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1 Introduction 

Today’s vehicles are complex cyber-physical systems with tens of interconnected 
Electronic Control Units (ECUs) that control various subsystems in the vehicle. 
The introduction of Advanced Driver Assistance Systems (ADAS) in vehicles 
to support the goals of autonomy has resulted in an increase in the number of 
ECUs, which in turn has increased the complexity of the in-vehicle network that 
connects the ECUs. Moreover, state-of-the-art ADAS relies on information from 
various external systems using advanced communication protocols such as vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) [1]. These advances increased 
the complexity of automotive systems, which introduced several other challenges 
related to reliability [2–6], real-time performance [7–10] and security [11–15] of  
automotive systems. In this chapter, we focus on improving security in automotive 
systems. The increased connectivity of today’s vehicles has made them highly 
vulnerable to various sophisticated cyber-attacks. Therefore, ensuring the security 
of automotive systems is a crucial concern and will become further crucial as 
connected and autonomous vehicles (CAVs) become more ubiquitous. 

The most commonly seen cyber-attacks on vehicles include masquerade, replay, 
and denial of service (DoS) attacks [16]. In a masquerade attack, the attacker 
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pretends to be an existing ECU in the system. In a replay attack, the attacker 
eavesdrops on the in-vehicle network, captures valid messages transmitted by other 
ECUs, and sends them on the network in the future. In a DoS attack, the attacker 
ECU floods the in-vehicle network with random messages, thereby preventing the 
normal operation of valid ECUs. Most of these attacks require access to the in-
vehicle network, which can be acquired either physically (e.g., using on-board 
diagnostics (OBD-II)) or remotely (e.g., using LTE or Bluetooth). Various real-
world approaches to gaining access to the in-vehicle network and taking control 
of the vehicle by sending malicious messages are discussed in detail in [17–20]. 

Traditional in-vehicle network protocols, such as controller area network (CAN), 
FlexRay, etc., fail to address key security concerns such as confidentiality, authen-
tication, and authorization as they do not have any inherent security features. Thus, 
additional security mechanisms (e.g., encryption-decryption) must be implemented 
in ECUs to prevent unauthorized access to the in-vehicle network. The two most 
widely used encryption techniques are - symmetric key encryption and asymmetric 
key encryption. The former uses the same key for encryption and decryption opera-
tions, while the latter uses a public-private key pair that has a strong mathematical 
relation. Both mechanisms incur computational overhead on the ECUs, which may 
catastrophically delay the execution of real-time automotive tasks and message 
transfers, e.g., a delay in the messages from impact sensors to airbag deployment 
systems could lead to severe injuries for vehicle occupants. Thus, it is highly crucial 
to carefully introduce security mechanisms in the vehicles. 

The individual ECU utilizations of a FlexRay-based automotive system consist-
ing of four ECUs running 12 different hard real-time automotive applications (each 
with multiple tasks) is illustrated in Fig. 1. Each ECU has a real-time utilization due 
to the execution of real-time automotive tasks (RT Util) and a security utilization 
because of the execution of security operations (Sec Util). The numbers on top of 
each bar show the number of applications that miss their deadlines when executed 
on the corresponding ECU. Along the x-axis, the no security mechanism case has no 
security mechanism implemented (hence it only has the real-time utilization), while 
in the unoptimized security mechanism case, all the ECUs employ AES-256 for 
encryption and decryption of messages. In the latter case, it can be seen that the total 
utilization for ECUs 3 and 4 (sum of real-time and security task utilizations) exceeds 
100% (represented by the red dotted line) because of the overhead of security-
specific encryption/decryption task executions, resulting in missed deadlines for 
four applications. Lastly, the optimized security mechanism case represents our goal 
in this work, to integrate all required security mechanisms while keeping utilization 
of all ECUs below 100%, without any deadline violations. 

In this chapter, we present a novel security framework called SEDAN, which was 
first introduced in [11]. SEDAN is a lightweight (minimal overhead on the ECUs) 
security framework that aims to maximize the overall security of the automotive 
system without violating real-time deadline constraints and per-message security 
constraints. Moreover, the SEDAN framework employs symmetric key cryptography 
as it is less computationally intense compared to the asymmetric key cryptography 
to enhance the security of the vehicle. Our novel contributions in SEDAN are:
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Fig. 1 Motivation for a lightweight (low overhead) vehicular security framework. The number on 
top of each bar indicates the number of missed real-time application deadlines

• We introduced a novel quantitative methodology to derive the security require-
ments for various messages in an automotive system based on ISO 26262 
standard and formulated a new metric to quantify the overall security of a system;

• We devised a heuristic-based key management technique to provide adequate 
security for various message types and ensure that the utilization of all ECUs is 
below 100%;

• We developed an approach for the joint exploration and synthesis of message 
schedules and security characteristics in TDMA-based automotive systems and 
also proposed a technique to efficiently map tasks to ECUs while meeting real-
time message deadlines and ECU utilization goals;

• We extracted network traffic and ECU execution data from a real-world vehicle 
(2016 Chevrolet Camaro) and compared SEDAN with [21], the best-known prior 
work in the area, to demonstrate the effectiveness and scalability of SEDAN. 

2 Related Work 

Security in automotive systems was not a primary concern until recently. The first 
full vehicle hack in 2010 [17] highlighted the need for concrete security measures in 
automotive systems. In [17], the researchers had physical access to the vehicle and 
were able to control various systems in the vehicle by injecting custom messages 
into the CAN bus. Moreover, they reverse-engineered a subset of the ECUs and 
were able to update the firmware on those ECUs by sending custom CAN messages. 
Later in [18], they were able to perform the same attacks remotely. In [19], the
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researchers hacked the radio in a 2014 Jeep Cherokee and were able to control 
the vehicle remotely. They used the telematics system in the radio to send remote 
messages to the vehicle, which were injected into the CAN bus to take control of 
various vehicular subsystems. In [20], the authors recently developed a Trojan app 
that was executed on a smartphone connected to the vehicle infotainment system 
via Bluetooth. They used this app to send custom CAN messages into the in-vehicle 
network. All these attacks have raised serious concerns about security in automotive 
systems. 

Since the traditional in-vehicle network protocols do not provide any security 
features, it is hard to prevent unauthorized access to the in-vehicle network. 
However, one of the popular solutions in the literature to prevent unauthorized 
access is authenticating the sender ECU using message authentication codes 
(MACs). Several works, such as [22–28], advocate the use of MACs to improve 
security in automotive systems. In [23], a mixed integer linear programming (MILP) 
formulation was proposed to minimize the overhead for MAC computation and end-
to-end application latency in a CAN-based system. Moreover, the authors in [23] use  
the same MAC for a group of ECUs. In [24], the authors extended [23] to minimize 
the security risks associated with grouping different ECUs. An authentication 
protocol called LCAP was presented in [26] to encrypt messages that utilized 
hash functions to generate hashed MACs to authenticate ECUs. In [27], an RC4 
encryption-based authentication was implemented to improve security in CAN-
based systems. Another lightweight authentication scheme based on PRESENT 
[29] was introduced in [28] and evaluated on FPGAs. However, cryptanalysts have 
demonstrated successful attacks on both RC4 and PRESENT. In [30], a technique 
based on obfuscating CAN message identifiers (IDs) was presented to protect a 
fleet of vehicles. However, all the above-mentioned techniques are designed for 
event-triggered protocols (such as CAN) and do not apply to more scalable and 
sophisticated time-triggered protocols. 

A lightweight authentication technique is proposed in [22] that uses cipher-
based MACs that are generated using the ECU local time stamp and a secret key. 
However, this technique requires strong synchronization between the ECUs, and 
any uncertainty can result in a full system failure. In [31], a device-level technique 
is presented, which uses an enhanced network interface (NI) to authenticate ECUs 
in the system by using hardware-based security modules (HSMs). In [25], FPGAs 
are employed as co-processors for ECUs to handle all security tasks that are 
implemented based on the TESLA [32] protocol. However, the techniques in [25, 
31] require additional compute resources and many modifications to the existing 
automotive systems, which is not very practical and cost-efficient. In [33], the 
authors proposed a virtual local network (VLAN) based solution for improving 
security in Ethernet-based automotive systems. They introduced an integer linear 
programming (ILP) model to minimize message routing times and authenticate the 
messages by making multiple message transmissions on different routes. However, 
this technique results in inefficient bandwidth utilization and poor scalability. A 
co-design framework is introduced in [34] to improve message response times 
while meeting security concerns. However, only a small subset of messages
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are considered for encryption to guarantee control performance, which makes it 
impractical for safety-critical automotive systems and also exposes the system to 
various vulnerabilities. 

A time delayed release of keys approach (adapted from the TESLA protocol 
[32]) is proposed in [21], in conjunction with simulated annealing based heuristic 
to minimize the end-to-end latency of messages by co-optimizing task allocation 
and message scheduling. This is one of the very few holistic frameworks that 
integrate the concept of security with real-time system design from the beginning 
of the system design phase. This work is extended in [35] by including V2V 
communication, using dedicated short-range communication (DSRC). In [36], a 
lightweight authentication technique for vehicles called LASAN is proposed, which 
uses the Kerberos protocol. The authors extended this work in [37] by presenting a  
comprehensive analysis of LASAN and compared with the TESLA [32] protocol. 
Though the LASAN technique demonstrated superior performance over other 
works, it has stringent requirements for a trusted centralized ECU, which creates a 
single point of failure. A security mechanism using different authentication methods 
was proposed for real-time systems in [38]. A group-based security service model 
is presented in [39] that tries to maximize the combined security of the system. 
However, as the model does not consider the timing constraints, it cannot be 
implemented in time-critical automotive systems. 

An intrusion detection system (IDS) based on principal component analysis 
(PCA) is proposed in [40]. An IDS that detects the presence of an attacker by 
monitoring the increased transmission rates of the messages is proposed in [41]. 
In [42], the usage of reactive runtime enforcers called safety guards is proposed 
to detect the discrepancies between the input data from sensors and the output of 
the controllers. In [43], a challenge-response authentication approach was proposed 
to detect the presence of attackers. However, this technique requires prior and 
proprietary information about the sensors to function correctly. 

All the above-mentioned prior works for securing time-triggered systems have 
various limitations: (i) they do not consider the utilization overhead on ECUs 
and latency overhead on messages due to the implemented security mechanisms, 
which results in over-optimistic results; (ii) they utilize only one key size for all 
messages, which that does not account for the heterogeneous security goals in 
real-time systems; (iii) they do not consider precedence constraints between tasks 
and messages, and; (iv) they consider homogenous single core ECUs which do 
not accurately represent today’s vehicles. In this chapter, we present the SEDAN 
framework that addresses these limitations of the prior works. Moreover, SEDAN 
improves the security in vehicles with time-triggered networks while satisfying 
all security, utilization, and message timing constraints. We demonstrate it for the 
FlexRay protocol, but it can be easily extended to other time-triggered protocols, 
e.g., TTEthernet.
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3 Problem Definition 

3.1 System and Application Model 

In this subsection, we present the automotive system model that was considered 
in SEDAN, where multiple ECUs execute different time-critical applications and 
are connected using a FlexRay-based network, as shown in Fig. 2. Each ECU has 
of two major components: a host processor (HP) and a communication controller 
(CC). The HP primarily runs the automotive and security applications, whereas a 
CC acts as an interface between the HP and the in-vehicle network (in this case, 
FlexRay bus) and is responsible for packing message data into frames, sending 
and receiving messages, and filtering out unwanted messages. Moreover, SEDAN 
considers heterogeneous HPs with different numbers of cores, which aligns with the 
state-of-the-art. It is important to note that the heterogeneity in this work is limited 
to varying the number of homogeneous cores per HP (i.e., multicore parallelism). 

Each automotive application consists of dependent and independent tasks that 
are mapped to different ECUs and executed in the corresponding HPs. If two 
dependent tasks are mapped to the same ECU, they exchange information using 
shared memory. Otherwise, the tasks communicate with each other by exchanging 
messages over the FlexRay bus. A message contains one or multiple signals that 
are generated as a result of task execution on the ECU. The Signals are packed 
into messages by the HP and are sent to the CC to transmit as FlexRay frames 
on the bus. Automotive applications can be categorized into one of two types: 
(i) time-triggered (periodic) or (ii) event-triggered (aperiodic). Most safety-critical 
applications, e.g., collision avoidance, lane keep assist, anti-lock braking, etc., are 

Fig. 2 Overview of the automotive system model used in SEDAN
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time-triggered and generate time-triggered messages. Event-triggered messages are 
generated by maintenance and diagnostic applications. Moreover, much like real-
time applications across other domains, the execution characteristics of time-critical 
automotive applications are known at design time. In this work, we focus on time-
triggered applications as they significantly impact system performance and vehicle 
safety. Additionally, time-triggered messages generated by these applications have 
strict timing and deadline constraints. Thus, it is vital to optimize the security of 
the time-triggered messages while ensuring that no real-time deadline constraints 
are violated. In this work, we adapt various state-of-the-art standards, namely, 
Advanced Encryption Standard (AES) with key sizes 128,192 and 256 bits and 
evaluate Rivet-Shamir-Adleman (RSA) with key sizes 512, 1024, 2048, and 4096 
bits, and Elliptic Curve Cryptography (ECC) with key sizes 256 and 384 bits to 
improve system security. 

3.2 FlexRay Communication Protocol 

FlexRay is an in-vehicle network protocol designed to support high-speed real-time 
complex automotive applications such as drive-by-wire applications. It supports 
both time-triggered and event-triggered transmissions and offers a data rate of 
up to 10 Mbps. The structure of the FlexRay protocol is illustrated in Fig. 3. A  
communication cycle is one complete instance of a communication structure that 
repeats periodically. Each communication cycle (also known as cycle) consists of a 
mandatory static segment, optional dynamic segment, optional symbol window, and 
mandatory network idle time. The static segment consists of multiple equally sized 
time slots that are used to send time-triggered messages. Each static segment slot 
consists of a header, payload (up to 254 bytes), and trailer segments. The TDMA 
media access scheme is employed in FlexRay static segment, where each ECU is 
assigned a particular static segment slot and a cycle number to transmit messages. 

Fig. 3 Structure of the FlexRay protocol
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On the other hand, the dynamic segment consists of variable-sized dynamic segment 
slots that are used to send event-triggered messages. Moreover, the dynamic 
segment employs a Flexible-TDMA media access scheme where the highest priority 
ECU gets access to the bus. The symbol window segment is used for signaling the 
start of the first communication cycle and network maintenance. Lastly, the network 
idle time segment helps with maintaining inter-ECU synchronization. 

3.3 Attack Models 

In this work, we focus on protecting the vehicle from masquerade and replay attacks 
as they are the most common, hard to detect, and can have a severe impact. The 
increased connectivity of modern vehicles with the external environment has created 
multiple pathways (attack vectors) to gain access to the in-vehicle network and 
ECUs. An attacker can choose a variety of attack vectors to gain access to the 
in-vehicle network and masquerade as an existing ECU or replay valid message 
transmissions to achieve malicious goals. In this study, we considered the most 
common and practical attack vectors in vehicles, which include connecting to the 
OBD-II port, connecting to systems that communicate with the external systems 
(such as infotainment systems), probe-based snooping on the vehicle bus, and 
replacing an existing ECU. Our framework can still be effective even when the 
attacker gains access to the in-vehicle network via other attack vectors. 

3.4 Security Model 

In this work, we focus on achieving the following key security objectives in vehicles: 
(i) confidentiality of message data and (ii) the authentication of ECUs. Meeting 
these objectives is crucial as it can help prevent masquerade and replay attacks. 
Confidentiality refers to the practice of protecting information from unauthorized 
ECUs, whereas authentication refers to the process of correctly identifying an ECU. 
In this study, we employ AES to achieve confidentiality by encrypting message 
data using a shared secret key. Moreover, we evaluate the choice of using RSA and 
ECC for setting up shared secret keys. However, it should be noted that neither 
RSA nor ECC is used for encrypting messages as they are much slower than 
AES. While AES with 128-bit keys (AES-128) is considered very secure today, 
the advent of quantum computing may challenge this assumption. Hence, we also 
consider AES-192 and AES-256. As each ECU can have messages of various 
criticalities, every ECU in the system can run all three variants of AES. Section 4.6 
discusses the complete encryption/decryption flow in detail. Moreover, the key size 
for encrypting/decrypting messages is assigned based on the security requirements 
of a message, which is discussed in detail in Sect. 4.3.
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3.5 Definitions 

The SEDAN system model has the following inputs:

• Set of heterogeneous (1 or 2 core) ECUs N = {1, 2, . . .  , Ɲ};
• Set of automotive applications A = {1, 2, . . .  , λ} and set of tasks in the system 

T = {T1 ∪ T2 . . .  ∪ Tλ}, where Ta is the set of tasks in an application a ∈ A;
• Each task in T has a unique task ID TID = {1, 2, . . .  , G};
• After task allocation, each task t is represented as tq,n where q ∈ TID is the task 

ID, and n ∈ N is the ECU to which the task t is mapped;
• Every task t is characterized by the 4-tuple {ãq,n, . ̃pq,n, . ˜dq,n, ẽq,n}, where ãq,n„ 

. ̃pq,n, . ˜dq,n, and ẽq,n represent the arrival time, period, deadline, and execution 
time of the task, respectively;

• For each ECU n ∈ N, Sn = {s1, n, s2, n . . . , . sKn,n} is the set of signals transmitted 
from the ECU; Kn is the total number of signals in n;

• Every signal si,n ∈ Sn, (i = 1, 2 . . . , Kn) is characterized by the 4-tuple { . ai,n, 
. pi,n, . bi,n, . d i,n}, where . ai,n . pi,n, . bi,n, and . d i,n are the arrival time, period, deadline, 
and data size (in bytes) of signal si, n respectively;

• After frame packing, each ECU has a set of messages Mn = {m1, n, m2, n, . . . , 
. mRn,n}, where Rn is the total number of messages in n;

• Every message mj,n ∈ Mn, (j = 1, 2, . . . , Rn) is characterized by the 5-tuple {aj,n, 
pj,n, dj,n, bj,n, �j,n, ψj,n} where aj,n, pj,n, dj,n, bj,n, �j,n, and ψj,n are the arrival 
time, period, deadline, data size (in bytes), and minimum security requirement of 
the message mj,n (see Sect. 4.3), respectively. ψj,n is a binary variable that has a 
value = 1 when the security constraints of the message are satisfied. Otherwise 
ψj,n = 0; 

Problem Objective: In this work, we focus on maximizing security (aggregate 
security value, described in Sect. 4.4) while synthesizing a design time schedule 
for time-triggered tasks and messages that satisfy three types of constraints: (i) real-
time timing and deadline constraints for tasks and messages in all applications; (ii) 
minimum security constraints for each message in the system, (iii) ensure no ECU 
utilization exceeds 100%. 

4 SEDAN Framework: Overview 

A high-level overview of the SEDAN framework is illustrated in Fig. 4, with all the  
design time steps in gray boxes and the runtime steps in green boxes. The steps 
involved in the SEDAN framework can be mainly classified into two categories: 
(i) security operations that improve the security of the system and (ii) real-time 
operations that satisfy the application’s real-time performance objectives. At design 
time, SEDAN begins by allocating tasks to available ECUs in the system and 
generates the set of signals needed for inter-task communication. These signals are 
packed into messages using a frame packing approach, and security requirements
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Fig. 4 Overview of the SEDAN framework 

are derived for each message. The size of the keys used for encryption and 
decryption of the messages are optimized using a greedy randomized adaptive 
search procedure (GRASP) metaheuristic. At runtime, SEDAN starts with setting 
up the session keys, which will be used for generating keys used for authenticated 
encryption and decryption of messages. Lastly, a runtime scheduler schedules 
messages at runtime by using the previously generated keys and the optimal 
design time schedule. Each of these steps is discussed in detail in the subsequent 
subsections. 

4.1 Task Allocation 

This is the first step of the SEDAN framework and occurs at design time. The main 
goal of this step is to quickly allocate each task in the system to an available ECU 
that results in uniform real-time utilization across ECUs. This makes the load-
balancing task allocation scheme a good choice for this step. Moreover, if there 
are some tasks that need to be allocated to certain ECUs, e.g., due to being in 
close proximity to sensors or actuators that they use heavily (or exclusively), we 
pre-allocate those tasks and do not include them in the set of mappable tasks for 
allocation. 

For any task (tq), the real-time utilization of the task ( . ˜Utq ) is defined as the ratio 
of execution time (ẽq) and the period (p̃q) of the task, as shown in (1). The real-time
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utilization of any given ECU ( . ˜Un) is the sum of the real-time utilizations of the 
tasks ( .˜Utq,n) allocated to that ECU, and is computed using (2): 

.˜Utq = ẽq

p̃q

(1) 

.˜Un =
Gn
∑

q=1

(

˜Utq,n

)

(2) 

Our proposed load-balancing task allocation scheme begins by initializing all the
ECUs’ real-time utilization ( . ˜Un) to zero and computing the real-time utilization of 
all the tasks ( . ˜Utq ) in the system using (1). The allocation subsequently occurs in 
three steps: (i) the set of ECUs in the system is sorted in the increasing order of the 
ECU real-time utilization ( . ˜Un); (ii) the first unallocated task in the set of tasks (T), 
sorted in decreasing order of real-time utilization, is selected and allocated to the 
least loaded ECU (i.e., ECU with the lowest utilization); and (iii) the task’s real-
time utilization ( .˜Utq ) is added to the allocated ECU’s real-time utilization ( . ˜Un). 
These three steps are repeated until all the unallocated tasks in T are allocated. If 
any task, t ∈ T, cannot be allocated to an ECU during this process, then there exists 
no solution for the given configuration. Otherwise, at the end of this step, each task 
in the system is allocated to an ECU. After the task allocation step, the set of signals 
Sn is generated for each ECU based on the precedence constraints of tasks in the 
application. 

We also explored other allocation schemes that minimize the total communi-
cation volume between ECUs. However, it resulted in allocations that resulted in 
non-uniform load across ECUs, which violated the ECU utilization constraints after 
implementing security mechanisms. 

4.2 Frame Packing 

Frame packing is defined as the grouping of signals in each ECU into messages. 
This is done to maximize the bandwidth utilization of the communication bus. 
The set of signals generated by the task allocation step is given as the input to 
this step. The following conditions need to be satisfied to successfully pack the 
signals into messages: (i) for any two signals to be packed into the same message, 
they must originate from the same source ECU; (ii) signals with the same periods 
are packed together to avoid multiple message transmissions; and (iii) the total 
computed payload of the message is the sum of the size of the cipher generated 
by AES and the size of the MAC; and should not exceed the maximum possible 
FlexRay payload size. Because of the nature of AES, the size of the generated cipher 
is independent of the key size. However, the size of the cipher is dependent on the
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input size to the AES, which is the sum of signal sizes grouped in that message. 
Thus, the cipher size can be expressed as �sum of signal sizes in the message/16�, 
and the size of MAC is set to the maximum of the minimum required MAC size (49 
bits, explained further in Sect. 4.3; a designer can also use a value greater than 49). 
In this work, we adapted a fast greedy frame packing heuristic proposed in [2] and 
enhanced it by integrating the computed payload size definition to generate a set of 
messages for each ECU. 

4.3 Deriving Security Requirements 

In this subsection, we present a novel methodology used in SEDAN to derive 
security requirements for each message. We employ a risk classification scheme 
defined in ISO 26262 [44] known as the Automotive Safety Integrity Level (ASIL) 
as the basis for deriving security requirements for each message in the system. 
Four different ASILs: ASIL-A, ASIL-B, ASIL-C, and ASIL-D, are defined in 
the ISO 26262 standard to classify applications based on their risk upon failure. 
Applications classified as ASIL-D have the lowest failure rate limit indicating high 
criticality, while ASIL-A applications are less critical and subject to fewer security 
requirements. The underlying assumption for deriving security requirements based 
on ASIL groups is that the applications that demand high safety levels are more 
critical and need to be better protected from cyber-attacks. Hence, the higher the 
safety requirement, the higher the security requirement. 

In this work, we define two security requirements for every message based on 
their ASIL classification. 

The first requirement is the minimum key size required to encrypt the message 
depending on its ASIL group, which is as follows: ASIL-A (128 bits), ASIL-B (128 
bits), ASIL-C (192 bits), and ASIL-D (256 bits). The following methodology is 
followed to derive ASIL groups for all messages in the system. Each application is 
assigned an ASIL depending on the criticality and tolerance to failure. Each task in 
that application inherits the same ASIL, and so do the signals generated by these 
tasks. When these signals are packed into messages, the highest ASIL group among 
the signals in that message is assigned as the ASIL group ( .mAG

j,n ) of the message. 

We also assign a security score .

(

mSS
j,n

)

to each safety-critical message depending on 

its assigned key size. In this study, we consider the following score based on the key 
size: 128-bit key (score = 1), 192-bit key (score = 2), and 256-bit key (score = 3). 

Additionally, each message is assigned a weight value called ASIL weight .
(

mAW
j,n

)

. 

A high  ASIL weight value indicates a high message criticality and is analogous to 
a Risk Priority Number (RPN) that can be calculated using Hazard Analysis and 
Risk Assessment (HARA) approaches [45]. Using the above-mentioned metrics, 

we derive a security value .
(

mSV
j,n

)

for each message as shown in (3). Lastly, to
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quantitatively compare the security of different systems, we propose a metric called 
Aggregate Security Value (ASV), which is computed using (4). 

.mSV
j,n = mAW

j,n ∗ mSS
j.n (3) 

.Aggregate Security Value (ASV) =
∑Ɲ

n=1

∑Rn

j=1

(

ψj,n∗mSV
j,n

)

∑Ɲ
n=1 Rn

(4) 

where ψ j,n, and Rn are defined in Sect. 3.5. ASV is the ratio of the sum of security 
values of all messages in the system for which minimum security requirements are 
satisfied to the total number of messages in the system. ASV can be used to compare 
the security of various systems using the same encryption scheme. A system with a 
higher ASV value is more secure than a system with a lower value. 

The second requirement is the minimum number of Message Authentication 
Code (MAC) bits required for a message based on the assigned ASIL group. This 
is derived using the failure rate limit of the ASIL group of the message. The 
failure rate limit is typically expressed as FIT (Failure in Time), which denotes 
the maximum number of acceptable failures per 1 billion hours of usage. Based 
on the specifications in the standard, ASIL-D has 10 FIT, ASIL-B and C have 100 
FIT, and ASIL-A has 1000 FIT as their maximum limits. In other words, ASIL-D 
applications need less than 10−8 failures per hour, while ASIL-A applications can 
have up to 10−5 failures per hour. In this work, we derive the security requirements 
for each message in the system using the following method:

• Consider a message (mj,n) with period (pj,n) (in milliseconds);
• The number of transmissions of mj,n per second are 103/pj,n.
• The number of transmissions of mj,n per hour are (3600*103)/pj,n.
• If there are k bits in the MAC field of a message, the probability of failure due to 

an attacker guessing a valid MAC (e.g., using brute-forcing or other methods) is 
2-k for one transmission of that message;

• Therefore, the probability of failure due to a compromised MAC for an hour-long 
transmission is ((3600*103)/pj,n)*2-k.

• For an ASIL-D application, the probability of failure needs to be less than 
10−8 per hour, i.e., ((3600*103)/pj,n)*2-k ≤ 10−8.

• Thus, the minimum number of MAC bits (�j,n) required for the message (mj,n) 
according to the ASIL-D requirement is: 

.�j,n(D) = k ≥
⌈

Q + log2

(

1

pj,n

)⌉

(5) 

where Q is a constant and has a value of 48.35 for ASIL-D. Similarly, the minimum 
number of MAC bits required (�j,n) for other ASIL groups are calculated using



134 V. K. Kukkala et al.

(5) by using Q = 45.04 for ASIL-B and ASIL-C and Q = 41.72 for ASIL-A. The 
different values of Q for each ASIL group are computed based on the FIT limit of 
that ASIL. Thus, for an ASIL-D message, for the most stringent (smallest) period, 
we observed (=1 ms), �j, n(D) = 49 bits (thus this is used in frame packing). 

4.4 Optimizing Message Key Sizes Using GRASP 

This is the last step of the design time process in SEDAN. This step aims to assign 
an optimal key size for each message in the system that maximizes the ASV while 
meeting all the security requirements and real-time deadline constraints. Addition-
ally, we model the overhead caused by the security tasks (i.e., encryption and 
decryption) in terms of the additional ECU utilization (security-induced utilization) 
and latency (response time) of the message. For any given message (mj,n) that is 
encrypted or decrypted using a block cipher, the security-induced ECU utilization 
.(Umj,n) due to the message is computed using (6). 

.Umj,n =
(⌈

bj

bsize

⌉

∗ Tencr/decr

pj

)

(6) 

where bsize denotes the block size in bytes, and Tencr/decr represents the time taken
to encrypt or decrypt one block of data. Since AES is the encryption algorithm used
in this study, the above equation can be re-written as shown in (7). 

.Umj,n =
(⌈

bj

16

⌉

∗ TAES(X)

pj

)

(7) 

where TAES(X) is the time taken to encrypt or decrypt one block (16 Bytes) of data
using AES with an X-bit long key (where X can be 128, 192, or 256). The security-
induced utilization of any ECU .

(

Un

)

(computed using (8)) is the sum of the security-
induced utilizations of all transmitted and received messages .

(

Umj

)

for that ECU. 
Hence, the total utilization of any ECU (Un) is the sum of the real-time utilization 
.
(

˜Un

)

and security-induced utilization ( . Un) as shown in (9). Moreover, to avoid 
uncertainties and undesired latency overheads, we always ensure that the utilization 
of any ECU does not exceed 100%. 

.Un =
∑Rn

j=1
Umj,n

(8) 

.Un = ∼
Un + Un (9)
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Fig. 5 Overview of the GRASP-based optimal message key size allocation step in SEDAN 

In this study, we propose a heuristic approach to achieve this goal based on the 
greedy randomized adaptive search procedure (GRASP) metaheuristic [46]. An 
overview of this approach is illustrated in Fig. 5. Our proposed approach begins 
by taking the set of messages from the output of frame packing (Sect. 4.2) and the 
derived security requirements (Sect. 4.3) as inputs. An initial solution is generated 
by assigning the minimum required key sizes for all the messages based on the 
derived security requirements. This initial solution is subjected to a feasibility check 
which investigates the: (i) total ECU utilization (Un) for all ECUs and (ii) number 
of missed deadlines using a design time scheduler. Moreover, we adapt the fast 
design time scheduling heuristic proposed in [2] to generate an optimal design 
time schedule. The initial solution is given to the GRASP only when there are no 
utilization violations at any ECU (i.e., Un ≤ 100% ∀ ECUs) and deadline misses for 
any message. If any of the above-mentioned conditions fail, the optimal message 
key size allocation step terminates, and the system does not have a feasible solution. 
GRASP intelligently explores various message key sizes (that are greater than or 
equal to the minimum key size requirement for a message) and design time schedule 
configurations (i.e., assigning messages and ECUs to FlexRay static segment slots) 
to select a solution that maximizes ASV, with no security violations, real-time 
deadline misses, and ECU utilization violations (i.e., no ECU utilization exceeds 
100%). 

The GRASP metaheuristic is an iterative process in which each iteration has two 
major phases: (i) greedy randomized construction phase that tries to build a local 
feasible solution and (ii) local search phase that tries to investigate the neighborhood 
for a local optimum. In the end, the best overall solution is chosen as the final 
solution. The greedy randomized construction phase has two key aspects- the 
greedy aspect and the probabilistic aspect. The greedy aspect involves generating
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a Restricted Candidate List (RCL), which consists of the best elements that will 
improve the partial solution (solution within the greedy randomized construction 
phase). And the probabilistic aspect involves selecting a random element from 
the RCL, which will be incorporated into the partial solution. It is important to 
note that the solutions generated during the greedy randomized construction phase 
are not necessarily optimal. Hence, a local search phase is used to improve the 
partial solution from the greedy randomized construction phase. The local search 
is an iterative process that uses destroy and repair mechanisms to search for local 
optimum within a defined neighborhood. The best solution is updated if an improved 
solution is found during the local search. 

Algorithm 1: GRASP Based Optimal Message Key Size Assignment 

Algorithm 1 presents an overview of our GRASP-based optimal message key 
size assignment approach. The inputs to Algorithm 1 are a set of nodes (N), a set 
of all the messages in the system (M), and the minimum required message key size 
assignment (init_solution), which is the initial solution given to GRASP to reduce 
the search space. In addition, the tunable parameters such as maximum iterations 
(max_iterations), RCL threshold (α), and a destroy-repair threshold (β) are given as  
input to GRASP to efficiently look for solutions in the search space. The algorithm 
starts by assigning the init_solution to the best_solution in step 1. GRASP iteratively 
tries to find a better solution in steps 2–8 until max_iterations is reached. In each 
iteration greedy_randomized_construction() in step 3, generates a local feasible 
solution (current_solution) which is updated using local_search() in step 4. If a  
better solution is found at the end of the local search phase, the best_solution is 
updated in steps 5–7. The output of the algorithm is an optimal message key size 
for every message and a feasible design time schedule with no deadline misses, no 
security violations, and no ECU utilization exceeding 100%. Note: Every solution in 
GRASP consists of two attributes (i) key sizes for all the messages and (ii) ASV of 
the system as a result of the key size assignment. Moreover, every solution generated 
by GRASP ensures that no message is allocated a key size less than the key size 
assigned in the initial solution, and the overall system ASV is always greater than 
the ASV of the initial solution.
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4.4.1 Greedy Randomized Construction Phase 

The greedy randomized construction phase tries to generate a feasible solution in 
every iteration of GRASP by increasing the key sizes of some of the non-ASIL-D 
messages. The goal here is to maximize the ASV of the system without any deadline, 
security, and ECU utilization violations. Moreover, it also ensures that no message is 
allocated a key size less than the key size allocated in the initial solution (minimum 
required key size). The solution generated by the greedy randomized construction 
phase will be given as the input to the local search phase for refinement. 

Algorithm 2: greedy_randomized_construction (α, N, M) 

Algorithm 2 shows the pseudocode of the greedy randomized construction phase 
where the inputs are: set of nodes (N), set of messages (M), and RCL threshold (α). 
A set of non-ASIL-D messages ( . ˜M) is generated in step 1. In step 2, the security 
score of each message (mSS) in . ˜M is incremented by one, and the security values of 
the messages (mSV ) are updated using (3). The . ˜M is sorted in the increasing order 
of mSVand the ties are resolved based on the message period in step 3. In steps 4– 
15, the algorithm tries to find a local solution by incrementing key sizes for some 
messages that would result in no deadline, security, and ECU utilization violations. 

The minimum (SVmin) and maximum (SVmax) security values of messages in . 
∼
M are 

computed in steps 5, 6 respectively. The RCL consists of messages in . 
∼
M , that will 

result in increased ASV when their key size is incremented. Hence, the messages 
whose security value (mSV ) is within the interval [SVmin + α (SVmax - SVmin), SVmax] 
are added to the RCL in step 7. This is the greedy aspect of the greedy randomized 
construction step. Moreover, GRASP employs an RCL threshold (α ∈ [0, 1]) to



138 V. K. Kukkala et al.

regulate the quality of the generated RCL. The threshold (α) controls the amount of 
greediness and randomness in the algorithm. The α = 1 case corresponds to a pure 
greedy approach, while α = 0 is equivalent to a purely random approach. A random 
message ( . m) is selected from the RCL (probabilistic selection) in step 8, and its 
key size is incremented to the next higher key size in step 9 (i.e., 128 → 192 or 
192 → 256). The feasibility_check() in step 10, checks for any (i) ECU utilization 
violations (i.e., any ECU utilization >100%) and (ii) deadline misses using the 
design time scheduling heuristic proposed in [2]. If any of the above-mentioned 
checks fail, the feasibility_check() will return false and reverts the key size of ( . m) 
back to its previous key size in step 11. Moreover, the mSV of . m is re-computed after 
decrementing the mSS by one in step 12. Otherwise, the key size increment is left 

unchanged. The message ( . m) is removed from . 
∼
M and the steps 5–14 are repeated 

until there are no messages left in . 
∼
M . Lastly, in step 16, the current message key 

size assignment and the ASV of the system (using calculate_ASV()) are assigned to 
the current_solution. The function calculate_ASV() is implemented using (4). 

4.4.2 Local Search Phase 

The local search phase tries to iteratively improve the solution found in the greedy 
randomized construction phase by investigating a defined neighborhood in the 
search space. The local search phase achieves this by using destroy and repair 
methods, which remove a part of the solution and recreate a feasible solution, 
respectively. In this study, we define the neighborhood as the set of solutions that 
are generated by randomly changing key sizes for β number of messages. The 
parameter β is known as the destroy-repair threshold, which controls how much 
to destroy or repair in each iteration of the local search. These random changes 
in message key sizes help in recovering from suboptimal ordering (sorting in the 
increasing order of msv) of messages in the greedy randomized construction phase. 

The pseudocode of the local search procedure is illustrated in Algorithm 3. 
The destroy() function in steps 1–4 randomly selects a message from the set of 
messages that are allocated a key size higher than the minimum required key size 
and decreases the key size to the next smaller key size. The function min_score() 
in step 2 returns the minimal security score demanded by the assigned ASIL group. 
The repair() method in steps 5–18 aims to increase the key size for β non-ASIL-
D messages and computes the local solution using local_solution(). The  repair() 
step always selects a message that results in a maximum increase in the ASV 
of the system (as shown in step 8). The ties in step 8 are resolved based on the 
ASIL group, and if multiple messages have the same ASIL group, one message is 
selected at random. In steps 19–29, the local search algorithm iteratively explores 
the neighborhood around the current_solution using destroy() and repair() to find 
a better solution. In each iteration, the value of β is chosen randomly from [2, 
βmax]. In steps 21–24, the function destroy() is modeled as a stochastic process 
that is controlled by the key decrease probability (pkd). Lastly, the current_solution
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is updated if a better local_solution is found in the repair method in steps 25–28. In  
each iteration of GRASP, at the end of the local search phase, a local optimum is 
found if there exits one. Otherwise, the solution remains unchanged from the greedy 
randomized construction phase. 

Algorithm 3: local_search (β, N, M, current_solution 

Inputs: Destroy-repair threshold (β), set of nodes (N), set of all messages 
(M), and current_solution 
1:     function destroy (M) 

2:           Md = {m ∈ M | > min_score( )} 

3:           Decrement the key size of a random message ( ) in Md 

4:     end function 
5:     function repair (β, M, N) 

6:           Mr = {m ∈ M | ≠ ASIL-D} 

7:           while (β > 0) or (Mr ≠ { }) do 
8:                 = {m ∈ Mr | ∆ASV is maximum} 

9:                 Increment the key size of the message ( ) 

10:               if feasiblity_check( ) == false do 
11:                     Revert the key size of ( ) back to the previous key size 

12:               else do 
13                      β = β – 1 

14:               end if 
15:               Remove ( ) from Mr 

16:         end while 
17:         return {calculate_ASV( ), message key size assignment} 

18:   end function 
19:   for local_iteration = 1,…, max_local_iterations do 
20:          β = random_integer(2, βmax) 

21:          if pkd > random(0,1) do 
22:                 destroy (M) 

23:                 β = β – 1  

24:          end if 
25:          local_solution ← repair (β, M, N) 

26:          if local_solution > current_solution do 
27:                 current_solution ← local_solution 
28:          end if 
29:   end for 
Output: Local optimum with in the defined neighborhood- if there exists 
one; Otherwise, the same solution as greedy_randomized_construction( ). 

It is important to note that when the message key size is changed, the size of 
the output cipher and MAC (or the message size) remains unchanged. The key 
size only affects the time taken to encrypt/decrypt the message, which impacts 
the security-induced utilization of the sender and receiver ECUs. Moreover, the 
real-time utilization of the ECUs also remains unchanged, as the execution time 
of time-triggered tasks does not change with changing message key sizes.
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Fig. 6 Overview of steps involved in setting up a session key using the STS protocol with ECC 

4.5 Setting Up Session Key 

In this subsection, we discuss the first runtime step of the SEDAN framework. It 
involves settings up session keys required for generating keys that will be used 
for the encryption and decryption of messages. This is a crucial step in improving 
the security of the vehicle, as using the same key every time for encryption 
and decryption for the entirety of the vehicle’s lifetime makes the system highly 
vulnerable to cyber-attacks. Hence, during runtime, we generate a new key for every 
session (called session key), which will be used for generating keys that will be used 
for encryption and decryption of messages. 

A session is defined as the time duration between the start of a vehicle to turning 
off the vehicle. Since we use symmetric key encryption, all ECUs in the system 
need to have the same secret key to function properly. As traditional automotive 
networks do not have any inbuilt security features, exchanging the session keys 
between ECUs over an unsecured channel is a major challenge. In this work, we 
adapt the Station-to-Station (STS) key agreement protocol [47], which is based on 
the famous Diffie-Hellman key exchange method [45], to the automotive domain 
(as simple Diffie-Hellman is vulnerable to man-in-the-middle attacks), to securely 
transfer session keys between ECUs over an unsecured FlexRay bus. Moreover, 
within the STS protocol, we employ elliptic curve cryptography (ECC) as the basis 
for key agreement instead of RSA. This is mainly because ECC is faster and has 
a lower memory footprint for the same level of security compared to the RSA (as 
discussed in Sect. 5.2). The overview of steps involved in STS protocol with ECC 
for two ECU cases is illustrated in Fig. 6. 

The STS approach begins with two ECUs agreeing upon a set of domain 
parameters that define the elliptic curve. These parameters are shown in the first 
step in Fig. 6, where the parameter p defines the field, a and b define the elliptic 
curve, G is the generator and n is its order, and h is the co-factor. Additionally, 
each ECU utilizes an asymmetric key pair for authentication operations (sign and 
verify). In the second step, each ECU generates a random private number (d1 in
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ECU 1 and d2 in ECU 2), which is not shared with any other ECU in the system. 
In step 3, ECU1 performs an elliptic curve scalar multiplication (hereafter referred 
to as scalar multiplication) of the private number d1 and generator G. The output 
Q1 is transmitted to ECU2 over an unsecured FlexRay bus. In step 4, a similar 
scalar multiplication between d2 and G is performed at ECU2, but the output Q2 

is not sent to ECU1. ECU2 then computes the common secret key K (session key) 
by performing the scalar multiplication of the private number d2 and the received 
output Q1. In step 5, ECU2 computes the signature (S2 ()) of the concatenation of 
Q2 and Q1 (represented as Q2 || Q1) using its private key of the asymmetric key 
pair. The output signature is encrypted (Ek ()) using the computed session key from 
the previous step, which produces the cipher α2. The scalar multiplication output 
(Q2), output cipher (α2), and certificate (Cert2) are all transmitted to ECU1 over the 
unsecured FlexRay bus. The certificate is issued by a trusted certificate authority 
(CA), which is used to prove the ownership of a public key. The certificate consists 
of the public key of the owner and signature of the CA and will be programmed 
in the ECUs by the manufacturer. The public key of the CA is used to verify the 
certificate and extract the public key of the owner. In step 6, when the ECU1 receives 
the output of step 5 from ECU2, it performs a scalar multiplication of private 
number d1 and Q2 to produce the shared secret key K (session key). Moreover, 
ECU1 utilizes the key K to decrypt (Dk ()) the received cipher (α2) and verifies 
(V1()) the decrypted output using the public key extracted from the certificate of 
ECU2 (Cert2). The session key K is accepted by ECU1 only when the verification 
is successful, implying a successful authentication of ECU2. In step 7, ECU1 
computes the signature (S1()) of the concatenation of Q1 and Q2 (represented as 
Q1 || Q2) using its private key of the asymmetric key pair. The resulting output is 
encrypted using the key K that generates the cipher (α1), which is transmitted to 
ECU2 along with the certificate (Cert1). Lastly, in step 8, at ECU 2, the received 
cipher (α1) is decrypted using the key K, and the output is verified using the public 
key extracted from the certificate of ECU1 (Cert1). The session key K is accepted to 
use for the session only when the verification is successful. Thus, all the ECUs are 
authenticated, and a common secret key (session key) is established at every ECU 
without actually exchanging the actual key over the unsecured bus. Additionally, 
the STS protocol uses no timestamps and provides perfect forward secrecy. Using a 
standard AES key schedule at every ECU, this session key is then used to generate 
128-bit, 192-bit, and 256-bit keys. These resulting keys are used for encrypting and 
decrypting messages at runtime. Moreover, in order to avoid interference with the 
time-critical messages, the messages related to the security operations utilize a small 
number of reserved FlexRay frames. To speed up the startup process, we assume 
that the manufacturer pre-programs some of the session keys during manufacturing. 
New keys are generated continuously during the idle time of an ECU, saved in local 
memory, and used in future sessions. To further speedup this process, the public keys 
of the trusted ECUs can be pre-programmed in the ECU’s tamper-proof memory, 
thereby avoiding the verification of the certificate, which saves both computation 
time and network bandwidth.
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Fig. 7 (a) Authenticated encryption at sender ECU; (b) Authenticated decryption at receiver ECU 

It is essential to highlight that, even if there was an attacker already in the system 
during the key setup phase, the attacker could not compute the secret key with the 
publicly available results due to the discrete logarithm problem [48]. Moreover, 
the common man-in-the-middle attack that breaks the standard Diffie-Hellman 
approach [49] fails with STS as the attacker cannot authenticate successfully. 

4.6 Authenticated Encryption/Decryption 

In this subsection, we discuss the various steps involved in authenticated encryption 
employed in SEDAN. Authenticated encryption refers to simultaneously providing 
a message with confidentiality and authenticity, which is a well-known technique in 
the literature. We discuss this step in detail here to highlight how SEDAN leverages 
this process to achieve a more secure runtime system. The authenticated encryption 
and decryption phases are illustrated in Fig. 7a, b, respectively. 

The authenticated encryption at the sender ECU begins with an XOR operation 
between the plain text (message data) and a nonce (random number), and the result 
is encrypted using AES with the key size assigned to the message (as discussed in 
Sect. 4.4). The XOR operation with a nonce is performed to avoid generating the 
same cipher every time when the input data is the same for long durations. Even 
though protecting the system from side-channel attacks is not within the scope of 
this work, this simple step could be the first step in preventing information leakage. 
A cryptographic hash function (MD5) takes the output cipher and the key used for
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encryption to produce a hash, which is XORed with a nonce to generate the MAC. 
The output MAC size is truncated if needed and set to be at least the size computed 
in Sect. 4.3. The generated MAC is then transmitted with the encrypted message 
data in the payload section of the FlexRay frame. 

The authentication decryption at the receiver ECU begins by authenticating the 
sender ECU of a received message. The received cipher and the selected key are 
given to the same cryptographic hash function whose result is XORed with a nonce 
to generate a local MAC. The authentication of the sender ECU is successful only 
when the local MAC matches the received MAC. Otherwise, the authentication 
process fails, and the received message is discarded. After successful authentication 
of a sender ECU, AES decryption is initiated, and the output is XORed with the 
nonce to extract the original message data as plain text. 

As discussed in Sect. 3.3, we mainly focus on protecting the system from 
masquerade and replay attacks as they are the most common, hard to detect, and 
severely impact system safety and performance. The system is protected against 
masquerade or impersonation attacks by authenticating the ECUs in the system 
using the STS protocol, which establishes the session keys used for encryption and 
decryption only after successful authentication. The attacker fails to authenticate 
due to the lack of trusted certificates and cannot masquerade as a legitimate ECU. 
Moreover, the MAC generated in the authenticated encryption protects the system 
from replay attacks. During the MAC generation, it is essential to XOR the output 
of the hash function with the nonce as it makes the messages resilient to replay 
attacks. During a replay attack, the authenticity of the replayed message fails as the 
nonce used in computing the local MAC at the receiver is different from the nonce 
used in generating the received MAC at the sender. This mismatch in MAC will 
result in discarding the message sent by the attacker. Moreover, in the event of a 
man-in-the-middle attack, where the attacker tries to modify the message payload, 
the MAC comparison fails, resulting in protecting the integrity of the messages. 
Also, if an attacker eavesdrops on the network, the attacker would still be unable 
to decrypt the encrypted messages, as no keys are exchanged on the network. In this 
manner, we achieve confidentiality of the message data. Hence, using the proposed 
SEDAN framework, we were able to achieve all the security objectives, namely 
confidentiality, integrity, and ECU authenticity (as discussed in Sect. 3.4). 

4.7 Runtime Message Scheduler 

Runtime message scheduling is the last step in the SEDAN framework. It takes the 
unique values of the cipher and MAC generated in the previous step and packs them 
into FlexRay frames generated during the frame packing step (Sect. 4.2). Other 
control fields, such as the fields in the header and trailer segments that are required 
for the transmission of FlexRay frames, are also added by the scheduler. The runtime 
scheduler uses the design time generated message schedule and interacts with the 
FlexRay protocol engine to schedule messages on to the FlexRay bus at runtime.
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5 Experiments 

5.1 Experimental Setup 

We evaluated the performance of our proposed SEDAN framework by comparing 
it with the best-known prior work [21]. In [21], the authors proposed a technique 
that uses simulated annealing to minimize the end-to-end latencies of all in-vehicle 
network messages and uses symmetric key encryption with the time-delayed release 
of keys to improve security in a vehicle system. Since [21] does not support 
variable key sizes, three different variants of [21] are implemented using AES 
encryption with fixed key sizes of 128, 192, and 256 bits, which are referred to 
as ‘Lin et al. AES-128’, ‘Lin et al. AES-192’, and ‘Lin et al. AES-256’ respectively 
in the experimental results. We generated several test cases based on automotive 
network and ECU computation data extracted from a real-world vehicle (2016 
Chevrolet Camaro) that we have access to. We modeled the network and ECU 
computation data as directed acyclic graphs (DAGs), which were generated using 
TGFF [50]. We developed multiple synthetic test cases by scaling this data based 
on different combinations of the number of ECUs, number of applications, number 
of tasks in each application, and the range of periods. Moreover, we assume that 
the deadline for both tasks and messages are equal to their period. Lastly, we 
considered the FlexRay 3.0.1 [51] protocol with the following network parameters 
for all experiments: cycle duration of 5 ms with 62 static segment slots, with a slot 
size of 42 bytes, and 64 communication cycles. 

5.2 Benchmarking Encryption Algorithms 

To accurately capture the runtime behavior of session key generation and authenti-
cated encryption/decryption steps, we implemented various encryption algorithms 
in the software. We implemented AES-CBC with key sizes of 128, 192, and 256 
bits, RSA with key sizes of 512, 1024, 2048, and 4096 bits, and the ECC with key 
sizes of 256 and 384-bits using OpenSSL [52]. All these algorithms were executed 
on an ARM Cortex-A9 CPU on a ZedBoard, which has similar specifications as 
state-of-the-art ECUs [53, 54]. 

Table 1 shows the average AES encryption/decryption times with different 
standard key sizes for one block of data (16 Bytes) on an ARM Cortex A9 CPU. 
These values are used to model the latency overhead on each message due to 
the added security mechanisms at design time. They are also used in scheduling 
decisions and computing the response time of the messages. The encryption and 
decryption times of RSA with 512, 1024, 2048, and 4096-bit keys and ECC with 
256 and 384-bit keys are also shown in Table 1. These values are considered 
in choosing between RSA and ECC as the cryptographic scheme in the STS 
protocol. The NIST recommends a key size of 2048-bits for RSA [55], while
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Table 1 Execution time (ms) of AES, RSA, and ECC on ARM Cortex A9 

Cryptographic scheme Key size Encryption / Decryption 
AES 128 0.35 

192 0.393 
256 0.415 

Cryptographic scheme Key size Public key operation Private key operation 
RSA 512 2.01 19.89 

1024 6.48 139.15 
2048 23.65 911.8 
4096 91.52 6283.2 

ECC 256 59.8 17.1 
384 182.4 50.4 

NSA recommends a 256-bit key size for SECRET level and a 384-bit key size 
for TOP SECRET level using ECC [56]. Moreover, ECC with 224, 256, and 384-
bit key sizes provides similar security as RSA with 2048, 3072, and 7680 key 
sizes, respectively [57]. In this work, we consider the minimum key sizes based 
on the above-mentioned recommendations. From Table 1, it can be seen that RSA is 
faster for verifying signatures (operation performed using the public key) and much 
slower for generating signatures (operation performed using the private key). On 
the other hand, ECC is much faster for generating signatures while relatively slower 
for verifying signatures. It is important to note that the security (provided by RSA 
using the equivalent key size) doubles when the ECC key size is increased from 256 
to 384. However, since the automotive systems are highly resource-constrained, we 
choose to employ ECC with a 256-bit key size (which still provides higher security 
than the minimum recommended key size for RSA) for cryptographic operations 
in the STS key agreement protocol. Moreover, the ECC execution time values are 
used in estimating the worst-case time required for setting up a session key, which 
is 0.24 s for a 256-bit key, while an equivalent RSA 2048 takes 3.72 s. Thus, 
it is evident that ECC is much faster than RSA for a similar level of security. 
Moreover, ECC can provide a similar level of security compared to RSA, with a 
much shorter key size. Lastly, when we profiled the MD5 hashing algorithm used 
in the authenticated encryption step, we observed that processing one block of data 
takes about 2.68 μs. 

Moreover, with the increasing complexity of automotive applications, designing 
security mechanisms that result in minimal power consumption is crucial. Hence, 
we profiled the security mechanisms studied in this work and presented the power 
consumption results in Table 2. Other overheads, such as memory consumption, are 
not explicitly modeled as most modern-day ECUs have sufficient memory to store 
the small keys needed for secure transfers. Additionally, the designer can limit the 
number of pre-computed session keys that can be stored to minimize the memory 
overhead. Based on the results in Tables 1 and 2, it is evident that ECC has lower 
computation and memory overhead than RSA for the same level of security. Hence, 
in SEDAN, we authenticate the ECUs in the system and setup session keys using the
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Table 2 Power consumption of AES, RSA and ECC on ARM Cortex A9 

Cryptographic scheme Key size Encryption / Decryption 
AES (mW) 128 57.76 

192 58.04 
256 60.19 

Cryptographic scheme Key size Public key operation Private key operation 
RSA (W) 512 0.28 0.65 

1024 0.34 1.22 
2048 0.72 1.91 
4096 1.08 2.58 

ECC (W) 256 0.62 0.33 
384 0.93 0.58 

STS protocol using the ECC. Additionally, we use AES to encrypt and decrypt the 
messages in the system using the keys computed from the session key. 

5.3 GRASP Parameter Selection 

To get an efficient solution using the GRASP, it is essential to select the appropriate 
values for the threshold parameters α and βmax. We ran a series of simulations 
by changing the value of α from 0 to 1 with an increment of 0.2, and the greedy 
randomized construction phase was run 1000 times using different input test cases. 
We observed that the mean solution approached a greedy solution, while the 
variance approached zero as α tends to 1. On the other hand, when α is small and 
close to zero, the mean solution approaches a random solution with high variance. 
Therefore, we selected α = 0.8, which provided a good quality solution to the local 
search phase that resulted in a near greedy solution in the presence of a relatively 
large variance. 

Moreover, we observed that βmax = 3 provided enough randomness to look for 
other solutions in each iteration of the local search phase. A higher value of βmax 

could result in an exhaustive local search leading to unreasonably long computation 
times. Also, the minimum value of β needs to be 2 to increase the key size of at 
least one message when the key size is reduced in the event of a destroy operation. 
This prevents the generation of a solution that results in lower ASV compared to 
the solutions in previous iterations. Lastly, a relatively small value for pkd = 0.3 is 
chosen to avoid frequent key size decrements.
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5.4 Response Time Analysis 

In this subsection, we present the response time analysis by comparing our proposed 
SEDAN framework with the three variants of [21]. Response time of a message is 
defined as the end-to-end latency, which is the aggregate of the time for encryption 
and MAC generation, and queuing delay at the sender ECU; transmission time on 
the Flexray bus, and the time for MAC verification and decryption at the receiver 
ECU. We evaluated our proposed SEDAN framework, and the comparison works 
using three different test cases: (1) low input load- system with 5 ECUs (3 single-
core and 2 dual-core) and 77 tasks that produced 57 (time-triggered) signals; (2) 
medium input load- system with 12 ECUs (9 single-core and 3 dual-core) and 126 
tasks with 93 signals; and (3) high input load- system with 16 ECUs (12 single-core 
and 4 dual-core) and 243 tasks with 196 signals. The average message response 
time for the low, medium, and high input load cases with their deadlines on the x-
axis is illustrated in Figs. 8(a–c). The confidence interval on each bar represents the 
minimum and maximum average response time of messages. The dashed horizontal 
lines represent different message deadlines. The number on top of each bar is the 
number of deadlines misses. 

From Figs. 8(a–c), it is clear that SEDAN outperforms the three variants of 
[21] and achieves significantly lower average response times for all the messages 
under all input load cases. SEDAN achieves this by balancing security and real-
time performance goals by optimizing key sizes while meeting message security 
requirements and ensuring that all ECU utilizations are below 100%. This prevents 
the messages from experiencing additional delays on top of the latency caused by 
the encryption-decryption processes. Moreover, all three variants of [21] experience 
significant authentication delays (time taken from the transmission of the message 
to decryption of the message) compared to SEDAN, which increases the response 
time of the messages when using [21]. These high authentication delays in [21] are  
because of the time-delayed release of keys, which is employed in all three variants 
of [21]. Also, the periodic computation of keys in every session at each ECU in all 
three variants of [21] results in high ECU utilization overhead resulting in increased 
response time and power consumption. Lastly, the requirement of large message 
buffers to hold multiple messages for longer durations in [21] (due to the time-
delayed release of keys) further increases power consumption and response time. 

5.5 Security Analysis 

Table 3 shows the number of security violations in each technique under three 
different input load cases (as discussed in the previous sub-section). A security 
violation is defined as an instance when the derived security constraints (defined 
in Sect. 4.3) for a message are not met. From Table 3, it can be seen that the SEDAN 
and Lin et al. AES-256 are the only techniques that do not violate any security
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Fig. 8 Comparison of the average response time of all messages under (a) low; (b) medium, and 
(c) high input application load conditions for Lin et al. AES-128, AES-192, AES-256 [21], and 
SEDAN (with the number of missed deadlines shown on the top of the bars)
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Table 3 Total number of security violations for each input load configuration 

Framework Lin et al. 128 Lin et al. 192 Lin et al. 256 SEDAN 

Low load 28 12 0 0 
Medium load 45 16 0 0 
High load 96 31 0 0 

Fig. 9 Comparison of aggregate Security Value (ASV) under each input load configuration for 
Lin et al. AES-128, AES-192, AES-256 [21], and SEDAN (with the number of missed deadlines 
on top of bars) 

requirements. However, it is essential to note that, unlike SEDAN, Lin et al. AES-
256 has no intelligent key size assignment scheme and assigns all the messages with 
256-bit keys irrespective of their ASIL group, which helps in meeting the message 
security requirements. But this results in increased ECU utilization, which in turn 
incurs additional latency overheads for messages. Moreover, unlike all three variants 
of [21], SEDAN does not exchange or release keys on an unsecured communication 
bus. This helps prevent an attacker from gaining knowledge about the current and 
previously used keys, which provides additional security to the systems. SEDAN 
also does not require frequent key computation at each ECU within a single session, 
as done in [21], which helps reduce utilization overheads in ECUs when SEDAN is 
employed. 

Lastly, the ASV for the three input load cases, with numbers on top of each bar 
showing the number of messages that missed deadlines, is illustrated in Fig. 9. It  
can be seen that Lin et al. AES-256 achieves the highest ASV. However, this comes 
at the cost of multiple missed deadlines. Thus, SEDAN is able to satisfy minimum 
security requirements (i.e., all messages have at least the minimum key size required 
by the designer) and all real-time deadlines for all messages while providing an ASV 
value that is higher than that for Lin et al. AES-128 and Lin et al. AES-192.
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Thus, SEDAN represents a promising framework that can intelligently manage 
the limited computing resources in vehicles while improving the overall security 
of the system. Moreover, from Fig. 9 and Table 3, it is evident that SEDAN is 
able to do a better job of balancing security and real-time performance goals by 
intelligently optimizing key sizes and accurately integrating overheads of security 
primitives while making task and message scheduling decisions. 

6 Conclusions 

In this chapter, we presented a novel security framework called SEDAN that 
combines design time schedule optimization with runtime symmetric key manage-
ment to improve security in time-critical automotive systems without utilizing any 
additional hardware. We demonstrated the feasibility of our SEDAN framework 
by implementing cryptographic algorithms on real-world processors. Moreover, 
the experimental results indicate that SEDAN is able to reason about security 
overheads to intelligently adapt security primitives during the message and task 
scheduling, ultimately ensuring that both security and real-time constraints are met. 
Such a framework promises to be extremely useful as we move towards connected 
autonomous vehicles with large attack surfaces by enabling security to be a first-
class design objective without sacrificing real-time performance objectives. 
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