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1 Introduction 

Connected and autonomous vehicles (CAVs) have the potential to transform the way 
we travel. They hold promise for increased mobility, reduced traffic congestion and 
better fuel efficiency with automated control, as well as the creation of a cooper-
ative network that includes cars, traffic lights and other roadside infrastructures. 
Autonomous vehicles (AVs) typically employ a wide array of sensors to gather 
information about the road environment, and then use sophisticated techniques 
to fuse and process this data to come to a navigation decision in real time in 
an automated fashion. Many of the underlying components in an AV, such as 
perception, planning and control make use of deep learning or deep neural networks 
(DNNs) due to their superior performance. Moreover, greater benefits on safety and 
fuel economy can be achieved by enabling vehicles to exchange information with 
one another. In a connected vehicle (CV) system, vehicles are expected to exchange 
V2X (vehicle-to-everything) messages with surrounding vehicles and roadside units 
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(RSUs) for extended perception range, to learn about traffic status down the road, 
and to coordinate their planning and control decisions. Realizing these potentials 
of CAVs, however, require tackling the immense challenge of assuring their safety 
in uncontrolled, public road environments. Numerous recent accidents involving 
autonomous vehicles are reflective of the safety concerns that loom large in the 
rapid advancement of CAV technologies [38, 62, 65, 66, 78]. The U.S. Department 
of Transportation (USDOT) launched the Automated Vehicle Transparency and 
Engagement for Safe Testing (AV TEST) Initiative in June 2020 to improve the 
safety in the development and testing of automated driving systems [51]. The 
USDOT has also started deploying test sites for connected vehicle applications in 
Florida, New York, and Wyoming [70]. 

This book chapter will survey recent advances in designing and operating CAVs 
with safety assurance. Instead of reviewing existing safety standards and industry 
practices, it aims to bring into focus new methodologies and techniques that have 
the potential to reshape how we approach the problem of safety assurance of CAVs, 
paying special attention to two categories of problems—(1) safety verification of 
CAVs that employ neural network-based components and (2) system adaptation 
and design with safety guarantees. The chapter will end with a discussion of 
outstanding technical challenges, broader applications of the surveyed techniques, 
and the authors’ outlook on this important topic of safety assurance of CAVs. 

2 Safety Verification of Neural Network-Based Components 
in CAVs 

In CAVs, neural network-based components have been widely used for sensing, 
perception and prediction, and increasingly being tried for planning and control 
as well. It is thus critical to conduct safety verification of these neural network-
based components for ensuring overall system safety. In particular, this includes 
conducting robustness of individual neural networks, in particular those used for 
sensing, perception and prediction, and performing safety verification of a neural 
network controlled/planned system. 

2.1 Robustness Analysis of Deep Neural Networks 

Local Robustness Analysis of Neural Networks Robustness is one of the key 
metrics to measure how stable a neural network’s outputs are under random noises, 
external perturbation, or adversarial attacks to its inputs. Recent studies have in 
particular highlighted the lack of robustness against adversarial perturbations for 
neural networks [21, 67]. These adversarial perturbations construct a local input 
region around each inputs. A neural network is verified to be robust if the neural
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network outputs are guaranteed to be correct for each local input region, i.e., 
verification of the local robustness. 

Measurement of robustness can take the form of upper and lower bounds on 
certain key input and output parameters. For individual deep learning components, 
the robustness analysis problem can often be reduced to output range analysis of 
the neural networks. State-of-the-art methods for output range analysis mainly fall 
into two categories: constraint programming (CP) [14, 36] and abstract interpreta-
tion [63, 71]. CP-based methods can perform exact analysis of the neural networks. 
However, the scale of deep neural networks limits the usage of these methods 
because they require encoding an entire network into a large nonlinear programming 
problem (or an SMT problem) and then solving it. The main drawback with abstract 
interpretation, on the other hand, is that it is difficult to propagate the dependencies 
for nonlinear operations across layers [48]. While such methods can scale with the 
network’s size, the performance degrades as the network becomes deeper. 

In [29], we propose a layer-wise refinement method, LayR to compute a 
guaranteed and overapproximated range for the output of the neural network for 
a adversarially perturbed input region. By checking the overapproximated range, 
we can verify whether the neural network is robust against all possible adversarial 
perturbations within the input region. LayR bridges abstract interpretation with 
mixed integer linear programming (MILP) and iteratively improves approximation 
precision by systematically increasing the number of integer variables, as shown in 
Fig. 1. 

Global Robustness Analysis of Neural Networks Most of the efforts in the 
literature focus on verifying/certifying the local robustness, which characterizes the 
robustness property for a small region of network input space. However, there are

Fig. 1 Divide-and-slide structure of LayR: . Ω defines the number of slack integer variables of 
all the layers. In the refining process, . Ω is monotonically increased to improve the output range 
estimation, until the iteration bound is reached 
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Fig. 2 Interleaving twin-network encoding (ITNE) for neural network global robustness certifi-
cation. The hidden layer neurons are connected between the two copies of the neural network by 
distance variables Δy (i) j and Δx (i) j

a lot of scenarios that need the robustness property over the entire network input 
domain, especially for cases that the network input samples cannot be obtained in 
advance. For instance, for image processing neural networks (like the perception 
modules in CAVs), the exact input samples during runtime are not always known at 
design time. In those cases, the global robustness property of the network should be 
considered, which can bound the worst-case output variation under perturbation for 
all possible network inputs. Directly conducting local robustness verification for all 
possible regions in the entire input domain by leveraging the divide-and-conquer 
techniques is not practical, especially for networks with high-dimension inputs, 
such as image inputs, as the complexity of divide-and-conquer is exponential to the 
input dimension. In [77], we developed an efficient global robustness certification 
algorithm that encoding two copies of the neural network side-by-side, as shown in 
Fig. 2. One network copy encodes the inference of a normal input while the other 
one encodes the inference of the disturbed input. Such encoding is formulated as 
an optimization problem that maximizes the output variation for all possible inputs 
and perturbations. The differences of hidden neurons between two networks are 
considered during the relaxation of the optimization problem to efficiently derive a 
tight over-approximation of the neural network output variation bound. Such over-
approximated global robustness can be leveraged to enable the formal verification 
of the perception neural networks in CAV systems. 
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2.2 Safety Verification of Neural-Network Controlled Systems 

An important class of CAVs can be described by a physical process such as the 
change of the velocities or distances of vehicles regulated by a learning-enabled 
controller which can be a neural network. We call such systems neural-network 
controlled systems. A Neural-Network Controlled System (NNCS) is a special 
sampled-data system which consists of a continuous-time physical process (plant) 
defined by an ordinary differential equation (ODE) and a feed-forward neural net-
work (FNN) controller which works at discrete time moments. Figure 3 illustrates 
an execution of an NNCS. The physical process is defined by an ODE . ẋ = f (x, u)

wherein x is the state variable and u is the control input. The FNN controller 
samples the system state every . δc time and updates the control input value. Such a 
system is often safety-critical and it is significant formally verified the safety before 
implementation. 

The safety verification problem asks whether a system can be in an unsafe 
situation or not. For example, it is crucial to know whether the distance between 
any of two connected vehicles could be too close at a near future time. Many safety 
verification problems can be reduced to reachability problems, that is, determining 
whether the given state can be reached by the system. Unfortunately, the reachability 
problem is not decidable even for linear hybrid systems [2, 24]. Hence, most of 
the existing reachability analysis techniques for hybrid dynamical systems seek to 
compute an overapproximation of the reachable set. If this overapproximation set 
does not contain any unsafe state, then the system is safe. Otherwise the safety is 
unknown, and either the reachable set overapproximation should be refined or an 
unsafe execution should be found. 

NNCSs are particular hybrid dynamical systems such that only the dynamics 
is updated by the controller, while the system executions are still continuous. 
Therefore, regardless of the noises or uncertainties between the plant and the 
controller, an NNCS shows deterministic behavior from an initial state. In other 
words, a system execution, i.e., the reachable state and control input used at any 
time, is uniquely determined by the initial state, and we call the function that maps

Fig. 3 State evolution of a neural-network controlled system 
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the initial state to its reachable state at a time flowmap which is essentially the 
solution of the piecewise ODE in Fig. 3. Hence, the reachability analysis task on 
an NNCS becomes computing the range of the flowmap w.r.t a given set of initial 
states. 

The overapproximate reachability computation for NNCSs is at least as hard 
as that on general nonlinear sampled-data systems, and the main challenge is to 
accurately approximate the flowmap function which is a composition of a series of 
alternative neural network mappings and ODE evolution, and it often does not have 
a closed-form expression. Set propagation [9] is a popular scheme for computing 
time-bounded reachable sets under such dynamics. From a given initial state set, 
a set-propagation approach iteratively computes the reachable sets in small and 
consecutive time intervals the union of which is a cover of the time horizon. The 
reachable set segment which is also known as flowpipe computed in each iteration 
is propagated to the next time interval. For an NNCS, such an algorithm alternatively 
computes the flowpipes for the ODE and the output range of the controller until the 
upper bound of the time horizon is reached. A set-propagation approach for NNCS 
is often developed in the following two ways. 

Pure Range Overapproximation A range overapproximation approach can be 
directly built by combining a neural network output range analysis method [15, 
25, 36, 63, 69, 71, 73] and a reachability computation tool for ODEs [1, 8, 50]. It 
alternatively computes the reachable sets of the two components and propagates the 
result to the future time. Such a method mainly focuses on the range overapproxi-
mation and often cannot track the state dependency in a flowmap, therefore hard to 
control the accumulation of overapproximation error on highly nonlinear dynamics. 

Functional Overapproximation A functional overapproximation approach seeks 
to compute an overapproximation for the flowmap function instead of only its 
range. Most of the existing methods [16, 19, 20, 26, 31–34] in this category 
uses Taylor Models (TM) [47] as the functional overapproximations. Unlike range 
overapproximations, a functional overapproximation is obtained by composing the 
functional overapproximations for the sub-components in a system, and it often 
requires more computational effort than computing a range overapproximation. 
However, functional overapproximations are able to keep the state dependency 
in flowmaps and effectively limit the accumulation of overapproximation error 
in reachability computation. Figure 4 illustrates an functional overapproximation 
represented by a TM for the output range of an FNN controller at the time .t = kδ. 
The actual flowmap that transforms an initial state . x0 to the control input . uk =
κ ◦ Φ(x0, kδ) used at .t = kδ is overapproximated by a TM .p(x0) + I wherein p is 
a polynomial and I is an interval remainder.

We briefly introduce the techniques we developed for computing functional 
overapproximations for the reachable sets of NNCSs. 

ReachNN In [26], we present the ReachNN technique to compute reachable set 
overapproximations for NNCSs. The main contribution is an approach to obtain a 
TM-like overapproximation for the end-to-end relation of a neural network whose
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Fig. 4 Functional overapproximation of the control input range

activation functions are assumed to be all continuous. By Weierstrass approximation 
theorem [52] such a neural network over a compact input set can be uniformly 
approximated as closely as desired by a polynomial. The main method first 
computes a Bernstein interpolation for the input-output mapping of the neural 
network, and then a conservative interval remainder for it can be evaluated based on 
the adaptively selected samples from the input set, and an estimation of the Lipschitz 
constant of the neural network. We show that this method can be integrated with the 
reachability tool Flow* [8] which computes TM flowpipes for ODEs, and generate 
TM reachable sets which approximately keep the state dependency for NNCSs. 

ReachNN* ReachNN* [20] leverages GPU-based parallel computing to compute 
the sampling-based error bound estimation in ReachNN. To further improve the 
runtime and error bound estimation, ReachNN* also features optional controller 
re-synthesis via a technique called verification-aware knowledge distillation [19] 
to reduce the Lipschitz constant of the neural network controller. ReachNN* 
demonstrated . 7× to .422× efficiency improvement over ReachNN across a set of 
benchmarks. 

The Polynomial Arithmetic (POLAR) Framework POLAR [31] is introduced 
for computing TM functional overapproximations for neural network outputs using 
layer-by-layer propagation. It is an extension of the standard TM arithmetic by 
introducing (A) Bernstein approximations for the activation functions in neural 
networks and (B) the symbolic representation of TM remainders in the layer-by-
layer propagation framework for computing the output range of a neural network. 
It can be seamlessly integrated with the reachability tool Flow* to compute TM 
flowpipes for NNCSs. POLAR has the following main differences from ReachNN: 
(1) POLAR only uses Bernstein polynomials in approximating activating functions 
which are always univariate, but ReachNN needs to compute a multivariate Bern-
stein polynomial when the neural network has multiple inputs. It is much more 
time costly to compute multivariate Bernstein polynomials than the univariate ones. 
(2) POLAR uses layer-by-layer propagation framework to compute TM outputs for 
neural networks, however ReachNN performs an end-to-end overapproximation.
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3 System Adaptation and Design with Safety Assurance 

For safety-critical systems like CAVs, ensuring safety is a central focus during both 
the design stage and the runtime operation of them. It is a very challenging task, 
given the rapid increase of system functional complexity in terms of both scale 
and features, the usage of advanced architectural components such as multicore 
CPUs and GPUs, the stringent and contradicting requirements on various objectives 
such as performance, cost, fault tolerance, and reliability, the adoption of emerging 
machine learning components, particularly those based on deep neural networks, 
and the close interaction with a dynamic surrounding environment [60, 86]. In this 
section below, we will discuss these challenges in CAV design and adaptation, and 
introduce some of the proposed approaches to them, including those that leverage 
the methods from Sect. 2 as the underlying safety verification tools. 

3.1 Safety-Assured Runtime Adaptation 

The dynamic and uncertain environment of CAVs could put changing requirements 
on their objectives. For instance, a vehicle may need to enhance its planning, nav-
igation and control performance in difficult-to-navigate terrains via more frequent 
sampling and processing [11–13] (especially for level 5 autonomy), to strengthen 
its security protection in an adversarial environment by adding monitoring tasks or 
authentication methods [40, 49], to improve its soft error tolerance in radioactive 
surroundings through task re-execution [41, 81], or to mitigate the impact under 
severe communication disturbance by running more computation locally. It is thus 
critical for those systems to be able to adapt to the dynamic environment and 
operation context. 

Two major challenges in enabling runtime adaptation are to ensure that during 
and after the adaptation process, (1) functional safety is guaranteed, and (2) resource 
and timing constraints are met. To address the first requirement, we may leverage 
various verification/validation techniques, including those introduced in Sect. 2. To  
ensure both requirements, however, it is important to develop holistic approaches 
that span across functional, software, and hardware layers. Next, we will introduce 
our recent works in this area, along with some of the related works. 

Opportunistic Intermittent Control with Safety Guarantees For safety-critical 
autonomous systems such as robots and automated vehicles, control schemes are 
often designed conservatively so that system safety can be maintained in a wide 
variety of situations [10, 43, 56]. During the operation of these systems, however, 
such schemes can be overly conservative and result in unnecessary resource and/or 
energy consumption. In [27, 28, 40, 41], we make the observation that certain control 
steps, even if they are skipped, do not impact either the performance or safety of 
the overall system. Armed with this observation, we propose an online scheme 
that opportunistically skips control computation and the corresponding actuation
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steps by learning specific characteristics of the system’s operating environment. We 
further show that safety could be maintained with this more efficient control scheme. 

Specifically, to address the safety, we first compute a strengthened safe set 
based on the notion of robust control invariant and backward reachable set of 
the underlying safe controller. Intuitively, the strengthened safety set represents the 
states at which the system can accept any control input at the current step and be 
able to stay within safe states, with the underlying safe controller applying input 
from the next step on. We then develop a monitor to check whether the system is 
within such strengthened safe set at each control step. Whenever it is found that the 
system state is out of the strengthened safe set, the monitor will require the system 
to apply the underlying safe controller for guaranteeing system safety. To efficiently 
leverage the characteristics of specific operation context and environment, we 
develop two approaches to leverage the characteristics of operation context and 
environment when the system is within the strengthened safe set, depending on the 
type of the underlying safe controller and whether the characteristics are known 
explicitly. In the simpler case where the safe controller has an analytic expression 
and the characteristics can be explicitly captured, we use a model-based approach 
to decide the skipping choices by solving a mixed integer programming (MIP) 
program. Otherwise, we use a deep reinforcement learning (DRL) approach to 
learn the mapping from the current state and the historical characteristics to the 
skipping choices, which implicitly reflects the impact of specific operation context 
and environment. Our approach is applied to a vehicle adaptive cruise control 
(ACC) example and shown to provide significant savings in actuation energy and 
computation load. 

Switching Among Multiple Controllers with Safety Guarantees The work 
in [30] is our first attempt towards the safety adaptation and design for learning-
enable systems, allowing a safe, efficient and intelligent switch between different 
system modes. Motivated by this work, we start considering a more general 
case, where switching among multiple existing controllers, including possibly both 
model-based ones and neural network-based ones, can be conducted to address 
system adaptation needs. This is show in Fig. 5. Note that the case where a control 
step is skipped can be viewed as a special case of switching to a trivial controller.

For safety-critical systems such as CAVs, the key to enable such switching 
among multiple controllers is to formally ensure safety. In [72], we extend the 
work from [30] to achieve energy-efficient control adaptation with safety guarantees 
by switching among multiple controllers (including neural network based ones) 
via control invariant set computation and reinforcement learning. Once a system 
starts from a control invariant set, it will never leave the set and therefore the 
safety can be guaranteed. However, it is a hard problem to compute the control 
invariant set for neural network controlled systems. To solve this problem, we first 
partition the system space into multiple regions, and on each small local region, we 
overly approximate the neural network controller by Bernstein polynomials with 
bounded error. After this transformation, we obtain a hybrid system with polynomial 
dynamics and compute the invariant set by solving a semi-definite programming
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Fig. 5 Adaptation through switching among multiple controllers, which could include both 
model-based ones and neural network-based ones

Fig. 6 An example illustrating the energy-efficient switching control with safety guarantees 
in [72]. We compute the control invariant sets . X1

I and . X2
I for controllers . κ1 and . κ2, respectively, 

and efficiently switch between them based on DRL when the system state is within the intersection 
of the two invariant sets. For example, in the figure, a control switching happens when the system 
is at .x(2), where both controllers can be safely chosen, and DRL picks . κ2 for energy efficiency 

(SDP) problem. The union of all the invariant sets define the safe adaptation space, 
where we apply deep reinforcement learning (DRL) to learn an energy-efficient 
strategy. Figure 6 shows an example illustrating our framework. In two case studies, 
including an ACC example, our framework with invariant set and DRL achieves the 
best safety-energy consumption efforts when compared to baseline methods. 

Cross-Layer Adaptation with Safety-Assured Job Skipping 
For many practical systems such as CAVs, the ability to adapt to dynamic 
requirements is often limited by the tight resource constraints. Moreover, most 
safety-critical systems employ rigid timing requirements, such as periodic execution 
and hard deadlines, to guarantee the functionality under worst-case analysis, which 
further restricts the system adaptation ability. In these cases, it is important to 
address adaptation with cross-layer approaches.
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In the literature, there are a number of methods that adapt task execution with 
cross-layer consideration. For instance, in [61], the simplex control architecture 
is proposed, where multiple controllers are being switched at runtime based on 
the system state and a safety controller keeps the system safe. In [11], an online 
adaptation approach is proposed for hard real-time systems to temporarily increase 
control sampling frequency under disturbances while maintaining schedulability. 
In [5–7], feedback schedulers assign new sampling periods to control tasks during 
runtime to optimize the control performance under earilest deadline first (EDF) 
scheduling. In [57], an approach is proposed to adaptively minimize tasks’ usage of 
high quality-of-service resources while meeting control performance requirements. 

In [75], different from the previous adaptation approaches that are based on 
traditional hard timing constraints, we propose an approach that explores proactive 
task job skippings based on the dynamic system state for state-aware tasks and static 
weakly-hard constraints for other state-unaware tasks. Note that with weakly-hard 
constraints [4, 55], occasional deadline misses are allowed in a bounded manner. 
Such paradigm provides more flexibility on the system design than traditional hard 
real-time constraints, while still allows the possibility of formally guaranteeing 
functional correctness that soft deadlines cannot provide, using formal analysis 
techniques such as those in [27, 28]. 

More specifically, we propose a cross-layer runtime adaptation framework in [75] 
that allows proactive skipping of task executions and re-allocate resources to the 
tasks that need performance improvement, as shown in Fig. 7. The system safety 
is guaranteed under the execution skipping, while the runtime task status is taken 
into account to maximize the freedom of resource re-allocation. This adaptation 
framework also involves an efficient runtime scheduler to ensure the timing 
property during the resource re-allocation. Based on the resource re-allocation, 
this adaptation framework achieves the dynamic adaptation goals in the best-effort 
manner. Case study on a robot car example demonstrates the effectiveness of this 
approach in meeting adaptation needs with safety assurance.

Runtime Safety-Guided Policy Repair For learning-based control systems, run-
time safety assurance is particularly crucial and yet challenging. A common 
approach to providing such kind of assurance is to pair a learning-based controller 
with a safety controller at runtime. The learning-based controller is usually the 
primary controller. It learns control policy to attain high performance for the task 
through data-driven methods. However, it does not provide any safety guarantee 
especially in scenarios unseen during the training stage. The safety controller 
is tasked with predicting impending safety violation and taking over control 
when it deems necessary. It is often designed based on conservative models, has 
inferior performance compared with its learning-based counterpart, and may require 
significant computation resources if implemented online. 

In order to mitigate the performance loss resulted from the undesirable alter-
nations from the learning-based controller the safety controller while preserving 
safety, we propose to repair the learning-based controller’s control policy by lever-
aging the interventions carried out by the safety controller in [85]. A naive repair
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Fig. 7 An overview of the cross-layer runtime adaptation framework proposed in [72]. The 
system initially runs under a backup configuration that guarantees schedulability and safety. 
During runtime, an adaptation goal can be given by an external party. The adapter explores the 
configuration space to search for a feasible solution that achieves the adaptation goal, while 
ensuring schedulability and safety. If a solution is found, the system will run at this new 
configuration; otherwise, it will stay at the backup configuration

scheme is to have the learning-based controller learn from the safe control inputs 
generated by the safety controller until the policy no longer perform unsafe behavior. 
However, re-training the policy may undermine the policy’s performance for the 
task. To address this, we introduce minimally deviating policy repair via trajectory 
synthesis. Basically, we synthesize safe trajectories such that by learning from those 
trajectories, the policy is safe and its parameters are minimally changed, as shown 
in Fig. 8. This policy repair scheme require naive policy repair as a precondition 
so that a safe policy is present. Then we formulate an optimization problem where 
the objective is to perturb the parameters of the safe policy to regress towards those 
of the original unsafe policy while the constraint is that the perturbation should 
not result in the policy generating unsafe trajectories. We use local linearization 
to transform this optimization problem into a trajectory optimization problem. The 
motivation is that, after applying the optimal perturbation to the policy parameters, 
the policy should be able to generate the trajectories solved from the trajectory 
optimization problem. This work can be viewed as data augmentation strategy where 
the data is optimized specifically for the learning model.

End-to-End Uncertainty-Based Adaptation for Mitigating Adversarial Attacks 
to CAVs Performing runtime adaptation for CAVs may significantly improve 
system safety, robustness and security in practice. For instance, in [35], we present 
an approach for runtime detection and mitigation of adversarial attacks. CAVs have 
been shown to be susceptible to adversarial attacks, where small perturbations in 
the input may cause significant errors in the perception results and lead to system 
failure. For instance, [84] designs a malicious billboard to attack end-to-end deep 
learning-based driving models. [59] generates a dirty road patch with carefully-
designed adversarial patterns, which can appear as normal dirty patterns for human 
drivers while leading to significant perception errors and causing vehicles to deviate
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Fig. 8 The combination of a learning-based controller and a safety controller provides runtime 
safety assurance. Given the state . xt , the safety controller filters the control input . ût generated by 
the learning-based control policy . π , and produces a safe control input . ut to the plant. The data 
.(xt , ut ) is collected at runtime to repair the policy .π

Fig. 9 An end-to-end detection and mitigation framework for adversarial attacks to CAVs [35]. In 
the perception module, the original neural network is to predict lane lines with confidence value 
and the data uncertainty while the other neural network is used to estimate the model uncertainty 
by Monte-Carlo dropout. The state cache will store recent predictions and then the planner will 
select one based on confidence values. The planner will calculate the center line in a safe region 
by considering both uncertainties and lane predictions. Finally, the controller will optimize the 
low-level control by an uncertainty-aware MPC

from their lanes within as short as 1 s. On the defense side, most previous works 
focus on detecting anomaly in the input data [39, 44] or making the perception 
neural networks themselves more robust against input perturbation [46]. 

In [35], instead of addressing adversarial attacks only on perception module, we 
develop an uncertainty-based end-to-end approach that detects and mitigates adver-
sarial attacks throughout perception, planning, and control modules. In particular, 
we measure the confidence and uncertainty of perception modules, and conduct 
robust adaptation in the following modules accordingly based on the uncertainty 
analysis, as shown in Fig. 9. We apply the framework to the commercial automated 
lane centering system in OpenPilot and demonstrate that the impact of attacks can 
be reduced by up to 90%. 
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3.2 Safety-Driven Learning and System Design 

Besides runtime adaptation, another critical aspect for CAV safety is to design 
and learn neural network-based components that can ensure system safety (i.e., 
not entering unsafe states) and robustness (i.e., being safe under disturbances from 
random noises or malicious attacks). Next, we will first introduce works that 
improve the robustness of neural networks, and then introduce techniques that try to 
learn safe neural network-based controllers from multiple experts, with verification 
in the loop, and based on physical information, respectively. 

Learning Provably Robust Neural Networks Most of the current verification 
techniques for learning-enabled systems focus on analyzing trained systems, e.g., 
whether a trained neural network satisfies some specification. It is more desirable 
to have these systems “correct-by-construction”. In fact, the same power of modern 
compute and data that has been fueling data-driven learning can be leveraged to 
scale up verification and enable provably-correct training of neural networks. We 
give such an example below. 

For adversarial robustness problems in neural networks [3, 23, 45, 79, 83], given 
a model . fθ , loss function . L, and training data distribution . X , the training algorithm 
aims to minimize the loss whereas the adversary aims to maximize the loss within a 
neighborhood .S(x, ε) of each input data . x as follows: 

.min
θ

E(x,y)∈X
[

max
x′∈S(x,ε)

L(fθ (x
′), y)

]
(1) 

In general, the inner maximization is intractable. Most existing techniques focus 
on finding an approximate solution. There are two main approaches to approximate 
the inner loss (henceforth referred to as robust loss). One direction is to generate 
adversarial examples to compute a lower bound of robust loss. The other is to 
compute an upper bound of robust loss by over-approximating the model outputs. 

Verification techniques [17, 36, 53, 54, 58] for neural networks can be used 
to compute a certified upper bound of robust loss (henceforth referred to as 
abstract loss). Given a neural network, a simple way to obtain this upper bound 
is to propagate value bounds across the network, also known as interval bound 
propagation (IBP) [23, 48]. Techniques such as CROWN [82], DeepZ [63], MIP [68] 
and RefineZono [64], can compute more precise bounds, but also incur much 
higher computational costs. Building upon these upper bound verification tech-
niques, approaches such as DIFFAI [48] construct a differentiable abstract loss 
corresponding to the upper bound estimation and incorporate this loss function 
during training. However, [23] and [83] observe that a tighter approximation of 
the upper bound does not necessarily lead to a network with low robust loss. 
They show that IBP-based methods can produce networks with state-of-the-art 
certified robustness. More recently, COLT [3] proposed to combine adversarial 
training and zonotope propagation. Zonotopes are a collection of affine forms of 
the input variables and intermediate vector outputs in the neural network. The
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idea is to train the network with the so-called latent adversarial examples which 
are adversarial examples that lie inside these zonotopes. AdvIBP [18] proposed 
a principled framework for combining adversarial loss and abstract loss. Fan and 
Li [18] argues that minimizing adversarial loss and minimizing abstract loss can 
be viewed as bounding the true robust loss from two ends. From an optimization 
perspective, this amounts to an optimization problem with two objectives and can be 
solved using gradient descent methods if both objectives are semi-smooth. Inspired 
by the work on moment estimates [37], AdvIBP proposed a novel joint training 
scheme to compute the weights adaptively and minimize the joint objective with 
unbiased gradient estimates. For efficient training, AdvIBP uses FGSM and random 
initialization for computing the adversarial loss and IBP for computing the abstract 
loss. We summarize and compare the key features in Table 1.

Learning Neural Network Controllers from Multiple Experts In Sect. 3.1, we  
present an approach for switching among multiple controllers, including both 
model-based and neural network-based, with safety assurance [72]. After observing 
the benefit of such switching control, we then further propose a framework to 
automatically learn a better neural network-based controller from those multiple 
existing ones, by learning a system-level ensemble strategy and robust distillation 
via adversarial examples [74], as shown in Fig. 10. Specifically, we ensemble the 
multiple controllers by learning a linear combination weight for each expert through 
reinforcement learning optimization to enhance the control safety and efficiency. To 
achieve better verifiability based on the observation that smaller Lipschitz constant 
of the neural network leads to stronger robustness, we conduct teacher-student 
knowledge distillation with a novel probabilistic adversarial training to obtain the 
final controller. The final learned controller shows better control robustness when 
facing measurement noise and adversarial attacks, higher control energy efficiency, 
and better verifiability in terms of reachable set and invariant set computation.

Verification-in-the-Loop Control Learning with Safety Guarantees Tradition-
ally, control synthesis/learning for a safety-critical system often follows the design-
then-verify open-loop process, which could result in many iterations between design 
and verification, and may still fail to provide any safety guarantees. In [76], 
we instead propose a closed-loop process for control learning by integrating 
the verification results into the design module via propagating the feedback as 
an approximated gradient, i.e., a design-while-verify process. In particular, the 
verification results refer to the computed reachable set in this work. We establish 
two distance metrics, including the geometric distance and the Wasserstein distance, 
to measure how far the computed reachable set of the current controller is from the 
goal region and the unsafe region. We then add perturbations to the controller and 
approximate the gradient for it by a difference method for update until the final 
reach-avoid property is met. 

Physics-Aware Safety-Assured Design of Hierarchical Neural Network Planner 
for CAVs In designing CAVs in practice, it is critical to consider the safety
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Fig. 10 Overview of the 
Cocktail framework to learn a 
better neural network 
controller from multiple 
existing control experts via 
system-level ensemble from 
reinforcement learning and 
robust distillation with 
probabilistic adversarial 
training

Plant 

1 

2 

DRL Combina�on 

Robust 
Distillation 

Ensemble as Teacher 

Control Experts 

Adversarial 
Examples 

of the learning-based components. For instance, many recent neural network-
based planners demonstrate significant performance improvement and accident 
rate reduction in average over traditional model-based methods. Some of those 
learn a single neural network for planning via reinforcement learning, imitation 
learning, supervised learning, etc., while others employ a hierarchical planner 
design, which usually consists of low-level planners for different modes and a high-
level planner that is responsible for selecting the mode. However, even though safety 
improvement is often considered and demonstrated empirically through experiments 
in those works, formal system safety verification remains a challenging problem. 

In [42], we propose a hierarchical neural network based planner that analyzes 
the underlying physical scenarios of the system and learns a system-level behavior 
planning scheme with multiple scenario-specific motion-planning strategies, as 
shown in Fig. 11. We develop an efficient verification method that incorporates 
overapproximation of the system state reachable set and novel partition and union 
techniques for formally ensuring system safety under our physics-aware planner. 
With theoretical analysis, we show that considering the different physical scenarios 
and building a hierarchical planner based on such analysis may improve system 
safety and verifiability. We also empirically demonstrate the effectiveness of 
our approach and its advantage over other baselines in practical case studies of 
unprotected left turn and highway merging, two common challenging safety-critical 
tasks in autonomous driving.

4 Conclusion and Future Directions 

Safety is a critical challenge to the widespread adoption of CAVs. In this book 
chapter, we have outlined some specific technical problems and proposed solutions 
for verifying and improving the safety of CAVs, especially aiming at those 
challenges brought by the increasing usage of learning-based components. The road
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Behavior Planner 
(NN-based) 

Motion Planner 1, 
Scenario 1 
(NN-based) 

Motion Planner 2, 
Scenario 2 
(NN-based) 

Motion Planner 3, 
Scenario 3 
(NN-based) 

Control Input 
Range Aggregation 

Plant 

the true behavior 
selected by BP 

overapproximated 
behavior set 

planner of any 
behavior in the set 

planner not selected 
by overapproximation 

Fig. 11 Design of a hierarchical neural network-based planner that consists of one behavior 
planner . μ and N motion planners .{κ1, κ2, . . . , κN } [42]. In the figure, we have .N = 3 for 
example. The behavior planner decides the most appropriate behavior given the system state x, 
and then the corresponding motion planner is enabled to control the system. To compute an 
overapproximation of the reachable set of the system under such hierarchical planner, we first 
compute an overapproximated behavior set, which is illustrated by the grey rectangle in the 
figure. Then for each behavior in the overapproximated behavior set, the corresponding motion 
planner’s output range can be aggregated as the possible control input range, thus computing an 
overapproximation of the system state reachable set under all possible behaviors

to safe autonomy, however, still requires clearing major roadblocks in perception, 
control, and connectivity, and we discuss some of those below. 

On the verification side, developing more efficient and rigorous techniques 
especially for CAVs with neural network-based perception modules will be a 
primary focus. The high dimensionality of the problem may necessitate sacrificing 
deterministic guarantees and adopting statistical or probabilistic analysis. In par-
ticular, for probabilistic safety verification of neural network-controlled systems, 
existing statistic model checking approach often requires a large number of system 
simulations and costs a lot of time. This may be relieved by approximately tracking 
the propagation of the probabilistic distributions of reachable states. Another 
possible direction is to perform property-directed reachability analysis for neural 
network-controlled systems. Existing reachability algorithms explore all state space 
that is possible to reach, and it is often unnecessary to do so when a safety 
property is simply defined by very few constraints. A property-directed reachability 
technique may exclude the state space that is not relevant to the safety condition 
and reduce a great amount of time in computing the reachable sets. For connected 
vehicles, abstract modeling of inter-vehicle information exchange and interactions
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and compositional analysis will be the key to leapfrogging the complexity challenge 
of verifying the safety of large-scale multi-agent systems. 

On design and adaptation of CAVs, we believe that the key is to develop more 
end-to-end approaches that can address CAV safety across sensing, perception, 
planning and control stages, and more cross-layer approaches that can consider 
functional safety, software and hardware execution correctness, and even inter-
vehicle communication reliability in a holistic manner. For instance, effectively 
addressing adversarial attacks to neural network-based perception modules will 
require quantitative analysis of their impact on downstream planning/control mod-
ules and ultimately on system-level safety, and will need end-to-end mitigation 
strategies that are developed based on such analysis. Runtime adaptation to mitigate 
component failures will need techniques to assess the impact of those failures across 
system layers, explore adaptation solutions that address the bottlenecks, and ensure 
the changed configurations meet various constraints across functional, software and 
hardware layers. 
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