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1 Introduction 

With the evolution of transportation systems, modern-day vehicles are no more 
mere mechanical systems. Contemporary automotive architectures are designed as 
a collection of cyber-physical control loops with an aim to provide energy-efficient 
performance, safety, comfort, and connected mobility features. These software-
governed automotive controllers supervise a plethora of functionalities like engine 
control, power management, regenerative braking, lane-keeping, comfort features, 
etc. Examples from domains like safety would be features like Vehicle Stability 
Control (VSC), Anti-lock Braking System (ABS), Roll Stability Control (RSC), 
etc. Convenience features like Adaptive Cruise Control (ACC) are also ubiquitous 
in most vehicles nowadays. 

Features are implemented in the form of control programs mapped to Electronic 
Control Units (ECUs) as real-time tasks. Sensing tasks process sensor measure-
ments, communication tasks interface with communication hardware and send such 
measurements over the communication channels and control tasks compute the 
desired control input for respective actuators. An ECU may host multiple control 
tasks. Moreover, some control functionalities may require tasks spanning over 
multiple ECUs to attain some global control objective. For example, on identifying a 
life-threatening situation, the Central Locking System (CLS) that controls the power 
door locking mechanism works alongside the crash detection system to ensure 
occupants’ safety. 

With time, the number of ECUs in modern vehicles has been increasing with 
the quest for more features that make transportation safer and more convenient. 
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Fig. 1 Automotive software development flow 

For example, BMW 7-series models have as many as 150 ECUs. Generalized 
bus-oriented architectures have come into the picture to realize the real-time 
collaboration of such a large number of ECUs. The electrical/electronic (E/E) [1] 
architecture of modern vehicles is divided into different functional domains (power-
train, body control, infotainment, etc). Based on the bit rate, fault-tolerance, and 
soft/hard real-time requirements of each domain, the intra-vehicular network [2] of  
a contemporary car comprises network elements with multiple lightweight protocols 
making it heterogeneous in nature. Example protocols include Controller Area 
Network (CAN) [3], FlexRay [4], Local Interconnect Network (LIN) [5], Media 
oriented systems transport (MOST) [6]. The E/E architecture of modern vehicles 
ensures the inter-operability of such heterogeneous network protocols. 

The current design flow of automotive architectures (Fig. 1) in the industry 
is compartmentalized into model-based design, development, and standardized 
implementation on target platforms, each followed by testing and verification 
against certain specifications. The implementations of control software in ECUs 
are generalized by certain standard guidelines set by AUTOmotive Open System 
ARchitecture also known as AUTOSAR [7], which is a predominant entity built as 
a worldwide development partnership among automotive industries. Such standards 
encourage the model-based development of modularized and reusable control 
functionalities for automotive subsystems. This is followed by an AUTOSAR 
compliant conversion of these model-based designs of controllers into runnable 
programs. Then the control programs are implemented on the ECUs and invoked 
from the system level as control tasks based on the task allocations in ECUs. 

Today, the design specification and implementation of automotive controllers are 
mostly carried out using Synchronous Reactive (SR) models such as those modeled 
in the Simulink and Stateflow tools [8]. TIER 1 suppliers organize the control func-
tionalities as a hierarchy of subsystems and define them as a network of blocks in 
Simulink. Code implementation of each subsystem is generated as a set of functions. 
These sets of runnables are then standardized with AUTOSAR-guided specifications 
as Autosar Software Components (SWC) [8, 9]. The AUTOSAR model specifies the 
data, execution, and call dependencies for all the functions. All the SWCs from the 
TIER 1 suppliers are collected and connected to a system-level model by the OEMs 
and Carmakers. Using AUTOSAR tools, they map the runnables or the functions 
into tasks. Schedulability analysis is performed using platform-specific utilities (eg. 
symtavision for Infineon ECUs). Accordingly, tasks are allocated to the processors. 
Formal tests are conducted on the initial designs using some verification tool, like
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Fig. 2 Effect of CMAC/AES on CAN Traffic (numerals denote message id-s) 

Simulink Test. Simulink Test facilitates test case and test suite definitions along with 
automation of test harness generation. Following the simulation tests, the C-code of 
the model is generated using Embedded Coder or Simulink Coder and implemented 
on the processor. 

Security requirements have been an afterthought in the automotive software 
development flow discussed above. AUTOSAR mandates cryptographic mecha-
nisms, like MAC (Message Authentication Code) to authenticate communications 
through the intra-vehicular network [10]. However, such cryptographic methods 
incur computation and communication overload. For example, securing an 8 byte 
CAN message using AES encryption and SHA-2 MAC algorithm will generate 
6 CAN frames for a single CAN frame [11]. To deal with such bus load issues, 
AUTOSAR has suggested using truncated MAC [10]. The problem with MAC 
is that it can detect an external cyber attack, but fails to detect insider attacks 
and denial-of-service attacks like bus-off [12]. The embedded platforms where 
the automotive controllers are implemented are mostly of low computation power. 
On the other hand, cryptographic security algorithms, like MAC, incur significant 
computation and communication load. For example, on a 96 MHz ARM Cortex-
M3-based Electronic Control Unit (ECU), some of the well-known control law 
computations take approximately 5 . μs while a 128-bit MAC computation for a 
single message takes 100 . μs [13]. On the other hand, if CMAC hash and AES-
128 encryption algorithm are used to secure CAN frames, each CAN frame will be 
replaced by 4 CAN frames (Fig. 2) [11]. Imagine the load on CAN traffic if every 
CAN packet is secured this way. As most automotive CPSs are safety-critical with 
hard real-time deadlines, it naturally raises the question of how practical it is to 
implement cryptographic security algorithms on such embedded platforms. As an 
alternate solution, a number of researchers have proposed to use control-theoretic 
light-weight attack detectors[14] in place of periodic cryptographic security checks. 
These detectors are designed by exploiting the control theoretic properties of 
automotive CPSs [14, 15]. 

This naturally leads us to the problem of evolving automotive software design 
flows, which must consider the smooth integration of lightweight security primitives 
along with software controllers while maintaining verifiability, schedulability, and 
other platform constraints. The above also brings up the question of how such 
detection systems can be of practical use and in what way such existing approaches 
may be improved, more specifically in the automotive context. In this regard, we 
now discuss the major contributions to this chapter. 

1. In control-theoretic light-weight attack detectors, the residue i.e., the difference 
between the actual sensor measurements and the estimated sensor measurements
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is compared with a threshold. An alarm is raised when the residue surpasses the 
threshold value. The performance of the detector depends on the value of the 
threshold. If a lower valued threshold is selected, even noise can be considered 
an attack. This will lead to false alarms. On the other hand, a smartly crafted 
stealthy attack, like a zero-dynamic attack [15], can easily bypass a higher-valued 
threshold. So, the question is how to wisely compute the threshold value. In 
Sect. 3, we discuss some methodologies to synthesize such fixed threshold-based 
detectors. 

2. Next, we consider a more informed attack scenario. An external attacker can 
snoop into intra-vehicular networks through OBD port and telematic units 
[16]. Widely used intra-vehicular network protocols like CAN transmits data 
in broadcast mode. Therefore, an attacker who has access to the intra-vehicular 
network can analyze transmitted data packets and design optimal attacks. We 
discuss in Sect. 4, how adaptive and intelligent threshold-based detectors can be 
designed to thwart such attack attempts. 

3. While light-weight detection is an important task in the context of security-aware 
automotive CPS design, another important feature is what to do when an attack 
is detected. A number of researchers have proposed robust controller design 
methods to make the system robust against attacks. In this chapter, we discuss 
an alternative approach. In Sect. 5, we present how an intermittent MAC along 
with additional control logic can diminish the effect of the attack on the system. 

4. Finally, in Sect. 6, we have presented how to realize some of these security-aware 
automotive CPS design methods in a Hardware-in-Loop (HIL) experimental 
setup. 

2 Background and Related Work 

2.1 System Model for Secure CPS 

Similar to other model-based CPSs, the automotive software design life-cycle 
also conceptualizes modular subsystems for certain desired operating regions. For 
efficient and real-time control computation, a nonlinear plant .ẋ(t) = f (x) is usually 
linearized around such an operating point in the form of a linear time-invariant (LTI) 
system expressed as follows. 

.ẋ(t) = �x(t) + �u(t) + w(t), y(t) = Cx(t) + v(t) (1) 

Here .x(t) ∈ R
n is system state, .u(t) is output of the controller, .y(t) ∈ R

m is system 
output under the influence of physical process noise .w(t) ∈ R

n ∼ N (0, �w) and 
measurement noise .v(t) ∈ R

m ∼ N (0, �v) at time t (w and v are independent 
Gaussian random variables with .�w and . �v as variance parameters). Also, . �,. �, 
and C are transition matrices, derived from the physical plant equations. . � is known
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as the state transition matrix, . � is known as the input-to-state transition matrix and 
C is the output matrix. The output of the plant is sensed and used for control input 
generation. 

Depending on the plant-state characteristics and the available sampling periods 
in the ECU, the plant outputs are sampled periodically. For this, the control program 
uses the discretized versions of the above state-space equations, i.e. 

.x[k + 1] = Ax[k] + Bu[k] + w[k], y[k + 1] = Cx[k + 1] + v[k] (2) 

Above equations express the k-th sampling iteration of the discretized system
i.e.,.t ∈ [hk, h(k + 1)], where h is the chosen sampling interval. Therefore, the new 
transition matrices become .A = e�h, B = ∫ h(k+1)

hk
e�s�ds [17]. At the controller 

side, this sensed plant output .y[k + 1] is received once every sampling period. The 
controller needs to estimate the actual plant states using this output in order to 
calculate a suitable control input u to control the plant dynamics. To estimate the 
plant states from the sensed outputs, typically an observer is used. 

. x̂[k + 1] = Ax̂[k] + Bu[k] + Lr[k], r[k] = y[k] − Cx̂[k], u[k + 1]
= −Kx̂[k + 1] (3) 

As shown in Eq. 3 the estimated state at .(k + 1)-th iteration is denoted using 
.x̂[k + 1] ∈ R

n and it is derived using a similar state-space equation like Eq. 2 
along with a suitable correction .Lr[k] in order to track the actual state. The 
quantity .r[k] = y[k] − Cx̂[k] is known as system residue and it signifies the 
error between estimated and actual outputs. The observer gain L is designed in 
such a way that minimizes the residue [17]. The feedback control input . u[k + 1]
at the .(k + 1)-th sampling iteration is calculated based on the current estimated 
state .x̂[k + 1]. We consider K as a pre-calculated optimal control gain. The control 
input thus calculated is then used to actuate the plant and stabilize it around the 
target operating point. As an example, consider Fig. 3 which demonstrates such 
closed-loop interaction between plant(s) and controller(s). We represent as a high-
level view of a system under control where different subsystems with corresponding 
dynamics are modeled as plants (denoted as . Pi for the i-th plant) and for each of 
them, suitable measurements are obtained using a set of sensors (denoted as . Si for 
the i-th plant). For each . Pi , we have a corresponding control (denoted as . ci) and 
estimation task (denoted as . ei) implemented in the ECU. The communicated data 
and control outputs are suffixed with the plant names and tasks are suffixed with the 
plant indices for better understanding. 

Like standard information processing systems, there are three fundamental 
security properties of any computer-controlled system and the information it deals 
with, i.e., confidentiality, integrity and availability (CIA). Now, there are several 
kinds of Man-in-the-Middle attacks that can observe and then utilize some system-
specific knowledge to corrupt the communicated data to hamper its integrity. Insider 
attacks of this kind do not target confidentiality and can not be stopped by the
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Fig. 3 Component-level overview of secure CPS under false data injection (FDI) 

encryption policies mandated as per the AUTOSAR standards (truncated CMAC 
with 128 bit AES). Such attacks can be generalized as False Data Injection Attacks 
which corrupt the actual sensor and actuator data with a certain amount of false 
data. Our discussion in this chapter will primarily focus on the effects and counter-
measures of False Data Injection (FDI)-type Man-in-the-middle attacks on control 
loops. In Fig. 3, such attacks on measurement and actuation are denoted by the 
variables .ayPi

and .auPi
for a plant . Pi . We assume that the ECU also runs a detection 

task . di for every i-th loop in the system. We start with an example of simple 
threshold-based detection. Threshold-based detection tasks (Fig. 3) are designed to 
monitor the transmitted sensor data and flag an attack or anomaly in system output 
whenever the residue (or some derived statistics from it) surpasses some pre-fixed 
constant detector threshold T h  i.e., 

.‖r[k]‖p > T h, (‖r‖p = (
∑

‖r‖p)1/p) (4) 

where p is the chosen norm. A suitable threshold value on the residue statistics can
be chosen to constrain the estimation error. For a control loop, the state progression
under FDI attacks can be expressed as follows.

.xa[k + 1] = Axa[k] + Bũa[k] + w[k], . (5) 

ya[k + 1] = Cxa[k + 1] + v[k] + ay[k], (6)
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.x̂a[k + 1] = Ax̂a[k] + Bua[k] + Lra[k], ra[k] = ya[k] − Cx̂a[k]. (7) 

ua[k + 1] = −Kx̂a[k + 1], ũa[k + 1] = −Kx̂a[k + 1] + au[k] (8) 

Here .xa[k] , .ũa[k], .ya[k] and .x̂a[k] are the attacked variants of the state, control 
input, output and estimated state vectors (from Eqs. 2 and 3) respectively at k-th 
iteration. By attacked, we mean to say under the influence of additive false data 
.au[k] injected on actuation, and .ay[k] injected on sensor data at k-th sampling 
iteration. Also, .ra[k] denotes the system residue under attack scenario (from Eq. 3) 
at k-th sampling instance. Note the difference between .ũa[k] and .ua[k]. The first 
one is the control input at k-th iteration under the influence of an additive FDI 
attack on actuation (.au[k]) and the second one is not affected by the actuation attack 
but is calculated using the estimated states derived from the FDI affected (.ay[k]) 
sensor readings . ya . The estimated states are calculated in the controller side itself 
(i.e., not transmitted via the network under attack or not actuated via the actuator 
under attack). Therefore, unlike the actual plant state calculation, (where .ũa[k] is 
used to calculate .xa[k + 1]), .ua[k] is used for the calculation of estimated state 
.x̂a[k+1]. In Fig. 3, we demonstrate such a data falsification attack on an automotive 
communication network. The attack vector at k-th sampling iteration is symbolically 
represented as .A[k]T = [au[k]T , ay[k]T ]T . If the attacker continues the false data 
injection for l sampling iterations, then the l length attack vector is expressed as 
follows. 

. Al = [A[1] · · ·A[l]] =
[
au[1] · · · au[l]
ay[1] · · · ay[l]

]

Since automotive control loops are highly safety-critical, an intelligent attacker 
can design the FDIs while utilizing system model knowledge with an aim to 
make the system states unsafe. To achieve this, the attacker has to compromise 
the sensors/actuators or the intra-vehicular communication networks (e.g. the CAN 
bus). In this process, the attacker might get detected as the residue-based detection 
tasks are always running in the ECU looking for anomalies where the residue-
statistic changes undesirably or beyond a certain threshold. Therefore, the attacker 
also needs to design the false data in a way such that it can maintain its stealth 
while making the system eventually unsafe [15]. Considering n as the dimension of 
the system and .XS ⊂ R

n being the safe region of system states, the following is 
the criteria that an N -length stealthy and successful FDI attack vector .AN has to 
satisfy. 

.‖ra[k]‖p ≤ T h ∀k ∈ [1, N ] and xa[N + 1] �∈ XS (9) 

Figure 4 demonstrates such a successful attack injected into the sensor and actuation 
data of an Automatic Cruise Control (ACC) system. The states of the system are 
deviation (D) from the reference trajectory and the velocity (V) of the vehicle. The 
velocity (V) is considered as system output and is controlled using acceleration
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Fig. 4 A successful yet stealthy FDI 

control input. The safety boundary for V is considered to be .30m/s to maintain 
a safe distance from the preceding vehicle. Following are the states and transition 

matrices of the ACC plant sampled at every .Ts = 0.1 s, . A =
[
1 0.1
0 1

]

, B =
[
0.005
0.1

]

, C =
[
0
1

]

, D = [
0
]
, xa = x̂a =

[
D

V

]

. The controller and 

observer gains used to achieve the closed-loop functionalities are respectively . K =
[0.9171 1.6356] and .L = [0.8327 2.5029]T . The system is equipped with a residue-
based detector with .threshold = 2.5. The stealthy attacker can inject falsified 
velocity and acceleration data communicated between the plant and controller. 
Figure 4 is a plot of velocity and residue under a 13 length false data injection attack 
vector launched on this Automatic Cruise Control system (ACC). We can see that 
the false data is successfully pushing the velocity of the follower vehicle beyond the 
safety limit, i.e., .30m/s at 14 sec time instant but the residue still remains below 
threshold. Hence, this is a successful 13-length attack vector as per Eq. 9 as it 
successfully makes the system unsafe before the alarm is raised by the detector. In 
this chapter, we consider this generalised set of false data injection type attack, and 
discuss a security-aware design that can protect the system against them. 

2.2 Automotive Software Tools and Standards 

Automotive controllers are developed in a modularized fashion with different 
initial models representing different subsystems aimed to handle specific control 
operations. The high-level modeling is typically done using a formalism that 
supports hybrid specification of continuous dynamics and discrete switching logic 
together. In this development process, Model-Based Design (MBD) methodology 
is used in early stages by the TIER-I suppliers. MBD tools enable design, testing 
and verification to be performed in a single design platform. Stateflow/Simulink is 
widely used by control system designers for this purpose. Controller specifications 
are defined as networks of Simulink components or state-flow models that are
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developed and validated separately as part of a hierarchical system model [18]. 
Along with simulation-based testing in the system state-space, the design verifiers 
associated with these platforms verify the high-level design as a hybrid automaton 
using formal engines. This enables an integrated verification and correction of 
the developed control system model in the development stage itself. The code 
generation for the target platform is another feature integrated into these model-
based design tools. The Simulink Coder is one such popularly used tool that 
modularizes the functionalities of each subsystem and provides the binaries for 
integration to a system-level model. An AUTOSAR compliant conversion of these 
model-based designs of controllers into runnable programs is done thereafter. These 
modular tasks are then cluster-wise mapped to the ECUs so that they can be invoked 
from the system level as control tasks based on the task allocations following the 
AUTOSAR standards [8, 9]. Thereafter, a thorough schedulability analysis of the 
collection of tasks in a given ECU core is done in order to validate this. Given the 
safety-critical and real-time nature of tasks, such automotive performance analysis 
tools need to be correct with high confidence (even if conservative). Tools like 
Symtavision SymTA suite (for Infineon ECUs), Inchron chronSUITE are popularly 
used for this purpose. These tools help in calculating the end-to-end response time 
for a given task mapping and verifying simulated system response given certain 
safety, performance criteria, and resource budget. Standard protocols like CAN, 
Flexray, etc., are also supported in order to analyze the communication busloads 
and optimize them. After rounds of tests and required design updates, the code for 
the final design is generated for the target ECUs. After analysing and verifying the 
generated code using integrated code verifiers (e.g., Polyspace [19]), the binaries are 
implemented in the ECU following the mapping strategy. Modern automotive ECUs 
follow a layered software architecture with the AUTOSAR runtime environment 
(RTE) interfacing with the AUTOSAR software components (SWCs). A service 
layer follows this application layer that interacts with ECU and Microcontroller 
abstraction layer (MCAL), which is equipped with complex and low-level device 
drivers. This facilitates multiple control features to be executed as real-time tasks 
while sharing the same physical platform. 

The crypto stack of AUTOSAR provides an interface for Message Authentication 
Codes (MACs), Secure Hash Algorithms (SHA), and key-based authentication 
methods. Crypto service manager (CSM) [20] is the service layer module that 
interacts with the crypto interface (CryIf) in the ECU abstraction layer and enables 
communication with the cryptographic software or hardware via the crypto driver 
module in MCAL. Data packets are transmitted as Protocol Data Units (PDUs) and 
unpacked into Service Data Units (SDUs) at the receiver’s end following the proto-
col control information (PCI). Standard AUTOSAR guidelines for Secure Onboard 
communication mandate the use of 128-bit AES with Cipher-based MACs while 
transmitting PDUs through the communication buses. This prevents unauthorized 
tampering of data communication but it does not ensure protection against false-data 
injection type insider attacks. To thwart one such powerful attack i.e., Record and 
Replay Attack, freshness value (FV) is introduced along with the MACs. But the use 
of these cryptographic authentications increases the processing and communication
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overheads. This is why the AUTOSAR Secure onboard communication (SecOC) 
directive suggests the use of truncated MACs. This might result in a lower security 
level, but the use of a 128-bit key size with more than 64-bit MAC is considered 
to provide significant security against unauthorized intrusions. The security profile 
for CAN communication suggests the use of 28 most significant bits from MAC 
(calculated using 128-bit AES with CMAC) and 4 least significant bits from the 
freshness value. 

2.3 Related Studies 

There exists a significant amount of work that had shown how an adversary can 
gain access to the intra-vehicular network physically or remotely [16, 21–24]. 
Once the access to the intra-vehicular network is gained, any ECU with safety-
critical tasks can be compromised and the attack will pose like an insider attack 
effort. Since CAN is a protocol using which most of the safety-critical control 
messages are broadcasted, it is an ideal attack surface for an FDI attacker. The 
authors in [12] exploit the in-built error-handling protocol of CAN to send a victim 
ECU to bus-off mode using a compromised ECU. Authors in [25] take this attack 
strategy further by extending the bus-off period. They choose an optimal victim 
message ID, observe when the ECU recovers from bus-off, and re-transmit that 
ID to target the preceding error transmission frames, thus pushing the ECU back 
to bus-off. Now that the victim ECU is compromised repeatedly, the attacker can 
inject fabricated data packets in the CAN bus in the disguise of this victim ECU for 
a long enough period to make a control loop unsafe. A denial-of-service type attack 
is demonstrated in [21]. Authors show how individual brakes of a real car can be 
locked and communication with the engine control module, body control module 
can be disabled by injecting random data packets into the CAN bus. A false data 
injection attack can be inflicted in this way by crafting data packets with false speed 
information and injecting them into the CAN bus. A replay attack methodology 
is discussed in [26] on the keyless entry system of a vehicle. There are various 
other automotive attacks in the literature [27, 28]. Such intrusions can cause serious 
damage to the system but are hard to catch. 

To combat such attacks, the integration of cryptographic schemes is proposed 
by researchers in the automotive domain. The use of Cipher-based Message 
Authentication Codes (CMAC) based on symmetric key ciphers like AES was 
chosen as part of Secure Hardware Extension (SHE) for automotives [29]. Since 
these are computationally simpler than the asymmetric approaches, they are ideal for 
real-time use with less computational power. But sharing of secret keys among all 
participating ECUs makes the intra-vehicular network prone to insider attacks. Keys 
being pre-programmed into the ECUs have been exploited in [21]. To prevent this, 
the use of Cyclic Redundancy Codes (CRC) along with CMAC suggested in [30] 
ensures the integrity of intra-vehicular communication.
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Control-theoretic monitoring systems are also proposed to deal with power-
hungry cryptographic algorithms [13]. These mechanisms offer basic safety checks 
on a CPS while it operates. There are statistical change detection methods like 
.χ2-test, Cumulative Sum (CUSUM) [31, 32], that are implemented to detect 
whether the system output or the system states are anomalous. The residue of 
the system is monitored for this purpose. If the residue statistic goes beyond a 
certain pre-calculated threshold, the system is found to be anomalous. Though such 
lightweight control-theoretic security primitives can limit the attacks, they can also 
be fooled [14, 15]. 

Since the standalone use of cryptographic algorithms to secure a CPS is 
not resource-friendly and control-theoretic anomaly/attack detection units are not 
sufficient for security either, combining both is usually suggested and is a good 
choice to build a resource-aware Intrusion Detection System (IDS) for CPSs. 
Authors in [33] proposed such an IDS for securing plant controller communication 
with reduced resources by sporadically using the cryptographic schemes with 
attack-resilient control-theoretic detection tasks running in the background. Such 
intermittent activation of cryptographic schemes is made further resource-aware by 
utilizing the weakly-hard design constraints of a CPS in [34]. They also explore 
formal methodologies to ensure that resource awareness would not compromise the 
safety and security of the CPS. 

Another approach is to design the detection task adaptively enough to detect 
attacks based on the current state of the systems. Authors of [35, 36] have proposed 
such anomaly detectors that vary their detection thresholds. The work in [35] 
proposes two greedy algorithms based on formal methods to generate a set of 
monotonically decreasing thresholds in off-line mode. On the other hand, the 
authors of [36] formulate an attacker-defender game to solve the adaptive threshold 
selection problem. In [37], the authors show that the using windowed residue 
statistic with an optimally chosen threshold, one can have a better idea about the 
history of the states which can be useful in terms of better attack detection. The 
work in [38] takes this statistical analysis further toward guided learning of attacked 
state detection using reinforcement learning (RL) and model knowledge. 

In the context of attack mitigation, [39] presented a secure state estimation 
problem which is further leveraged to compute attack-mitigating robust control 
inputs using RL. A recent work [40] presented an online attack recovery method by 
estimating the current system state from the latest trusted data using the checkpoint 
method from [41] followed by which they synthesized recovery control inputs using 
a linear program (LP) and formal methods. In [42], trusted hardware components are 
used as a high-assurance unit to increase the security of the system. As the decider 
unit, they proposed a side-channel analysis-based intrusion detection system. In the 
case of connected and automated vehicles, as discussed in [43], on detection of an 
attack, the system is switched to adaptive cruise control from cooperative adaptive 
cruise control. 

There are several works that address the overall security-aware co-design 
perspective for automotives. Authors in [44] propose a Lightweight Authentication 
for Secure Automotive Networks (LASAN), which suggests optimization of the
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cryptographic protocols with asymmetric key encryption based on available power, 
compute, and communication resources. The work in [45] suggests cross-layer 
co-design of security framework, keeping the performance in mind along with 
a schedulable solution. This design space exploration solution was applied to an 
automotive case study to achieve a refined co-design. 

3 Lightweight Attack Detection 

As we discuss the security-aware design of automotive CPSs, we must keep 
in mind that the design should ensure the real-time requirements of the safety-
critical systems. Hundreds of ECUs collaboratively work together to attain global 
objectives. Additional communication load due to security primitives must not 
hamper the real-time aspects of automotive networks. Being light-weight and 
handling real-time communication has been the primary motivation for designing 
intra-vehicular network protocols like CAN, FlexRay, etc. Most safety-critical CPSs 
are connected via CAN but CAN does not have any authentication scheme. It does 
contain a cyclic redundancy check (CRC) field, however, it can be broken via simple 
reverse engineering [46]. To ensure utmost security, securing every data packet 
using some cryptographic method seems the most promising strategy. To date, the 
traditional cryptographic techniques (for example, message authentication code also 
known as MAC along with some encryption techniques like RSA, AES, etc.) are 
known to provide the best security against false data injection (FDI) attacks. But, 
they incur computational and communication overheads which may lead some of 
the safety-critical tasks to miss their deadlines (refer to Fig. 2 and corresponding 
discussion in Sect. 1). 

An alternative solution that has been widely suggested by a number of 
researchers in the literature to deal with the above limitations in the context of 
security-aware automotive CPSs is to use residue-based attack detectors [14, 15, 32]. 
A residue is computed as the difference between actual and estimated sensor 
measurements .ra[k] = ya[k] − Cx̂a[k] (see Eq. 7). As explained in Sect. 2.1 
either some norm of the residue or some statistical derivation of the residue [37] 
is compared with a threshold value T h. The detector’s efficiency depends highly 
on the value of the threshold. The following two measures are used to quantify the 
detector’s performance. The first one is true positive rate (TPR) i.e., the probability 
at which the detector raises an alarm when an FDI attack is taking place. The second 
one is false alarm rate (FAR) i.e., the probability at which the detector raises an 
alarm when no attack is taking place. An efficient detector will have higher TPR 
and lower FAR. 

Let us consider an example of a zero-dynamic attack demonstrated on a trajectory 
tracking control (TTC) system (see Fig. 5). The states of TTC are deviation (D) 
from the reference trajectory and the velocity (V) of the vehicle, .xa = [D V ]T . 
The system matrices are .A =

[
1 0.1
0 1

]

, .B = [0.005 0.1]T . The system is equipped
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Fig. 5 Zero dynamic attack: (a) Attack vectors (b) Effect of attack on system and detector 

with only distance sensor i.e. .C = [1 0]. Here, the control input is the acceleration 
of the vehicle. The controller and observer gains of this TTC system are . K =
[16.03 5.66] and .L = [1.87 9.65]T respectively. The attacker can modify both 
distance measurement and acceleration data. A residue-based attack detector is also 
in place with a constant threshold .T h = 0.4. The safety limit for state D has been 
set as . 0.2 unit. Consider an FDI attacker crafted stair-case-like attack vector as given 
in Fig. 5a. Here, by attack vector we mean a sequence of false data to be injected 
to sensor data or actuator signal as mentioned earlier in Sect. 2.1. The intensity of 
the attack values is constant for a certain number of consecutive samples and then 
it is increased. While the actuation attacks .au[k] are positive, attacks on sensor 
measurements .ay[k] are negative. This is because the attack on the control signal 
accelerates the changes in plant states and drives the system towards an unsafe 
region. On the other hand, the attack on sensor measurement hides the reflection 
of the system’s drastic change in the measurements (see Eq. 9). Thus, the detector 
task that can only see the measurements, not the actual system states, is hoodwinked 
into thinking that the system is operating as desired. This smartly crafted attack can 
successfully make the system unsafe as can be seen in Fig. 5b. We are saying the 
attack is stealthy because following the successful attack criteria mentioned in Eq. 9, 
the residue remains below the threshold value all the time. It will never trigger an 
alarm to notify that an attack has taken place. This reduces the detector’s TPR. 
One can reduce the threshold further to improve the detection rate. But, in that 
case, the detector will consider even small process and/or measurement noises as 
attacks. This increases FAR and thus reduces the detector’s efficacy. Therefore, it is 
necessary to determine an optimal threshold for which the detector’s performance 
is enhanced. We now discuss 2 state-of-the-art approaches that can be found in the 
literature for determining the optimal threshold to improve detectability as well as 
to reduce false alarms.
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3.1 Optimal Static Threshold-Based Detector 

In [37, 47], the authors considered a stateful [32] detection system and provided a 
theoretical base on how to correlate the characteristics of the detector with system 
dynamics. A stateful detector in the context of residue-based light-weight detection 
mechanism means the decision of the attack detector does not rely only on the 
current measurement; rather, a number of past measurements are also considered. 
Examples of such detectors include CUmulative SUm (CUSUM), windowed .χ2-test 
statistics-based detectors, etc. Let us summarize the idea by considering a CUSUM 
detector. Consider we have m sensors to measure that plant state i.e.,. y[k], ya[k] ∈
R

m. Therefore, the residue .r[k], ra[k] ∈ R
m. When no attack is taking place, the 

mean and covariance of residue are respectively .E[rk] = 0 and .E[rkrT
k ] = �. 

Using the subscript i, we denote the i-th sensor as .yi[k] where .i ∈ {1, 2, . . . , m}. 
Consequently, we have .ri[k] ∼ N (0, σ 2

i ). Here, . σi is the i-th diagonal entry of the 
covariance matrix . �. The condition for detecting a false data injection attack using 
CUSUM detector [48] is:  

.Si[k] = max(0, Si[k − 1] + | ra
i [k] | −bi) if Si[k − 1] ≤ T hi . (10) 

= 0 if Si[k − 1] > T hi (11) 

The test sequence . Si is initialized with 0 for all .i ∈ {1, 2, . . . , m}. .T hi and . bi are 
the threshold and bias selected for the i-th sensor. So, basically, CUSUM detector 
checks whether a certain sensor is under attack. When the cumulative sum sequence 
. Si exceeds . T hi , an alarm is triggered to raise an attack situation. 

The efficacy of this detector depends on the bias . bi and the threshold . T hi . Since 
.| ra

i [k] | is non-negative, if a sufficiently large value is not selected for . bi , the  test  
sequence . Si may grow unboundedly. This inherent unboundedness of CUSUM may 
lead to false alarms. Because, due to some measurement and process noise, the value 
of .| ra

i [k] | can be greater than 0 even if an attack is not taking place. Therefore, first, 
the value of . bi must be selected wisely relative to the characteristics of the residue 
. ri . Following this, a suitable .T hi needs to be computed to achieve a desired FAR. 

The authors of [37] established a lower bound on . bi as .bi > b̄ = σi

√
2/π in 

Theorem 1 in [37]. Once, . bi is determined, the value of the threshold .T hi has to be 
computed such that the false alarm rate never crosses a desired value. To do so, we 
define run length . κi of CUSUM (Eq. 11) as the number of iterations needed to reach 
.Si[k] > T hi i.e. 

.κi = inf {k ≥ 1 : Si[k] > T hi} (12) 

The average run length (.ARLi) is the expected value . κi which is related to FAR as 
.ARL = 1/FAR. Considering the desired FAR as .FAR∗, we need to find out . T hi

such that .ARLi = 1/FAR∗ provided .bi > b̄i . Authors of [37] presented a Markov 
chain approach for approximating .ARLi to determine the pair .< bi, T hi > such 
that Eq. 12 holds.
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3.2 Variable Threshold-Based Attack Detector 

A different line of approach was presented in [35] to synthesize the threshold for 
residue-based detectors to enhance TPR and reduce FAR. As a potential example 
of a targeted performance degrading attack, they consider the situation when the 
reference point of a controller changes due to the occurrence of some event. For 
example, if the driver rotates the steering wheel, the yaw rate of the vehicle needs 
to be changed to maintain the lateral dynamics of the vehicle. For such kinds of 
systems, an attacker can obstruct the vehicle from reaching the proximity of the new 
reference by injecting even smaller faults at the later stage of the system dynamics 
(when nearing the reference). From the perspective of designing a security-aware 
system, this brings in an interesting trade-off. Assume we want to design a static 
threshold-based detector where a constant threshold will be used throughout. We 
look into two cases. First, a lower-valued threshold is determined considering the 
required false data to be injected at the later phase of settling time. In this case, 
any process or measurement noise induced by the environmental disturbances in 
the system will be considered an attack. This will lead to false alarms. Second, a 
higher-valued threshold is selected considering the required attack amount at the 
earlier phase of settling time. This will help an attacker easily bypass the detector. 
The attacker can inject a sequence of small false data to make the system unsafe (as 
demonstrated in Fig. 5). Such scenarios have motivated the authors of [35] to design 
a variable threshold-based detector that may ensure reduced FAR while identifying 
even small attack efforts that may lead to potential performance degradation. 

As a motivating example, we again consider the same example trajectory tracking 
control (TTC) system. We can see in Fig. 6a, that due to the process noise .w[k] and 
measurement noise .v[k] (Eq. 2), the violation in system’s desired performance is 
negligible. This is due to the intrinsic robustness of the controller. On the other hand, 
we can see the system gradually becomes unstable when the system is under the 
influence of a smart attacker (Fig. 6a). Consider three  such possible residue based 
detectors: with the smaller threshold th, the bigger threshold T h  and the variable 
threshold curve . vth in Fig. 6b. The detector considers even the harmless noise as an 
attack when th  is used, while the actual attacker could bypass the detector when 

Fig. 6 Noise and attack simulation on trajectory tracking system. (a) Effect of noise and attack. 
(b) Static vs dynamic threshold
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T h  is used. However, using the variable threshold curve . vth (dotted black line in 
Fig. 6b), the attack does not remain stealthy while harmless noise is allowed to pass, 
reducing the false alarm rate. With this motivation, the authors of [35] presented 
two greedy approaches for synthesizing variable thresholds by leveraging formal 
methods like Satisfiability Modulo Theory (SMT) [49]. The following paragraph 
contains detailed explanations of those methods. 

Given the closed-loop system dynamics in Eq. 2, and the reference point .xdes , 
the target performance criteria pf c is to reach some n-dimensional closed ball 
(polytope) .Bε(xdes) with radius .ε > 0 around .xdes (i.e., the closed region . {x ∈
Rn || x − xdes ||≤ ε}) within a finite number of iterations, starting from an initial 
state .x[0] ∈ I ⊂ R

n. Hence, 

. pf c : x[l] ∈ Bε(xdes), where l > 0 is the finite number of iterations.

The attacker’s objective would be .x[l] /∈ Bε(xdes) after l closed-loop iterations 
(Eqs. 5–8). The property pf c captures both control performance and stability 
criteria. Assume the system already has some rudimentary monitoring scheme, 
like a range monitor for the sensor measurements, in place. Let us denote such 
monitoring rules as mdc. Authors of [35] present two counter-example guided 
methods to synthesize variable thresholds. They generate a stealthy attack vector 
i.e., a sequence of attacks that can ensure violation of pf c while mdc fails to detect 
it. Using this attack vector, they include a new threshold to the variable threshold 
set and again generate another attack vector. This step is continued until no attack 
vector can be generated with the current set of thresholds. We first explain the attack 
vector generation method using SMT [35]. 

The following are fed to Algorithm 1 as input: i) dynamics of the plant P , 
ii) the controller gain K to control the plant P , iii) estimator gain L, iv) desired 
performance criteria pf c of the closed-loop system, v) specification of existing 
attack monitor mdc, vi) set of thresholds T h  (this is initially a null set), and vii) 
finite duration T for satisfying pf c. The system states, estimated states, and control 
inputs are initialized in line 2. Note that, . ua differs from . ̃ua by the fact that . ua is 
the control input before being communicated to the plant, and . ̃ua is the control 
input which is modified by the attacker and received by the plant (see Eq. 8). 
Consider attack is taking place at every iteration in .{1, 2, . . . , T }. At every iteration 
.k ∈ {1, . . . , T }, the variable .ay[k] and .au[k] signifying false data are assigned a 
value non-deterministically (line 4). Following Eq. 6, the false data .ay[k] is added 
to the measurement .ya[k] which is transmitted from plant to controller (line 5). The 
controller computes estimated measurement .ŷa[k] and thereby the residue .ra[k]. 
System states .xa[k + 1] and estimated states .x̂a[k + 1] are updated in lines 8–9. 
Note that since estimator and controller reside in the same embedded platform and 
we are only considering network-level attack on CPS, . xa is updated with . ̃ua while 
. x̂a is updated with . ua . Finally, control input .ua[k + 1] is computed in line 10 and 
modified control input .ũa[k + 1] is calculated by introducing .au[k] to .ua[k + 1] in 
line 11. This way, the closed-loop system progression for T iterations is unrolled 
and symbolically represented. We say that an attack is stealthy but successful
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Algorithm 1 Attack vector synthesis [35] 
Require: Plant P , controller K , observer L, Control property pf c, existing monitoring constraint 

mdc, computed threshold vector T h, attack duration T 
Ensure: Attack vector A(if it exists, otherwise NULL) 
1: function ATTVECSYN(P , K , L, T h, pf c, mdc, T ) 
2: xa[1] ← I; x̂a[1] ← 0; ua[1], ũa[1] ← −K ̂xa[1]; � Initialization 
3: for k = 1 to  T do 
4: ay [k], au[k] ← non − deterministic_choice; 
5: ya[k] ← Cxa[k] + Dũa[k] + ay [k]; 
6: ŷa[k] ← Cx̂a[k] + Dua[k]; 
7: ra[k] ←  ya[k] −  ̂ya[k]; 
8: xa[k + 1] ←  Axa[k] +  Bũa[k]; 
9: x̂a[k + 1] ←  Ax̂a[k] +  Bua[k] + Lra[k]; 
10: ua[k + 1] ← −K ̂x[k + 1]; 
11: ũa[k + 1] ← ua[k + 1] + au[k]; 
12: end for 
13: A ←assert((∀T h[p] ∈ T h, ‖ra[p]‖ < T  h[p] && mdc) → pf c) 
14: if A is violated then 
15: return A ←

[
au[1]  · · ·  au[T ] 
ay [1]  · · ·  ay [T ]

]

; 

16: else 
17: return NULL; 
18: end if 
19: end function 

when predicates .|| ra[k] ||< T h[k] and mdc are satisfied, but pf c is violated. 
Negation of this is modeled by assertion . A in line 13. The function ATTVECSYN() 
in Algorithm 1 thus non-deterministically models all possible T consecutive closed-
loop executions under stealthy attacks. After this, the assertion on the system states 
and residue is given as input to an SMT tool with the assert clause. If the assertion is 
violated, the algorithm gives as output a successful stealthy attack vector (line 15). 
Else, it returns NULL (line 18) which signifies that the performance criteria pf c of 
the system can not be violated by any stealthy attack of duration T samples. Using 
this algorithm, the authors of [35] presented two greedy algorithms to synthesize a 
set of variable thresholds. 

3.2.1 Pivot-Based Threshold Synthesis Method 

This method generates a new threshold at every iteration. The steps of the method 
are demonstrated in Figs. 7, 8, 9, and 10 and discussed in detail below. 

Step 1: Initially, the threshold set is considered to be empty. The function 
ATTVECSYN() in Algorithm 1 is called with the empty threshold set and other 
parameters. If an attack vector . A is returned, it implies that the existing monitor 
mdc fails to detect the successful attack and a new threshold for the residue-based 
detector is needed. The maximum residue generated by the current attack vector
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Fig. 7 Step 1 (pivot-based 
threshold synthesis): from the 
1-st attack vector, add 1st 
threshold to T h  that can 
detect maximum residue 

Fig. 8 Step 2 (pivot-based 
threshold synthesis): check if 
attack vector exists with new 
T h, look for new threshold on 
LHS of existing ones keeping 
monotonic decreasing order 
intact 

Fig. 9 Step 3 (pivot-based 
threshold synthesis): check if 
attack vector exists with new 
Th and step 2 fails, look for 
new threshold on RHS of 
existing ones keeping 
monotonic decreasing order 
intact 

Fig. 10 Step 4 (pivot-based 
threshold synthesis): check if 
attack vector exists with new 
T h  and step 3 fails, modify 
an existing threshold keeping 
monotonic decreasing order 
intact 

is selected as the first threshold (Fig. 7). This ensures that the new threshold will 
be able to detect the current attack vector. 

Step 2: The function ATTVECSYN() is called again with the updated threshold 
set to check if any attack vector exists. If so, it implies that the current threshold 
set is not enough to detect all attacks, and a new threshold must be included to 
T h. As we aim to generate a monotonic decreasing set of thresholds, first we 
see if we can add a new threshold on the left-hand side of the existing ones such 
that the monotonic decreasing order is maintained. It is demonstrated in Fig. 8. 
For any of the existing thresholds .T h[p] ∈ T h, we try to find out whether the 
current attack has produced any residue .|| ra[k] ||≥ T h[p] for .k ≤ p. Multiple 
such candidate residues may exist. The maximum of them is considered to be the 
new threshold. This new threshold ensures the current attack will be detected.
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Step 3: In step 2, if any higher valued threshold can not be found on the left-
hand side of any existing threshold, the method checks if a new threshold can 
be added on the right-hand side of some existing threshold (Fig. 9). For any of 
the thresholds .T h[p] ∈ T h, we try to find out whether the current attack has 
produced any residue .|| ra[k] ||≥ T h[p] after p-th instance, i.e., .k > p. A new  
threshold is added at i if only .ra[i] is at least as much as .T h[k] for all .k > i. 
This ensures the monotonic decreasing order. 

Step 4: If no new threshold can be added following the rules in Steps 2 and 3, 
then one of the existing thresholds needs to be modified to detect the current 
attack vector. To do so, the proposed approach computes the difference between 
existing thresholds .T h[p] ∈ T h and the corresponding residue .|| ra[p] ||. The  
threshold .T h[i] is selected as a candidate if .T h[i]− || ra[i] || is minimum 
among all .T h[i] ∈ T h and the value of .T h[i] is comparatively reduced than 
earlier. If this modification violates the monotonic decreasing property of T h, all  
the .T h[p] ∈ T h for .p > i are reduced. This is demonstrated in Fig. 10. 

Steps 2–4 are repeated until the function ATTVECSYN() returns no attack vector 
with the modified threshold set. This returned threshold set T h  is the final one. 
Since this approach may take a longer time to converge, the authors of [35] proposed 
another greedy approach that we discuss next. 

3.2.2 Step-Wise Threshold Synthesis Method 

While the previous approach computes a single threshold at each iteration, this 
method computes a sequence of thresholds together at each step. The steps of this 
method are pictorially presented in Fig. 11. Let us discuss the steps in detail. 

Step 1: Here as well, the threshold set is initialized to be empty. The function 
ATTVECSYN() in Algorithm 1 is called with the empty set. If it returns an attack 
vector, it implies that there is a need for a threshold to detect this attack vector. 
For introducing the first sequence of thresholds, the maximum value among the 
.|| ra[i] ||’s where .1 ≤ i ≤ T is selected, say .|| ra[j ] ||. The first sequence 
of thresholds is computed as .T h[p] =|| ra[j ] ||, for all .p ∈ {1, .., j}. This is  
demonstrated in Fig. 11a. The name of the method is justified by the fact that the 
threshold set computed using this method will always looks like steps. 

Step 2: With the updated threshold set T h, the function ATTVECSYN() is again 
called to check if the new threshold is enough to detect every attack vector. If 
the function returns an attack vector, it indicates the need for new thresholds. 
Let .T h[i] be the last non-zero threshold value. To create a new step, this method 
finds out maximum .|| ra[k] || for .k > i such that .|| ra[k] ||≤ T h[i]. Say, the 
maximum is .|| ra[j ] ||. The threshold set is then updated as . T h[p] =|| ra[j ] ||
for all .i < p ≤ j (Fig. 11b). This ensures the desired monotonic decreasing 
order property of T h.
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Fig. 11 Step-wise threshold synthesis. (a) Step 1: from 1-st attack vector, add 1st step of 
thresholds in T h. (b) Step 2: check if attack vector exists with new threshold T h, look for new 
step downwards to maintain the monotonic decreasing order. (c) Step 3: check if attack vector 
exists with new threshold T h, and step 2 fails, create new steps out of the old ones by keeping the 
monotonic decreasing order intact 

Step 3: A situation may occur when no new step can be generated in the threshold 
set. This can happen when there is no zero element in T h. In such cases, the 
height of some existing steps needs to be modified to ensure that the current 
attack will be detected with the modified threshold set. Instead of reducing 
the height of an entire step, we break a portion or the whole step whichever 
involves minimum effort i.e., the minimum area under the threshold curve that 
can be removed to detect the current attack. From Fig. 11, it can be seen that 
the thresholds in T h  create an area under the threshold curve. At each sampling 
instant i, an area  .Areai is computed as follows. Find p, .i < p ≤ T such that 
for all .k > p, .T h[k] ≤|| ra[i] || but for all .k ≤ p, .T h[k] >|| ra[i] ||. . Areai

is the segment under threshold curve T h  from i-th to p-th sample. The sampling 
instant for which this area is minimum is selected, say that is the j -th instance. By 
removing .Areaj , new step is generated as .T h[l] =|| ra[j ] || for all .l ∈ (j, p]. 
This is demonstrated in Fig. 11c. 

Steps 2–3 are repeated until no new attack vector can be found upon calling 
ATTVECSYN() every time T h  is updated. In [35], authors analyzed that the step-
wise method converges must faster than the pivot-based one. Also, the step-wise 
method performs better in terms of FAR than the pivot-based method.
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4 AI-Based Adaptive Attack Detection 

The previous section brings forth some algorithmic and heuristic-based approaches 
to improve the detection tasks in CPSs. It introduces the concept of an adaptive 
detection technique. These heuristic-based approaches definitely improve the detec-
tion when compared to a fixed threshold-based detector, but it does not formalize or 
quantify the improvements. In an attempt to achieve so, the authors of [36] presented 
an attacker-defender game to guide the adaptive threshold selection problem though 
the proposed detector is not evaluated on any closed-loop CPS. Moreover, the 
optimization problem for threshold selection is solved in real-time and may cause 
computation overhead. Reinforcement learning is already been successfully used 
in the domain of estimation [50], energy efficiency [51] of safety-critical CPSs 
with real-time requirements. An RL-based adaptive threshold-based attack detector 
learns from the affected system dynamics and adaptively tunes the threshold of 
the residue-based anomaly detectors. The main motivation behind considering an 
RL-based strategy is the following challenge. The false data injected into sensors 
and actuators by the stealthy attacker are highly system-specific, random, and do 
not follow any statistical distribution. Therefore, the parameters of the adaptive 
attack detector cannot be directly derived from the injected false data signature. 
The performance of the proposed detector depends on how well it is trained against 
the optimal attack vectors. Thus, we also design an RL agent for mimicking the 
attacker’s behavior during the training phase. 

Let, for the discrete LTI system shown earlier in Eq. 2, the estimation error . e[k]
be defined as .e[k] = (x[k] − x̂[k]). The Gaussian assumptions of noise and initial 
states (.x[0] ∼ N (0, �x[0])) ensure that .e[k] ∼ N (0, �e) (steady state covariance 
matrix of this estimation error is . �e). Therefore, the system residue . r[k] =
Ce[k] + v[k]. Being a linear function of two other independent gaussian random 
variables estimation error and measurement noise, the residue is also normally 
distributed i.e., . r ∼ N (0, �r), where, �r = E[r[k]r[k]T ] − E[r[k]]E[r[k]]T =
E[(Ce[k])(Ce=[k])T ] + E[v[k]v[k]T ] = C�eC

T + �v . 
As a popular detection scheme, the .χ2-test can be used on .r[k] to find out how 

anomalous .x[k] is i.e., whether it is affected by injected false data. This helps one 
understand how bad the estimated output is compared to the actual controlled-
plant output according to the .χ2-test. Let .g[k] denote the .χ2-test result at k-th 
sample and .g[k] = ∑k

i=k−l[k]+1 rT
i �−1

r ri . A window size of .l[k] is considered 
during the .χ2-test at k-th sampling instance since taking historical data into account 
produces a more accurate estimation compared to only considering instantaneous 
data. Consider that there are m available sensors to sense different plant outputs 
(i.e., .m ≤ n, n being the dimension of the system). The degree of freedom (DOF) 
for this test is .m × l[k]. When there is no FDI attack, .g[k] follows . χ2 distribution 
with mean .ml[k] (Fig. 12) since .r[k] and .e[k] follows 0 mean Gaussian distribution 
as discussed above. If .T h[k] is the threshold that is chosen at k-th sampling instance, 
.g[k]’s probability density function (PDF) along with its cumulative distribution 
function (CDF) w.r.t. .T h[k] can be defined as,
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Fig. 12 .χ2-distribution 

.P(g[k]) = g[k]ml[k]
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2
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2 �(ml[k]

2 )
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2 )

�(ml[k]
2 )
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Here, . � and . γ are ordinary and lower incomplete gamma functions respectively 
[52, 53]. It is considered to be a false alarm when .g[k] > T h[k] even in the absence 
of an attacker. We quantify this with the false alarm rate (FAR), calculated with 
the ratio of the number of times a false alarm is raised falsely and the total number 
of alarms raised. We denote the FAR at k-th sample where the .χ2-test result . g[k]
is compared with the threshold .T h[k] as .FAR[k]. In Fig. 12, the black area under 
the solid curve and the grey area under the dashed curve represent the distribution 
of .g[k] under no attack and attack respectively. Therefore, .FAR[k] should be the 
fraction of area under the probability distribution curve of un-attacked .g[k] that is 
constrained by .g[k] > T h[k]; thus computed as .FAR[k] = 1 − P(g[k] ≤ T h[k]). 

As proven in Theorem 1 in [38], the spurious data .ay[k] and .au[k] added by 
the attacker to the sensor, and the actuator transmissions respectively introduce 
non-centrality to the actual . χ2 distribution of system residue. The gray area under 
the dashed curve in Fig. 12 is the distribution of .ga[k] obtained from the residue 
.ra[k] (Eq. 7). The resulting .ga[k] is compared to .T h[k] in order to flag an attack. 
Following Corollary 1 in [38], the variance of .g[k] is .σ [k] = 2ml[k] and variance 
of .ga[k] is .σa[k] = 2(ml[k] + 2λ[k]), where .λ[k] > 0 �⇒ σa[k] > σ [k]. 
From the Theorem 1 in [38] we can see that the expected deviation of .ga[k] from 
its mean is more than the expected deviation of .g[k] from .ml[k] which makes the 
distribution of P(.ga[k]) wider and thereby flatter (since the area under both curves is 
unity). Therefore, P(.ga[k] > T h[k]) . > P(.g[k] > T h[k]) as shown in Fig. 12. As the  
window size .l[k] increases, the PDF of .ga[k] becomes even flatter and hence more 
distinguishable from the PDF of .g[k]. So, intuitively speaking, the non-centrality 
of . χ2 distribution improves .T PR[k] i.e., attacks are more detectable for a properly 
chosen window size .l[k] parameter. 

For an optimally chosen . l[k], the non-centrality of .ga[k] is more evident and 
hence produces better T PR  for a certain threshold .T h[k]. We can also optimally 
choose a .T h[k] to attain the minimum possible .FAR[k] (for a certain window
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size) during the absence of an attack (i.e., when only noise is present, in PDF 
of .g[k]) and change it during the attack to attain the maximum possible T PR. 
The main trick here is to understand that the system is under attack more often 
in the true positive case and reduce false alarms. Therefore, the pertinent problem 
becomes how to achieve the above by suitable choice of threshold .T h[k] and the 
test parameter .l[k] in order to identify the attack as quickly as possible without 
too many false alarms. So, given a closed-loop CPS, one needs to learn when is 
the system under some stealthy FDI attack and when it is running normally. The 
work in [38] leverages the non-centrality property of .ga[k] and learns when the 
system is becoming affected by a successful and stealthy FDI attack. The problem of 
synthesizing an optimal detector at every k-th simulation step can thus be formulated 
as the following optimization problem. 

.Jt = max
l[k],T h[k] w1×T PR[k]−w2×FAR[k] s.t. FAR[k] < ε, l[k] < lmax (15) 

The cost function . Jt aims to minimize .FAR[k] and maximize .T PR[k] at 
every simulation step. Here, .w1, w2 are respective non-negative weights assigned 
to TPR and FAR depending on attacked (TPR increment gets more importance) and 
non-attacked (FAR reduction gets more importance) situations. . ε is the maximum 
allowable FAR and .lmax is the maximum allowed . χ2 window length. At each k-th 
step, given the current measurement .y[k]a , the solution of the above optimization 
problem is a pair .< l[k]∗, T h[k]∗ >, where .l[k]∗ and .T h[k]∗ are the optimal 
. χ2 window length and threshold respectively that lead to maximum . T PR[k]
and minimum .FAR[k] w.r.t. current measurement of the system states. But this 
formulation has to work for all possible FDI attacks within the sensor and actuation 
limits. The authors in [38] take a nice approach to ensure that the detection works 
even in the worst case. They learn the optimal attack possible at k-th iteration that 
maintains its stealth but imparts the most significant damage to the system safety. 
The following subsection explains how such an attacking policy can be learned. 

4.1 Optimal Attack Policy Design 

As we discussed in Sect. 2, the attacker’s motive is to steer the system beyond the 
safe set . XS while trying to remain stealthy by reducing the TPR i.e., fooling the 
detector. Given the sensor measurement .ya[k −1], we present this attack estimation 
problem as the following optimization problem. 

. Ja = max
ay [k],au[k] −w1 × T PR[k] + w2 × FAR[k]+
∞∑

i=0

(| xa[i + 1] | −XS |)T W3(| xa[i + 1] | − | XS |). (16)
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s.t. xa 
0 , x̂a 

0 ∈ XR. (17) 

ua[k] = −Kx̂a[k], ũa[k] = ua[k] + au[k], | ua[k] |,
| ũa[k] |≤ εu ∀k ∈ [0, ∞]. (18) 

ya[k] = Cxa[k] + Dũa[k] + v[k] + ay[k],
| ya[k] |≤ εy ∀k ∈ [0, ∞]. (19) 

ra[k] = Cxa[k] − Cx̂a[k], ga[k] ≤ T h[k] ∀k ∈ [0, ∞]. (20) 

x̂a[k + 1] = Ax̂a[k] + Bua[k] + L(Cxa[k] − Cx̂a[k]), ∀k ∈ [0, ∞]. (21) 

xa[k + 1] = Axa[k] + Bũa[k], ∀k ∈ [0, ∞] (22) 

Here, . w1 and . w2 are weights that denote the relative priorities of the attack initiative 
similar to the optimal threshold cost function . Jt (Eq. 15). This is because our 
intention is to design an optimal and stealthy FDI attack for a system equipped with 
the adaptive detector designed above. While an attacker tries to decrease . T PR[k]
(and increase .FAR[k] simultaneously as a by-product), the detector’s objective is 
to increase .T PR[k] and decrease .FAR[k] based on the value of .λ[k] (Eq. 15). The 
last component of . Ja is important to establish it as the worst-case attack. It accounts 
for the deviation of the current system state from the safety boundary . XS using 
a quadratic weighted distance metric where . W3 is a diagonal matrix with relative 
weights signifying the safety-criticality of each dimension. The constraints in 18 
and 19 ensure that the attack efforts are practical, within the allowable ranges and 
utilize the LTI system properties. In case of an invalid or beyond the range sensor 
data and control signal, their effects will be trimmed by the saturation limit and 
won’t produce a desirable effect of the attack. An intelligent adversary’s another 
aim is to remain stealthy, thus bypassing the detector. This is taken into account in 
constraint 20 while estimating the optimal attack. The constraints 21 and 22 ensure 
system progression following Eqs. 5–8. 

4.2 The MARL Based Framework 

This section discusses the Multi-Agent Reinforcement Learning (MARL) based 
implementation that is the methodology to build an adaptive threshold-based 
detection module as discussed in [38]. The goal of the adaptive detector is to detect 
a stealthy FDI attack before it is successful in making the system unsafe. In the 
introduction of Sect. 4, we have explained how changing the detection thresholds by 
leveraging the non-centrality of the system residue can be useful to increase TPR 
and reduce FAR. We utilize that notion here. The detection and attacker modules 
implicitly learn how the system model behaves normally and under FDI attacks by 
analyzing system outputs, states, residue, etc. The smart attacker module should 
challenge the adaptive detection module by posing the most stealthy yet effective
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Fig. 13 The RL-based methodology [38] 

FDI attacks depending on current system behavior. On the other hand, the intelligent 
detector module learns the best possible FDI attack on the CPS by observing the 
non-centrality of the .χ2-distribution of system residue and it adaptively changes the 
threshold to expose the attacker with a promise of increased TPR and reduced FAR. 
RL algorithms are capable of automatically updating their strategy by learning from 
prior experiences. Moreover, since labeled data for falsified system states are not 
available, a simulation environment for the targeted system model can be useful. 
This explains how integrating an MARL framework like this can be useful in the 
context of a security-aware CPS design. In the context of the timing overhead, it is 
reasonably low when we use a trained RL agent for inferencing at run time as seen 
in previous literature [51]. 
A plant-controller closed-loop system equipped with a .χ2-based detector (as shown 
in Fig. 3) is modeled similar to the real-world system under test. This is then 
used as the environment for the RL agents (both under attack and without attack 
situations). Individual RL agents are built as part of our methodology to act as the 
FDI attacker and the adaptive threshold-based detector that run simultaneously in 
a closed-loop with the system environment (see Fig. 13). These agents (. �) interact 
with the environment by observing certain states from the environment (obs) and 
learn how intelligent choice of action (act) values can influence the environment 
towards the fulfillment of their objectives i.e., earning higher rewards (Rwd). 

RL Agent For FDI Attack Estimation Following the intelligent attacker mod-
eling in Sect. 4.1, it can be considered that the attacker has information about 
the system characteristics (Eq. 2) and it can manipulate the sensor and actuator 
data communicated between the plant and controller side. An Attacker RL Agent 
. �a intelligently injects false data into the system by observing the sensor data, 
actuator data, and the .χ2-test result on the system residue. These false data 
injections should be bounded by the sensor and actuator saturation limits (refer
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Eqs. 18 and 19). The actions of . �a are .acta = [ay, au] and the observations are 
.obsa = [y, u, g] (refer Fig. 13). Here .y, u, ay, au denote sensor and actuator data 
and false data injected in sensor and actuator respectively (refer Eq. 8). Here, g is 
the .χ2-test result on the system residue r as mentioned earlier. We also provide 
the last set of actions chosen by the agent . �a as its observation, i.e.,. obsa[k] =
[y[k], u[k], g[k], acta[k − 1]] at k-th simulation instance. At every simulation 
instance, the attacker agent aims to choose proper .acta[k] in order to make the 
system state unsafe without being detected by observing the above data. This 
measurement of stealth and success of the chosen attack effort is captured in the 
reward function .Rwd[k]a(obsa[k], acta[k], obsa[k + 1]). Like usual RL policies, 
the agent is rewarded against its choice of .acta[k] at every k-th simulation instance 
following this reward function. The reward function for . �a is built following . Ja

(Eq. 16) i.e., 

. Rwda[k] = −w1 × T PR[k] + w2 × FAR[k]
+ (| xa[k + 1] | − | XS |)T W3(| xa[k + 1] | − | XS |) (23) 

The notations carry the same meaning as in Eq. 16 and the index k denotes 
their value at k-th simulation instance. As described earlier, the two parts of 
.Rwda[k](obsa[k], acta[k], obsa[k+1]) have opposing objectives. The part . −w1×
T PR[k] + w2 × FAR[k] accounts for stealthiness with minimized FAR and 
.(| xa[k + 1] | − | XS |)T W3(| xa[k + 1] | − | XS |) accounts for the success of 
a chosen FDI attack action .acta[k]. . �a moves towards gaining a higher . Rwda[k]
at every simulation instance by choosing an optimal action .acta[k]. Therefore, a 
learned optimal attack estimation agent would ensure that the overall return (the 
cumulative reward discounted over time) is maximized, which translates to the fact 
that the attacker agent will estimate the false data in a way such that the system 
under attack goes unsafe as quickly as possible without being detected. Note that 
this agent also gives an idea of the actual system states which we can use for secure 
state estimation. 

RL Agent For Adaptive Detection The Variable Threshold-based Detector Agent 
. �d also acts on the same system environment under FDI attack as a competitor 
to the Attacker RL Agent. It chooses an optimal attack detection threshold . T h[k]
and a suitable .χ2-window .l[k] at k-th iteration by observing the . χ2 statistics g of 
the system residue, current non-centrality . λ of this . χ2 distribution and the previous 
action .actd [k − 1] chosen by itself. The intuition behind its formulation is already 
discussed above and the authors in [38] provide rigorous mathematical proof. 
Depending on the observations from the attacked environment, the Detector agent 
chooses a .χ2-window length and threshold. Therefore, we consider the action vector 
.actdk = [T h[k], l[k]] and observation vector . obsd [k] = [g[k], λ[k], actd [k − 1]]
(refer Fig. 13). The reward function .Rwdd [k](obsd [k], actd [k], obsd [k + 1]) is 
designed following . Jt from Eq. 15, i.e.,
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. Rwdd [k](obsd [k], actd [k], obsd [k + 1]) =
{

T PR[k] when λ[k] > δ

−FAR[k] when λ[k] ≤ δ

(24) 

Here also, the variables carry a similar meaning as in Eq. 15. With a goal to 
increase the discounted reward over time in an episode, .�d chooses .actd [k] at 
every k-th simulation instance. The structure of the reward function thus ensures 
that the Neural Network will be trained such that it can always choose its actions to 
maximize T PR  and minimize FAR. 

Learning Technique Here we use Deep Deterministic Policy Gradient (DDPG) 
algorithm [54]. Each DDPG agent consists of an actor neural network that determin-
istically chooses an action (act) by observing the states (obs) of the environment. 
Another Deep Q-Network(DQN) acts as a critic. In each simulation instance, the 
actor chooses an action (.act[k]) by exploring the action space randomly. The 
transitions from .obs[k] to .obs[k + 1] due to the action .act[k] taken are stored in 
the experience replay buffer along with the corresponding reward .Rwd[k] achieved 
during this transition. Note that this action was chosen based on the maximum 
possible return. The critic network calculates corresponding Q values in every 
iteration picking a random batch from the replay buffer and updates itself by the 
mean square loss between the calculated Q values from consecutive iterations. The 
actor-network policies are updated using the policy gradient over the expected Q 
value return. Figure 14 depicts the learning flow of a DDPG agent. The training 
algorithm finally learns the highest expected return from its experiences and then 
keeps updating the RL policy to output the optimal action that earns the expected 
maximum return. This, in turn ensures the objective functions we chose to define 

Fig. 14 A DDPG RL agent 
with actor and critic networks 
[38]
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.Rwdd [k] and .Rwda[k] in Eq. 15 and Eq. 16 respectively are maximized. Given 
a secure CPS model, we first train such DDPG agents as discussed with system-
specific simulation data so that they can reprise their designated roles in the 
environment. The learning process is collaborative and competitive. The standard 
DDPG algorithm as in Algorithm 1 in [54] is modified according to the requirements 
in our case. Interested readers are encouraged to read [54] for a detailed discussion 
on how DDPG policy optimization works. The work in [55] is also another 
interesting read to know more about how Agent Environment Cycle (AEC) Games 
model turn-based games like our MARL setup where the Attacker and Detector 
compete with each other in every iteration by taking optimal action in a stochastic 
system environment. Without going into those implementation-specific challenges, 
we stick to the CPS design aspect without sidelining the main topic of discussion 
in this section. In the next section, we move on to describe the most plausible next 
action that should follow an intelligent attack detection in a secure CPS design. 

5 Attack Mitigation 

To complete the circle of the discussion on the security-aware design of CPS, in 
this section we briefly talk about system recovery steps to be taken once attack 
attempts are detected. The idea proposed by most researchers is to switch the system 
to a secure mode once an attack is detected. We explain this idea using Fig. 15. By  
secure mode, we mean an operational mode where every communication is secured 
via some cryptographic methods, like MAC, RSA, AES, etc. For schedulability, un-
important messages can be dropped in this mode. We assume that the cryptographic 
methods provide utmost security and that no stealthy attacks are possible in this 
mode. Therefore, the attack model is to exploit the normal mode of operations 
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Fig. 15 Attack mitigation through secure channel
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and stealthily drive the system to some unsafe region. In Fig. 15, .XR denotes the 
operating region (in a single dimension) where the system is expected to reside 
when no attack is taking place. Also, . XS denotes the safety region of the system. 
An attacker would try to steer the system toward an unsafe zone (see Eq. 9). Once 
such an attack is detected, the system will be switched to a secure channel. And, 
during this secure mode, the controller will mitigate the damage done by the attacker 
(Fig. 15) by steering the system back to its preferable operating region. 

While in [34] it is suggested to simply use the available controller gain (K as 
mentioned in Eq. 2) for attack mitigation, the authors in [38] have suggested using 
additional control input along with the inputs from the usual feedback controller, 
following the theory of [56]. As it is shown in Fig. 15, due to an attack, the system 
may go beyond the preferred operating region . XR . It is desirable to bring back 
the system from .XS \ XR as early as possible. The motivation behind this is that 
the duration spent in secure mode must be as minimum as possible. Also, the 
faster the system is back to the desired operating region, the better will be its 
average performance. As we have already discussed in Sect. 3, the cryptographic 
methods incur quite a significant computational and communication load. Thus, it is 
infeasible to secure every communication. Releasing a secure channel at the earliest 
will help other control loops to use it. It can be seen in [38] that the use of additional 
control inputs can actually speed up the recovery process. We briefly demonstrate 
the idea here. 

The authors in [56] have proposed an SMT-based method to pre-calculate a 
sequence of control inputs that take the system from .XS \XR to . XR provided during 
this time, system state should always be retained within . XS . This means safety is 
guaranteed during recovery. Since .XS \ XR ∈ Rn, it is not possible to compute 
control sequence for all possible points in .XS \ XR . As a solution to this problem, 
the authors in [56] proposed a region-wise control synthesis method. They divide 
.XS\XR into such sub-regions that the control sequence computed to take the system 
trajectory from the center of each sub-region to . XR will also work for every other 
point in that sub-region, as elaborated in Fig. 16. Initially, the length of the control 
sequence is set as .t = 1 and the method tries to compute safe control sequences 
considering the entire .XS \ XR as the source region. If failed, the source region is 
reduced to half and this process repeats until a safe control sequence can be found. If 
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the final safe control sequence of length t can not take the system to . XR , the length 
t is incremented by 1 and the process is repeated until a safe and successful control 
sequence is found for every sub-region in .XS \XR . This incremental process is also 
adapted in [35] such that it also ensures that the length of the final control sequence 
is minimum. This means this is the minimum required sequence of control inputs to 
bring back the system from .XS \ XR to . XR while safety remains intact. 

The above line of work however relies on attacks getting detected in the normal 
mode of operations. The security model assumes that using the secure mode is 
costly for the entire system and hence it should be relinquished to other potential 
subsystems under attack as soon as possible. In that case, how do we guarantee 
safety from stealthy attacks in a non-probabilistic way? For that, the use of secure 
and normal modes of operations must be interleaved by design so that every control 
task switches among such modes periodically. The normal model duration should 
be chosen in such a way that a stealthy attack cannot drive the system to an 
unsafe region as verified formally in the model itself [34]. This duration should 
be followed by a secure mode of suitable duration which helps the system crawl 
back to its desired performance region [34, 38]. The sequence keeps repeating 
with such sporadic integrity checks in between [33] coupled with recovery control 
mechanisms [56]. In the next section, we present a hardware-in-loop experimental 
set-up on a real-time platform to demonstrate the security-aware design of an 
automotive CPS considering the variable threshold-based security scheme discussed 
in Sect. 3.2. 

6 A Platform Level Example 

In this section, we first discuss a security-aware control implementation on an 
automotive-grade ECU setup. The setup contains an Infineon Tricore AURIX 
TC397 ECU where software controllers are mapped. A Hardware-In-Loop (HIL) 
simulator (ETAS LabCar) is used to emulate the automotive plants. These plants 
are periodically manipulated by control tasks co-scheduled in a single core of the 
Infineon ECU. The plant and ECUs are connected via CAN bus, interfaced using 
the integrated CAN shield in the ECU. The closed-loop setup is depicted in Fig. 17. 
The ECU is running two control tasks for two automotive plants i.e., Trajectory 
Tracking Control (TTC) and Electronic Stability Program (ESP). The details of the 
TTC loop is described in Sect. 3. It controls the longitudinal deviation (D) of the  
vehicle from a desired trajectory and maintains a target Velocity (V ) by changing 
the acceleration(acc) of the vehicle. The ESP regulates the yaw rate (. γ ) and side-
slip (. β) of the vehicle by controlling the steering angle (. θ ). The system transition, 
controller, and observer gain matrices of the ESP are taken from [38]. Both of 
these tasks are implemented as runnables and invoked periodically depending on the 
sampling period of the discretized plant model considered while designing the LQR 
controllers, i.e., 100 ms for TTC and 40 ms for ESP. In every sampling period, these 
statically scheduled tasks are invoked, and control inputs are calculated using the
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Fig. 17 Real-time automotive test bed 

estimated plant states and transmitted via CAN. The control inputs actuate the plant, 
which emulates itself in real-time in the HIL. The plant states are estimated using 
estimation tasks that read the received plant output data from the sensor readings 
transmitted from the plant through CAN. These functions are called before the 
control tasks in order to supply the estimated plant state to the control tasks. The 
estimation tasks also run with similar periodicity as their corresponding control 
calculations. Note that the last calculated control input is also used in order to 
estimate the current state based on the sensor data. As a detection task, we consider 
the variable threshold-based detector. The detection task synthesizes thresholds 
using the pivot-based method as explained in Sect. 3.2. It uses the norm-based 
generalized detection scheme as mentioned in Eq. 4. 

We consider an attack model where an ECU connected to the same CAN bus 
is compromised. Therefore, it has the capability to inject false data into the CAN 
transmissions. The attack model is feasible because a compromised ECU can send a 
real sender to bus-off mode for some interval and mimic the actual sender [12]. We 
emulated this insider attack scenario by running the attacker routine from a different 
core of the same ECU. The false data injected were synthesized for TTC using the 
SMT-based FDI attack synthesis method used in [34, 35]. As mentioned in our attack 
model in Sect. 2.1, the successful attack criteria while synthesizing the attack vectors 
is given by Eq. 9. The plot in Fig. 18 shows the outputs of the TTC plant under 
attack. This is a screenshot taken from the ETAS LabCar environment that shows 
a 1.3 seconds long stealthy (i.e., 1-norm of the residue under this attack always



220 S. Dey et al.

Fig. 18 Successful FDI emulation on TTC 

Fig. 19 Adaptive detection of attack before success for TTC 

remains below a static threshold of 2.5) attack vector injection (refer Fig. 4, which 
shows a simulation of the same ). The x-axis of Figs. 18 and 19 represents time. The 
two different scales in the y-axis of Fig. 18 represent two states of TTC i.e., deviation 
from the trajectory (D) in meters (the first scale from the right) and velocity (V ) in  
meters/sec (the second scale from the right). Y axis of Fig. 19 denotes the detector 
output. 1 signifies attack detection and 0 signifies no attack scenario. The variable 
threshold-based detection task is implemented as mentioned earlier in this section. 
As we can see, both states are starting from 0 units and the 13-length FDI attack 
vector drives the velocity of the vehicle (the bold one) beyond the safety limit 
i.e., .30m/s at 23-rd sec bypassing the static threshold-based detector (in Fig. 18). 
Whereas, the variable threshold-based detection task selects certain thresholds in 
real-time which are able to detect this attack attempt (at .∼ 21.8 s in Fig. 19) before 
the attack becomes successful or the system becomes unsafe. Validation of MARL-
based detectors and mitigation strategies have been reported in [38] where the full 
system is simulated in Matlab. In the future, we plan to have a HIL-based validation 
of the same in this automotive test-bed.



Resource Aware Synthesis of Automotive Security Primitives 221

7 Conclusion 

This chapter discusses methods for security-aware automotive CPS design lever-
aging adaptive lightweight attack detection and mitigation schemes. The presented 
design methodology reduces the compute and communication overhead incurred 
by standard cryptographic methods suggested by AUTOSAR. We discuss two 
heuristic-based algorithms for variable threshold selection and a multi-agent rein-
forcement learning (MARL)-based adaptive threshold selection method in order to 
increase false data injection attack detectability and decrease false alarm rate in 
a system. The heuristic-based methods choose thresholds based on solver based 
vulnerability analysis. Thus, this design technique provides a guarantee that the 
synthesized variable threshold-based detectors will detect a false data injection 
attack attempt. The more scalable approach employing the adaptive detector infers 
a stochastically optimal threshold in order to catch a competing FDI attacker agent, 
which is designed to falsify the sensed and actuated data. We also discuss a formal 
method-based attack mitigation scheme which is activated via a secure channel once 
the attacks are detected. Overall they promote an end-to-end security-aware CPS 
design idea. 

The objectives of this security-aware co-design framework targeting automotive 
systems had been, (i) lightweight, real-time detection of FDI attacks (ii) while 
maintaining the least possible false alarm rate; and (iii) guaranteeing the mitigation 
of the attack-effect as early as possible so that (iv) the compute and communication 
overhead incurred by the cryptographic schemes are reduced. We discuss the evalu-
ation of the variable threshold-based detection technique in a real-time automotive 
test bed in order to demonstrate its applicability. Essential future extension of such 
work is to test the performance of the proposed RL-based adaptive detection and 
formal mitigation units in this automotive test bed. 
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