
Distributed Coordination and
Centralized Scheduling for Automobiles
at Intersections

Yi-Ting Lin, Chung-Wei Lin, Iris Hui-Ru Jiang, and Changliu Liu

1 Introduction

The fundamental goal of vehicles is to perform transportation tasks between sources
and destinations safely and efficiently. The conflicts between vehicles occur when
the corresponding vehicles intend to pass through a location at the same time, and
intersections are one of the most common conflicting scenarios. Traditionally, traffic
lights, stop signs, and priorities defined by traffic rules can be applied to resolve
conflicts at intersections. As the technology advances, connected and autonomous
vehicles (CAVs) provide a revolutionary solution at intersections, where:

• Connectivity provides sufficient information between vehicles and/or roadside
units so that a safe and efficient passing order of vehicles can be decided.

• Autonomy provides precise control so that the decided passing order of vehicles
can be performed.

Y.-T. Lin
Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan
e-mail: f07943102@ntu.edu.tw

C.-W. Lin (�)
Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan
e-mail: cwlin@csie.ntu.edu.tw

I. H.-R. Jiang
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
e-mail: huirujiang@ntu.edu.tw

C. Liu
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: cliu6@andrew.cmu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. K. Kukkala, S. Pasricha (eds.), Machine Learning and Optimization Techniques for
Automotive Cyber-Physical Systems, https://doi.org/10.1007/978-3-031-28016-0_3

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28016-0protect T1	extunderscore 3&domain=pdf

 885
44115 a 885 44115 a

mailto:f07943102@ntu.edu.tw
mailto:f07943102@ntu.edu.tw
mailto:f07943102@ntu.edu.tw

 885
49096 a 885 49096 a

mailto:cwlin@csie.ntu.edu.tw
mailto:cwlin@csie.ntu.edu.tw
mailto:cwlin@csie.ntu.edu.tw
mailto:cwlin@csie.ntu.edu.tw

 885
52970 a 885 52970 a

mailto:huirujiang@ntu.edu.tw
mailto:huirujiang@ntu.edu.tw
mailto:huirujiang@ntu.edu.tw

 885 56845 a 885 56845
a

mailto:cliu6@andrew.cmu.edu
mailto:cliu6@andrew.cmu.edu
mailto:cliu6@andrew.cmu.edu
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3
https://doi.org/10.1007/978-3-031-28016-0_3

82 Y.-T. Lin et al.

In this chapter, we consider connected and autonomous vehicles at intersections and
introduce approaches solving the problem of intersection management, also known
as the problem of conflict resolution in a more general perspective. The approaches
are categorized into two categories:

• Distributed coordination, where vehicles coordinate and then decide a passing
order of vehicles separately.

• Centralized scheduling, where a centralized unit, called intersection manager,
decides a passing order of vehicles and provides the instructions to vehicles.

No matter an approach is distributed or centralized, also no matter from the
perspective of an individual vehicle or the overall transportation system, the
approach should provide the following properties:

• Feasibility. The decided passing order of vehicles and the corresponding trajec-
tories, including spatial and temporal constraints, much be physically achievable
by the vehicles.

• Safety (collision-freeness). The deciding passing order must resolve the conflict
for each pair of vehicles which intend to pass through a same location. Here,
we define a conflict zone, and the safety requirement is that there is at most one
vehicle occupying a conflict zone at the same time.

• Liveness (deadlock-freeness). The deciding passing order must not lead to a
deadlock, i.e., an infinite waiting between multiple vehicles.

• Stability. The passing order must be stable along with the time line.
• Efficiency. The passing order should try to optimize the traffic efficiency or

minimize delays of vehicles, i.e., allow vehicles to pass through intersections
as soon as possible.

• Real-Time Decision. The passing order should be decided in real time without
delaying vehicles due to waiting the decision or the corresponding instructions.

The chapter is organized as follows. Sections 2 and 3 present our distributed coor-
dination and centralized scheduling approaches, respectively. Section 4 provides a
summary.

2 Distributed Coordination

In this section, we present a distributed coordination approach for the problem of
intersection management. The approach does not require a centralized intersection
manager. There are three steps to implement the approach:

1. Each vehicle broadcasts its estimated time intervals to occupy the corresponding
conflict zones.

2. Given the broadcast information, all vehicles reach a consensus of the passing
order by solving a conflict graph locally.

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 83

C2

C3 C4

C1

Li
ne

 2

Li
ne

 -2

Line 1

Line -1Line 3

Line -3

Li
ne

 -4

Li
ne

 4

(a)

Li
ne

 -2

Li
ne

 2

C1C2

C3 C5
C4

(b)

Fig. 1 Example environments: (a) intersection and (b) roundabout

3. Each vehicle adjusts its speed profile according to the passing order and updates
its estimated time intervals to occupy the corresponding conflict zones.

We assume that the communication has no delay or packet loss. Figure 1 illustrates
two example environments: a (real) intersection and a roundabout. A conflict zone
is formulated when the extensions of two incoming lanes intersect with each other.

The rest of the discussion is organized as follows: Sect. 2.1 formulates the prob-
lem. Section 2.2 introduces the distributed approach and its theoretical guarantees.
Section 2.3 provides simulation results, and Sect. 2.4 concludes the discussion.

2.1 Problem Formulation

A conflict zone is formulated when the extensions of two incoming lanes intersect
with each other. The conflict zones are denoted by .C1, C2, . . . , CL, where L is the
total number of conflict zones. There are N vehicles, indexed from 1 to N , intend to
pass through an intersection. The intention (the target lane after passing through the
intersection) of vehicle i is . Gi . The state of vehicle i at time t is denoted as .xi(t).
The system state at time step t is denoted as .x(t) := [x1(t); x2(t); . . . ; xN(t)].

The system objective is to ensure that the intentions of the vehicles are satisfied
efficiently and maintain the system safety. The safety constraint requires that the
minimum distance between any two vehicles is larger than or equal to a threshold
.dmin, e.g.,

.X := {x | d(xi, xj) ≥ dmin, ∀i, j, i �= j}, (1)

where the function d measures the minimum distance between two vehicles i and j .
In a distributed setting, each individual vehicle only has a local view and

local information, i.e., vehicle i only considers the vehicles in its neighborhood
. Ni . Moreover, the other vehicles’ states in the safety constraint are not directly

84 Y.-T. Lin et al.

accessible, so they need to be estimated. The navigation problem for vehicle i can
be formulated as the following optimization problem:

.min
xi

J (xi,Gi), (2a)

.s.t. ẋi (t) ∈ �(xi(t)), (2b)

.d(xi(t), x̂
i
j (t)) ≥ dmin, ∀j ∈ Ni , (2c)

where J is the objective, and .x̂i
j (t) is the estimation of .xj (t) made by vehicle i.

Equation (2b) is the feasibility constraint to ensure that there is a low level controller
to track the trajectory, e.g.,

.�(xi) := {ẋi | ∃ui, ẋi = f (xi, ui)}, (3)

where .ẋi = dxi/dt , . ui is the vehicle control input (wheel angle and throttle torque),
and f describes the vehicle dynamics. It is assumed that all vehicles are equipped
with perfect controllers that can execute the planned trajectories without any error
if the planned trajectory is feasible.

In current design of autonomous vehicles, . x̂i
j is estimated based on local

sensors [1, 2]. In order to account for uncertainties in the estimation, the behaviors
of autonomous vehicles tend to be conservative. As a result, all vehicles may decide
to slow down to yield, which is very inefficient. The behaviors of “connected”
and autonomous vehicles can be less conservative due to more information and
more accurate estimation. From the system level, less conservative behaviors imply
smaller delay and larger throughput. Before we dive deep into the distributed
coordination solution, we first introduce several assumptions and notation.

2.1.1 Assumption on Fixed Paths

We assume that each vehicle follows a fixed path, and Eq. (2) only optimizes for the
speed profile along the path. Let . x∗

i be the optimal trajectory of vehicle i that does
not consider the collision avoidance constraint, e.g.,

.x∗
i = arg min

ẋi (t)∈�(xi (t))
J (xi,Gi). (4)

Hence, the path of vehicle i is fixed along . x∗
i , and the vehicle only adjusts its speed

profile to meet the collision avoidance constraint. This assumption is reasonable
since vehicles are usually not allowed to change lanes at intersections. In the
following discussion, let .x∗

i (s) be the distance s parameterized path for vehicle i.
The speed profile for vehicle i is denoted as .si(t) which is a mapping from time to
the distance along the path. Then, .x∗

i (si(t)) is the trajectory.

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 85

We say that vehicle i passes through the conflict zone . Cl if there exists . s ∈ R
+

such that .Bi (x
∗
i (s)) ∩ Cl �= ∅, where . Bi denotes the area occupied by vehicle i at

state .x∗
i (s). Define the segment on path . x∗

i that intersects with the conflict zone . Cl

as .Li,l := {s | Bi (x
∗
i (s)) ∩ Cl �= ∅}. Hence, .Li,l = ∅ if and only if vehicle i does

not pass through the conflict zone . Cl . Denote the set of indices of conflict zones that
vehicle i passes through as .Ai := {l | Li,l �= ∅}. Then, two vehicles i and j pass
through a same conflict zone if and only if .Ai ∩ Aj �= ∅.

2.1.2 Notations of Discrete States

In addition to the continuous vehicle state . xi , to better describe the vehicle behaviors
at intersections, we define a discrete state . Si for vehicle i, where

• .Si = IL if vehicle i is on an incoming lane, and it is not the first vehicle on the
lane.

• .Si = FIL if vehicle i is on an incoming lane, and it is the first vehicle on the
lane.

• .Si = I if vehicle i is at the intersection.
• .Si = OL if vehicle i is on an outgoing lane.

Vehicle i may enter the control area with .Si = IL or FIL. . Si can transit from IL
to FIL, from FIL to I , and from I to OL, i.e., becoming the first vehicle on an
incoming lane, entering the intersection, and leaving the intersection, respectively.
It can leave the control area when .Si = OL. For any vehicle i such that .Si = IL or
OL, its front vehicle is denoted . Fi .

2.2 Distributed Coordination Approach

The key insight here is that communication can help the ego vehicle to better
determine the constraint in Eq. (2c). Indeed, instead of estimating others’ trajectories
. x̂i

j , what really matters to the ego vehicle is the time that other vehicles occupy the
conflict zones. We design the communication protocol to be that each vehicle should
broadcast the following two types of information:

• The estimated times to occupy the conflict zones once the vehicle enters a control
area of the intersection, e.g., the shaded area in Fig. 1.

• The basic information such as the vehicle ID, the current state (position, heading,
speed, and . Si), and the time stayed in the control area.

Based on the broadcast information, the vehicles will seek a consensus on the
passing order and compute desired time slots to pass through the conflict zones,
which are then taken as temporal constraints on the vehicles’ trajectories. This
naturally breaks the problem into two parts as shown in Fig. 2a:

86 Y.-T. Lin et al.

Communication

Vehicle i

Motion Planning

Controller

Receiver

Sender

Vehicle 1

Vehicle 2

Vehicle 3

Temporal
Constraints

Trajectory

Time to Occupy
Conflict Zones

Decision Making Broadcast
Information

...

(a)

Communication

Decision Making

Motion Planning

Controller

Time

nn − 1 n + 1

Desired Time Slots Estimated Time Slots

(b)

Fig. 2 Architecture of the conflict resolution mechanism. (a) System block diagram. (b) Time
flow of execution

1. Decision making: determination of passing order and hence temporal constraints.
2. Motion planning: computation of trajectory.

The time flow and the coordination among different modules are shown in Fig. 2b. It
is assumed that all vehicles are synchronized. At time step .n− 1, the estimated time
interval .[Tin,n−1

j,l ,T
out,n−1
j,l] for vehicle j to occupy . Cl is broadcast for all j and l.

At time step n, vehicle i evaluates all information received from other vehicles and
computes the desired time slots to pass through the conflict zones in the decision
maker, i.e., .[T in,n

i,l , T
out,n
i,l] for all l, which are then sent to the motion planner as

temporal constraints. After motion planning, the planned trajectory is sent to the
controller for execution and the estimated time slots to occupy the conflict zones
given the new trajectory, i.e., .[Tin,n

i,l ,T
out,n
i,l] for all l, are broadcast to other vehicles.

The decomposition of decision making and motion planning can also be adopted
in centralized intersection management, where the manager takes the responsibility

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 87

Algorithm 1 The decision making algorithm for vehicle i for computing
the temporal constraints [T in,n

i,l , T out,n
i,l], ∀l at time step n given information

[T in,n−1
j,l , T out,n−1

j,l],∀j, l
Initialize, n = 0
while Si ∈ {IL, FIL, I } do

Receive other’s information T in,n−1
j,l , T out,n−1

j,l
Initialize Yi = ∅, T in,n

i,l = −∞, T out,n
i,l = ∞

if Si = IL then
i yields its front vehicle (Yi = {Fi})

end if
for j that has spatial conflicts with i (j ∈ Ui) do

if j has a temporal advantage over i (j ∈ Vi) then
if �Tie(i, j) or j has priority over i then

i yields j (Yi = Yi ∪ {j})
end if

end if
if i has a temporal advantage over j (i ∈ Vj) then

if ∃Tie(j, i) and j has priority over i then
i yields j (Yi = Yi ∪ {j})

end if
end if

end for
for j that i yields (j ∈ Yi) do

for Cl that both i and j traverse (l ∈ Ai ∩ Aj) do
T in,n

i,l = max{T in,n
i,l , T out,n−1

j,l + �Si
}

end for
end for
n = n + 1

end while

of decision making, and the vehicles takes the responsibility of motion planning [3].
We discuss the decision making in Sect. 2.2.1 and the motion planning in Sect. 2.2.2.

2.2.1 Decision Making

At time step n, vehicle i needs to compute the desired time interval .[T in,n
i,l , T

out,n
i,l] to

pass through the conflict zones given the broadcast information . [Tin,n−1
j,l ,T

out,n−1
j,l]

for all j and l. The basic strategy is that whoever arrives first in a conflict zone
goes first.1 However, this strategy may create deadlocks when one vehicle arrives
earlier in one conflict zone, while the other vehicle arrives earlier in another conflict
zone. As a result, a tie breaking mechanism is needed. Here, we first discuss a

1 Note that this is different from the strategies discussed in [4], which only considers the arrival
time at the intersection.

88 Y.-T. Lin et al.

general methodology to deal with distributed coordination with multiple conflict
zones, which is summarized in Algorithm 1.

If .Si = IL, it is physically “constrained” by its front vehicle and should yield
all vehicles that its front vehicle yields. The decisions when .Si = FIL or I are
the most important as conflicts usually come among vehicles in these two states.
When .Si = OL, the vehicle no longer needs to compute the desired time interval.
However, its information should be broadcast in order for the proceeding vehicles
to follow the lane safely. In the following discussion, we focus on vehicle i with
.Si = FIL or I .

2.2.1.1 Spatial Conflict

We say that there is a spacial conflict between vehicles i and j if and only if their
paths pass through a same conflict zone. Consider the scenario shown in Fig. 3a,
where nine vehicles locate in a six-way intersection. The shaded area denotes the
six conflict zones. By adding edges between any pair of vehicles that have spatial
conflicts, we formulate an undirected graph as shown in Fig. 3b, where every vertex
represents one vehicle. Whenever there is an edge between two vehicles, we need
to decide which vehicle goes first. In other words, the undirected graph needs to be
transformed into a directed graph as shown in Fig. 3d such that the passing order
is decided by the topological order. Denote the set of vehicles that have spacial
conflicts with vehicle i as

.Ui := {j | Sj = FIL or I,Ai ∩ Aj �= ∅}. (5)

Recall that . Ai denotes the set of indices of conflict zones that vehicle i passes
through. Hence, .Ai ∩ Aj �= ∅ means that vehicle j passes through one or more
conflict zones that vehicle i also needs to pass through. The graph in Fig. 3b is
denoted as .U := ∪i ∪j∈Ui

(i, j), where .(i, j) represents an edge between i and j .
There is an undirected edge between any i and j such that .j ∈ Ui . In literature,
this graph is identified as a conflict graph [5]. Finding the optimal passing order
regarding the conflict graph is NP-hard. The approach presented here is a heuristic
approach which finds one feasible passing order in linear time.

2.2.1.2 Temporal Advantage

At time step n, we say that vehicle .i ∈ Uj has a temporal advantage over vehicle j ,
if one of the following conditions holds:

• .Si = I,Sj = FIL and vehicle j leaves some conflict zones later than vehicle i
enters, i.e.,

.∃l ∈ Ai ∩ Aj ,T
out,n−1
j,l > T

in,n−1
i,l . (6)

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 89

6

C2

C6C4

C1C3

C5

9

(a)

S = FIL

1 2

684 7 5

3S = I

(b)

S = FIL

1 2

684 7 5

3S = I

(c)

S = FIL

1 2

684 7 5

9

3

S = IL

S = I

(d)

2 5

814 6 9

73

R0 R1 R2 R3 R4

(e)

Fig. 3 The conflict graphs. (a) The scenario: nine vehicles in a six-way intersection. (b) Graph of
spacial conflicts . U at one time step. Edge .(i, j) ∈ U implies that vehicle j has spacial conflicts
with vehicle i at some conflict zone. (c) Graph of temporal advantages . V at one time step. Edge
.(i, j) ∈ V implies that vehicle i has temporal advantages over vehicle j . (d) Graph of passing
order . Y at one time step. Edge .(i, j) ∈ Y implies that vehicle j yields vehicle i. (e) Convergence
of the graph . Y through time. The passing order converges at time 0 for leaf vertices in . R0, then for
vertices with depth 1 in . R1 at time 1, and so on

• .Si = FIL,Sj = I and vehicle i leaves all conflict zones earlier than vehicle j
enters, i.e.,

.∀l ∈ Ai ∩ Aj ,T
out,n−1
i,l ≤ T

in,n−1
j,l . (7)

• .Si = Sj = FIL or I and vehicle i enters some conflict zones earlier than vehicle
j , i.e.,

.∃l ∈ Ai ∩ Aj ,T
in,n−1
i,l ≤ T

in,n−1
j,l . (8)

According to the above definitions, for vehicles i and j with different discrete
states, either i or j should have a temporal advantage over the other. If vehicles

90 Y.-T. Lin et al.

i and j have the same discrete state, it is possible that both i and j have temporal
advantages over the other. Denote the set of vehicles that have temporal advantages
over vehicle j at time step n as . Vn

j . The superscript n in the following discussion
is ignored for simplicity. It is obvious that .Vj ⊂ Uj ; and .V := ∪j ∪i∈Vj

(i, j) is a
directed graph as shown in Fig. 3c, where there is a directed edge from any . i ∈ Vj

to any j . However, there are cycles among vertices with the same discrete state, e.g.,
between vertices 6 and 7, as well as among vertices with different discrete states,
e.g., among vertices 6, 7, and 3. If vehicles yield each other according to the graph,
there are deadlocks. We will introduce a tie breaking mechanism to avoid these
deadlocks.

2.2.1.3 Tie Breaking

For any vehicle i and vehicle .j ∈ Vi , it is called a tie if:

• .Si = Sj and there exists a sequence of vehicles .{qm}M1 with .q1 = i, .qM = j ,
.M ≥ 2 and .Sqm = Si for all m such that .qm ∈ Vqm+1 for .m = 1, 2, . . . ,M − 1.

• .Si = I , .Sj = FIL and there exists a sequence of vehicles .{qm}M1 with .q1 = i,
.qM = j and .M ≥ 2 such that .qm ∈ Vqm+1 for .m = 1, 2, . . . ,M − 1.

Let .Tie(i, j) denote all these sequences. The relationship in a tie is neither
symmetric nor exclusive, i.e., .∃Tie(i, j) neither implies .∃Tie(j, i) nor .�Tie(j, i).
For example, in Fig. 3c, there is a tie from vertex 5 to vertex 6 via the sequence
.{5, 7, 6}, but there is not a tie from vertex 6 to vertex 5 since .5 /∈ V6. There is a tie
from vertex 2 to vertex 3 via the sequence .{2, 3} and a tie from vertex 3 to vertex 2
via the sequence .{3, 2}.

We assume that each vehicle has a unique priority score P . For example, the
priority score of a fire truck is higher than that of a passenger vehicle. We say that
vehicle i has priority over vehicle j if there exists a sequence in .Tie(i, j) such that
.P(i) > P (k) for all .k �= i in the sequence. The basic principles are: (1) vehicles
already in the intersection should always have priority over vehicles on the incoming
lanes; (2) for vehicles in the same discrete state, the order implied by the priority
score should not change over time. If vehicle i has priority over vehicle .j ∈ Vi ,
instead of i yielding j , vehicle j should yield vehicle i, although vehicle j has a
temporal advantage. For example, in Fig. 3, we identify the score P with the vehicle
index. Since vertex 5 has priority in the sequence .{5, 7, 6}, the edge from 5 to 6 is
reversed in Fig. 3d. Since there is a tie between vertex 2 and vertex 6, the edge from
2 to 6 is also reversed in Fig. 3d.

2.2.1.4 Passing Sequence

After tie breaking, all those remaining edges for vehicle j represent the set of
vehicles that vehicle j decides to yield at time step n, which is denoted by . Yn

j .
The superscript n in the following discussion is ignored for simplicity. Indeed,

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 91

.Y := ∪j ∪i∈Yj
(i, j) is a directed graph as shown in Fig. 3d, which encodes the

order for the vehicles to pass through the intersection. Note that it is not necessary
for vehicle i to construct the whole graphs . U and . V to determine . Yi . For example,
vehicle 4 in Fig. 3 only needs to compute . U4 and . V4 locally to determine that
.Y4 = ∅. Those local decisions form the passing sequence globally. In the extreme
case, the passing order follows the order specified by the priority scores. If all
vehicles agree on the above tie breaking mechanism, they can solve the conflicts
even if the vehicles plan and control their motions differently.

According to Algorithm 1, if .Sj = IL, the vehicle j yields its front vehicle, i.e.,
.Yj = {Fj }, as shown by vehicle 9 in Fig. 3d. If vehicle j decides to yield vehicle i,
then for all .l ∈ Ai ∩ Aj , we set

.T
in,n
j,l ≥ T

out,n−1
i,l + �Sj

, (9)

where .�Sj
is a margin to increase the robustness of the algorithm, which is chosen

such that .�IL > �FIL > �I . .�IL is chosen to be larger than .�FIL to ensure
the leading vehicles have temporal advantages over vehicles on the middle of other
lanes. For example, vehicle 7 has a temporal advantage over vehicle 9 in Fig. 3d.
Similarly, .�FIL is chosen to be larger than . �I .

2.2.2 Motion Planning under Temporal Constraints

At time step n, given the temporal constraint .[T in,n
i,l , T

out,n
i,l] specified by the

decision maker, the problem in Eq. (2) for vehicle i can be rewritten as:

.min
si

J (x∗
i (si),Gi) (10a)

.s.t.
∂x∗

i (si)

∂si
ṡi ∈ �(x∗

i (si)), (10b)

. si(t) /∈ Li,l , ∀t /∈ [T in,n
i,l , T

out,n
i,l], ∀l, (10c)

where .si(t) is the speed profile that needs to be optimized. Equation (10c) specifies
that the vehicle should only enter the conflict zone . Cl in the time interval
.[T in,n

i,l , T
out,n
i,l]. For simplicity, the constraint for vehicle following is omitted in

presentation (but included in problem solution).
A method to efficiently solve the problem in Eq. (10) via temporal optimization

is discussed in [6]. Here, we assume that vehicles can take unbounded deceleration,
which is reasonable when vehicle speeds are low. Considering .T out,n

i,l = ∞ by
Algorithm 1, there is always a solution of problem in Eq. (10). In the worst case,
vehicle i just stops immediately. In practice, the vehicles do not necessarily need
to take unbounded deceleration as this will be demonstrated in Sect. 2.3, since
the conflicts are resolved before they enter the intersection. The feasibility of the
problem in Eq. (10) under bounded deceleration is left as future work.

92 Y.-T. Lin et al.

Given the optimal solution . s∗
i of the problem in Eq. (10), the expected time slot

.[Tin,n
i,l ,T

out,n
i,l] for vehicle i to occupy the conflict zone . Cl is computed as:

.T
in,n
i,l := min

s∗
i (t)∈Li,l

t ≥ T
in,n
i,l , T

out,n
i,l := max

s∗
i (t)∈Li,l

t ≤ T
out,n
i,l (11)

If .Li,l = ∅, then .T
in,n
i,l := ∞ and .T

out,n
i,l := −∞. If vehicle i has entered or left . Cl ,

then .T
in,n
i,l and .T

out,n
i,l are chosen as the time that it entered or left . Cl , respectively.

2.2.3 Theoretical Guarantees

Here, we introduce the theoretical results to show that the proposed strategy solves
the conflicts safely and efficiently in real time. The physical feasibility of the
trajectories is verified in the motion planning part. Proposition 1 ensures that
the passing order is completely determined. Proposition 2 states that there is no
deadlock for any pair of vehicles that pass through a same conflict zone at every
time step. Proposition 3 shows that a stable consensus on conflict-resolution can be
reached in finite time steps. The proofs can be found in [7].

Proposition 1 (Completeness) For any j that has spacial conflicts with i, at least
one statement is true: “i yields j” or “j yields i”. In other words, .j ∈ Ui implies
.j ∈ Yi or .i ∈ Yj .

Proposition 2 (Deadlock-Freeness) There is no cycle in the directed graph . Y of
passing order.

Proposition 3 (Finite Time Convergence) If . Si and . Ui remain the same for all i
for more than N time steps, then . Yn

i and .[Tin,n
i,l ,T

out,n
i,l] converge in at most N steps

to . Y∗
i and .[Tin∗

i,l ,Tout∗
i,l] such that

.T
in∗
i,l ≥ T

out∗
j,l + �Si

, ∀l, ∀j ∈ Y∗
i (12)

Proposition 3 implies that if the sampling time is short enough compared with
the time needed between two transitions of . Si’s, the system can still reach consensus
when . Si’s are changing. Nonetheless, after a transition of some . Si , the system needs
several steps to settle down. The consistency of the passing orders . Yn considering
those transitions is more intricate to prove, which is left as future work. Indeed, the
consistency is demonstrated in simulation.

2.3 Simulation Results

In this section, we illustrate the performance of the proposed distributed conflict
resolution mechanism through extensive traffic simulations. The sampling time in

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 93

the system is chosen to be .dt = 0.1 s. The robustness margins are chosen as . �IL =
0.5 s, .�FIL = 0.3 s and .�I = 0.1 s. The priority score P for a vehicle is chosen to
be the time that the vehicle stays in the control area. If there is a tie, then the vehicle
with smaller ID has the priority. The cost function of the vehicle penalizes (1) the
deviation from a target speed, (2) the magnitude of acceleration or deceleration, (3)
the magnitude of jerk, and 4) the time spent in every conflict zone. The target speed
varies for different vehicles.

The simulation environment is a narrow four-way intersection as shown in
Fig. 1a. There is only one incoming lane and one outgoing lane in every direction.
Four conflict zones are identified. The control area is the whole graph. For any
.i �= j , there is a path from lane i to lane . −j , so there are 12 different paths. Right
turn paths only go through one conflict zone. Straight paths go through two conflict
zones. Left turn paths go through all four conflict zones (a vehicle is treated as a 2D
object instead of a point). In the following discussion, a microscopic case study is
presented first followed by the result of macroscopic traffic simulation.

2.3.1 Microscopic Case Study

In the case study, there are four vehicles. The conditions of the vehicles (target
speed, current lane, target lane, and time to enter the control area) are shown in
Table 1. The paths and the executed trajectories are shown in the time-augmented
space in Fig. 4a. The planned speed profiles in different time steps are shown in
Fig. 4b. The left most speed profile in every subplot is the traffic-free speed profile
and the others are the replanned speed profiles given the temporal constraints.
Figure 5 shows the expected time intervals (the colored thick bars) for the vehicles
to occupy the conflict zones. The thin vertical line indicates the current time.

In this case, vehicles 1, 2 and 3 enter the control area at the same time. According
to the traffic-free speed profiles, there are temporal conflicts between vehicle 1 and
vehicle 3 in conflict zones 1 and 2, and between vehicle 2 and vehicle 3 in all conflict
zones. Since vehicle 2 has a temporal advantage over vehicle 3, vehicle 3 yields
vehicle 2. Similarly, vehicle 1 yields vehicle 3. It takes two time steps to resolve the
conflicts.

At 0.6 s, vehicle 4 enters, which creates new conflicts. The system settles down
after 3 time steps as shown in Fig. 5, which verifies Proposition 3. The planned

Table 1 Conditions in the case study

Vehicle ID Target speed (m/s) From To Enter time (s)

1 10 Lane 1 Lane .−3 0.2

2 12.5 Lane 2 Lane .−1 0.2

3 10.75 Lane 3 Lane .−2 0.2

4 17.75 Lane 4 Lane .−2 0.6

94 Y.-T. Lin et al.

(a)

0 2 4 6

Time (s)

0

20

40

Planned Speed Profile of Vehicle 1

Time (s)

0

20

40

D
is

ta
nc

e
(m

)

Planned Speed Profile of Vehicle 2

0 2 4 6

Time (s)

0

20

40

Planned Speed Profile of Vehicle 3

Time (s)

0

20

40

D
is

ta
nc

e
(m

)

Planned Speed Profile of Vehicle 4

(b)

D
is

ta
nc

e
(m

)
D

is
ta

nc
e

(m
)

0 2 4 6

0 2 4 6

Fig. 4 Speed profiles and trajectories in the case study. (a) Executed trajectories in the time-
augmented space. (b) Planned speed profiles in different time steps

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 95

Fig. 5 Conflict resolution in the case study. The scenario in .0.5s is omitted since it is the same as
the scenario in .0.4s

96 Y.-T. Lin et al.

speed profiles change accordingly as shown in Fig. 4b. The right most speed profile
in each subplot is the executed speed profile.

2.3.2 Macroscopic Traffic Simulation

2.3.2.1 Traffic

In the macroscopic traffic simulation, the traffic is generated at every incoming lane
by a Poisson distribution where the density . λ is chosen to be . 0.5, .0.25 and . 0.1,
which implies that on average, vehicles arrive every 2, 4, and 10 s. Two groups of
traffic are generated:

• Group 1 (G1): .50% of vehicles go straight, .25% turn right and .25% turn left.
• Group 2 (G2): all vehicles go straight.

The second group is introduced to create a relatively fair comparison among
performances under distributed strategies and performances under traffic lights.
Since we don’t have left turn lane or left turn light, when a vehicle wants to turn left,
it will block all the vehicles behind, thus significantly increase the delay time. The
desired longitudinal speed . vr

i of the vehicle i follows from a uniform distribution
from . 7.5 to 15m/s.

2.3.2.2 Comparison

The proposed mechanism is compared against other mechanisms as listed below.

• Case 1 (3D): 3D intersection such as overpass without connectivity. In this case,
there is no conflict among vehicles at the intersection. Since the delay is only
caused by car following, the simulation result provides a lower bound for the
delay time and an upper bound for the throughput.

• Case 2 (NC): unmanaged 2D intersection without connectivity. Vehicles are able
to see vehicles from other directions when approaching the intersection. Then
vehicles’ strategy is: if there is no other vehicles from other directions or other
vehicles are too far from the intersection (i.e., there is no temporal conflict even if
the other vehicle accelerates with maximum acceleration), cross the intersection
without stop; if there are other vehicles from other directions that are close to the
intersection, stop and “first stop first go”. The delay time in this case is upper
bounded by the delay time in the case of a four-way-stop intersection.

• Case 3 (TL-5): 2D intersection with traffic light that changes every 5 s without
connectivity. For example, the traffic light for the horizontal direction (lane 1 and
lane 3) is green from 0 to 5 s and red from 5 to 10 s while the traffic light for the
vertical direction (lane 2 and lane 4) is red from 0 to 5 s and green from 5 to 10 s.

• Case 4 (TL-10): 2D intersection with traffic light that changes every 10 s without
connectivity.

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 97

• Case 5 (MP-IP): 2D intersection with the maximum progression intersection
protocol (MP-IP) [4]. Vehicles broadcast their intentions and estimated time slots
to occupy the conflict zones. Conflicting vehicles can make concurrent progress
inside the intersection, though low priority vehicles need to yield high priority
vehicles, i.e., entering the conflict zones after the high priority vehicles leave. In
the simulation, the priority is determined by the priority score P .

• Case 6 (AMP-IP): 2D intersection with the advanced maximum progression
intersection protocol (AMP-IP) [4]. In addition to MP-IP, the lower priority
vehicles are allowed to cross and clear the conflict zone before the earliest
possible arrival of the higher-priority vehicle to that conflict zone.

In Cases 1 to 4, there is no communication among vehicles and the vehicles are
equipped with adaptive cruise control for car following. In Cases 5 and 6, vehicles
communicate with one another. The two protocols only determine the passing order,
not the vehicle trajectories. In the simulation, the vehicles under the two cases adopt
the motion planning algorithm discussed in the previous section. The temporal
constraints are determined by Eq. (9) according to the passing order. To create a
fair comparison, the adaptive cruise control algorithm is integrated into the motion
planning algorithm. At each time step, the output of the adaptive cruise control
module will be treated as an upper bound on vehicle’s acceleration, which is added
to the optimization Eq. (10). In the following discussion, we analyze: (1) the average
delay time and (2) the throughput in certain time horizon.

2.3.2.3 Average Delay

The delay time of a vehicle is computed as the difference between the actual time
and the traffic-free time for the vehicle to travel cross the control area as shown in
Fig. 4b. The average delay (mean . ± standard deviation) of all vehicles traveled in
the control area in 10min under different mechanisms are shown in Table 2. The
proposed strategy always outperforms other mechanisms except for the case with
3D intersection which provides a theatrical lower bound of this problem. When
the traffic density is low, the performances of Case 2 (without communication) and
Cases 5 and 6 (with communication) are similar to the performance of the proposed
method, which outperforms the cases with traffic lights. When the traffic density
goes up, the performance of Case 2 gets worse dramatically as it almost functions
as a stop sign mechanism. The proposed method still outperforms the cases with
traffic lights (Cases 3 and 4) since it is more flexible. For example, in the proposed
mechanism, four simultaneous right turns are allowed, while in the traffic light case,
at most two simultaneous right turns can be tolerated.

The proposed method always outperforms Cases 5 and 6. Though more par-
allelism inside the intersection area (i.e., allowing more vehicles to cross the
intersection at the same time) has been introduced in these two cased compared
to Case 2, the rigidity of the priority queue (which does not adjust in real time)
limits their performances. For example, consider the case study in Sect. 2.3.1. Since

98 Y.-T. Lin et al.

Table 2 The delay time for traffic in 10min

.λ Case 1: 3D Case 2: NC Case 3: TL-5 Case 4: TL-10

G1 .0.5 .0.5 ± 0.8 s .135.6 ± 78.6 s .53.2 ± 30.6 s .57.8 ± 34.4 s

.0.25 .0.2 ± 0.4 s .2.9 ± 2.8 s .3.2 ± 2.6 s .5.2 ± 3.8 s

.0.1 .0.1 ± 0.2 s .0.4 ± 0.7 s .2.1 ± 2.0 s .3.8 ± 3.9 s

G2 .0.5 .0.5 ± 0.8 s .134.8 ± 81.0 s .22.0 ± 14.1 s .29.3 ± 17.6 s

.0.25 .0.2 ± 0.6 s .9.2 ± 9.3 s .2.8 ± 2.3 s .4.4 ± 3.9 s

.0.1 .0.1 ± 0.4 s .0.5 ± 0.7 s .1.9 ± 1.8 s .3.9 ± 3.9 s

.λ Case 5: MP-IP Case 6: AMP-IP Proposed

G1 .0.5 .31.2 ± 19.7 s .20.5 ± 13.2 s .11.4 ± 7.0 s

.0.25 .1.9 ± 1.7 s .1.2 ± 1.2 s .0.5 ± 0.7 s

.0.1 .0.4 ± 0.6 s .0.3 ± 0.6 s .0.2 ± 0.3 s

.0.5 .8.8 ± 6.4 s .6.3 ± 4.7 s .4.3 ± 3.3 s

G2 .0.25 .2.5 ± 2.9 s .2.2 ± 2.9 s .2.1 ± 2.7 s

.0.1 .0.3 ± 0.5 s .0.3 ± 0.5 s .0.3 ± 0.5 s

vehicle 4 arrives later than others, it has to wait for others according to MP-IP in
Case 5. Even with AMP-IP in Case 6, vehicle 4 wouldn’t be able to cut in front of
vehicle 2, since it does not leave conflict zone 1 before vehicle 2 enters. Hence high-
speed vehicles in Cases 5 and 6 experience larger delay compared to those in the
proposed method, where they can cut into the queue only causing other vehicles to
slow down slightly. Moreover, the average delay goes up from . 8.8 to .52.4 s in Case
5 with “straight only” traffic .λ = 0.5 if the motion planning algorithm is replaced
with only adaptive cruise control (ACC). Since the travel time in the intersection
is not penalized in ACC, vehicles tend to stop right before the intersection and
consequently take longer time to traverse the intersection (as their acceleration is
bounded) than they do when they optimize their speed profiles to slow down before
approaching the intersection and then speed up to pass the intersection at full speed.
Hence the efficiency of the proposed algorithm benefits from both the decision
making module (determination of efficient passing order) and the motion planning
module (temporal optimization) as well as their integration.

2.3.2.4 Throughput

The throughput is computed as the number of vehicles that cross the control area in
a given time slot. The throughput in 10min in all scenarios are shown in Table 3.
When the traffic density is high, Case 2 reduces to the case with stop signs. Hence
the throughput is roughly upper bounded by .10 · 60/δ where . δ is the average time
in seconds that is required for a single vehicle to cross the intersection. In the

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 99

Table 3 The traffic throughput (# of vehicles) in 10min

.λ Case 1: 3D Case 2: NC Case 3: TL-5 Case 4: TL-10

G1 .0.5 1170 660 984 965

.0.25 590 589 589 587

.0.1 230 230 230 228

G2 .0.5 1206 641 1121 1091

.0.25 599 597 595 589

.0.1 245 245 245 . 245

.λ Case 5: MP-IP Case 6: AMP-IP Proposed

G1 .0.5 1023 1099 1139

.0.25 590 590 590

.0.1 230 230 230

G2 .0.5 1166 1186 1199

.0.25 599 599 599

.0.1 245 245 245

simulation, .δ ≈ 1. Hence the throughput in Case 2 is around 600 when .λ = 0.5,
which is much smaller than that in other cases. However, in the proposed method,
the throughput almost doubles, which is higher than those in Cases 3 to 6 with traffic
light or existing V2V intersection protocols, and is very close to that in Case 1 where
the intersection is 3D, thus verifies the effectiveness of the proposed method.

2.4 Conclusion

This section discuss a communication-enabled distributed coordination strategy
for connected and autonomous vehicles to navigate at intersections. Based on
the received information, a vehicle computes a set of vehicles that it needs to
yield and the desired time slots to pass the conflict zones in a decision maker.
Then, it computes a desired speed profile according to the desired time slots in a
motion planner and broadcasts the estimated times to occupy the conflict zones.
The aggregation of these local decisions forms a global solution to a multi-vehicle
navigation problem. In the simulation, it is shown that the proposed mechanism has
smaller average delay and larger throughput than the comparative cases.

Although the fixed-path assumption and the discrete partitioning of the conflict
zone simplifies our problem, they may potentially exclude some feasible conflict
resolution strategy that can be achieved by adjusting the vehicle paths. These non-
fixed-path strategies are studied in [8, 9]. A thorough analysis and comparison
among all these strategies will be left for future work.

100 Y.-T. Lin et al.

3 Centralized Scheduling

In this section, we present a centralized scheduling approach for the problem of
intersection management. As shown in Fig. 6, a centralized unit installed in the
roadside unit, called intersection manager, decides the passing order of the vehicles
periodically. For each period, the intersection manager receives the information
from vehicles within its communication range. Based on the received information,
the intersection manager computes a time window to each vehicle at each conflict
zone on the trajectory of the vehicle. After that, the intersection manager broadcasts
these results and prepares for the next period.

The rest of the discussion is organized as follows: Sect. 3.1 presents our
timing conflict graph model and problem formulation. Section 3.2 demonstrates
our resource conflict model and verification approach. Section 3.3 describes our
scheduling algorithm based on cycle removal. Section 3.4 discusses lane merging, a
special case of intersection management. Section 3.5 provides experimental results,
and Sect. 3.6 concludes the discussion.

3.1 Problem Formulation

In this section, we introduce our graph-based model and formulate the centralized
intersection management problem. The notation is summarized in Table 4.

Conflict Zone Same as the definition in Sect. 2, a conflict zone is the crossing
location of two trajectories, and two vehicles cannot be at (occupy) the same
conflict zone at the same time. There are n conflict zones, .�1, �2, . . . , �n, in
the intersection. This model allows us to consider different granularities of an
intersection, as shown in Fig. 7.

Vehicle Each vehicle has a fixed route—it fixes its source lane, destination lane,
and trajectory, and it does not change lanes before and after the intersection. Two

Fig. 6 A centralized unit
installed in the roadside unit,
called intersection manager,
decides the passing order of
the vehicles

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 101

Table 4 The notation Index i, i′ The index of a vehicle

j, j ′, j ′′ The index of a conflict zone

(i, j) The index of a vertex

k The index of an edge

Given (Input) G A timing conflict graph

m The number of vehicles

n The number of conflict zones

�i The i-th vehicle

�j The j -th conflict zone

vi,j The (i, j)-th vertex

ek The k-th edge

ai The earliest arrival time of �i
pi,j The vertex passing time of vi,j
wk The edge waiting time of ek

Output G′ An acyclic timing conflict graph

si,j The vertex entering time of vi,j

Conflict Zone

Fig. 7 The model allows us to consider different granularities of an intersection. The intersection
can be modeled by 1, 4, 16, and 24 conflict zone(s), and much more alternatives are possible

vehicles have a potential conflict at zone . �j if and only if . �j is on the both
trajectories.

Timing Conflict Graph A directed timing conflict graph .G = (V ,E) is constructed
by the following rules:

• There is a vertex .vi,j if and only if . �j is on the trajectory of . �i .
• There is a Type-1 edge .(vi,j , vi,j ′) if and only if the next conflict zone of . �j on

the trajectory of . �i is . �j ′ .
• There is a Type-2 edge .(vi,j , vi′,j) if and only if . �i and . �i′ , on the same source

lane and with the order where . �i is in front of . �i′ , have a conflict at . �j .
• There are two Type-3 edges .(vi,j , vi′,j) and .(vi′,j , vi,j) if and only if . �i and . �i′ ,

on different source lanes, have a conflict at . �j .

102 Y.-T. Lin et al.

Fig. 8 (a) An example and (b) its timing conflict graph

Note that the vertex set is a subset of the Cartesian product of the sets of vehicles
and conflict zones. An example and its timing conflict graph are shown in Fig. 8a,
b, respectively.

Earliest Arrival Time Each vehicle . �i is associated with . ai , the earliest arrival time
for . �i to arrive at the first conflict zone on its trajectory, without being delayed by
any other vehicle (i.e., no vehicle is in front of . �i before the intersection). It can be
either computed or provided by . �i or computed by the intersection manager.

Edge Waiting Time Each edge .ek = (vi,j , vi′,j ′) is associated with . wk , the waiting
time “length” from . �i leaving . �j to .�i′ entering . �j ′ , without being delayed by
any other vehicle. For a Type-1 edge . ek (where .i = i′), . wk is the time from . �i

leaving . �j to . �i entering . �j ′ ; for a Type-2 or Type-3 edge . ek (where .j = j ′), . wk

is the time from . �i leaving . �j to . �i′ entering . �j . In practice, the waiting time of a
Type-2 edge . ek is smaller than that of a Type-3 edge . ek′ as vehicles from the same
source lane can perform better in vehicle-following.

Vertex Passing Time Edge vertex .vi,j is associated with . pi,j , the time “length” for
. �i from entering . �j to leaving . �j .

Vertex Entering Time Each vertex .vi,j is associated with . si,j , the time for . �i to
enter . �j , which implies that the earliest time for . �i to leave . �j is .si,j + pi,j .
If a timing conflict graph . G′ is acyclic, the vertex entering time of each vertex is
assigned as follows:2

• As the graph is acyclic, the assignment can follow a topological order. If there
are multiple options, a Type-1 edge has a higher priority than a Type-2 or Type-3
edge.

• If .vi,j is the first conflict zone on the trajectory of . �i ,

2 As there is dependency between vehicles, the vertex entering time of each vertex cannot be given
as an input.

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 103

.

si,j = max

{
ai, max

k|ek=(vi′,j ′ ,vi,j)∈G′
{
si′,j ′ + pi′,j ′ + wk

}
,

max
k′|ek=(vi′,j ′ ,vi,j)∈G′,ek′=(vi′,j ′ ,vi′,j ′′)∈G′,ek �=ek′

{
si′,j ′′ − wk′ + wk

}} (13)

Note that .j = j ′ is always true in this case. The last maximum term is to make
sure that . �i′ leaves . �j ′ for .�j ′′ so that . �i can enter . �j . For easier understanding,
we can also set the intersection-entering point of each source lane as a conflict
zone so that it is the first conflict zone of the trajectory of each vehicle from the
source lane.

• Otherwise,

.

si,j = max

{
max

k|ek=(vi′,j ′ ,vi,j)∈G′
{
si′,j ′ + pi′,j ′ + wk

}
,

max
k′|ek=(vi′,j ′ ,vi,j)∈G′,ek′=(vi′,j ′ ,vi′,j ′′)∈G′,ek �=ek′

{
si′,j ′′ − wk′ + wk

}} (14)

Note that either .i = i′ or .j = j ′ is always true in this case. If .i = i′, the last
maximum term is not needed.

Problem Formulation Given a conflict graph G, the earliest arrival time . ai of each
vehicle . �i , the edge waiting time . wk of each edge . ek , and the vertex passing time
.pi,j of each vertex . vi,j , the problem is to

1. Compute an acyclic subgraph . G′ of G, where

• For each vertex . vi in G, . vi is also in . G′,
• For each Type-1 edge . ek in G, . ek is also in . G′,
• For each Type-2 edge . ek in G, . ek is also in . G′,3 and
• For each pair of vertices . vi,j and .vi′,j in G, there exists a path either from . vi,j

to .vi′,j or from .vi′,j to .vi,j in . G′,

2. Guarantee no deadlock,
3. Assign the vertex entering time . si,j of each vertex .vi,j (as the paragraph above),

and
4. Minimize

.max
vi,j

(
si,j + pi,j

)
, (15)

which is the total time needed for all vehicles to go through the intersection.

3 We do not consider overtaking in this section; otherwise, we can relax the constraint to potentially
change Type-2 edges.

104 Y.-T. Lin et al.

Type-1
Type-2
Type-3

1,1 1,2

2,1 2,2

1,1 1,2

2,1 2,2

1,1

2,22,1 2,3

1,3

1,1

2,22,1 2,3

1,3

(a)

(d)

(b)

(e)

1,1

2,1

1,3

2,2

3,2 3,3

(c)

Fig. 9 (a)–(c) Examples with deadlocks and (d)–(e) examples without deadlocks

The item 1 is the safety (collision-freeness) property to guarantee an order for
vehicles having a conflict. The item 3 follows the order to schedule vehicles, and
the item 4 is the objective function. The item 2 is the liveness (deadlock-freeness)
property. To this point, we have not detailed how to guarantee no deadlock—it will
be demonstrated in the following section.

3.2 Deadlock-Freeness Verification

In this section, we will demonstrate a graph-based verification approach which can
guarantee deadlock-freeness. A tailored Petri net [10] can also verify the deadlock-
freeness. The verification can serve as a routine for the scheduling in Sect. 3.3 to
verify deadlock-freeness for . G′.

Having no cycle in . G′ or G does not guarantee deadlock-freeness.4 Some
examples are shown in Fig. 9.5 All of them have no cycle in . G′, but Fig. 9a–c have
deadlocks, and Fig. 9d–e are deadlock-free. In Fig. 9a, . �1 needs to enter . �2 after
. �2. However, . �2 even cannot enter . �1(also, . �2) because it is waiting . �1 to leave
. �1. That causes a deadlock. Similarly, there are deadlocks in Fig. 9b, c. On the
contrary, in Fig. 9d, there is no deadlock as . �1 enters both . �1 and . �2 before . �2. In
Fig. 9e, even if . �2 enters . �1 first, . �2 can enter . �2 after that so that . �1 is able to
enter . �1 (after . �2) and . �3 (before . �2) without a deadlock.

4 This is the reason that we need the item 2 in the problem formulation.
5 To demonstrate the examples concisely, the examples in Fig. 9 are not associated with any
intersection modeling in Fig. 7.

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 105

Fig. 10 The construction rules of resource conflict graphs

As illustrated above, having no cycle in . G′ cannot verify that there is no deadlock.
Therefore, we introduce resource conflict graphs as follows:

Resource Conflict Graph The directed resource conflict graph . H ′ of . G′ is con-
structed by the following rules:

• There is a vertex .ui,j,j ′ if and only if there is a Type-1 edge .(vi,j , vi,j ′) in . G′.
• If there are edges .(vi,j , vi,j ′) and .(vi,j ′ , vi,j ′′) in . G′, then there is an edge

.(ui,j,j ′ , ui,j ′,j ′′) in . H ′ (illustrated in Fig. 10a).
• If there are edges .(vi,j , vi′,j), .(vi,j , vi,j ′), and .(vi′,j , vi′,j ′′) in . G′, then there is an

edge .(ui,j,j ′ , ui′,j,j ′′) in . H ′ (illustrated in Fig. 10b).
• If there are edges .(vi,j , vi′,j), .(vi,j ′ , vi,j), and .(vi′,j ′′ , vi′,j) in . G′, then there is an

edge .(ui,j ′,j , ui′,j ′′,j) in . H ′ (illustrated in Fig. 10c).
• If there are edges .(vi,j , vi′,j), .(vi,j , vi,j ′), and .(vi′,j ′′ , vi′,j) in . G′, then there is an

edge .(ui,j,j ′ , ui′,j ′′,j) in . H ′ (illustrated in Fig. 10d).
• If there are edges .(vi,j , vi′,j), .(vi,j ′ , vi,j), and .(vi′,j , vi′,j ′′) in . G′, then there is an

edge .(ui,j ′,j , ui′,j,j ′′) in . H ′ (illustrated in Fig. 10e).

The general concept of the last four rules is that, if there is an edge . (vi,j , vi′,j)
in . G′, then there is an edge from each vertex (which corresponds to an edge in . G′)
involving .vi,j to each vertex (which corresponds to an edge in . G′) involving . vi′,j
in . H ′. It implies that, if . �i enters . �j before .�i′ enters . �j , then . �i must leave
. �j before . �i′ enters . �j . The resource conflict graphs of the examples in Fig. 9 are
shown in Fig. 11. We can observe that they are cyclic in Fig. 11a–c, while they are
acyclic in Fig. 11d–e.

Theorem 4 . H ′ is cyclic if and only if . G′ has a deadlock.

Proof From left-hand side (LHS) to right-hand side (RHS): If there is a cycle in . H ′,
we assume the cycle as .((i0, j0, j ′

0), (i1, j1, j
′
1), . . . , (ik, jk, j

′
k), . . . , (il, jl, j

′
l)),

106 Y.-T. Lin et al.

Fig. 11 The resource conflict graphs of the examples in Fig. 9

where .(il, jl, j
′
l) = (i0, j0, j

′
0). By the construction rules of . H

′, for any pair of
.(ik, jk, j

′
k) and .(ik+1, jk+1, j

′
k+1), at least one equality of .jk = jk+1, .jk = j ′

k+1,
.j ′
k = jk+1, and .j ′

k = j ′
k+1 is true. Assume that it is equal to . j∗ in the true equality.

By the definition of a conflict zone (that two vehicles cannot be at the same conflict
zone at the same time), .�ik must leave .�j∗ before .�ik+1 enters . �j∗ . This means
that .(ik, jk, j

′
k) blocks .(ik+1, jk+1, j

′
k+1), and thus, considering .0 ≤ k ≤ l − 1, the

cycle forms a deadlock.
From RHS to LHS: If there is a deadlock, without loss of generality, we assume

that . �i cannot move from . �j to . �j ′ . The conditions that . �i cannot move from
. �j to .�j ′ include6 (1) . �i cannot move from another conflict zone .�j ′′ to . �j ,
(2) another vehicle . �i′ scheduled to enter . �j earlier cannot enter . �j , (3) another
vehicle .�i′ scheduled to leave . �j earlier cannot leave . �j , (4) another vehicle
.�i′ scheduled to enter .�j ′ earlier cannot enter . �j ′ , and (5) another vehicle . �i′
scheduled to leave . �j ′ earlier cannot leave . �j ′ . By the construction rules of . H ′, each
of the conditions constructs an edge to vertex .(i, j, j ′) in . H ′. Repeating applying
the same conditions, those edges must form a cycle7 since the numbers of vehicles
and conflict zones are finite. ��

6 If all of the conditions are false, then . �i can move from . �j to . �j ′ . A similar claim is not true for
. G′, so having no cycle in . G′ cannot guarantee deadlock-freeness.
7 Though it may not go back to .(i, j, j ′).

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 107

By Theorem 4, . H ′ is acyclic if and only if . G′ has no deadlock (deadlock-freeness).
Note that we construct . H ′ from . G′. After the construction, we do not need . G′ in the
verification.

3.3 Centralized Scheduling Approach

In this section, we develop a cycle removal algorithm based on the graph model in
Sect. 3.1 and the verification approaches in Sect. 3.2.

A greedy strategy, a First-Come-First-Serve approach, can be adopted here to
schedule the vehicles based on their earliest arrival times. However, this approach
ignores the interactions between vehicles and conflict zones, and thus possibly leads
to extra waiting time. To address this problem, with the graph-based model and the
verification approaches, we can decide the passing order for vehicles to go through
the intersection safely and efficiently by removing all cycles in the graph.

The most common method to detect and remove cycles in a directed graph is the
Depth-First Search (DFS) algorithm [11]. There is a cycle in a graph only if a back
edge, which is an edge from a vertex to itself or its ancestors, is found during the
DFS traversal of the graph. Then, the method can remove any edge in the cycle to
avoid having cycle in the graph. However, without optimization objective, the DFS
method may not remove “good” edges to perform optimization. Furthermore, to
decide a passing order, we cannot remove some edges because of the safety property
(item 1) in our problem formulation, and thus the direct use of a DFS method is not
feasible. On the other hand, the minimum feedback arc set problem, a special case
of our problem, is NP-hard [12] and has not known to be approximable within a
constant [13].

Our objective is to minimize the total time needed for all vehicles to go through
the intersection, equivalent to the leaving time of the last vehicle. To remove cycles
while considering the edge costs, finding a minimum spanning tree (MST) of the
graph can be a potential solution, and one approach is the Kruskal’s algorithm [14].
The Kruskal’s algorithm repeatedly chooses a minimum-cost edge which does
not form any cycle with those already-chosen edges. Kruskal also proposed the
backward version of the original one, and it repeatedly removes a maximum-cost
edge whose removal does not disconnect the graph. Inspired by this method, we do
intend to remove the edge which results in the largest delay to the objective. This
can remove cycles and benefit the objective minimization at the same time.

Based on our graph model, we develop a cycle removal algorithm. First, we
compute the vertex entering time of each vertex without considering Type-3 edges.
Next, the costs of Type-3 edges are estimated by their impacts on the objective.
Then, we remove a Type-3 edge which has the largest cost from the graph. The
impact of .(vi,j , vi′,j) on the objective is measured by considering .(vi,j , vi′,j) when
recomputing the vertex entering time of each vertex. Repeating those steps, we can
remove cycles and compute the vertex entering time of each vertex in the graph.
It should be noted that, sometimes, we cannot remove an edge because of the last

108 Y.-T. Lin et al.

constraint of the item 1 in the problem formulation. In this case, we divide the
problem into sub-problems and solve the sub-problems.

3.3.1 Definitions

We first provide some definitions which will be used in our algorithm as follows.

Edge State There are four possible states for an edge:

• An edge is ON if it has been decided to be kept (in . G′). By the item 1 in the
problem formulation, a Type-1 or Type-2 edge is always ON. When discussing
the graph . G′, we only consider ON edges.

• An edge is OFF if it has been decided to be removed.
• An edge is UNDECIDED if it is going to be decided in the current sub-problem.
• An edge is DONTCARE if it is not considered in the current sub-problem.

Vertex State There are three possible states for a vertex:

• A vertex is BLACK if its vertex entering time has been scheduled. If .vi,j is
BLACK, then each edge .ek = (vi,j , vi′,j ′) or .(vi′,j ′ , vi,j) must be ON or OFF.
On the other hand, if .ek = (vi,j , vi′,j ′) is ON, then .vi,j must be BLACK.

• A vertex is GRAY if its vertex entering time can still be influenced by Type-3
edges. If .vi,j is GRAY, then for each Type-1 or Type-2 edge .ek = (vi′,j ′ , vi,j),
.vi′,j ′ must be BLACK. When we remove edges, we only estimate the cost of an
edge .ek = (vi,j , vi′,j ′), where at least one of .vi,j and .vi′,j ′ is GRAY.

• A vertex is WHITE if its vertex entering time can be influenced by any type of
edges.

Vertex Slack The vertex slack is the maximum time which can be delayed at the
vertex without increasing the objective. We consider ON edges only. Similar to
the computation of the vertex entering time, if . G′ is acyclic, we follow a reverse
topological order and compute the vertex slack of each vertex .vi,j as follows:

• If . �j is the last conflict zone on the trajectory of . �i ,

.

slack [vi,j] = min

{
max

vi′,j ′ ∈G′
(
si′,j ′ + pi′,j ′

) − (
si,j + pi,j

)
,

min
k|ek=(vi,j ,vi′,j ′)∈G′

{
slack [vi′,j ′]}

} (16)

• Otherwise,

.slack [vi,j] = min
k|ek=(vi,j ,vi′,j ′)∈G′

{
slack [vi′,j ′]} (17)

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 109

Algorithm 2 Cycle-removal-based scheduling
Input: G
Output: G′
1: Initialization;
2: for each vertex vi,j ∈ V do
3: state[vi,j] ← WHITE;
4: slack[vi,j] ← ∞;
5: end for
6: for each edge ek ∈ E do
7: if ek is a Type-3 edge then
8: state[ek] ← UNDECIDED;
9: else
10: state[ek] ← ON;
11: end if
12: end for
13: Update-Time-Slack (G);
14: Remove-Type-3-Edges (G, 0,m);
15: Output the resultant graph as G′;

Edge Cost The edge cost of a Type-3 edge is the delay time of the objective caused
by this edge if we keep it. For the edge .ek = (vi,j , vi′,j), .(si,j + pi,j + wk) and . si′,j
are the vertex entering times of .vi′,j with and without considering . ek , respectively.
If the delay time caused by . ek is larger than the slack of .vi′,j , the objective will
increase if we keep . ek . The edge cost of a Type-3 edge .ek = (vi,j , vi′,j) is defined
as follows:

.cost [ek] = (si,j + pi,j + wk) − si′,j − slack [vi′,j] (18)

Note that, although the edge cost may be negative, the objective will never decrease.

3.3.2 Cycle-Removal-Based Scheduling

To solve the cycle removal problem, we follow the steps listed in Algorithm 2. First,
based on the problem formulation in Sect. 3.1, Type-1 and Type-2 edges must be
included in . G′. Thus, we set the states of all Type-1 and Type-2 edges to ON and the
states of all Type-3 edges to UNDECIDED.

Next, we apply Algorithm 3 to compute the vertex entering times and slacks of
vertices. At this moment, the graph . G′ contains only Type-1 and Type-2 edges and
thus is an acyclic graph. According to its topological order, we compute the vertex
entering time of each vertex by Eqs. (13) and (14) and the leaving time of the last
vehicle. We also compute the slack of each vertex according to reverse topological
order by Eqs. (16) and (17).

Then, we decide which edges to be removed by Algorithm 4. First, in the process
of Find-Leaders, a vertex .vi,j is identified as a leader vertex if . �i is the first
vehicle of its source lane and . �j the first conflict zone on the trajectory of . �i .

110 Y.-T. Lin et al.

Algorithm 3 Update-time-slack
Input: G
1: Initialization;
2: Topological-Sort (G)
3: for each vertex vi,j in topological order do
4: Compute si,j by Eq. (13) or (14);
5: end for
6: maxLeavingT ime ← maxvi,j (si,j + pi,j);
7: for each vertex vi,j in reverse topological order do
8: slack[vi,j] ← maxLeavingT ime − si,j − pi,j ;
9: for each edge ek = (vi,j , vi′,j ′) ∈ E do
10: slack[vi,j] ← min{slack[vi,j], slack[vi′,j ′]};
11: end for
12: end for

Second, an UNDECIDED edge .ek = (vi,j , vi′,j), i.e., a Type-3 edge, is identified
as a candidate edge if .vi,j or .vi′,j is a leader vertex. Third, we compute the edge
cost of each candidate edge by Eq. (18). Fourth, we try to remove Type-3 edges in
descending order of edge cost. Removing edge .ek = (vi,j , vi′,j) means its reverse
edge .ek′ = (vi′,j , vi,j) must be included in . G′ and cannot be removed. As a result,
we temporarily set the state of . ek to OFF and . ek′ to ON. Then, we verify deadlock-
freeness for the current . G′ by the verification approaches in Sect. 3.2. If . G′ is not
deadlock-free, we recover . ek and remove . ek′ by exchanging their states and verify
deadlock-freeness for . G′ again. If . G′ is deadlock-free after we decide the states of . ek

and . ek′ , we update the states of related vertices, identify newly set GRAY vertices as
leader vertices, and recompute vertex entering times and slacks. Then, we perform
the same process to the next highest cost edge.

However, sometimes . G′ may have a deadlock no matter we remove either . ek or
. ek′ . The reason is that the previous assignments of edges conflict with the decision
of choosing . ek or . ek′ . Backtracking the already removed edges is a solution for
resolving the dilemma. Unfortunately, the backtracking suffers from a long runtime
of finding a valid assignment. Therefore, instead of backtracking the removed edges,
we divide the original problem to sub-problems. We partition all vehicles into two
parts according to the ascending order of their earliest arrival times. The first part
contains vehicles ordered before . iend , the second part contains the rest. Consider
each pair of vehicles . �i and . �i′ , where . �i is in the first part, while . �i′ the second.
If . �j is a common conflict zone on the trajectories of . �i and . �i′ , we assume that . �i

will pass zone . �j before . �i′ . The assumption implies the state of edge . (vi,j , vi′,j)
is ON and the state of edge .(vi′,j , vi,j) is OFF. Therefore, when solving the sub-
problem associated with the first part, we consider only Type-3 edges in between
two vehicles belonging to the first part. For both . �i and . �i′ in the first part, the state
of their Type-3 edge .(vi,j , vi′,j) is set to UNDECIDED (to be decided in the current
sub-problem); for both . �i and . �i′ in the second part, the state of their Type-3 edge
.(vi,j , vi′,j) is set to DONTCARE (ignored in the current sub-problem). After we have
solved the sub-problem associated with the first part, we turn to the sub-problem

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 111

Algorithm 4 Remove-type-3-edges
Input: . G, istart , iend

1: Initialization
2: for each vertex vi,j ∈ V do
3: if order[�i] ≥ istart then
4: state[vi,j] ← WHITE;
5: end if
6: end for
7: for each Type-3 edge ek = (vi,j , vi′,j) ∈ E do
8: case 1: order[�i], order[�i′] < istart do do nothing;
9: case 2: iend ≤ order[�i], order[�i′] do state[ek] ← DONTCARE;
10: case 3: istart ≤ order[�i], order[�i′] < iend do state[ek] ← UNDECIDED;
11: case 4: istart ≤ order[�i] < iend ≤ order[�i′] do state[ek] ← ON;
12: case 5: istart ≤ order[�i′] < iend ≤ order[�i] do state[ek] ← OFF;
13: end for
14: ff ail ← FALSE;
15: LeaderVertices ← Find-Leaders (istart , iend);
16: while LeaderVertices �= ∅ do
17: CandidateEdges ← Find-Candidates (LeaderVertices);
18: for each edge ek = (vi,j , vi′,j) in CandidateEdges do
19: cost[ek] ← si,j + pi,j + wk − si′,j − slack[vi′,j];
20: end for
21: emax ← Find-Max-Cost-Edge (CandidateEdges);
22: emax′ ← (vi′,j , vi,j) when emax = (vi,j , vi′,j);
23: state[emax] ← OFF;
24: state[emax′] ← ON;
25: if VerifyGraph (G) is FALSE then
26: state[emax] ← ON;
27: state[emax′] ← OFF;
28: if VerifyGraph (G) is FALSE then
29: ff ail ← TRUE; break;
30: end if
31: end if
32: LeaderVertices ← Update-Leaders (LeaderVertices);
33: Update-Time-Slack (G);
34: end while
35: if ff ail is TRUE then
36: imid ← 1 2 (istart + iend);
37: Remove-Type-3-Edges (G, istart , imid);
38: Remove-Type-3-Edges (G, imid , iend);
39: end if

associated with the second part based on the result derived in previously solved
sub-problems. We set the Type-3 edges within the second part to UNDECIDED and
keep those in the first part unchanged. These procedure is repeated until there are
no UNDECIDED edges and all the vertices are BLACK.Finally, we obtain an acyclic
graph . G′ and schedule the vertex entering time of each vertex in . G′ by Eqs. (13)
and (14).

Theorem 5 Our scheduling algorithm always finds a feasible solution.

112 Y.-T. Lin et al.

Proof A feasible solution should satisfy items (i) and (ii) in the problem formula-
tion. Type-1 and Type-2 edges must be included in . G′, and they do not generate
cycles or deadlocks. For Type-3 edges between any pair of .vi,j and .vi′,j , only one
edge (either .ek = (vi,j , vi′,j) or .ek′ = (vi′,j , vi,j)) is selected by our algorithm. If
we cannot determine all Type-3 edges at a time, the original problem of all vehicles
is recursively divided into two sub-problems according to the ascending order of
their earliest arrival times. For Type-3 edges in between two parts, we select only
Type-3 edges from the first part to the second part. Hence, only Type-3 edges within
one sub-problem have to be discussed. Every time, including a Type-3 edge in
one sub-problem is verified by our verification approaches in Sect. 3.2 to guarantee
cycle-freeness and deadlock-freeness. In the worst case of sub-problem division,
each sub-problem solves only one vehicle. In this case, no Type-3 edges exist in
between two vertices belonging to the same vehicle. As a result, the resultant . G′ is
guaranteed to be acyclic and deadlock-free. ��
Theorem 6 The time complexity of our scheduling algorithm is .O(E2 logV).

Proof Our scheduling algorithm (Algorithm 2) contains three parts: vertex and edge
state initialization, updating vertex entering times and slacks (Algorithm 3), and
Type-3 edge removal (Algorithm 4). Vertex/edge state initialization can be done by
graph traversal in .O(V +E) time. Vertex entering times and slacks can be computed
in .O(V + E) time based on topological sort and graph traversal. For Type-3 edge
removal, assume the induced subgraph for a sub-problem covers a vertex subset
.Vs ⊆ V and an edge subset .Es ⊆ E. The running time of each sub-problem is
dominated by the while loop and sub-problem division in Algorithm 4. The while
loop examines each Type-3 edge at most once, and the verifier takes .O(V +E) time.
Thus, the while loop takes a total of .O(Es(V + E)) time. The recurrence for the
running time .T (Vs, Es, V ,E) of Algorithm 4 can be written as . T (Vs, Es, V ,E) =
T

(
Vs

2 , αEs, V,E
)
+T

(
Vs

2 , βEs, V ,E
)
+O(Es(V +E)), where .α+β ≤ 1. In the

base case, every sub-problem contains only one vehicle, and .T (1, Es, V ,E) takes
.O(E) time. The overall running time .T (V,E, V,E) of Algorithm 4 is . O(V E +
E(V + E) logV). Therefore, our scheduling algorithm takes .O(E2 logV) time.

��
In practical cases, the number of vehicles near an intersection is less than 100, and
the experimental results will show the efficiency applicable in real time.

3.4 A Special Case: Lane Merging

Lane merging is the process that vehicles from different incoming lanes merge into
one outgoing lane and is one of the major sources causing traffic congestion and
delay. For example, in a two-lane merging problem, we have two incoming lanes
merging into one outgoing lane. There is no priority for each lane (i.e., no main
or secondary lane), and vehicles are not allowed to overtake other vehicles during

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 113

the process. For two-lane merging, the merging intersection is the sole conflict
zone, the merging point is a representative point of the merging intersection. We
can optimally solve the two-lane merging scenario by a dynamic programming
algorithm. It decomposes the problem into a series of sub-problems to schedule
the passing order for vehicles while minimizing the time needed for all vehicles
to go through the merging point (equivalent to the time that the last vehicle goes
through the merging point). We can extend the problem to a consecutive lane-
merging scenario, which is fundamental to further generalization.

3.5 Experimental Results

We implemented the verification approach and scheduling algorithms in the C++
programming language. The experiments were run on a macOS mojave notebook
with 2.3 GHz Intel CPU and 8 GB memory. The traffic is generated at every source
lane by Poisson distribution where the parameter of Poisson distribution . λ is set to
as . 0.1, . 0.3, . 0.5, . 0.6, and . 0.7. The higher . λ, the higher traffic density. When .λ = 0.1,
the average time interval between two incoming vehicles is 10 s, while it is 2 s when
.λ = 0.5. The respective edge waiting time of a Type-1 edge, Type-2 edge, and Type-
3 edge is . 0.1, . 0.2, and . 0.2, respectively. The minimum time for a vehicle to pass a
conflict zone is set to 1 second, which means a vehicle takes 1 s to pass a conflict
zone without considering other vehicles.

3.5.1 Scheduling Effectiveness and Efficiency

In the first experiment, a four-way intersection is considered. For each direction,
there is only one incoming lane and one outgoing lane. Four conflict zones are
generated according to the crossing locations of four incoming lanes. Two traffic
settings are generated. In the first setting, the earliest arrival time of the last vehicle
is 30 s, meaning that the intersection manager is required to have a communication
range covering all vehicles that will arrive in 30 s. In the second setting, the
earliest arrival time of the last vehicle is 60 s. For each vehicle, the probability of
going straight, taking a right turn, or taking a left turn is generated by a uniform
distribution.

As listed in Tables 5 and 6, the proposed scheduling algorithm is compared with
three approaches: (1) 3D-Intersection, (2) First-Come-First-Serve, and (3) Priority-
Based. In the 3D-Intersection approach, vehicles do not consider the conflicts with
vehicles on other lanes so that a vehicle is delayed only by vehicles on the same
lane and in front of it. Thus, the 3D-Intersection approach provides a lower bound
for the objective (. TL), although it may not be collision-free. The First-Come-First-
Serve approach was introduced in Sect. 3.3. The distributed priority-based approach
in [7] is modified to fit in our graph-based model and problem formulation. The
Priority-Based approach iteratively decides the passing order of vehicles by their

114 Y.-T. Lin et al.

Table 5 Results under
different . λ when the earliest
arrival time of the last vehicle
is 30 s where . TL, . TD , and RT
are the leaving time of the last
vehicle, the average delay
time of all vehicles, and the
runtime, respectively (all
units are in second)

3D-intersection First-come-first-serve

.λ m .TL .TD RT .TL .TD RT

0.1 11 33.40 0 0.001 33.40 0.00 0.003

0.3 34 40.70 0 0.003 50.70 5.85 0.005

0.5 58 42.40 0 0.006 82.40 19.58 0.009

0.6 66 40.50 0 0.009 90.39 24.65 0.011

0.7 77 46.10 0 0.010 90.20 23.68 0.013

Priority-Based Ours

.λ m .TL .TD RT .TL .TD RT

0.1 11 33.40 0.00 0.009 33.40 0.00 0.002

0.3 34 44.50 3.17 0.007 40.80 2.23 0.015

0.5 58 68.20 10.62 0.013 60.40 6.91 0.057

0.6 66 70.10 12.31 0.020 68.70 13.65 0.119

0.7 77 74.90 13.44 0.024 72.80 13.46 0.174

Table 6 Results under different . λ when the earliest arrival time of the last vehicle is 60 s where
. TL, . TD , and RT are the leaving time of the last vehicle, the average delay time of all vehicles, and
the runtime, respectively (all units are in second)

3D-Intersection First-Come-First-Serve

.λ m .TL .TD RT .TL .TD RT

0.1 25 66.30 0 0.002 68.80 0.48 0.005

0.3 66 68.80 0 0.009 89.19 10.84 0.013

0.5 104 74.00 0 0.015 131.10 26.75 0.020

0.6 129 71.50 0 0.026 149.20 37.62 0.033

0.7 157 72.90 0 0.039 176.50 54.67 0.049

Priority-Based Ours

.λ m .TL .TD RT .TL .TD RT

0.1 25 68.80 0.48 0.008 66.90 0.32 0.006

0.3 66 73.50 2.36 0.015 71.10 1.78 0.070

0.5 104 105.30 12.30 0.052 98.40 11.80 0.229

0.6 129 133.00 27.64 0.091 116.90 20.77 0.626

0.7 157 157.80 38.49 0.157 139.50 34.22 1.825

priorities, and the priorities may change after each iteration. In our experiment, for
every . 1.0 second, the priorities are updated according to the newly estimated earliest
arrival times to intersection.

All approaches are evaluated by two criteria: (1) the leaving time of the last
vehicle . TL and (2) the average delay time of all vehicles . TD . . TL is equivalent to the
total time needed for all vehicles to go through the intersection. On the other hand,
since the 3D-Intersection approach provides the lower bound of . TL, the average
delay time of all vehicles . TD is computed as the average of the difference between
each vehicle’s leaving time and its leaving time in the 3D-Intersection solution. The
average delay time of the 3D-Intersection approach itself is always 0.

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 115

We demonstrate the effectiveness and efficiency of our algorithm by changing (1)
the traffic density and (2) the communication range.

Different Traffic Densities Table 5 shows the impact of traffic density on schedul-
ing. Note that 3D-Intersection provides the lower bounds of . TL and . TD . When . λ is
. 0.1, all approaches can achieve the optimal solution on . TL and . TD due to low traffic
density. However, when . λ becomes higher, the . TL and . TD of the First-Come-First-
Serve approach increase rapidly, and our algorithm can always achieve better results
than the First-Come-First-Serve approach. This is because our algorithm considers
more vehicles and their interactions, i.e., a global view, and provides a systematic
approach to optimize the objective. Only few cases, e.g., .λ = 0.6 or . 0.7 when the
earliest arrival time of the last vehicle is 30 s, the priority-based approach achieves
better . TD than ours. The main reason is that its frequent updates (every 1.0 second)
on the earliest arrival times can sometimes mend the lack of a global view. If the
update is not fast enough, its effectiveness will decline.

Different Communication Ranges The communication range of an intersection
manager is an important factor. To show the flexibility of communication ranges
of our algorithm, we compare Table 5 with 6 to observe the results generated by
different communication ranges under same . λ. In Table 5, the communication range
of the intersection manager covers all vehicles that will arrive in 30 s. In Table 6, the
communication range of the intersection manager covers all vehicles that will arrive
in 60 s. As the communication range becomes twice larger, the . TL of our algorithm
also becomes approximately twice larger, which means different communication
ranges do not affect the solution quality of our algorithm.

Overall, the proposed scheduling algorithm always achieves better solutions than
the First-Come-First-Serve approach under different scenarios. Our algorithm is
sufficiently efficient for real-time use even when the number of vehicles reaches 100,
which can be completed in around 1 second.8 As the number of vehicles exceeds
100, the runtime grows up. However, the number of vehicles in an intersection will
not exceed 100 in most cases. Even if the number of vehicles is large, we can still
split the traffic and schedule the front vehicles first because it is impossible for 100
vehicles to go through the intersection in 1 second.

3.5.2 Modeling Expressiveness

In the second experiment, we show the expressiveness and generality of our
modeling for different granularities of an intersection. The four-way intersection
is modeled by 1 (like the previous work [7]), 4, and 16 conflict zone(s) as shown in
Fig. 7. As shown in Table 7, when . λ is low, different granularities of an intersection
lead to near-optimal solutions because of few conflicts between vehicles. However,

8 It is believed that an intersection manager has much better computational capability than a current
vehicle.

116 Y.-T. Lin et al.

Table 7 Results of the proposed algorithm under different numbers of conflict zones, where . TL,
. TD , and RT are the leaving time of the last vehicle, the average delay time of all vehicles, and the
runtime, respectively (all units are in second)

1 Conflict Zone 4 Conflict Zones 16 Conflict Zones

.λ m .TL .TD RT .TL .TD RT .TL .TD RT

0.1 11 33.40 0.09 0.004 33.40 0.00 0.002 34.50 0.72 0.004

0.3 34 50.30 6.29 0.016 40.80 2.23 0.014 44.20 3.05 0.020

0.5 58 77.70 16.87 0.092 60.40 6.91 0.057 51.40 5.13 0.103

0.6 66 89.00 24.03 0.188 68.70 13.65 0.119 55.80 6.34 0.134

0.7 77 100.70 28.84 0.284 72.80 13.46 0.174 64.20 9.37 0.769

when . λ becomes higher, the intersection modeled by 4 conflict zones always
has better solutions than that modeled by 1 conflict zone. Similarly, intersection
modeled by 16 conflict zones has better solution than those modeled by 1 and 4
conflict zone(s) in most cases. The finer granularity of an intersection, the more
delicate intersection modeling and solution space, and thus the better scheduling
results. It should be mentioned that we provide general modeling, scheduling, and
verification for intersection management, and they can further assist intersection
designers (i.e., governments or city planners) to design intersections (e.g., the
number of conflict zones, the passing speed, the safety gap, the communication
range, etc.).

3.6 Conclusion

In this section, we propose a timing conflict graph model for centralized intersection
management. The model is very general and applicable to different granularities of
intersections and other conflicting scenarios. We devise a resource conflict graph for
formally verifying deadlock-freeness. Based on the graph-based models, we develop
a cycle removal algorithm to schedule vehicles to go through the intersection
safely (without collisions) and efficiently without deadlocks. The algorithm is
sufficiently efficient to consider more conflict zones and more vehicles in real time.
Experimental results demonstrate the expressiveness of the proposed model and the
effectiveness and efficiency of the proposed algorithm.

4 Summary

In this chapter, we consider connected and autonomous vehicles at intersections and
introduce distributed and centralized approaches solving the problem of intersection
management. The approaches provide feasibility, safety (collision-freeness), live-
ness (deadlock-freeness), stability, efficiency, and real-time decision. Distributed

Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 117

and centralized approaches have their own advantages and disadvantages. We
believe that they are suitable for different intersections. For example, a distributed
approach for a small intersection; a centralized approach for a large intersection.
The trade-offs between different factors and properties should be handled to match
the real-world scenarios.

References

1. Liu, C., Tomizuka, M.: Enabling safe freeway driving for automated vehicles. In: 2016
American Control Conference, pp. 3461–3467. IEEE, Piscataway (2016)

2. Liu, C., Chen, J., Nguyen, T.-D., Tomizuka, M.: The robustly-safe automated driving system
for enhanced active safety. Technical report, SAE Technical Paper (2017)

3. Dresner, K., Stone, P.: Multiagent traffic management: an improved intersection control
mechanism. In: Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 471–477. ACM, New York (2005)

4. Azimi, S., Bhatia, G., Rajkumar, R., Mudalige, P.: Reliable intersection protocols using
vehicular networks. In: Proceedings of the ACM/IEEE 4th International Conference on Cyber-
Physical Systems (ICCPS’13), pp. 1–10. ACM, New York (2013). https://doi.org/10.1145/
2502524.2502526

5. Pandit, K., Ghosal, D., Zhang, H.M., Chuah, C.-N.: Adaptive traffic signal control with
vehicular ad hoc networks. IEEE Trans. Veh. Technol. 62(4), 1459–1471 (2013)

6. Liu, C., Zhan, W., Tomizuka, M.: Speed profile planning in dynamic environments via
temporal optimization. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 154–159.
IEEE, Piscataway (2017)

7. Liu, C., Lin, C.-W., Shiraishi, S., Tomizuka, M.: Distributed conflict resolution for connected
autonomous vehicles. IEEE Trans. Intell. Veh. 3(1), 18–29 (2017)

8. Zhou, H., Liu, C.: Distributed motion coordination using convex feasible set based model
predictive control. In: International Conference on Robotics and Automation (ICRA 2021)
(2021)

9. An, J., Giordano, G., Liu, C.: Flexible MPC-based conflict resolution using online adaptive
ADMM. In: European Control Conference (ECC 2021) (2021)

10. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977)
11. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson, Addison Wesley, London (2006)
12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Com-

putations. The IBM Research Symposia Series, pp. 85–103 (1972)
13. Kann, V.: On the approximability of np-complete optimization problems. Ph.D. Thesis,

Department of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm (1992)

14. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem.
Am. Math. Soc. 7(1), 48–50 (1956)

https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526

	Distributed Coordination and Centralized Scheduling for Automobiles at Intersections
	1 Introduction
	2 Distributed Coordination
	2.1 Problem Formulation
	2.1.1 Assumption on Fixed Paths
	2.1.2 Notations of Discrete States

	2.2 Distributed Coordination Approach
	2.2.1 Decision Making
	2.2.2 Motion Planning under Temporal Constraints
	2.2.3 Theoretical Guarantees

	2.3 Simulation Results
	2.3.1 Microscopic Case Study
	2.3.2 Macroscopic Traffic Simulation

	2.4 Conclusion

	3 Centralized Scheduling
	3.1 Problem Formulation
	3.2 Deadlock-Freeness Verification
	3.3 Centralized Scheduling Approach
	3.3.1 Definitions
	3.3.2 Cycle-Removal-Based Scheduling

	3.4 A Special Case: Lane Merging
	3.5 Experimental Results
	3.5.1 Scheduling Effectiveness and Efficiency
	3.5.2 Modeling Expressiveness

	3.6 Conclusion

	4 Summary
	References

