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OBC On-Board Charger. 659 
OCM Optimal Control Matrix. 661, 663–665 
Optimal EMS Optimal Energy Management Strategy. 649–652, 654, 655, 657 
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666, 667 
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1 Concept 

The transportation sector has grown to become the leading contributor to greenhouse 
gas emissions, accounting for 36% of U.S. carbon emissions in 2021 [33]. Myriad 
emissions-reduction targets at all levels of government and industry are set to take 
effect in the coming decades and will require rapid reductions in transportation 
emissions, and therefore, to transportation fuel consumption. The emissions of 
vehicles powered by combustion can be reduced in the near term by improving 
their fuel efficiency, which is typically measured as Fuel Economy (FE). Common 
examples of technologies used to increase FE include engine sizing, advanced 
engine control, friction/mass/drag reduction, and powertrain electrification [13]. 
We focus on a category of controls-based FE improvement technologies, Optimal 
Energy Management Strategy (Optimal EMS), which can theoretically enable FE 
improvements of up to 30% for Hybrid Electric Vehicles (HEV) under conditions 
of ideal prediction and actuation [5]. 

An Optimal EMS is the application of optimal control to vehicle powertrain 
operation with the objective of minimizing fuel consumption (equivalently, maxi-
mizing FE). Computation of an Optimal EMS leverages predictions of future states 
of the vehicle, which are made based on information that may be, for example, 
gathered by sensors on the vehicle, obtained via communications with other vehicles 
and infrastructure, or learned based on historical driving data. The Optimal EMS 
technique was first published by Lin et al. [19], who derived the globally optimal 
control using Dynamic Programming (DP) for a hybrid electric truck. Since then, 
researchers have investigated stochastically robust strategies [20, 22, 24, 35, 36] as  
well as fast computation strategies [10, 11, 16, 23, 25] with the goal of progressing 
this technology toward commercial implementation. The technology has still not 
been realized commercially using such strategies, due in part to the computational 
cost of making predictions and calculating optimal control strategies in real 
time. 

We conceive and test a novel method to realize Optimal EMS implementation. 
Instead of using a real-time computed non-globally-optimal EMS such as stochastic 
dynamic programming, equivalent consumption minimization strategy (ECMS), or
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a heuristic method, we use DP to compute globally optimal EMS in advance. 
In effect, this enables exchanging infeasible processing power requirements for 
potentially feasible memory requirements, improving the feasibility of commercial 
implementation. Furthermore, we target the strategy to one category of driving 
events, those in which the vehicle is accelerating from one speed (often zero) to 
another, or Acceleration Event (AE). We choose to target AE because they can be 
simpler to predict than general driving, and because they account for a high fraction 
of fuel consumption relative to their time durations. Thus, we refer to this strategy 
as Predictive Acceleration Event (PAE) control. 

In this chapter, we summarize several years of research defining and testing the 
PAE method, which have resulted in a series of publications, theses, and patents 
[1, 4, 5, 7, 21, 26, 27, 31, 32]. The current section includes a brief summary of the 
simulation investigations that established the feasibility and potential of the PAE 
strategy. Details of the process for implementing the PAE strategy in a physical 
vehicle are described in Sect. 2, and results from physical testing are presented in 
Sect. 3. 

1.1 Optimal EMS Mechanism 

HEV achieve higher FE than conventional internal-combustion-engine-only vehi-
cles in part because they enable the Internal Combustion Engine (ICE) to operate at 
high efficiency more of the time. This can be conveniently visualized using a Brake 
Specific Fuel Consumption (BSFC) map, which illustrates the ICE fuel consumption 
efficiency as a function of engine rotation speed and supplied torque (Fig. 1). HEV 
leverage their multiple degrees of freedom for power sourcing—power can be 
supplied by the ICE or the Electric Motor (EM)—to adjust the BSFC “operating 
points” in ways that pure ICE vehicles cannot. With a given power request, the only 
means available to ICE vehicles for adjusting torque and/or speed of the engine is 
to change the gear ratio of the transmission. In contrast, HEV enable much more 
flexibility because the EM can supply the difference, positive or negative, between 
the power supplied by the ICE and the requested propulsion power. For example, 
when operating at low powers/speeds, an HEV can avoid operating the engine at low 
efficiency either by using the EM to supply all the power, or by running the engine 
at high power and efficiency to supply propulsion power in addition to regeneration 
power through the EM.

Optimal EMS leverage predictions to further this FE improvement approach. In 
addition to modifying the BSFC operating points during each instant, an Optimal 
EMS aims to modify BSFC operating points over time. For the PAE strategy, the 
time horizon is on the order of tens of seconds (the duration of an AE). If the 
speed trajectory of the AE is known in advance, it is possible to use an optimization 
method such as DP to obtain a time series of BSFC operating points that supply the 
power needed to complete the AE while globally minimizing fuel consumption.



652 S. White et al.

1,000 2,000 3,000 4,000 5,000 
0 

20 

40 

60 

80 

100 

120 

140 

220 

220
 

220 

230

230
 

23
0 

230 
230 250 

250 250 270 
270 

300
300 

400400 

500500 

Engine Speed (rpm) 

E
ng

in
e 
T
or
qu

e 
(N

m
) 

Operation Bounds Ideal Operating Line 

Fig. 1 BSFC map characterizes the fuel efficiency of an internal combustion engine (grams of fuel 
per kWh supplied) as a function of speed and torque

Table 1 Significant 
parameters defining the 2010 
Toyota prius model 

m 1380 kg .Afront 2.6005 m. 2

.PICE,max 73 kW .Crr 0.008 

.mfuel .f (TICE, ωICE)[17] .rf d 3.27 

.ωtrac,max 10,000 rpm .rwheel 0.317 m 

.ωgen,max 13,500 rpm .Cd 0.250 

.Qbatt,0 6.5 Ah .Voc 201.6 V 

.Nsun 30 .Nring 78 

.Rint 0.373 .�

1.2 Model Details 

The Toyota Prius has consistently achieved the highest FE in its class [34], so 
it is an ideal vehicle to model for investigations of new HEV FE improvement 
techniques. The 2010 model was chosen for its commercial prevalence and publicly 
available parameter information. A model of the 2010 Toyota Prius, derived using 
the Autonomie modeling software, has been shown to correlate closely with real-
world performance [18]. The referenced model is not publicly available, so a model 
was developed and validated by modifying a 2004 Toyota Prius model included 
with Autonomie with 2010 Prius parameters. Table 1 is a list of key parameters 
defining the model, where .m = vehicle mass; .PICE,max = maximum engine power; 
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.mfuel is the fuel consumption model; .TICE = engine torque; .ωICE = engine speed; 

.ωtrac,max is the maximum traction motor speed; .ωgen,max is the maximum generator 
motor speed; .Qbatt,0 is the initial battery capacity; .Nsun and .Nring are the number of 
teeth on the sun and ring gears in the planetary gearset; .Rint is the battery’s internal 
resistance; .Afront is the frontal area of the vehicle; .Crr = coefficient of rolling 
resistance; .rfd = final drive ratio; .rwheel = wheel radius; .Cd = drag coefficient; 
and .Voc = open circuit battery potential. 

The Autonomie software produces high fidelity models that are useful for 
realistic modeling of a variety of vehicle signals, including power split control 
in a HEV, but are computationally expensive in simulation. Even if disregarding 
concerns about long computation times, it would be infeasible to use the Autonomie 
model with DP to derive the Optimal EMS, because states in Autonomie are 
dependent on preceding states, which is incompatible with the DP formulation 
(described in Sect. 1.2.2). Instead, the Autonomie model was used only to simulate 
the Baseline EMS engine control strategy, which was used as an input to a lower 
fidelity “power split” vehicle model for the remaining vehicle signal calculations. 
Details on the original development of the power split model are in a previous 
publication from the author’s lab group [4] and reproduced briefly here. 

The power split model is based on equations describing vehicle dynamics, a 
modeling approach that is well-defined in the literature [2, 12, 17, 28]. The power 
required to propel the vehicle at velocity v must be provided as a sum of engine 
power and electric propulsion system power: 

.Pprop = Fpropv = Pelec + PICE (1) 

.PICE is an input to the power split model, so the equation is rearranged to solve 
for .Pelec: 

.Pelec = Fpropv − PICE (2) 

.Fprop effects vehicle acceleration and counteracts the forces opposing vehicle 
motion: 

.Fprop = mv̇ + Crrmg + 1

2
Cdρairv

2Afront (3) 

where . ̇v is the acceleration of the vehicle, calculated using a numerical derivative; g 
is acceleration due to gravity .

(
9.81 m

sec2

)
; and .ρair is the density of air .

(
1.1985 kg

m3

)
. 

For this research, grade angle is assumed to be zero. 
.Pelec is served by the battery, with an efficiency penalty modeled as a function of 

torque and speed of the generator and traction motors: 

.ηelec = f (ωgen, Tgen, ωtrac, Ttrac) (4)
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as defined by efficiency maps supplied with the Autonomie model. .ηelec is enforced 
such that energy is always lost due to inefficiencies in the electric system, whether 
charging or discharging: 

.Pbatt = ηelecPelec if Pelec ≤ 0. (5) 

Pbatt = 1

ηelec
Pelec if Pelec > 0 (6) 

where positive values of .Pbatt represent discharging. At timestep i, battery State of 
Charge (SOC) is calculated for the next timestep .i +1 using the following equation: 

.SOCi+1 = SOCi − Voc − √
V 2

oc − 4PbattRint

2RintQbatt,o
�t (7) 

To enable fast computation when solving the DP formulation, fuel consumption 
is modeled using a cubic response surface [15] representation of a publicly available 
BSFC map for the Generation III Prius [17]: 

. BSFC
( g

kWh

)
= A1 + A2ωICE + A3TICE + A4ωICETICE + A5ω

2
ICE+

A6T
2

ICE + A7ωICET 2
ICE + A8ω

2
ICETICE + A9T

3
ICE (8) 

where all A values are fitted constants. This BSFC surface has an ideal operating 
line [14] that represents the instantaneous optimal FE operating point (in terms of 
torque and speed) as a function of engine power. The fuel consumption during a 
timestep . �t is thus 

.mfuel (grams) =
(

BSFC × 1 h

3 s

)
PICE�t (9) 

where .PICE is in kW and . �t is in seconds. 
The angular speeds of powertrain components are constrained by a planetary 

gearset: 

.ωICE = ωgen
ρ

1 + ρ
+ ωring

1

1 + ρ
(10) 

where .ρ = Nsun
Nring

. Speeds are also constrained by limits on the electric motors, given 
in Table 1. The ring gear speed is linearly related to vehicle speed: 

.ωring = rfd

rwheel
v (11)
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The model’s powertrain is controlled by one of two different control strategies: a 
Baseline EMS, meant to simulate stock vehicle performance, and an Optimal EMS, 
derived via DP to optimize FE over a predicted driving schedule. 

1.2.1 Baseline EMS 

The Autonomie model is simulated over a drive cycle .v(t), defining the Baseline 
EMS .PICE(t), which also implicitly defines .Pelec(t) via Eq. (2) . The power split
model is used to calculate the remaining outputs, including .mfuel, SOC, and FE. 
This is illustrated in Fig. 2a. 

To validate the Baseline EMS, the process in Fig. 2a was applied to three standard 
Environmental Protection Agency (EPA) FE test schedules and the FE results, 
corrected for change in SOC using a method standardized by Society of Automotive 
Engineers [30], were compared with experimental results for the 2010 Toyota Prius 
measured by Argonne National Laboratory [3] (Table 2). Additional validation steps 
included by comparing fuel consumption, SOC, and engine speed traces to actual 
data. These validations are documented in [31].

Fig. 2 FE simulation method for (a) Baseline EMS and (b) Optimal EMS (exact schedule 
prediction) 
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Table 2 FE results demonstrating validation of Baseline EMS model for FE investigations 

EPA drive cycle Simulated FE Measured FE % Difference 

UDDS 76.4 mpg 75.6 mpg . +1.1% 

US06 45.0 mpg 45.3 mpg . −0.6% 

HWFET 69.1 mpg 69.9 mpg . −1.1% 

1.2.2 Optimal EMS 

The Optimal EMS is derived using deterministic DP, which uses backwards 
recursion to avoid solutions that are not optimal as defined by the Bellman Principle 
of Optimality [8, 9]. The DP scheme used for this study was detailed and validated 
in a previous publication [4] and will be described only briefly in this section. 

In general, DP is used to compute optimal control as a function of system state by 
minimizing a cost function, subject to system constraints. For this study, the optimal 
control variable is engine power .PICE, which also implicitly defines .Pelec via Eq. (2) ;
the state variable is battery SOC; and the cost function is fuel consumption .mfuel. 
For the purposes of the DP scheme, vehicle velocity trace .v(t) is an exogenous input 
upon which the state variable, SOC, partially depends. The state and cost are given 
by the following equations: 

.SOC(k + 1) = SOC(k) + f (SOC, PICE, v, k)�t (12) 

.Cost =
N−1∑
k=0

mfuel + W
(
SOCf − SOC(N)

)2 (13) 

where W is a penalty weight arbitrarily set at 10,000, k is the timestep index, N is the
number of timesteps, and . �t is the size of a timestep. Equation (12) incorporates
Eqs. (3) –(7) and (10) –(11), and Eq. (13) incorporates Eqs. (8) –(9) . The allowable
state and control spaces are

.40 % ≤ SOC(k) ≤ 80 % (k = 0, . . . N) . (14) 

0 kW ≤ PICE(k) ≤ 73 kW (k = 0, . . . N − 1) (15) 

To summarize, the DP scheme is used to calculate engine power (discretization 
.�PICE = 0.1 kW) for every feasible battery SOC (discretization .�SOC = 0.02%) 
for every timestep in a drive cycle (discretization .�t = 0.4 s) to minimize fuel 
consumption for a velocity trace .v(t) and desired .SOCf . In future studies, other 
measurements (e.g. battery temperature) and cost variables (e.g. battery life impacts) 
may also merit inclusion but were not included in this research. 

The output of DP for a velocity trace can be visualized as a two-dimensional 
matrix of engine power, where row indices represent values of SOC and column 
indices represent timesteps (see Fig. 3a). For any initial SOC (.SOCi), the DP matrix
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Fig. 3 (a) Illustration of matrix generated by dynamic programming algorithm; (b) Illustration of 
matrix with conversion of time index to velocity index 

can be used as a lookup table to generate the optimal control solution . PICE(t)

achieving the driving schedule .v(t) that results in a desired .SOCf . 

1.3 Pre-Computing Optimal EMS for Approximate AE 
Prediction 

Because the matrix generated via DP is a discrete array of optimal . PICE(k, SOC)

for timesteps .k = 0...N , it can be used as a lookup table for a different drive cycle 
with the same number of timesteps. This can yield a near-optimal solution if the new 
drive cycle is similar to the one to which DP was applied. However, the constraint 
of identical durations makes this method challenging to apply in practice. 

If optimal control is only applied to AE, there is a way around the constraint of 
equal duration. AE are monotonically increasing segments of .v(t), so they can be 
indexed using velocity. This enables the DP matrix to be converted from a mapping 
with respect to time and SOC (.PICE(k, SOC)) to a mapping with respect to velocity 
and SOC (.PICE(vk, SOC)), as shown in Fig. 3. With this conversion, it is possible 
to derive a DP matrix for one AE (the “expected AE”) and apply it to any other AE 
(“actual AE”) with the same velocity range as the expected AE, regardless of any 
difference in duration. Whereas drivers are not necessarily constrained to repeat AE 
with equal time durations, accelerator pedal traces, or other attributes, traffic laws 
encourage repetition of AE with equal velocity ranges (for example, 0–25 mph AE 
on neighborhood streets). Thus, a single DP matrix can serve as a lookup table for 
improved control of any AE with a similar velocity range to the AE for which it is 
computed.
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In our simulations, a global upper limit to FE during a full drive cycle (containing 
one or more AE) is achieved by applying DP to compute optimal control for the full 
velocity profile of a drive cycle, a scenario we refer to as “optimal cycle control.” 
When a DP matrix is computed for an AE and applied to control that same AE, 
we refer to this implementation as “optimal AE control.” (By assuming knowledge 
of an exact velocity profile, these control scenarios simulate situations in which an 
AE or a full drive cycle is predicted exactly and DP is applied in real time. Due 
to sensing, predicting, and computing limitations, we assume these scenarios to be 
infeasible in practice.) When, instead, a DP matrix is computed for a category of 
AE (defined by its starting and ending speeds) and applied to another member of 
that category, this simulates a disturbance to the control loop. Thus, we refer to it as 
“disturbed AE control.” 

1.4 Drive Cycle Simulations 

A variety of driving schedules, or drive cycles, were simulated to investigate the 
feasibility of the PAE strategy in real driving contexts. Because city driving is 
typically characterized by many low-speed AE, the  PAE strategy demonstrates 
highest FE improvement potential when applied to city driving cycles. In this 
section, we present simulation results for a standard EPA city cycle, the New York 
City Cycle (NYCC). These simulations demonstrate that FE improvement potential 
is high for both Optimal Cycle and Optimal AE control, and Disturbed AE FE is 
nearly as high as Optimal AE FE. Most likely as a result of the low-aggression 
driving common to these cycles, effective fuel consumption reduction is achieved 
in the vast majority of AE, leading to high FE gains. The simulated FE results are 
plotted in Fig. 4 and selected simulation outputs are plotted in Fig. 5.

The Disturbed Optimal EMS achieves a significant portion (77%) of the FE 
improvement achieved by Optimal AE control and 35% of the FE improvement 
achieved by Optimal Cycle control. With the exception of some instances of high 
engine power for SOC correction, the Disturbed engine power trace appears to 
follow the Optimal AE engine power trace closely, indicating that the categorization 
scheme sufficiently limits prediction error to provide a close match between the 
Expected and Actual Optimal EMS. 

The FE results for all seven drive cycles simulated, sorted in order of increasing 
Disturbed AE FE improvement, are given in Fig. 6. The cycle for which Disturbed 
AE control is least successful is US06, the aggressive cycle; the next three are the 
highway cycles; and the cycles with the best Disturbed AE performance are the city 
cycles. This is one indication that Disturbed AE control is most successful in city 
driving and less successful with increasing aggressiveness.
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30 32 34 36 38 40 42 44 46 
Fuel Economy (mpg) 

Optimal Cycle 

Optimal AE 

Disturbed AE 

Baseline 

(a) 

0 2 4 6 8 10 12 
Fuel Economy Improvement Over Baseline (%) 

Optimal Cycle 

Optimal AE 

Disturbed AE 

(b) 

Fig. 4 FE results for NYCC cycle. (a) NYCC cycle FE results. (b) NYCC cycle FE improvement 
results

2 Implementation 

In order to physically validate the effectiveness of PAE control, a Parallel-3 (P3) 
HEV was developed from a stock 2018 Toyota Tacoma [1, 21]. In a P3 HEV, 
the EM is located in between the transmission and the differential. This vehicle 
configuration was chosen for a number of reasons. The first was the relative ease of 
manufacturing in comparison to the other types of hybrid configurations. This type 
of powertrain was also comparatively easier to implement a supervisory controller 
in. The P3 configuration allowed the main structure of the vehicle to remain 
relatively unchanged. 

This modification added an electric motor between the transmission and the dif-
ferential as well as the necessary components to support the electrified powertrain.
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Fig. 5 Simulation outputs for the NYCC cycle

This included the Inverter, Battery, Battery Management System (BMS), Hybrid 
Supervisory Controller (HSC), Toyota Gateway, On-Board Charger (OBC), and the 
needed 12 volt powered components to control and provide thermal regulation of 
the components. 

Central to this project was the desire to implement PAE control in a manner 
which fit industry norms. For this reason, in addition to the P3 conversion, the group 
elected to accomplish PAE control by leveraging the vehicle’s existing distributed 
computing network and adding minimal computing load to the vehicle. For this 
reason, the group elected to control the vehicle using only one additional controller, 
the HSC. The  HSC operated as an Input-Processing-Output (IPO) model where it 
converted input signals to output signals to control the vehicle’s behavior. A 112 
pin Woodward Motohawk (ECM-5644-112 SECM-112) was used as the hardware 
for the HSC. This controller is a typical firmware based automotive controller 
which might be used on a commercial vehicle. Matlab’s Simulink software was 
the development environment for this program allowing for the use of Woodward’s 
Motohawk rapid controller development software. This software was used to build 
the HSC code that was compatible with the Motohawk hardware. It also allowed for 
values within the controller to be viewed and calibrated in real time, on the vehicle.
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Fig. 6 FE results for all seven cycles. (a) FE for all cycles for all control strategies. (b) 
Improvement over baseline for each control strategy
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The selected architecture imposed a series of limitations. When developing the 
HSC, the following constraints were observed and worked around:

• The HSC’s storage capacity was too small to contain a full Optimal Control 
Matrix (OCM).

• The signals from the Toyota Gateway were the only values that could be used 
from the base vehicle.

• The BMS was an unreliable source of information, especially with producing 
SOC values.

• The driver could not consistently reproduce exact AEs under manual control 
using the accelerator pedal input.

• The HSC had no signal to differentiate between the vehicle’s accessory mode and 
a fully on mode.

• The engine could not be controlled directly by torque requests.
• The Brake Pedal Position Sensor (BPPS) did not output non-binary values. 

Figure 7 shows a simplified structure of the HSC and the flow of signals through 
the controller. It shows the signals that occurred when the vehicle was turned on 
and off as well as the signals that occurred continuously while the HSC was on. 
This flowchart illustrates the basic outline of the HSC code. It begins with the 
input signals and ends with the output signals. The flowchart shows the connection 
between power mode, vehicle state, pedal logic, torque split, ICE control, inverter 
and EM control, battery control, and SOC calculations. 

With this architecture in mind, a baseline and PAE control were developed. 

Key 

I/O Signals 

Main Code Block 

Continuous Signal 

Vehicle On/Off Signal 

Pedal Logic Torque Split 

ICE Control 

Inverter and EM 
Control 

Input Signals Output Signals 

Power 
Mode 

Vehicle 
State 

Battery Control 

SOC Calculations 

Fig. 7 Simplified controller flowchart
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Fig. 8 Baseline torque split 

2.1 Baseline Torque Split Control 

A load following torque split strategy was chosen to act as the Baseline Torque 
Split Method. The load following method calculated the ICE torque first, compared 
that torque value to the driver’s requested torque, and filled in the difference with 
EM torque. This method worked in all driving scenarios, and was calculated on the 
vehicle. No calculations needed to happen before the vehicle was driven. However, 
this strategy did not provide an optimal torque split for the AE. The flowchart for 
the Baseline strategy can be found in Fig. 8. 

This strategy was composed of two main components: ICE calculations and EM 
calculations. The ICE calculations started with the minimum of the driver requested 
torque and maximum allowable torque for the given engine speed being selected for 
the ICE torque output. The ICE torque output was then subtracted from the driver 
requested torque to obtain the EM torque request value. 

Since this was a P3 HEV, and the ICE and EM were located on opposite sides of 
the transmission, the EM torque request value must be multiplied by the vehicle gear 
ratio to obtain the post-transmission EM torque request value. The post-transmission 
value and maximum allowable EM torque are then compared, with the smaller value 
selected to be the EM torque output. 

2.2 PAE Torque Split Control 

Two PAE methods were used to calculate torque split values: on-vehicle torque 
computation through an optimal torque split matrix and pre-computed torque traces. 
The optimal torque split matrix, used for the on-vehicle torque split computations,
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Fig. 9 OCM torque computation flowchart 

Fig. 10 Pre-computed torque 
trace flowchart 
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was obtained from the PAE model, as discussed in Sect. 1.3. The pre-computed 
torque traces were also obtained as an output from this model. 

agraphOCM Torque Computation This torque split method required the AEs to 
be pre-computed to generate an OCM of torque split output values. This OCM was 
then added to the controller, so that the engine torque could be determined from 
the SOC and vehicle speed while performing an AE. Figure 9 shows the simplified 
flowchart of this method. 

In this figure, it can be seen that the OCM requires three inputs: vehicle velocity, 
transmission gear, and the SOC of the High Voltage (HV) battery. This matrix then 
output the ICE torque which, when subtracted from the driver requested torque, 
produces the pre-transmission EM torque value. This value then was multiplied by 
the transmission gear to convert to a post-transmission EM torque value. 

agraphPre-Computed Torque Trace The Pre-Computed Torque Trace involved 
generating the ICE and EM PAE torque traces in advance and using the traces to 
control the torque instead of the driver’s Accelerator Pedal Position (APP) input. 
Figure 10 shows the flowchart for this PAE method. 

As seen in the figure, the current time was input into lookup tables that contained 
ICE and EM torque traces which converted the time value to a torque output. After 
each AE, the driver reset the current time value back to zero via a manual switch, 
located on the vehicle’s dashboard. A second dash switch was used to trigger the 
block that contains the torque trace logic.
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3 Results 

3.1 PAE Strategy Results 

The bulk of the Baseline and PAE comparison testing was completed at the 
Christman Airfield, a 4000 foot long runway that was used as a Colorado State 
University (CSU) testing facility. This airfield was used for closed-course, straight-
line testing. It runs in a north-south line, and every test that was completed with this 
vehicle was in the north direction. This reduced the effects of the slight slope of the 
runway. 

The PAE control strategy was tested using the OCM method and the torque 
trace strategy. The OCM method, reduced in size and scope due to HSC memory 
limitations, was discovered to output torque split values that didn’t prioritize 
recharging the battery to the starting SOC. Instead, it would command large, positive 
torque outputs from the EM. 

Figure 11 shows one of the tests completed with the OCM generating the torque 
split between the EM and ICE for the AE. As seen in the figure, the EM torque 
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Fig. 11 Results of PAE using OCM method. (a) Torque output. (b) Vehicle speed trace. (c) SOC  
trace
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Fig. 12 Vehicle speed trace 
used to generate 
pre-computed ICE and EM 
torque for baseline and PAE 
method 
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Table 3 PAE testing results Mean baseline FE Mean PAE FE % Improvement 

11.820 16.455 0.282 

Table 4 PAE testing results statistics 

Number of runs St.D. of baseline FE St.D. of PAE FE Significance (p-value) 

5 0.233 0.5267 6.0e-9 

was applied at a much larger amount than the ICE torque. If the OCM was working 
correctly here, the EM torque output would have been negative during the AE to 
increase the SOC to ensure that the SOC at the beginning and end of the AE were 
equal. Ultimately, DP based control is subject to discretization and below a certain 
point, the control will no longer function optimally. The memory limitations on the 
controller were sufficient to make the matrix method infeasible. 

In torque trace method, ICE and EM torque were pre-calculated using the speed 
trace from Fig. 12. For Baseline, APP signal that would result in the speed trace 
in Fig. 12 was generated and used as an input to control the vehicle behavior in 
test. For PAE, ICE and EM torque that would result Fig. 12 was generated and used 
as an input instead. In contrast, the torque trace method generated more favorable 
results as the vehicle was to perform as expected when pre-computed torque traces 
were fed into the HSC. for this reason the torque trace method was selected for data 
collection. 

3.2 PAE vs Baseline Results 

PAE control was tested for an AE of 0–30 kph. Results for these events are shown 
in Tables 3 and 4. 

From the tests, it was found that the torque trace PAE method improved the FE 
by an average of 28.17%. To get to this number, the amount of energy used for the 
time that it took to complete the AE was converted into a gallon equivalent amount. 
This was then combined with the fuel usage of the ICE and was used to divide the
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Fig. 13 Engine speed vs engine torque under PAE method. Red dots represent engine behavior 
during PAE operation. (a) PAE AE 1. (b) PAE AE 2 
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Fig. 14 Engine speed vs engine torque under baseline method. Red dots represent engine behavior 
during Baseline operation. (a) Baseline AE 1. (b) Baseline AE 2 

distance driven to obtain the Miles Per Gallon (MPG) value. This value could then 
be used for comparison. For two PAE AEs and two Baseline AEs, the engine torque 
was plotted against the engine speed on the BSFC map developed previously. This 
can be seen in Figs. 13 and 14. 

The PAE controlled AE shown in Fig. 13a spent 42.9% of the event in the darkest 
blue, or most fuel efficient zone. Figure 13b shows the next  PAE AE which spent 
43.7% of the time in that state. Figure 14a’s AE, which used Baseline control, spent 
29.6% of the event in the dark blue zone. The Baseline controlled AE in Fig. 14b 
spent 29.1% in the fuel efficient zone. Using this information with the BSFC plots, 
it can be seen that the AEs using PAE control spend more time with the ICE in the 
darkest blue, or most fuel efficient, section of the map than the Baseline AEs. The  
PAE control method was commanding the ICE into the more fuel efficient states 
during the AE allowing the vehicle to improve the FE by an average of 28.17%.
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4 Conclusion 

As outlined in Sect. 1, much research has been conducted into the theoretical use 
of optimal control for torque split in HEVs. Nearly every study of predictive 
powertrain control to date has used complicated and computationally expensive 
ways to optimize the operation of the powertrain [6, 29]. These studies include 
methods like DP, machine learning, and model predictive control to determine the 
optimal control for the vehicle. 

In this study, a map-based control method, based on offline learning was used 
to realize a pseudo-optimal control that was robust to disturbances and realized 
measurable fuel economy gain. The control system was able to use the pre-computed 
PAE values as a lookup table to determine the optimal torque output for the ICE 
and EM. This meant that by pre-computing the PAE map, the PAE control could 
occur on the Motohawk control hardware with the rest of the supervisory control 
algorithm. 

Testing this vehicle marked the first time in literature that a test vehicle was able 
to demonstrate the FE benefits of predictive control algorithms [6]. The previous 
literature has calculated, modeled, and simulated predictive control hypothesizing 
the fuel economy benefits while this paper demonstrated the actual improvements 
in FE for a PAE control when compared to a baseline control. 

This real-world validation is significant as, despite research efforts, currently, 
all of the HEVs on the road currently use instantaneously optimized control to be 
able to control the powertrain of the vehicle [6]. PAE is an implementable way of 
improving the FE of HEVs, using information from the predicted vehicle trajectory. 
This research demonstrated that these strategies were feasible and could improve 
the FE of HEVs. 
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