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1 Introduction 

The fundamental goal of vehicles is to perform transportation tasks between sources 
and destinations safely and efficiently. The conflicts between vehicles occur when 
the corresponding vehicles intend to pass through a location at the same time, and 
intersections are one of the most common conflicting scenarios. Traditionally, traffic 
lights, stop signs, and priorities defined by traffic rules can be applied to resolve 
conflicts at intersections. As the technology advances, connected and autonomous 
vehicles (CAVs) provide a revolutionary solution at intersections, where: 

• Connectivity provides sufficient information between vehicles and/or roadside 
units so that a safe and efficient passing order of vehicles can be decided. 

• Autonomy provides precise control so that the decided passing order of vehicles 
can be performed. 
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In this chapter, we consider connected and autonomous vehicles at intersections and 
introduce approaches solving the problem of intersection management, also known 
as the problem of conflict resolution in a more general perspective. The approaches 
are categorized into two categories: 

• Distributed coordination, where vehicles coordinate and then decide a passing 
order of vehicles separately. 

• Centralized scheduling, where a centralized unit, called intersection manager, 
decides a passing order of vehicles and provides the instructions to vehicles. 

No matter an approach is distributed or centralized, also no matter from the 
perspective of an individual vehicle or the overall transportation system, the 
approach should provide the following properties: 

• Feasibility. The decided passing order of vehicles and the corresponding trajec-
tories, including spatial and temporal constraints, much be physically achievable 
by the vehicles. 

• Safety (collision-freeness). The deciding passing order must resolve the conflict 
for each pair of vehicles which intend to pass through a same location. Here, 
we define a conflict zone, and the safety requirement is that there is at most one 
vehicle occupying a conflict zone at the same time. 

• Liveness (deadlock-freeness). The deciding passing order must not lead to a 
deadlock, i.e., an infinite waiting between multiple vehicles. 

• Stability. The passing order must be stable along with the time line. 
• Efficiency. The passing order should try to optimize the traffic efficiency or 

minimize delays of vehicles, i.e., allow vehicles to pass through intersections 
as soon as possible. 

• Real-Time Decision. The passing order should be decided in real time without 
delaying vehicles due to waiting the decision or the corresponding instructions. 

The chapter is organized as follows. Sections 2 and 3 present our distributed coor-
dination and centralized scheduling approaches, respectively. Section 4 provides a 
summary. 

2 Distributed Coordination 

In this section, we present a distributed coordination approach for the problem of 
intersection management. The approach does not require a centralized intersection 
manager. There are three steps to implement the approach: 

1. Each vehicle broadcasts its estimated time intervals to occupy the corresponding 
conflict zones. 

2. Given the broadcast information, all vehicles reach a consensus of the passing 
order by solving a conflict graph locally.
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Fig. 1 Example environments: (a) intersection and (b) roundabout 

3. Each vehicle adjusts its speed profile according to the passing order and updates 
its estimated time intervals to occupy the corresponding conflict zones. 

We assume that the communication has no delay or packet loss. Figure 1 illustrates 
two example environments: a (real) intersection and a roundabout. A conflict zone 
is formulated when the extensions of two incoming lanes intersect with each other. 

The rest of the discussion is organized as follows: Sect. 2.1 formulates the prob-
lem. Section 2.2 introduces the distributed approach and its theoretical guarantees. 
Section 2.3 provides simulation results, and Sect. 2.4 concludes the discussion. 

2.1 Problem Formulation 

A conflict zone is formulated when the extensions of two incoming lanes intersect 
with each other. The conflict zones are denoted by .C1, C2, . . . , CL, where L is the 
total number of conflict zones. There are N vehicles, indexed from 1 to N , intend to 
pass through an intersection. The intention (the target lane after passing through the 
intersection) of vehicle i is . Gi . The state of vehicle i at time t is denoted as .xi(t). 
The system state at time step t is denoted as .x(t) := [x1(t); x2(t); . . . ; xN(t)]. 

The system objective is to ensure that the intentions of the vehicles are satisfied 
efficiently and maintain the system safety. The safety constraint requires that the 
minimum distance between any two vehicles is larger than or equal to a threshold 
.dmin, e.g., 

.X := {x | d(xi, xj ) ≥ dmin, ∀i, j, i �= j}, (1) 

where the function d measures the minimum distance between two vehicles i and j . 
In a distributed setting, each individual vehicle only has a local view and 

local information, i.e., vehicle i only considers the vehicles in its neighborhood 
. Ni . Moreover, the other vehicles’ states in the safety constraint are not directly
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accessible, so they need to be estimated. The navigation problem for vehicle i can 
be formulated as the following optimization problem: 

.min
xi

J (xi,Gi), (2a) 

.s.t. ẋi (t) ∈ �(xi(t)), (2b) 

.d(xi(t), x̂
i
j (t)) ≥ dmin, ∀j ∈ Ni , (2c) 

where J is the objective, and .x̂i
j (t) is the estimation of .xj (t) made by vehicle i. 

Equation (2b) is the feasibility constraint to ensure that there is a low level controller 
to track the trajectory, e.g., 

.�(xi) := {ẋi | ∃ui, ẋi = f (xi, ui)}, (3) 

where .ẋi = dxi/dt , . ui is the vehicle control input (wheel angle and throttle torque), 
and f describes the vehicle dynamics. It is assumed that all vehicles are equipped 
with perfect controllers that can execute the planned trajectories without any error 
if the planned trajectory is feasible. 

In current design of autonomous vehicles, . x̂i
j is estimated based on local 

sensors [1, 2]. In order to account for uncertainties in the estimation, the behaviors 
of autonomous vehicles tend to be conservative. As a result, all vehicles may decide 
to slow down to yield, which is very inefficient. The behaviors of “connected” 
and autonomous vehicles can be less conservative due to more information and 
more accurate estimation. From the system level, less conservative behaviors imply 
smaller delay and larger throughput. Before we dive deep into the distributed 
coordination solution, we first introduce several assumptions and notation. 

2.1.1 Assumption on Fixed Paths 

We assume that each vehicle follows a fixed path, and Eq. (2) only optimizes for the 
speed profile along the path. Let . x∗

i be the optimal trajectory of vehicle i that does 
not consider the collision avoidance constraint, e.g., 

.x∗
i = arg min

ẋi (t)∈�(xi (t))
J (xi,Gi). (4) 

Hence, the path of vehicle i is fixed along . x∗
i , and the vehicle only adjusts its speed 

profile to meet the collision avoidance constraint. This assumption is reasonable 
since vehicles are usually not allowed to change lanes at intersections. In the 
following discussion, let .x∗

i (s) be the distance s parameterized path for vehicle i. 
The speed profile for vehicle i is denoted as .si(t) which is a mapping from time to 
the distance along the path. Then, .x∗

i (si(t)) is the trajectory.
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We say that vehicle i passes through the conflict zone . Cl if there exists . s ∈ R
+

such that .Bi (x
∗
i (s)) ∩ Cl �= ∅, where . Bi denotes the area occupied by vehicle i at 

state .x∗
i (s). Define the segment on path . x∗

i that intersects with the conflict zone . Cl

as .Li,l := {s | Bi (x
∗
i (s)) ∩ Cl �= ∅}. Hence, .Li,l = ∅ if and only if vehicle i does 

not pass through the conflict zone . Cl . Denote the set of indices of conflict zones that 
vehicle i passes through as .Ai := {l | Li,l �= ∅}. Then, two vehicles i and j pass 
through a same conflict zone if and only if .Ai ∩ Aj �= ∅. 

2.1.2 Notations of Discrete States 

In addition to the continuous vehicle state . xi , to better describe the vehicle behaviors 
at intersections, we define a discrete state . Si for vehicle i, where 

• .Si = IL if vehicle i is on an incoming lane, and it is not the first vehicle on the 
lane. 

• .Si = FIL if vehicle i is on an incoming lane, and it is the first vehicle on the 
lane. 

• .Si = I if vehicle i is at the intersection. 
• .Si = OL if vehicle i is on an outgoing lane. 

Vehicle i may enter the control area with .Si = IL or FIL. . Si can transit from IL  
to FIL, from FIL  to I , and from I to OL, i.e., becoming the first vehicle on an 
incoming lane, entering the intersection, and leaving the intersection, respectively. 
It can leave the control area when .Si = OL. For any vehicle i such that .Si = IL or 
OL, its front vehicle is denoted . Fi . 

2.2 Distributed Coordination Approach 

The key insight here is that communication can help the ego vehicle to better 
determine the constraint in Eq. (2c). Indeed, instead of estimating others’ trajectories 
. x̂i

j , what really matters to the ego vehicle is the time that other vehicles occupy the 
conflict zones. We design the communication protocol to be that each vehicle should 
broadcast the following two types of information: 

• The estimated times to occupy the conflict zones once the vehicle enters a control 
area of the intersection, e.g., the shaded area in Fig. 1. 

• The basic information such as the vehicle ID, the current state (position, heading, 
speed, and . Si), and the time stayed in the control area. 

Based on the broadcast information, the vehicles will seek a consensus on the 
passing order and compute desired time slots to pass through the conflict zones, 
which are then taken as temporal constraints on the vehicles’ trajectories. This 
naturally breaks the problem into two parts as shown in Fig. 2a:
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Fig. 2 Architecture of the conflict resolution mechanism. (a) System block diagram. (b) Time  
flow of execution 

1. Decision making: determination of passing order and hence temporal constraints. 
2. Motion planning: computation of trajectory. 

The time flow and the coordination among different modules are shown in Fig. 2b. It 
is assumed that all vehicles are synchronized. At time step .n− 1, the estimated time 
interval .[Tin,n−1

j,l ,T
out,n−1
j,l ] for vehicle j to occupy . Cl is broadcast for all j and l. 

At time step n, vehicle i evaluates all information received from other vehicles and 
computes the desired time slots to pass through the conflict zones in the decision 
maker, i.e., .[T in,n

i,l , T
out,n
i,l ] for all l, which are then sent to the motion planner as 

temporal constraints. After motion planning, the planned trajectory is sent to the 
controller for execution and the estimated time slots to occupy the conflict zones 
given the new trajectory, i.e., .[Tin,n

i,l ,T
out,n
i,l ] for all l, are broadcast to other vehicles. 

The decomposition of decision making and motion planning can also be adopted 
in centralized intersection management, where the manager takes the responsibility
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Algorithm 1 The decision making algorithm for vehicle i for computing 
the temporal constraints [T in,n 

i,l , T  out,n 
i,l ], ∀l at time step n given information 

[T in,n−1 
j,l , T out,n−1 

j,l ],∀j, l 
Initialize, n = 0 
while Si ∈ {IL,  FIL,  I } do 

Receive other’s information T in,n−1 
j,l , T out,n−1 

j,l 
Initialize Yi = ∅, T in,n 

i,l = −∞, T out,n 
i,l = ∞  

if Si = IL  then 
i yields its front vehicle (Yi = {Fi}) 

end if 
for j that has spatial conflicts with i (j ∈ Ui ) do 

if j has a temporal advantage over i (j ∈ Vi ) then 
if �Tie(i, j) or j has priority over i then 

i yields j (Yi = Yi ∪ {j}) 
end if 

end if 
if i has a temporal advantage over j (i ∈ Vj ) then 

if ∃Tie(j, i) and j has priority over i then 
i yields j (Yi = Yi ∪ {j}) 

end if 
end if 

end for 
for j that i yields (j ∈ Yi ) do 

for Cl that both i and j traverse (l ∈ Ai ∩ Aj ) do 
T in,n 

i,l = max{T in,n 
i,l , T out,n−1 

j,l + �Si
} 

end for 
end for 
n = n + 1 

end while 

of decision making, and the vehicles takes the responsibility of motion planning [3]. 
We discuss the decision making in Sect. 2.2.1 and the motion planning in Sect. 2.2.2. 

2.2.1 Decision Making 

At time step n, vehicle i needs to compute the desired time interval .[T in,n
i,l , T

out,n
i,l ] to 

pass through the conflict zones given the broadcast information . [Tin,n−1
j,l ,T

out,n−1
j,l ]

for all j and l. The basic strategy is that whoever arrives first in a conflict zone 
goes first.1 However, this strategy may create deadlocks when one vehicle arrives 
earlier in one conflict zone, while the other vehicle arrives earlier in another conflict 
zone. As a result, a tie breaking mechanism is needed. Here, we first discuss a

1 Note that this is different from the strategies discussed in [4], which only considers the arrival 
time at the intersection. 
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general methodology to deal with distributed coordination with multiple conflict 
zones, which is summarized in Algorithm 1. 

If .Si = IL, it is physically “constrained” by its front vehicle and should yield 
all vehicles that its front vehicle yields. The decisions when .Si = FIL or I are 
the most important as conflicts usually come among vehicles in these two states. 
When .Si = OL, the vehicle no longer needs to compute the desired time interval. 
However, its information should be broadcast in order for the proceeding vehicles 
to follow the lane safely. In the following discussion, we focus on vehicle i with 
.Si = FIL or I . 

2.2.1.1 Spatial Conflict 

We say that there is a spacial conflict between vehicles i and j if and only if their 
paths pass through a same conflict zone. Consider the scenario shown in Fig. 3a, 
where nine vehicles locate in a six-way intersection. The shaded area denotes the 
six conflict zones. By adding edges between any pair of vehicles that have spatial 
conflicts, we formulate an undirected graph as shown in Fig. 3b, where every vertex 
represents one vehicle. Whenever there is an edge between two vehicles, we need 
to decide which vehicle goes first. In other words, the undirected graph needs to be 
transformed into a directed graph as shown in Fig. 3d such that the passing order 
is decided by the topological order. Denote the set of vehicles that have spacial 
conflicts with vehicle i as 

.Ui := {j | Sj = FIL or I,Ai ∩ Aj �= ∅}. (5) 

Recall that . Ai denotes the set of indices of conflict zones that vehicle i passes 
through. Hence, .Ai ∩ Aj �= ∅ means that vehicle j passes through one or more 
conflict zones that vehicle i also needs to pass through. The graph in Fig. 3b is  
denoted as .U := ∪i ∪j∈Ui

(i, j), where .(i, j) represents an edge between i and j . 
There is an undirected edge between any i and j such that .j ∈ Ui . In literature, 
this graph is identified as a conflict graph [5]. Finding the optimal passing order 
regarding the conflict graph is NP-hard. The approach presented here is a heuristic 
approach which finds one feasible passing order in linear time. 

2.2.1.2 Temporal Advantage 

At time step n, we say that vehicle .i ∈ Uj has a temporal advantage over vehicle j , 
if one of the following conditions holds: 

• .Si = I,Sj = FIL and vehicle j leaves some conflict zones later than vehicle i 
enters, i.e., 

.∃l ∈ Ai ∩ Aj ,T
out,n−1
j,l > T

in,n−1
i,l . (6)
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Fig. 3 The conflict graphs. (a) The scenario: nine vehicles in a six-way intersection. (b) Graph of 
spacial conflicts . U at one time step. Edge .(i, j) ∈ U implies that vehicle j has spacial conflicts 
with vehicle i at some conflict zone. (c) Graph of temporal advantages . V at one time step. Edge 
.(i, j) ∈ V implies that vehicle i has temporal advantages over vehicle j . (d) Graph of passing 
order . Y at one time step. Edge .(i, j) ∈ Y implies that vehicle j yields vehicle i. (e) Convergence 
of the graph . Y through time. The passing order converges at time 0 for leaf vertices in . R0, then for 
vertices with depth 1 in . R1 at time 1, and so on 

• .Si = FIL,Sj = I and vehicle i leaves all conflict zones earlier than vehicle j 
enters, i.e., 

.∀l ∈ Ai ∩ Aj ,T
out,n−1
i,l ≤ T

in,n−1
j,l . (7) 

• .Si = Sj = FIL or I and vehicle i enters some conflict zones earlier than vehicle 
j , i.e., 

.∃l ∈ Ai ∩ Aj ,T
in,n−1
i,l ≤ T

in,n−1
j,l . (8) 

According to the above definitions, for vehicles i and j with different discrete 
states, either i or j should have a temporal advantage over the other. If vehicles
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i and j have the same discrete state, it is possible that both i and j have temporal 
advantages over the other. Denote the set of vehicles that have temporal advantages 
over vehicle j at time step n as . Vn

j . The superscript n in the following discussion 
is ignored for simplicity. It is obvious that .Vj ⊂ Uj ; and .V := ∪j ∪i∈Vj

(i, j) is a 
directed graph as shown in Fig. 3c, where there is a directed edge from any . i ∈ Vj

to any j . However, there are cycles among vertices with the same discrete state, e.g., 
between vertices 6 and 7, as well as among vertices with different discrete states, 
e.g., among vertices 6, 7, and 3. If vehicles yield each other according to the graph, 
there are deadlocks. We will introduce a tie breaking mechanism to avoid these 
deadlocks. 

2.2.1.3 Tie Breaking 

For any vehicle i and vehicle .j ∈ Vi , it is called a tie if: 

• .Si = Sj and there exists a sequence of vehicles .{qm}M1 with .q1 = i, .qM = j , 
.M ≥ 2 and .Sqm = Si for all m such that .qm ∈ Vqm+1 for .m = 1, 2, . . . ,M − 1. 

• .Si = I , .Sj = FIL and there exists a sequence of vehicles .{qm}M1 with .q1 = i, 
.qM = j and .M ≥ 2 such that .qm ∈ Vqm+1 for .m = 1, 2, . . . ,M − 1. 

Let .Tie(i, j) denote all these sequences. The relationship in a tie is neither 
symmetric nor exclusive, i.e., .∃Tie(i, j) neither implies .∃Tie(j, i) nor .�Tie(j, i). 
For example, in Fig. 3c, there is a tie from vertex 5 to vertex 6 via the sequence 
.{5, 7, 6}, but there is not a tie from vertex 6 to vertex 5 since .5 /∈ V6. There is a tie 
from vertex 2 to vertex 3 via the sequence .{2, 3} and a tie from vertex 3 to vertex 2 
via the sequence .{3, 2}. 

We assume that each vehicle has a unique priority score P . For example, the 
priority score of a fire truck is higher than that of a passenger vehicle. We say that 
vehicle i has priority over vehicle j if there exists a sequence in .Tie(i, j) such that 
.P(i) > P (k) for all .k �= i in the sequence. The basic principles are: (1) vehicles 
already in the intersection should always have priority over vehicles on the incoming 
lanes; (2) for vehicles in the same discrete state, the order implied by the priority 
score should not change over time. If vehicle i has priority over vehicle .j ∈ Vi , 
instead of i yielding j , vehicle j should yield vehicle i, although vehicle j has a 
temporal advantage. For example, in Fig. 3, we identify the score P with the vehicle 
index. Since vertex 5 has priority in the sequence .{5, 7, 6}, the edge from 5 to 6 is 
reversed in Fig. 3d. Since there is a tie between vertex 2 and vertex 6, the edge from 
2 to 6 is also reversed in Fig. 3d. 

2.2.1.4 Passing Sequence 

After tie breaking, all those remaining edges for vehicle j represent the set of 
vehicles that vehicle j decides to yield at time step n, which is denoted by . Yn

j . 
The superscript n in the following discussion is ignored for simplicity. Indeed,
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.Y := ∪j ∪i∈Yj
(i, j) is a directed graph as shown in Fig. 3d, which encodes the 

order for the vehicles to pass through the intersection. Note that it is not necessary 
for vehicle i to construct the whole graphs . U and . V to determine . Yi . For example, 
vehicle 4 in Fig. 3 only needs to compute . U4 and . V4 locally to determine that 
.Y4 = ∅. Those local decisions form the passing sequence globally. In the extreme 
case, the passing order follows the order specified by the priority scores. If all 
vehicles agree on the above tie breaking mechanism, they can solve the conflicts 
even if the vehicles plan and control their motions differently. 

According to Algorithm 1, if .Sj = IL, the vehicle j yields its front vehicle, i.e., 
.Yj = {Fj }, as shown by vehicle 9 in Fig. 3d. If vehicle j decides to yield vehicle i, 
then for all .l ∈ Ai ∩ Aj , we set  

.T
in,n
j,l ≥ T

out,n−1
i,l + �Sj

, (9) 

where .�Sj
is a margin to increase the robustness of the algorithm, which is chosen 

such that .�IL > �FIL > �I . .�IL is chosen to be larger than .�FIL to ensure 
the leading vehicles have temporal advantages over vehicles on the middle of other 
lanes. For example, vehicle 7 has a temporal advantage over vehicle 9 in Fig. 3d. 
Similarly, .�FIL is chosen to be larger than . �I . 

2.2.2 Motion Planning under Temporal Constraints 

At time step n, given the temporal constraint .[T in,n
i,l , T

out,n
i,l ] specified by the 

decision maker, the problem in Eq. (2) for vehicle i can be rewritten as: 

.min
si

J (x∗
i (si),Gi) (10a) 

.s.t.
∂x∗

i (si )

∂si
ṡi ∈ �(x∗

i (si)), (10b) 

. si(t) /∈ Li,l , ∀t /∈ [T in,n
i,l , T

out,n
i,l ], ∀l, (10c) 

where .si(t) is the speed profile that needs to be optimized. Equation (10c) specifies 
that the vehicle should only enter the conflict zone . Cl in the time interval 
.[T in,n

i,l , T
out,n
i,l ]. For simplicity, the constraint for vehicle following is omitted in 

presentation (but included in problem solution). 
A method to efficiently solve the problem in Eq. (10) via temporal optimization 

is discussed in [6]. Here, we assume that vehicles can take unbounded deceleration, 
which is reasonable when vehicle speeds are low. Considering .T out,n

i,l = ∞ by 
Algorithm 1, there is always a solution of problem in Eq. (10). In the worst case, 
vehicle i just stops immediately. In practice, the vehicles do not necessarily need 
to take unbounded deceleration as this will be demonstrated in Sect. 2.3, since 
the conflicts are resolved before they enter the intersection. The feasibility of the 
problem in Eq. (10) under bounded deceleration is left as future work.
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Given the optimal solution . s∗
i of the problem in Eq. (10), the expected time slot 

.[Tin,n
i,l ,T

out,n
i,l ] for vehicle i to occupy the conflict zone . Cl is computed as: 

.T
in,n
i,l := min

s∗
i (t)∈Li,l

t ≥ T
in,n
i,l , T

out,n
i,l := max

s∗
i (t)∈Li,l

t ≤ T
out,n
i,l (11) 

If .Li,l = ∅, then .T
in,n
i,l := ∞ and .T

out,n
i,l := −∞. If vehicle i has entered or left . Cl , 

then .T
in,n
i,l and .T

out,n
i,l are chosen as the time that it entered or left . Cl , respectively. 

2.2.3 Theoretical Guarantees 

Here, we introduce the theoretical results to show that the proposed strategy solves 
the conflicts safely and efficiently in real time. The physical feasibility of the 
trajectories is verified in the motion planning part. Proposition 1 ensures that 
the passing order is completely determined. Proposition 2 states that there is no 
deadlock for any pair of vehicles that pass through a same conflict zone at every 
time step. Proposition 3 shows that a stable consensus on conflict-resolution can be 
reached in finite time steps. The proofs can be found in [7]. 

Proposition 1 (Completeness) For any j that has spacial conflicts with i, at least 
one statement is true: “i yields j” or “j yields i”. In other words, .j ∈ Ui implies 
.j ∈ Yi or .i ∈ Yj . 

Proposition 2 (Deadlock-Freeness) There is no cycle in the directed graph . Y of 
passing order. 

Proposition 3 (Finite Time Convergence) If . Si and . Ui remain the same for all i 
for more than N time steps, then . Yn

i and .[Tin,n
i,l ,T

out,n
i,l ] converge in at most N steps 

to . Y∗
i and .[Tin∗

i,l ,Tout∗
i,l ] such that 

.T
in∗
i,l ≥ T

out∗
j,l + �Si

, ∀l, ∀j ∈ Y∗
i (12) 

Proposition 3 implies that if the sampling time is short enough compared with 
the time needed between two transitions of . Si’s, the system can still reach consensus 
when . Si’s are changing. Nonetheless, after a transition of some . Si , the system needs 
several steps to settle down. The consistency of the passing orders . Yn considering 
those transitions is more intricate to prove, which is left as future work. Indeed, the 
consistency is demonstrated in simulation. 

2.3 Simulation Results 

In this section, we illustrate the performance of the proposed distributed conflict 
resolution mechanism through extensive traffic simulations. The sampling time in
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the system is chosen to be .dt = 0.1 s. The robustness margins are chosen as . �IL =
0.5 s, .�FIL = 0.3 s and .�I = 0.1 s. The priority score P for a vehicle is chosen to 
be the time that the vehicle stays in the control area. If there is a tie, then the vehicle 
with smaller ID has the priority. The cost function of the vehicle penalizes (1) the 
deviation from a target speed, (2) the magnitude of acceleration or deceleration, (3) 
the magnitude of jerk, and 4) the time spent in every conflict zone. The target speed 
varies for different vehicles. 

The simulation environment is a narrow four-way intersection as shown in 
Fig. 1a. There is only one incoming lane and one outgoing lane in every direction. 
Four conflict zones are identified. The control area is the whole graph. For any 
.i �= j , there is a path from lane i to lane . −j , so there are 12 different paths. Right 
turn paths only go through one conflict zone. Straight paths go through two conflict 
zones. Left turn paths go through all four conflict zones (a vehicle is treated as a 2D 
object instead of a point). In the following discussion, a microscopic case study is 
presented first followed by the result of macroscopic traffic simulation. 

2.3.1 Microscopic Case Study 

In the case study, there are four vehicles. The conditions of the vehicles (target 
speed, current lane, target lane, and time to enter the control area) are shown in 
Table 1. The paths and the executed trajectories are shown in the time-augmented 
space in Fig. 4a. The planned speed profiles in different time steps are shown in 
Fig. 4b. The left most speed profile in every subplot is the traffic-free speed profile 
and the others are the replanned speed profiles given the temporal constraints. 
Figure 5 shows the expected time intervals (the colored thick bars) for the vehicles 
to occupy the conflict zones. The thin vertical line indicates the current time. 

In this case, vehicles 1, 2 and 3 enter the control area at the same time. According 
to the traffic-free speed profiles, there are temporal conflicts between vehicle 1 and 
vehicle 3 in conflict zones 1 and 2, and between vehicle 2 and vehicle 3 in all conflict 
zones. Since vehicle 2 has a temporal advantage over vehicle 3, vehicle 3 yields 
vehicle 2. Similarly, vehicle 1 yields vehicle 3. It takes two time steps to resolve the 
conflicts. 

At 0.6 s, vehicle 4 enters, which creates new conflicts. The system settles down 
after 3 time steps as shown in Fig. 5, which verifies Proposition 3. The planned 

Table 1 Conditions in the case study 

Vehicle ID Target speed (m/s) From To Enter time (s) 

1 10 Lane 1 Lane .−3 0.2 

2 12.5 Lane 2 Lane .−1 0.2 

3 10.75 Lane 3 Lane .−2 0.2 

4 17.75 Lane 4 Lane .−2 0.6
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Fig. 4 Speed profiles and trajectories in the case study. (a) Executed trajectories in the time-
augmented space. (b) Planned speed profiles in different time steps
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Fig. 5 Conflict resolution in the case study. The scenario in .0.5s is omitted since it is the same as 
the scenario in .0.4s
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speed profiles change accordingly as shown in Fig. 4b. The right most speed profile 
in each subplot is the executed speed profile. 

2.3.2 Macroscopic Traffic Simulation 

2.3.2.1 Traffic 

In the macroscopic traffic simulation, the traffic is generated at every incoming lane 
by a Poisson distribution where the density . λ is chosen to be . 0.5, .0.25 and . 0.1, 
which implies that on average, vehicles arrive every 2, 4, and 10 s. Two groups of 
traffic are generated: 

• Group 1 (G1): .50% of vehicles go straight, .25% turn right and .25% turn left. 
• Group 2 (G2): all vehicles go straight. 

The second group is introduced to create a relatively fair comparison among 
performances under distributed strategies and performances under traffic lights. 
Since we don’t have left turn lane or left turn light, when a vehicle wants to turn left, 
it will block all the vehicles behind, thus significantly increase the delay time. The 
desired longitudinal speed . vr

i of the vehicle i follows from a uniform distribution 
from . 7.5 to 15m/s. 

2.3.2.2 Comparison 

The proposed mechanism is compared against other mechanisms as listed below. 

• Case 1 (3D): 3D intersection such as overpass without connectivity. In this case, 
there is no conflict among vehicles at the intersection. Since the delay is only 
caused by car following, the simulation result provides a lower bound for the 
delay time and an upper bound for the throughput. 

• Case 2 (NC): unmanaged 2D intersection without connectivity. Vehicles are able 
to see vehicles from other directions when approaching the intersection. Then 
vehicles’ strategy is: if there is no other vehicles from other directions or other 
vehicles are too far from the intersection (i.e., there is no temporal conflict even if 
the other vehicle accelerates with maximum acceleration), cross the intersection 
without stop; if there are other vehicles from other directions that are close to the 
intersection, stop and “first stop first go”. The delay time in this case is upper 
bounded by the delay time in the case of a four-way-stop intersection. 

• Case 3 (TL-5): 2D intersection with traffic light that changes every 5 s without 
connectivity. For example, the traffic light for the horizontal direction (lane 1 and 
lane 3) is green from 0 to 5 s and red from 5 to 10 s while the traffic light for the 
vertical direction (lane 2 and lane 4) is red from 0 to 5 s and green from 5 to 10 s. 

• Case 4 (TL-10): 2D intersection with traffic light that changes every 10 s without 
connectivity.
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• Case 5 (MP-IP): 2D intersection with the maximum progression intersection 
protocol (MP-IP) [4]. Vehicles broadcast their intentions and estimated time slots 
to occupy the conflict zones. Conflicting vehicles can make concurrent progress 
inside the intersection, though low priority vehicles need to yield high priority 
vehicles, i.e., entering the conflict zones after the high priority vehicles leave. In 
the simulation, the priority is determined by the priority score P . 

• Case 6 (AMP-IP): 2D intersection with the advanced maximum progression 
intersection protocol (AMP-IP) [4]. In addition to MP-IP, the lower priority 
vehicles are allowed to cross and clear the conflict zone before the earliest 
possible arrival of the higher-priority vehicle to that conflict zone. 

In Cases 1 to 4, there is no communication among vehicles and the vehicles are 
equipped with adaptive cruise control for car following. In Cases 5 and 6, vehicles 
communicate with one another. The two protocols only determine the passing order, 
not the vehicle trajectories. In the simulation, the vehicles under the two cases adopt 
the motion planning algorithm discussed in the previous section. The temporal 
constraints are determined by Eq. (9) according to the passing order. To create a 
fair comparison, the adaptive cruise control algorithm is integrated into the motion 
planning algorithm. At each time step, the output of the adaptive cruise control 
module will be treated as an upper bound on vehicle’s acceleration, which is added 
to the optimization Eq. (10). In the following discussion, we analyze: (1) the average 
delay time and (2) the throughput in certain time horizon. 

2.3.2.3 Average Delay 

The delay time of a vehicle is computed as the difference between the actual time 
and the traffic-free time for the vehicle to travel cross the control area as shown in 
Fig. 4b. The average delay (mean . ± standard deviation) of all vehicles traveled in 
the control area in 10min under different mechanisms are shown in Table 2. The  
proposed strategy always outperforms other mechanisms except for the case with 
3D intersection which provides a theatrical lower bound of this problem. When 
the traffic density is low, the performances of Case 2 (without communication) and 
Cases 5 and 6 (with communication) are similar to the performance of the proposed 
method, which outperforms the cases with traffic lights. When the traffic density 
goes up, the performance of Case 2 gets worse dramatically as it almost functions 
as a stop sign mechanism. The proposed method still outperforms the cases with 
traffic lights (Cases 3 and 4) since it is more flexible. For example, in the proposed 
mechanism, four simultaneous right turns are allowed, while in the traffic light case, 
at most two simultaneous right turns can be tolerated. 

The proposed method always outperforms Cases 5 and 6. Though more par-
allelism inside the intersection area (i.e., allowing more vehicles to cross the 
intersection at the same time) has been introduced in these two cased compared 
to Case 2, the rigidity of the priority queue (which does not adjust in real time) 
limits their performances. For example, consider the case study in Sect. 2.3.1. Since
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Table 2 The delay time for traffic in 10min 

.λ Case 1: 3D Case 2: NC Case 3: TL-5 Case 4: TL-10 

G1 .0.5 .0.5 ± 0.8 s .135.6 ± 78.6 s .53.2 ± 30.6 s .57.8 ± 34.4 s 

.0.25 .0.2 ± 0.4 s .2.9 ± 2.8 s .3.2 ± 2.6 s .5.2 ± 3.8 s 

.0.1 .0.1 ± 0.2 s .0.4 ± 0.7 s .2.1 ± 2.0 s .3.8 ± 3.9 s 

G2 .0.5 .0.5 ± 0.8 s .134.8 ± 81.0 s .22.0 ± 14.1 s .29.3 ± 17.6 s 

.0.25 .0.2 ± 0.6 s .9.2 ± 9.3 s .2.8 ± 2.3 s .4.4 ± 3.9 s 

.0.1 .0.1 ± 0.4 s .0.5 ± 0.7 s .1.9 ± 1.8 s .3.9 ± 3.9 s 

.λ Case 5: MP-IP Case 6: AMP-IP Proposed 

G1 .0.5 .31.2 ± 19.7 s .20.5 ± 13.2 s .11.4 ± 7.0 s 

.0.25 .1.9 ± 1.7 s .1.2 ± 1.2 s .0.5 ± 0.7 s 

.0.1 .0.4 ± 0.6 s .0.3 ± 0.6 s .0.2 ± 0.3 s 

.0.5 .8.8 ± 6.4 s .6.3 ± 4.7 s .4.3 ± 3.3 s 

G2 .0.25 .2.5 ± 2.9 s .2.2 ± 2.9 s .2.1 ± 2.7 s 

.0.1 .0.3 ± 0.5 s .0.3 ± 0.5 s .0.3 ± 0.5 s 

vehicle 4 arrives later than others, it has to wait for others according to MP-IP in 
Case 5. Even with AMP-IP in Case 6, vehicle 4 wouldn’t be able to cut in front of 
vehicle 2, since it does not leave conflict zone 1 before vehicle 2 enters. Hence high-
speed vehicles in Cases 5 and 6 experience larger delay compared to those in the 
proposed method, where they can cut into the queue only causing other vehicles to 
slow down slightly. Moreover, the average delay goes up from . 8.8 to .52.4 s in Case  
5 with “straight only” traffic .λ = 0.5 if the motion planning algorithm is replaced 
with only adaptive cruise control (ACC). Since the travel time in the intersection 
is not penalized in ACC, vehicles tend to stop right before the intersection and 
consequently take longer time to traverse the intersection (as their acceleration is 
bounded) than they do when they optimize their speed profiles to slow down before 
approaching the intersection and then speed up to pass the intersection at full speed. 
Hence the efficiency of the proposed algorithm benefits from both the decision 
making module (determination of efficient passing order) and the motion planning 
module (temporal optimization) as well as their integration. 

2.3.2.4 Throughput 

The throughput is computed as the number of vehicles that cross the control area in 
a given time slot. The throughput in 10min in all scenarios are shown in Table 3. 
When the traffic density is high, Case 2 reduces to the case with stop signs. Hence 
the throughput is roughly upper bounded by .10 · 60/δ where . δ is the average time 
in seconds that is required for a single vehicle to cross the intersection. In the
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Table 3 The traffic throughput (# of vehicles) in 10min 

.λ Case 1: 3D Case 2: NC Case 3: TL-5 Case 4: TL-10 

G1 .0.5 1170 660 984 965 

.0.25 590 589 589 587 

.0.1 230 230 230 228 

G2 .0.5 1206 641 1121 1091 

.0.25 599 597 595 589 

.0.1 245 245 245 . 245

.λ Case 5: MP-IP Case 6: AMP-IP Proposed 

G1 .0.5 1023 1099 1139 

.0.25 590 590 590 

.0.1 230 230 230 

G2 .0.5 1166 1186 1199 

.0.25 599 599 599 

.0.1 245 245 245

simulation, .δ ≈ 1. Hence the throughput in Case 2 is around 600 when .λ = 0.5, 
which is much smaller than that in other cases. However, in the proposed method, 
the throughput almost doubles, which is higher than those in Cases 3 to 6 with traffic 
light or existing V2V intersection protocols, and is very close to that in Case 1 where 
the intersection is 3D, thus verifies the effectiveness of the proposed method. 

2.4 Conclusion 

This section discuss a communication-enabled distributed coordination strategy 
for connected and autonomous vehicles to navigate at intersections. Based on 
the received information, a vehicle computes a set of vehicles that it needs to 
yield and the desired time slots to pass the conflict zones in a decision maker. 
Then, it computes a desired speed profile according to the desired time slots in a 
motion planner and broadcasts the estimated times to occupy the conflict zones. 
The aggregation of these local decisions forms a global solution to a multi-vehicle 
navigation problem. In the simulation, it is shown that the proposed mechanism has 
smaller average delay and larger throughput than the comparative cases. 

Although the fixed-path assumption and the discrete partitioning of the conflict 
zone simplifies our problem, they may potentially exclude some feasible conflict 
resolution strategy that can be achieved by adjusting the vehicle paths. These non-
fixed-path strategies are studied in [8, 9]. A thorough analysis and comparison 
among all these strategies will be left for future work.
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3 Centralized Scheduling 

In this section, we present a centralized scheduling approach for the problem of 
intersection management. As shown in Fig. 6, a centralized unit installed in the 
roadside unit, called intersection manager, decides the passing order of the vehicles 
periodically. For each period, the intersection manager receives the information 
from vehicles within its communication range. Based on the received information, 
the intersection manager computes a time window to each vehicle at each conflict 
zone on the trajectory of the vehicle. After that, the intersection manager broadcasts 
these results and prepares for the next period. 

The rest of the discussion is organized as follows: Sect. 3.1 presents our 
timing conflict graph model and problem formulation. Section 3.2 demonstrates 
our resource conflict model and verification approach. Section 3.3 describes our 
scheduling algorithm based on cycle removal. Section 3.4 discusses lane merging, a 
special case of intersection management. Section 3.5 provides experimental results, 
and Sect. 3.6 concludes the discussion. 

3.1 Problem Formulation 

In this section, we introduce our graph-based model and formulate the centralized 
intersection management problem. The notation is summarized in Table 4. 

Conflict Zone Same as the definition in Sect. 2, a conflict zone is the crossing 
location of two trajectories, and two vehicles cannot be at (occupy) the same 
conflict zone at the same time. There are n conflict zones, .�1, �2, . . . , �n, in  
the intersection. This model allows us to consider different granularities of an 
intersection, as shown in Fig. 7. 

Vehicle Each vehicle has a fixed route—it fixes its source lane, destination lane, 
and trajectory, and it does not change lanes before and after the intersection. Two 

Fig. 6 A centralized unit 
installed in the roadside unit, 
called intersection manager, 
decides the passing order of 
the vehicles
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Table 4 The notation Index i, i′ The index of a vehicle 

j, j ′, j ′′ The index of a conflict zone 

(i, j) The index of a vertex 

k The index of an edge 

Given (Input) G A timing conflict graph 

m The number of vehicles 

n The number of conflict zones

�i The i-th vehicle

�j The j -th conflict zone 

vi,j The (i, j)-th vertex 

ek The k-th edge 

ai The earliest arrival time of �i 
pi,j The vertex passing time of vi,j 
wk The edge waiting time of ek 

Output G′ An acyclic timing conflict graph 

si,j The vertex entering time of vi,j 

Conflict Zone 

Fig. 7 The model allows us to consider different granularities of an intersection. The intersection 
can be modeled by 1, 4, 16, and 24 conflict zone(s), and much more alternatives are possible 

vehicles have a potential conflict at zone . �j if and only if . �j is on the both 
trajectories. 

Timing Conflict Graph A directed timing conflict graph .G = (V ,E) is constructed 
by the following rules: 

• There is a vertex .vi,j if and only if . �j is on the trajectory of . �i . 
• There is a Type-1 edge .(vi,j , vi,j ′) if and only if the next conflict zone of . �j on 

the trajectory of . �i is . �j ′ . 
• There is a Type-2 edge .(vi,j , vi′,j ) if and only if . �i and . �i′ , on the same source 

lane and with the order where . �i is in front of . �i′ , have a conflict at . �j . 
• There are two Type-3 edges .(vi,j , vi′,j ) and .(vi′,j , vi,j ) if and only if . �i and . �i′ , 

on different source lanes, have a conflict at . �j .
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Fig. 8 (a) An example  and (b) its timing conflict graph 

Note that the vertex set is a subset of the Cartesian product of the sets of vehicles 
and conflict zones. An example and its timing conflict graph are shown in Fig. 8a, 
b, respectively. 

Earliest Arrival Time Each vehicle . �i is associated with . ai , the earliest arrival time 
for . �i to arrive at the first conflict zone on its trajectory, without being delayed by 
any other vehicle (i.e., no vehicle is in front of . �i before the intersection). It can be 
either computed or provided by . �i or computed by the intersection manager. 

Edge Waiting Time Each edge .ek = (vi,j , vi′,j ′) is associated with . wk , the waiting 
time “length” from . �i leaving . �j to .�i′ entering . �j ′ , without being delayed by 
any other vehicle. For a Type-1 edge . ek (where .i = i′), . wk is the time from . �i

leaving . �j to . �i entering . �j ′ ; for a Type-2 or Type-3 edge . ek (where .j = j ′), . wk

is the time from . �i leaving . �j to . �i′ entering . �j . In practice, the waiting time of a 
Type-2 edge . ek is smaller than that of a Type-3 edge . ek′ as vehicles from the same 
source lane can perform better in vehicle-following. 

Vertex Passing Time Edge vertex .vi,j is associated with . pi,j , the time “length” for 
. �i from entering . �j to leaving . �j . 

Vertex Entering Time Each vertex .vi,j is associated with . si,j , the time for . �i to 
enter . �j , which implies that the earliest time for . �i to leave . �j is .si,j + pi,j . 
If a timing conflict graph . G′ is acyclic, the vertex entering time of each vertex is 
assigned as follows:2 

• As the graph is acyclic, the assignment can follow a topological order. If there 
are multiple options, a Type-1 edge has a higher priority than a Type-2 or Type-3 
edge. 

• If .vi,j is the first conflict zone on the trajectory of . �i ,

2 As there is dependency between vehicles, the vertex entering time of each vertex cannot be given 
as an input. 
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.

si,j = max

{
ai, max

k|ek=(vi′,j ′ ,vi,j )∈G′
{
si′,j ′ + pi′,j ′ + wk

}
,

max
k′|ek=(vi′,j ′ ,vi,j )∈G′,ek′=(vi′,j ′ ,vi′,j ′′ )∈G′,ek �=ek′

{
si′,j ′′ − wk′ + wk

}} (13) 

Note that .j = j ′ is always true in this case. The last maximum term is to make 
sure that . �i′ leaves . �j ′ for .�j ′′ so that . �i can enter . �j . For easier understanding, 
we can also set the intersection-entering point of each source lane as a conflict 
zone so that it is the first conflict zone of the trajectory of each vehicle from the 
source lane. 

• Otherwise, 

.

si,j = max

{
max

k|ek=(vi′,j ′ ,vi,j )∈G′
{
si′,j ′ + pi′,j ′ + wk

}
,

max
k′|ek=(vi′,j ′ ,vi,j )∈G′,ek′=(vi′,j ′ ,vi′,j ′′ )∈G′,ek �=ek′

{
si′,j ′′ − wk′ + wk

}} (14) 

Note that either .i = i′ or .j = j ′ is always true in this case. If .i = i′, the  last  
maximum term is not needed. 

Problem Formulation Given a conflict graph G, the earliest arrival time . ai of each 
vehicle . �i , the edge waiting time . wk of each edge . ek , and the vertex passing time 
.pi,j of each vertex . vi,j , the problem is to 

1. Compute an acyclic subgraph . G′ of G, where 

• For each vertex . vi in G, . vi is also in . G′, 
• For each Type-1 edge . ek in G, . ek is also in . G′, 
• For each Type-2 edge . ek in G, . ek is also in . G′,3 and 
• For each pair of vertices . vi,j and .vi′,j in G, there exists a path either from . vi,j

to .vi′,j or from .vi′,j to .vi,j in . G′, 

2. Guarantee no deadlock, 
3. Assign the vertex entering time . si,j of each vertex .vi,j (as the paragraph above), 

and 
4. Minimize 

.max
vi,j

(
si,j + pi,j

)
, (15) 

which is the total time needed for all vehicles to go through the intersection.

3 We do not consider overtaking in this section; otherwise, we can relax the constraint to potentially 
change Type-2 edges. 
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2,2 

3,2 3,3 
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Fig. 9 (a)–(c) Examples with deadlocks and (d)–(e) examples without deadlocks 

The item 1 is the safety (collision-freeness) property to guarantee an order for 
vehicles having a conflict. The item 3 follows the order to schedule vehicles, and 
the item 4 is the objective function. The item 2 is the liveness (deadlock-freeness) 
property. To this point, we have not detailed how to guarantee no deadlock—it will 
be demonstrated in the following section. 

3.2 Deadlock-Freeness Verification 

In this section, we will demonstrate a graph-based verification approach which can 
guarantee deadlock-freeness. A tailored Petri net [10] can also verify the deadlock-
freeness. The verification can serve as a routine for the scheduling in Sect. 3.3 to 
verify deadlock-freeness for . G′. 

Having no cycle in . G′ or G does not guarantee deadlock-freeness.4 Some 
examples are shown in Fig. 9.5 All of them have no cycle in . G′, but Fig. 9a–c have 
deadlocks, and Fig. 9d–e are deadlock-free. In Fig. 9a, . �1 needs to enter . �2 after 
. �2. However, . �2 even cannot enter . �1(also, . �2) because it is waiting . �1 to leave 
. �1. That causes a deadlock. Similarly, there are deadlocks in Fig. 9b, c. On the 
contrary, in Fig. 9d, there is no deadlock as . �1 enters both . �1 and . �2 before . �2. In  
Fig. 9e, even if . �2 enters . �1 first, . �2 can enter . �2 after that so that . �1 is able to 
enter . �1 (after . �2) and . �3 (before . �2) without a deadlock.

4 This is the reason that we need the item 2 in the problem formulation. 
5 To demonstrate the examples concisely, the examples in Fig. 9 are not associated with any 
intersection modeling in Fig. 7. 
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Fig. 10 The construction rules of resource conflict graphs 

As illustrated above, having no cycle in . G′ cannot verify that there is no deadlock. 
Therefore, we introduce resource conflict graphs as follows: 

Resource Conflict Graph The directed resource conflict graph . H ′ of . G′ is con-
structed by the following rules: 

• There is a vertex .ui,j,j ′ if and only if there is a Type-1 edge .(vi,j , vi,j ′) in . G′. 
• If there are edges .(vi,j , vi,j ′) and .(vi,j ′ , vi,j ′′) in . G′, then there is an edge 

.(ui,j,j ′ , ui,j ′,j ′′) in . H ′ (illustrated in Fig. 10a). 
• If there are edges .(vi,j , vi′,j ), .(vi,j , vi,j ′), and .(vi′,j , vi′,j ′′) in . G′, then there is an 

edge .(ui,j,j ′ , ui′,j,j ′′) in . H ′ (illustrated in Fig. 10b). 
• If there are edges .(vi,j , vi′,j ), .(vi,j ′ , vi,j ), and .(vi′,j ′′ , vi′,j ) in . G′, then there is an 

edge .(ui,j ′,j , ui′,j ′′,j ) in . H ′ (illustrated in Fig. 10c). 
• If there are edges .(vi,j , vi′,j ), .(vi,j , vi,j ′), and .(vi′,j ′′ , vi′,j ) in . G′, then there is an 

edge .(ui,j,j ′ , ui′,j ′′,j ) in . H ′ (illustrated in Fig. 10d). 
• If there are edges .(vi,j , vi′,j ), .(vi,j ′ , vi,j ), and .(vi′,j , vi′,j ′′) in . G′, then there is an 

edge .(ui,j ′,j , ui′,j,j ′′) in . H ′ (illustrated in Fig. 10e). 

The general concept of the last four rules is that, if there is an edge . (vi,j , vi′,j )
in . G′, then there is an edge from each vertex (which corresponds to an edge in . G′) 
involving .vi,j to each vertex (which corresponds to an edge in . G′) involving . vi′,j
in . H ′. It implies that, if  . �i enters . �j before .�i′ enters . �j , then . �i must leave 
. �j before . �i′ enters . �j . The resource conflict graphs of the examples in Fig. 9 are 
shown in Fig. 11. We can observe that they are cyclic in Fig. 11a–c, while they are 
acyclic in Fig. 11d–e. 

Theorem 4 . H ′ is cyclic if and only if . G′ has a deadlock. 

Proof From left-hand side (LHS) to right-hand side (RHS): If there is a cycle in . H ′, 
we assume the cycle as .((i0, j0, j ′

0), (i1, j1, j
′
1), . . . , (ik, jk, j

′
k), . . . , (il, jl, j

′
l )),
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Fig. 11 The resource conflict graphs of the examples in Fig. 9 

where .(il, jl, j
′
l ) = (i0, j0, j

′
0). By the construction rules of . H

′, for any pair of 
.(ik, jk, j

′
k) and .(ik+1, jk+1, j

′
k+1), at least one equality of .jk = jk+1, .jk = j ′

k+1, 
.j ′
k = jk+1, and .j ′

k = j ′
k+1 is true. Assume that it is equal to . j∗ in the true equality. 

By the definition of a conflict zone (that two vehicles cannot be at the same conflict 
zone at the same time), .�ik must leave .�j∗ before .�ik+1 enters . �j∗ . This means 
that .(ik, jk, j

′
k) blocks .(ik+1, jk+1, j

′
k+1), and thus, considering .0 ≤ k ≤ l − 1, the  

cycle forms a deadlock. 
From RHS to LHS: If there is a deadlock, without loss of generality, we assume 

that . �i cannot move from . �j to . �j ′ . The conditions that . �i cannot move from 
. �j to .�j ′ include6 (1) . �i cannot move from another conflict zone .�j ′′ to . �j , 
(2) another vehicle . �i′ scheduled to enter . �j earlier cannot enter . �j , (3) another 
vehicle .�i′ scheduled to leave . �j earlier cannot leave . �j , (4) another vehicle 
.�i′ scheduled to enter .�j ′ earlier cannot enter . �j ′ , and (5) another vehicle . �i′
scheduled to leave . �j ′ earlier cannot leave . �j ′ . By the construction rules of . H ′, each 
of the conditions constructs an edge to vertex .(i, j, j ′) in . H ′. Repeating applying 
the same conditions, those edges must form a cycle7 since the numbers of vehicles 
and conflict zones are finite. ��

6 If all of the conditions are false, then . �i can move from . �j to . �j ′ . A similar claim is not true for 
. G′, so having no cycle in . G′ cannot guarantee deadlock-freeness. 
7 Though it may not go back to .(i, j, j ′). 
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By Theorem 4, . H ′ is acyclic if and only if . G′ has no deadlock (deadlock-freeness). 
Note that we construct . H ′ from . G′. After the construction, we do not need . G′ in the 
verification. 

3.3 Centralized Scheduling Approach 

In this section, we develop a cycle removal algorithm based on the graph model in 
Sect. 3.1 and the verification approaches in Sect. 3.2. 

A greedy strategy, a First-Come-First-Serve approach, can be adopted here to 
schedule the vehicles based on their earliest arrival times. However, this approach 
ignores the interactions between vehicles and conflict zones, and thus possibly leads 
to extra waiting time. To address this problem, with the graph-based model and the 
verification approaches, we can decide the passing order for vehicles to go through 
the intersection safely and efficiently by removing all cycles in the graph. 

The most common method to detect and remove cycles in a directed graph is the 
Depth-First Search (DFS) algorithm [11]. There is a cycle in a graph only if a back 
edge, which is an edge from a vertex to itself or its ancestors, is found during the 
DFS traversal of the graph. Then, the method can remove any edge in the cycle to 
avoid having cycle in the graph. However, without optimization objective, the DFS 
method may not remove “good” edges to perform optimization. Furthermore, to 
decide a passing order, we cannot remove some edges because of the safety property 
(item 1) in our problem formulation, and thus the direct use of a DFS method is not 
feasible. On the other hand, the minimum feedback arc set problem, a special case 
of our problem, is NP-hard [12] and has not known to be approximable within a 
constant [13]. 

Our objective is to minimize the total time needed for all vehicles to go through 
the intersection, equivalent to the leaving time of the last vehicle. To remove cycles 
while considering the edge costs, finding a minimum spanning tree (MST) of the 
graph can be a potential solution, and one approach is the Kruskal’s algorithm [14]. 
The Kruskal’s algorithm repeatedly chooses a minimum-cost edge which does 
not form any cycle with those already-chosen edges. Kruskal also proposed the 
backward version of the original one, and it repeatedly removes a maximum-cost 
edge whose removal does not disconnect the graph. Inspired by this method, we do 
intend to remove the edge which results in the largest delay to the objective. This 
can remove cycles and benefit the objective minimization at the same time. 

Based on our graph model, we develop a cycle removal algorithm. First, we 
compute the vertex entering time of each vertex without considering Type-3 edges. 
Next, the costs of Type-3 edges are estimated by their impacts on the objective. 
Then, we remove a Type-3 edge which has the largest cost from the graph. The 
impact of .(vi,j , vi′,j ) on the objective is measured by considering .(vi,j , vi′,j ) when 
recomputing the vertex entering time of each vertex. Repeating those steps, we can 
remove cycles and compute the vertex entering time of each vertex in the graph. 
It should be noted that, sometimes, we cannot remove an edge because of the last
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constraint of the item 1 in the problem formulation. In this case, we divide the 
problem into sub-problems and solve the sub-problems. 

3.3.1 Definitions 

We first provide some definitions which will be used in our algorithm as follows. 

Edge State There are four possible states for an edge: 

• An edge is ON if it has been decided to be kept (in . G′). By the item 1 in the 
problem formulation, a Type-1 or Type-2 edge is always ON. When discussing 
the graph . G′, we only consider ON edges. 

• An edge is OFF if it has been decided to be removed. 
• An edge is UNDECIDED if it is going to be decided in the current sub-problem. 
• An edge is DONTCARE if it is not considered in the current sub-problem. 

Vertex State There are three possible states for a vertex: 

• A vertex is  BLACK if its vertex entering time has been scheduled. If .vi,j is 
BLACK, then each edge .ek = (vi,j , vi′,j ′) or .(vi′,j ′ , vi,j ) must be ON or OFF. 
On the other hand, if .ek = (vi,j , vi′,j ′) is ON, then .vi,j must be BLACK. 

• A vertex is  GRAY if its vertex entering time can still be influenced by Type-3 
edges. If .vi,j is GRAY, then for each Type-1 or Type-2 edge .ek = (vi′,j ′ , vi,j ), 
.vi′,j ′ must be BLACK. When we remove edges, we only estimate the cost of an 
edge .ek = (vi,j , vi′,j ′), where at least one of .vi,j and .vi′,j ′ is GRAY. 

• A vertex is  WHITE if its vertex entering time can be influenced by any type of 
edges. 

Vertex Slack The vertex slack is the maximum time which can be delayed at the 
vertex without increasing the objective. We consider ON edges only. Similar to 
the computation of the vertex entering time, if . G′ is acyclic, we follow a reverse 
topological order and compute the vertex slack of each vertex .vi,j as follows: 

• If . �j is the last conflict zone on the trajectory of . �i , 

.

slack [vi,j ] = min

{
max

vi′,j ′ ∈G′
(
si′,j ′ + pi′,j ′

) − (
si,j + pi,j

)
,

min
k|ek=(vi,j ,vi′,j ′ )∈G′

{
slack [vi′,j ′ ]}

} (16) 

• Otherwise, 

.slack [vi,j ] = min
k|ek=(vi,j ,vi′,j ′ )∈G′

{
slack [vi′,j ′ ]} (17)
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Algorithm 2 Cycle-removal-based scheduling 
Input: G 
Output: G′
1: Initialization; 
2: for each vertex vi,j ∈ V do 
3: state[vi,j ] ← WHITE; 
4: slack[vi,j ] ← ∞; 
5: end for 
6: for each edge ek ∈ E do 
7: if ek is a Type-3 edge then 
8: state[ek] ← UNDECIDED; 
9: else 
10: state[ek] ← ON; 
11: end if 
12: end for 
13: Update-Time-Slack (G); 
14: Remove-Type-3-Edges (G, 0,m); 
15: Output the resultant graph as G′; 

Edge Cost The edge cost of a Type-3 edge is the delay time of the objective caused 
by this edge if we keep it. For the edge .ek = (vi,j , vi′,j ), .(si,j + pi,j + wk) and . si′,j
are the vertex entering times of .vi′,j with and without considering . ek , respectively. 
If the delay time caused by . ek is larger than the slack of .vi′,j , the objective will 
increase if we keep . ek . The edge cost of a Type-3 edge .ek = (vi,j , vi′,j ) is defined 
as follows: 

.cost [ek] = (si,j + pi,j + wk) − si′,j − slack [vi′,j ] (18) 

Note that, although the edge cost may be negative, the objective will never decrease. 

3.3.2 Cycle-Removal-Based Scheduling 

To solve the cycle removal problem, we follow the steps listed in Algorithm 2. First,  
based on the problem formulation in Sect. 3.1, Type-1 and Type-2 edges must be 
included in . G′. Thus, we set the states of all Type-1 and Type-2 edges to ON and the 
states of all Type-3 edges to UNDECIDED. 

Next, we apply Algorithm 3 to compute the vertex entering times and slacks of 
vertices. At this moment, the graph . G′ contains only Type-1 and Type-2 edges and 
thus is an acyclic graph. According to its topological order, we compute the vertex 
entering time of each vertex by Eqs. (13) and (14) and the leaving time of the last 
vehicle. We also compute the slack of each vertex according to reverse topological 
order by Eqs. (16) and (17). 

Then, we decide which edges to be removed by Algorithm 4. First, in the process 
of Find-Leaders, a vertex .vi,j is identified as a leader vertex if . �i is the first 
vehicle of its source lane and . �j the first conflict zone on the trajectory of . �i .
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Algorithm 3 Update-time-slack 
Input: G 
1: Initialization; 
2: Topological-Sort (G) 
3: for each vertex vi,j in topological order do 
4: Compute si,j by Eq. ( 13) or (14); 
5: end for 
6: maxLeavingT ime ← maxvi,j (si,j + pi,j ); 
7: for each vertex vi,j in reverse topological order do 
8: slack[vi,j ] ←  maxLeavingT ime − si,j − pi,j ; 
9: for each edge ek = (vi,j , vi′,j ′ ) ∈ E do 
10: slack[vi,j ] ←  min{slack[vi,j ], slack[vi′,j ′ ]}; 
11: end for 
12: end for 

Second, an UNDECIDED edge .ek = (vi,j , vi′,j ), i.e., a Type-3 edge, is identified 
as a candidate edge if .vi,j or .vi′,j is a leader vertex. Third, we compute the edge 
cost of each candidate edge by Eq. (18). Fourth, we try to remove Type-3 edges in 
descending order of edge cost. Removing edge .ek = (vi,j , vi′,j ) means its reverse 
edge .ek′ = (vi′,j , vi,j ) must be included in . G′ and cannot be removed. As a result, 
we temporarily set the state of . ek to OFF and . ek′ to ON. Then, we verify deadlock-
freeness for the current . G′ by the verification approaches in Sect. 3.2. If  . G′ is not 
deadlock-free, we recover . ek and remove . ek′ by exchanging their states and verify 
deadlock-freeness for . G′ again. If . G′ is deadlock-free after we decide the states of . ek

and . ek′ , we update the states of related vertices, identify newly set GRAY vertices as 
leader vertices, and recompute vertex entering times and slacks. Then, we perform 
the same process to the next highest cost edge. 

However, sometimes . G′ may have a deadlock no matter we remove either . ek or 
. ek′ . The reason is that the previous assignments of edges conflict with the decision 
of choosing . ek or . ek′ . Backtracking the already removed edges is a solution for 
resolving the dilemma. Unfortunately, the backtracking suffers from a long runtime 
of finding a valid assignment. Therefore, instead of backtracking the removed edges, 
we divide the original problem to sub-problems. We partition all vehicles into two 
parts according to the ascending order of their earliest arrival times. The first part 
contains vehicles ordered before . iend , the second part contains the rest. Consider 
each pair of vehicles . �i and . �i′ , where . �i is in the first part, while . �i′ the second. 
If . �j is a common conflict zone on the trajectories of . �i and . �i′ , we assume that . �i

will pass zone . �j before . �i′ . The assumption implies the state of edge . (vi,j , vi′,j )
is ON and the state of edge .(vi′,j , vi,j ) is OFF. Therefore, when solving the sub-
problem associated with the first part, we consider only Type-3 edges in between 
two vehicles belonging to the first part. For both . �i and . �i′ in the first part, the state 
of their Type-3 edge .(vi,j , vi′,j ) is set to UNDECIDED (to be decided in the current 
sub-problem); for both . �i and . �i′ in the second part, the state of their Type-3 edge 
.(vi,j , vi′,j ) is set to DONTCARE (ignored in the current sub-problem). After we have 
solved the sub-problem associated with the first part, we turn to the sub-problem
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Algorithm 4 Remove-type-3-edges 
Input: . G, istart , iend

1: Initialization 
2: for each vertex vi,j ∈ V do 
3: if order[�i ] ≥  istart then 
4: state[vi,j ] ← WHITE; 
5: end if 
6: end for 
7: for each Type-3 edge ek = (vi,j , vi′,j ) ∈ E do 
8: case 1: order[�i ], order[�i′ ] < istart do do nothing; 
9: case 2: iend ≤ order[�i ], order[�i′ ] do state[ek] ← DONTCARE; 
10: case 3: istart ≤ order[�i ], order[�i′ ] < iend do state[ek] ← UNDECIDED; 
11: case 4: istart ≤ order[�i ] < iend ≤ order[�i′ ] do state[ek] ← ON; 
12: case 5: istart ≤ order[�i′ ] < iend ≤ order[�i ] do state[ek] ← OFF; 
13: end for 
14: ff ail  ← FALSE; 
15: LeaderVertices ← Find-Leaders (istart , iend ); 
16: while LeaderVertices �= ∅  do 
17: CandidateEdges ← Find-Candidates (LeaderVertices); 
18: for each edge ek = (vi,j , vi′,j ) in CandidateEdges do 
19: cost[ek] ←  si,j + pi,j + wk − si′,j − slack[vi′,j ]; 
20: end for 
21: emax ← Find-Max-Cost-Edge (CandidateEdges); 
22: emax′ ← (vi′,j , vi,j ) when emax = (vi,j , vi′,j ); 
23: state[emax ] ← OFF; 
24: state[emax′ ] ← ON; 
25: if VerifyGraph (G) is  FALSE then 
26: state[emax ] ← ON; 
27: state[emax′ ] ← OFF; 
28: if VerifyGraph (G) is  FALSE then 
29: ff ail  ← TRUE; break; 
30: end if 
31: end if 
32: LeaderVertices ← Update-Leaders (LeaderVertices); 
33: Update-Time-Slack (G); 
34: end while 
35: if ff ail  is TRUE then 
36: imid ← 1 2 (istart + iend ); 
37: Remove-Type-3-Edges (G, istart , imid ); 
38: Remove-Type-3-Edges (G, imid , iend ); 
39: end if 

associated with the second part based on the result derived in previously solved 
sub-problems. We set the Type-3 edges within the second part to UNDECIDED and 
keep those in the first part unchanged. These procedure is repeated until there are 
no UNDECIDED edges and all the vertices are BLACK.Finally, we obtain an acyclic 
graph . G′ and schedule the vertex entering time of each vertex in . G′ by Eqs. (13) 
and (14). 

Theorem 5 Our scheduling algorithm always finds a feasible solution.
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Proof A feasible solution should satisfy items (i) and (ii) in the problem formula-
tion. Type-1 and Type-2 edges must be included in . G′, and they do not generate 
cycles or deadlocks. For Type-3 edges between any pair of .vi,j and .vi′,j , only one 
edge (either .ek = (vi,j , vi′,j ) or .ek′ = (vi′,j , vi,j )) is selected by our algorithm. If 
we cannot determine all Type-3 edges at a time, the original problem of all vehicles 
is recursively divided into two sub-problems according to the ascending order of 
their earliest arrival times. For Type-3 edges in between two parts, we select only 
Type-3 edges from the first part to the second part. Hence, only Type-3 edges within 
one sub-problem have to be discussed. Every time, including a Type-3 edge in 
one sub-problem is verified by our verification approaches in Sect. 3.2 to guarantee 
cycle-freeness and deadlock-freeness. In the worst case of sub-problem division, 
each sub-problem solves only one vehicle. In this case, no Type-3 edges exist in 
between two vertices belonging to the same vehicle. As a result, the resultant . G′ is 
guaranteed to be acyclic and deadlock-free. ��
Theorem 6 The time complexity of our scheduling algorithm is .O(E2 logV ). 

Proof Our scheduling algorithm (Algorithm 2) contains three parts: vertex and edge 
state initialization, updating vertex entering times and slacks (Algorithm 3), and 
Type-3 edge removal (Algorithm 4). Vertex/edge state initialization can be done by 
graph traversal in .O(V +E) time. Vertex entering times and slacks can be computed 
in .O(V + E) time based on topological sort and graph traversal. For Type-3 edge 
removal, assume the induced subgraph for a sub-problem covers a vertex subset 
.Vs ⊆ V and an edge subset .Es ⊆ E. The running time of each sub-problem is 
dominated by the while loop and sub-problem division in Algorithm 4. The while 
loop examines each Type-3 edge at most once, and the verifier takes .O(V +E) time. 
Thus, the while loop takes a total of .O(Es(V + E)) time. The recurrence for the 
running time .T (Vs, Es, V ,E) of Algorithm 4 can be written as . T (Vs, Es, V ,E) =
T

(
Vs

2 , αEs, V,E
)
+T

(
Vs

2 , βEs, V ,E
)
+O(Es(V +E)), where .α+β ≤ 1. In the  

base case, every sub-problem contains only one vehicle, and .T (1, Es, V ,E) takes 
.O(E) time. The overall running time .T (V,E, V,E) of Algorithm 4 is . O(V E +
E(V + E) logV ). Therefore, our scheduling algorithm takes .O(E2 logV ) time. 

��
In practical cases, the number of vehicles near an intersection is less than 100, and 
the experimental results will show the efficiency applicable in real time. 

3.4 A Special Case: Lane Merging 

Lane merging is the process that vehicles from different incoming lanes merge into 
one outgoing lane and is one of the major sources causing traffic congestion and 
delay. For example, in a two-lane merging problem, we have two incoming lanes 
merging into one outgoing lane. There is no priority for each lane (i.e., no main 
or secondary lane), and vehicles are not allowed to overtake other vehicles during
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the process. For two-lane merging, the merging intersection is the sole conflict 
zone, the merging point is a representative point of the merging intersection. We 
can optimally solve the two-lane merging scenario by a dynamic programming 
algorithm. It decomposes the problem into a series of sub-problems to schedule 
the passing order for vehicles while minimizing the time needed for all vehicles 
to go through the merging point (equivalent to the time that the last vehicle goes 
through the merging point). We can extend the problem to a consecutive lane-
merging scenario, which is fundamental to further generalization. 

3.5 Experimental Results 

We implemented the verification approach and scheduling algorithms in the C++ 
programming language. The experiments were run on a macOS mojave notebook 
with 2.3 GHz Intel CPU and 8 GB memory. The traffic is generated at every source 
lane by Poisson distribution where the parameter of Poisson distribution . λ is set to 
as . 0.1, . 0.3, . 0.5, . 0.6, and . 0.7. The higher . λ, the higher traffic density. When .λ = 0.1, 
the average time interval between two incoming vehicles is 10 s, while it is 2 s when 
.λ = 0.5. The respective edge waiting time of a Type-1 edge, Type-2 edge, and Type-
3 edge is . 0.1, . 0.2, and . 0.2, respectively. The minimum time for a vehicle to pass a 
conflict zone is set to 1 second, which means a vehicle takes 1 s to pass a conflict 
zone without considering other vehicles. 

3.5.1 Scheduling Effectiveness and Efficiency 

In the first experiment, a four-way intersection is considered. For each direction, 
there is only one incoming lane and one outgoing lane. Four conflict zones are 
generated according to the crossing locations of four incoming lanes. Two traffic 
settings are generated. In the first setting, the earliest arrival time of the last vehicle 
is 30 s, meaning that the intersection manager is required to have a communication 
range covering all vehicles that will arrive in 30 s. In the second setting, the 
earliest arrival time of the last vehicle is 60 s. For each vehicle, the probability of 
going straight, taking a right turn, or taking a left turn is generated by a uniform 
distribution. 

As listed in Tables 5 and 6, the proposed scheduling algorithm is compared with 
three approaches: (1) 3D-Intersection, (2) First-Come-First-Serve, and (3) Priority-
Based. In the 3D-Intersection approach, vehicles do not consider the conflicts with 
vehicles on other lanes so that a vehicle is delayed only by vehicles on the same 
lane and in front of it. Thus, the 3D-Intersection approach provides a lower bound 
for the objective (. TL), although it may not be collision-free. The First-Come-First-
Serve approach was introduced in Sect. 3.3. The distributed priority-based approach 
in [7] is modified to fit in our graph-based model and problem formulation. The 
Priority-Based approach iteratively decides the passing order of vehicles by their
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Table 5 Results under 
different . λ when the earliest 
arrival time of the last vehicle 
is 30 s where . TL, . TD , and RT  
are the leaving time of the last 
vehicle, the average delay 
time of all vehicles, and the 
runtime, respectively (all 
units are in second) 

3D-intersection First-come-first-serve 

.λ m .TL .TD RT .TL .TD RT 

0.1 11 33.40 0 0.001 33.40 0.00 0.003 

0.3 34 40.70 0 0.003 50.70 5.85 0.005 

0.5 58 42.40 0 0.006 82.40 19.58 0.009 

0.6 66 40.50 0 0.009 90.39 24.65 0.011 

0.7 77 46.10 0 0.010 90.20 23.68 0.013 

Priority-Based Ours 

.λ m .TL .TD RT .TL .TD RT 

0.1 11 33.40 0.00 0.009 33.40 0.00 0.002 

0.3 34 44.50 3.17 0.007 40.80 2.23 0.015 

0.5 58 68.20 10.62 0.013 60.40 6.91 0.057 

0.6 66 70.10 12.31 0.020 68.70 13.65 0.119 

0.7 77 74.90 13.44 0.024 72.80 13.46 0.174 

Table 6 Results under different . λ when the earliest arrival time of the last vehicle is 60 s where 
. TL, . TD , and RT are the leaving time of the last vehicle, the average delay time of all vehicles, and 
the runtime, respectively (all units are in second) 

3D-Intersection First-Come-First-Serve 

.λ m .TL .TD RT .TL .TD RT 

0.1 25 66.30 0 0.002 68.80 0.48 0.005 

0.3 66 68.80 0 0.009 89.19 10.84 0.013 

0.5 104 74.00 0 0.015 131.10 26.75 0.020 

0.6 129 71.50 0 0.026 149.20 37.62 0.033 

0.7 157 72.90 0 0.039 176.50 54.67 0.049 

Priority-Based Ours 

.λ m .TL .TD RT .TL .TD RT 

0.1 25 68.80 0.48 0.008 66.90 0.32 0.006 

0.3 66 73.50 2.36 0.015 71.10 1.78 0.070 

0.5 104 105.30 12.30 0.052 98.40 11.80 0.229 

0.6 129 133.00 27.64 0.091 116.90 20.77 0.626 

0.7 157 157.80 38.49 0.157 139.50 34.22 1.825 

priorities, and the priorities may change after each iteration. In our experiment, for 
every . 1.0 second, the priorities are updated according to the newly estimated earliest 
arrival times to intersection. 

All approaches are evaluated by two criteria: (1) the leaving time of the last 
vehicle . TL and (2) the average delay time of all vehicles . TD . . TL is equivalent to the 
total time needed for all vehicles to go through the intersection. On the other hand, 
since the 3D-Intersection approach provides the lower bound of . TL, the average 
delay time of all vehicles . TD is computed as the average of the difference between 
each vehicle’s leaving time and its leaving time in the 3D-Intersection solution. The 
average delay time of the 3D-Intersection approach itself is always 0.
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We demonstrate the effectiveness and efficiency of our algorithm by changing (1) 
the traffic density and (2) the communication range. 

Different Traffic Densities Table 5 shows the impact of traffic density on schedul-
ing. Note that 3D-Intersection provides the lower bounds of . TL and . TD . When . λ is 
. 0.1, all approaches can achieve the optimal solution on . TL and . TD due to low traffic 
density. However, when . λ becomes higher, the . TL and . TD of the First-Come-First-
Serve approach increase rapidly, and our algorithm can always achieve better results 
than the First-Come-First-Serve approach. This is because our algorithm considers 
more vehicles and their interactions, i.e., a global view, and provides a systematic 
approach to optimize the objective. Only few cases, e.g., .λ = 0.6 or . 0.7 when the 
earliest arrival time of the last vehicle is 30 s, the priority-based approach achieves 
better . TD than ours. The main reason is that its frequent updates (every 1.0 second) 
on the earliest arrival times can sometimes mend the lack of a global view. If the 
update is not fast enough, its effectiveness will decline. 

Different Communication Ranges The communication range of an intersection 
manager is an important factor. To show the flexibility of communication ranges 
of our algorithm, we compare Table 5 with 6 to observe the results generated by 
different communication ranges under same . λ. In Table 5, the communication range 
of the intersection manager covers all vehicles that will arrive in 30 s. In Table 6, the  
communication range of the intersection manager covers all vehicles that will arrive 
in 60 s. As the communication range becomes twice larger, the . TL of our algorithm 
also becomes approximately twice larger, which means different communication 
ranges do not affect the solution quality of our algorithm. 

Overall, the proposed scheduling algorithm always achieves better solutions than 
the First-Come-First-Serve approach under different scenarios. Our algorithm is 
sufficiently efficient for real-time use even when the number of vehicles reaches 100, 
which can be completed in around 1 second.8 As the number of vehicles exceeds 
100, the runtime grows up. However, the number of vehicles in an intersection will 
not exceed 100 in most cases. Even if the number of vehicles is large, we can still 
split the traffic and schedule the front vehicles first because it is impossible for 100 
vehicles to go through the intersection in 1 second. 

3.5.2 Modeling Expressiveness 

In the second experiment, we show the expressiveness and generality of our 
modeling for different granularities of an intersection. The four-way intersection 
is modeled by 1 (like the previous work [7]), 4, and 16 conflict zone(s) as shown in 
Fig. 7. As shown in Table 7, when . λ is low, different granularities of an intersection 
lead to near-optimal solutions because of few conflicts between vehicles. However,

8 It is believed that an intersection manager has much better computational capability than a current 
vehicle. 
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Table 7 Results of the proposed algorithm under different numbers of conflict zones, where . TL, 
. TD , and RT are the leaving time of the last vehicle, the average delay time of all vehicles, and the 
runtime, respectively (all units are in second) 

1 Conflict Zone 4 Conflict Zones 16 Conflict Zones 

.λ m .TL .TD RT .TL .TD RT .TL .TD RT 

0.1 11 33.40 0.09 0.004 33.40 0.00 0.002 34.50 0.72 0.004 

0.3 34 50.30 6.29 0.016 40.80 2.23 0.014 44.20 3.05 0.020 

0.5 58 77.70 16.87 0.092 60.40 6.91 0.057 51.40 5.13 0.103 

0.6 66 89.00 24.03 0.188 68.70 13.65 0.119 55.80 6.34 0.134 

0.7 77 100.70 28.84 0.284 72.80 13.46 0.174 64.20 9.37 0.769 

when . λ becomes higher, the intersection modeled by 4 conflict zones always 
has better solutions than that modeled by 1 conflict zone. Similarly, intersection 
modeled by 16 conflict zones has better solution than those modeled by 1 and 4 
conflict zone(s) in most cases. The finer granularity of an intersection, the more 
delicate intersection modeling and solution space, and thus the better scheduling 
results. It should be mentioned that we provide general modeling, scheduling, and 
verification for intersection management, and they can further assist intersection 
designers (i.e., governments or city planners) to design intersections (e.g., the 
number of conflict zones, the passing speed, the safety gap, the communication 
range, etc.). 

3.6 Conclusion 

In this section, we propose a timing conflict graph model for centralized intersection 
management. The model is very general and applicable to different granularities of 
intersections and other conflicting scenarios. We devise a resource conflict graph for 
formally verifying deadlock-freeness. Based on the graph-based models, we develop 
a cycle removal algorithm to schedule vehicles to go through the intersection 
safely (without collisions) and efficiently without deadlocks. The algorithm is 
sufficiently efficient to consider more conflict zones and more vehicles in real time. 
Experimental results demonstrate the expressiveness of the proposed model and the 
effectiveness and efficiency of the proposed algorithm. 

4 Summary 

In this chapter, we consider connected and autonomous vehicles at intersections and 
introduce distributed and centralized approaches solving the problem of intersection 
management. The approaches provide feasibility, safety (collision-freeness), live-
ness (deadlock-freeness), stability, efficiency, and real-time decision. Distributed
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and centralized approaches have their own advantages and disadvantages. We 
believe that they are suitable for different intersections. For example, a distributed 
approach for a small intersection; a centralized approach for a large intersection. 
The trade-offs between different factors and properties should be handled to match 
the real-world scenarios. 

References 

1. Liu, C., Tomizuka, M.: Enabling safe freeway driving for automated vehicles. In: 2016 
American Control Conference, pp. 3461–3467. IEEE, Piscataway (2016) 

2. Liu, C., Chen, J., Nguyen, T.-D., Tomizuka, M.: The robustly-safe automated driving system 
for enhanced active safety. Technical report, SAE Technical Paper (2017) 

3. Dresner, K., Stone, P.: Multiagent traffic management: an improved intersection control 
mechanism. In: Proceedings of the Fourth International Joint Conference on Autonomous 
Agents and Multiagent Systems, pp. 471–477. ACM, New York (2005) 

4. Azimi, S., Bhatia, G., Rajkumar, R., Mudalige, P.: Reliable intersection protocols using 
vehicular networks. In: Proceedings of the ACM/IEEE 4th International Conference on Cyber-
Physical Systems (ICCPS’13), pp. 1–10. ACM, New York (2013). https://doi.org/10.1145/ 
2502524.2502526 

5. Pandit, K., Ghosal, D., Zhang, H.M., Chuah, C.-N.: Adaptive traffic signal control with 
vehicular ad hoc networks. IEEE Trans. Veh. Technol. 62(4), 1459–1471 (2013) 

6. Liu, C., Zhan, W., Tomizuka, M.: Speed profile planning in dynamic environments via 
temporal optimization. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 154–159. 
IEEE, Piscataway (2017) 

7. Liu, C., Lin, C.-W., Shiraishi, S., Tomizuka, M.: Distributed conflict resolution for connected 
autonomous vehicles. IEEE Trans. Intell. Veh. 3(1), 18–29 (2017) 

8. Zhou, H., Liu, C.: Distributed motion coordination using convex feasible set based model 
predictive control. In: International Conference on Robotics and Automation (ICRA 2021) 
(2021) 

9. An, J., Giordano, G., Liu, C.: Flexible MPC-based conflict resolution using online adaptive 
ADMM. In: European Control Conference (ECC 2021) (2021) 

10. Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977) 
11. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson, Addison Wesley, London (2006) 
12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Com-

putations. The IBM Research Symposia Series, pp. 85–103 (1972) 
13. Kann, V.: On the approximability of np-complete optimization problems. Ph.D. Thesis, 

Department of Numerical Analysis and Computing Science, Royal Institute of Technology, 
Stockholm (1992) 

14. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. 
Am. Math. Soc. 7(1), 48–50 (1956)

https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526
https://doi.org/10.1145/2502524.2502526

	Distributed Coordination and Centralized Scheduling for Automobiles at Intersections
	1 Introduction
	2 Distributed Coordination
	2.1 Problem Formulation
	2.1.1 Assumption on Fixed Paths
	2.1.2 Notations of Discrete States

	2.2 Distributed Coordination Approach
	2.2.1 Decision Making
	2.2.2 Motion Planning under Temporal Constraints
	2.2.3 Theoretical Guarantees

	2.3 Simulation Results
	2.3.1 Microscopic Case Study
	2.3.2 Macroscopic Traffic Simulation

	2.4 Conclusion

	3 Centralized Scheduling
	3.1 Problem Formulation
	3.2 Deadlock-Freeness Verification
	3.3 Centralized Scheduling Approach
	3.3.1 Definitions
	3.3.2 Cycle-Removal-Based Scheduling

	3.4 A Special Case: Lane Merging
	3.5 Experimental Results
	3.5.1 Scheduling Effectiveness and Efficiency
	3.5.2 Modeling Expressiveness

	3.6 Conclusion

	4 Summary
	References




