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1 Introduction 

1.1 Background and Motivation 

The automotive industry is undergoing rapid changes. The in-depth integration of 
advanced information technology and automotive technology enables the vehicles 
equipped with more intelligent functions and more connections with outside. 
Despite a higher level of comfort, safety, efficiency and personalized experience 
providing for drivers, the vehicles are also exposed to negative risks brought by 
the new technologies. The rich connectivity with external environments also means 
more potential access points which can be exploited by malicious adversaries. The 
adversaries can further intrude the safety-critical in-vehicle network via compromis-
ing the bridge nodes. Considering that vehicle is a man-in-the-loop cyber physical 
system, the attacker can further gain the ability to control the physical components 
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of automotive and manipulate its behaviors. It may result in a threat to human life 
or deeper security issues to the whole society. Security concern has become one of 
the most challenging issues for in-vehicle network which cannot be ignored. 

In-vehicle network is the underlying base for the implementation of automotive 
functions such as driving safety, autonomous driving, intelligent in-cabin system, 
and body control. Accordingly, the in-vehicle network is also in the process of 
innovation to meet future requirements. With the rapid development of intelligence 
and connectivity of vehicles, the architecture of in-vehicle network is undergoing 
evolution from distributed model to domain model and zonal model. It is getting 
more complex and sophisticated, which usually comprises several networks respon-
sible for different functions. In this chapter, we mainly focus on currently the most 
popular in-vehicle communication protocol Controller Area Network (CAN), which 
is directly responsible for the safety of vehicles. From our point of view, CAN 
will still bear an important role in ensuring driving safety in the future in-vehicle 
network. How to defend automotive CAN bus draws much attention from the public 
as well as academia. 

CAN is capable of providing reliable and real-time communication to ensure the 
safety of the automotive control systems. But there is no any inherent mechanism at 
its birth to defend against malicious adversary. Its characteristics such as broadcast 
nature, plain-text transmission, lack of message authentication, and weak access 
control make the automotive CAN network vulnerable to cyber attack. Security 
schemes such as cryptographic measures are introduced in the automotive domain. 
Message Authentication Code (MAC), which can provide the ability to verify 
the data integrity as well as identify the sender seems like a good option. It is 
implemented based on a symmetric cryptographic mechanism, which can favor 
the deployment on automotive embedded systems by reducing the computational 
complexity. However, the extremely limited length of the CAN frame cuts the effect 
of the deployment of message authentication codes. For example, the maximum 
data payload of a data frame of the standard CAN protocol is only 8 bytes. The 
longer message authentication code results in a shorter payload which degrades the 
efficiency of the communication system, while the shorter message authentication 
code results in an insufficient security level. To mitigate this issue, the longer 
authentication tag can be transmitted via extra frames. Unfortunately, it can result 
in a heavier bus load which might affect the real-time performance of the system. 

The intrusion detection method can be a simple but efficient solution for pro-
tecting in-vehicle network. It can monitor the network traffic and detect anomalies 
during the runtime of vehicles. Different from the encryption and authentication 
measures, intrusion detection methods do not occupy the limited bandwidth and 
payload of the in-vehicle network. It works based on the observation and analysis 
of network traffic. The intrusion detection system was firstly introduced for in-
vehicle network by Hoppe et al. [12]. The authors proposed three ways to utilize 
features, which are the increase in the frequency of CAN frames, the observation of 
signal characteristics as well as the abuse of CAN identifiers to detect attacks. More 
schemes based on intrusion detection methods are designed since then. One way of
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designing the intrusion detection system is to build a physical model or pre-defined 
rules to detect unexpected behaviors. However, the in-depth knowledge about the 
system is always required for this kind of approaches. Besides, it is difficult to design 
a closed-loop expression to detect attacks in real cases. Machine learning (ML) is 
one of the most promising technologies nowadays which can also favor the solution 
for security concerns of in-vehicle network. ML can extract latent patterns from 
traffic to provide an effective and flexible solution for intrusion detection on in-
vehicle network. 

1.2 Contributions and Outline 

In this chapter, we survey the studies which take advantage of machine learning 
technologies to detect intrusion for automotive CAN bus. The structure of our 
chapter can be seen in Fig. 1. To provide a better understanding about the application 
scenarios, we firstly introduce the in-vehicle network architecture and how it 
evolves. Next, we provide a detailed description about the intrusion detection 
methods exploiting ML algorithms. According to the domain knowledge used 
for extracting features by ML, we divide these approaches into four categories, 
which are semantics-based methods, literal-based methods, timing-based methods 
and signal characteristics-based methods respectively. Our contributions can be 
concluded as follows:

Fig. 1 Structure of the chapter
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1. We provide an introduction about current and future in-vehicle network architec-
ture. The evolution trend emphasizes the importance of CAN for driving safety 
and the necessity to protect it. 

2. We classify the machine learning-based intrusion detection methods based on the 
domain knowledge exploited to extract features. The domain knowledge can be 
referred to those low-level characteristics in CAN such as timing characteristics 
or signal shapes, or the high-level characteristics such as the data payload of 
CAN frames or their semantic values. 

3. We provide a detailed description for each category of intrusion detection 
methods. In each section, we firstly introduce the basic insight of how it works 
and discuss the disadvantages of the traditional methods. Then, we introduce the 
existing work based on machine learning algorithms.

The organization of this chapter is as follows: Sect. 2 provides the descrip-
tion about the current and future in-vehicle network architecture. Sections 3 
to 6 describes the intrusion detection methods exploiting machine learning algo-
rithms from four aspects, which are semantics-based methods, literal-based meth-
ods, timing-based methods and signal characteristics-based methods respectively. 
Finally, Sect. 7 concludes this chapter. 

2 In-Vehicle Network Architecture 

In this section, we first provide a description of the in-vehicle network architecture 
and how it will upgrade in the near future. We also briefly conclude the benefits 
brought by the architectural evolution. Then, we provide a primer on CAN and 
illustrate the necessity for research on protecting CAN. From our point of view, 
CAN will not be abandoned by the future in-vehicle network and will face more 
security risks. Thus, defending CAN from attacks is important for protecting 
vehicles no matter for the current or future in-vehicle network. 

2.1 Evolution of In-Vehicle Network 

The hardware of in-vehicle network mainly consists of two parts, which are the 
Electronic Control Units (ECUs) and wired cables to connect the ECUs. The 
ECU is an automotive embedded device equipped with abilities of computing, 
communication and control. The data and control signals of ECUs can be exchanged 
over the wired cables. All ECUs inside the vehicle are networked with each other 
through the internal communication system to form a whole. The whole system can 
provide the ability from sensing the driving environment to making decisions and 
implementing high-level automotive driving.
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Fig. 2 Distributed in-vehicle network architecture 

The traditional in-vehicle network adopts a distributed architecture (as shown in 
Fig. 2). All ECUs are scattered on the network and work distributively. Generally, it 
equips low-speed communication protocols such as CAN and LIN (Local Intercon-
nect Network) as the backbone network. The distributed in-vehicle network enables 
the transition of automotive from mechanization to electronics. However, the 
increasing number of electronic functions and ECUs has lead to a heavy, large-scale 
in-vehicle network, making the wiring harness system the third-heaviest automotive 
component after the engine and chassis [35]. The bulky wiring harness system 
increases the total weight of the vehicle, resulting in higher energy consumption 
and cost. Besides, the increasing number of ECUs makes the in-vehicle network 
more complex. It could lead to a higher cost of software development as well as a 
higher cost of software verification and validation which might increase the risk of 
uncertainty. 

Furthermore, the demand for automobile intelligence and the rising connections 
with outside are forcing the innovation of the communication architecture of in-
vehicle network. Various advanced communication technologies such as 5G, WIFI, 
Bluetooth, and Vehicle-to-Everything (V2X) have been deployed on vehicles, which 
makes vehicles as a complex communication system. To realize the advanced 
intelligent functions of vehicles, the concept of Software Defined Vehicles (SDV) 
has gradually become the mainstream for automotive software development. The 
high integration of automotive technology and information technology increases 
the complexity of the intelligent connected vehicles continuously, which requires 
a scalable design of architecture and coordination of ECUs with higher computing 
power. To meet these requirements, the architecture of in-vehicle network would 
evolve from the traditional distributed architecture to a new generation of centralized 
architecture. Specifically, as shown in Fig. 3, it would gradually evolve into a
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Fig. 3 New in-vehicle network architecture. (a) Domain architecture. (b) Zonal architecture 

domain architecture (Fig. 3a), and further, a more centralized architecture called 
zonal architecture (Fig. 3b). 

One common scheme of domain architecture is to divide the in-vehicle network 
into five different control domains according to their functions. Each domain is 
equipped with a Domain Control Unit (DCU) to centralize the functions and 
computing resources within the domain. The DCU is a higher-performance auto-



Protecting Automotive Controller Area Network: A Review on Intrusion. . . 297

motive microcontroller designed to solve the problem of performance bottleneck of 
distributed in-vehicle network. As shown in the left of Fig. 3, it consists of the power 
domain responsible for powertrain control and optimization, the chassis domain 
responsible for driving behavior (braking, steering, transmission, etc.), the body 
domain responsible for body and comfort control, the in-cabin domain responsible 
for entertainment, and the automatic driving domain responsible for assisting 
vehicle driving. The DCU consolidates the functionality within each domain 
and communicates with other DCUs via high-speed backbone network (such as 
Ethernet, etc.). In-domain ECUs attached to the DCU are degraded to low-level 
ECUs or actuators with limited computing and communication resources. Low-
speed communication protocols (such as CAN, LIN, etc.) are exploited to connect 
the DCU with the in-domain nodes. 

The zonal architecture further improves the degree of centralization by organiz-
ing a three-layer architecture. It consists of the following key components, including 
(1) computing resources which are a central computing platform, multiple zonal 
ECUs and many low-level ECUs; (2) communication resources which are high-
speed backbone network (such as Ethernet, etc.) to connect the central computing 
platform with zone ECUs and low-speed local area network (such as CAN, LIN, 
etc.) to connect the zone ECUs with low-level ECUs. The hardware inside the local 
area network can be consolidated by the upper level zone ECU, while the hardware 
of zone ECUs can be further consolidated by the central computing platform. Highly 
consolidation of hardware resources makes it more available to separate software 
and hardware to achieve the concept of software-defined vehicles. It can manage 
the needs of more advanced and intelligent functions for future vehicles. 

Currently, most car manufactures are in the stage of transition from distributed 
architecture to domain architecture. In general, the upgrade of the in-vehicle 
network architecture can bring advantages in terms of cost reduction and driving 
intelligence, which are listed as follows: 

1. Reduction on hardware cost: Benefiting from architecture evolution, the total 
number of ECUs can be significantly reduced to optimize the utilization of 
computing resources. In addition, the layout of the wiring harness system can 
be optimized, lowering the total weight and hardware cost of vehicles. 

2. Reduction on development and verification cost: The highly integration of 
hardware can favor the application of scalable software-driven framework for 
decoupling of hardware and software, leading to faster development cycle and 
lower cost of software development and verification. 

3. Support for implementation of OTA: The Over the Air (OTA) technology can 
achieve the goal to upgrade the automotive software remotely through wireless 
access points of vehicles. It can provide a convenient, timely, and lower cost 
of recall management by cutting the necessity to bring the vehicles back. The 
centralized architecture with fewer ECUs and unified software architecture can 
reduce the verification complexity of the OTA update process. 

4. Support for implementation of advanced intelligent functions: Vehicle intelli-
gence requires the powerful hardware as well as the advanced software devel-
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opment model. The application of the scalable software-driven framework, high 
performance computing platform and heterogeneous communication architecture 
which are benefited from the new in-vehicle architecture can make it possible 
to implement advanced functions like intelligent in-cabin system and high-level 
autonomous driving. 

2.2 The Necessity for Protecting CAN 

CAN is currently the most mature protocol with the highest market share, and 
has been required to be implemented on production vehicles. It is widely used 
in automotive network related to safety-critical functions such as automobile 
transmission and body control. The safety-critical information, e.g., the engine or 
cruise control is exchanged over the CAN bus. The data in CAN is exchanged via 
the unit called data frame. Its structure can be divided into five fields, including 
arbitration field, control field, data field, CRC (Cyclic Redundancy Check) field and 
ACK (Acknowledgement) field (can be seen in Fig. 4). The arbitration field bears 
the identifier which can be used for identifying different frames as well as competing 
the rights of transmitting on the bus. 

Safety is always the first priority for vehicles. Despite the proportion of CAN for 
the in-vehicle network is getting smaller as the architecture evolves, the urgency for 
research on protecting CAN is even getting stronger. The reasons can be explained 
as follows. Firstly, CAN will not be abandoned by the future in-vehicle network 
due to its high efficiency and low cost. Despite many advanced technologies such 
as high-speed Ethernet and high performance computing devices are introduced, 
the lowest level network for both the domain model and zone model would still be 
developed as a signal-oriented communication paradigm. Such design can provide 
reliable and real-time data exchange to ensure the safety of vehicles. CAN is 
still going to play critical role in these areas, especially the networks for safety-
critical functions. Secondly, the risk of in-vehicle network being attacked increases 
significantly. The evolution of in-vehicle network architecture is along with the trend 
that the number of communication technologies used in vehicles increases. That 
also opens more doors for attacks, resulting in higher security concerns for vehicles. 
The attackers can intrude on the in-vehicle network by exploiting the flaws in the 
hardware or software of these access points. Since CAN was originally designed 
to work in an isolated environment, CAN does not take any security concerns into 

Fig. 4 The CAN data frame format
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consideration [8], making CAN vulnerable to attacks. It has been demonstrated that 
the adversary can manipulate the vehicles’ behavior after obtaining access to the 
safety-critical CAN bus [18]. Thus, we claim that defending CAN from attacks is 
critical for ensuring the safety of vehicles no matter on the current or future in-
vehicle network. 

3 Semantic-Based Intrusion Detection Methods 

3.1 Motivation and Basic Idea 

The data transmitted on the in-vehicle network has specific physical meaning for 
describing the current states and dynamics of the vehicle. An example of physical 
variables transmitted on in-vehicle CAN is listed in Table 1. For instance, the data 
can be explained as the speed of the engine, vehicle velocity or the state of the 
headlights. These data are transmitted and exchanged over the in-vehicle network to 
control the various functions of vehicle. 

For a given dynamic of automotive system, there should be a certain correlation 
between data read from different sensors since they obey the same physical law. 
Under normal circumstance, the variable which indicates the inclination angle of 
the accelerator pedal should change accordingly when the driver presses the pedal. 
The speed of the engine and vehicle velocity would increase. In the meantime, 
the automotive gear would also switch in time. The different parts of the vehicle 
collectively respond to the act of pressing the accelerator pedal in a correlated 
and consistent manner. Therefore, the physical properties of vehicles can be 
abstracted by the physical model built from the semantic traffic. The correlation 
among different sensors can be exploited to detect anomaly. We assume that the 
attacker cannot compromise all relevant ECUs simultaneously which is plausible 
in real scenarios. The intrusion detection is to identify any observation which is 
inconsistent with expected behavior. 

To detect unexpected behavior, the first priority is to construct the model for 
describing the relationship between variables obeying same physical laws. One 

Table 1 An example of 
physical variables on CAN 

Physical variables 

Vehicle speed Position of steer 

GPS speed Torque of wheel 

Acceleration pedal Wheel angle 

Brake pedal Gear 

Engine RPM Coolant temperature 

Fuel rate Ambient temperature 

Fuel/Air commanded equivalence Air intake temperature 

Master cylinder pressure Boost pressure
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way is to build the physical model manually based on the physical expression or 
experience. Cho et al. [5] proposed an anomaly detection method called Brake 
Anomaly Detection for the brake-by-wire system. Under normal circumstances, 
the behavior of the vehicle should be consistent with the driver’s intent and the 
surrounding driving environment. The authors chose the Brush tire model [2] as the  
normal behavior model to characterize the frictional relationship between the tire 
and the ground. The attack to the brake-by-wire system can be observed by checking 
the consistency between the driver’s input and the actual data captured from the in-
vehicle network. The model also takes into account the change in the coefficient of 
friction of the tires under different weather and road conditions. Similarly, Ref. [10] 
designed a delicate ring-based architecture to organize multiple correlations by 
utilizing the physical model and experience. In this study, ten variables and nine 
nodes in total comprise the well-designed correlation ring to improve the robustness 
of detection while reducing the overall computation overhead. 

However, these methods require in-depth understanding about the target system 
and expertise, which may not always be available. Researchers resort to machine 
learning algorithms to construct the model automatically that reflects the physical 
laws. It is mainly based on the insight that multiple sensors readings are directly 
proportional to the same physical phenomenon under normal circumstances [1]. 
Thus, the model can be generated from semantic traffic of in-vehicle network 
without the requirement for the in-depth knowledge of the control system. The 
machine learning algorithms to be exploited can be varied including artificial neural 
network [33], random forest regressor [20], deep autoencoder [11], and CNN 
model [13]. 

3.2 Machine Learning-Based Methods 

Reference [20] formulated the problem to detect anomalies as a machine learning 
prediction problem that can be resolved by the regression model. The authors 
selected a set of correlated sensor data as features of the regression model based on 
domain knowledge and pairwise correlations firstly. The sensor signals which can 
be used for calculating vehicles’ speed are taken as an example in this study. They 
included engine speed, acceleration on both longitudinal and lateral orientation, 
brake pedal ratio, steering angle, gear, and so on. During the training phase, the 
feature readings are fed into a Random Forest Regressor to train a regression 
model. While in the testing phase, the output values of the model can be estimated 
continuously based on the trained regression model. The anomaly can be flagged 
once the difference between the observed value and the estimated value is larger 
than a predefined threshold. 

A more advanced learning technique for generating the physical model automat-
ically is introduced in an intrusion detection system called context-aware intrusion 
detection system (CAID) [33]. CAID exploits the Bottleneck Artificial Neural 
Network (ANN) to develop the reference model of the automotive control system.
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Fig. 5 Architecture of deep autoencoder neural network 

The bottleneck ANN is designed as a network model in that the input and output 
layers are with the same number of neurons while the hidden layer is with a 
significantly less number of neurons. The sensor signals to describe the state of 
the engine control unit, such as fuel rate, absolute throttle position, engine RPM, 
and seven other signals, are collected to validate the performance of the proposed 
method. The parameters of the model can be generated in the training phase. During 
the testing phase, the estimated value can be obtained by reconstructing an input via 
the trained bottleneck ANN. CAID can detect anomalies by checking the similarity 
of actual readings of the sensor against the estimated values. 

Reference [11] devised a deep autoencoder-based intrusion detector to extract 
the inherent redundancy of related sensors. The autoencoder (as shown in Fig. 5) is  
composed of two parts which are the encoder and the decoder respectively. Both the 
encoder and decoder are deep neural networks with multiple hidden layers. The aim 
of the encoder is to compress the input into low-dimensional features as much as 
possible, while the decoder aims to restore the compressed features to the original 
data as much as possible. By cascading the encoder and the decoder together, the 
autoencoder can extract the pattern of the input data. The overall process of the 
research [11] is as follows. Firstly, the authors selected a set of correlated data 
as input. The evaluation is performed on a publicly available dataset. It includes 
three categories of data, which are data from sensors on CAN bus, data from GPS 
sensors, and data from IMU sensors. Next, the deep autoencoder is adopted to learn 
the consistent pattern of these sensor data from the trustful training dataset. The 
learned consistent pattern can be expressed as the normal behavior of the automotive 
control system. In [11], the evaluated autoencoder network is designed with a 4-
layers encoder and 4-layers decoder. The authors defined three different means to
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measure the error of the input against the reconstructed output. The training process 
of the encoder and decoder can be repeated to update the parameters of the model by 
minimizing the reconstruction error. Finally, anomalous behaviors can be detected 
by checking the reconstruction error during running. The reconstruction error shall 
be ranged within a predefined bound. If the reconstruction error exceeds the bound, 
an intrusion can be alarmed. 

Reference [13] designed a framework that comprises an anomaly detection 
method based on Convolutional Neural Network (CNN) as well as an ensemble 
classifier which consists of multiple traditional machine learning algorithms. The 
ensemble classifier is to evaluate the effectiveness of the proposed CNN-based 
anomaly detection method. The proposed CNN-based method introduces a multi-
stage attention Long Short-Term Memory (LSTM) model to enable the algorithm 
can focus on the significant parts of the data. The authors provided a comprehensive 
evaluation of four distinct anomaly types generated by [31] which are instant, con-
stant, gradual drift, and bias to a publicly available dataset, and their combinations. 

3.3 Summary 

The semantic-based methods exploit the fact that the CAN traffic over the auto-
motive network bears specific physical meanings for representing the dynamics or 
states of vehicles. Thus, these physical variables can be used to construct the abstract 
of the physical properties of vehicles. Machine learning algorithms can build the 
model automatically without requiring in-depth knowledge of the target system. 
The inconsistency with expected behavior can be regarded as an intrusion. Despite 
reducing the effort for generating the model compared to the traditional methods, 
the proprietary nature of CAN makes the obtainment of the specific meanings of the 
CAN frames a non-trivial work. It hinders the research on semantics-based methods 
since the specific meanings of the frames are kept confidential from the public. 

4 Literal-Based Intrusion Detection Methods 

4.1 Motivation and Basic Idea 

There are two main limitations of semantic-based intrusion detection methods. First, 
it is non-trivial to obtain the semantic meaning of data from in-vehicle network. The 
automotive industry is not willing to disclose the detailed specification of their CAN 
messages considering the concerns on intellectual property and security. That is, 
the detailed meaning of automotive CAN messages cannot be obtained publicly. 
Second, the selection of input data requires domain knowledge or correlation 
computation. The performance of such methods on irrelevant data beyond the
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selected sensor has not been verified. These limitations hinder the application of 
semantic-based intrusion detection methods. 

In this section, we introduce one more intuitive kind of method called literal-
based intrusion detection method. It is unnecessary to obtain or derive the semantics 
of the CAN messages painstakingly. The binary streams (literal value) can be 
exploited directly as the input for the intrusion detection system. Firstly, the inherent 
correlations are extracted by analyzing the binary stream of CAN traffic. The 
extracted correlations can be used to characterize the normal behavior of the system 
or pattern of the anomalies. After building the required model for the target system, 
the intrusion can be reported by comparing the expected data with the observed one. 

The main insight behind the literal-based intrusion detection methods can 
be summarized as follows. CAN is highly deterministic and predictable during 
operations to manage the requirements for strict real-time, and provide stable and 
reliable services. The stable operational patterns for CAN shall be observed in 
the absence of cyber attack. It has been pointed out in [9, 21] that the model 
of normal behavior can be established from the analysis of CAN data streams 
without understanding the semantics of CAN messages. Information entropy is 
a measurement to describe the uncertainty of a system. The more orderly and 
deterministic the system is, the lower the information entropy is. Reference [24] 
proposed the entropy-based intrusion detection methods for in-vehicle network. The 
entropy of the data traffic can be computed for representing the state of CAN traffic. 
When the entropy value deviates from the normal range, it means that there is an 
attack mounted on the in-vehicle network. However, the estimation of the entropy 
value can be affected easily by different driving scenes, which results in a high false 
positive rate. 

Machine learning algorithms are better options for processing the binary streams 
of CAN messages. Generally speaking, the overall process of these methods can 
be concluded as two phases, which are the training phase and the testing phase as 

Fig. 6 The training phase 

Observed 
Data 

Trained Model 
Expected 

Data 
Attack Detector 

Normal 

Anomaly 

Fig. 7 The testing phase
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illustrated in Figs. 6 and 7 respectively. The aim of the training phase is to develop 
the model for intrusion detection by extracting latent patterns from the traffic of 
in-vehicle network. The raw data, i.e. the literal binary data of CAN messages 
after pre-processing can be fed into the machine learning algorithm to train the 
model. The feedback process is to minimize the reconstruction/prediction error to 
improve the model performance. The training phase can be performed offline in a 
controlled environment considering it is a time-consuming task. During the testing 
phase, the observed data is compared with the output (expected data) by the trained 
model to detect anomalies. The observed data and the expected data are fed into the 
attack detector together to identify whether their difference exceeds a well-designed 
threshold. 

The methods in this section can be divided into two categories according to 
whether the attack sample is required in the training phase, which is specification-
based methods using attack samples for the training model and anomaly-based 
methods using normal samples for generating the model. 

4.2 Specification-Based Methods 

Methods in this category require labeled attack samples for training the classifi-
cation model. The model can learn the patterns of the CAN traffic under attack 
during the training phase. The intrusion can be detected once any similar patterns 
are observed during the testing phase. 

Xie et al. [34] proposed a generative adversarial network (GAN) based intrusion 
detection method, which can be shown in Fig. 8. Technically, the GAN model 
consists of two core components: generator (G) and discriminator (D). The basic 
principle of how GAN works is as follows. The generator utilizes random noise as 
input and tries to output synthetic data to deceive the discriminator. On the contrary, 
the discriminator utilizes the ground truth as input and tries to make decisions as 
accurately as possible that the data from the generator is whether fake or not. The 
performance of the generator and discriminator can thus be improved during the 
repeated adversarial process. In [34], the real attacked CAN messages are fed into 
GAN for training the intrusion detection model. 

CANintelliIDS [14] is designed based on a convolutional neural network (CNN) 
combined with an attention-based gated recurrent unit (GRU) model. Similar to 
LSTM, the GRU model is suitable for solving the prediction problem of sequential 
data. Besides, the utilization of GRU can be helpful for improving the efficiency as 
well as reducing the memory consumption considering its more simplified design 
and fewer parameters compared to LSTM. The intrusion detection model is trained 
based on the attack dataset. Different attack scenarios with single or mixed attack 
types are evaluated in this work.
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Fig. 8 Training process of GAN generator in Ref. [34] 

4.3 Anomaly-Based Methods 

The methods belonging to this category do NOT require the attack labeled data 
during the training phase. The intrusion detection model is generated from the 
attack-free CAN traffic under normal circumstances. If there is any deviation 
from the normal model is detected, an intrusion can be alarmed. Compared with 
specification-based methods, the performance of anomaly-based methods to detect 
unknown attacks is preferable. 

CANnolo [21] implements LSTM as the hidden layer of the auto-encoder. The 
auto-encoder is used to automatically learn the normal patterns of raw CAN data 
without semantics. At runtime, CANnolo utilizes the trained model to reconstruct 
the CAN streams. The Mahalanobis distance between the reconstructed and the 
observed sequences is computed as an anomaly score to indicate how likely the 
CAN bus is under attack. Reference [29] designed an LSTM-based RNN model 
constituted by two non-recurrent hidden layers and two recurrent LSTM layers. To 
improve the accuracy of the detection model, the features on the time dimension 
are combined with features on the data dimension as input for LSTM neural 
network [39]. Besides, the multi-task LSTM framework is utilized to implement 
parallel computing locally as well as on the mobile edge. The mobile edge can 
break the limitation of onboard computing capacity. 

HDAD [32] introduces the concept of hyper-dimensional computing (HDC) to 
detect intrusion for in-vehicle network. HDC is a novel computing paradigm that
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simulates the working mechanism of neuronal circuits in the human brain. It works 
using high-level and abstract patterns of neural activity. Firstly, the training data are 
encoded into hypervectors (HVs) to learn pattern. Only normal patterns are required 
in the training dataset. The number of dimension for HV can be set as 10,000 or 
larger. Then, the pattern decoder is subject to reconstruct the HV to the original 
data. Finally, the reconstruction error is used for determining if there is an intrusion. 
The authors claimed that the adoption of HDC can benefit from compact model size, 
reduced computation cost, and one-shot learning in contrast to deep learning-based 
approaches. 

The research on HDC is still at the preliminary stage. To improve the efficiency 
of the intrusion detection model, CLAM [28] improves the process of data pre-
processing to cut the dimensionality of raw CAN traffic which can favor the 
acceleration of computation. Specifically, READ [22] method designed for reverse 
engineering of automotive data frames is introduced to assist the data reduction 
in CLAM. READ method can analyze the traffic and extract signals that vary 
continuously without supervision. These extracted signals can be explained as 
physical signals with specific physical meanings such as vehicle speed and engine 
speed. In the step of data pre-processing, the signal boundaries can be determined 
by READ methods. Thus, instead of using the whole CAN frame as input, only the 
bits bounded by data pre-processing are conveyed to the intrusion detection model 
for improving efficiency. It should be noted that the CLAM model also does NOT 
need to know the semantics of CAN frames. The CLAM model consists of a 1-D 
Convolution Network and bi-directional LSTM with an attention mechanism. The 
attention mechanism can enable the model to focus on the important parts of the 
data. 

4.4 Summary 

The literal-based intrusion detection methods can automatically extract intrinsic 
relationships among variables and develop the intrusion detection model by ana-
lyzing the binary stream of CAN frames. The semantics of frames are not required. 
The intrusion detection model can be trained by either the attack-free samples to 
generate the normal patterns of CAN frames or the attack-labeled samples to detect 
well-known intrusion. That is, the literal-based intrusion detection can be directly 
applied to CAN frames from the data link layer without knowledge of the protocol 
specifications of the upper layer (application layer). The protocol specifications 
of the application layer for automotive CAN bus are kept confidential from the 
public. Different specifications are defined for different car manufacturers and even 
different car models. From this perspective, compared to semantic-based methods, 
literal-based intrusion detection methods seem more attractive to both security 
technicians in the automotive industry as well as researchers from academia.
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5 Timing-Based Intrusion Detection Methods 

5.1 Motivation and Basic Idea 

Considering that the vast majority of CAN frames are triggered periodically, i.e. 
CAN frames are queued for transmission at a fixed rate, there are some regularities 
of timing characteristics that can be found from CAN frames traffic. Illegal data 
due to unauthorized intrusion attacks can disrupt the regularities. Based on this 
observation, researchers propose that intrusion detection can be implemented by 
digging into the temporal patterns of CAN data traffic. The inconsistency with 
expected temporal patterns can be regarded as an anomaly. Similar to literal value-
based methods, the timing-based method can also cope with the disadvantage of the 
proprietary nature of CAN data specifications. The traditional approach [25] builds 
the mathematical model to describe the timing behavior precisely of CAN frames 
traffic by utilizing real-time scheduling theory. However, the main downside is that 
it requires in-depth domain knowledge for building the model and it is hard to build 
a model adapted to different driving scenes. 

5.2 Machine Learning-Based Methods 

Tomlinson et al. [30] introduced three straightforward machine learning 
algorithms (Autoregressive Integrated Moving Average, Z-score, and supervised 
threshold) combined with time-defined windows to identify abnormal timing 
changes for CAN traffic. Reference [26] proposed a deep convolutional neural 
network (DCNN) model-based intrusion detection method. The authors designed 
a data pre-processing module called frame builder to convert the raw CAN traffic 
to the data fitted for the CNN model. Subsequently, the DCNN model learns 
temporal sequential patterns of raw CAN traffic automatically without hand-
designed features. The CAN data with labels indicating whether normal or not is 
required for the training process. The Recurrent neural network (RNN) is naturally 
designed to cope with time sequence data. Reference [27] designed an RNN model 
with a 1-layer hidden layer of 100 nodes. From the evaluation results, the proposed 
RNN model can handle more realistic scenarios in that the period can fluctuate. The 
period fluctuation can often be observed in CAN traffic collected from real vehicles. 
It is mainly caused by the process of multiple ECUs to compete with the right of 
CAN bus usage. The attack samples are needed for computing the final output. 

Generative Adversarial Network (GAN) is introduced in [15] to extract temporal 
features for modeling normal behaviors by attack-free training dataset. The authors 
improved the original GAN model by introducing a modified evolutionary algorithm 
to produce multiple generators instead of one single generator. This modification 
can increase the chance to obtain a better performance generator in the process 
of adversary game, which can mitigate the issue of instability in GAN. Since no
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given attack sample is used for the training model, the data collection process shall 
be undertaken when driving under different conditions to capture as many normal 
features as possible. It can be helpful for reducing false positives. 

5.3 Summary 

Timing-based methods build the intrusion detection model by analyzing the timing 
characteristics of CAN traffic automatically. As same as the literal-based methods, 
the semantic values of CAN traffic are NOT required for timing-based methods. 
The timing-based methods can effectively detect attacks that essentially change the 
timing behavior of CAN frames, such as denial of service (DoS) attack, suspension 
attack and injection attack. However, from another perspective, the performance of 
such methods can be significantly degraded when dealing with more sophisticated 
attacks which do not influence the timing characteristics. Due to the broadcast nature 
of CAN, the attacker can eavesdrop and learn the temporal patterns of the target 
frames silently and stealthy. Next, the attacker can bypass the deployed timing-based 
intrusion detection system by injecting malicious frames with the same identifier 
and similar transmission pattern as the victim. 

6 Signal Characteristics-Based Intrusion Detection Methods 

6.1 Motivation and Basic Idea 

Another way to design an intrusion detection system is to exploit the unique 
hardware characteristics of automotive ECUs to generate a digital fingerprint. 
Specially, the tiny but measurable differences in specific characteristics (such as 
voltage or timing) can be obtained from the electrical signal transmitted on the 
bus medium. The extracted difference can then be utilized as a device fingerprint 
to enable authentication in CAN. The intrusion can be detected when the actual 
sending ECU (predicted data) of the newly received CAN frame is inconsistent with 
its legitimate sending ECU (expected data). 

The difference in hardware is mainly due to the imperfect manufacturing 
processes, which results in the characteristics of unique, stable, and hard to replicate 
to enable higher security. It was first introduced in [23] which exploits the difference 
of signal characteristics in the physical layer to identify ECUs for in-vehicle 
network. This study has demonstrated that the signal characteristics driven by the 
hardware of ECUs can be unique while remaining stable within a certain range 
for several months. Inspired by this observation, more researches to protect the 
in-vehicle network by utilizing low-level signal characteristics of CAN frames are 
proposed.
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An idea of implementing intrusion detection based on signal characteristics is to 
explicitly define the relationship between the collected data and the hardware char-
acteristics of the sending ECU by establishing a model. Most of such works exploit 
a linear model to represent the relationship of the accumulation of derived signal 
characteristics over time or data samples. Viden [4] adopts voltage measurements 
to build the model to source the sending node. Viden measures the voltage of CAN 
high and CAN low respectively during the transmission of dominant bits. These 
measurements are gathered to derive a voltage instance containing six statistics to 
describe the distribution of measurements. The voltage instance can be expressed as 
the transient behavior of voltage of sending ECU. At last, Viden constructs a linear 
model called voltage profile by utilizing the continuously obtained voltage instance. 
The main reason why Viden can work is that the voltage instances derived from the 
same ECU shall be nearly equivalent. Thus, the voltage profile can be constructed 
as a linear model by which the sending ECU can be correctly identified. 

Different from Viden, Refs. [3, 19, 38] exploited the skew in clocks of electronic 
devices to establish the linear model for intrusion detection. The clock skew is 
defined as the difference in frequency between clocks. The common insight behind 
these methods is based on the observation that the clock skew is nearly constant 
for single ECU and unique among different ECUs. Thus, the linear model which 
represents the timing behavior of clock can be built for detect anomalies. Deviations 
from the established model can be used to trigger an alarm for intrusion on in-
vehicle network. For example, the sudden change of the slope of the linear model 
can be regarded as an indication that the attack is mounted. 

6.2 Machine Learning-Based Methods 

Besides the model-based methods, the problem of identifying the sending ECU for 
newly received CAN frames can also be regarded as a classification problem. The 
CAN frames from the same ECU are considered to be of the same class. If the 
actual class of any CAN frames (identified by the intrusion detection system) is 
inconsistent with its expected class (determined by the frame identifier), it indicates 
that the adversary performs an attack by injecting frames with falsified ID. The 
supervised machine learning algorithms can be used to solve such classification 
problem. Generally speaking, the overall process of methods belonging to this 
category can be summarized into three phases as shown in Fig. 9. 

The first step is to preprocess the electrical CAN signal to derive the char-
acteristics from the physical layer. The signal characteristics exploited in this 
phase can be varied from voltages measurements to timing characteristics, which 
is the same as the model-based methods. Subsequently, the statistical features in 
the time and/or frequency domain are extracted from the measurements. Finally, 
the supervised learning-based classification algorithms are adopted to generate a 
classifier to distinguish the attack from the normal CAN traffic.
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Fig. 9 Workflow of the supervised learning algorithms-based methods 

6.2.1 Signal Characteristics Derivation 

6.2.1.1 Using Voltage as Signal Characteristics 

Choi et al. [6] proposed an approach to source the transmitting ECU by measuring 
the voltage of an array of the same consecutive bits. Specifically, it requires that 
an identical predefined bit sequence is embedded in all CAN frames transmitted 
on the bus. To achieve this, all data frames on the bus are set as the extended 
frame format with a 29-bit identifier. A predefined bit sequence which is 18-bit 
long is placed at the extended identifier field. Subsequently, the voltages of the 
pre-assigned bit sequence for every newly received CAN frame are sampled and 
measured. Obviously, reprogramming for all active ECUs on CAN bus is required 
to add the predefined bit sequence to each CAN frame. Besides, it can NOT be 
applied to the natural extended frames (the extended part of the identifier is already 
occupied). These limitations hinder its deployment on real production vehicles. 

References [7, 16, 17] improved the process for extracting signal characteristics 
based on voltage. More specifically, SCISSION [16] and EASI [17] divide the  
string of consecutive dominant bits into three parts, which are the rising edge, 
the falling edge, and the holding edge of the dominant state part (as shown in 
Fig. 10). The approach adopted by VoltageIDS [7] is similar except that it only 
considers the 1-bit length holding edge of the dominant state part. Next, the voltage 
is measured and gathered separately for each part. The significant features of 
voltage on the rising edge and falling edge could be suppressed without such 
actions considering that their length is too short (resulting in much fewer samples) 
compared to the holding edge. By doing so, the combined features including the 
voltage measurements as well as the signal shape can be extracted to better represent



Protecting Automotive Controller Area Network: A Review on Intrusion. . . 311

Fig. 10 An example of CAN electrical signal 

the signal characteristics of the sending ECU. In addition, EASI [17] designs a 
low-cost solution to improve the efficiency of preprocessing the electrical signal. 
The authors optimized the interval for signal sampling and introduce the Random 
Interleaved Sampling technique, which greatly reduces the sampling rate and system 
resource requirements. It can favor the development on in-vehicle network. 

6.2.1.2 Using Timing as Signal Characteristics 

Apart from the voltage characteristics, the timing characteristics of CAN electrical 
signal can also be utilized to construct the intrusion detection system. Most existing 
works [3, 19, 36] using timing characteristics estimate the clock skew based on the 
periodic CAN traffic. Considering that most CAN frames are transmitted nearly 
periodically, the skew in the clock of the transmitter can be estimated by the 
difference between the expected and the actual arrival time of periodic traffic. From 
the observations of CAN traffic from real vehicles, the actual period of many frames 
can fluctuate a little wild and some frames might stop transmission for a while in 
real cases [19]. To mitigate these challenges, CANvas [19] improves the estimation 
process by introducing the concept of hyper-period. However, the dependency on 
periodic traffic still remains which makes it unavailable to aperiodic frames or 
sporadic frames. 

BTMonitor [37] employs the timing characteristics of a single CAN frame to 
build the intrusion detection model, by which the dependency on periodic traffic 
can be cut. The insight behind BTMonitor is that the electrical signal length which 
is driven by the hardware of the transmitter can reflect the timing characteristics of 
sending ECU. Thus, the clock skew can be derived by measuring the signal length 
from a single frame, making the signal preprocessing process independent of the 
periodic traffic. To capture the signal which can accurately reveal the hardware 
characteristics of sending ECU, the signal segment in the identifier field shall be 
excluded from the measurement process. The reason is that multiple ECUs on the 
bus might initiate the transmission simultaneously and compete for the right of bus
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Fig. 11 Signal characteristics derivation in BTMonitor [37] 

usage during the arbitration process. Thus, the signal segment in the identifier field 
might reflect the signal characteristics of more ECUs beyond the transmitter. For the 
same reason, the duration of the signal during the acknowledge field is also excluded 
to remove the effect on signal length by other nodes. 

After the trimming, BTMonitor divides the remaining signal into different 
segments along the consecutive edges. These signal segments can be referred 
to as two categories, which are dominant bits and recessive bits. To reduce the 
requirement for a high sampling rate for measuring device, BTMonitor takes the 
rising edge as well as the falling edge into consideration. The point to divide 
the signal on the rising edge is different from the point on the falling edge. 
Finally, BTMonitor measures and computes a corresponding bit time for each signal 
segment. The calculated bit time of each category is gathered up to form data 
samples that represent the timing characteristics of sending ECU. The process is 
shown in Fig. 11. 

6.2.2 Feature Extraction and Intrusion Detection 

Once the signal characteristics are obtained, the preprocessed data is fed into the 
next phase to extract statistical features in the time and/or frequency domain. The 
extracted features can be used as device fingerprints to identify different ECUs. 
As an example, BTMonitor adopts eight statistical features in the time domain for 
each of the categories of dominant bits and recessive bits, i.e. 16 statistical features 
in total to represent one received data sample. The selected features are shown in 
Table 2. Then, the generated fingerprint is input into the classifier for intrusion 
detection. 

During the training phase, supervised learning algorithms along with labeled 
samples (training datasets) are used to train the classifier. During the runtime phase, 
the newly derived device fingerprints are fed into the trained classifier to predict its
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Table 2 Selected features in 
time domain by 
BTMonitor [37]. x represents 
bit time. N is the number of 
data 

Feature Description 

Mean . x = 1
N

∑N
i=1 x(i)

Standard deviation . σ =
√

1
N

∑N
i=1(x(i) − x)2

Variance . σ 2 = 1
N

∑N
i=1(x(i) − x)2

Skewness . γ = 1
N

∑N
i=1(

x(i)−x
σ

)3

Kurtosis . β = 1
N

∑N
i=1(

x(i)−x
σ

)4 − 3

RMS (Root mean square) . A =
√

1
N

∑N
i=1 x(i)2

Highest value . H = max(x(i))

Energy . en = 1
N

∑N
i=1 x(i)2

actual sending ECU. If the predicted sending ECU is inconsistent with the legitimate 
sending ECU, an intrusion is alarmed. Varied machine learning algorithms, such as 
Linear Support Vector Machines [6, 7, 17], Packed Decision Trees (BDT) [6, 7], 
Logistic Regression [16, 17, 37], Naive Bayes Classifiers [17], Neural Networks [6], 
etc. are used to generate classification models. 

6.3 Summary 

The difference in the signal can be utilized to generate the fingerprint for the ECU. 
The derived fingerprint can then provide the ability to authenticate the sending 
ECU and detect intrusion. We summarize the overall process of machine learning-
based methods in three steps, which are signal characteristics derivation, feature 
extraction, and intrusion detection respectively. These methods can be divided 
into two categories based on the exploited signal characteristics, which are the 
methods using signal voltage and the methods using signal timing. The general 
process of feature extraction and intrusion detection in both categories is similar. 
The statistical features in the time and/or frequency domain are extracted from 
the extracted signal characteristic and combined as the device fingerprint. Finally, 
popular machine learning algorithms are utilized as the classification model to detect 
intrusion. The signal characteristics-based methods can provide high security for 
automotive CAN bus considering that the fingerprint is derived from the inherent 
physical characteristics and is hard to be duplicated. However, how to obtain an 
effective but stable fingerprint from the mutable and sensitive signal is the major 
challenge to be solved. 

7 Conclusion 

CAN is the most important communication protocol for the current in-vehicle 
network and aged for over 35 years. With the rapid development of connectivity



314 J. Zhou et al.

and intelligence for today’s vehicles, the underlying internal communication system 
is updated accordingly to manage the future’s needs. In this chapter, we firstly take 
a discussion about the traditional and tomorrow in-vehicle network architecture as 
well as the advantages brought by the new architecture, aiming to provide a whole 
picture of how in-vehicle network evolves. The necessity of protecting CAN for 
ensuring the safety of vehicles is emphasized to motivate the research on defending 
techniques. Subsequently, we introduce different approaches to detect intrusion by 
categories based on the domain knowledge used in machine learning algorithms. 

The variables with specific physical meanings in CAN can respond to a 
physical phenomenon in a correlated way. These observations can be exploited to 
detect intrusion which is detailed in semantic-based intrusion detection methods. 
Further studies reveal that the latent relationship can be extracted without requiring 
semantics of CAN frames. Literal-based intrusion detection methods provide a 
detailed description of how it works from two aspects according to whether the 
attack sample is required for training the model. Timing-based intrusion detection 
methods exploit the fact that most CAN traffic is triggered periodically thus the 
timing of CAN traffic can exhibit specific patterns. However, the main drawback is 
that it cannot deal with attack scenarios in which the timing characteristics are not 
affected. At last, signal characteristics-based intrusion detection provides a novel 
way of fingerprinting the ECUs by measuring the low-level characteristics of CAN 
electrical signals. Considering it is derived from the unique and inherent hardware 
characteristics, it can provide high security for in-vehicle CAN bus. 

In conclusion, we survey the machine learning-based intrusion detection methods 
for automotive CAN bus and provide the introduction from the perspective of the 
exploited domain knowledge. We hope this chapter can help the interested reader 
to understand and grasp the status and research of machine learning-based intrusion 
detection methods comprehensively. 
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