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1 Introduction 

Transportation’s reliance on nonrenewable hydrocarbon fuels creates serious con-
cerns about energy supply, cost, and environmental safety. In the pursuit for green, 
sustainable transportation systems, consideration of vehicle energy consumption 
is crucial [1]. Efficient alternative energy vehicles and advanced vehicle control 
technologies are two areas of research that might provide solutions to the need 
for increasing Fuel Economy (FE) and complying with current and upcoming 
environmental regulations [2, 3]. 

The need for energy efficient vehicles has facilitated the development of new 
vehicle technologies such as Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid 
Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs) [4]. Compared to 
vehicles powered with only an Internal Combustion Engine (ICE), HEVs provide 
significantly improved fuel efficiency [4]. The reason is due to their ability to recover 
braking energy and the fact that an extra powertrain degree of freedom is available to 
more cost-effectively meet the driver-required power. PHEVs exhibits even longer 
range and even further reduced need for hydrocarbon fuels [5]. This is owed to 
their enhanced battery capacity and their ability to be charged from wall power. 
BEVs are projected to further improve automotive transportation sustainability with 
a commercially viable and a readily accessible product [6]. 
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The other major development facilitated by the need for energy efficient vehicles 
is advanced vehicle control technologies which is the focus of this research. 
Collectively these advanced control strategies are typically referred to as energy 
management strategies. These technologies are also becoming more implementable 
thanks to developments in AVs such as advanced perception subsystems, planning 
subsystems, and more. As AV technology continues to evolve commercially, it is 
crucial to ensure synergistic development with energy efficient controls to ensure 
transportation sustainability as well. 

Further details regarding energy efficient vehicles and energy efficient control 
technologies are presented in the following subsections. 

1.1 The Evolution of BEVs: The Modern Era 

Since 2000, BEVs have experienced a substantial amount of progress and significant 
commercial milestones [7]. The first Tesla Roadster shipped in 2008 and it was 
the first highway-legal BEV to employ a lithium-ion battery and drive more than 
200 miles on a single charge [8]. The Mitsubishi i-MiEV, which went into serial 
production in 2009, was the first modern highway-legal BEV [9]. The first Nissan 
Leaf was delivered to customers in 2010. Until 2011, Mitsubishi’s i-MiEV had 
been the world’s most popular BEV where between 2008–2012, 2450 were sold 
in 30 countries [10]. In 2016, more than one million BEVs were sold throughout 
the world. Tesla introduced the Model 3 in 2017 and not long after, sales of BEVs 
surpassed the one million mark for the first time and annual worldwide market share 
surpassed 1%. Annual worldwide sales surpassed two million units for the first time 
in 2018. The Tesla Model 3 was the first BEV to sell more over 100,000 units in a 
single year, a milestone it achieved in 2015. BEVs accounted for one out of every 
two new vehicles registered in Norway in 2019. The Tesla Model 3 overtook the 
Nissan Leaf as the best-selling BEV in history by 2020. More than 500,000 Tesla 
Model 3 s have been sold worldwide since its launch in 2013. Tesla became the first 
automaker to build more than one million BEVs. In Norway, 10% of the vehicles 
on the road are BEVs. Additionally, in 2020, the worldwide sales of the Nissan 
Leaf achieved the milestone of 500,000 units and global BEV sales crossed the ten 
million unit mark for the first time. The Tesla Model 3’s worldwide sales surpassed 
one million units in 2021 and BEVs come in 27 distinct configurations, with 11 
different manufacturers producing them. Table 1 shows the top five BEVs with the 
greatest ranges in 2020 model year [11]. The literature on BEVs is quite extensive, 
and it is constantly and fast evolving. BEVs were formerly seen to be a niche sector 
with an uncertain future, but that has since changed [12, 13]. The takeaway here 
is that BEVs are a commercially mature and desirable technology that has the 
potential to establish sustainable transportation [14, 15]. As we focus on a real-
world implementation of energy efficient control technologies, the applicability to
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Table 1 Model year 2020 BEV examples 

Make and model Vehicle type 

Electric 
motor/battery-
pack 

City 
(mile/gge) Electric range (miles) 

Tesla model 3 
long range 

Sedan/wagon 211 KW/ 230 Ah 136 373 

Chevrolet bolt 
BEV 

Sedan/wagon 150 KW/ 188 Ah 127 259 

Hyundai Kona 
electric 

SUV 150 KW/ 180 Ah 132 258 

Kia soul Sedan/wagon 201 KW/ 180 Ah 127 243 
Jaguar I-PACE SUV 201 KW/ 223 Ah 80 234 

BEVs must be a top consideration as they are growing and are an important part of 
the transportation sector. 

Identifying and Assessing Research Gaps for Energy Efficient Control of 
Electrified Autonomous Vehicle Eco-driving. 

As a vehicle, a BEV is quiet, simple to drive, and free of gasoline expenditures 
when compared to conventional vehicles [16]. Additionally, as a form of urban 
transportation, it has many benefits. It does not produce any emissions along urban 
corridors (reducing urban air pollution due to transportation), it easily handles 
frequent start-stop driving, it gives full torque from a stop, and eliminates the need 
for gas station stops provided that charging is available at in public or at home [17]. 
Additionally, the utility industry is evolving, with renewable energy sources gaining 
traction and the “smart grid” which is the next generation of the electricity grid, 
is now in the process of being built. BEVs are seen as a key component of this 
new power system, which includes renewable energy sources and high-tech grid 
technologies [18, 19]. All of this has resulted in increased interest and growth in 
this method of transportation. 

As a system, BEVs can be modeled as a combination of several subsystems. 
Each of these subsystems interacts with the others to make the BEV function, 
and a variety of technologies may be used to run them. Figure 1 depicts major 
subsystem components and their contribution to the overall system. Some of these 
components must communicate significantly with others, while others have little or 
no interaction. Regardless of the situation, the operation of a BEV is dependent on 
such interaction of all these subsystems [20]. These subsystems are important to 
understand and utilize to develop energy efficient control strategies.
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Fig. 1 A general systems-level viewpoint of BEV. (Adapted from Ref. [21]) 

1.2 Energy Management and Energy Efficient Strategies for 
Electrified Vehicles 

Energy management strategies (EMS) in HEVs and PHEVs control the power/-
torque split selection between the combustion engine and the electric motor, in 
which the amount of power/torque provided by each power source is combined to 
satisfy driver demand while reducing the amount of non-renewable fuel use and 
increasing powertrain utilization efficiency [22, 23]. Energy efficiency strategies 
seek to directly decrease the energy required to drive from one point to another 
by either modifying the second-by-second vehicle velocity or by choosing an 
alternative route. 

This is particularly important for BEVs since energy efficiency strategies result 
in a direct increase in range thus enabling higher utility [24]. Overall, it has been 
shown that intelligent energy management and energy-efficient use of electrified 
vehicles increase vehicle FE and reduce global energy consumption, greenhouse 
gas emissions, and air pollution emissions. 

Generally there are three types of vehicle control that reduce fuel consumption 
for a drive cycle with a fixed starting point and a fixed ending point: (1) powertrain 
EMS (P-EMS), (2) Eco-Routing (ER), and (3) Eco-driving (ED) [25, 26]. P-EMS 
decreases fuel consumption by increasing the efficiency of the vehicle powertrain 
operation without modification of the drive cycle [27]. However, ED and ER 
decrease fuel consumption by decreasing the energy output of the vehicle through 
modification of the drive cycle and route [28, 29]. 

1.2.1 Powertrain EMS (P-EMS) 

As previously mentioned, electrified vehicles will benefit greatly from the devel-
opment of P-EMSs. To meet driving demands, the primary goal of a P-EMS is
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to distribute the power request into multiple propulsion sources (specifically for 
HEVs and PHEVs) [30, 31]. If we take into account battery performance (i.e. the 
current rate and lifespan) and tailpipe emissions levels, an efficient P-EMS can 
improve fuel efficiency. However, it is challenging to devise P-EMSs due to the 
uncertainty of future driving conditions [32–35]. Furthermore, the P-EMS should 
have a sufficiently simple and fast real-time controller with a desired computational 
speed for the implementation of a global optimization algorithm. The performance 
of P-EMSs strongly depends on future vehicle velocity and power request which 
is influenced by external factors (e.g., traffic information and surrounding vehicles) 
[36]. Research groups all over the world have proposed various solutions which are 
briefly summarized: 

1. Rule-based P-EMS: Here a P-EMS is implemented with either deterministic rules 
or with fuzzy rules. 

(a) Deterministic: The first application of deterministic rule-based techniques to 
the energy management of HEVs was in [37]. In place of the original electric 
assistance technique, Banvait et al. [38] described a charge depletion–charge 
sustaining (CD–CS) strategy. Following the cooperative control approach for 
the auxiliary power unit, the speed-switching power is compelled to acquire 
a proper curve together with the ideal brake specific fuel consumption [39, 
40]. 

(b) Fuzzy Logic: Fuzzy logic belongs to intelligent control strategies, but it 
dispenses with precise mathematical models of controlled systems. However, 
it contains self-learning capability, high flexibility, and resilience, and is thus 
commonly used to solve complicated nonlinear issues [41–43]. Denis et al. 
[44] developed a Sugeno-type fuzzy logic controller by using the moving 
average of the previous speed and the present global discharge rate as inputs 
in order to take use of the trip data. Li et al. has presented an adaptive-
equivalent consumption reduction technique that combines a fuzzy inference 
system to increase self-adaptation [45]. 

2. Optimization-based P-EMS: In most cases, an optimization-based P-EMS is 
generated by formulating an optimal control problem. An Optimization-based 
P-EMS delivers FE improvements by explicitly or implicitly simulating vehicle 
operation and managing the vehicle powertrain components to reduce fuel 
consumption. An optimization- based P-EMS can accomplish FE improvements 
for conventional cars with ICE and BEVs, but the highest FE benefits are 
gained from vehicles with additional powertrain operating degrees of freedom 
such as HEVs and PHEVs [26, 46, 47]. The actual FE improvement from an 
Optimization-based P-EMS is significantly dependent on the chosen driving 
cycle and propulsion systems [48]. One of the first optimization-based P-EMS 
studies, for example, showed a 28% FE increase in a HEV by optimizing gear 
changing and battery charging/ discharging [49]. 

(a) Globally Optimal P-EMS: Dynamic programming (DP) [48, 50], Pontrya-
gin’s minimum principle (PMP) [51–53], Stochastic Dynamic Programming
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(SDP) [54–57], Genetic Algorithm (GA) [58, 59], and Particle Swarm 
Optimization (PSO) [60, 61] are among the key optimization techniques. 

(b) Real-time Optimal P-EMS: Real-time optimization-based P-EMS is primar-
ily composed of equivalent consumption-minimization strategies (ECMSs) 
and its variations such as adaptive ECMS [30, 62–64]. But predictive rules-
based strategies can also be implemented in real time and DP methods can 
be implemented in real time through the use of a look-up table [65]. 

(c) Prediction-based Optimal P-EMS: The goal of a Prediction-based Optimal 
P-EMS is to discover the best control strategy for minimizing fuel consump-
tion within the time frame when prediction data exists [3, 35, 66–70]. 

1.2.2 Eco-Routing (ER) 

Classical vehicle routing algorithms seek the quickest or shortest routes [71, 72], 
while ER algorithms seek routes with the lowest energy consumption costs. When 
given a starting point and a destination, ER generates a route that minimizes the 
amount of energy required to complete the journey. Routing is often performed 
on a graph where intersections represent different junctions, connected by edges 
roads, and costs indicate the estimated energy required to go between two junctions 
that the road links. The route with the lowest overall energy for the journey may 
then be found using minimal path routing. The complicated time-variant functions 
that explain the expenses are often derived by researchers. For example, Dijkstra’s 
routing method is a popular option among academics [73]. Users’ route preferences, 
such as favoring highways or avoiding toll roads, might be considered while 
planning a path. Furthermore, it may utilize the number of passengers as an input to 
determine if the car is eligible to use high-occupancy vehicle lanes. Similar to other 
shortest route routing applications, a green routing service needs a server to handle 
diverse routing requests. However, operating and managing a routing server is costly 
and needs precise and thorough real-world traffic and network data which is difficult 
to access and analyze [74–77]. It should be noted that the ER navigation system may 
produce up to three routes for each journey depending on multiple minimization 
criteria, such as distance, travel time, and energy usage. For conventional ICE 
vehicles, there are currently various ER algorithms capable of generating energy-
optimal routes based on historical and real-time traffic data [78–80], but there has 
been minimal study on PHEVs to date [81]. As shown in [82], the performance of 
ER algorithms is very sensitive to the energy model used to estimate the energy 
cost on each network connection. The most difficult component of solving the 
ER algorithm for PHEVs is locating an energy model capable of calculating both 
the electrical energy consumption and the gasoline consumption. Jurik et al. [83] 
addressed the ER challenge for HEVs using longitudinal dynamics. The eco-route 
for PHEVs was investigated using a charge-depleting first approach in [84, 85]. To 
address the ER of HEVs, De Nunzio et al. [86] recently developed a semi-analytical 
solution to the powertrain energy management based on Pontryagin’s minimal 
principle. Houshmand et al. [87] conceived a combined routing and powertrain
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control algorithm that simultaneously identifies the energy-optimal route and the 
ideal energy management approach in terms of battery state of charge and fuel 
consumption. In [87], however, the option to recharge the battery on some portions 
of the trip was omitted, and either charge-sustaining or discharge-only operation 
was permitted. 

1.2.3 Eco-Driving (ED) 

ED decreases fuel consumption for all vehicle types by applying fuel-efficient 
driving behaviors along a predetermined route, which may affect travel duration 
[88]. Due to this increase in travel time, it is difficult to persuade drivers to adopt 
ED practices [89]. If the driving conditions along the route can be anticipated, ED 
may be treated as an optimum control question if the driver input is eliminated or 
disregarded. Current practical use of ED is realized through a set of heuristic goals, 
such as eliminating stops, traveling at a fuel-efficient speed (generally, this could 
be a higher or lower overall speed), and reducing acceleration and deceleration 
magnitudes, which can achieve FE improvements of approximately 10% for modern 
vehicles and 30% for fully AVs [90]. FE improvements realized through ED are the 
focus of this literature review because the energy savings is sufficiently large, and 
because ED can be directly implemented through AV technology. 

Historically, ED implementation research has focused on the FE impact of 
a single intelligent vehicle technology, such as camera systems, radar systems, 
LiDAR, Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), or Vehicle 
to Everything (V2X). As an example of a typical ED study, researchers used 
projections of the traffic light Signal Phase and Timing (SPaT), a sort of V2I, 
to influence driving behavior and shown a FE improvement of 12–14% [91]. ED 
is difficult to adopt in reality since most drivers dislike giving up control [92]. 
Many studies of ED for AVs conclude that vehicle perception, sensor fusion, and 
planning must all be achieved for successful implementation. On the other hand, 
a comprehensive grasp of how each of these components should fit together at the 
system level is not as clearly defined. 

1.2.4 Summary 

To summarize, FE improvements realized using a fixed drive cycle are realized 
through a P-EMS which is a very active area of research but is most effective 
for HEVs and PHEVs [34, 93]. FE improvements from modifying the route is 
realized through ER which is highly applicable to BEVs but is a relatively mature 
technology. If FE is improved by modifying the drive cycle but keeping the route 
the same, then the technique is considered ED which is highly applicable to BEVs 
and has tremendous potential for further improvements once AV technology is also 
included [90].
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1.3 Automated Cyber-Physical Vehicles 

In addition to improvements in powertrain technology, embedded and cyber-
physical systems have had a profound effect on the modern world [92, 94]. 
Embedded computer systems have been integrated with a variety of technological 
artifacts, such as the power grid, medical devices, automotive and transportation 
systems, and industrial control and production lines [95–97]. Modern engineering 
topics are often multidisciplinary and require significant interdisciplinary problem-
solving capabilities. AVs are a kind of vehicular cyber-physical system that has 
experienced tremendous recent innovation and has garnered considerable interest 
from both industry and academia [98–100]. The strategy for establishing AVs as 
the primary mode of transportation on the road may have several advantages such 
as improvements of safety on the roads (e.g., collision avoidance); better mobility 
for young, elderly, and disabled; and individual improvements of energy efficiency 
[101]. But at the same time AV technology may increase travel demand and overall 
mileage due to new user groups, the reduced cost of driver’s time, and potential 
for mode switching (walk, low speed shuttles, transit, regional air, etc.) [102–104]. 
While the full impact of AV technology remains unknown, it is certain that AV 
technology will begin to experience commercial adoption in the near future [105]. 

According to the projections shown in Table 2, in 2050, the reference case (all 
fleet vehicles will be Autonomous ICE) will have the lowest transportation energy 
consumption. At first glance, this may appear counter-intuitive; how could AVs with 
ICE consume less than BEVs? The reason for this according to Energy Information 
Administration (EAI) independent statistics and analysis projections data is that 
more people would prefer to use fleet services rather than their personal vehicles. 
Case 2, which assumes that all Autonomous Light-duty Vehicles (LDVs) will be 
BEVs. Another assumption is that AVs will enter both household and fleets, which 
means that more people will have access to AVs, making transportation easier for 
people who own vehicles. This, in turn, would have an impact on reliance on public 
transportation. As a result, an additional research focus is warranted to improve 
energy efficiency of Autonomous BEVs. In the next subsection, a derivation of the 
research gap for this type of technology based on its systematic readiness level is 
given.

Based on the uncertainty of the field there are four new contributions to the 
field in this article on the topic of ED in autonomous electrified vehicles (BEV 
and P/HEV), which builds on previous concepts and literature: 

1. A holistic and systems-level understanding of the subsystems and integrations 
needed to implement ED in AVs allowing for comparison between all studies in 
the field. 

2. Application of technology, integration, and system readiness analysis to ED 
realization in AVs. 

3. A definition of the research gaps existing between the current state of the art and 
realization of ED usage in AVs. 

4. A review of initial studies that have started to explore the identified research gaps.
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Table 2 Reference and AV case description 

Case name Assumptions Description 

Reference AVs enter fleet light-duty 
vehicles 

1% of new light-duty passenger 
vehicles sales by 2050 and 100% are 
fleet sales 

AVs are used more intensively Driven 65,000 miles per year and 
scrapped more quickly 

Autonomous LDV fuel type 100% conventional gasoline ICE 
Autonomous LDVs affect 
mass transit modes 

Decreases use of transit bus by 12%, 
transit rail % by 2050 

Autonomous BEV AVs enter household and fleet 
LDVs 

16% are new fleet sales and 84% are 
new household sales by 2050 

AVs are used more intensively Driven 65,000 miles per year and 
scrapped more quickly (fleet) 
and + 10% more annual vehicle miles 
(household) 

Autonomous LDV fuel type Increasing share of BEVs with 96% of 
fleet and 82% household by 2050 

Autonomous LDVs affect 
mass transit modes 

Decreases use of transit bus by 17% by 
2033, transit rail 35% by 2050 use of 
commuter rail 48% by 2050 

Autonomous HEV AVs enter household and fleet 
LDVs 

16% are new fleet sales and 84% are 
new household sales by 2050 

AVs are used more intensively Driven 65,000 miles per year and 
scrapped more quickly (fleet) 
and + 10% more annual vehicle miles 
(household) 

Autonomous LDV fuel type Increasing share of HEVs with 96% of 
fleet and 71% household by 2050 

Autonomous LDVs affect 
mass transit modes 

Decreases use of transit bus by 17% by 
2033, transit rail 35% by 2050 use of 
commuter rail 48% by 2050 

Adopted from Ref. [102]

2 Research Gap Derivation 

One of the most important aspects of scientific advancement is the systematic 
identification and review of existing research gaps [106]. In order to identify 
research gaps, a systematic approach is applied to understand components of a 
general electric AV with ED implementation and the logical flow of operation. In 
this section, overall system architecture is introduced, and a holistic evaluation of 
system maturity based on the Department of Defense (DoD) approach is conducted.



768 F. M. Araghi et al.

Fig. 2 A proposed systems-level viewpoint of ED implementation for an AV 

2.1 AED System Architecture 

A systems-level perspective of ED implementation for autonomous BEVs, rep-
resented in Fig. 2, is recommended to clarify communication between academic 
researchers, automotive sector manufacturers and suppliers, government officials, 
and other organizations. 

The systems-level viewpoint is composed of four subsystems: a suite of sensors, 
a vehicle perception subsystem, a vehicle planning subsystem, and a vehicle plant 
subsystem which include a vehicle running controller. It is the goal of this systems-
level perspective to remain closely aligned with the widely acknowledged systems-
level perspective on autonomous BEV operation that use energy management 
strategies. This system receives input from a set of sensors that detect environmental 
information and also can be used to localize, therefore defining the vehicle’s 
surroundings. An AV learns about its surroundings in two phases. The first step 
is to look down the road ahead to see if anything has changed, such as traffic lights 
and signs, a pedestrian crossing, or a barrier. The second phase is concerned with 
the perception of surrounding traffic. Camera, LiDAR, Radar, V2V and V2I, Inertial 
Measurement Unit (IMU), GPS and Inertial Navigation System (INS), and map and 
traffic information are the most typical sensors and data that comprise the sense and 
perception subsystems of AVs [107]. The real-time planning subsystem employs 
inputs from the perception subsystem to develop and solve both the long-range 
(such as Global ER and Global ED) and short- term planning strategies (such as 
maneuver planning and trajectory planning). It is worth noting that these subsystems 
also depend on the driving context, and their boundaries are quite blurred [108]. 
The real-time control subsystem tracks the longitudinal and lateral trajectories, 
and interfaces with the vehicle actuators. A control architecture is interfaced to 
the vehicle powertrain (e.g. controlling propulsion torque, braking torque and gear 
shifting) and to its steering system. The real-time planning subsystem require 
feedback from the vehicle, its position relative to the surrounding environment, and



Identifying and Assessing Research Gaps for Energy Efficient Control. . . 769

Table 3 Technology readiness levels definition 

Technology readiness level (TRL) and definition 

9 Actual System Proven Through Successful Mission Operations 
8 Actual system completed and qualified through test and demonstration 
7 System prototype demonstration in relevant environment 
6 System/subsystem model or prototype demonstration in relevant environment 
5 Component and/or breadboard validation in relevant environment 
4 Component and/or breadboard validation in laboratory environment 
3 Analytical and experimental critical function and/or characteristic proof-of-concept 
2 Technology concept and/or application formulated 
1 Basic principles observed and reported 

predictions of moving obstacles [109], and finally, the powertrain operation from 
the running controller is actuated in the vehicle plant. 

2.2 Holistic Evaluation of System Maturity 

The National Aeronautics and Space Administration (NASA) developed a seven-
level Technology Readiness Level (TRL) rating (shown in Table 3) in the 1980s to 
quantify the risk associated with technology development [110]. NASA now use this 
measure to assess the maturity of a specific technology and to compare the maturity 
of several technologies. Given its practical value, the DoD adopted a TRL model 
in 1999. While TRL is used similarly by NASA and the DoD, the understanding 
of TRL varies. For example, NASA requires TRL 6 technologies before a mission 
can be responsible for them [111], and the DoD requires TRL 7 technologies before 
they can be included in a weapons system program [112]. 

Further, the concept of a System Readiness Levels (SRL) was previously 
introduced by systems engineering researchers to address the problems applicable 
at the operating system level. This approach leverages the traditional TRL scale 
while also including the concept of Integration Readiness Levels (IRL) to produce 
an SRL index dynamically [112]. The definition of TRL, IRL and SRL and their 
corresponding levels are tabulated in Tables 3, 5 and 7 respectively. 

2.2.1 Technology Readiness Levels (TRLs) 

Table 4 provides a summary of the TRL for each of the subsystems shown in Fig. 
2, as determined by the authors. These subsystems consist of (1) Sensors and (2) 
Vehicle Perception for Worldview Creation (3) vehicle planning and (4) application 
of a physical vehicle plant. These technologies are tabulated in the first column of 
Table 4. The perception subsystem takes in sensor and other pertinent inputs, defines 
the vehicle’s environment, and computes future vehicle operation as an output. The
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Table 4 TRL analysis of the individual technologies involved in ED in AVs implementation 

Technology and TRL 
Technology 
description TRL definition TRL justification 

Sensors subsystem 
TRL:9 

Detect environmental 
information 

“Actual system 
proven through 
successful mission 
operations” 

Cameras, radar, and 
even lidar have many 
commercial products 

Perception subsystem 
TRL:6 

Receives 
sensor/signal data 
and fuse data 

“System/subsystem 
model or prototype 
demonstration in 
relevant 
environment” 

Mobileye exists but 
it doesn’t provide all 
of the functionality 
in our diagram, does 
not work in bad 
weather, etc. plus 
sensor fusion is not 
well developed. 

Planning subsystem 
TRL:7 

Solves several 
planning problems 
(maneuver planning, 
path planning, and 
trajectory planning) 

“System prototype 
demonstration in 
relevant 
environment” 

ER is mature. 
Derivation of ED is 
mature. 

Vehicle plant 
subsystem TRL:9 

Receives driver 
requests and 
component statuses 
and actuates vehicle 
operation 

“Actual system 
proven through 
successful mission 
operations” 

Vehicles by 
themselves are 
completely mature 

vehicle perception is sent into the planning subsystem, which then computes the best 
control. The planning subsystem is simply responsible for computing the optimum 
control and issuing a control request; it is not responsible for attaining the goal. 

2.2.2 Integration Readiness Levels (IRLs) 

Table 6 summarizes the IRL for the three alternative integration sites in Fig. 2 as 
viewed by the authors. Table 6’s column 1 contains descriptions of each integration 
scope. While the TRL is used to assess individual subsystems, the IRL assesses the 
readiness of each subsystem to integrate with others [112]. A more comprehensive 
assessment of each subsystem’s integration is required than that of the individual 
subsystem, which normally consists of a basic input/output architecture. If the 
vehicle operating controller and the vehicle plant are viewed as one high IRL 
subsystem, there are three theoretically distinct integration points: (1), (2), and (3) 
and execution. Due to the little quantity of research that employs these integration 
scopes, each of these integration points was determined to have a poor technical 
maturity.
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Table 5 Integration readiness levels definition 

IRL Definition 

7 The integration of technologies has been verified and validated with sufficient detail to 
be actionable 

6 The integrating technologies can accept, translate, and structure information for its 
intended application 

5 There is sufficient control between technologies necessary to establish, manage, and 
terminate the integration 

4 There is sufficient detail in the quality and assurance of the integration between 
technologies 

3 There is compatibility (i.e. common language) between technologies to orderly and 
efficiently integrate and interact 

2 There is some level of specificity to characterize the interaction (i.e. ability to influence) 
between technologies through their interface 

1 An interface (i.e. physical connection) between technologies has been identified with 
sufficient detail to allow characterization of the relationship

Table 6 The IRL analysis demonstrates that the technology integrations involved in ED in AVs 
implementation require significant research 

Integration and IRL 
Integration 
description IRL definition IRL justification 

Perception and 
planning integration: 
IRL 3 

Detect environmental 
information 

“There is 
compatibility (i.e. 
common language) 
between technologies 
to orderly and 
efficiently integrate 
and interact.” 

In some cases, the 
interface between 
vehicles and SPaT is 
converted to ED 
derivation 
constraints. Sensor 
fusion specifically 
has no commonality 
for ED 

Planning when 
subjected to faulty 
inputs: IRL 2 

Receives 
sensor/signal data 
and fuse data 

“There is some level 
of specificity to 
characterize the 
interaction (i.e. 
ability to influence) 
between technologies 
through their 
interface.” 

Very limited 
literature 

Planning and use of a 
vehicle plant: IRL 3 

Solves several 
planning problems 
(maneuver planning, 
path planning, and 
trajectory planning) 

“There is 
compatibility (i.e. 
common language) 
between technologies 
to orderly and 
efficiently integrate 
and interact.” 

Some researchers are 
starting to implement 
ED on a physical 
vehicle but progress 
is slow and there is a 
lot of work to be  
done
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Table 7 System readiness levels definition 

SRL Name Definition 

5 Operations and 
support 

Execute a support program that meets operational support 
performance requirements and sustains the system in the most 
cost-effective manner over its total life cycle 

4 Production and 
development 

Achieve operational capability that satisfies mission needs 

3 System development 
and demonstration 

Develop a system or increment of capability; reduce 
integration and manufacturing risk; ensure operational 
supportability; reduce logistics footprint; implement human 
systems integration; design for producibility; ensure 
affordability and protection of critical program information; 
and demonstrate system integration, interoperability, safety, 
and utility 

2 Technology 
development 

Reduce technology risks and determine appropriate sets of 
technologies to integrate into a full system 

1 Concept refinement Refine initial concept. Develop system/technology 
development strategy 

Table 8 The SRL analysis demonstrates that the technology integrations involved in ED in AVs 
implementation require significant research 

System and SRL System description SRL definition SRL justification 

Optimal ED 
implementation: 
SRL 1 

Perception and 
planning subjected to 
errors and 
implemented in a 
vehicle plant 

“Refine initial 
concept. Develop 
system/technology 
development 
strategy.” 

The sets of 
technologies are not 
defined and risks 
basically unknown, 
so this does not meet 
SRL 2 

2.2.3 System Readiness Levels (SRLs) 

The SRL analysis is the more appropriate method of assessment for the overall 
system of AED implementation, where the TRL analysis has been performed to 
individual subsystems and the IRL analysis has been used to subsystem integration. 
Table 5 shows that, despite the relatively high TRLs of each subsystem, the low IRLs 
result in a low total SRL. According to the SRL study, if the IRLs are improved, 
the total SRL will be improved, and optimal ED for AVs will be applicable to 
commercial production (Table 8).

2.2.4 Research Gap Analysis Summary 

The SRL analysis has clearly indicated three research gaps that are inhibiting the 
implementation of AED, all of which are caused by subsystem integration. These 
gaps show that research should focus on advancing the following integrations:



Identifying and Assessing Research Gaps for Energy Efficient Control. . . 773

1. Performance of integrated sensors and perception subsystems: The effect of 
Real-world AV perception on identifying the parameters associated with an ED 
problem. 

2. Planning subsystem and noisy inputs: Effect of sparse or missing sensor data on 
global derivation of AED. 

3. Planning and use of a vehicle plant: Performance of a planning subsystem 
integrated with a physical vehicle plant 

3 Literature Review 

There are a few important studies that have already begun to address these 
identified research gaps. While there are hundreds of articles that include ED, these 
integration-based research gaps must be addressed before an ED application of 
AVs can be commercialized. Each integration research requirement is addressed 
in the following subsections. Each subsection describes the scope of the research 
gap and critical studies that are beginning to bridge this research gap are identified 
and summarized. Studies that lack adequate integration to match the scope of the 
research gap are excluded. 

3.1 Research Gap 1: Real-World AV Perception 
with Application to the AED Problem 

The first research gap focuses on real-world AV perception using data from any 
real-world AV sensors to determine parameters for an ED problem; the scope 
is illustrated in Fig. 3. Many published ED studies exist that artificially create 
constraints for a mathematical optimization problem, but real world constraints 
derived from real world sensors are needed.

Researchers from University of Utah and San Diego State University proposed 
an ED algorithm for CAVs to improve fuel and operational efficiency of vehicles 
on the freeways [113]. The proposed algorithm optimizes CAV trajectories with 
three main objectives - travel time minimization, fuel time minimization, and traffic 
safety improvement. The first stage of two-state control logic proposed, provides 
optimal CAV trajectories that can simultaneously minimize freeway travel time and 
fuel consumption with traffic sensor data and trajectory information as inputs. The 
second stage of the control logic is focused on ensuring operational safety of CAVs 
by real time adaptive actions to adjust speeds in response to local driving conditions. 

To achieve improved mobility and energy efficiency in mixed traffic conditions, 
researchers from University of California at Riverside proposed a combination 
of vision-perceptive technologies and V2I communications [114]. With a neural 
network extracting vision and V2I information; and a deep Reinforcement Learning



774 F. M. Araghi et al.

Fig. 3 The integration scope defined in research gap 1: Real-world AV perception with application 
to the AED problem

(RL) based policy network generates both longitudinal and lateral ED actions with 
a rule-based driving manager working to regulate the collaboration between rule-
based policies and RL policies. 

Fleming et al. [115] from Loughborough University outlined a system that 
uses real-time data from Global Positioning System (GPS) and automotive radar 
to predictably optimize a vehicle’s speed profile and train a driver toward fuel-
saving and CO2-reducing behavior. Driving data was generated using STISIM Drive 
simulation software and validated on an instrumented vehicle equipped with radar 
and GPS sensor. 

Table 9 summarizes the work in research gap 1. These papers are greatly 
advancing the commercial implementation of ED in AVs because real world sensors 
are being used to derive ED constraints. More research is needed in this area 
especially considering the possibility to utilize traditional AV sensors such as 
cameras, radar, and lidar.

3.2 Research Gap 2: Sparse or Missing Sensor Data on Global 
Derivation of AED 

The second research gap focuses on the effect of sparse, missing, or incorrect sensor 
data which informs the ED problem’s constraints. Figure 4 shows the integration 
scope associated with this research gap. This gap can include the failure of sensors 
and infrastructure signals in providing the necessary information for AVs to perform 
ED as well as studies investigating how an AV can execute an ED function without 
all necessary information being available to it. Despite this being a common 
occurrence in real-world applications, there are not many ED papers that address 
this issue.
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Table 9 Summary of existing research that includes the integration scope of Real-world AV 
perception with application to the AED problem, thus addressing research gap 1 

Research Group Sensors/signals 
Data collection 
technique 

Planning 
techniques Vehicle plant 

University of 
Utah and San 
Diego State 
University [113] 

V2V and V2I Macroscopic 
traffic flow 
model by 
dividing vehicles 
into different 
classes 

Travel time 
minimization, 
fuel 
consumption 

Custom 
mathematical 
model 

University of 
California at 
Riverside [114] 

Front camera, 
radar, on-board 
diagnostics 
(OBD) and 
V2V-based SPaT 
(signal phase 
and timing) 
information 

Intelligent driver 
model (IDM) for 
traffic 
environment 

Hybrid 
reinforcement 
learning (HRL) 

Unity-based 
simulator 

Loughborough 
University and 
University of 
Southampton 
[115] 

GPS-based 
localization and 
long-range radar 

STIMSIM drive 
simulation 
software which 
simulated 21 km 
route around 
Southampton, 
UK 

Fuel 
consumption 
and driver 
preference, and 
predictive 
optimization of 
vehicle speed 

2004 fiat Stilo

Fig. 4 The integration scope defined in research gap 2: Sparse or missing sensor data on global 
derivation of AED 

On the vehicle side, researchers in University of California Berkeley have 
developed a stochastic approach with DP optimization to address scenarios in which 
limited SPaT data is available for AED vehicles [116]. Additionally, a two-layer 
receding horizon control framework has been proposed to address vehicle speed in 
scenarios where limited SPaT data is available with the control framework putting 
emphasis on safety control over velocity planning [117].
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Table 10 Summary of existing research that includes the integration scope of sparse or missing 
sensor data on global derivation of AED problem, thus addressing research gap 2 

Research Group Sensors/signals 
Perception 
model 

Planning 
techniques 

Faulty/Noisy 
data 

University of 
California, 
Berkeley [116] 

DSRC, camera, 
radar, LIDAR, 
GPS/INS 

V2V/I 
perception and 
localization 

Stochastic 
approach with 
DP optimization 

Limited SPaT 

VEDECOM 
[119] 

Camera, LIDAR Roadside 
infrastructure 
(RSI) central 
perception unit 

None. This 
paper is more 
focused on 
external parties 
providing data 
for incoming AV 

Object distance 
registered by 
camera and 
synchronization 
time for message 
transmission 

University of 
California, 
Berkeley [117] 

SPaT ED and adaptive 
cruise control 
model 

Two-layer 
receding horizon 
control 
framework 
(velocity 
planning and 
safety control) 

Limited SPaT 

SZTAKI [118] Vehicle 
reference speed 
and following 
distance 

Vehicle 
reference speed 
and following 
distance 

Three layer 
control 
framework with 
driver safety 
having priority 
over vehicle 
cruise speed 

Vehicle speed 
and acceleration

SZTAKI also proposed a similar framework to prioritize drive safety over vehicle 
cruise velocity but with a three layer control framework as opposed to University of 
California’s two-layer control framework [118]. 

On the infrastructure side, VEDECOM proposed a Roadside Infrastructure (RSI) 
system that provides environmental information for incoming AV at intersections 
through the use of camera and lidar [119]. From VEDECOM’s research considera-
tion needs to be given for the height positioning and environment of RSI sensors as 
such factors can affect the robustness of information provided by RSI. 

In reviewing the sources related to research gap 2, summarized in Table 10, few  
sources were available in directly addressing how AVs would perform autonomous 
driving features in faulty sensor and external infrastructure scenarios. While there 
are sources outlining the benefits and disadvantage of various sensors used in AV 
perception, such sources lack sufficient coverage on appropriate protocols in events 
where limited sensor and signal data are available [120, 121]. This suggests future 
research into research gap could focus on development of such protocols. 
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Fig. 5 The integration scope defined in research gap 3: Performance of a planning subsystem 
equipped with AED integrated with a physical vehicle plant 

3.3 Research Gap 3: Performance of a Planning Subsystem 
Equipped with AED Integrated with a Physical Vehicle 
Plant 

Research outlining the work done on physical AED implementation can be broken 
down into four distinct sections namely: 

(i) what Drive Cycle was used to test AED control algorithm, (ii) what planning 
model was used to enable AV to generate a solution, (iii) what type of vehicle plant 
is used to validate performance of control algorithm and (iv) what physical vehicle 
is used to evaluate control algorithm in real time. Figure 5 provides the context of 
the research gap scope within the AV architecture. 

Using a Rollout Algorithm (approximation of DP algorithm) with a multi-layer 
hierarchical Model Predictive Control (MPC) framework, researchers at Ohio State 
University evaluated the performance of AED through simulations and physical 
vehicle implementation [122]. Physical vehicle testing shows the vehicle consumed 
22% less fuel compared to baseline scenario with 2.9% savings in trip time while 
maintaining State of Charge (SOC) at 50%. Results of physical testing were in line 
with findings from simulation. 

University of Wisconsin-Madison developed a control system called Eco-Drive, 
used to optimize fuel efficiency for purely gasoline vehicles. Eco-Drive uses data 
available from ODB II port of gasoline vehicles to calculate an optimal vehicle 
speed to maximize fuel efficiency and implementation was done by automating 
accelerator pedal position via outputs from Eco-Drive [123]. Testing of Eco-Drive 
under 100 miles of driven road outline a fuel efficiency improvement of 10–40% 
depending on urban environments. 

Leveraging NREL’s Transportation Secure Data Center (TSDC) dataset, a joint 
effort between General Motors LLC, Carnegie Mellon University, and NREL 
was carried out to develop an AED vehicle that uses InfoRich Eco-Autonomous
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Driving (iREAD) to generates optimal travel trajectories [124]. Evaluating iREAD’s 
performance in large-scale, in-depth simulations along with physical evaluations in 
Vehicle-In-Loop, the research found fuel savings of 10–20% depending on road 
conditions. Although plans were made to test iREAD in road testing, such testing 
was not done by the time of publication. 

On a similar note, Argonne National Labs (ANL) developed a set up to automate 
evaluation of ED algorithm in a Vehicle-In-Loop (VIL) setting for BEV and ICE 
vehicles [125]. Testing has shown ANL was successfully in creating a functional 
and repeatable VIL system with VIL test out-ling a 22% and 16% energy savings 
for BEV when driven in lead and following position respectively. 

For heavy/medium duty trucks, Southwest Research Institute evaluated the 
performance of SwRI’s ED control algorithm in class 8 trucks in accordance with 
J1321 test procedures [126]. Physical testing of class 8 trucks found SwRI’s control 
algorithm resulted in 7% decrease in fuel consumption and 6% decrease in trip time. 

Applying AED in a fleet-based setting, University of California and University 
of Cincinnati deployed a CAV fleet to evaluate the performance of AED in real 
time [127, 128]. Evaluating AED performance over 7 road segments and driven 
over 47 miles, University of Cincinnati’s Relaxed Pontryagin’s Minimum Principle 
(RPMP) based AED algorithm yielded fuel savings of 3.3 to 21.2% with variation 
depending on hill length and slope grade. Testing their control algorithm over 8 
signalized intersections of Southern California, results of University of California’s 
control algorithm outline a fueling savings of 30.98% for CAV fleet AED in 
exchange for an 8.51% increase in trip time compared to baseline. 

Researchers at Colorado State University also applied predictive acceleration 
events control to the actual vehicle using customized 2019 Toyota Tacoma parallel-3 
(P3) HEV. Their methodology combats long run time issues dynamic programming 
has for physical implementation by pre-computing the optimal solution for accel-
eration events. According to the findings of track-based testing using predictive 
acceleration event control in the real world 7% improvement in FE can be achieved. 
According to the author, this is the first time this sort of testing has ever been 
conducted on a real-world vehicle. 

The parameters of interest are summarized in Table 11. In researching physical 
implementation of AED, we found that a majority of physical ED research was done 
on gasoline vehicles. This indicates that ED for physical BEV or Hybrids may be a 
potential avenue for future research.

4 Conclusions 

This literature review provides an overview of automotive energy efficient control 
strategies and discusses that AED for BEVs should be a focus of future research 
efforts. A systems-level diagram of AED is proposed and an expansion of NASA’s 
TRL analysis (SRL analysis) is performed which identifies three existing research 
gaps: real-world AV perception with application to the AED problem, sparse or
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Table 11 Summary of existing research that includes the integration scope of Performance of a 
planning subsystem equipped with AED integrated with a physical vehicle plant, thus addressing 
research gap 3 

Research group Drive cycle Planning model Vehicle plant 
Vehicle 
realization type 

Ohio State 
University [122] 

Custom route, 
Columbus, Ohio 

Rollout 
algorithm 
(approximate 
DP) and model 
predictive 
control 

P0 mild-HEV, 
2016 VW Passat 
retrofitted with 
48 V mild 
hybrid system 

Actual vehicle 

University of 
Wisconsin 
Madison [123] 

Custom mid-size 
US city drive 
data 

Eco-drive (DP) Gasoline vehicle 
plant 

Actual vehicle 

National 
Renewable 
Energy lab 
oratory [124] 

NREL’s 
Transportation 
Secure Data 
Center (TSDC) 
drive cycle data 

InfoRich Eco-
Autonomous 
Driving 
(iREAD) 

Cadilac CT6 
(BEV) 

GM internal 
model 

Argonne 
National Labs 
[125] 

Multiple custom 
drive cycle of 
varying speed 
limit and 
HWFET 

Analytical 
closed form 
solutions 

Chevrolet bolt 
(BEV) 

Actual vehicle 

Southwest 
Research 
Institute (SwRI) 
[126] 

Modified NREL 
port drayage 
cycles 

Control 
algorithm with 
objective of 
minimizing jerk 
and acceleration 
events 

2017 Volvo 
VNL64T300 

Actual vehicle 

University of 
Cincinnati [127] 

Rolling 
segments in 
Virginia and 
Maryland 

Relaxed 
Pontryagin’s 
minimum 
principle 
(RPMP) 

2013 ICE 
Cadillac SRX 

Actual vehicle 

University of 
California, 
Berkeley [128] 

Custom Route 
Model built 
using July 2019 
Sensys Network 
data 

ECO-ACC (Eco 
driving 
controller-
adaptive cruise 
controller) 

Unknown, 
PHEV is only 
stated to have 
8.89kWh battery 
capacity 

Actual vehicle 

University of 
California, 
Riverside [129] 

NA NA 2015 Volvo 
VNL 

Actual vehicle 

University of 
Michigan [130] 

Custom route, 
Ann Arbor, MI 

Prediction of 
queuing profile 
using 
shock-wave 
profile model 
[131] 

2017 Toyota 
Prius four 
Turing HEV 

Actual vehicle 

Colorado State 
University [132] 

Custom route, 
Fort Collins, co 

Predictive 
acceleration 
event model 

2019 Toyota 
Tacoma 

Actual vehicle
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missing sensor data on global derivation of AED, and performance of a planning 
subsystem equipped with AED integrated with a physical vehicle plant. In other 
words, there are gaps in knowledge concerning 

1. An understanding of critical sensors and signals for perception and sensor fusion 
that enable effective FE vehicle control through AED. 

2. An in-depth comprehension of the sorts of fault or missing data from perception 
that might impact effective FE vehicle control. 

3. The operational and real-world problems of effective AED control implementa-
tion. 

Investigation of the AED literature revealed that, despite the availability of hundreds 
of papers addressing the idea of ED, there are few papers that provide insights 
into the AED research gaps which are currently slowing commercial realization. 
A summary of relevant papers that are beginning to address these gaps are provided 
and a summary of missing knowledge is given. 

The overall conclusion of this research is that focused studies addressing AED 
research gaps are needed before AV technology and its associated infrastructure is 
rolled out and fully commercialized. ED considerations need to be a part of AV 
RD efforts to ensure that transportation sustainability is improved at the same rate 
as transportation safety. There are many inconclusive studies about the effect of 
widespread AV adoption on transportation energy use but some of these worst case 
scenarios could be alleviated with ED implementation. Focused studies are needed 
that utilize real-world AV sensors, that investigate the effects of sensor errors, and 
that include real world BEV implementation. 
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