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1 Introduction 

Advanced Driver Assistance Systems (ADAS) have the ability to prevent or reduce 
around 40% of all passenger vehicle incidents [1]. Some examples of ADAS 
include forward collision warning (FCW), automatic emergency braking (AEB), 
lane departure warning (LDW), lane-keeping assistance (LKA), and blind-spot 
warning assistance, among others. Since human error is the leading cause of road 
accidents [2], ADAS was designed to automate and improve aspects of the driving 
experience in order to increase road safety and safe driving habits. Lane-keeping 
systems detect reflective lane markers in front the vehicle and warn the driver via 
various audible, tactile, and/or visual cues if the vehicle deviates from its lane and no 
turn signals or steering movements are detected [3]. LDW/LKA systems can reduce 
head-on and single-vehicle collisions by 53% on highways with higher speed limits 
(45–75mph) with visible lane markings, according to a study of 1853 driver injury 
crashes [4, 5]. 11%–23% of drift-out-of-lane events and 13%–22% of critically 
to fatally injured drivers could have been prevented if the technology had been 
implemented at lower operating speeds (5–20mph), according to [6]. FCW and 
AEB alone significantly halve front-to-rear crashes [7]. By 2023, it is anticipated 
that the market for ADAS would be worth more than $30 billion [8] and that ADAS 
will not be limited to safety but will also enable improvements in vehicle efficiency 
[9–14]. 
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Despite the success of ADAS technology, there remains a glaring issue: 
adverse weather. In the United States, weather-related crashes accounted for 
21% (1,235,145) of all recorded crashes, 16% (5376) of crash fatalities, and 19% 
(418,005) of crash injuries between 2007 and 2016 [15]. Fundamentally, adverse 
weather conditions can hinder situational awareness and vehicular maneuverability 
in a variety of ways, depending on the type of adverse weather [15]. It is critical 
to recognize how various weather conditions can affect the ground transportation 
infrastructure. A current research problem is to develop strategies for operating 
ADAS in bad weather. Because there are significant safety implications, the first 
research gap is to recognize and classify road lanes during inclement weather in 
order to aid in the location of both the ego vehicle and other vehicles [16]. The 
difficulty is that inclement weather, such as heavy rain, snow, or fog, reduces 
the maximum range and signal quality of ADAS sensors, such as cameras, as it 
obscures the lane markings [16]. This issue has been illustrated with cameras and 
lidars in particular [17]. According to [4], LDW/LKA could further reduce head-on 
and single-vehicle collisions on roads with operating speeds of 45–75mph by 53% 
only if the roads had visible road markings and “the road surface was not coated 
by ice or snow.” The performance of new sensor technologies is improving, but not 
enough to address the issue of reliable ADAS operation in inclement weather [9]. 
To address this research gap, this study concentrates on the snow covered roads to 
keep the research scope reasonable. 

There are only a few significant studies that address the issue of reliable ADAS 
operation in snowy conditions. The first study created a customized snowy weather 
dataset and determined the driveable region using semantic segmentation [18]. 
When assessed on a non-snow dataset, the model’s mean Intersection over Union 
(mIoU) was 80%; when trained on a snowy dataset, mIoU fell to 19%. When 
both models were combined, mIoU was 83.3%. The model must be improved 
and strengthened because it analyzes the entire road rather than just the Region 
of Interest (ROI), which can be computationally costly. The second study used a 
CNN model with a predefined architecture and sensor fusion between the camera, 
lidar, and radar [19]. A dataset test showed an increase in driveable region detection 
(81.35%) and non-driveable region detection (93.85%) after combining data from 
several sensors. This is an improvement, but it has downsides, the most notable 
of which is that the method necessitates the use of more sensors, raising the cost 
and computational power required. Additionally, like the first study, this technique 
examines the full driveable zone rather than just a ROI [19]. In a third study, “You 
Only Look Once” (YOLO) was combined with a CNN and Federated Learning 
(FL) architecture to increase detection in inclement weather [20]. The Canadian 
Adverse Driving Conditions (CADC) dataset was used to evaluate this method. The 
average test accuracy of the model used in their study was 82.4%–88.1% . This 
model is based on the FL technique, which utilizes an edge server. The edge server 
transmits the initial parameters to the AVs after training a global YOLO CNN model 
on a publically available dataset. Following that, the AVs utilize these parameters to 
locally train the model on their own data. Once the local models are trained on each 
vehicle, they are sent back to the edge server. The training time of the FL approach
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is influenced by the number of AVs collecting data, the connection between the edge 
server and each vehicle, and the processing power of each vehicle. In addition, the 
vehicle has been fitted with eight cameras, resulting in an increase in price [20]. All 
of the above mentioned research provides strategies for enhancing the identification 
of objects and regions in the full driveable environment, but not necessarily the lane 
information. These studies are computationally and monetarily expensive and rely 
on several sensors. None of these studies offer precise, implementable driveable 
region detection for snow-covered roads using a single camera sensor in ADAS 
systems. Furthermore, custom data acquisition and labeling methods on a custom 
dataset are not included in these studies. A study addressing these difficulties and 
discussing unique CNN architectures to improve drivable region prediction with 
limited data is required. 

We devised a computationally efficient, cost-effective, and high-accuracy tech-
nique for extracting driveable region information from a single camera, a ubiquitous 
vehicle sensor, to address the adverse weather research gap for ADAS [17, 18]. 
Deep Learning (DL) approaches such as Convolutional Neural Network (CNN) have 
been established as the dominant paradigm in modern computer vision algorithms 
and applications, as well as in segmentation research. CNNs are a robust method 
of obtaining semantic segmentation, but are generally computationally intensive 
when compared to classical ML models. Classic ML models are faster at real-time 
compute speeds, but they require feature engineering and pre-processing, and they 
do not serve as an end-to-end solution for identifying the drivable region in snow-
covered lane lines, which we know from previous work [21]. To solve this problem, 
we will investigate DL techniques that need little or no feature engineering. For 
semantic segmentation, both supervised classical ML models and custom CNN 
models were created. Then, these methods for detecting tire marks in snow were 
compared. To broaden the scope of the research, we will build five different CNN 
architectures for determining the drivable region in snow-occluded lane lines using 
a single camera sensor. 

2 Methodology 

In this section, we will first discuss the methods we used to collect and prepare the 
data. The data that has been processed is then used to develop the classical ML 
models and the Deep Neural Network models 

2.1 Drive Cycles 

Figure 1 shows the route we chose which consisted of two-lane arterial roads in 
Kalamazoo that met our criteria for road characteristics. This drive cycle included 
of roads that are rarely cleaned following winter and are maintained at a much lower
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Fig. 1 Drive cycle for data collection in Kalamazoo, MI, USA which drives from the Western 
Michigan University’s college of engineering and applied sciences to Kalamazoo Valley Commu-
nity College which totals a distance of 5.56 miles along residential roads with speed limits of 
35mph 

rate than freeways and other multi-lane routes. We gathered the data during the 
winter of 2020. The lanes were obscured by snow and featured distinct tire track 
patterns, with tire tracks visible to expose the tarmac beneath . The road portion was 
chosen for its low traffic volume, two-lane configuration, and clearly visible lane 
markings during non-snowy conditions. 

2.2 Equipment and Instrumentation 

2.2.1 Camera Sensor 

The forward-facing ZED 2 RGB camera from Steroelabs was chosen for use in 
this study and is shown in Fig. 2a. The ZED 2 RGB camera was chosen firstly 
because it is a widely available commercial computer vision system. The ZED 2 
also features a 120-degree wide-angle lens for collecting images and videos. These 
camera parameters are beneficial as we have a lot of information to work with, 
and the wide angle capability of this camera allows us to have a lot of spatial 
information. The camera was set to capture video at 29 frames per second at a 
resolution of 1280 . × 720 pixels. This resolution was chosen because it was a fair 
compromise between image quality and image size. The ZED 2 was connected to 
the vehicle’s onboard computer, and data was collected. The dataset was created by
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Fig. 2 (a) The ZED 2 camera sensor [22] and  (b) The instrumented WMU EEAV lab research 
vehicles platform 

segmenting and extracting frames from the recorded videos of the drive cycle. The 
frames from the videos show the tire tracks and features on which the model must 
be trained. 

2.2.2 Vehicle Type 

The Energy Efficient and Autonomous Vehicles (EEAV) research vehicle platform, 
shown in Fig. 2b, was used to collect data. This platform is a 2019 Kia Niro and 
includes a forward-facing RGB camera, Polysync Drivekit, Neousys in-vehicle 
computer, vehicle Controller Area Network (CAN) bus interface and a Mobileye 
camera. 

2.3 Data Pipeline 

2.3.1 Data Preparation 

Nearly 15,000 RGB images were acquired; however, when the images were 
resampled from 30 to 5 Hz, the quantity was reduced. Resampling is carried out to 
reduce the amount of frames for labeling, which is followed by more quality control 
assessments (i.e., eliminating over-exposed, occluded, or poor resolution images). 
This resulted in a final dataset of 1500 frames. The images were separated into 
three batches, each with 500 images. This was done to make the next step easier, as 
splitting the images into batches and obtaining labels for each batch will allow for 
easier error correction during the labeling process.
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Fig. 3 A raw image annotated with CVAT’s interface and the corresponding ground truth label, 
CVAT offers multiple options such as polygons, poly lines and points to create the labeled masks 

2.3.2 Image Ground Truth Labeling 

The frames were then labeled in batches. The tire tracks on each frame were 
manually annotated using the Computer Vision Annotation Tool (CVAT), an open-
source web tool. Each batch’s labeled dataset was exported with their matching 
raw images in the CVAT for images 1.1 format. The raw images and an Extensive 
Markup Language (XML) file including the attributes for the labels, such as the 
position of the tire-track with their corresponding pixel location on the image, image 
file name, and assigned tags, were included in each exported dataset (tire-track, road, 
road-edge boundary). The exported labels were then used for post-processing and 
inputs to model training. Figure 3 shows a camera image with a CVAT toolbar and 
its corresponding ground truth label after CVAT annotation. 

2.3.3 Data Conditioning 

To build ML models, we must first preprocess the data and then extract features. 
Feature extraction is the process of transforming raw data into numerical features 
that the model can process while retaining original data information. This is done 
because it generates better results than applying machine learning straight to the raw 
dataset [23, 24]. Deep Neural Networks can carry out some basic feature engineering 
on their own as it is hard-coded into their architecture so in some cases they do not 
require any feature engineering at all [25]. 

To improve feature detection and reduce computational load, images were 
masked with a Region of Interest (ROI) that only included the road surface. As 
described in [17, 18], this is a reasonable approach because there are many methods 
that can detect road surface regions with high precision. We built similar road
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Raw Image Road ROI Masked ROI 

1) No.of pixels = 256*256 = 65536 px 2) ~ 95.3% reduction in pixels 3) Masked ROI + RGB image 

Fig. 4 Creating the static ROI and masking the ROI onto the raw image. The raw image includes 
.65,536 pixels after resizing to .256 × 256, creating a static ROI which only focuses on the road 
removes .95.3% pixels. Finally, the raw image is masked with the road ROI to give the masked 
ROI 

surface detection methods using a static ROI which works well for our chosen drive 
cycle. Figure 4 shows how to extract the ROI masked pictures. 

The Road ROI is 3099 pixels in size, accounting for less than 5% of the total 
pixels in the raw image. Following that, the ROI mask was fused with the raw 
image to acquire all of the pixels contained within the ROI. This will serve as the 
model’s input. Similar to our previous study, the different features recovered from 
the masked images include the red, green, blue, grayscale, and pixel X, Y values 
[21]. Figure 5 shows the overall process for data preparation for ML model training.

The feature vectors in Table 1 are organized into sets and selected as final inputs 
to the model. The results will indicate which features contribute the most to the 
model and perform the best. The dataset was split 55%–45% for training and testing. 
Input array .X = ((m × p), n) was used to train the complete model where m is the 
number of images, p is the number of pixels in each image’s ROI (3099 pixels for 
.256 × 256 images), and n is the number of feature vectors in the array.

2.4 Classical Machine Learning Models 

2.4.1 Model Description 

We used 6 different machine learning techniques to train the models. The first 
technique used is Decision Trees or Dtrees, which is a type of supervised machine 
learning technique that makes decisions and splits the dataset until all points/sets 
are isolated using a set of rules. The data is structured in a tree-like manner, with 
each dividing node representing a decision. When Dtrees is applied to our problem, 
it applies the rules and makes decisions based on these rules to classify pixels to 
be tire tracks or not tire tracks. The second technique used was Random Forest. 
Random forest is nothing but a number of decision trees on various subsets of 
the same dataset. It takes into consideration the average to improve the prediction 
accuracy of the dataset. The third technique used was the K-Nearest Neighbors 
(KNN). KNN, is based on the assumption that similar data points/classes occur



598 P. Kadav et al.

Raw Images Labels - Tire Tracks 

Step 7 - Image preprocessing 
Step 8 - Feature Extraction 

Feature Array - X 

n = no. of feature vectors in the feature 
vector. 

Label Vector - y 

shape: (m x p)xl dimensional 
binary vector array: 

0 = not tire track 
1 = tire track 

ML Model Training 

shape : (m x p)xn dimensional 

Fig. 5 This figure summarizes the image preprocessing and feature extraction from raw images . 
The feature array X, which contains the raw images as well as the number of feature vectors, and 
the label vector y, which contains a binary array with each value representing either a tire track 
or not a tire track, are the two inputs to the model training. This is known as the data preparation 
pipeline, and it will be used in the model training section

Table 1 Feature set properties 

Feature set Included feature vector 
Train array shape (m . =
1200) 

Test array shape (m . =
300) 

0 Gray (3,718,800, 1) (929,700, 1) 

1 Gray X loc, Y loc (3,718,800, 1) (929,700, 1) 

2 Red, Green, Blue (3,718,800, 3) (929,700, 3) 

3 Red, Green, Blue, X 
loc, Y loc 

(3,718,800, 5) (929,700, 5)
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in close proximity. Classes with comparable properties are close to one another, 
which is the assumption by KNN. The user specifies the K value, where K is 
the desired number of nearest neighbors. We also used other techniques such as 
linear regression classifier, logistic regression classifier and naive bayes classifier. 
Both logistic regression and naive bayes are probabilistic classifiers, which means 
they calculate probabilities of each element in the dataset whereas linear regression 
predicts continuous values for the elements. These models were chosen for their 
characteristics and capabilities in commuting binary classification [26–28]. Other 
models such as support vector machines do not perform well with large datasets so 
they were not included. 

2.4.2 Model Training 

We trained a variety of machine learning models by using our input features which 
were defined in the data pipeline section and their associated labels. The image pre-
processing and feature extraction block extracted the input feature array X and label 
vector y, which were then used as inputs to the machine learning model. Six distinct 
models, discussed in the classical ML model section were tested with each feature 
set (refer to Sect. 2.3.3) in order to discover the feature set/model combination that 
resulted in the best performance metrics. 

In total we have 24 different classical ML models that can be tested. The models 
were trained on a desktop machine with 16 GB of RAM, an Intel i7 processor, and an 
Nvidia GeForce GTX 1060 graphics on Ubuntu 20.04 LTS as the operating system. 

2.5 Deep Neural Network Models 

A wide range of tasks, including image recognition, natural language processing, 
and speech recognition, have been proven to be significantly improved by deep 
learning approaches. When compared to classical machine learning methods, deep 
networks scale effectively with data, do not necessitate feature engineering, are 
adaptable and transferable, and perform better on larger datasets with unbalanced 
classes [29]. 

CNNs are a sort of deep neural network whose architecture is designed to do 
feature extraction automatically, obviating the need for this step [30]. CNNs produce 
feature maps by performing convolutions to the input layers, which are subsequently 
passed to the next layer. CNNs, unlike classical machine learning approaches, 
can extract relevant features from raw data, removing the need for manual image 
processing [31, 32]. As previously indicated, our ML models were not an end-to-
end pipeline for tire track detection as they required feature engineering. In this 
study we look at using CNN’s to simplify the process and enhance overall accuracy. 

Figure 6 shows a basic convolutional neural network architecture with one 
convolutional layer and one max-pooling layer; we will discuss more about this
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Fully connected (Dense) 
Layer 

(5 x 5) Kernel 
padding = ‘valid’ (2 x 2) 

With Activation Function 
Fully connected 

Flattened 
output 

n3 units 
n3 = number of 

classes 
(if classification) 

INPUT 
(28 x 28 x 1) 

n1 filters/feature maps 
(24 x 24 x n1) 

n1 filters/feature maps 
(12 x 12 x n1) 

n2 units 

Convolution 1 
Max-Pooling 

Fig. 6 An example of a simple Convolutional Neural Network. The input image goes through a 
convolutional layer which has a specified kernel, the convolutional operation makes a feature map 
which includes important feature information from the input image. The Max-Pooling operation 
reduces the dimensions (halves the dimensions in this case) of the feature map. The feature maps 
are then flattened and passed through a fully connected layer with the output neurons equalling the 
number of classes/desired outputs 

in the coming sections. We only focus on CNNs in context of the images to keep the 
discussion simpler. 

Before we examine the various CNN architectures, we should examine the 
various types of model blocks; to simplify things, we will examine model blocks 
that can be combined to form various models. The convolutional block consists 
of a convolutional layer and a pooling layer to perform feature extraction. The 
convolution operation with a given filter size or a kernel size slides over the input 
data to perform an element-wise multiplication which is essentially matrix multi-
plication over the 2-dimensional data, the results inside the kernel are summed up 
into a single output. The pooling layer down-samples the dimensions of the feature 
maps, which are the outputs from the convolutional layers. The fully connected 
block performs classification tasks based on input from previous operations [33]. 
Recurrent, residual, and attention operations, explained in the next section will be 
added to the convolutional block to make different model architectures. 

2.6 Model Architectures 

We have examined the fundamentals of a deep neural network in the context of 
images, which in our case is a convolutional neural network (CNN), as well as 
the numerous operations that a CNN is capable of performing. In the following 
subsections, a standard U-Net architecture, different convolutional model blocks 
such as Recurrent, Residual, and Attention, and the concept of Backbones will be 
discussed.
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Outputs 

Conv. + Activation 

Conv. + Activation 

Conv. + Activation 

Conv. + Activation 

Conv. + Activation 
Conv. + Activation 

Inputs 

Outputs 

a b  c  

Inputs 

Outputs 

+ 

Inputs 

Standard convolutional 
block 

Recurrent 
convolutional block 

Residual convolutional 
block 

 

Fig. 7 (a) Standard convolutional block, (b) Recurrent convolutional block, and (c) Residual 
convolutional block

1. Standard U-Net 
2. Recurrent U-Net (Rec U-Net) 
3. Attention U-Net (Att U-Net) 
4. Residual Attention U-Net (Res-Att U-Net) 
5. Backbone U-Net 

2.6.1 Standard U-Net 

Figure 7a shows a standard convolutional block. The two red blocks are the 
convolutional layers with the respective activation function such as ‘ReLu’ or 
‘Sigmoid’. The inputs to these layers are tensors of shape .(w × h × c) where . w =
width of the image, h = height of the image , c = number of channels . 
The convolutional layers learn local patterns, which are patterns observed in 
the input windows. These windows are also known as kernels, and the patterns 
learned by these convolutions are transitionally invariant, which means that if the 
convolution learns one pattern somewhere, it may apply that knowledge in another 
place. This is why convolution layers outperform dense layers at recognizing image 
features. Figure 8 shows a sample code for a simple convolutional operation. 

Now that we have introduced the concept of a standard convolutional block, 
we can look at the model architecture. The standard convolutional neural network 
provides an output based on the number of neurons in the output layer, if we want 
a binary output such as 0,1 or Cat and Dog, the output layer will only have one 
neuron which states that the output can only be either one of the classes. In our 
case, to have an end-to-end solution of obtaining tire tracks as the output image 
from the raw image input, we have to upsample/upscale the layers to have the 
same shape as the input layer and preserve the spatial information at the same 
time. To accomplish this, we look at a U-Net architecture. The U-Net architecture
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Layer (type) 

>> model.summary() 

Output Shape Param# Connected to 

lambda (Lambda) 

conv2d (Conv2D) 

dropout (Dropout) 

conv2d_1 (Conv2D) 

(None, 256, 256, 3) 

================================================================ 

(None, 256, 256, 3) 

(None, 256, 256, 32) 

(None, 256, 256, 32) 

(None, 256, 256, 32) 

[] 
[‘input_1[0][0]’] 

[‘lambda[0][0]’] 

[‘conv2d[0][0]’] 

[‘dropout[0][0]’] 

0 

0 

0 

896 

9248 

input_1 (InputLayer) 

Fig. 8 Standard keras model summary for a standard convolutional block in a U-Net architecture

input 
image 

tile 

Encoder Block 

conv 3x3, ReLU 

output 
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x 
38
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Fig. 9 Standard U-Net architecture from [35] modified to support the discussion 

has been shown to perform exceptionally well in computer vision segmentation 
[34]. CNN’s fundamental assumption is to learn the feature mapping of an image 
and then utilize that knowledge to construct more sophisticated feature maps. This 
technique is effective for classification problems since it converts the image to a 
vector, which is subsequently classified. However, image segmentation requires not 
only the transformation of a feature map to a vector but also the reconstruction of 
an image from the vector. Figure 9 shows the standard U-Net architecture. The red 
box shows the encoder path and the blue box shows the decoder path. 

A standard convolutional block can either serve as an encoder or a decoder. The 
encoder path makes the input array smaller (also known as downsampling) with
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every max-pooling operation and doubles the feature maps. Conversely, the decoder 
path scales the input back to its original shape with every up-convolution operation. 

While converting an image to a vector, the U-Net architecture learns the image’s 
feature maps, which are then utilized to convert it back to an image. The contracting 
path or the encoder path is on the left side of the U-Net architecture, while the 
expansive path or the decoder path is on the right. After each downsampling block, 
the number of feature channels/filters doubles in order to learn more intricate 
structures from the previous layer’s output, while the image size reduces. This path 
is filled with numerous contraction blocks. Each block accepts the input and applies 
it to a .3×3 convolutional layer (where .n×n is also known as the kernel, n can be any 
number, usually it is common to see .n = 3 or 5) and with an activation function and 
padding (usually rectified linear unit or ‘ReLU’). A .2× 2 max-pooling layer is used 
for downsampling. We begin with 32 feature channels and increase them by a factor 
of two with each contraction block until we reach 512 feature channels, at which 
point we reach the expansive path. Each block in the expansive path (shown on the 
right) is composed of two .3× 3 convolution layers and one .2× 2 upsampling or up-
convolution layer with an activation function and padding. The input is concatenated 
by appending the feature maps of the matching encoder block to the corresponding 
decoder block as represented by the gray arrow connecting the two layers. Each 
block in the expansive path reduces the number of feature channels by half. In the 
final layer, a .1 × 1 convolution layer is applied, with the number of feature maps 
corresponding to the number of needed classes/segments. Additionally, we add a 
dropout layer between each convolution layer in the encoder and decoder blocks to 
combat overfitting. Note the number of feature channels and input size shown in the 
figure are not the same for every model. Depending on the requirements such as the 
input shape, the kernel size, feature channels, the parameters can be modified in the 
architecture. 

These general concepts of how a convolutional layer works and how it’s used 
in a neural network architecture like a U-Net to achieve image segmentation are 
important for development of the Recurrent and Residual Deep Neural Networks 
discussed next. We will now discuss the various convolutional blocks and operations 
that will result in different model architectures. 

2.6.2 Recurrent U-Net 

Figure 7b. shows an example of a recurrent convolutional block; the recurrent net-
work can store information over time by using the feedback connection represented 
by the arrows on the convolution layer. Even though the input is constant, the 
network in a recurrent convolutional layer can evolve over time. We can specify the 
number of iterations that the recurrent block must undergo. We simply substitute the 
standard convolution blocks with recurrent convolutional blocks in the encoder and 
the decoder path. 

Figure 10 shows a sample code for a recurrent convolutional operation. If we 
combine the recurrent convolutional block with a standard U-Net we get a recurrent
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>> model.summary() 

Layer (type) 
================================================================ 

Output Shape Param # Connected to 

[‘input_1[0][0]’] 

[] 

[‘conv2d[0][0]’] 

[‘conv2d_1[0][0]’] 

input_1 (InputLayer) 

conv2d (Conv2D) 

conv2d_1 (Conv2D) 

dropout (Dropout) 

add (Add) 

conv2d_2 (Conv2D) 

[(None, 256, 256, 3)] 0 
(None, 256, 256, 32) 128 

(None, 256, 256, 32) 9248 

(None, 256, 256, 32) 0 

(None, 256, 256, 32) 0 [‘dropout[0][0]’, 

‘conv2d[0][0]’] 

(None, 256, 256, 32) 

(None, 256, 256, 32) 

9248 [‘add[0][0]’] 

[‘conv2d_2[0][0]’,0 

conv2d_3 (Conv2D) 

add_1 (Add) 

max_pooling2d 

(MaxPooling2D) 

(None, 256, 256, 32) 
(None, 128, 128, 32) 

9248 

0 

‘conv2d[0][0]’, 

‘conv2d_3[0][0]’, 

‘conv2d[0][0]’] 

[‘add_1[0][0]’] 

[‘add_1[1][0]’] 

Fig. 10 Model summary of a recurrent convolutional operation 

convolutional U-Net (RCU-Net) which is shown in Fig. 11. In Fig. 11 we can see 
that the recurrent convolutional layers replace the standard convolutional layers to 
make the RCU-Net.

The recurrent convolutional layers will look at the same features throughout 
the provided recurrency number, in our instance the layers will look at the same 
characteristics of pixels having a tire track multiple times, which will help the model 
reinforce when its learning process is taking place. 

2.6.3 Attention U-Net (Att U-Net) 

In image segmentation training, attention is used to highlight only relevant activa-
tions. This saves processing resources and improves the network’s generalization 
power. Basically, the network may “focus” on selected areas of the image. We use 
Soft attention. Soft attention weighs different parts of the image. High relevance 
areas are given to areas of higher weight, whereas low relevance areas are given 
a lower weight. As the model learns, higher weighted regions get more attention 
[36, 37]. 

Figure 12 shows the overall layout of an attention gate along with the gating 
signal (g) and skip connection (x) Two inputs are required for the attention gate: 
x and g, g is the gating signal that originates at the network’s sub-layer. Since 
g originates from a deeper layer of the network, it contains a more complete
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Fig. 11 Recurrent U-Net architecture obtained from modifying the standard U-Net by replacing 
the standard convolutional blocks with recurrent convolutional blocks, original figure modified 
from [35]

ReLU (s 1) Sigmoid (s 2) Resampler 
Wg : 1x 1x 1 

g 
a 

b 
g 

x 
Ups. 

1x1, stride=(1,1), 
Filters = 128 

1x1, stride=(2,2), 
Filters = 128 

L X W x Features 
1x1, 
filters = 1 64 x 64 x1 Sig.ReLU 

Y : 1x 1x 1 

Wx : 1x 1x 1 
x l 

Fg  x Hg x Wg x Dg 

Fl  x Hx x Wx x Dx 

64 x 64 x 64 64 x 64 x 128 

64 x 64 x 128128 x 128 x 128 

Hx x Wx x DxFint  x Hg Wg Dg Hg Wg Dg 

xa ∧l 

Fig. 12 (a) Attention gate, obtained from [37] and  (b) Attention gate with two inputs x and g 
having different input dimensions 

representation of features.While x originates in the early levels (concatenation 
of encoder blocks), and so contains more spatial information. Consider the first
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attention gate, which is at the topmost part of the decoder block (output layer). Input 
x is the encoder block’s output, which is .64×64×64 (height ×width×f ilters). 
The output from the preceding layers (decoder block) is input g, which has 
dimensions of .128 × 128 × 128 (height × width × f ilters). To make  x have the 
same dimensions and feature numbers as g, we pass it through a convolutional layer 
with a stride of .(2, 2) and a filter count of 128, halving the dimensionalities while 
maintaining the same filter count for both x and g. We can perform the operations 
on both inputs because they have the same dimensions. The addition operation 
adds aligned weights and makes them larger. Upsampling is used to restore the 
dimensions to their original values .(128×128 in this case). Finally, the output of the 
upsample is multiplied by the input x to perform the attention operation. Figure 12 
summarizes the operation performed by the attention gate. 

If we combine the attention operation with a standard U-Net we get an Attention 
U-Net which is shown in Fig. 13. Since we are using soft attention, the key 
activations would be the contrasting regions between tire tracks and the snowy road 
surface. 
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Fig. 13 Attention U-Net architecture obtained from modifying the standard U-Net by adding 
attention gates and skip connections to each convolutional block in the decoder path, original figure 
modified from [35]



Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 607

f(x) – x 

x  

Activation function 

f(x) 

f(x) x 

Weight Layer 

a  

Weight Layer 

Activation function 

Weight layer 

Activation function 

Weight layer 

Activation function 

x  

b  

Fig. 14 (a) Traditional network with a single input which goes through the weight layers and 
specified activation functions such as ‘ReLu’ and (b) Network with residual function which uses 
the idea of skip connections to learn from inputs provided by previous layers 

2.6.4 Residual Operation 

Having more convolutional layers and making the model deeper hurts the general-
ization ability of the network which causes overfitting. To address this issue we use 
the residual operation which is shown in Fig. 7c. The residual network addresses 
this issue by introducing the concept of skip connections [38]. The skip connections 
address the vanishing gradient problem. One group of researchers [39] discusses 
this problem and how Residual-Net reduces the risk of overfitting and smoothens 
the loss surfaces [39]. Figure 14a shows the traditional feedforward network, where 
the block is trying to learn .f (x), so learning true output .f (x), whereas the residual 
block in Fig. 14b is trying to learn the residual .R(x) = f (x) − x. The x which 
is being added to the residual from the input is also known as the identity. So 
essentially, in networks with residual blocks, each layer feeds into the next layer 
and directly into the layers about 2–3 hops away. Inputs can forward propagate 
faster through residual (shortcuts) across layers. 

2.6.5 Residual + Attention U-Net (Res-Att U-Net) 

Additionally, it is possible to combine two distinct blocks, such as a residual 
convolutional block with an attention operation. This generates a Residual Attention
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Residual + Attention 
block, Decoder side 

Output 

Output 

Attention Block, 
Decoder side 
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Conv. + Activation 

Conv. + Activation 

Conv. + Activation 

Inputs from 
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concat from 
encoder layer 

Inputs from 
previous Upsamp. 

Attention Gate 

Skip connection 

Gating Signal 

Fig. 15 We can combine two operations such as attention and residual. This results in the Residual 
Attention block or Res-Att. block. This block can only be used on the decoder path as it needs the 
spatial information from the previously concatenated layers by the use of skip connections 

Convolutional Neural Network, or ResAtt-U-Net. Figure 15 illustrates the com-
bination of the attention block and the residual convolutional block. The residual 
convolutional blocks can be substituted for the standard convolutional blocks on 
both the encoder and decoder ends of the model, whereas the attention operation can 
only be applied to the decoder path/blocks. And hence, the encoder path contains the 
residual convolutional blocks and the decoder path contains the Residual + Attention 
convolutional blocks. 

Figure 16 shows the architecture for the ResAtt U-Net. Combining attention 
gates with residual convolutional blocks could increase the model’s ability to 
detect features and reduce overfitting. This should improve the model’s ability to 
generalize image feature recognition, in our instance tire track detection, with little 
overfitting.

2.6.6 Backbone U-Net 

Another way of making model architectures is by using backbones. Backbones are 
pre-made architectures that can be used to replace the encoder path of our U-Net. 
A few of them are VGG, ResNet, and Inception [40]. These backbones are trained 
on datasets for example ImageNet [41] and we can benefit from transfer learning by 
using the pre-trained weights. 

We used the segmentation models library that contains various Python libraries 
with Neural Networks for Image segmentation tasks[40]. This library consists 
of 4 model architectures for binary and multi-class image segmentation. Each 
architecture has 25 available backbones. All backbones have pre-trained weights 
for faster and better convergence. We used the resnet34 as our model architecture
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Fig. 16 Residual attention U-Net or Res-Att U-Net architecture obtained from adding residual 
blocks to the encoder path and Res-Att. blocks to the decoder path mentioned in Fig. 15, original 
figure modified from [35]

>> BACKBONE = ’ r e s n e t 3 4 ’ 
>> model = sm . Unet (BACKBONE, 

c l a s s e s  =1 ,  
a c t i v a t i o n  = ’ s igmoid  ’  ,  
e n c od e r _we i gh t s  = ’ imagene t  ’ )  

Listing 1 Model backbone and encoder weights used from segmentation models library 

and ImageNet as encoder weight. ResNet34 is a 34-layer residual network [38, 41]. 
ImageNet is a large dataset containing over 1000 classes, 1.28million training 
images, and 50 thousand validation images. The encoder weights which are set 
to ImageNet are the pre-trained weights from the same network, which will make 
training faster. Listing 1 shows the model backbone and encoder weights used from 
the segmentation models library. 

2.7 Model Training 

The inputs to the model are an image with (width x height x channels). As we are 
using the raw RGB image (feature set 2, refer to data pipeline section) which has 
been resized to the desired size for training. In our case, the inputs are of shape (256



610 P. Kadav et al.

>>  impo r t  t e n s o r f l ow  a s  t  f  
f rom  t e n s o r f l ow  impo r t  k e r a s  

>> model  =  t  f  .  k e r a s  .  Model  (  i n p u t s  =[  i n p u t s  ]  ,  o u t p u t s  =[  o u t p u t s  ] )  
>>  model  .  c ompi l e  (  o p t im i z e r  =  ’ adam  ’  ,  
l o s s  =  ’  b i n a r y _ c r o s s e n t r o p y  ’  ,  
m e t r i c s  =  [ IoU  ,  t  f  .  k e r a s  .  m e t r i c s  .  Accuracy  ( )  ,  

t  f  .  k e r a s  .  m e t r i c s  .  R e c a l l  ( )  ,  
t  f  .  k e r a s  .  m e t r i c s  .  P r e c i s i o n  (  )  ]  )  

Listing 2 Lines of code used for compilation of CNN models 

. × 256 . × 3). Unlike the classical machine learning models, no feature engineering 
is used to train the CNN models, we can directly feed in the raw RGB image as the 
input to the model. We resize the images to make the training process faster and is 
a standard practice while training CNNs. We split the dataset into 1200 images for 
training and 300 images for testing. We compiled the 5 CNN models with the same 
optimizer, loss function and metrics. We set the optimizer to ‘adam’ and the loss 
function as ‘binary cross entropy’, both have been applied successfully to similar 
semantic segmentation tasks [42–44]. Listing 2 shows the line to compile the CNN 
models. 

We can evaluate both the classical ML models and the different CNN models 
using different metrics. These metrics should serve as good evaluations to test the 
output of the predicted model .ypred with the ground truth. Intersection over union 
(IoU), pixel prediction accuracy, precision, recall, F1 score, and frame per second 
(FPS) were the evaluation metrics. These measures were evaluated based on the 
ability to make conclusive inferences from the performance of the model [26]. 
Below are the equations explaining these metrics and the four corners of a confusion 
matrix, which determine the true positives, true negatives, false positives, and false 
negatives, respectively. We only predict tire tracks, hence it’s a binary classification 
task, hence classes . = 1 

1. True Positive (TP): no. of pixels which were a tire track and correctly identified 
as a tire track 

2. False Positive (FP): no. of pixels which were not a tire track but identified as a 
tire track 

3. True Negative (TN): no. of pixels which were not a tire tracks and identified as 
not a tire track 

4. False Negative (FN): no. of pixels which were a tire track but identified as not a 
tire track 

.Accuracy = total correct predictions

all predictions
= T P + TN

T P + TN + FP + FN
(1) 

.IoU(Intersection over Union) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (2)
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.mIoU = 1

n
×

n∑

n=1

intersection

union
= 1

n
×

n∑

n=1

× T Pi

T Pi + FPi + FNi

(3) 

where n is the number of classes 

.Precision = T P

T P + FP
(4) 

.Recall = T P

T P + FN
(5) 

.F/F1 Score = 2 × precision × recall

precision + recall
(6) 

The accuracy Eq. 1 is the proportion of total accurate predictions made by our 
model over all the predictions. But accuracy alone does not tell the whole story 
when working with a dataset with an imbalance class distribution [45]. Accuracy 
is calculated over all classes. In our sample, there is a significant imbalance 
between the tire tracks and not tire tracks (background), therefore accuracy is not 
an appropriate evaluation metric. In terms of pixel-wise accuracy, this implies that 
the inaccuracy of minority classes is dominated by the accuracy of majority classes. 
IoU, also known as the Jaccard Index or the Jaccard coefficient, is significantly 
more indicative of success for segmentation tasks, particularly when input data is 
sparse and there is a high class imbalance. When training labels consist of 80 to 
90% background and a small number of positive labels, a basic metric such as 
accuracy can acquire a high score by being dominated by the larger class. This naive 
problem will never arise with IoU, since IoU is unconcerned about true negatives, 
even with incredibly limited data. IoU calculates the overlapping region for the true 
and predicted labels by comparing the similarity of finite sample sets A, B as the 
IoU [46]. According to Eq. 7, T represents the true label image and P represents 
the output prediction. This is used as a measure, giving us a more precise means 
of quantifying IoU in the segmentation region of our model. The mIoU or mean 
intersection over union is nothing but the IoU computed over each class. We would 
only be looking at IoU because we only have one class. 

.Jaccard Index (IoU) = |T ∩ P | (Area of Overlap)

|T ∪ P | (Area of Union)
(7) 

Listing 3 shows the implementation of IoU as a metric in the model and then used 
to compile the model. 

2.8 Results 

In this section, we will set forth the results, beginning with the metrics for the 
different ML models and their feature sets, and then moving on to the metrics for
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>>  from  t e n s o r f l ow  impo r t  k e r a s  
>>  d e f  IoU (  y _ t r u e  ,  y_p red  )  :  

y _ t r u e _ f  =  k e r a s  .  backend  .  f  l  a  t  t  e  n  (  y _ t r u e  )  
Y_pred_f  =  k e r a s  .  backend  .  f  l  a  t  t  e  n  (  y_pred  )  
i n t e r  =  k e r a s  .  backend  .  sum (  y _ t r u e _ f  ∗ y_p r ed_ f  )  
r e t u r n  (  i n t e r  +  1  .  0  )  /  (  k e r a s  .  backend  .  sum (  y _ t r u e _ f  )  +  

k e r a s  .  backend  .  sum (  y _p r ed_ f  )  − i n t e r  +  1 . 0 )  
Listing 3 Jaccard coefficient/ Intersection over Union (IoU) as a metric 

the CNN models. As described in the previous section, IoU is the relevant metric 
since, unlike accuracy, it provides better and complete information about the model. 

2.8.1 Classical Machine Learning Models 

We obtained the metrics for the 24 different model combinations, which included 
the 6 different ML models with 4 feature sets each. We are mainly interested in 
IoU scores for each model. We used the standard scaling method to plot the IoU of 
each model and feature set as shown in Fig. 17, where . Standard scale value =
.(IoUx − IoUmean)/IoUstd.dev . The random forest model performed the best using 
feature set 1 containing grayscale pixel values and pixel X,Y locations as the feature 
set input. All models that use pixel locations outperform those that do not. In 
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Fig. 17 Standard scaled IoU for all the classical ML models, standard scaling centers all the values 
around the mean with a unit standard deviation. The model/feature set combinations with positive 
values are good performing models, where Random forest with feature set 1 obtains the highest 
IoU score. This technique allows us to rule out models that perform poorly
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addition, the image demonstrates that grayscale pixels provide a higher IoU than 
RGB pixels, as the three highest-performing models are all grayscale. Random 
forest seems to be the most effective method for every feature set. This is another 
indicator that feature engineering improves the performance of our machine learning 
models. 

2.8.1.1 Performance Comparison Between Classical ML Models 

Figure 18 shows the metrics for the best performing classical ML models. KNN with 
feature set 1 obtained an IoU score of 83.2%, Accuracy of 90% and an F1 score of 
91.0%. Naive Bayes with feature set 0 obtained an IoU score of 74.1%, Accuracy 
of 82% and an F1 score of 85.1%. Random Forest with feature set 1 attained the 
highest IoU score at 83.4% with an Accuracy of 90% and F1 score of 91%. From 
an initial analysis this might indicate that Random forest with feature set 1 is the 
best performing model/feature-set combination. Decision trees with feature set 1 
follows Random forest with an IoU score of 83.2%. Regression based classifiers 
such as linear regression classifier and logistic regression classifier achieved the 
same scores and performed well on feature set 3. Both of these models needed more 
feature information than the other models. 

Random Forest with feature set 1 performed best in terms of key metrics like 
IoU, Accuracy, and F1 score, followed by Decision trees with feature set 1. As 
described in section 2.8, the IoU score provides a more comprehensive assessment

Fig. 18 Classical ML model metrics for the best performing models, where models with high IoU 
score, Accuracy and F1 score are of interest 
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of a model’s performance. A high training IoU score indicates that there is a greater 
overlap between the predicted and ground-truth tire track pixels. Since accuracy is 
calculated across all classes, it does not account for the imbalance between classes 
and is not the metric of interest. By computing their harmonic mean, the F1 score 
accounts for both precision and recall. When other metrics are taken into account, 
random forest, decision trees, and KNN achieve a high F1 score. 

2.8.1.2 Real Time Compute Speed Comparison 

We may state that models like Random forest, Decision trees, and KNN, along with 
their provided feature sets, are suitable for our application based on the previous 
metrics, however real-time computation is important as well since the inability to 
provide outputs in time removes the approach from realistic implementation. In 
our case, we can use the relationship between compute speeds and feature sets to 
determine the best model/feature-set combination. The model with the greatest IoU 
score performed poorly in real-time computation at 11.3 FPS, whereas Decision 
Trees, which achieved an IoU of 83.2%, just 0.2% below the best model, performed 
at 1084 FPS. KNN, which performed well on key metrics, struggled in real-time 
compute performance. Based on the metrics and real-time compute speed, we can 
say that Decision trees with feature set 1 is a good fit for our application. The real 
time compute speeds for all the models is shown in Fig. 19. 
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Fig. 19 Real time compute speeds in FPS for the best model/feature set combination. Low 
computational cost algorithms have a high FPS and high computational cost algorithms have a 
low FPS. More efficient models might yield faster a FPS score
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Fig. 20 Qualitative prediction from our classical ML model. This was produced by overlaying the 
predictions from the Decision trees with feature set 1 onto the raw image 

In addition to quantitative analysis, we must also consider qualitative analysis 
for the models. Performing both of these procedures will ensure a thorough review 
of the models and aid in selecting the most appropriate model for our application. 
Figure 20 displays a qualitative model output. The anticipated array of tire track 
pixels within the ROI was then overlaid on the raw image. This was derived from 
Decision trees with feature set 1, our most effective ML model. 

2.8.2 Convolutional Neural Network Models 

The CNN model’s output is shown in Fig. 19; all of the models will produce 
an image that reflects the segmentation mask for the predicted tire track. Unlike 
the classical ML models, where the output is a flattened array of points which 
include the prediction values for each pixel in the ROI, the CNN models output 
a segmentation mask of the predicted tire track. Semantic segmentation means that 
each pixel is assigned a label based on the prediction. The output from the CNN 
models gives out a segmentation mask which is of the same image as the input to the 
model which tells us where the tire tracks lie given a new image. These prediction 
masks can be used to obtain pixel values in terms of labels for the image. By 
changing the input dimensions of the image, we can obtain a predicted segmentation 
mask with the same input dimensions. Figure 21a shows the raw image which is the 
input to the model obtained from the test set, this image was resized to the shape of 
.256 × 256 to make the prediction faster. Figure 21b shows the ground truth label
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Fig. 21 (a) Raw image, (b) Ground truth label and (c) Predicted tire track. The CNN prediction is 
the image of the segmentation mask with the same size as that of the input image 

Fig. 22 CNN model metrics for the best performing models, where models with high IoU score, 
Accuracy and F1 score are of interest

that was annotated using CVAT and Figure 21c shows the output from the standard 
CNN U-Net model. The prediction resembles the ground truth label. 

2.8.2.1 Performance Comparison Between CNN Models 

The metrics for each CNN model are displayed in Fig. 22. All of the CNN models 
use feature set, as mentioned previously, CNN models do not require feature 
engineering, the input to the models is the raw image, which is feature set 2. The 
Standard U-Net model obtains an IoU score of 88%, Accuracy of 89%, and F1 
score of 95%. The Recurrent U-Net model achieved an IoU score of 89%, Accuracy 
of 89% and F1 score of 95%. The Residual Attention U-Net and the Attention U-
Net both performed poorly in terms of IoU and Accuracy. The Backbone U-Net 
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attained the highest IoU, Accuracy and F1 score among all the other models. This 
might indicate that the Backbone U-Net model is the best performing CNN model. 
However, real time compute speeds also need to be considered as part of a qualitative 
analysis. 

2.8.2.2 Real Time Compute Speed Comparison 

Figure 23 shows the real time compute speed of the five different CNN models. The 
Recurrent U-Net model achieved the fastest real-time compute speeds, followed by 
the U-Net. Backbone U-Net, which had the best IoU score, had the slowest compute 
speed of 25 FPS. A qualitative investigation is required to determine which model 
produces good results. 

The outputs from all of the CNN models on new images are shown in Fig. 24, 
along with the IoU score earned on each of the models during training. On the 
training set, all of the models perform well, but when tested on new images, the 
results in Fig. 24 demonstrate which model produces good results. Model 1 and 2 
perform well and output diverse tire tracks as their predictions complement their 
IoU scores. Models 3 and 4 have poor performance. Model 5, which has the highest 
IoU, performs well, but it has a tendency to overfit the tire tracks by merging the 
space between them and does not distinguish between the left and right tracks like 
models 1 and 2. This could also explain why Model 5 has the highest IoU score and 
shows evidence of overfitting. Looking at the real time compute speeds, both Model 
1 and 2 perform better then model 5. Based on the metrics and real time compute
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Fig. 23 Real time compute speeds in FPS for the best CNN model. Low computational cost CNN 
models have a high FPS and high computational cost algorithms have a low FPS. More efficient 
architectures might yield faster a FPS score 
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Fig. 24 Qualitative analysis of the outputs from the 5 CNN models. A high IoU score means the 
model performs better, which is true in case of models 1 and 2, their outputs show distinct tire 
tracks. The highest IoU which is attained by model 5 shows signs of over fitting as the left and the 
right tracks have merged into one solid body. Models 3 and 4 with low IoU scores show poor tire 
tracks 
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Fig. 25 Best classical ML model and best CNN model metrics comparison. The FPS values 
have been normalized between 0 and 1. The CNN model performs much better in terms of IoU, 
Accuracy and F1 score without using any kind of feature engineering. The classical ML models 
outperform the CNN model in real time compute speeds (FPS)

speeds shown in Fig. 22 and Fig. 23, and a qualitative analysis shown in Fig. 24, we  
can conclude that Recurrent U-Net is a good fit for our application. 

2.8.3 Best ML Models vs Best CNN Model 

When comparing the best model from the classical ML model section, Decision 
Trees with feature set 1, to CNN models that use feature set 2, we should also 
compare Decision Trees with feature set 2, which is the raw RGB image as input. 
We compare these to the Recurrent U-Net, which is the best performing CNNmodel. 
We look at all the key metrics and normalized real time compute values.
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Fig. 26 The overall process of using this system to obtain the drivable region. By implementing 
a few CV transformations, we can extract the drivable region from tire tracks, this can be further 
expanded to get lane line information 

Figure 25 shows that the CNN performs much better at metrics such as IoU, 
Accuracy, Recall, Precision, and F1 score. To perform a fairer comparison, Decision 
Trees with feature set 2 and the Recurrent U-Net with feature set 2 should be 
compared, as both have the same feature sets. Recurrent U-Net outperforms the 
Decision Trees in all of the key metrics except for real time compute speeds.

2.9 Drivable Region Extraction from Tire Tracks 

Once the tire tracks are identified, the drivable region can be extracted using 
standard computer vision transformations. Figure 26 illustrates an example of 
overlaying the predicted tire tracks on the raw image to generate the drivable region. 
Likewise, we can extract the lane lines. Our results show that using tire tracks, we 
have an alternate method in obtaining the drivable region unlike the predictions from 
the leading CV provider. 

Figure 27 depicts the three cases: (a) Detections from the leading CV provider 
without lane line occlusion. (b) Detections from the leading CV provider with snow 
occlusion on lane lines and (c) Detections from our algorithm to extract the drivable 
lane (Fig. 26). In Fig. 27a, the leading CV provider is able to detect the lane lines, 
which are indicated by the two green lines that show the left lane line and right lane 
line while the third red line indicates the road boundary. In Fig. 27b both the left and 
right lane lines appear red, indicating that the system lacks confidence in detecting 
the lane lines. Figure 27c shows the drivable lane detection from our model.
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Fig. 27 We looked at a road section from our drive cycle, where we collected camera data and 
detections from a leading CV provider in two conditions (1) clear weather with no lane line 
occlusion and (2) snowy weather with lane line occlusion. In (a) we can see that the leading CV 
provider system is able to detect lane lines with full confidence. In (b) the system is misidentifying 
lane lines and has poor confidence in detecting the drivable region whereas in (c) our algorithm is 
able to detect the drivable region using the predictions and transformations 

3 Conclusion 

This study investigates the research gap in driveable region detection for snow-
covered roads with a single camera sensor that can be incorporated in current 
ADAS systems. We proposed a new method for identifying the drivable region in 
snowy road conditions when lane lines are occluded by focusing on tire tracks and 
extracting the drivable region with that information. Data was first acquired using 
our instrumented vehicle, and then processed by extracting frames from videos, 
segmenting them into batches, and labeling them with CVAT. That data was then 
utilized to build a CV model. We explored both classical ML approaches and Deep 
Neural Networks, specifically CNN, for detecting the driveable region based on tire 
tracks. We developed 5 different neural network architectures and compared their 
performance to that of classical machine learning methods. We evaluated the U-Net 
based CNN models for IoU, Accuracy, Recall, F1 score, and FPS using only the
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raw image with no image pre-processing or feature extraction. The Recurrent U-
Net model had an IoU score of 89%, followed by the U-Net model which achieved 
88%. The best performing ML model was Random Forest with feature set 1 with 
an IoU of 83.4%, however when we looked at the FPS, we chose Decision Trees 
with feature set 1 that had an IoU of 83.2%. We also examined F1 score, Accuracy, 
Recall, and Precision. The classical ML models performed much better in terms 
of real-time computational speeds (FPS) but at the expense of considerable pre-
and post-processing processing effort as well as extensive feature engineering. The 
CNN models provide an end-to-end solution for detecting drivable regions in snowy 
road surfaces by feeding in the raw image and predicting tire tracks without any 
feature engineering at the cost of slower real time compute speeds. The classical 
ML models do not handle variation and noise as well as the CNN models do. The 
CNN models offer a more mature solution to identify tire tracks in regions of snow-
occluded lane lines. This study demonstrates that it is possible to detect drivable 
regions for specific scenarios of lane line occlusion due to snow using a single 
camera and existing technology. By enhancing image processing and tuning the 
CNN hyper-parameters, the results can be further improved. Additionally, having 
more data would significantly improve the CNN models and offer a more flexible 
model. Running the CNN models on a powerful computing machine would also 
result in faster compute speeds and allow data scalability. Future work to expand this 
study includes addressing other circumstances such as traffic lights, intersections, 
road curvature, turns, lane changes, active snowfall, and various lighting conditions. 
Overall, the problem of automated driving in adverse weather needs to be addressed 
in order to reduce the fatalities and economic costs that occur annually. 
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