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1 Introduction 

In 2021, it was reported that an estimated 31,730 people died in motor vehicle 
traffic crashed in the United States, representing an estimated increase of about 12 
percent compared to 2020 [1]. By eliminating the possibility of human driving errors 
through automation, advanced driver assistance systems (ADAS) are becoming a 
critical component in modern vehicles, to help save lives, improve fuel efficiency, 
and enhance driving comfort. ADAS systems typically involve a 4-stage pipeline 
involving sequential execution of functions related to perception, decision, control, 
and actuation. An incorrect understanding of the environment by the perception 
system can make the entire system prone to erroneous decision making, which can 
result in accidents due to imprecise real-time control and actuation. This motivates 
the need for a reliable perception architecture that can mitigate errors at the source 
of the pipeline and improve safety in emerging semi-autonomous vehicles. 

The standard SAE-J3016 effectively classifies the capabilities of a perception 
architecture supported by a vehicle according to their targeted level of autonomy. 
In general, an optimal vehicle perception architecture should consist of carefully 
defined location and orientation of each sensor selected from a heterogeneous 
suite of sensors (e.g., cameras, radars) to maximize environmental coverage in the 
combined field of view obtained from the sensors. In addition to ensuring accurate 
sensing via appropriate sensor placement, a high object detection rate and low false 
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Fig. 1 Breakdown of perception architecture design space

positive detection rate needs to be maintained using efficient deep learning-based 
object detection and sensor fusion techniques. 

State-of-the-art deep learning based object detection models are built with 
different network architectures, uncertainty modeling approaches, and test datasets 
over a wide range of evaluation metrics [2]. Object detectors that are capable of real 
time perception are resource-constrained by latency requirements, onboard memory 
capacity and computationally complexity. Optimizations performed to meet any one 
of these constraints often results in a trade-off with the performance of others [3]. As 
a result, comparison and selection from among the best set of deep learning based 
object detectors for perception applications remains a challenge. 

In real-world driving scenarios, the position of obstacles and traffic are highly 
dynamic, so after detection of an object, tracking is necessary to predict its 
new position. Due to noise from various sources there is an inherent uncertainty 
associated with the measured position and velocity. This uncertainty is minimized 
by using sensor fusion algorithms [4]. An important challenge with sensor fusion 
algorithms is that the complexity of tracking objects increases as the objects get 
closer, due to a much lower margin for error (uncertainty) in the vicinity of the 
vehicle. 

As summarized in Fig. 1, the design space of a vehicular perception architecture 
involves determining appropriate sensor selection and placement, object detection 
algorithms, and sensor fusion techniques. The possible configurations for each 
of these decisions is non-trivial and can easily lead to a combinatorial explosion 
of the design space, making exhaustive exploration impractical. Conversely, an 
optimization of each of these decisions individually before composing a final 
solution can lead to solutions that are sub-optimal and perform poorly in real 
environments. Perception architecture design depends heavily on the target features 
and use cases to be supported in the vehicle, making the already massive design 
space addressing the problem even larger and harder to traverse. Consequently, 
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today there are no generalized rules for the synthesis of perception architectures 
for vehicles. 

In this chapter, we describe a framework called PASTA (Perception Architecture 
Search Technique for ADAS), first introduced in [37], to perform perception archi-
tecture synthesis for emerging semi-autonomous vehicles. Our experimental results 
indicate that the proposed framework is able to optimize perception performance 
across multiple ADAS metrics, for different vehicle types. 

The main contributions in this chapter include: 

• A global co-optimization framework capable of synthesizing robust vehicle-
specific perception architecture solutions that include heterogeneous sensor 
placement, deep learning based object detector design, and sensor fusion algo-
rithm selection; 

• An exploration of various design space search algorithms tuned for the vehicle 
perception architecture search problem; 

• A fast and efficient method for co-exploration of the deep learning object detec-
tor hyperparameters, through adaptive and iterative environment- and vehicle-
specific transfer learning; 

• A comparative analysis of the framework efficiency across different vehicle 
models (Audi TT, BMW Minicooper). 

2 Related Work 

State-of-the-art semi-autonomous vehicles require robust perception of their envi-
ronment, for which the choice of sensor placement, object detection algorithms, 
and sensor fusion techniques are the most important decisions. These decisions 
are carefully curated to support ADAS features (e.g., blindspot warning, lane keep 
assist) that characterize the autonomy level to be supported by a vehicle under 
design. 

Many prior works have explored vehicle perception system design with different 
combinations of sensor types to overcome limitations that plague individual sensor 
types. The work in [5] used a single camera-radar pair for perception of headway 
distance using a Continental radar mounted on the geometric center of the front 
bumper and a Nextbase 512G monocular camera behind the windscreen. Vehicle 
detection was performed on the collected camera frames, by sorting potential 
candidates in a fixed trapezoidal region of interest in the horizontal plane. In 
[5] a camera-radar fusion based perception architecture was proposed for target 
acquisition with the well-known SSD (Single Shot Detection) object detector on 
consecutive camera frames. This allowed their perception system to differentiate 
vehicles from pedestrians in real time. The detection accuracy was optimized with 
the use of a Kalman filter and Bayesian estimation, which reduced computational 
complexity compared to [5]. In [6] a single neural network was used for fusion of 
all camera and radar detections. The proposed neural fusion model (CRF-Net) used 
an optimized training strategy similar to the ‘Dropout’ technique, where all input
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neurons for the camera data are simultaneously deactivated in random training steps, 
forcing the network to rely more on the radar data. The training focus towards radar 
overcame the bias introduced by starting with pre-trained weights from the feature 
extractor that was trained from the camera data. The work in [7] optimized merging 
camera detection with LiDAR processing. An efficient clustering technique inspired 
by the DBSCAN algorithm allowed for a better exploitation of features from the 
raw LiDAR point cloud. A fusion scheme was then used to sequentially merge the 
2D detections made by a YOLOv3 object detector using cylindrical projection with 
the detections made from clustered LiDAR point cloud data. In [8], an approach to 
fuse LiDAR and stereo camera data was proposed, with a post-processing method 
for accurate depth estimation based on a patch-wise depth correction approach. 
In contrast to the cylindrical projection of 2D detections in [7],  the work in [8] 
uses a projection of 3D LiDAR points into the camera image frame instead, which 
upsamples the projection image, creating a more dense depth map. 

All of the prior works discussed above optimize vehicle perception performance 
for rigid combinations of sensors and object detectors, without any design space 
exploration. Only a few prior works have (partially) explored the design space 
of sensors and object detectors for vehicle perception. An approach for optimal 
positioning and calibration of a three LiDAR system was proposed in [9]. The 
approach used a neural network to learn and qualify the effectiveness of different 
LiDAR location and orientations. The work in [10] proposed a sensor selection 
and exploration approach based on factor graphs during multi-sensor fusion. The 
work in [11] heuristically explored a subset of backbone networks in the Faster R-
CNN object detector for perception systems in vehicles. The work in [12] presented 
a framework that used a genetic algorithm to optimize sensor orientations and 
placements in vehicles. 

The optimized perception techniques discussed in [5–12] provide highly accurate 
detections which enable design of efficient energy management strategies for 
ADAS. The work in [13] derives a prediction mechanism for optimal energy 
management for ADAS using a nonlinear autoregressive artificial neural network 
(NARX). Multiple sources are used as input to the neural network such as data from 
drive cycle information, current vehicle state, global positioning system, travel time 
data and detected obstacles. In addition, dynamic programming is used to derive an 
optimal energy management control strategy which shows significant fuel economy 
improvements compared to highly accurate predictive baseline models. The work 
in [14] proposes a predictive optimal energy management strategy that leverages 
sensor data aggregation and dynamic programming to achieve vehicle fuel economy 
improvement for ADAS compared to existing vehicle control strategies. The work 
discussed in [13, 14] leverage existing ADAS technology in modern vehicles to 
realize prediction based optimal energy management, which enables fuel economy 
improvements for ADAS with minor modifications. 

Unlike prior works that fine-tune specific perception architectures, e.g., [5–8], 
or explore the sensing and object detector configurations separately, e.g [9–12]., 
this chapter proposes a holistic framework that jointly co-optimizes heterogeneous
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sensor placement, object detection algorithms, and sensor fusion techniques. To the 
best of our knowledge, this is the first effort that performs co-optimization across 
such a comprehensive decision space to optimize ADAS perception, with the ability 
to be tuned and deployed across multiple vehicle types. 

3 Background 

3.1 ADAS Level 2 Autonomy Features 

In this chapter, our exploration of perception architectures on a vehicle, henceforth 
referred to as an ego vehicle, targets four ADAS features that have varying degrees of 
longitudinal (i.e., in the same lane as the ego vehicle) and lateral (i.e., in neighboring 
lanes to the ego vehicle lane) sensing requirements. The SAE-J3016 standard [15] 
defines adaptive cruise control (ACC) and lane keep assist (LKA) individually 
as level 1 features, as they only perform the dynamic driving task in either the 
latitudinal or longitudinal direction of the vehicle. Forward collision warning (FCW) 
and blindspot warning (BW) are defined in SAE-J3016 as level 0 active safety 
systems, as they only enhance the performance of the driver without performing any 
portion of the dynamic driving task. However, when all four features are combined, 
the system can be described as a level 2 autonomy system. Figure 2 shows an 
overview of the four features we focus on for level 2 autonomy, which are discussed 
next. 

While modern ACC systems differ in their implementation and perception 
architectures, they take perform longitudinal control operations instead of the 
driver. The challenge in ACC is to maintain an accurate track of the lead vehicle 
(immediately ahead of the ego vehicle in the same lane) with a forward facing 
sensor and using longitudinal control to maintain the specified distance while 
maintaining driver comfort (e.g., avoiding sudden velocity changes). LKA (lane 
keep assist) systems determine whether the ego vehicle is drifting towards any lane 
boundaries and are an evolution of lane departure warning systems. LKA systems 
have been known to over-compensate, creating a “ping-pong” effect where the 
vehicle oscillates back and forth between the lane lines [16]. The main challenges in 
LKA are to reduce this ping-pong effect and the accurate detection of lane lines on 
obscured (e.g., snow covered) roads. FCW (forward collision warning) systems are 
used for real-time prediction of collisions with a lead vehicle. A critical requirement 
for FCW systems is that they avoid false positives and false negatives to improve 
driver comfort, safety and reduce rear end accidents [17]. Lastly, BW (blindspot 
warning) systems use lateral sensor data to determine whether there is a vehicle 
towards the rear on either side of the ego vehicle (Fig. 2) in a location the driver 
cannot see with their side mirrors. A perception architecture designed to support 
Level 2 autonomy in a vehicle should support all four of these critical features.
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Fig. 2 Visualization of common scenarios in ACC, FCW, LKA, and BW 

3.2 Sensor Placement and Orientation 

In order to capture data most relevant to each feature, a strategic sensor placement 
strategy must be used on the ego vehicle such that the chosen position and 
orientation of selected sensors maximize coverage (of the vehicle environment). 
Figure 2 visualizes an example of field of view coverage (in blue) corresponding 
to three unique placements of camera sensors on the body of the ego vehicle (in 
yellow, lower images) to meet coverage goals. For the ACC and FCW features, 
the ego vehicle is responsible for slowing down to maintain a minimum separation 
between the ego and lead vehicle. The camera must be positioned somewhere on the 
front bumper to measure minimum longitudinal separation accurately while keeping
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the lead vehicle in the desired field of view. For LKA, there is a need to maintain a 
safe minimum lateral distance between non-ego vehicles in neighboring lanes. Here 
a front camera is needed to extract lane line information, while side cameras are 
required for tracking this minimum lateral separation. As BW requires information 
about a specific area near the rear of the vehicle, it is a challenge to find an optimal 
sensor placement that maximizes the view of the blind spot. If the sensor is too 
far forward or too far back, it will miss key portions of the blind spots. Beyond 
placement, the orientation of sensors can also significantly impact coverage for all 
features [17]. Thus sensor placement and orientation remains a challenging problem. 

3.3 Object Detection for Vehicle Environment Perception 

The two broad goals associated with deep learning based object detection are: 
determining spatial information (relative position of an object in the image) via 
localization followed by identifying which category that object instance belongs to 
via classification [18]. As an example, Fig. 3 shows object detection of multiple car 
instances (using the YOLOv3 deep learning based object detector [19]) by creating 
a bounding box around the ‘car’ object instances and predicting the object class 
as ‘car’. The pipeline of traditional object detection models can be divided into 
informative region selection, feature extraction, and classification [20]. Depending 
on which subset of these steps are used to process an input image frame, object 
detectors are classified as single-stage or two-stage. 

Modern single-stage detectors are typically composed of a feed-forward fully 
convolutional network that outputs object classification probabilities and box offsets 
(w.r.t. pre-defined anchor/bounding boxes) at each spatial position. The YOLO 
family of object detectors is a popular example of single-stage detectors [17]. SSD 
(single shot detection) is another example, based on the VGG-16 backbone [21]. 
An advantageous property of single-stage detectors is their very high detection 
throughput (e.g., ~40 frames per second with YOLO) that makes them suitable for 
real time scenarios. Two-stage detectors divide the detection process into separate 
region proposal and classification stages. The first stage involves identification of

Fig. 3 Example of vehicle (object) detection with YOLOv3 
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several regions in an image that have a high probability to contain an object using a 
region proposal network (RPN). In the second stage, proposals of identified regions 
are fed into convolutional networks for classification. Region-based CNN (R-CNN) 
is an example of a two-stage detector [22]. R-CNN divides an input image into 2000 
regions generated through a selective search algorithm, after which the selected 
regions are fed to a CNN for feature extraction followed by a Support Vector 
Machine (SVM) for classification. Fast R-CNN [23] and subsequently Faster R-
CNN [24] improved the speed of training as well as detection accuracy compared to 
R-CNN by streamlining the stages. 

Two-stage detectors have high localization and object recognition accuracy, 
whereas one-stage detectors achieve higher inference speed [25]. In this chapter, we 
considered both types of object detectors to exploit the latency/accuracy tradeoffs 
during perception architecture synthesis. 

3.4 Sensor Fusion 

Perception architectures that use multiple sensors in their sensing framework often 
must deal with errors due to imprecise measurements from one or more of the 
sensors. Conversely, errors can also arise when only a single sensor is used due 
to measurement uncertainties from insufficient spatial (occlusion) or temporal 
(delayed sensor response time) coverage of the environment. The Kalman filter 
is one of the most widely used sensor fusion state estimation algorithms that 
enables error-resilient tracking of targets [26]. The Kalman filter family is a set of 
recursive mathematical equations that provides an efficient computational solution 
of the least-squares method for estimation. The filters in this family have the 
ability to obtain optimal statistical estimations when the system state is described 
as a linear model and the error can be modeled as Gaussian noise. If the system 
state is represented as a nonlinear dynamic model as opposed to a linear model, 
a modified version of the Kalman filter known as the Extended Kalman Filter 
(EKF) can be used, which provides an optimal approach for implementing nonlinear 
recursive filters [27]. However, for real time ADAS operations the computation of 
the Jacobian (matrix describing the system state) in EKF can be computationally 
expensive and contribute to measurement latency. Further, any attempts to reduce 
the cost through techniques like linearization makes the performance unstable [28]. 
The unscented Kalman filter (UKF) is another alternative that has the desirable 
property of being more amenable to parallel implementation [29]. In our design 
space exploration of perception architecture, we explore the family of Kalman filters 
as candidates for sensor fusion.
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4 PASTA Architecture 

4.1 Overview 

Figure 4 presents a high-level overview of our proposed PASTA framework. The 
heterogeneous sensors, object detection model library, sensor fusion algorithm 
library, and physical dimensions of the vehicle model are inputs to the frame-
work. An algorithmic design space exploration is used to generate a perception 
architecture solution which is subsequently evaluated based on a cumulative score 
from performance metrics relevant to the ADAS autonomy level being targeted. 
As part of the framework, we evaluate the search efficacy of three design space 
search exploration algorithms: genetic algorithm (GA), differential evolution (DE), 
and the firefly algorthm (FA). The process of perception architecture generation 
and evaluation iterates until an algorithm-specific stopping criteria is met, at which 
point the best design points are output. The following subsections describe each 
component of our framework in detail. 

4.2 Problem Formulation and Metrics 

In our framework, for a given vehicle, a design point is defined as a perception 
architecture that is a combination of three components: a sensor configuration which 
involves the fixed deployment position and orientation of each sensor selected for 
the vehicle, an object detector algorithm, and a sensor fusion algorithm. The goal is 
to find an optimal design point for the given vehicle that minimizes the cumulative

Fig. 4 An overview of the proposed PASTA framework 
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error across eight metrics that are characteristic of the ability to track and detect 
non-ego vehicles across road geometries and traffic scenarios. 

The eight selected metrics are related to our goal of supporting level 2 autonomy 
with the perception architecture. In the descriptions of the metrics below, the ground 
truth refers to the actual position of the non-ego vehicles (traffic in the environment 
of the ego vehicle). The metrics can be summarized as: (1) longitudinal position 
error and (2) lateral position error: deviation of the detected positional data from 
the ground truth of non-ego vehicle positions along the y and x axes, respectively; 
(3) object occlusion rate: the fraction of passing non-ego vehicles that go undetected 
in the vicinity of the ego vehicle; (4) velocity uncertainty: the fraction of times that 
the velocity of a non-ego vehicle is measured incorrectly; (5) rate of late detection: 
the fraction of the number of ‘late’ non-ego vehicle detections made over the total 
number of non-ego vehicles. Late detection is one that occurs after a non-ego vehicle 
crosses the minimum safe longitudinal or lateral distance, as defined by Intel RSS 
safety models for pre-crash scenarios GA is a popular evolutionary algorithm that 
can solve optimization problems by mimicking the process of natural selection 
[30].2. This metric directly factors in the trade-off between latency and accuracy 
for object detector and fusion algorithms; (6) false positive lane detection rate: the 
fraction of instances when a lane marker is detected but there exists no ground truth 
lane; (7) false negative lane detection rate: the fraction of instances when a ground 
truth lane exists but is not detected; and (8) false positive object detection rate: 
the fraction of total vehicle detections which were classified as non-ego vehicle 
detections but did not actually exist. 

4.3 Design Space Encoder/Decoder 

The design space encoder receives a set of random initial design points as input 
which are expressed as a vector. This encoded format is best suited for various 
kinds of rearrangement and splitting operations during design space exploration. 
The encoder adapts the initial selection of inputs for our design space such that a 
design point is defined by the location and orientation of each sensor’s configuration 
(consisting of six parameters: x, y, z, roll, pitch, and yaw), together with the object 
detector and fusion algorithm. The design space decoder converts the solutions into 
the same format as the input so that the output perception architecture solution(s) 
found can be visualized with respect to the real-world co-ordinate system. 

4.4 Design Space Exploration 

The goal of a design space exploration algorithm in our framework is to generate 
perception architectures (design points) which are aware of feature to field of view 
(FOV) zone correlations around an ego vehicle. Figure 5a shows the 10 primary
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(a) (b) (c) 

Feature Region Zone 

BW B, H, I 1, 2, 3,10 
LKA E, I 3,4,5 

D, H 8, 9, 10 
ACC , 
FCW 

A, B,C 6, 7 

Fig. 5 (a) Field of view (FOV) zones; (b) sensor placement regions; (c) feature, region, and zone 
relationship 

FOV zones around the ego-vehicle. These zones of interest are defined as the 
most important perception areas in the environment for a particular ADAS feature. 
Figure 5b shows the regions on the vehicle on which sensors can be mounted (in 
blue). Regions F and G (in yellow) are exempt from sensor placement due to the 
mechanical instability of placing sensors on the door of a vehicle. The correlation 
between ADAS features, zones, and regions, is shown in Fig. 5c. For exploration 
of possible locations within a region, a fixed step size of 2 cm in two dimensions 
across the surface of the vehicle is considered, which generates a 2D grid of 
possible positions in each zone shown in Fig. 5b. The orientation exploration of 
each sensor involves rotation at a fixed step size of 1 degree between an upper 
and lower bounding limit for roll, pitch, and yaw respectively, at each of these 
possible positions within the 2D grid. The orientation exploration limits were chosen 
with caution with the caveat that some sensors, such as long range radars, have an 
elevated number of recorded false positives with extreme orientations. 

To get a sense of the design space, consider four sensors (e.g., two cameras and 
two radars). Just the determination of the optimal placement and orientation of 
these sensors involves exploring 1.24e+26C4 and 7.34e+25C4 configurations for the 
Audi-TT and BMW-Minicooper vehicles, respectively. Coupled with the choice 
of different object detectors and sensor fusion algorithms, the resulting massive 
design space cannot be exhaustively traversed in a practical amount of time, 
necessitating the use of intelligent design space search algorithms that support hill 
climbing to escape local minima. In our framework, we explored three evolutionary 
algorithms: (1) Genetic Algorithm (GA), (2)  Differential Evolution (DE), and 
the (3) Firefly Algorithm (FA). As shown in Fig. 4, each algorithm generates a 
solution set of size ‘P’ at every iteration until the termination criteria is met. The 
algorithms simultaneously co-optimize sensor configuration, object detection, and 
sensor fusion, and proceed to explore new regions of the design space when the 
termination (perception) criteria is not met. We briefly describe the three algorithms 
below.
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4.4.1 Genetic Algorithm (GA) 

GA is a popular evolutionary algorithm that can solve optimization problems by 
mimicking the process of natural selection [30]. Initially, the GA randomly selects 
a solution set of fixed size referred to as the population and then improves the 
quality of the candidate solutions in each iteration by modifying them using various 
GA operations. GA has the ability to optimize problems where the design space 
is discontinuous and also if the cost function is non differentiable. In our GA 
implementation, in the selection stage, the cost function values are computed for 
50 design points at a time, and a roulette wheel selection method is used to select 
which set of chromosomes will be involved in the crossover step based on their 
cost function probability value (fraction of the cumulative cost function sum of 
all chromosomes considered in the selection). In the crossover stage, the crossover 
parameter is set to 0.5, allowing half of the 50 chromosomes to produce offspring. 
The mutation parameter is set to 0.2 which determines the new genes allowed for 
mutation in each iteration. 

4.4.2 Differential Evolution (DE) 

Differential Evolution (DE) [31] is another stochastic population-based evolutionary 
algorithm that takes a unique approach to mutation and recombination. An initial 
solution population of fixed size is selected randomly, and each solution undergoes 
mutation and then recombination operations. DE generates new parameter vectors 
by adding the weighted difference between two population vectors to a third 
vector to achieve difference vector-based mutation. Next, crossover is performed, 
where the mutated vector’s parameters are mixed with the parameters of another 
predetermined vector, the target vector, to yield a trial vector. If the trial vector 
yields a lower cost function value than the target vector, the trial vector replaces the 
target vector in the next generation. To ensure that better solutions are selected only 
after generation of all trial vectors at every iteration, greedy selection is performed 
between the target vector and trial vector. Unlike GA where parents are selected 
based on fitness, every solution in DE takes turns to be one of the parents [30]. In 
our DE implementation, we set initial population size to 50 and use a crossover 
probability of 0.8 to select candidates participating in crossover. 

4.4.3 Firefly Algorithm (FA) 

FA is a swarm-based metaheuristic [32] that has shown superior performance 
compared to GA for certain problems [33]. In FA, a solution is referred to as a firefly. 
The algorithm mimics how fireflies interact using flashing lights (bioluminescence). 
The algorithm assumes that the attractiveness of a firefly is directly proportional to 
its brightness which depends on the fitness function value. Further, a given firefly 
can be attracted by any other firefly in the design space irrespective of the gender of
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both. Initially, a random solution set is generated and the fitness (brightness) of each 
candidate solution is measured. In the design space, a firefly is attracted to another 
with higher brightness (more fit solution), with brightness decreasing exponentially 
over distance. FA is significantly different from DE and GA, as both exploration 
of new solutions and exploitation of existing solutions to find better solutions is 
achieved using a single position update step. 

4.5 Performance Evaluation 

Each iteration of the design space exploration involves performance evaluation of 
the generated solution set where each design point undergoes multiple drive cycles. 
A drive cycle here refers to a virtual simulation involving an ego-vehicle (with 
a perception architecture under evaluation) following a fixed set of waypoint co-
ordinates, while performing object detection and sensor fusion on the environment 
and other non-ego vehicles. A total of 20 different drive cycles were considered, 
with 5 drive cycles customized for each ADAS feature. As an example, drive cycles 
for ACC and FCW involve an ego vehicle following different lead vehicles at 
different distances, velocities, weather conditions, and traffic profiles. The fitness 
of the perception architectures generated by the framework are computed using the 
cumulative metric scores (Sect. 4.2) across the drive cycles. 

5 Experiments 

5.1 Experimental Setup 

To evaluate the efficacy of the PASTA framework we performed experiments in 
the open-source simulator CARLA (Car Learning to Act) implemented as a layer 
on Unreal Engine 4 (UE4) [34]. The UE4 engine provides state-of-the-art physics 
rendering for highly realistic driving scenarios. We leveraged this tool to design 
a variety of drive cycles that are roughly 5 min long and contain scenarios that 
commonly arise in real driving environments, including adverse weather conditions 
(rain, fog) and a few overtly aggressive/conservative driving styles observed with 
vehicles. To ensure generalizability, we consider a separate set of test drive cycles to 
evaluate solution quality, which are different from the optimization drive cycles used 
iteratively by the framework to generate optimized perception architecture solutions. 

We target generating perception architectures to meet level 2 autonomy goals 
for two vehicle models: Audi-TT and BMW-Minicooper (Fig. 6). A maximum of 4 
mid-range radars and 4 RGB cameras are considered in the design space, where
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Fig. 6 BMW Minicooper (top) and Audi TT (bottom) 

each sensor can be placed in any zone (Fig. 5a, b). Using a greater number of 
these sensors led to negligible improvements for the level 2 autonomy goal. The 
RGB cameras possess 90◦ field of view, 200 fps shutter speed, and image resolution 
of 800 × 600 pixels. The mid-range radars selected generate a maximum of 1500 
measurements per second with a horizontal and vertical field of view of 30◦ and a 
maximum detection distance of 100 m. We considered 5 different object detectors 
(YOLOv3, SSD, R-CNN, Fast R-CNN, and Faster R-CNN) and 3 sensor fusion 
algorithms (Kalman filter, Extended Kalman filter, and Unscented Kalman filter). 
For the design space exploration algorithms, the cost function was a weighted sum 
across the eight metrics discussed in Sect. 4.2, with the weight factor for each metric 
chosen on the basis of their total feature-wise cardinality across all zones shown in 
Fig. 5c. During design space exploration, if the change in average cost function 
value was <5% over 250 iterations, the search was terminated. All algorithmic 
exploration was performed on an AMD Ryzen 7 3800X 8-Core CPU desktop with 
an NVIDIA GeForce RTX 2080 Ti GPU.
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Table 1 Object detector latency and accuracy comparison 

Object detector Latency GPU (ms) Latency CPU (ms) mAP(%) 

R-CNN 48956.18 66090.83 73.86 
Fast R-CNN 1834.71 2365.86 76.81 
Faster R-CNN 176.99 286.72 79.63 
SSD 53.25 70.32 70.58 
YOLOv3 24.03 32.92 71.86 

5.2 Experimental Results 

In the first experiment, we explored the inference latency and accuracy in terms of 
mean average precision (mAP) for the five different object detectors considered in 
this chapter. Table 1 summarizes the inference latency on a CPU and GPU, as well 
as the accuracy in mAP for the object detectors on images from our analyzed drive 
cycles, with all detectors trained on the MS-COCO dataset. It can be observed that 
the two-stage detectors (R-CNN, Fast R-CNN, and Faster R-CNN have a higher 
accuracy than the single stage detectors (SSD, YOLOv3). However, the inference 
time for the two-stage detector is significantly higher than for the single stage 
detectors. For real-time object detection in vehicles, it is crucial to be able to detect 
objects with low latency, typically less than 100 ms [35]. As a result, single stage 
detectors are preferable, with YOLOv3 achieving slightly better accuracy and lower 
inference time than SSD. However, in some scenarios, delayed detection can still be 
better than not detecting or wrongly detecting an object (e.g., slightly late blindspot 
warning is still better than receiving no warning) in which case the slower but 
more accurate two-stage detectors may still be preferable. Our PASTA framework is 
aware of this inherent trade-off and factors in the detection accuracy and rate of late 
detection in performance evaluation metrics (Sect. 4.2) to explore both single-stage 
and two-stage detectors. Also, detectors with a higher mAP value sometimes did not 
detect objects that other detectors with a lower mAP were able to; thus, we consider 
all five detectors in our exploration. 

Next, we explored the importance of global co-optimization for our problem. 
We select the genetic algorithm (GA) variant of our framework to explore the 
entire design space (GA-PASTA) and compared it against five other frameworks. 
Frameworks GA-PO and GA-OP use the GA but perform a local (sequential) search 
for sensor design. In GA-PO, sensor position is explored before orientation, while in 
GA-OP the orientation for fixed sensor locations (based on industry best practices) is 
explored before adjusting sensor positions. For both frameworks, the object detector 
used was fixed to YOLOv3 due to its sub-100 ms inference latency and reasonable 
accuracy, while the extended Kalman filter (EKF) was used for sensor fusion due to 
its ability to efficiently track targets following linear or non-linear trajectories. The 
framework GA-VESPA is from prior work [12] and uses GA for exploration across 
sensor positions and orientations simultaneously, with the YOLOv3 object detector 
and EKF fusion algorithm. Frameworks GA-POD and GA-POF use GA for a more
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comprehensive exploration of the design space. GA-POD simultaneously explores 
the sensor positioning, orientation, and object detectors, with a fixed EKF fusion 
algorithm. GA-POF simultaneously explores the sensor positioning, orientation, and 
sensor fusion algorithm, with a fixed YOLOv3 fusion algorithm. 

Figure 7a depicts the average cost of solution populations (lower is better) for 
the BMW-Minicooper across the different frameworks plotted against the number 
of iterations, with each exploration lasting between 80–100 h. It can be observed 
that GA-PO performs better than GA-OP, which confirms the intuitive importance 
of exploring sensor positioning before adjusting sensor orientations. GA-VESPA 
outperforms both GA-PO and GA-OP, highlighting the benefit of co-exploration 
of sensor position and orientation over a local sequential search approach used in 
GA-PO and GA-OP. GA-POD and GA-POF in turn outperform these frameworks, 
indicating that decisions related to object detection and sensor fusion can have 
a notable impact on perception quality. GA-POD terminates with its solution set 
having a lower average cost than GA-POF, which indicates that co-exploration of 
object detection and sensor placement/orientation is slightly more effective than 
co-exploration of sensor fusion and sensor placement/orientation. Our proposed 
GA-PASTA framework achieves the lowest average cost solution, highlighting the 
tremendous benefit that can be achieved from co-exploring sensor position/orien-
tation, object detection, and sensor fusion algorithms. Figure 7b summarizes the 
objective function cost of the best solution found by each framework, which aligns 
with the population-level observations from Fig. 7a.

The comparative analysis for the BMW-Minicooper was repeated three times 
with different initializations for all six frameworks, and the results for the other two 
runs show a consistent trend with the one shown in Fig. 7. Note also that the relative 
trend across frameworks observed for the Audi-TT is similar to that observed for 
the BMW-Minicooper, and thus the results for the Audi TT are omitted for brevity. 

In the next experiment, we explored the efficacy of different design space 
exploration algorithms (GA, DE, and FA; see Sect. 4.4) to determine which 
algorithm can provide optimal perception architecture solutions across varying 
vehicle models. Figure 8 shows the results for the three variants of the PASTA 
framework, for the Audi-TT and BMW-Minicooper vehicles. The best solution 
was selected across three runs of each algorithmic variant (variations for the best 
solution across runs are highlighted with confidence intervals, with bars indicating 
the median). It can be seen that for both considered vehicle models the FA algorithm 
outperforms the DE and GA algorithms. For Audi-TT, the best solution found by 
FA improves upon the best solution found with DE and GA by 18.34% and 14.84%, 
respectively. For the BMW-Minicooper the best solution found by FA outperforms 
the best solution found by DE and GA by 3.16% and 13.08%, respectively. Figure 
9a depicts the specific sensor placement locations for each vehicle type, with a 
visualization of sensor coverage for the best solutions found by each algorithm 
shown in Fig. 9b.

Finally, in our quest to further improve perception architecture synthesis in 
PASTA, we focused on a more nuanced exploration of the object detector design 
space. We selected the FA search algorithm due to its superior performance over
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Fig. 7 (a) Comparison of perception architecture exploration frameworks; (b) Cost of best  
solution from each framework

GA and DE, and modified FA-PASTA to integrate a neural architecture search 
(NAS) for the YOLOv3 object detector, with the aim of further improving YOLOv3 
accuracy across drive cycles while maintaining its low detection latency. Our 
NAS for YOLOv3 involved transfer learning to retrain network layers with a 
dataset consisting of 6000 images obtained from the KITTI dataset, using the open 
source tool CADET [36]. The NAS hyperparameters that were explored involved
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Fig. 8 Comparison of three variants of PASTA framework with genetic algorithm (GA), differen-
tial evolution (DE), and Firefly algorithm (FA) 

Fig. 9 (a) Sensor placement for best solution found with FA algorithm (top yellow vehicle: BMW-
Minicooper, bottom red vehicle: Audi-TT) (top); (b) Sensor coverage for best solutions found by 
GA, DE, and FA search algorithms (bottom)

the number of layers to unfreeze and retrain (from a total of 53 layers in the 
Darknet-53 backbone used in YOLOv3; Fig. 10a), along with the optimizer learning 
rate, momentum, and decay. The updated variant of our framework, FA-NAS-
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Fig. 10 (a) YOLOv3 object detector architecture with Darknet-53 backbone network that was 
fine-tuned using neural architecture search (NAS); (b) results of integrating object detector NAS 
with PASTA 

PASTA, considered these YOLOv3 hyperparameters along with the sensor positions 
and orientations, and sensor fusion algorithms, during iterative evolution of the 
population of candidate solutions in the FA algorithm.
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Figure 10b shows the results of this analysis for the two vehicles considered. 
FA-PASTA is the best performing variant of our framework (from Fig. 8), while 
FA-NAS-PASTA is the modified variant that integrates NAS for YOLOv3. It 
can be observed that fine tuning the YOLOv3 object detector during search 
space exploration in FA-NAS-PASTA leads to notable improvements in the best 
perception architecture solution, with up to 14.43% and 21.13% improvement in 
performance for the Audi-TT and BMW-Minicooper, compared to PASTA-FA. 

6 Conclusions 

In this chapter, we propose an automated framework called PASTA that is capable of 
generating perception architecture designs for modern 
semi-autonomous vehicles. PASTA has the ability to simultaneously co-optimize 
locations and orientations for sensors, optimize object detectors, and select sensor 
fusion algorithms for a given target vehicle. Our experimental analysis showed how 
PASTA can synthesize optimized perception architecture solutions for the Audi 
TT and BMW Minicooper vehicles, while outperforming multiple semi-global 
exploration techniques. Integrating neural architecture search for the object detector 
in PASTA shows further promising improvements in solution quality. Our future 
work will explore how to integrate PASTA with machine learning based techniques 
for anomaly detection [38–43] and robust vehicle network scheduling [42–44] in  
semi-autonomous vehicles. 
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