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1 Introduction 

Autonomous vehicles (AVs) have been an attractive research area for decades, as 
it offers the potential to generate more efficient and safer road networks [1]. The 
adoption of AVs will not become a reality until they can co-exist with humans, as 
part of a complex social system. In order to maximize the potential of AVs and 
optimize for safety and traffic efficiency of all the vehicles on the road, AVs have to 
coordinate and influence the other agents [1–3]. 

We recognize the importance of social interaction and behavior in safety and 
reliability and identify two important research directions. First, AVs must be social 
actors and behave predictably and safely. Driver behavior is shaped by habits and 
expectations in the traffic environment. The vehicle’s interaction will be influenced 
by the way AV decisions are perceived. Therefore, the ability of AVs to drive 
in a socially obedient manner is critical for the safety of passengers and other 
vehicles because predictable behavior allows humans to comprehend and respond 
appropriately to the AV’s actions. Second, AVs must be social-aware and learn 
to identify social cues of egoism or altruism, understand the behavior of human 
drivers and learn how to interact and coordinate with all agents in a mixed traffic 
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Fig. 1 (a) Interaction of AV-HV to benefit a HV: Altruistic agents create alliances and direct 
the behavior of HVs to improve traffic flow and prevent dangerous circumstances. AV1 and AV2 
can create a formation to guide HV2 and provide a route for HV1, allowing the HV to change 
lanes and navigate to the exit ramp. (b) Interaction of AV-AV to benefit a HV: The goal of HV1 
is to integrate onto the highway. Egoistic AVs disregard the merging vehicle and do not make 
room for it, possibly resulting in dangerous situations, however, if they exhibit sympathy for the 
merging HV, they can compromise on their own interest to create a safe path for HV1 to merge 
into the highway. (c) Interaction of AV-AV to benefit another AV: The goal of AV1 is to exit the 
highway. If AV2 acts selfishly, AV1 may miss the exit and be unable to complete its task. However, 
if AV2 and AV3 consider AV1’s mission and act altruistically, they can free up space in the platoon 
by AV2 decelerating and AV3 accelerating, allowing AV1 to safely take the exit 

environment, adapting and influencing the HVs behaviors to optimize for a social 
utility that improves traffic flow and safety. 

In this chapter, we focus on social awareness challenges and seek a solution 
that can ensure the safety and robustness of AVs in the presence of human drivers 
with heterogeneous behavioral traits. Vehicle-to-vehicle (V2V) communication 
allows connected and autonomous vehicles (CAVs) to interact directly with their 
neighbors [4, 5]. By using V2V communication CAVs can create an extended 
perception that facilitates explicit cooperation among vehicles to overcome the 
limits of a non-cooperative agent [6–8]. While planning in a fully AV scenario is 
relatively easy to achieve, coordination in the presence of HVs is a significantly 
more challenging task, as the AVs not only need to react to road objects but also 
need to consider the behaviors of HVs [9–11]. 

In contrast to the individual non-cooperative approaches, we investigate the 
mixed-autonomy decision-making challenge from a multi-agent and social per-
spective. Rewarding AVs for adopting an altruistic behavior and taking into 
consideration the interests of other vehicles allows them to see the broad picture 
and find solutions that maximize the utility of the group. In addition to the potential 
benefits of altruistic decision-making in terms of safety and efficiency, altruism 
results in more societally advantageous outcomes [2]. Figure 1a demonstrates how 
a group of AVs can guide HV to increase safety and efficiency, while Fig. 1b and c 
show how AVs can collaborate to accomplish a social objective that benefits another 
HV or AV. 

Currently, AVs lack an understanding of human behavior and frequently act 
extremely cautiously to avoid collisions. This conservative behavior not only leaves 
AVs unprotected from aggressive HVs, but also results in unexpected reactions that 
confuse HVs, creating bottlenecks in traffic flow and causing accidents. It’s critical
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to distinguish between a human driver’s individual traits, such as aggressiveness, 
conservativeness, and risk tolerance, and their social preferences, such as egoism 
and altruism. Even though the two categories are related, they have distinctive 
natures and so behave differently in mixed traffic. An aggressive driver, for example, 
is not inherently egoistic or selfish, but their aggression may hinder their ability to 
collaborate with other drivers and participate in a socially desirable coexistence with 
AVs [3, 12, 13]. In the field of behavior planning for AVs in mixed-autonomy traffic, 
we identify two fundamental problems. First, human drivers differ considerably 
in their individual traits and social preferences, making AV behavior planning 
exceedingly difficult because it is difficult for the AV to foresee the type of behavior 
it would encounter when dealing with a human driver. Furthermore, relying on 
a real-time inference of HV behaviors is not always feasible because vehicle 
interactions can be brief, such as when two vehicles meet at an intersection. Second, 
driving requires complex interactions of agents in a partially observable and non-
stationary environment, as HVs do not follow a fixed policy and modify their 
policies in real-time in response to the actions of other vehicles. 

The integration of AVs into the real world requires them to address those 
challenges. Due to the differences in maneuverability and reaction time between 
AVs and HVs, a road shared by both becomes a competitive situation. In contrast 
with the full-autonomy case, here the coordination between HVs and AVs is not 
as straightforward since AVs do not have an explicit means of harmonizing with 
humans and are therefore required to locally account for the other HVs and AVs 
in their proximity. This dilemma intensifies if AVs act egoistically and optimize 
solely for their local utility. As an illustration, Figs. 2 and 3 demonstrate a highway 
exiting and merging scenario in mixed traffic. We consider a general setup where 
AVs and HVs with different behaviors coexist. Vehicles need to efficiently merge 
onto the lane or exit the highway without collisions. In an ideal cooperative 
environment, AVs should proactively decelerate or accelerate to provide sufficient 
room for vehicles to safely exit/merge and prevent hazardous situations, while also 
being resilient to various situations and behaviors and assuring safety in decision-
making [14]. For instance, in Fig. 2 (merging scenario) if AVs act egotistically, 
the merging vehicle must rely on the HV to slow down to allow it to merge. 
However, due to the unpredictability of HVs, relying solely on HVs might result in 
suboptimal or even dangerous circumstances. Therefore, if all AVs act egotistically, 
the merging vehicle would either be unable to join the highway or it will wait for 
an HV and risk cutting into the highway without knowing whether the HV will 
slow down. Nevertheless, if AVs act altruistically, they can coordinate to guide the 
traffic on the highway to allow for a seamless and safe merging. In particularly 
challenging driving scenarios, such altruistic AVs can achieve societally beneficial 
results without relying on or making assumptions about HVs behaviors.

To address these challenges, existing literature either depend on models of human 
behavior generated from pre-recorded driving datasets [15, 16] or define social 
utilities that can impose cooperative behavior among AVs and HVs [17]. Other 
works focus on rule-based methods that use heuristics and hand-coded rules to guide 
the AVs [18] or probabilistic driver modeling [19] learned from human driving data.
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Fig. 2 For a seamless and safe highway merging, all AVs must coordinate and account for the 
utility of HVs. (top) Egoistic AVs optimize only for their own utility, (bottom) Altruistic AVs 
consider also the HV’s utility

While this is feasible for simple situations, these methods become impractical in 
complex scenarios. Additionally, the human driver models learned in the absence 
of AVs, are not necessarily valid when humans confront AVs. This limits the 
application of the generated solutions, as they are frequently limited to the human 
behaviors with which AVs interacted during training. To account for this, several 
works in the literature adopt an excessively cautious approach when interacting with 
humans [20]. This strategy not only leaves the AVs vulnerable to other aggressive 
drivers, particularly in competitive situations, but it also causes traffic congestion 
and significant safety risks [1, 2]. 

On the other hand, data-driven methods such as reinforcement learning (RL) have 
received increased attention [21] as RL-based methods can learn decision-making 
and driving behaviors that are hard for traditional rule-based designs. However, the 
majority of the RL approaches are designed for a single AV, or try to handle the 
interaction between AVs and HVs either by predicting human behavior or by relying 
on the fact that humans are willing to collaborate or can be influenced to do so [15, 
22], which could compromise safety or lead to sub-optimal performance. Recent 
works consider social interactions of AVs and train altruistic AVs that learn from 
experience and influence HVs to optimize a social utility function that benefits all 
vehicles on the road [10, 23].
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Fig. 3 Highway exiting and merging scenarios with AVs (green) and aggressive HVs (red) sharing 
the road. Altruistic AVs must learn to cooperate to exit/merge successfully and safely while being 
adaptable to a variety of scenarios and HV behaviors

In contrast, we consider a data-driven multi-agent reinforcement learning 
(MARL) approach and let the autonomous agents implicitly learn the decision-
making process of human drivers only from experience, while optimizing for a 
social utility. By incorporating a cooperative reward structure into our MARL 
framework, we can train AVs that coordinate with each other, sympathize with 
HVs, and, as a result, demonstrate enhanced performance in competitive driving 
scenarios, such as highway exiting and merging. Despite not having access to 
an explicit model of the human drivers, the trained autonomous agents learn to 
implicitly model the environment dynamics, including the behavior of human 
drivers, which enables them to interact with HVs and guide their behavior. 

This research aims to create a safe and robust training regimen that allows AVs to 
collaborate and influence the behavior of human drivers to achieve socially desirable 
outcomes, regardless of HV individual traits and social preferences. We based our 
work on the following insights. First, we rely on a decentralized reinforcement 
learning architecture that optimizes for a social utility that learns from experience 
and exposes the learning agents to a wide range of driving. As a result, the agents 
become more resistant to human driver behavior and can handle cooperative-
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Fig. 4 An overview of our approach to leverage social awareness and coordination to improve the 
safety and reliability of CAVs. Our social-aware AVs learn from scratch not only to drive but also 
to understand the behavior of HVs and coordinate with them, they learn to adapt and influence 
HVs in a robust and safe manner 

competitive behaviors regardless of HV’s hostility or social preference. Second, a 
safety prioritizer is presented to minimize high-risk actions that could jeopardize 
driving safety. The safety prioritizer constrains the policy of cooperative AVs to 
ensure the safety of their behavior via masking the Q-states that lead to high-risk 
outcomes. Figure 4 shows an overview of our process. 

Our main contributions are summarized as follows: 

• We formulate the mixed-autonomy problem as a decentralized MARL problem 
and present an approach to training altruistic agents which utilizes a decentralized 
reward mechanism for achieving socially advantageous behaviors and takes 
advantage of a 3D convolutional deep reinforcement learning architecture to 
capture the temporal information in driving data. 

• A training algorithm is proposed to make AVs robust to different drivers’ behav-
ior and situations while producing socially desirable outcomes. We investigate 
the effect of HVs behaviors on our altruistic AVs agents and especially conclude 
that the higher the traffic aggressiveness, the higher the importance of social 
coordination. 

• We investigate the scenarios in which altruistic AVs can learn cooperative 
policies that are robust to diverse traffic scenarios and HV behaviors without 
compromising efficiency and safety, and present the results on transfer learning 
and domain adaptation in mixed-autonomy traffic. 

The purpose of this chapter is to study the challenges of robust and safe AVs in 
mixed-autonomy traffic, especially in intrinsically competitive driving scenarios like 
those shown in Fig. 2, in which coordination is essential for safety and efficiency. 
The intention is to utilize the autonomous driving challenge as a case study to 
examine the use of social theories from psychology literature in the MARL domain. 
To apply these theories to real-world roads, more study is required. Nonetheless, the 
research on altruistic AVs that are robust, safe, and capable of learning to influence 
HVs in desirable ways, without the limitations of current solutions are promising.
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2 Related Work 

2.1 Multi-Agent Reinforcement Learning 

The intrinsic non-stationarity of the environment is a key problem for MARL. To 
address those limitations a MARL derivation of importance sampling is proposed 
and used to remove the outdated samples from the replay buffer [24]. In [25] is  
presented another solution to address this issue by including latent representations 
of partner strategies allowing partner modeling and more scalable MARL. 

To mitigate the problem of credit assignment in multi-agent systems, [26] 
proposed the counterfactual multi-agent (COMA) algorithm, which employs a 
centralized critic and decentralized actors. In [27] is proposed a deep RL algorithm 
with full environment observability and a centralized controller to govern the 
joint-actions of all the agents. Other current research on mixed-autonomy focuses 
on addressing cooperative and competitive challenges by assuming the nature of 
interactions between autonomous agents [28]. In [29] a variation of an actor-critic 
approach with a centralized q-function is proposed. The algorithm has access to 
local observations and the actions of all agents. In our work, in contrast, we consider 
a decentralized controller with partial observability, and train altruistic agents that 
optimize for a social utility. 

2.2 Driver Behavior and Social Coordination 

Existing works on driver behavior and social navigation approach agents coor-
dination by either modeling driver behaviors [19, 30, 31] or simplifying and 
making assumptions about the nature of agent interactions [28, 32]. In [33] is  
presented a maneuver-based dataset and a model for classifying driving maneuvers 
is proposed. Other works on driver behavior modeling consider graph theory [34], 
data mining [35], driver attributes [36] or game theory [2]. In [31] is proposed a 
method for modeling and forecasting human behavior in circumstances that involve 
multi-human interactions in highly multi-modal situations. 

Current research in social navigation has demonstrated the importance of AVs as 
social actors and the advantages of coordination between AVs and HVs [37]. Human 
driving patterns are learned from demonstration using inverse RL in [38] and [22]. 
Similarly, in [39] is presented a centralized game-theory model for cooperative 
inverse RL. The authors in [40] and [41] proposed a shared reward function 
to enable cooperative trajectory planning for robots and humans. Sadigh et al. 
presents a strategy based on imitation learning to learn a reward function for human 
drivers, demonstrating how AVs can influence human actors [15]. The importance 
of coordination and the advantage of using AVs to guide the traffic has been also 
investigated at the traffic level. Wu et al. [42] analyzes the capability of AVs to 
stabilize a system of HVs and presents the conditions in which when concurrently
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enforcing safety constraints on the AVs while stabilizing traffic improves traffic 
performance. Similar works have highlighted the potential of influencing HVs and 
how AVs can be used to stabilize and guide the traffic flow [42, 43]. Recent works 
focus on optimizing traffic networks in mixed autonomy to reduce traffic congestion 
and improve safety. In [44] is presented a model of vehicle flow and a model of how 
AV makes decisions among routes with various prices and latencies. The planner 
optimizes for a social objective and shows improvement in traffic efficiency. The 
vehicle routing problem is studied in [45] that proposed an innovative learning-
augmented local search system to mitigate the problem by using a Transformer 
architecture. Cameron et al. explores how humans can supervise agents in order 
to attain an acceptable degree of safety [46]. In contrast to previous works, we do 
not rely on human cooperation and our AVs learn cooperative behaviors directly 
from experience, our focus is on the emerging altruistic behavior that allows agents 
to coordinate and optimize for a social utility. 

2.3 Safe and Robust Driving 

Safety is critical for AVs [47], and it is especially important for AVs that have 
been trained via RL. We must prioritize safety; because coordination is frequently 
associated with risk. In cooperative driving, there are often safe actions that have 
low rewards and riskier actions with higher rewards [48]; however, the risky action 
increases the likelihood of crashes when cooperation fails. Especially, AVs utilizing 
trained RL algorithms, may not always operate safely since the trained models 
may pick dangerous actions [20]. Several attempts in this direction use pure reward 
shaping to avoid collisions. While this is a frequent technique in RL, safety is not 
implicitly emphasized, and AVs implementing such RL methods may not behave 
properly in some cases due to function approximation. 

To overcome this problem, the concept of safe RL is proposed in [20], which 
aims to increase safety in unobserved driving conditions when the RL algorithm 
performs dangerously. Wang et al. [49] proposes a rule-based decision-making 
system that evaluates the controller’s decisions and substitutes collision-causing 
actions. A short-horizon safety supervisor is included in Nageshrao et al. [50] to  
replace unsafe actions with safer ones. A Q-masking strategy is presented in [51] to  
prevent collisions by deleting actions that might lead to a crash. Chen et al. proposes 
a novel priority-based safety supervisor that reduces collisions considerably [52]. 

We leverage these approaches in this work using a decentralized reward function, 
local actions, and assuming partial observability, to increase the altruistic agents’ 
safety while also being adaptable to varied driver behaviors and circumstances. 
As shown in Fig. 2, we analyze a particular situation in which AVs and HVs with 
various characteristics coexist. The picture depicts two frequent traffic situations 
in which vehicles must either merge into a lane effectively or depart the highway 
without colliding with other vehicles. In an ideal cooperative context, vehicles 
should proactively decelerate or accelerate to provide enough room for vehicles
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to safely exit/merge and prevent stalemate situations, while also being resilient to 
various conditions and behaviors and assuring safety in decision-making. 

3 Preliminaries and Formalism 

We study safety and robustness in the maneuver-level decision-making problem for 
AVs to see what kinds of behaviors might lead to socially desirable results. We’re 
interested in the question of how AVs can be trained from scratch to drive safely 
and reliably, while also taking into account the social aspects of their mission, i.e., 
optimizing for a social utility that takes into account the interests of other vehicles 
in the vicinity. Social awareness and coordination are essential to improve safety 
and reliability on the roads. In this work, we explore that insight. Thus, we continue 
this section by providing a quantitative description of an agent’s level of altruism 
and formally defined our problem. 

It is possible to define the MARL problem as a centralized or decentralized 
problem. It’s simple to create a centralized controller that provides a central joint 
reward and joint action. However, in the real world, such assumptions are unfeasible. 
In this chapter, we focus on a decentralized controller with partial observability and 
formulate the problem as a partially observable stochastic game (POSG) defined by 
.〈I,S, P , γ, {Ai}i∈{1,...,N}, {Oi}i∈{1,...,N}, {Ri}i∈{1,...,N}〉 where 
• . I: a finite set of agents .N ≥ 2. 
• . S : a set of possible states that contains all configurations that N AVs can take 

(probably infinite). 
• P : a state transition probability function from state .s ∈ S to state .s′ ∈ S, . P(S =

s′|S = s, A = a). 
• . γ : a discount factor, .γ ∈ [0, 1]. 
• . Ai : a set of possible actions for agent i. 
• . Oi : a set of observations for agent i. 
• . Ri : a reward function for the ith agent, .Ri(s, a). 

At a given time t the agent senses the environment and receives a local 
observation .oi : S → Oi , based on the observation . oi and its stochastic policy 
.πi : Oi × Ai → [0, 1], the agent takes an action within the action-space .ai ∈ Ai . 
Consequently, the agent transits to the next state . s′ which is determined based on 
the state transition probability function .P(s′|s, a) : S × A1 × ... × AN → S and 
receives a decentralized reward .ri : S × Ai → R. The goal of each agent i is to 
optimally solve the POSG by deriving a probability distribution over actions in . A at 
a given state, that maximizes its cumulative discounted sum of future rewards over 
an infinite time horizon and find the corresponding optimal policy .π∗ : S → A. 

An optimal policy maximizes the action-value function, i.e., 

.π∗(s) = argmax
a

Q∗(s, a) (1)
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where, 

.Qπ(s, a) := Eπ [
∞∑

k=0

γ kRk(s, a)|s0 = s, a0 = a]. (2) 

The optimal action-value function is determined by solving the Bellman equa-
tion, 

.Q∗(s, a) = E

[
R(s, a) + γ max

a′ Q∗(s′, a′)|s0 = s, a0 = a

]
(3) 

3.1 Double Deep Q-Network 

Deep Q-network (DQN) has been widely used in RL problems. DQN uses a deep 
neural network (NN) with weights . w as the function approximator to estimate 
the state-action value function, i.e., .Q̃(.;w) ∼= Q(.). DDQN improves DQN 
by decomposing the max operation in the target into action selection and action 
evaluation, mitigating the over-estimation problem. The idea is to periodically 
sample data from a buffer and compute an estimate of the Bellman error or loss 
function, written as 

.L(w) = Es,a,r,s′∼RM[(T arget − Q̃(s, a;w))2] (4) 

.T arget = R(s, a) + γ Q̃(s′, argmax
a′

Q̃(s′, a′;w); ŵ)) (5) 

The DDQN algorithm then performs mini-batch gradient descent steps as . wi+1 =
wi − αi∇̂wL(w), on the  loss  . L to learn the approximation of the value function 
(.Q̃(.)). The . ∇̂w operator denotes an estimate of the gradient at . wk , . w are the weights 
of the online network and . ŵ are the weights of the target network which are updated 
at a lower frequency (.T argetupdate) to stabilize training. The experience replay 
buffer (RM) is used to generate training samples .(s, a, r, s′), which are randomly 
drawn to protect from correlated observations and non-stationary data distribution. 

3.2 Driving Scenarios 

Our objective is to investigate driving scenarios in which the lack of AV coordination 
hinders safety and efficiency. We also study adaptability among scenarios and driver 
behaviors. For this, we design a set of scenarios . Fwith highway exiting and merging 
ramps as the main scenarios, as shown in Fig. 2, where a mission vehicle (in our
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case an exiting/merging vehicle) attempts to accomplish its task in a mixed-traffic 
environment. 

The exiting and merging scenarios are designed in such a way that coordination 
is necessary for safety. AVs must coordinate, and neither can achieve a safe and 
smooth traffic flow on its own, i.e., exiting/merging will not be feasible without 
the coordination of the other AVs. To facilitate safe exiting/merging while also 
responding to varied traffic scenarios, altruistic AVs must learn to account for 
the interests of all vehicles, coordinate, make compromises, and influence human 
behavior. In Fig. 2, for example, the AV1 has to compromise its own utility 
and reduce speed to guide the traffic of aggressive HVs, creating space for the 
exiting/merging vehicle, while the other AVs have to increase speed to create room 
for the mission vehicle. The exiting and merging scenarios are defined as . fe, fm ∈ F
correspondingly. We particularly chose those scenarios as a case of study because 
of their intrinsic similarity and the need for coordination, as the exiting/merging 
vehicle’s utility contrast with that of the HV highway vehicles. 

3.3 Social Value Orientation for AVs 

In this section, we introduce Social Value Orientation (SVO) to formally investigate 
the social conflicts between humans and agents in diverse environments. It is critical 
to quantify an individual’s social preference to understand whether they would 
cooperate or not in a particular scenario, such as opening a gap in our highway 
merging example. For that purpose, SVO is a commonly used concept in the social 
psychology literature that has lately been applied in robotics research [2]. In our 
context, SVO defines the degree of an agent’s egoism or altruism toward others. 
Based on the value placed on the utility of others, an HV or an AV’s behavior can 
range from egoistic to completely altruistic. We rely on AVs to guide traffic toward 
more socially advantageous outcomes since the SVO of HV is unknown. In formal 
terms, an AV’s SVO angle . φ determines how the AV balances its own reward against 
that of others [10, 17, 53]. In terms of rewards, an AV’s total reward . Ri is defined 
as: 

.Ri = ri cosφi + r−
i sinφi (6) 

where . ri is the agent’s individual utility, . r
−
i is the total utility of other agents from 

the perspective of the ith agent which in general is a function .f (.) of their individual 
utilities, 

.r−
i = f (rj ), where j �= i (7) 

The SVO angle can varied from .φ = 0 (entirely selfish) to .φ = π/2 (entirely 
altruistic). Nonetheless, none of the limits are optimal, and a point in the middle, 
known as the optimal SVO angle . φ∗ gives the most socially favorable outcome.
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Fig. 5 The SVO angle . φ quantifies the level of altruism of an agent. In the figure the diameter of 
the circles, represents the size of the human population that holds the associated SVO [55] 

SVO allows us to understand the behaviors that make possible the socially desirable 
outcomes in Fig. 2. 

Autonomous agents must be aware of human drivers’ social preferences as well 
as their desire to collaborate. Humans, on the other hand, are known to be diverse in 
SVO, and so their preferences are uncertain [54]. Figure 5 depicts a range of altruism 
across individuals with varying SVO. As a result of the wide range of altruistic 
behavior seen in humans, is not safe to rely on humans to guide the traffic, instead, 
we should rely on AV to guide the traffic toward more socially advantageous goals. 
Therefore, our objective is that the AVs learn to create alliances and influence HV 
behavior to improve the global utility of the group. 

3.4 Autonomous Vehicles as Social Actors 

AVs in a mixed environment will be social actors in the traffic road that will react to 
HVs and influence and adapt to their behaviors. The traffic environment is rich with 
habits and expectations, that determine driver behaviors. The vehicle’s interaction 
will be influenced by the way AV decisions are perceived [2, 56]. For instance, 
some human drivers may be grateful if the AV stops for them but frustrated if it 
does not perform as expected. Also, they might behave aggressively if they’re stuck 
behind an overly cautious AV, which reduces speed constantly. Another example is 
the case that when crossing a street while a vehicle is waiting, pedestrians move 
faster (a gesture of respect for the driver). On the other hand, will pedestrians 
speed up for an AV, or will they behave differently? If an AV is understood as a 
social actor, the HVs will learn the individual and social traits of AVs and behave 
accordingly in mutual interactions. This would fit with current preconceptions that
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make assumptions about drivers based on the brand and type of vehicle they drive. 
Current AVs’ driving is as conservative as possible to ensure safety. They will slow 
down in front of a crossing because they believe the other vehicle will want to go 
first, even though this is against the law. They wait for pedestrians when in doubt. It’s 
not difficult to see how other agents and HVs could take advantage of and exploit 
these over-conservative behaviors. As AVs are going to be social actors in mixed 
autonomy traffic, the safety and reliability of AVs will be coupled with their social 
awareness and their ability to engage in complex social interactions. We consider 
risk awareness and social behavior as fundamental traits for decision-making. 

Failure to identify social cues of selfishness or collaboration by an AV has 
ramifications for the general flow of the traffic network, as well as the safety 
of traffic participants. Current AVs ignore social signs and driver personality in 
favor of explicit communication or driver modeling. Because these methods can’t 
handle complicated interactions, they tend to be conservative, restricting autonomy 
solutions to simple road interactions [2, 56]. The ability of AVs to drive in a socially 
obedient manner is critical for the safety of passengers and other vehicles because 
predictable behavior allows humans to comprehend and respond appropriately to 
the AV’s actions. 

3.5 Driving Behaviors 

The problem of simulating varied behaviors may be defined as determining the 
appropriate range of parameters to produce heterogeneous behaviors within the 
simulator. Some works in social traffic psychology show that driving behavior falls 
between conservative and aggressive. Nevertheless, the specific definition is still 
under discussion and fluctuates across works [3]. The phrase “aggressive driving” 
refers to a wide range of unsafe driving practices, including running red lights 
and speeding. The root of aggressive driving has a variety of factors that aren’t 
necessarily clear. Some are caused by hazardous road conditions, while others are 
caused by personal characteristics or mental states. Moreover, there is a correlation 
between aggressiveness and egoism, as egoistic drivers are less likely to yield and 
have a tendency to over-speeding and engage in unsafe actions. While there is a 
correlation between these concepts [12, 13], we distinguish aggressiveness from 
egoism in this study by describing individual traits and social preferences. 

In this work, we discriminate between individual traits and social preferences 
because they result in different behaviors. We define altruism and egoism as social 
preferences; in that sense, an egoistic driver is a selfish driver who accounts for 
his personal utility irrespective of his aggression. We define conservatism and 
aggressiveness as individual traits, and we describe an aggressive driver as someone 
whose actions result in aggressive behavior. Individual traits such as aggressiveness 
are characterized by the outcomes of their actions, but social preferences such as 
egoism are distinguished by their social objectives and purposes. In this direction, 
an egoistic driver is a self-centered driver who lacks social motive, a driver who
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believes he controls the road and disregards the other drivers. Egoist drivers 
frequently engage in violent actions, and while ego defensiveness is not the primary 
source of aggression, it is a major contributor to aggressive driving [12, 13]. Despite 
their similarities, the two groups have different origins and result in different behav-
iors. A driver, for example, could be egoistic and conservative. We may envision a 
driver who drives cautiously to protect himself (selfish motivation/preference) and, 
as a result, is conservative in his behavior (outcome of his actions). 

Properly, we described social preferences (altruism or egoism) by the AV’s 
SVO angular phase . φ; and individual traits (conservativeness and aggressiveness) 
by the HV driver model parameters (. P) as described in Sect. 5.5. Based on the 
values of these parameters, a driver will behave conservative or aggressive. In the 
simulations, the AVs have no access to HVs’ SVO, we consider the SVO of HVs to 
be undetermined as they cannot communicate that directly. Finally, we define a set 
of behaviors . B, i.e, aggressive, moderate and conservative, .ba, bm, bc ∈ B based on 
the parameters (. P) obtained in Sect. 5.5. 

4 Problem Formulation 

We investigate the safety and robustness of the scenarios described in Fig. 2, an  
exiting/merging vehicle, which can be either HV or AV. This configuration contains 
a group of AVs that hold the same SVO, as well as a group of HVs which are 
heterogeneous in their SVO, making it unclear whether they are allies or opponents. 
Formally, the road is shared by a set of HVs .hk ∈ H, with an undetermined 
SVO . φk and heterogeneous behaviors .bk ∈ B; a set of AVs  .ii ∈ I, that are 
connected together using V2V communication, controlled by a decentralized policy 
and sharing the same SVO, and a mission vehicle, .M ∈ I ∪ H that is aiming to 
accomplish its mission (highway exiting/merging) and it can be either AV or HV. 
We focus on the multi-agent maneuver-level decision-making problem for AVs in 
mixed-autonomy environments and study the following problems: how AVs can 
learn in a mixed-autonomy environment optimal cooperative policies .π∗(s) that are 
robust to different scenarios .f ∈ F and behaviors .b ∈ B while ensuring safety on 
the decision-making, and how sensitive is the performance of the altruistic AVs to 
the HVs’ behaviors. 

As AVs are connected, we assume that they receive an accurate local observation 
of the environment .õi ∈ Õi , sensing all the vehicles within their perception range, 
i.e, a subgroup of HVs .H̃ ⊂ H and a subgroup of AVs .̃I ⊂ I. Nevertheless, AVs 
are unable to share their actions or rewards, and they take individual actions from 
a set of high-level actions .ai ∈ Ai (|Ai | = 5). The goal of this work is to train 
social-aware AVs that learn how to drive in a mixed-autonomy scenario in a robust, 
efficient, and safe manner. We are interested in how to obtain a utility function that 
enables AVs to handle competitive driving scenarios (such as those in Fig. 2) and 
leads them into socially-desirable decisions that improve traffic efficiency, safety, 
and robustness.
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5 Safe and Robust Social Driving 

In this section, we present the safe and robust MARL approach. Our approach uses 
a general decentralized reward function that optimizes for social utility and induces 
altruism in the AVs; the general reward function accounts for any anticipated 
vehicle’s mission, allowing it to be applied to a variety of environments; and 
collisions are reduced by the safety prioritizer. What we define as “driving” is the 
outcome of decades of human learning from experience. Consequently, we take the 
same approach and train AVs that learn from experience and define the optimization 
problem as the eventual desirable social outcome with adaptability, expecting AVs 
to learn how to drive safely during the process. We carefully design a decentralized 
general reward function, a suitable architecture, and a safety prioritizer to promote 
the desired safe altruistic behavior in AVs’ decision-making process. The overview 
of our approach as presented in Figs. 4 and 2 helps us to create intuition on these 
points, by introducing driving scenarios in which altruistic AVs lead to socially 
advantageous results while adapting to different traffic scenarios. 

Action Space The goal of this research is to look at inter-agent and agent-human 
interactions, as well as behavioral elements of mixed-autonomy driving. Thus, we 
choose a more abstract level and define the action-space as a set of discrete meta-
actions .ai ∈ Ai . In particular, we select a set of five high-level actions . ai as, 

.ai ∈ Ai =

⎡

⎢⎢⎢⎢⎢⎣

LaneLeft
Idle

LaneRight
Accelerate
Decelerate

⎤

⎥⎥⎥⎥⎥⎦
(8) 

These meta-actions are then converted into trajectories and low-level control signals, 
which ultimately control the vehicle’s movement. 

Observation Space We use a multi-channel VelocityMap observation (. oi) that 
embeds the relative speed of the vehicle with respect to the ego vehicle in pixel 
values [17]. We represent the information in multiple semantic channels that embed: 
(1) an attention map to highlight the position of the ego vehicle, (2) the HVs, (3) 
the AVs, (4) the mission vehicle, and (5) the road layout. Figure 6 illustrates an 
example of this multi-channel representation. In order to map the relative speed 
of the vehicles into pixels, we use a clipped logarithmic function, which improves 
dynamic range and yields better results than a linear map, i.e.,

.Zj = 1 − β log(α|v(l)
j |)1(|v(l)

j | − v0) (9) 

where . Zj is the pixel value of the j th vehicle in the state representation, . v(l)

is its relative Frenet longitudinal speed from the kth vehicle’s point-of-view, i.e.,



686 R. Valiente et al.

Fig. 6 Multi-channel VelocityMap state representation embeds the speed of the vehicle in pixel 
values

.l̇j − l̇k , . v0 is speed threshold, . α and . β are dimensionless coefficients, and . 1(.)

is the Heaviside step function. Such non-linear mapping gives more importance 
to neighboring vehicles with smaller .|v(l)| and almost disregards the ones that 
are moving either much faster or much slower than the ego vehicle. As temporal 
information is necessary for safe decision-making, we use a history of successive 
VelocityMaps observations to create the input state to the Q-network. 

5.1 Distinguishing Sympathy from Cooperation 

In our mixed-autonomy problem, we divide inter-agent relations into interac-
tions between autonomous agents (AV-AV interactions) and interactions between 
autonomous agents and human drivers (HV-AV interactions). By decoupling the 
two, we can analyze the interactions between human drivers with unclear SVO and 
our autonomous agents in a methodical way. In that sense, we define sympathy as 
the autonomous agent’s altruism toward a human, and cooperation as the altruistic 
behavior among autonomous agents. The fact that the components of altruism 
differ in nature is our reasoning for separating them. Sympathy, for example, may 
not be reciprocated since agents differ in their SVO, whereas cooperation among 
autonomous entities is fundamentally homogeneous if they share the same SVO. 
Following this concept, we can rewrite the AV reward in Eq. (6) as, 

.

Ri = ri cosφi + (sin θiR
AV
i + cos θiR

HV
i ) sinφi

= ri cosφi︸ ︷︷ ︸
egoistic term

+

sin θi sinφiR
AV
i︸ ︷︷ ︸

cooperation term

+ cos θi sinφiR
HV
i︸ ︷︷ ︸

sympathy term

(10)
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where . θ is the sympathy angular phase determining the cooperation-to-sympathy 
ratio. Parameters .RAV

i and .RHV
i denote the total utility of other AVs and HVs, 

respectively, as perceived from the ith agent’s perspective. We expand on this topic 
in Sect. 5.2 where we introduce the distributed reward structure. 

5.2 Decentralized Social Reward 

The AVs are trained using the partial local observations and the decentralized reward 
function, and we anticipate them to learn how to drive in a variety of settings 
while taking into consideration the individual diver’s missions. As a result, we 
create a well-engineered general reward function that considers social utility, traffic 
metrics, and individual diver’s missions. Following the definition of sympathy and 
cooperation in equation (10) we decompose the decentralized reward received by 
agent .Ii ∈ I as, 

.

Ri(s, a) = Rego + Rsocial

Rego = cosφiri(s, a)

Rsocial = Rcoop + Rsymp

Rcoop = sin θi sinφi

[ ∑

j

rAVi,j (s, a) +
∑

j

rM
i,j (s, a)

]

Rsymp = cos θi sinφi

[ ∑

k

rHVi,k (s, a) +
∑

k

rM
i,k(s, a)

]

(11) 

in which .Rego, .Rsocial represents the egoistic and social reward, .i ∈ I, .j ∈ (Ĩ\{Ii}), 
.k ∈ H̃. The  term  . ri represents the ego vehicle’s reward obtained from traffic 
metrics and the angle . φ allows to adjust the level of egoism or altruism. .Rcoop is 
the cooperation term (the altruistic behavior among AVs, i.e, AV’s altruism toward 
others AVs) and .Rsymp is the sympathy term (AV’s altruism toward HVs). The 
sympathy reward term, .rHVi,k considers the individual reward of the HVs, while the 

cooperation reward term, .rAVi,j considers the individual reward of the other AVs, and 
are defined as 

.rHVi,k = Wk

dλ
i,k

∑

m

ωmxm rAVi,j = Wj

dλ
i,j

∑

m

ωmxm (12) 

in which .di,k/di,j represents the distance between the agent and the corresponding 
HV/AV, . λ is a dimensionless coefficient, .Wk is a weight value for individual 
vehicle’s importance, m is the set of traffic metrics that have been considered in 
the vehicle’s utilities (speed, crashes, etc.), in which . xm is the m metric normalized
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value and .wm is the weight associated to that metric. The term . rM accounts for 
the reward of the vehicle’s mission. A mission is defined as any desired specific 
outcome for a particular vehicle, as merging, exiting, etc. 

.rMi,j =
{

wj

(di,j )μ
, ifg(j)

0, o.w.
rMi,k =

{
wk

(di,k)
μ , ifg(k)

0, o.w.
(13) 

The function .g(v) is an independent function to evaluate the mission; . g(v)

returns true if the vehicle v has a mission defined and the mission has been 
accomplished in the recent time window. . μ is a dimensionless coefficient, . wj/wk

are weights for an individual vehicle’s mission (importance of the mission). This 
allows defining a general reward independent of the driving scenario and mission 
goals for different vehicles. In the experiments, a HV can be assigned a merging 
mission or a highway exiting mission, as referred to in Fig. 2. 

5.3 Deep MARL Architecture for Social Driving 

As shown in Fig. 8, we leverage a 3D Convolutional Neural Network (CNN) 
with a safety prioritizer for our MARL architecture. To account for the temporal 
information, the 3D CNN operates as a feature extractor and leverages a history 
of VelocityMap observations. The network receives a stack of 10 VelocityMap 
observations, i.e., a .10× (4× 512× 64) tensor that captures the latest 10 time-steps 
episodes. To mitigate the non-stationarity issue in MARL, agents are trained in a 
semi-sequential manner, as illustrated in Fig. 7. The agents are trained independently 
for .Niterations iterations while freezing the policies of the remaining AVs, . w−. 
Subsequently, the other agents’ policies are updated with the new policy, . w+.

To improve safety we train our agents using a safety prioritizer that, in the 
cases where the action selected by the agent policy is unsafe, selects a safe action 
and stores the unsafe action (. at ) and the related state in the RM with a suitable 
penalty on the reward (.runsaf e) for the unsafe state-action pair. The safety prioritizer 
reduces episode resets due to imminent collisions improving sample efficiency. The 
unsafe state-action pairs are not removed so the agent can also learn from unsafe 
experiences. The experience .(ψ(st ), at , runsaf e,∅) is stored in  RM with a terminal 
next state . ∅, the target for this unsafe pair .(st , at ) is .T arget (st , at )

DDQN = runsaf e. 
The details of the safety prioritizer are given in the next Sect. 5.4. 

The proposed deep MARL architecture is described in Algorithm 1. As part of  
the implementation, we start the learning process after the replay buffer has been 
filled with a sufficient number of sample simulations. Furthermore, we update the 
experience replay buffer to adjust for the extremely skewed training data [17]. 
Balancing skewed data is a frequent practice in machine learning, and it was 
effective in our MARL problem.
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Fig. 7 The multi-agent training and policy dissemination process

5.4 Safety Prioritizer 

We include a safety prioritizer to the MARL algorithm that penalizes and reduce 
imminent crashes. This helps the agent to increase sample efficiency during training 
and avoid collisions when in deployment. If the agent comes into an unexpected 
situation and decides to perform a risky action, that action will be prevented. The 
safety prioritizer enhances simulation results and is crucial in real-world scenarios. 
The safety prioritizer included Algorithms 2 and 3. 

Algorithm 2 During action selection of the agent . Ii , once an action . at is chosen, the 
safety prioritizer checks if the action is safe by computing a safety score for . Nsteps

of planning. We utilize the time-to-collision (t tc) as a safety score. If . saf etyscore <

saf eth the action is unsafe and we need to select a safe action. The selection of a 
safe action is presented in Algorithm 3. 

Algorithm 3 The safe action selection is different in training and testing. During 
training, to encourage exploration, we remove the unsafe actions and keep the 
random action selection following the current exploration policy on the remaining 
actions. During testing, we follow the greedy policy in the subset of safe actions 
.at = maxa′∈Ãsaf e

Q(ψ(st ), a
′;w). It should be noted that the algorithm does not 

choose the safest of all possible actions, as that action may lead to particularly 
conservative behaviors that can compromise traffic efficiency; we instead remove 
the imminent unsafe actions and follow the priority given by the learned altruistic 
policy. If it happens that all possible actions are unsafe, we return the action . at ∈ A
with the highest safety score. In that way during training the constrained exploration 
will keep the agent from taking unsafe actions which will lead to efficient sampling
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Algorithm 1 Safety Prioritized Multi-agent DDQN 
Initialize experience replay buffer RM . 
Initialize Q̃(.;w−) with random weights w− = wini 
Initialize target network Q̃(.; ŵ) with weights ŵ = w− 

Pre-store experience of first’s 50 episodes in RM 
for e = 50 to Nepisode do 

Initialize s1 = {õ1} and compute ψ1 = ψ(s1) 
for t = 1 to T  do 

for Ii in I do 
Freeze w− for all Ij , j �= i 
for m = 1 to  Niterations do 

With probability ε select a random action at , 
otherwise select at = maxa′∈A Q(ψ(st ), a′;w+) 
if at is unsafe (Algorithm 2) then 

Store (ψt , at , runsaf e,∅) in  RM 
at = Compute a safe action (Algorithm 3 ) 

end if 
Execute safe action at , and observe rt , õt 
Set st+1 = {st , õt+1} and ψt+1 = ψ(st+1) 
Store experience (ψt , at , rt , ψt+1) in RM 
Sample a mini-batch of size M from RM 
Compute L(w+) 
Performs gradient descent 
w+ 

k+1 ← w+ 
k − α ∇̂wL(w+) 

end for 
w− = w+ for all Ii ∈ I 

end for 
Every T argetupdate reset ŵ ← w− 

end for 
end for 

Algorithm 2 Safety score 
Simulate Ii taking the action at 
for v in (Ĩ ∪ Ṽ) \ {Ii} do 

Compute safety score of Ii , v for Nsteps planning 
if saf escore < saf  eth  then 

Return unsafe 
end if 

end for 
Return safe 

and more stable learning; and during testing, the decision-making is based on the 
prosocial learned policy with minimum intervention from the safety prioritizer, 
achieving higher traveled distance while avoiding collisions (Fig. 8).
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Algorithm 3 Safe action 
Initialize Ã = A 
while Ã is not empty do 

if during training then 
Select at following the exploration policy on set Ã 

else if during test then 
Selectat = maxa′∈Ãsaf e 

Q(ψ(st ), a′;w) 
end if 
if at is safe (Algorithm 2) then 

Return at 
end if 

end while 
Return at with highest safe score inA 

Fig. 8 Deep MARL architecture with the safety prioritizer 

5.5 Modeling Driver Behaviors 

We model the longitudinal movements of HVs using the Intelligent Driver Model 
(IDM) [57], while the lateral actions of HVs are based on the MOBIL model [58]. 
The MOBIL model considers two main criteria, 

The safety criterion ensures that after the lane change, the deceleration of the 
new follower . an in the target lane does not exceed a safe limit, i.e, .an > −bsafe. 

The incentive criterion determines the advantage of HV after the lane change, 
quantified by the total acceleration gain, given by 

.a′
ego − aego + sinφego

(
(a′

n − an) + (a′
o − ao)

)
> �ath (14) 

where . ao, . an and .aego represent the acceleration of the original follower in the 
current lane, the new follower in the target lane and the ego HV, correspondingly, 
and . a′

o, . a
′
n, and .a

′
ego are the equivalent accelerations considering that the ego HV 

has changed the lane, .sinφego is the politeness factor. Finally, the lane change is 
performed if the safety and incentive criteria are mutually satisfied.
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The IDM Model determines the longitudinal acceleration of a HV . v̇k as follows, 

.v̇k = amax

[
1 −

(vk

v0k

)δ −
(d∗(vk,�vk)

dk

)2]
(15) 

in which . vk , . dk , . δ, .�vk , . vk
0 denote the speed, the actual gap, the acceleration 

exponent, the approach rate, and the desired speed of the kth HV, respectively. 
The desired minimum gap of the kth HV is given by, 

.d∗(vk,�vk) = d0
k + vkT

0
k + vk�vk

(2
√
amax.ades)

(16) 

where . T 0
k , . d

0
k , .amax, and .ades are the safe time gap, the minimum distance, the 

comfortable maximum acceleration, and deceleration, correspondingly. 
The typical parameters for the MOBIL model are .sinφego = 0.5, . �ath = 0.1m

s2

and .bsafe = 4m
s2
. Table 1 shows typically used parameters of the IDM model [57]. 

Heterogeneous Driver Behaviors Although those parameters are typically used 
for IDM and MOBIL models, they simulate just one behavior. In order to generate 
diverse behaviors . B, we frame the task of simulating diverse behaviors as the 
problem of obtaining the appropriate range of parameters (. P) that can generate those 
behaviors. To achieve that, we leverage a behavior classifier and iteratively simulate 
the parameters and classify the behaviors, mapping parameters to behaviors. To 
classify the behaviors we represent traffic using a traffic-graph at each time step 
t , . Gt , with a set of edges .E(t) and a set of vertices .V(t) as functions of time, 
i.e, the positions of vehicles (.H̃ ∪ Ĩ) represent the vertices. The adjacency matrix 
. At is given by .A(k,m) = d(vk, vm), k �= m , in which .d(vk, vm) is the shortest 
travel distance between vertices k to m. Then we use centrality functions [34] to  
classify the behavior (level of aggressiveness) resulting from . P, and then use those 
simulation parameters . P to model behaviors within the simulator with varying levels 
of aggressiveness. The centrality functions are defined as, 

Closeness Centrality the discrete closeness centrality of the . kth vehicle at time t 
is defined as, 

.Ck
C[t] = N − 1∑

vm∈V(t)\{vk} dt (vk, vm)
, (17) 

Table 1 Common used parameters for the IDM model 

Parameter .v0 .T 0 .amax .ades .δ . d0

Value 30m/s 1.5 s 1m/s.2 1.5m/s.2 4 2m
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The more central the vehicle is located, the higher .Ck
C[t] and the closer it is to all 

other vehicles. 

Degree Centrality the discrete degree centrality of the .kth vehicle at time t is 
defined as, 

.
Ck

D[t] = ∣∣{vm ∈ Nk(t)}
∣∣ + Ck

D[t − 1]
such that (vk, vm) �∈ E(τ ), τ = 0, . . . , t − 1

(18) 

in which .Nk(t) = {vm ∈ V(t), At (k,m) �= 0, νm ≤ νk} represents the set of 
vehicles in the proximity of the . kth vehicle, given that .νm ≤ νk; and .νm, νk denote 
the velocities of the .mth and . kth vehicles, .At(k,m) is the adjacency matrix. The 
more new vehicles seen by vehicle k that meet this condition, the higher .Ck

D[t]. 
With the centrality functions, we can measure the Style Likelihood Estimate 

(SLE) for different driver styles [34]. We consider two SLE measures. The SLE of 
overtaking and sudden lane changes (.SLEl) and the SLE of overspeeding (.SLEo). 
The .SLEl and .SLEo can be computed by measuring the first derivative of the 
centrality functions as, 

.SLEl (t) =
∣∣∣∣
∂CC(t)

∂t

∣∣∣∣ SLEo(t) =
∣∣∣∣
∂CD(t)

∂t

∣∣∣∣ (19) 

The maximum likelihood .SLEmax is calculated as .SLEmax = maxt∈�t SLE(t). 
Using those functions, we can approximately quantify and classify driver 

behaviors in our simulation. The intuition behind that is that an aggressive driver 
may frequently overspeed or perform sudden lane changes; while overspeeding the 
.CD(t) monotonically increases (higher .SLEo(t)) and during sudden lane changes 
the slope and the extrema of .CC(t) changes values. Thus higher values of . SLEmax
are related to increased levels of aggressiveness. Conversely, conservative drivers 
are not inclined toward those aggressive maneuvers, and the degree of centrality 
will be relatively flat, thus .SLEo(t) ≈ 0 for conservative drivers. 

We use these metrics as approximations of the driver’s level of aggressiveness. 
In order to compute the suitable values for our simulation, we iteratively simulate 
the parameters from IDM and MOBIL models, and for each set of parameters, we 
quantify the resulting behavior in the simulation (using those metrics). A mapping 
of the parameters . P to behaviors (quantified in the simulation for those parameters). 
The estimated simulation parameters that simulate conservative, moderate and 
aggressive behavior in our scenarios are presented in Table 2.

The desired velocity . v0 is set to .30m/s and the acceleration exponent .δ = 4.
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Table 2 Estimated simulation parameters for conservative, moderate, and aggressive behaviors 

Model Parameter Aggressive Moderate Conservative 

MOBIL .sinφe 0 0.3 1 

.�ath 0 .m/s2 0.1 .m/s2 0.4 . m/s2

.bsafe 12.0 .m/s2 6.0 .m/s2 2.0 . m/s2

IDM .T 0 0.5 s 1 s 3 s  

.d0 1m 2m 6.0m 

.accmax 7.0 .m/s2 3.0 .m/s2 1.0 . m/s2

.accdes 12.0 .m/s2 7.0 .m/s2 2.0 .m/s2

Table 3 Computation time for each agent 

Computing platform Online forward pass time 

NVIDIA Tesla V100 GPU 3.7ms 

OnLogic Karbo 700 x2 65.2ms 

NVIDIA Jetson AGX Xavier GPU 32.9ms 

NVIDIA Jetson TX2 GPU 112.5ms

5.6 Implementation and Computational Details 

We customize the OpenAI Gym environment in [59] to suit our particular driving 
situation and MARL problem. We design a merging ramp and exiting highway 
scenario for our simulation running in python and used Pytorch for the implemen-
tation of our safety prioritized MARL DDQN algorithm. Our implementation on 
average uses 3.1GB of memory for 4 agents and 18 HVs using a GPU NVIDIA 
Tesla V100. The training process is repeated several times to ensure convergence of 
the experiments to a similar policy. The network is trained for . Nepisodes = 10,000
taking on average 8 h. While each round of .10, 000 training episodes in the Tesla 
V100 GPU takes around 8 h, a full forward pass during deployment for 4 simulated 
agents takes 15ms (approximately 4ms per agent). 

In a real AV platform, each agent will receive a local observation of the 
environment that will be used by our algorithm to compute the safe optimal action 
based on the trained Q-network. The decision-making will take place on each AV’s 
onboard computer; therefore, to verify the feasibility of the real-time operation 
of our decentralized algorithm we tested a forward pass of the Q-network during 
deployment in multiple hardware platforms. The results for the different platforms 
are presented in Table 3, for instance, an online forward pass of the network in the 
deployment phase using commodity GPU hardware, i.e, an NVIDIA Jetson AGX 
platform will be around 32.9ms for each agent. We utilize 3200 GPU hours for 
all our simulation experiments. Table 4 lists our simulation and training hyper-
parameters. 
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Table 4 List of 
hyper-parameters 

Parameter Value Parameter Value 

.Nepisode 10,000 . ε decay Linear 

RM buffer size 8000 Initial exploration .ε0 1.0 

Batch size 32 Final exploration 0.05 

Learning rate .α0 0.0005 Optimizer ADAM 

.T argetupdate 300 Discount factor .γ 0.95 

.|H| 18 .|I| 4 

6 Experiments and Results 

6.1 Manipulated Variables 

We study how the .saf eth, the  level of aggressiveness, the  traffic scenarios (. fj ) and 
the HVs’ behaviors (. bk) impact the performance of AVs. We consider the case in 
which the mission vehicle (exiting/merging) in Fig. 2 is human-driven, .M ∈ H, and 
define the following terms: 

• .AVS . Social AV (.φi = φ∗) that act altruistically in the presence of diverse HVs 
behaviors .b ∈ B. 

• .AVE . Egoistic AV (.φi = 0) that act egoistically in the presence of diverse HVs 
behaviors .b ∈ B. 

with . φ∗ to be the optimal SVO angle tuned to reach the optimal level of altruism as 
in [17]. 

6.2 Performance Metrics 

The performance of our system is measured based on safety, efficiency, altruistic 
performance gain (PG), and adaptation error .Aerror. To measure safety, we compute 
the percentage of episodes that encountered a crash (.C(%)). For efficiency, the 
average traveled distance (.DT (m)) of the vehicles and the number of missions 
accomplished by the mission vehicle is used. The altruistic performance gain is 
measured by computing the difference in the safety/efficiency performance of . AVE

and .AVS , as  

.PGsaf ety(%) = (AVE)C(%) − (AVS)C(%)

NEpisodes

(20) 

.PGeff iciency(%) = (AVS)DT (m) − (AVE)DT (m)

(AVE)DT (m)

(21)
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Finally, the adaptation error is a weighted sum function of the safety (.C(%)) and 
efficiency (.DT (m)) performance of the .AVS when trained and tested in different 
scenarios/behaviors. Defined as 

.Aerror (%) = ws × (C(%)) + we × 100(1 − DT

DTmax

) (22) 

such that an adaptation between different situations that result in .0% crash and 
.DT = DTmax will have .Aerror = 0%. 

6.3 Hypotheses 

In this section we examine the following hypotheses 

• H1. In a mixed-autonomy scenario, the higher the level of aggressiveness, the 
bigger the impact of cooperation. We expect a higher performance gain (PG) 
when altruistic AVs face more aggressive environments. 

• H2. Altruistic AVs agents using the decentralized framework can adapt to 
different driver behaviors and traffic scenarios without compromising the overall 
traffic metrics. However, the higher the similarity of testing scenarios to the ones 
seen during training (.(ftest , btest ) ≈ (ftrain, btrain)), the lowest adaption error 
(.Aerror). 

• H3. We anticipate an improvement in both safety and efficiency with the addition 
of the safety prioritizer. In the absence of a safety prioritizer (.saf eth = 0) we  
expect that AVs will cause more crashes. 

6.4 Analysis and Results 

Based on the hypotheses, we explore their correctness through the experiments in 
this section. 

6.4.1 Sensitivity Analyses 

To study the hypothesis H1 we investigate the effect of HV behaviors on the 
altruistic AV agents. We focus on scenarios with a HV mission vehicle, with safe 
AVs that act altruistically (.AVS) or  egoistic (.AVE), in environments with increasing 
levels of HVs aggressiveness. Figure 9 illustrates the altruistic performance gain 
for increasing levels of HVs’ aggressiveness for 2 AVs (left) and 4 AVs (right). 
It demonstrates that the more aggressive the HVs are, the higher the impact of 
cooperation and thus confirms the H1. This is also observed in Fig. 10 where the 
level of aggressiveness is decomposed into lateral and longitudinal aggressiveness.
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Fig. 9 Sensitivity analyses measured by altruistic performance gains (PGs) of AVs show that the 
more aggressive the HVs are, the more the impact/gain of cooperation 

Fig. 10 Both lateral and longitudinal sensitivity analyses indicate an increase in altruistic perfor-
mance gain (PG) 

Lateral and longitudinal aggressiveness is varied by changing the MOBIL and 
IDM parameters (Table 2) from aggressive to conservative. Figure 10 shows that 
the altruistic gain increases in both directions, but is more pronounced in the 
longitudinal direction. That is probably due to the simulated scenarios having more 
longitudinal maneuvers. 

6.4.2 Domain Adaptation 

Following the sensitivity analysis, we investigate the domain adaptation of the AVs 
to validate the H2. Figures 11, 12 and 13 show how the altruistic AVs learn to 
adapt to different scenarios and behaviors by different performance metrics, i.e, 
crashed (a), distance traveled (b) and adaptation error (c). For the experiments, . AVS

are trained in different scenarios .fi ∈ F in the presence of HVs with different 
behaviors .bk ∈ B and tested in other scenarios .fj ∈ F and behaviors .bl ∈ B. In our 
experiments, we consider two case study scenarios .fe, fm ∈ F (exiting/merging)
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Fig. 11 The domain adaptation matrix with crash percentage (.C(%)) between different traffic 
scenarios and behaviors. The lower .C(%) the most suitable the adaptability in terms of safety 
(measured by .C(%)) between those domains. .AVS are trained (rows of the matrix) in different 
scenarios .fi ∈ F in the presence of HVs with different behaviors .bk ∈ B and tested (columns of 
the matrix) in other scenarios .fj ∈ F and behaviors .bl ∈ B. Each pair (.fi, bk) is a combination of 
scenario and behavior

in environments with three different HVs behaviors .ba, bm, bc ∈ B (aggressive, 
moderate, conservative) see Table 2; and a mixed behavior environment, in which 
HVs are created randomly and their behaviors are selected based on a uniform 
distribution over the behaviors in . B, given equal probability to the defined behaviors. 
In total, we have eight combinations of scenarios and behaviors, namely: (.fm, bmix), 
(.fm, ba), (.fm, bm), (.fm, bc), (.fe, bmix), (.fe, ba), (.fe, bm), (.fe, bc). 

The results are presented in Fig. 13 as an adaptation matrix, showing the . Aerror
for different domains, the .Aerror is in percentage (. %) and color-map in logarithmic 
scale to increase the perceived dynamic range for visualization. In our analyses, 
the weights used for .Aerror(%) are .ws = 2

3 and .we = 1
3 , which weighs the safety 

performance higher. .DTmax is computed based on the maximum distance for each 
situation. Additionally, Figs. 11 and 12 illustrate how the AVs adapt in terms of 
safety (measured by .C(%)) and efficiency (measured by .DT (m)), separately. 

The matrix shows the best performances in its diagonal; where agents are trained 
and tested in the same environment ((.fi, bk); (.fj , bl) with .i = j and .k = l); due 
to the fact that agents experience similar situations during testing as they do during
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Fig. 12 The domain adaptation matrix with distance traveled (.DT (m)). Illustrating how the AVs 
adapt to other situations in terms of efficiency (measured by .DT (m))

training. The vehicles trained in the merging environment can perform the exiting 
mission for different behaviors, and vice-versa. Interestingly, the performance of 
AVs trained in a conservative environment (. bc) is poor when tested in an aggressive 
environment (. ba). We believe that the reason is that in conservative environments, 
the HVs yield the mission vehicle, and the AVs learn to rely on HVs to guide the 
traffic. This learned policy is valid in a conservative environment where one can 
expect the HVs to always create a safe space for the mission vehicle. However, the 
same is not valid in more aggressive environments, in which AVs have to guide the 
traffic to avoid dangerous situations. As a result, the performance of vehicles trained 
in a conservative environment and tested in an aggressive one is the worse. 

On the other hand, an adequate performance adaptation (lower .Aerror) is obtained 
when agents are trained in the presence of all moderate HVs (. bm) or a mixed  
behavior environment (.bmix), in which AVs face situations where the HVs yield, 
but also situations that require learning how to guide the traffic to optimize for the 
social utility. The results from the domain adaptation matrix indicate that a moderate 
or mixed environment is the most suitable for training robust AVs and show the 
adaptability of AVs to different situations, thereby confirming the H2 hypothesis. 

It can be concluded that the adaptation between the environments is not recipro-
cal and environment and situations selection should be considered during training,
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Fig. 13 The domain adaptation matrix with adaptation error (.Aerror) between different traffic 
scenarios and behaviors. The lower .Aerror the most suitable the adaptability between those domains

based on the application needs and target situations. The Domain adaptation matrix 
identifies the settings in which altruistic AVs can best learn cooperative policies that 
are robust to different traffic scenarios and human behaviors. 

6.4.3 Transfer Learning 

Through domain adaptation and transfer learning, we promote generalization while 
learning harder tasks efficiently from trained models and accelerate the learning 
process. We study how the policies learned during merging can be transferred to the 
exiting environment. For that, we train AVs agents from scratch for the mission/task 
of merging .AVmerging (T1), train AVs agents to drive on a highway, and then use that 
model as the starting point to learn the merging task .AVdrive−to−merging (T2), train 
AVs agents for the exiting task and then use that model as the starting point to learn 
the merging task .AVexiting−to−merging (T3); and apply the same procedure for the 
exiting task, learning to exit from scratch .AVexiting (T4), after learned how to drive 
.AVdrive−to−exiting (T5) and after learned how to merge .AVmerging−to−exiting (T6). The 
results of the experiments are presented in Fig. 14 and show that our transfer learning
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Fig. 14 The figure demonstrates how policies learned from merging can be transferred to the 
exiting environment to speed up the learning process while archiving similar performance to 
learning the task from scratch 

approach speeds up the learning process while archiving similar performance as 
when learning the task from scratch. 

6.4.4 Safety 

Finally, we compared state of the art architectures related to our approach [10, 17, 
23, 60] in terms of safety and efficiency to validate H3. We trained the different 
architectures in the same situations and examined their performance under different 
levels of HVs behaviors. As noted in Table 5 our safe altruistic agents consistently 
outperformed the other approaches (in bold is highlighted the best performance for 
each column), and the results are more notable when the level of aggressiveness is 
higher. We conclude that when using the safety prioritizer, immediate collisions are 
avoided reducing the overall number of crashes in the episodes. Our agents can learn 
from scratch not only how to drive, but also to understand the behavior of HVs and 
coordinate with them.

6.4.5 Importance of Social Coordination 

We demonstrate that social awareness and coordination are essential to improve 
safety and reliability on the roads. Particularly in our sensitivity analyses (Fig. 9) 
we have shown that altruistic agents have a significant performance gain when 
compared to egoistic agents and the gain is more notable as the road becomes more 
aggressive. Additionally, to show that the performance gain vs. driver behaviors is 
not just because of a single altruistic agent but as a consequence of coordination 
among agents, we complement our results and conducted an experiment with the 
difference that only .AV1 is altruistic and the others are egoistic AVs, we label this
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Table 5 A comparison of the performance of related architectures. Our safe altruistic AVs 
outperform the other solutions, and performance improvements become more noticeable as the 
level of aggressiveness increases 

Aggressive HVs Moderate HVs Conservative HVs 

Approaches C (%)  MF (%) DT (m) C (%)  MF (%) DT (m) C (%)  MF (%) DT (m) 

Conv2D+DQN 
[60] 

31.2 28.9 316 25.4 20.3 302 14.0 7.9 274 

Toghi et al. 
[17] 

21.3 16.4 339 12.7 10.1 333 1.6 0.6 269 

Conv3D+A2C 
[23] 

14.8 12.6 341 9.4 8.8 328 1.1 0.1 267 

Conv3D+DQN 
[10] 

3.1 2.8 359 2.6 2.4 341 0.3 0 284 

Ours 0.2 0.1 397 0.1 0.1 354 0 0 281

C Crashed, MF Mission Failed, DT Distance Traveled

Table 6 Importance of Social Coordination: AVs require to coordinate to enable a safe and 
seamless merging/exiting and none of them can achieve this goal if the others do not cooperate 

Aggressive HVs .C(%) Moderate HVs .C(%) Conservative HVs . C(%)

Multi-agent 
altruistic (MAA) 

. 0.2% . 0.1% . 0%

Single altruistic 
agent (SAA) 

.24.1% .17.4% . 2.3%

scenario as single altruistic agent SAA. Table 6 demonstrates the necessity of multi-
agent coordination and the fact that a single altruistic AV, i.e., the Guide AV, is not 
able to achieve the mission of safe and seamless merging without help from the 
other AVs. Our results show that a non-cooperative SAA is not enough to guide the 
traffic and successful completion of the missions, as coordination is not guaranteed 
in a single-agent setting. All the AVs have to coordinate collectively to allow safe 
and efficient traffic, and this is unfeasible if the others do not collaborate. Table 6 
complements our results in Fig. 9 and support the hypothesis H1. 

6.5 Qualitative Analyses 

We show a qualitative analysis of our altruistic AVs in the exit and merging 
scenarios. Figure 15 provides further intuition about the policies learned by altruistic 
AVs (green) in different situations, Figs. 15 and 16 show a set of snapshots for 
different policies learned in an exit/merging environment in the presence of HVs 
(blue) with different behaviors. In the presence of aggressive HVs, the guide AV has 
to slow down and guide the HVs in the platoon to allow a safe merging/exit of the 
mission vehicle; in this case, by slowing down the AV learn to compromise on their 
own utility for a more desirable social outcome. In the presence of moderate HVs
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Fig. 15 Mission vehicle exiting the road under different HV behaviors (from left to right: 
aggressive, moderate and conservative HVs). AVs are shown in green and HVs are shown in blue 

Fig. 16 Mission vehicle merging into the highway under different HV behaviors (from left to 
right: aggressive, moderate, and conservative HVs). AVs are shown in green and HVs are shown 
in blue. The diameter of the circles on the trajectory plot (first-row plot) shows the vehicles’ speed 

behaviors, the guide AV slows down (slowing down the vehicles in the platooning) 
to open a safe space for the mission vehicle and then quickly accelerates, the space 
created by the quick AV intervention is safe enough to allow the mission vehicle to 
exit/merge the road; in this case, the AV compromise in their own utility but does 
not need to compromise as much as in the aggressive traffic scenario, it learns to 
take sequences of actions to not only enable the mission vehicle to merge (by quick 
decelerating), but also manages to make the minimum compromise on its individual 
utility. Finally, in the conservative environment, the HVs are cautious enough to 
allow the mission vehicle to exit/merge safely, so the AVs learn to accelerate in 
those scenarios as the mission vehicle has enough space to merge, optimizing for
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their own utility (higher speed and longer distance travel), while also considering 
other vehicles utilities and safety; in this case the AV doe not need to compromise 
their own utility, it learns that HV will allow the exiting/merging so AVs does not 
need to guide the traffic. It is important to notice that the policies are learned by 
AVs from experience to optimize the social utility, AVs learn to adapt to different 
scenarios and behaviors. Is interesting to observe that our AVs develop some form of 
social awareness and learn the HVs’ behaviors from experience, acting accordingly 
to optimize traffic efficiency while prioritizing safety. 

7 Concluding Remarks 

AVs need to learn to co-exist with HVs vehicles as deploying egoistic AVs that 
solely account for their individual interests on the road leads to sub-optimal and 
non-desirable social outcomes. Social awareness and coordination are essential to 
improve safety and reliability on the roads. We demonstrate how altruistic AVs 
learn the decision-making process from experience, considering the interests of 
all vehicles while prioritizing safety and optimizing a general decentralized social 
utility function. We expose the settings for our MARL problem in which transfer 
learning and domain adaptation are more feasible, and conducted a sensitivity 
analysis under different HVs’ behaviors. Our experiments reveal that altruistic AVs 
learn to leverage social coordination to improve safety and reliability. Our social-
aware AVs are robust to heterogeneous driver behaviors and can form alliances and 
affect the behavior of HVs to create socially-desirable outcomes that benefit the 
group of the vehicles. 

Future Work Although we explored various elements of social navigation in a 
variety of settings and the presence of diverse HV behaviors, the HV models 
used are not from real human driver data, and the traffic scenarios are limited to 
merging and exiting. However, we believe that by leveraging and learning from 
actual human data and traffic circumstances, our approach might be beneficial in 
practical traffic conditions. For this strategy to be used in real-world circumstances, 
more attention to safety is necessary. We intend to investigate more sophisticated 
architectures and state representations in future work, as well as develop a more 
realistic simulation environment that incorporates data from real-world traffic and 
can handle more complex interactions between HVs and AVs, as well as diverse 
traffic agents like bicycles and pedestrians. Despite the drawbacks, we are excited 
to see safe and reliable social-aware AVs on the road that learns from experience. 
Beyond driving, we expect these principles to be applied to general multi-agent 
human-robot interactions in which agents influence humans and collaborate safely 
for a socially beneficial result.
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