists C ∈ Ch(L) such that V(C) =

L∩MV. By [6, Lemma 2] and [2, Theorem 7.9] we have that Ch(MV∩L) =⋃
D∈T Ch(D), where T = {(D)0 : D ∈ S}. This means that C ∈ Ch((A)0),

for some A ∈ S. Since the first component of every BL-chain is an MV-
chain, we clearly have that T ⊂ MV ∩ L = V((A)0). Then (B)0 ∈ V((A)0),
for every B ∈ S. Therefore ii) holds true.

iii) Suppose that S contains an MV-chain A. Since S is an m-set, A /∈ V(B), for
every B ∈ S\{A}. By ii) we must have (B)0 ∈ V(A), for every B ∈ S. By [6,
Lemma 2] and [2, Theorem 7.9] we have that Ch(MV ∩ L) =

⋃
D∈T Ch(D),

where T = {(D)0 : D ∈ S}. Then an easy check shows that V(A) = L∩MV.
Suppose that S \ {A} contains an MV-chain C. Then C = (C)0 ∈ V(A), but
this is a contradiction, since S is an m-set. Therefore every chain in S \ {A}
has at least two components.

iv) Suppose now that the first component of every chain in S is finite. By
ii) we have that there exists A ∈ S such that (B)0 ∈ V((A)0), for every
B ∈ S. Since the first component of every chain in S is finite, we have that
(B)0 ↪→ A, for every B ∈ S. Then iv) is true.

v) Suppose that the first component of every chain in S has finite rank. By
ii) there exists A ∈ S such that (B)0 ∈ V((A)0), for every B ∈ S. Since
(A)0 has finite rank, by known results on MV-algebras and the previous
observation we have that rank((B)0) − 1 divides rank((A)0) − 1, for every
B ∈ S. Therefore v) holds true, and the proof is settled. ��
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Lemma 7. Let L be a variety of BL-algebras generated by an m-set S. Assume
that L has the AP. If S contains an MV-chain A which is either finite or with
infinite rank, then S = {A}.

Proof. Let L be a variety of BL-algebras generated by an m-set S. Assume that
L has the AP, and that S contains an MV-chain A which is either finite or with
infinite rank. Suppose by contradiction that |S| ≥ 2, and pick B ∈ S \ {A}. We
have two cases.

Assume first that A is finite. Pick the V-formation (2,B,A, i, j), where i, j
are defined in the unique and obvious way. Since by hypothesis L has the AP, by
Theorem 4, Ch(S) has the 1AP. Therefore there exists a 1-amalgam (C, h, k) for

(2,B,A, i, j), with C ∈ Ch(S). Since B h
↪−→ C, by Lemma 6 we have C ∈ Ch(B).

Since k is a homomorphism from A to C, and A is simple, by Lemma 4 k must
be an embedding. But this would imply A ∈ V(C) ⊆ V(B), which is impossible
as S is an m-set. Therefore the 1AP for Ch(S) fails, and by Theorem 4 the AP
for V(S) = L does not hold.

The last case is when A has infinite rank. Then V(A) = MV (see [9]),
and hence [0, 1]�L ∈ Ch(S). Clearly V(A) = V([0, 1]�L). Pick the V-formation
(2,B, [0, 1]�L, i, j), where i, j are defined in the unique and obvious way. Since
L has the AP by Theorem 4, Ch(S) has the 1AP. Therefore there exists a

1-amalgam (C, h, k) for (2,B, [0, 1]�L, i, j), with C ∈ Ch(S). Since B h
↪−→ C, by

Lemma 6 we have C ∈ Ch(B). Since k is a homomorphism from [0, 1]�L to C,
and [0, 1]�L is simple, by Lemma 4 k must be an embedding. But this would
imply [0, 1]�L,A ∈ V(C) ⊆ V(B), which is impossible as S is an m-set. Therefore
the 1AP for Ch(S) fails, and by Theorem 4 the AP for V(S) does not hold.
Summing up, if |S| ≥ 2, the AP for V(S) fails to hold. On the other side, in [19]
it is shown that every variety generated by one MV-chain has the AP. Therefore
we must conclude that S = {A}, and the proof is settled. ��

Remark 3. One could ask if Lemma 7 could be extended to the general case,
where A is any (non-trivial) MV-chain. The answer is negative. Pick the m-set
S = {K2,G3}, where K2 = Γ(ZG ×lex ZG, (1, 0)) is Chang’s MV-algebra: here
ZG denotes the additive group of integers, and Γ is the gamma functor (see [9]
for details). By [6, Lemma 2], Lemma 1, Lemma 2 we have that the non-trivial
chains in V(S), up to isomorphisms, are {K2,2,G3}. We show that Ch(S) has the
1AP. Let (A,B, C, i, j) be a V-formation. If B, C ∈ Ch(G3) or B, C ∈ Ch(K2), then
since Ch(G3) and Ch(K2) have the 1AP, we can find a 1-amalgam for (D, h, k)
for (A,B, C, i, j), with D ∈ Ch(S). The remaining cases are when B �= C and
B, C ∈ {K2,G3}. Suppose first that B = K2 and C = G3. Consider the triple
(K2, h, k), where h = idK2 , and k is defined as follows. k(0) = 0, and k(c) = 1
for every 0 < c ∈ C. It is easy to see that h is an embedding from B to K2,
and that k is a homomorphism from C to K2. Finally, an easy check shows that
A  2, and that h(i(a)) = k(j(a)), for every a ∈ A. The last case is when B = G3

and C = K2. Consider the triple (G3, h, k), where h = idG3 , and k is defined as
follows. k(0) = 0, and k(c) = 1 for every 0 < c ∈ C. It is easy to see that h is an
embedding from B to G3, and that k is a homomorphism from C to G3. Finally,
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an easy check shows that A  2, and that h(i(a)) = k(j(a)), for every a ∈ A.
Therefore Ch(S) has the 1AP, and by Theorem 4, V(S) has the AP.

3.2 A Classification of the AP, for Varieties Generated by M-Sets
with Either Cancellative or Finite Components

Lemma 8. Let S be an m-set in which every chain has either cancellative or
finite components. Suppose that at least one of the following conditions holds:

– There are A,B ∈ S such that #A = #B = k, and A �= B, with k ≥ 1, k �= 2.
– There are A,B ∈ S such that #A = #B = 2, and A �= B, where either A,B

are both finite or (A)1, (B)1 are both cancellative.
– There are A,B ∈ S such that #A = 2 and #B = 3.

Then V(S) does not have the AP.

Proof. Let S be an m-set in which every chain has either cancellative or finite
components.

– Assume that there are A,B ∈ S such that #A = #B, and A �= B.
If #A = #B = 1, by Lemma 7, V(S) does not have the AP.
The next case is #A = #B = 3. Note that if either A or B has no cancellative
components or more than one, then by Corollary 1, V(S) does not have the
AP. So, let us assume that both A,B have exactly one cancellative compo-
nent (by hypothesis the other components are finite). Pick the V-formation
(G3,A,B, i, j), where i, j are defined in the unique and obvious way. Suppose
by contradiction that V(S) has the AP. By Theorem 4, Ch(S) has the 1AP,

and there exists a 1-amalgam (C, h, k), with C ∈ Ch(S). Since A h
↪−→ C, then

by Lemma 6 we have C ∈ V(A). On the other side B �↪→ C ∈ V(A), since S
is an m-set. Since k is a homomorphism between B and C, then by Lemma
4, (B)0 must embed into (C)0, as (B)0 is a finite MV-chain. Let (B)j , with
j ∈ {1, 2} be the other finite component of B different from the first one
(indeed, by hypothesis B has exactly one cancellative component). Note that
if (B)j embeds into (C)j , then by Theorem 2, B ∈ V(A), and this is impossi-
ble as S is an m-set. This means that (B)j �↪→ (C)j . However, this implies that
k(b) = 1, for every b ∈ (B)j . Let m be the bottom of the second component
of G3. Then k(j(m)) = 1, whilst since i, h are both embeddings, h(i(m)) < 1.
But this means that (C, h, k) is not a 1-amalgam for (G3,A,B, i, j), a contra-
diction. By Theorem 4, V(S) does not have the AP. Finally, if #A = B ≥ 4,
by Corollary 1, V(S) does not have the AP.

– Suppose now that #A = #B = 2. If A,B are both finite, then pick the
V-formation (G3,A,B, i, j), where i, j are defined in the unique and obvious
way. Suppose by contradiction that V(S) has the AP. By Theorem 4, Ch(S)
has the 1AP, and there exists a 1-amalgam (C, h, k), with C ∈ Ch(S). Since

A h
↪−→ C, by Lemma 6 we have C ∈ V(A). On the other side B �↪→ C ∈

V(A), since S is an m-set. Since k is a homomorphism between B and C,
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then ker(k) ∈ Con(B). Since B is a finite BL-chain with two components,
it has three congruences: Δ,∇, θ, where θ is the congruence corresponding
to the filter Rad(A) (which is the carrier of (B)1). Now, since B �↪→ C, and
C is non-trivial we have that ker(k) /∈ {Δ,∇}. Therefore ker(k) = θ. This
implies that k(b) = 1, for every b ∈ (B)1. Let m be the bottom element of
the second component of G3. We have that k(j(m)) = 1, however since i, h
are both embeddings we have h(i(m)) < 1. However this is a contradiction,
as (C, h, k) should be a 1-amalgam. By Theorem 4, V(S) does not have the
AP. Assume now that (A)1, (B)1 are both cancellative. Pick the V-formation
(2,A,B, i, j), where i, j are defined in the unique and obvious way. Suppose
by contradiction that V(S) has the AP. By Theorem 4, Ch(S) has the 1AP,

and there exists a 1-amalgam (C, h, k), with C ∈ Ch(S). Since A h
↪−→ C, then

by Lemma 6 we have C ∈ V(A). By Lemma 2 (C)1 must be cancellative. Since
k is a homomorphism between B and C, and (B)0 is a finite MV-chain, by

Lemma 4, (B)0
k�(B0)

↪−−−−→ (C)0. However, since (B)1, (C)1 are both cancellative,
by Lemma 2 we would have B ∈ V(C), and hence B ∈ V(A). However this
is impossible, as S is an m-set. Therefore Ch(S) does not have the 1AP, and
by Theorem 4, V(S) does not have the AP.

– Assume that there are A,B ∈ S such that #A = 2 and #B = 3. If B does not
have exactly one cancellative component, then by Theorem 5, V(S) does not
have the AP, and we are done. So, suppose that B has exactly one cancellative
component. Assume first that (A)1 is cancellative. Consider the V-formation
(2,B,A, i, j), where i, j are defined in the unique and obvious way. Suppose
by contradiction that V(S) has the AP. By Theorem 4, Ch(S) has the 1AP,
and there exists a 1-amalgam (C, h, k) with C ∈ Ch(S). In particular h is
an embedding from B to C, and C ∈ Ch(B) by Lemma 6. By Lemma 2
C has one cancellative component. Since k is a homomorphism between A
and C, and (A)0 is a finite MV-chain, by Lemma 4, (A)0

k�(A0)
↪−−−−→ (C)0. By

Lemma 2 a direct inspection shows that A ∈ V(C), and hence A ∈ V(B).
However this is impossible, as S is an m-set. Therefore Ch(S) does not have
the 1AP, and by Theorem 4, V(S) does not have the AP. The last case is
when (A)1 is a finite Wajsberg hoop. This means that A is a finite BL-chain.
Pick the V-formation (G3,B,A, i, j), where i, j are defined in the unique and
obvious way (as B has exactly one cancellative component, whilst the others
are finite). Suppose by contradiction that V(S) has the AP. By Theorem 4,
Ch(S) has the 1AP, and there exists a 1-amalgam (C, h, k) with C ∈ Ch(S).
In particular h is an embedding from B to C, and hence #C = 3, and C ∈
Ch(B) by Lemma 6. Since S is an m-set then A /∈ V(B), and hence A �↪→ C.
So, as k is a homomorphism from A to C, then ker(k) is a congruence on
A. Since A = (A)0 ⊕ (A)1, and both the components are finite Wajsberg
hoops, then A has exactly three filters: {1}, A,Rad(A), where Rad(A) is the
carrier of (A)1. This means that A has exactly three congruences: Δ,∇, θ,
where θ is the congruence corresponding to Rad(A). Now, since A �↪→ C,
then ker(k) �= Δ. Moreover, since C is non-trivial we also have ker(k) �= ∇.
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So the only possibility is that ker(k) = θ. However this implies that k(a) = 1,
for every a ∈ (A)1. Let m be the bottom element of the second component
of G3. Then we have that k(j(m)) = 1, but since h, i are both embeddings,
we have that h(i(m)) < 1. However this is a contradiction, since (C, h, k) is
a 1-amalgam for (G3,B,A, i, j). By Theorem 4 we conclude that V(S) does
not have the AP also in this case, and the proof is settled. ��

Theorem 7. Let L be a variety generated by one finite set of BL-chains with
finitely many components, that are either finite or cancellative. Then L has the
AP if and only if one of the following two cases holds.

– L = V(A), where A ∈ Ch(L), and satisfies one of the following conditions:
a) #A ≤ 2, there is at most one cancellative component, and the others are

finite (including the first-one).
b) #A = 3, two components (including the first-one) are finite, and the other

one is cancellative.
– L = V({B, C}), where:

c) B, C ∈ Ch(L), #B = #C = 2.
d) (B)1 is finite, (C)1 is cancellative, and (B)0  (C)0.

Proof. Let L be a variety generated by one finite set of BL-chains with finitely
many components, that are either finite or cancellative. Then there exists an
m-set S such that V(S) = L. If S = {A}, with A ∈ Ch(L), and A satisfies the
theorem’s hypothesis, then by Theorem 6, L has the AP.

Suppose now that S = {B, C}, and c), d) are satisfied. To show that V(S)
has the AP, we prove that Ch(S) has the 1AP. Pick a V-formation (D, E ,F , i, j),
where D, E ,F ∈ Ch(S). By [6, Lemma 2] Ch(S) = Ch(B) ∪ Ch(C) = IS(B) ∪
IS((C)0)⊕ ISPu((C)1). This implies that every chain with one cancellative com-
ponent in Ch(S) belongs to Ch(C). Moreover, since (B)0  (C)0 we have that
every finite chain in Ch(S) belongs to Ch(B).

We distinguish three cases.

– If E ,F have both a cancellative component (note that every chain in L has at
most two components), then D, E ,F ∈ Ch(C). Since by Theorem 6, V(C) has
the AP, then Ch(C) has the 1AP. This means that there exists a 1-amalgam
(G, h, k) for (D, E ,F , i, j), with G ∈ Ch(C).

– If E ,F are both finite, then D, E ,F ∈ Ch(B). Since by Theorem 6, V(B) has
the AP, then Ch(B) has the 1AP. This means that there exists a 1-amalgam
(G, h, k) for (D, E ,F , i, j), with G ∈ Ch(B).

– The last case is when one chain between E ,F , has one cancellative component,
and the other chain is finite.
Suppose first that (E)1 is cancellative, and F is finite. Consider the triple
(G, h, k), where G = (C)0 ⊕ (E)1, and h, k will be defined later. By Lemma
2 G ∈ Ch(C), and by d) an easy check shows that (E)0 embeds into (G)0.
Since (E)0 is a finite MV-chain, this embedding is unique: let us call it r.
Let h be a map from E to G defined as follows: h(e) = r(e) if e ∈ (E)0, and
h(e) = e if e ∈ (E)1. An easy check shows that h is an embedding from E to G.
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Now, by Lemma 2, [6, Lemma 2] and d) we have that the first component of
every chain in L can be embedded in (C)0. This means that (F)0 embeds into
(C)0, and since they are both finite MV-chains, this embedding is unique:
let us call it s. Define now a map k from F to G as follows: k(f) = s(f)
if f ∈ (F)0, and k(f) = 1 if f ∈ (F)1 (this last case holds true only if
F has two components, otherwise F = (F)0). An easy check shows that k
is a homomorphism from F to G. It remains to show that, for every d ∈
D, h(i(d)) = k(j(d)). Note that #D = 1. Indeed, if #D = 2 then either
D �↪→ E or D �↪→ F , as (E)1 is cancellative, F is finite, and (D)1 must be
either cancellative or finite. Note also that i(D), h(i(D)), j(D), k(j(D)) are
subalgebras of, respectively, (E)0, (G)0, (F)0, (G)0. Now, (G)0 = (C)0, and
by Lemma 2, [6, Lemma 2] and d) the first component of every chain in L

embeds into (C)0. Since Ch((C)0) has the AP, a direct inspection shows that
h(i(d)) = k(j(d)), for every d ∈ D. Therefore (G, h, k) is a 1-amalgam for
(D, E ,F , i, j).
Finally, let us assume that E is finite, and (F)1 is cancellative. Consider the
triple (B, h, k). By d), [6, Lemma 2], and Lemma 2, an easy check shows
that E ∈ Ch(B) = IS(B). Since the components of E (or the component, if
#E = 1) are finite Wajsberg hoops, there is only one way to embed E into
B: let us call h such embedding. By d), [6, Lemma 2], and Lemma 2, an
easy check shows that (F)0 embeds into (B)0, and since (F)0 is finite, this
embedding is unique: let us call it t. Let k be a map from F to B defined as
follows: k(f) = t(f) if f ∈ (F)0, and k(f) = 1 if f ∈ (F)1. An easy check
shows that k is a homomorphism from F to B. Finally, with a proof similar
to the previous case, we can show that #D = 1, and that h(i(d)) = k(j(d)),
for every d ∈ D. Therefore (G, h, k) is a 1-amalgam for (D, E ,F , i, j).

This shows that Ch(S) has the 1AP. Therefore, by Theorem 4, V(S) has the
AP.

Conversely, assume that L has the AP. Note that by Proposition 2 every
algebra in S must have at most three components, as otherwise the AP would
fail. By Lemma 7 we have that if S contains a chain A with #A = 1, then
S = {A}. Then, by Lemma 8 an easy check shows that there are only two cases:
either |S| = 1 or S = {B, C}, where #B = #C = 2, and one of (B)1, (C)1 is
cancellative, whilst the other is finite.

– Suppose first that S = {B, C}, where #B = #C = 2 and one of (B)1, (C)1
is cancellative, whilst the other is finite. Note that c) is already satisfied, so
it remains to check that d) holds true. Since L has the AP, by Theorem 4,
Ch(S) has the 1AP. Pick the V-formation (2, C,B, i, j), where i, j are defined
in the obvious way. Then there exists a 1-amalgam (D, h, k) for (2, C,B, i, j),

with D ∈ Ch(S). Since C h
↪−→ D, by Lemma 6, D ∈ V(C). Since k is a

homomorphism between B and D, by Lemma 4 we have that (B)0 ↪→ (D)0 ∈
V((C0)).
Pick now the V-formation (2,B, C, i, j), where i, j are defined in the obvious
way. Since L has the AP, by Theorem 4, Ch(S) has the 1AP. Then there
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exists a 1-amalgam (E , h, k) for (2,B, C, i, j), with E ∈ Ch(S). Since B h
↪−→ E ,

by Lemma 6, E ∈ V(B). Since k is a homomorphism between C and E , by
Lemma 4 we have that (C)0 ↪→ (E)0 ∈ V((B)0).
Then we have that (C)0 ∈ V((B)0) and (B)0 ∈ V((C)0). Since (B)0 and (C)0
are both finite MV-chains, we must have that (B)0  (C)0. Therefore d) is
satisfied.

– The last case is when |S| = 1. By Theorem 6 the only member of S, say A,
must satisfy a) and b). The proof is settled. ��

By Theorem 7 we have the following result.

Corollary 2. Let S be a finite set of finite BL-chains. Then V(S) has the AP
if and only S = {A}, and #A ≤ 2.

4 Discussion and Future Works

The classification of the AP for varieties of BL-algebras generated by a finite set
of BL-chains with finitely many components remains an open problem. However,
we can state the following result.

Lemma 9. Let S be an m-set containing a BL-chain A such that #A ≥ 2, and
one of the following holds:

– (A)0 has infinite rank and Ln �↪→ (A)0, for some n ∈ N.
– (A)0 is infinite, has rank n, and Ln �↪→ (A)0.

Then V(S) does not have the AP.

Proof. Let S be an m-set containing a BL-chain A as above. By hypothesis (A)0
is infinite, and either has rank n or it has infinite rank. By [2, Theorem 7.9]
we have that Ln ∈ Ch((A)0) � Ch(S). Pick the V-formation (2,A,Ln, i, j),
where i, j are defined in the unique and obvious way. Suppose by contradiction
that V(S) has the AP: then Ch(S) has the 1AP, and there exists a 1-amalgam

(B, h, k), with B ∈ Ch(A), for (2,A,Ln, i, j). Since A h
↪−→ B, by Lemma 6, B ∈

Ch(A). Now, since k is a homomorphism from Ln to B, by Lemma 4, Ln
k

↪−→ B.
This implies that Ln ∈ V(A), but by [2, Lemma 4.6] this is a contradiction, as
Ln �↪→ (A)0. Therefore V(S) does not have the AP, and the proof is settled. ��
One of the main issues with this general case concerns the following problem:

Problem 1. Let A,B be two non-trivial MV-chains. When is it possible to define
a homomorphism from A to B?

If A is simple, by Lemma 3 every homomorphism is an embedding. In general,
however, Problem 1 is non-trivial. This makes difficult to prove or disprove the
1AP for Ch(S), when S is an m-set containing chains with non-cancellative and
non-simple components. Future works will be devoted to classify the AP for this
case. Another interesting case is the one of locally finite varieties of BL-algebras
(see [7]), since their chains are ordinal sums of finite Wajsberg hoops. We will
tackle the analysis of the AP for those varieties in a future work.
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Abstract. In this paper, we consider relational structures arising from
Comer’s finite field construction, where the cosets need not be sum free.
These Comer schemes generalize the notion of a Ramsey scheme and may
be of independent interest. As an application, we give the first finite
representation of 3465. We complement our upper bounds with some
lower bounds. Using a SAT solver, we establish that neither 3365 nor
3465 are representable on fewer than 24 points.
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1 Introduction

Given a class of finite algebraic structures, it is natural to ask which members
can be instantiated or represented over a finite set S, where there exist natural
operations on S corresponding to the operations of the algebraic structure. In
the setting of finite groups, the representation question is answered by Cayley’s
theorem: every finite group can be instantiated as a finite permutation group.
In this paper, we consider the class of finite relation algebras, which are Boolean
lattices that satisfy certain equational axioms that capture the notion of rela-
tional composition (see Sect. 2 for a more precise formulation). There exist finite
relation algebras that do not admit representations even over infinite sets- see
for instance [10] and the citations therein. It is essentially folklore that there are
relation algebras that admit representations over infinite sets, but are not finitely
representable. The so called point algebra is one such example1. On the other
1 A proof will be included in the full version.
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hand, Comer [11, Theorem 5.3] showed that every finite integral relation algebra
with a flexible atom (i.e., an atom that does not participate in any forbidden
diversity cycles) is representable over a countable set.

It is natural to ask whether Comer’s result can be strengthened to hold in
the setting of finite sets. This is precisely the Flexible Atom Conjecture, which
states that every finite integral relation algebra with a flexible atom is repre-
sentable over a finite set. Jipsen, Maddux, & Tuza showed that the finite sym-
metric integral relation algebras in which every diversity atom is flexible (denoted
En+1(1, 2, 3)), are finitely representable. In particular, the algebra with n flexible
atoms is representable over a set of size (2+o(1))n2 [15]. We note that if all cycles
are present, then all diversity atoms are flexible. Hence, the case considered in
[15] is intuitively the big end of the Flexible Atom Conjecture.

The other extreme is when just enough cycles are present for one atom to be
flexible. This case was handled by Alm, Maddux, & Manske [1], who exhibited a
representation of the algebra An obtained from splitting the non-flexible diversity
atom of 67 into n symmetric atoms. In particular, this construction yielded a
representation of A2 = 3265 over a set of size 416, 714, 805, 91 (here, we use
Maddux’s [17] numbering for relation algebras such as 67 and 3265). Dodd &
Hirsch [13] subsequently improved the bound of the minimum representation
size of 3265 to 63, 432, 274, 896. This was subsequently improved to 8192 by J.F.
Alm & D. Sexton (unpublished), and later 3432 by [5]. Finally, in [2], the authors
exhibited a representation over a set of size 1024 for 3265, as well as the first
polynomial upper bound on min(Spec(An)).

In the quest for finite representations, it is desirable to constrain the search
space. This simultaneously motivates the study of small representations, the
study of highly symmetric representations such as over groups, as well as lower
bounds. There are few lower bounds in the literature. Jipsen, Maddux, & Tuza
exhibited a lower bound of n2+n+1 for the relation algebra En+1(1, 2, 3) [15]. In
[2], the authors showed that any representation of An requires at least 2n2+4n+1
points, which is asymptotically double the trivial lower bound of n2 + 2n + 3.
The key technique involved analyzing the combinatorial substructure induced
by the flexible atom. In the special case of A2 = 3265, the authors used a SAT
solver to further improve the lower bound. Namely, they showed that 3265 is not
representable on a set of fewer than 26 points.

Alm & Levet [6] subsequently improved the lower bound of An to 2n2 +
Ω(n

√
ln(n)) by incorporating the Ramsey number R(3, k). Furthermore, Alm &

Levet showed that 3137 is not representable using fewer than 16 points and 3537
is not representable using fewer than 14 points. In the process, Alm & Levet
produced two generalizations of 3137, 3337, and 3537, obtaining lower bounds
against these generalizations.

The notion of a Ramsey scheme was first introduced (but not so named)
by Comer [12], where he used them to obtain finite representations of relation
algebras. Kowalski [16] later introduced the term Ramsey relation algebra to
refer to the (abstract) relation algebras obtained from embeddings into Ramsey
schemes.
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In [19, Problem 2.7], Maddux raised the question as to whether Ramsey
schemes exist for all number of colors. Comer communicated this problem to
Trotter; and in the mid-80’s, Erdös, Szemerédi, & Trotter gave a purported
proof on the existence of Ramsey schemes for sufficiently many colors. Trotter
communicated this proof to Comer via email, who in turn communicated it to
Maddux [18]. Unfortunately, the construction provided by Erdös, Szemerédi, &
Trotter was not correct, as it did not satisfy the mandatory cycle condition. It
remains open as to whether there even exist Ramsey schemes for infinitely many
values of n. Similarly, it remains open as to whether all of the small (those
with four or fewer atoms) integral symmetric relation algebras with at least
one flexible atom outlined in [17] admit finite representations. As of 2009 [20],
3365, 3465, and 5965 were the only symmetric 4-atom integral relation algebras
with a flexible atom not known to admit finite representations. As of 2013 [22],
3337 and 3537 were the only non-symmetric 4-atom integral relation algebras
with a flexible atom not known to admit finite representations. In 2017, Alm &
Maddux [3] gave a finite representation for 5965. In [6], Alm & Levet gave finite
representations for 3337 and 3537. In this paper, we give a finite representation
for 3465, which leaves 3365 as the only remaining 4-atom integral relation algebra
with a flexible atom from [17] that is not known to admit a finite representation.

There has been considerable progress in constructing Ramsey schemes for a
finite number of colors using a technique due to Comer [12]. Intuitively, Comer’s
method takes a positive integer m and considers finite fields Fq, where q ≡ 1
(mod 2m). We next consider the unique multiplicative subgroup H ≤ F

×
q of

order (q − 1)/m, and check whether the cosets of F
×
q /H yield a representation

(namely, taking the cosets to be the atoms of the relation algebra). With the
sole exception of an alternate construction of the 3-color algebra using (Z/4Z)2

[23], all known constructions have been due to the guess-and-check finite field
method of Comer [12].

The m-color Ramsey number

Rm(3) = R(3, . . . , 3
︸ ︷︷ ︸

m

)

provides an upper bound on q, restricting the search space for the finite fields
to be considered.

Using this method, Comer [12] produced Ramsey schemes for m = 2, 3, 4, 5
colors. Using a computer, Maddux [21] extended this work for m = 6, 7. Inde-
pendently, Kowalski [16] constructed Ramsey schemes over prime fields for
2 ≤ m ≤ 120 colors (with the exception of m = 8, 13), and Alm & Manske
[7] constructed Ramsey schemes over prime fields for 2 ≤ m ≤ 400 colors,
(again with the exception of m = 8, 13). Kowalski [16] also considered non-
prime fields. Alm [4] subsequently produced Ramsey schemes for 2 ≤ m ≤ 2000
colors (excluding m = 8, 13) using the fast algorithm of [8]. He also substantially
improved the upper bound on p with respect to m, to p < m4+5, finally showing
that no construction over prime fields exists for m = 13 [4]. Alm & Levet [6]
further improved this bound to p < m4 − (2 − o(1))m3 + 5.
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Alm & Levet [6] generalized the notion of a Ramsey scheme to the directed
(antisymmetric) setting. As a consequence, they gave finite representations for
the relation algebras 3337, 3537, 7783, 7883, 8083, 8283, 8383, 13101316, 13131316,
13151316, and 13161316. Only 8383 and 13161316 were previously known to be
finitely representable, by a slight generalization of [15].

Given the success of Comer’s method [12], we ask the following inverse ques-
tion: what relation algebras admit finite constructions via Comer’s method? We
investigate this question here.

Main Results. In this paper, we extend the notion of a Ramsey scheme [12]
by relaxing the notion that the cosets need to be sum-free. We refer to such
relational structures as Comer schemes. A Comer scheme naturally generates
an abstract integral symmetric relation algebra. A priori, the cycle structure of
these algebras is not clear. We investigate this question here.

As a first application, we provide the first finite representation for the relation
algebra 3465. This relation algebra has four symmetric atoms 1′, a, b, and c, with
forbidden cycles bbc and ccb. The atom a is flexible. Hence, by [11, Theorem 5.3],
3465 admits a representation over a countable set.

Theorem 1. The relation algebra 3465 admits a representation on p = 3697
points.

We obtain our finite representation of 3465 by embedding it into the integral
symmetric relation algebra with 24 diversity atoms a0, . . . , a23. The forbidden
cycles are of the form {aiaiai+12 : 0 ≤ i ≤ 23}, where the indices i, i, i + 12 are
all taken modulo 24. This relation algebra admits a finite representation via a
Comer scheme. See Sect. 5 for full details.

We next turn to investigating the cycle structure of these algebras. We are
in fact able to produce a large number of these objects for different forbidden
cycle configurations.

Theorem 2. We have the following.

(a) For n ∈ {1, . . . , 2000} \ {8, 13}, the integral symmetric relation algebra on n
atoms with forbidden cycles {aiaiai : 0 ≤ i < n} admits a finite representa-
tion over a prime field Comer scheme.

(b) For n ∈ {5, . . . , 14} ∪ {16, . . . , 33} ∪ {35, . . . , 500}, the integral symmetric
relation algebra on n atoms with forbidden cycles {aiaiai+1 : 0 ≤ i < n},
where the indices i, i, i + 1 are all taken modulo n, admits a finite represen-
tation over a prime field Comer scheme.

(c) For n ∈ {5, . . . , 500} \ {12, 14, 18, 28, 36}, the integral symmetric relation
algebra on n atoms with forbidden cycles {aiaiai+2 : 0 ≤ i < n}, where the
indices i, i, i + 2 are all taken modulo n, admits a finite representation over
a prime field Comer scheme.

Remark 1. We note that when n is odd, forbidding the cycles {aiaiai+1 : 0 ≤
i < n} (where all indices are taken modulo n) yields the same relation algebra
as when we forbid the cycles {aiaiai+2 : 0 ≤ i < n} (where all indices are again
taken modulo n). See Lemma 3.



Comer Schemes, Relation Algebras, and the Flexible Atom Conjecture 21

Remark 2. We note that Ramsey schemes also have close connections with other
combinatorial structures such as association schemes, coherent configurations,
and permutation groups [11,12]. Thus, our Comer scheme constructions may be
of independent interest.

We complement our upper bounds with some lower bounds. Here, we consider
not only 3465, but also 3365, which is the integral symmetric relation algebra with
atoms 1′, a, b, c, with a flexible and forbidden cycles ccc, bcc, cbb. By analyzing
the combinatorial structure of the relation algebras in tandem with a SAT solver,
we obtain the following.

Theorem 3. We have the following.

(a) Any square representation of 3365 requires at least 24 points.
(b) Any square representation of 3465 requires at least 24 points.

2 Preliminaries

Definition 1. A relation algebra is an algebra 〈A,∧,∨,¬, 0, 1, ◦,̆ , 1′〉 that sat-
isfies the following.

– 〈A,∧,∨,¬, 0, 1〉 is a Boolean algebra, with ¬ our unary negation operator, 0
the identity for ∨, and 1 the identity for ∧,

– 〈A, ◦, 1′〉 is a monoid, with 1′ our nullary identity. That is, relational compo-
sition is associative, and there is an identity relation 1′.

– ˘ is our unary converse operation and is an involution with respect to com-
position. Namely, ˘̆a = a for all a ∈ A, and (a ◦ b)̆ = b̆ ◦ ă for all a, b ∈ A,

– Converse and composition both distribute over disjunction. Precisely, for all
a, b, c ∈ A, we have that:

(a ∨ b)̆ = ă ∨ b̆, and
(a ∨ b) ◦ c = (a ◦ c) ∨ (b ◦ c).

– (Triangle Symmetry) For all a, b ∈ A, we have that:

(a ◦ b) ∧ c = 0 ⇐⇒ (c̆ ◦ a) ∧ b̆ = 0 ⇐⇒ (b ◦ c̆) ∧ ă = 0.

Note that the Triangle Symmetry axiom defines an equivalence relation on
triples of diversity atoms that corresponds to the symmetries of the triangle.

When the relation algebra is understood, we simply write A rather than
〈A,∧,∨,¬, 0, 1, ◦,̆ , 1′〉.
Definition 2. Let A be a relation algebra. We say that a ∈ A is an atom if
a = 0 and b < a =⇒ b = 0. Furthermore, we say that a is a diversity atom if a
also satisfies a ∧ 1′ = 0.
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Definition 3. For diversity atoms a, b, c, the triple (a, b, c)—usually denoted
abc—is called a diversity cycle. We say that abc is forbidden if (a ◦ b) ∧ c = 0
and mandatory if a ◦ b ≥ c. We say that a diversity atom is symmetric if a = ˘̆a.

Remark 3. We note that for integral relation algebras, the composition operation
◦ is determined by the mandatory diversity cycles.

Definition 4. Let f be a symmetric diversity atom. We say that f is flexible if
for all diversity atoms a, b, we have that abf is mandatory.

Definition 5. We say that a relation algebra A is representable if there exists
a set U and an equivalence relation E ⊆ U × U such that A embeds into

〈2E ,∪,c , ◦,−1 , IdE〉.

Here, c is set complementation, and −1 is the relational inverse.

In this paper, we will only be concerned with simple relation algebras, where
there exists a set U such that E = U × U . We call such a representation square.

Definition 6. Let A be a finite relation algebra. Define

Spec(A) := {α ≤ ω : A has a square representation over a set of cardinality α}.

Remark 4. A relation algebra admits a square representation on m points pre-
cisely if we can color a complete graph on m vertices to satisfy prescribed con-
straints.

2.1 Ramsey Schemes

Definition 7. Let U be a set, and m ∈ Z
+. A Ramsey scheme in m colors is

a partition of U × U into m + 1 binary relations Id, R0, . . . , Rm−1 such that the
following conditions hold:

(A) R−1
i = Ri,

(B) Ri ◦ Ri = Rc
i , and

(C) For all pairs of distinct i, j ∈ [m − 1], Ri ◦ Rj = Idc.

Here, Id = {(u, u) : u ∈ U} is the identity relation over U .

The usual method of constructing the relations R0, . . . , Rm−1 is a guess-and-
check approach due to Comer [12], which works as follows. Fix m ∈ Z

+. We
search over primes p ≡ 1 (mod 2m), where a desirable p satisfies the follow-
ing. Let X0 := H ≤ F

×
p be the unique subgroup of order (p − 1)/m. Now let

X1, . . . , Xm−1 be the cosets of F
×
p /X0. In particular, as F

×
p is cyclic, we may

write Xi = giX0 = {gam+i : a ∈ Z
+}, where g is a generator of F

×
p . Suppose

that X0, . . . , Xm−1 satisfy the following conditions:
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(a) Xi = −Xi, for all 0 ≤ i ≤ m − 1,
(b) Xi + Xi = Fp \ Xi, for all 0 ≤ i ≤ m − 1, and
(c) For all distinct 0 ≤ i, j ≤ m − 1, Xi + Xj = Fp \ {0}.

For each 0 ≤ i ≤ m − 1, define Ri := {(x, y) ∈ Fp × Fp : x − y ∈ Xi}. Here,
the sets R0, . . . , Rm−1 together with Id = {(u, u) : u ∈ Fp} are the atoms
in our relation algebra. It is easy to check that conditions (a)–(c) on the sets
X0, . . . , Xm−1 imply that conditions (A)–(C) from the definition of a Ramsey
scheme are satisfied for the relations R0, . . . , Rm−1.

We note that condition (b), that Xi + Xi = Fp \ Xi, indicates that each
Xi is sum-free. The fact that p ≡ 1 (mod 2m) implies that X0 has even order.
It follows that X0 is symmetric; i.e., X0 = −X0. In [4], Ramsey schemes were
constructed for all m ≤ 2000 except for m = 8, 13, and it was shown that if
p > m4 + 5, then X0 contains a solution to x + y = z. In such cases, Comer’s
construction fails to yield an m-color Ramsey scheme.

3 Integral Symmetric Relation Algebras with Forbidden
Cycle Configurations

In this section, we generalize the notion of a Ramsey scheme to the setting where
the cosets need not be sum-free. We then examine the relation algebras generated
by these schemes.

Definition 8. Let p be a prime, U = F
×
p , and m a divisor of (p − 1)/2. Let

H ≤ F
×
p be the unique subgroup of index m, and let X0, . . . , Xm−1 be the cosets

of F
×
p /H. A Comer scheme in m colors is a partition of U × U into m + 1

binary relations Id, R0, . . . , Rm−1 as follows. Let Id = {(x, x) : x ∈ Fp} and
Ri = {(x, y) ∈ Fp × Fp : x − y ∈ Xi}.
Remark 5. We will be particularly interested in Comer schemes that satisfy the
following additional condition: for all pairs of distinct i, j ∈ [m−1], Ri◦Rj = Idc.
Here, Id = {(u, u) : u ∈ U} is the identity relation over U .

We construct Comer schemes using Comer’s method [12]. Fix m ∈ Z
+, and

let p ≡ 1 (mod 2m) be a prime. Let X0 := H ≤ F
×
p be a subgroup of order

(p − 1)/m. Now let X1, . . . , Xm−1 be the cosets of F
×
p /X0. In particular, as F

×
p

is cyclic, we may write Xi = giX0 = {gam+i : a ∈ Z
+}, where g is a generator

of F
×
p . Suppose that X0, . . . , Xm−1 satisfy the following conditions:

(a) Xi = −Xi, for all 0 ≤ i ≤ m − 1,
(b) For all distinct 0 ≤ i, j ≤ m − 1, Xi + Xj = Fp \ {0}.

For each 0 ≤ i ≤ m − 1, define Ri := {(x, y) ∈ Fp × Fp : x − y ∈ Xi}. Here,
the sets R0, . . . , Rm−1 are the atoms in our relation algebra. It is easy to check
that conditions (a) and (b) on the sets X0, . . . , Xm−1 imply that conditions (A)
and (B) from the definition of a Comer scheme are satisfied for the relations
R0, . . . , Rm−1.
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The fact that p ≡ 1 (mod 2m) implies that X0 has even order. It follows
that X0 is symmetric; i.e., X0 = −X0.

We collect some preliminary observations about these Comer schemes. First,
we observe that Comer’s construction yields relation algebras that have rota-
tional symmetry.

Lemma 1. Let n ∈ Z
+ and let p = nk +1 be a prime number and g a primitive

root modulo p.
For i ∈ {0, 1, . . . , n − 1}, define

Xi =
{

gi, gn+i, g2n+i, . . . , g(k−1)n+i
}

⊆ Z/pZ.

Then (X0 + Xj) ∩ Xk = ∅ if and only if (Xi + Xi+j) ∩ Xi+k = ∅.
Proof. Multiply through by gi.

We now formalize the notion of an automorphism that respects this rotational
symmetry.

Definition 9. Let p = nk + 1 be prime with k even, and let the Xi’s as be as
in Lemma 1. Let C(p, n) denote the proper relation algebra generated by the sets
Ri as in the definition of a Comer scheme. Then automorphisms of C(p, n) can
be seen as permutations of the atoms, as follows.

Aut(C(p, n)) = {π ∈ Sn : Ai ◦ Aj ⊇ Ak ⇔ Aπ(i) ◦ Aπ(j) ⊇ Aπ(k)}.

Of course, the condition on the relations Ri is equivalent to the following condi-
tion on the Xi’s:

Xi + Xj ⊇ Xk ⇔ Xπ(i) + Xπ(j) ⊇ Xπ(k).

Remark 6. Lemma 1 implies that for any Comer algebra C(p, n) in n colors, we
have that Aut(C) contains a subgroup isomorphic to Z/nZ.

It is natural to ask about relation algebras with forbidden cycles. In particu-
lar, given a forbidden cycle scheme and a prescribed number of atoms n, can we
realize the corresponding relation algebra with a Comer scheme? This motivates
the following definition.

Definition 10. Let An([i, i + j, i + �]) denote the integral RA with n symmet-
ric diversity atoms a0, . . . , an−1 whose forbidden cycles are those of the form
{aiai+jai+� : 0 ≤ i < n}, with indices considered modulo n.

Remark 7. We note that for any m-color Comer scheme, the automorphism
group has a copy of Z/mZ. Thus, if we forbid one cycle—say a0a0+ja0+�—then
we forbid aiai+jai+� for all i.

We will be particularly interested in An([i, i, i + j]), as these forbid a rotational
class of 2-cycles (bichromatic triangles). Furthermore, setting j = 0 yields Ram-
sey schemes.
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Lemma 2. Aut(An([i, i, i + 1])) ∼= Z/nZ.

Proof. Suppose π ∈ Aut(An([i, i, i+1])) and π(0) = x. Since a0a0a1 is forbidden,
aπ(0)aπ(0)aπ(1) is forbidden as well, so axaxaπ(1) is forbidden. But this forces
π(1) = x + 1 (mod n), since if xxy is forbidden, y must be x + 1. Similarly,
π(2) must be x + 2 (mod n), and so on. So π must take the form π(s) = x + s
(mod n). All such permutations are clearly in Aut(An([i, i, i + 1])), and we have
shown they are the only ones. So Aut(An([i, i, i + 1])) ∼= Z/nZ.

Lemma 3. If gcd(j, n) = 1, then An([i, i, i + j])) ∼= An([i, i, i + 1]).

Proof. Let ρ : At(An([i, i, i + 1])) → At(An([i, i, i + j])) be given by ai �→
aj·i (mod n). Since gcd(j, n) = 1, ρ is a bijection. It is easy to check that ρ
preserves the forbidden cycles.

The next lemma tells us that for Comer algebras, the isomorphism in Lemma
3 arises in a particularly nice way.

Lemma 4. If C(p, n) has forbidden cycles [Xi,Xi,Xi+j ] and gcd(j, n) = 1, then
Xj contains a primitive root g, and reindexing using g as a generator will give
forbidden cycles [Xi,Xi,Xi+1].

Proof. Let g be the primitive root that gives the indexing with forbidden cycles
[Xi,Xi,Xi+j ]. Now g� is also a primitive root modulo p if gcd(�, p − 1) = 1. We
want g� ∈ Xj , so we want to find an integer a with gcd(an + j, p − 1) = 1. Since
gcd(j, n) = 1, Dirichlet’s theorem on primes in arithmetic progressions gives
some prime p′ = an + j, and clearly gcd(p′, p − 1) = 1. Then gp′

is a primitive
root and is in Xj .

Lemma 5. If gcd(j, n) > 1, then Aut(An([i, i, i + j])) contains a non-identity
permutation π that has fixed points. Hence An([i, i, i + j]) ∼= An([i, i, i + 1]).

Proof. Let x = gcd(j, n) > 1. Consider the permutation π = (0 x 2x 3x . . .),
written in cycle notation. We claim that π ∈ Aut(An([i, i, i + j]))). Consider
the forbidden cycle a0a0aj . Write j = bx for some positive integer b. Under
π, this cycle a0a0abx gets mapped to axaxa(b+1)x, and since (b + 1)x = x + j,
the cycle axaxa(b+1)x is forbidden. In fact, π just permutes the forbidden cycles
a�xa�xa�x+j and leaves the other forbidden cycles fixed.

Example 1. Consider A6([i, i, i + 2]). Then j = x = 2. The permutation (0 2 4)
permutes the forbidden cycles a0a0a2, a2a2a4, and a4a4a0. See Fig. 1.

The following lemma from Alon and Bourgain gives us just what we need
to show that if p is large relative to n, then C(p, n) has only flexible diversity
atoms.

Lemma 6 ([9], Proposition 1.4). Let q be a prime power and let A be a
multiplicative subgroup of the finite field Fq of size |A| = d ≥ q1/2. Then, for any
two subsets B, C ⊂ Fq satisfying |B||C| ≥ q3/d2, there are x ∈ B and y ∈ C so
that x + y ∈ A.
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Lemma 7. If p > n4 + 5, then every diversity atom of C(p, n) is flexible.

Proof. We need to show (Xi + Xj) ∩ X0 = ∅ for arbitrary i and j. Set q = p,
A = X0, B = Xi, and C = Xj in Lemma 6. Then |A| = |B| = |C| = (p − 1)/n.
Then we need |B||C| ≥ q3/d2, which translates to (p − 1)4 ≥ n4p3, which is
satisfied when p > n4 + 5. Then all diversity cycles are mandatory by Lemma 1.

4 Constructing Comer Schemes

In this section, we document our constructions for Theorem 2. Some data are
summarized in Table 1. While for some small n, there is no construction of a
Comer RA representation for An([i, i, i + j]) for j = 0, 1, 2, it would seem for
large enough n there is always some modulus p that works.

Representations of An([i, i, i + 1]) exist for all 35 ≤ n ≤ 500. In Fig. 2, we
compare the smallest modulus p for representations over C(p, n) for An([i, i, i])
vs An([i, i, i + 1]). The growth is a bit slower for the latter.

5 A Cyclic Group Representation of Relation Algebra
3465

As an application, we give the first known finite representation of 3465. Relation
algebra 3465 has four symmetric atoms 1′, a, b, and c, with forbidden cycles bbc
and ccb. The atom a is flexible, hence 3465 is representable over a countable set.

We noticed that it would be sufficient to find a prime p = nk + 1, k and n
both even, such that C(p, n) has [i, i, i + n/2] as its only forbidden class. Then
we could map b to X0, map c to Xn/2, and map a to the union of all the other
Xi’s; in other words, 3465 embeds in An([i, i, i+n/2])) for all even n > 4. There’s
no limit to how big p can be, since n can also be as large as necessary; we just
throw “everything else” into the image of a. A computer search using the fast
algorithm from [8] quickly found a hit: for p = 3697 and n = 24, [i, i, i + 12]
alone is forbidden. (This indexing is for the primitive root g = 5 in F3697.)

6 Lower Bounds

6.1 An([i, i + j, i + �])

Proposition 1. Let i, j, � ∈ {0, . . . , n−1}. Any finite representation of An([i, i+
j, i + �]) requires at least n2 points. If furthermore j = �, then at least n2 + 1
points are required.

Proof. We phrase the proof in the language of graph theory (see Remark 4). The
atoms constitute the edge colors of a complete graph. Fix i ∈ [n], and let uv be
an edge colored ai (where here, ai is a diversity atom of An([i, i + j, i + �])).

Any non-forbidden triangle must be included in our graph. Let c1, c2, c3 ∈
An([i, i + j, i + �]) be diversity atoms (colors on the graph). Suppose that c1c2c3
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is a mandatory triangle. If xy is an edge colored c1 and w is a vertex such that
xw is colored c2 and yw is colored c3, then we say that w witnesses the (c2, c3)
need for xy.

If j = �, then (ai+j , ai+�) and (ai+�, ai+j) are forbidden. So uv has n2 − 2
needs. Together with u, v, this yields n2 points in total.

If instead j = �, we only forbid (ai+j , ai+j). Thus, uv has n2 − 1 needs in
this case. Together with u, v, this yields n2 + 1 points in total.

Remark 8. In light of Proposition 1, we obtain that the representations we found
for An([i, i, i]) with n = 1, 2 were indeed minimal representations. Proposition 1
only provides a lower bound of 10 points for A3([i, i, i]). However, using a SAT
solver (see here), we were able to show that there is no representation on fewer
than 13 points. Thus, the representation we found was indeed minimal. (This
result seems to be folklore).

The algebra A3([i, i, i]), is in fact the 3-color Ramsey algebra; that is, the rela-
tion algebra with diversity atoms 1′, a, b, c and forbidden cycles aaa, bbb, ccc. It
is folklore amongst relation algebra specialists that Spec(A3([i, i, i])) = {13, 16},
though a proof appears not to have been written down. Our result verifies that
the minimum element in Spec(A3([i, i, i])) is indeed 13.

In the case of n = 4, we used a SAT solver (see here) to establish a lower
bound of 21 points required to represent A4([i, i, i]). In particular, it follows that
if there exists a prime field Comer scheme representation, then at least 23 points
are required. Details regarding the SAT Solver will appear in the full version.

6.2 3365

In this section, we consider the relation algebra 3365, which has atoms 1′, a, b, c,
with a flexible and the following cycles forbidden: ccc, bcc, cbb. We use the lan-
guage of graph theory to discuss the relation algebra (see Remark 4). The atoms
constitute the edge colors of a complete graph. We use the color red to cor-
respond to the flexible atom, green to correspond to the atom b, and blue to
correspond to the atom c. Thus, the forbidden triangles are precisely the ones
containing all-blue edges, or only blue and green edges with at least one blue
edge.

Lemma 8. If 3365 is finitely representable, then any finite representation must
have at least 15 points.

Proof. We refer to Fig. 3. Let u0u1 be colored according to the flexible atom, for
which we use the color red. The needs of u0u1 are precisely {r, b, g} × {r, b, g},
yielding a total of 11 points. Now fix i = 0, 1. Suppose that uixj , uixk incident
to ui where at least one such edge is blue, and the other is either blue or green.
As the all blue, blue-blue-green, and blue-green-green triangles are forbidden,
xjxk is necessarily red. In particular, this implies that the following edges are
red:

https://github.com/michaellevet/Comer-Schemes/blob/main/A3_iii.ipynb
https://github.com/michaellevet/Comer-Schemes/blob/main/A4_iii.ipynb
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– x1 : x1x2, x1x3, x1x4, x1x5, x1x6, x1x7, x1x8 (7 edges)
– x2 : x2x3, x2x5, x2x6, x2x7 (4 edges)
– x3 : x3x4, x3x5, x3x6, x3x7 (4 edges)
– x4 : x4x5, x4x6, x4x8 (3 edges)
– x5 : x5x6, x5x8 (2 edges)

Consider the red edge x1x5, which has 9 needs. The b-g need is met by u1u2.
Now the r-r need is met by x2, x3, x4, x6, x8. We can meet the r-g need with x7

and an arbitrary need with x9. This leaves 4 unsatisfied needs, necessitating 4
additional points. So we require at least 15 points.

We now use a SAT solver to improve our lower bound. For n ≥ 16, we build a
Boolean formula Φ(n) whose satisfiability is a necessary condition for 3365 to be
representable on n points. So if Φ(n) is not satisfiable, then 3365 does not admit
a representation on n points. Details regarding the SAT solver will appear in the
full version.

Lemma 9. If 16 ≤ n ≤ 23, then n ∈ Spec(3365).

Remark 9. Our SAT solver code can be found here.

6.3 3465

We again phrase our results in the language of graph theory (see Remark 4). We
use the color red to correspond to the flexible atom, green to correspond to the
atom b, and blue to correspond to the atom c. Thus, the forbidden triangles are
the blue-blue-green and blue-green-green ones.

Lemma 10. Any finite representation of 3465 must have at least 13 points.

Proof. The proof is similar to that of Lemma 8, referring instead to Fig. 4. Details
will appear in the full version.

We use a SAT solver almost similarly as in the case of 3365 to improve the
lower bound. Details regarding the SAT solver will appear in the full version.

Theorem 4. Let 13 ≤ n ≤ 23. Then n ∈ Spec(3465).

Remark 10. Our SAT solver code can be found here.

7 Conclusion

We extended the notion of a Ramsey scheme by relaxing the condition that the
cosets need to be sum-free. Using this combinatorial construction, we investi-
gated the integral symmetric relation algebras An([i, i+ j, i+ �]) that forbid the
cycle configurations {aiai+jai+� : 0 ≤ i < n}. As an application, we showed that
3465 admits a finite representation over the Comer scheme C(24, 3697).

https://github.com/michaellevet/Comer-Schemes/blob/main/33_65.ipynb
https://github.com/michaellevet/Comer-Schemes/blob/main/34_65.ipynb
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We also established several lower bounds. We showed that the minimum
element in Spec(A3([i, i, i])) is at least 13 (folklore- see Remark 8), and the
minimum element in Spec(A4([i, i, i])) is at least 21. Furthermore, we showed
that the minimum element in both Spec(3365) and Spec(3465) is at least 24.

We conclude with several open problems.

Conjecture 1 (Strong Flexible Atom Conjecture). Every finite integral RA with
a flexible atom is representable over a Comer scheme.

This paper contains some evidence for this conjecture, as does [6], which
contains many new finite representations over Comer schemes. The infinite
families of Directed Anti-Ramsey algebras from [6], and the infinite family
{An([i, i, i + 1]) : n > 4}, both appear to be “mostly” representable, based
on the evidence. Except for some exceptions for small n, Comer schemes seem to
yield representations. The quasirandom nature of the sum-product interaction
in finite fields (see [14] for example) seems to suggest a heuristic similar to one
used in number theory: any potential structure in the primes not ruled out by
obvious considerations can probably be found. Case in point: we looked for an n
and a p such that An([i, i, i + n/2]) was representable over Fp. And we found
one. There are likely infinitely many such n and p, and 3465 will embed in all of
them.

There are (at least) two ingredients needed to complete the proof: (i) prove
that Comer schemes are actually quasirandom in a relevant sense; and (ii) prove
that for every RA with a flexible atom, there is an algebra (for instance, An([i, i+
j, i + �]), but presumably more general) into which it embeds that admits a
representation over a Comer scheme.

Problem 1. Formulate a suitable notion of quasirandomness for sequences of
relation algebra atom structures or Comer schemes.

The relation algebra 3365 is not known to admit a finite representation. In
fact, it is the last remaining algebra in the family N65 that has a flexible atom
and for which no finite representation is known.

Problem 2. Find a forbidden scheme that would admit a representation of 3365.

Problem 3. The third author conjectures that there may exist a group represen-
tation of 3365 over a symmetric group. As the minimum element of Spec(3365) is
at least 24, we ask whether 3365 admits a group representation over S4. Similarly,
we ask whether 3365 admits a group representation over S5.

Problem 4. Algebra A3([i, i, i + 1]) is 4265 and is not representable. Algebra
A4([i, i, i + 1]) is not representable via Comer’s method. Is it representable by
some other method?

Problem 5. Algebra A6([i, i, i + 2]) is not representable via Comer’s method. Is
it representable by some other method?

Problem 6. Algebra A5([i, i, i + 1]) is representable over F61. Is it representable
over an infinite set? Over Z?
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A Tables and Figures

Fig. 1. Depiction of the action of the permutation (0 2 4) on the forbidden cycles of
A6([i, i, i + 2]).

Table 1. Smallest modulus for a representation over a C(p, n), or x if none exists. The
“–” indicates that an entry is redundant (in light of Lemma 3).

n An([i, i, i])) An([i, i, i + 1])) An([i, i, i + 2]))

1 2 x x

2 5 x x

3 13 x x

4 41 x x

5 71 61 –

6 97 109 x

7 491 127 –

8 x 257 x

9 523 307 –

10 1181 641 421

11 947 331 –

12 769 673 x

13 x 667 –

14 1709 953 x

15 1291 x x

16 1217 2593 1697
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Fig. 2. Smallest modulus p over which An([i, i, i]) and An([i, i, i+1]) are representable
as a C(p, n)

Fig. 3. Subgraph which must appear off any red edge in a representation of 3365. (Color
figure online)
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x2

x0 x1

x3

x4

x5

x6

x7

x8

x9

x10

Fig. 4. Subgraph which must appear off any red edge in a representation of 3465. (Color
figure online)
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Abstract. We present a general method for computing vector represen-
tations r of sets of relations. This method is used for obtaining r from an
inclusion R ⊆ S, where R and S are relation-algebraic expressions over
a relation rather than its vector representation. The core of the method is
a theorem that shows how r can be obtained from R ⊆ S in one step. As
applications we consider some problems concerning kernels of relations.

1 Introduction

Reduced ordered binary decision diagrams (ROBDDs) are a very efficient data
structure for representing sets and relations. This has been shown by numerous
applications of RelView, a ROBDD-based tool for the manipulation and visu-
alization of relations and relational programming (see [1]). The use of ROBDDs
often leads to an amazing computational power, in particular, if a hard prob-
lem is solved by computing a very large set of ‘interesting objects’ or ‘potential
solutions’ and subsequently selecting an (optimal) solution among them.

In many applications the set of potential solutions is a subset R of the power
set 2X for some set X. A method for solving such a task is to start with a logical
formula ϕ(Y ) that characterizes whether a set Y ∈ 2X belongs to R or not.
This formula is then transformed (using correspondences between logical and
relation-algebraic constructions) into the form rY , where r is a relation-algebraic
expression that evaluates to a relational vector in the sense of [10]. Finally, r is
translated into the programming language of RelView for execution. For some
typical examples, see [2,3,5]. When Y is represented by a vector v, then very
often ϕ(Y ) is equivalent to an inclusion v ⊆ w, where v and w are relation-
algebraic expressions over v with a close or simple relationship between the
inclusion and the expression r. Based on this observation, in [4] a general method
was developed that allows obtaining the expression r directly from the inclusion
v ⊆ w if v and w are of a specific syntactic form, called column-wise extendible
vector expressions. Normally this leads to a substantial simplification of the
development of r.

M. Winter—The author gratefully acknowledges support from the Natural Sciences
and Engineering Research Council of Canada (283267).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Glück et al. (Eds.): RAMiCS 2023, LNCS 13896, pp. 34–51, 2023.
https://doi.org/10.1007/978-3-031-28083-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28083-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-28083-2_3


A General Method for Representing Sets of Relations by Vectors 35

In certain situations X is a Cartesian product X1×X2 which means that R
is a subset of the set of relations with source X1 and target X2. Examples can
be found in [5,7], where the original logic-based development method is applied
to get r, and in [4,6], where the method of [4] is used instead. In particular the
examples of [6] demonstrate the superiority of the method of [4] with regard to
the logic-based method. However, the method of [4] has an obvious disadvantage.
It requires that both sides of the inclusion v ⊆ w describing the property R ∈ R
are relation-algebraic expressions over a vector representation of R and not over
R itself, which is usually given and much simpler.

In this paper we present a new and very general method for computing vec-
tor representations r of sets R of relations. This overcomes the just mentioned
problem, i.e., it can be used for computing r from an inclusion R ⊆ S, where
both sides are relation-algebraic expressions over a relation R and not over a
vector representation of R. Decisive for this method is an equation that reduces
the vector representation of a composition R;S of relations to those of R and S.
Together with known results concerning the remaining relation-algebraic oper-
ations, this allows the computation of vector representations via a recursive
function νr and the proof of a theorem that shows how r can be obtained from
R ⊆ S directly. As applications we treat some of the problems of [7] with the
new method.

2 Relational Preliminaries

In this section we want to recall some basic facts about (binary, set-theoretic)
relations and their operations that are used throughout this paper. For more
details on relation algebras, see [10,11] for example.

Given sets X and Y , the power set 2X×Y of X×Y is the set of relations
with source X and target Y , which we will denote by [X ↔Y ]. We will write
R : X ↔Y instead of R ∈ [X ↔Y ] and call X ↔Y the type of R. If X and Y are
finite, then we may represent any relation R : X ↔Y by a Boolean matrix, in
which an entry ‘true’ (or 1) in the row corresponding to x ∈ X and in the column
corresponding to y ∈ Y indicates that (x, y) ∈ R. Analogously, the entry ‘false’
(or 0) indicates that the elements are not in relation R, i.e., (x, y) �∈ R. This
matrix interpretation is also used by the RelView system to visualize relations.
In addition, we will often use Boolean matrix notation and terminology in the
remainder of this paper. In particular, we write Rx,y instead of (x, y) ∈ R. Then
we speak of a point-wise notation.

The following basic operations on relations will be used: R (complement),
R ∪ S (union), R ∩ S (intersection), RT (transposition or converse), and R;S
(composition). We assume that transposition and complementation bind stronger
than composition and composition binds stronger than union and intersection.
In addition, we have the constants O (empty relation), L (universal relation) and
I (identity relation). Note that these constants are polymorphic, e.g., there is an
identity relation of type X ↔X for all X. We also will use R ⊆ S to indicate that
R is included in S. We assume that the reader is familiar with these concepts.
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As derived operation we will use syq(R,S) := RT;S ∩ R
T
;S, the symmetric

quotient of R : X ↔Y and S : X ↔Z. It easily can be shown that syq(R,S) has
type Y ↔Z and for all y ∈ Y and z ∈ Z it holds syq(R,S)y,z iff for all x ∈ X it
holds Rx,y iff Sx,z.

Besides the well-known lattice theoretic properties and basic properties of
composition and transposition, i.e., Q; (R ∪ S) = Q;R ∪ Q;S, Q; (R ∩ S) ⊆
Q;R ∩ Q;S, (R ∪ S)T = RT ∪ ST, (R ∩ S)T = RT ∩ ST, (R;S)T = ST;RT,
(RT)T = R and RT = R

T
, relations also satisfy the so-called modular inclusion

Q;R ∩ S ⊆ Q; (R ∩ QT;S), and the so-called Schröder equivalences QT;S ⊆ R
iff Q;R ⊆ S iff S;RT ⊆ Q. In the remainder of the paper we will use these
properties without mentioning. Some additional properties are summarized in
the following lemma. A proof can be found in [10,11].

Lemma 2.1. Let be Q : X ↔Y , R : X ↔Z, S : Y ↔Z, and T : X ↔Z. Then
we have

(1) (Q ∩ R; L);S = Q;S ∩ R; L,
(2) (Q;S ∩ T ); L = (Q ∩ T ;ST); L.

An important class of relations are given by maps (or functions). We call a
relation Q : X ↔Y univalent (or a partial function) iff QT;Q ⊆ I, total iff
I ⊆ Q;QT, injective iff QT is univalent, surjective iff QT is total, and a map iff Q
is total and univalent. The following lemma collects some important properties
of univalent relations.

Lemma 2.2. Assume f : X ↔Y to be univalent. Furthermore, let be Q,R :
Y ↔Z, S : W ↔X, T : W ↔Y , and U : X ↔Y . Then we have

(1) f ; (Q ∩ R) = f ;Q ∩ f ;R,
(2) (S ∩ T ; fT); f = S; f ∩ T ,
(3) f ∩ (f ∩ U); L = f ∩ U .

Another important concept is the notion of pairs and the projection relations
π : X×Y ↔X and ρ : X×Y ↔Y . The projection relations have the Cartesian
product X×Y as source and X resp. Y as target and are defined by π(u1,u2),x iff
u1 = x and ρ(u1,u2),y iff u2 = y, for all (u1, u2) ∈ X×Y , x ∈ X and y ∈ Y . These
relations and the corresponding object X×Y can also be defined abstractly (up
to isomorphism) by the formulas πT;π ⊆ I, ρT; ρ ⊆ I, π;πT ∩ ρ; ρT = I and
πT; ρ = L, see [13]1. To enhance presentation, in the remainder of this paper we
will overload the projection relations, i.e., consider them as polymorphic. In all
such cases it is easy to determine their types from the context using the typing
rules of the operations of relation algebra.

1 In [10,11] instead of inclusions the first two axioms are equations. This leads to
difficulties if precisely one of the sets of X×Y is empty. If e.g., X �= ∅, then π :
X×Y ↔ X is not surjective, whereas πT; π = I implies surjectivity. The weaker notion
used here already implies the uniqueness of the construction up to isomorphism.
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Based upon the projection relations we can define the left pairing of two
relations R : X ↔Z and S : Y ↔Z by [[R,S] := π;R ∩ ρ;S of type X×Y ↔Z.
When using a point-wise notation we have [[R,S](u1,u2),z iff Ru1,z and Su2,z, for
all (u1, u2) ∈ X×Y and z ∈ Z. Similar to the left pairing we can define the right
pairing of two relations R : Z ↔X and S : Z ↔Y by [R,S]] := R;πT ∩ S; ρT.
Here we obtain Z ↔X×Y as type and that [R,S]]z,(u1,u2) iff Rz,u1 and Sz,u2 ,
for all (u1, u2) ∈ X×Y and z ∈ Z. Finally, the parallel composition (or product)
R ‖ S : X×X ↔Y ×Y ′ of two relations R : X ↔Y and S : X ′ ↔Y ′ is defined
by R ‖ S := π;R;πT ∩ ρ;S; ρT, i.e., we have (R ‖ S)(u1,u2),(v1,v2) iff Ru1,v1 and
Su2,v2 , for all (u1, u2) ∈ X×X ′ and (v1, v2) ∈ Y ×Y ′. As a consequence we have
R‖S = [π;R, ρ;S]] = [[R;πT, S; ρT], where the right pairing is formed w.r.t. the
projection relations of Y ×Y ′ and the left pairing is formed w.r.t. the projection
relations of X×X ′.

From Lemma 2.2(2) we obtain

[Q,R]];π = (Q;πT ∩ R; ρT);π = Q ∩ R; ρT;π = Q ∩ R; L,

so that [Q,R]];π = Q follows if R is total. Analogously, we get [Q,R]]; ρ = R if
Q is total and similar results for the left pairing and the parallel composition.

The sharpness property of relational products is the question whether the
following equation

[Q,R]]; [[S, T ] = Q;S ∩ R;T

holds for all relations Q, R, S and T of suitable types. Note that the equation only
involves one Cartesian product, and is easy to verify for set-theoretic relations.
However, the equation does not follow from the axioms of a relation algebra and
of the corresponding projection relations alone. But if we require sufficient addi-
tional structure, i.e., the existence of at least one additional Cartesian product,
we are able to show sharpness. The lemma below generalizes the equation above
slightly. If instantiated with S1 = π and S2 = ρ it verifies sharpness under the
assumption of the existence of the additional Cartesian product W × X. The
lemma itself is an immediate consequence of the approach developed in [8].

Lemma 2.3. Let be Q1 : W ↔X, Q2 : W ↔Y , R1 : X ↔Z, R2 : Y ↔Z,
S1 : V ↔X, and S2 : V ↔Y with S1 and S2 univalent and

QT
1 ;Q2 ∩ RT

1 ;R2 ⊆ ST
1 ;S2.

Furthermore, assume that the Cartesian product W × X exists. Then we have

(Q1;ST
1 ∩ Q2;ST

2 ); (S1;RT
1 ∩ S2;RT

2 ) = Q1;RT
1 ∩ Q2;RT

2 .

In the remainder of this paper we will assume that the Cartesian product for
every pair of sets (objects) exists, together with the corresponding projection
relations, such that we will always have sharpness.

The relation SX,X′
: X×X ′ ↔X ′ × X is defined by SX,X′

:= [ρ, π]] =
[[ρT, πT]. As usual we will drop the sets X and X ′ and write simply S instead
of SX,X′

if the sets of the Cartesian products are clear from the context.
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The relation exchanges the two components of a pair, i.e., we get S(u1,u2),(v1,v2)

iff u1 = v2 and u2 = v1, for all (u1, u2) ∈ X×X ′ and (v1, v2) ∈ X ′×X. Fur-
thermore, we have ST = S and S;S = I, where the two occurrences of S in both
equations are different versions of the polymorphic relation.

The partial identity I∩π; ρ;πT; ρT has source and target (X ×Y )× (Y ×Z).
From this type information we can infer that the first occurrence of π denotes the
first projection relation of the Cartesian product (X × Y ) × (Y × Z), whereas
the second occurrence of π denotes the first projection relation of the Carte-
sian product Y × Z, and the first occurrence of ρ denotes the second projection
relation of X × Y , whereas the second occurrence of ρ denotes the second pro-
jection relation of (X × Y ) × (Y × Z). The relation I ∩ π; ρ;πT; ρT acts as a
filter when composing it with a suitable relation. Using point-wise notation, a
quadruple ((u1, u2), (v1, v2)) ∈ (X × Y ) × (Y × Z) is related to itself by the
relation I ∩ π; ρ;πT; ρT iff u2 = v1, representing the condition under with the
pair (u1, v2) ∈ X × Z would be in the composition of two relations, where the
first relation contains the pair (u1, u2) ∈ X ×Y and the second relation contains
the pair (v1, v2) ∈ Y × Z. Note that we have

I ∩ π; ρ;πT; ρT = (I ∩ π; ρ;πT; ρT)
T

= I ∩ ρ;π; ρT;πT.

By means of the partial identity I∩π; ρ;πT; ρT we now define the relation CX,Y,Z

of type (X × Y ) × (Y × Z) ↔X × Z by CX,Y,Z := (I∩ π; ρ;πT; ρT); (π‖ρ). This
relation removes the common intermediate element. Again, we will usually drop
the three sets X, Y and Z of CX,Y,Z and overload the relation.

In the next sections we also will use the relation-level equivalents of the
set-theoretic symbol ‘∈’ as basic relations. These are the (again polymorphic)
membership relations M : X ↔ 2X , which are point-wisely described by Mx,Y iff
x ∈ Y , for all elements x ∈ X and sets Y ∈ 2X . There exists a relation-algebraic
axiomatization of membership relations which specifies these up to isomorphism.
See [11], for example. But for the applications of the present paper the above
point-wise description suffices.

3 Vector Representation of Relations

Relational vectors are relations v : X ↔Y with v; L = v. Such a v can be
interpreted as a subset of X in the following sense: If represented by a Boolean
matrix, the relation v is a matrix in which every row consists completely either
of 1’s (or ‘true’-entries) or of 0’s (or ‘false’-entries) indicating that the element
corresponding to that row either belongs to the subset of X or not. Since Y is
irrelevant in this representation we will always consider vectors with target 11,
where 11 = {⊥} is a specific singleton set. In this case all relations in the set
[X ↔11] of relations are vectors since for a singleton set we have L = I. Note that
a singleton set can also be defined abstractly (up to isomorphism) as a so-called
unit. A unit is an object 11 such that L = I for L : 11↔11 and L : X ↔11 is total
for every X.
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Relations are specific sets. In the following we concentrate on their represen-
tations by means of vectors.

The first step in providing a vector representation of arbitrary relations is to
establish a Boolean lattice isomorphism between the set of relations R : X ↔Y
and the set of vectors v : X×Y ↔11. Given a relation R : X ↔Y and a vector
v : X×Y ↔11 we define vec(R) : X×Y ↔11 and Rel(v) : X ↔Y as shown in the
following figure (Fig. 1).

Fig. 1. Definition of functions vec and Rel

The functions vec : [X ↔Y ] → [X×Y ↔11] and Rel : [X×Y ↔11] → [X ↔Y ]
are inverse to each other, i.e., we have Rel(vec(R)) = R and vec(Rel(v)) = v,
for all R : X ↔Y and v : X×Y ↔11. Furthermore, vec and Rel are monotone
w.r.t. inclusion, i.e., R ⊆ S implies vec(R) ⊆ vec(S), for all R,S : X ↔Y , and
v ⊆ w implies Rel(v) ⊆ Rel(w), for all v, w : X×Y ↔11. We even have R ⊆ S
iff vec(R) ⊆ vec(S), for all R,S : X ↔Y , and v ⊆ w iff Rel(v) ⊆ Rel(w), for all
v, w : X×Y ↔11. Proofs of these facts can be found in [10], for example.

The next lemma shows how the five basic operations of relation algebra can be
performed directly on the corresponding vectors. Together with the bijectivity
properties (1), (3) and (4) of Lemma 3.1 imply that the function vec is an
isomorphism from the Boolean lattice [X ↔Y ] of all relations between X and Y
to the Boolean lattice [X×Y ↔11] of all vectors with source X×Y , with vec−1 =
Rel, such that vec(O) = O, vec(L) = L, Rel(O) = O and Rel(L) = L immediately
follows.

Lemma 3.1. Let be Q,R : X ↔Y and S : Y ↔Z. Then we have

(1) vec(Q) = vec(Q),
(2) vec(QT) = S; vec(Q),
(3) vec(Q ∪ R) = vec(Q) ∪ vec(R),
(4) vec(Q ∩ R) = vec(Q) ∩ vec(R),
(5) vec(R;S) = CT; [[vec(R), vec(S)].

Proof. The four properties (1) to (4) were already shown in [10]. In order to prove
property (5), we would like to show that the composition CT; [[vec(R), vec(S)]
can basically be written as the left-hand side of the equation in Lemma 2.3
for suitable S1 and S2, and then apply that lemma. Therefore, we will use the
following abbreviations

i := I ∩ π; ρ;πT; ρT, π̃ := π ∩ ρ;π; ρT,

f := π; ρ ∩ ρ;π, ρ̃ := ρ ∩ π; ρ;πT.
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Obviously, all four relations are univalent and we have i;π = π̃, i; ρ = ρ̃, π̃; ρ = f
and ρ̃;π = f , where the last four equations follow immediately from Lemma
2.2(2). Furthermore, we have π̃; [[R, I] ⊆ π̃; ρ = f and

ρ̃; [[S, I]; L ∩ f = ρ̃; (π;S ∩ ρ); L ∩ f

= ρ̃; (π ∩ ρ;ST); L ∩ f Lemma 2.1(2)

= (ρ̃;π ∩ ρ̃; ρ;ST); L ∩ f Lemma 2.2(1)

= (f ∩ ρ̃; ρ;ST); L ∩ f

= f ∩ ρ̃; ρ;ST Lemma 2.2(3)

= ρ̃;π ∩ ρ̃; ρ;ST

= ρ̃; (π ∩ ρ;ST) Lemma 2.2(1)

= ρ̃; [[I, ST].

These two properties imply

i; [[vec(R), vec(S)] = i;π; [[R, I]; L ∩ i; ρ; [[S, I]; L Lemma 2.2(1)
= π̃; [[R, I]; L ∩ ρ̃; [[S, I]; L
= (π̃; [[R, I] ∩ ρ̃; [[S, I]; L); L Lemma 2.1(1)
= (π̃; [[R, I] ∩ f ∩ ρ̃; [[S, I]; L); L see above

= (π̃; [[R, I] ∩ ρ̃; [[I, ST]); L see above.

On the other hand, we have

C = i; (π‖ρ)

= i; (π;π;πT ∩ ρ; ρ; ρT)

= i;π;π;πT ∩ i; ρ; ρ; ρT Lemma 2.2(1)

= π̃;π;πT ∩ ρ̃; ρ; ρT

so that the composition CT; [[vec(R), vec(S)] in fact can be written as the left-
hand side of Lemma 2.3 with S1 = π̃ and S2 = ρ̃.

The following calculation now shows that the additional assumption of
Lemma 2.3 is satisfied:
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[[R, I]; [[I, ST]
T ∩ (π;πT)

T
; ρ; ρT

= [[R, I]; [[I, ST]
T ∩ π;πT; ρ; ρT

= [[R, I]; [[I, ST]
T ∩ π; L; ρT

= [[R, I]; [[I, ST]
T

π and ρ total

⊆ ρ;πT

= ρ;πT ∩ ρ;πT

= [I, ρ;πT]]; [[ρ;πT, I] sharpness

= (πT ∩ ρ;πT; ρT); (ρ ∩ π; ρ;πT)

= π̃T; ρ̃,

As a consequence we conclude

(π;πT; π̃T ∩ ρ; ρT; ρ̃T); (π̃; [[R, I] ∩ ρ̃; [[I, ST]) = π;πT; [[R, I] ∩ ρ; ρT; [[I, ST].

We finally obtain

vec(R;S)
= [[R;S, I]; L
= (π;R;S ∩ ρ); L

= (π;R ∩ ρ;ST); L Lemma 2.1(2)

= (π;πT; [[R, I] ∩ ρ; ρT; [[I, ST]); L

= (π;πT; π̃T ∩ ρ; ρT; ρ̃T); (π̃; [[R, I] ∩ ρ̃; [[I, ST]); L see above

= CT; i; [[vec(R), vec(S)]

= CT; [[vec(R), vec(S)], iT; i = i; i = i = iT

i.e., the desired property (5). ��
The relation C allows us to express a composition of two relations as an operation
on their corresponding vectors. Sometimes, when computing all relations that
satisfy a certain property, it is sufficient to convert only one relation in a series
of compositions into a vector. Quite often this even leads to a more efficient
implementation (e.g., in RelView) of testing the property. The following lemma
was shown in [9] and provides exactly such a translation.

Lemma 3.2. Let Q : W ↔X, R : X ↔Y , and S : Y ↔Z. Then we have

vec(Q;R;S) = (Q‖ST); vec(R).

As specific cases we get vec(Q;R) = (Q ‖ I); vec(R) by taking S as identity
relation and vec(R;S) = (I‖ST); vec(R) by taking Q as identity relation.
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4 Vector Representation of Sets of Relations

In [9] so-called vector predicates are introduced for the relational treatment of
evolutionary algorithms. They are functions in the usual mathematical sense on
relations and model those sets of relations which are built from vectors using
as operations only complementation, union, intersection and a restricted version
of composition. This approach is continued and refined in [4] in view of the
specification of vectors v : 2X ↔11 which represent subsets R of given power sets
2X . The aim is to avoid lengthy and complex logical calculations and to work
rather with relation-algebraic specifications of the elements of R via inclusions
v ⊆ w such that v can be obtained from v ⊆ w in one step using a general
procedure. Decisive for this is that both sides of the inclusions are so-called
column-wise extendible vector expressions. These are specific relation-algebraic
expressions which can be seen as syntactical counterpart of vector predicates.
Formally, they are defined as follows.

Definition 4.1. Given a variable v of type X ↔11, the set VEv of typed column-
wise extendible vector expressions over v is inductively defined as follows:

(1) We have v ∈ VEv and its type is X ↔11.
(2) If w : Y ↔11, then w ∈ VEv and its type is Y ↔11.
(3) If v ∈ VEv is of type Y ↔11, then v ∈ VEv and its type is Y ↔11.
(4) If v,w ∈ VEv are of type Y ↔11, then v ∪ w ∈ VEv and v ∩ w ∈ VEv and

their types are Y ↔11.
(5) If v ∈ VEv is of type Y ↔11 and R is a relation-algebraic expression of type

Z ↔Y in which v does not occur, then R; v ∈ VEs and its type is Z ↔11.

So, the vector expressions from VEv are built from the variable v using vec-
tors and as operations only complementation, union, intersection and left-
composition with a relation-algebraic expression in which v does not occur.
Note that v is the only variable in such an expression. In the following we also
allow the use of derived operations like symmetric quotients and pairings, but
these are only seen as abbreviations. For example, R; [[v, S; v] is considered as a
column-wise extendible vector expression over the variable v since unfolding the
definition of the left pairing yields R; (π; v ∩ ρ;S; v).

In a column-wise extendible vector expression v over v the variable v can be
replaced by a relation R with the same source as v. The result is denoted as
v[R/v] and is inductively defined as follows.

Definition 4.2. Given a variable v of type X ↔11, v ∈ VEv and R : X ↔Z,
we define v[R/v] as follows, using induction on the structure of v:

(1) v[R/v] = R.
(2) w[R/v] = w; L, with L : 11↔Z.
(3) w[R/v] = w[R/v].
(4) (w ∪ u)[R/v] = w[R/v] ∪ u[R/v] and (w ∩ u)[R/v] = w[R/v] ∩ u[R/v].
(5) (R;w)[R/v] = R; (w[R/v]).
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For example, for the variable v of type X ↔11, S : Y ↔X and w : Y ↔11 we
have S; v ∩w ∈ VEv. A replacement of v in S; v ∩w by the membership relation
M : X ↔ 2X then yields S;M ∩ w; L, which has type Y ↔ 2X .

The general procedure to obtain the vectors v : 2X ↔11 from the inclusions
v ⊆ w, that we have mentioned above, is shown in [4] as Theorem 1. If we
instantiate this theorem in such a way that instead of a general power set 2X a
power set of a Cartesian product X×Y is taken, i.e., a vector v : [X ↔Y ] ↔11
representing a subset R of the set [X ↔Y ] of relations is to be computed, then
we get the following result.

Theorem 4.1. Let the subset R of the set [X ↔Y ] of relations be specified
as R = {Rel(r) | r ∈ [X×Y ↔11] ∧ v ⊆ w}, where v,w ∈ VEr. Using the
membership relation M : X×Y ↔ [X ↔Y ] the set R is represented by the vector

v := L; (v[M/r] ∩ w[M/r])
T

: [X ↔Y ] ↔11.

Using this result, in [6] a lot of vectors are obtained which represent important
classes of relations. A certain disadvantage of Theorem 4.1 is that it works not
directly with relations but with their vector representations. If, e.g., R is the
set of all transitive relations on a set X, then one would like to specify that R
is a member of R by R;R ⊆ R instead of by CT; [[r, r] ⊆ r as in [6], where r
is the vector representation of R. Using the properties of the two functions vec
and Rel given in Sect. 3, it is not hard to calculate the inclusion CT; [[r, r] ⊆ r
(between column-wise extendible vector expressions over r) from the common
specification Rel(r);Rel(r) ⊆ Rel(r) of Rel(r) to be transitive.

In the following we generalize the example of transitive relations and consider
arbitrary inclusions R ⊆ S, where R and S are relation-algebraic expressions
that are constructed from a variable R of type X ↔Y using certain relations
(e.g., membership relations and projection relations) and the constants and
operations (including again also derived ones) of relation algebra. We denote
the set of all these relation-algebraic expressions as RER. Note that R is the
only variable in such an expression. Our aim is to get from the specification
R = {R ∈ [X ↔Y ] | R ⊆ S} a vector representation of this set in one step simi-
lar to Theorem 4.1. Decisive is the following function that transforms expressions
from RER into expressions from VEr, where r : X×Y ↔11.

Definition 4.3. Given a variable r of type X×Y ↔11 and a variable R of type
X ↔Y , we define the function νr : RER → VEr as follows, using induction on
the structure of the argument:

(1) νr(R) = r.
(2) νr(S) = vec(S) for all relations S.
(3) νr(R) = νr(R).
(4) νr(RT) = S; νr(R).
(5) νr(R ∪ S) = νr(R) ∪ νr(S).
(6) νr(R ∩ S) = νr(R) ∩ νr(S).
(7) νr(R;S) = CT; [[νr(R), νr(S)].
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In the next lemma we verify that νr in fact yields a column-wise extendible vector
expression over the variable r. Furthermore, we show that if r is instantiated as
vec(R), then νr equals the function vec.

Lemma 4.1. Let be a variable r of type X×Y ↔11 and a variable R of type
X ↔Y . For all R ∈ RER we then have νr(R) ∈ VEr and, provided r is instan-
tiated as vec(R), also νr(R) = vec(R).

Proof. We use induction on the structure of the expression R.
The induction base is that R is the variable R or a relation S. In the first

case we have νr(R) = r ∈ VEr and νr(R) = r. So, if r is instantiated as vec(R),
then νr(R) = vec(R). The case that R is a relation S is trivial.

In the first case of the induction step, assume R to be of the form S and
that the induction hypothesis holds for the expression S. Then νr(S) ∈ VEr

and Definition 4.3(3) yield νr(S) ∈ VEr. If r is instantiated as vec(R), we have
νr(S) = vec(S) and we obtain

νr(S) = νr(S) = vec(S) = vec(S)

using Definition 4.3(3) and Lemma 3.1(1). Next, let R be of the form ST and
the induction hypothesis hold for the expression S. Here νr(S) ∈ VEr and
Definition 4.3(4) show νr(ST) ∈ VEr. As an instantiation of r as vec(R) yields
νr(S) = vec(S), we get

νr(ST) = S; νr(S) = S; vec(S) = vec(ST),

using Definition 4.3(4) and Lemma 3.1(2). In the same way the cases can be
treated where R is a union, an intersection and a composition of expressions.
When R is a union, Definition 4.3(5) and Lemma 3.1(3) apply, when it is an
intersection, Definition 4.3(6) and Lemma 3.1(4) apply, and when it is a compo-
sition, Definition 4.3(7) and Lemma 3.1(5) apply. ��
Now, we are able to prove the following variant of Theorem 4.1. The main
difference in this modified version is that the elements of the set of relations
are specified by an inclusion of relation-algebraic expressions over the variable R
rather than as an inclusion between column-wise extendible vector expressions
over a variable r that stands for the vector representation of R.

Theorem 4.2. Let the subset R of the set [X ↔Y ] of relations be specified as
R = {R ∈ [X ↔Y ] | R ⊆ S}, where R,S ∈ RER. Taking a variable r of type
X×Y ↔11 and using the membership relation M : X×Y ↔ [X ↔Y ], the set R
is represented by the vector

v := L; (νr(R)[M/r] ∩ νr(S)[M/r])
T

: [X ↔Y ] ↔11.

Proof. First, we prove that the original specification of the set R is equivalent
to the specification

R = {Rel(r) | r ∈ [X×Y ↔11] ∧ νr(R) ⊆ νr(S)}.
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Let R : X ↔Y be given. We have to verify that R ⊆ S holds iff there exists
r : X×Y ↔11 such that νr(R) ⊆ νr(S) and R = Rel(r). Here is the proof, where
r ranges over [X×Y ↔11]:

R ⊆ S ⇐⇒ vec(R) ⊆ vec(S) see Sect. 3
⇐⇒ νvec(R)(R) ⊆ νvec(R)(S) by Lemma 4.1
⇐⇒ ∃r : r = vec(R) ∧ νr(R) ⊆ νr(S)
⇐⇒ ∃r : R = Rel(r) ∧ νr(R) ⊆ νr(S) see Sect. 3

From Lemma 4.1 we also get that both sides of the inclusion of the second
specification of R are column-wise extendible vector expressions over r. Hence,
Theorem 4.1 is applicable and yields the desired result. ��
As an example for applying the previous theorem, we consider again transitive
relations, i.e., we use the specification

R = {R ∈ [X ↔X] | R;R ⊆ R}.

For arbitrary R : X ↔X and r : X×X ↔11 we get for the left-hand side of the
inclusion R;R ⊆ R that νr(R;R) = CT; [[νr(R), νr(R)] = CT; [[r, r], such that
νr(R;R)[M/r] = CT; [[M,M], with M : X×X ↔ [X ↔X] as membership relation.
In case of the right-hand side of R;R ⊆ R we have νr(R) = r, and this yields
νr(R)[M/r] = M. So, Theorem 4.2 implies that the vector

trans := L; (CT; [[M,M] ∩ M)
T

of type [X ↔X] ↔11 represents R, i.e., the set of transitive relations on X.

5 Applications: Kernels and Richardson’s Criterion

A directed simple graph, i.e., a directed graph without multiple edges between
the same pair of vertices, on a set of vertices X can be represented by a relation
R : X ↔X. A subset K of X is a kernel of R if for all x ∈ X it holds x /∈ K
iff there exists y ∈ K such that Rx,y. Kernels have been introduced in [12] as
a generalization of a solution of a cooperative game. Not every relation has a
kernel and it is known that determining whether a relation has a kernel is a
NP-complete problem.

There exist a series of sufficient criteria for the existence of kernels which can
be tested efficiently. In [7] it was investigated how well these criteria characterize
the class of relations that have kernels. This was done by computing the number
of relations with a kernel for all sets X up to 7 elements using RelView. Then
the four most popular criteria of the above mentioned series were considered and
for each of them the number of relations satisfying the criteria was computed –
again for all X with |X| ≤ 7 using RelView. The numerical data of [7] show
that even in case of the most general of the criteria, the absence of odd cycles
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(Richardson’s criterion), only a very small portion of the relations with kernels
satisfy this property. So, the criteria are very far away from characterizing the
class of relations with kernels. The data also led to the following conjecture for
finite sets X: The probability that a relation selected uniformly at random from
[X ↔X] has a kernel tends to zero if |X| tends to infinity.

The key for getting the data of [7] are relation-algebraic specifications of five
vectors of type [X ↔X] ↔11 which represent the set of relations on X having
kernels and the set of relations on X satisfying one of the criteria. The Rel-
View-programs then are nothing else than translations of the specifications into
the programming language of the system. Each vector is obtained from a logical
description of the relations in question and its transformation into an equivalent
relation-algebraic expression. Especially in case of Richardson’s criterion the
development is rather technical and complex. In the following we solve two of
the problems of [7] using the new method. A comparison with [7] shows that the
new solutions are much more simple and many steps are very straight-forward.

We start with the characterization of relations having kernels. Assume
R : X ↔X and K ⊆ X. Using the definition of a kernel and the point-
wise description of symmetric quotients, we have that K is a kernel of R iff
syq(M, R;M)K,K , where M : X ↔ 2X is a membership relation. As a conse-
quence R has a kernel iff syq(M, R;M) ∩ I �= O. Thus, R has no kernel iff
syq(M, R;M) ⊆ I. In order to obtain a vector kernel : [X ↔X] ↔11 that rep-
resents the set of relations on X with a kernel, we use our method to transform
the inclusion syq(M, R;M) ⊆ I into a vector nokernel : [X ↔X] ↔11 and define
kernel as complement of nokernel.

For the development of the vector nokernel, assume an arbitrary r :
X×X ↔11 to be given. Using the definition of the symmetric quotient, the defi-
nition of the function νr and Lemma 3.1 in combination with the abbreviations
m := vec(M) and mt := vec(MT), we get

νr(syq(M, R;M))

= νr(M
T
;R;M ∩ M

T
;R;M)

= νr(M
T
;R;M) ∩ νr(MT;R;M)

= νr(M
T
;R;M) ∩ νr(MT;R;M)

= CT; [[νr(M
T
), νr(R;M)] ∩ CT; [[νr(MT), νr(R;M)]

= CT; [[vec(M
T
), νr(R;M)] ∩ CT; [[vec(MT), νr(R;M)]

= CT; [[vec(MT),CT; [[νr(R), νr(M)]] ∩ CT; [[vec(MT),CT; [[νr(R), νr(M)]]

= CT; [[vec(MT),CT; [[r, vec(M)]] ∩ CT; [[vec(MT),CT; [[r, vec(M)]]

= CT; [[mt,CT; [[r,m]] ∩ CT; [[mt,CT; [[r,m]]
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for the left-hand side of the inclusion syq(M, R;M) ⊆ I, hence

νr(syq(M, R;M))[M/r] = CT; [[mt; L,CT; [[M,m; L]] ∩ CT; [[mt; L,CT; [[M,m; L]]

for the replacement of r by the membership relation M : X×X ↔ [X ↔X]. In
case of the right-hand side of the inclusion syq(M, R;M) ⊆ I we have νr(I) =
vec(I) = vec(I) and with the abbreviation i := vec(I) we get

νr(I)[M/r] = i; L = i; L

for the replacement of r by M. Now, Theorem 4.2 immediately yields

nokernel := L; (CT; [[mt; L,H] ∩ CT; [[mt; L,H] ∩ i; L)
T

, where H := CT; [[M,m; L].

Next, we consider Richardson’s criterion and assume, as in [7], a finite set X
with |X| ≤ 7. To compute a vector that represents the set of relations on X with-
out odd cycles, in [7] four vectors cyc1, cyc3, cyc5 and cyc7 of type [X ↔X] ↔11
were developed which represent the set of relations on X having a cycle of length
1, 3, 5 and 7, respectively. Then the intersection of cyc1, cyc3, cyc5 and cyc7
yielded the desired vector. The developments of cyc5 and especially of cyc7 are
very technical and complex. For example, in case of cyc7 the relation-algebraic
expression describes that for a given relation R : X ↔X there exist three pairs
(u1, u2) ∈ X×X, (v1, v2) ∈ X×X and (w1, w2) ∈ X×X and an element x ∈ X
such that the tuples (u2, u1, x, v2, v1) and (v1, w1, w2, u2) are paths in R and,
therefore, the tuple (u2, u1, x, v2, v1, w1, w2, u2) is a cycle of length 7 in R.

A relation R : X ↔X has no cycle of length 1 if R ⊆ I, no cycle of length
3 if R3 ⊆ I, no cycle of length 5 if R5 ⊆ I and no cycle of length 7 if R7 ⊆ I,
where powers are defined as usual. The method of this paper allows using these
specifications directly leading to four vectors nocyc1, nocyc3, nocyc5 and nocyc7
of type [X ↔X] ↔11 which represent the set of relations on X having no cycle
of length 1, 3, 5 and 7, respectively. Then the intersection of nocyc1, nocyc3,
nocyc5 and nocyc7 yields the vector we are looking for.

For the following, let an arbitrary r : X×X ↔11 be given. With regard to
the inclusion R ⊆ I we have νr(R) = r and νr(I) = vec(I) = vec(I), hence
νr(R)[M/r] = M and νr(I)[M/r] = vec(I); L = vec(I); L for the replacement of r
by the membership relation M : X×X ↔ [X ↔X]. So, Theorem 4.2 yields

nocyc1 := L; (M ∩ vec(I); L)
T
.

In case of the inclusions R3 ⊆ I, R5 ⊆ I and R7 ⊆ I we work with the equivalent
inclusions (R2)T ⊆ R, (R3)T ⊆ R2 and (R4)T ⊆ R3 since these lead to more
efficient RelView-programs than the original inclusions. For (R2)T ⊆ R we get

νr((R2)
T
) = S; νr(R;R) = S;CT; [[νr(R), νr(R)] = S;CT; [[r, r]

and, hence, νr((R2)T)[M/r] = S;CT; [[M,M] for the left-hand-side, and

νr(R) = νr(R) = r
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and, hence, νr(R)[M/r] = M for the right-hand-side. If we apply Theorem 4.2 to
these results, we obtain the vector

nocyc3 := L; (S;CT; [[M,M] ∩ M)
T

.

The remaining inclusions can be treated analogously. From (R3)T ⊆ R2 we get

nocyc5 := L; (S;CT; [[M,H] ∩ H)
T

, where H := CT; [[M,M],

and inclusion (R4)T ⊆ R3 leads to

nocyc7 := L; (S;CT; [[H,H] ∩ CT; [[M,H])
T

, where H := CT; [[M,M].

We have implemented the relation-algebraic specifications developed in this
section in RelView and have compared the running times with those given
in [7]. Doing so, we have used the same environment as mentioned in [7], i.e.,
version 8.2 of RelView2 on a PC with 2 CPUs of type Intel R© Xeon R© E5-
2698, each with 20 cores and 3.60 GHz base frequency, 512 GByte RAM and
running Arch Linux 5.2.0. We only present the data for |X| = 7. Using the
RelView-programs resulting from [7], it takes 138.67 s to compute the vector
that represents the set of 188 553 949 010 868 relations on X which have a kernel
and 32 220.55 s to compute the vector that represents the set of 16 230 843 049
relations on X which satisfy Richardson’s criterion. The RelView-programs we
have obtained from the specifications of this paper need 201.31 s for computing
the first vector and 18 843.34 s for computing the second one.

From Lemma 3.2 we get νr(R;R;S) = (R ‖ ST); νr(R) for all R : X ↔Y
and R,S ∈ RER, where r := vec(R). In Sect. 3 we have mentioned that this
often leads to more efficient implementations. If we proceed the above pre-
sented calculation for νr(syq(M, R;M)) with νr(R;M) = (I‖MT); νr(R) and
νr(MT;R;M) = (MT ‖MT); νr(R) after the third step, we obtain the variant

nokernel := L; (CT; [[mt; L, (I‖MT);M] ∩ (MT ‖MT);M ∩ i; L)
T

the RelView-implementation of which allows to compute the vector represen-
tation of the set of relations on X having kernels for |X| = 7 in 189.89 s.

6 Further Applications

We have applied our method to many other classes of specific relations. These
include the remaining three criteria for the existence of kernels treated in [7], i.e.,
bipartite relations, progressively finite relations and symmetric and irreflexive
relations. Also many of the vectors presented in [6] have been redeveloped using
2 This is the newest version of the tool. It is described at the Web-site [14] and the

source code is available from Github via [15] and from Zenodo via [16].
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the new method. We also have applied the new method to classes of relations not
treated so far, viz. lattices, bounded partial orders, finite directed acyclic graphs
and arborescences, tournaments, rectangular relations, difunctional relations,
general Ferrers relations, strongly connected relations and maps having fixpoints.

Sometimes the specification of a property P (R) of a relation R leads to an
inequation R �= O, with a relation-algebraic expression R ∈ RER. An example
is the specification of R to have a kernel by syq(M, R;M)∩ I �= O in Sect. 5. Also
the specification of R to be a bounded partial order and of R to be a map with
a fixed point leads to such inequations, viz. to R; L �= O (existence of a least

element) and RT; L �= O (existence of a greatest element) in the first case and to
R ∩ I �= O (existence of a reflexive element) in the second case.

To cope with the inequation syq(M, R;M) ∩ I �= O, in Sect. 5 we consider
the equation syq(M, R;M) ∩ I = O instead, which specifies R to have no kernel.
Then we transform it into the equivalent inclusion syq(M, R;M) ⊆ I, apply our
method to the latter and, finally, form the complement of the result to obtain
the vector we are actually interested in. Since the carrier set of R is non-empty,
syq(M, R;M) ∩ I �= O holds iff L ⊆ L; (syq(M, R;M) ∩ I); L. We have applied our
method also to that inclusion. But the corresponding RelView-program proved
to be less efficient than that we have obtained from the approach of Sect. 5.

That the inequation R �= O is equivalent to the inclusion L ⊆ L;R; L for rela-
tions on non-empty carrier sets we also have used to get vector representations
of the set of bounded partial orders and of maps with fixed points. In each case
the specific form of the expression R allows to apply Lemma 3.2 for computing
νr(L;R; L). E.g., for the inclusion L ⊆ L; (R ∩ I); L we get νr(L) = L for the left-
hand side and νr(L; (R ∩ I); L) = (L‖LT); νr(R ∩ I) = L; (r ∩ vec(I)) for the right-

hand side. In combination with Theorem 4.2 this yields L; L; (M ∩ vec(I); L)
T

as
vector representation of the set of relations with a reflexive element, which still
can be simplified to (L; (M ∩ vec(I); L))T. With the RelView-program obtained
from the simplified specification and the vectors of [6] for the classes of univa-
lent and total relations, respectively, we have been able to compute the vector
representation of the set of maps on X having fixed points up to |X| = 240. For
240 elements 5.55 s are needed to get the result and to store it in a ROBDD with
229 439 vertices. Our RelView-experiments show that the percentage of maps
having fixed points decreases from 100% if |X| = 1 to 63.284 if |X| = 240. This
is in accordance with the well-known result that, if Pn denotes the probability
that a map on an n-element set selected uniformly at random has a fixed point,
then Pn tends to 1 − 1

e if n tends to infinity.

7 Concluding Remarks

The computational power obtained by the use of ROBDDs and RelView
becomes clear if we compare the running times mentioned in Sect. 5 and 6 with
the times needed in case of a “classical” brute-force approach. E.g., if we assume
that some algorithm could generate every map on a given finite set X and test



50 R. Berghammer and M. Winter

the existence of a fixed point in, say, 10−6 seconds, it would take 2.82 · 1011 sec-
onds (i.e., more than 9000 years) for this task already if |X| = 15, since in this
case there are 282 325 794 823 047 151 maps on X having a fixed point. RelView
only needs 0.019 s to compute a vector representing this set.

Membership relations M : X×Y ↔ [X ↔Y ] play a central role in our app-
roach. The variable ordering used in RelView allows to implement M by a
ROBDD the number of vertices is linear in the size of X×Y . Besides the very
efficient ROBDD-implementation of the relational operations this specific feature
of the tool seems to be the main reason for the amazing computational power in
case of problems that deal with the computation of a subset of a powerset.

In addition to applying the theory to further examples and applications,
there are at least two theoretical topics related to the material of this paper we
would like to investigate in the future. The first topic is the question whether it is
possible to find for any property P (R) of relations R : X ↔Y expressed in second
order logic an equivalent finite set of inclusions Ri ⊆ Si with Ri,Si ∈ RER

for all i. If this is the case, then the method of this paper could be applied
immediately to the inclusions to get a vector that represents the set of all these
relations. If this is not the case, it would be interesting to characterize the second
order properties for which an equivalent description by a finite set of inclusions
{R1 ⊆ S1, . . . ,Rn ⊆ Sn} is possible, i.e., for which our method is applicable.
The second topic is the above mentioned conjecture about the probability of
a relation selected uniformly at random from [X ↔X] to have a kernel. The
conjecture states that this probability tends to zero if |X| tends to infinity. So
far we only have been able to prove that, given any (but fixed) k ∈ N, the
probability of a relation selected uniformly at random from [X ↔X] to have a
kernel with at most k elements tends to zero if |X| tends to infinity.
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Abstract. We present a lattice of distributed program specifications,
whose ordering represents implementability/refinement. Specifications
are modelled by families of subsets of relative execution traces, which
encode the local orderings of state transitions, rather than their abso-
lute timing according to a global clock. This is to overcome fundamental
physical difficulties with synchronisation. The lattice of specifications
is assembled and analysed with several established mathematical tools.
Sets of nondegenerate cells of a simplicial set are used to model relative
traces, presheaves model the parametrisation of these traces by a topolog-
ical space of variables, and information algebras reveal novel constraints
on program correctness. The latter aspect brings the enterprise of pro-
gram specification under the widening umbrella of contextual semantics
introduced by Abramsky et al. In this model of program specifications,
contextuality manifests as a failure of a consistency criterion comparable
to Lamport’s definition of sequential consistency. The theory of informa-
tion algebras also suggests efficient local computation algorithms for the
verification of this criterion. The novel constructions in this paper have
been verified in the proof assistant Isabelle/HOL.

Keywords: Information algebras · Presheaves · Refinement lattices

1 Introduction

Lattices of sets of traces have been successful in the field of formal methods
as algebraic models for program specification and verification. For concurrent
programs, two important examples are trace models of Concurrent Kleene Alge-
bra [11] and Concurrent Refinement Algebra [10]. A core advantage of these
models is that they facilitate compositional reasoning, which mitigates the inher-
ent difficulties in analysing the exponential proliferation of program behaviours
that occur when programs run in parallel.

These models do not explicitly account for the topological structure inherent
to a distributed system, which can make reasoning about local behaviour, e.g.
local variable blocks, cumbersome. Moreover, trace models for concurrency often
implicitly assume a “global clock” with which all traces progress in lockstep—and
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this assumption limits their applicability to systems distributed over significant
distances in space, due to physical (e.g. from relativistic physics) constraints on
synchronisation.

In this article we describe a lattice of program specifications, that encodes
the possible behaviours of a distributed system as subsets of relative traces, as
well as its configuration into independent parallel processors.

Inspirations for this work are previous uses of presheaves in concur-
rency [8,12], the aforementioned refinement algebras [10,11], topological models
of concurrency such as [6,17], and the diverse applications of valuation and infor-
mation algebras [18], their relationship to sheaves, and their associated notion
of contextuality [1,4].

In Sect. 2 we introduce the notion of a relative trace, which is a chain in a
proset (preordered set) of states. Such relative traces are assigned to each variable
v ∈ V in a distributed system, and are modelled as a subset of the cartesian
product

∏
v∈V Ωv of the prosets Ωv of states for each variable. The variables

v ∈ V are topologised in a space (V,D) representing the physical configuration
of the variables, and the inclusion ordering of open sets in this space induces
a restriction action on the traces. These traces are called relative because this
restriction action does not preserve the absolute timing of their states, but only
the ordering of state transitions.

In Sect. 3, we introduce the notion of a specification, which is a pair (A,U)
where A is a presheaf on D whose values are subsets of possible relative traces,
and U is a maximal cover of (V,D), representing the distribution of the speci-
fication into independent asynchronous components. Moreover, we explain that
such specifications form a lattice (Λ,�) whose ordering represents the refinement
relation between specifications.

In Sect. 4, we define an information algebra and some associated constructs.
We show how the lattice of specifications Λ corresponds to a particular ordered,
adjoint information algebra. This associated information algebra permits the
definition of local and global consistency for specifications, which we introduce
in Sect. 5.

In Sect. 6, we show how these consistency criteria can arise in a classical
scenario in distributed systems, namely the dining philosophers.

In the following we assume familiarity with the basic definitions of order
theory and category theory, e.g. of a proset, a lattice, a category, a functor, a
natural transformation, etc. Possibly less familiar structures—topological spaces,
presheaves, and (augmented) simplicial sets—are briefly reviewed.

Proofs of the results in this paper are available in the appendix of the version
published on arXiv [5]. Several of the constructions and proofs in this paper
have been formalised in the Isabelle/HOL proof assistant.1

1 https://github.com/onomatic/ramics23-proofs.

https://github.com/onomatic/ramics23-proofs
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2 Relative Traces

A topological space is an abstract model of a geometric space, but without
built-in notions of angle, distance, curvature, etc. It is formalised set-theoretically
as a set X of points, and a set T ⊆ PX of subsets of X, called open sets,
which are closed under unions and finite intersections2. Roughly speaking, the
open sets measure proximity, where nearby points occupy many open sets in
common.

Let V be a finite3 set of variables of a distributed computer system and
D a topology on V . We call the open sets of D domains. We consider that a
single computer is also a distributed system (as in [14]); then V could be the
set of memory locations over its CPU caches, RAM modules, hard disks, etc.,
and the topology D encodes the connectivity between these parts. Or, V could
be the set of memory locations over a distributed database comprised of many
individual computers, and D represents the network topology of this distributed
system.

The Frame Functor Ω. To each variable v ∈ V we associate a nonempty
proset Ωv of states whose order represents reachability or causality, and we
extend this assignment to open sets U ∈ D by setting

ΩU :=
∏

v∈U

Ωv (1)

where the right-hand side is a cartesian product of prosets (for which the ordering
is given componentwise). Moreover, each inclusion of open sets U ⊆ U ′ induces
a function ΩU ′ → ΩU by projection of tuples (i.e. function restriction). Such
restriction maps ΩU ′ → ΩU have the effect of discarding information involving
variables outside U .

We evidently have that the function induced by U ⊆ U is the identity, and if
U ′′ ⊆ U ′ ⊆ U then the functions ΩU → ΩU ′′ and the composite of ΩU ′ → ΩU ′′

and ΩU → ΩU ′ are equal—it does not matter whether we restrict tuples imme-
diately to U ′′, or first restrict to U ′ and then restrict to U ′′. These assignments
and properties are summarised in saying that Ω : Dop → Pro is a contravari-
ant functor from the posetal category D to the category of prosets, dubbed the
frame functor .

The Augmented Simplicial Nerve Functor N. A presheaf is a con-
travariant functor valued in sets. An augmented simplicial set4 is a presheaf
S : Δ+

op → Set whose domain is the augmented simplex category Δ+. This
is the category with

2 Consequently, T contains at least ∅ and X, being the union and intersection respec-
tively of an empty family of open sets.

3 Finiteness is not crucial, but it simplifies our presentation, and in real-world examples
finiteness is a realistic assumption.

4 An ordinary simplicial set is a presheaf on the full subcategory Δ ⊂ Δ+ consisting
of only nonempty linearly ordered posets.
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– objects as linearly ordered posets 〈n〉 := {i ∈ N | 0 ≤ i ≤ n} for integers n ≥
0, as well as 〈−1〉 := ∅,

– morphisms as weakly monotone functions f : 〈n〉 → 〈m〉, i.e. those satisfying
i ≤ j =⇒ fi ≤ fj.

Augmented simplicial sets are the objects of a category, denoted by SetΔ+ ,
with natural transformations as morphisms. It is conventional to write the appli-
cation S〈n〉 of an augmented simplicial set S on 〈n〉 ∈ Δ+ as Sn, and the appli-
cation Sf of S on a morphism f ∈ Δ+ as f∗.

For an augmented simplicial set S ∈ SetΔ+ , an element x ∈ Sn is called an
n-cell of S, or a cell of S (of degree n). The cell x is degenerate if there
exists a non-injective function f ∈ Δ+ and a cell y of S with x = f∗y. Note that
any cell of degree −1 is nondegenerate.

To any proset P we can produce an augmented simplicial set NP, called
the augmented simplicial nerve of P, whose action on objects 〈n〉 for n ∈
N ∪ {−1} is given by

(NP)n := Pro(〈n〉,P) (2)
where Pro(〈n〉,P) is the set of monotone functions from 〈n〉 to P, or equivalently
the set of all chains of length n in P, including the empty chain, denoted [ ],
which is said to have length −1. Given a morphism f : P → P′ in Pro, we define
Nf : NP → NP′ as postcomposition with f , i.e.

(x : 〈n〉 → P) → (f ◦ x : 〈n〉 → P′) (3)

This evidently defines a functor N : Pro → SetΔ+ . Note that for P ∈ Pro a
proset, a nondegenerate n-cell of NP is a chain of length n in P that contains no
repeated adjacent elements. In particular, the empty chain [ ] is nondegenerate.

For each domain U ∈ D, (N ◦ Ω)U is an augmented simplicial set, such
that for each n ∈ N ∪ {−1}, ((N ◦ Ω)U)n is the set of all possible sequences
of states in ΩU , and the functions ((N ◦ Ω)U)n → ((N ◦ Ω)U)m are generated
by mumbling and stuttering maps on traces [3] (i.e. maps that omit or repeat
elements of a sequence, respectively).

The nondegenerate cells functor D. A basic result in the theory of simplicial
sets is the following:
Lemma 1 (Eilenberg-Zilber [7, II.3.1, pp. 26–27]5). For each cell x of an
augmented simplicial set S there exists a unique nondegenerate cell x′ such that
there exists a unique surjection fx ∈ Δ+ with x = f∗

xx′.
For any augmented simplicial set S we can produce a plain set DS consisting

of only the nondegenerate cells of S (as in Lemma 1). Moreover, we can extend
this assignment to morphisms of SetΔ+ ,

D : SetΔ+ → Set (4)
S → set of nondegenerate cells of S (5)
α → (x → (αx)′) (6)

5 The cited result is stated for ordinary simplicial sets, but it clearly also applies to
augmented simplicial sets as there are no degeneracies of a cell of degree −1.
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In other words, the action of D on morphisms of augmented simplicial sets
α : S → S′ gives a function Dα : DS → DS′ that sends a nondegenerate cell x of
DS to the nondegenerate cell (αx)′ of S′ that generates αx, whose existence and
uniqueness are assured by Lemma 1. These assignments assemble to a functor.

Lemma 2. D is a functor.

Postcomposing N ◦ Ω by D, we obtain the presheaf

Θ := D ◦ N ◦ Ω : Dop → Set (7)

that we call chaos.

Definition 1 (relative trace). For U ∈ D, an element t ∈ ΘU is a U-
relative trace, or for short, a U-trace or simply a trace.

Notes 1. We use the standard shorthand for restriction maps of a presheaf F :
Top → Set (e.g. F = Θ) on a topological space (X,T); t|U := (Fi)t for t ∈ FU ′

and U,U ′ ∈ D with U ′ ⊆ U and i the unique morphism i : U → U ′.

Notes 2. By fixing a linear ordering of V , a U -trace t ∈ ΘU for some U ∈ D can
be represented by a unique matrix with rows labelled in increasing order by the
v ∈ U , and columns indexed by “time”, with the property that adjacent columns
of the matrix are always distinct (the empty trace [ ] ∈ ΘU is therefore repre-
sented by the unique matrix with |U | rows and zero columns.). This property
could be restated as saying that the traces t ∈ ΘU do not contain stutterings [3].
The qualifier “relative” applied to “traces” emphasises the latter property, which
entails that a trace only records the relative ordering of its states, rather than
their absolute timing according to an implied “global clock”. This is illustrated
in the example below.

Example 1. Let (V,PV ) be the discrete space on a set V := {a, b} of variables,
and Ωa := {a0, a1} and Ωb := {b0, b1} their corresponding prosets of states,
both with the total ordering, i.e. for which all pairs of elements are related. The
trace

t =
[
a0 a0 a1

b0 b1 b1

]

∈ ΘV (8)

informally corresponds to an ordered set of observations of the system, where
the state transition a0 � a1 is observed after the transition b0 � b1. On the
other hand, the trace

t′ =
[
a0 a1

b0 b1

]

∈ ΘV (9)

corresponds to a discretely ordered set of observations where neither a0 � a1 is
observed before b0 � b1 or vice versa (although we refrain from saying they are
simultaneous/synchronous). Moreover, we have

t|{a} = t′|{a} =
[
a0 a1

] ∈ Θ{a} (10)

It is for this reason we refer to such traces as relative, because only the relative
ordering of states is preserved under restriction maps: the transition a0 � a1 in
t was at “time = 2” but in t|{a} it is at “time = 1”.
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3 Specifications

A cover of a topological space (X,T) is a family U = {Ui}i of open sets whose
union

⋃
i Ui equals X. A maximal cover is a cover that is also an antichain ,

meaning Ui ⊆ Uj if and only if i = j. We call a maximal cover of (V,D) a
context , where each Ui ∈ U is a domain (of an independent process of the
distributed system).

A subpresheaf G of a presheaf F : Cop → Set on a category C, written
G ⊆ F, is a family of subsets GX ⊆ FX for each object X ∈ C that assemble
to a presheaf, where G inherits the action of F on morphisms X ′ → X (i.e. by
function restriction).

Definition 2 (specification). A pair (A,U), where A ⊆ Θ is a subpresheaf
of Θ, and U = {Ui}i is a context, is called a specification.

The first factor of a specification records the possible relative execution traces
of a distributed system, and the second defines the domains of the independent
asynchronous processes that make up the system. Specifications are partially
ordered, where

(A,U) � (B,W) (11)

if and only if both A ⊆ B and U refines W, meaning every open U ∈ U is
contained in some W ∈ W. This ordering represents implementation (or refine-
ment) of specifications: (A,U) � (B,W) means the left-hand side implements
(or refines) the right-hand side.

Example 2. Let the set of variables V := {a, b} equipped with the discrete topol-
ogy, and let the subpresheaf A be defined by A∅ := {[ ]}, A{a} :=

{[
a0 a1

]}
,

and A{b} := AV := ∅, then it holds that A with the context {{a}, {b}} refines
chaos with the trivial context {V }, i.e. (A, {{a}, {b}}) � (Θ, {V }).

Note that refinement in the first factor represents reduction of nondeterminism,
whereas in the second factor it is increase of parallelism.

The subpresheaves of Θ form a complete distributive lattice6 SubΘ [16,
§III.8 Prop. 1]7 with meet and join given by pointwise intersection and union,
i.e.

(A ∩ B)U = AU ∩ BU, (A ∪ B)U = AU ∪ BU (12)

Theorem 1. The set of maximal covers CovmaxT of a space (X,T) with the
refinement ordering ≤ described above, forms a complete distributive lattice, with
meet and join given for all U,W ∈ CovmaxT respectively by

U ∧ W = {U ∈ LU ∩ LW |� ∃V ∈ LU ∩ LW. U ⊂ V } (13)
U ∨ W = {U ∈ U ∪ W |� ∃V ∈ U ∪ W. U ⊂ V } (14)

where LU := {U ∈ T | ∃V ∈ U. U ⊆ V }.
6 Actually, a complete bi-Heyting algebra [19, Cor. 9.1.13].
7 The cited result is stated more generally for the lattice of subsheaves of a given
sheaf over a site. Here we take the trivial site, over which sheaves are equivalent to
presheaves.
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The set of specifications Λ is then defined as the cartesian product of the
distributive lattices,

Λ := SubΘ × CovmaxD (15)

where CovmaxD is the lattice of maximal covers of (V,D), and this is again a
complete distributive lattice [2, p. 12], with meet and joint defined pointwise,
i.e.

(A,U) ∧ (B,W) = (A ∩ B,U ∧ W) (16)
(A,U) ∨ (B,W) = (A ∪ B,U ∨ W) (17)

for (A,U), (B,W) ∈ Λ. Informally, the meet of two specifications in (Λ,�) is
the specification that contains all behaviours common to both while increasing
parallelism to the minimal extent, whereas the join of two specifications is the
specification containing the union of their behaviours while decreasing paral-
lelism to the maximal extent.

The lattice (Λ,�) has as top element � = (Θ, {V }), and as bottom element
⊥ = (∅,

∧
CovmaxD), where ∅ is the constant functor with ∅U = ∅ and with ∅i =

1∅ the identity function on the empty set, for all open sets U ∈ D and inclusions
i : U ⊆ U ′. Note that the meet

∧
CovmaxD over all contexts in CovmaxD exists

because D is finite; this is the finest context of D.
Our goal in the next subsection is to show that the specifications of (Λ,�)

can be profitably analysed through a structure known as an information algebra.

4 Information Algebras

An information algebra is an algebraic structure modelling information parame-
terised over a lattice of domains, together with combination and projection oper-
ators. These specialise the valuation algebras introduced by Shenoy [21]. Our use
of information algebras is motivated by the theory of contextual semantics devel-
oped in [1,4]. However, [1,4] assume a discrete topology, whereas we prefer to
allow arbitrary finite topological spaces to make a closer connection between the
mathematical model of a distributed system and its physical topological con-
figuration. Therefore, in the following we mildly generalise the definitions and
results of [1,4] to arbitrary finite topological spaces.

Definition 3 (information algebra). Let (X,T) be a topological space over
a finite set of variables X. An information algebra over T is a quintuple
(Φ,T,d, ↓,⊗), where Φ is a set, d a function, ⊗ a binary operation, and ↓ a
partially defined operation,

1. Labelling: d : Φ → T, φ → dφ,
2. Projection: ↓ : Φ × T → Φ, (φ,U) → φ↓U , defined for all U ⊆ dφ,
3. Combination: − ⊗ − : Φ × Φ → Φ, (φ, ψ) → φ ⊗ ψ,

such that the following properties (explained below) hold, where for U ∈ T,
ΦU := {φ ∈ Φ | dφ = U}, and where φ, ψ ∈ Φ:
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(I1) Commutative semigroup: (Φ,⊗) is associative and commutative.
(I2) Projection: given U ⊆ dφ, d(φ↓U ) = U .
(I3) Transitivity: given W ⊆ U ⊆ dφ, (φ↓U )↓W = φ↓W .
(I4) Domain: φ↓dφ = φ.
(I5) Labelling: d(φ ⊗ ψ) = dφ ∪ dψ.
(I6) Combination: for U := dφ, W := dψ and Q ∈ T such that U ⊆ Q ⊆ U∪W ,

we have (φ ⊗ ψ)↓Q = φ ⊗ ψ↓Q∩W .
(I7) Neutrality: for each U ∈ T, there exists a neutral element 1U ∈ ΦU such

that φ⊗1U = 1U ⊗φ = φ for all φ ∈ ΦU . Moreover, these neutral elements
satisfy 1U ⊗ 1W = 1U∪W for all U,W ∈ T.

(I8) Nullity: for each U ∈ T, there exists a null element 0U ∈ ΦU such that
φ ⊗ 0U = 0U ⊗ φ = 0U . Moreover, for all U,W ∈ T with W ⊆ U and
φ ∈ ΦU , these null elements satisfy φ↓W = 0W ⇐⇒ φ = 0U .

(I9) Idempotence: For all U ⊆ dφ, it holds that φ ⊗ φ↓U = φ.

The elements φ ∈ Φ of an information algebra (Φ,T,d, ↓,⊗) are called val-
uations. An element U ∈ D is called a domain . The domain of a valuation
φ is the set dφ ∈ D.

Some explanation for these axioms may be helpful. Axiom (I1) says the order
in which information is combined is irrelevant. Axioms (I2)–(I4) essentially say
that the triple (Φ,d, ↓) defines the structure of a presheaf (see Note 3 below).
(I5) is clear. (I6) is the subtlest of the axioms; it says that to add a new piece of
information, we can first strip its irrelevant parts. This turns out to be crucial
in developing efficient computational algorithms [13,18]. (I7) posits neutral ele-
ments, that contain “irrelevant” information, in the sense that combining with
them adds nothing new, whereas (I8) posits null elements of “destructive” or
“contradictory” information, that “corrupt” any other information combined with
them. (I9) distinguishes information algebras from their more general cousins,
valuation algebras, and is “the signature axiom of qualitative or logical, rather
than quantitative, e.g. probabilistic, information. It says that counting how many
times we have a piece of information is irrelevant” [1].

Notes 3. Any information algebra (Φ,T,d, ↓,⊗) determines a presheaf Φ :
Top → Set, defined on objects U ∈ T by ΦU := ΦU , and such that if W ⊆ U we
have an action of restriction defined by projection, i.e. φ|W := φ↓W , for φ ∈ ΦU .
This presheaf is called the prealgebra associated to the information alge-
bra Φ. We sometimes use this without mention.

Information algebras may often be enriched with a partial ordering on valu-
ations, enabling the relative quantification of their information content [9].

Definition 4 (ordered information algebra). Let Φ be an information alge-
bra on a space of variables (X,T). Then (Φ,T,d, ↓,⊗,≤) is an ordered infor-
mation algebra if and only if ≤ is a partial order on Φ such that the following
axioms hold:

(O1) Partial order: for all φ, ψ ∈ Φ, φ ≤ ψ implies dφ = dψ. Moreover, for
every U ∈ T and Ψ ⊆ ΦU , the infimum Inf Ψ exists.
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(O2) Null element: for all U ∈ T, we have Inf ΦU = 0U .
(O3) Monotonicity of combination: for all φ1, φ2, ψ1, ψ2 ∈ Ψ such that φ1 ≤ φ2

and ψ1 ≤ ψ2 we have φ1 ⊗ ψ1 ≤ φ2 ⊗ ψ2.
(O4) Monotonicity of projection: for all φ, ψ ∈ Φ, if φ ≤ ψ, then φ↓U ≤ ψ↓U ,

for all U ⊆ dφ = dψ.

Generically, we can interpret φ ≤ ψ for φ, ψ ∈ Φ as meaning ψ is less8
informative than φ. Null elements 0U for U ∈ T represent over-constrained, or
contradictory information involving the variables U .

Tuple System Structure. Our goal now is to show that the lattice (Λ,�) of
specifications introduced in Sect. 3 is naturally associated to a particular ordered
information algebra. To this end, we first introduce an auxiliary construction
known as a tuple system, which generalises the idea of a parameterised set of
cartesian (i.e. ordinary) tuples.

Definition 5 (tuple system). A tuple system over a lattice L is a quadruple
(T,L,d, ↓), where T is a set, d : T → L a function, and ↓ : T × L → T a
partially defined operation, such that x↓U is defined only when U ≤ dx, and
which satisfy the following axioms: for x, y ∈ T and U,W ∈ L,

(T1) if U ≤ dx then d(x↓U ) = U ,
(T2) if W ⊆ U ⊆ dx then (x↓U )↓W = x↓W ,
(T3) if dx = U then x↓U = x,
(T4) for U := dx, W := dy, if x↓U∧W = y↓U∧W , then there exists z ∈ T such

that dz = U ∨ W , z↓U = x and z↓W = y,
(T5) for dx = U and U ≤ W , there exists y ∈ T such that dy = W and y↓U = x.

Notes 4. Similar to Note 3, axioms (T1)–(T3) imply that T is associated to
a presheaf T : Lop → Set in an evident way. Also, any information algebra
defines a tuple system, with the same domain and projection operations [13,
Lemma 6.11, p. 170].

Theorem 2. The set Θ :=
∐

U∈D ΘU with d := π1 : Θ → D the first projection
from the disjoint union Θ, i.e. (U, φ) → U , and ↓ defined by restriction relative
to the presheaf Θ, i.e. x↓U := x|U := (Θi)x, where i is the inclusion i : U ↪→ dx,
defines a tuple system over the space D of domains.

For a tuple system (T,L) and U ∈ L, a subset A ⊆ TU := {x ∈ T | dx = U}
is called a relation9. From any tuple system, we can generate an ordered infor-
mation algebra of relations in a canonical way.

8 Note that the ordering is in the “wrong” sense; this is so it corresponds to subset
inclusion in Theorem 3 below. A different, canonical ordering, is used in [13], defined
φ ≤can ψ ⇐⇒ φ ⊗ ψ = ψ for all φ, ψ ∈ Φ. Actually, we have φ ≤ ψ =⇒ ψ ≤can φ.

9 In [4], a relation is instead called an information set.



Contextuality in Distributed Systems 61

Theorem 3 ([13, Theorem 6.10]). Let (T,L) be a tuple system. Define a
relation over U ∈ L to be a subset R ⊆ T such that dx = U for all x ∈ R, and
define the domain of R as dR := U . For U ≤ dR, the projection of R onto U
is defined

R↓U := {x↓U ∈ T | x ∈ R} (18)

For relations R,S define the join of R and S as

R ⊗ S := {x ∈ T | dx = dR ∨ dS, x↓dR ∈ R, x↓dS ∈ S} (19)

For each U ∈ L, define 0U := ∅, called the empty relation on U , and
1U := TU , called the universal relation on U .

Then the set RT :=
∐

U∈L P(TU ) of all relations, where P is the (covariant)
powerset functor, is an ordered information algebra, with ordering given by subset
inclusion ⊆, with null elements 0U and neutral elements 1U , for all U ∈ L.

We associate to the lattice (Λ,�) of specifications, the ordered information
algebra (RΘ,D,d, ↓,⊗,⊆), whose valuations represent nondeterministic compu-
tations; the nondeterminism corresponding to the multiplicity of traces in its
relations. On each domain U ∈ D, the ordering ⊆ on (RΘ)U encodes imple-
mentability (or refinement) via reduction of nondeterminism, i.e. R ⊆ S if and
only if every trace of R is also a trace of S. The top element 1U consists of all
possible traces on U , whereas the bottom element 0U is an empty set of traces.

Often, the combination operation of an information algebra has a canonical
description via an adjunction [1]. It is convenient to note that this holds for
(RΘ,D,d, ↓,⊗,⊆).

Adjoint Structure. The following definition is adapted from [1] to an arbitrary
finite base space. Let (Φ,T,d, ↓,⊗,≤) be an ordered information algebra. Due
to the universal property of products in the category Set, we have, for all opens
U,W ∈ T, the following commutative diagram,

Φ(U ∪ W )

ΦU ΦU × ΦW ΦW

ρU∪W
U ρU∪W

W
(ρU∪W

U ,ρU∪W
W )

where Φ is viewed as a prealgebra, and where ρU
W : ΦU → ΦW are the restriction

maps x → x|W for all U,W ∈ T with W ⊆ U .

Definition 6 (adjoint information algebra). An adjoint information
algebra is an ordered information algebra (Φ,T,d, ↓,⊗,≤) such that each
restriction of its combination operation − ⊗ − : ΦU × ΦW → Φ(U ∪ W ) is the
right adjoint of the map (ρU∪W

U , ρU∪W
W ), defined in the diagram above. Hence, ⊗
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is the unique map such that both,

1Φ(U∪W ) ≤ ⊗ ◦ (ρU∪W
U , ρU∪W

W ) (20)

(ρU∪W
U , ρU∪W

W ) ◦ ⊗ ≤ 1ΦU×ΦW (21)

where ≤ is the pointwise order induced from the partial order of the algebra, and
1ΦU : ΦU → ΦU is the identity function on ΦU for each U ∈ T.

In other words, in an adjoint information algebra Φ with U,W ∈ T, Defini-
tion 6 says for all φ ∈ ΦU∪W , it holds

φ ≤ φ↓U ⊗ φ↓W (22)

and Definition 6 says for all φ ∈ ΦU and ψ ∈ ΦW , both the following inequalities
hold

(φ ⊗ ψ)↓U ≤ φ, (φ ⊗ ψ)↓W ≤ ψ (23)

Theorem 4. An information algebra of relations RT over a tuple system T is
adjoint.

Corollary 1. The information algebra RΘ is adjoint.

5 Local and Global Consistency

In this subsection, we introduce two10 concepts of agreement that have an inter-
esting interpretation for specifications in (Λ,�).

Let (Φ,T,d, ↓,⊗) be an information algebra over a space (X,T). A finite set
of valuations K := {φ1, . . . , φn} ⊆ Φ is called a knowledgebase (on Φ). We
are often interested in the case where

⋃
φ∈K dφ = X.

Definition 7 (local agreement). Two valuations φ, ψ ∈ Φ locally agree if
and only if

φ↓dφ∩dψ = ψ↓dφ∩dψ (24)

A knowledgebase K = {φ1, . . . , φn} ⊆ Φ locally agrees if and only if every pair
φi, φj in K locally agrees.

Definition 8 (global agreement). A knowledgebase K = {φ1, . . . , φn} ⊆ Φ
globally agrees if and only if there exists11 a valuation γ ∈ ΦU , where U =∨n

i=1 dφi for which, for all 1 ≤ i ≤ n,

γ↓dφi = φi (25)
10 A third notion of complete disagreement is introduced in [1,4], but we do not make

use of it here.
11 Unlike in the definition of a sheaf, which is a presheaf on a topological space satisfying

a certain continuity condition, there is no requirement that the amalgamation of local
data (here γ) should be unique. Actually, it is common in physical applications that
global sections are not unique; see for example [20] for applications of sheaf theory
to the field of signal processing, where this is generally the case.
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The γ of Definition 8 is called a truth valuation for K.

Notes 5. Global agreement implies local agreement: for any pair φ, ψ in a glob-
ally agreeing knowledgebase K, we have

φ↓dφ∩dψ = (γ↓dφ)
↓dφ∩dψ (I3)

= γ↓dφ∩dψ (I3)
= (γ↓dψ)

↓dφ∩dψ
= ψ↓dφ∩dψ (26)

The converse is generally false, as we see in Example 3 below.

To any specification (A,U) we associate a knowledgebase on RΘ,

K(A,U) := {AU}U∈U (27)

where d(AU) = U for each U ∈ U.

Definition 9 (local/global consistency). The specification (A,U) is locally
consistent if and only if the associated knowledgebase K(A,U) locally agrees. The
specification (A,U) is globally consistent if and only if K(A,U) globally agrees,
and the corresponding truth valuation γ ∈ RΘ is a section of A.

Local consistency of a specification is a basic prerequisite for correctness.
Global consistency is a subtler correctness criterion, and is related to Lamport’s
definition of sequential consistency for concurrent programs [15]:

“. . . the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its pro-
gram.”

Indeed, a globally consistent specification is one that can be represented by a
subset of execution traces on the union of the domains of all the valuations, each
one encoding a sequential ordering of states, such that when restricted to an
individual domain in the context, the states occur in the same order as specified
by the valuation on that domain.

The following characterises local consistency of a specification in terms of
a property of the associated subpresheaf of chaos, and suggests a convenient
approach to its verification.

Theorem 5. A specification (A,U) is locally consistent if A is flasque
beneath the cover U, i.e. if every restriction map AW ′ → AW is surjec-
tive, whenever W ⊆ W ′ ⊆ U for some U ∈ U.

The next result shows that in the case of an adjoint information algebra, a
global valuation must take on the particular form of a solution to a so-called
inference problem [13,18], and thereby suggests a method to determine global
consistency for specifications in Λ.

Theorem 6. Let Φ be an adjoint information algebra, let K = {φ1, . . . , φn} ⊆
Φ be a knowledgebase, and let γ =

⊗n
i=1 φi. Then K agrees globally if and only

if γ↓dφi = φi for all 1 ≤ i ≤ n. In this case, γ is the greatest truth valuation for
K.
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Determining if a knowledgebase is locally consistent is computationally
straightforward. Global consistency, however, is computationally intensive to
verify. To give an indication of the computational cost, assume for simplicity
that for each variable v ∈ V , Ωv = ω is a constant value. Let K = {φ1, . . . , φn}
be a knowledgebase. Then to determine if K is globally consistent, according
to Theorem 6 we must compute (⊗K)↓dφj for each 1 ≤ j ≤ n. To compute the
join ⊗K involves “filtering” from the valuations on the cartesian product of the
state spaces Ωdφi

∼= ωdφi , i.e. the proset
∏

i

ωdφi ∼= ω
∐

i dφi (28)

whose underlying set has cardinality exponential in the number of variables, and
is generally intractable to compute in practice.

Fortunately, by applying the combination axiom (I6) of Definition 3 induc-
tively, we can avoid computing the join ⊗K directly, and instead compute for
each j,

φj ⊗
⎛

⎝
⊗

i�=j

φi
↓dφi∩dφj

⎞

⎠ (29)

which is still exponential in the variables, but the number of variables in the
exponent has been reduced, often significantly.

This is the starting point for local computation algorithms, such as the fusion
and collect algorithms, which are generic algorithms for computing global agree-
ment in information algebras, which in some applications are best-in-class [4,13].

6 Example: The Dining Philosophers

In [1], a knowledgebase that locally agrees but globally disagrees is called con-
textual. We next give an example of this phenomenon—a locally consistent but
globally inconsistent specification—in a classical scenario in concurrency, the
“dining philosophers”.

Example 3. This example models a group of philosophers sat at a circular table
wanting to eat a meal, with one chopstick on the table between each adjacent
pair of philosophers. A philosopher can either think or eat. To eat, a philosopher
must hold both their adjacent chopsticks. Our presentation here is based on the
one in [8].

Let n ≥ 2, let {p0, . . . , pn−1} be variables corresponding to the philosophers,
and let {c0, . . . , cn−1} be variables corresponding to the chopsticks. For each
0 ≤ i < n, let

Ωpi
:= {t, e}, Ωci := {i − 1, ∗, i} (30)

where t and e stand respectively for “thinking” and “eating”, and i − 1, i refer
respectively to the philosophers pi−1, pi who may hold chopstick ci, and ∗ to the
neutral state of the chopstick on the table (all indices taken mod n).
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Define a context U = {Ui}n−1
i=0 where Ui := {ci, pi, ci+1} represents the frame

of reference of the philosopher i as an independent asynchronous process in the
distributed system.

For example, if n = 3, we have

U = {{c0, p0, c1}, {c1, p1, c2}, {c2, p2, c0}} (31)

Let (V := ∪U,D) be the topological space generated by the subbasis U; i.e. D
consists of all unions of intersections of elements of U.

(A visual representation of the situation is given by the Čech nerve of the
context U; this is a simplicial complex whose n-cells are nonempty n-fold inter-
sections of the Ui with distinct indices. In the case that n = 3, the Čech nerve
of U is (the boundary of) a triangle, with only 0-cells and 1-cells (see Fig. 1).)

U2 U1

U0

{c0}

{c2}

{c1}

Fig. 1. Čech nerve of the context U for n = 3.

Informally, let (A,U) be the specification containing all traces according to
the following protocol: the legal state transitions on the {ci} for x ∈ Ωci are:

∗ → x (33)
x → ∗ (34)
x → x (35)

meaning, a chopstick may either be picked up or put down, or remain in its
current state. The legal state transitions on the Ui are:

� (∗, t, ∗) (rule 1, initial state)
(l, x, r) � (l′, x, r′) l, l′, r, r′ �= i (rule 2)
(l, t, r) � (l′, e, r′) l, l′, r, r′ �= i (rule 3)
(l, e, ∗) � (l′, e, i) l, l′ �= i (rule 4)
(l, e, i) � (l′, e, i) l, l′ �= i (rule 5)
(∗, e, i) � (i, e, i) (rule 6)
(i, e, i) � (∗, t, ∗) (rule 7)

The first rule says philosophers begin thinking, without chopsticks. The second
rule says if a philosopher has no chopsticks, they may continue in their present
state, without constraining the actions of their two neighbours. The third rule
says if they have no chopsticks and are thinking, then they may become hungry,
without constraining their neighbours. The fourth rule says that if they have
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no chopsticks, they may pick up their right one, if it is available, without con-
straining their left neighbour. The fifth rule says they can remain in the state
of having just a right chopstick, without constraining their left neighbour. The
sixth rule says if they have a right chopstick, they may pick up the left one if it
is available. The last rule says that if they have both chopsticks and are eating,
they can put them both down and think.

Consider a sub-specification (B,U) � (A,U) whose corresponding knowl-
edgebase is K(B,U) := ({φ0, φ1, φ2},U), where for 0 ≤ i ≤ 2, each φi is a single-
ton

φi =

⎧
⎨

⎩

⎡

⎣
∗ ∗ ∗ (i − 1) ∗ i ∗ ∗
t e e e e e t t
∗ ∗ i i i i ∗ (i + 1)

⎤

⎦

⎫
⎬

⎭
(36)

using the matrix representation of Note 2, where the first row corresponds to the
variable ci, the second to pi, and the third to ci+1. For example, the command
φ1 contains the single trace corresponding to the following linear sequence of
events:

1. p1 becomes hungry (rule 3);
2. p1 picks up the right chopstick (rule 4);
3. p0 picks up the left chopstick (rule 5);
4. p0 puts down the left chopstick (rule 5);
5. p1 picks up the left chopstick (rule 6);
6. p1 eats and puts down both chopsticks (rule 7);
7. p2 picks up the right chopstick (rule 2).

Clearly, the specification is legal according to the protocol described above,
and enables each philosopher to eat their meal. Moreover, the specification is
locally consistent; we have for each i,

φi
↓{ci} =

[∗ (i − 1) ∗ i
]

= φi−1
↓{ci} (37)

On the other hand, it is intuitively clear that the specification cannot be
globally consistent, because

1. φ0 says p0 picks up c1 before p2 picks up c0,
2. φ2 says p2 picks up c0 before p1 picks up c2,
3. φ1 says p1 picks up c2 before p0 picks up c1,

and together these events form a causal loop, which is physically impossible,
and moreover, not representable as a trace on V = U0 ∪ U1 ∪ U2. This can be
calculated formally using Eq. (29), but we omit the details for reasons of space.

This example illustrates that global consistency of a specification is an impor-
tant criterion for correctness.

7 Conclusion

We have presented a refinement lattice of specifications to model distributed
programs, using mathematical structures that emphasise the intrinsic topological
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structure of the distributed system. The specifications in our lattice consist of
subpresheaves of relative traces, for which the absolute timing of events is not
preserved under restriction maps, but only their relative ordering. This aspect
was emphasised to reflect fundamental physical constraints on synchronisation—
at high speeds, such as those of modern computer technology, Einstein has taught
us that the idea of synchronous events loses its meaning. This structure of relative
traces then revealed an interesting correctness criterion for specifications, related
to Lamport’s definition of sequential consistency .
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Abstract. We show that every locally integral involutive partially
ordered monoid (ipo-monoid) A = (A, �, ·, 1, ∼, −), and in particular
every locally integral involutive semiring, decomposes in a unique way
into a family {Ap : p ∈ A+} of integral ipo-monoids, which we call its
integral components. In the semiring case, the integral components are
semirings. Moreover, we show that there is a family of monoid homo-
morphisms Φ = {ϕpq : Ap → Aq : p � q}, indexed on the positive cone
(A+, �), so that the structure of A can be recovered as a glueing

∫
Φ
Ap

of its integral components along Φ. Reciprocally, we give necessary and
sufficient conditions so that the P�lonka sum of any family of integral
ipo-monoids {Ap : p ∈ D}, indexed on a lower-bounded join-semilattice
(D, ∨, 1), along a family of monoid homomorphisms Φ is an ipo-monoid.

Keywords: Residuated lattices · Involutive partially ordered
monoids · Semirings · P�lonka sums · Frobenius quantales

1 Introduction

Idempotent semirings are algebras of the form (A,∨, ·, 1) where (A,∨) is a semi-
lattice (with order x � y ⇐⇒ x ∨ y = y), (A, ·, 1) is a monoid, and the monoid
operation distributes over the join. They play an important role in mathematics,
logic, and theoretical computer science, since they generalize distributive lattices
and expand to Kleene algebras and residuated lattices. An involutive semiring
is an idempotent semiring with operations ∼ and − satisfying:

x � y ⇐⇒ x · ∼y � −1 ⇐⇒ −y · x � −1.

These algebras are term-equivalent to involutive residuated lattices and, in the
case that the lattice is complete, to Frobenius quantales (see [5] and [4]). Further-
more, algebras of binary relations are involutive semirings under the operations
of union, composition, and complement-converse. The structural characteriza-
tion obtained in this paper is valid for more general partially ordered structures
called involutive po-monoids where the semilattice (A,∨) is replaced by a poset
(A,�).

An ipo-monoid is integral when the monoid identity 1 is also the top element
of the order, that is, the inequality x � 1 holds. This is a very important property
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for residuated lattices, since it is equivalent to the proof-theoretical rule called
weakening. In this work we identify a much larger class, namely the class of
locally integral ipo-monoids.

The main result in this paper is that every locally integral ipo-monoid A
decomposes in a unique way into a family of integral ipo-monoids {Ap : 1 � p},
which we call its integral components. Two locally integral ipo-monoids can have
the same integral components, but may differ in the way these components are
glued together. We find in the literature similar situations in which a number of
structures are glued together to form a new one: for instance, in [6] it is described
how chains can be attached to an odd Sugihara monoid in order to form a
commutative idempotent residuated chain, and in [8] how Boolean algebras can
be glued together to form commutative idempotent involutive residuated lattices.

In our case, we associate to every locally integral ipo-monoid A a join-
semilattice indexed family of monoid homomorphisms Φ = {ϕpq : Ap → Aq :
1 � p � q} between its integral components so that the structure of A can be
completely recovered as an aggregate or glueing

∫
Φ
Ap of these integral compo-

nents along Φ in two stages: first, the monoid part of A turns out to be the
P�lonka sum of the family Φ, and the involutive negations can be defined com-
ponentwise. Then, we recover the order of A using the product, the negations,
and the local identities.

As an application of our results, we can combine certain semantics for fuzzy
logics with semantics for relevance logic using, for example, the well-understood
MV-algebras as building blocks of a glueing.

We exploit this decomposition in order to prove that several properties of
locally integral ipo-monoids are local, in that a locally integral ipo-monoid satis-
fies them if and only if all its integral components satisfy them. One of the most
significant local properties established here is local finiteness.

Previous research into the structure of doubly-idempotent semirings can be
found in [1,2]. The structure of all finite commutative idempotent involutive
residuated lattices is completely described in [8] in a step-by-step decomposi-
tion. In the current paper, this is significantly generalized to all locally integral
ipo-monoids, without any restrictions regarding finiteness, commutativity, or
full idempotence. A similar use of P�lonka sums can be found in [7], where the
structure of even and odd involutive commutative residuated chains is studied.

We set the terminology and notation in Sect. 2, and describe the fundamental
properties of ipo-monoids needed in the rest of the paper. In Sect. 3, we introduce
the class of locally integral ipo-monoids and show that every locally integral ipo-
monoid is the glueing of its integral components. Finally, in Sect. 4, we solve the
reverse problem, that is, we provide necessary and sufficient conditions so that
the glueing of a system of integral ipo-monoids is an ipo-monoid.

2 Involutive Partially Ordered Monoids and Semirings

An involutive partially ordered monoid, or ipo-monoid for short, is a structure
of the form (A,�, ·, 1,∼,−) such that (A,�) is a poset (i.e., � is a reflexive,
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antisymmetric, and transitive binary relation on A), (A, ·, 1) is a monoid (i.e., ·
is an associative binary operation on A and 1 is its identity element) satisfying:

x � y ⇐⇒ x · ∼y � 0 ⇐⇒ −y · x � 0, (ineg)

where, by definition, 0 = −1.1 The unary operations ∼ and − are called invo-
lutive negations. If there is no danger of confusion, we will write xy instead of
x · y. Given an ipo-monoid A, we say that A is cyclic if it satisfies ∼x = −x. An
element x of A is central if x ·y = y ·x for any other y ∈ A, and A is commutative
if all its elements are central. An element x of A is idempotent if x ·x = x, and A
is idempotent if all its elements are idempotent. We will be specially interested
in ipo-monoids with a lattice order. These can be then presented as algebraic
structures (A,∧,∨, ·, 1,∼,−) called i�-monoids or involutive semirings.2

Lemma 1. Every ipo-monoid satisfies the following properties:

1. double negation: ∼−x = x = −∼x (dn)
2. rotation: x · y � z ⇐⇒ y · ∼z � ∼x ⇐⇒ −z · x � −y (rot)
3. antitonicity: x � y ⇐⇒ ∼y � ∼x ⇐⇒ −y � −x (ant)
4. residuation: xy � z ⇐⇒ x � −(y · ∼z) ⇐⇒ y � ∼(−z · x) (res)
5. constants: 0 = ∼1, ∼0 = 1, and −0 = 1. (ct)

The properties of the previous lemma will often be used without mentioning
them explicitly. Notice also that the multiplication is residuated, with left and
right residuals z/y = −(y · ∼z) and x\z = ∼(−z · x), respectively, as (res) can
be rewritten as:

x · y � z ⇐⇒ x � z/y ⇐⇒ y � x\z.

The fact that · preserves arbitrary existing joins, and therefore is order-
preserving, in both arguments follows easily from these observations. It can be
also readily checked that the involutive negations can be expressed in terms of
the residuals as follows: ∼x = x\0 and −x = 0/x. Since in any commutative
ipo-monoid the equality y/x = x\y holds, every commutative ipo-monoid is
cyclic.

Lemma 2. Every ipo-monoid satisfies the following properties:

1. −(∼x · ∼y) = ∼(−x · −y),
2. ∼x is idempotent if and only if −x is idempotent.

Proof. 1. Using (res), (rot), (dn), and (res) again, we obtain z � −(∼x·∼y) ⇐⇒
z · ∼x � y ⇐⇒ −y · z � −∼x ⇐⇒ −y · z � x ⇐⇒ z � ∼(−x · −y). Since
z is arbitrary, we deduce that −(∼x · ∼y) = ∼(−x · −y).

1 Notice that the symmetry of all the properties of Lemma 1, and specially (ct),
suggests that we would obtain the same results had we defined 0 = ∼1.

2 This terminology is based on the observation that (A, ∨, ·, 1) is an idempotent unital
semiring since the residuation property of Lemma 1 implies that x(y ∨ z) = xy ∨ xz
and (x ∨ y)z = xz ∨ yz, and ∧ is term definable by the De Morgan laws.
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2. Assume that ∼x is idempotent. Then, by (dn) and the previous part, −x·−x =
−∼(−x · −x) = −−(∼x · ∼x) = −−∼x = −x. The rest is analogous. 	


Lemma 3. For every ipo-monoid A, the following conditions are equivalent:

1. The identity −x · x = x · ∼x holds in A,
2. The identity ∼(−x · x) = −(x · ∼x), that is, x\x = x/x, holds in A.

Proof. Suppose that the equation −x · x = x · ∼x holds in A. In particular, we
have that −∼x · ∼x = ∼x · ∼∼x, that is, x · ∼x = ∼x · ∼∼x. Hence,

∼(−x · x) = ∼(−x · −∼x) = −(∼x · ∼∼x) = −(x · ∼x),

where the middle equality follows from Lemma 2(1). In order to prove the other
implication, suppose that the equation ∼(−x ·x) = −(x ·∼x) holds in A. In par-
ticular, we have that ∼(x ·∼x) = ∼(−∼x ·∼x) = −(∼x ·∼∼x) = ∼(−x ·−∼x) =
∼(−x · x), where again the last but one equality follows from Lemma 2(1).
Using (dn), we deduce that −x · x = x · ∼x. 	


Given an ipo-monoid A, we call A+ = {x ∈ A : 1 � x} the positive cone
of A, and its elements the positive elements of A, and ↓0 = {x ∈ A : x � 0}
the principal order-ideal generated by 0. We say that an ipo-monoid A is
↓0-idempotent if all the elements in ↓0 are idempotent. Thus, an involutive semir-
ing is ↓0-idempotent if and only if the quasiequation x∧0 = x =⇒ x2 = x holds
in A. Furthermore, this property can be expressed by the identity (x∧0)2 = x∧0.
Our next result characterizes ↓0-idempotence in ipo-monoids.

Lemma 4. An ipo-monoid is ↓0-idempotent ⇐⇒ for all x, y � 0, x ·y = x∧y.

Proof. If A is ↓0-idempotent, then 0 · 0 � 0, and applying (rot) we obtain
0 = 0 · 1 = 0 · ∼0 � ∼0 = 1. Thus, if x, y � 0, in particular x, y � 1, and
therefore x · y � x and x · y � y. Also, if z � x and z � y, then in particular
z � 0 and so it is idempotent. Thus, z = z · z � x · y and hence x · y = x ∧ y.
Conversely, if A satisfies that for all x, y � 0, x · y = x ∧ y, then for any x � 0,
x · x = x ∧ x = x. 	


The next result shows that ↓0-idempotence implies that all the elements in
the positive cone are idempotent. The converse is not always true.

Theorem 5. If A is an ipo-monoid so that 0 � 1 and x ∈ ↓0 is idempotent, then
both ∼x and −x are idempotent. Thus, all positive elements of a ↓0-idempotent
ipo-monoid are idempotent.

Proof. Suppose that A is an ipo-monoid so that 0 � 1 and x � 0 is idempotent.
By (ant), 1 � −x and so, −x = −x·1 � −x·−x. Also, x � x implies −xx � 0 � 1,
and therefore, −x · x = −x · x · x � 1x = x, and by (rot), −x · −x � −x.
Thus, −x · −x = −x. By Lemma 2(2), ∼x is also idempotent. Finally, if A is
↓0-idempotent, in particular 0 · 0 = 0, which implies that 0 � 1 by (rot), and for
every 1 � x, we have that ∼x � 0 is idempotent and therefore so is −∼x = x. 	
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3 Locally Integral IPO-Monoids and Involutive Semirings

An ipo-monoid is integral if it satisfies the inequality x � 1. Thus, integral
ipo-monoids form a po-subvariety of the po-variety of ipo-monoids, in the sense
of [9]. Notice that, since the inequality x � 1 can be expressed as x ∨ 1 = 1
in the language of involutive semirings, the integral involutive semirings form a
subvariety of the involutive semirings. We will introduce in what follows another
po-subvariety of ipo-monoids and the corresponding subvariety of the variety of
involutive semirings. We say that an ipo-monoid is locally integral3 if

1. it satisfies the identity −x · x = x · ∼x,
2. multiplication is square-decreasing, that is, x2 � x,
3. it is ↓0-idempotent.

The main goal of this section is a decomposition theorem stating that every
locally integral ipo-monoid (involutive semiring, respectively) can be decom-
posed in a very particular way into integral involutive ipo-monoids (involutive
semirings, respectively). Let’s start by proving that integrality implies local inte-
grality.

Proposition 6. Every integral ipo-monoid is locally integral.

Proof. Suppose that A is an integral ipo-monoid. The inequality 1·x � x implies
that 1 � x\x, and therefore x\x = 1, by the integrality of A. Analogously,
x/x = 1, and hence x\x = x/x, which by Lemma 3 is equivalent to −x·x = x·∼x.

The square decreasing property follows immediately from the monotonicity
of multiplication, since x � 1 implies that xx � 1x = x.

Finally, ∼x � 1 implies that 0 � x, for all x in A, and in particular ↓0 = {0}.
Furthermore, 1 · 0 � 1 implies that 0 · 0 = 0 · ∼1 � ∼1 = 0, whence we deduce
that 0 · 0 = 0, proving that A is ↓0-idempotent. 	


Given a locally integral ipo-monoid A, we define for every x in A the elements
0x = x · ∼x and 1x = −0x. Local integrality implies that 0x = −x · x and 1x =
∼0x, by Lemma 3, and hence ∼1x = −1x = 0x. Notice also that 1x = x\x = x/x,
and hence 0x � 0 and 1 � 1x. Thus, both 0x and 1x are idempotent. We will use
the interval notation [0x, 1x] = {y ∈ A : 0x � y � 1x}. The equivalence relation
x ≡ y if and only if 1x = 1y partitions every locally integral ipo-monoid in its
equivalence classes Ax = {y ∈ A : 1x = 1y} and, obviously, x ∈ Ax. The next
lemma offers a very useful description of Ax.

Lemma 7. For any locally integral ipo-monoid A and all x and y in A:

1. 0∼x = 0−x = 0x and 1∼x = 1−x = 1x,
2. x ∈ [0x, 1x], and therefore 0x � 1x,
3. 1x · y = y ⇐⇒ 1x � 1y,

3 This class forms a po-quasivariety, by definition. It is not known whether it is a
po-variety or a proper po-quasivariety.
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4. y ∈ [0x, 1x] ⇐⇒ [0y, 1y] ⊆ [0x, 1x],
5. y ∈ Ax ⇐⇒ y ∈ [0x, 1x] and 1x · y = y.

Proof. 1. A simple computation shows that 0∼x = −∼x ·∼x = x ·∼x = 0x, and
therefore 1∼x = −0∼x = −0x = 1x. The proof that 0−x = 0x and 1−x = 1x
is analogous.

2. The square-decreasing property, namely, x · x � x, can also be expressed as
x � x\x = 1x, by residuation. Thus, using part (1), we have that 0x = 0∼x =
−1∼x � −∼x = x. That is, x ∈ [0x, 1x].

3. 1x � 1y = y/y is equivalent to 1x · y � y, by residuation. And since 1 � 1x,
we also have that y � 1x · y. Hence, 1x · y � y is equivalent to 1x · y = y.

4. For the left-to-right implication, notice that 0x � y � 1x implies that 0x �
∼y � 1x, by (ant), and then 0x = 0x · 0x � y · ∼y = 0y. By (ant) again, we
obtain that 1y � 1x. The reverse implication is a consequence of part (2).

5. If y ∈ Ax, then 1y = 1x, and thus y ∈ [0y, 1y] = [0x, 1x], by part (2).
Moreover, 1x · y = 1y · y = y, by part (3). For the reverse implication, notice
that if y ∈ [0x, 1x] and 1x · y = y, then 1y � 1x, by part (4), and 1x � 1y, by
part (3). 	

Next, we will use the description of Ax of the previous lemma in order to

show that the sets Ax are closed under several operations of A.

Lemma 8. Let A be a locally integral ipo-monoid. For every x in A:

1. Ax is closed under the involutive negations,
2. Ax is closed under multiplication,
3. Ax is closed under all existing nonempty joins and nonempty meets.

Proof. 1. By Lemma 7(1), if y ∈ Ax then 1∼y = 1y = 1x, and hence ∼y ∈ Ax.
2. If y, z ∈ Ax then y, z ∈ [0x, 1x], by Lemma 7(5). Hence, 0x = 0x · 0x � y · z �

1x · 1x = 1x. Also by Lemma 7(5), we have 1x · (y · z) = (1x · y) · z = y · z,
since y ∈ Ax. Thus, again by Lemma 7(5), y · z ∈ Ax.

3. Suppose that ∅ �= Y ⊆ Ax and the join
∨

Y exists in A. Since for every
y in Y , y ∈ Ax ⊆ [0x, 1x], we obtain that also

∨
Y ∈ [0x, 1x]. And since

multiplication distributes with respect to all existing joins, we have that 1x ·∨
Y =

∨
y∈Y 1x · y =

∨
y∈Y y =

∨
Y . Thus, by Lemma 7(5),

∨
Y ∈ Ax. The

closure under all existing nonempty meets can be obtained from the fact that
Ax is also closed under negations and

∧
Y = −∨

y∈Y ∼y. 	

Our next goal is to find a canonical representative for each equivalence

class Ax. But first, we will provide useful characterizations of A+ and ↓0.

Lemma 9. Let A be a locally integral ipo-monoid. For all p and a in A, we have
that p ∈ A+ if and only if p = 1p and a ∈ ↓0 if and only if a = 0a. In particular,
both involutive negations coincide for positive elements and for elements in ↓0.
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Proof. We already know that p � 1p is valid for all p in A. If moreover 1 � p,
then 1p = p/p � p/1 = p. The other implication is trivial, since we know that
1 � 1p is true for all p. The second part follows from the following equivalences:

a ∈ ↓0 ⇐⇒ ∼a ∈ A+ ⇐⇒ 1a = 1∼a = ∼a ⇐⇒ a = −1a = 0a.

The last part is true, since for every p ∈ A+, ∼p = ∼1p = −1p = −p, and
analogously for the elements of ↓0. 	

Lemma 10. Let A be a locally integral ipo-monoid. For every x in A, 1x is the
only positive element of Ax and 0x is the only element of Ax below 0.

Proof. Obviously, 1x ∈ [0x, 1x] and also 1x · 1x = 1x, since 1x ∈ A+. Thus,
1x ∈ Ax, by Lemma 7. Also, as we mentioned before, 1 � 1x. For any positive
p ∈ Ax, we would have that p = 1p = 1x, by Lemma 9. The second part follows
from (ant) and the fact that Ax is closed under the involutive negations. 	

Remark 11. Notice that the previous lemma tells us that for every x in A, there
is only one positive element p so that Ax = Ap. This means that the family
{Ax : x ∈ A} is actually indexed by A+ and that for all p, q ∈ A+, we have
Ap = Aq if and only if p = q. Furthermore, from Lemma 9 and the previous
comment, ↓0 = {0x : x ∈ A} = {0p : p ∈ A+}.

We can now show that the relation and operations of a locally integral ipo-
monoid furnish each equivalence class Ax with the structure of an integral ipo-
monoid, with a suitable identity.

Proposition 12. If A is a locally integral ipo-monoid, then for every p in A+,
the structure Ap = (Ap,�, ·, 1p,∼,−), where the relation and the operations are
the restrictions to Ap of the corresponding relation and operations of A, is an
integral ipo-monoid. If in addition A is a semiring, cyclic, or commutative, then
Ap is also a semiring, cyclic, or commutative, respectively, for all p in A+.

Proof. By Lemma 8, every Ap is closed under multiplication and the involutive
negations, and 1p ∈ Ap. Therefore, the structure Ap is well defined, (Ap,�) is
a poset, and since 1p · x = x for all x ∈ Ap by Lemma 7, (Ap, ·, 1p) is a monoid.
Moreover, since the only element of Ap below 0 is 0p = −1p by Lemma 10, we
deduce from the property (ineg) of A that for all x, y ∈ Ap,

x � y ⇐⇒ x · ∼y � 0p ⇐⇒ −y · x � 0p,

which is precisely the property (ineg) for the structure Ap. Finally, by Lemma 7
again, Ap ⊆ [0p, 1p], and therefore x � 1p for all x ∈ Ap.

The proof for the locally integral involutive semirings follows from the fact
that Ap is also closed under all binary joins and meets, by Lemma 8. 	


We call every Ap an integral component of A. As we saw in Proposi-
tion 12, some properties of A are inherited by every of its integral components.
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Sometimes the opposite is also true. We say that a property of ipo-monoids is
local whenever an ipo-monoid has it if and only if all its integral components
have it.

Ap

↓0

A+

A1

A

1

0

0p

1p

Fig. 1. Representation of the structure of a locally integral ipo-monoid

Given a locally integral ipo-monoid A, the sets A+ and ↓0 are obviously
partially ordered by the order of A. The next proposition describes these two
posets (Fig. 1).

Proposition 13. Let A be a locally integral ipo-monoid. Then (A+, ·, 1) is a
lower-bounded join-semilattice whose order coincides with the order of A. Also,
(↓0, ·, 0) is an upper-bounded meet-semilattice, whose order coincides with the
order of A, and is dually isomorphic to (A+, ·, 1). If, in addition, A+ is finite,
then (A+,�) is a distributive lattice dual to (↓0,�).

Proof. For the first part, notice that A+ is closed under products. For all p, q ∈
A+, we have that p = 1 · p � pq and analogously q � pq. Furthermore, if p � r
and q � r, then pq � r2 � r. This shows that (A+, ·, 1) is a join semilattice
whose induced order is the restriction of �, and whose lower bound is 1.

As for the second part, the map η : A+ → ↓0 given by η(p) = ∼p = 0p is
bijective (Remark 11) and for any two elements p, q ∈ A+, we have that p � q
if and only if η(q) = 0q = ∼q � ∼p = 0p = η(p), by (ant), and η(1) = ∼1 = 0.
Therefore, the restriction of � to ↓0 is a meet-semilattice ordering with upper
bound 0. And by Lemma 4, given two elements 0p, 0q ∈ ↓0, we have 0p · 0q =
0p ∧ 0q.

Finally, if A+ is finite, then also ↓0 is finite and therefore a lattice with
respect to the restricted order. Since meet and multiplication coincide in ↓0,
and multiplication distributes with respect to joins, (↓0,�) is distributive, and
therefore also (A+,�) is distributive. 	

Remark 14. Notice that the dual isomorphism η : (A+, ·, 1) → (↓0, ·, 0) sends
joins to meets, and therefore, for any two positive elements p and q, we have
that

0p · 0q = η(p) · η(q) = η(p · q) = 0pq.
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Also, since we showed in the previous proposition that the product of two
positive elements is their join, then we deduce that multiplication of positive
elements is commutative. We can actually improve on this result.

Proposition 15. All positive elements of any locally integral ipo-monoid are
central.

Proof. Suppose that p is positive and let x be an arbitrary element. The equality
p · 0px = p(−(px) · px) = p(px · ∼(px)) = ppx · ∼(px) = px · ∼(px) = 0px implies
by (rot) that −(px)x � −(px) · px = 0px � 0px · 1px � ∼p = −p, since 1 � p and
1 � 1px. Hence, xp � px, by (rot).

Now, applying (rot) to xp � xp, we obtain −(xp)x � −p = ∼p, and by (rot)
again, p · −(xp) � −x. Finally, since xp � px is true for any x, in particular we
have that −(xp)p � p · −(xp) � −x, and by (rot) one last time, px � xp. 	


As we saw in Lemma 8, every integral component of a locally integral ipo-
monoid is closed under multiplication. But, what happens when we multiply
elements from different components? The following lemma answers this question.

Lemma 16. Given a locally integral ipo-monoid A, positive elements p and q,
and elements x ∈ Ap and y ∈ Aq, the product xy is in Apq.

Proof. The inequalities 1p = p � pq = 1pq and 1q = q � pq = 1pq imply that
Ap ∪Aq ⊆ [0p, 1p]∪ [0q, 1q] ⊆ [0pq, 1pq], and therefore x, y ∈ [0pq, 1pq], whence we
deduce that xy ∈ [0pq, 1pq]. Moreover, 1pq·(xy) = pqxy = pxqy = 1x·x·1y·y = xy,
by Lemma 9, Proposition 15, and Lemma 7. Hence, by Lemma 7, xy ∈ Apq. 	


All these results point toward the idea that locally integral ipo-monoids are
built up from integral ones, or at least their monoid reducts are, by means
of a P�lonka sum. This construction was first introduced and studied in [10–
12]; for more recent expositions see [13] and [3]. Given a compatible family
of homomorphisms between algebras of the same type {ϕij : Ai → Aj : i � j},
indexed by the order of a lower-bounded join-semilattice (I,∨,⊥), its P�lonka sum
is the algebra S of the same type defined on the disjoint union of their universes
S =

⊎
i∈I Ai, so that for every constant symbol c, cS = cA⊥ , and for every n-ary

operation symbol σ and elements a1 ∈ Ai1 , . . . , an ∈ Ain , σS(a1, . . . , an) =
σAj (ϕi1j(a1), . . . , ϕinj(an)), where j = i1 ∨ · · · ∨ in. The compatibility condition
of the family of homomorphisms says that for every i ∈ I, ϕii is the identity
on Ai, and that if i � j � k then ϕjk ◦ ϕij = ϕik. One can readily prove that
the P�lonka sum of a compatible family of homomorphisms is well defined and it
satisfies all regular equations that hold in all the algebras of the family. Recall
that a regular equation is an equation in which the variables that appear on the
left-hand side are the same as the variables that appear on the right-hand side.

Given a locally integral ipo-monoid, we would like to find a compatible family
Φ of monoid homomorphisms indexed on the order of A+, so that the monoid
reduct of A can be reconstructed as the P�lonka sum of Φ. Consider, for every
pair of positive elements p � q, the map ϕpq : Ap → Aq given by ϕpq(x) = qx.
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Lemma 17. Let A be a locally integral ipo-monoid and p � q two positive ele-
ments. Then ϕpq : Ap → Aq is a well defined monoid homomorphism. Moreover,
it respects arbitrary nonempty existing joins and therefore is monotone.

Proof. For all positive elements p and q, and x ∈ Ap, we have that qx ∈ Aqp,
by Lemma 16. Moreover, by Proposition 13, the inequality p � q implies that
pq = q. Hence, the map ϕpq : Ap → Aq is well defined. Furthermore, ϕpq(1p) =
q1p = qp = q = 1q and for all x, y ∈ Ap,

ϕpq(x · y) = qxy = qqxy = qxqy = ϕpq(x) · ϕpq(y),

since q is positive and therefore idempotent and central, by Proposition 15. This
shows that ϕpq is a monoid homomorphism. Finally, if ∅ �= Y ⊆ Ap is such that∨

Y exists, then ϕpq

( ∨
Y

)
= q · ∨ Y =

∨
y∈Y qy =

∨
y∈Y ϕpq(y). 	


Proposition 18. Let A be a locally integral ipo-monoid. Then, its associated
family Φ = {ϕpq : Ap → Aq} is compatible family of monoid homomorphisms
indexed by the order of the join semilattice (A+, ·, 1).

Proof. For every positive element p and x ∈ Ap, we have ϕpp(x) = px = 1px = x,
by Lemma 7, since x ∈ Ap. That is, ϕpp is the identity homomorphism on Ap.
And if p � q � r are positive elements, then ϕqr(ϕpq(x)) = rqx = rx = ϕpr(x),
since rq = r by Proposition 13, because q � r. 	


As we will show in the next result, the monoid reduct of a locally integral
ipo-monoid is the P�lonka sum of the family above. Although this is not the case
for the rest of the structure, still we can recover it from its integral components.
Recall that a property is local if it is satisfied by an ipo-monoid if and only if it
is satisfied by all its local components.

Theorem 19. Let A be a locally integral ipo-monoid and Φ its associated
family of monoid homomorphisms defined above. Then, its P�lonka sum S =( ⊎

Ap, ·S, 1S
)

is the monoid reduct of A. Moreover, if we define ∼Sx = ∼Apx
and −Sx = −Apx, for every x ∈ Ap with p positive, and

x �S y ⇐⇒ x ·S ∼Sy = 0pq, for all x ∈ Ap and y ∈ Aq,

then
( ⊎

Ap,�S, ·S,∼S,−S
)

is A. Furthermore, cyclicity and commutativity are
local properties.

Proof. By Remark 11, the set {Ap : p ∈ A+} is a partition of A, and therefore⊎
Ap = A. The element 1S = 1A1 = 1, and given two elements x ∈ Ap and

y ∈ Aq, for arbitrary positive elements p and q, and r = pq, we have that

x ·S y = ϕpr(x) ·Ar ϕqr(x) = rx · ry = rrxy = rxy = 1r · (xy) = xy,

since r is positive, and therefore central and idempotent, and xy ∈ Ar by
Lemma 16. The involutive negations of every integral component Ap are the
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restrictions of the corresponding operations of A, by Proposition 12, and there-
fore ∼Sx = ∼Apx = ∼x and −Sx = −Apx = −x.

Notice also that for every x ∈ Ap and y ∈ Aq, for p and q positive, x � y if
and only if x · ∼y � 0, by (ineg). Since x · ∼y ∈ Apq and the only element below
0 in Apq is 0pq by Lemma 9, we have that

x � y ⇐⇒ x · ∼y � 0 ⇐⇒ x · ∼y = 0pq ⇐⇒ x ·S ∼Sy = 0pq ⇐⇒ x �S y.

Finally, A is commutative if and only if all its integral components are
commutative, since commutativity is expressible by the regular equation
x · y = y · x. The same is true for cyclicity. 	

Corollary 20. A locally integral ipo-monoid A is idempotent if and only if all
its integral components are Boolean algebras. In particular, any idempotent ipo-
monoid is commutative if and only if it satisfies −x · x = x · ∼x.

Proof. An integral ipo-monoid is idempotent if and only if it is a Boolean algebra,
because if A is idempotent then for all x, y ∈ A, x·y = x∧y. Indeed, x·y � 1·y = y
and analogously x · y � x. And if z � x and z � y, then z = z · z � x · y. Hence,
the result follows from the fact that a locally integral ipo-monoid is idempotent
if and only if all its integral components are idempotent. 	


The previous corollary covers the structural decomposition results in [8]. In
this paper it is also shown that the variety of commutative idempotent involu-
tive residuated lattices fails to be locally finite. Without the lattice operations,
however, we have the following result.

Corollary 21. Local finiteness is a local property of ipo-monoids.

Proof. Suppose that the integral components of A are locally finite and let
X ⊆ A be a finite set and J = {1x : x ∈ X}. Without loss of generality, we
can assume that J is closed under binary joins (i.e., products), and that J ⊆ X.
We will prove the proposition by induction on the cardinality of J . Let p be
a minimal element in J and Yp the closure of Xp = X ∩ Ap under products
and involutive negations. Since Ap is locally finite, Yp is also finite. Consider
the finite set X ′ = (X � Xp) ∪ {ry : y ∈ Yp, p < r ∈ J} and notice that
J ′ = {1x : x ∈ X ′} = J � {p}, which is closed under binary joins, and J ′ ⊆ X ′.
By the inductive hypothesis, the subalgebra B generated by X ′ is finite. And
since J ′ is closed under binary joins, B ⊆ ⋃

q∈J ′ Aq. Now, for any y ∈ Yp and
x ∈ B, yx = (ry)x ∈ B and xy = x(ry) ∈ B, where r = p · 1x ∈ J � {p}. Since
1 ∈ B and both Yp and B are closed under products and involutive negations,
the universe of the subalgebra generated by X is Yp ∪ B, which is finite. The
reciprocal is obvious. 	


4 Glueing Constructions

The last theorem of the previous section shows how every ipo-monoid is an
aggregate of its integral components. Our next question is, what are the con-
ditions that a family of integral ipo-monoids and a family of homomorphisms



80 J. Gil-Férez et al.

should satisfy so that the construction of Theorem 19 is a (locally integral)
ipo-monoid?

To make this question precise, let’s assume that D = (D,∨, 1) is a lower-
bounded join semi-lattice, A = {Ap : p ∈ D} is family of integral ipo-monoids,
and Φ = {ϕpq : Ap → Aq : p �D q} is a compatible family of monoid homomor-
phisms. We call (D,A,Φ) a semilattice direct system of integral ipo-monoids.
Letting Ap = (Ap,�p, ·p, 1p,∼p,−p), for all p in D, we define the structure

∫
Φ
Ap =

(⊎
D Ap,�G, ·G, 1G,∼G,−G

)
,

where
( ⊎

D Ap, ·G, 1G
)

is the P�lonka sum of the family Φ, and therefore a
monoid, and for all p, q ∈ D, a ∈ Ap, and b ∈ Aq, ∼Ga = ∼pa and −Ga = −pa,
and

a �G b ⇐⇒ a ·G ∼Gb = 0p∨q.

We call this structure
∫
Φ
Ap the glueing of A along the family Φ (Fig. 2).

With this definition, one can restate Theorem 19 as saying that every locally
integral ipo-monoid A is the glueing

∫
Φ
Ap of its integral components along the

family of homomorphisms Φ = {ϕpq : Ap → Aq} determined by ϕpq(x) = qx.
Our question is, given a system (D,A,Φ) of integral ipo-monoids, what are the
conditions that Φ must satisfy in order to ensure that

∫
Φ
Ap is an ipo-monoid?

D ArAp AqA1

A+ ∼= D

↓0 ∼= D∂

1

q

r

p

0r

1r

0p

1p

0q

1q

01

11

Fig. 2. Structure of a locally integral ipo-monoid

We start our analysis by identifying some relevant elements of
∫
Φ
Ap. But

first, notice that since ∼G and −G are defined componentwise on the disjoint
union

⊎
D Ap, we can safely drop the superscripts and subscripts of these opera-

tions. Now, according to the definition of the P�lonka sum, 1G = 1A1 = 11. Let’s
set 0G = −1G = −11 = 01.

The next lemma can be interpreted as saying that the glueing
∫
Φ
Ap is indeed

an “aggregate” of the integral ipo-monoids Ap, although not necessarily an ipo-
monoid itself, since the relation �G could be not transitive. In the example of
Fig. 3, 0r �G 0p �G 1p �G 1q, but 0r �

G 1q.
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p

q r

s

D

0p

0q 0r

0s

1p

1q 1r

1s

Φ

ϕpq ϕpr

ϕrsϕqs

0p

0q

0r

0s

1p

1q

1r

1s

Φ
Ap

Fig. 3. A glueing of integral ipo-monoids that is not an ipo-monoid

Lemma 22. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids

(D,A,Φ), then the restrictions of �G, ·G, ∼G, and −G to Ap are �p, ·p,
∼p, and −p, respectively. Moreover, for all p �D q and a ∈ Ap, we have that
ϕpq(a) = 1q ·G a.

Proof. The fact that ∼G and −G restricted to Ap are ∼p and −p is immediate,
by the definitions. Now, if a, b ∈ Ap, then p ∨ p = p, and by the definition of �G

we have that a �G b ⇐⇒ a ·G ∼b = 0p ⇐⇒ ϕpp(a) ·p ϕpp(∼b) = 0p ⇐⇒
a ·p ∼b = 0p ⇐⇒ a �p b, since ϕpp is the identity on Ap. For the same reason,
a ·G b = ϕpp(a) ·p ϕpp(b) = a ·p b. Finally, if p �D q and a ∈ Ap, then ϕpq(a) =
ϕpq(1p ·p a) = ϕpq(1p) ·q ϕpq(a) = 1q ·q ϕpq(a) = ϕqq(1q) ·q ϕpq(a) = 1q ·G a. 	

Remark 23. An immediate consequence of this result is that �G is a reflexive
relation, since for every p ∈ D and a ∈ Ap, we have that a �G a if and only
if a �p a, which we know is true. This result also implies that ∼G and −G

satisfy (dn), since ∼G−Ga = ∼p−pa = a = −p∼pa = −G∼Ga.

It seems obvious that, for
∫
Φ
Ap to be an ipo-monoid, the condition (ineg)

has to be satisfied, what imposes on the family Φ the following balance condition:

for all p, q ∈ D, a ∈ Ap, b ∈ Aq, a ·G ∼b = 0p∨q ⇐⇒ −b ·G a = 0p∨q. (bal)

One can readily check that the commutativity of
∫
Φ
Ap implies that Φ is bal-

anced. We will prove next that when Φ is balanced, the operations ∼G and −G

are involutive with respect to the relation �G.

Lemma 24. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids

(D,A,Φ) so that Φ satisfies (bal), then for all p, q ∈ D, a ∈ A, and b ∈ B,

a �G b ⇐⇒ −b �G −a ⇐⇒ ∼b �G ∼a.

Proof. The first equivalence can be proven as follows: a �G b ⇐⇒ a·G∼b =0p∨q

⇐⇒ −b ·G a = 0p∨q ⇐⇒ −b ·G (∼−a) = 0p∨q ⇐⇒ −b �G −a. For the other
equivalence, just notice that ∼b �G ∼a ⇐⇒ a = −∼a �G −∼b = b. 	
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Our next step should be to analyze the sets G+ = {a ∈ ⊎
Ap : 11 �G a} and

↓G01 = {a ∈ ⊎
Ap : a �G 01}.4 In particular we will show that the elements of

G+ are the elements of the form 1p, and the elements of ↓G01 are the ones of
the form 0p, for some p ∈ D.

Lemma 25. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids, then

for all p in D and a in Ap, we have that

11 �G a ⇐⇒ a = 1p and a �G 01 ⇐⇒ a = 0p.

Proof. Since 1 �D p, for all p, in particular p = 1 ∨ p. Hence, 11 �G a ⇐⇒
ϕ1p(11) ·p ϕpp(∼pa) = 0p ⇐⇒ 1p ·p ∼pa = 0p ⇐⇒ ∼pa = 0p ⇐⇒ a = −p0p =
1p. The proof of the second equivalence is analogous. 	


Reflecting on Proposition 13, we would like to show that the relation �G

endows G+ with a structure of join semilattice isomorphic to D, and ↓G01 with
a structure of meet semilattice dually isomorphic to D. In general, this will
not be true. For this to hold, it will be necessary to assume an extra property
of Φ. We will prove first that this property is valid for the family of monoid
homomorphisms associated to a locally integral ipo-monoid.

Lemma 26. Let A be a locally integral ipo-monoid and p � q positive elements.
Then, ϕpq(0p) = 0q if and only if p = q.

Proof. The implication from left to right is obvious, since p = q implies that ϕpq

is the identity map. As for the other implication, just notice that p < q implies
that 0q < 0p � q · 0p = ϕpq(0p), and therefore ϕpq(0p) �= 0q. 	


This suggests the following condition for Φ, which we call zero avoidance:

for all p �D q, ϕpq(0p) = 0q ⇐⇒ p = q. (za)

Lemma 27. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids

(D,A,Φ) and Φ satisfies (za), then for all p and q in D, 1p �G 1q ⇐⇒ p �D q
and 0p �G 0q ⇐⇒ q �D p.

Proof. For all p, q ∈ D, with r = p ∨ q, we have the following equivalences:
1p �G 1q ⇐⇒ ϕpr(1p) ·r ϕqr(0q) = 0r ⇐⇒ 1r ·r ϕqr(0q) = 0r ⇐⇒ ϕqr(0q) =
0r ⇐⇒ q = r = p ∨ q ⇐⇒ p �D q. The proof of the second equivalence is
analogous. 	


The previous lemma seems to capture the spirit of Proposition 13. Notice
though that this proposition is more specific, as it says that the join of two
positive elements, as well as the meet of two elements below 0, is their product.

4 Notice that, even though we don’t know whether �G is a partial order (and actually,
it will not be one in general), these definitions still make sense.
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We can readily see that, in the glueing
∫
Φ
Ap along a family Φ satisfying (za),

for any two elements p and q in D, with r = p ∨ q, we have

1p ·G 1q = ϕpr(1p) ·r ϕqr(1q) = 1r ·r 1r = 1r = 1p∨q = 1p ∨ 1q.

But, for the case of the elements of ↓G01, this will not always be true: for
instance, in the example of Fig. 3, 0q · 0r = 1s �= 0s = 0q∨r. We will need to
impose an extra condition on Φ:

for all p, q ∈ D, 0p ·G 0q = 0p∨q. (∗)

Notice that condition (∗) is not spurious, as it is equivalent to the fact that
for all p, q ∈ D, 0p �G 1q, which is a desirable property, since we know that
0p �G 01, 01 �G 11, and 11 �G 1q, and we want �G to be a partial order, and
in particular transitive. Thus, the condition (∗) will be a consequence of a much
more general condition on Φ:

for all a, b, c ∈ ⊎
Ap, if a �G b and b �G c, then a �G c. (tr)

Our next result characterizes the condition (tr) in simpler terms.

Lemma 28. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids

(D,A,Φ) and Φ satisfies (bal), then Φ satisfies (tr) if and only if it satisfies:

1. for all p �D q, and a, b ∈ Ap, a �p b =⇒ ϕpq(a) �q ϕpq(b); (mon)
2. for all p �D q, p �D r, and a ∈ Ap, ∼ϕpq(a) �G ϕpr(∼a); (lax)
3. for all p ∨ r �D v, a ∈ Ap, and b ∈ Ar,

ϕrv(∼b) �v ∼ϕpv(a) =⇒ a �G b. (∼lax)

Proof. First, notice that for all p �D q and a ∈ Ap, we have that a ·G ∼ϕpq(a) =
ϕpq(a) ·q ϕqq(∼ϕpq(a)) = ϕpq(a) ·q ∼ϕpq(a) = 0q, what implies that a �G ϕpq(a).
We will use this property several times in what follows. Suppose now that Φ
satisfies both (bal) and (tr).
(mon) Suppose that a, b ∈ Ap are such that a �p b, and let p �D q. Then, by
the property above, a �G b �G ϕpq(b), and by (tr), we obtain that a �G ϕpq(b).
Hence, ϕpq(a) ·q ∼ϕpq(b) = a ·G ∼ϕpq(b) = 0q, and therefore ϕpq(a) �q ϕpq(b).
(lax) By the property above, we have that a �G ϕpq(a) and ∼a �G ϕpr(∼a),
and by Lemma 24, ∼ϕpq(a) �G ∼a. We deduce by (tr) that ∼ϕpq(a) �G

ϕpr(∼a).
(∼lax) By the property above, we have that a �G ϕpv(a) and ∼b �G ϕrv(∼b),
and by Lemma 24, ∼ϕpv(a) �G ∼a. If in addition we have ϕrv(∼b) �v ∼ϕpv(a),
then ϕrv(∼b) �G ∼ϕpv(a) and we deduce by (tr) that ∼b �G ∼a, and so a �G b.

In order to prove the reverse implication, suppose that Φ satisfies (bal) and
the three above conditions, and p, q, r ∈ D, with s = p ∨ q, t = q ∨ r, u = p ∨ r,
a ∈ Ap, b ∈ Aq, and c ∈ Ar are such that a �G b and b �G c. Then, by definition
of �G, we have that ϕps(a) ·sϕqs(∼b) = 0s and ϕqt(b) ·tϕrt(∼c) = 0t, whence we
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deduce that ϕps(a) �s −ϕqs(∼b) and ϕrt(∼c) �t ∼ϕqt(b). Taking v = s ∨ t, we
deduce by (mon) that ϕpv(a) �v ϕsv(−ϕqs(∼b)) and ϕrv(∼c) �v ϕtv(∼ϕqt(b)).
Moreover, by (lax), we have that ∼ϕqt(b) �G ϕqs(∼b) and by Lemma 24, we
deduce that −ϕqs(∼b) �G −∼ϕqt(b) = ϕqt(b), and therefore

ϕpv(a) ·v ϕrv(∼c) �v ϕsv(−ϕqs(∼b)) ·v ϕtv(∼ϕqt(b)) = 0v,

which implies that ϕpv(a) ·v ϕrv(∼c) = 0v and hence ϕrv(∼c) �v ∼ϕpv(a), and
applying (∼lax), a �G c. 	

Remark 29. Notice that if a compatible family Φ satisfies (bal), then it satis-
fies (lax) if and only if for all p �D q, p �D r, and a ∈ Ap, −ϕpq(a) �G ϕpr(−a).

Lemma 30. If
∫
Φ
Ap is the glueing of a system of integral ipo-monoids

(D,A,Φ) and Φ satisfies (bal), (za), and (lax), then �G is antisymmetric.

Proof. Suppose that p, q ∈ D with r = p∨q, and a ∈ Ap and b ∈ Aq are such that
a �G b and b �G a. That is, ϕpr(a) ·r ϕqr(∼b) = 0r and ϕqr(b) ·r ϕpr(∼a) = 0r,
or equivalently ϕpr(a) �r −ϕqr(∼b) and ϕqr(b) �r −ϕpr(∼a). By (lax), we get

ϕpr(a) �r −ϕqr(∼b) �r ϕqr(−∼b) = ϕqr(b) �r −ϕpr(∼a).

Hence, we would have that ϕpr(0p) = ϕpr(a ·p ∼pa) = ϕpr(a) ·r ϕpr(∼pa) = 0r.
By (za), this only is possible if p = r. By a symmetric argument, we also obtain
that q = r, and therefore p = q. Thus, by Lemma 22, we have that a �p b and
b �p a, and therefore a = b. 	


We are now in the position to prove our main result.

Theorem 31. A structure A is a locally integral ipo-monoid if and only if there
is a system (D,A,Φ) of integral ipo-monoids satisfying (bal), (za), and (tr) so
that A =

∫
Φ
Ap.

Proof. As we showed in Theorem 19, if A is a locally integral ipo-monoid, then
(A+, ·, 1) is a lower-bounded join-semilattice, its integral components form a
family {Ap : p ∈ A+} of integral ipo-monoids, and we have a compatible family
of monoid homomorphisms Φ = {ϕpq : Ap → Aq : p � q} given by ϕpq(x) = qx,
so that A =

∫
Φ
Ap. Moreover, Φ satisfies condition (bal) since A satisfies (ineg),

condition (za) by Lemma 26, and condition (tr) since � is a partial order.
Conversely, if (D,∨, 1) is a lower-bounded join-semilattice, {Ap : p ∈ D}

is a family of integral ipo-monoids, and Φ = {ϕpq : Ap → Aq : p �D q} is a
compatible family of monoid homomorphisms satisfying (bal), (za), and (tr),
then �G is a reflexive binary relation on

⊎
Ap by Remark 23, which is also

transitive since it satisfies (tr), and antisymmetric by Lemma 30. That is,( ⊎
Ap,�G

)
is a poset. By construction,

( ⊎
Ap, ·G, 1G

)
is a monoid. Further-

more, since Φ satisfies (bal) and the only element in ↓G01 ∩ Ap is 0p, for every
p ∈ D, by Lemma 25, we deduce that

∫
Φ
Ap satisfies (ineg) and therefore it

is an ipo-monoid. It can be readily checked that for all p ∈ D and x ∈ Ap,
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−Gx ·G x = x ·G ∼Gx, since these involutive negations and products are com-
puted inside Ap, which is integral. For the same reasons, one can check that
x ·G x �G x, since the product is computed inside Ap and the restriction of
�G to Ap is �p, by Lemma 22. And since ↓G01 = {0p : p ∈ D} by Lemma 25
and 0p ·G 0p = 0p∨p = 0p by (∗), which is a consequence of (tr), we also have
that

∫
Φ
Ap is ↓0-idempotent. In summary,

∫
Φ
Ap is locally integral. Since for all

p ∈ D and x ∈ Ap, 1x = ∼G(−Gx ·G x) = ∼p(−px ·p x) = 1p, we deduce that
{Ap : p ∈ D} is the family of integral components of

∫
Φ
Ap. Also, by Lemma 22,

we know that ϕpq(x) = 1q ·G x, for all p �D q and x ∈ Ap, that is, Φ is the
family of homomorphisms of the decomposition of Theorem 19. 	


We illustrate the construction with two interesting examples (Fig. 4) and with
a list of small integral components from which other examples can be constructed
(Fig. 5).

1

a

a2 = 0

1p

b = b2

−b

0p

ϕ1p

1

a

a2 = 0

1p

b = b2

−b

0p

1

0

1p

b = b2

−b

0p

ϕ1p

1

0

1p

b = b2

−b

0p

Fig. 4. Two glueings, one being a semiring, the other just an ipo-monoid

Corollary 32. Given any nonempty family of nontrivial integral ipo-monoids
(involutive semirings, respectively) there is a locally integral ipo-monoid (involu-
tive semiring, respectively) whose integral components are the given ones.

Proof. If {Ap : p ∈ D} is a nonempty family of nontrivial ipo-monoids, let’s
choose a lower-bounded linear order on D and let D = (D,∨,1) be the associated
lower-bounded join-semilattice. Then, the set Φ = {ϕpq : Ap → Aq : p �D q} of
maps so that ϕpq(x) = 1q if p < q and ϕpq(x) = x if p = q is a compatible family
of monoid homomorphisms satisfying (bal), (za), (mon), (lax), and (∼lax). By

1

0 = 1

2

1

0

L3

1

a

a20

22

1

a−a

0 −a·a

L4

1

a

a2

a30

I4,1

1

a

b

0 b2

L5

1

a
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a3

0 a4

I5,1

1

a

b

a2ab

0 a3

I5,2

1

aab

b

c

0 b2

P6,1

1

−−ab−−b a

−a−b

0

Fig. 5. All integral involutive semirings up to size 5 and an integral ipo-monoid of size 6,
as components for constructing locally integral idempotent semirings and ipo-monoids.
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Theorem 31,
∫
Φ
Ap is a locally integral ipo-monoid whose integral components

are {Ap : p ∈ D}. If in addition all the integral components are involutive
semirings, then

∫
Φ
Ap is also an involutive semiring, since the join of a ∈ Ap and

b ∈ Aq in
∫
Φ
Ap is either their join in Ap, if p = q, or 1p∨q, if p �= q. 	
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Abstract. This paper is concerned with the refinement and control of
a certain class of labelled transition systems, called plant automata, via
bisimulation quotients. Refinement means that arbitrary transitions may
be removed whereas control allows only removing edges with the same
edge label. The goal is to ensure given LTL properties in the resulting
plant automaton. We give a hardness result for refinement and control
and investigate, in particular, the question whether refineability and con-
trollability can be decided by looking at bisimulation quotients.

1 Introduction

Bisimulations are a well-known tool used in areas like automata theory (as in
the classic papers [11,12]) or model checking (see the comprehensive survey [2]).
The interest in bisimulations can be seen by work characterizing them in a rela-
tional (see [18]), relation algebraic (see [24]), semiring (see [7]) or lattice based
(see [14]) setting. A series of works uses bisimulations as a tool in the context
of model refinement. The problem there is to remove undesired transitions from
a transition system in order to achieve desired properties like liveness (see [7])
or optimality with respect to criteria like shortest paths or maximum capacity
paths (see [6]). The main idea is that under favorable circumstances, a solution
can be found more efficiently if the problem is solved on the coarsest bisimu-
lation quotient of the original system and this solution is propagated back to
the original system. A general description of this idea is given in [8] and applies
even to infinite systems, provided the coarsest bisimulation quotient is finite (a
precursor of this idea appears already in [19]). The use of bisimulation quotients
can serve two purposes: first, it can possibly lead to a speed up of solving the
problem under consideration, and second, it can make infinite systems treatable
if the coarsest quotient is finite.

In this paper we apply bisimulations to the problem of controlling automata
in order to achieve certain properties expressible in linear temporal logic (LTL).
First steps of controlling automata date back to the work in [16,21,22] which
aims to control an automaton in a way that it satisfies the acceptance conditions
of a Rabin automaton as introduced in [15]. More recent work in this area deals
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e.g. with energy problems as in [1], traffic routing as in [23] or safety-critical
systems in general as in [17]. The LTL aspect of acceptance conditions of Rabin
automata is used in [10] as a basic tool for controlling timed automata, and [9]
(see [5] for an online preprint) shows how bisimulation quotients can be used to
obtain a possible speed up for these basic procedures.

In the present work we continue this approach in several directions: first,
we investigate a broader variety of LTL properties (the mentioned work only
deals with four LTL formulae). Second, we consider other variants of control
([5,9,10] deal only with control in the sense of [16,21,22] where control takes
place via enabling or disabling transitions with common edge labe; here we
admit enabling and disabling of arbitrary sets of transitions). Third, we focus
more on algorithms for refinement and investigate in which cases the detour
via bisimulation quotients could be useful. To do so we introduce some basic
definitions and properties in Sect. 2. In the following short Sect. 3 we give a
hardness result and a useful canonical form of control. The main part of the
paper is constituted by Sect. 4 where we give algorithms for refinement and
controlling of plant automata with respect to selected LTL formulae and discuss
the usefulness of bisimulation quotient in the respective cases. A short summary
and outlook to future work in Sect. 5 finishes the paper.

2 Notations and Basic Properties

The main object of our investigations are a special kind of labelled transition
systems. In the following, Σ and Π denote two disjoint alphabets. Letters from
Σ will be denoted by α, β . . . and variants thereof, symbols from Π by F,G, . . .
and variants thereof. Γ ∗ denotes the set of all finite words over an alphabet Γ ,
likewise, Γω denotes the set of all infinite words. The power set of a set A will
be denoted by 2A.

The following definition gives the general framework for our considerations:

Definition 2.1. A set-labelled graph is a tuple ((V,E), g) where (V,E) is a
(possibly infinite) directed graph with node set V and edge set E and g : E → 2Σ

is the edge labelling function. A model is a tuple M = (((V,E), g), a) where
((V,E), g) is a set-labelled graph and a : V → 2Π is the node labelling function.
A plant automaton is a model with a unique node v0 such that I ∈ a(v) ⇔ v = v0
holds for all v ∈ V where I ∈ Π is a special symbol.

The terms (set-)labelled graph and model are common and often used
whereas the term plant automaton stems from [10] which stimulated also the
present work. Note that an edge may be labelled by the empty set; however,
in our framework (cf. the next Definition 2.2) such edges have no effect. In a
plant automaton, the node v0 will play the role of a starting state. In slight
notational abuse, we will write g(v1, v2) instead of the type theoretically correct
g((v1, v2)) and (v1, α, v2) ∈ E as a more intuitive notation for α ∈ g(v1, v2).
To avoid cumbersome notation, we use g(v) as an abbreviation for the set



Plant Automata and Bisimulation Quotients 89

{α | ∃w : (v, α,w) ∈ E}. Also, we will omit set braces when dealing with single-
ton sets, i.e., we simply write F instead of {F}. Similarly, we use M = (V,E, g, a)
instead of the full form M = (((V,E), g), a). A plant automaton can be regarded
as a labeled transition system; the presentation above was chosen to ease com-
patibility with previous work as [5,6,9,10].

The next definition is a natural adaptation from model and automata theory:

Definition 2.2. A run r is a finite or infinite sequence from V (ΣV )∗ ∪V (ΣV )ω

such that (vi, α,vi+1) ∈ E holds for all subsequences of r from V ΣV . A run is
called a trace if it starts with v0 (the unique node with I ∈ a(v0)).

In the next definition we adapt the concept of bisimulations to our framework:

Definition 2.3. Given two models M = (V,E, g, a) and M̂ = (V̂ , Ê, ĝ, â) we
call a relation B ⊆ V × V̂ a bisimulation between M and M̂ if B is both left
and right total and fulfills the following conditions:

• (v, v̂) ∈ B ⇒ a(v) = â(v̂)
• (v, α,w) ∈ E ∧ (v, v̂) ∈ B ⇒ ∃ŵ ∈ V̂ : (w, ŵ) ∈ B ∧ (v̂, α, ŵ) ∈ Ê
• (v̂, α, ŵ) ∈ Ê ∧ (v, v̂) ∈ B ⇒ ∃w ∈ V : (w, ŵ) ∈ B ∧ (v, α,w) ∈ E

A bisimulation between M and itself is called an autobisimulation. If an
autobisimulation is also an equivalence it is called a bisimulation equivalence.
Because the identity relation is an autobisimulation and autobisimulations over
M are closed under union and composition there is a greatest (with respect to
⊆) bisimulation equivalence which we call the coarsest bisimulation equivalence
for M . The coarsest bisimulation quotient can be determined in O(|E| · log(|V |))
time by an algorithm given in [13]. The equivalence class of an element v under
a bisimulation equivalence B will be denoted by v/B. Note that for a plant
automaton the equivalence class v0/B is the singleton set {v0} since v0 is the
unique node whose label set contains I.

Definition 2.4. Let B be a bisimulation equivalence for M = (V,E, g, a). The
quotient M/B is the model (V/B,E/B, g/B, a/B), defined as follows:

• V/B =def {v/B | v ∈ V }
• (v/B, α,w/B) ∈ E/B ⇔def ∃v′ ∈ v/B,w′ ∈ v/B : (v′, α, w′) ∈ E
• (a/B)(v/B) =def a(v)

Note that this defines g/B implicitly since the second item determines
the labels of an edge in M/B and that the three items are well-defined
due to the properties of a bisimulation equivalence. A well-known fact is
that a model and every of its quotients are bisimilar. In particular, the
existence of the run v1α1v2α2v3/B . . . in M implies the existence of the
run (v1/B)α1(v2/B)α2(v3/B) . . . in M/B. Vice versa, the existence of the
run (v1/B)α1(v2/B)α2(v3/B) . . . in M/B implies the existence of a run
w1α1w2α2w3/B . . . in M with wi ∈ vi/B.

A frequent task in control theory is to remove undesired transitions. This is
captured by the next definition:
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Definition 2.5. A model M ′ = (V ′, E′, g′, a′) is called a refinement of a model
M = (V,E, g, a) if the following conditions hold:

• V ′ = V
• (v, α,w) ∈ E′ ⇒ (v, α,w) ∈ E
• a′(v) = a(v)

Intuitively, a refinement removes labels from edges or even entire edges but
does not change the node set and the node labels. A stronger form of control is
given in the following definition:

Definition 2.6. Given a model M = (V,E, g, a) a controller of M is a mapping
c : V → 2Σ such that for all v ∈ V the inclusion c(v) ⊆ {α | ∃w : (v, α,w) ∈ E}
holds. The model M |c = (V |c, E|c, g|c, a|c), also called M controlled by c, is
defined as follows:

• V |c = V
• (v, α,w) ∈ E|c ⇔ (v, α,w) ∈ E ∧ α ∈ c(v)
• (a|c)(v) = a(v)

Analogously to refinement, a controller leaves nodes and node labels
unchanged. In contrast to refinement, a controller can enable or disable tran-
sitions only via groups of edges bearing the same label. Formally, a controller
can not remove edges but it can prevent transitions via an edge if a controller
causes an edge to be labelled by the empty set.

A recurring idea in previous work is to refine or control a bisimulation quo-
tient of a model and to play back this refinement or controller to the original
model. This motivates the following definition:

Definition 2.7. Given a model M = (V,E, g, a), a bisimulation equivalence B
for M and a refinement (M/B)′ = ((V/B)′, (E/B)′, (g/B)′, (a/B)′) of M/B we
define the expansion (M/B)′\B = ((V/B)′\B, (E/B)′\B, (g/B)′\B, (a/B)′\B)
as follows:

• (V/B)′\B = V
• (v, α,w) ∈ (E/B)′\B ⇔ (v, α,w) ∈ E ∧ (v/B, α,w/B) ∈ (E/B)′

• ((a/B)′\B)(v) = a(v)

In this case, (M/B)′ and (M/B)′\B are bisimilar, see [5,9]. Clearly, the
expansion of a refinement yields a refinement again. Moreover, the expansion of a
controlled plant automaton induces a controller on the original plant automaton
by transferring the controller values of v/B to v (note that this is well-defined
since v occurs in exactly one equivalence class of B).

Next we introduce some terminology from linear time logic. We denote LTL
formulae over Π by ϕ or π and say that an infinite run r = v1α1v2α2v3 . . .
fulfills an LTL formula ϕ, denoted by r |= ϕ, if the following routinely defined
conditions hold:

• r |= F ⇔ F ∈ a(v1)
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• r |= ϕ ∧ π ⇔ r |= ϕ ∧ r |= π
• r |= ¬ϕ ⇔ ¬(r |= ϕ)
• r |= ©ϕ ⇔ v2α2v3α3v4 . . . |= ϕ
• r |= �ϕ ⇔ ∀i : viαivi+1αi+1vi+2 . . . |= ϕ
• r |= ♦ϕ ⇔ ∃i : viαivi+1αi+1vi+2 . . . |= ϕ
• r |= ϕUπ ⇔ ∃i : viαivi+1αi+1vi+2 . . . |= π ∧ ∀k : k < i : v1α1v2 . . . vk |= ϕ

Other operators can be derived from this (not minimal) rule set; we restrict
ourselves to the above set since these operators will be of importance in the
sequel. Since a plant automaton may admit finite traces and the validity of LTL
formulae is defined only over infinite traces we introduce the following definition:

Definition 2.8. A plant automaton M is called live if it has at least one trace
and for every finite trace v0α0v1α1v2α2v3 . . . vi of M there exist an αi ∈ Σ and
a vi+1 ∈ V such that (vi, αi, vi+1) ∈ E holds.

Intuitively, this means that every finite trace can be extended to an infinite
one. The stipulation that M has at least one trace rules out the pathological
case that M has no trace at all. There are other possibilities to capture the idea
of liveness (e.g., one could stipulate that every node reachable from v0 has an
outgoing edge) but the above definition describes exactly the desired behavior.
Now we say that a plant automaton satisfies an LTL formula ϕ if it is live and
every infinite trace fulfills ϕ. A plant automaton M is said to be refineable with
respect to ϕ if there is a refinement of M satisfying ϕ. It is said to be controllable
with respect to ϕ if there is a controller c such that M |c satisfies ϕ. The fact
whether refineability or controllability of a plant automaton can be decided by
looking at bisimulation quotients is captured in the following definition:

Definition 2.9. Let ϕ be an LTL formula. We say that ϕ is quotient compatible
with respect to refinement (control) if for all plant automata M and all bisimu-
lation quotients M/B of M the equivalence

M is refineable (controllable) wrt. ϕ ⇔ M/B is refineable (controllable) wrt. ϕ

holds.

There are indeed LTL formulae which are not quotient compatible with
respect to refinement or control (cf. Lemmata 4.4 and 4.16). We call a plant
automaton irredundant if every node has an outgoing edge iff it is reachable
from v0 (note that this implies that v0 has an outgoing edge). A controller c
is called canonical if M |c is irredundant and |c(v)| ≤ 1 holds for all nodes v.
Reasoning about canonical controllers eases some proofs in the sequel of this
work.

3 Basic Results

It is easy to see that a canonical controller induces a live plant automaton.
Moreover, in the case of controllability, there always exists even a canonical
controller:
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Lemma 3.1. Let c be a controller such that M |c satisfies some LTL formula ϕ.
Then there is a canonical controller c′ such that M |c′ satisfies ϕ.

Proof: We convert c into a canonical controller as follows: first, we restrict c
in an arbitrary way to a controller ĉ such that |ĉ(v)| = 1 holds for all nodes v
with |c(v)| = 0 and |ĉ(v)| = 0 holds for all v with |c(v)| = 0. Note that this
does not affect liveness: a node may lose outgoing edges if an edge is labelled
by the empty set; however, it can still be left over the remaining edges (recall
that for every α ∈ c(v) there is at least one w such that (v, α,w) ∈ E holds).
Subsequently, we set c(v) = ∅ for all nodes v which are not reachable from v0.
It is straightforward to see that the resulting plant automaton corresponds to
a canonical controller c′ such that M |c′ satisfies ϕ (M |c′ may have less traces
than M |c but every trace in M |c′ is also a trace in M |c; hence every trace in
M |c′ fulfills ϕ). �

Clearly, the existence of a canonical controller implies the existence of a
controller so a plant automaton M is controllable with respect to ϕ iff there is
a canonical controller c such that M |c satisfies ϕ.

It is known since [3] that controllability of Rabin automata is NP-hard. An
analogous result holds in our setting (note that this theorem only characterizes
the hardness of the problem but not its exact complexity which may be NP-
completeness):

Theorem 3.2. In general, it is NP-hard to decide whether a plant automaton
is refineable with respect to an LTL formula.

Proof: We reduce the directed Hamiltonian cycle problem (see e.g. [4] for this
topic) to refinement of plant automata. So, given a finite directed graph G =
(V,E) we pick an arbitrary v0 ∈ V and construct the plant automaton M =
(V,E, g, a) by g(e) = αe for all e ∈ E (i.e., we introduce a unique letter αe

for every edge e ∈ E), a(v0) = I and a(v) = F for all v = v0 (note that the
node sets bearing F and I are disjoint). Now we consider the formula ϕ =def

(
|V |−1∧

i=1

©iF) ∧ ©|V |I and a refinement M ′ satisfying ϕ. First we observe that

M ′ can not contain a cycle of length l < |V | containing a reachable node: if
such a cycle contains v0 this would contradict the conjugand ©lF of ϕ (walking
along this cycle starting in v0 would give a trace fulfilling ©lI contradicting the
conjugand ©lF due to the above mentioned disjointness). Otherwise, if such a
cycle contains only nodes from V \{v0} this would imply the existence of a trace
v0αv1αv2 . . . (viαvi+1αvj)ω, contradicting the part ©|V |I of ϕ. Hence, E′ has to
consist of one simple cycle (E′ has to contain a cycle for both being live and
satisfying ©|V |I) comprehending all nodes of V which is possible iff G admits a
Hamiltonian cycle. �

In the plant automaton constructed in the above proof refineability and con-
trollability are equivalent since every edge bears a unique label. Hence the claim
holds also for controllability:

Corollary 3.3. It is NP-hard to decide whether a plant automaton is control-
lable with respect to an LTL formula.
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4 Refineability and Controllability

In this section we will investigate the quotient compatibility of several LTL formu-
lae. For each formula under consideration, we give an algorithm deciding refine-
ability or controllability, resp., in order to evaluate usefulness of the quotient con-
struction. The running times of the algorithms depend on the representation of a
plant automaton, for an example data structure see [5,9]. In particular, |E| may
refer to the cardinality of the edge set (especially in algorithms not taking edge
labels into account) or the number of labelled edges in a manner analogously to
the conventions introduced immediately after Definition 2.1.

We investigate only a small amount of simple LTL formulae for which can
both prove that they are quotient compatible and we can give algorithms for
computing a refinement or a controller, resp. A more general investigation is the
topic of future work.

4.1 Quotient Compatibility with Respect to Refinement

In this subsection we investigate quotient compatibility with respect to refine-
ment (cf. Definition 2.9). Since refineability of the quotient implies refineability
of the original plant automaton due to bisimilarity of (M/B)′ and (M/B)′\B
(see the remark after Definition 2.7) it suffices to show that refineability of a
plant automaton implies refineability of the quotient. The proof strategy will
always be the same: we pick an arbitrary infinite trace (which by definition
exists and fulfills the LTL formula under consideration) and use it to construct
a refinement of the quotient.

Lemma 4.1. F is quotient compatible with respect to refinement.

Proof: Let M ′ be a refinement of M satisfying F. Then there is an infinite
trace in M ′ of the form p = v0α0v1α1 . . . with F ∈ a(v0). We define the plant
automaton (M/B)′ as follows:

• (V/B)′ =def V/B
• (a/B)′ =def a/B
• (v/B, α,w/B) ∈ (E/B)′ ⇔def ∃i : v ∈ vi/B ∧ w ∈ vi+1/B ∧ α = αi

Clearly, (M/B)′ is a live submodel of (M/B). Moreover, every trace fulfills F
which shows the claim. �

Lemma 4.2. ©F is quotient compatible with respect to refinement.

Proof: Let M ′ be a refinement of M satisfying ©F. We define p and (M/B)′

analogously to above (here with F ∈ a(v1)) and claim analogously that every
trace of (M/B)′ fulfills ©F. To this end, it suffices to consider an arbitrary edge
(v0/B, α,w0/B) ∈ E/B and to show that F ∈ (a/B)(w0/B) holds. However, if
there is an edge (v0/B, α,w0/B) ∈ E/B then there is an edge (v0, α, w1) ∈ E′

with (w0, w1) ∈ B. Because M ′ satisfies ©F this implies F ∈ a(w1) and hence
by bisimulation properties also F ∈ a/B(w0/B). �
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Lemma 4.3. © © F is quotient compatible with respect to refinement.

Proof: Let M ′ be a refinement of M satisfying © © F and define p analogously
to the proof of Lemma 4.1 (but with F ∈ a(v2)). We distinguish now several cases:

1. v0 = v1: Here we define (M/B)′ by (V/B)′ = V/B, (a/B)′ = (a/B),
(E/B)′ = {(v0/B, v0/B)} and (g/B)(v0/B, v0/B) = {α0}. Because (v0α0)ω

is a trace in M ′ we have F ∈ a(v0) and hence F ∈ (a/B)(v0/B). Now it easy
to see that (M/B)′ satisfies © © F since it admits only the trace (v0α0)ω.

2. v0 = v2: Here we define (M/B)′ by (V/B)′ = V/B, (a/B)′ = (a/B),
(E/B)′ = {(v0/B, v1/B), (v1/B, v0/B)}, (g/B)(v0/B, v1/B) = {α0} and
(g/B)(v1/B, v0/B) = {α1}. Because (v0α0v1α1)ω is a trace in M ′ (which
satisfies © © F) we have F ∈ a(v0) and hence F ∈ (a/B)(v0/B). Since the
only trace in (M/B)′ has the form ((v0/B)α0(v1/B)α1)ω we conclude that
(M/B)′ satisfies © © F.

3. v0 = v1 ∧ v0 = v2 ∧ v1 ∈ v2/B: Here we define (M/B)′ by
(V/B)′ = V/B, (a/B)′ = a/B, (E/B)′ = {(v0/B, v1/B), (v1/B, v1/B)},
(g/B)(v0/B, v1/B) = {α0} and (g/B)(v1/B, v1/B) = {α1} (note that this is
well defined due to bisimulation properties; also, v1 ∈ v2/B and (v1, α1, v2) ∈
imply (v1/B, α1, v1/B) ∈ E/B). Because M ′ satisfies ©©F we have F ∈ a(v2)
and hence F ∈ a(v1) as well as F ∈ (a/B)(v1/B) by bisimulation properties.
Now the only trace in (M/B)′ is (v0/B)α0((v1/B)α1)ω so (M/B)′ satisfies
© © F.

4. Otherwise: Now we have the situation that v0, v1 and v2 as well as their
equivalence classes under B are pairwise disjoint. If p visits v0 only once at
the beginning and does not visit a node in the equivalence class of v1 except
the first occurrence of v1 we can apply the construction from the proof of
Lemma 4.1. Otherwise, the immediate application of this construction could
lead to uncontrollable side effects in the form of edges emanating from v0/B
or v1/B not leading into v1/B or v2/B if p returns to v0 or some vk ∈ v1/B.
So let k ≥ 3 be minimal such that vk = v0 or vk ∈ v1/B holds, and define
(M/B)′ as follows:

• (V/B)′ =def V/B
• (a/B)′ =def a/B
• (v/B, α,w/B) ∈ (E/B)′ ⇔def ∃i : i < k ∧ v ∈ vi/B ∧ w ∈ vi+1/B ∧ α = αi

By choice of k, vk/B equals either v0/B or v1/B and has an outgoing
edge to v1/B or v2/B, resp. So (M/B)′ is live and all its traces start
with (v0/B)α0(v1/B)α1(v2/B). Similar considerations as above show also F ∈
(a/B)′(v2/B) so (M/B)′ satisfies © © F. �

The next lemma may come a little bit as a surprise:

Lemma 4.4. © © ©F is not quotient compatible with respect to refinement.

Proof: To this end let us take a look at Fig. 1. We use the convention to omit set
braces, to write edge labels next to an edge, node names in the interior of a node



Plant Automata and Bisimulation Quotients 95

and node labels next to a node. The plant automaton at the left is refineable
with respect to ©©©F (if we keep the edges (v0, v1), (v1, v2), (v2, w1), (w1, w2)
and (w2, w2)). In contrast, in its coarsest quotient on the right (note that v1 and
v2 are indeed bisimilar by Definition 2.3; for simplicity we omitted set braces in
the node labels and abbreviated {v1, v2} by v12) we have the choice whether we
keep or remove the loop at v12 while keeping the resulting plant automaton live.
After removing the loop at v12 there is no trace fulfilling ©©©F. Otherwise, if
we keep the loop at v12 the resulting plant automaton has the trace v0α(v12β)ω

which does not fulfill © © ©F. �

Remark: Lemma 4.4 can be generalized to ©iF for i ≥ 3. For the proof one has
simply to replace the edge (v0, α, v1) by a path v0w0w1 . . . v1 (all edges labelled
by α and all nodes labelled with the empty set) of length 4 − i. �

Fig. 1. An illustration of Lemmata 4.4 and 4.16

Lemma 4.5. FUG is quotient compatible with respect to refinement.

Proof: Let M ′ be a refinement of M satisfying FUG and define p analogously
to the previous proofs (such that p fulfills FUG). By definition, there is an index
i such that F ∈ a(vj) for all j < i and G ∈ a(vi) hold. The case i = 0 can
be handled analogously to Lemma 4.1 so let us assume that i > 0 holds. First,
we consider the trace (v0/B)α0(v1/B)α1(v2/B)α2 . . . (vi/B) in M/B. From this
trace, we remove all cycles by standard construction (if there are indices j < k
with (vj/B) = (vk/B) we simply remove all vi and αi with j ≤ i < k) and
obtain a trace (w0/B)β0(w1/B)β1 . . . (wj/B) in (M/B) with w0/B = v0/B and
wj/B = vi/B. The trace p′ =def w0β0w1β1 . . . wjαivi+1αi+1vi+2 fulfills FUG,
however, it may be the case that there are indices k1 and k2 such that wk1 = vk2

holds so putting all the edges from p′ into (E/B)′ could lead to “outbreaks” in
the prefix from w0 till wi−1 leading to a node v with F /∈ a/B(v) and G /∈ a/B(v).
To overcome this deficiency, we apply the following steps repeatedly:

1. If there is some vk such that vk = wl for some l ≤ i − 1 we choose a minimal
k with this property, otherwise we are done and terminate.

2. We construct the new trace w0β0w1β1 . . . wlαkvk+1αk+1vk+2 . . . and set
i =def l.
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This procedure terminates since the length of the prefix containing the w’s is
strictly decreasing. Also, every such trace fulfills FUG (where F ∈ a/B(wj) for
all j < i and G ∈ a/B(wi) holds), and the trace obtained after termination has
exactly one outgoing edge for each wj with j < i. So we can use the set of edges
from this trace as the edge set (E/B)′ of (M/B)′. �

We saw a dichotomy in the formulae of the form ©iF between i = 2 and
i = 3; however, formulae of the form ©i�F show a more uniform behavior:

Lemma 4.6. ©i�F is quotient compatible with respect to refinement.

Proof: Let M ′ be a refinement of M satisfying ©i�F and define p as in the proof
of Lemma 4.1. By definition, we have F ∈ a(vj) for all j ≥ i and hence also F ∈
a/B(vj/B) for all j ≥ i. We consider now the trace (v0/B)α0(v1/B)α1(v2/B) . . .
and apply the same construction as in the proof of Lemma 4.5. The obtained
plant automaton satisfies ©j�F for some j ≤ i and hence also ©i�F. �

4.2 Computation of Refinements

In this subsection we deal with the complexity of computing refinements. There-
fore we assume in this subsection that all plant automata under consideration
are finite. A key ingredient in the computations is that of a strongly connected
component (SSC) which can be computed in O(|V |+ |E|) time; see e.g. [20]. We
use this concept since we want to construct live plant automata which means
intuitively that every trace has to be trapped eventually in such an SSC. Depend-
ing on the LTL formula we are interested in, every path leading into such an
SSC or every reachable SSC has to fulfill certain properties.

Lemma 4.7. It can be decided in O(|V | + |E|) time whether M can be refined
with respect to F. A corresponding refinement can also be computed in O(|V | +
|E|) time.

Proof: It suffices to test whether F ∈ a(v0) holds and there is an SSC of G =
(V,E) with at least one edge and that is reachable from v0 (in order to construct
a live refinement). The test F ∈ a(v0) can be done in constant time. For the rest,
we determine all SSCs of G. After this, we contract all SSCs (i.e., we define an
equivalence relation S on V ×V by (v1, v2) ∈ S iff v1 and v2 lie in the same SSC
and consider the quotient graph G/S defined analogously as in Definition 2.4)
and test whether we can reach an SSC with at least on edge from v0. A refinement
(if one exists) can be obtained from a cycle-free path from v0 so such an SSC
together with all edges from this SSC. �

Lemma 4.8. It can be decided in O(|V | + |E|) time whether M can be refined
with respect to ©F. A corresponding refinement can also be computed in O(|V |+
|E|) time.

Proof: If F ∈ a(v0) holds and there is a loop on v0 we simply keep this loop as
the only edge of the refinement and we are done. Next, we remove all edges (v0, vi)
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where vi is not labelled with F (obviously, such an edge can never be present in
a refinement ensuring ©F). In the emerging graph (V,E′) we compute again the
SSCs and test whether an SSC with at least one edge is reachable from a node
vi with (v0, vi) ∈ E′ (note that such a node vi is labelled with F). A refinement
can be determined analogously to above; similarly, all described computations
can be carried out in O(|V | + |E|) total time. �

Lemma 4.9. It can be decided in O(|V | + |E|) time whether M can be refined
with respect to © © F. A corresponding refinement can also be computed in
O(|V | + |E|) time.

Proof: If F ∈ a(v0) and (v0, v0) ∈ E hold we proceed as in the previous lemma.
Similarly, if there is a node v1 bearing label F and both (v0, v1) ∈ E and (v1, v1) ∈
E hold we simply keep the edges (v0, v1) and (v1, v1). Otherwise, we compute
all nodes reachable from v0 in exactly two steps on paths without loops (i.e.,
immediately consecutive nodes are disjoint) bearing label F. If one such node is
contained in an SSC we know that M is refineable with respect to © © F, and
a refinement can be obtained by the (two stepped) path and a suitable cycle of
the SSC. �

Lemma 4.10. For every i it can be decided in O(|V | + |E|) time whether M
can be refined with respect to ©i�F. A corresponding refinement can also be
computed in O(|V | + |E|) time.

Proof: In contrast to the previous cases we have to construct a refinement with
an SSC fulfilling a certain property (namely that all its nodes bear the label F)
instead of a path fulfilling a certain property leading into a random SSC. So we
compute first the SSCs of the graph (V,E ∩ {(v1, v2) |F ∈ a(v1) ∧ F ∈ a(v2}).
Subsequently, we contract these SSCs in the original graph and test whether an
SSC with at most one edge can be reached in i or less than i steps (if i > |V |
holds we simply set i = |V |). A refinement can be obtained from the edges of
a shortest path in (V,E) to a computed SSC plus the edges of a cycle in the
respective SSC. As above, all operations can be carried out in O(|V |+|E|) overall
time. �

Lemma 4.11. It can be decided in O(|V |+ |E|) time whether M can be refined
with respect to ♦F, �F, ♦�F and �♦F. A corresponding refinement can also be
computed in O(|V | + |E|) time.

Proof: Given the previous proofs we will only sketch the ideas. In the case of
♦F, we test whether a SSC can be reached from a reachable node labelled with F.
To deal with �F we test whether v0 is contained in a SSC of (V,E∩{(v1, v2) |F ∈
a(v1) ∧ F ∈ a(v2}). The case ♦�F can be handled analogously to Lemma 4.10
(here we have to test only reachability of an SSC instead of reachability in a
certain number of steps). Finally, confronted with �♦F we test whether we can
reach from v0 an SSC containing a node labelled with F. �
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Lemma 4.12. It can be decided in O(|V |+ |E|) time whether M can be refined
with respect to FUG. A corresponding refinement can also be computed in
O(|V | + |E|) time.

Proof: We compute the set of all nodes VF reachable from v0 by paths whose
nodes bear all label F. Then we test whether node with label G in an SSC can
be reached from a node in VF. The actual refinement can be done analogously
to the previous cases. �

The results of this Subsect. 4.2 show that one can not expect a speed-up for
computing refinements using bisimulation quotients in the case of the formulae
considered there. However, the results from Subsect. 4.1 apply also to infinite
plant automata and may be used to derive refinements for this kind of plant
automata.

4.3 Quotient Compatibility with Respect to Control

In this section we investigate analogously to Subsect. 4.1 selected LTL formulae
and their compatibility with respect to control. Note that we have here a harder
task since we can - intuitively spoken - enable or disable only certain groups of
transitions but not arbitrary edges and hence we consider less formulae.

Lemma 4.13. F is quotient compatible with respect to control.

Proof: Assume that M is controllable with respect to F, and let c be a con-
troller such that M |c satisfies F. To construct a controller c/B on M/B we set
(c/B)(v/B) =def ∪vi∈v/Bc(vi). By definition we have F ∈ (a/B)(v0/B) so it
remains to show that (M/B)|(c/B) is live. To this end, we observe that v0/B
has an outgoing edge in (M/B)|(c/B) since v0 has an outgoing edge in M |c
(note that M |c has to be live). Consider now a node vi/B which has an incom-
ing edge (vj/B, α, vi/B) in (M/B)|(c/B). Then there are wj ∈ vj/B, wi ∈ vi/B
such that (wj , α, wi) is an edge in M |c; hence there is an edge (wi, β, wk) in M |c
which implies the existence of the edge (wi/Bβ,wk/B) in (M/B)|(c/B). From
this it follows easily that (M/B)|(c/B) is live. �

Lemma 4.14. ©F is quotient compatible with respect to control.

Proof: Assume that M is controllable with respect to ©F, and let c be a con-
troller such that M |c satisfies ©F. Analogously to the proof of the previous
Lemma 4.13 we define (c/B)(v/B) =def

⋃
vi∈v/B c(vi) and argue as there that

(M/B)|(c/B) is live so we pick an arbitrary trace (v0/B)α0(v1/B)α1(v2/B) . . .
in (M/B)|(c/B). Because M |c satisfies ©F every v′

1 with (v0, α, v′
1) ∈ E bears

the label F, and so does v1/B by definition of bisimulation. Hence, (M/B)|(c/B)
satisfies ©F. �

Lemma 4.15. © © F is quotient compatible with respect to control.
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Proof: Assume that M is controllable with respect to © © F, and let c be a
canonical controller such that M |c satisfies © © F. We define a controller c/B
on M/B as follows:

• We choose (c/B)(v0/B) =def c(v0).
• For all v/B ∈ V/B with v = v0 such that there is a w ∈ v/B which is

reachable in one step from v0 in M |c we pick an arbitrary w ∈ v/B and set
(c/B)(v/B) =def c(w).

• For all other v/B ∈ V/B we set (c/B)(v/B) =def

⋃
w∈v/B c(w).

First we observe that in (M/B)|(c/B) the node v0/B has an outgoing edge
because v0 has an outgoing edge in M |c. An argument similar to the proof of
Lemma 4.13 shows now that (M/B)|(c/B) is live (note that all nodes considered
in the second case of the definition of c/B keep at least one outgoing edge) so
let us consider an arbitrary infinite trace t = (v0/B)α0(v1/B)α1(v2/B) . . . in
(M/B)|(c/B). We distinguish the following cases:

1. v0/B = v1/B = v2/B: Here (v0α0)ω is a trace in M |c, hence we have F ∈ a(v0)
which implies F ∈ (a/B)(v0/B), and due to the assumption v0/B = v2/B we
conclude that t fulfills © © F.

2. v0/B = v1/B ∧ v0/B = v2/B: In this case there exists a w2 ∈ v2/B such that
v0α0v0α1w2 . . . is a trace in M |c. Arguments analogous to the above case
show that t fulfills © © F.

3. v0/B = v1/B: Under these circumstances, there is a w1 ∈ v1/B such that
(v0, α0, w1) is an edge in M |c, i.e., w1 is reachable in M |c in one step. By
construction of c/B there is a w2 ∈ v2/B such that (w1, α1, w2) is an edge in
M |c which means that there is a trace v0α0w1α1w2 . . . in M |c. Similarly to
above we conclude now that t fulfills © © F.
In all cases, t fulfills © © F which shows the claim together with the liveness
of (M/B)|(c/B). �

Lemma 4.16. © © ©F is not quotient compatible with respect to control.

Proof: This can be shown also by the plant automaton from Fig. 1: the plant
automaton at the left can be controlled to satisfy © © ©F by the controller c,
defined by c(v0) = c(v2) = c(w1) = c(w2) = {α} and c(v1) = {β}. However, it
is easy to see that the coarsest quotient at the right of Fig. 1 is not controllable
with respect to © © ©F (cf. also the proof of Lemma 4.4). �

Remark: Analogously to the remark after Lemma 4.4, Lemma 4.16 can be
generalized to ©iF for i ≥ 3. �

Lemma 4.17. ♦F, �F, ♦�F and �♦F are quotient compatible with respect to
control.

Proof: See 42ff. in [5,9]. Note that the proofs given there use different techniques
than the ones presented here by employing sets of controllable predecessors aris-
ing during the construction of a controller. �
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4.4 Computation of Controllers

In this subsection we will take a short look at the computation of controllers.
Therefore we will again consider only finite plant automata. As an abbreviation
we use |E| instead of the correct |{(v, α,w) ∈ E}|.
Lemma 4.18. It can be decided in O(|V | + |E|) time whether M can be con-
trolled with respect to F. A corresponding controller can also be computed in
O(|V | + |E|) time.

Proof: If v0 does not bear the label F we know immediately that there is no
controller with respect to F. If F ∈ a(v0) holds we have to determine whether
there is a controller ensuring liveness. Clearly, if M does not contain a node
without outgoing edges we have a live plant automaton with an controller keeping
all edges. Otherwise, we set M1 =def M and construct a series M1, M2, . . . of
plant automata as follows:

1. If Mi has no edges or no nodes without outgoing edges, we terminate the
procedure.

2. Pick an arbitrary node v without outgoing but with incoming edges.
3. For every edge (w,α, v) in Mi, remove all edges (w,α,w′).
4. Call the resulting plant automaton Mi+1 and resume at step 1.

This procedure terminates with an overall number of (|V | + |E|) steps (where
removing an edge (w,α,w′) is counted as one step). Moreover, Mi+1 can be
controlled to be live iff Mi can be controlled to be live. In the plant automaton
obtained after the last iteration, every node with an incoming edge has also an
outgoing edge so we only need to check whether v0 has an outgoing edge. A
controller can easily be derived from the edges of M ′. �

Lemma 4.19. It can be decided in O(|V | + |E|) time whether M can be con-
trolled with respect to ©F. A corresponding controller can also be computed in
O(|V | + |E|) time.

Proof: By an argument similar to the proof of Lemma 3.1, M is controllable
with respect to ©F iff there is controller c that such |c(v0)| = 1 holds and M |c
satisfies ©F. This is equivalent to the conditions that c(v0) is a singleton set
{α}, F ∈ a(v) holds for all (v0, α, v) ∈ E and M |c is live. A first approach to
test the existence of such a controller is the following: first, we determine the
set A =def {α | (v0, α, v) ∈ E ⇒ F ∈ a(v)}. Next, for every α ∈ A, we remove
in M all edges emerging from v0 which do not bear the label α and obtain the
plant automaton Mα. To this plant automaton, we apply the construction from
the proof of Lemma 4.18 to Mα and proceed accordingly. Since we do this for
every α ∈ A this leads to a worst case running time of O(|E| · (|V | + |E|)) (if,
for example, half of the edges emerge from v0).

However, removing edges emerging from v0 not bearing a label α and applying
the construction from the proof of Lemma 4.18 commute. So we can first apply
the construction from the proof of Lemma 4.18 and test subsequently whether
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there is an α such that all nodes reachable from v0 via en edge labelled with α
bear label F. This can be done in O(|V | + |E|), and a controller can be derived
in an obvious way in the same time. �

Lemma 4.20. It can be decided in O(|V | + |E|2) time whether M can be con-
trolled with respect to ©©F. A corresponding controller can also be computed
in O(|V | + |E|2) time.

Proof: By an argument similar to above, M is controllable with respect to ©©F
iff there is controller c that such |c(v0)| = 1, |c(v)| = 1 holds for all v reachable
from v0 in exactly one step in M |c (note that this set may contain v0 without
leading to an inconsistency), and M |c satisfies © © F. Before doing the actual
computation, we execute first the construction from the proof of Lemma 4.18 to
obtain a plant automaton M ′ and continue working on M ′. On M ′ we test the
existence of a controller with the properties from above by brute force:

for all α ∈ g(v0) do
controllable := FALSE
if !((v0, α, v0) ∈ E ∧ F /∈ a(v0)) then

controllable := TRUE
precont(v0) := α
for all v1 with (v0, α, v1) ∈ E do

if ∃β ∈ g(v1)∀(v1, β, v2) ∈ E : F ∈ a(v2) then
precont(v1) := β

else
controllable := FALSE

end if
end for
if controllable = TRUE then return precont
end if

end if
end for
If this algorithm returns a partial unction precont : V → Σ we modify M ′ in

an obvious way by restrincting the edges emanating from nodes in the domain
of precont. Otherwise, there is no controller ensuring © © F.

Lemma 4.21. It can be decided in O(|V |2 · |Σ|) (O(|V |3 · |Σ|)) time whether
M can be controlled with respect to ♦F and �F (♦�F and �♦F). A corresponding
controller can also be computed in O(|V |2 · |Σ|) (O(|V |3 · |Σ|)) time.

Proof: A proof can be found in [5,9] pp. 52ff. Note that the algorithm given
there (derived from [10]) uses other techniques than the previous constructions,
compare also the remark made in the proof of Lemma 4.17. �

The results of this Subsect. 4.4 show that one can expect a speed-up for
computing controllers using bisimulation quotients in the case of the formulae
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from Lemmata 4.20 and 4.21 but not in the case of the formulae from the other
lemmata of this subsection (recall again that the coarsest quotient can be com-
puted in O(|E| · log(|V |)) time by an algorithm introduced in [13]). However, the
results from Subsect. 4.1 apply also to infinite plant automata and may be used
to derive controllers for this kind of plant automata.

5 Conclusion and Future Work

As one of the first results we showed NP-hardness of refinement and control. A
sharper characterization of their complexity seems to be possible since model
checking with respect to LTL formulae is PSPACE-complete as demonstrated
in [2]. As main work, we investigated selected LTL formulae with respect to quo-
tient compatibility. For every formula under consideration, we gave an algorithm
computing a corresponding refinement or controller. In the case of refinement,
the detour over the coarsest quotient did not lead to a speed-up, however, the
results enable under certain circumstances the treatment of infinite systems.
Dealing with the computation of controllers, a speed-up can be expected under
favourable circumstances (note also that the algorithms given in Lemmata 4.20
and 4.21 may not be optimal; the hunt for faster algorithms could also be a
possible topic of future research).

The formulae considered in Sect. 4 represent a rather erratic collection with-
out any intrinsic structure. It would be interesting to find general criteria for quo-
tient compatibility (which had to explain also the surprising dichotomy between
© © F and © © ©F from Lemmata 4.3, 4.4, 4.15 and 4.16). This had to con-
sider also formulae with more than one variable (the only one here was FUG)
and Boolean connectives (which were used only in the proof of Theorem 3.2).

The present work concentrated on LTL formulae only; a nearby idea would
be to consider CTL or - even more general - CTL∗ formulae.

Acknowledgments. The author is grateful to Bernhard Möller and the anonymous
reviewers for valuable hints and remarks which helped to improve quality and read-
ability of the paper.
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Abstract. We show the following dependences between relational
domain constructions in the framework of heterogeneous relation alge-
bras. If all power sets and subsets exist and objects are comparable, then
all sums exist. If all sums exist and atoms are rectangular, then all prod-
ucts exist. If all atoms are rectangular, then all subsets exist if and only
if all quotients exist. We give models with rectangular atoms which rule
out further dependences between these constructions.

1 Introduction

Applications of relations often need to work with structured data. To facilitate
this, extensions of relation algebras by various domain constructions have been
studied in the literature [2–6,11–14,20]. Examples include power sets, products,
sums, quotients and subsets: well-known basic ingredients for the construction
of more complex data types.

A typical way to extend relation algebras by a domain construction is to
introduce operations axiomatically and to prove that the axioms characterise
the intended domain uniquely up to isomorphism. Hence it is natural to ask
about the independence of the axioms used for the various domain constructions.
Studying their dependences is the topic of this paper.

We work in the framework of heterogeneous relation algebras and contribute
the following main results:

– If all power sets and subsets exist and objects are comparable, then all sums
exist.

– If all sums exist and atoms are rectangular, then all products exist.
– If all atoms are rectangular, then all subsets exist if and only if all quotients

exist.
– There are models with rectangular atoms which rule out further dependences

between these constructions.

We first recall basic definitions and properties of heterogeneous relation alge-
bras, and the domain constructions of power set, product, sum, quotient and
subset. Sections 3–6 provide the dependence results. This is followed by models
for the independence results in Sect. 7.
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2 Heterogeneous Relation Algebras and Domain
Constructions

In this section we define heterogeneous relation algebras and the domain con-
structions of power set, product, sum, quotient and subset. Heterogeneous rela-
tion algebras are a typed version of Tarski’s relation algebras [15]. Related frame-
works in which the dependence of domain constructions could be studied are
allegories and Dedekind categories [4,6,10].

2.1 Heterogeneous Relation Algebras

The following definition is from [12] which provides a good overview of hetero-
geneous relation algebras and some domain constructions; also see [13].

Definition 1. A heterogeneous relation algebra is a locally small category with
objects Obj, morphisms Mor(A,B) for A,B ∈ Obj, composition ;, identities IA,
and the following additional structure.

– For each A,B ∈ Obj there is a transposition T
A,B : Mor(A,B) → Mor(B,A).

– Each Mor(A,B) is a complete atomic Boolean algebra with join �A,B , meet
�A,B , complement A,B , order �A,B , least element OA,B and greatest element
LA,B , where OA,B �= LA,B .

– Each Q ∈ Mor(A,B) and R ∈ Mor(B,C) and S ∈ Mor(A,C) satisfy the
Schröder equivalences Q ; R �A,C S ⇔ QT ; S �B,C R ⇔ S ; RT �A,B Q.

– The Tarski rule R �= OA,B ⇔ LC,A ; R ; LB,D = LC,D holds for each R ∈
Mor(A,B) and C,D ∈ Obj.

We usually omit subscripts specifying type information and abbreviate com-
position R ;S as RS. Morphisms R ∈ Mor(A,B) are called relations and denoted
R : A ↔ B.

An example of a heterogenous relation algebra is REL, which has all non-
empty sets as objects, all (set-theoretic) binary relations R ⊆ A×B as morphisms
R : A ↔ B, and the usual operations on binary relations. Further examples
appear throughout this paper.

Relation R is univalent if RTR � I, total if I � RRT, a mapping if R is uni-
valent and total, and injective/surjective/bijective if RT is a univalent/total/a
mapping. Relation R is reflexive if I � R, symmetric if RT = R, transitive if
RR � R, a partial equivalence if R is symmetric and transitive, and an equiva-
lence if R is reflexive and a partial equivalence. Relation R is a partial identity
if R � I. Relation R is a vector if R = RL and rectangular if RLR � R.

Partial identities are symmetric and they form a Boolean algebra in which
composition coincides with meet and complement is given by ¬R = RL � I.

A number of residual operations will be useful in particular for the construc-
tion of power sets. The left residual of relations Q : B ↔ A and R : C ↔ A

is Q/R = QRT. The right residual of relations Q : A ↔ B and R : A ↔ C
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is Q\R = QTR. Their symmetric quotient is Q÷R = (Q\R) � (QT/RT). The
following table summarises the logical interpretation of these operations in REL:

(x, y) ∈ Q/R ⇔ (∀z ∈ A : (y, z) ∈ R ⇒ (x, z) ∈ Q)
(x, y) ∈ Q\R ⇔ (∀z ∈ A : (z, x) ∈ Q ⇒ (z, y) ∈ R)
(x, y) ∈ Q÷R ⇔ (∀z ∈ A : (z, x) ∈ Q ⇔ (z, y) ∈ R)

The following lemma collects properties of the above operations used in this
paper. Here we only prove Lemma 2.7. The other properties are known from the
literature or simple consequences; in particular, see [11–13].

Lemma 2

1. QR � S � (Q � SRT)(R � QTS).
2. PQR � S ⇔ PTSRT � Q.
3. (QL � R)S = QL � RS.
4. (R � LQ)S = R(QTL � S).
5. R is total if and only if RL = L.
6. R is rectangular if and only if RLR = R.
7. RTR �= O if R is total.
8. Q(R � S) = QR � QS if Q is univalent.
9. RL � I = R = LR � I if R is a partial identity.

10. I\R = R = R/I.
11. \ reverses � in its first argument and preserves � in its second argument.
12. (Q � R)\S = (Q\S) � (R\S).
13. Q(R\S) = RQT\S if Q is a mapping.
14. R\QS � QTR\S if Q is univalent.
15. QR � S ⇔ Q � S/R.
16. QT/RT = (R\Q)T.
17. I÷I = I.
18. I÷O = O.
19. I � R÷R.
20. (Q÷R)T = R÷Q.
21. (Q÷R)(R÷S) = (Q÷S) � (Q÷R)L.
22. Q(R÷S) = RQT÷S if Q is a mapping.
23. (R÷S)Q = R÷SQ if Q is a bijective.
24. QTR÷S � R÷QS if Q is injective and total.
25. R÷Q is a vector if Q is a vector.

Proof (of Lemma 2.7). Using Lemma 2.5, we have RTR � O ⇔ RL � R ⇔ L �
R ⇔ R � O ⇔ RL � O ⇔ L � O, which is false. ��

2.2 Power Sets

Power sets are introduced in heterogeneous relation algebras by axiomatising
the membership relation based on symmetric quotients [2]. The following axioms
characterise power sets uniquely up to isomorphism; a similar remark holds for
products, sums, quotients and subsets below.
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Definition 3. The power of object A is an object 2A with a relation ε : A ↔ 2A

satisfying

– ε÷ε � I and
– R÷ε is total for each object B and relation R : A ↔ B.

It follows that 2A is a categorical power object [4,6]. In REL, 2A is the usual
power set of A and (x, Y ) ∈ ε ⇔ x ∈ Y .

The following lemma collects properties of ε used in this paper. Here we only
prove Lemmas 4.6–4.8. The other properties are known from the literature; in
particular, see [8,11,12].

Lemma 4

1. ε÷ε = I.
2. R÷ε is a mapping.
3. ε(ε÷R) = R.
4. ε(ε\R) = R.
5. (Q÷ε)(ε÷R) = Q÷R.
6. (ε\I)÷(ε\I) = I.
7. ε\I = (ε÷O) � (ε÷I).
8. (ε\I)÷I = O.

Proof (of Lemmas 4.6–4.8)

6. Using Lemmas 2.10, 2.11, 2.13, 2.19, 2.20, 4.2 and 4.3,

(ε\I)÷(ε\I) � (ε\I)\(ε\I) � (ε÷I)\(ε\I) = (I÷ε)(I\(ε\I)) = (I÷ε)(ε\I)
= ε(ε÷I)\I = I\I = I � (ε\I)÷(ε\I)

7. ε÷O � ε\O � ε\I using Lemma 2.11 and ε÷I � ε\I. For the converse we have
(ε\I)�ε÷O = (ε\I)�εTL � (ε\I)�εTε(ε\I) = (ε\I)�εT = (ε\I)�(εT/I) = ε÷I
using Lemmas 2.1, 2.10 and 4.7. The result follows by shunting.

8. Using Lemmas 2.1, 2.10, 2.12, 2.13, 2.18, 2.20, 4.2, 4.5 and 4.4,

(ε\I)÷I � (ε\I)\I = ((ε÷O) � (ε÷I))\I = ((ε÷O)\I) � ((ε÷I)\I)
= (O÷ε)(I\I) � (I÷ε)(I\I) = (O÷ε) � (I÷ε) � (I÷ε)(ε÷O)(O÷ε)
= (I÷O)(O÷ε) = O

��

2.3 Products

Products are introduced in heterogeneous relation algebras by axiomatising their
projections [13].

Definition 5. The product of objects A,B is an object A × B with relations
pA : A × B ↔ A and pB : A × B ↔ B satisfying
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– pA and pB are mappings,
– pTApB = L and
– pApTA � pBpTB � I.

It follows that pA and pB are surjective, pTApA = IA and pTBpB = IB and
pApTA � pBpTB = IA×B . In general, A × B is not a categorical product, but it is
one in the wide subcategory of mappings in REL [4].

2.4 Sums

Sums model disjoint unions and are introduced in heterogeneous relation alge-
bras by axiomatising their injections [5,20].

Definition 6. The sum of objects A,B is an object A + B with relations iA :
A ↔ A × B and iB : B ↔ A × B satisfying

– iA and iB are injective mappings,
– iAiTB = O and
– I � iTAiA � iTBiB .

It follows that iAiTA = IA and iBiTB = IB and iTAiA � iTBiB = IA+B. Moreover
A + B is a categorical coproduct; in REL, it is also a categorical product [4].

2.5 Quotients

Quotients are based on equivalence relations and introduced in heterogeneous
relation algebras by axiomatising the projection to equivalence classes [11].

Definition 7. The quotient of object A by equivalence E : A ↔ A is an object
A/E with a relation p : A ↔ A/E satisfying

– ppT = E and
– pTp = I.

It follows that p is a surjective mapping. Hence A/E with p is a categorical
quotient object [1].

2.6 Subsets

Subsets are based on partial identities and introduced in heterogeneous relation
algebras by axiomatising the injection into the base set. We specialise the axioms
of ‘subset extrusion’ given in [11] to subsets specified by a partial identity.

Definition 8. The subset of object A corresponding to non-zero partial identity
S : A ↔ A is an object S with a relation i : S ↔ A satisfying

– iTi = S and
– iiT = I.
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It follows that i is an injective mapping. Hence S with i is a categorical
subobject [1]. We overload the name of the object S with the name of the partial
identity S on which it is based, because the two closely correspond to each other.

We remark that the quotient and subset constructions are special cases of
the construction of splittings [3,6,18]. Splittings are based on partial equivalence
relations; they combine taking a subset to the domain of the partial equivalence
and a quotient to its classes. Every partial identity is a partial equivalence rela-
tion. Since projections go from A to the quotient whereas injections go from the
subset to A, one of the two directions has to be reversed if they are unified as
splittings. In this paper, we study quotients and subsets separately; see Sect. 6
for their dependence.

3 Sums from Power Sets and Subsets

In this section we show that all sums exist if all power sets and subsets exist
and objects are comparable. Note that both the power set construction and the
subset construction are based on a single object, whereas sums are based on two
objects. To combine two different objects we need a way to relate them. This is
provided by the following concept.

Definition 9. Object A is contained in object B if there is an injective mapping
i : A ↔ B. Objects A,B are comparable if A is contained in B or B is contained
in A.

In REL, A is contained in B if and only if |A| ≤ |B|, where |·| is the cardinality
of a set, and any two objects are comparable (this is equivalent to the Axiom
of Choice). For a heterogeneous relation algebra in which not all objects are
comparable consider Obj = {A,B} where A = {1, 2} and B = {1, 2, 3} and
Mor(A,A) = {O, I, I , L} and Mor(B,B) = {O, I, I , L} and Mor(A,B) = {O, L}
and Mor(B,A) = {O, L}. It is a (heterogeneous) subalgebra of REL but none
of the morphisms between A and B are injective mappings: OOT = O �= I and
LLT = L �= I for all well-typed instances of these (in)equations.

Containment is connected to the subset domain construction as the following
result shows.

Lemma 10. A is contained in B if and only if A is a subset of B corresponding
to some non-zero partial identity S.

Proof. For the forward implication, let i : A ↔ B be the injective mapping
arising from the containment. Define S : B ↔ B by S = iTi. Then S � I since
i is univalent. Moreover S �= O by Lemma 2.7 since i is total. Finally iiT = I
is equivalent to i being injective and total. The backward implication follows
immediately as the subset construction gives the desired injective mapping. ��

The existence of all subsets does not imply that objects are comparable. This
is shown by the above example, which contains all subsets since I is the only non-
zero partial identity on each of the two objects. The converse implication also
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does not hold. The single-object relation algebra of all binary relations on a two-
element set does not contain subsets corresponding to the two partial identities
between O and I, but its single object is comparable with itself since I is injective.

After these preliminaries we turn to the main goal of constructing sums
from power sets and subsets. The general idea is to represent a sum as the
power set of a power set. To illustrate this, consider the set-theoretic example of
constructing the disjoint union of A = {1, 2, 3} and B = {a, b}. Elements of A
will be represented by singleton sets of singleton sets: 1 by {{1}} and 2 by {{2}}
and 3 by {{3}}. Elements of B will be represented by including the empty set
to distinguish the source: a by {∅, {a}} and b by {∅, {b}}.

We implement this construction for general heterogeneous relation algebras
in three parts. The first theorem will be used to discard sets of sets that are
not used in the construction, but we formulate it more generally. This is where
subsets come into play.

Theorem 11. Assume all subsets exist. Assume iA : A ↔ C and iB : B ↔ C
are injective mappings with iAiTB = O. Then A + B exists.

Proof. Define S : C ↔ C by S = iTAiA � iTBiB . Then S � I since iA and iB are
univalent. Moreover S �= O by Lemma 2.7 since iA is total. Hence the subset
S exists with injection i : S ↔ C satisfying iTi = S and iiT = I. We show
S = A + B. To this end, define jA : A ↔ S by jA = iAiT and jB : B ↔ S by
jB = iBiT. Then

– jAjTA = iAiTiiTA = iASiTA = iAiTAiAiTA � iAiTBiBiTA = I � O = I since iA is
injective and total.

– jBjTB = iBiTiiTB = iBSiTB = iBiTAiAiTB � iBiTBiBiTB = O � I = I since iB is
injective and total.

– jAjTB = iAiTiiTB = iASiTB � iAiTB = O.
– jTAjA � jTBjB = iiTAiAiT � iiTBiBiT = iSiT = iiTiiT = I. ��

The next corollary instantiates the previous theorem to the singleton-set
construction outlined above. This is where power sets come into play. In REL,
I÷ε relates an element with the singleton set containing it, that is, (x, Y ) ∈
I÷ε ⇔ Y = {x}. Hence (I÷ε)(I÷ε) constructs the desired doubly singleton sets.
Note that (I÷ε)(I÷ε) = (ε÷I)÷ε by Lemmas 2.20, 2.22 and 4.2. To include the
empty set we allow subsets of the singleton set inside the outer set by replacing
the inner symmetric quotient with a right residual as in (ε\I)÷ε.

Corollary 12. Assume all subsets and power sets exist. Then A + A exists for
each object A.

Proof. Define iA, iB : A ↔ 22
A

by iA = (I÷ε)(I÷ε) and iB = (ε\I)÷ε. Then the
assumptions of Theorem 11 are satisfied since

– iAiTA = (I÷ε)(I÷ε)(ε÷I)(ε÷I) = (I÷ε)(I÷I)(ε÷I) = (I÷ε)(ε÷I) = I÷I = I using
Lemmas 2.17, 2.20 and 4.5.

– iBiTB = ((ε\I)÷ε)(ε÷(ε\I)) = (ε\I)÷(ε\I) = I using Lemmas 2.20, 4.5 and 4.6.
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– iAiTB = (I÷ε)(I÷ε)(ε÷(ε\I)) = (I÷ε)(I÷(ε\I)) = O using Lemmas 2.20, 4.5
and 4.8.

– iTAiA = (ε÷I)(ε÷I)(I÷ε)(I÷ε) � (ε÷I)(ε÷ε)(I÷ε) = (ε÷I)(I÷ε) � ε÷ε = I
using Lemmas 2.20, 2.21 and 4.1.

– iTBiB = (ε÷(ε\I))((ε\I)÷ε) � ε÷ε = I using Lemmas 2.20, 2.21 and 4.1. ��
The following corollary generalises this to sums of different objects. This is

where comparability comes into play. The proof reuses calculations from the
proof of Corollary 12, keeping iA and modifying iB by composing the injection
available through comparability.

Corollary 13. Assume all subsets and power sets exist and objects are compa-
rable. Then A + B exists for each object A,B.

Proof. Without loss of generality assume B is contained in A using injection
i : B ↔ A (a symmetric argument applies in the other case). Define iA : A ↔ 22

A

by iA = (I÷ε)(I÷ε) and iB : B ↔ 22
A

by iB = i((ε\I)÷ε). Then the assumptions
of Theorem 11 (not already covered by the proof of Corollary 12) are satisfied
since

– iBiTB = iiT = I since i is injective and total.
– iAiTB = OiT = O.
– iTBiB = (ε÷(ε\I))iTi((ε\I)÷ε) � (ε÷(ε\I))((ε\I)÷ε) � I as i is univalent. ��

4 Products from Power Sets and Subsets

In this section we show that all products exist if all power sets and subsets exist
and atoms are rectangular.

We recall concepts related to atoms; for example, see [7]. As usual, Q is an
atom if Q �= O and, for each R � Q, either R = Q or R = O. Each Mor(A,B)
is atomic, which means every R �= O contains an atom Q � R. Every atomic
Boolean algebra is also atomistic, that is, every element is the supremum of
the atoms below it. We denote the atomic partial identities of object A by
at1(A) = {Q : A ↔ A | Q is an atom ∧ Q � I}. Two atoms are either equal or
their meet is O.

We remark about representability, since some of the following results assume
that all atoms are rectangular. In a single-object relation algebra, this condition
implies that the algebra is point-dense and therefore representable [9]. This con-
sequence is not surprising as single-object relation algebras in which products
exist are known to be representable by having conjugated quasi-projections [16].

The following result relates rectangular atoms to comparability.

Theorem 14. Assume all atoms are rectangular. Then all objects are compa-
rable.

Proof. Let A,B be objects. Without loss of generality assume |at1(A)| ≤ |at1(B)|
(otherwise swap A,B). Hence there is an injective function g : at1(A) → at1(B).
Define i : A ↔ B by i =

⊔
a∈at1(A) aLg(a). Then
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iiT =
⊔

a,b∈at1(A)

aLg(a)g(b)Lb composition is completely distributive

=
⊔

a∈at1(A)

aLg(a)La g(a)g(b) �= O ⇔ g(a) = g(b) ⇔ a = b

=
⊔

a∈at1(A)

aLa Tarski rule

=
⊔

a∈at1(A)

a rectangular atoms, Lemma 2.6

= I atomistic lattice

iTi =
⊔

a,b∈at1(A)

g(a)LabLg(b) composition is completely distributive

=
⊔

a∈at1(A)

g(a)LaLg(a) ab �= O ⇔ a = b

=
⊔

a∈at1(A)

g(a)Lg(a) Tarski rule

=
⊔

a∈at1(A)

g(a) rectangular atoms, Lemma 2.6

� I g(a) partial identity ��
The converse implication does not hold. Any non-representable single-object

relation algebra is a counterexample.
After these preliminaries we turn to the main goal of constructing products

from power sets, subsets and sums. The general idea is to represent a product
as a power set of a sum. To illustrate this, consider the set-theoretic example of
constructing the Cartesian product of A = {1, 2, 3} and B = {a, b}. Every pair
will be represented by a two-element set: for example, (3, a) by {3, a}. Even if
A = B the sum construction will tag the components so that the set representing
a pair does not collapse to a singleton set.

We implement this construction for general heterogeneous relation algebras
in three parts. The first theorem will be used to discard sets that are not used
in the construction, but we formulate it more generally. This is where subsets
come into play.

Theorem 15. Assume all subsets exist. Assume pA : C ↔ A and pB : C ↔ B
are univalent with pTApB = L and pApTA � pBpTB � I. Then A × B exists.

Proof. Define S : C ↔ C by S = pALpTB � I. Then S � I and S �= O since
otherwise pALpTB � I , which is equivalent to pTAIpB � O using Lemma 2.2,
whence L � O. Hence the subset S exists with injection i : S ↔ C satisfying
iTi = S and iiT = I. We show S = A × B. To this end, define qA : S ↔ A by
qA = ipA and qB : S ↔ B by qB = ipB . Then

– qTAqA = pTAiTipA = pTASpA � pTApA � I since pA is univalent.
– qTBqB = pTBiTipB = pTBSpB � pTBpB � I since pB is univalent.
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– I = iiTiiT = iSiT � ipA(LpTB � pTAI)i
T � ipApTAiT = qAqTA using Lemma 2.1.

– I = iSiT � i(pAL � IpB)pTBiT � ipBpTBiT = qBqTB using Lemma 2.1.
– qTAqB = pTAiTipB = pTASpB = pTA(pAL� LpTB � I)pB = (pTA � LpTA)(pB � pBL) =

pTApB = L using Lemmas 2.3 and 2.4.
– qAqTA � qBqTB = ipApTAiT � ipBpTBiT = i(pApTA � pBpTB)iT � iiT = I using

Lemma 2.8 since i is univalent. ��
The next lemma carries out the two-element-set construction outlined above

and establishes some of the properties of products. This is where power sets
and sums come into play. The sets used in the construction contain a single
element from A and a single element from B. In REL, I÷iAε relates an element
of A with the sets over A + B containing that element and arbitrary elements
of B. Similarly, I÷iBε relates an element of B with sets over A + B containing
it and arbitrary elements of A. Hence the intermediate sets in the composition
(I÷iAε)(iBε÷I) contain exactly one element of A and exactly one element of B.

Lemma 16. Assume all power sets and sums exist. Let A,B be objects. Then
there are an object C and univalent surjective relations pA : C ↔ A and pB :
C ↔ B with pApTA � pBpTB � I.

Proof. Define pA : 2A+B ↔ A by pA = iAε÷I and pB : 2A+B ↔ B by pB =
iBε÷I. Then

– pTApA = (I÷iAε)(iAε÷I) = (I÷I) � (I÷iAε)L = I � L = I using Lemmas 2.17,
2.20 and 2.21 and that L = (iTA÷ε)L � (I÷iAε)L using Lemma 2.24.

– Similarly, pTBpB = I.
– Finally,

pApTA � pBpTB = (iAε÷I)(I÷iAε) � (iBε÷I)(I÷iBε)
� (iAε÷iAε) � (iBε÷iBε)

= (iAε\iAε) � (iAε\iAε)T � (iBε\iBε) � (iBε\iBε)T

� (iTAiAε\ε) � (iTAiAε\ε)T � (iTBiBε\ε) � (iTBiBε\ε)T

= ((iTAiAε � iTBiBε)\ε) � ((iTAiAε � iTBiBε)\ε)T

= (ε\ε) � (ε\ε)T = ε÷ε = I

using Lemmas 2.12, 2.14, 2.16, 2.20, 2.21 and 4.1. ��
The following corollary completes the assumptions of Theorem 15 by estab-

lishing pTApB = L. This is where rectangular atoms come into play.

Corollary 17. Assume all subsets and power sets exist and atoms are rectan-
gular. Then A × B exists for each object A,B.

Proof. By Theorem 14 all objects are comparable. Hence by Corollary 13 all
sums exist. Hence by Theorem 15 and the proof of Lemma 16, it remains to
show pTApB = L reusing pA = iAε÷I and pB = iBε÷I. Since

L = ILI = (
⊔

a∈at1(A)

a) L (
⊔

b∈at1(B)

b) =
⊔

a∈at1(A)
b∈at1(B)

aLb
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it suffices to show aLb � pTApB for each a ∈ at1(A) and b ∈ at1(B). Consider
such a and b, and let v = iTAaL � iTBbL. Since a is rectangular, aLa � a � I,
whence a � I/La using Lemma 2.15. Therefore

a � aL � (I/La) = (I\aL) � (I/La) = I÷aL = I÷iAv

= I÷iAε(ε÷v) = (I÷iAε)(ε÷v) = pTA(ε÷v)

using Lemmas 2.10, 2.20, 2.23, 4.2 and 4.3. Similarly, b � pTB(ε÷v). Hence

aLb = aLbT � pTA(ε÷v)L(v÷ε)pB = pTA(ε÷v)(v÷ε)pB � pTA(ε÷ε)pB = pTApB

using Lemmas 2.20, 2.21, 2.25 and 4.1 since v is a vector. ��
A referee noted that the construction of Lemma 16 was done in [17] and

mentioned the following alternative to Corollary 17. If a heterogeneous relation
algebra has powers, sums and products, then the product of A and B is isomor-
phic to the subset of 2A+B in the above construction. Hence, if a heterogeneous
relation algebra has powers and sums and is representable, then it can be embed-
ded into REL, which has products, and the subset of 2A+B is a product of A
and B.

5 Products from Sums

In this section we show that all products exist if all sums exist and atoms are
rectangular. This provides an alternative way to establish Corollary 17, but the
proof in this section uses different ideas. We consider two cases, depending on
whether at1(B) is finite or infinite. In the finite case we represent A × B by an
iterated sum A + A + · · · + A with as many summands as there are elements in
at1(B). In the infinite case we use that the cardinality of at1(A) × at1(B) is the
same as the cardinality of at1(A) or at1(B) to obtain a bijection, so A or B will
be the product.

Theorem 18. Assume all sums exist and atoms are rectangular. Then A × B
exists for each object A,B.

Proof (if at1(B) is finite). Let b1, . . . , bn be the atomic partial identities of B.
Define objects A1, . . . , An by A1 = A and Ak = Ak−1 + A with injections
ik : Ak−1 ↔ Ak and jk : A ↔ Ak, for 2 ≤ k ≤ n. Moreover, let j1 = I. We show
An = A × B.

Below, ix..y denotes the composition ixix+1 . . . iy−1iy for indices x ≤ y; we
also admit iy+1..y = I. The transposition is denoted iTy..x = iTy iTy−1 . . . iTx+1i

T
x .

Let pk : An ↔ A with pk = (jkik+1..n)T for 1 ≤ k ≤ n. Define pA : An ↔ A
by pA =

⊔
1≤k≤n pk and pB : An ↔ B by pB =

⊔
1≤k≤n pkLbk.

We first show that pTkpl is I if k = l and O otherwise.

– If k < l, then pTkpl = jkik+1..niTn..l+1j
T
l = jkik+1..lj

T
l = O.

– If k > l, then pTkpl = (pTl pk)T = OT = O.
– If k = l, then pTkpl = jkik+1..niTn..k+1j

T
k = jkj

T
k = I.
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The product axioms follow by

– pTApA =
⊔

1≤k,l≤n

pTkpl =
⊔

1≤k≤n

pTkpk = I.

– pTBpB =
⊔

1≤k,l≤n

bTkLpTkplLbl =
⊔

1≤k≤n

bkLpTkpkLbk =
⊔

1≤k≤n

bkLbk =
⊔

1≤k≤n

bk = I since bk is

rectangular.
– pTApB =

⊔

1≤k,l≤n

pTkplLbl =
⊔

1≤k≤n

pTkpkLbk =
⊔

1≤k≤n

Lbk = L
⊔

1≤k≤n

bk = L.

– Finally,

pApTA � pBpTB = (
⊔

1≤k,l≤n

pkp
T
l ) � (

⊔

1≤k,l≤n

pkLbkblLpTl )

= (
⊔

1≤k,l≤n

pkp
T
l ) � (

⊔

1≤k≤n

pkLbkLpTk ) bkbl �= O ⇔ bk = bl

= (
⊔

1≤k,l≤n

pkp
T
l ) � (

⊔

1≤k≤n

pkLpTk ) Tarski rule

=
⊔

1≤k,l,m≤n

pkp
T
l � pmLpTm =

⊔

1≤k≤n

pkp
T
k = I see below

For the second last equality we have pkp
T
l �pmLpTm � pkL�pmL � pkp

T
kpmL =

O using Lemma 2.1 if k �= m. Similarly, pkp
T
l � pmLpTm � LpTl � LpTm �

LpTl pmpTm = O using Lemma 2.1 if l �= m. Hence it suffices to take the join
over indices k = l = m. The last equality is a consequence of

⊔
1≤k≤l pkp

T
k =

iTn..l+1il+1..n, which we show by induction over l. The base case holds since
p1p

T
1 = iTn..2j

T
1 j1i2..n = iTn..2i2..n since j1 = I. The inductive case holds since

⊔

1≤k≤l+1

pkp
T
k =

⊔

1≤k≤l

pkp
T
k � pl+1p

T
l+1 = iTn..l+1il+1..n � iTn..l+2j

T
l+1jl+1il+2..n

= iTn..l+2(i
T
l+1il+1 � jTl+1jl+1)il+2..n = iTn..l+2il+2..n

��
Proof (of Theorem 18 if at1(B) is infinite). Let C be the ‘bigger’ of A and B;
formally, let C = A if |at1(A)| ≥ |at1(B)| and C = B otherwise. We show
C = A × B.

We have |at1(C)| ≤ |at1(A)| · |at1(B)| = |at1(A) × at1(B)|. Conversely,
|at1(A)| · |at1(B)| ≤ |at1(C)|2 = |at1(C)| since at1(C) is infinite. By the
Cantor-Schröder-Bernstein theorem, there is a bijective function g : at1(C) →
at1(A) × at1(B). Define pA : C ↔ A and pB : C ↔ B by

pA =
⊔

a∈at1(C)
g(a)=(b,c)

aLb pB =
⊔

a∈at1(C)
g(a)=(b,c)

aLc

Then
– pTApA =

⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

bLadLe =
⊔

a∈at1(C)
g(a)=(b,c)

bLaLb �
⊔

a∈at1(C)
g(a)=(b,c)

bLb =
⊔

a∈at1(C)
g(a)=(b,c)

b � I since b is rectangular.
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– pTBpB =
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

cLadLf =
⊔

a∈at1(C)
g(a)=(b,c)

cLaLc �
⊔

a∈at1(C)
g(a)=(b,c)

cLc =
⊔

a∈at1(C)
g(a)=(b,c)

c � I since c is rectangular.

– pTApB =
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

bLadLf =
⊔

a∈at1(C)
g(a)=(b,c)

bLaLc =
⊔

a∈at1(C)
g(a)=(b,c)

bLc =
⊔

b∈at1(A)
c∈at1(B)

bLc = (
⊔

b∈at1(A)

b) L (
⊔

c∈at1(B)

c) = ILI = L

using the Tarski rule and that g is bijective.
– Finally,

pApTA � pBpTB = (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

aLbeLd) � (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,f)

aLcfLd) = (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(b,f)

aLbLd) � (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,c)

aLcLd)

= (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(b,f)

aLd) � (
⊔

a,d∈at1(C)
g(a)=(b,c)
g(d)=(e,c)

aLd)

=
⊔

a,d,a′,d′∈at1(C)
g(a)=(b,c),g(a′)=(b′,c′)
g(d)=(b,f),g(d′)=(e′,c′)

aLd � a′Ld′ =
⊔

a,d∈at1(C)
g(a)=g(d)

aLd =
⊔

a∈at1(C)

aLa =
⊔

a∈at1(C)

a = I

using the Tarski rule, that g is bijective, that a is rectangular and Lemma 2.6.
For the fourth last equality note that aLd � a′Ld′ � aaTa′Ld′ = aa′Ld′ = O
using Lemma 2.1 if a �= a′. Similarly aLd � a′Ld′ � aLdd′Td′ = aLdd′ = O
using Lemma 2.1 if d �= d′. Hence it suffices to take the join over indices
a = a′ and d = d′. Moreover g(a) = g(d) since g(a) and g(d) agree in their
first components and g(a′) and g(d′) agree in their second components. ��

6 Subsets from Quotients and Vice Versa

In this section we show that all subsets exist if and only if all quotients exist, if
all atoms are rectangular. We start with a lemma about atoms.

Lemma 19. Assume all atoms are rectangular. Let A,B be objects and let a ∈
at1(A) and b ∈ at1(B). Then aLb is an atom.

Proof. First, aLb �= O. Otherwise, a � aL = aLbL = OL = O using the Tarski
rule, which would contradict that a is an atom. Hence there is an atom c � aLb.
Then cL � I �= O since otherwise cL � I , which is equivalent to cT � O, whence
c = O. Similarly Lc � I �= O. Moreover cL � I � aLbL � I � aL � I = a and
Lc � I � LaLb � I � Lb � I = b using Lemma 2.9. Hence cL � I = a and Lc � I = b
since a, b are atoms. Thus aLb = (cL � I)L(Lc � I) � cLLLc � cLc � c since c is
rectangular. It follows that aLb = c is an atom. ��
Theorem 20. Assume all atoms are rectangular. Then all quotients exist if and
only if all subsets exist.
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Proof (of forward implication). Let S : A ↔ A be a non-zero partial identity.
Hence there is an atom a � S. Define E : A ↔ A by E = S � aL¬S � ¬SLa �
¬SL¬S. Then E is an equivalence:

– I = S � ¬S � S � ¬SL¬S � E.
– ET = E since S, ¬S and a are partial identities and hence symmetric.
– Since aS = Sa = a and a¬S = ¬Sa � ¬SS = O and a is rectangular, we

obtain

EE = S � aL¬S � aL¬SLa � aL¬SL¬S � ¬SLa � ¬SLaL¬S �
¬SL¬SLa � ¬SL¬SL¬S

� S � aL¬S � aLa � ¬SLa � ¬SL¬S = E � aLa = E � a = E

Hence p : A ↔ A/E exists with ppT = E and pTp = I. We show that A/E is a
subset of A corresponding to S. To this end, define i : A/E ↔ A by i = pTS.
Then

– iiT = pTSSTp = pTSp � pTp = I. Conversely, pTp � pTppTSppTp = pTSp
since I � E = ppTSppT using the Tarski rule:

ppTSppT = ESE = (S � ¬SLa)E = S � aL¬S � ¬SLa � ¬SLaL¬S = E

– iTi = STppTS = SES = S(S � ¬SLa) = S. ��
Proof (of backward implication of Theorem 20). Let E : A ↔ A be an equiva-
lence. Consider the relation ∼ on at1(A) defined by a ∼ b ⇔ aLb � E. It is an
equivalence relation:

– a ∼ a since aLa = a � I using that a is rectangular.
– a ∼ b implies b ∼ a since aLb � E implies bLa = (aLb)T � ET = E.
– a ∼ b and b ∼ c imply a ∼ c since aLc = aLbLc = aLbbLc � EE = E using

the Tarski rule.

Let I be the equivalence classes of at1(A)/∼ and let ai be a representative of
class i ∈ I. Define S : A ↔ A by S =

⊔
i∈I ai. Then S is a non-zero partial

identity since ∼ has at least one class. Hence i : S ↔ A exists with iTi = S and
iiT = I. We show that S is A/E. To this end, define p : A ↔ S by p = EiT. Then

– ppT = EiTiET = ESE � EE = E. Conversely, E = EE � EESEE = ESE
since I � ESE. To obtain the latter we show a � ESE for each a ∈ at1(A).
Since ESE = E(

⊔
i∈I ai)E =

⊔
i∈I EaiE it suffices to show a � EaiE using

the representative ai with a ∼ ai. This holds since a � aLa = aLaiLa =
aLaiaiaiLa � EaiE using the Tarski rule.

– I = iiT � iEiT = iETEiT = pTp. Conversely, we have iEiT = iiTiEiTiiT =
iSESiT � iiT since

SES = (
⊔

i∈I

ai)E(
⊔

j∈I

aj) =
⊔

i,j∈I

aiEaj � I



Dependences Between Domain Constructions 119

for which it remains to show aiEaj � I. If i = j, then aiEai � aiLai = ai � I
since ai is rectangular. If i �= j we show aiEaj = O. This is equivalent to
aiLaj � E using Lemma 2.2. Since aiLaj is an atom by Lemma 19, the latter
is equivalent to aiLaj �� E, that is, to ai �∼ aj , which holds since ai and aj

represent different equivalence classes in this case. ��

7 Independence of Domain Constructions

In this section we give models which show that there are no dependences between
the studied domain constructions apart from those proved in the previous sec-
tions, under the assumption that all atoms are rectangular. All of the following
models are (heterogeneous) subalgebras of REL, where the objects are down-
closed subsets of the natural numbers N, and the morphisms are all relations
between these sets. For n ∈ N let n denote the set {0, 1, 2, . . . , n−1} of numbers
smaller than n; for example 1 = {0}, 2 = {0, 1} and 5 = {0, 1, 2, 3, 4}.

The following table gives the models or why there are none, for each combi-
nation of having all power sets, products, sums and subsets. By Theorem 20 we
do not distinguish between subsets and quotients. Due to lack of space we omit
proofs that the models have or do not have the indicated domain constructions.

Power Product Sum Subset Objects

No No No No 2

No No No Yes 1,2

No No Yes No No model by Theorem 18

No No Yes Yes No model by Theorem 18

No Yes No No 1,N

No Yes No Yes 1

No Yes Yes No N

No Yes Yes Yes 1,2,3, . . . ,N

Yes No No No 2i,3i for i ∈ N

Yes No No Yes No model by Corollary 13 or Corollary 17

Yes No Yes No No model by Theorem 18

Yes No Yes Yes No model by Corollary 17 or Theorem 18

Yes Yes No No 2i for i ∈ N

Yes Yes No Yes No model by Corollary 13

Yes Yes Yes No 2,3,4, . . .

Yes Yes Yes Yes 1,2,3, . . .
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8 Conclusion

We have shown a number of dependences between the domain constructions
of power sets, products, sums, quotients and subsets in heterogeneous relation
algebras. Some results assumed that objects are comparable or that atoms are
rectangular. This raises questions for further study:

– Can sums be constructed without assuming comparability?
– Can products be constructed without assuming rectangular atoms?
– How are subsets and quotients related without assuming rectangular atoms?

The second question refers to products as axiomatised in this paper, which
implies representability. A weaker version of relational products that does not
imply representability was investigated in [18,19]. These papers also relate the
relational product to the categorical product in the subcategory of mappings.

A referee noted that [17] shows ‘every (small) heterogeneous relation algebra
can be faithfully embedded into a relation algebra that has relational sums and
powers so that these constructions can always be generated’. The present paper
does not embed into another algebra but shows the existence of domain con-
structions within a heterogeneous relation algebra under certain assumptions.

Acknowledgement. I thank the anonymous referees for pointing out related works
and other helpful comments.
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Abstract. The tensor product K ⊗R C′
2 of the ∗-continuous Kleene

algebra K with the polycyclic ∗-continuous Kleene algebra C′
2 over two

bracket pairs contains a copy of the fixed-point closure of K: the central-
izer of C′

2 in K ⊗R C′
2. As a next step, establishing a calculus for context-

free expressions, we prove a representation of elements of K ⊗R C′
2 by

automata à la Kleene and refine it by normal form theorems that restrict
the occurrences of brackets on paths through the automata.

Keywords: ∗-continuous Kleene algebra · Polycyclic Kleene algebra ·
Centralizer · Normal form of automaton · Context-free expression

1 Introduction

A Kleene algebra K = (K,+, ·, ∗, 0, 1) is ∗-continuous, if

a · c∗ · b =
∑

{ a · cn · b | n ∈ N }

for all a, b, c ∈ K, where
∑

is the least upper bound with respect to the natural
partial order ≤ on K given by a ≤ b iff a + b = b. Well-known examples of ∗-
continuous Kleene algebras are the algebras RM = (RM,+, ·, ∗, 0, 1) of regular
subsets of a monoid M = (M, ·M , 1M ), where 0 := ∅, 1 := {1M} and + is union,
· elementwise product, and ∗ is iteration or “monoid closure”, i.e. for A ∈ RM ,
A∗ is the least B ⊇ A that contains 1M and is closed under ·M .

We will make use of two other kinds of ∗-continuous Kleene algebras: quo-
tients K/ρ of a ∗-continuous Kleene algebras K under R-congruences ρ on K,
i.e. semiring congruences that behave well with respect to suprema of regular
subsets, and tensor products K ⊗R K ′ of ∗-continuous Kleene algebras K,K ′.

Let Δm be a set of m pairs of “brackets”, pi, qi, i < m, and RΔ∗
m the ∗-

continuous Kleene algebra of regular subsets of Δ∗
m. In [3] we considered the

R-congruence ρm on RΔ∗
m generated by the equation set
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{ piqj = δi,j | i, j < m } ∪ {q0p0 + . . . + qm−1pm−1 = 1} (1)

and the finer R-congruence ρ′
m generated by the equations

{ piqj = δi,j | i, j < m }, (2)

where δi,j is the Kronecker δ. These R-congruences give rise to the bra-ket and
the polycyclic ∗-continuous Kleene algebra Cm = RΔ∗

m/ρm and C ′
m = RΔ∗

m/ρ′
m,

respectively. Equations (2) allow us to algebraically distinguish matching brack-
ets, where piqj = 1, from non-matching ones, where piqj = 0.1 For m > 2, Cm

can be coded in C2 and C ′
m in C ′

2, so we focus on the case m = 2.
Two ∗-continuous Kleene algebras K and C can be combined to a tensor

product K ⊗R C which, intuitively, is the smallest common ∗-continuous Kleene
algebra extension of K and C in which elements of K commute with those of C.

In an earlier incarnation of this result, the first author showed that for any
∗-continuous Kleene algebra K, the tensor product K ⊗R C2 contains an isomor-
phic copy of the fixed-point closure of K. In particular, for finite alphabets X,
each context-free set L ⊆ X∗ is represented in RX∗ ⊗R C2 as the value of a reg-
ular expression over X ∪̇ Δ2. In fact, the centralizer of C2 in K ⊗R C2, i.e. the
set of those elements of K ⊗R C2 that commute with every element of C2, con-
sists of exactly the representations of context-free subsets of the multiplicative
monoid of K. These results constitute a generalization of the well-known theo-
rem by Chomsky and Schützenberger [1] in formal language theory; they were
later shown to hold with the simpler algebra K ⊗R C ′

2 instead of K ⊗R C2 by
the second author [6].

It is therefore of some interest to understand the structure of K ⊗R C2 and
K ⊗R C ′

2. In this article, we show that some unpublished results and conjectures
on K ⊗R C2 by the first author, in particular the existence of normal forms, hold
for the simpler algebra K ⊗R C ′

2.
Section 2 recalls the definitions of ∗-continuous Kleene algebras and R-dioids,

bra-ket and polycyclic ∗-continuous Kleene algebras, and the tensor product of
two R-dioids. We then show a Kleene representation theorem, i.e. that each
element ϕ of K ⊗R C ′

2 is the value L(A) = SA∗F of an automaton A = 〈S,A, F 〉,
where S ∈ {0, 1}1×n resp. F ∈ {0, 1}n×1 code the set of initial resp. accepting
states of the n states of A and A ∈ Matn,n(K ⊗R C ′

2) is a transition matrix.
Section 3 refines the representation ϕ = L(A) to a “normal form” where

brackets on paths through the automaton A occur “mostly” in a balanced way.
Section 3.1 identifies, in any ∗-continuous Kleene algebra with elements u, x, v,
the value (u + x + v)∗ with the value (Nv)∗N(uN)∗, provided the algebra
has a least solution N of the inequation y ≥ (x + uyv)∗ defining Dyck’s lan-
guage D(x) ⊆ {u, x, v}∗ with “bracket” pair u, v. We then show that for any
∗-continuous Kleene algebra K and n ≥ 1, Matn,n(K ⊗R C ′

2) has such a solution
N , for matrices U of 0’s and opening brackets from C ′

2, X of elements of K
and V of 0’s and closing brackets from C ′

2, and that entries of N belong to the
centralizer of C ′

2 in K ⊗R C ′
2.

1 In RΔ∗
m, elements of Δ∗

m are interpreted by their singleton sets, 0 by the empty set.
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Section 3.2 refines the representation ϕ = L(A) to the sketched “normal
form”: the transition matrix A can be split as A = (U + X + V ) into transitions
X ∈ Kn×n by elements of K, transitions U ∈ {0, b, p}n×n by opening brackets
b, p, and transitions V ∈ {0, d, q}n×n by closing brackets d, q of C ′

2. Then A∗ can
be normalized to (NV )∗N(UN)∗, where N is balanced in U and V and all other
occurrences of closing brackets V are in front of all other occurrences of opening
brackets U . The Conclusion draws relations to previous work and mentions an
open problem. An Appendix sketches how to combine normal forms by regular
operations, which forms the core of a calculus of context-free expressions.

2 ∗-continuous Kleene Algebras and R-diods

A Kleene algebra is an idempotent semiring or dioid (K,+, ·, 0, 1) with a unary
operation ∗ : K → K such that for all a, b ∈ K

a · a∗ + 1 ≤ a∗ ∧ ∀x(a · x + b ≤ x → a∗ · b ≤ x),
a∗ · a + 1 ≤ a∗ ∧ ∀x(x · a + b ≤ x → b · a∗ ≤ x).

The boolean algebra B = ({0, 1},+, ·, ∗, 0, 1) with boolean addition and multi-
plication and ∗ given by 0∗ = 1∗ = 1 is a Kleene subalgebra of K.

A Kleene algebra K = (K,+, ·, ∗, 0, 1) is ∗-continuous, if

a · c∗ · b =
∑

{ a · cn · b | n ∈ N }

for all a, b, c ∈ K, where
∑

is the least upper bound with respect to the natural
partial order ≤ on K given by a ≤ b iff a + b = b. Well-known ∗-continuous
Kleene algebras are the algebras RM = (RM,+, ·, ∗, 0, 1) of regular subsets of
monoids M = (M, ·M , 1M ), where 0 := ∅, 1 := {1M} and for A,B ∈ RM ,

A + B = A ∪ B, A · B = { a ·M b | a ∈ A, b ∈ B },

A∗ =
⋃{An | n ∈ N } with A0 = 1, An+1 = A · An.

If K is an idempotent semiring (K,+K , ·K , 0K , 1K) or a Kleene algebra, by RK
we mean the Kleene algebra RM of its multiplicative monoid M = (K, ·K , 1K).

An R-dioid is a dioid K = (K,+K , ·K , 0K , 1K) where each A ∈ RK has a
least upper bound

∑
A ∈ K, and where

∑
(AB) = (

∑
A)(

∑
B) for all A,B ∈

RK. It can be expanded to a ∗-continuous Kleene algebra by putting c∗ :=∑{c}∗ for c ∈ K. It is ∗-continuous by

a · c∗ · b = (
∑

{a}) · (
∑

{c}∗) · (
∑

{b}) =
∑

({a}{c}∗{b}).

Conversely, the dioid reduct of a ∗-continuous Kleene algebra is an R-dioid,
since, by induction, every regular set C has a least upper bound

∑
C ∈ K

satisfying a · (
∑

C) · b =
∑

(aCb), which implies the R-distributivity property∑
(AB) = (

∑
A)(

∑
B) for A,B,∈ RK (see [2]).
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The ∗-continuous Kleene algebras, with Kleene algebra homomorphisms (se-
miring homomorphisms that preserve ∗), form a category. In the following, we
often use the shorter term R-dioids, cf. [2,3], and write DR for this category; D
stands for the category of dioids or idempotent semirings. The R-dioids of the
form RM with monoid M form the Kleisli subcategory of DR.

2.1 The Bra-ket and Polycyclic R-diods

We will make use of two kinds of R-dioids which do not belong to the Kleisli
subcategory, but are quotients of the regular sets RΔ∗ by suitable R-congruence
relations ρ on RΔ∗, where Δ is an alphabet of “bracket” pairs.

Let ρ be a dioid-congruence on an R-dioid D. The set D/ρ of congruence
classes is a dioid under the operations defined by (d/ρ)(d′/ρ) := (dd′)/ρ, 1 :=
1/ρ, d/ρ+d′/ρ := (d+d′)/ρ, 0 := 0/ρ. Let ≤ be the partial order on D/ρ derived
from +. For U ⊆ D, put U/ρ := { d/ρ | d ∈ U } and

(U/ρ)↓ = { e/ρ | e/ρ ≤ d/ρ for some d ∈ U, e ∈ D }.

An R-congruence on D is a dioid-congruence ρ on D such that for all U,U ′ ∈ RD,
if (U/ρ)↓ = (U ′/ρ)↓, then (

∑
U)/ρ = (

∑
U ′)/ρ.

Proposition 1. If D is an R-dioid and ρ an R-congruence on D, then D/ρ is
an R-dioid. For every R ⊆ D × D there is a least R-congruence ρ ⊇ R on D.

Proof. See [3].

Let Δm = Pm ∪̇ Qm be a set of m “opening brackets” Pm = { pi | i < m }
and m “closing brackets” Qm = { qi | i < m }, with Pm ∩ Qm = ∅. The bra-ket
R-dioid Cm is the quotient RΔ∗

m/ρm of RΔ∗
m by the R-congruence ρm generated

by the relations

{ piqj = δi,j | i, j < m } ∪ {q0p0 + . . . + qm−1pm−1 = 1}.

Remarkably, Cm is isomorphic to its own matrix semiring Matm,m(Cm), with
a �→ (piaqj) in one and A �→ ∑

i,j<m qiAi,jpj in the other direction.
The polycyclic R-dioid C ′

m is the quotient C ′
m = RΔ∗

m/ρ′
m of RΔ∗

m by the
R-congruence ρ′

m generated by the relations

{ piqj = δi,j | i, j < m }, (3)

where δi,j is the Kronecker δ. The latter equations allow us to algebraically
distinguish matching brackets, where piqj = 1, from non-matching ones, where
piqj = 0. While the “completeness condition”2 1 =

∑
i<m qipi is a semiring

2 The name is explained in terms of “complete” prefix/suffix codings in [6], Remark 7.
It can also be understood in matrix terms: if pi is the i-th unit (column) vector of
size m and qi its transpose, then

∑
i<m qipi is the m × m unit matrix 1. Cm arises

by way of analogy with the bra-ket algebra in physics. We will not use the equation.
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equation, the match relations piqj = δi,j can be interpreted in monoids with an
annihilating element 0. The polycyclic monoid P ′

m of m generators is the quotient
of (Δm ∪̇ {0})∗ by the monoid congruence σm generated by

{ piqj = δi,j | i, j < m } ∪ {x0 = 0 | x ∈ Δm ∪̇ {0} } ∪ { 0x = 0 | x ∈ Δm }.

Each element w ∈ (Δm ∪̇ {0})∗ has a normal form nf (w) ∈ Q∗
mP ∗

m ∪ {0}, ob-
tained by using the equations to shorten w, that represents w/σm ∈ P ′

m. Hence,

P ′
m � (Q∗

mP ∗
m ∪ {0}, ·, 1) with v · w = nf (vw).

This can be extended from P ′
m to monoid extensions P ′

m[X] of P ′
m in which

elements of X are supposed to commute with elements of P ′
m. Formally, let

Y = Δm ∪̇ {0} ∪̇ X and P ′
m[X] the quotient Y ∗/τm under the congruence τm

generated by (i) the matching rules { piqj = δi,j | i, j < m }, (ii) the annihilation
rules y0 = 0 and 0y = 0 for y ∈ Y , and (iii) the commutation rules {xd = dx |
x ∈ X, d ∈ Δm }. Since Y ∗ can be disjointly decomposed into

Y ∗ = Y ∗(PmX ∪ PmQm ∪ XQm)Y ∗ ∪̇ Q∗
mX∗P ∗

m ∪̇ {0},

a normal form nf (w) ∈ Q∗
mX∗P ∗

m ∪ {0} for strings w ∈ Y ∗ can be obtained:
use the commutation rules to move opening brackets pi ∈ Pm to the right and
closing brackets qi ∈ Qm to the left of elements of X∗, then use the matching
rules to shorten upiqjv to uv or u0v and the annihilation rules to replace u0v by
0, and repeat this process. I.e. for i, j < m, i �= j and x ∈ X, u, v ∈ Y ∗ we put

nf (upixv) := nf (uxpiv), nf (u0v) := 0, nf (upiqiv) := nf (uv),
nf (uxqiv) := nf (uqixv), nf (1) := 1, nf (upiqjv) := 0.

We leave it to the readers to convince themselves that this amounts to a confluent
rewriting system, so that nf : Y ∗ → Q∗

mX∗P ∗
m ∪ {0} is well-defined, and that

P ′
m[X] � (Q∗

mX∗P ∗
m ∪ {0}, ·, 1), where u · v := nf (uv).

The polycyclic R-dioid C ′
m can be seen as the quotient of RP ′

m modulo the R-
congruence 〈{0} = 0〉 generated by identifying {0} with the empty set. Hence,
the elements of C ′

m are represented by sets A \ {0} ⊆ Q∗
mP ∗

m with A ∈ RP ′
m.

The normal form nf on P ′
m[X] is the motivating idea behind the normal

form theorem (Theorem 5) for elements of the tensor product RX∗ ⊗R C ′
m to

be introduced in the next section. On the tensor product, regular sets A ∈ RX∗

and (congruence classes of) regular sets B ∈ RΔm commute with each other,
and the tensor product is an R-dioid structure, not just a monoid structure.

Notice that m ≥ 2 bracket pairs can be coded by two, say b, d and p, q, by
putting pi := bpi and qi := qid for i < m, which extends to an embedding of C ′

m

in C ′
2. We therefore formulate some results only for m = 2, using Δ2 = P2 ∪̇ Q2

with P2 = {b, p} and Q2 = {d, q}, unless stated otherwise.
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2.2 The Tensor Product K ⊗R C of R-dioids K and C

In a category whose objects have a monoid structure, a tensor product of
two objects M1 and M2 is an object M1 ⊗ M2 with two relatively commut-
ing morphisms �1 : M1 → M1 ⊗ M2 ← M2 : �2 such that for any pair
f : M1 → M ← M2 : g of relatively commuting morphisms there is a unique
morphism hf,g : M1 ⊗ M2 → M with f = hf,g ◦ �1 and g = hf,g ◦ �2. Intu-
itively, the tensor product M1 ⊗M2 is the free extension of M1 and M2 in which
elements of M1 commute with those of M2.

In the category of monoids, M1 ⊗ M2 is the cartesian product M1 × M2

with componentwise unit and product, and hf,g(m1,m2) = f(m1) · g(m2). The
category DR of ∗-continuous Kleene algebras also has tensor products:

Theorem 1. Let K1,K2 be R-dioids and M1,M2 their monoid reducts. The
tensor product of K1,K2 is

K1 ⊗R K2 := R(M1 × M2)/≡,

the quotient of the regular sets R(M1 × M2) of the monoid product M1 × M2 by
the R-congruence ≡ generated by the “tensor product” equations

{ {(
∑

A,
∑

B)} = A × B | A ∈ RM1, B ∈ RM2 }.

The embeddings �1 : K1 → K1 ⊗R K2 ← K2 : �2 are �1(a) := {(a, 1)}/≡
for a ∈ K1 and �2(b) = {(1, b)}/≡ for b ∈ K2. For a pair of commuting R-
morphisms f : K1 → K ← K2 : g to an R-dioid K, the induced map is

hf,g(R/≡) :=
∑

{ f(a)g(b) | (a, b) ∈ R }, R ∈ R(M1 × M2).

Proof. See [3], Theorem 4.

Concerning the definition of ≡, we remark that with A ∈ RM1 and B ∈ RM2,

A × B =
⋃

{ {(a, b)} | a ∈ A, b ∈ B } ∈ R(M1 × M2).

In the following, for R-dioids K1,K2, we also write K1 × K2 for the product
of their underlying monoids, and for R ∈ R(K1 ×K2), write [R] instead of R/≡.
For R,S ∈ R(K1 × K2), one has [R] + [S] = [R ∪ S], [R][S] = [RS], and

[R]∗ =
∑

{ [R]n | n ∈ N } =
∑

{ [Rn] | n ∈ N } = [
⋃

{Rn | n ∈ N }] = [R∗].

We will mainly consider tensor products K ⊗R C where K = RX∗ and C is a
polycyclic R-dioid C ′

m (or bra-ket R-dioid Cm). In a monoid M , the centralizer
ZC(M) of a set C ⊆ M in M consists of those elements that commute with
every element of C, i.e. the submonoid

ZC(M) := {m ∈ M | mc = cm for all c ∈ C }.

For example, the centralizer of Δm in P ′
m[X] is X∗ ∪ {0}.
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The interest in Kleene algebras RX∗ ⊗R C ′
2 comes from the fact that CX∗,

the algebra of context-free languages over X, is isomorphic to ZC′
2
(RX∗ ⊗R C ′

2)
cf. [6]. Since all elements of RX∗ ⊗R C ′

2 can be denoted by regular expressions
over X ∪̇ Δ2, every context-free set L ⊆ X∗ is the value of a regular expression.

Example 1. Suppose a, b ∈ X and write 〈0|, |0〉 and 〈1|, |1〉 for the two bracket
pairs of Δ2. Then L = { anbn | n ∈ N } ∈ CX∗ is represented in RX∗ ⊗R C ′

2 by
the value of the regular expression rL := 〈0|(a〈1|)∗(|1〉b)∗|0〉 over X ∪̇ Δ2:

rL =
∑{ 〈0|(a〈1|)n(|1〉b)m|0〉 | n,m ∈ N } (∗-continuity)

=
∑{ an〈0|〈1|n|1〉m|0〉bm | n,m ∈ N } (relative commutativity)

=
∑{ anbn | n ∈ N } (bracket match 〈i||j〉 = δi,j).

By Theorem 17 of [6], L �→ ∑
L embeds CX∗ in RX∗ ⊗R C ′

2. �

2.3 Automata over a Kleene Algebra

A finite automaton A = 〈S,A, F 〉 with n states over a Kleene algebra K consists
of a transition matrix A ∈ Matn,n(K) and two vectors S ∈ Mat1,n(B) and
F ∈ Matn,1(B), coding the initial and final states. The 1-step transitions from
state i < n to state j < n are represented by Ai,j , and paths from i to j of finite
length by A∗

i,j , where A∗ is the iteration of A. The sum of paths leading from
initial to final states defines an element of K,

L(A) = S · A∗ · F ∈ K.

The iteration M∗ of M ∈ Matn,n(K) is defined by induction on n: for n = 1 and
M = (k), M∗ = (k∗), and for n > 1,

M∗ =
(

A B
C D

)∗
=

(
F ∗ F ∗BD∗

D∗CF ∗ D∗CF ∗BD∗ + D∗

)
, (4)

where F = A + BD∗C and M =
(

A B
C D

)
is any splitting of M in which A and

D are square matrices of dimensions n1, n2 < n with n = n1 + n2.

Theorem 2. If K is a ∗-continuous Kleene algebra, so is Matn,n(K), for n ≥ 1.

Proof. See [4], Chap. 7.1. ��
By Kleene’s representation theorem, the set RX∗ of regular subsets of X∗

consists of the languages

L(A) = S · A∗ · F ⊆ X∗

of finite automata A = 〈S,A, F 〉, where for some n ∈ N, A ∈ Matn,n(FX∗),
S ∈ B

1×n, F ∈ B
n×1 and FX∗ is the set of finite subsets of X∗.

For R-dioid K, we next prove Kleene’s representation theorem for K ⊗R C ′
2:

an element of K ⊗R C ′
2 is the “language” L(A) = SA∗F of a finite automaton

A = 〈S,A, F 〉 over K ⊗R C ′
2. For a ∈ K and c ∈ C ′

2, we write a and c also for
their images in K ⊗R C ′

2, likewise ac for [{(a, c)}], the product of their images.
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Theorem 3. Let K be an R-dioid, i.e. a ∗-continuous Kleene-algebra, and C ′
2

the polycyclic Kleene algebra over Δ2 = P2 ∪̇ Q2 with P2 = {b, p}, Q2 = {d, q}.
For each ϕ ∈ K ⊗R C ′

2 there are n ∈ N, S ∈ B
1×n, F ∈ B

n×1, U ∈ {0, b, p}n×n,
V ∈ {0, d, q}n×n and X ∈ Kn×n such that

ϕ = S(U + X + V )∗F.

Proof. Since ϕ = [R] for some R ∈ R(K ×C ′
2), by induction on the construction

of R we build an automaton AR = 〈S,A, F 〉 over K ⊗R C ′
2 such that L(AR) =

[R] and A splits as U + X + V as in the claim.

– We leave the cases R = ∅, R = R1 ∪ R2 and R = R1 · R2 to the reader.
– R = {(k, c)} with k ∈ K, c ∈ C ′

2: Let AR = 〈S,A, F 〉 consist of

S =
(
1 0

)
, A =

(
1 kc
0 1

)
, F =

(
0
1

)
.

Then A∗ = A, since A0 ≤ A = A2, hence L(AR) = A1,2 = kc = [{(k, c)}].
For the splitting of A into U +X +V , {(k, c)} = {(k, 1)} ·{(1, c)} is a product
of singleton factors, so we need only consider the cases k = 1 and c = 1. For
R = {(1, c)}, we can further reduce the representing set A ∈ RΔ∗

2 of c to a
singleton containing an element of Δ2. If c ∈ Q2 = {d, q}, split

A =
(

1 c
0 1

)
=

(
0 0
0 0

)
+

(
1 0
0 1

)
+

(
0 c
0 0

)
= U + X + V.

If c ∈ P2 = {b, p}, switch the roles of U and V . For R = {(k, 1)}, keep k1 in
the matrix X.

– R = R∗
1: Suppose AR1 = (S1, A1, F1), is an automaton such that

L(AR1) = S1A
∗
1F1 = [R1].

Let AR+ = 〈S,A, F 〉 be 〈S1, A1+F1S1, F1〉. By equalities in Kleene algebras,

L(AR+) = S1(A1 + F1S1)∗F1

= S1A
∗
1(F1S1A

∗
1)

∗F1

= S1A
∗
1F1(S1A

∗
1F1)∗

= [R1][R1]∗

= [R1][R∗
1] = [R+

1 ],

and then put AR∗ = A1+R+ . The splitting A = U + X + V is obtained from
the splitting of A1 by adding entries of F1S1 to X. ��

3 Normal Form Theorems for K ⊗R C′
2 with R-dioid K

In the representation of elements ϕ of K ⊗R C ′
2 by ϕ = L(A) = SA∗F for

automata A = 〈S,A, F 〉 with A = U +X +V in Theorem 3, A∗ = (U +X +V )∗

admits arbitrary sequences of opening brackets U with closing brackets V . We
aim at a normal form for (U + X + V )∗ where brackets are mainly occurring in
a balanced way. To this end, we now look at ways to express a Dyck-language
with a single bracket pair u, v in a ∗-continuous Kleene algebra.
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3.1 Least Solutions in ∗-continuous Kleene Algebras

We first show that in any ∗-continuous Kleene algebra K, least solutions of two
fixed-point inequations that might be used to define the Dyck-language D1(X)
with X = {x1, . . . , xn} ⊆ K, namely

y ≥ (x1 + . . . + xn + uyv)∗ and y ≥ 1 + x1 + . . . + xn + uyv + yy,

are related, where u, v ∈ K \ X represent a pair of brackets. It is then shown
that (u + X + v)∗ = (Nv)∗N(uN)∗, where N ∈ K is the least solution of y ≥
(X +uyv)∗ corresponding to D(X). Except for the balanced bracket occurrences
in N , all occurrences of the closing bracket v are to the left of all occurrences of
the opening bracket u. This is similar to the normal form nf (w) ∈ Q∗

1P
∗
1 ∪ {0}

in the polycyclic monoid P ′
1 (of Sect. 2.1) with P1 = {u} and Q1 = {v}, i.e. the

normal forms on {u, v}∗ modulo the congruence generated by uv = 1.

Proposition 2. Let K be a Kleene algebra, and u, x, v ∈ K. If z ≥ x + uz∗v
has a least solution Z, then y ≥ (x + uyv)∗ has a least solution, namely Z∗. If
y ≥ (x + uyv)∗ has a least solution N , then z ≥ x + uz∗v has a least solution,
namely x + uNv. If they exist, then N ≥ Z.

Proof. By monotonicity of +, ·, ∗, one has:

– (i) If z ≥ x + uz∗v for z ∈ K, then z∗ solves y ≥ (x + uyv)∗,
– (ii) If y ≥ (x + uyv)∗ for y ∈ K, then (x + uyv) solves z ≥ x + uz∗v.

Therefore, if Z is the least solution of z ≥ x + uz∗v, and y is any solution of
y ≥ (x + uyv)∗, then by (ii), y ≥ (x + uyv)∗ ≥ (x + uyv) ≥ Z∗, and by (i),
Z∗ ≥ (x + uZ∗v)∗, so Z∗ is the least solution of y ≥ (x + uyv)∗. On the other
hand, if N is the least solution of y ≥ (x + uyv)∗ and z is any solution of
z ≥ x + uz∗v, then by (i), z∗ ≥ N , so z ≥ x + uNv, and since by (ii), (x + uNy)
is a solution of z ≥ x + uz∗v, it is the least solution. ��
Proposition 3. Let K be a Kleene algebra and u, x, v ∈ K. If y ≥ (x + uyv)∗

has a least solution N , then y ≥ 1 + x + uyv + yy has a least solution, namely
(x + uNv)∗, and N = (x + uNv)∗. If y ≥ 1 + x + uyv + yy has a least solution
D, then D is the least solution of y ≥ (x + uyv)∗.

Proof. We show: (i) if z ≥ 1 + x + uzv + zz for z ∈ K, then z is a solution of
y ≥ (x+uyv)∗ and (ii) if y ≥ (x+uyv)∗ for y ∈ K, then (x+uyv)∗ is a solution
of z ≥ 1 + x + uzv + zz. For (i), assume z ≥ 1 + x + uzv + zz. From 1 + zz ≤ z,
we have z∗ ≤ z. Using (x + uzv) ≤ z and monotonicity of ∗,

(x + uzv)∗ ≤ z∗ ≤ z,

so z is a solution of y ≥ (x + uyv)∗. For (ii), assume y ≥ (x + uyv)∗. By
monotonicity,

u(x + uyv)∗v ≤ uyv ≤ x + uyv ≤ (x + uyv)∗,
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and obviously, 1 + x ≤ (x + uyv)∗ and (x + uyv)∗(x + uyv)∗ ≤ (x + uyv)∗. So
(x + uyv)∗ is a solution of z ≤ 1 + x + uzv + zz.

It follows that if N is the least solution of y ≥ (x + uyv)∗, then by (ii),
(x + uNv)∗ is a solution of z ≥ 1 + x + uzv + zz, and by (i), any z ∈ K with
z ≥ 1 + x + uzv + zz satisfies z ≥ N ≥ (x + uNv)∗, so (x + uNv)∗ is the
least solution of z ≥ 1 + x + uzv + zz. In particular, N = (x + uNv)∗. If D
is the least solution of y ≥ 1 + x + uyv + yy, then by (i), D ≥ (x + uDv)∗. If
y ≥ (x + uyv)∗, then by (ii), (x + uyv)∗ is a solution of z ≥ 1 + x + uzv + zz, so
y ≥ (x + uyv)∗ ≥ D. ��
Theorem 4. Let K be a Kleene algebra and x, u, v ∈ K. If y ≥ (x + uyv)∗ has
a least solution N in K, then (u + x + v)∗ = (Nv)∗N(uN)∗.

Proof. Let N = μy.(x + uyv)∗ and n = (u + x + v)∗. We first show N ≤ n, by
showing that n solves (x + uyv)∗ ≤ y. By monotonicity of +, ·, and ∗,

x + un∗v ≤ n + nn∗n = (1 + nn∗)n = n∗n ≤ n∗,

hence (x + un∗v)∗ ≤ n∗∗ = n∗. So N ≤ n, from which

(Nv)∗N(uN)∗ ≤ (u + x + v)∗

follows using u, v,N ≤ n = nn = n∗.
Now consider the reverse inequality, (u + x + v)∗ ≤ (Nv)∗N(uN)∗: As (x +

uNv)∗ = N , we have (x+uNv)N+1 ≤ N . With this we show that (Nv)∗N(uN)∗

solves (u + x + v)z + 1 ≤ z in z:

(u + x + v)(Nv)∗N(uN)∗ + 1
= (u + x + v)N(vN)∗(uN)∗ + 1
= uN(vN)∗(uN)∗ + xN(vN)∗(uN)∗ + vN(vN)∗(uN)∗ + 1
= uN(1 + vN(vN)∗)(uN)∗ + xN(vN)∗(uN)∗ + vN(vN)∗(uN)∗ + 1
= uN(uN)∗ + uNvN(vN)∗(uN)∗ + xN(vN)∗(uN)∗ + vN(vN)∗(uN)∗ + 1
= (x + uNv)N(vN)∗(uN)∗ + uN(uN)∗ + vN(vN)∗(uN)∗ + 1
= (x + uNv)N(vN)∗(uN)∗ + (1 + vN(vN)∗)(uN)∗

= (x + uNv)N(vN)∗(uN)∗ + (vN)∗(uN)∗

= ((x + uNv)N + 1)(vN)∗(uN)∗

≤ N(vN)∗(uN)∗

= (Nv)∗N(uN)∗.

Since (u + x + v)∗ is the least solution of (u + x + v)z + 1 ≤ z, the claim
(u + x + v)∗ ≤ (Nv)∗N(uN)∗ is shown. ��

3.2 Normal Form Theorems

Let A = 〈S,A, F 〉 be an automaton with A = U + X + V as in Theorem 3,
representing an element ϕ = L(A) = SA∗F of K ⊗R C ′

2. We first show that



132 M. Hopkins and H. Leiß

there is a least solution of y ≥ (UyV + X)∗ in Matn,n(K ⊗R C ′
2), which is

related to Dyck’s context-free language D ⊆ {U,X, V }∗ of balanced strings of
matrices, with U as “opening bracket” and V as “closing bracket”.

Lemma 1. Let K be an R-dioid, n ∈ N and U ∈ {0, b, p}n×n, V ∈ {0, d, q}n×n

and X ∈ Kn×n. In Matn,n(K ⊗R C ′
2),

y ≥ (UyV + X)∗ (5)

has a least solution, namely N := b(Up + X + qV )∗d, and N ∈
(ZC′

2
(K ⊗R C ′

2))
n×n.

When multiplying b, d, p, q with n × n-matrices, we identify them with corre-
sponding diagonal matrices.

Proof. Let D and D′ be the Dyck languages over {U,X, V } resp. {Up,X, qV }
with brackets U, V and Up, qV , respectively.

Claim 1. For each m ∈ N, b(Up + X + qV )md =
∑

({U,X, V }m ∩ D) ∈ Kn×n.

Proof. Notice that every A ∈ D evaluates in Matn,n(K ⊗R C ′
2) to an element

of Kn×n. This is clear for A = 1n and A = X, and if A,B ∈ Kn×n, then
AB ∈ Kn×n. Finally, consider A = UBV with B ∈ Kn×n. Since elements of K
and C ′

2 commute with each other in K ⊗R C ′
2, we have

(UBV )ij =
n∑

k,l=1

Uik(BklVlj) =
n∑

k,l=1

Bkl(UikVlj),

and since Uik ∈ {0, b, p} and Vlj ∈ {0, d, q}, we obtain UikVlj ∈ {0, 1}, hence
(UBV )ij ∈ K, and so A ∈ Kn×n. It follows that

∑
({U,X, V }m ∩ D) ∈ Kn×n.

Let A′ ∈ D′ be the matrix obtained from A ∈ D by replacing factors U by Up
and factors V by qV . Then A′ = A, because pq = 1: this is clear for A = 1n and
A = X, and if it is true for A,B, then (UAV )′ = UpA′qV = UpAqV = UAV ,
since here A ∈ D belongs to Kn×n, and (AB)′ = A′B′ = AB by induction.

Moreover, if A ∈ D ∩ {U,X, V }m, then b(Up + X + qV )md ≥ bA′d = bAd =
bdA = A, hence

b(Up + X + qV )md ≥
∑

({U,X, V }m ∩ D).

Finally, let A′ ∈ {Up,X, qV }m be a summand of (Up+X +qV )m that is not
obtained from some A ∈ {U,X, V }m ∩ D by this substitution. Then bA′d = 0,
because A′ ∈ (D′qV )∗D′(UpD′)∗ \ D′ and b, d commute with factors from D′

(with values in Kn×n), so in bA′d, b can be moved over factors to the right, until it
meets q and gives bq = 0, or d can be moved over factors to the left until it meets
p and gives pd = 0. It follows that b(Up + X + qV )md =

∑
({U,X, V }m ∩ D). �

By ∗-continuity, Claim 1 implies

N =
∑

{D ∩ {U,X, V }m | m ∈ N } =
∑

D.
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Claim 2. N is the least solution of y ≥ (UyV + X)∗ in Matn,n(K ⊗R C ′
2).

Proof. We show that N is the least solution of y ≥ 1+X +UyV + yy and apply
Proposition 3. By the previous claim, we get N ≥ X and

Ub(Up + X + qV )mdV ≤ b(Up + X + qV )m+2d,

and so by ∗-continuity, N = b(Up + X + qV )∗d ≥ UNV . It remains to show
NN ≤ N . Let T = (Up + X + qV ). By ∗-continuity,

NN =
∑

k∈N

bT kdN =
∑

k,l∈N

bT kdbT ld.

By Claim 1, bT kd ∈ Kn×n commutes with b, so bT kdbT ld = b(bT kd)T ld, and
bT kd is a sum of products A ∈ {U,X, V }k∩D of length k. If A′ ∈ {Up,X, qV }k∩
D′ is obtained from A by substituting Up for U and qV for V , then A = A′ ≤ T k.
Hence, bT kd ≤ T k and NN =

∑
k,l∈N

b(bT kd)T ld ≤ ∑
k,l∈N

bT kT ld = N .
Therefore, N is a solution of y ≥ 1 + X + UyV + yy. To show that it is the

least solution, suppose y ∈ Matn,n(K ⊗R C ′
2) satisfies y ≥ 1+X +UyV +yy. As

N =
∑

D, it is sufficient to show A ≤ y for each A ∈ D. This is clear for 1n and
X, and if A,B ∈ D satisfy A,B ≤ y, then UAV ≤ UyV ≤ y and AB ≤ yy ≤ y
by monotonicity. So y is an upper bound of D. �

Claim 3. N ∈ (ZC′
2
(K ⊗R C ′

2))
n×n.

Proof. As N is the supremum of the b(Up + X + qV )md and these are equal to∑
({U,X, V }m ∩ D) ∈ Kn×n, we have c(b(Up + X + qV )md) = (b(Up + X +

qV )md)c for c ∈ C ′
2. The claim follows by an application of ∗-continuity. �

By the three claims, the Lemma is proven. (For C ′
m with m ≥ 2 instead of C2

and brackets of Pm in U and of Qm in V , use any two different bracket pairs b, d
and p, q of Δm = Pm ∪̇ Qm to define N .) ��
Example 2. In the most simple case n = 1, with Matn,n(K ⊗R C ′

2) � K ⊗R C ′
2,

suppose U = b, V = d and X = x ∈ K. Then N = b(bp + x + qd)∗d =
∑

D for
Dyck’s language D ⊆ {b, x, d}∗. The proof shows N =

∑
D ∈ ZC′

2
(K ⊗R C ′

2). �

Theorem 5 (First Normal Form). Let K be an R-dioid. For each ϕ ∈
K ⊗R C ′

2 there are n ∈ N, S ∈ B
1×n, F ∈ B

n×1, U ∈ {0, b, p}n×n, V ∈
{0, d, q}n×n and X ∈ Kn×n such that

ϕ = S(NV )∗N(UN)∗F,

where N ∈ (ZC′
2
(K ⊗R C ′

2))
n×n is the least solution of y ≥ (UyV + X)∗ in

Matn,n(K ⊗R C ′
2).

For n = 1, N commutes with U and V , so (NV )kN(UN)l = V kNU l, and by
∗-continuity, (NV )∗N(UN)∗ = V ∗NU∗. This is related to the normal form for
the extension P ′

m[X] of the polycyclic monoid P ′
m in Sect. 2.1.
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Proof. By definition of K ⊗R C ′
2, there is R ∈ R(K ×C ′

2) such that ϕ = [R]. As
in Theorem 3, by induction on R one constructs an automaton 〈S,A, F 〉 with

ϕ = [R] = L(〈S,A, F 〉) = SA∗F

and a transition matrix A ∈ (K ⊗R C ′
2)

n×n of the form A = U + X + V where
U ∈ {0, b, d}n×n, X ∈ Kn×n and V ∈ {0, d, q}n×n, for some n. By Lemma 1,
y ≥ (UyV + X)∗ has a least solution N in Matn,n(K ⊗R C ′

2), and

N ∈ (ZC′
2
(K ⊗R C ′

2))
n×n.

By Theorem 4, this N allows us to write A∗ as

A∗ = (U + X + V )∗ = (NV )∗N(UN)∗

and obtain the normal form ϕ = [R] = SA∗F = S(NV )∗N(UN)∗F. ��
Example 3. Let P2 = {〈0|, 〈1|} and Q2 = {|0〉, |1〉}, K = R{a, b}∗ ⊗R C ′

2. The
element ϕ = (a〈1|)∗(|1〉b)∗ ∈ K is represented as ϕ = L(M) = SM∗F by the
automaton M = 〈S,M,F 〉 of Fig. 1 with initial state 1 and accepting state 3
(Fig. 2).

Fig. 1. M = 〈S, M, F 〉

1
1

3

2

a 1|

4

|1 b

Fig. 2. Graph of M

The iteration M∗ of M calculated using the formula (4) can be read off from
the graph: the entry (M∗)i,j describes the labellings on paths from node i to
node j. Hence, with ā = a〈1| and b̄ = |1〉b, we have

M∗ =

⎛

⎜⎜⎝

ā∗ ā∗a ā∗b̄∗ ā∗b̄∗|1〉
〈1|ā∗ 1 + 〈1|ā∗a 〈1|ā∗b̄∗ 〈1|ā∗b̄∗|1〉

0 0 b̄∗ b̄∗|1〉
0 0 bb̄∗ 1 + bb̄∗|1〉

⎞

⎟⎟⎠ .

To obtain the normal form (NV )∗N(UN)∗ of M∗, split M as U + X + V with

U =

⎛

⎜⎜⎝

0 0 0 0
〈1| 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , X =

⎛

⎜⎜⎝

0 a 1 0
0 0 0 0
0 0 0 0
0 0 b 0

⎞

⎟⎟⎠ , V =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 |1〉
0 0 0 0

⎞

⎟⎟⎠ .

To determine N = 〈0|(U〈1| + X + |1〉V )∗|0〉, let M̃ = (U〈1| + X + |1〉V ) and
read off M̃∗ from the graph of M̃ , obtaining a copy of M∗ with ã = a〈1|2, b̃ =
|1〉2b, 〈1|2, |1〉2 instead of ā, b̄, 〈1|, |1〉, respectively. The entries of N are then

Ni,j = 〈0|(M̃∗)i,j |0〉.
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The resulting matrix is as follows, writing L̂ for
∑

L with L = { anbn | n ∈ N },

N = 〈0|

⎛

⎜⎜⎝

ã∗ ã∗a ã∗b̃∗ ã∗b̃∗|1〉2
〈1|2ã∗ 1 + 〈1|2ã∗a 〈1|2ã∗b̃∗ 〈1|2ã∗b̃∗|1〉2

0 0 b̃∗ b̃∗|1〉2
0 0 bb̃∗ 1 + bb̃∗|1〉2

⎞

⎟⎟⎠ |0〉 =

⎛

⎜⎜⎝

1 a L̂ aL̂

0 1 L̂b L̂
0 0 1 0
0 0 b 1

⎞

⎟⎟⎠ .

For example, N1,3 = 〈0|ã∗b̃∗|0〉 = 〈0|(a〈1|2)∗(|1〉2b)∗|0〉 = L̂ is calculated as in
Example 1. It follows that

NV =

⎛

⎜⎜⎝

0 0 0 L̂|1〉
0 0 0 L̂b|1〉
0 0 0 |1〉
0 0 0 b|1〉

⎞

⎟⎟⎠ , UN =

⎛

⎜⎜⎝

0 0 0 0
〈1| 〈1|a 〈1|L̂ 〈1|aL̂
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ ,

which imply (NV )∗ = 1 + NV (b|1〉)∗ and (UN)∗ = 1 + (〈1|a)∗UN . By matrix
multiplication, one obtains the normal form (NV )∗N(UN)∗ = M∗.

To determine N , one can also use that N is the least solution of y ≥ (UyV +
X)∗ in Mat4,4(K), hence N = (UNV + X)∗. Let ei be the unit column vector
with 1 in the i-th row, 0 else, e′

i its transpose row vector. Then eie
′
j is the

4 × 4-matrix with 1 at (i, j), 0 else, and e′
iej the 1 × 1-matrix with entry δi,j .

Since

UNV = (e2〈1|e′
1)(

∑

1≤i,j≤4

eiNi,je
′
j)(e3|1〉e′

4) = e2〈1|N1,3|1〉e′
4 = e2N1,3e

′
4,

the graph of X + UNV is that of X with additional edge 2
N1,3−→ 4, from which

one can read off (X + UNV )∗ as

(X + UNV )∗ =

⎛

⎜⎜⎝

1 a 1 + aN1,3b aN1,3

0 1 N1,3b N1,3

0 0 1 0
0 0 b 1

⎞

⎟⎟⎠ = N.

Since N is the least solution of y ≥ (UyV + X)∗, N1,3 is the least solution of
y1,3 ≥ 1+ay1,3b, i.e. μx(1+axb) =

∑
L for L = { anbn | n ∈ N } ∈ CK, leading

to the matrix N shown above. �

The normal forms of elements ϕ1, ϕ2 ∈ K ⊗R C ′
2, determine the normal form

of their combinations ϕ1+ϕ2, ϕ1·ϕ2, and ϕ∗
1. A proof is sketched in the Appendix.

For any m ≥ 2, Theorem 5 holds as well with C ′
m instead of C ′

2.

Corollary 1. Let Δm have the bracket pairs 〈i|, |i〉 for i = 0, . . . , m−1. Suppose
ϕ = SA∗F ∈ K ⊗R C ′

m is represented by an automaton 〈S,A, F 〉 not using
〈0|, |0〉, i.e. U ∈ {0, 〈1|, . . . 〈m − 1|}n×n, X ∈ Kn×n, V ∈ {0, |1〉, . . . , |m − 1〉}n×n

in A = U + X + V . If S(NV )∗N(UN)∗F is the normal form of ϕ, then

〈0|ϕ|0〉 = SNF ∈ ZC′
m

(K ⊗R C ′
m).

If moreover ϕ ∈ ZC′
m

(K ⊗R C ′
m), then ϕ = SNF .
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Proof. By the assumption on U and V , we have 〈0|V = 0 = U |0〉, and since N
commutes with 〈0| and |0〉, we get 〈0|(NV )∗ = 〈0| and (UN)∗|0〉 = |0〉. Hence

〈0|A∗|0〉 = 〈0|(NV )∗N(UN)∗|0〉 = 〈0|N |0〉 = N,

and thus 〈0|ϕ|0〉 = 〈0|SA∗F |0〉 = S〈0|A∗|0〉F = SNF ∈ ZC′
2
(K ⊗R C ′

2). If also
ϕ ∈ ZC′

m
(K ⊗R C ′

m), ϕ commutes with 〈0| and |0〉, so ϕ = 〈0|ϕ|0〉 = SNF . ��
Conjecture 1. Suppose we use the bra-ket R-dioid C2 instead of C ′

2. Let U ∈
{0, b, p}n×n, V ∈ {0, d, q}n×n, X ∈ Kn×n and let N be the least solution of y ≥
(UyV + X)∗ in Matn,n(K ⊗R C2). If ϕ = S(NV )∗N(UN)∗F ∈ ZC2(K ⊗R C2),
then ϕ = SNF , i.e. the restriction on 〈0|, |0〉 of Corollary 1 is unnecessary,
leading to a simplified normal form for elements of ZC2(K ⊗R C2).

In some cases, we can characterize the elements of the centralizer of C ′
m:

Theorem 6. For m > 2 and ϕ ∈ RX∗ ⊗R C ′
m, we have ϕ ∈ ZC′

m
(RX∗ ⊗R C ′

m)
iff there is a regular expression r over X ∪̇ (Δm\{〈0|, |0〉}) such that ϕ = 〈0|r|0〉.
Proof. See Corollary 28 (and Lemma 31 for ZC′

2
(K ⊗R C ′

2)) of [6]. ��
This generalizes the monoid case of P ′

m[X], where ZΔm
(P ′

m[X]) = X∗ ∪ {0}
and clearly ϕ ∈ X∗∪{0} iff ϕ = 〈0|w|0〉 for some w ∈ (X∪{0}∪(Δm\{〈0|, |0〉}))∗.

Corollary 1 can be extended by admitting that ϕ = SA∗F ∈ K ⊗R C ′
m is

given by an automaton 〈S,A, F 〉 whose transition matrix A contains transitions
by |0〉〈0| in addition to those by elements of K and Δm\{〈0|, |0〉}. This is useful
to combine representations 〈0|ri|0〉 =

∑
Li of Li ∈ CX∗, i = 1, 2, in RX∗ ⊗R C ′

2

to a representation 〈0|r1|0〉〈0|r2|0〉 = (
∑

L1)(
∑

L2) =
∑

(L1L2) of L1L2.

Theorem 7 (Second Normal Form). Let K be an R-dioid, m ≥ 2 and
ϕ ∈ K ⊗R C ′

m be given in matrix form ϕ = S(U + X + V + Wπ)∗F, where
π = |0〉〈0| and for some n ≥ 0,

S ∈ {0, 1}1×n,
F ∈ {0, 1}n×1,

X ∈ Kn×n,
W ∈ {0, 1}n×n,

U ∈ {0, 〈1|, . . . , 〈m − 1|}n×n,
V ∈ {0, |1〉, . . . , |m − 1〉}n×n.

Then there is N ∈ (ZC′
m

(K ⊗R C ′
m))n×n such that N = (UNV + X)∗ and

〈0|ϕ|0〉 = SN(WN)∗F ∈ ZC′
m

(K ⊗R C ′
m).

Proof. Let A = U + X + V . By Theorem 5, there is N ∈ (ZC′
m

(K ⊗R C ′
m))n×n

such that
A∗ = (U + X + V )∗ = (NV )∗N(UN)∗.

As in the proof of Corollary 1, we obtain

〈0|A∗|0〉 = 〈0|(NV )∗N(UN)∗|0〉 = 〈0|N |0〉 = N,
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and therefore in the Kleene algebra Matn,n(K ⊗R C ′
m),

〈0|(A + Wπ)∗|0〉 = 〈0|A∗(WπA∗)∗|0〉
= 〈0|A∗(|0〉W 〈0|A∗)∗|0〉
= 〈0|A∗|0〉(W 〈0|A∗|0〉)∗

= N(WN)∗ ∈ (ZC′
m

(K ⊗R C ′
m))n×n.

Because S,N,W,F commute with 〈0| and |0〉, it follows that

〈0|ϕ|0〉 = S〈0|(A + Wπ)∗|0〉F = SN(WN)∗F ∈ ZC′
m

(K ⊗R C ′
m).

��

4 Conclusion

The tensor product RX∗ ⊗R C ′
m of the algebra RX∗ of regular sets of X∗ with

the polycyclic Kleene algebra C ′
m based on m ≥ 2 bracket pairs is a ∗-continuous

Kleene algebra subsuming an isomorphic copy of the algebra CX∗ of context-free
sets of X∗, namely the centralizer ZC′

m
(RX∗ ⊗R C ′

m) of C ′
m (cf. [6]).

We have investigated K ⊗R C ′
m for arbitrary ∗-continuous Kleene algebras

K. Every element ϕ ∈ K ⊗R C ′
m is the value SA∗F of an automaton 〈S,A, F 〉

whose transition matrix A = U + X + V splits into transitions by opening
brackets (and 0’s) in U , transitions by elements of K in X, and transitions by
closing brackets (and 0’s) in V . Our main result is a normal form theorem saying
that A∗ = (NV )∗N(UN)∗, where N is the least solution of y ≥ (UyV + X)∗

in Matn,n(K ⊗R C ′
m), corresponding to Dyck’s language D ⊆ {U,X, V }∗ with

brackets U and V , and N has entries in ZC′
m

(K ⊗R C ′
m). The normal forms are

the core of calculus of context-free expressions (without binders).
In an earlier incarnation, the first author considered establishing these results

using the equation 1 = q0p0+. . .+qm−1pm−1 of Cm for the brackets p0, . . . , qm−1.
Here we showed that the match- and mismatch equations piqj = δi,j of C ′

m

are sufficient. It remains open if the normal form specializes for elements of
ZC′

m
(K ⊗R C ′

m) similar to Conjecture 1; a description of these elements in dif-
ferent terms is given in [6], Lemma 31.

Applications of our results to parsing theory, where RX∗ ⊗R C ′
2 provides

an algebra for recognizers of context-free languages over the alphabet X and
RX∗ ⊗R RY ∗ ⊗R C ′

2 an algebra for translations between X∗ and Y ∗, will be
defered to future publications.

Appendix: Combination of Normal Forms

The normal form for ϕ ∈ K ⊗R C ′
2 can be obtained by induction on the

construction of ϕ. We leave it to the reader to provide 〈S,A, F 〉 and N for
atomic elements ϕ ∈ K or ϕ ∈ C ′

2. Suppose for i = 1, 2, ϕi = SiA
∗
i Fi and

Ai = Ui + Xi + Vi as in the normal form theorem, and Ni = μy.(UiyVi + Xi)∗,
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so that A∗
i = (NiVi)∗Ni(UiNi)∗. For a regular combination ϕ of ϕ1 and ϕ2, we

define an automaton 〈S,A, F 〉, a splitting A = U + X + V and a matrix N
such that SA∗F = ϕ and N is the least solution of y ≥ (UyV + X)∗, hence
A∗ = (NV )∗N(UN)∗. Space allows us only to prove the claims for ϕ∗

1.

ϕ = (ϕ1 + ϕ2): Put S = (S1 S2), F =
(

F1

F2

)
, A = U + X + V with

U =
(

U1 0
0 U2

)
,X =

(
X1 0
0 X2

)
, V =

(
V1 0
0 V2

)
, and N =

(
N1 0
0 N2

)
.

ϕ = (ϕ1 · ϕ2): Put S = (S1 0), F =
(

0
F2

)
, A = U + X + V with

U =
(

U1 0
0 U2

)
,X =

(
X1 F1S2

0 X2

)
, V =

(
V1 0
0 V2

)
, and N =

(
N1 α
0 N2

)

with α = μz.(N1U1zV2N2 + N1F1S2N2). The existence of α follows from the
fact (shown in [6]) that ZC′

2
(K ⊗R C ′

2) is a C-dioid, i.e. its context-free subsets
A,B have sups

∑
A,

∑
B and

∑
(AB) = (

∑
A)(

∑
B), in which systems of

polynomial inequations p(z) ≤ z have least solutions (cf. [5]).
ϕ = ϕ∗

1: Since ϕ∗
1 = 1 + ϕ+

1 , it is sufficient to treat ϕ+
1 . Put S = S1, F = F1,

A = U + X + V with U = U1, X = X1 + FS, V = V1. Then

SA∗F = S(A1 + FS)∗F = SA∗
1(FSA∗

1)
∗F = SA∗

1F (SA∗
1F )∗ = ϕϕ∗ = ϕ+.

Moreover, let N = μz.(UzV + N1 + FS)∗. The existence of N follows
from a generalization of Lemma 1 in which X ∈ Kn×n is replaced by
X ∈ (ZC′

2
(K ⊗R C ′

2))
n×n. Since in Kleene algebra, (a + b)∗ = (a∗ + b)∗,

from N1 ≤ N we get

(UNV + X)∗ = (U(N1 + N)V + X1 + FS)∗

= (UN1V + X1 + UNV + FS)∗

= ((UN1V + X1)∗ + UNV + FS)∗

= (N1 + UNV + FS)∗ ≤ N,

hence N is a solution of (UyV + X)∗ ≤ y. To show that it is least, suppose
(UyV + X)∗ ≤ y. Then (UyV + X1)∗ ≤ y, hence N1 ≤ y, and therefore

(UyV + N1 + FS)∗ = (UyV + (UN1V + X1)∗ + FS)∗

= (UyV + UN1V + X1 + FS)∗

≤ (UyV + X)∗ ≤ y.

Since N is the least solution of (UzV + N1 + FS)∗ ≤ z, this shows N ≤ y.
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Abstract. A binary relation defined on a poset is a weakening relation
if the partial order acts as a both-sided compositional identity. This is
motivated by the weakening rule in sequent calculi and closely related to
models of relevance logic. For a fixed poset the collection of weakening
relations is a subreduct of the full relation algebra on the underlying set
of the poset. We present a two-player game for the class of representable
weakening relation algebras akin to that for the class of representable
relation algebras. This enables us to define classes of abstract weaken-
ing relation algebras that approximate the quasivariety of representable
weakening relation algebras. We give explicit finite axiomatisations for
some of these classes. We define the class of diagonally representable
weakening relation algebras and prove that it is a discriminator vari-
ety. We also provide explicit representations for several small weakening
relation algebras.
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The full algebra of binary relations on X is

Rel(X) = (P(X2),∩,∪, ∅,�, ; , idX ,¬,� )

where � = X2, R;S is the composition of R, S , ¬R = X2\R, and R� = {(x, y) |
(y, x) ∈ R}. The class RRA of representable relation algebras = SP{Rel(X) | X
is a set}. Tarski [22] proved that RRA is a variety and Monk [17] proved that
RRA is not finitely axiomatisable. For more details see the books by Givant [5,6]
and Maddux [11].
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The set of weakening relations on a poset X = (X, ≤) is W(X) = {R ⊆ X2 |
≤;R;≤ = R}. The full algebra of weakening relations on a poset X is

wk(X) = (W(X, ≤),∩,∪, ∅,�, ; , 1,∼)

where 1 = ≤ and ∼R = ¬R� is the complement-converse operation. The class
of representable weakening relation algebras is

RwkRA = SP{wk(X,≤) | (X,≤) is a poset}.

Weakening relations are the analogue of binary relations when the category
Set of sets and functions is replaced by the category Pos of partially ordered sets
and order-preserving functions. Since sets can be considered as discrete posets
(i.e. antichains, ordered by the identity relation), Pos contains Set as a full
subcategory, which implies that weakening relations are a substantial generali-
sation of binary relations. However, weakening relations do not allow ¬ or � as
operations.

They have applications in sequent calculi [2], quasi-proximity lattices/spaces
[19], order-enriched categories [10], mathematical morphology [21], and program
semantics, e.g. via separation logic [18].

The closely related algebras Wk(X) are defined as the expansions of wk(X)
by the Heyting implication R → S = {(x, y) | ∀u, v(u ≤ x & y ≤ v & uRv ⇒
uSv)}. The SP-closure of these algebras is denoted by RWkRA and has been
studied in [3,4,9,20,21]. It is a discriminator variety that has RRA as a proper
subvariety. The algebras in RWkRA are generalised bunched implication algebras,
and the algebras in RwkRA are all the subreducts of algebras in RWkRA, hence
RwkRA is a quasivariety. We show that it is not a variety, but with respect to
representability the two classes behave the same way.

In Sect. 2 we define a representation game for RwkRA (which can be extended
to a game for RWkRA) and use it to give an explicit universal axiomatisation
for the class. Section 3 defines (Kripke) frames for weakening relation algebras
and adapts the game to this setting. From an n-pebble version of this frame
game we define a sequence of classes wkRAn that approximate RwkRA from
above, similar to the sequence RAn that converges the RRA. In the next section
we find finite axiomatisation for wkRA2 and wkRA3. In Sect. 5 we define the
class of representable diagonal weakening relation algebras and show that is a
discriminator variety. Finally, in the last section we show that all associative
algebras in wkRA3 with 6 elements or fewer are representable.

2 Representation Game

In this section we present a representation game for weakening relation algebras
similar to those defined for relation algebras, defined in [8]. We begin by defining
some notation.

Definition 1. A bounded cyclic involutive unital distributive lattice-ordered
magma A = (A, ·,+,⊥,�, ; , 1,∼) is an algebra such that
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(1) (A, ·,+,⊥,�) is a bounded distributive lattice
(2) (s + t); (u + v) = s;u + s; v + t;u + t; v
(3) s;⊥ = ⊥ = ⊥;s
(4) s;1 = s = 1;s
(5) ∼(∼s) = s
(6) ∼(s · t) = ∼s + ∼t

for all s, t, u, v ∈ A. A representation of A is an injective homomorphism h : A →
wk(X) for some poset X = (X, ≤) such that h(�) is an equivalence relation on
X.

Note that s ≤ t if and only if s + t = t, or equivalently ∼s · ∼t = ∼t which
can be rewritten as ∼t ≤ ∼s, hence ∼ is order reversing. The adjective “cyclic”
is included in the name to contrast it to the non-cyclic general case where there
are two unary operations ∼,− in the language that satisfy ∼−s = s = −∼s. In
the cyclic case ∼,− have the same interpretation.

Distributive lattice-ordered magmas are abbreviated as d�-magmas. Let A
be a bounded cyclic involutive unital d�-magma. Additionally we define 0 = ∼1.

Definition 2. A network (for A) is a tuple N = (N,λ) where N is a set of
nodes and λ : N2 → ℘(A) is a labelling function such that for all x, y ∈ N ,
1 ∈ λ(x, x) and � ∈ λ(x, y). Such a network is consistent if and only if for all
x, y ∈ N we have that

λ(x, y) ∩ {∼a | a ∈ λ(y, x)} = ∅.

A network N = (N,λ) is a prenetwork of N ′ = (N ′, λ′) – denoted N ⊆ N ′ – if
and only if N ⊆ N ′ and for all x, y ∈ N we have λ(x, y) ⊆ λ′(x, y).

Observe that the prenetwork predicate is a partial order and that inconsis-
tency is inherited from prenetworks.

We now have the tools to define a two player game and prove that the exis-
tence of a winning strategy for one of the players coincides with A’s membership
in the class of RWkRA.

Definition 3. An n-round representation game, denoted Γn(A), for some n ≤
ω is a two player game played between the challenger ∀ (Abelard) and the
responder ∃ (Hélöıse) over n + 1 moves. After the ith move for 0 ≤ i ≤ n, ∃ will
return a network Ni such that N0 ⊆ N1 ⊆ ... ⊆ Nn. The game is won by ∀ if ∃
returns an inconsistent network. Otherwise ∃ wins.

On the initialisation move ∀ picks a pair of elements a � b ∈ A and ∃
must return a network N0 with some (x, y) ∈ N2

0 such that a ∈ λ(x, y) and
∼b ∈ λ(y, x).

On the ith move for 0 < i ≤ n, ∀ may challenge ∃ with any of the following
four moves.

join move: ∀ picks x, y ∈ Ni−1, some a ∈ λi−1(x, y), and some b, c ∈ A such
that a ≤ b + c. ∃ must return a Ni with b ∈ λi(x, y) or c ∈ λi(x, y).
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involution move: ∀ picks x, y ∈ Ni−1 and some a, b ∈ A such that b = ∼a.
∃ must return a Ni with a ∈ λi(x, y) or b ∈ λi(y, x).

composition move: ∀ picks x, y, z ∈ Ni−1 and a ∈ λi−1(x, y), b ∈ λi−1(y, z). ∃
must return a Ni with c ∈ λi(x, z) where c = a; b.

witness move: ∀ picks x, y ∈ Ni−1, a ∈ λi−1(x, y), and b, c ∈ A such that a =
b; c. ∃ must return a Ni with some z ∈ Ni such that b ∈ λi(x, z), c ∈ λi(z, y).

The proof for the following proposition is an outline. The argument is based
on [8].

Proposition 1. A is representable if and only if ∃ has a winning strategy for
Γω(A).

Proof. If A is representable, then ∃ can take some representation h over X. Let
a � b be the pair played on initialisation. There will exist some maximal X ′ ⊆ X
such that ∃x, y ∈ X ′ : (x, y) ∈ h(a)\h(b) and ∀z, w ∈ X ′ : (z, w) ∈ h(�). On
initialisation, ∃ can return the network N = (X ′, λ) where λ(x, y) = {c ∈ A |
(x, y) ∈ h(c)}. Because h preserves all the operations in the language, all moves
∀ may call are trivially responded to by returning the same network after every
move.

If A is countable then ∀ can schedule his moves in a way that every move will
be called eventually. Let N a,b

0 ,N a,b
1 ,N a,b

2 , ... be the networks during an ∃-winning
play of Γω(A) where ∀ scheduled his moves in such a way and the initialisation
move was called for the pair a � b. Define Na,b

ω as {x | ∃i < ω : j ≥ i ⇒ x ∈
Na,b

i }, λa,b
ω (x, y) as {c | ∃i < ω : j ≥ i ⇒ (x, y ∈ Na,b

j ∧ c ∈ λa,b
j (x, y))}, and a

relation ≡ as {(x, y) ∈ (Na,b
i )2 | 1 ∈ λa,b

ω (x, y), 1 ∈ λa,b
ω (y, x)}. It is symmetric

by definition, reflexive because networks are defined as having 1 ∈ λa,b
ω (x, x) and

transitive because all composition moves were called eventually and 1; 1 = 1.
Therefore, we can define ha,b : A → (

(Nω/≡)2
)

where for all c ∈ A we have
ha,b(c) = {([x]≡, [y]≡) | c ∈ λa,b

ω (x, y)}.
The reader can check that ha,b is a homomorphism (because all moves were

called eventually) for A, discriminating a � b (because of initialisation). Thus
let h(c) for all c ∈ A be the disjoint union

⊎
a�b∈A ha,b(c). Because h is a

homomorphism that discriminates all a � b pairs, it is a representation.
This generalises to uncountable algebras by the downward Löwenheim

Skolem Theorem since RWkRA is a pseudoelementary class. ��
Next we show that the existence of a winning strategy for ∃ can be expressed

by a universal first-order sentence. For this result we define the following con-
cepts.

Definition 4. A term network is a network N = (N,λ) where N is a finite set
of nodes and λ is a labelling function that maps every pair of nodes to a finite
set of terms. We also require that for all x, y ∈ N , 1 ∈ λ(x, x) and � ∈ λ(x, y).

For every term network N = (N,λ) we define a network N+,x,y,t = (N ∪
{y}, λ�) where x ∈ N, y ∈ N � {x+} (for some new node x+), t is a term in the
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language of RWkRA and for all z, w ∈ N � {x+}.

λ�(z, w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{1,�} if x+ = z = w

{�} if x+ = z �= w �= x or x+ = w �= z �= x,w �= y

{t,�} if z = x,w = y = x+

λ(z, w) ∪ {t} if z = x,w = y �= x+

λ(z, w) otherwise

For variables a, b we define two initial term networks below.

N 1,a,b =({x}, {(x, x) �→ {�, 1, a,∼b}})

N 2,a,b =({x, y}, {(x, x) �→ {�, 1}, (x, y) �→ {�, a},

(y, x) �→ {�,∼b}, (y, y) �→ {�, 1}})

Proposition 2. For every n < ω there exists a first-order formula σn that cor-
responds to ∃ having a winning strategy for Γn(A).

Proof. We show by induction that there exists a formula φn(N ) for every
0 ≤ n < ω, defined for a finite term network N , with all the variables uni-
versally quantified that signifies that the network can remain consistent for n
more moves of the representation game where ∃ plays conservatively, i.e., only
adds the requested labels. It is easy to see that she has a winning strategy for
the game if and only if she also has one for the conservative play.

In the base case, φ0(N ) defined below signifies consistency (remaining con-
sistent for zero moves)

φ0(N ) =
∧

x,y∈N

∧

t∈λ(x,y)

∧

t′∈λ(y,x)

t �= ∼t′.

In the induction case, we assume that φn(N ′), where N ′ is a term network
with all variables universally quantified, is both necessary and sufficient for N ′ to
be able to remain consistent for n moves. Then we show you can define φn+1(N )
that extends the assumption to n + 1 moves. Although we use a, b here, the
variable names should be unique when constructing these formulas.

φn+1(N ) =
∧

x,y∈N

∧

t∈λ(x,y)

∀a, b
(
t ≤ a + b =⇒ (φn(N+,x,y,a) ∨ φn(N+,x,y,b))

)

∧
∧

x,y∈N

∧

t∈λ(x,y)

∀a
(
φn(N+,x,y,a) ∨ φn(N+,y,x,∼a)

)

∧
∧

x,y,z∈N

∧

t∈λ(x,y)

∧

t′∈λ(y,z)

φn(N+,x,z,t;t′
)

∧
∧

x,y∈N

∧

t∈λ(x,y)

∀a, b
(
t = a; b =⇒

∨

z∈N�{x+}
φn

(
(N+,x,z,a)+,z,y,b

))
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We now have a formula φn(N ) for every 0 ≤ n < ω that ensures ∃ can keep
a universally quantified term network N consistent. Hence the formula

σn = ∀a, b (a � b =⇒ (φn(N 1,a,b) ∨ φn(N 2,a,b))

ensures that ∃ has a winning strategy for a conservative game of length n. ��
Corollary 3. Σ = {σ1, σ2, . . .} together with the axioms for cyclic distributive
involutive semirings is a recursively enumerable theory that axiomatises RWkRA.

3 Frames, Frame Games, and Finite Pebble Games

In this section we present finite algebras as frames, similar to Routley-Meyer
frames or relevance frames for relevance logic [1] and atom structures of atomic
relation algebras [12]. We then define a modified version of the representation
game that utilises frames.

Finally, we define an n-pebble versions of the frame game. Analogous to the
abstract classes of relation algebras RAω ⊆ . . . ⊆ RA3 ⊆ RA2, this gives rise to
classes of weakening relation algebras wkRAω ⊆ . . . ⊆ wkRA3 ⊆ wkRA2. Clearly
RAω,wkRAω are the classes of representable relation algebras and weakening
algebras, respectively. Furthermore, similarly to RA4, we say that wkRA4 is the
class of weakening relation algebras.

First, observe that the language of RwkRA does not include negation and
hence the lattice need not be Boolean. As we will see in Sect. 6, the smallest
representable non-Boolean algebra is a 4-element chain S4. Thus we cannot
present finite weakening relation algebras using atoms. Instead, we make use
of join-irreducibles.

Definition 5. A non-⊥ element a of a representable weakening relation algebra
is join-irreducible if and only if for all b, c if a = b + c then a = b or a = c. It is
join-prime if and only if for all b, c if a ≤ b + c then a ≤ b or a ≤ c.

Because · distributes over + we have that an element is join-irreducible if and
only if it is join-prime. In the finite case every algebra will have join-irreducibles
and every element is a join of join-irreducibles. (In general this is only true for
perfect algebras. In fact, by definition, a distributive lattice is join-perfect if
every element is a join of completely join-irreducible elements. This generalises
the concept of atomic for Boolean algebras).

The element a in the result below is called the join-irreducible label of (x, y).

Proposition 4. In a representation h of a finite representable weakening rela-
tion algebra A, for any pair (x, y) there exists a join-irreducible a ∈ A such
that

↑a = {s ∈ A | (x, y) ∈ h(s)}.
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Proof. A representation h maps joins to unions, hence the set {s | (x, y) ∈ h(s)}
is upward closed and if (x, y) ∈ h(a+ b) then it is also in h(a) or h(b). Hence the
base set of the representation is itself a union of upward closures of join-primes.
Now if it is above ↑a and ↑b then it must be the case that (y, x) is in neither
h(∼a) nor h(∼b) and thus (x, y) ∈ h(∼(∼a + ∼b)) = h(a · b). Thus the meet of
all such join-irreducibles must also be a non-⊥ element that is join-prime and
below all elements in the set. ��

Although the converse operation is not defined in our language, we can use
the following trick to define a useful unary operation on the join-irreducibles.

Definition 6. For every join-irreducible a in a finite algebra, define â =
∼∑

a�s s where
∑

is with respect to join (+).

The join
∑

s�t t, defined for all s in a finite algebra A, is usually denoted
κ(s). If we take s ≤ s′ ∈ A we have s � t ⇒ s′

� t and thus κ(s) ≤ κ(s′), hence
κ is order preserving. Because ∼ is order reversing and κ is order preserving we
have that ˆ is order reversing.

Proposition 5. In any finite bounded distributive involutive additive algebra A,
if a is a join-irreducible, so is â.

Proof. It is well known that κ(a) of a join-irreducible a in a lattice is meet
irreducible and because ∼ is order reversing, that means that â = ∼κ(a) is a
join-irreducible. ��
Proposition 6. If a pair (x, y) in a representation has the join-irreducible label
a, then (y, x) has label â. Moreover, ˆ̂a = a.

Proof. ∼s ∈ h(y, x) if and only if s /∈ h(x, y), i.e. a � s. Thus, by the argument
from Proposition 4 the join-irreducible label of (y, x) can be written as

∏
a�s ∼s

where
∏

is with respect to meet (·) and this is equivalent to ∼ ∑
a�s s by the

De Morgan equivalence. ��
Finally to characterise composition, we need to define a ternary predicate,

similar to the set of allowed triangles in relation algebras.

Definition 7. Let A be a finite bounded cyclic involutive unital d�-magma and
define a ternary relation R on the set of join-irreducibles of A by

R(a, b, c) if and only if a ≤ b; c.

For relation algebras with atoms a, b, c the Peircian triangle law says that

a ≤ b; c ⇐⇒ â ≤ ĉ; b̂ ⇐⇒ b ≤ a; ĉ ⇐⇒ b̂ ≤ c; â ⇐⇒ c ≤ b̂; a ⇐⇒ ĉ ≤ â; b.

As we will see in the next section, this law does not hold for the class of repre-
sentable weakening relation algebra frames. However, atom structures for rela-
tion algebras generalise to the weakening setting as follows.
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Definition 8. A relevance frame F = (F, I,≤, R, ˆ) is a structure with a carrier
set F , a unary predicate I, a partial order predicate ≤, a ternary predicate R,
and an order-reversing involution operation ˆ where for all a, b, c, d in F

(1) a ≤ b ⇔ ∃e : I(e) ∧ R(a, e, b)
(2) a ≤ b ⇔ ∃e : I(e) ∧ R(a, b, e)
(3) a ≤ b ∧ R(b, c, d) ⇒ R(a, c, d)
(4) b ≤ c ∧ R(a, b, d) ⇒ R(a, c, d)
(5) c ≤ d ∧ R(a, b, c) ⇒ R(a, b, d)

Proposition 7. A relevance frame F = (F, I,≤, R, ˆ) defines a bounded invo-
lutive unital d�-magma A = (A, ·,+,⊥,�, ; , 1,∼) by taking (F,≤) as the join-
irreducibles of the lattice with their partial order and for all s, t ∈ A

1 =
∑

I(a)

a, ∼s =
∑

â�s

a, s; t =
∑

b≤s,c≤t,R(a,b,c)

a

where a, b, c ∈ F .

Proof. A bounded distributive lattice can be defined by its join-irreducibles and
their ordering. To show that the magma is unital, we can see that no term
of the join defining the composition with the identity is above the identity by
Definition 8(1)(2) and because ≤ is reflexive, there will exist, for every join-
irreducible a term in the composition with the identity (on either side) equal to
that join-irreducible. Thus 1 is precisely the identity. Composition is additive by
definition. ∼ is an involution because a join-irreducible a ≤ ∼(∼s) if and only if
â � ∼s which is true if and only if a = ˆ̂a ≤ s. For the De Morgan equivalence,
a ≤ ∼(∼s + ∼t) if and only if â � ∼s + ∼t, or equivalently â � ∼s ∧ â � ∼t

which by definition is true if and only if a = ˆ̂a ≤ s and a = ˆ̂a ≤ t, or simply
a ≤ s · t. ��
Proposition 8. Every finite bounded cyclic involutive unital d�-magma has a
unique equivalent relevance frame.

Proof. Finite distributive lattices are determined by their poset of join-
irreducibles, and from Proposition 5 they have a unique ˆ defined on the join-
irreducibles. The mapping to R is unique as Definition 8(3)(4)(5) ensure that
R is downward closed in the first argument and upward closed in the other
arguments. ��
Proposition 9. For finite algebras and finite frames, the mappings described in
the previous two lemmas are inverses of each other.

Proof. Finite distributive lattices correspond uniquely to their posets of join-
irreducibles. The preservation of identity and the composition follow trivially
from the definition. For ∼, ˆ observe that ∼κ(a) = â � s if and only if ∼s �

κ(a) =
∑

a� t, or equivalently a ≤ ∼s. For the converse note that ∼κ(a) =
∑

b̂�κ(a) b =
∑

a≤b̂ b =
∑

b≤â b = â. ��
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Although we have defined these frames for finite algebras, we can say that
a possibly infinite algebra is frame-definable if it can be defined by a relevance
frame. In the context of relation algebras, this corresponds to complete and
atomic relation algebras. Similarly to that class, we will show that every non-
frame definable algebra embeds into a frame definable algebra with equivalent
representability.

Proposition 10. Let A be a bounded cyclic involutive unital d�-magma. Then
a frame F(A) can be defined by taking the carrier set of all prime filters U ⊆ A,
with U ≤ V if and only if V ⊆ U , Û = {∼s | s ∈ A\U}, I(U) ⇔ 1 ∈ U and
R(U, V,W ) if and only if for all v ∈ V,w ∈ W we have v;w ∈ U .

Proof. ≤ is clearly a partial order, for closure of ˆ note that A\U is a prime
ideal, so by the order reversing property of ∼, Û is a prime filter. Furthermore,
all the unitality conditions are trivially preserved and by U ′ ≤ U if and only if
U ⊆ U ′ we have downward closure of R in the first argument and upward closure
in the other two. ��
Proposition 11. A is representable if and only if the algebra defined by F(A)
is a representable weakening relation algebra. This algebra is called the canonical
extension of A.

Proof. Because A is a subalgebra of the algebra defined by F(A), we know that
the right to left implication is true. For the other direction, if A is representable,
every (x, y) will have a prime filter U such that (x, y) ∈ h(a) if and only if
a ∈ U to represent the lattice correctly. The prime filter defining (y, x) will be
exactly Û . The identity is also correctly represented as it is only above those
prime filters that include it. Finally for ; we have shown that it suffices for ∃ to
have a winning strategy for a game of any finite length. Thus at any point we
need to show that the compositions are correctly represented if and only if all
compositions finite meets are properly included in the relevant prime filter. ��
Definition 9. A frame network N = (N,λ) is defined for a frame
F = (F, I,≤, R, ˆ) with N being the set of nodes and λ : N2 → F
is the labelling function. The network is said to be consistent if and only
if for all x, y ∈ N we have λ(x, y) = λ̂(y, x) and for all x, y, z ∈ N we have
R(λ(x, y), λ(x, z), λ(z, y)).

We say for two frame networks N = (N,λ), N ′ = (N ′, λ′) that N ⊆ N ′

if and only if N ⊆ N ′ and λ = λ′ �N2 where � denotes the restriction of the
function to the domain in the subscript.

Definition 10. An infinite length frame game G(F) where F = (F, I,≤, R, ˆ)
is a relevance frame is defined for two players ∀ and ∃.

The game starts with ∀ picking a join-irreducible a and ∃ must return a frame
network N0 = (N0, λ0) such that there exists x, y ∈ N0 such that λ0(x, y) = a.

At the ith move for 0 < i < ω ∀ picks a pair x, y ∈ Ni−1 and a pair of
join-irreducibles a, b such that R(λ(x, y), a, b) and for all a′ ≤ a, b′ ≤ b ∈ Ni−1 if
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R(λ(x, y), a′, b′) then a = a′ and b = b′. ∃ must return a network Ni = (Ni, λi)
such that Ni−1 ⊆ Ni and ∃z ∈ Ni such that λ(x, z) = a, λ(z, y) = b.

∀ wins if and only if ∃ returns an inconsistent network at any point in the
game.

Proposition 12. ∃ has a winning strategy for G(F(A)) if and only if she has
a winning strategy for Γω(A).

Proof. It suffices to prove that she has a winning strategy for the play where all
moves are called eventually. Thus if she has a winning strategy for Γω(A), we
know that the limit network will have the relevant prime filters as labels. Thus
if a is the initial join-irreducible ∃ can map all her moves from the limit network
of the play where the initialisation pair was a � κ(a).

For the converse, assume she has a winning strategy for G(F(A)). To respond
to the initialisation move with s � t there will exist a join-irreducible a such
that a ≤ s but a � t or rather t ≤ κ(a) so returning the initial network for a
will ensure that a ≤ s and â ≤ t̃. Any witness move called can be responded to
by minimal join-irreducible pairs, which makes any other witness moves called
by ∀ redundant. ��

We now define for every 2 ≤ n ≤ ω the n-pebble equivalent version of the
frame game as follows.

Definition 11. The n-pebble infinite move game Gn(F) for a frame F is defined
exactly as G(F), except before ∀ calls a witness move, he takes N ′ ⊆ Ni−1 such
that |N ′| ≤ n and then proceeds to call the witness move.

In particular, the frame game G is equivalent to Gω. Next we define wkRAn

and wkRA analogous to RAn, the variety of all n-dimensional relation algebras,
and RA, the variety of all (4-dimensional) relation algebras [8,13].

Definition 12. The class wkRAn is the class of all bounded cyclic involutive
unital d�-magmas A for which ∃ has a winning strategy for Gn(F(A)). The
class of weakening relation algebras wkRA is defined as wkRA4.

It follows that wkRAω is equivalent to RwkRA and wkRAω ⊆ . . . ⊆ wkRA4 ⊆
wkRA3 ⊆ wkRA2.

4 Axiomatisation of the Abstract Classes

In this section we provide finite axiomatisations for wkRA2 and wkRA3. We leave
open the problem of whether, similarly to RA4 the axiomatisation for wkRA4

consists of axioms of wkRA3 and associativity of ;.
We begin by axiomatising wkRA2. This will be done using the axiomatisation

of bounded cyclic involutive unital d�-magmas together with the theory Φ2,
defined below.
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Definition 13. Let Φ2 be the first order theory given by the following
quasiequations:

(1) s · ∼s ≤ 0
(2) s ≤ t ⇔ s;∼t · 1 ≤ 0
(3) s ≤ t;u ∧ s;t ≤ ∼u ⇒ s · 1 ≤ 0
(4) s ≤ t;u ∧ u;s ≤ ∼t ⇒ s · 1 ≤ 0
(5) s ≤ t;u ∧ (s · 1 · t;v) + (1 · s · ∼v;u) ≤ 0 ⇒ s · 1 ≤ 0

Before we prove the soundness and completeness, we introduce a ternary
predicate for the language of frames Rmin from the equivalence below.

Rmin(a, b, c) ⇔ R(a, b, c) ∧ ∀b′, c′ : (R(a, b′, c′) ∧ b′ ≤ b ∧ c′ ≤ c ⇒ b′ = b ∧ c′ = c)

Note that since the union of a chain of prime filters is again a prime filter, frames
of the form F(A) have the property that R(a, b, c) can be refined to Rmin(a, b′, c′)
for some prime filters b′ ≤ b and c′ ≤ c.

Lemma 13. Let A be a bounded cyclic involutive unital d�-magma. A |= Φ2 if
and only if F(A) satisfies

(1) ∀a∃b : I(b) ∧ b̂ = b ∧ R(b, a, â)
(2) ∀a, b : I(a) ∧ â = a ∧ R(a, b, b̂) ⇒ R(b, a, b)
(3) ∀a, b : I(a) ∧ â = a ∧ R(a, b, b̂) ⇒ R(b̂, b̂, a)
(4) ∀a, b, c : I(a) ∧ â = a ∧ Rmin(a, b, c) ⇒ b = ĉ

Proof. For the left to right implication, observe that for any join-irreducible a,
we know that a � κ(a) so (a; ∼κ(a) · 1) � 0 by Φ2(2). Thus there must exist
a join-irreducible b ≤ 1, b � 0, b ≤ a;â. Suppose b �= b̂. Then there would exist

some b ≤ s, b̂ � s. Because ˆ̂
b = b we know that b ≤ ∼s and thus b ≤ s · ∼s ≤ 0,

contradicting Φ2(1) and we have proven (1) follows from Φ2. For (2) assume we
have a ≤ 1, â = a then a � ∼1 = 0. Thus a = a · 1 � 0 and a ≤ b;∼κ(b) implies
a;b � ∼∼κ(b) or simply a ≤ a;b. By a similar argument we get (3). Finally if
a ≤ b;c and a = a ·1 ≤ b;c ·1 � 0 we have b � ∼c. We also have that a ·1 = a � 0
and a ≤ b;c so a · κ(b);c � 0 or a · b;b̂ � 0. In the former case that means that
κ(b);c � 0 and thus κ(b) ≤ ∼c or c ≤ b̂ and we are done. In the latter case
it means that there exists a join-irreducible a′ ≤ a such that a � 0 and thus
a′ = â′ as well as a′ ≤ b; b̂ ≤ b; c by monotinicity. Because a′ ≤ a ≤ â′ = a′ we
have a = a′ and by minimality b̂ = c.

For the right to left implication note that if s ·∼s � 0 then there exists some
a ≤ s · ∼s not below 0. Thus â ≤ 1 and we know there exists a join-irreducible
b = b̂, b ≤ a; â ≤ (s·∼s);1 = s·∼s and that contradicts b = b̂. Assume s � t. That
is true if there exists a join-irreducible a such that a ≤ s, â ≤ ∼t. Thus there
exists a join-irreducible b = b · 1 � 0 below 1 · a; â ≤ 1 · s;∼t and we conclude
1 · s;∼t � 0. If 1 · s;∼t � 0 then there exist join-irreducibles a, b, c such that
I(a), a = â, b ≤ s, c ≤ ∼t and b, c also being minimal and hence b̂ = c. Therefore
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b̂ ≤ ∼t or simply s � t. s·1 � 0∧s ≤ t;u ⇒ s;t � ∼u follows directly from (2) and
its dual directly from (3). Finally s·1 � 0 and s ≤ t;u iff there exist some a, b, c in
the corresponding frame such that a ≤ s · 1, b ≤ t, c ≤ u, I(a), â = a,Rmin(a, b, c)
and thus b̂ = c by (4). Observe that for every v either b ≤ v or b̂ ≤ ∼v and thus
a ≤ t; v or a ≤ ∼v;u and the join of the two terms is not below 0. ��
Theorem 14. wkRA2 is axiomatised by the basic axioms for bounded cyclic
involutive unital d�-magmas and Φ2.

Proof. By Lemma 13 this axiomatisation is equivalent to the frame conditions,
enumerated (1)–(4). First we show these are sound for the two pebble game.
If there existed a join-irreducible a with no b, I(b), b̂ = b with R(b, a, â), then
∀ would win on initialisation with a because if λ(x, y) = a, no consistent b
would exist for λ(x, x). We show (4) next. If this didn’t hold for some a, b, c
then ∀ could start by asking a on initial move. By order reversing of ˆ and the
identity, a is the only join-irreducible to be set as λ(x, x) where λ(x, y) = a. For
the second move, ∀ calls the witness b; c on (x, x) and we get an inconsistency
because b �= ĉ. For (2) and (3) see that if R(a, b, b̂) we have Rmin(a, b, b̂) by order
reversing properties of ˆ and (4). Thus if ∀ again starts by forcing λ(x, x) = a

then calling the witness b; b̂ then both R(b, a, b), R(b̂, b̂, a) must hold to keep the
network consistent.

To show completeness, it suffices to say that ∃ can respond to any initialisa-
tion with a by returning a network with two nodes x, y with λ(x, y) = a, λ(y, x) =
â and by (1) there exists a b for a and b′ for â to be set as λ(x, x) and λ(y, y)
respectively and by (2)(3) all other triangles are also consistent. A witness move
can only be called on a reflexive node (x, x) and that means that by (2)(3)(4)
any witness will be consistent and by the same reasoning as with initialisation,
∃ can put a label on λ(y, y) and keep the network consistent. ��

In order to axiomatise wkRA3 we only need to add two well known axioms as
well as a set of quasiequations. The first axiom is called rotation for involutive
semirings and the second one was found by Maddux in [15] as an axiom that
holds for binary relations, but not for relevance logic frames.

Definition 14. Let Φ3 be the first order theory containing all the formulas in
Φ2 as well as

(1) s; t ≤ ∼u ⇒ t;u ≤ ∼s
(2) s · t;u ≤ ((s;v) · t);u + t;(u · ∼v)
(3) 1 · ∼s′;s · t;∼t′ ≤ 0 ⇒ s;t ≤ (s · s′);t + s;(t · t′)
(4) 1 · s · 0 = ⊥ ⇒ (s · 1);(t;u) ≤ ((s · 1);t);u
(5) 1 · u · 0 = ⊥ ⇒ (s;t);(u · 1) ≤ s;(t;(u · 1))

Lemma 15. Let A be a bounded cyclic involutive unital d�-magma. A |= Φ3 if
and only if for F(A) all the formulas from Lemma 13 hold as well as

(1) ∀a, b, c : Rmin(a, b, c) ⇒ R(b, a, ĉ)
(2) ∀a, b, c : R(a, b̂, ĉ) ⇒ R(b, ĉ, â)
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(3) ∀a, b, c : Rmin(a, b, c) ⇒ ∃d : d = d̂ ∧ I(d) ∧ R(d, b̂, b) ∧ R(d, c, ĉ)
(4) ∀a, b, c, d : d = d̂ ∧ I(d) ∧ R(a, d, a) ∧ Rmin(a, b, c) ⇒ R(b, d, b)
(5) ∀a, b, c, d : d = d̂ ∧ I(d) ∧ R(a, a, d) ∧ Rmin(a, b, c) ⇒ R(c, c, d)

Proof. For the left to right implication of (1) if a, b, c are join-irreducibles with
a ≤ b;c as well as the minimality condition for b, c then see that a = a · b;c ≤
(a;ĉ · b);c + b;(c · κ(c)). c · κ(c) is strictly below c and due to minimality of
b, c for this composition a � b;(c · κ(c)). Thus a ≤ (a;ĉ · b);c and again by
minimality a;ĉ · b = b or simply R(b, a, ĉ). For (2) observe that a � b̂; ĉ is the
same as ∼κ(b);∼κ(c) ≤ κ(a) and by rotate we get ∼κ(c);∼κ(a) ≤ κ(b) and
∼κ(a);∼κ(b) ≤ κ(c) so R(a, b̂, ĉ), R(b, ĉ, â), R(c, â, b̂) are equivalent. For (3) if
Rmin(a, b, c) then we know b;c � (b·κ(b));c+b;(c·κ(b)) and thus 1·∼s′;s·t;∼t′ � 0
and we can find a d satisfying I(d), d̂ = d,R(d, b̂, b), R(d, c, ĉ). For (4) see that
1 · d · 0 = ⊥ and thus a ≤ d;a ≤ d;(b;c) ≤ (d;b);c. By minimality b = d;b. By a
similar argument we get (5).

For the right to left implication, if s;t ≤ ∼u observe that for all join-
irreducibles a, b, c such that a ≤ s, b ≤ t, c ≤ u we have a;b ≤ κ(ĉ) and thus
¬R(ĉ, a, b) and by (2) we have ¬R(â, b, c) and thus b;c ≤ κ(â) = ∼a. If for all
join-irreducibles a, b, c below s, t, u respectively that holds then t;u ≤ ∼s. To
show s · t;u ≤ ((s;v) · t);u + t;(u · ∼v) take any a ≤ s · t;u and some minimal b, c
witnessing the t;u composition. Then all v will either have c ≤ ∼v or ĉ ≤ v, in
either case the term is above a by monotonicity. Finally if s;t � (s · s′);t · s;(t · t′)
it means that s;t is non-empty and as such there exists some a ≤ s;t and some
Rmin(a, b, c) and as such b � s′ and c � t′ and thus b̂; b ≤ ∼s′;s and c;ĉ ≤ t;∼t′

and there exists a d � 0 such that d ≤ 1 ·∼s′;s · t;∼t′ and therefore the term can-
not be below 0. Take any join-irreducible a ≤ (s · 1); t;u. There will exist a self-ˆ
join-irreducible d ≤ s·1 such that d ≤ d; a and a minimal b, c below t, u such that
a ≤ b; c and so we have by (4) b ≤ d; b and thus a ≤ b;c ≤ (d;b);c ≤ ((s · 1);t);u.
The dual is shown similarly from (5). ��
Theorem 16. wkRA3 is axiomatised by the basic axioms for bounded cyclic
involutive unital d�-magmas and Φ3.

Proof. First we show that all the formulas from Lemma 15 are sound. If we
have a, b, c such that Rmin(a, b, c) then ∀ calls a on initialisation and calls the
witness Rmin(a, b, c) on the λ(x, y) = a and ∃ must return such a network where
λ(x, z) = a, λ(y, z) = ĉ so R(b, a, ĉ) must hold for consistency and we have
(1). For (2) assume without loss that we have R(a, b̂, ĉ) so there must be some
minimal b̂′ ≤ b̂, ĉ′ ≤ ĉ to call the witness on the initial pair a. Observe that for
consistency b ≤ b′ ≤ ĉ′; â ≤ ĉ; â by monotonicity. For (3) if ∀ initialises with a
and calls the b, c witness, ∃ needs a join-irreducible d to put on the reflexive edge
of the added node.

From Lemma 13, Theorem 16 we have that ∃ can survive the initial move
and we only need to examine the two possible witness moves, that on a non-
reflexive edge in a two-node network and that on a reflexive edge. If a witness
move Rmin(a, b, c) is called on a non-reflexive edge (x, y), check that all Peircian
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transformations of this triangle hold. By (1) we have R(b, a, ĉ) and through (2)
we get R(b̂, c, â), R(ĉ, â, b) from R(a, b, c) and R(â, ĉ, b̂), R(c, b̂, a) from R(b, a, ĉ).
For the reflexive edge on (z, z) you can see that ∃ can add λ(z, z) = d from
(3) and by similar reasoning to Theorem 16 all triangles including (z, z) are
consistent. Finally let λ(x, x) = d. By (4) R(b, d, b) and by (2) R(d̂ = d, b, b̂).
The consistency of other triangles follows from formulas in Lemma 13. Similarly
we get consistency for λ(y, y). For the reflexive witness Rmin(d, a, â) on (x, x)
observe due to order reversing of ˆ, ∃ can either find a join-irreducible c such
that Rmin(λ(x, y), a, c) or Rmin(λ(y, x), c, â) and ∃ can use the same strategy as
for the non-reflexive witness move. ��

To axiomatise the class wkRA = wkRA4 we would at least need to add associa-
tivity for composition. For RA, it is precisely the axioms for RA3 and composition
that axiomatise RA4, however, whether this also holds for wkRA remains open.

Problem 17. What axioms are necessary to axiomatise wkRA? Is it finitely
axiomatisable?

Problem 18. Let n > 4. RAn is not finitely axiomatisable [8]. Is the same true
for wkRAn?

5 Representable Diagonal Weakening Relation Algebras
Form a Discriminator Variety

In this section we define representable diagonal weakening relation algebras as
those relation algebras where 1 can be represented as an antichain. Thus in this
section when we talk about the concrete binary relation 1, we mean the diagonal
on X. The algebras with this property are the members of RwkRA that satisfy
the identity 1 · 0 = ⊥.

We show that the simple representable diagonal relation algebras have a
discriminator term. A neat consequence is that, unlike representable weaken-
ing relation algebras, representable diagonal weakening relation algebras can be
defined by an equational theory.

Lemma 19. For all R ⊆ X2 we have 1 · (R;(R ·∼R)
)

= ⊥ = 1 · (∼R;(R ·∼R)
)
.

Proof. Suppose there exists (x, x′) ∈ 1 · (R;(R · ∼R)). Because (x, x′) ∈ 1 we
have x = x′. Thus there must exist a y to witness the composition by having
(x, y) ∈ R, (y, x) ∈ R · ∼R. This means that (x, y) ∈ R and (y, x) ∈ ∼R and we
have reached a contradiction.

The second equation can be proven by a similar argument or by substitution
of R with ∼R, the involution law, and the commutativity of meet. ��
Let d1(R,S) = 1 · (

R;(S · ∼S)
)

and d2(R,S) = 1 · (∼S;(R · ∼S)
)
.

Lemma 20. If R\S �= ∅ for R,S ⊆ X2 then d1(R,S) + d2(R,S) �= ⊥.
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Proof. Assume (x, y) ∈ R\S and consider the two cases, (y, x) ∈ S and (y, x) /∈
S. In the first case, because (x, y) /∈ S we also have (y, x) ∈ ∼S and consequently
(y, x) ∈ S · ∼S. Hence (x, x) ∈ R;(S · ∼S) and also by definition in 1 and thus
(x, x) ∈ d1(R,S).

In the second case (y, x) /∈ S and therefore (x, y) ∈ ∼S. Because (x, y) /∈ S,
(y, x) /∈ ∼S. By composition (y, y) ∈ ∼S; (R ·∼S) and by reflexivity of 1 we also
have (y, y) ∈ 1 · (∼S;(R · ∼S)

)
.

In either case we have that at least one of d1(R,S), d2(R,S) is nonempty and
thus their join is always nonempty given R\S �= ∅. ��
Theorem 21. Simple diagonal weakening relation algebras have a term d(a, b, c)
such that d(a, b, c) = c if a = b and d(a, b, c) = a otherwise.

Proof. It is easy to see that in simple weakening relation algebras �; s;� =
� if s �= ⊥ and �; s;� = ⊥ otherwise. By the lemmas above, we have for
representable simple algebras that a = b if and only d1 + d2 = ⊥, where di =
di(a, b) + di(b, a) for i = 1, 2. Thus d(a, b, c) = �; (d1 + d2);� · a + ∼(�; (d1 +
d2);�) · c will equal to c if a = b and a otherwise. ��
Corollary 22. Representable diagonal weakening relation algebras form a dis-
criminator variety.

Proof. The representation game defined for weakening relation algebras only
needs an additional move where ∃ is requested add 1 to λ(y, x) if 1 ∈ λ(x, y) and
this game gives rise to a similar style of a recursive axiomatisation as presented
in Proposition 2. If all variables are given unique names, the universal quantifiers
can also be moved to the begining of all these formulas. Observe that although
these formulas apply to all algebras, the game is played on the homomorphic
image of the algebra where � maps to �; a;� where σn = s � t ⇒ (φn(N 1,s,t)∨
φn(N 2,s,t)). Thus we can construct a term from any universally quantified first
order formula that is equal to �; a;� if and only if the formula is true and ⊥
otherwise. For equations t = t′ we take �; a;� · ∼d(t, t′,�; a;�). If a term t
corresponds to a formula, then ∼t · �; a;� corresponds to its negation and for
disjunctions we can take the join of the corresponding terms. Thus every formula
σn has an equivalent equation. ��

6 Representing Associative Members of wkRA3

with Weakening Relations

Sugihara monoids are commutative distributive idempotent involutive residuated
lattices. This variety is semilinear, i.e., generated by linearly ordered algebras,
and the structure of these algebras is well known. In particular, the Sugihara
monoid Sn is a chain with n elements {a−k, a−k+1, . . . , a−1, a0, a1, . . . , ak−1, ak}
if n = 2k + 1 is odd, and otherwise for even n, Sn = Sn+1\{a0}. The involution
operation is given by ∼ai = a−i and the multiplication is ai;aj = a−max |i|,|j|. It
follows that in the odd case the identity element is 1 = a0 and in the even case
it is 1 = a1.
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Note that S2 is the 2-element Boolean algebra and that for even n, there is
a surjective homomorphism from Sn to Sn−1 that identifies a1 and a−1.

It is proved in [14] that the even Sugihara chains can be represented by
algebras of weakening relations. For S2 this is clear since S2

∼= Rel(1). For S4 an
infinite base set is needed with a dense order. E.g., we can take (Q,≤) be the
poset of rational numbers with the standard order and check that S4

∼= {∅, <,≤
, Q2} is a representation in Wk(Q,≤).

It follows from the consistency of networks that no nontrivial member of
wkRA2 has an element that satisfies a = ∼a. Hence any finite member of wkRA
has an even number of elements. In particular, the odd Sugihara chains do not
have a representation by weakening relations. However they are in the variety
generated by all algebras of weakening relations since they are homomorphic
images of even Sugihara chains. This shows that RwkRA is not closed under
homomorphic images, so it is a proper quasivariety.

Let 2 = {0, 1} be the two element chain with 0 < 1. The algebra wk(2) is
shown in Fig. 2, and it has the following six elements: ∅, {(0, 1)}, {(0, 0), (0, 1)},
{(0, 1), (1, 1)}, ≤, 2 × 2.

The point algebra P shown in Fig. 1 (see also [7]) is a representable rela-
tion algebra with 3 atoms idQ, <,> where < is the strict order on the ratio-
nal numbers Q. It has two weakening subalgebras: S4 = {∅, <,≤,�} and
W6,1 = {∅, idQ, <,≤, <∪>,�}. Like the point algebra, both of these algebras
can only be represented on an infinite set. Note that W6,1 is diagonally repre-
sentable, while S4 is not.

idQ >

≥

∅
P

<

<∪>≤
= Q

2

∅
S4

<

≤ = ∼<

= Q
2

idQ

∅
W6,1

< = ∼≤

<∪> = ∼idQ≤
= Q

2

Fig. 1. The point algebra P, the weakening subalgebra S4 and the diagonally repre-
sentable weakening subalgebra W6,1.

Since wkRA3 is finitely axiomatised, one can use a model finder such as
Mace4 [16] to compute all members of cardinality n for small values of n. Up to
isomorphism there are 14 algebras with 6 elements or fewer in wkRA3 such that
; is associative, shown in Fig. 2. We now briefly describe their representations by
weakening relations.

The first 5 are symmetric representable relation algebras, hence they are
diagonally representable weakening relation algebras.

As mentioned above, the Sugihara algebra S4 and the algebra W6,1 are
representable as subalgebras of the ∼-reduct of the point algebra (Fig. 1). The
algebra W6,2 is representable as ∼-subreduct of the complex algebra of Z7, where
the element a = {1, 2, 4} and 1 = {0}.
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Fig. 2. All algebras in wkRA4 up to 6 elements. Black nodes denote idempotent ele-
ments (x;x = x) and 02 = 0;0.

W6,3 is subdirectly embedded in a direct product of two copies of S4, hence
it is representable over the union of two disjoint copies of Q.

Similarly W6,4 is represented over X = ({0} × Q) ∪ ({1} × Q) with order
(i, p) ≤ (j, q) ⇐⇒ p < q or p = q, i = j. The identity 1 maps to ≤ and the
element a maps to the relation {((i, p), (i, q)) | i = 0, 1, p < q}.

The representation of W6,5 requires the union of {i} × Q for i ∈ {0, 1, 2}.
The partial order ≤ is defined in the same way and a is mapped to the relation
{((i, p), (i, q)) | i = 0, 1, 2, p < q}.

Finally W6,6 is represented over X = ({0} × Q) ∪ ({1} × Q) with order
(i, p) ≤ (j, q) ⇐⇒ i = j and p ≤ q. The identity 1 maps to ≤ and the element
a maps to the relation {((i, p), (i, q)) | i = 0, 1, p < q}.

We gratefully acknowledge a very useful conversation with Roger Maddux
regarding relevance frames, relevance logic and its connections with relation
algebras. In particular, formulas (3.101), (3.102) in [15] provided key insights
into the axiomatisation of wkRA3.
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Abstract. Kleene Algebra (KA) is the algebra of regular expressions.
Central to the study of KA is Kozen’s (1994) completeness result, which
says that any equivalence valid in the language model of KA follows from
the axioms ofKA.Also of interest is thefinitemodel property (FMP),which
says that false equivalences always have a finite counterexample. Palka
(2005) showed that, for KA, the FMP is equivalent to completeness.

We provide a unified and elementary proof of both properties. In con-
trast with earlier completeness proofs, this proof does not rely on mini-
mality or bisimilarity techniques for deterministic automata. Instead, our
approach avoids deterministic automata altogether, and uses Antimirov’s
derivatives and the well-known transition monoid construction.

Our results are fully verified in the Coq proof assistant.

1 Introduction

Kleene Algebra (KA) [10,18] provides an algebraic perspective on the equiva-
lence of regular expressions. It is the foundation for Kleene Algebra with Tests
(KAT) [9,19,20,24], which has been applied to reason about equivalence of pro-
grams in general [22,25], and programming languages such as NetKAT [1,34].

Central to Kleene Algebra and its extensions is the completeness property,
which says that every equivalence valid in the language model can be proved
using the laws of KA. Salomaa showed an important precursor to this result [32],
and other authors [6,10,13,26] have studied alternative axiomatizations.

The axiomatization most commonly used today is due to Kozen [18], and has
the advantage of being algebraic, i.e., it allows one to define a “Kleene algebra”
as a model that may verify or falsify equations. A number of alternative proofs
of the same result have been proposed [12,14,21,23]; notably, it was shown that
one of the quasi-equations can be dropped from Kozen’s axioms [12,23].

Another phenomenon of interest is the finite model property (FMP) [5]. For
KA, the FMP states that any invalid equivalence is witnessed by some finite
Kleene algebra where it does not hold—contrapositively, equivalences valid in
any finite Kleene algebra are also valid in any (possibly infinite) Kleene algebra.
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Palka [29] showed that the FMP is a consequence of completeness for KA,
and moreover that completeness can be recovered if one assumes the FMP. This
equivalence raises a question: can we provide an elementary proof of the FMP
for KA, i.e., one that does not rely on completeness? Indeed, Palka writes that
“an independent proof of [the FMP] would provide a quite different proof of the
Kozen completeness theorem, based on purely logical tools” [29].

Our main contribution is a positive answer to this question, providing a proof
of the FMP for KA. More specifically, our argument weaves together considera-
tions from Palka’s proof as well as classical facts from automata theory, in such
a way that both the FMP and completeness can be concluded.

In contrast with earlier completeness proofs, our method does not center on
minimality [18], bisimilarity [14,23] or the construction of a cyclic proof sys-
tem [12]. Instead, we rely purely on the fact that KA allows one to find least
solutions to linear systems [3,10,19], or in our case, to automata. The argu-
ments towards our main result exploit this property in concert with various ideas
around automata, such as the transition monoid [27], and Antimirov’s construc-
tion [2], eventually building a particular finite Kleene algebra with sufficient
structure to conclude both completeness and the finite model property.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the context, and defines fundamental notions. Section 3 recalls
the notion of solutions to an automaton, a technique that will be leveraged
repeatedly. Sections 4 and 5 provide an algebraic perspective on transformation
automata [27], and Antimirov’s construction [2] respectively. Section 6 shows
how to construct a particularly useful Kleene algebra, and Sect. 7 shows how
to conclude completeness and the FMP using the notions discussed up to that
point. Section 8 concludes with some discussion and suggestions for future work.

To save space, proofs of auxiliary facts appear in the full version [15]. Our
formalization of the proofs in Coq is available online [16].

2 Overview

Our primary objects of study are Kleene algebras. The equations that hold in a
Kleene algebra correspond well to properties expected of program composition,
which makes them a suitable semantic domain for programs.
Definition 2.1. A (weak1) Kleene algebra (KA) is a tuple (K,+, ·, ∗, 0, 1),
where K is a set (the carrier), + and · are binary operators on K, ∗ is a
unary operator on K, and 0, 1 ∈ K are constants, satisfying the following for all
x, y, z ∈ K:

x + 0 = x x + x = x x + y = y + x x + (y + z) = (x + y) + z

x · (y · z) = (x · y) · z x · (y + z) = x · y + x · z (x + y) · z = x · z + y · z

x·1 = x = 1·x x·0 = 0 = 0·x 1+x·x∗ = x∗ x+y ·z ≤ z =⇒ y∗ ·x ≤ z

1 This is a “weak” KA in the sense that it does not require the right-unrolling and
right-fixpoint laws from [19]. As it turns out, this does not change the equational
theory [12,23]. For the sake of brevity, we omit “weak” in the remainder of this paper.
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Here, we use ≤ to denote the natural order induced by +, that is, x ≤ y if and
only if x+y = y; it is straightforward to verify that this makes ≤ a partial order
on K, and that all operators are monotone w.r.t. this order.

We often denote a generic KA (K,+, ·, ∗, 0, 1) by its carrier K, and simply
write +, ·, etc. for the operators and constants when there is no risk of ambiguity.

Typically, the additive operator + is used to implement nondeterministic
composition, the multiplicative operator · corresponds to sequential composi-
tion, the Kleene star operator ∗ implements iteration, 0 represents a program
that fails immediately, and 1 is the program that does nothing and terminates
successfully. The equations of KA correspond well to what might be expected
of such operators on programs—for instance, and iteration is characterized as a
least fixpoint.

One very natural instance of Kleene algebras, which we will connect to the
interpretation of programs shortly, is given by the relational model.

Example 2.2 (KA of relations). Let X be a set. The set of relations on X, i.e.,
P(X × X), can be equipped with a KA RX = (P(X × X),∪, ◦, ∗, ∅, idX), in
which ◦ is relational composition; ∗ is the reflexive-transitive closure operator
on relations; and idX is the diagonal or identity relation on X given by {(x, x) :
x ∈ X}.

When interpreting programs in RX , we think of the relations on X as a way
of representing how a program may transform the machine states represented
by X. To make this more precise, we need a syntax and semantics for programs.

Definition 2.3 (Expressions). We fix a set of actions Σ = {a, b, c, . . . } called
the alphabet. The set of regular expressions E is given by

e, f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e∗

Given a KA K and a function h : Σ → K, we can define ̂h : E → K inductively:

̂h(0) = 0 ̂h(a) = h(a) ̂h(e · f) = ̂h(e) · ̂h(f)
̂h(1) = 1 ̂h(e + f) = ̂h(e) + ̂h(f) ̂h(e∗) = ̂h(e)∗

Example 2.4. Consider a programming language with integer variables Var =
{x, y, . . . }, and statements Σ comprised of (for all x, y ∈ Var, n ∈ N and v ∈
Var∪N) assignments x ← n, increments x ← x+v, and comparisons x < y, x ≥ y.

The state of the machine is defined by the value of each variable, and so we
choose S = {σ : Var → N} as the state space. The semantics of the actions are
relations that represent their effect, i.e., we define h : Σ → P(S × S) by

h(x ← n) = {(σ, σ[n/x]) : σ ∈ S}
h(x ← x+ n) = {(σ, σ[σ(x) + n/x]) : σ ∈ S}
h(x ← x+ y) = {(σ, σ[σ(x) + σ(y)/x]) : σ ∈ S}

h(x < y) = {(σ, σ) : σ ∈ S, σ(x) < σ(y)}
h(x ≥ y) = {(σ, σ) : σ ∈ S, σ(x) ≥ σ(y)}
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Here, σ[n/x] is denotes the function that assigns n to x, and σ(y) to all y �= x.
This gives us a semantics ̂h : E → P(S × S) for regular expressions over Σ,

and allows us to express and interpret programs like the following:

x ← 1 · y ← 0 · i ← 0 · (i < n · y ← y+x · x ← x+2 · i ← i+1)∗ · (i ≥ n)

which will compute the square of n and store it in y.

Of course, one can build more involved programming languages based on KA;
one elaborate and well-studied instance is NetKAT [1], a programming language
for specifying and reasoning about software-defined networks.

Let e, f ∈ E. When ̂h(e) = ̂h(f) for all h : Σ → K, we write K |= e = f . If C
is a class of KAs and K |= e = f for each KA K in C, then we write C |= e = f .
We use ≡ for the smallest congruence on E that satisfies the axioms of KA, and
use e � f as shorthand for e + f ≡ f . One can show that all operators are
monotone w.r.t. the preorder �, and that e � f and f � e together imply e ≡ f .

We use [φ] for some logical condition φ to denote 1 ∈ E when φ holds, and
0 ∈ E otherwise. We also use the familiar

∑

notation to generalize +. The empty
sum is defined to be 0, the unit of +. Note that the sum notation is well-defined
up to ≡, because + is associative, commutative and idempotent in any KA.

The following is a standard fact of universal algebra—see, e.g., [8].

Lemma 2.5. Let e, f ∈ E. We have e ≡ f iff K |= e = f for all KAs K.

Given that KA provides such a suitable semantic domain, can we characterize
the equational theory of KA, i.e., the equations valid in all models (programming
languages) captured by ≡, as the equations that hold for a particular model or
class of models? Conversely, can we guarantee any properties of countermodels
(pathological programming languages) that witness invalid equations?

Kozen [19] answered these questions by showing that the valid equations of
KA are characterized by the language model. Intuitively, this model assigns to
each expression the set of possible sequences of actions that may be executed by
the program it represents. We will now make this more precise.

A word is a finite sequence of actions a1 · · · an; the empty word (with no
letters) is denoted ε. We write Σ∗ for the set of words, and denote its elements by
w, x, y, . . . . We can concatenate words by juxtaposing them, i.e., if w = a1 · · · an

and x = b1 · · · bm, then wx is the word given by a1 · · · anb1 · · · bm.
A set of words L,K,M, . . . is called a language. We can combine languages

as one would combine sets (e.g., by taking their union). The concatenation of
words can also be lifted to languages in a pointwise manner, writing L ·K for the
set {wx : w ∈ L, x ∈ K}. Finally, the Kleene star of a language L, denoted L∗,
is the set {w1 · · · wn : w1, . . . , wn ∈ L}. Note that L∗ includes the empty word.

Definition 2.6. The KA of languages L is given by (P(Σ∗),∪, ·, ∗, ∅, {ε}),
where · is language concatenation, and ∗ is the Kleene star of a language as
above. We furthermore define the function � : Σ → P(Σ∗) by �(a) = {a}.
Remark 2.7. Readers familiar with regular languages will recognize that ̂� : E →
P(Σ∗) is the standard language interpretation of regular expressions.
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Algebraically, Kozen’s theorem can now be stated as follows.

Theorem 2.8 (Kozen [19]). For all e, f ∈ E, we have that e ≡ f iff L |= e = f .

One of the payoffs of this result is that we can decide e ≡ f by checking whether
L |= e = f , which turns out to be a pspace-complete problem [36].

Another property, known as the finite model property and proved by
Palka [29], states that the equational theory of KA can also be characterized
by the class of finite KAs, denoted F. Her result can be stated as follows:

Theorem 2.9 (Palka [29]). For all e, f ∈ E, we have that e ≡ f iff F |= e = f .

In her proof of the above, Palka applied Kozen’s theorem. The central con-
tribution of this paper is that both theorems can be proved independently of each
other, by a generic construction that allows one to conclude either result.

3 Solutions to Automata

In this section, we recall automata as a way of defining a language, as well as
the notion of the least solution to an automaton. Both of these are well-known,
but since they play such a central role for our results we discuss them in detail.

Definition 3.1 (Automaton). A (non-deterministic finite) automaton A is
a tuple (Q, δ, I, F ) where Q is a finite set of states, δ : Q × Σ → P(Q) is the
transition function and I ⊆ Q (resp. F ⊆ Q) holds the initial (resp. final) states.

For a ∈ Σ, we write δa for the relation given by {(q, q′) : q′ ∈ δ(q, a)}. This
family of relations can be extended to words, as follows:

δε = idQ δwa = δw ◦ δa

The language of a state q ∈ Q, denoted L(A, q), is the set of words w such that
q can reach a final state through δw, given by L(A, q) = {w ∈ Σ∗ : q δw qf ∈ F}.
The language of A is defined by its initial states, i.e., L(A) =

⋃

qi∈I L(A, qi).

It is well known that the set of languages defined by regular expressions is
the same as the set of languages described by (finite) automata [17]. In fact, the
translations that demonstrate this equivalence will play an important role in the
remainder of this paper, and we will outline one of these now.

Definition 3.2 (Solutions). Let A = (Q, δ, I, F ) be an automaton, and e ∈ E.
An e-solution to A is a function s : Q → E s.t. the following hold for all q, q′ ∈ Q:

q ∈ F =⇒ e � s(q) q′ ∈ δ(q, a) =⇒ a · s(q′) � s(q)

A 1-solution to A is simply called a solution to A. We say that s is the least
e-solution to A if for all e-solutions s′ it holds for all q ∈ Q that s(q) � s′(q).
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Least e-solutions are unique up to the laws of KA; this explains why we can
speak of the least e-solution to an automaton.

3.1 Computing Solutions

It is well-known that least e-solutions always exist for (finite) automata; the pro-
cess to compute these [10,18] closely resembles the state elimination technique
from [17,28], which computes a regular expression representing the language
accepted by an automaton.

Theorem 3.3 (Computing solutions). Let A = (Q, δ, I, F ) be an automa-
ton, and let e ∈ E. We can compute the least e-solution to A, denoted Ae.

In fact, the above statement can be strengthened: as it turns out, the least
solution to A gives rise to all of the least e-solutions [18], in the following sense.

Theorem 3.4 (Relating solutions). Let A = (Q, δ, I, F ) be an automaton,
and let e ∈ E. For all q ∈ Q, it holds that A1(q) · e ≡ Ae(q).

The two results above form the technical nexus of this paper, and will be
applied repeatedly throughout the coming three sections. The second result in
particular, which connects solutions to e-solutions, will prove to be rather useful.

To lighten notation, we will simply write A for A1, which we call the least
solution to A. We also write �A� for the expression

∑

q∈I A(q).

3.2 Properties of Solutions

We conclude this section by recording three more properties of solutions. For the
remainder of this section, we fix two automata Ai = (Qi, δi, Ii, Fi) for i ∈ {1, 2}.

For the first property, we need to define morphisms of automata.

Definition 3.5. A morphism from A1 to A2 is a function h : Q1 → Q2 where
(1) if q ∈ F1 then h(q) ∈ F2, and (2) if q′ ∈ δ1(q, a), then h(q′) ∈ δ2(h(q), a).
Furthermore, h is strong when for all q ∈ I1 we have that h(q) ∈ I2.

Morphisms between automata relate their least solutions, as follows.

Lemma 3.6. Let h : Q1 → Q2 be a morphism from A1 to A2. For all q ∈ Q, it
holds that A1(q) � A2(h(q)). Furthermore, if h is strong, then �A1� � �A2�.

For the second property, we need the notion of a subautomaton.

Definition 3.7. We say A1 is a subautomaton of A2 when Q1 ⊆ Q2, and
furthermore for all a ∈ Σ we have that δ1(q, a) = δ2(q, a).

Unsurprisingly, the least solution to a subautomaton coincides with the least
solution of the automaton that contains it, on the states where they overlap.

Lemma 3.8. If A1 is a subautomaton of A2 and q ∈ Q1, then A1(q) ≡ A2(q).
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The third and last property that we will use connects the least solution of
an automaton to the languages of that automaton.

Lemma 3.9. Both of the following hold for all q ∈ Q1:

A1(q) ≡ [q ∈ F ] +
∑

q′∈δ(q,a)

a · A1(q′) ̂�(A1(q)) = L(A1, q)

Here, [q ∈ F ] is shorthand for 1 if q ∈ F , and 0 otherwise.

4 Transformation Automata

Throughout this section, we fix an automaton A = (Q, δ, I, F ).
We now turn our attention to transformation automata [27]. Intuitively, the

states of a transformation automaton A′ obtained from A are relations on Q, with
the intention that reading w ∈ Σ∗ starting from a state R in A′ leads (uniquely)
to R ◦ δw. In particular, reading w in A′ from idQ takes us to δw, which is why
we will pay special attention to the solutions to idQ in transformation automata.

Definition 4.1. We define δτ : P(Q × Q) × Σ → P(P(Q × Q)) by setting

δτ (R, a) = {R ◦ δa}

For each R ⊆ Q × Q, write A[R] for the R-transformation automaton

(P(Q × Q), δτ , {idQ}, {R})

Note that the above still fits our definition of an automaton, since if Q is
finite then so is the set of relations on Q, i.e., P(Q×Q). It is also useful to point
out that transformation automata are deterministic, in that each state leads to
one (and only one) next state for a given letter.

Remark 4.2. Readers familiar with formal language theory may recognize trans-
formation automata as the construction used to show that each language
accepted by an automaton can also be recognized by a (finite) monoid [27].

In the remainder of this section, we characterize the solution to A in terms
of solutions to its transformation automata. To this end, we first analyze the
solutions to transformation automata in general. A useful first observation is
that, for each a ∈ Σ, words read from idQ to δa in the transformation automaton
include a. This gives rise to the following property on the level of solutions.

Lemma 4.3. For all a ∈ Σ, it holds that a � �A[δa]�.
Furthermore, if R1, R2 and R3 are relations, and if we can read w by moving

from R1 to R2, then we can also read w by moving from R3 ◦R1 to R3 ◦R2. This
can be expressed in terms of solutions to transformation automata, as follows.
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Lemma 4.4. For all R1, R2, R3 ⊆ Q × Q, it holds that

A[R2](R1) � A[R3 ◦ R2](R3 ◦ R1)

Proof Sketch. Let’s fix R2 and R3. We choose s : P(Q × Q) → E by setting
s(R) = A[R3 ◦ R2](R3 ◦ R). Now show that s is a solution to A[R2]. ��

We can think of the least solution to idQ in the R-transformation automaton
of A as an expression representing all words w such that δw = R. This explains
the next property, which is an algebraic encoding of the fact that if w1, w2 ∈ Σ∗

are such that δw1 = R1 and δw2 = R2, then δw1·w2 = δw1 ◦ δw2 = R1 ◦ R2.

Lemma 4.5. For all R1, R2 ⊆ Q it holds that �A[R1]� · �A[R2]� � �A[R1 ◦ R2]�

Proof Sketch. Using Lemmas 4.3 and 4.4, one can show that A[R1 ◦ R2] is an
�A[R2]�-solution to A[R1], which implies the claim. ��

With this property in hand, we can now express the least solution to A in
terms of the least solutions to its transformation automata, as follows.

Lemma 4.6. For all q ∈ Q it holds that A(q) ≡ ∑

qRqf∈F �A[R]�
Proof (Proof sketch). To show that the left-hand side is contained in the right-
hand side, we use the preceding lemmas to show that it constitutes a solution to
A. For the converse containment, we argue that the solution of A gives rise to a
solution to each of the automata A[R] that appear on the right-hand side. ��

5 Antimirov’s Construction

We now discuss the least solution to an automaton Ae that accepts ̂�(e), for each
e ∈ E. Many methods to obtain such an automaton exist (for instance [7,38];
see [39] for a good overview). We focus on Antimirov’s construction [2], and show
that an expression e can be recovered from its Antimirov automaton.

Remark 5.1. In a sense, the property we prove is analogous to the one shown by
Kozen [21] (see also [14]), who proved that e can recovered from the solution to
its Brzozowski automaton [7]. We diverge from this for two reasons.

1. Antimirov’s construction produces non-deterministic automata, which makes
it a bit easier to express than Brzozowski’s construction, which uses determin-
istic automata. In particular, this saves us from having to consider the theory
necessary to make Brzozowski’s construction produce a finite automaton.

2. Kozen’s result about Brzozowski’s construction leverages the fact that bisim-
ilar automata have equivalent solutions. This is a very powerful (and some-
what tricky to prove) observation, which also underlies the completeness proof
in [14,21]. For Antimirov automata, however, it turns out that we can rely
on morphisms of automata instead, which are fairly easy to establish.2

2 Kozen’s bisimilarity property would also not help us obtain a completeness proof
using Antimirov automata instead of Brzozowski automata, because some non-
deterministic automata are not bisimilar despite having the same language; see
also Remark 5.13.
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Having said that, the structure of the proof that follows is very much inspired
by the strategy employed in [14,21], especially when it comes to Lemma 5.15.

5.1 Recalling Antimirov’s Automata

The main idea behind Antimirov’s construction is that expressions are endowed
with the structure of an automaton. The language of a state in this automaton is
meant to be ̂�(e), the language denoted by its expression. From this perspective,
the accepting states should be those representing expressions whose language
contains the empty word. This set of expressions is fairly easy to describe.

Definition 5.2. The set F is defined as the smallest subset of E satisfying:

1 ∈ F

e1 ∈ F e2 ∈ E

e1 + e2, e2 + e1 ∈ F

e1, e2 ∈ F

e1 · e2 ∈ F

e1 ∈ E

e∗
1 ∈ F

Next, we recall Antimirov’s transition function. The intuition is that an
expression e has an a-transition to an expression e′ when e′ denotes remainders
of words in ̂�(e) that start with a—i.e., if w ∈ ̂�(e′), then aw ∈ ̂�(e). Together,
the expressions reachable by a-transitions from e should describe all such words.

In the following, when S ⊆ E and e ∈ E, we write S � e for {e′ · e : e′ ∈ S}.
We are now ready to define Antimirov’s transition function, as follows.

Definition 5.3. We define ∂ : E × Σ → P(E) recursively, as follows

∂(0, a) = ∅ ∂(e1 + e2, a) = ∂(e1, a) ∪ ∂(e2, b)
∂(1, a) = ∅ ∂(e1 · e2, a) = ∂(e1, a) � e2 ∪ e1 	 ∂(e2, a)
∂(b, a) = {1 : a = b} ∂(e∗

1, a) = ∂(e1, a) � e∗
1

Here, we use e 	 S as a shorthand for S when e ∈ F, and ∅ otherwise.

Of course, the expression e could serve as the sole initial state in the automa-
ton for e. However, our automata allow multiple initial states, and distributing
this task among them will simplify some of the arguments that follow.

Definition 5.4. We define ι : E → P(E) recursively, as follows:

ι(0) = ∅ ι(e1 + e2) = ι(e1) ∪ ι(e2)
ι(1) = {1} ι(e1 · e2) = ι(e1) � e2

ι(a) = {a} ι(e∗
1) = ι(e1) � e∗

1 ∪ {1}

We could now try to package these parts into an automaton (E, ∂, ι(e),F) for
each expression e. Unfortunately, we have defined our automata to be finite, so
a little more work is necessary to identify the expressions that are relevant (i.e.,
represented by reachable states) for a starting expression e.
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Definition 5.5. We define ρ : E → P(E) recursively, as follows:

ρ(0) = ∅ ρ(e1 + e2) = ρ(e1) ∪ ρ(e2)
ρ(1) = {1} ρ(e1 · e2) = ρ(e1) � e2 ∪ ρ(e2)
ρ(a) = {a, 1} ρ(e∗

1) = ρ(e1) � e∗
1 ∪ {1}

With this function in hand, we can verify that it fits all of the requirements
of the state space of an automaton with respect to the other parts identified
above.

Lemma 5.6. For all e ∈ E, the set ρ(e) is finite and closed under ∂, i.e., if
e′ ∈ ρ(e) and e′′ ∈ ∂(e′, a), then e′′ ∈ ρ(e) as well. Furthermore, ι(e) ⊆ ρ(e).

In light of this, we write ∂e for the function ∂e : ρ(e)×Σ → P(ρ(e)) obtained
by restricting ∂. We can now define Antimirov automata, as follows.

Definition 5.7. Let e ∈ E. We write Ae for the Antimirov automaton

(ρ(e), ∂e, ι(e),F ∩ ρ(e))

Antimirov’s transition function can be used to decompose an expression e into
several “derivatives” e′, which can then reconstitute e. This validates the intuition
that the derivatives collectively contain (only) the “tails” of words denoted by e.
Similarly, the initial expressions ι(e) can also be used to reconstitute e.

Theorem 5.8. Let e ∈ E. The following two equivalences hold:

e ≡ [e ∈ F] +
∑

e′∈∂(e,a)

a · e′ e ≡
∑

e′∈ι(e)

e′

The first property above is usually referred to as the fundamental theorem of
Kleene algebra [31], because of its close resemblance to the fundamental theorem
of calculus. One caveat is that one needs to prove that the sums on the right-hand
sides are in fact finite, but this turns out to be the case.

We end this subsection by recording two more useful properties of ι.

Lemma 5.9. Let e ∈ E. We have e ∈ F if and only if there exists an e′ ∈ ι(e)
such that e′ ∈ F. Also, e′′ ∈ ∂(e, a) if and only if e′′ ∈ ∂(e′, a) for some e′ ∈ ι(e).

5.2 Solving Antimirov’s Automata

Having fully described Antimirov’s construction, we resume with the proof of
the main technical point of this section, which is that the solution to Ae can be
used to construct an expression equivalent to e.

More precisely, we will prove that e is equivalent to the sum of the solutions
to its initial states, �Ae�, by showing that �Ae� � e and e � �Ae�. The former
property is easy to prove using the theory established up to this point.
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Lemma 5.10. For all e ∈ E, it holds that �Ae� � e.

Proof Sketch. By Theorem 5.8, the injection of ρ(e) into E is a solution to Ae.
��

To show that e � �Ae�, we cannot exploit the fact that Ae is the least solution
to Ae, as above. Our proof will instead operate by induction on e. First, we will
need to develop some theory; the following abstraction is useful.

Definition 5.11. Let e, f ∈ E. We write e � f when there exists a strong
automaton morphism h : ρ(e) → ρ(f) from Ae to Af .

By Lemma 3.6, if we want to show that �Ae� � �Af�, it is sufficient to prove
e � f . We record the following instances of expressions being related by �.

Lemma 5.12. The following hold for all e0, e1, e2 ∈ E:

e0 � e0 · 1 e0 � e0 + e1 e0 � e1 =⇒ e0 · e2 � e1 · e2

e0 · e∗
0 � e∗

0 1 � e∗
0 e0 · (e1 · e2) � (e0 · e1) · e2

Proof Sketch. In all cases, a map can be gleaned from the structure of the relevant
state spaces; checking that it is a term morphism is routine. ��
Remark 5.13. Kozen [21] and Jacobs [14] show that if e, f ∈ E are such that
e � f , then the Brzozowski automaton of e is simulated by that of f , and hence
these automata yield solutions e′ and f ′ such that e′ � f ′.

It is tempting to try and prove a similar property for Antimirov automata,
along the lines of “if e � f , then e � f ”. Unfortunately, this is not true. For
instance, if e = a · (b + c) and f = a · b + a · c, then e � f , but there is no
strong morphism from Ae to Af . Fortunately, Lemma 5.12 is sufficient for our
purposes.

The solutions to the automata for e, e · 1 and 1 · e are also related.

Lemma 5.14. Let e ∈ E. It holds that �Ae·1� � �Ae� and �Ae� � �A1·e�.

Proof Sketch. We show that the solution to one automaton gives rise to a solution
to the other automaton, using Lemmas 5.9 and 3.9 for the latter claim. ��

The next lemma is the main workhorse that we need to show that e � �Ae�.
The proof is very similar to that of [21, Lemma 3].

Lemma 5.15. Let e, f ∈ E. It holds that e · �Af� � �Ae·f�

Proof Sketch. As in [21, Lemma 3], we proceed by induction on e; we use Lemmas
3.6 and 5.14 in the base, and Lemma 5.12 in the inductive cases. ��

With this in hand, we now have everything required to conclude the desired
property of solutions to Antimirov automata, which we record below.
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Lemma 5.16. For all e ∈ E, we have that e ≡ �Ae�.
Proof. We already knew that �Ae� � e by Lemma 5.10. To show that e � �Ae�,
we derive using Lemmas 5.14 and 5.15, as follows:

e ≡ e · 1 � e · �A1� � �Ae·1� � �Ae�
The second step is valid because 1 ∈ ι(1) and 1 ∈ F, so 1 � A1(1) ≤ �A1�. ��

6 From Monoids to Kleene Algebras

Recall that our objective was to derive a finite KA for two expressions, whose
properties can then be used to conclude completeness and the FMP. We already
saw how an expression gives rise to an automaton, which can then be turned
into a transformation automaton. As it happens, the states of this transformation
automaton have the internal structure of a monoid—indeed, this was the original
motivation for the construction [27]—but we still do not have a KA.

In this section, we recall a straightforward translation from monoids to KAs
proposed by Palka [29], and prove a useful property that we will leverage in the
proof later on. Let us start by recalling the definition of a monoid.

Definition 6.1. A monoid is a tuple (M, ·, 1) where M is a set, · is a binary
operator and 1 ∈ M such that the following hold for all m0,m1,m2 ∈ M :

m1 · (m2 · m3) = (m1 · m2) · m3 m1 · 1 = m1 1 · m1 = m1

A function h : Σ → M gives rise to the function ˜h : Σ∗ → M , defined by

˜h(a1 · · · an) = h(a1) · · · · · h(an)
As for KAs, we may identify a monoid (M, ·, 1) with its carrier M , if the accom-
panying operator and unit are clear from context.

As stated above, if A = (Q, δ, I, F ) is an automaton, then the state space of
its transition automata is given by P(Q × Q)—i.e., the relations on Q—which
has a monoidal structure: the operator is given by relational composition, and
the unit is the identity relation on Q. In the sequel, we write MA for this monoid.

The composition operator of a monoid can be lifted to sets of its elements,
which can then be used to derive a fixed point operator, as follows.

Lemma 6.2 (Palka [29]). If (M, ·, 1) is a monoid, then (P(M),∪,⊗, �, ∅, {1})
is a KA, where ⊗ and � are defined by choosing for U, V ⊆ M :

U ⊗ V = {m · n : m ∈ U, n ∈ V } U� = {u1 · · · un : u1, . . . , un ∈ U}
As an example of this construction, note that applying this construction to

the free monoid (Σ∗, ·, ε) precisely yields the free KA of languages.
Now, given an expression e ∈ E, a monoid (M, ·, 1), and a map h : Σ → M ,

we have two ways of interpreting e inside of the KA that arises from this monoid:
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1. We lift the map a �→ {h(a)} to obtain a map E → P(M).
2. We map each w ∈ ̂�(e) to an element of M via ˜h : Σ → M .

The next lemma shows that these two interpretations of expressions inside the
KA for (M, ·, 1) are actually the same; it can be thought of as a generalization
of [29, Lemma 3.1], which covers the special case for the syntactic monoid.

Lemma 6.3. Let (M, ·, 1) be a monoid and let (P(M),∪,⊗, �, ∅, {1}) be the KA
obtained from it, per Lemma 6.2. Furthermore, let h1 : Σ → M and h2 : Σ →
P(M) be such that for all a ∈ Σ, we have that h2(a) = {h1(a)}. Then for e ∈ E:

̂h2(e) = {˜h1(w) : w ∈ ̂�(e)}
We conclude this section by leveraging the above to prove a pivotal lemma:

the solution to a state q of an automaton A can be recovered by interpreting
this expression inside of the KA obtained from the transformation automata of
A, and looking at the solutions to the relations inside that interpretation.

Lemma 6.4. Let A = (Q, δ, I, F ) be an automaton and q ∈ Q. Furthermore, let
h : Σ → P(MA) be given by h(a) = {δa}. The following holds.

A(q) ≡
∑

R∈̂h(A(q))

�A[R]�

Proof. We start by massaging the proof goal. Lemma 6.3 tells us that R ∈
̂h(A(q)) if and only if there exists a w ∈ ̂�(A(q)) such that R = δw. Using this
observation and Lemmas 4.6 and 3.9, it suffices to show

∑

qRq′∈F

�A[R]� ≡
∑

w∈L(A,q)

�A[δw]�

For the inclusion from left to right, let R ⊆ Q×Q and q′ ∈ F be such that q R q′.
On the one hand, if ̂�(�A[R]�) = ∅, then an easy inductive argument shows that
�A[R]� ≡ 0, which means that the term �A[R]� does not contribute to the sum.
Otherwise, let w ∈ ̂�(�A[R]�). By Lemma 3.9, we know that w ∈ L(A[R], idQ),
and thus δw = R. Since q δw q′ ∈ F , we also know that w ∈ L(A(q)). Therefore
�A[R]� = �A[δw]� appears in the sum on the right-hand side.

For the inclusion from right to left, let w ∈ L(A, q). In that case, qδwq′ for
some q′ ∈ F . Thus �A[δw]� appears in the sum on the left-hand side. ��

7 Completeness and the FMP

We are now ready to prove our main claims. In a nutshell, our proof will take two
expressions e and f , apply the transformation automaton construction to Ae+f ,
and then use the resulting state space monoid to obtain a KA. The previously
derived facts connect e and f to their interpretation inside this KA, which we
will use in two different ways to conclude both completeness and the FMP.
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Throughout this section, we fix e, f ∈ E. For brevity, we also write ∂ for the
transition function of Ae+f . We fix h : Σ → P(MAe+f

) by h(a) = {∂a}. Note
that MAe+f

is a finite monoid, and hence P(MAe+f
) is a finite KA by Lemma

6.2.
The next lemma puts the results of the previous sections together to connect

e and f to their interpretations inside P(MAe+f
), in the following way.

Lemma 7.1. The following two equivalences hold:

e ≡
∑

R∈̂h(e)

�Ae+f [R]� f ≡
∑

R∈̂h(f)

�Ae+f [R]�

Proof. Without loss of generality, we prove the first property by deriving:

e ≡ �Ae� (Lemma 5.16)

≡
∑

e′∈ι(e)

Ae(e′) (def.�Ae�)

≡
∑

e′∈ι(e)

Ae+f (e′) (Lemma 3.8)

≡
∑

e′∈ι(e)

∑

R∈̂h(Ae+f (e′))

�Ae+f [R]� (Lemma 6.4)

≡
∑

R∈̂h(e)

�Ae+f [R]� (see below)

The last equivalence holds because by Lemmas 3.8 and 5.16, we have that:

e ≡ �Ae� ≡
∑

e′∈ι(e)

Ae(e′) ≡
∑

e′∈ι(e)

Ae+f (e′)

and thus ̂h(e) =
⋃

e′∈ι(e)
̂h(Ae+f (e′)) by Lemma 2.5. ��

We are now ready to conclude our first main claim: the finite model property
holds for KA. Recall that F denotes the class of all finite Kleene algebras, to
which P(MAe+f

) belongs. This allows us to apply Lemma 7.1, as follows.

Theorem 7.2 (Finite model property). If F |= e = f , then e ≡ f .

Proof. By the premise, we have that ̂h(e) = ̂h(f), and so by Lemmas 7.1 and
2.5:

e ≡
∑

R∈̂h(e)

�Ae+f [R]� =
∑

R∈̂h(f)

�Ae+f [R]� ≡ f

��
Finally, we note that a very similar proof also allows us to conclude that the

axioms of KA are complete w.r.t. its language model, thanks to the connection
between interpretations in lifted monoids given by Lemma 6.3.
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Theorem 7.3 (Completeness). If L |= e = f , then e ≡ f .

Proof. Let h′ : Σ → MAe+f
be given by h′(a) = ∂a. By the premise ̂�(e) = ̂�(f),

and thus ̂h(e) = ̂h(f) because we can use Lemma 6.3 to derive

̂h(e) = {˜h′(w) : w ∈ ̂�(e)} = {˜h′(w) : w ∈ ̂�(f)} = ̂h(f)

We can then conclude by leveraging Lemma 7.1, as for Lemma 7.2. ��

8 Discussion

We leave the reader with some final considerations regarding our formalization
and directions for possible further work.

Coq Formalization. We have formalized all of our results in Coq [4,11]. The
trusted base comes down to (1) the axioms of the Calculus of Inductive Con-
structions, (2) injectivity of dependent equality (equivalent to Streicher’s axiom
K [37]), and (3) dependent functional extensionality. The latter is a result of
our encoding of subsets, and can most likely be factored out with better data
structures.

All proofs as presented here are faithful to the insights underlying the claim,
although some encodings differ slightly. For instance, the definition of ρ(e) in
the development is more accurately rendered using disjoint union.

Possible Extensions. Guarded Kleene Algebra with Tests (GKAT) [33,35] is a
fragment of KAT with favorable decidability properties. GKAT in particular
admits a set of axioms that are complete w.r.t. its language (resp. relational,
probabilistic) model, but this set is infinite as a result of an axiom scheme.
We wonder whether the techniques discussed here could be applied to arrive at
a more satisfactory completeness result. To start answering this question, one
would first have to devise an analogue transformation automata and monoids
for GKAT.

Relational Models. Pratt [30] connected the language model of KA to the rela-
tional model—essentially saying that if R is the class of relational KAs (as
in Example 2.2), then R |= e = f if and only if L |= e = f for all e, f ∈ E. By
Theorem 7.3, this means that relational models are also complete for KA.

In light of Theorem 7.2, we wonder: can this form of completeness be strength-
ened to finite relational models? A positive answer would mean that the finite
countermodel accompanying an invalid equation would correspond to an inter-
pretation of the primitive actions as state transformers on a finite state space.

There is a tantalizing candidate for a canonical model that might be able to
fill the role of P(MAe+f

) in the previous section: simply use the relational KA
with the carrier MAe+f

. For this to work, we would have to connect e and f with
their interpretations inside this KA, which will require further research.
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Abstract. We address algebraic aspects of invariant generation and
proving termination, two central questions of program analysis, for non-
deterministic loops with polynomial updates.

Our focus is sketching the boundary of (un-)decidability for both prob-
lems between different classes of programs. The first main contribution of
this work is related to the question raised by Braverman in 2006: “How
much non-determinism can be introduced in a linear loop before termi-
nation becomes undecidable?” We show that termination of loops with a
purely non-deterministic choice between linear updates is undecidable in
the presence of linear inequality loop conditions.

In the context of invariants, an algorithm is known that computes
all polynomial relations among variables of loops with multiple linear
updates. At the same time, allowing polynomial assignments of higher
degrees was shown to result in algorithmic unsolvability. We highlight that
negative results in fact do not exploit general polynomial updates.We show
that no algorithm can find all polynomial relations for programs as soon
as quadratic updates or updates guarded by affine equalities are involved.

1 Introduction

One prominent approach towards proving program correctness comes with
showing partial program correctness and providing termination arguments [4].
Automating both tasks is hence a key challenge in verification, especially in the
context of program loops.

While the undecidability of termination for general programs cannot be
ignored, drawing inflexible pessimistic conclusions about proving termination in
the special cases is inaccurate [8]. It becomes of importance to detect certain “core”
restricted classes of programs, where the termination problem becomes decidable,
or vice versa [2]. Most of the research in this direction focused on dealing with one
simple loop at a time, establishing positive decidability results for some classes
of loops [6,14,22,29] over the last years. Identifying limits of (un-)decidability by
exposing classes of general programs for which termination remains undecidable
is nevertheless an equally challenging task, see, e.g., [2,5,29].

Reasoning about partial correctness of programs and, in particular, loops is,
in turn, inseparable from constructing (inductive) loop invariants at each pro-
gram point, that is, assertions that evaluate to true on every program execution
reaching that point [3]. When thinking of inductive invariants as relations among
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Table 1. Decidability (solvability) results in terms of multi-path loops

Loops

Problems Invariants Termination

strongest algebraic inequality condition equality condition

multi-path affine solv. [15] undec. dec. [22]

+ equality guards unsolv. [24] undec. dec. [22]

+ inequality guards unsolv. [24] undec. [29] undec. [29]

q-admissible unsolv. undec. dec. [22]

polynomial unsolv. [15] undec. [5] dec. [22]

New results are highlighted
a in bold: follows from our result given in Theorem 1;
b in italics: follows from Theorem 4, or due to techniques that simulate polynomial
updates of arbitrary degree with those of degree at most 2.
Loop guards (incl. loop conditions) are assumed to be Boolean combinations of linear
(in-)equalities in program variables. (The decidability result of [22], however, holds for
polynomial equalities of arbitrary degree.)

variables that are preserved under all behaviours of the program, it is natural to
ask about the quality of those relations. For example, questions may touch upon
restricting to invariants defined using equalities vs. inequalities, or exploiting
affine vs. polynomial equations of arbitrary degree. For some of such restricted
classes of invariants, automated approaches computing all corresponding invari-
ants of program loops exist, see, e.g., [15,16,24].

Given the intrinsic hardness of proving termination and generating invariants
suitable for enforcing partial correctness, in this paper we focus on imperative
program loops and establish new limits of undecidability towards loop verification.

Key to our approach is algebraic modelling of programs as abstract transi-
tion systems with associated variables that are subject to polynomial updates.
To this end, we analyse actions of finitely generated semigroups of polynomial
updates on the set Q

n of potential variables valuations. In the case of non-
deterministic affine updates, this semigroup is the rational matrix semigroup
generated by finitely many matrices originating from the updates of the loop.
The termination question studied in Sect. 4 is inherently akin to the decision
problems for matrix semigroups, such as vector reachability or matrix member-
ship problems [1]. When addressing invariants in Sect. 5, we turn to considering
the Zariski closures of those subsets of Q

n that, in our model, constitute the
collecting semantics of program locations, much in the spirit of [15].

Related Work. Table 1 puts our results around program termination and
invariant synthesis into the context of the related works, which we discuss next.
Program termination. Total correctness properties assert that certain states are
eventually reached during program execution [4]. Consider a simple single-path
linear loop of the form

x := c; whileBx ≥ b do x := Mx,

where for a fixed initial vector c there exists a unique (finite or not) program
execution. Termination question is whether, for every initial c, such execution
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reaches the complement of the loop condition set. This problem, with loop condi-
tions given by conjunctions of linear inequalities, has been shown decidable over
reals [29], rationals [6] and integers [14]. We shift the discussion to the multi-path
loops, where a non-deterministic choice between different linear updates is pos-
sible. We highlight that a loop with a fixed initial vector has multiple potential
executions. Therefore, termination now asks about finiteness of them all, and
that for all initial vectors from a set. In [29], the undecidability of termination
for multi-path affine loops, each update guarded by a linear inequality, has been
established. An undecidability result is also provided in [5], where the same
problem is shown undecidable for non-deterministic loops with inequalities as
loop conditions, but polynomial updates of arbitrary degree. Another work that
considers multi-path polynomial loops is [22]. The crucial aspect of the model
considered there is that the loop condition is only allowed to be a polynomial
equality. Remarkably, this grants decidability, even with non-deterministic poly-
nomial updates. Notice also that allowing non-linear loop conditions enriches the
model in such way that the undecidable Hilbert’s 10th Problem can be encoded in
its termination [30] while basically ignoring the loop body. Our work goes beyond
these results and proves undecidability of loop termination for multi-path loops
with affine updates and linear inequality conditions, see Table 1.

Termination of single-path non-linear loops renders undecidable as well. In a
natural deterministic generalisation of a simple single-update model, namely one
of piecewise affine updates, there is again no algorithm to decide termination [2],
see also the undecidability of the generalised Collatz Problem [21]. Furthermore,
the Halting Problem, i.e., termination on a single input, poses additional chal-
lenges. Decidability is known for polynomial loops with equality conditions [22],
or loops with general conditions but restricted spectral structure [13].

Invariant Synthesis. The work of [18] computes all affine equality relations among
variables of a program with affine assignments, the so-called strongest affine
invariant. Another seminal paper [9] generalises the domain to polyhedra and
thus allows to determine valid affine inequalities in program variables. We refer
to references in [4, Chapter 12] for discussions of other invariant domains.

Polynomial invariants provide greater expressiveness than just the affine and
hence have been actively studied recently (see, e.g., [7] for the state-of-the-art and
discussions). Formally, an algebraic inductive invariant assigns to each program
location an algebraic set such that the resulting family is preserved under the
transition relation of the program. This is equivalent to associating with every
location an ideal of polynomial relations among program variables that hold
every time the location is reached. The approach of [25] infers all polynomial
relations up to a given degree d for programs with polynomial assignments.

An important result that motivated our investigations in Sect. 5 was attained
in [15]. In that work, an algorithm is established that computes the strongest
algebraic invariant, i.e., the ideal of all polynomial relations (regardless of the
degree) among variables of an affine program. The same paper highlights the
unsolvability of computing the strongest algebraic invariant for polynomial pro-
grams, see Sect. 7 therein. At the same time, the work of [16] presents a method
to compute strongest algebraic invariants of polynomial programs which allow
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non-linear updates of certain kind. In connection to this line of research, we show
that synthesising the strongest algebraic invariant is unsolvable already for loops
with quadratic updates (which we call q-admissible), as stated in Table 1.

Our Contributions. We investigate imperative programs with polynomial
updates both in terms of termination analysis and invariant generation. In
our work, we consider refinements of polynomial programming models, such as
guards and loop conditions of different types, and observe how these shape the
decidability landscape of problems in question.
• We prove that termination of a multi-path loop with a linear inequality con-

dition and a non-deterministic choice between several affine updates is unde-
cidable (Theorem 1). There is no conditional branching in our programming
model, so undecidability results for, say, piecewise affine updates [2,21], can-
not be interpreted as a special case of our setting.

• We show the algorithmic unsolvability of computing the strongest algebraic
invariant for programs with updates of degree at most 2 (Theorem 4).

2 Preliminaries

2.1 Computational Models

Polynomial Programs and Loops. We introduce the programming model
and related notions in continuity with [15,25].

Definition 1 (Polynomial Program). A polynomial program with n vari-
ables is a tuple P = (Q,E, q0), where Q is a finite set consisting of program
locations, E ⊆ Q × Q[x1, . . . , xn]n × Q is a set of edges (transitions) and q0 ∈ Q
is the initial location.

We think of x = (x1, . . . , xn) as a variables vector in Q
n and of an edge

(q, f, q′) as performing a simultaneous update x := f(x) described by a vector f
of n polynomials. We often use a, b, c, . . . for variables valuations and so dis-
tinguish them from the variables vector, denoted by x throughout this work.

Definition 2 (Configuration). A configuration (q,a) of a polynomial pro-
gram P is a pair consisting of a location q ∈ Q and a variables valuation a ∈ Q

n.
An edge (q, f, q′) induces a transition from a configuration (q,a) to (q′, f(a)).

The executions of P are defined intuitively starting from the initial configu-
ration (q0,0).

Definition 3 (Collecting Semantics). The collecting semantics of P asso-
ciates with each q ∈ Q a set SP

q of all vectors a ∈ Q
n reachable in location q,

i.e., such that an execution of P reaching configuration (q,a) exists.

Definition 4 (Polynomial Loop). A polynomial loop L = (Q,E, q0) is a
polynomial program with a location set Q = {q0, q1} and a set of transitions
E = {(q0, f (0), q1), (q1, f (1), q1), . . . , (q1, f (k), q1)}. All components of f (0) are
required to be constant functions.
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A polynomial loop is thus a special case of a polynomial program that only
has two locations {q0, q1} and a special transition from q0 to q1 with a constant
update f (0). This initialising transition is interpreted as the initialisation of loop
variables and is fixed for a particular loop. The location q1 is the “looping” loca-
tion; transitions from q1 to itself correspond to k non-deterministic polynomial
updates of variables in the loop body.

Polynomial programs are referred to as affine if all their update functions are
vectors of polynomials of degree at most 1. Besides that, we consider a subclass of
polynomial programs where the updates are at most quadratic. That is, for each
edge (q, (f1, . . . , fn), q′) ∈ E, for all i ∈ {1, . . . , n}, the polynomial fi is of degree
at most 2. We refer to such polynomial programs as q-admissible programs.

Guarded Updates. The definition of a polynomial program can be extended
by incorporating guarded updates, or guarded commands. A transition e ∈ Q ×
Q[x]n×Q of a guarded polynomial program (GPP) is modified by adding a guard
predicate G which applies to the variables vector x.

For a transition that applies update f to x, we use Dijkstra’s notation [11]:
G(x) → x := f(x). The semantics is as follows. If (q,a) is the current configu-
ration of a GPP execution, only transitions from q whose guards are satisfied,
that is, G(a) evaluates to true, can be taken. Notice that the choice between sev-
eral transitions with satisfied guards is non-deterministic. We emphasise that a
GPP where every guard is trivial, i.e., true, is exactly an unguarded polynomial
program as in Definition 1.

A generic template of a guarded polynomial loop is shown in Program 1.

Program 1 A polynomial loop with guards
x := f (0)(x) {x := c ∈ Q

n}
while true do

σ1 : G1(x) → x := f (1)(x)
or
...

or
σk : Gk(x) → x := f (k)(x)

Guarded loops of the form

x := c; whileG(x) = true do x := f (1)(x) or . . . or x := f (k)(x)

are a special case of guarded polynomial loops, where essentially every update
is guarded by the same predicate G. We refer to G as loop condition and use
the notation LG for the loop. In particular, we dedicate Sect. 4 to the studies of
termination of loops with a loop condition. We proceed directly to defining the
necessary preliminaries for the termination discussions.

Loop Termination. We call the variables valuation assigned by the (constant)
initialising transition of a loop an initial vector. When a loop L has the initial
vector c, we may emphasise this by writing L[c].
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Definition 5 (Loop with Inputs). Let S ⊆ Q
n be a set of vectors viewed

as initial vectors. A family LG[S] = {LG[c] : c ∈ S} of guarded polynomial
loops is refered to as a loop with inputs from S, if all loops share the same
loop condition G and the same body, while only differing in their initialising
transitions.

Termination is formally defined using the concept of execution tree, see
also [23]. Crucially, an execution tree is defined for a loop-input pair.

Definition 6 (Loop Execution Tree). The execution tree of a guarded poly-
nomial loop L[c] is defined inductively as

– the root is c = f (0)(0);
– any node a ∈ Q

n has a child for every transition (q1, f (i), q1) whose guard
evaluates to true on a. There is a directed edge from a to the corresponding
node f (i)(a), labeled by i.

Definition 7 (Termination of Loop with Inputs). A loop with inputs
LG[S] terminates (on S) if for every input c ∈ S an execution tree of LG[c]
is finite.

A combination of a loop condition, loop body and an input (initial vector)
yields a single execution tree. A tree is finite if and only if there is no infinite
execution starting with a given initial vector. When considering multiple poten-
tial inputs from a set S, the termination of the loop family LG[S] means that
every execution with an initial vector from S is finite.

Inductive Invariants. We use the notation Q for the field of algebraic numbers.
In order to work over an algebraically closed field, we consider the sets SP

qi as
subsets of Q

n
, when talking about invariants and Zariski closures.

Definition 8 (Inductive Invariant). A family of sets X = {Xq : q ∈ Q},
where Xq ⊆ Q

n
, is referred to as an inductive invariant of the polynomial pro-

gram P if it is a solution of the following system of inclusions:

Xq0 ⊇ {0}
Xq′ ⊇ f(Xq) for all (q, f, q′) ∈ E. (1)

The inductive invariant is closed under applying the transitions of P. This
way, it is an overapproximation of the program’s collecting semantics.

Definition 8 can be phrased for GPPs by only adding f(a) to the invariant
set Xq′ if the guard G(a) of the edge (q, f, q′) in question evaluates to true.

An invariant family as in Definition 8 is said to be an algebraic inductive
invariant if each Xq is an algebraic subset of Q

n
. For a given program loca-

tion, there exists a minimal algebraic solution of Eq. (1), hence we can talk
about the minimal algebraic inductive invariant. Following [15], we point out
that the minimal algebraic inductive invariant can be characterised as the family
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X = {Xq : q ∈ Q}, where Xq := SP
q for all q ∈ Q, i.e., Xq is the Zariski closure

of SP
q in Q

n
. We will refer to X as the strongest algebraic invariant of P.

Given a polynomial P ∈ Q[x1, . . . , xn], we say that the equation P = 0
holds at q ∈ Q if P vanishes on SP

q . The set of all polynomials that hold at
q ∈ Q constitutes an ideal Iq. The algebraic set that corresponds to this ideal is
V (Iq) = SP

q . Essentially, computing the strongest algebraic invariant is equiva-
lent to computing a basis of ideal Iq for each q ∈ Q.

The strongest algebraic invariant of a polynomial loop L consists of two sets.
The reachable set of the initial location q0 is a single vector and thus a closed set
of the Zariski topology. When discussing the strongest algebraic invariant of a
polynomial loop, we are going to focus on the reachable set SL

q1 (and its Zariski
closure), for simplicity denoting it by SL (and SL, respectively).

From Programs to Loops. We observe that considering loops instead of pro-
grams with multiple locations does not limit the computational power. This
is also inherited by the corresponding subclasses of both. In particular, there
exists a technique (see also [15, Sect. 4]) that allows to omit additional locations
at a cost of blowing up the number of variables in the program. Let P be an
unguarded polynomial program with non-initial locations q1, . . . , q� and n vari-
ables. We sketch how a polynomial loop L simulates its behaviour by adding �
copies of each variable. That is, we associate a block of n variables in L with
each program location. Only one block of copies is “active” in each configuration
of the resulting loop L, while the other variables are kept to 0. This indicates
the active location in an execution of P. In a self-loop of L that corresponds to a
transition from qi to qj , the variables of j-th block are updated from the values
of variables of i-th block. Let Πi : Q

�·n → Q
n

be the projection to the i-th block
of coordinates for some i ∈ {1, . . . , �}.

Lemma 1. Let P be a (q-admissible) polynomial program and L its (q-
admissible) transformation as above. Then, for any i ∈ {1, . . . , �}, the projection
of L’s collecting semantics relates to the collecting semantics of P as

Πi(SL \ {0}) = SP
qi .

2.2 Undecidable Problems

Post’s Correspondence Problem. The Post’s Correspondence Problem
(PCP) is an undecidable decision problem [28]. Let Σ be a finite alphabet. As
an input of a PCP instance, a finite set of pairwise distinct pairs {(xi, yi) : i =
1, . . . , k} is given, where each xi and yi is a finite word over Σ. A solution to the
problem is a sequence of indices (i�), � ∈ {1, . . . , L}, with each i� ∈ {1, . . . , k},
such that concatenating elements of the corresponding pairs results in the same
word:

xi1 . . . xiL = yi1 . . . yiL .
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The decision problem is to decide whether such a solution exists or not. It is
easy to see by encoding symbols of the alphabet (one by one) in binary that
PCP restricted to the alphabet of size 2 is undecidable as well.

Boundedness of Reset VASS. Reset vector addition systems with states
(reset VASS) are finite state automata extended with non-negative counters.
They can be viewed as unguarded polynomial programs with affine updates,
however with a different semantics that only allows non-negative variable val-
ues. Alternatively, reset VASS are polynomial programs guarded by inequality
guards–then no change of previously introduced semantics is needed. In a reset
VASS V = (Q,E, q1) with n counters (variables), each update fi of an edge
(q, (f1, . . . , fn), q′) comes from the set {xi − 1, xi, xi + 1, 0}. That is, the value
of each counter can be decremented, preserved, incremented, or reset to 0. Cru-
cially, each transition that tries to decrement a zero-valued counter is blocked.

A configuration (q,a) of a reset VASS V is a pair consisting of a location q ∈
Q and a non-negative valuation a ∈ N

n of counters. The initial configuration
is (q1,0). The collecting semantics of V associates with each q ∈ Q a set SV

q of
all a ∈ N

n reachable in location q, i.e., such that there exists an execution of V
reaching configuration (q,a) while avoiding blocked transitions.

In the Boundedness Problem for reset VASS an input consists of a reset
VASS V and its location q̂ ∈ Q. The question is whether the set SV

q̂ of reachable
counter valuations in location q̂ is finite. The Boundedness Problem is undecid-
able [12].

3 Polynomial Program Challenges

In this section, we fix the precise termination and invariant synthesis problems
to be addressed in our work. In extension of Definition 7, we formulate the
Termination Problem for loops with inputs and loop conditions, as follows.

Termination Problem for LG – Term
Given: a loop with inputs LG[S] with condition G, the set of inputs S
Question: Does LG[S] terminate?

Note that answering Term requires reasoning about all execution trees
of LG[S]. A positive answer means that all execution trees with roots from S
and the shared updates of LG[S] are finite. An instance of the problem is nega-
tive if there is at least one infinite execution tree or, equivalently, if an infinite
execution with some initial vector c ∈ S exists.

Note that the question whether a loop LG[c] with a fixed initial vector ter-
minates is a special case of Term where S is guaranteed to be a singleton. This
is the Halting Problem, denoted Halt, see Sect. 6 for a discussion.

The problem we address in Sect. 5 is about finding the minimal collection of
algebraic sets that contains the collecting semantics of a polynomial program P.
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Unlike Term and Halt, the problem of computing strongest (algebraic) invari-
ants is not a decision problem.

Strongest Algebraic Invariant for P – Inv
Given: a polynomial program P with location set Q
Compute: the strongest algebraic invariant X = {SP

q : q ∈ Q}

4 Termination with Inequality Conditions

In this section, we consider the Termination Problem Term for polynomial
loops with loop conditions defined by Boolean combinations of linear inequali-
ties. Formally, such loop condition G can be expressed as

∨
i

∧
j Lij {>,≥} lij ,

where each Lij is a linear form of program variables x1, . . . , xn with integer
coefficients and each lij ∈ Z is a constant. Equivalently, this can be written as∨

i

∧
j Aij {>,≥} 0, where each Aij is an affine function of program variables.

We refer to the loop conditions of this type as linear inequality conditions.

Program 2 A polynomial loop LG with a linear inequality condition
x := f (0)(x) {x := c ∈ Q

n}
while

∨
i

∧
j Aij(x) {>,≥} 0 do

σ1 : x := f (1)(x)
or
...

or
σk : x := f (k)(x)

As shown in [5], Term is undecidable for general polynomial loops with linear
inequality condition. The proof provided in [5] includes a reduction from the
undecidable Hilbert’s 10th Problem. The degrees of polynomial updates f (i) in
the loops from that reduction are arbitrary, just as in the original problem of
whether a polynomial has integer solutions.

In what follows, we provide a stronger result which shows undecidability
already for a substantially smaller subclass of polynomial loops than in [5].

Multi-path Affine Loops. We proceed by considering a subclass of polynomial
loops with linear inequality conditions and affine updates in the loop body.

Example 1 (multi-path affineloop).
(x, y, z) := (1, 1, 1)
while x + y + z > 0 ∧ x ≤ 10 do
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σ1 : (x, y, z) := (x + y, 1
2y,−3z + 11

7 )
or
σ2 : (x, y, z) := (−2y + z + 3

2 , x − y, z)
or
σ3 : (x, y, z) := (y, z,−x + 1)

Such loops are defined as in Program 2 with each update function f (i) being a
vector of polynomials of degree at most 1. An example of such loop with n = 3
variables and k = 3 affine update functions is given in Example 1.

We refer to such loops as multi-path affine loops emphasising the non-
determinism in their definition in contrast to the well-studied (single-path) lin-
ear/affine loops, cf. [14,17].

Observe that affine updates of a loop can be simulated by linear ones by virtue
of introducing an additional variable which is constantly set to 1. Therefore, we
can view k updates of a multi-path affine loop as k linear transformations in
Q

n+1 which, in turn, can be expressed by k rational square matrices of size
n + 1.

For a single-path counterpart, i.e., k = 1, Term with S = Q is known
to be decidable [6] (see [14] for a similar result regarding termination on Z of
loops with integer updates). In the multi-path case, mostly reachability problems
have been studied, establishing undecidability in multiple situations [1,19]. We
emphasise that in the non-deterministic setting termination on a given input is
not equivalent to the reachability questions previously considered in literature.
A loop is terminating iff all of its executions are finite, so we need to argue about
reaching the negation of the loop condition on all branches of the execution tree.

We notice that the undecidability result of [29] also concerns termination of
multi-path affine loops with linear inequality guards. Observe that the updates of
that construction simulate finite control. It is thus crucial that different update
functions are applied depending on different conditions. The result we prove
next considers a less general class of loops: it can be thought of as a guarded
polynomial loop where every guard is in fact the same inequality.

Theorem 1. Term is undecidable for multi-path affine loops with inputs.

Proof. We reduce the undecidable Post’s Correspondence Problem over the
binary alphabet {0, 1} to Term for multi-path affine loops. More specifically,
we describe an algorithm that for any PCP instance I = {(xi, yi) : i =
1, . . . , k} yields a multi-path affine loop with inputs LG[S] which terminates
on S iff I has no solutions. Notice that the negation of PCP is not semi-
decidable, so our reduction shows that Term for multi-path affine loops is
not semi-decidable as well, much in the spirit of the undecidability result
in [5]. The multi-path affine loop with inputs LG[S] operates over the variable
set {c, x, y, z}:

(x, y, z) := (1, 1, 1)
while c ≥ 0 ∧ z ≥ 0 ∧ z ≤ 1 do

σ1 or . . . or σk or σk+1
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Note that we set S := {(c, 1, 1, 1) : c ∈ Q}. That is, the reduction produces a
family of loops with all possible initial values of the variable c. The loop condition
is indeed a conjunction of linear inequalities.

Now for every pair (xi, yi) of words in I, we introduce a simultaneous
update σi of loop variables. First, define a function num : {0, 1}∗ → N that
maps a binary word to its numerical value. Observe, in particular, that this
function is not injective, as num(ε) = num(0) = 0 or num(11) = num(011) = 3.
For each pair of words (xi, yi) ∈ I with xi ∈ {0, 1}ti and yi ∈ {0, 1}bi , we define
an update σi (on the left); one more update is defined (on the right):

σi : x := 2ti · x + num(xi);

y := 2bi · y + num(yi);
z := 0;
c := c − 1;

σk+1 : x := x;
y := y;
z := −2z + x − y;
c := 0;

The effect of an update σi with i 	= k + 1 is simply appending both words
xi, yi ∈ {0, 1}∗ to the binary representation of the values of variables x and y
accumulated so far. We furthermore notice that applying two updates σi and
σj (with i 	= k + 1 and j 	= k + 1) to some valuation (x, y) results in the same
valuation (x′, y′) only if i = j.

Let L ≥ 1 and (i1, . . . , iL) be a sequence of I’s elements, i.e., ij ∈ {1, . . . , k}
for any j ∈ {1, . . . , L}. The structure of updates σi , i = 1, . . . , k, guarantees
that x = y holds after applying the sequence of updates σi1 , . . . ,σiL

starting
from x = y = 1 iff xi1 . . . xiL = yi1 . . . yiL . We classify all possible executions of
a loop from LG[S]. The following case distinction is complete:

1. Executions that start with σk+1. Termination after the first iteration due to
z = −2 < 0.

2. Executions that after applying σk+1 at iteration N , proceed with applying
some σi , i = 1, . . . , k, at iteration N +1. These terminate after iteration N +1
due to c = −1 < 0.

3. Executions without σk+1. Termination after max{0, 
c� + 1} iterations at
latest due to c < 0.

4. Executions where N ≥ 1 (but finitely many) updates with indices from the
set {1, . . . , k} are applied first, followed by finitely or infinitely many appli-
cations of σk+1.

In the rest of the proof we show that a non-terminating infinite execution
(necessarily of type 4) exists if and only if a PCP instance I has a solution.
Indeed, if (i1, . . . , iL) is a solution to I, then consider the loop LG[L, 1, 1, 1] with
the initial value of c set to L. This program has a non-terminating execution
σi1 . . . σiL

σω
k+1. After applying the first L updates of it, a fixpoint of σk+1

with x = y ∧ c = z = 0 is reached, hence the loop does not terminate. If the
PCP instance I, on the other hand, has no solutions, then after applying N ≥ 1
updates with indices from the set {1, . . . , k}, either c ≥ 0 is violated (and the
loop terminates) or x 	= y. Let (x̂, ŷ) be the values of variables x and y after
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applying the last update different from σk+1. Then, in the next two iterations (if
they exist), the value of z becomes x̂− ŷ and −(x̂− ŷ) respectively. Since x̂ 	= ŷ,
at least one of those values is not from the set {0, 1}–and the loop terminates
due to the violation of z ≥ 0 ∧ z ≤ 1. Hence, all executions of type 4 terminate.
The executions of other types are all terminating. �
Remark 1. The update coefficients in the proof above are all integers. We observe
that the input set S can be viewed as a subset of Z

n, Q
n or R

n without affect-
ing the proof. Therefore, Term is in fact proven undecidable not only over the
domain1

Q, but also over integers or reals. We emphasise that the three termi-
nation problems are not trivially equivalent, see also [6].

Remark 2. If PCP is undecidable when restricted to nPCP word pairs,
then Term is undecidable for multi-path affine loops with nPCP + 1 update
functions. Since PCP has been proven undecidable with 5 pairs (see [26]), we
argue that Term is undecidable already for multi-path affine loops with 4 vari-
ables2 and 6 updates.

Corollary 1. The Termination Problem Term is undecidable for multi-path
linear loops with 2 update matrices.

5 Strongest Algebraic Invariants

In this section we investigate the gap between two results on versions of Inv for
different classes of polynomial programs, with both results shown in [15]. The
discussions of this section refer to unguarded programs, unless stated differently.

Theorem 2 ([15]). There is an algorithm that given an affine program P with
locations set Q computes its strongest algebraic invariant X = {Xq : q ∈ Q}.
Theorem 3 ([15]). There is no algorithm that computes the strongest algebraic
invariant of an arbitrary polynomial program.

The unsolvability result of Theorem 3 holds when the degrees of updates are not
bounded by an a priori constant. It is, however, of interest how far Theorem 2 can
be pushed. That is, whether the strongest algebraic invariant can be computed
algorithmically for programs with update degrees up to some d > 1.

It turns out that the solvability boundary in fact lies between linearity and
non-linearity. That is, the problem cannot be solved algorithmically already
for d = 2. We prove this using a modification of the reduction given in [15,
Sect. 7]. Other than in the reference, we keep the degrees of update polynomials
at most 2. Our reduction avoids a blow-up in the number of program variables
while at the same time flattening the degrees of updates.

1 Term is defined over D when S ⊆ Dn and the updates coefficients are from D.
2 Note that Term remains undecidable even for a fixed number of variables.
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Theorem 4. There is no algorithm that computes the strongest algebraic invari-
ant of a q-admissible program.

Proof. We reduce the Boundedness Problem for reset VASS to the problem of
computing strongest algebraic invariants of q-admissible programs.

First, we can assume without loss of generality that every transition of a
reset VASS V involves at most one decrement. Indeed, if m > 1 counters are
decremented at once, such an edge can be substituted with a path of length m
that visits new (finitely many) “dummy” locations and where the same counters
are decremented one by one. The collecting semantics associated with the “old”
locations of a VASS is preserved. Therefore, the Boundedness Problem for reset
VASS without simultaneous decrements is still undecidable.

Reduction. In the next step, we give a reduction from the latter problem by
exhibiting a q-admissible program P capable of simulating executions of V. The
assignments of P are manufactured so that they simulate the computation of V,
among other things handling the non-negativity requirement.

Let V = (Q,E, q1) have n counters and let E = E0 ∪ E1, where E0 ∩ E1 = ∅

and Ei stands for the set of transitions which have exactly i decrements. In
turn, P := (Q ∪ {q0}, E′, q0) operates over n + 1 variables x0, x1, . . . , xn. The
updates f (0) of the edge e0 := (q0, f (0), q1) ∈ E′ are assigning x0 := 1 and xi := 0
for all i 	= 0. Further, given an update polynomial fi(x1, . . . , xn) = cxi+d, where
(c, d) ∈ {(0, 0), (1, 1), (1, 0), (1,−1)}, we consider a homogeneous map

f∗
i (x0, x1, . . . , xn) := cxi + dx0.

We also refer to id as the identity map. The edges of E′ \ {e0} are in one-to-one
correspondence with the edges of the set E. We proceed by describing their poly-
nomial assignments. For each non-decrementing transition (qi, (f1, . . . , fn), qj) ∈
E0 of VASS there is an edge (qi, (2 · id, 2 · f∗

1 , . . . , 2 · f∗
n), qj) ∈ E′, where each f∗

i

has the new variables x0, . . . , xn as arguments. We emphasise that the update
polynomials of this first transition type are at most linear. For the edges of VASS
where decrements take place (set E1), the updates are slightly different. For each
such edge (qi, (f1, . . . , fn), qj) ∈ E1, where xd is the decremented variable, there
is an edge (qi, 〈. . . 〉, qj) ∈ E′ with the assignments

{
x0 := 2xd · x0,
xi := 2xd · f∗

i (x0, . . . , xn) for each i ∈ {1, . . . , n}.

The update polynomials in this case have degree at most 2. The result of the
reduction is thus a q-admissible program P.

The key idea to prove correctness of this reduction is to observe that the
ratios x1/x0, . . . , xn/x0 mimic the values of the n counters in V. Furthermore,
any decrement of V’s zero-valued counter is caught in the corresponding tran-
sition of P. If such an update happens in an execution of V, all variables of P,
including x0, are set to 0. This can be outlined as follows:
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For any location q of V, it holds that for any a ∈ SV
q there exists b ∈ SP

q \{0}
with ai = bi/b0 for all i ∈ {1, . . . , n}, and vice versa.

The rest of the proof relates the finiteness of SV
qi to the dimension of the

Zariski closure SP
qi . The argument is close to that of [15, Proposition 17]. First,

if SV
qi is a finite set, then a finite collection of lines through the origin in Z

n+1 con-
tains SP

qi , hence the dimension of the closure SP
qi is at most one. Now assume SV

qi is
infinite. Then, without loss of generality there exist infinitely many values b1/b0
for b ∈ SP

qi . Each transition of P increases the value of x1/x0 by at most one.
At the same time, every transition at least doubles the value of x0. An asymp-
totic argument factors out the existence of a non-zero polynomial that relates
infinitely many values b1/b0 to the values b0. We finally observe that a non-zero
polynomial relating b0 and b1 for all reachable vectors exists if and only if some
non-zero polynomial relates b0 and b1/b0. Therefore, no polynomial that only
binds variables x1 and x0 vanishes on SP

qi and hence, on its Zariski closure SP
qi .

However, for a set of dimension at most 1, it is known (see [10, Chapter 9,
Sect. 5, Corollary 4]) that for any choice of two variables, there exists a non-zero
polynomial in them that vanishes on this set. We thus argue that the dimension
of SP

qi is at least 2.
Suppose we can compute the strongest algebraic invariant for P that simu-

lates V. Then, we can find the dimension of the set SP
q for any location q, since

an algorithm exists that given a polynomial ideal, finds the dimension of its zero
set (see, e.g., [10, Chapter 9, Sect. 3]). However, we can then deduce whether the
dimension is at most one–and thus decide whether the set SV

q is finite. But this
is an undecidable problem, hence, computing the strongest algebraic invariant
for a q-admissible program cannot be done algorithmically. �

While Theorem 4 holds for programs with multiple locations, we want to
show the unsolvability of a version of the problem restricted to loops, too. Let L
be a q-admissible loop that simulates a q-admissible program P, as in Lemma
1. Since projection Πi is a Zariski-continuous map, it is easy to see the following
from Lemma 1: X := Πi(SL \ {0}) not only contains SP

qi but also has the same
Zariski closure SP

qi . Now, if we could compute SL, then the set X would be
constructible (see [15, Sect. 3.2] for definitions). In that case, an approach of e.g.
[20, Theorem 1], could be used to find its Zariski closure SP

qi . This is, however,
an algorithmically unsolvable problem. Therefore, SL cannot be computed.

Corollary 2. There is no algorithm that computes the strongest algebraic
invariant of a q-admissible loop.

Equality Guards. While the Termination Problem Term for multi-path affine
programs renders undecidable, the result of Theorem 2 exhibits an algorithm to
solve its safety counterpart Inv for the same class of updates. Here, we briefly
discuss how introducing guards changes the solvability landscape. The following
result holds already in the presence of a single equality test.
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Theorem 5 ([24]). The Constant Propagation problem, i.e., establishing
whether a variable maintains a unique constant value at a given program loca-
tion, is undecidable for guarded affine programs.

This immediately implies that generating the strongest algebraic invariant of
a GPP with affine updates cannot be done algorithmically. Indeed, whether
an expression of the type xj = c for some c ∈ Q holds at location q can be
easily checked, as long as the Zariski closure SP

q is computed. As in the q-
admissible case, the uncomputability transfers to loops. It suffices to see that
the executions of P can be mimicked by those of a guarded polynomial loop L
with additional new variables y1, . . . , y�, each of which stands for a location of P.
The idea is to force the variable yi to have value 0 every time the location qi

is active in the execution of P, while yj = 1, j 	= i. The transitions from qi

are respectively guarded by “yi = 0?” This way, only those executions of L are
singled out that correspond to the proper executions of P. Meanwhile, the loop
variables x1, . . . , xn go through the same sequence of valuations as in P. Finally,
xj = c is valid at location qi of P iff L has (yi − 1) · (xj − c) = 0 as an invariant.

Corollary 3. There is no algorithm that computes the strongest algebraic
invariant of a guarded affine loop.

We conclude that both Term and Inv become unsolvable for affine loops with
guarded updates, just as they do for q-admissible loops due to Theorems 1 and 4.

6 Discussion and Conclusions

Termination. We put the undecidability result of Theorem 1 into the context
of existing works in this direction and discuss some follow-up questions.

Both the abstraction of loops and the formulation of the termination problem
considered in this work are similar to those in [5]. Taking into account a set of
possible inputs as a parameter of the decision problem is natural for a verification
framework: thus finiteness of executions is considered for all inputs that satisfy
a precondition. An improvement with respect to the result of [5] is that we prove
Term to be undecidable already with updates of degree at most 1.

We emphasise once more that the model we consider in Theorem 1 is a
restriction of Tiwari’s model [29] (see also the discussion in Sect. 4). In particular,
Theorem 1 implies that Term is undecidable for the programs with several
updates guarded, in general, by different predicates, as in [29, Sect. 6]. Moreover,
results presented here witness that Term becomes undecidable already with
two linear updates guarded by the same inequality. In turn, restricting loop
conditions in Theorem 1 to equalities makes Term decidable since the set of
non-terminating inputs is algorithmically computable for that model [22]. This
remains true for multiple equality guards.

Further challenges arise in the study of the Halting Problem Halt:
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Halting Problem for LG – Halt
Given: a polynomial loop LG with condition G and an initial vector c ∈ Q

n

Question: Does LG terminate (halt) on c?

Recall that termination on all rational (resp. integer) inputs is decidable for
single-path affine loops with linear inequality conditions [6,14]. At the same time,
Halt for these loops is equivalent to the Positivity Problem, a long-standing
open problem in number theory [27]. Consider the problem Halt for the class
of multi-path loops, where a loop LG has several affine updates chosen non-
deterministically. On the one hand, decidability of Halt would not contradict
undecidability of Term proved here and on the other hand, proving undecid-
ability of Halt for multi-path loops would not show its special case, Halt for
single-path affine loops (or, equivalently, the Positivity Problem) undecidable.
This question remains open.

Invariants. With Theorem 4, we have shown that generalising the class of
updates in a polynomial program from affine to q-admissible changes the solv-
ability characterisation of the strongest algebraic invariant problem Inv. We
point out that the unsolvability result of Theorem 4 exploits non-determinism
of updates, following [15]. The problem of computing the strongest algebraic
invariant of an arbitrary single-path polynomial loop, for its part, remains open
(see also [22]).
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Abstract. Representable implication algebras are known to be axioma-
tised by a finite number of equations (making the representation and
finite representation problems decidable here). We show that this also
holds in the context of unary (and binary) relations and present a Stone-
style representation theorem. We then show that the (finite) representa-
tion decision problem is undecidable for implication semigroups, in stark
contrast with implication algebras.
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1 Introduction

The variety of implication algebras, so-named by Abbott [1] and studied by
Rasiowa [12], Diego [2], and their students, forms the algebraic semantics of
the implicational fragment of classical propositional logic. These are Boolean
algebras restricted to one operation (→) and a constant (� or 1). The vari-
ety of Relation algebras, alias residuated Boolean algebras with an additional
involution operator (x� or ‘converse of x’, with x understood as a relation),
forms the algebraic semantics of the calculus of relations. By a classical result
of Korselt attributed in [10], the variety of relation algebras corresponds to the
three-variable fragment of classical first-order logic, permitting a study of math-
ematical logic, particularly set theory [14], via a quantifier-free equational the-
ory. Proofs in this theory consist of simple manipulations of identities, similar to
proofs in abstract algebra. This situation contrasts with proofs of standard math-
ematical logic (or set theory) which can involve complex alternations of quanti-
fiers. Meanwhile, implication algebras (having one operation, classical implica-
tion) yield an algebraic analysis of the entailment relation between propositions
in classical logic. Although informed by different motivations, a certain elegance
recommends the study of relation and implication algebras.
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The present paper considers a fragment of the signature of relation algebras
we call implication semigroups based on adjoining a semigroup operation (;), i.e.
relational composition, to the implication algebras of Abbott. When the carrier
set of this structure is a set of binary relations, we obtain the fragment of relation
algebras consisting of (S,→, ; ), i.e. relation algebras with signature restricted to
implication and composition. There are good reasons to examine this signa-
ture. For one, it has not been well-explored: practically speaking, most algebraic
structures considered in algebraic logic are residuated lattices, groups, or at least
monoids – this can be noticed already in a standard definition of relation alge-
bras, as residuated lattices [9] – where the implication and monoidal operations
interact via residuation. Algebras featuring implication and semigroup opera-
tions fall out of the mainstream substructural logic literature as the algebra at
hand lacks the interdefinability present even in the case of a residuated monoid.

For algebraic logic (particularly relation algebras) the question of whether
an algebra has a finite representation looms large. One typically asks whether a
given logical system of interest is not just consistent but has finite models, i.e.
models we can inspect within finite time or employing finitely many resources.
The present paper demonstrates the (finite) representation problem for implica-
tion semigroups is undecidable. Our results are curious for two reasons. First,
implication semigroups represent, in a sense, a limiting case of substructural
logics of implication for which the question of decidability of finite represen-
tations, to our knowledge, has not been raised, and certainly not approached
from the angle considered here. This suggests a track of further research in what
one might call substructural relation algebras, exploring the effects of weakening
the Boolean base in relation algebra into other algebras of residuation. This is
already a current area of research by Peter Jipsen and Nikolaos Galatos [4,5],
and has been broached from another angle in [13], where the signature consid-
ered there bears two residuals and a semigroup operation and is in fact a model
of the famed Lambek Calculus (thus connecting that algebra to the base sys-
tem for infinitely many substructural logics). Second, our results contribute to
a research programme seeking a better grasp of the consequences for relation
algebras when operating in a restricted signature. We are particularly motivated
to understand the effect on representability when moving to subsignatures of the
standard presentation of a relation algebra [6].

2 Preliminaries

In this section we present the definitions of the algebraic structures and operators
for binary relations. We begin by defining Abbott’s implication algebras.

Definition 1. An implication algebra1 A is a pair (A,→), with A a set and →
a binary operation on A satisfying the following properties:

(i) (a → b) → a = a (Contraction)
(ii) (a → b) → b = (b → a) → a (Quasi-commutativity)
(iii) a → (b → c) = b → (a → c) (Exchange)

1 Also known as Tarski algebras.
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Trivially, because the class of implication algebras is equationally definable, it
forms a variety. We shall refer to this class as IA. Abbott shows a neat property
about these in [1].

Proposition 2 (Abbott). Let A = (A,→) be an implication algebra. We can
implicitly define a constant 1 as a → a such that b → 1 = 1 and 1 → b = b, for
all b ∈ A.

This also gives us

Proposition 3. For an implication algebra (A,→), we can define a partial order
as

a ≤ b ⇔ (a → b) = 1

Proof. Let a + b = (a → b) → b. It is commutative by quasi-commutativity,
idempotent by contraction, has 1 as the top by Proposition 2, and can be shown
associative (see [1][Theorem 12]). So a + b = b forms a partial order. Observe
that if a + b = b then a → b = a → ((a → b) → b) = (a → b) → (a → b) = 1. If
a → b = 1 then (a → b) → b = 1 → b = b. ��
Definition 4. Let � ⊆ X × X be a binary relation. Define A(�) = (℘(�),→)
where → is interpreted as proper Boolean implication defined below

a → b = (� \ a) ∪ b

One can check that A(�) ∈ IA. Although � is conventionally an arbitrary
maximal relation, this is not the only possible interpretation of the → operation
for binary relations. We say that the implication operator is absolute if we require
� = X × X, else we say that it is relative.

We say that A ∈ IA is representable if and only if it embeds into A(�) for
some � ⊆ X ×X. The embedding (usually denoted h) is called a representation.
If A embeds into A(�) and � is over a finite base X, then we say A is also
finitely representable.

Another standard presentation of implication algebras is A = (A,→, 1). How-
ever, the constant 1 can be defined as a → a, for any a. Furthermore, the quasi-
commutativity axiom is a consequence of the fact that (a → b) → b is equivalent
to the Boolean join of a + b.

Proposition 5. Let A = (A,→) ∈ IA be representable via h. Then h((a →
b) → b) = h(a) ∪ h(b) and h(1) = h(a → a) = �, for any a, b ∈ A.

Proof. Since 1 = a → a and h is a representation we get h(1) = h(a → a) =
h(a) → h(a) = (� \ h(a)) ∪ h(a) = �.

By h being a representation, DeMorgan’s law, and a ∩ � = a we also have
h((a → b) → b) = (h(a) → h(b)) → h(b) = �\((�\h(a))∪b)∪h(b) = (h(a)∩(�\
h(b)))∪h(b) = (h(a)∪h(b))∩((�\h(b))∪h(b)) = (h(a)∪h(b))∩� = h(a)∪h(b).

��
We now direct our attention to what happens when we add a semigroup

operation (;) to the signature.
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Definition 6. An implication semigroup S is a tuple (S,→, ; ), with a carrier
set S and →, ; binary operations on S where

(i) (S,→) is an implication algebra
(ii) (S, ; ) is a semigroup
(iii) ((a → b) → b); c = (a; c → b; c) → b; c (Left quasi-additivity)
(iv) c; ((a → b) → b) = (c; a → c; b) → c; b (Right quasi-additivity)

The class of implication semigroups will be called ISG. Similarly to IA we
also examine structures where the carrier set is a set of binary relations.

Definition 7. Let � ⊆ X × X be a transitive binary relation. Define S(�) =
(℘(�),→, ; ) where → is interpreted as proper Boolean implication and ; as proper
relational composition defined as

a; b = {(x, z) | ∃y ∈ X : (x, y) ∈ a, (y, z) ∈ b}
Again checking S(�) ∈ ISG is relatively straightforward, note that they are

closed under composition due to the transitivity of �. Similarly to IA, S ∈ ISG
is (finitely) representable if it embeds into S(�) for some transitive � (over a
finite base).

3 Basic Theory, Stone Representation, and Decidability
for Implication Algebras

We now present the basic theory of implication algebras, the implicational frag-
ment of the implication semigroups discussed in the previous section. We first
consider the more general positive implication algebras, subsuming the impli-
cation algebras. This culminates in a representation theorem for implication
algebras, informing our construction in Sect. 4.2

The axiomatics here are largely in [1] and [12] with some corrections and
modifications. Their presentations of the implication algebras are quite different,
Abbott preferring an equational presentation where Rasiowa utilises a quasiequa-
tional definition.

Definition 8 (Rasiowa 2). A positive implication algebra3 (Postive IA) is a
pair (A,→, 1)4, a set A and → satisfying:

(P1) a → (b → a) = 1
(P2) (a → (b → c)) → ((a → b) → (a → c)) = 1
(P3) if a → b = 1 and b → a = 1 then a = b
(P4) a → 1 = 1
2 The representation result for implication algebras appears to have been known to

Diego [2], perhaps Abbott [1], but the proof is given in full by Rasiowa in [12]. It was
probably known to several others throughout different traditions of algebraic logic.

3 Also known as a Hilbert algebra.
4 With this axiomatisation we cannot omit 1 from the signature. Alternatively, 1 could

be replaced with a → a and an extra axiom added as a → a = b → b.
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Without proof, we state the following lemmas. For proofs, refer to [12].

Proposition 9 (Rasiowa 2(1)) In any positive implication algebra, the fol-
lowing condition is fulfilled: if a → b = 1 and a = 1, then b = 1. Also, if a = 1,
then b → a = 1 for any b ∈ A.

Proposition 10 (Rasiowa 2.2). For any positive IA A, for all a, b ∈ A, we
can define a partial order ≤ on A as

a ≤ b ⇐⇒ a → b = 1

and 1 = c → c for all maximal c in the poset (A,≤).

Proposition 11 (Rasiowa 2.3). The following hold in any positive implication
algebra:

(1) If a ≤ b → c then b ≤ a → c
(2) a ≤ (a → b) → b
(3) 1 → a = a
(4) If b ≤ c, then a → b ≤ a → c
(5) If a ≤ b then b → c ≤ a → c
(6) a → (b → c) = b → (a → c)

Proposition 12 (Distributivity). In any (positive) implication algebra A =
(A,→, 1), we have a → (b → c) = (a → b) → (a → c)

Proof We have b ≤ a → b by (P1) and Proposition 10. Applying Proposi-
tion 11(5)(6), we get (a → b) → (a → c) ≤ b → (a → c) = a → (b → c).
So, a → (b → c) = (a → b) → (a → c) follows from (P2) and Proposition 10.

The proof that distributivity holds in implication algebras is found in [1,
Theorem 5]. ��

We now show that the class of implication algebras lies below the class of pos-
itive implication algebras. Although the following proposition is not in Abbott
or Rasiowa, it is latent in the published results concerning implicative, positive
implication, and implication algebras.

Proposition 13. Any implication algebra (A,→) is a positive implication alge-
bra.

Proof. (P1) follows from the exchange axiom and Proposition 2, more specifically
a → (b → a) = b → (a → a) = b → 1 = 1. For (P2) follows from Proposition 12
and Proposition 2. For (P3) see that by Proposition 3 we have the anti-symmetry
for the partial order in implication algebras. Finally (P4) follows directly from
Proposition 2. ��
Proposition 14. Any positive implication algebra (A,→) satisfying

(a → b) → a = a

for all a, b ∈ A is an implication algebra.5

5 Note that the contraction identity is not provable from the axioms (P1)–(P4), a
counterexample can be found using Mace4.
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Proof. To show the other direction, let (A,→, 1) be a positive implication algebra
satisfying (a → b) → a = a. The first axiom of implication algebras (a → b) →
a = a we have already assumed adjoined to the algebra, and the third axiom,
a → (b → c) = b → (a → c), is found in Proposition 11(6). To show the second
axiom: (a → b) → b = (b → a) → a, we note a → b ≤ 1 = (b → b) = (b →
a) → (b → b) = b → ((b → a) → b) by Proposition 10 and Proposition 11(6).
By Proposition 11(1) we have b ≤ (a → b) → ((b → a) → b) and thus by
Proposition 11(1) and (3) we get (a → b) → b ≤ ((a → b) → (a → b)) → ((b →
a) → b) = 1 → ((b → a) → b) = ((b → a) → b). By a completely analogous
argument, (a → b) → b ≤ (b → a) → a. Hence (a → b) → b = (b → a) → a as
desired. ��

In anticipation of the Stone-style representation theorem, we define some
required notions like that of an implicative filter.

Definition 15 (Abbott). An implicative filter of a (positive) implication alge-
bra A = (A,→) is a subset F ⊆ A such that:

(i) 1 ∈ F
(ii) if a ∈ F and a → b ∈ F then b ∈ F

Definition 16. We say that an implicative filter F is proper if F �= A. We say
that a proper implicative filter is irreducible if it is not the intersection of two
proper implicative filters distinct from it, or formally: F is irreducible if for any
two proper implicative filters F1, F2 such that F = F1 ∩ F2, either F = F1 or
F = F2. Finally, a proper implicative filter F is said to be prime if a + b ∈ F
(or equivalently (a → b) → b ∈ F ) implies that either a ∈ F or b ∈ F , for all
a, b ∈ A.

The proof of the Stone-like Representation theorem follows the following
steps. For proofs, refer to [12].

Proposition 17 (Rasiowa 1.8).6 If in any (positive) implication algebra A =
(A,→) one of the following conditions is satisfied for all a, b, c ∈ A:

(F1) (a → (b → c)) → a → b) → (a → c)) = 1
(F2) (a → b) → (a → (b → c)) → (a → c)) = 1

then for every implicative filter F in A and for every a ∈ A, the set Fa∗ =
{x ∈ A : a → x ∈ F} is an implicative filter. If, moreover, for all a, b ∈ A : a →
(b → a) = 1, then Fa∗ is the least implicative filter containing F and a.

Proposition 18 (Rasiowa 3.4). If (A,→) is a (positive) implication algebra,
then for every implicative filter F and for every element a ∈ A the set Fa∗ =
{x ∈ A : a → x ∈ F} is the least implicative filter containing F and a.
6 Rasiowa states this result for implicative algebras, the weakest algebra she considers

in her text. Since all implication algebras are positive implication algebras, and all
positive implication algebras are implicative algebras, we can specialise her result
for the present case.
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Proposition 19 (Rasiowa 6.1). An implicative filter in an implication algebra
is prime if and only if it is irreducible.

Lemma 20 (Rasiowa 1.4). If F0 is an implicative filter in an implicative alge-
bra A such that a0 /∈ F0 for some a0 ∈ A then there exists an irreducible implica-
tive filter G such that F0 ⊂ G and a0 /∈ G.

Immediately, by Lemma 20 and Proposition 19 we have:

Corollary 21. If F is an implicative filter in an implicative algebra A such that
a /∈ F for some a ∈ A then there exists a prime implicative filter G such that
F ⊂ G and a /∈ G.

This next corollary we prove, as it is not found in any of the literature cited
above and is required for the representation theorem.

Corollary 22. Let F be an implicative filter of an implication algebra A =
(A,→) such that a → b /∈ F for some a, b ∈ A. Then there exists a prime
implicative filter G : F ⊆ G such that a ∈ G and b /∈ G.

Proof. Let Fa∗ be the implicative filter generated by the filter F and a. Suppose
that a → b /∈ F . If b ∈ Fa∗, then we have a → b ∈ F by the definition of Fa∗.
This contradicts our assumption that a → b /∈ F ; hence b /∈ Fa∗, and applying
Corollary 21 for Fa∗ and b we have a prime filter G such that Fa∗ ⊆ G and
b /∈ G. Clearly, a ∈ G and F ⊆ G. ��

We have then, as an immediate corollary from Corollary 22 and Proposi-
tion 19, the following:

Corollary 23. Let F be an implicative filter of an implication algebra A =
(A,→) such that a → b /∈ F for some a, b ∈ A. Then there exists an irreducible
implicative filter G : F ⊆ G such that a ∈ G and b /∈ G.

Finally, the culminating representation theorem. Rasiowa presents this for
irreducible implicative filters [12], which given her equivalence result, one can
also state using prime implicative filters, or maximal implicative filters.

Theorem 24 (Rasiowa 7.1). For any implication algebra A = (A,→), there is
a monomorphism h from A to (℘(X),→) of an arbitrary space X with |X| ≥ A.

From this it follows that every implication algebra is isomorphic to an impli-
cation algebra of sets. Since the focus of the present paper is on representations,
we note a corollary from this last result [1,2,12]:

Corollary 25. For any implication algebra A, if A is finite, then A has a finite
representation.

Proof. Let A be a finite implication algebra. Then by Theorem 24 A is monomor-
phic to the algebra A′ under h, where A′ = (℘(X),→) , an implication algebra
of sets. Now if |X| = A then |℘(X)| = 2|A|, and thus finite. That means h(A),
the subalgebra of A′ under h, is finite. So we have h(A) is a finite implication
algebra (induced by h and A), and hence h is a finite representation of A. ��
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Now, the focus of the rest of the paper revolves around the (finite) repre-
sentation decision problem for implication semigroups. In the case of IA, this is
defined as follows:

Definition 26. The (finite) representation decision problem for implication
algebras is a decision problem that takes an implication algebra with a (finite)
carrier set as input. The algebra is a yes instance if and only if it is (finitely)
representable.

Closing this section, we note:

Corollary 27. IA is finitely axiomatisable.

Corollary 28. The (finite) representation problem for IA is decidable.

4 Undecidability Results for Implication Semigroups

In this section we build on results from [7,8,11] to show undecidability of some
decision problems for. We begin by defining the representation and the finite
representation decision problems.

Definition 29. The (finite) representation decision problem for implication
semigroups is a decision problem that takes an implication semigroup with a
finite carrier set as input. The semigroup is a yes instance if and only if it is
(finitely) representable.

As we mention in Sect. 2, whether a structure is representable, also depends
on our interpretation of the constant 1. Here we show that the (finite) decision
problem is undecidable in both cases.

4.1 Representation Problem with Absolute Implication

We begin by examining the case with absolute implication, i.e. we require � =
X × X for some (finite) base X.

Definition 30. An implication monoid M = (M, 1′,→, ; ) is an algebra where
(M,→, ; ) is an implication semigroup and 1′ is the monoidal identity for ;. For
some transitive and reflexive � ⊆ X × X, we define M(�) = (℘(�), 1′,→, ; )
where →, ; are proper relational implication and composition respectively and 1′

is the proper relational identity for X defined as 1′ = {(x, x) | x ∈ X}.
In [8, Section 4] a construction of a Boolean monoid from a square cancellative

partial group G is given. Its implication monoid reduct is denoted M(G) =
(M, 1′,→, ; ). By [8, Proposition 5.1, Example 6.2] M(G) is representable (over
a finite base) if and only if G embeds into a (finite) group.

From the fact that both the group and the finite group embedding problems
are undecidable [3] for finite structures it follows that the (finite) representation
decision problem is undecidable. Thus if we prove that the ISG reduct of M(G)



202 A. Lewis-Smith and J. Šemrl

is (finitely) representable if and only if M(G) is representable, we have shown
that the (finite) representability is undecidable. The right to left implication is
trivial. But we must examine the case where we relax the requirement where we
represent 1′ as the true relational identity, and show that this is still sufficient
for the structure to remain (finitely) representable with 1′ taken as the true
relational identity.

Suppose we have an embedding h from M(G) to S(�), i.e. an injective
mapping that preserves →, ;, but not necessarily 1′.

Lemma 31. If (x, y) ∈ h(1′) then (y, x) ∈ h(1′).

Proof. Suppose (y, x) �∈ h(1′). That means that (y, x) ∈ h(1′ → 0) = h(1′). By
composition of (x, y) ∈ h(1′) and (y, x) ∈ h(1′) we get that (x, x) ∈ h(1′) and by
composing that with (x, y) ∈ h(1′) we have that (x, y) ∈ h(1′). As (x, y) ∈ h(1′)
and (x, y) ∈ h(1′) = h(1′ → 0), we also have (x, y) ∈ h(0). By a series of
compositions we also get that (y, x) ∈ h(0) and because 0 ≤ 1′ we also get
(y, x) ∈ h(1′) and we’ve reached a contradiction. ��
Lemma 32. h(1′) is an equivalence relation.

Proof. By Lemma 31 we have that h(1′) is symmetric. Furthermore, since all
(x, x) ∈ h(�) there must exist a z witnessing 1′;� = �. Thus (x, z) ∈ h(1′) and
(z, x) ∈ h(1′) and we compose that to get (x, x) ∈ h(1′), so h(1′) is reflexive.
Finally, as 1′ = 1′; 1′ we also have that h(1′) is transitive. ��
Lemma 33. For all x, x′, y, y′ ∈ X where (x′, x), (y, y′) ∈ h(1′) we have for all
a ∈ M(G) that (x, y) ∈ h(a) ⇔ (x′, y′) ∈ h(a).

Proof. If (x, y) ∈ h(a) we have (x, y′) ∈ h(a) by (x′, x), (y, y′) ∈ h(1′) and the
composition of 1′; a; 1′ = a. By Lemma 31, we also have (x, x′), (y′, y) ∈ h(1′) so
similarly if (x, y′) ∈ h(a) then (x, y) ∈ h(a). ��
Theorem 34. The (finite) representation decision problem for ISG is undecid-
able when → is interpreted as absolute implication.

Proof. As h(1′) is an equivalence relation by Lemma 32, so we can define h′ :
M(G) → X/h(1′) where

h′(a) = {([x]h(1′), [y]h(1′)) | (x, y) ∈ h(a)}
and show that h′ is indeed an embedding of M(G) into M(X × X).

By Lemma 33, we know that if (x, y) ∈ h(a) then for any x′ ∈ [x]h(1′), y
′ ∈

[y]h(1′) we have (x′, y′) ∈ h(a).
Take any a ≤ b. Then there exists (x, y) ∈ h(a) \ h(b). From this follows

([x]h(1′), [y]h(1′)) ∈ h′(a) and if it were the case that ([x]h(1′), [y]h(1′)) ∈ h′(b)
that would mean that there exist some (x′, y′) ∈ h(b) with (x, x′) ∈ h(1′) and
(y′, y) ∈ h(1′) and that would also means that (x, y) ∈ h(b). Thus h′ is injective.

Every composition is witnessed by the equivalence class of the witness for
the composition in h and if (x, y) ∈ h(a) and (y′, z) ∈ h(b) with y′ ∈ [y]h(1′) we
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also have (y, y′) ∈ h(1′) and thus we have the composition (x, z) ∈ h(a; 1′; b) =
h(a; b). Thus h′ represents ; correctly. Finally 1′ is represented correctly as a pair
of equivalence classes is in h′(1′) if and only if they are the same equivalence
class.

Thus we have shown that if we have an embedding of M(G) into S(X × X)
then we also have an embedding of M(G) into M(X ′ ×X ′) where X ′ = X/h(1′).
Furthermore if X is finite, so is X ′. Trivially if M(G) embeds into M(X × X)
it also embeds into S(X × X) via the same embedding. This, together with the
results presented in [8] shows that the (finite) representation decision problem
for ISG is undecidable. ��

4.2 Representation Problem with Relative Implication

Now we show the same result for relative implication.

Definition 35. A Boolean semigroup is a tuple B = (B, 0, 1,−,+, ; ) is an
algebraic structure where S is a carrier set

(i) (B, 0, 1,−,+) is a Boolean algebra
(ii) (B, ; ) is a semigroup
(iii) ; is additive over +
(iv) 0; a = a; 0 = 0

Similarly to ISG, we denote the class of Boolean semigroups BSG and we
say that a Boolean semigroup is representable if and only for some transitive
� ⊆ X × X it embeds into B(�) = (℘(X × X), ∅,�,−,+, ; ) where −a is
interpreted as proper Boolean negation �\a, + is interpreted as proper Boolean
join ∪ and ; is interpreted as proper relational composition.

The (finite) representation problem for Boolean semigroups is defined analo-
gous to that for implication semigroups. [7, Theorem 11.2] shows that the repre-
sentation problem for Boolean semigroups is undecidable and [11, Theorem 2.5]
shows that the finite representation problem for Boolean semigroups is undecid-
able. From this we show that the (finite) representation problem for implication
semigroups is also undecidable.

Note that the above results require an operation · to be defined in the signa-
ture, but much like � in IA, · is term definable for BSG as a · b = −(−a + −b).

Lemma 36. Let S = (S,→, ; ) be an implication semigroup that contains some
element 0 such that for all a ∈ S we have 0 ≤ a and 0; a = a; 0 = 0. If S is
representable via some representation h then there exists a representation h′ of
S where h′(0) = ∅. If h is defined over a finite base, so is h′.

Proof. Let h(S) be the proper structure defined by h for some � ⊆ X × X. As
h is a representation, there exists for every pair a �≤ b ∈ S a discriminator pair
(ι, o) ∈ � such that (ι, o) ∈ h(a) \ h(b).

Define Xι,o as

Xι,o =
{

x ∈ X |
(
x = ι ∨ (ι, x) ∈ �

)
∧

(
y = o ∨ (y, o) ∈ �

)}
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�ι,o as � ∩ (Xι,o × Xι,o), and a mapping hι,o : S → S(�ι,o) where hι,o(a) =
h(a) ∩ �ι,o.

First observe that hι,o(0) = ∅. Suppose that there was a pair (x, y) ∈ hι,o(0).
If x = ι, we have (ι, y) ∈ hι,o(0), else (ι, x) ∈ h(1) = � and thus (ι, y) ∈ h(0)
since 1; 0 = 0 and h preserves composition. Similarly if y = o we get (ι, o) ∈ h(0),
else by composing (ι, y) ∈ h(0) with (y, z) ∈ h(1) we get (ι, o) ∈ h(0). Since
b ≥ 0 that would mean (ι, o) ∈ h(b) that contradicts the fact that (ι, o) is a
discriminator pair for a �≤ b.

Now let us check that hι,o preserves composition. Suppose (x, y) ∈ hι,o(a; b).
This means that there exists z ∈ X such that (x, z) ∈ h(a) and (y, z) ∈ h(b).
If x = ι, we trivially have (x, ι) ∈ h(1) = �. Else, by composing (ι, x) ∈ h(1)
and (x, y) ∈ h(a) we get (ι, y) ∈ h(1) = � as 1; a ≤ 1. Similarly (y, o) ∈ � and
thus y ∈ Xι,o. Thus we have (x, z) ∈ hι,o(a), (y, z) ∈ hι,o(b) and we have shown
hι,o(a; b) ⊆ hι,o(a);hι,o(b). The fact that hι,o(a; b) ⊇ hι,o(a);hι,o(b) follows from
(x, y), (y, z) ∈ �ι,o then x, z ∈ Xι,o and we have (x, z) ∈ �ι,o. Thus hι,o preserves
composition.

We have hι,o(a) �= hι,o(b) as (ι, o) ∈ �ι,o. The operation → is preserved by
hι,o as for all (x, y) ∈ �ι,o it holds (x, y) ∈ h(a) ⇐⇒ (x, y) ∈ hι,o(a). Finally,
|Xι,o| ≤ |X|. Thus we conclude that h{ι, o} is a homomorphism for S that
discriminates the pair a �≤ b.

Now let us pick for every a �≤ b a δ(a, b) = (ι, o) such that (ι, o) ∈ � is a
discriminator pair for a �≤ b and let ∪̇ denote a disjoint union. A mapping

h′ : S → ℘

(⋃̇
a�≤b∈S

�δ(a,b)

)

h′(c) =
⋃̇

a�≤b∈S
hδ(a,b)(c)

still represents ; ,→ correctly, discriminates all pairs a �≤ b (i.e. is injective),
which makes it a representation. Furthermore, h′(0) = ∅ and the size of its base
is bounded by |S|2|X|. ��
Theorem 37. The (finite) representation decision problem for implication
semigroups is undecidable.

Proof. We show this by proving that B ∈ BSG is representable if and only if
its 〈→, ; 〉-reduct S is representable. The left to right implication is trivial as
a → b ∈ S is term-definable as (−a) + b ∈ B. For the right to left implication,
+, 1 are term-definable in 〈→, ; 〉 (see Proposition 5). By Lemma 36 the 〈→, ; 〉-
reduct of B is representable if and only if it has a representation where h(0) = ∅.
See how in that representation a → 0 (corresponding to −a + 0 = −a in the
Boolean semigroup) is represented as � \ a ∪ ∅ = � \ a.

As the (finite) representation decision problem is undecidable for Boolean
semigroups, we conclude the same for implication semigroups. ��
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5 Problems

In this section we outline some open problems. It follows from the results in
Sect. 4 that the class of representable implication semigroups is not finitely
axiomatisable, nor does it have the finite representation property, i.e. not every
finite representable structure in the class is finitely representable. However,
another decision problem of interest is posed below.

Problem 38. Is membership in the equational theory generated by the class of
representable implication semigroups decidable?

The reader can see that if we add the bottom element 0 to the signature, the
undecidability follows from the undecidability of the equational theory of the
Boolean semigroups as described in [7]. This is because all negations of terms
−t can be rewritten as t → 0 and all joins t + t′ as (t → t′) → t′ where t, t′ are
terms.

The problem remains open for the class of representable implication semi-
groups without the bottom element. One of the possible ways to prove undecid-
ability is by using discriminator terms, defined below.

Definition 39. A discriminator term d(a, b, c) is a term defined in terms of
elements of algebra a, b, c such that for all representable algebras d(a, b, c) = c if
a = b and a otherwise.

Although the existence of discriminator terms is not a guarantee for the
undecidability of the equational theory membership decision problem, it is an
interesting open question in its own right.

Problem 40. Is it possible to define a discriminator term in the language of
implication semigroups?

It is well known that subreducts of representable relation algebras form qua-
sivarieties. As such, the class of implication semigroups can be characterised
by quasiequations. However, some open questions about the equational theory
generated by the class of representable implication semigroups are listed below.

Problem 41. Is the class of representable implication semigroups a variety?

Problem 42. Is the equational theory generated by the class of representable
implication semigroups finitely axiomatisable?

We continue by looking at the alternative interpretations of → operation
for binary relations. An interesting example, as mentioned in the introduction
section is that of a weakening relation defined below.

Definition 43. Let P = (X,≤) be a poset. R ⊆ X × X is a weakening relation
if and only if ≤;R;≤ ⊆ R.
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In the context of the weakening relation algebras as described in [4], the →
operation can be given in first order terms as

R → S = {(x, y) | ∀x′, y′ : ((x′ ≤ x ∧ y ≤ y′ ∧ (x′, y′) ∈ R) ⇒ (x′, y′) ∈ S)}
where R,S are weakening relations over a poset P = (X,≤).

This interpretation of the → operation gives rise to the class of representable
weakening implication semigroups, for which the following properties remain
open.

Problem 44. Is the (finite) representation decision problem decidable for the
class of representable weakening implication semigroups? Is the class finitely
axiomatisable and does it have the finite representation property?

Problem 45. Is the class of representable weakening implication semigroups a
(discriminator) variety? Is the equational theory generated by the class finitely
axiomatisable/decidable?

Finally, we note that it can be checked that all results presented in this paper
can be generalised to the dual operation ← by presenting dual axioms for the
class of implication algebras and defining negation as 0 ← a.
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Matemática, Universidad Nacional del Sur (1965). https://books.google.co.uk/
books?id=AfcSAQAAMAAJ

3. Evans, T.: Embeddability and the word problem. J. Lond. Math. Soc. 1(1), 76–80
(1953)

4. Galatos, N., Jipsen, P.: The structure of generalized bi-algebras and weakening
relation algebras. Algebra Universalis 81(3), 1–35 (2020)

5. Galatos, N., Jipsen, P.: Weakening relation algebras and FL2-algebras. In: Fahren-
berg, U., Jipsen, P., Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 117–
133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43520-2 8

6. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Elsevier, Amsterdam
(2002)

7. Hirsch, R., Hodkinson, I., Jackson, M.: Undecidability of algebras of binary rela-
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Abstract. We prove that the equational theory of Kleene algebra with
domain is EXPTIME-complete. Our proof makes essential use of Hollen-
berg’s equational axiomatization of program equations valid in relational
test algebra. We also show that the equational theory of Kleene algebra
with domain coincides with the equational theory of *-continuous Kleene
algebra with domain.
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1 Introduction

Kleene algebra with domain [5] is an expansion of Kleene algebra [15] with a
negation-like antidomain operator a. The image of a Kleene algebra with domain
under a is a Boolean algebra, and so every Kleene algebra with domain gives
rise to a Kleene algebra with tests [16,18]. In fact, it can be shown that the
equational theory of Kleene algebra with tests embeds into the equational theory
of Kleene algebra with domain. However, Kleene algebra with domain is more
expressive than Kleene algebra with tests [24]. In this paper we approach the
difference between Kleene algebra with tests and Kleene algebra with domain
from the viewpoint of computational complexity. In particular, we prove that
the (problem of deciding membership in the) equational theory of Kleene algebra
with domain is EXPTIME-complete. On the other hand, it is well-known that
the equational theory of Kleene algebra with tests is PSPACE-complete [2].

While this result is not quite unexpected, it fills a certain gap in the literature
on Kleene algebra with domain, where only limited attention has been paid to
complexity-theoretic questions. To the best of our knowledge, the only explicit
result is that the equational theory of left-inductive extensional Kleene algebra
with domain is in EXPTIME [21].1

We will use the well-known fact that the validity problem for Propositional
Dynamic Logic (PDL) is EXPTIME-complete [6,23]. In particular, our proof
1 Extensionality is closely related to the property of separability, well known from the

literature on dynamic algebra [12,22].
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uses an algebraic formulation of PDL in terms of test algebras [22,25] and Hol-
lenberg’s equational axiomatization of program equations valid in relational test
algebra (RTA) [10]. We establish our EXPTIME-completeness result by showing
that the equational theory of test algebras embeds into the equational theory
of Kleene algebra with domain (lower bound) and vice versa (upper bound).
The embedding result entails that PDL, RTA and KAD have essentially the
same expressive power. Our proof of the embedding result also shows that the
equational theory of KAD coincides with the equational theory of *-continuous
KAD. The main result is established in Sect. 5. The necessary prerequisites are
given in Sects. 2 (Kleene algebra and Kleene algebra with tests), Sect. 3 (Kleene
algebra with domain) and 4 (test algebra). The concluding section summarizes
the paper and lists some interesting open problems.2

2 Kleene Algebra with Tests

This section gives some necessary background information on Kleene algebra
and Kleene algebra with tests. For more detail we refer the reader to [15,16].

Definition 1. A Kleene algebra is an algebra of the form

K = (K, ·,+, ∗, 1, 0)

where (K, ·,+, 1, 0) is an idempotent semiring and ∗ : K → K satisfies the
following, for all x, y, z ∈ K (where x ≤ y iff x + y = y):

1 + xx∗ ≤ x∗ (1)
1 + x∗x ≤ x∗ (2)

y + xz ≤ z → x∗y ≤ z (3)
y + zx ≤ z → yx∗ ≤ z (4)

A Kleene algebra is *-continuous iff

xy∗z = sup≤{xynz | n ∈ ω} (5)

for all x, y, z ∈ K, where y0 = 1 and yn+1 = yny.

2 We note that the the main result of our original submission was an EXPTIME-
completeness result on the equational theory of *-continuous KAD. The proof was
essentially the same as the one given here, but we relied on the assumption of *-
continuity in the proof of Theorem 4 (in particular, the argument showing that the
translation of T8 is valid). An anonymous reviewer showed that the proof of Theorem
4 can be carried out without assuming *-continuity and that the resulting argument
establishes in conjunction with Lemma 4 that the equational theory of KAD coincides
with the equational theory of *-continuous KAD. We gratefully acknowledge the
input of the reviewer and we suggest that the results of this paper be considered
joint work of the official author and the anonymous reviewer.
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It follows from the definition that ≤ is a partial order on K and x∗ is the smallest
reflexive transitive element above x with respect to ≤; that is, 1 ≤ x∗, x∗x∗ ≤ x∗

and x ≤ x∗, and if 1 ≤ y, yy ≤ y and x ≤ y, then x∗ ≤ y. In (5), it is assumed
that each set of the form {xynz | n ∈ ω} has a supremum with respect to ≤ and
that the supremum is identical to xy∗z.

The standard examples of Kleene algebras are the algebra of regular lan-
guages over a finite alphabet [11], the Kleene algebra expanding the (min,+)-
semiring where ∗ maps each element to the multiplicative identity [14], and the
relational Kleene algebra over a set S, consisting of a collection of binary rela-
tions on S such that 1 is the identity relation on S (1S), 0 is the empty set, · is
relational composition, + is set union, and ∗ is reflexive transitive closure. The
class (quasivariety) of Kleene algebras will be denoted as KA and the subclass
of *-continuous Kleene algebras as KA∗. The class of relational Kleene algebras
is denoted as RKA.

Let P = {pn | n ∈ ω} be a set of variables (“program variables”). The set of
Kleene algebra terms, TmKA, is generated by the following grammar:

p, q := p | 1 | 0 | p · q | p + q | p∗ .

(We follow the standard approach and we do not distinguish between the syn-
tactic operators corresponding to – or interpreted by – Kleene algebra operators
and the operators themselves.) The set of Kleene algebra terms can be seen as
an algebra of the Kleene algebra type (the absolutely free algebra of the Kleene
algebra type). A Kleene algebra equation is an ordered pair of Kleene algebra
terms, written as p ≈ q. A Kleene algebra model is a pair (K, v) where K ∈ KA
and v is a homomorphism from TmKA to K. An equation p ≈ q is valid in (K, v)
iff v(p) = v(q); it is valid in K iff it is valid in all (K, v); and it is valid in a class
of Kleene algebras K iff it is valid in all members of the class. We usually write
“ . . . |= p ≈ q” instead of “p ≈ q is valid in . . .”. The equational theory of a class of
Kleene algebras K, denoted as Eq(K), is the set of all Kleene algebra equations
valid in K. Later on we will use similar definitions and notation for other classes
of algebras and other languages.

Definition 2. A Kleene algebra with tests is an algebra of the form

K = (K,B, ·,+, ∗, −, 1, 0)

where

– (K, ·,+, ∗, 1, 0) is a Kleene algebra;
– B ⊆ K;
– − is a unary operation on B;
– (B, ·,+, −, 1, 0) is a Boolean algebra.

A Kleene algebra with tests is *-continuous iff its underlying Kleene algebra is
*-continuous.

Every Kleene algebra gives rise to a Kleene algebra with tests where
B = {1, 0} and − is defined as the complement in the two-element Boolean
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algebra. A standard example of a (*-continuous) Kleene algebra with tests is
the full relational Kleene algebra with tests over a set S where K is the set of
all binary relations on S, B is the power set of 1S (the identity relation on S),
· is relational composition, + is set union, * is reflexive transitive closure, −

is complementation on subsets of 1S , 1 is 1S , and 0 is ∅. (A relational Kleene
algebra with tests on S is a subalgebra of the fully relational Kleene algebra with
tests on S.) Relational Kleene algebras with tests correspond to interpretations
of programs in poor-test Propositional Dynamic Logic (the fragment where tests
are formed using only Boolean formulas; see [8]). Another standard example of
a Kleene algebra with tests is the algebra of guarded strings [18]. The class of
(*-continuous, relational) Kleene algebras with tests will be denoted as KAT
(KAT∗, RKAT).

Let B = {bn | n ∈ ω} be a set of variables disjoint from P (“Boolean vari-
ables”). The set of KAT terms, TmKAT , is defined using the following grammar
invoking the sub-sort of Boolean terms Bm (instead of using different variables
for KAT terms, we reuse the variables ranging over KA terms, with the hope
that the context will disambiguate):

Bm b, c := bn | 1 | 0 | b · c | b + c | b̄

TmKAT p, q := pn | b | p · q | p + q | p∗

(Hence, every Boolean term is a KAT term. Therefore, b∗ is a KAT term,
although it is not a Boolean term.)

A KAT equation is an ordered pair of KAT terms. A KAT model is a pair
(K, v) where K ∈ KAT and v is a homomorphism from TmKAT to K such that
v(bn) ∈ B for all n. The various notions of validity are defined similarly as in the
case of Kleene algebra, and the (quasi)equational theories of classes of Kleene
algebras with test are defined as expected.

Even though the classes KA, KA∗ and RKA are mutually distinct [13], their
equational theories coincide [15]. Similarly, KAT, KAT∗ and RKAT are mutually
distinct, but their equational theories coincide [18]. It is well known that the
equational theories of KA and KAT are PSPACE-complete [2,15].

3 Kleene Algebra with Domain

In this section we recall some necessary background on Kleene algebra with
domain. We assume the “internal” formulation of Kleene algebra with domain
[4,5]. In this formulation, Kleene algebras with domain are expansions of Kleene
algebras with a unary antidomain operator.3 The properties of the antidomain
operator assumed in the definition below generalize the properties of the rela-
tional antidomain operator A : 2S×S → 2S×S defined by

A(R) = {(s, s) | ¬∃t.(s, t) ∈ R}
3 In the original formulation [3], Kleene algebras with domain were expansions of

Kleene algebras with test.
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If R is seen as the input-output relation determined by a program π, then A(R)
is the input-output relation determined by a test if π diverges. It is interesting to
note that the same operation is used to interpret negation in Dynamic Predicate
Logic [7].

Definition 3. A Kleene algebra with domain is a structure of the form

D = (K, ·,+, ∗, a, 1, 0)

such that (K, ·,+, ∗, 1, 0) is a Kleene algebra, a : K → K and the following are
satisfied for all x, y, z ∈ K, assuming that d(x) := a(a(x)):

a(x)x = 0 (6)
a(xy) ≤ a(x d(y)) (7)

d(x) + a(x) = 1 (8)

A Kleene algebra with domain is *-continuous iff its underlying Kleene algebra
is *-continuous.

A standard example of a (*-continuous) Kleene algebra with domain is the
full relational Kleene algebra with domain over a set S that expands the full
relational Kleene algebra over S with the relational antidomain operation A.
Note that the relational domain operation

D(R) := A(A(R)) = {(s, s) | ∃t.(s, t) ∈ R}

is related to the projection operation familiar from relational databases. If R
is seen as the input-output relation determined by a program π, then D(R) is
the input-output relation determined by a test if π halts. The Kleene algebra of
regular languages over a finite alphabet Σ can be extended to a Kleene algebra
with domain by adding a : 2Σ∗ → 2Σ∗

such that

a(L) =

{
{ε} if L = ∅
∅ otherwise.

The quasivariety of (*-continuous, relational) Kleene algebras with domain
will be denoted as KAD (KAD∗, RKAD). Not every Kleene algebra expands to a
Kleene algebra with domain [5], but the above example of a Kleene algebra of
regular languages with domain shows that the equational theory of KAD (defined
as expected4) expands the equational theory of KA conservatively. We will show
below that the equational theories of KAD and KAD∗ coincide.5 To the best of
4 As before, we save letters by re-using p, q etc. as variables ranging over KAD terms,
TmKAD (defined as expected), and letting the context disambiguate.

5 McLean [20] studies the equational theory of relational Kleene algebras expanded
by the relational domain operator D seen as primitive. He shows that this theory
is decidable, with a 3EXPTIME upper bound. The *-free fragment of Eq(RKAD) is
not finitely based [9], in contrast to the *-free fragment of Eq(KAD).
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our knowledge, the only explicit complexity result in the literature on Kleene
algebra with domain is that the equational theory of left-inductive extensional
Kleene algebra with domain is in EXPTIME [21].6

For each p, let p′ be the term that results from p by replacing, for each
n > 0, every occurrence of pn by an occurrence of p2n (renaming of variables).
It is immediate that D |= p ≈ q iff D |= p′ ≈ q′. If q = p′ for some p, then q is
called an even term.

Assuming any fixed Kleene algebra with domain with universe K, let d(K) =
{d(x) | x ∈ K}. Elements of d(K) are called domain elements of the underlying
Kleene algebra with domain. The following proposition lists some useful proper-
ties of the antidomain and domain operations.

Proposition 1. The following hold in each Kleene algebra with domain, for all
x, y, z:

1. d(x) ≤ 1 (domain elements are subidentities)
2. d(x)a(x) = 0 (law of noncontradiction)
3. d(x)x = x (left invariant)
4. d(xd(y)) = d(xy) (locality)
5. d(x + y) = d(x) + d(y) (additivity)
6. d(x)d(y) = d(d(x)d(y)) (d-multiplication)
7. d(x) + d(y) = d(d(x) + d(y)) (d-addition)
8. d(1) = 1 and d(0) = 0 (seriality and normality)
9. d(x)d(y) = d(y)d(x) (domain elements are commutative)

10. d(x)d(x) = d(x) (domain elements are idempotent)
11. a(x) = d(a(x)) and d(x) = d(d(x)) (triple negation)
12. x ≤ d(y)x iff d(x) ≤ d(y) (least left preserver)

Proof. These are standard facts; see [5] for instance. 	


Lemma 1. For each Kleene algebra with domain D, the algebra

d(D) = (d(K), ·,+, a, 1, 0)

is a subalgebra of D which is also a Boolean algebra.

Proof. See [5]. d(D) is a distributive lattice since d(x) ≤ 1, (dx)(dx) = dx,
and (dx)(dy) = (dy)(dx); moreover, a(x) is a Boolean complement of d(x) by
definition. 	


It follows from the previous lemma that every D ∈ KAD gives rise to a Kleene
algebra with tests, namely, (K, d(D), ·,+, ∗, a, 1, 0).7 In fact, it can be shown that
the equational theory of KAT embeds into the equational theory of KAD.

6 Extensionality is closely related to the property of separability, well known from the
literature on dynamic algebra [12,22].

7 Strictly speaking, we should replace a (a total operation) by its restriction to d(D),
but we will not bother with this detail.
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Theorem 1. There is a function η : TmKAT → TmKAD such that KAT |= p ≈
q iff KAD |= η(p) ≈ η(q).

Proof. We sketch the proof (the result itself seems to be folklore in the lit-
erature on KAD). Let η(pn) = p2n, η(bn) = d(p2n+1), η(b̄) = a(η(b)), and
then let η commute with the Kleene algebra operations (note that for each
b ∈ Bm, KAD |= η(b) ≈ d(p) for some p ∈ TmKAD). Now, if KAT �|= p ≈ q,
then RKAT �|= p ≈ q. Let K ∈ RKAT be such that v(p) �= v(q) for some v.
Take the D ∈ RKAD arising from K by forgetting about B and replacing − by
the relational antidomain operation A. Define w as the unique homomorphism
TmKAD → D such that w(p2n) = v(pn) and w(p2n+1) = v(bn). It can be proven
by induction on r ∈ TmKAT that v(r) = w(η(r)). Hence, KAD �|= η(p) ≈ η(q).
Conversely, if w(η(p)) �= w(η(q)) for some (D, w) where D ∈ KAD, then take
K = (K, d(D), ·,+, ∗, a, 1, 0) ∈ KAT and define v : TmKAT → K as the unique
homomorphism such that v(pn) = w(p2n) and v(bn) = w(d(p2n+1)). It can be
proven by induction on r ∈ TmKAT that v(r) = w(η(r)), and so KAT �|= p ≈ q.

	


For each Kleene algebra with domain D = (K, ·,+, ∗, a, 1, 0), we will refer
to d(D) as the domain algebra of D. While elements of D can be informally
seen as representing (nondeterministic) actions, elements of the domain algebra
represent a special sort of actions, namely, tests or statements. In the domain
algebra, the operations ·,+ and a represent the Boolean operations of conjunc-
tion, disjunction and negation. Moreover, the domain operation d can be used to
define a modal operator on the domain algebra: for d ∈ d(K), let 〈x〉d := d(xd),
intuitively representing the statement that d is true after some execution of x.
In fact, thanks to the properties of d in KAD (see Proposition 1) this modal
operator shares many properties of the possibility operator from modal logic
and Propositional Dynamic Logic.

Lemma 2. The following hold in all Kleene algebras with domain, for all x, y ∈
K and all d, e ∈ d(K):

1. 〈x〉0 = 0 and 〈1〉d = d
2. 〈x〉(d + e) = 〈x〉d + 〈x〉e
3. 〈x + y〉d = 〈x〉d + 〈y〉e
4. 〈xy〉d = 〈x〉〈y〉d
5. 〈d〉e = de
6. 〈x∗〉d = d + 〈x〉〈x∗〉d
7. d + 〈x〉e ≤ e → 〈x∗〉d ≤ e

Proof. The proof uses facts stated in Proposition 1. The first half of (1) is nor-
mality and the second half follows from triple negation; (2) and (3) follow from
additivity (and distribution of · over +); (4) follows from locality and (5) fol-
lows from d-multiplication. (6) is established using Kleene algebra reasoning:
x∗ = 1 + xx∗ holds in all Kleene algebras, and so x∗d = d + xx∗d holds in each
Kleene algebra with domain, which entails (6) using additivity, triple negation
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and locality. (7) is established as follows. By the least left preserver property, it
is sufficient to establish that

d ≤ ed and xe ≤ exe only if x∗d ≤ ex∗d .

Since 1 ≤ x∗, the first assumption entails that d ≤ ex∗. The second assumption
entails

xe ≤ ex (subidentity)
xex∗d ≤ exx∗d
xex∗d ≤ ex∗d (xx∗ ≤ x∗)

Hence, d + xex∗d ≤ ex∗d, and so x∗d ≤ ex∗d using (3). 	


(We note that the proof of (7) above, not requiring the assumption of *-
continuity, was suggested by an anonymous reviewer.)

4 Relational Test Algebra

Relational test algebras are algebraic counterparts of Kripke models for Propo-
sitional Dynamic Logic. They will play a crucial role in the proof of our main
result. This section gives the necessary information on relational test algebra;
we follow the exposition given in [10].

Definition 4. A relational test algebra is a structure of the form

T = (K(S),B(S), 〈 〉, ?)

where

– K(S) = (P(S × S), ◦,∪, ∗, 1S , ∅) is the full relational Kleene algebra over S;
– B(S) = (P(S),∩,∪, −, S, ∅) is the Boolean algebra of subsets of S;
– 〈〉 : K(S) × B(S) → B(S) such that 〈R〉X = {s | ∃t.(s, t) ∈ R&t ∈ X};
– ? : B(S) → K(S) such that X? = {(s, s) | s ∈ X}.

(We note that the operator 〈〉 is primitive and it is not to be confused with
the modal operator on domain algebras discussed in the previous section. How-
ever, we will see that there is a close connection between the two justifying our
overloading of notation.)

The class of relational test algebras is denoted as RTA. Subalgebras of rela-
tional test algebras correspond to complex algebras of (standard) Kripke frames
for Propositional Dynamic Logic [6,8].

The sets of programs Pr and formulas Fm are defined by mutual induction
as follows (using the sets of program variables P and Boolean variables B):

Pr α, β := pn | 1 | 0 | α;β | α ∪ β | α∗ | ϕ?
Fm ϕ,ψ := bn | ⊥ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉ϕ .
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Unsurprisingly, a program α is called even in case pn occurs in α only if n is
even. We define [α]ϕ := ¬〈α〉¬ϕ.

An RTA model is a pair (T , v) such that T ∈ RTA and v is a homomor-
phism from Pr ∪ Fm into T such that v(pn) ∈ K(S) and v(bn) ∈ B(S). The
program-equational theory of RTA, denoted as Pr(RTA), is the set of equations
of the form α ≈ β such that v(α) = v(β) in each (T , v) for T ∈ RTA. The
formula-equational theory of RTA is defined similarly. The formula-equational
theory corresponds to the set of theorems of Propositional Dynamic Logic, and
its finitary axiomatization is easily derived from the proof of completeness of
Segerberg’s axiomatization of PDL [8,17].

Improving the result of [25] where separability is assumed, Hollenberg [10]
showed that the program-equational theory of RTA can be axiomatized by adding
a finite number of axioms to the equational theories of Kleene algebras and
Boolean algebras. Here we will present a modification of his system (mentioned
also by Hollenberg) that uses Kozen’s axiomatization of Kleene algebra [15].

Definition 5. Let TC be a two-sorted quasi-equational proof system consisting
of the following axioms and inference rules:

1. Kozen’s [15] quasi-equational axiomatization of Eq(KA) (using variables in P
and operators 1, 0, ·,+ and ∗);

2. your favorite equational axiomatization of the equational theory of Boolean
algebras (using variables in B and operators ⊥,¬,∧,∨);

3. test algebra axioms of [25] (minus separability), de facto an equational refor-
mulation of Segerberg’s axioms for PDL:

(T1) 〈p〉⊥ = ⊥
(T2) 〈p〉(b ∨ c) = 〈p〉b ∨ 〈p〉c
(T3) 〈0〉b = ⊥
(T4) 〈1〉b = b
(T5) 〈p ∪ q〉b = 〈b〉p ∨ 〈q〉p

(T6) 〈pq〉b = 〈p〉〈q〉b

(T7) 〈p∗〉b = b ∨ 〈p〉〈p∗〉b
(T8) 〈p∗〉b = b ∨ 〈p∗〉(¬b ∧ 〈p〉b)
(T9) 〈b?〉c = b ∧ c

4. additional program axioms:

(K1) ⊥? = 0
(K2) (b ∨ c)? = b? ∪ c?

(K3) (b ∧ c)? = b?c?
(K4) (〈p〉�)?p = p

The inference rules are (Kozen’s quasi-equations for ∗ and) the usual inference
rules of equational logic and uniform (sort-respecting) substitution.

Theorem 2. ([10]). For all α, β ∈ Pr, TC � α ≈ β iff RTA |= α ≈ β.

We define φ(α, β) as the formula 〈α〉c ↔ 〈β〉c where c ∈ B is the first
Boolean variable not appearing in α or β. It is easily seen that the following
holds.

Theorem 3. 1. RTA |= α ≈ β iff PDL � φ(α, β).
2. PDL |= ϕ iff RTA |= (ϕ?) ≈ 1.
3. Pr(RTA) is EXPTIME-complete.
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5 The Complexity of KAD

In this section we prove that the membership problem for the equational theory
of KAD is EXPTIME-complete, and that the equational theories of KAD and
KAD∗ coincide. First we show that Pr(RTA) embeds into Eq(KAD) via a (poly-
nomially computable) translation function τ : Pr ∪ Fm → Tm. This establishes
the EXPTIME lower bound. Then we show that there is a (polynomially com-
putable) translation function σ : Tm → Pr such that KAD |= p ≈ σ(τ(p)) for all
even terms p. It follows that Eq(KAD) embeds into Pr(RTA), establishing the
EXPTIME upper bound. The result establishing that the equational theories of
KAD and KAD∗ coincide is a corollary of one of our embedding results. We show
that for all p, q the equation p ≈ q is valid in KAD iff σ(p) ≈ σ(q) is provable in
TC iff p ≈ q is valid in KAD∗.

Definition 6. Let τ be the following function from Pr ∪ Fm → Tm:

τ(p2n) = p2n

τ(p2n+1) = p1

τ(1) = 1
τ(0) = 0

τ(α ∪ β) = τ(α) + τ(β)
τ(α;β) = τ(α) · τ(β)
τ(α∗) = τ(α)∗

τ(bn) = d(p2n+1)
τ(⊥) = 0

τ(¬ϕ) = aτ(ϕ)
τ(ϕ ∧ ψ) = τ(ϕ) · τ(ψ)
τ(ϕ ∨ ψ) = τ(ϕ) + τ(ψ)
τ(〈α〉ϕ) = d(τ(α) · τ(ϕ))

τ(ϕ?) = τ(ϕ)

Lemma 3. For each ϕ ∈ Fm there is p ∈ Tm such that KAD |= τ(ϕ) ≈ d(p).

Proof. Structural induction on ϕ. The base case ϕ = b holds by definition. The
cases of the induction step are established using Proposition 1 as follows. (i)
τ(⊥) = 0 and KAD |= 0 ≈ d(0). (ii) τ(¬ϕ) = aτ(ϕ), and so KAD |= τ(¬ϕ) ≈
ad(p) for some p by the induction hypothesis; however, KAD |= ad(p) ≈ da(p).
(iii) KAD |= τ(ϕ) · τ(ψ) ≈ d(p) · d(q) for some p, q by the induction hypothesis,
and KAD |= d(p) ·d(q) ≈ d(d(p) ·d(q)). (iv) KAD |= τ(ϕ)+τ(ψ) ≈ d(p)+d(q) for
some p, q by the induction hypothesis and KAD |= d(p) + d(q) ≈ d(d(p) + d(q)).
(v) τ(〈α〉ϕ) is equivalent to a term of the form d(p) by definition. 	


Theorem 4. For all even α, β ∈ Pr:

1. TC � α ≈ β iff KAD |= τ(α) ≈ τ(β);
2. TC � α ≈ β iff KAD∗ |= τ(α) ≈ τ(β).

Proof. We prove the first claim and we will point out that the proof establishes
the second claim as well.

Right to left. If TC �� α ≈ β, then there is a test algebra model (T , v)
based on a set S such that v(α) �= v(β). Now consider the full relational Kleene
algebra D based on S and define a KAD-model (D, w) where w is the unique
homomorphism such that

w(p2n) = v(p2n) w(p2n+1) = v(bn?) .
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Claim. Let α be an arbitrary even program and let ϕ be an arbitrary formula.
Then

v(α) = w(τ(α)) (9)
v(ϕ?) = w(τ(ϕ)) (10)

The proof is by simultaneous structural induction on α and ϕ. The base case
holds by definition, and the fact that w(p2n+1) = d(w(p2n+1)). The induc-
tion step for Kleene algebra operations and Boolean connectives is trivial. For
example, take ∪ and ∨. First, v(α ∪ β) = v(p) ∪ v(β) = w(τ(α)) ∪ w(τ(β))
by the induction hypothesis; and w(τ(α)) ∪ w(τ(β)) = w(τ(α) + τ(β)) =
w(τ(α ∪ β)) by definition. Second, v((ϕ ∨ ψ)?) = v(ϕ? ∪ ψ?) by Theorem 2,
v(ϕ? ∪ ψ?) = v(ϕ?) ∪ v(ψ?) = w(τ(ϕ)) ∪ w(τ(ψ)) by the induction hypothesis,
and w(τ(ϕ)) ∪ w(τ(ψ)) = w(τ(ϕ) + τ(ψ)) = w(τ(ϕ ∨ ψ)) = w(τ((ϕ ∨ ψ)?)) by
definition.

The induction step for negation is established as follows: v((¬ϕ)?) = {(s, s) |
s �|= ϕ} = {(s, s) | ¬∃t.(s, t) ∈ v(ϕ?)} = A(v(ϕ?)) = A(w(τ(ϕ))) by the
induction hypothesis; but clearly A(w(τ(ϕ))) = w(a(τ(ϕ))) = w(τ(¬ϕ)) =
w(τ((¬ϕ)?)).

The induction step for ? is established as follows: v(ϕ?) = w(τ(ϕ)) by the
induction hypothesis (in proving (9) for ϕ?, we assume that (10) holds for ϕ,
which has lower complexity than ϕ?; this kind of simultaneous inductive proof
is standard in Propositional Dynamic Logic); but w(τ(ϕ)) = w(τ(ϕ?)) by defi-
nition.

Finally, the induction step for the diamond operator 〈 〉 is established as
follows:

v((〈α〉ϕ)?) = {(s, s) | s ∈ v(〈α〉ϕ)}
= {(s, s) | ∃t.(s, t) ∈ v(α)&(t, t) ∈ v(ϕ?)}
= {(s, s) | ∃t.(s, t) ∈ w(τ(α))&(t, t) ∈ w(τ(ϕ))} (ind. hyp.)
= {(s, s) | ∃t.(s, t) ∈ w(τ(α) · τ(ϕ))} w(τ(ϕ)) ⊆ 1S
= D(w(τ(α) · τ(ϕ))) = w(τ(〈α〉ϕ))
= w(τ((〈α〉ϕ)?))

This concludes the proof of the claim, and so we have shown that, for even α
and β, TC �� α ≈ β entails KAD �|= τ(α) ≈ τ(β). Since the D constructed in the
proof is a *-continuous Kleene algebra with domain, we have also established
the right-to-left implication of the second part of the theorem.

Left to right. We prove by induction on the length of proofs in TC that
TC � α ≈ β implies KAD |= τ(α) ≈ τ(β), and so KAD∗ |= τ(α) ≈ τ(β),
establishing the left-to-right implication of the second part of the theorem as
well. Translations of the Kleene algebra axioms are clearly valid (resp. preserve
validity) since τ commutes with Kleene algebra operators. Translations of the
Boolean algebra axioms are valid thanks to Lemma 1. Validity of translations of
the test algebra axioms is established as follows.
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Note that, thanks to Lemma 3, for each ϕ ∈ Fm and each Kleene algebra
with domain model (D, v), v(τ(ϕ)) is a domain element. Hence, we may use
Lemma 2 to show that translations of the test algebra axioms are valid. In
fact, translations of all axioms except T8 correspond straightforwardly to cases
listed in Lemma 2. For instance, τ(〈p〉⊥) = d(τ(p)0), but KAD |= 〈p〉0 ≈ 0 by
Lemma 2, where 〈p〉0 is defined as d(p0); and τ(〈pq〉b) = d(τ(p)τ(q)τ(b)), but
KAD |= 〈pq〉d ≈ 〈p〉〈q〉d by Lemma 2 (d is an arbitrary term of the form d(r)
for some term r).

Consider the translation of T8:

d
(
τ(p)∗ · τ(b)

)
= τ(b) + d

(
τ(p)∗ · a(τ(b)) · d(τ(p) · τ(b))

)
To prove that the translation of T8 is valid, it is sufficient to show that

d(x∗e) = e + d(x∗a(e)d(xe)) (11)

holds in all Kleene algebras with domain for all x ∈ K and e ∈ d(K). The
inequality from right to left is established as follows: e ≤ x∗e, and so e = d(e) ≤
d(x∗e); moreover, d(x∗a(e)d(xe)) ≤ d(x∗d(xe)) since a(e) ≤ 1, and d(x∗d(xe)) =
d(x∗xe) ≤ d(x∗e).

The inequality in (11) from left to right is established as follows. Since

e + d(x∗a(e)d(xe))︸ ︷︷ ︸
d

∈ d(K) and a(e)d(xe)︸ ︷︷ ︸
f

∈ d(K)

by Proposition 1, it is sufficient to show that

e + d(xd) ≤ d (12)

and d(x∗e) ≤ d will follow using the last item of Lemma 2. We reason as follows:

e + d(xd) = e + d(x(e + x∗f))
= e + d(xe + xx∗f)
≤ e + d(xe + x∗f)
= e + d(xe) + d(x∗f)
= e + (e + a(e))d(xe) + d(x∗f)
= e + ed(xe) + f + d(x∗f)
= e(1 + d(xe)) + f + d(x∗f)
≤ e + f + d(x∗f)
≤ e + d(x∗f) + d(x∗f) = d

The last inequality holds since f ≤ d(x∗f): 1 ≤ x∗ implies f ≤ x∗f , which
implies f = d(f) ≤ d(x∗f).
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Validity of the additional program equations is established as follows (p ≡ q
means that KAD |= p ≈ q):

– K1. τ(⊥?) = τ(⊥) = 0 = τ(0).
– K2. τ((ϕ ∨ ψ)?) = τ(ϕ) + τ(ψ) = τ(ϕ?) + τ(ψ?) = τ(ϕ? ∪ ψ?).
– K3. τ((ϕ ∧ ψ)?) = τ(ϕ) · τ(ψ) = τ(ϕ?) · τ(ψ?) = τ(ϕ?ψ?).
– K4. τ((〈α〉�)?α) = τ(〈α〉�)·τ(α) = d(τ(α)·τ(�))·τ(α) ≡ dτ(α)τ(α) ≡ τ(α).

Finally, it is trivial to show that translations of the inference rules preserve
membership in Eq(KAD). 	


Definition 7. Let σ : Tm → Pr be defined as follows:

σ(pn) = pn

σ(1) = �?
σ(0) = ⊥?

σ(pq) = σ(p);σ(q)
σ(p + q) = σ(p) + σ(q)

σ(p∗) = σ(p)∗

σ(a(p)) = ([σ(p)]⊥)?

Lemma 4. For each even term p, KAD |= p ≈ τσ(p).

Proof. Induction on the complexity of p. The base case: τσ(p2n) = τ(p2n) =
τ(p2n) = p2n. The induction step:

– τσ(1) = τ(�?) = τ(�) ≡ 1;
– τσ(0) = τ(⊥?) = τ(⊥) = 0;
– τσ(pq) = τ(σ(p);σ(q)) = τσ(p) · τσ(q) ≡ pq;
– τσ(p + q) = τ(σ(p) ∪ σ(q)) = τσ(p) + τσ(q) ≡ p + q;
– τσ(p∗) = τ(σ(p)∗) = (τσ(p))∗ ≡ p∗;
– τσ(ap) = τ([σ(p)]⊥) ≡ a(τσ(p) · aτ(⊥)) ≡ a(τσ(p)) ≡ ap. 	


Note that Lemma 4 entails that for each even term p, KAD∗ |= p ≈ τσ(p)
since Eq(KAD) ⊆ Eq(KAD∗).

Theorem 5. For all even p, q ∈ Tm:

1. KAD |= p ≈ q iff TC � σ(p) ≈ σ(q);
2. KAD∗ |= p ≈ q iff TC � σ(p) ≈ σ(q).

Hence, Eq(KAD) = Eq(KAD∗).

Proof. Note that if r is even, then so is σ(r). Hence, we may reason as follows.
First part: TC � σ(p) ≈ σ(q) iff KAD |= τσ(p) ≈ τσ(q) (Theorem 4, first part) iff
KAD |= p ≈ q (Lemma 4). Second part: TC � σ(p) ≈ σ(q) iff KAD∗ |= τσ(p) ≈
τσ(q) (Theorem 4, second part) iff KAD∗ |= p ≈ q (Lemma 4). 	
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Theorem 6. The membership problem for Eq(KAD) is EXPTIME-complete.

Proof. The lower bound (EXPTIME-hardness) follows from Theorem 4: RTA |=
α ≈ β iff RTA |= α′ ≈ β′ iff TC � α′ ≈ β′ iff KAD |= τ(α′) ≈ τ(β′). Pr(RTA) is
EXPTIME-hard by Theorem 3.

The upper bound (membership in EXPTIME) follows from Theorem 5: KAD
|= p ≈ q iff KAD |= p′ ≈ q′ iff TC � σ(p′) ≈ σ(q′) iff RTA |= σ(p′) ≈ σ(q′).
Pr(RTA) is in EXPTIME by Theorem 3. 	


6 Conclusion

Our main result is that the membership problem for the equational theory of
Kleene algebra with domain is EXPTIME-complete. An interesting result we
obtained on the way (with the help of an anonymous reviewer) is that the equa-
tional theory of KAD coincides with the equational theory of KAD∗. Our embed-
ding results we used to obtain the main result show that, essentially, KAD has
the same expressive power as PDL or RTA.

A natural open problem is the question whether there are variants of KAD
that are closer to have the same complexity as KAT. More precisely: Are there
classes K of algebras of the KAD type such that: (i) KAD ⊆ K, (ii) Eq(KAT)
embeds into Eq(K), and (ii) Eq(K) is PSPACE-complete?

A natural candidate for such a class of algebras is “weak Kleene algebra with
domain” (our name) briefly discussed in [1]. A weak Kleene algebra with domain
is an expansion of a Kleene algebra with a : K → K satisfying (d := a2)

d(1) = 1
d(d(x)d(y)) = d(y)d(x)

a(x)d(x) = 0
a(x) + a(y) = a(d(x)d(y))

Many laws valid in KAD fail in weak KAD, most importantly locality, both
directions of additivity, and the least left preserver property. However, in weak
Kleene algebra with domain, the set of domain elements is still closed under ·,+
and a, it contains 1 and 0 and, moreover, domain elements are subidentities, and
they are commutative and idempotent. Hence, domain algebras in weak Kleene
algebras with domain are Boolean algebras.

Another interesting problem is the problem of identifying free algebras in
KAD and weak KAD (McLean [20] identifies free relational Kleene algebras
with domain and Mbacke [19] identifies free *-continuous Kleene algebras with
domain.)
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Abstract. Using computer software, every quantale on up to nine ele-
ments has been enumerated up to isomorphism, catalogued and classified
with respect to various properties. In order to achieve this the enumer-
ation was branched by partitioning the search space based on various
isomorphic invariants of quantales.

Keywords: Quantales · Enumeration · Classification

1 Introduction

Quantales are algebraic structures that on the one hand are semigroups, and on
the other hand are complete lattices. They encode a notion of order as well as
a composition that distributes over joins. This makes quantales useful as model
structures in many-valued and fuzzy logic, as the elements of a quantale can be
interpreted as truth values of different degrees, and the semigroup operator as a
logical operation on these truth values. Certain types such as Girard quantales
are also related to linear logic [21].

The aim of this paper is to report the compilation of a catalogue of every
quantale on up to nine elements, as well as their properties, up to isomorphism. A
catalogue of small-order quantales and their properties can be very useful in both
theory and practice. On the one hand, a rich collection of examples, numbers
and patterns surrounding quantales can stimulate theoretical developments. On
the other hand, there are recent ideas of using quantales in practice, opening
up concrete use cases for the produced catalogue. Hypothetical applications of
quantales include modelling diagnosis systems in healthcare [7,10], or modelling
many-valued logic circuits [8]. Understanding quantales as a design space will
surely be helpful in guiding practical applications of them.

To put the work developed here into context, the quantales on up to 3 ele-
ments were enumerated prior to the book [9], the author then enumerated all
quantales on up to 6 elements using SAT solvers [20], and up to 9 elements
using the software Mace4 [17]. The quantales up to 6 elements have been made
available as a mobile application for easier browsing [19]. Beyond the author’s
own work on enumerating quantales, a prior paper used a backtracking app-
roach to enumerate residuated finite lattices up to order 12, which are essentially
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quantales that are restricted to be integral and commutative [1]. Furthermore,
semigroups [4,5] have been enumerated using both constraint- and SAT-solvers
in much more involved ways than what is presented in this document, and been
released as a GAP package called SmallSemi. Lastly, lattices [14] have been enu-
merated using a variety of different algorithms, consult the sources in the cited
OEIS entry for more information.

The organization of this paper is as follows. In Sect. 2 we define quantales and
their properties, then discuss how they were enumerated in Sect. 3. In Sect. 4 we
present a summary of some results obtained, and we conclude with a discussion
on how to proceed with further research in Sect. 5.

2 Quantales

We will classify quantales with respect to quite a few properties, hence we state
their definitions in this section for the reader’s perusal. A few of these are novel,
and pointed out as such. The rest can be found in textbooks such as [9,16]. We
will use ⊥ and � to denote the bottom and top elements, respectively.

Definition 1. A (finite) quantale is an algebraic structure consisting of a set X
and two binary operators ∗ and ∨ such that X is a semigroup under ∗, a complete
suplattice under ∨, ⊥ is a zero element under ∗ and ∗ distributes over ∨:

⊥ ∗ x = x ∗ ⊥ = ⊥, (1)

x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z), (2)

(x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z). (3)

For infinite quantales one additionally requires that the semigroup operation
distributes over arbitrary joins (∨), but we only consider finite quantales below.

We consider in Table 1 a rather broad collection of quantale properties con-
sidered in the literature, some of which rely on concepts such as prime or cyclic
elements. We thus state some definitions for these concepts next.

Definition 2. An element p �= � of a quantale is prime if

x ∗ y ≤ p ⇒ x ∗ � ≤ p or � ∗ y ≤ p (4)

and strong prime if

x ∗ y ≤ p ⇒ (x ∗ �) ∨ x ≤ p or (� ∗ y) ∨ y ≤ p. (5)

Definition 3. Given a quantale, we define two additional binary operations ←
and → on it via the defining equations

x ∗ y ≤ z ⇔ x ≤ z ← y, (6)

x ∗ y ≤ z ⇔ y ≤ x → z. (7)

We call ← left residuation/implication, and → right residuation/implication.
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Semantically, the residuations can be interpreted as the maximal solutions
for the inequality x ∗ y ≤ z, where the left one solves for x given y and z, and
the right one solves for y given x and z. They can be viewed as many-valued
analogues of the two-valued implication from Boolean logic. Given a quantale,
both residuations exist and are uniquely determined.

Definition 4. An element d of a quantale is dualizing if for all elements x

d ← (x → d) = (d ← x) → d. (8)

Definition 5. An element d of a quantale is cyclic if for all elements x

x → d = d ← x. (9)

Definition 6. Consult Table 1 for a condensed presentation of several properties
of quantales along with their definitions.

Table 1. List of various properties that quantales can have, with their definitions.
We have classified the enumerated quantales w.r.t. these properties, i.e. determined
for each quantale whether or not it satisfied these properties. An asterisk after the
property name indicates that this, to the author’s knowledge, is the first time these
definitions appear in print in relation to quantales.

Property Definition

Semi-unital For all x: x ≤ x ∗ � and x ≤ � ∗ x

Unital There exists a unit w.r.t. ∗
Left-sided For all x: � ∗ x ≤ x

Right-sided For all x: x ∗ � ≤ x

Strictly left-sided For all x: � ∗ x = x

Strictly right-sided For all x: x ∗ � = x

Two-sided Left-sided and Right-sided

Integral The top element � is a unit

Spatial Every element except � is a meet of primes

Strongly spatial (*) Every element except � is a meet of strong primes

Balanced � ∗ � = �
Idempotent For all x: x ∗ x = x

Semi-integral For all elements x, y: x ∗ � ∗ y ≤ x ∗ y

Commutative For all elements x, y: x ∗ y = y ∗ x

Bisymmetric For all x, y, z, w: (x ∗ y) ∗ (z ∗ w) = (x ∗ z) ∗ (y ∗ w)

Factor Only ⊥ and � are two-sided

Prime (*) Every element except � is prime

Strong prime (*) Every element except � is a strong prime

Inf-distributive ∗ distributes over ∧
Completely distributive The underlying lattice is completely distributive

Frobenius There is a dualizing element in the quantale

Girard There is a cyclic and dualizing element in the quantale
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Example 1. An example of a quantale is shown in Fig. 1. The left and right
residuations are also presented. The quantale is semi-unital but not unital, right-
but not left-sided, as well as spatial and balanced. In fact, it is prime, since both
0, 1 and 2 are prime elements. The only two-sided elements are verified to be 0
and 3, so the quantale is factor. There is no dualizing element, but 0 and 3 are
cyclic.

Fig. 1. A quantale on four elements, left and right implications included. Due to the
choice of notation, the table for left implication should be read in a transposed fashion,
e.g. 2 ← 1 = 2. This is intentional, and is because using an arrow symbol that points in
the correct (left) direction of the implication makes more notational sense than trying
to represent an implication “to the left” with an expression that is read left to right,
as advocated in e.g. [9].

Lastly, we will present numbers for the quantales on two special types of
lattices as well, so we will define them here for completeness. Consult Fig. 2 for
illustrating Hasse diagrams.

Definition 7. A complete lattice is a chain if every pair of elements is compa-
rable with each other.

Definition 8. An N -element complete lattice is a diamond if it consists of a
top element, a bottom element, and N − 2 elements with pairwise meets ⊥ and
pairwise joins �.

Fig. 2. The first few diamond lattices. The leftmost one is also a chain.

3 Method

To enumerate quantales, we initally used SAT solvers to enumerate quantales on
up to 6 elements with a relatively naive and straight-forward approach. We then
switched over to the model enumeration software Mace4 for orders 7 through 9
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because it was faster than what the author was capable of accomplishing with
their SAT models. Some ad-hoc approaches were necessary to push the boundary
for what Mace4 could do and enumerate the quantales without crashing from
memory issues. Obtained quantales were then classified using custom scripts.

3.1 SAT Solvers

We will briefly mention the SAT-based approach used in [20] to enumerate the
quantales on up to six elements. The idea is to fix the number n of elements
of our quantale, call them x1 through xn and encode the semigroup operator ∗
by introducing Boolean variables ∗ijk that encode the statements xi ∗ xj = xk.
Similarly, Boolean variables ∨ijk are introduced to encode the operator ∨. The
quantale axioms can now be encoded as Boolean formulae. As an example, left
distributivity of ∗ over ∨ can be encoded viz.

∀x, y, z :

d
︷ ︸︸ ︷

x ∗ (y ∨ z)
︸ ︷︷ ︸

a

=

d
︷ ︸︸ ︷

(x ∗ y)
︸ ︷︷ ︸

b

∨ (x ∗ z)
︸ ︷︷ ︸

c

encoding−−−−−→

∧

x,y,z,a,b,c,d

(

∨yza ∧ ∗xyb ∧∗xzc → (∗xad ↔ ∨bcd)
)

(10)

where the universal quantifier has been replaced by a conjunction running over
all the domain elements, and some auxiliary indices have been introduced to
keep track of intermediate values (visualized above using braces for the readers
convenience). The other quantale axioms are encoded in the same fashion, fixing
one of the index values to represent ⊥. Additional formulas are also created
to ensure that for every choice of x and y, the expressions x ∗ y and x ∨ y
attain exactly one value each. These formulas are then converted to conjunctive
normal form using the standard algorithm (see any textbook on logic in computer
science, e.g. [2]), and the model is fed to a solver such as Minisat [6] or the more
modern PLingeling [3].

The SAT solver outputs a satisfying assignment to the model, which can be
decoded to obtain a quantale. This process is then repeated, each time adding
blocking clauses that exclude previously obtained solutions from the search
space. Since we are only interested in enumeration up to isomorphism, we addi-
tionally add permutations of the blocking clauses corresponding to permutations
of the elements of the encoded quantale. At some point the SAT solver returns
no more satisfying assignments, instead giving an unsatisfiability certificate.

Although this method is sound and does work, the blocking clauses make
the method unfeasible for bigger orders, as they make the model size quickly
grow unfeasibly large. Another weakness is that most SAT-solvers available only
find one solution at a time and then terminate, meaning that one will have to
rerun the solver from scratch once for every structure up to isomorphism, a great
potential time sink. One final weakness of the particular approach as described
here is that the described model does not incorporate any particular tricks to
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break symmetries or otherwise constrain the search space. It can certainly be
done to great effect, as shown by prior work in enumerating semigroups [4,5],
but it requires quite a bit more expertise and the author chose to use the model
finder Mace4 for the sake of convenience.

3.2 Mace4

Mace4 is a piece of software specializing in enumerating algebraic structures with
unary and binary operators [11]. It uses a recursive backtracking approach to,
given a list of input algebraic axioms, generate models that satisfy the axioms. It
has a convenient syntax for specifying algebraic axioms and is, in our experience,
a faster and less error prone alternative than the naive SAT-based approach
described previously. This is in part since Mace4 has built-in heuristics to prune
away some isomorphic search branches at runtime, and in part since it can find
every satisfying assignment in a single run of the program. Furthermore, as the
syntax is very human-friendly, it is much easier to debug and automatically or
manually generate input files. A basic Mace4 file is presented in Fig. 3 for the
reader’s convenience.

Fig. 3. A straight-forward Mace4 input file that enumerates all quantales on 4 elements,
hard-coding element 0 as the bottom and element 3 as the top. By modifying the
domain size argument this file, together with the program isofilter that accompanies
Mace4, is sufficient to relatively instantly enumerate all quantales on 6 elements or
less. One can also set the max models property to any positive number if only a fixed
maximum number of structures is desired. This file is also presented in the author’s
OEIS entry A354493 [18]. For more information on how to use a file like this with
Mace4, we refer to the user manual [11].
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3.3 Branching Scheme

Since Mace4 encounters memory-related issues if it finds too many structures in a
single run, a branching scheme is necessary in order to partition the search space
and find a manageable number of quantales per run. This method requires some
thought to prevent the possibility of finding isomorphic quantales in different
search branches. To this end, we branch on isomorphically invariant properties,
i.e. properties that must provably be preserved by isomorphisms.

During our enumerations, the following scheme was used, proceeding to the
next branching only if the program crashed. It was created ad-hoc as needed to
achieve progress. Each branching was implemented by means of generating new
input Mace4 files with added constraints to express the branching criteria.

1. Lattice table, expressed by hard-coding what values the join would take on
for every pair of elements.

2. The number of idempotent elements,
3. The number of leftsided elements and the number of rightsided elements,
4. The number of elements x such that x ∗ x = �,
5. Tailor-made branchings based on the underlying lattice.

Taking criterion 1 as an example, it was implemented by generating one
Mace4 input file for every lattice, each file containing the axioms for a quantale
as well as statements hard-coding the lattice table, that is, adding one line each
of the form a v b = c. for every pair of numbers a,b ∈ {0, . . . , (N − 1)}, c
being the value of the join in the lattice. Similarly, adding criterion 2 generated
an additional factor 10 new input files, one for each value n = 0, 1, . . . , 9 of
idempotent elements. Step 3 created one file for every tuple (l, r) of integers
corresponding to l leftsided elements and r rightsided ones, and so on for step 4.

As for implementing branchings 2–4, each of them are based on adding
statements of the form “exactly n elements satisfy P”, P being a property
such as “is idempotent”, to the existing Mace4 model, and step 3 in particu-
lar is a conjunction of two such statements. These statements were respectively
expressed in Mace4 syntax using single expressions that run over all subsets
S ⊆ {0, 1, . . . , (N − 1)}, consisting of n elements, N denoting the number of ele-
ments considered, and form a disjunction over all statements of the form “these
n elements satisfy P , and the others do not”. In mathematical notation, the
encodings may be stated viz.

∨

S⊆{0,...,(N−1)}
|S|=n

(
∧

x∈S

P (x) ∧
∧

x/∈S

¬P (x)) (11)

although in the input files the same statements are written by explicitly rolling
out all the conjunctions and disjunctions.

The key insight used in step 5 was that once the lattice table is hard-coded in
step 1, the set of valid isomorphisms is greatly constrained by the lattice table.
In the case of the chain lattice, notorious in our searches for having vast numbers
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of quantales compared to other lattices, once the lattice table is fixed the only
possible quantale isomorphism that preserves the lattice table is easily seen to
be the identity. This makes it possible to, for example, pick an arbitrary cell of
the semigroup table and branch by letting that cell attain each different value
of the structure. Consider Fig. 4 for the specific branching rules used per lattice.

In practice, step 1 was enough to enumerate the quantales of the vast majority
of lattices: on 8 elements only the chain needed step 2, and on 9 elements only 149
of the 1078 lattices had to enter step 2 of the scheme. Out of these, 99 entered step
3, and out of these 30 needed further branching. The chain lattice in particular
was handled directly in step 5, skipping step 4, but the remaining 29 lattices
entered step 4. Only 6 lattices (see Fig. 4) needed to be handled separately in
step 5. For the chain in particular we did not perform step 4 as it was deemed
not necessary with the right tailor-made branching (namely, branching on all 10
possible values of � ∗ �).

◦
◦
◦
◦
◦
◦
◦
◦
•

◦

•◦

◦
◦

◦

◦ ◦

◦

◦

◦•

◦
◦

◦

◦ ◦

◦

◦

◦◦

◦

◦

◦
• •

◦

◦

◦ ◦

◦

◦

◦
• •

◦

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Fig. 4. The 6 lattices where tailor-made branchings were made. For the lattices in the
top row, branching was made on the 10 possible values of x ∗x, where x is the element
represented by a filled in circle. The two non-diamond lattices in the bottom row were
handled by branching on whether x∗x = � holds for one, both or none of the two filled
in circles. For the diamond, branching was done on how many of the middle elements
x satisfy x ∗ y = � for all y.
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3.4 Post-processing the Obtained Quantales

Once the quantales were enumerated and stored on disk, they were classified
with respect to each of the listed properties in Sect. 2 using a custom program.
In essence, the quantales were streamed one at a time from the Mace4 output,
the meet, left and right residuations were computed from their definitions, each
property considered was checked to see if the quantale satisfied it, special ele-
ments such as the unit, left-sided elements, et cetera were identified as needed
by the definitions, and finally a summary of the properties and special elements
was printed to a dedicated output file.

From a complexity point of view, the classification algorithm uses O(N2)
space, N being the number of elements in a quantale. This is since only one
quantale at a time is processed and stored in memory, and since the only other
data computed by the program to check for properties are a constant number
of N -element Boolean arrays encoding whether each element is left-sided, idem-
potent, et cetera. Further, the program runs in O(Q · N4) time, where Q is the
number of quantales processed. The exponent 4 comes from the subroutine that
checks bisymmetry property; that property involves four variables, so the naive
algorithm for deciding it was implemented as four nested for-loops.

Once every quantale was processed in this manner, other scripts were used
to parse the produced summaries and compute tallies for how many quantales
that satisfy the various properties.

3.5 Hardware

The hardware used consisted of a heterogeneous mix of available computer lab
machines at the Department of Computing Science, Ume̊a University, including a
3.4 GHz AMD Epyc 7702P 64-core processor, a 2.2 GHz AMD Opteron processor
6272, and several 3.5 GHz Intel Core i5 processors. All machines had a minimum
of 32 GB of memory, as it allowed Mace4 to find more quantales per run without
crashing than e.g. 16 GB did. Two of the machines had more than 32 GB memory
available, but for reasons unknown to the author that did not yield any benefits
since Mace4 would still crash after using up some maximum amount of memory.

4 Results

Aside from tallies of the number of quantales up to isomorphism with respect to
various properties, we present a few other findings such as notable examples of
quantales and insights reflected in the distribution of quantales. See Table 2 for
the number of quantales in relation to the number of semigroups and lattices.
The number of quantales of order up to 6 have been verified by comparing the
number of quantales obtained using Mace4 and those using the SAT method.

On a practical note, over a hundred thousand Mace4 input files were gener-
ated to perform all of the branchings and the full dataset of quantales, storing
each quantale as two tables for ∗ and ∨, takes up around 400 GB of storage,
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Table 2. Number of semigroups [15], lattices [14] and quantales [18] on N elements.
For lattices the terms beyond N = 9 have been omitted.

Structure OEIS 1 2 3 4 5 6 7 8 9

Semigroups A027851 1 5 24 188 1915 28634 1627672 3684030417 105978177936292

Quantales A354493 1 2 12 129 1852 33391 729629 19174600 658343783

Lattices A006966 1 1 1 2 5 15 53 222 1078

with about 380 GB being taken by the 9 element quantales, and 17 GB by the
quantales on the 9 element chain alone. These numbers are halved by storing
only the semigroup tables and relegating the identical lattice tables to a separate
data source. The full set of quantales are available in a GitLab repository hosted
by Ume̊a University1.

Anecdotally, it took a couple of months total (wall-clock) time to enumerate
all the quantales on up to 9 elements, using around 50 parallel instances of
Mace4 processing search branches at any given time. The execution time of the
classification algorithm, in comparison, was on the scale of a few hours to process
the entire dataset.

4.1 The Number of Quantales that Have Various Properties

For each of the properties defined in Sect. 2, we have counts for how many quan-
tales satisfy those properties. We present these in Table 3. We also present the
corresponding counts for quantales on the chain lattices in Table 4, and for the
diamond lattices (compare with Fig. 2) in Table 5. There are many more numbers
that could be presented, but we will omit them for the sake of space.

4.2 Lattices with the Most and Least Quantales

If one compares the different lattices with respect to how many quantales up to
isomorphism they admit, it turns out that as a rule of thumb, taller lattices gen-
erally have more quantales than shorter ones. That is, on the one hand we have
lattices like the diamonds, that have only a few tens of thousands of quantales
total even on nine elements, but on the other we have the chains that on nine ele-
ments admit tens of millions. Other lattices fall in between these two extremes,
having more quantales the more chain-like they are. It must be emphasised that
this is only a vague guideline, and in fact there is (exactly) one lattice with even
fewer quantales than the diamond on nine elements, see Fig. 5.

4.3 Examples of Quantales with New Properties

Since we did present a few novel definitions in Sect. 2, it makes sense to present
some examples of such quantales. Consider Fig. 6 for a quantale that is strong
1 https://git.cs.umu.se/ens12asa/quantales up to 9 elements.

https://git.cs.umu.se/ens12asa/quantales_up_to_9_elements
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Table 3. Number of quantales on N elements, satisfying various properties.

Property 1 2 3 4 5 6 7 8 9

Quantale 1 2 12 129 1852 33391 729629 19174600 658343783

Semi-unital 1 1 6 64 939 17578 403060 11327795 440735463

Unital 1 1 3 20 149 1488 18554 295292 6105814

Left/Right-sided 1 2 9 60 497 4968 58507 897338 13341730

Strictly Left/Right-sided 1 1 4 23 164 1482 15838 197262 2830649

Two-sided 1 2 8 47 354 3277 36506 490983 8301353

Integral 1 1 2 9 49 364 3335 37026 496241

Spatial 1 2 10 71 570 5147 51248 557143 6557759

Strongly Spatial 1 1 4 21 121 818 6236 53077 498046

Balanced 1 1 9 106 1597 29720 663897 17747907 620659554

Idempotent 1 1 4 24 169 1404 13104 134464 1492598

Semi-integral 1 2 11 96 1041 13669 211561 3780964 77057208

Commutative 1 2 8 57 550 6639 96264 1639905 32781241

Bisymmetric 1 2 12 125 1691 28249 565046 13553879 448314086

Factor 1 2 4 38 519 9442 219222 6538004 296594240

Prime 1 2 10 70 559 4989 49154 529433 6181882

Strong Prime 1 1 4 20 115 764 5749 48413 450342

Inf-distributive 1 2 12 108 1124 13256 172535 2452680 38098425

Completely distributive 1 2 12 129 1437 19047 269739 4207822 132177828

Frobenius 1 1 2 8 19 91 267 1388 4881

Girard 1 1 2 8 19 91 262 1359 4710

Table 4. Number of quantales on the N -element chain, satisfying various properties.

Property 1 2 3 4 5 6 7 8 9

Quantale 1 2 12 101 1003 11329 142094 1957183 29634185

Semi-unital 1 1 6 45 414 4324 49997 631949 8681521

Unital 1 1 3 15 84 575 4687 45223 516882

Left/Right-sided 1 2 9 55 413 3728 39627 492535 7308241

Strictly Left/Right-sided 1 1 4 20 133 1087 10512 118112 1527872

Two-sided 1 2 8 44 308 2641 27120 332507 5035455

Integral 1 1 2 8 44 308 2641 27120 332507

Spatial 1 2 10 55 293 1536 8007 41663 216626

Strongly Spatial 1 1 4 14 48 164 560 1912 6528

Balanced 1 1 9 82 846 9774 124258 1720426 25819824

Idempotent 1 1 4 17 82 422 2274 12665 72326

Semi-Integral 1 2 11 79 661 6487 73605 954581 14220741

Commutative 1 2 8 41 241 1553 10704 77811 591441

Bisymmetric 1 2 12 97 877 8677 92268 1047921 12933247

Factor 1 2 4 24 187 1737 18423 218026 2846283

Prime 1 2 10 55 293 1536 8007 41663 216626

Strong Prime 1 1 4 14 48 164 560 1912 6528

Inf-distributive 1 2 12 101 1003 11329 142094 1957183 29634185

Completely distributive 1 2 12 101 1003 11329 142094 1957183 29634185

Frobenius 1 1 2 4 8 17 38 91 222

Girard 1 1 2 4 8 17 38 91 222
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Table 5. Number of quantales on the diamond lattices, satisfying various properties.
Column labels indicate the total number of elements in the lattice, i.e. 3 stands for the
chain on 3 elements, 4 for the diamond with two middle elements, et cetera.

Property 3 4 5 6 7 8 9

Quantale 12 28 78 262 1036 5129 48299

Semi-unital 6 19 67 249 1021 5112 48280

Unital 3 5 8 17 42 176 1421

Left/Right-sided 9 5 3 3 3 3 3

Strictly Left/Right-sided 4 3 2 2 2 2 2

Two-sided 8 3 1 1 1 1 1

Integral 2 1 0 0 0 0 0

Spatial 10 16 19 23 27 31 35

Strongly Spatial 4 7 8 10 12 14 16

Balanced 9 24 74 258 1032 5125 48295

Idempotent 4 7 9 11 13 15 17

Semi-Integral 11 17 21 25 29 33 37

Commutative 8 16 35 89 240 696 2244

Bisymmetric 12 28 77 243 869 3966 40351

Factor 4 14 49 187 772 4053 42192

Prime 10 15 19 23 27 31 35

Strong Prime 4 6 8 10 12 14 16

Inf-distributive 12 7 1 1 1 1 1

Completely distributive 12 28 0 0 0 0 0

Frobenius 2 4 5 10 14 30 45

Girard 2 4 5 10 13 25 34

⊥

◦

◦ ◦ ◦ ◦ ◦ ◦

Fig. 5. The lattice on 9 elements with the fewest (19447) quantales up to isomorphism.
Notably, it is not a diamond lattice, whereas the lattices on up to 8 elements with the
fewest quantales are exclusively diamonds.
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prime, hence also prime and strongly spatial. In Fig. 7 we present a quantale on
the four-element diamond that is strongly spatial, hence spatial, but not prime.
This quantale explains why there are 16 (strongly) spatial quantales on that
lattice, but only 15 (strong) prime ones, as seen in Table 5.

Fig. 6. A quantale where every element but � is a strong prime. It is strongly spatial.

Fig. 7. A quantale on four elements that is strongly spatial, yet not prime. Elements
1 and 2 are (strong) primes, but not 0.

4.4 Minimal Quantales that are Frobenius and not Girard

As seen in Table 3, the smallest quantales that are Frobenius but not Girard have
seven elements. There are exactly 5 such smallest examples up to isomorphism,
presented in Fig. 8. Interestingly, two of these are on the same lattice.

5 Discussion

Now that all quantales on up to 9 elements have been enumerated, catalogued
and classified, there are a number of potential future directions of research. The
most obvious would be to enumerate the quantales on 10 elements. At present we
anticipate it should be doable with the techniques used here, although it would
require not only a nontrivial factor of additional computation time, but also
additional branchings on invariant properties or tailor-made symmetry breaking
on a per-lattice basis. Extrapolating from what we know about quantales up to
9 elements, storing them would require terabytes of storage if further analysis is
desired, but that is mainly a matter of acquiring the hardware to store them.

One could also study what was done to enumerate semigroups in [4,5] in
more detail and try to mimic their methods to enumerate quantales, as they
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Fig. 8. The five smallest quantales that are Frobenius, but not Girard.

(albeit with a lot more effort) managed to enumerate orders of magnitude more
structures than we have; quantales are semigroups over lattices after all. Our
partitioning approach with Mace4 certainly has a lot of room for improvement
as well, especially when it comes to breaking lattice symmetries and exploiting
the lack of such where applicable. Perhaps by studying how quantales distribute
w.r.t. various properties one can also devise even more effective branching rules.

One could also attempt enumeration of other algebraic structures using our
techniques, especially the branchings on isomorphic invariants. This is a bit



238 A. Shamsgovara

harder said than done for some structures, as quantales are positioned in a sweet
spot where they have a lot of structure to exploit for this purpose. This is thanks
to the fact that one half of the raw data of a quantale is a lattice table, meaning
one can not only constrain search spaces immensely by hard-coding one operator,
but also define many properties and branchings (e.g. left- and right-sidedness)
that intertwine the semigroup and lattice operators in restrictive ways.

There are also more practical directions one could take from here, such as
the aforementioned applications to diagnosis systems. With the underlying alge-
braic structures catalogued, it should now be possible to undertake detailed and
concrete work on applying them to practical scenarios.

Turning our attention to the already obtained catalogue, it could be argued
that the initial results presented in this paper are rather brief and could be
extended in many directions. For example, some of the entries in Table 5 evoke
ideas for theoretical research, seeing as diamond lattices (and other lattices as
well) are very constrained in what types of quantales they might admit. The
author has a number of results in this direction, as well as other observations in
the data that seem worth pursuing, but they will be published in future papers
as they would not fit the main narrative here.

Finally, Tables 3, 4 and 5 together contain many completely new integer
sequences related to quantales, that would likely be of interest for future research
and development. Prior to these efforts, almost none of these were available, and
may thus be considered suitable candidates for submission. The few exceptions
are the sequences for two-sided and integral quantales on chains that both seem
to match up with sequence A253950 [13], and a few sequences that can be proven
to become constant after a finite number of terms, or have otherwise uninterest-
ing patterns, but that is a story more suited for a follow-up paper. The sequences
for strong prime and strongly spatial quantales on chains seem to match up with
sequence A204089 [12], although that might just as well be a coincidence given
the very different context of the entry in the database.

As for the other sequences, the author is at the time of writing in the process
of submitting these new entries to the OEIS. Due to the review process involved
they will not all be ready at the time that this document is published, however
they will eventually find their way in.
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Abstract. Freyd categories provide a semantics for first-order effectful
programming languages by capturing the two different orders of eval-
uation for products. We enrich Freyd categories in a duoidal category,
which provides a new, third choice of parallel composition. Duoidal cat-
egories have two monoidal structures which account for the sequential
and parallel compositions. The traditional setting is recovered as a full
coreflective subcategory for a judicious choice of duoidal category. We
give several worked examples of this uniform framework, including the
parameterised state monad, basic separation semantics for resources, and
interesting cases of change of enrichment.

Keywords: Freyd category · Duoidal category · Kleisli category ·
Lawvere theory · Monad

1 Introduction

Computational effects encapsulate interactions of a computer program with its
environment in a modular way, and are a staple of modern programming lan-
guages [17]. Originally captured by strong monads [15], they have been extended
to Arrows to deal with input as well as output [12], to Lawvere theories to bet-
ter combine effects algebraically [20], to PROs and PROPs to deal with non-
cartesian settings [13], and to Freyd categories for non-higher-order effects [14].

Freyd categories let one compose effectful computations both in sequence
and, to some extent, in parallel, and reason about such compositions rigorously.
For an effectful computation f : a → b, we may embed it, the domain, and the
codomain into a larger context by extending with − ⊗ c for any object c and
monoidal-like operation ⊗, which we write as f ⊗ id : a ⊗ c → b ⊗ c. Intuitively,
f ⊗ id does not interact with c. Effectful computations need not commute as
they may alter the environment: (f ⊗ id).(id ⊗ g) �= (id ⊗ g).(f ⊗ id) in general.

But what if we want to track more data about computations than just types
and effects? For example, suppose we want to annotate every computation with
its resource needs: there could e.g. be a set R of resources, and every computation
f requires a certain subset P ⊆ R of resources for it to execute. Sequencing two
computations needs all resources to execute both, so if f : a → b and g : b → c
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require resources P and Q respectively, then g.f requires P ∪ Q. The same is
true for parallel composition: if f1 : a1 → b1 and f2 : a2 → b2 require P1 and P2

respectively, then f1 ⊗ f2 : a1 ⊗ a2 → b1 ⊗ b2 requires P1 ∪ P2. However, it is
often desirable to restrict P1 and P2 by requiring P1 ∩P2 = ∅ so that morphisms
composed in parallel use different resources. If we have an identity map id : a → a
for all a which requires ∅ ⊆ R, then we can always form f ⊗ id for any f , but
what of the general case?

This article proposes a solution that achieves just this: enrich Freyd cate-
gories in duoidal categories. Duoidal categories carry two interacting monoidal
structures that will account for the sequential and parallel composition of both
the effectful computations and the extra data we want to track, such as the
resources above. We provide a concrete example for resources in Sect. 3.1.

Section 2 introduces duoidally enriched Freyd categories. Section 3 shows the
breadth of such categories by treating disparate examples: separation semantics
for resources as above, indexed state monads, and Kleisli categories of Law-
vere theories. Section 4 shows that a judicious choice of duoidal enriching cate-
gory recovers traditional Freyd categories as a full coreflective subcategory, and
Sect. 5 gives an abstract characterisation of duoidally enriched Freyd categories
in purely algebraic terms. Section 6 considers changing the enriching duoidal
category, accounting for e.g. changing the underlying permission model in the
example above. Section 7 concludes and suggests directions for future work. Due
to space constraints, please see the extended preprint on arXiv for appendices.

Related Work. Morrison and Penneys define a V-monoidal category [16] for
braided monoidal V as a V-category with parallel composition that interacts
well with the braid. In the case V is braided (and thus duoidal), our definition
of a V-Freyd category is similar. However, we also require bifunctorality of the
hom objects, an important difference for some of our constructions.

The abstract characterisation in Sect. 5 is inspired by Fujii’s characterisa-
tion of PROs and PROPs [7] as monoids in MonCatlax

(
Nop × N,Set

)
and

MonCatlax
(
Pop × P,Set

)
respectively, where N and P have natural numbers

as objects and equalities respectively bijections as morphisms.
Garner and López Franco describe a general framework for commutativity

using categories enriched in the sequential product of a duoidal category [8].
Their framework requires the duoidal category to be normal, meaning that the
two units are isomorphic. Only with this requirement and others do they define
a monoidal structure on their category of enriched categories, and do not define
a monoidal enriched category. We do not require normality.

Finally, Forcey [6], and Batanin and Markl [4] enrich over duoidal categories,
but using the parallel product instead. We choose to enrich over the sequential
product in order to define examples in which this is the appropriate choice.

2 Duoidally Enriched Freyd Categories

This section introduces duoidally enriched Freyd categories (in Sect. 2.3), but
first we discuss Freyd categories (in Sect. 2.1) and duoidal categories (in
Sect. 2.2).

https://arxiv.org/abs/2301.05162
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2.1 Freyd Categories

Freyd categories provide semantics for first-order call-by-value programming lan-
guages with effects [20]. We will generalise the definition of a Freyd category
slightly so that the effect free fragment need not have products, beginning with
the following preliminary definitions [14,18].

Definition 1. A category C is binoidal when it comes with endofunctors (−)�x
and x � (−) for each object x such that x � y = x � y for all y; write x ⊗ y for
this object. A morphism f : x → y is central if for any morphism g : x′ → y′ the
two maps (y � g).(f � x′) and (f � y′).(x � g) of type x ⊗ x′ → y ⊗ y′ are equal,
as are the two maps (y′

� f).(g � x) and (g � y).(x′
� f) of type x′ ⊗ x → y′ ⊗ y.

Central morphisms form a wide subcategory Z(C) called the centre.

Definition 2. A binoidal category C is premonoidal when equipped with an
object e and families of central isomorphisms α : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z),
λ : e ⊗ x → x, and ρ : x ⊗ e → x that are natural in each component and satisfy
triangle and pentagon equations.

Definition 3. A functor F : C → D between premonoidal categories is a pre-
monoidal functor when equipped with central morphisms η : eD → F (eC) and
μ : F (x) ⊗D F (y) → F (x ⊗C y) such that μ is natural in each component, and
the following diagrams commute:

(F (x) ⊗D F (y)) ⊗D F (z) F (x) ⊗D (F (y) ⊗D F (z))

F (x ⊗C y) ⊗D F (z) F (x) ⊗D F (y ⊗C z)

F ((x ⊗C y) ⊗C z) F (x ⊗C (y ⊗C z))

μ⊗id

μ

FαC

αD

id⊗μ

μ

eD ⊗D F (x) F (eC) ⊗D F (x)

F (x) F (eC ⊗C x)

F (x) ⊗D eD F (x) ⊗D F (eC)

F (x) F (x ⊗C eC)

λD

η⊗id

μ

FλC

ρD

id⊗η

μ

FρC

A premonoidal functor is strong (strict) when η and μ are isomorphisms (iden-
tities).

Note that a strict premonoidal functor F preserves associators and unitors
on the nose. Recall that a functor F : C → D between monoidal categories
is lax monoidal when it comes with a morphism η : I → F (I) and a natural
transformation μ : F (X) ⊗ F (Y ) → F (X ⊗ Y ) satisfying coherence conditions.
It is strong monoidal when η and μ are invertible. Lax/strong monoidal functors
are closed under composition. Here now is our definition of a Freyd category.

Definition 4. A Freyd category consists of a monoidal category M and a pre-
monoidal category C with the same objects, and an identity-on-objects strict
premonoidal functor J : M → C whose image lies in Z(C). A morphism J → J ′

of Freyd categories consists of a strong monoidal functor F0 : M → M′ and a
strong premonoidal functor F1 : C → C′ such that F1J = J ′F0. Freyd categories
and their morphisms form a category Freyd.
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2.2 Duoidal Categories

A duoidal category carries two interacting monoidal structures, that one may
intuitively think of as sequential and parallel composition, but let us give the
definition [2, Definition 6.1] before examples.

Definition 5. A category V is duoidal when it comes with two monoidal struc-
tures (V, ∗, J) and (V, ◦, I), a natural transformation ζA,B,C,D : (A ◦ B) ∗ (C ◦
D) → (A ∗ C) ◦ (B ∗ D), and three morphisms Δ : J → J ◦ J , ∇ : I ∗ I → I, and
ε : J → I such that (I,∇, ε) is a monoid in (V, ∗, J) and (J,Δ, ε) is a comonoid
in (V, ◦, I), and the following diagrams commute:

((A ◦ B) ∗ (C ◦ D)) ∗ (E ◦ F ) (A ◦ B) ∗ ((C ◦ D) ∗ (E ◦ F ))

((A ∗ C) ◦ (B ∗ D)) ∗ (E ◦ F ) (A ◦ B) ∗ ((C ∗ E) ◦ (D ∗ F ))

((A ∗ C) ∗ E) ◦ ((B ∗ D) ∗ F ) (A ∗ (C ∗ E)) ◦ (B ∗ (D ∗ F ))

ζ∗id

ζ

α

id∗ζ

ζ

α◦α

J ∗ (A ◦ B) (J ◦ J) ∗ (A ◦ B)

A ◦ B (J ∗ A) ◦ (J ∗ B)

(A ◦ B) ∗ J (A ◦ B) ∗ (J ◦ J)

A ◦ B (A ∗ J) ◦ (B ∗ J)

λ

Δ∗id

ζ

λ◦λ

ρ

id∗Δ

ζ

ρ◦ρ

((A ◦ B) ◦ C) ∗ ((D ◦ E) ◦ F ) (A ◦ (B ◦ C)) ∗ (D ◦ (E ◦ F ))

((A ◦ B) ∗ (D ◦ E)) ◦ (C ∗ F ) (A ∗ D) ◦ ((B ◦ C) ∗ (E ◦ F ))

((A ∗ D) ◦ (B ∗ E)) ◦ (C ∗ F ) (A ∗ D) ◦ ((B ∗ E) ◦ (C ∗ F ))

ζ

ζ◦id

α

α∗α

ζ

id◦ζ

I ◦ (A ∗ B) (I ∗ I) ◦ (A ∗ B)

A ∗ B (I ◦ A) ∗ (I ◦ B)

(A ∗ B) ◦ I (A ∗ B) ◦ (I ∗ I)

A ∗ B (A ◦ I) ∗ (B ◦ I)

λ

∇◦id

ζ

λ∗λ

ρ

id◦∇

ζ

ρ∗ρ

We may write (V, ∗, J, ◦, I) or (V, ∗, ◦) to be explicit about the role of each
monoidal structure.

Example 1. Any braided monoidal category becomes duoidal by letting both
monoidal structures coincide and ζ be the middle-four interchange x⊗ y ⊗ z ⊗w
→ x ⊗ z ⊗ y ⊗ w up to associativity. In particular, any symmetric or cartesian
monoidal category is duoidal [2, Proposition 6.10, Example 6.19].

Example 2. If (V, ∗, J, ◦, I) is duoidal, so is (Vop, ◦, I, ∗, J), with opposite struc-
ture maps [2, Section 6.1.2].

Example 3. If (V,⊗, I) is a monoidal category with products, (V,⊗, I,×, 1) is
duoidal with ζ = 〈π1 ⊗ π1, π2 ⊗ π2〉, Δ = 〈id, id〉, and ∇ and ε terminal maps.
Similarly, if a monoidal category V has coproducts, (V,+, 0,⊗, I) is duoidal [2,
Example 6.19].
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Example 4. If (V, ∗, J, ◦, I) is small and duoidal, straightforward calculation
shows Day convolution [5] of each monoidal structure makes the category of
presheaves ([Vop,Set], ∗Day,V(−, J), ◦Day,V(−, I)) again duoidal where

(F ∗Day G) (A) =
∫ B,C

V (A,B ∗ C) × F (B) × G (C)

and likewise for ◦Day. An analogous construction holds for [V,Set] by starting
with Vop.

Example 5. An endofunctor on Set is finitary when it preserves filtered colim-
its and is therefore determined on finite sets. Finitary endofunctors are closed
under functor composition, ◦, with unit Id; closed under Day convolution with
products, ×Day, with unit Set (1,−) ∼= Id; making

(
[Set,Set]f ,×Day, Id, ◦, Id

)

a duoidal category. [8]

Example 6. For a small monoidal category (M,⊕, e), the category of Set-valued
endoprofunctors Prof(M) := [Mop×M,Set] is duoidal (Prof(M),⊕Day,�) with
profunctor composition (P�Q)(a, c) :=

∫ b
P (a, b)×Q(b, c) (having unit M(−,−))

and Day convolution of ⊕ on both sides (P ⊕DayQ)(a, b) :=
∫ a1,a2,b2,b2 M(a, a1⊕

a2)×M(b1 ⊕ b2, b)× P (a1, b1)× Q(a2, b2) (having unit M(−, e)×M(e,−)). [8]

Example 7. An important example for us is the category Subset of distinguished
subsets. Objects are pairs of sets (X,A) such that X ⊆ A and morphisms
f : (X,A) → (Y,B) are functions f : A → B with f(X) ⊆ Y . We call X the
distinguished subset. Composition and identities are as in Set. We may suppress
the distinguished subset X by writing a � A when a ∈ X. Next, we give two
monoidal structures on Subset.

The first is the cartesian product: (X,A) × (Y,B) := (X × Y,A × B) on
objects, and f × g as in Set on morphisms, with unit (1, 1). Associators and
unitors are as in Set. This is also a categorical product.

The second is the disjunctive product : on objects (X,A)⊗(Y,B) is defined as(
X ×Y, (A×Y )∪ (X ×B)

)
with unit (1, 1). We again have f × g on morphisms,

which is well-defined. Finally, the coherence maps are restricted versions of those
for the cartesian product.

Now
(
Subset,⊗, (1, 1),×, (1, 1)

)
is duoidal by Example 3: Δ and ∇ are

unitors, ε is the identity, and ζ :
(
(X,A) × (Y,B)

) ⊗ (
(Z,C) × (W,D)

) →(
(X,A)⊗ (Z,C)

) × (
(Y,B)⊗ (W,D)

)
is the restricted middle-four interchange;

all axioms are inherited from (Set,×, 1) via Example 1.
The important difference between

(
Subset,⊗,×)

and (Set,×,×) is that ζ
is not invertible in the former (as it is not surjective as a Set map). This allows
Freyd categories enriched in Subset a premonoidal-like structure.

2.3 Concrete Definition

We are now ready for the titular notion of this paper. We first give a concrete
definition, leaving an abstract characterisation to Sect. 5.
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Definition 6. Let (V, ∗, J, ◦, I) be a duoidal category and (M,⊕, e) a monoidal
category. A V-Freyd category over M consists of

– a bifunctor C : Mop × M → V
– an extranatural family idt : I → C(a, a), meaning C(id, f).idt = C(f, id).idt
– an extranatural family seq : C(a, b)◦C(b, c) → C(a, c), meaning seq is natural

in a and c, and seq.(id ◦ C(f, id)) = seq.(C(id, f) ◦ id)
– a morphism zero : J → C(e, e)
– a natural family par : C(a1, b1) ∗ C(a2, b2) → C(a1 ⊕ a2, b1 ⊕ b2)

satisfying the following axioms:

(i) idt is the identity for seq, that is, seq.(idt ◦ id) = λ and symmetrically;
(ii) seq is associative, that is, seq.(seq ◦ id) = seq.(id ◦ seq).α;
(iii) zero is the identity for par, that is, C(λ−1, λ).par.(zero ∗ id) = λ and

symmetrically;
(iv) par is associative, that is, C(α−1, α).par.(par ∗ id) = par.(id ∗ par).α;
(v) idt respects zero via idt.ε = zero;
(vi) idt respects par via idt.∇ = par.(idt ∗ idt);
(vii) seq respects zero via seq.(zero ◦ zero).Δ = zero;
(viii) seq respects par via seq.(par ◦ par).ζ = par.(seq ∗ seq).

See Appendix A of the extended preprint for diagrams expressing the axioms.

Definition 7. A morphism of V-Freyd categories consists of a strong monoidal
functor F0 : M → M′ and a natural transformation F1 : C(a, b) → C′ (F0a, F0b)
satisfying:

– F1.idt = idt′;
– F1.seq = seq′. (F1 ◦ F1);
– C′ (id, μ) .par′. (F1 ∗ F1) = C′ (μ, id) .F1.par.

V-Freyd categories and morphisms between them form a category V-Freyd.

Our definition differs from the duoidally enriched categories of Batanin and
Markl [4] in a few important ways. They use ∗ for sequencing and ◦ for par-
allel composition. Their analogues to axioms v to viii are idt = zero.ε, idt =
par.(idt ◦ idt).Δ, seq.(zero ∗ zero) = zero.∇, and seq.(par ∗ par) = par.(seq ◦ seq).ζ.
Additionally, their monoidal structure is more enriched while we inherit ours
from a Set-category, namely M. Thus, we believe both notions are not inter-
expressible.

3 Examples

This section works out three applications of duoidally enriched Freyd categories:
resource management (in Sect. 3.1), indexed state (in Sect. 3.2), and Kleisli cat-
egories of Lawvere theories (in Sect. 3.3).
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3.1 Stateful Functions and Separated Monoids

To deal with resources abstractly, we first introduce the novel notion of a sepa-
rated monoid.

Definition 8. A monoid (M, •, e) is separated when it comes with a binary
relation ‖ such that: e‖m and m‖e; and mm′‖n iff m‖n and m′‖n; and m‖nn′

iff m‖n and m‖n′.

Examples include (N,+, 0) with x‖y iff x = 0 or y = 0; finite subsets
(Pf (R),∪, ∅) of a fixed set R, with P‖Q iff P ∩Q = ∅; and products of separated
monoids under pointwise separation. Separated monoids parametrise duoidal
categories of resources as follows.

Definition 9. Let (M, ‖) be a separated monoid. The category LabelM of M -
labelled sets has as objects functions 
 : A → M and as morphisms functions
f : A → A′ with 
′f = 
. This category has a monoidal structure • as follows:
on objects, 
 • 
′ : A × A′ → M sends (a, a′) to 
(a) • 
′(a′); on morphisms,
f•f ′ = f×f ′; the unit cste : 1 → M picks out e ∈ M . There is a second monoidal
structure ‖ as follows: on objects, 
‖
′ is the restriction of 
 • 
′ to {(a, a′) |

(a)‖
′(a′)}; on morphisms, f‖f ′ = f×f ′. The category (LabelM , ‖, cste, •, cste)
is duoidal with ζ : (
1 • 
′

1) ‖ (
2 • 
′
2) → (
1‖
2)• (
′

1‖
′
2) the restricted version of

the ζ for (Set,×, 1,×, 1).

Think of objects in LabelM as sets of elements labelled with their resource
needs. The multiplication of M combines resources, and the separation ‖ relates
non-conflicting resources. We will now describe an enriched Freyd category where
morphisms are labelled by resources as in the introduction.

Fix a countable family R = {x, y, z, . . .} of sets which we think of as resources.
The set Pf (R) of finite subsets of R is a monoid under union, and becomes a
separated monoid under disjointness. For set of resources Q ∈ Pf (R), fix a
product of sets Πx∈Qx =: ΠQ which thus combines the resources in Q. Write
πQ′ : ΠQ → ΠQ′ for the projection if Q′ ⊆ Q, and given a map f : a × ΠQ′ →
b × ΠQ′ for sets a and b, write fQ

Q′ for the map a × ΠQ → b × ΠQ induced by f
when Q′ ⊆ Q which leaves the extra resources Q \ Q′ unchanged.

We will define a LabelPf (R)-Freyd category over Set of state-transforming
functions. Let C(a, b) be the function from the disjoint union of Set(a×ΠQ, b×
ΠQ) over Q ∈ Pf (R) to Pf (R), that sends f : a×ΠQ → b×ΠQ to Q. Thus, a map
f ∈ C(a, b) with label Q is an effectful computation from a to b which can effect
only resources in Q. This becomes a bifunctor under pre- and post-composition.
Writing ∪ for • and ∩ for ‖ for the sake of concreteness, the structure maps are:

idt : cst∅ → C(a, a) zero : cst∅ → C(1, 1)
� �→ (∅, ida×1) � �→ (∅, id)

seq : C(a, b) ∪ C(b, c) → C(a, c)

((P, f), (Q, g)) �→
(
P ∪ Q, gP∪Q

Q .fP∪Q
P

)
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par : C(a, b) ∩ C(a′, b′) → C(a × a′, b × b′)
((Q, f), (Q′, f ′)) �→

(
Q ∪ Q′,

(
id × 〈πQ, πQ′〉−1

)
m−1.(f × f ′).m. (id × 〈πQ, πQ′〉)

)

where 〈πQ, πQ′〉 : ΠQ∪Q′ → ΠQ ×ΠQ′ is invertible because Q∩Q′ = ∅ and m is
middle-four interchange. So par places maps in parallel up to rearranging state.

3.2 Indexed State

An important computational effect is global state. However, it is often inflexible
as the type of storage remains constant over time. In this example the type can
vary. We use the duoidal category of finitary endofunctors on Set of Example 5 to
give a [Set,Set]f -Freyd category over Set based on the state monad (s× (−))s,
extending Atkey’s example [3]. Define C(a, b) = (b × (−))a, which is a bifunctor
via pre- and post-composition. The natural structure maps are:

idtX : X → (a × X)a zeroX : X → (1 × X)1

x �→ λa.(x, a) x �→ λ � .(x, �)

seqX :
(
b ×

(
(c × X)b

))a

→ (c × X)a

f �→ eval.f

parX :
∫ Y,Z

XY ×Z × (b × Y )a × (c × Z)a
′ → ((b × c) × X)a×a′

(k, f, g) �→ (id × k).m.(f × g)

where eval : b×(c × X)b → c×X is the evaluation map and m is the middle-four
interchange. idt and seq are the unit and multiplication of a state monad but
with varying types of state.

3.3 Kleisli Categories of Lawvere Theories

Lawvere theories model effectful computations. Functional programmers might
be more familiar with Kleisli categories of monads, to which they are closely
related. Here we describe an indexed version, which models independent effects
in parallel. Let Law be the category of Lawvere theories. Its initial object is the
theory S of sets, the unit for the tensor product ⊗ of Lawvere theories [10]. This
makes Law a symmetric monoidal category, with the special property that there
exist inclusion maps φi : Li → L1 ⊗ L2. Thus the functor category [Law,Set] is
monoidal under Day convolution with unit the constant functor Law(S,−) � 1.
As this category also has products, Example 3 makes it duoidal.

Now, Law is equivalent to the category of finitary monads [1, Chapter 3]: any
Lawvere theory L induces a monad T (L), and any map θ of Lawvere theories
induces a monad morphism T (θ). Every monad T on Set is canonically bistrong:
there are maps stT : a × Tb → T (a × b) and st′T : Ta × b → T (a × b) making the
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two induced maps (a × Tb) × c → T ((a × b) × c) equal. Each monad morphism
T (θ) preserves strength: T (θ)a×b.stT (L) = stT (L′).(id × T (θ)b).

We now show a [Law,Set]-Freyd category over Set given by the Kleisli
construction on Lawvere theories. Define on objects C(a, b) = T (−)(b)a, and on
morphisms C(f, g) : C(a, b) ⇒ C(a′, b′) by C(f, g)L(k) = T (L)(g).k.f , finally:

idtL : 1 → T (L)(a)a zeroL : 1 → T (L)(1)1
� �→ η � �→ η

seqL : T (L)(b)a × T (L)(c)b → T (L)(c)a
(f, g) �→ μ.T (L)g.f

parL :
∫ L1,L2 Law(L1⊗L2,L)×T (L1)(b1)a1 ×T (L2)(b2)a2 → T (L)(b1×b2)a1×a2

(θ, f1, f2) �→ T (θ).μ.T (L1 ⊗ L2)(st′).st. (T (φ1) × T (φ2)) . (f1 × f2)

Intuitively, par lets us put Kleisli maps in parallel as long as their effects are
forced to commute (by ⊗). So idtL and seqL are the identity and composition for
the Kleisli category of T (L). The definition of parL seems noncanonical because
of the use of T (L1⊗L2)(st′).st, but it is not: μ.T (L1⊗L2)(st′).st. (T (φ1) × T (φ2))
and μ.T (L1 ⊗ L2)(st).st′. (T (φ1) × T (φ2)) are equal by definition of L1 ⊗ L2.

4 Adjunction Between Subset-Freyd and Freyd

Now let us explain how V-Freyd categories generalise Freyd categories. Our
approach is similar to Power’s [19] in that we work with Subset-enriched cate-
gories. Take V = Subset and consider a Subset-Freyd category C : Mop×M →
Subset; it comes equipped with a premonoidal-like structure via par and idt. We
call a morphism f � C(a, b) which is a member of the distinguished subset a
distinguished morphism. We will show they are central in the premonoidal sense.

First observe that idt : (1, 1) → C(a, a) is a Subset morphism, so idt(�) �

C(a, a) is distinguished. Thus, for g ∈ C(a′, b′) we find
(
idt(�), g

) ∈ C (a, a) ⊗
C(a′, b′) by definition of ⊗. Hence the pair is in the domain of par, giving
par

(
idt(�), g

) ∈ C(a ⊕ a′, a ⊕ b′) which we denote by a �par g. Similarly, for any
f ∈ C(a, b) we have f�parb

′ ∈ C(a⊕b′, b⊕b′). We may also construct f�para
′ and

b�parg. Hence it makes sense to ask if seq(a�parg, f�parb
′) = seq(f�para

′, b�parg),
and if this equation (and its mirrored version by placing g on the left) holds for
all f , we call g central in analogy to the binoidal case from Definition 1.

Next we claim that distinguished morphisms g � C(a′, b′) are central. Note
that

(
idt(�), g

)
� C(a′, a′) × C(a′, b′) and

(
g, idt(�)

)
� C(a′, b′) × C(b′, b′)

are distinguished and in the domain of seq. For any f ∈ C(a, b), we have(
(idt(�), f), (g, idt(�))

) ∈ (
C(a, a) × C(a, b)

) ⊗ (
C(a′, b′) × C(b′, b′)

)
and sim-

ilarly
(
(f, idt(�)), (idt(�)), g

) ∈ (
C(a, b) × C(b, b)

) ⊗ (
C(a′, a′) × C(a′, b′)

)
by

definition of ⊗ and are thus in the domain of seq ⊗ seq. We now apply
par.(seq ⊗ seq) to each pair and find they equal par (f, g). Axiom viii states
par.(seq⊗seq) = seq.(par×par).ζ and therefore seq(a�parg, f�parb

′) = par(f, g) =
seq(f �par a′, b �par g) (and the mirrored equation analogously), so g is central.
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Distinguished morphisms have their centrality preserved by Subset-Freyd
maps as they are mapped to distinguished morphisms, but central morphisms
need not be distinguished. Thus, Definition 7 ensures that membership in the
distinguished subset is preserved by Subset-Freyd maps, so centrality of distin-
guished morphisms of C is preserved by all maps. Furthermore, bifunctorality of
C ensures that for all f ∈ M (a, b), C (id, f) (idt (�)) � C(a, b), and so the image
of M is central and this centrality is preserved. The same is true for a Freyd
category J : M → C, the image of M under J is central and this centrality is
preserved by all morphisms of Freyd categories. This preservation requirement
is the difference between Freyd categories and Subset-Freyd categories: the lat-
ter can require more central morphisms than the image of M to have centrality
preserved. The rest of this subsection proves that there is an adjunction between
Freyd and Subset-Freyd. The left adjoint F : Freyd → Subset-Freyd is a
free functor that only requires the image of M to be preserved. The right adjoint
U : Subset-Freyd → Freyd forgets the extra distinguished central morphisms.

Proposition 1. There is a functor F : Freyd → Subset-Freyd defined on
objects as F(C)(a, b) =

(
J(M(a, b)),C(a, b)

)
and F(C)(f, g) = C(Jf, Jg).

Proof (Proof sketch). F(C) is well-defined on morphisms because J is identity-
on-objects, and it is bifunctorial by bifunctorality of hom and functorality of J .
The structure maps are:

– idt : (1, 1) → F(C)(a, a) is ∗ �→ id;
– seq : F(C)(a, b) × F(C)(b, c) → F(C)(a, c) is (f, g) �→ g.f ;
– zero : (1, 1) → F(C)(e, e) is ∗ �→ id;
– par : F(C)(a1, b1)⊗F(C)(a2, b2) → F(C)(a1⊕a2, b1⊕b2) is (f1, f2) �→ f1⊗f2;

this is well-defined whether (f1, f2) is in J(M(a1, b1)) × C(a2, b2) or is in
C(a1, b1) × J(M(a2, b2)) as J preserves centrality of M = Z(M).

The (extra)naturality of the structure maps comes from the extranaturality of
composition, functorality of M’s monoidal product, and J being a strict pre-
monoidal functor preserving centrality. Axioms i and ii are true by C’s com-
position, axioms iii and iv follow from the strict premonoidality of J and the
naturality of unitors and associators, and axioms v to vii are trivial. Finally,
axioms vi to viii follow from C’s premonoidal structure.

Finally, it is easy to check that F(F ) = F is well-defined and functorial.

Proposition 2. There is a functor U : Subset-Freyd → Freyd that sends an
object C : Mop ×M → Subset to the functor J : M → U(C) defined as follows:

– the category U(C) has the same objects as M but homsets U(C)(a, b) = A
where (X,A) := C(a, b), with composition g.f = seq(f, g), and identity ida =
idt(�);

– the functor J is the identity on objects and J(f) = C(ida, f)(idt(�)) on mor-
phisms;

– the binoidal structure on U(C) is a � b = a � b = a ⊕M b on objects and
a � f = par(idt(�), f) and f � b = par(f, idt(�)) on morphisms.
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Proof (Proof sketch). It is mechanical to check that U(C) is a well-defined Freyd
category. Given a morphism F = (F0, F1) from C : Mop × M → Subset to
C′ : M′op × M′ → Subset, we must define a morphism U (F ) : JU(C) → JU(C′).
We define U (F )0 to be the strong monoidal functor F0, and define U (F )1 as
F0 on objects and as F1 on homsets. This is a well-defined morphism of Freyd
categories. It is straightforward to verify that U is functorial.

Theorem 1. The functors of Propositions 1 and 2 form an adjunction F � U.

Proof (Proof sketch). For the unit η of the adjunction we may take the identity
as a short calculation shows that UF = IdFreyd. A second calculation shows that
for a Subset-Freyd category C : Mop × M → Subset, we have FU (C) (a, b) =(
C(id,M(a, b))(idt(�)),C(a, b)

)
, and so each component εC : FU (C) → C of the

counit can be defined as εC0 = IdM and εC1 = idC(a,b) : FU (C) (a, b) → C (a, b).
Note that the underlying Set map for εC1 is the identity map, but this is not
an identity in Subset. This counit is natural, and this unit and counit satisfy
the zig-zag identities for an adjunction.

Recall that an adjunction F � G with unit η : Id → GF and counit ε : FG →
Id is idempotent if any of Fη, εF , ηG, or Gε are invertible [9, Section 3.8]. In
the case of the previous theorem, clearly Fη is invertible as η is the identity, so
this adjunction is idempotent. This leads to the following theorem detailing just
how Subset-Freyd generalises Freyd.

Theorem 2. The full coreflective subcategory of Subset-Freyd consisting of
objects C : Mop × M → Subset for which C (a, b) has the distinguished subset
C (id,M (a, b)) (idt (�)) is equivalent to Freyd.

Proof (Proof sketch). The following is a general fact about idempotent adjunc-
tions [9, Section 3.8]: if F � G is an idempotent adjunction with associated
monad T = GF and comonad S = FG : A → A, then the category of algebras
of T is equivalent to the category of coalgebras of S, and the category of coal-
gebras of S is a full coreflective subcategory of A given by the objects of A for
which ε : SA → A is invertible.

The category of algebras for the monad UF = Id is equivalent to Freyd, which
is therefore a full coreflective subcategory of Subset-Freyd. Furthermore, we
can characterize the objects of this subcategory as Subset-Freyd categories C
for which to ε : FU (C) → C is invertible. Concretely, this means εC1 must be
invertible in Subset. But the underlying Set map is the identity, establishing
the claim.

5 Abstract Characterisation

Definition 6 is a very concrete way to specify a V-Freyd category, involving a
nontrivial amount of data and axioms. Yet it fits together, as we show in this
subsection by giving a characterisation in the style of [12]. Recall that a natu-
ral transformation between lax monoidal functors is monoidal when it respects
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the coherence maps μ and η. Write MonCatlax
(
C,D

)
for the category of lax

monoidal functors from C to D and monoidal natural transformations between
them. If A and B are monoidal categories, so are Aop and A × B, with com-
ponentwise structure. Thus we may consider MonCatlax

(
Mop ×M,V

)
for the

monoidal category (V, ∗, J). We will lift the other monoidal structure (V, ◦, I)
to MonCatlax

(
Mop × M,V

)
and prove that a V-Freyd category is exactly a

monoid with respect to this monoidal structure, under additional assumptions
on V. Most proofs are deferred to Appendix B of the extended preprint.

Definition 10. A duoidal category V is a cocomplete duoidal category if V
is cocomplete and ∗ and ◦ are cocontinuous in each argument. In a cocomplete
duoidal category, the following diagrams and their symmetric versions commute:

J ∗ colim(D) colim (J ∗ D)

colim(D)
��

�
I ◦ colim(D) colim (I ◦ D)

colim(D)
��

�

where the top isomorphism is colimit preservation and the others are induced
by unitors.

The rest of this subsection assumes that V is a cocomplete duoidal category;
importantly, this is satisfied for presheaf categories. This restriction will be mit-
igated in Sect. 6.2 for small V. We also assume that M is small. All laxness is
with respect to (V, ∗, J). We now lift (V, ◦, I); first the unit, then composition.

Proposition 3. There is a lax monoidal functor homM : Mop×M → V defined
on objects as homM(a, b) =

∐
σ∈homM(a,b) I.

Proposition 4. If S, T : Mop ×M → V are lax monoidal functors, the functor
S ◦̂ T : Mop ×M → V defined using coends as (S ◦̂ T )(a, c) =

∫ b
T (a, b) ◦ S(b, c)

is lax monoidal.

Proposition 5.
(
MonCatlax(Mop ×M,V), ◦̂,homM

)
is a monoidal category.

Proof. Lemmas 5 to 7 in Appendix B of the extended preprint show that the ◦-
composition is functorial, associative, and has homM as left and right unit. That
leaves only the triangle and pentagon identities, which follow from cocontinuity
and the equivalent identities for ◦.

With these preparations we can characterise V-Freyd categories abstractly.

Theorem 3. Let V be a cocomplete duoidal category. Then a V-Freyd category
C : M × Mop → V is exactly a monoid in MonCatlax(Mop × M,V).

Proof (Proof sketch). A monoid C in MonCatlax(Mop × M,V) consists of
two maps e : homM → C and m : C ◦̂ C → C, inducing idt and seq satisfying
unit and associativity conditions. The lax monoidal structure of C gives zero
and par respectively, so identity and associativity conditions follow. Finally, the
components of e and m are monoidal natural transformations, ensuring that idt
and seq respect zero and par.
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We note that by Fujii’s observations [7], PROs and PROPs are equivalent to Set-
Freyd categories over N and P respectively because (Set,×,×) is a cocomplete
duoidal category.

6 Change of Enrichment

After defining enriched categories, a natural next step is to consider a change of
enrichment. Any monoidal functor V → W induces a functor V-Cat → W-Cat.
We will show that the same holds for the appropriate type of functors between
duoidal categories and enriched Freyd categories (in Sect. 6.1). We will then
use that to alleviate the restriction of duoidal cocompleteness on the abstract
characterisation of Sect. 5 (in Sect. 6.2) at the cost of losing a direction of the
correspondence. Finally, changing enrichment along a forgetful functor gives an
underlying (unenriched) Freyd category J : M → C with C monoidal, which we
show recovers the pure computations in the examples of Sect. 3 (in Sect. 6.3).

6.1 Lifting Duoidal Functors

To talk about change of enrichment, we first need to define the appropriate type
of functor between the enriching categories along which to change.

Definition 11. [2, Definition 6.54] Take duoidal categories (V, ∗V, JV, ◦V, IV)
and (W, ∗W, JW, ◦W, IW). A functor F : V→W is a double lax monoidal func-
tor when equipped with η∗, μ∗, η◦, and μ◦ such that (F, η∗, μ∗) is lax monoidal
for ∗V and ∗W, (F, η◦, μ◦) is lax monoidal for ◦V and ◦W, and the following
diagrams commute:

(F (A) ◦W F (B)) ∗W (F (C) ◦W F (D)) (F (A) ∗W F (C)) ◦W (F (B) ∗W F (D))

F (A ◦V B) ∗W F (C ◦V D) F (A ∗V C) ◦W F (B ∗V D)

F ((A ◦V B) ∗V (C ◦V D)) F ((A ∗V C) ◦V (B ∗V D))

μ◦∗μ◦

μ∗

ζ

μ∗◦μ∗

μ◦

Fζ

F (JV) F (IV)

JW IW

Fε

η∗

ε

η◦

JW F (JV) F (JV ◦V JV)

JW ◦W JW F (JV) ◦W F (JV)

η∗ FΔ

Δ

η∗◦η∗

μ◦

IW F (IV) F (IV ∗V IV)

IW ∗W IW F (IV) ∗W F (IV)

η◦ F∇

∇

η◦∗η◦

μ∗

Here now is the change-of-enrichment theorem for duoidally enriched Freyd
categories.

Theorem 4. Let F : V → W be a double lax monoidal functor. For a V-Freyd
category C : Mop×M → V, define F (C)(a, b) := F (C(a, b)) with structure maps
idtF := F idt.η◦, seqF := F seq.μ◦, zeroF := F zero.η∗, and parF := Fpar.μ∗. For
a map G = (G0, G1) : C → C′, define F (G) := (G0, FG1). This F is a functor
V-Freyd → W-Freyd.
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Proof. See Appendix C of the extended preprint.

Example 8. Let M and N be separated monoids and φ : M → N a homo-
morphism such that φ(m) ‖ φ(m′) implies m ‖ m′. Then φ induces a double
lax monoidal functor φ∗ : LabelM → LabelN given by 
 �→ φ.
 on objects
and f �→ f on morphisms. The maps η∗, μ∗, and η◦ are all identities, while
μ◦ : {(a, a′) | φ.
(a)‖φ.
′(a′)} → {(a, a′) | 
(a)‖
′(a′)} is the inclusion, and
so φ∗ is clearly double lax monoidal. Apply Theorem 4 to the example from
Sect. 3.1 along the map Pf (!) : Pf (R) → Pf (1), which is a homomorphism such
that Pf (!)(P ) ∩ Pf (!)(Q) = ∅ implies P ∩ Q = ∅. We get Pf (!)∗(C)(a, b) =∑

Q∈Pf (R) (Set(a × ΠQ, b × ΠQ)) → Pf (1), (Q, f) �→ ∅ if Q = ∅, else 1. This
change of enrichment alters the example to only allowing maps to be put in
parallel if at least one of them requires no resources.

Example 9. We can use change of enrichment for the indexed state example of
Sect. 3.2. Consider Example 6 for (Set,×, 1) (using universes for this example
to avoid size issues). There, the definition of Day convolution ×Day simplifies to
(P ×DayQ)(a, b) =

∫ b2,b2 Set(b1×b2, b)×P (a, b1)×Q(a, b2) and its unit becomes
k(a, b) = b. The Kleisli construction turns a finitary endofunctor on Set into a
profunctor as follows. Define Kl: [Set,Set]f → Prof(Set) by Kl(F )(a, b) =
Set(a, Fb), and coherence maps:

η∗ : k → Kl(Id) μ∗ : Kl(F1) ×Day Kl(F2) → Kl(F1 ×Day F2)
b �→ cstb (k, f1, f2) �→ λa.(k, f1(a), f2(a))

η◦ : hom → Kl(Id) μ◦ : Kl(F ) � Kl(G) → Kl(F ◦ G)
f �→ f (f, g) �→ Fg.f

This makes Kl a double lax monoidal functor. Theorem 4 then gives a Prof(Set)-
Freyd category defined by Kl(C)(a, b)(x, y) := Set(x, (b × y)a).

6.2 Yoneda Embedding

The Yoneda embedding of a small monoidal category is a strong monoidal functor
with respect to Day convolution. This extends to small duoidal categories.

Proposition 6. The Yoneda embedding V→ [Vop,Set] is a double lax monoidal
functor from small (V, ∗, J, ◦, I) to

(
[Vop,Set], ∗Day,V(−, J), ◦Day,V(−, I)

)
.

Proof. See [11] for the fact that it is lax monoidal for each monoidal structure
separately. The diagrams of Definition 11 are verified straightforwardly.

It follows from Theorem 4 that every V-Freyd category for small V induces a
[Vop,Set]-Freyd category. But [Vop,Set] is duoidally cocomplete, so the setting
in which the abstract characterisation of Theorem 3 applies. We conclude that
the characterisation extends beyond the duoidally cocomplete setting in the sense
that every V-Freyd category for small V induces a monoid in MonCatlax(Mop×
M, [Vop,Set]).
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6.3 Forgetful Functors

Any category enriched in a monoidal category V has an underlying (unenriched)
category, got by changing the enrichment along the ‘forgetful’ monoidal functor
V(I,−) : V → Set. A similar process plays out for duoidal categories.

Proposition 7. Let (V, ∗, J, ◦, I) be a duoidal category and write φ : J → J ∗ J
for the inverse of the unitors. Then V(J,−) : V → Set is a double lax monoidal
functor with coherence maps:

η∗ : 1 → V(J, J) μ∗ : V(J,A1) × V(J,A2) → V(J,A1 ∗ A2)
� �→ id (f1, f2) �→ (f1 ∗ f2).φ

η◦ : 1 → V(J, I) μ◦ : V(J,A1) × V(J,A2) → V(J,A1 ◦ A2)
� �→ ε (f1, f2) �→ (f1 ◦ f2).Δ

Applying Theorem 4 along the forgetful functor of the previous proposition
in the case of the examples of Sect. 3 will show that this recovers the underlying
pure computations. Note that a Set-Freyd category C has a trivial instance of
the exchange axiom, axiom viii, and so C is a monoidal category with identity-
on-objects monoidal functor J : M → C.

Example 10. Applying the forgetful functor to the stateful function example of
Sect. 3.1 results in the (unenriched) category with LabelPf (R)(cst∅,C(a, b)) as
the homsets. Because labels are preserved, the morphisms in this (unenriched)
category are exactly the elements of C(a, b) which have label ∅, i.e. maps a×1 →
b × 1 which are pure functions.

Example 11. Changing the enrichment of the indexed state example from
Sect. 3.2 along the forgetful functor gives the (unenriched) category with homsets
[Set,Set]f (Id,C(a, b)). If φ : Id → (b × (−))a is such a natural transformation,
then the function φ1 : 1 → (b × 1)a, which is equivalent to choosing a function
f : a → b, completely determines φ, because for any set X and x ∈ X by nat-

urality 1 x−→ X
φX−−→ (b × X)a = 1

φ1−→ (b × 1)a
(id×x).−−−−−−−→ (b × X)a, whence

φX(x)(a) = (f(a), x). Therefore the morphisms in this (unenriched) category
are all functions a → b.

Example 12. Changing the enrichment of the Kleisli categories of Lawvere the-
ories example from Sect. 3.3 along the forgetful functor gives the (unenriched)
category with homsets [Law,Set](1,C(a, b)). Consider such a natural transfor-
mation φ : 1 → T (−)(b)a. It is completely determined by its component at S. For
any L let ι : S → L be the unique map, then naturality implies φL = T (ι)φS .
Furthermore, φS(�) ∈ T (S)(b)a = ba. So the morphisms in this (unenriched)
category again are all functions a → b.
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7 Conclusion

We have defined a version of Freyd categories enriched over any duoidal cate-
gory V, and morphisms between them. We used various duoidal categories to
give examples based on separation of resources, parameterised monads, and the
Kleisli construction for Lawvere theories. By enriching with Subset, we have
proven that the category of Freyd categories Freyd is a full coreflective subcat-
egory of Subset-Freyd, thus establishing that V-Freyd categories indeed gen-
eralise Freyd categories. Additionally, we proved an abstract characterisation of
V-Freyd categories over small M for duoidally cocomplete V, they are monoids
in MonCatlax

(
Mop × M,V

)
. Finally, we provided change of enrichment and

examples thereof.

Future Work. There are several directions for further investigation:

– The abstract characterisation of Sect. 5 may be part of a larger structure,
namely a bicategory with proarrow equipment, whose objects are monoidal
categories, arrows are strong monoidal functors, proarrows are lax monoidal
profunctors, and cells are lax monoidal natural transformations. In this set-
ting, a V-Freyd category would be a monad and the vertical monad mor-
phisms would be a V-Freyd morphism. This would enable applying general
constructions for monads in a bicategory.

– Relatedly, an fc-multicategory structure on MonCatlax(Mop × M,V) may
bypass cocompleteness in characterising V-Freyd categories as monoids.

– The abstract characterisation of Sect. 5 also uses the free V-category on M.
It may be fruitful to change the definition of a V-Freyd category to be a
V-functor J : M → C where we extend V-categories in a way similar to
Morrison and Penneys [16].

– Freyd categories can have the property of being closed. In this case they induce
a strong monad. A similar definition may be possible for V-Freyd categories.
This could determine a higher-order semantics for effectful programs based on
duoidal categories. A nontrivial definition of closure may require a V-category
M that is not free.

– Our original motivation stemmed from the desire for semantics combining
differentiable and probabilistic programming, in particular, the possibility of
having a linear structure for the probabilistic fragment and a cartesian one for
differentiable terms. Prof -Freyd categories may provide a useful separation
to aid the desired distinction between linear and cartesian properties.

Acknowledgments. We would like to thank Robin Kaarsgaard, Ohad Kammar, and
Matthew Di Meglio for their input and encouragement, as well as the reviewers of all
versions of this work.
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Abstract. Units of measure with prefixes and conversion rules are given
a formal semantic model in terms of categorial group theory. Basic struc-
tures and both natural and contingent semantic operations are defined.
Conversion rules are represented as a class of ternary relations with
both group-like and category-like properties. A hierarchy of subclasses
is explored, each with better algebraic behavior than the preceding, cul-
minating in a direct efficient conversion-by-rewriting algorithm.

1 Introduction

In the mathematics of science, dimensions and units of measure are used as static
metadata for understanding and checking quantity relations [Wal22]. Quantities
are variables that may assume a value expressing a fact about a model, in terms
of a formal multiplication of a numerical magnitude with a unit of measure. 1

Clearly, neither half of the pair is sufficient for interpretation: The magnitude
carries the actual data, and the unit of measure the context of reference. Each
quantity is assigned a dimension, such that only quantities of identical dimension
are commensurable, that is, may be added or compared (as apples with apples),
and may furthermore be associated with preferred units of measurement. 2

In scientific programming, traditional practice expresses only the magnitude
part of quantity values, whereas units of measure, and their consistency among
related quantities, are left implicit. The evident potential for disastrous soft-
ware errors inherent in that practice has been demonstrated, for instance, by
the famous crash of the Mars Climate Orbiter probe, where pounds of force
were confounded with newtons at a subsystem interface [Ste+99]. Practical tool
solutions abound [MBBS20]. Theoretical foundations are rare, but essential for
program correctness, specification and verification.

In the seminal work of Kennedy [Ken96], the checking of stated or implied
units of measure is cast formally as a type inference problem. The approach has
been implemented successfully, for example in F# [Ken10] or Haskell [Gun15].
1 For example, a distance of 42195 m is a quantity value. Quantities themselves have

a complicated and controversial ontology, which shall not be discussed here.
2 For example, the quantities of molecular bond length and planetary perihelion are

both of dimension length and thus formally commensurable, but traditionally use
quite different units of measure.
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However, the underlying concept of units is strongly simplified, and falls far short
of the traditional scientific practice, embodied in the International Systems of
Units and Quantities (SI, ISQ [ISO09], respectively).

A particular challenge is the concept of convertible units, where the scaling
factors for equivalent transformation of magnitudes relative to some other unit
are fixed and known, and hence could be applied implicitly. 3 Furthermore, as a
special case of convertibility of such practical importance that it comes with its
own notation, there are prefixes that can be applied to any unit, and modify the
scaling factor in a uniform way. 4

Traditional concepts of units of measure also have their own curious, his-
torically grown idiosyncrasies and restrictions. Particularly worrying from the
algebraic viewpoint is the contradiction between reductionist definitions and
non-compositional notation: On the one hand, units are defined in terms of some
expression over other, more basic units. On the other hand, the definiens often
cannot be substituted for the definiendum without violating syntactic rules. 5

1.1 Contributions

The present work6 lays the foundation for a formal model of dimensions and
units of measure that extends and complements the findings of [Ken96]. We
refine the mathematical structures outlined there, in order to accomodate unit
conversions and prefixes. In addition, the proposed model rectifies irrelevant,
historically accrued restrictions of traditional notation systems. A clear line is
drawn between necessary and contingent properties of the model; respectively,
those that follow from the mathematical structure without regard to the meaning
of particular symbols, and those that represent the actual semantic conventions
of science but could be extended or modified without breaking the logic.

In particular, the main contributions of the present work are as follows:

– A formal mathematical model of dimensions and units with optional prefixes,
separated into the generic structures shared by all unit systems (Sect. 3) and
the properties to be interpreted contingently by each unit system (Sect. 4),
together with a hierarchy of equivalence relations.

– A formal mathematical model of unit conversion rules as a class of ternary
relations with a closure operator, that function both as groups and as cate-
gories (Sect. 5), together with a hierarchy of six subclasses, each with better
algebraic behavior than the preceding (Sect. 6), and in particular an efficient
rewriting procedure for calculating conversion factors.

3 In the Mars Climate Orbiter case, implicit multiplication by 4.4482216152605 would
have avoided the observed failure, and thus potentially saved the mission.

4 For example, multiplication by 1000 serves to convert from seconds to milliseconds,
and exactly in the same way from meters to millimeters.

5 For example, the area unit hectare (ha) is defined as the prefix hecto-, implying a
multiplicator of 100, being applied to the French Revolutionary unit are (a), which
in turn is defined as the square of a decameter (dam2); however, the expanded
expression h(dam2) is syntactically invalid.

6 See [TL22] for an extended version with proofs and additional examples.
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2 Prerequisites

We assume that the reader is familiar with basic concepts of abstract algebra and
category theory. In this section, we shall recall some established facts, without
individual reference or proof, and define notation to be used in the following
sections. For encyclopedic reference, we recommend [AHS06, §3–6,19–20].

2.1 Abelian Groups

The following formal model is based on abelian groups and their homomor-
phisms. In the usual sense of a concrete category, we distinguish an abelian
group from its carrier set. We write U(G) for the carrier set of a group G. A
homomorphism f : G → H is a map f : U(G) → U(H) that commutes with the
group operation. The carrier-set operator U , together with the identity operation
on homomorphism maps, U(f) = f , is the forgetful functor from the category Ab
of abelian groups to the category Set of sets. Wherever a generic group variable
G is mentioned, we write � for the group operation, e for the neutral element,
and † for inversion. Thus, we could work with formal tuples G = (U(G), �, e, †),
but the need does not arise.

All actual numbers in the model are from the set Q+ of positive rationals. For
arithmetics only the multiplicative group structure Qm on that set is required.
We refer to these numbers as ratios.

Kennedy [Ken96] observed that the algebras of dimensions and units are
essentially free abelian groups.

2.2 Free Abelian Groups

We write A(X) for the free abelian group over a set X of generators. Whereas
the concept is specified only up to isomorphism in category theory, we conceive
of a particular construction of the carrier set U(A(X)), namely the space Zf(X)
of finitely supported integer-valued functions on X:

Zf(X) = {f : X → Z | supp(f) finite} supp(f) = {x ∈ X | f(x) �= 0}
If X is finite, then the group A(X) is called finitely generated. Note that the
finite-support constraint is irrelevant in this case.

For denoting a particular element of a free abelian group directly, it suffices
to refer to the support. The finite partial maps of type f : X → Z \ {0} are in
one-to-one correspondence with group elements f/0 ∈ Zf(X):

f/0(x) =

{
f(x) if defined
0 otherwise

The operation that turns the set Zf(X) into the abelian group A(X) is real-
ized by pointwise addition. However, since the standard interpretation of func-
tion values is power exponents, we shall use multiplicative notation, such that
(fg)(x) = f(x) + g(x), with neutral element ∅/0.
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For the following definitions, it is useful to introduce the Iverson bracket : For
any proposition p, [p] = 1 if p holds, otherwise [p] = 0.

Zf is a functor, and a monad with unit7 δ and multiplication λ:

Zf(f)(g)(y) =
∑
x∈X

[f(x) = y] · g(x)

δ : 1 ⇒ Zf δX(x)(y) = [x = y] i.e. δ(x) = {x �→ 1}/0
λ : Zf2 ⇒ Zf λX(f)(x) =

∑
g∈Zf(X)

f(g) · g(x)

Monads and their operations are often best understood as abstract syntax:
The elements of Zf(X) represent group words. The unit δ embeds the generators
into the words as literals. The multiplication λ flattens two layers of nested
words.

Lemma 1. With the usual interpretation of integer powers of elements of a mul-
tiplicative group, any group element can be written, uniquely up to permutation
of factors, as a finite product of nonzeroth powers:

{x1 �→ z1, . . . , xn �→ zn}/0 = δ(x1)z1 · · · δ(xn)zn

The monad Zf arises from the composition of functors U ◦ A, where A is left
adjoint to U . Hence there is also a counit ε, defined recursively by:

ε : AU ⇒ 1
εG(∅/0) = e εG(gh) = εG(g) � εG(h)

εG

(
δU(G)(x)

)
= x εG(g−1) = εG(g)†

The counit embodies the concept of interpreting words over a particular target
group by “multiplying things out”. It follows that λ = UεA.

2.3 Pairing with an Abelian Group

Consider the functor that pairs elements of arbitrary sets X with elements of
(the carrier of) a fixed abelian group G:

CG(X) = U(G) × X CG(f) = idU(G) × f

From the group structure of G (or actually any monoid), we obtain a simple
monad, with unit ηG and multiplication μG:

ηG : 1 ⇒ CG ηG,X(x) = (e, x)

μG : CG
2 ⇒ CG μG,X

(
a, (b, x)

)
= (a � b, x)

When the second component is restricted to abelian groups as well, a cor-
responding functor on Ab is obtained, which creates the direct sum of abelian
groups instead of the Cartesian product of carrier sets:

DG(H) = G × H DG(f) = idG × f

The two are related by commuting with the forgetful functor: CG ◦ U = U ◦ DG.
7 Monad units are unrelated to units of measure.
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2.4 Monad Composition

There is a natural transformation in Ab that exchanges pairing and free abelian
group construction:

βG : ACG ⇒ DG A βG,X =
〈
εG ◦ A(π1),A(π2)

〉
Back down in Set, this is a natural transformation U(βG) : Zf CG ⇒ CG Zf which
can be shown to be a distributive law between the monads CG and Zf. This turns
the composite functor CG ◦Zf into a monad, with unit θG and multiplication ξG:

θG : 1 ⇒ CG Zf θG = ηGδ

ξG : (CG Zf)2 ⇒ CG Zf ξG = μGλ ◦ CGβGZf

3 Generic Structures

This section defines the structures of a formal model of dimensions and units.
These are generic: no interpretation of base symbols is presupposed. This is
achieved by δ, λ, ε, π1, π2, η, μ, β, θ, ξ all being natural transformations: They
are parametric families of maps that transform data between shapes specified
by functors, in a way that is logically independent of the elementary content
specified by the type argument.

Definition 1 (Dimension). The dimensions Dm are the free abelian group
over Dmb, a given finite set of base dimensions:

Dm = A(Dmb)

Example 1 (SI Dimensions). The SI/ISQ recognizes seven physical base dimen-
sions, DmSI

b = {L,T,M, I,Θ,N, J}. From these, compound dimensions can be
formed; for example, quantities of thermodynamical entropy are associated with
dH = {L �→ 2,M �→ 1,T �→ −2,Θ �→ −1}/0. However, the actual physical inter-
pretation of these symbols need not be considered at all for formal analysis.

Remark 1. We do not use the product-of-powers notation of Lemma 1 for con-
crete elements. 8

Definition 2 (Root Unit). The root units Utr are the free abelian group over
Utb, a given finite set of base units:

Utr = A(Utb)

8 Neither do we recommend that use for formal analysis, because it is known to cause
subtle misunderstandings, in particular the highly overloaded expression for the
empty case, 1 = ∅/0. For example, ISO 80000 [ISO09, §5] states, without satisfac-
tory justification, that “1 is not a dimension”. The statements in [ISO09, §6.5.3]
about “1 as a derived unit” [sic!] are even less clear.
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Example 2 (SI Root Units). The SI/ISQ recognizes one canonical base unit per
base dimension, UtSI0b = {m, s, g,A,K,mol, cd}. From these, compound units can
be formed, for example, quantities of velocity are associated with uv = {m �→
1, s �→ −1}/0 which by tradition is notated multiplicatively as m/s or m·s−1. 9

Definition 3 (Prefix). The prefixes Px are the free abelian group over Pxb, a
given finite set of base prefixes:

Px = A(Pxb)

Example 3 (SI Prefixes). Three families of prefixes are recognized in combination
with the SI units. The symbols come with associated numerical values, discussed
in detail in Sect. 4 below. For now it suffices to simply name them: 10

PxSI
b =

⎧⎨
⎩

d, c,m,m,n,p, f, a, z, y, r, q,
da,h, k,M,G,T,P,E,Z,Y,R,Q,
ki,Mi,Gi,Ti,Pi,Ei,Zi,Yi

⎫⎬
⎭

Remark 2. Composite prefixes are forbidden in modern scientific notation. How-
ever, the empty prefix ∅/0 is always allowed, some traditional usage of double
prefixes is known, the inner logic of each SI prefix family is a geometric sequence,
and composite prefixes arise virtually in the algebra of composite units. Thus, the
generalization to the free abelian group of prefixes is a theoretical simplification
and unification.

Definition 4 (Preunit). The preunits Utp are the Cartesian pairs of a prefix,
forgetting the group structure, and a base unit:

Utp = CPx(Utb)

Example 4. The SI unit kilogram, already discussed above, is represented for-
mally as a preunit, kg =

(
δPxb(k), g

)
.

Definition 5 (Unit). The units Ut are the free abelian group over the preunits:

Ut = A(Utp)

Remark 3. Unlike in the preceding constructions, the generator set Utp is gen-
erally infinite. Fortunately, this causes no problems for the remainder of the
present work; see Theorem 13 below.

9 For historical reasons, the SI unit gram (g) is not considered the canonical unit of
quantities of mass. Rather, this distinguished role is played by the unit kilogram (kg).
However, the latter unit is best understood not as a base unit, but as a compound
of a prefix kilo- and a base unit gram.

10 The symbol m occurs as both a base prefix and a base unit in the SI vocabulary.
However, this causes ambiguity issues only for parsing traditional notations, where
prefix and unit symbols are simply concatenated; the formal semantics discussed
here are not affected. See Example 6 below for unambiguous usage.
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Since the structure Ut arises from the composition of two monadic functors,
the composition of monad unit maps is bound to occur often in its use. We write
just the bracket 	 
 : Utb → Ut for the precise but verbose map (δηPx)Utb =
δUtp ◦ ηPx,Utb = Zf(ηPx,Utb) ◦ δUtb . In other occurrences, the subscripts of δ and
η are omitted in applications, and can be inferred from the context.

Example 5. There are additional so-called derived units in the SI, which have
a base unit symbol of their own, but whose semantics are defined by reduction
to other (composite) units, for example the newton, 	N
 ≡ {kg �→ 1, η(m) �→
1, η(s) �→ −2}/0, where ≡ is some semantic equivalence relation yet to be speci-
fied; see Definitions 10, 18, 22 and 27 below.

Definition 6 (Prefix/Root of a Unit). Any unit can be decomposed into a
prefix and a root unit, and the root units embedded back into the units, by means
of natural group homomorphisms:

pref : Ut → Px pref = π1 ◦ βPx,Utb = εPx ◦ A(π1)
root : Ut → Utr root = π2 ◦ βPx,Utb = A(π2)

unroot : Utr → Ut unroot = A(ηPx,Utb)
strip : Ut → Ut strip = unroot ◦ root

Definition 7 (Root Equivalence). Two units are called root equivalent,
written �r, iff their roots coincide:

u �r v ⇐⇒ root(u) = root(v)

The units as defined above are a faithful semantic model of traditional nota-
tions, confer [ISO09]. However, an algebraically more well-behaved structure can
be derived by transposing prefixes and free abelian group construction:

Definition 8 (Normalized Unit). The normalized units Utn are the direct
sum of a prefix and a root unit:

Utn = DPx(Utr)

Definition 9 (Normalization). The normalized units are derived naturally
from the units proper, in terms of the natural group homomorphism β:

norm : Ut → Utn norm = βPx,Utb = 〈pref, root〉
The composite monad structure of U(Utn) = CPxZf(Utb) comes with a mul-

tiplication ξPx,Utb , and thus provides exactly the compositionality lacking in the
traditional model Ut: In a normalized unit, other normalized units can be substi-
tuted for base units and just “multiplied out”. In Ut, this is formally impossible:

Theorem 1. The group Ut = ZfCPx(Utb) cannot be given a composite monadic
structure in the same way; except for degenerate cases, there is no distributive
law CG Zf ⇒ Zf CG that is also a group homomorphism.
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Remark 4. Normalization is generally not injective, since the actual distribu-
tion of partial prefixes is also “multiplied out”, and forgotten. For example,
micrometer-per-microsecond cancels to meter-per-second : norm({(δ(m),m) �→
1, (δ(m), s) �→ −1}/0) = norm({η(m) �→ 1, η(s) �→ −1}/0) = θ(m) θ(s)−1.

Definition 10 (Normal Equivalence). Two units are called normally equiv-
alent, written �n, iff their normalizations coincide:

u �n v ⇐⇒ norm(u) = norm(v)

Example 6 (Precipitation). Normalization is not part of the tradition nota-
tion of units. However, it has the beneficial property that entangled, redundant
prefixes and base units are cancelled out orthogonally:

Consider a meteorological unit for amount of precipitation, litres-per-square-
meter (L/m2), where a litre (L) is defined as the third power of a decime-
ter (dm), which parses as a simple preunit analogous to kg; that is formally
p =

{
(δ(d),m) �→ 3, η(m) �→ −2

}
/0. By normalization, a root unit factor of

δ(m)2 is cancelled out: norm(p) =
(
δ(d)3, δ(m)

)
Thus we find that p is normally

equivalent to a deci-deci-deci-meter, p �n δ
((

δ(d)3,m
))

, but not to a millimeter ;
p ��n δ

((
δ(m),m

))
.

In the semantic structures presented so far, the base symbols are free; they
stand only for themselves, operated on exclusively by natural transformations,
and do not carry any attributes for comparison. As the last example has shown,
the resulting notions of semantic equivalence may be narrower than intended.
The following section introduces one such attribute each for prefixes and units,
and explores the semantic consequences. Note that any actual assignment of
attribute values is contingent ; it could well be different in another possible world,
i.e., system of units, whereas all of the preceding reasoning is logically necessary.

4 Specific Attributes

Definition 11 (Base Prefix Value). Every base prefix shall be assigned a ratio
as its numerical value.

valb : Pxb → Q+

Example 7 (SI Prefix Values). The three families of SI prefixes are defined
numerically as negative and positive (mostly triple) powers of ten, and posi-
tive (tenfold) powers of two, respectively: 11

valSIb =

⎧⎨
⎩

d �→ 10−1, c �→ 10−2, m �→ 10−3, m �→ 10−6, n �→ 10−9, . . .
da �→ 10+1, h �→ 10+2, k �→ 10+3, M �→ 10+6, G �→ 10+9, . . .
ki �→ 2+10, Mi �→ 2+20, Gi �→ 2+30, . . .

⎫⎬
⎭

etc.
11 It is scientific standard to assign context-free numerical values to prefixes; some

traditional notations do not follow the practice. For example, consider the popular
(ab)use of kilobyte, which has given rise to the binary family for proper distinction.
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Definition 12 (Base Unit Dimension). Every base unit shall be assigned a
(possibly compound) dimension.

dimb : Utb → U(Dm)

Example 8 (SI Unit Dimensions). The SI base units correspond to the SI base
dimensions in the respective order presented above, that is

dimSI
b (m) = δ(L) dimSI

b (s) = δ(T)

etc., whereas derived SI units may have more complex dimensions:

dimSI
b (N) = {L �→ 1,T �→ −2,M �→ 1}/0

Definition 13 (Prefix Value). Prefix value assignment lifts naturally to all
concerned structures:

val : Px → Qm val = εQm ◦ A(valb)
pvalp : Utp → Q+ pvalp = val ◦ π1

pval : Ut → Qm pval = εQm ◦ A(pvalp)

pvaln : Utn → Qm pvaln = val ◦ π1

Definition 14 (Unit Dimension). Dimension assignment lifts naturally to all
concerned structures:

dimr : Utr → Dm dimr = εDm ◦ A(dimb)
dimp : Utp → U(Dm) dimp = dimb ◦ π2

dim : Ut → Dm dim = εDm ◦ A(dimp)
dimn : Utn → Dm dimn = dimr ◦ π2

Example 9 (Density). Consider a unit of mass density, kg/cm3, that is formally
q =

{
(δ(k), g) �→ 1, (δ(c),m) �→ −3

}
/0. In the SI interpretation, it follows that

pval(q) = 103 · (10−2)−3 = 109 and dim(q) = {L �→ −3,M �→ 1}/0.
Definition 15 (Codimensionality). Two (base, pre-, . . . ) units are called
codimensional, written ∼�, with the appropriate initial substituted for �, iff
their assigned dimensions coincide:

u ∼� v ⇐⇒ dim�(u) = dim�(v)

Definition 16 (Evaluated Unit). The evaluated units Ute are the direct sum
of a ratio and a root unit:

Ute = DQm(Utr)

Definition 17 (Evaluation). Evaluation separates prefix value and root unit:

eval : Ut → Ute eval = 〈pval, root〉 = (val× idUtr) ◦ norm
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Definition 18 (Numerical Equivalence). Two units are called numerically
equivalent, written �e, iff their evaluations coincide:

u �e v ⇐⇒ eval(u) = eval(v)

Theorem 2. Normalization equivalence entails numerical equivalence, which
entails root equivalence, which entails codimensionality:

u �n v =⇒ u �e v =⇒ u �r =⇒ u ∼ v

Numerical equivalence is coarser than normalization equivalence, because it
uses an additional source of information; whereas the latter depends only on
the universal group structures of prefixes and units, the former takes contingent
value assignments (valb) into account.

Example 10 (Precipitation revisited). Continuing Example 6, we find that, given
the SI interpretation of prefix values, the precipitation unit p is indeed numeri-
cally equivalent to the millimeter :

evalSI(p) =
(
10−3, δ(m)

)
= evalSI

(
δ
((

δ(m),m
)))

=⇒ p �e δ
((

δ(m),m
))

5 Unit Conversion Relations

In the following sections, we deal with ternary relations of a particular type,
namely the carrier of a direct sum of three groups:

Conv = Ut × Qm × Ut U(Conv) = Zf(Utp) × Q+ × Zf(Utp)

The middle component is called a conversion ratio. We shall write u
r−→R v

for (u, r, v) ∈ R, a notation that alludes to categorial diagrams; see Theorem 4
below.

Definition 19 (Unit Conversion). A relation C ⊆ U(Conv) is called a (unit)
conversion, iff it is dimensionally consistent and functional in its arguments of
unit type:

u
r−→C v =⇒ u ∼ v (1a)

u
r−→C v ∧ u

r′
−→C v =⇒ r = r′ (1b)

Remark 5. A judgement u
r−→C v means “One u is r vs,” and hence introduces

an algebraic rewriting rule for quantity values that converts (values measured in)
u to v, since multiplication with the conversion factor r is taken as associative:

x u = x (r v) = (xr) v

Example 11 (UK Units). Standards in the United Kingdom define the regional
customary units pound (lb) and pint (pt) with the following conversion rules:

	lb
 453.59237−−−−−−→ 	g
 	pt
 568.26125−−−−−−→ δ
((

δ(c),m
))3
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Definition 20 (Conversion Closure). Let C ⊆ U(Conv) be a unit conver-
sion. Its (conversion) closure is the smallest relation C∗ with C ⊆ C∗ ⊆ U(Conv)
such that the following axioms hold:

u
r−→C∗ v ∧ u′ r′

−→C∗ v′ =⇒ uu′ rr′
−−→C∗ vv′ (2a)

u
r−→C∗ v =⇒ u−1 r−1

−−→C∗ v−1 (2b)

u
pval(u)−−−−→C∗ strip(u) (2c)

Remark 6. The closure of a unit conversion may fail to be a unit conversion
itself, since contradictory factors can arise from closure axioms, violating (1b).
For example, take both u

2−→C v and u−1 3−→C v−1, but clearly 2 �= 3−1.

Remark 7. Closure ensures operational completeness of the reasoning, namely
that all potential rewriting rules for composite units implied by rules for their
constituents are actually available. For example, if we know how to convert from
furlongs to meters, and from seconds to fortnights, then we can deduce how to
convert from furlongs-per-fortnight to millimeters-per-second.

Conversion closures have a rich algebraic structure:

Theorem 3. The closure of a unit conversion forms a subgroup of Conv.

Theorem 4. The closure of a unit conversion forms an invertible category, the
categorial generalization of an equivalence relation, with unit objects and con-
version factor morphisms.

Remark 8. The closure of a unit conversion is again a conversion iff it is thin as
a category. Such relations shall take center stage in the next section.

Theorem 5. Conversions can be decomposed and partitioned by dimension:

Ut(d) = {u ∈ Ut | dim(u) = d} ⊆ U(Ut)
C(d) = C ∩ (Ut(d) × Q+ × Ut(d))

C =
⋃

d∈Dm

C(d)

Remark 9. A non-converting theory of units, such as [Ken96], is characterized
by being partitioned into trivial subgroups. This demonstrates that the theory
being presented here is a complementary extension to previous work.

Remark 10. Closure can not be performed on the partitions individually, mostly
because of axiom (2a) that allows for multiplication of units with orthogonal
dimensions. Thus it is generally the case that:

C∗ �=
⋃

d∈Dm

C(d)
∗

Definition 21 (Unit Convertibility). Two units are called convertible, with
respect to a unit conversion C, written ∝C , iff they are related by some factor:

u ∝C v ⇐⇒ u
∃r−→C v
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Definition 22 (Unit Coherence). Two units are called coherent, with respect
to a unit conversion C, written ∼=C , iff they are related by the factor one:

u ∼=C v ⇐⇒ u
1−→C v

Theorem 6. Coherence entails convertibility, which entails codimensionality:

u ∼=C v =⇒ u ∝C v =⇒ u ∼ v

Definition 23 (Conversion Coherence). By extension, a unit conversion C
is called coherent iff all convertible units are coherent:

u ∼=C v ⇐⇒ u ∝C v

Example 12 (SI Unit Coherence). The conversion relation of the seven canonical
base units of the SI is trivially coherent, since they are pairwise incovertible. In
addition, the SI recognizes 22 derived units with coherent conversion rules. By
contrast, many traditional units, such as the hour (h), are convertible but not
coherently so: h 3600−−−→ s.

5.1 Special Cases

Interesting subclasses of conversions arise as the closures of syntactically
restricted generators.

Definition 24 (Defining Conversion). A unit conversion C is called defining
iff it is basic and functional in its first component:

u
r−→C v =⇒ ∃u0.u = 	u0
 (3a)

u
r−→C v ∧ u

r′
−→C v′ =⇒ v = v′ (3b)

Definition 25 (Definition Expansion). Every defining unit conversion C
gives rise to a totalized expansion function:

xpd(C) : Utb → CQm(Ut) xpd(C)(u0) =

{
(r, v) if 	u0
 r−→C v

η(	u0
) if no match

This in turn gives rise to a mapping of base to evaluated units, and ultimately
to an iterable rewriting operation on evaluated units:

rwrb(C) : Utb → Ute rwrb(C) = μQm,Utr ◦ CQm(eval) ◦ xpd(C)

rwre(C) : Ute → Ute rwre(C) = ξQm,Utb ◦ CQmZf
(
rwrb(C)

)
Definition 26 (Dependency Order). Let C be a defining unit conversion.
The relation (>C) ⊆ U(Utb)2 is the smallest transitive relation such that:

	u0
 ∝C v ∧ v0 ∈ supp
(
root(v)

)
=⇒ u0 >C v0

We say that, with respect to C, u0 depends on v0.
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Definition 27 (Well-Defining Conversion). A defining unit conversion C
is called well-defining iff its dependency order >C is well-founded. Since Utb is
finite, this is already the case if >C is antireflexive.

Theorem 7. Let C be a well-defining conversion. The iteration of rwre(C) has
a fixed point, which is reached after a number NC of steps that is bounded by the
number of distinct base units, and independent of the input unit:

lim
n→∞ rwre(C)n = rwre(C)NC≤|Utb|

Example 13 (SI Definitions). Traditional systems of units, including the SI, fol-
low a well-defining approach: Starting from an irreducible set of base units,
additional “derived” base units are added in a stratified way, by defining them
as convertible to (expressions over) preexisting ones.

6 The Conversion Hierarchy

Definition 28 (Conversion Hierarchy). A conversion is called . . .

1. consistent iff its closure is again a conversion;
2. closed iff it is its own closure;
3. finitely generated iff it is the closure of a finite conversion;
4. defined iff it is the closure of a defining conversion;
5. well-defined iff it is the closure of a well-defining conversion;
6. regular iff it is the closure of an empty conversion.

Theorem 8. Each property in the conversion hierarchy entails the preceding.

Theorem 9. Consistency is non-local; namely the following three statements
are equivalent in the closure of a conversion C:

a. contradictory factors exist for some pair of units;
b. contradictory factors exist for all convertible pairs of units;
c. ∅/0


=1−−→C∗ ∅/0.

Theorem 10. For closed conversions, convertibility and coherence are group
congruence relations.

Theorem 11. For closed conversions, the resulting category is strict dagger
compact.

Theorem 12. In a closed conversion C, any two units are convertible if they
are root equivalent, and coherent if they are numerically equivalent.

u �r v =⇒ u ∝C v u �e v =⇒ u ∼=C v

Most of the entailments are generally proper, but one is not:
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Theorem 13. All closed conversions are finitely generated.

Remark 11. Being finitely generated as a closed conversion in this sense is
entailed by being finitely generated as an abelian group in the sense of The-
orem 3, but not vice versa; the former could be “larger” due to axiom (2c).

Theorem 14. Every well-defining conversion C is consistent, and hence gives
rise to a well-defined C∗.

Theorem 15. In a regular conversion C, in addition to Theorem 12, any two
units are convertible if and only if they are root equivalent, and coherent if and
only if they are numerically equivalent:

u �r v ⇐⇒ u ∝C v u �e v ⇐⇒ u ∼=C v

Remark 12. The convertibility problem for closed conversions can encode the
word problem for quotients of unit groups, thus there is potential danger of unde-
cidability. We conjecture that, by Theorem 13, closed conversions are residually
finite, such that a known decision algorithm [Rob96] could be used in principle.

For well-defined conversions, a more direct and efficient algorithm exists.

Definition 29 (Exhaustive Rewriting). Given a well-defining conversion C,
units can be evaluated and exhaustively rewritten:

rwr∗(C) : Ut → Ute rwr∗(C) = rwre(C)NC ◦ eval

Each step requires a linearly bounded number of group operations. The kernel of
this map can be upgraded to a ternary relation C� ⊆ U(Conv):

C� =

{
(u, rs−1, v) ∈ U(Conv)

∣∣∣∣∣ rwr∗(C)(u) = (r, u′)
rwr∗(C)(v) = (s, v′)

∧ u′ = v′
}

Theorem 16. Exhaustive rewriting solves the well-defined conversion problem;
namely, let C be a well-defining conversion, then:

C∗ = C�

Example 14 (Mars Climate Orbiter). The subsystems of the Orbiter attempted
to communicate using different units of linear momentum, namely pound-force-
seconds u = 	lbf
	s
 vs. newton-seconds v = 	N
	s
. The relevant base units
are well-defined w.r.t the irreducible SI units as 	lbf
 1−→ 	lb
	gn
 and 	N
 1−→
δ(kg)	m
	s
−2, with the auxiliary units pound 	lb
 a−→ 	g
 (see Example 11) and
norm gravity 	gn
 b−→ 	m
	s
−2, and the conversion factors a = 453.59237 and
b = 9.80665. Exhaustive rewriting yields rwr∗(C)(u) = (ab, 	g
	m
	s
−1) and

rwr∗(C)(v) =
(
1000, 	g
	m
	s
−1

)
, and hence u

ab/1000−−−−−→ v. 12

12 Which reconstructs the factor given in the introduction.
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7 Conclusion

We have presented a group-theoretic formal model of units of measure, to our
knowledge the first one that supports prefixes and arbitrary conversion factors.
The model is based on two composeable monadic structures, and hence has
the compositionality required for reasoning with substitution and for denota-
tional semantics. The model is epistemologically stratified, and distinguishes
cleanly between necessary properties and natural operations on the one hand,
and contingent properties and definable interpretations on the other, leading to
a hierarchy of semantic equivalences.

We have characterized unit conversion rules by a class of ternary relations
equipped with a closure operator, that function both as a group congruence and
as a category, together with a six-tiered hierarchy of subclasses, each with better
algebraic behavior than the preceding. This model reconstructs and justifies the
reductionistic approach of traditional scientific unit systems.

7.1 Related Work

[Ken94] has found existing related work then to be generally lacking in both
formal rigor and universality. With regard to the research programme outlined
by [Ken96], matters have improved only partially; see [MBBS20] for a recent
critical survey. Formally rigorous and expressive type systems have been pro-
posed for various contexts, such as C [HCR12], UML/OCL [MWV16], generic
(but instantiated for Java) [XLD20]. However, in that line of research, neither
flexibly convertible units in general nor prefixes in particular are supported.

An object-oriented solution with convertible units is described by [All+04].
Their approach, like Kennedy’s, is syntactic; abelian groups are added as an ad-
hoc language extension with “abelian classes” and a normalization procedure.
Prefixes are not recognized. Unit conversion is defined always in relation to a
fixed reference unit per dimension. This implies that all codimensional units
are convertible, which is manifestly unsound. 13 Nevertheless, the approach has
been reiterated in later work such as [CM07]. By contrast, [KL78] had already
proposed a more flexible relational approach to unit conversion, with methods
of matrix calculus for checking consistency.
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Abstract. In this paper we start the investigation of an object repre-
senting the real numbers in categories of relations. Our axiomatization
uses the construction of a relation power, i.e., an abstract version of
power sets within the category. This allows us to utilize a relation alge-
braic version of Tarski’s axioms of the real numbers as a first-order defi-
nition of a real number object. The current paper focuses on the addition
operation of the real number object. It is shown that addition forms a
densely and linearly ordered abelian group.

1 Introduction

Relation algebraic methods have been used to specify, implement, and verify
programs. In fact, this is a major thread within the RAMiCS community. If
the approach utilizes categories of relations, objects usually represent types, and
relations usually represent programs of the programming language. Therefore,
constructions on objects model typical type constructions in programming lan-
guages. For example, the relational sum is used to model a disjoint union of types,
and a relational product is used to model pairing. Similarly, certain objects such
as unit or such as a natural number object can be used to model basic types
in programming languages. This paper starts the investigation of a real number
object, i.e., an object that models the real numbers.

Our framework will be based on Heyting categories with relational powers.
The relational power is an abstract version of the power set within these cate-
gories. It is worth mentioning that this framework is a purely equational theory
that allows formulating properties that are usually formulated using second-order
formulas as equations as well. Therefore, our axiomatization of a real number
object utilizes Tarski’s axioms of the real numbers [7] translated into the equa-
tional theory of Heyting categories with relational powers.

The theory presented in this paper is complement free, i.e., all theorems
follow without the use of Boolean complements. We will maintain this approach
in future work on this topic. Our main motivation for this is that the results
transfer immediately to so-called L-fuzzy relations, i.e., to relations that use a
Heyting algebra L as truth values instead of the Boolean truth values true and
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false. This will make it possible to investigate the real numbers also in the
fuzzy case. Please note that Axiom 4 (see Definition 4) is the only axiom that
involve the power object. In future work we will be interested in replacing this
construction in the context of L-fuzzy relation with the fuzzy power object, i.e.,
the set of all fuzzy subsets, in order to obtain a fuzzy version of the real numbers.

In this paper we will focus on the addition operation of the real number
object. It is shown that addition forms a densely and linearly ordered abelian
group.

2 Mathematical Preliminaries

In this chapter we want to introduce the mathematical notions used in this
paper. We start with the theory of relations that we will be using.

2.1 Heyting Categories

In this section we want to recall some basic notions from categories and allegories
[1,9,10]. First, we are going to introduce Heyting categories as an extension of
division allegories defined in [1], i.e., a Heyting category is a division allegory
where the lattice of relations between two objects is a Heyting algebra instead
of just a distributive lattice. Heyting categories are also a version of Dedekind
categories introduced in [2,3] without the requirement of completeness of lattice
of relations between two objects.

We will write R : A → B to indicate that a morphism R of a category C has
source A and target B. Composition and the identity morphism are denoted by
; and IA, respectively. Please note that composition has to be read from left to
right, i.e., Q;R means first Q and then R.

Definition 1. A Heyting category R is a category satisfying the following:

1. For all objects A and B the collection R[A,B] is a Heyting algebra. Meet, join,
relative pseudo-complement, the induced ordering, the least and the greatest
element are denoted by [, \,→, Ď,⊥⊥AB ,��AB, respectively.

2. Q;⊥⊥BC “ ⊥⊥AC for all relations Q : A → B.
3. There is a monotone operation � (called converse) mapping a relation Q :

A → B to Q� : B → A such that for all relations Q : A → B and R : B → C

the following holds: (Q;R)� “ R�;Q� and (Q�)� “ Q.
4. For all relations Q : A → B,R : B → C and S : A → C the modular inclusion

(Q;R) [ S Ď Q; (R [ (Q�;S)) holds.
5. For all relations R : B → C and S : A → C there is a relation S/R : A → B

(called the right residual of S and R) such that for all X : A → B the following
holds: X;R Ď S ⇐⇒ X Ď S/R.

If we define the left residual Q\R : B → C of two relations Q : A → B

and R : A → C by Q\R :“ (R�/Q�)� we immediately obtain X Ď Q\R iff
Q;X Ď R. Using both residuals we define the symmetric quotient as syQ(Q,R) “
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(Q\R) [ (Q�/R�). This construction is characterized by X Ď syQ(Q,R) iff
Q;X Ď R and R;X� Ď Q. Please note that if the Heyting algebra of relation
is a Boolean algebra we get Q\R “ Q�;R where R is the complement of R. A
similar definition for arbitrary Heyting algebra does not exist.

Throughout the paper we will use the axioms and some basics facts such
as monotonicity of the operations without mentioning. The following lemma
summarizes some basic properties that will be used throughout the paper. A
proof can be found in [4,5,8,9].

Lemma 1. Let Q : A → B, R : A → C and S : C → D be relations, and
i : A → A be a partial identity i Ď IA. Then we have:

1. i� “ i.
2. i; i “ i.
3. (Q;��BC [ R);S “ Q;��BD [ R;S.

A relation Q : A → B is called univalent (or partial function) iff Q�;Q Ď IB ,
total iff IA Ď Q;Q�, injective iff Q� is univalent, surjective iff Q� is total, a map
iff Q is total and univalent. The following lemma states some basic properties of
univalent relations and maps. Again, a proof can be found in [4,5,8,9].

Lemma 2. Let f : A → B be a mapping, g : B → A univalent, Q : C → A,
R : C → B, S : A → C and T,U : A → D. Then we have:

1. Q; f Ď R iff Q Ď R; f�.
2. (Q; g� [ R); g “ Q [ R; g.
3. g; (T [ U) “ g;T [ f ;U .

For a singleton set {∗} we obviously have I{∗} “ ��{∗}{∗}. Furthermore, for
any set A the relation ��A{∗} is actually a map. The first property together
with the totality in the second property also characterize singleton sets up to
isomorphism. Therefore, we define a unit 1 as an abstract version of a singleton
set by I1 “ ��11 and ��A1 is total for every object A.

Considering concrete relation a map p : 1 → A, i.e., a relation that maps ∗
to one element a in A, can be identified with the element a. Therefore we call a
map p : 1 → A a point (of A).

Another important concept is the notion of a relational product, i.e., an
abstract version of the Cartesian product of sets. The object AˆB is character-
ized by the projection relations π : A ˆ B → A and ρ : A ˆ B → B satisfying

π�;π Ď IA, ρ�; ρ Ď IB , π;π� [ ρ; ρ� “ IAˆB , π�; ρ “ ��AB .

Given relational products we will use the following abbreviations

Q � R “ Q;π� [ R; ρ�,

Q � S “ π;Q [ ρ;S,

Q b T “ π;Q;π� [ ρ;T ; ρ� “ Q;π�
� T ; ρ� “ π;Q � ρ;T,

and obtain the following properties [6].
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Lemma 3. If all relational products exist, then we have the following:

1. (Q � R)� “ Q�
� R� and (Q � S)� “ Q�

� S�.
2. If R is total, then (Q � R);π “ Q and if Q is total, then (Q � R); ρ “ R.
3. If S is surjective, then π�; (Q � S) “ Q and if Q is surjective, then ρ�; (Q �

S) “ S.
4. If f is univalent, then f ; (Q � R) “ f ;Q � f ;R and if g is injective, then

(Q � S); g “ Q; g � S; g.
5. (Q � R); (T � U) “ Q;T [ R;U .
6. (Q � R); (T b V ) “ Q;T � R;V and (Q b X); (T � U) “ Q;T � X;U .
7. Q;π�

� (R � S) “ (Q � R) � ρ;S.

We also use the following two bijective mappings assoc : A ˆ (B ˆ C) →
(A ˆ B) ˆ C and swap : A ˆ B → B ˆ A defined by

assoc “ π;π�;π� [ ρ;π; ρ�;π� [ ρ; ρ; ρ� “ (IA b π) � ρ; ρ “ π�;π�
� (ρ� b IC),

swap “ π; ρ� [ ρ;π� “ ρ � π “ ρ�
� π�.

The following properties are easy to verify. A proof can also be found in [11].

Lemma 4. 1. swap� “ swap.
2. (Q � R); swap “ R � Q and swap; (Q � S) “ S � Q.
3. swap; (Q b T ) “ (T b Q); swap.
4. (U � (Q�R)); assoc “ (U �Q)�R and assoc; ((Q�S)�V ) “ Q� (S �V ).
5. assoc; ((Q b T ) b X) “ (Q b (T b X)); assoc.

With the maps above we are now ready to define an abelian group within a
Heyting category.

Definition 2. A quadruple (A, e, f, n) in a Heyting category R is called an
abelian group iff A is an object, e : 1 → A is a point, and f : A ˆ A → A
and n : A → A are maps satisfying:

1. f is associative, i.e., (IA b f); f “ assoc; (f b IA); f ,
2. e is the neutral element of f , i.e., (IA � ��A1; e); f “ IA,
3. n is the complement map, i.e., (IA � n); f “ ��A1; e,
4. f is commutative. i.e., swap; f “ f .

A relation C : X → X is called transitive if C;C Ď C, dense if C Ď C;C,
asymmetric if C [ C� “ ⊥⊥XX , a strict-order if C is transitive and asymmetric,
a linear strict-order if C is a strict-order and IX \ C \ C� “ ��XX .

A linear strict-order does always have a complement. This and related prop-
erties are summarized in the next lemma. The proof is straight forward and left
to the reader.

Lemma 5. If C : X → X is a linear strict-order, then we have the following:

1. C [ IX “ ⊥⊥XX .
2. C [ (C� \ IX) “ ⊥⊥XX .
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3. Y Ď C iff Y [ (C� \ IX) “ ⊥⊥XX .
4. Y Ď C� \ IX iff Y [ C “ ⊥⊥XX .

The relation algebraic version of a power set is given by a so-called relational
(or direct) power.

Definition 3. An object P(A) together with a relation ε : A → P(A) is called
a relational (or direct) power of A iff

syQ(ε, ε) “ IP(A) and syQ(Q, ε) is total for every Q : A → B.

Please note that syQ(R�, ε) is a map for every relation R : B → A. In fact,
this construction is the existential image of R, i.e., x is mapped by syQ(R�, ε)
to the set {y | (x, y) P R} for concrete relations.

3 Real Number Object

We will use a relation algebraic version of Tarski’s axioms for the real number
for defining a real number object in a Heyting category with relational powers.
First, we recall Tarski’s axioms as they were stated in [7]. His axioms are based
on the language R, ă, `, 1:

Axiom 1: If x �“ y, then x ă y or y ă x.
Axiom 2: If x ă y, then y ≮ x.
Axiom 3: If x ă z, then there is a y such that x ă y and y ă z.
Axiom 4: If X ⊆ R and Y ⊆ R so that for every x P X and every y P Y we have

x ă y, then there is a z so that for all x P X and y P Y we have x � z and
z � y (x � y shorthand for x ă y or x “ y).

Axiom 5: x ` (y ` z) “ (x ` z) ` y.
Axiom 6: For every x and y there is a z such that x “ y ` z.
Axiom 7: If x ` z ă y ` t, then x ă y or z ă t.
Axiom 8: 1 P R.
Axiom 9: 1 ă 1 ` 1.

A suitable translation of the axioms above into the language of relations
leads to the following definition. Please note that we added Axiom 0 that states
that add is a map explicitly since we are dealing with relations rather than
functions. In addition, it is worth mentioning that the axioms below do not use
the notion of a complement and, therefore, are suitable in the framework of
Heyting categories.

Definition 4. An object R together with three relations ı : 1 → R, C : R → R

and add : R ˆ R → R is called a real number object if the following holds:

0. add is a map.
1. IR \ C \ C� “ ��RR.
2. C [ C� “ ⊥⊥RR.
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3. C Ď C;C.
4. ε\(C/ε�) Ď (ε\(C \ IR)); (ε\(C \ IR)�)

�
.

5. (IR b add); add “ (IR b swap); assoc; (add b IR); add.
6. π�; add “ ��RR.
7. add;C; add� Ď π;C;π� \ ρ;C; ρ�.
8. ı is a map, i.e., a point.
9. ı Ď ı; (IR � IR); add;C�.

First we define abstract versions of the number 0 and of the negation opera-
tion on the real numbers by Z “ (add� [ π�); ρ and neg “ π�; (add;Z� [ ρ).

Lemma 6. 1. swap; add “ add.
2. (IR b add); add “ assoc; (add b IR); add.
3. ��RR;Z “ Z.
4. (IR � Z); add “ IR.
5. IR � Z Ď add�.
6. neg� “ neg.

Proof. 1. In order to show the assertion we first compute several properties:
(a) (π�

� (π � add))�; (π�
� (π � add)) “ IRˆR:

(π�
� (π � add))

�
; (π�

� (π � add))

“ (π � (π � add)�); (π�
� (π � add)) Lemma 3(1)

“ π;π� [ (π � add)�; (π � add) Lemma 3(5)

“ π;π� [ (π � add)�; (π;π� [ add; ρ�)

“ π;π� [ (π � add)�; ((π � add);π;π� [ add; ρ�) Lemma 3(2)

“ π;π� [ (π;π� [ (π � add)�; add; ρ�) Lemma 2(2)

“ π;π� [ (π;π� [ ρ; add�); add; ρ�

“ π;π� [ (π;π�; add [ ρ); ρ� Lemma 2(2)

“ π;π� [ ρ; ρ� Axiom 6., π total
“ IRˆR.

(b) π;π�;π� [ swap; (ρ� b IR) “ (π�;π� [ ρ�) � ρ�;π�:

π;π�;π� [ swap; (ρ� b IR)

“ π;π�;π� [ (ρ � π); (ρ� b IR)

“ π;π�;π� [ (ρ; ρ�
� π) Lemma 3(6)

“ π;π�;π� [ ρ; ρ�;π� [ π; ρ�

“ (π�;π� [ ρ�) � ρ�;π�. Lemma 2(3)
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(c) (π�
�(π�add)); add “ (π�;π�

�((π�;π�[ρ�)�ρ�;π�)); (addbIR); add:

(π�
� (π � add)); add

“ ((IR � π) � ρ; add); add Lemma 3(7)

“ ((IR � π) � ρ); (IR b add); add Lemma 3(6)

“ ((IR � π) � ρ); (IR b swap); assoc; (add b IR); add Axiom 5.

“ ((IR � π) � ρ; swap); assoc; (add b IR); add Lemma 3(6)

“ ((IR � π) � ρ; swap); (π�;π�
� (ρ� b IR)); (add b IR); add

“ ((IR � π);π�;π� [ ρ; swap; (ρ� b IR)); (add b IR); add Lemma 3(5)

“ (π;π�;π� [ ρ; (π;π�;π� [ swap; (ρ� b IR))); (add b IR); add Lemma 2(3)

“ (π�;π�
� (π;π�;π� [ swap; (ρ� b IR))); (add b IR); add

“ (π�;π�
� ((π�;π� [ ρ�) � ρ�;π�)); (add b IR); add. by (b)

(d) (π � add)�; ((π�;π� [ ρ�) � ρ�;π�) “ π;π�;π� [ π; ρ� [
(π � add)�; ρ; ρ�;π�:

(π � add)�; ((π�;π� [ ρ�) � ρ�;π�)

“ (π � add)�; (π; (π�;π� [ ρ�) [ ρ; ρ�;π�)

“ (π � add)�; ((π � add);π; (π�;π� [ ρ�) [ ρ; ρ�;π�) Lemma 3(2)

“ π; (π�;π� [ ρ�) [ (π � add)�; ρ; ρ�;π� Lemma 2(2)

“ π;π�;π� [ π; ρ� [ (π � add)�; ρ; ρ�;π�. Lemma 2(3)

(e) (π�
� (π � add))�; (π�;π�

�((π�;π�[ρ�)�ρ�;π�)) “ (π � add)�
�π:

(π�
� (π � add))

�
; (π�;π�

� ((π�;π� [ ρ�) � ρ�;π�))

“ (π � (π � add)�); (π�;π�
� ((π�;π� [ ρ�) � ρ�;π�)) Lemma 3(1)

“ π;π�;π� [ (π � add)�; ((π�;π� [ ρ�) � ρ�;π�) Lemma 3(5)

“ π;π�;π� [ π;π�;π� [ π; ρ� [ (π � add)�; ρ; ρ�;π� by (d)

“ π;π�;π� [ π; ρ� [ (π � add)�; ρ; ρ�;π�

“ (π � add)�; ((π � add);π;π�;π� [ ρ; ρ�;π�) [ π; ρ� Lemma 2(2)

“ (π � add)�; (π;π�;π� [ ρ; ρ�;π�) [ π; ρ� Lemma 3(2)

“ (π � add)�; (π;π� [ ρ; ρ�);π� [ π; ρ� Lemma 2(3)

“ (π � add)�;π� [ π; ρ�

“ (π � add)�
� π.
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(f) ((π � add)�
� π); (add b IR) “ swap:

((π � add)�
� π); (add b IR)

“ (π � add)�; add � π Lemma 3(6)

“ (π;π� [ ρ; add�); add � π

“ (π;π�; add [ ρ) � π Lemma 2(2)
“ ρ � π Axiom 6. and π total
“ swap.

Finally, we conclude

add

“ (π�
� (π � add))

�
; (π�

� (π � add)); add by (a)

“ (π�
� (π � add))

�
; (π�;π�

� ((π�;π� [ ρ�) � ρ�;π�)); (add b IR); add by (c)

“ ((π � add)� � π); (add b IR); add by (e)

“ swap; add. by (f)

2. This follows immediately from (1) and Axiom 5 by

(IR b add); add
“ (IR b swap; add); add by (1)
“ (IR b swap); (IR b add); add Lemma 3(6)
“ (IR b swap); (IR b swap); assoc; (add b IR); add Axiom 5.

“ (IR b swap; swap); assoc; (add b IR); add Lemma 3(6)
“ assoc; (add b IR); add. swap bij. and Lemma 4(1)

3. We only have to show the inclusion Ď. For this we use the abbreviation
X “ (IR b (add� [ π�)); assoc; (add b IR). Then we have

add�;X; ρ “ add�; (IR b (add� [ π�)); assoc; (add b IR); ρ

“ add�; (IR b (add� [ π�)); assoc; ρ Lemma 3(2)

“ add�; (IR b (add� [ π�)); ρ; ρ Lemma 3(2)

“ add�; ρ; (add� [ π�); ρ Lemma 3(2)

“ add�; swap�; ρ;Z by (1)

“ add�;π;Z Lemma 3(2)
“ ��RR;Z. Axiom 6.
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Furthermore, we obtain the inclusion

X “ (IR b (add� [ π�)); assoc; (add b IR)

“ (IR b (add� [ π�)); (π�;π�
� (ρ� b IR)); (add b IR)

“ (π;π�;π� [ ρ; (add� [ π�); (ρ� b IR)); (add b IR) Lemma 3(5)

Ď (π;π�;π� [ ρ; (add� [ π�); (ρ� b IR));π; add;π�

“ (π;π� [ ρ; (add� [ π�); (ρ� b IR);π); add;π� Lemma 2(2)

“ (π;π� [ ρ; (add� [ π�);π; ρ�); add;π� Lemma 3(2)

“ (π;π� [ ρ; (add�;π [ IR); ρ�); add;π� Lemma 2(2)

“ (π;π� [ ρ; ρ�); add;π� Axiom 6.

“ add;π�

and the inclusion

add�;X “ add�; (IR b (add� [ π�)); assoc; (add b IR)

Ď add�; (IR b add�); assoc; (add b IR)

“ add�; (add� b IR); assoc�; assoc; (add b IR) by (2)

“ add�; (add� b IR); (add b IR) assoc bij.

“ add�; (add�; add b IR) Lemma 3(6)

Ď add�.

Together we get

��RR;Z “ add�;X; ρ see above

“ (add�;X [ add�;X); ρ

Ď (add� [ add�; add;π�); ρ see above
Ď Z. add univalent

4. First of all, we have

(π� [ (add� [ π�); ρ; ρ�); add

“ (add� [ π�); ((add [ π);π� [ ρ; ρ�); add Lemma 2(2)

“ (add� [ π�); (add;π� [ π;π� [ ρ; ρ�); add Lemma 2(3)

Ď (add� [ π�); (π;π� [ ρ; ρ�); add

“ (add� [ π�); add
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and (add� [ π�); add Ď (π� [ (add� [ π�); ρ; ρ�); add because ρ is total.
We conclude

(IR � Z); add “ (π� [ (add� [ π�); ρ; ρ�); add

“ (add� [ π�); add see above

“ IR [ π�; add Lemma 2(2)
“ IR. Axiom 6.

5. This follows from (4) and Lemma 2(1).
6. From the following computation

neg� “ (Z; add� [ ρ�);π

“ (��RR;Z; add� [ ρ�);π by (3)

“ ρ�; (��RbRR;Z; add� [ IRbR);π Lemma 1(3)

“ ρ�; (add;Z�;��RRbR [ IRbR);π Lemma 1(1)

“ ρ�; (add;Z�;��RR [ π) Lemma 1(3)

“ ρ�; (add;Z� [ π) by (3)

“ ρ�; (swap; add;Z� [ π) by (1)

“ ρ�; swap; (add;Z� [ swap;π) Lemma 2(2)

“ π�; (add;Z� [ ρ) Lemma 3(2)
“ neg.

we conclude the assertion. [\
After these preparations we are able to show our first theorem.

Theorem 1. The quadruple (R, 0, add,neg) with 0 “ ��1R;Z is an abelian
group.

Proof. First of all, by Lemma 6(1) and (2) add is commutative and associative.
Next, we want to show that 0 is a point. Therefore, we obtain

0�; 0 “ Z�;��R1;��1R;Z

Ď Z�;��RR;Z

“ Z�;��RR [ ��RRZ Lemma 1(3)

“ Z� [ Z Lemma 6(3)

“ (IR � Z); (Z�
� IR) Lemma 3(5)

“ (IR � Z); swap; (IR � Z�) Lemma 4(2)

“ (IR � Z); swap; (IR � Z)� Lemma 3(1)
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Ď add�; swap; add Lemma 6(5)

“ add�; add Lemma 6(1)
Ď IR,

i.e., 0 is univalent. Using the following computation

IR “ IR [ add�;π [ π�; add [ IR Axiom 6.

“ add�; (add [ π) [ π�; (add [ π) Lemma 2(2)

“ (add� [ π�; (add [ π); (add� [ π�)); (add [ π) Lemma 2(2)

Ď (add� [ π�;π;π�); (add [ π)

Ď (add� [ π�); (add [ π) π univalent

Ď (add� [ π�); ρ; ρ�; (add [ π) ρ total

“ Z;Z�

we conclude that Z is total. Since ��1R is also total we conclude that 0 is a map,
and, hence, a point. 0 is right neutral with respect to add because of

(IR � ��R1; 0); add “ (IR � ��RR;Z); add 1 unit
“ (IR � Z); add Lemma 6(3)
“ IR. Lemma 6(4)

Before we show that neg is a mapping we want to verify that neg satisfies the
right inverse law. We compute

(IR � neg); add “ (π� [ π�; (add; 0�;��1R [ ρ); ρ�); add 1 unit

“ π�; (π;π� [ (add; 0�;��1R [ ρ); ρ�); add Lemma 2(2)

“ π�; (π;π� [ add; 0�;��1RbR [ ρ; ρ�); add Lemma 1(3)

“ π�; (IRbR [ add; 0�;��1RbR); add

“ π�; (IRbR [ ��RbR1; 0; add�); add Lemma 1(1)

“ π�; (add [ ��RbR1; 0) Lemma 2(2)

“ π�; (add [ π;��R1; 0) π total

“ π�; add [ ��R1; 0 Lemma 2(2)
“ ��R1; 0 Axiom 6.

In order to show that neg is univalent we first need several additional properties:

(a) IR � neg Ď Z; add�:

IR � neg

Ď ��R1; 0; add� see above and Lemma 2(1)

“ ��RR;Z; add� 1 unit

“ Z; add�. Lemma 6(3)
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(b) (IR b (π � (neg � IR))); ρ; (neg � IR) “ ρ; (neg � IR):

(IR b (π � (neg � IR))); ρ; (neg � IR)
“ ρ; (π � (neg � IR)); (neg � IR) Lemma 3(2)
“ ρ; (π; neg [ (neg � IR)) Lemma 3(5)
“ ρ; (neg � IR), neg � IR Ď π; neg

(c) (IR � neg;π�); (IR b (π � (neg � IR))) “ IR � neg; (IR � neg):

(IR � neg;π�); (IR b (π � (neg � IR)))

“ IR � neg;π�; (π � (neg � IR)) Lemma 3(6)

“ IR � neg;π�; ((IR � neg) � ρ�) Lemma 3(1)&(7)
“ IR � neg; (IR � neg), Lemma 3(3)

(d) (IR � neg; (IR � neg)); (π � (neg;π�
� IRˆR)) “ IR � neg; (IR � neg):

(IR � neg; (IR � neg)); (π � (neg;π�
� IRˆR))

“ (IR � neg; (IR � neg)); ((IR � neg;π�) � ρ�) Lemma 3(1)&(7)

“ (IR � neg;π�) [ neg; (IR � neg); ρ� Lemma 3(5)

“ π� [ neg;π�; ρ� [ neg; (IR � neg); ρ�

“ π� [ neg; (IR � neg); ρ� neg; (IR � neg); ρ� Ď neg;π�; ρ�

“ IR � neg; (IR � neg),

(e) (π � (neg;π�
� IRˆR)); ρ; (neg � IR) “ assoc; ((neg � IR); neg � IR):

(π � (neg;π�
� IRˆR)); ρ; (neg � IR)

“ (neg;π�
� IRˆR); (neg � IR) Lemma 3(2)

“ (neg;π�
� (π�

� ρ�)); (neg � IR)

“ assoc; ((neg;π�
� π�) � ρ�); (neg � IR) Lemma 4(4)

“ assoc; ((neg � IR);π�
� ρ�); (neg � IR) Lemma 2(3)

“ assoc; ((neg � IR) b IR); (neg � IR)
“ assoc; ((neg � IR); neg � IR), Lemma 3(6)

(f) IR � neg; (IR � neg) Ď add�; (IR b add�):

IR � neg; (IR � neg)

Ď IR � neg;Z; add� by (a)

“ (IR � neg;Z); (IR b add�) Lemma 3(6)

Ď (IR � ��RR;Z); (IR b add�)

“ (IR � Z); (IR b add�) Lemma 6(3)

Ď add�; (IR b add�) Lemma 6(5)
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(g) (neg � IR); neg � IR Ď (add b IR); add:

(neg � IR); neg � IR

“ (neg�; (neg�
� IR) � IR)

�
Lemma 3(1)

“ (neg; (neg � IR) � IR)� Lemma 6(6)

“ ((IR � neg; (IR � neg)); (IR b swap); swap)� Lemma 3(6)&4(2)

Ď (add�; (IR b add�); (IR b swap); swap)
�

by (f)

“ (add�; (IR b add�; swap); swap)
�

Lemma 3(6)

“ (add�; (IR b add�); swap)
�

Lemma 6(1)

“ (add�; (add� b IR))
�

Lemma 4(2)
“ (add b IR); add. Lemma 3(1)

Now we compute

neg�; neg

“ neg; neg Lemma 6(6)

“ neg;π�; (neg � IR) Lemma 3(3)

“ (IR � neg;π�); ρ; (neg � IR) Lemma 3(2)

“ (IR � neg;π�); (IR b (π � (neg � IR))); ρ; (neg � IR) by (b)

“ (IR � neg; (IR � neg)); ρ; (neg � IR) by (c)

“ (IR � neg; (IR � neg)); (π � (neg;π�
� IRˆR)); ρ; (neg � IR) by (d)

“ (IR � neg; (IR � neg)); assoc; ((neg � IR); neg � IR) by (e)

Ď add�; (IR b add�); assoc; (add b IR); add by (f), (g)

“ add�; (IR b add�); (IR b swap); (IR b swap); assoc; (add b IR); add Lemma 4(1)

“ add�; (IR b add�); (IR b swap); (IR b add); add Axiom 5.

“ add�; (IR b add�; swap; add); add Lemma 3(6)

“ add�; (IR b add�; add); add Lemma 6(1)

Ď IR.

Last but not least, that neg is total follows immediately from
IR “ π�; add;Z� [ IR Axiom 6. and Z total

“ π�; (add;Z� [ π) Lemma 2(2)

“ π�; (add;Z�;��RR [ π) Lemma 6(3)

“ π�; (add;Z�;��RRbR [ IRbR);π Lemma 1(3)

“ π�; (add;Z�;��RRbR [ IRbR); (��RbRR;Z; add� [ IRbR);π Lemma 1(1), (2)

Ď π�; (add;Z�;��RRbR [ IRbR); ρ; ρ
�; (��RbRR;Z; add� [ IRbR);π ρ total

“ π�; (add;Z�;��RR [ ρ); (��RR;Z; add� [ ρ�);π Lemma 1(3)

“ neg; neg�. Lemma 6(3)

This completes the proof. [\
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Notice that neg is a bijective mapping which follows from the fact that neg
is a mapping and Lemma 6(6).

We will now turn our attention to the relation C and show that it is a dense
linear strict-order. Please note that we only need to show that C is transitive
since all other properties are already axioms. We start with the following lemma.

Lemma 7. 1. add; add� [ ρ; ρ� “ IRbR.
2. add;C; add� [ ρ; ρ� “ C b IR.

Proof. 1. The inclusion 
 follows immediately from the fact that add and ρ
are both total. For the opposite inclusion we will use the abbreviation X “
(IR b (IR � neg)); assoc; ((add � ρ) b IR). From the two computations

(IR b (IR � neg)); assoc “ (π � ρ; (IR � neg)); assoc
“ (π � (ρ � ρ; neg)); assoc Lemma 2(3)
“ (π � ρ) � ρ; neg Lemma 4(4)
“ IRbR � ρ; neg,

((add � ρ) b IR); ((add�
� ρ�) b IR)

“ (add � ρ); (add�
� ρ�) b IR Lemma 3(6)

“ (add; add� [ ρ; ρ�) b IR Lemma 3(5)

we obtain

X;X�

“ (IRbR � ρ; neg); ((add; add� [ ρ; ρ�) b IR); (IRbR � neg; ρ�)

“ ((add; add� [ ρ; ρ�) � ρ; neg); (IRbR � neg; ρ�) Lemma 3(6)

“ add; add� [ ρ; ρ� [ ρ; neg; neg; ρ� Lemma 3(5)

“ add; add� [ ρ; ρ�. neg bij.

Furthermore, we compute

X; (π b IR); add
“ (IR b (IR � neg)); assoc; ((add � ρ);π b IR); add Lemma 3(6)
“ (IR b (IR � neg)); assoc; (add b IR); add Lemma 3(2)
“ (IR b (IR � neg)); (IR b add); add Lemma 6(2)
“ (IR b (IR � neg); add); add Lemma 3(6)
“ (IR b ��1R; 0); add Theorem 1
“ (IR b ��RR;Z); add 1 unit

“ (π;π� [ ρ;��RR;Z; ρ�); add

“ (π;π� [ ��RbRR;Z; ρ�); add ρ total

“ (π;π� [ π;��RR;Z; ρ�); add π total

“ π; (π� [ ��RR;Z; ρ�); add Lemma 3(4)



288 M. Winter

“ π; (π� [ Z; ρ�); add Lemma 6(3)
“ π; (IR � Z); add
“ π. Lemma 6(4)

Together we obtain

add; add� [ ρ; ρ� “ add; add� [ ρ; ρ� [ ρ; ρ�

“ X;X� [ ρ; ρ� see above

Ď X; (π b IR); add; add
�; (π� b IR);X

� [ ρ; ρ� π, add total

“ π;π� [ ρ; ρ� see above

“ IRbR.

2. The inclusion Ď follows immediately by

add;C; add� [ ρ; ρ� Ď (π;C;π� \ ρ;C; ρ�) [ ρ; ρ� Axiom 7.

“ (π;C;π� [ ρ; ρ�) \ (ρ;C; ρ� [ ρ; ρ�)

“ (C b IR) \ ρ; (C [ IR); ρ
� Lemma 2(3)

“ C b IR. Lemma 5(1)

For the converse inclusion we first compute

(C b IR) [ add; add� [ ρ; ρ� “ (C b IR) [ IRbR by (1)

“ π;C;π� [ π;π� [ ρ; ρ�

“ π; (C [ IR);π
� [ ρ; ρ� Lemma 2(3)

“ ⊥⊥RbRRbR, Lemma 5(1)

and (C b IR) [ add;C�; add� [ ρ; ρ� Ď (C b IR) [ (C� b IR) see above

“ (C [ C�) b IR Lemma 2(3)

“ ⊥⊥RbRRbR. Axiom 2.

This implies

C b IR “ (C b IR) [ add;��RR; add� add total

“ (C b IR) [ add;��RR; add� [ ρ; ρ�

“ (C b IR) [ add; (C \ C� \ IR); add� [ ρ; ρ� Axiom 1.

“ ((C b IR) [ add;C; add� [ ρ; ρ�)

\ ((C b IR) [ add;C�add� [ ρ; ρ�)

\ ((C b IR) [ add; add� [ ρ; ρ�) Lemma 2(3)

“ (C b IR) [ add;C; add� [ ρ; ρ�, see above

i.e., C b IR Ď add;C; add� [ ρ; ρ�. [\
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Now, we are ready to show the second main theorem.

Theorem 2. The relation C : R → R is a dense strict linear order.

Proof. As already mentioned above, it remains to show that C is transitive. We
have

(C � IR); (C � IR) [ add; add� [ ρ; ρ�

“ (C � IR); (C � IR) [ IRbR Lemma 7(1)

Ď (C � IR); ((C � IR) [ (C � IR)�)

Ď (C � IR); (C;π� [ C�;π�)

“ (C � IR); (C [ C�);π� Lemma 2(3)
“ ⊥⊥RbRRbR. Axiom 2.

From the two computations

(C � IR); (C � IR) [ ρ;C�;π�

Ď (C � IR); ((C � IR) [ (C � IR)�; ρ;C�;π�)

Ď (C � IR); ((C � IR) [ C�;π�)

Ď (C � IR); (C;π� [ C�;π�)

“ (C � IR); (C [ C�);π� Lemma 2(3)
“ ⊥⊥RbRRbR, Axiom 2.

and (C � IR); (C � IR) [ π;C�; ρ�

Ď ((C � IR) [ π;C�; ρ�; (C � IR)�); (C � IR)

Ď ((C � IR) [ π;C�); (C � IR)

Ď (π;C [ π;C�); (C � IR)

“ π; (C [ C�); (C � IR) Lemma 2(3)
“ ⊥⊥RbRRbR Axiom 2.

we conclude that

(C � IR); (C � IR) [ add;C�; add� [ ρ; ρ�

Ď (C � IR); (C � IR) [ add;C�; add�

“ (C � IR); (C � IR) [ swap; add;C�; add� Lemma 6(1)

“ (C � IR); (C � IR) [ swap; (π;C�;π� \ ρ;C�; ρ�) Axiom 7.

“ ((C � IR); (C � IR) [ swap;π;C�;π�)

\ ((C � IR); (C � IR) [ swap; ρ;C�; ρ�)

“ ((C � IR); (C � IR) [ ρ;C�;π�)

\ ((C � IR); (C � IR) [ π;C�; ρ�) Lemma 3(2)
“ ⊥⊥RbRRbR. see above
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Using the first and the last property above we obtain

(C � IR); (C � IR)

“ (C � IR); (C � IR) [ add;��RR; add� add total

“ (C � IR); (C � IR) [ add;��RR; add� [ ρ; ρ� (C � IR); (C � IR) Ď ρ; ρ�

“ (C � IR); (C � IR) [ add; (C \ C� \ IR); add� [ ρ; ρ� Axiom 1.

“ ((C � IR); (C � IR) [ add;C; add� [ ρ; ρ�)

\ ((C � IR); (C � IR) [ add;C�add� [ ρ; ρ�)

\ ((C � IR); (C � IR) [ add; add� [ ρ; ρ�) Lemma 2(3)

“ (C � IR); (C � IR) [ add;C; add� [ ρ; ρ�, see above

i.e., (C � IR); (C � IR) Ď add;C; add� [ ρ; ρ�. From this we conclude

C;C “ π�; (C � IR); (C � IR);π Lemma 3(2)

Ď π�; (add;C; add� [ ρ; ρ�);π see above

“ π�; (C b IR);π Lemma 7(2)

“ π�;π;C Lemma 3(2)
Ď C.

This completes the proof. [\
Now, we define the order on a real number object by E :“ IR \ C. Our final

theorem shows that add is monotone with respect to this order, i.e., add together
with neg and ı forms a linearly ordered group. But first we need the following
lemma.

Lemma 8. Let C1 : X → X and C2 : Y → Y be strict-orderings, E1 “ IX \ C1

and E2 “ IY \C2 the induced order relations, and f : XˆX → Y a commutative
map that is strictly monotone in its first parameter, i.e., (C1 b IX); f Ď f ;C2.
Then we have:

1. (IX b C1); f Ď f ;C2, i.e., f is strictly monotone in its second parameter.
2. (C1 b C1); f Ď f ;C2, i.e., f is strictly monotone in both parameters.
3. (E1 b E1); f Ď f ;E2, i.e., f is monotone in both parameters.

Proof. 1. This follows immediately from the strict monotonicity in the first
parameter and the commutativity of f .

2. Also this follows immediately from (1) and the assumption by splitting (C1 b
C1) into (IX b C1); (C1 b IX).
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3. From

(E1 b E1); f

“ ((IX \ C1) b (IX \ C1)); f

“ ((IX b IX) \ (IX b C1) \ (C1 b IX) \ (C1 b C1)); f Def. b
“ f \ (IX b C1); f \ (C1 b IX); f \ (C1 b C1); f

Ď f \ f ;C2 by (1),(2) and assump.

“ f ; (IY \ C2)

“ f ;E2

we obtain the assertion. [\
We are now ready to provide the final theorem.

Theorem 3. We have the following:

1. add is strictly monotone in each parameter.
2. add is strictly monotone.
3. add is monotone.

Proof. We only show that add is strictly monotone in its first parameter, i.e.,
that (C b IR); add Ď add;C. Lemma 8 all other properties of this theorem will
follow. From Lemma 7(2) we immediately conclude C b IR Ď add;C; add� from
which the assertion follows by Lemma 2(1). [\

4 Conclusion and Future Work

The current paper is just the beginning of the study of real number objects
as defined here. We have shown that the addition of a real number objects
forms a densely and linearly ordered abelian group. It remains to show that this
group is also Archimedean. For showing this property one first has to define the
operation of summing up n copies of an element a, i.e., a map N ˆ R → R.
This requires either an external object of the natural numbers or to identify the
natural numbers within the real number object.

Another paper will concentrate on the multiplicative group of a real number
object. The definition of the multiplication operation requires the Archimedean
property and shows that the multiplication of natural number has a unique
extension in the real numbers.

Last but not least, we would like to study the topology induced by the order
structure on a real number object using the relation algebraic approach to topo-
logical spaces [6].
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