
Machine Learning Based Perception
Architecture Design for
Semi-autonomous Vehicles

Joydeep Dey and Sudeep Pasricha

1 Introduction

In 2021, it was reported that an estimated 31,730 people died in motor vehicle
traffic crashed in the United States, representing an estimated increase of about 12
percent compared to 2020 [1]. By eliminating the possibility of human driving errors
through automation, advanced driver assistance systems (ADAS) are becoming a
critical component in modern vehicles, to help save lives, improve fuel efficiency,
and enhance driving comfort. ADAS systems typically involve a 4-stage pipeline
involving sequential execution of functions related to perception, decision, control,
and actuation. An incorrect understanding of the environment by the perception
system can make the entire system prone to erroneous decision making, which can
result in accidents due to imprecise real-time control and actuation. This motivates
the need for a reliable perception architecture that can mitigate errors at the source
of the pipeline and improve safety in emerging semi-autonomous vehicles.

The standard SAE-J3016 effectively classifies the capabilities of a perception
architecture supported by a vehicle according to their targeted level of autonomy.
In general, an optimal vehicle perception architecture should consist of carefully
defined location and orientation of each sensor selected from a heterogeneous
suite of sensors (e.g., cameras, radars) to maximize environmental coverage in the
combined field of view obtained from the sensors. In addition to ensuring accurate
sensing via appropriate sensor placement, a high object detection rate and low false

J. Dey (�)
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: Joydeep.Dey@colostate.edu

S. Pasricha
Colorado State University, Fort Collins, CO, USA
e-mail: sudeep@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. K. Kukkala, S. Pasricha (eds.), Machine Learning and Optimization Techniques for
Automotive Cyber-Physical Systems, https://doi.org/10.1007/978-3-031-28016-0_22

625

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28016-0protect T1	extunderscore 22&domain=pdf

 885 52970 a 885 52970
a

mailto:Joydeep.Dey@colostate.edu
mailto:Joydeep.Dey@colostate.edu
mailto:Joydeep.Dey@colostate.edu

 885 56845 a 885 56845
a

mailto:sudeep@colostate.edu
mailto:sudeep@colostate.edu
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22
https://doi.org/10.1007/978-3-031-28016-0_22

626 J. Dey and S. Pasricha

Fig. 1 Breakdown of perception architecture design space

positive detection rate needs to be maintained using efficient deep learning-based
object detection and sensor fusion techniques.

State-of-the-art deep learning based object detection models are built with
different network architectures, uncertainty modeling approaches, and test datasets
over a wide range of evaluation metrics [2]. Object detectors that are capable of real
time perception are resource-constrained by latency requirements, onboard memory
capacity and computationally complexity. Optimizations performed to meet any one
of these constraints often results in a trade-off with the performance of others [3]. As
a result, comparison and selection from among the best set of deep learning based
object detectors for perception applications remains a challenge.

In real-world driving scenarios, the position of obstacles and traffic are highly
dynamic, so after detection of an object, tracking is necessary to predict its
new position. Due to noise from various sources there is an inherent uncertainty
associated with the measured position and velocity. This uncertainty is minimized
by using sensor fusion algorithms [4]. An important challenge with sensor fusion
algorithms is that the complexity of tracking objects increases as the objects get
closer, due to a much lower margin for error (uncertainty) in the vicinity of the
vehicle.

As summarized in Fig. 1, the design space of a vehicular perception architecture
involves determining appropriate sensor selection and placement, object detection
algorithms, and sensor fusion techniques. The possible configurations for each
of these decisions is non-trivial and can easily lead to a combinatorial explosion
of the design space, making exhaustive exploration impractical. Conversely, an
optimization of each of these decisions individually before composing a final
solution can lead to solutions that are sub-optimal and perform poorly in real
environments. Perception architecture design depends heavily on the target features
and use cases to be supported in the vehicle, making the already massive design
space addressing the problem even larger and harder to traverse. Consequently,

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 627

today there are no generalized rules for the synthesis of perception architectures
for vehicles.

In this chapter, we describe a framework called PASTA (Perception Architecture
Search Technique for ADAS), first introduced in [37], to perform perception archi-
tecture synthesis for emerging semi-autonomous vehicles. Our experimental results
indicate that the proposed framework is able to optimize perception performance
across multiple ADAS metrics, for different vehicle types.

The main contributions in this chapter include:

• A global co-optimization framework capable of synthesizing robust vehicle-
specific perception architecture solutions that include heterogeneous sensor
placement, deep learning based object detector design, and sensor fusion algo-
rithm selection;

• An exploration of various design space search algorithms tuned for the vehicle
perception architecture search problem;

• A fast and efficient method for co-exploration of the deep learning object detec-
tor hyperparameters, through adaptive and iterative environment- and vehicle-
specific transfer learning;

• A comparative analysis of the framework efficiency across different vehicle
models (Audi TT, BMW Minicooper).

2 Related Work

State-of-the-art semi-autonomous vehicles require robust perception of their envi-
ronment, for which the choice of sensor placement, object detection algorithms,
and sensor fusion techniques are the most important decisions. These decisions
are carefully curated to support ADAS features (e.g., blindspot warning, lane keep
assist) that characterize the autonomy level to be supported by a vehicle under
design.

Many prior works have explored vehicle perception system design with different
combinations of sensor types to overcome limitations that plague individual sensor
types. The work in [5] used a single camera-radar pair for perception of headway
distance using a Continental radar mounted on the geometric center of the front
bumper and a Nextbase 512G monocular camera behind the windscreen. Vehicle
detection was performed on the collected camera frames, by sorting potential
candidates in a fixed trapezoidal region of interest in the horizontal plane. In
[5] a camera-radar fusion based perception architecture was proposed for target
acquisition with the well-known SSD (Single Shot Detection) object detector on
consecutive camera frames. This allowed their perception system to differentiate
vehicles from pedestrians in real time. The detection accuracy was optimized with
the use of a Kalman filter and Bayesian estimation, which reduced computational
complexity compared to [5]. In [6] a single neural network was used for fusion of
all camera and radar detections. The proposed neural fusion model (CRF-Net) used
an optimized training strategy similar to the ‘Dropout’ technique, where all input

628 J. Dey and S. Pasricha

neurons for the camera data are simultaneously deactivated in random training steps,
forcing the network to rely more on the radar data. The training focus towards radar
overcame the bias introduced by starting with pre-trained weights from the feature
extractor that was trained from the camera data. The work in [7] optimized merging
camera detection with LiDAR processing. An efficient clustering technique inspired
by the DBSCAN algorithm allowed for a better exploitation of features from the
raw LiDAR point cloud. A fusion scheme was then used to sequentially merge the
2D detections made by a YOLOv3 object detector using cylindrical projection with
the detections made from clustered LiDAR point cloud data. In [8], an approach to
fuse LiDAR and stereo camera data was proposed, with a post-processing method
for accurate depth estimation based on a patch-wise depth correction approach.
In contrast to the cylindrical projection of 2D detections in [7], the work in [8]
uses a projection of 3D LiDAR points into the camera image frame instead, which
upsamples the projection image, creating a more dense depth map.

All of the prior works discussed above optimize vehicle perception performance
for rigid combinations of sensors and object detectors, without any design space
exploration. Only a few prior works have (partially) explored the design space
of sensors and object detectors for vehicle perception. An approach for optimal
positioning and calibration of a three LiDAR system was proposed in [9]. The
approach used a neural network to learn and qualify the effectiveness of different
LiDAR location and orientations. The work in [10] proposed a sensor selection
and exploration approach based on factor graphs during multi-sensor fusion. The
work in [11] heuristically explored a subset of backbone networks in the Faster R-
CNN object detector for perception systems in vehicles. The work in [12] presented
a framework that used a genetic algorithm to optimize sensor orientations and
placements in vehicles.

The optimized perception techniques discussed in [5–12] provide highly accurate
detections which enable design of efficient energy management strategies for
ADAS. The work in [13] derives a prediction mechanism for optimal energy
management for ADAS using a nonlinear autoregressive artificial neural network
(NARX). Multiple sources are used as input to the neural network such as data from
drive cycle information, current vehicle state, global positioning system, travel time
data and detected obstacles. In addition, dynamic programming is used to derive an
optimal energy management control strategy which shows significant fuel economy
improvements compared to highly accurate predictive baseline models. The work
in [14] proposes a predictive optimal energy management strategy that leverages
sensor data aggregation and dynamic programming to achieve vehicle fuel economy
improvement for ADAS compared to existing vehicle control strategies. The work
discussed in [13, 14] leverage existing ADAS technology in modern vehicles to
realize prediction based optimal energy management, which enables fuel economy
improvements for ADAS with minor modifications.

Unlike prior works that fine-tune specific perception architectures, e.g., [5–8],
or explore the sensing and object detector configurations separately, e.g [9–12].,
this chapter proposes a holistic framework that jointly co-optimizes heterogeneous

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 629

sensor placement, object detection algorithms, and sensor fusion techniques. To the
best of our knowledge, this is the first effort that performs co-optimization across
such a comprehensive decision space to optimize ADAS perception, with the ability
to be tuned and deployed across multiple vehicle types.

3 Background

3.1 ADAS Level 2 Autonomy Features

In this chapter, our exploration of perception architectures on a vehicle, henceforth
referred to as an ego vehicle, targets four ADAS features that have varying degrees of
longitudinal (i.e., in the same lane as the ego vehicle) and lateral (i.e., in neighboring
lanes to the ego vehicle lane) sensing requirements. The SAE-J3016 standard [15]
defines adaptive cruise control (ACC) and lane keep assist (LKA) individually
as level 1 features, as they only perform the dynamic driving task in either the
latitudinal or longitudinal direction of the vehicle. Forward collision warning (FCW)
and blindspot warning (BW) are defined in SAE-J3016 as level 0 active safety
systems, as they only enhance the performance of the driver without performing any
portion of the dynamic driving task. However, when all four features are combined,
the system can be described as a level 2 autonomy system. Figure 2 shows an
overview of the four features we focus on for level 2 autonomy, which are discussed
next.

While modern ACC systems differ in their implementation and perception
architectures, they take perform longitudinal control operations instead of the
driver. The challenge in ACC is to maintain an accurate track of the lead vehicle
(immediately ahead of the ego vehicle in the same lane) with a forward facing
sensor and using longitudinal control to maintain the specified distance while
maintaining driver comfort (e.g., avoiding sudden velocity changes). LKA (lane
keep assist) systems determine whether the ego vehicle is drifting towards any lane
boundaries and are an evolution of lane departure warning systems. LKA systems
have been known to over-compensate, creating a “ping-pong” effect where the
vehicle oscillates back and forth between the lane lines [16]. The main challenges in
LKA are to reduce this ping-pong effect and the accurate detection of lane lines on
obscured (e.g., snow covered) roads. FCW (forward collision warning) systems are
used for real-time prediction of collisions with a lead vehicle. A critical requirement
for FCW systems is that they avoid false positives and false negatives to improve
driver comfort, safety and reduce rear end accidents [17]. Lastly, BW (blindspot
warning) systems use lateral sensor data to determine whether there is a vehicle
towards the rear on either side of the ego vehicle (Fig. 2) in a location the driver
cannot see with their side mirrors. A perception architecture designed to support
Level 2 autonomy in a vehicle should support all four of these critical features.

630 J. Dey and S. Pasricha

Fig. 2 Visualization of common scenarios in ACC, FCW, LKA, and BW

3.2 Sensor Placement and Orientation

In order to capture data most relevant to each feature, a strategic sensor placement
strategy must be used on the ego vehicle such that the chosen position and
orientation of selected sensors maximize coverage (of the vehicle environment).
Figure 2 visualizes an example of field of view coverage (in blue) corresponding
to three unique placements of camera sensors on the body of the ego vehicle (in
yellow, lower images) to meet coverage goals. For the ACC and FCW features,
the ego vehicle is responsible for slowing down to maintain a minimum separation
between the ego and lead vehicle. The camera must be positioned somewhere on the
front bumper to measure minimum longitudinal separation accurately while keeping

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 631

the lead vehicle in the desired field of view. For LKA, there is a need to maintain a
safe minimum lateral distance between non-ego vehicles in neighboring lanes. Here
a front camera is needed to extract lane line information, while side cameras are
required for tracking this minimum lateral separation. As BW requires information
about a specific area near the rear of the vehicle, it is a challenge to find an optimal
sensor placement that maximizes the view of the blind spot. If the sensor is too
far forward or too far back, it will miss key portions of the blind spots. Beyond
placement, the orientation of sensors can also significantly impact coverage for all
features [17]. Thus sensor placement and orientation remains a challenging problem.

3.3 Object Detection for Vehicle Environment Perception

The two broad goals associated with deep learning based object detection are:
determining spatial information (relative position of an object in the image) via
localization followed by identifying which category that object instance belongs to
via classification [18]. As an example, Fig. 3 shows object detection of multiple car
instances (using the YOLOv3 deep learning based object detector [19]) by creating
a bounding box around the ‘car’ object instances and predicting the object class
as ‘car’. The pipeline of traditional object detection models can be divided into
informative region selection, feature extraction, and classification [20]. Depending
on which subset of these steps are used to process an input image frame, object
detectors are classified as single-stage or two-stage.

Modern single-stage detectors are typically composed of a feed-forward fully
convolutional network that outputs object classification probabilities and box offsets
(w.r.t. pre-defined anchor/bounding boxes) at each spatial position. The YOLO
family of object detectors is a popular example of single-stage detectors [17]. SSD
(single shot detection) is another example, based on the VGG-16 backbone [21].
An advantageous property of single-stage detectors is their very high detection
throughput (e.g., ~40 frames per second with YOLO) that makes them suitable for
real time scenarios. Two-stage detectors divide the detection process into separate
region proposal and classification stages. The first stage involves identification of

Fig. 3 Example of vehicle (object) detection with YOLOv3

632 J. Dey and S. Pasricha

several regions in an image that have a high probability to contain an object using a
region proposal network (RPN). In the second stage, proposals of identified regions
are fed into convolutional networks for classification. Region-based CNN (R-CNN)
is an example of a two-stage detector [22]. R-CNN divides an input image into 2000
regions generated through a selective search algorithm, after which the selected
regions are fed to a CNN for feature extraction followed by a Support Vector
Machine (SVM) for classification. Fast R-CNN [23] and subsequently Faster R-
CNN [24] improved the speed of training as well as detection accuracy compared to
R-CNN by streamlining the stages.

Two-stage detectors have high localization and object recognition accuracy,
whereas one-stage detectors achieve higher inference speed [25]. In this chapter, we
considered both types of object detectors to exploit the latency/accuracy tradeoffs
during perception architecture synthesis.

3.4 Sensor Fusion

Perception architectures that use multiple sensors in their sensing framework often
must deal with errors due to imprecise measurements from one or more of the
sensors. Conversely, errors can also arise when only a single sensor is used due
to measurement uncertainties from insufficient spatial (occlusion) or temporal
(delayed sensor response time) coverage of the environment. The Kalman filter
is one of the most widely used sensor fusion state estimation algorithms that
enables error-resilient tracking of targets [26]. The Kalman filter family is a set of
recursive mathematical equations that provides an efficient computational solution
of the least-squares method for estimation. The filters in this family have the
ability to obtain optimal statistical estimations when the system state is described
as a linear model and the error can be modeled as Gaussian noise. If the system
state is represented as a nonlinear dynamic model as opposed to a linear model,
a modified version of the Kalman filter known as the Extended Kalman Filter
(EKF) can be used, which provides an optimal approach for implementing nonlinear
recursive filters [27]. However, for real time ADAS operations the computation of
the Jacobian (matrix describing the system state) in EKF can be computationally
expensive and contribute to measurement latency. Further, any attempts to reduce
the cost through techniques like linearization makes the performance unstable [28].
The unscented Kalman filter (UKF) is another alternative that has the desirable
property of being more amenable to parallel implementation [29]. In our design
space exploration of perception architecture, we explore the family of Kalman filters
as candidates for sensor fusion.

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 633

4 PASTA Architecture

4.1 Overview

Figure 4 presents a high-level overview of our proposed PASTA framework. The
heterogeneous sensors, object detection model library, sensor fusion algorithm
library, and physical dimensions of the vehicle model are inputs to the frame-
work. An algorithmic design space exploration is used to generate a perception
architecture solution which is subsequently evaluated based on a cumulative score
from performance metrics relevant to the ADAS autonomy level being targeted.
As part of the framework, we evaluate the search efficacy of three design space
search exploration algorithms: genetic algorithm (GA), differential evolution (DE),
and the firefly algorthm (FA). The process of perception architecture generation
and evaluation iterates until an algorithm-specific stopping criteria is met, at which
point the best design points are output. The following subsections describe each
component of our framework in detail.

4.2 Problem Formulation and Metrics

In our framework, for a given vehicle, a design point is defined as a perception
architecture that is a combination of three components: a sensor configuration which
involves the fixed deployment position and orientation of each sensor selected for
the vehicle, an object detector algorithm, and a sensor fusion algorithm. The goal is
to find an optimal design point for the given vehicle that minimizes the cumulative

Fig. 4 An overview of the proposed PASTA framework

634 J. Dey and S. Pasricha

error across eight metrics that are characteristic of the ability to track and detect
non-ego vehicles across road geometries and traffic scenarios.

The eight selected metrics are related to our goal of supporting level 2 autonomy
with the perception architecture. In the descriptions of the metrics below, the ground
truth refers to the actual position of the non-ego vehicles (traffic in the environment
of the ego vehicle). The metrics can be summarized as: (1) longitudinal position
error and (2) lateral position error: deviation of the detected positional data from
the ground truth of non-ego vehicle positions along the y and x axes, respectively;
(3) object occlusion rate: the fraction of passing non-ego vehicles that go undetected
in the vicinity of the ego vehicle; (4) velocity uncertainty: the fraction of times that
the velocity of a non-ego vehicle is measured incorrectly; (5) rate of late detection:
the fraction of the number of ‘late’ non-ego vehicle detections made over the total
number of non-ego vehicles. Late detection is one that occurs after a non-ego vehicle
crosses the minimum safe longitudinal or lateral distance, as defined by Intel RSS
safety models for pre-crash scenarios GA is a popular evolutionary algorithm that
can solve optimization problems by mimicking the process of natural selection
[30].2. This metric directly factors in the trade-off between latency and accuracy
for object detector and fusion algorithms; (6) false positive lane detection rate: the
fraction of instances when a lane marker is detected but there exists no ground truth
lane; (7) false negative lane detection rate: the fraction of instances when a ground
truth lane exists but is not detected; and (8) false positive object detection rate:
the fraction of total vehicle detections which were classified as non-ego vehicle
detections but did not actually exist.

4.3 Design Space Encoder/Decoder

The design space encoder receives a set of random initial design points as input
which are expressed as a vector. This encoded format is best suited for various
kinds of rearrangement and splitting operations during design space exploration.
The encoder adapts the initial selection of inputs for our design space such that a
design point is defined by the location and orientation of each sensor’s configuration
(consisting of six parameters: x, y, z, roll, pitch, and yaw), together with the object
detector and fusion algorithm. The design space decoder converts the solutions into
the same format as the input so that the output perception architecture solution(s)
found can be visualized with respect to the real-world co-ordinate system.

4.4 Design Space Exploration

The goal of a design space exploration algorithm in our framework is to generate
perception architectures (design points) which are aware of feature to field of view
(FOV) zone correlations around an ego vehicle. Figure 5a shows the 10 primary

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 635

(a) (b) (c)

Feature Region Zone

BW B, H, I 1, 2, 3,10
LKA E, I 3,4,5

D, H 8, 9, 10
ACC ,
FCW

A, B,C 6, 7

Fig. 5 (a) Field of view (FOV) zones; (b) sensor placement regions; (c) feature, region, and zone
relationship

FOV zones around the ego-vehicle. These zones of interest are defined as the
most important perception areas in the environment for a particular ADAS feature.
Figure 5b shows the regions on the vehicle on which sensors can be mounted (in
blue). Regions F and G (in yellow) are exempt from sensor placement due to the
mechanical instability of placing sensors on the door of a vehicle. The correlation
between ADAS features, zones, and regions, is shown in Fig. 5c. For exploration
of possible locations within a region, a fixed step size of 2 cm in two dimensions
across the surface of the vehicle is considered, which generates a 2D grid of
possible positions in each zone shown in Fig. 5b. The orientation exploration of
each sensor involves rotation at a fixed step size of 1 degree between an upper
and lower bounding limit for roll, pitch, and yaw respectively, at each of these
possible positions within the 2D grid. The orientation exploration limits were chosen
with caution with the caveat that some sensors, such as long range radars, have an
elevated number of recorded false positives with extreme orientations.

To get a sense of the design space, consider four sensors (e.g., two cameras and
two radars). Just the determination of the optimal placement and orientation of
these sensors involves exploring 1.24e+26C4 and 7.34e+25C4 configurations for the
Audi-TT and BMW-Minicooper vehicles, respectively. Coupled with the choice
of different object detectors and sensor fusion algorithms, the resulting massive
design space cannot be exhaustively traversed in a practical amount of time,
necessitating the use of intelligent design space search algorithms that support hill
climbing to escape local minima. In our framework, we explored three evolutionary
algorithms: (1) Genetic Algorithm (GA), (2) Differential Evolution (DE), and
the (3) Firefly Algorithm (FA). As shown in Fig. 4, each algorithm generates a
solution set of size ‘P’ at every iteration until the termination criteria is met. The
algorithms simultaneously co-optimize sensor configuration, object detection, and
sensor fusion, and proceed to explore new regions of the design space when the
termination (perception) criteria is not met. We briefly describe the three algorithms
below.

636 J. Dey and S. Pasricha

4.4.1 Genetic Algorithm (GA)

GA is a popular evolutionary algorithm that can solve optimization problems by
mimicking the process of natural selection [30]. Initially, the GA randomly selects
a solution set of fixed size referred to as the population and then improves the
quality of the candidate solutions in each iteration by modifying them using various
GA operations. GA has the ability to optimize problems where the design space
is discontinuous and also if the cost function is non differentiable. In our GA
implementation, in the selection stage, the cost function values are computed for
50 design points at a time, and a roulette wheel selection method is used to select
which set of chromosomes will be involved in the crossover step based on their
cost function probability value (fraction of the cumulative cost function sum of
all chromosomes considered in the selection). In the crossover stage, the crossover
parameter is set to 0.5, allowing half of the 50 chromosomes to produce offspring.
The mutation parameter is set to 0.2 which determines the new genes allowed for
mutation in each iteration.

4.4.2 Differential Evolution (DE)

Differential Evolution (DE) [31] is another stochastic population-based evolutionary
algorithm that takes a unique approach to mutation and recombination. An initial
solution population of fixed size is selected randomly, and each solution undergoes
mutation and then recombination operations. DE generates new parameter vectors
by adding the weighted difference between two population vectors to a third
vector to achieve difference vector-based mutation. Next, crossover is performed,
where the mutated vector’s parameters are mixed with the parameters of another
predetermined vector, the target vector, to yield a trial vector. If the trial vector
yields a lower cost function value than the target vector, the trial vector replaces the
target vector in the next generation. To ensure that better solutions are selected only
after generation of all trial vectors at every iteration, greedy selection is performed
between the target vector and trial vector. Unlike GA where parents are selected
based on fitness, every solution in DE takes turns to be one of the parents [30]. In
our DE implementation, we set initial population size to 50 and use a crossover
probability of 0.8 to select candidates participating in crossover.

4.4.3 Firefly Algorithm (FA)

FA is a swarm-based metaheuristic [32] that has shown superior performance
compared to GA for certain problems [33]. In FA, a solution is referred to as a firefly.
The algorithm mimics how fireflies interact using flashing lights (bioluminescence).
The algorithm assumes that the attractiveness of a firefly is directly proportional to
its brightness which depends on the fitness function value. Further, a given firefly
can be attracted by any other firefly in the design space irrespective of the gender of

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 637

both. Initially, a random solution set is generated and the fitness (brightness) of each
candidate solution is measured. In the design space, a firefly is attracted to another
with higher brightness (more fit solution), with brightness decreasing exponentially
over distance. FA is significantly different from DE and GA, as both exploration
of new solutions and exploitation of existing solutions to find better solutions is
achieved using a single position update step.

4.5 Performance Evaluation

Each iteration of the design space exploration involves performance evaluation of
the generated solution set where each design point undergoes multiple drive cycles.
A drive cycle here refers to a virtual simulation involving an ego-vehicle (with
a perception architecture under evaluation) following a fixed set of waypoint co-
ordinates, while performing object detection and sensor fusion on the environment
and other non-ego vehicles. A total of 20 different drive cycles were considered,
with 5 drive cycles customized for each ADAS feature. As an example, drive cycles
for ACC and FCW involve an ego vehicle following different lead vehicles at
different distances, velocities, weather conditions, and traffic profiles. The fitness
of the perception architectures generated by the framework are computed using the
cumulative metric scores (Sect. 4.2) across the drive cycles.

5 Experiments

5.1 Experimental Setup

To evaluate the efficacy of the PASTA framework we performed experiments in
the open-source simulator CARLA (Car Learning to Act) implemented as a layer
on Unreal Engine 4 (UE4) [34]. The UE4 engine provides state-of-the-art physics
rendering for highly realistic driving scenarios. We leveraged this tool to design
a variety of drive cycles that are roughly 5 min long and contain scenarios that
commonly arise in real driving environments, including adverse weather conditions
(rain, fog) and a few overtly aggressive/conservative driving styles observed with
vehicles. To ensure generalizability, we consider a separate set of test drive cycles to
evaluate solution quality, which are different from the optimization drive cycles used
iteratively by the framework to generate optimized perception architecture solutions.

We target generating perception architectures to meet level 2 autonomy goals
for two vehicle models: Audi-TT and BMW-Minicooper (Fig. 6). A maximum of 4
mid-range radars and 4 RGB cameras are considered in the design space, where

638 J. Dey and S. Pasricha

Fig. 6 BMW Minicooper (top) and Audi TT (bottom)

each sensor can be placed in any zone (Fig. 5a, b). Using a greater number of
these sensors led to negligible improvements for the level 2 autonomy goal. The
RGB cameras possess 90◦ field of view, 200 fps shutter speed, and image resolution
of 800 × 600 pixels. The mid-range radars selected generate a maximum of 1500
measurements per second with a horizontal and vertical field of view of 30◦ and a
maximum detection distance of 100 m. We considered 5 different object detectors
(YOLOv3, SSD, R-CNN, Fast R-CNN, and Faster R-CNN) and 3 sensor fusion
algorithms (Kalman filter, Extended Kalman filter, and Unscented Kalman filter).
For the design space exploration algorithms, the cost function was a weighted sum
across the eight metrics discussed in Sect. 4.2, with the weight factor for each metric
chosen on the basis of their total feature-wise cardinality across all zones shown in
Fig. 5c. During design space exploration, if the change in average cost function
value was <5% over 250 iterations, the search was terminated. All algorithmic
exploration was performed on an AMD Ryzen 7 3800X 8-Core CPU desktop with
an NVIDIA GeForce RTX 2080 Ti GPU.

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 639

Table 1 Object detector latency and accuracy comparison

Object detector Latency GPU (ms) Latency CPU (ms) mAP(%)

R-CNN 48956.18 66090.83 73.86
Fast R-CNN 1834.71 2365.86 76.81
Faster R-CNN 176.99 286.72 79.63
SSD 53.25 70.32 70.58
YOLOv3 24.03 32.92 71.86

5.2 Experimental Results

In the first experiment, we explored the inference latency and accuracy in terms of
mean average precision (mAP) for the five different object detectors considered in
this chapter. Table 1 summarizes the inference latency on a CPU and GPU, as well
as the accuracy in mAP for the object detectors on images from our analyzed drive
cycles, with all detectors trained on the MS-COCO dataset. It can be observed that
the two-stage detectors (R-CNN, Fast R-CNN, and Faster R-CNN have a higher
accuracy than the single stage detectors (SSD, YOLOv3). However, the inference
time for the two-stage detector is significantly higher than for the single stage
detectors. For real-time object detection in vehicles, it is crucial to be able to detect
objects with low latency, typically less than 100 ms [35]. As a result, single stage
detectors are preferable, with YOLOv3 achieving slightly better accuracy and lower
inference time than SSD. However, in some scenarios, delayed detection can still be
better than not detecting or wrongly detecting an object (e.g., slightly late blindspot
warning is still better than receiving no warning) in which case the slower but
more accurate two-stage detectors may still be preferable. Our PASTA framework is
aware of this inherent trade-off and factors in the detection accuracy and rate of late
detection in performance evaluation metrics (Sect. 4.2) to explore both single-stage
and two-stage detectors. Also, detectors with a higher mAP value sometimes did not
detect objects that other detectors with a lower mAP were able to; thus, we consider
all five detectors in our exploration.

Next, we explored the importance of global co-optimization for our problem.
We select the genetic algorithm (GA) variant of our framework to explore the
entire design space (GA-PASTA) and compared it against five other frameworks.
Frameworks GA-PO and GA-OP use the GA but perform a local (sequential) search
for sensor design. In GA-PO, sensor position is explored before orientation, while in
GA-OP the orientation for fixed sensor locations (based on industry best practices) is
explored before adjusting sensor positions. For both frameworks, the object detector
used was fixed to YOLOv3 due to its sub-100 ms inference latency and reasonable
accuracy, while the extended Kalman filter (EKF) was used for sensor fusion due to
its ability to efficiently track targets following linear or non-linear trajectories. The
framework GA-VESPA is from prior work [12] and uses GA for exploration across
sensor positions and orientations simultaneously, with the YOLOv3 object detector
and EKF fusion algorithm. Frameworks GA-POD and GA-POF use GA for a more

640 J. Dey and S. Pasricha

comprehensive exploration of the design space. GA-POD simultaneously explores
the sensor positioning, orientation, and object detectors, with a fixed EKF fusion
algorithm. GA-POF simultaneously explores the sensor positioning, orientation, and
sensor fusion algorithm, with a fixed YOLOv3 fusion algorithm.

Figure 7a depicts the average cost of solution populations (lower is better) for
the BMW-Minicooper across the different frameworks plotted against the number
of iterations, with each exploration lasting between 80–100 h. It can be observed
that GA-PO performs better than GA-OP, which confirms the intuitive importance
of exploring sensor positioning before adjusting sensor orientations. GA-VESPA
outperforms both GA-PO and GA-OP, highlighting the benefit of co-exploration
of sensor position and orientation over a local sequential search approach used in
GA-PO and GA-OP. GA-POD and GA-POF in turn outperform these frameworks,
indicating that decisions related to object detection and sensor fusion can have
a notable impact on perception quality. GA-POD terminates with its solution set
having a lower average cost than GA-POF, which indicates that co-exploration of
object detection and sensor placement/orientation is slightly more effective than
co-exploration of sensor fusion and sensor placement/orientation. Our proposed
GA-PASTA framework achieves the lowest average cost solution, highlighting the
tremendous benefit that can be achieved from co-exploring sensor position/orien-
tation, object detection, and sensor fusion algorithms. Figure 7b summarizes the
objective function cost of the best solution found by each framework, which aligns
with the population-level observations from Fig. 7a.

The comparative analysis for the BMW-Minicooper was repeated three times
with different initializations for all six frameworks, and the results for the other two
runs show a consistent trend with the one shown in Fig. 7. Note also that the relative
trend across frameworks observed for the Audi-TT is similar to that observed for
the BMW-Minicooper, and thus the results for the Audi TT are omitted for brevity.

In the next experiment, we explored the efficacy of different design space
exploration algorithms (GA, DE, and FA; see Sect. 4.4) to determine which
algorithm can provide optimal perception architecture solutions across varying
vehicle models. Figure 8 shows the results for the three variants of the PASTA
framework, for the Audi-TT and BMW-Minicooper vehicles. The best solution
was selected across three runs of each algorithmic variant (variations for the best
solution across runs are highlighted with confidence intervals, with bars indicating
the median). It can be seen that for both considered vehicle models the FA algorithm
outperforms the DE and GA algorithms. For Audi-TT, the best solution found by
FA improves upon the best solution found with DE and GA by 18.34% and 14.84%,
respectively. For the BMW-Minicooper the best solution found by FA outperforms
the best solution found by DE and GA by 3.16% and 13.08%, respectively. Figure
9a depicts the specific sensor placement locations for each vehicle type, with a
visualization of sensor coverage for the best solutions found by each algorithm
shown in Fig. 9b.

Finally, in our quest to further improve perception architecture synthesis in
PASTA, we focused on a more nuanced exploration of the object detector design
space. We selected the FA search algorithm due to its superior performance over

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 641

12

10

8

6

4

2

0

0

1

2

3

4

5

0 500 1000 1500 2000 2500

A
ve

ra
ge

 c
os

t o
f p

op
ul

at
io

n

:GA-PASTA
:GA-PO
:GA-OP
:GA-POF

a

b

:GA-POD
:GA-VESPA

GA-PASTA GA-PO GA-OP GA-POF GA-POD VESPA

Iterations

C
os

t (
w

ei
gh

te
d

er
ro

r)

14

Fig. 7 (a) Comparison of perception architecture exploration frameworks; (b) Cost of best
solution from each framework

GA and DE, and modified FA-PASTA to integrate a neural architecture search
(NAS) for the YOLOv3 object detector, with the aim of further improving YOLOv3
accuracy across drive cycles while maintaining its low detection latency. Our
NAS for YOLOv3 involved transfer learning to retrain network layers with a
dataset consisting of 6000 images obtained from the KITTI dataset, using the open
source tool CADET [36]. The NAS hyperparameters that were explored involved

642 J. Dey and S. Pasricha

Fig. 8 Comparison of three variants of PASTA framework with genetic algorithm (GA), differen-
tial evolution (DE), and Firefly algorithm (FA)

Fig. 9 (a) Sensor placement for best solution found with FA algorithm (top yellow vehicle: BMW-
Minicooper, bottom red vehicle: Audi-TT) (top); (b) Sensor coverage for best solutions found by
GA, DE, and FA search algorithms (bottom)

the number of layers to unfreeze and retrain (from a total of 53 layers in the
Darknet-53 backbone used in YOLOv3; Fig. 10a), along with the optimizer learning
rate, momentum, and decay. The updated variant of our framework, FA-NAS-

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 643

a

ShortcutInput image
Shortcut

Upsample
1/32 1/16 1/8

1/2 1/4 1/8 1/16

Darknet-53 backbone
Detection

Detection layers

b
1.6

: FA-PASTA
1.4

: FA-NAS-PASTA
1.2

C
os

t (
w

ei
gh

te
d

er
ro

r)

1.0

0.8

0.6

0.4

0.2

0.0
Audi TT BMW Minicooper

Fig. 10 (a) YOLOv3 object detector architecture with Darknet-53 backbone network that was
fine-tuned using neural architecture search (NAS); (b) results of integrating object detector NAS
with PASTA

PASTA, considered these YOLOv3 hyperparameters along with the sensor positions
and orientations, and sensor fusion algorithms, during iterative evolution of the
population of candidate solutions in the FA algorithm.

644 J. Dey and S. Pasricha

Figure 10b shows the results of this analysis for the two vehicles considered.
FA-PASTA is the best performing variant of our framework (from Fig. 8), while
FA-NAS-PASTA is the modified variant that integrates NAS for YOLOv3. It
can be observed that fine tuning the YOLOv3 object detector during search
space exploration in FA-NAS-PASTA leads to notable improvements in the best
perception architecture solution, with up to 14.43% and 21.13% improvement in
performance for the Audi-TT and BMW-Minicooper, compared to PASTA-FA.

6 Conclusions

In this chapter, we propose an automated framework called PASTA that is capable of
generating perception architecture designs for modern
semi-autonomous vehicles. PASTA has the ability to simultaneously co-optimize
locations and orientations for sensors, optimize object detectors, and select sensor
fusion algorithms for a given target vehicle. Our experimental analysis showed how
PASTA can synthesize optimized perception architecture solutions for the Audi
TT and BMW Minicooper vehicles, while outperforming multiple semi-global
exploration techniques. Integrating neural architecture search for the object detector
in PASTA shows further promising improvements in solution quality. Our future
work will explore how to integrate PASTA with machine learning based techniques
for anomaly detection [38–43] and robust vehicle network scheduling [42–44] in
semi-autonomous vehicles.

References

1. NHTSA (National Highway Traffic Safety Administration), National Center for Statistics and
Analysis, “Data Estimates Indicate Traffic Fatalities Continued to Rise at Record Pace in First
Nine Months of 2021” (2022)

2. Gupta, A., Anpalagan, A., Guan, L., Khwaja, A.S.: Deep learning for object detection and
scene perception in self-driving cars: Survey, challenges, and open issues. Array. 10, 100057
(2021)

3. Feng, D., Harakeh, A., Waslander, S.L., Dietmayer, K.: A Review and Comparative Study
on Probabilistic Object Detection in Autonomous Driving, vol. 23, pp. 9961–9980. IEEE
Transactions on Intelligent Transportation Systems (2021)

4. Kukkala, V., Tunnell, J., Pasricha, S.: Advanced driver assistance systems: A path toward
autonomous vehicles. IEEE Cons. Electron. 7(5) (2018)

5. Zhexiang, Y., Jie, B., Sihan, C., Libo, H., Xin, B.: Camera-Radar Data Fusion for Target
Detection via Kalman Filter and Bayesian Estimation. SAE Technical Paper (2018)

6. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A Deep Learning-based Radar
and Camera Sensor Fusion Architecture for Object Detection. IEEE Sensor Data Fusion:
Trends, Solutions, Applications (SDF) (2020)

7. Verucchi, M., Bartoli, L., Bagni, F., Gatti, F., Burgio, P., Bertogna, M.: Real-time Clustering
and LiDAR-Camera Fusion on Embedded Platforms for Self-Driving Cars. IEEE International
Conference on Robotic Computing (IRC) (2020)

Machine Learning Based Perception Architecture Design for Semi-autonomous. . . 645

8. Meng, L., Yang, L., Tang, G., Ren, S., Yang, W.: An Optimization of Deep Sensor Fusion
Based on Generalized Intersection Over Union. International Conference on Algorithms and
Architectures for Parallel Processing, Springer (2020)

9. Meadows, W., Hudson, C., Goodin, C., Dabbiru, L., Powell, B., Doude, M., Carruth, D., Islam,
M., Ball, J.E., Tang, B.: Multi-LIDAR Placement, Calibration, Co-registration, and Processing
on a Subaru Forester for off-Road Autonomous Vehicles Operations. Autonomous Systems:
Sensors, Processing and Security for Vehicles and Infrastructure (2019)

10. Chen, H., Ling, P., Danping, Z., Kun, L., Yexuan, L., Yu, C.: An Optimal Selection of
Sensors in Multi-Sensor Fusion Navigation with Factor Graph. Ubiquitous Positioning, Indoor
Navigation and Location-Based Services (UPINLBS) (2018)

11. Ji-Qing, L., Sheng Fang, H., Shao, F., Zhong, Y., Hua, X.: Multi-scale Traffic Vehicle
Detection Based on Faster R–CNN with NAS Optimization and Feature Enrichment. Defence
Technology (2021)

12. Dey, J., Taylor, W., Pasricha, S.: VESPA: A Framework for Optimizing Heterogeneous Sensor
Placement and Orientation for Autonomous vehicles. IEEE Consumer Electronics Magazine
(2020)

13. Asher, Z., Tunnell, J., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S., Bradley,
T.H.: Enabling Prediction for Optimal Fuel Economy Vehicle Control. SAE International
(2018)

14. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards Improving Vehicle Fuel Economy
with ADAS. SAE International (2018)

15. SAE International Standard J3016, “Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles” (2018)

16. C. Kirchner, “Lane keeping assist explained,” Motor review, [Online]. Available: https://
motorreview.com/lane-keeping-assist-explained (2014)

17. Li, H., Zhao, G., Qin, L., Aizeke, H., Zhao, X., Yang, Y.: A survey of safety warnings under
connected vehicle environments. IEEE Trans. Intell. Transp. Syst. 22 (2020)

18. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object Detection with Deep Learning: A Review.
IEEE Transactions on Neural Networks and Learning Systems (2019)

19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: Unified, Realtime
Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016)

20. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient
and category-specific object detection: a survey. IEEE Signal Process. Mag. 35, 84–100 (2018)

21. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: “SSD: Single
Shot Multibox Detector”, European Conference on Computer Vision. Springer (2016)

22. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2014)

23. Girshick, R.: Fast R-CNN. Proceedings of the IEEE International Conference on Computer
Vision (2015)

24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards Real-Time Object Detection
with Region Proposal Networks. Advances in Neural Information Processing systems (NIPS)
(2015)

25. Fayyad, J., Jaradat, M.A., Gruyer, D., Najjaran, H.: Deep learning sensor fusion for
autonomous vehicle perception and localization: A review. Sensors. 20 (2020)

26. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions
of the American Society of Mechanical Engineers (ASME) –Journal of Basic Engineering.
(1960)

27. Simon, J., Uhlmann, J.: New Extension of the Kalman Filter to Nonlinear Systems. Signal
Processing, Sensor Fusion, and Target Recognition International Society for Optics and
Photonics (1997)

28. Yeong, D., Hernandez, G., Barry, J., Walsh, J.: Sensor and sensor fusion technology in
autonomous vehicles: A review. Sensors. 21 (2021)

 32220 25153 a 32220
25153 a

https://motorreview.com/lane-keeping-assist-explained

646 J. Dey and S. Pasricha

29. Wan, A., Merwe, R.: The Unscented Kalman Filter for Nonlinear Estimation. Proceedings of
the IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium
(2000)

30. Reeves, C.: Genetic Algorithms: Handbook of Metaheuristics. International Series in Opera-
tions Research & Management Science (2003)

31. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

32. Yang, X.S.: Firefly algorithms for multimodal optimization. Stochastic Algorithms: Founda-
tions and Applications (2009)

33. Zhou, G.D., Yi, T.H., Zhang, H., Li, H.N.: A Comparative Study of Genetic and Firefly
Algorithms for Sensor Placement in Structural Health Monitoring. Shock and Vibration (2015)

34. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An Open Urban
Driving Simulator. 1st Annual Conference on Robot Learning Conference on robot learning
(2017)

35. Brekke, Å., Vatsendvik, F., Lindseth, F.: Multimodal 3d Object Detection from Simulated
Pretraining. Symposium of the Norwegian Artificial Intelligence Society, Springer (2019)

36. Lin, S., Zhang, Y., Hsu, C., Skach, M., Haque, M., Tang, L., Mars, J.: The Architectural
Implications of Autonomous Driving: Constraints and Acceleration. Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming Languages
and Operating Systems (2018)

37. Dey, J., Pasricha, S.: Co-Optimizing Sensing and Deep Machine Learning in Automotive
Cyber-Physical Systems. IEEE Euromicro Conference on Digital Systems Design (2022)

38. Thiruloga, S.V., Kukkala, V.K., Pasricha, S.: TENET: Temporal CNN with Attention for
Anomaly Detection in Automotive Cyber-Physical Systems. IEEE/ACM Asia & South Pacific
Design Automation Conference (ASPDAC) (2022)

39. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: LATTE: LSTM Self-Attention Based Anomaly
Detection in Embedded Automotive Platforms. IEEE/ACM CODES+ISSS (ESWEEK)
(2021)

40. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: INDRA: Intrusion Detection Using Recurrent
Autoencoders in Automotive Embedded Systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, (TCAD). 39(11) (2020)

41. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: “Roadmap for Cybersecurity in Autonomous
Vehicles”, to Appear, vol. 11, pp. 13–23. IEEE Consumer Electronics (2022)

42. Kukkala, V., Pasricha, S., Bradley, T.H.: SEDAN: Security-aware design of time-critical
automotive networks. IEEE Transactions on Vehicular Technology (TVT). 69(8) (2020)

43. Kukkala, V., Pasricha, S., Bradley, T.H.: JAMS-SG: A framework for jitter-aware message
scheduling for time-triggered automotive networks. ACM Transactions on Design Automation
of Electronic Systems (TODAES). 24(6) (2019)

44. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS: Jitter-aware message scheduling for FlexRay
automotive networks. IEEE/ACM International Symposium on Networks-on-Chip (NOCS)
(2017)

	Machine Learning Based Perception Architecture Design for Semi-autonomous Vehicles
	1 Introduction
	2 Related Work
	3 Background
	3.1 ADAS Level 2 Autonomy Features
	3.2 Sensor Placement and Orientation
	3.3 Object Detection for Vehicle Environment Perception
	3.4 Sensor Fusion

	4 PASTA Architecture
	4.1 Overview
	4.2 Problem Formulation and Metrics
	4.3 Design Space Encoder/Decoder
	4.4 Design Space Exploration
	4.4.1 Genetic Algorithm (GA)
	4.4.2 Differential Evolution (DE)
	4.4.3 Firefly Algorithm (FA)

	4.5 Performance Evaluation

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	References

