
Development of Computer Vision Models
for Drivable Region Detection in Snow
Occluded Lane Lines

Parth Kadav, Sachin Sharma, Farhang Motallebi Araghi,
and Zachary D. Asher

1 Introduction

Advanced Driver Assistance Systems (ADAS) have the ability to prevent or reduce
around 40% of all passenger vehicle incidents [1]. Some examples of ADAS
include forward collision warning (FCW), automatic emergency braking (AEB),
lane departure warning (LDW), lane-keeping assistance (LKA), and blind-spot
warning assistance, among others. Since human error is the leading cause of road
accidents [2], ADAS was designed to automate and improve aspects of the driving
experience in order to increase road safety and safe driving habits. Lane-keeping
systems detect reflective lane markers in front the vehicle and warn the driver via
various audible, tactile, and/or visual cues if the vehicle deviates from its lane and no
turn signals or steering movements are detected [3]. LDW/LKA systems can reduce
head-on and single-vehicle collisions by 53% on highways with higher speed limits
(45–75mph) with visible lane markings, according to a study of 1853 driver injury
crashes [4, 5]. 11%–23% of drift-out-of-lane events and 13%–22% of critically
to fatally injured drivers could have been prevented if the technology had been
implemented at lower operating speeds (5–20mph), according to [6]. FCW and
AEB alone significantly halve front-to-rear crashes [7]. By 2023, it is anticipated
that the market for ADAS would be worth more than $30 billion [8] and that ADAS
will not be limited to safety but will also enable improvements in vehicle efficiency
[9–14].

P. Kadav (�) · S. Sharma · F. M. Araghi · Z. D. Asher
Department of Mechanical and Aerospace Engineering, Western Michigan University,
Kalamazoo, MI, USA
e-mail: parth.kadav@wmich.edu; sachin.sharma@wmich.edu;
farhang.motallebiaraghi@wmich.edu; zach.asher@wmich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. K. Kukkala, S. Pasricha (eds.), Machine Learning and Optimization Techniques for
Automotive Cyber-Physical Systems, https://doi.org/10.1007/978-3-031-28016-0_21

591

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28016-0protect T1	extunderscore 21&domain=pdf

 885
55738 a 885 55738 a

mailto:parth.kadav@wmich.edu
mailto:parth.kadav@wmich.edu
mailto:parth.kadav@wmich.edu

 10800
55738 a 10800 55738 a

mailto:sachin.sharma@wmich.edu
mailto:sachin.sharma@wmich.edu
mailto:sachin.sharma@wmich.edu

 -2016
56845 a -2016 56845 a

mailto:farhang.motallebiaraghi@wmich.edu
mailto:farhang.motallebiaraghi@wmich.edu
mailto:farhang.motallebiaraghi@wmich.edu

 12508 56845 a 12508 56845 a

mailto:zach.asher@wmich.edu
mailto:zach.asher@wmich.edu
mailto:zach.asher@wmich.edu
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21
https://doi.org/10.1007/978-3-031-28016-0_21

592 P. Kadav et al.

Despite the success of ADAS technology, there remains a glaring issue:
adverse weather. In the United States, weather-related crashes accounted for
21% (1,235,145) of all recorded crashes, 16% (5376) of crash fatalities, and 19%
(418,005) of crash injuries between 2007 and 2016 [15]. Fundamentally, adverse
weather conditions can hinder situational awareness and vehicular maneuverability
in a variety of ways, depending on the type of adverse weather [15]. It is critical
to recognize how various weather conditions can affect the ground transportation
infrastructure. A current research problem is to develop strategies for operating
ADAS in bad weather. Because there are significant safety implications, the first
research gap is to recognize and classify road lanes during inclement weather in
order to aid in the location of both the ego vehicle and other vehicles [16]. The
difficulty is that inclement weather, such as heavy rain, snow, or fog, reduces
the maximum range and signal quality of ADAS sensors, such as cameras, as it
obscures the lane markings [16]. This issue has been illustrated with cameras and
lidars in particular [17]. According to [4], LDW/LKA could further reduce head-on
and single-vehicle collisions on roads with operating speeds of 45–75mph by 53%
only if the roads had visible road markings and “the road surface was not coated
by ice or snow.” The performance of new sensor technologies is improving, but not
enough to address the issue of reliable ADAS operation in inclement weather [9].
To address this research gap, this study concentrates on the snow covered roads to
keep the research scope reasonable.

There are only a few significant studies that address the issue of reliable ADAS
operation in snowy conditions. The first study created a customized snowy weather
dataset and determined the driveable region using semantic segmentation [18].
When assessed on a non-snow dataset, the model’s mean Intersection over Union
(mIoU) was 80%; when trained on a snowy dataset, mIoU fell to 19%. When
both models were combined, mIoU was 83.3%. The model must be improved
and strengthened because it analyzes the entire road rather than just the Region
of Interest (ROI), which can be computationally costly. The second study used a
CNN model with a predefined architecture and sensor fusion between the camera,
lidar, and radar [19]. A dataset test showed an increase in driveable region detection
(81.35%) and non-driveable region detection (93.85%) after combining data from
several sensors. This is an improvement, but it has downsides, the most notable
of which is that the method necessitates the use of more sensors, raising the cost
and computational power required. Additionally, like the first study, this technique
examines the full driveable zone rather than just a ROI [19]. In a third study, “You
Only Look Once” (YOLO) was combined with a CNN and Federated Learning
(FL) architecture to increase detection in inclement weather [20]. The Canadian
Adverse Driving Conditions (CADC) dataset was used to evaluate this method. The
average test accuracy of the model used in their study was 82.4%–88.1% . This
model is based on the FL technique, which utilizes an edge server. The edge server
transmits the initial parameters to the AVs after training a global YOLO CNN model
on a publically available dataset. Following that, the AVs utilize these parameters to
locally train the model on their own data. Once the local models are trained on each
vehicle, they are sent back to the edge server. The training time of the FL approach

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 593

is influenced by the number of AVs collecting data, the connection between the edge
server and each vehicle, and the processing power of each vehicle. In addition, the
vehicle has been fitted with eight cameras, resulting in an increase in price [20]. All
of the above mentioned research provides strategies for enhancing the identification
of objects and regions in the full driveable environment, but not necessarily the lane
information. These studies are computationally and monetarily expensive and rely
on several sensors. None of these studies offer precise, implementable driveable
region detection for snow-covered roads using a single camera sensor in ADAS
systems. Furthermore, custom data acquisition and labeling methods on a custom
dataset are not included in these studies. A study addressing these difficulties and
discussing unique CNN architectures to improve drivable region prediction with
limited data is required.

We devised a computationally efficient, cost-effective, and high-accuracy tech-
nique for extracting driveable region information from a single camera, a ubiquitous
vehicle sensor, to address the adverse weather research gap for ADAS [17, 18].
Deep Learning (DL) approaches such as Convolutional Neural Network (CNN) have
been established as the dominant paradigm in modern computer vision algorithms
and applications, as well as in segmentation research. CNNs are a robust method
of obtaining semantic segmentation, but are generally computationally intensive
when compared to classical ML models. Classic ML models are faster at real-time
compute speeds, but they require feature engineering and pre-processing, and they
do not serve as an end-to-end solution for identifying the drivable region in snow-
covered lane lines, which we know from previous work [21]. To solve this problem,
we will investigate DL techniques that need little or no feature engineering. For
semantic segmentation, both supervised classical ML models and custom CNN
models were created. Then, these methods for detecting tire marks in snow were
compared. To broaden the scope of the research, we will build five different CNN
architectures for determining the drivable region in snow-occluded lane lines using
a single camera sensor.

2 Methodology

In this section, we will first discuss the methods we used to collect and prepare the
data. The data that has been processed is then used to develop the classical ML
models and the Deep Neural Network models

2.1 Drive Cycles

Figure 1 shows the route we chose which consisted of two-lane arterial roads in
Kalamazoo that met our criteria for road characteristics. This drive cycle included
of roads that are rarely cleaned following winter and are maintained at a much lower

594 P. Kadav et al.

Fig. 1 Drive cycle for data collection in Kalamazoo, MI, USA which drives from the Western
Michigan University’s college of engineering and applied sciences to Kalamazoo Valley Commu-
nity College which totals a distance of 5.56 miles along residential roads with speed limits of
35mph

rate than freeways and other multi-lane routes. We gathered the data during the
winter of 2020. The lanes were obscured by snow and featured distinct tire track
patterns, with tire tracks visible to expose the tarmac beneath . The road portion was
chosen for its low traffic volume, two-lane configuration, and clearly visible lane
markings during non-snowy conditions.

2.2 Equipment and Instrumentation

2.2.1 Camera Sensor

The forward-facing ZED 2 RGB camera from Steroelabs was chosen for use in
this study and is shown in Fig. 2a. The ZED 2 RGB camera was chosen firstly
because it is a widely available commercial computer vision system. The ZED 2
also features a 120-degree wide-angle lens for collecting images and videos. These
camera parameters are beneficial as we have a lot of information to work with,
and the wide angle capability of this camera allows us to have a lot of spatial
information. The camera was set to capture video at 29 frames per second at a
resolution of 1280 . × 720 pixels. This resolution was chosen because it was a fair
compromise between image quality and image size. The ZED 2 was connected to
the vehicle’s onboard computer, and data was collected. The dataset was created by

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 595

Fig. 2 (a) The ZED 2 camera sensor [22] and (b) The instrumented WMU EEAV lab research
vehicles platform

segmenting and extracting frames from the recorded videos of the drive cycle. The
frames from the videos show the tire tracks and features on which the model must
be trained.

2.2.2 Vehicle Type

The Energy Efficient and Autonomous Vehicles (EEAV) research vehicle platform,
shown in Fig. 2b, was used to collect data. This platform is a 2019 Kia Niro and
includes a forward-facing RGB camera, Polysync Drivekit, Neousys in-vehicle
computer, vehicle Controller Area Network (CAN) bus interface and a Mobileye
camera.

2.3 Data Pipeline

2.3.1 Data Preparation

Nearly 15,000 RGB images were acquired; however, when the images were
resampled from 30 to 5 Hz, the quantity was reduced. Resampling is carried out to
reduce the amount of frames for labeling, which is followed by more quality control
assessments (i.e., eliminating over-exposed, occluded, or poor resolution images).
This resulted in a final dataset of 1500 frames. The images were separated into
three batches, each with 500 images. This was done to make the next step easier, as
splitting the images into batches and obtaining labels for each batch will allow for
easier error correction during the labeling process.

596 P. Kadav et al.

Fig. 3 A raw image annotated with CVAT’s interface and the corresponding ground truth label,
CVAT offers multiple options such as polygons, poly lines and points to create the labeled masks

2.3.2 Image Ground Truth Labeling

The frames were then labeled in batches. The tire tracks on each frame were
manually annotated using the Computer Vision Annotation Tool (CVAT), an open-
source web tool. Each batch’s labeled dataset was exported with their matching
raw images in the CVAT for images 1.1 format. The raw images and an Extensive
Markup Language (XML) file including the attributes for the labels, such as the
position of the tire-track with their corresponding pixel location on the image, image
file name, and assigned tags, were included in each exported dataset (tire-track, road,
road-edge boundary). The exported labels were then used for post-processing and
inputs to model training. Figure 3 shows a camera image with a CVAT toolbar and
its corresponding ground truth label after CVAT annotation.

2.3.3 Data Conditioning

To build ML models, we must first preprocess the data and then extract features.
Feature extraction is the process of transforming raw data into numerical features
that the model can process while retaining original data information. This is done
because it generates better results than applying machine learning straight to the raw
dataset [23, 24]. Deep Neural Networks can carry out some basic feature engineering
on their own as it is hard-coded into their architecture so in some cases they do not
require any feature engineering at all [25].

To improve feature detection and reduce computational load, images were
masked with a Region of Interest (ROI) that only included the road surface. As
described in [17, 18], this is a reasonable approach because there are many methods
that can detect road surface regions with high precision. We built similar road

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 597

Raw Image Road ROI Masked ROI

1) No.of pixels = 256*256 = 65536 px 2) ~ 95.3% reduction in pixels 3) Masked ROI + RGB image

Fig. 4 Creating the static ROI and masking the ROI onto the raw image. The raw image includes
.65,536 pixels after resizing to .256 × 256, creating a static ROI which only focuses on the road
removes .95.3% pixels. Finally, the raw image is masked with the road ROI to give the masked
ROI

surface detection methods using a static ROI which works well for our chosen drive
cycle. Figure 4 shows how to extract the ROI masked pictures.

The Road ROI is 3099 pixels in size, accounting for less than 5% of the total
pixels in the raw image. Following that, the ROI mask was fused with the raw
image to acquire all of the pixels contained within the ROI. This will serve as the
model’s input. Similar to our previous study, the different features recovered from
the masked images include the red, green, blue, grayscale, and pixel X, Y values
[21]. Figure 5 shows the overall process for data preparation for ML model training.

The feature vectors in Table 1 are organized into sets and selected as final inputs
to the model. The results will indicate which features contribute the most to the
model and perform the best. The dataset was split 55%–45% for training and testing.
Input array .X = ((m × p), n) was used to train the complete model where m is the
number of images, p is the number of pixels in each image’s ROI (3099 pixels for
.256 × 256 images), and n is the number of feature vectors in the array.

2.4 Classical Machine Learning Models

2.4.1 Model Description

We used 6 different machine learning techniques to train the models. The first
technique used is Decision Trees or Dtrees, which is a type of supervised machine
learning technique that makes decisions and splits the dataset until all points/sets
are isolated using a set of rules. The data is structured in a tree-like manner, with
each dividing node representing a decision. When Dtrees is applied to our problem,
it applies the rules and makes decisions based on these rules to classify pixels to
be tire tracks or not tire tracks. The second technique used was Random Forest.
Random forest is nothing but a number of decision trees on various subsets of
the same dataset. It takes into consideration the average to improve the prediction
accuracy of the dataset. The third technique used was the K-Nearest Neighbors
(KNN). KNN, is based on the assumption that similar data points/classes occur

598 P. Kadav et al.

Raw Images Labels - Tire Tracks

Step 7 - Image preprocessing
Step 8 - Feature Extraction

Feature Array - X

n = no. of feature vectors in the feature
vector.

Label Vector - y

shape: (m x p)xl dimensional
binary vector array:

0 = not tire track
1 = tire track

ML Model Training

shape : (m x p)xn dimensional

Fig. 5 This figure summarizes the image preprocessing and feature extraction from raw images .
The feature array X, which contains the raw images as well as the number of feature vectors, and
the label vector y, which contains a binary array with each value representing either a tire track
or not a tire track, are the two inputs to the model training. This is known as the data preparation
pipeline, and it will be used in the model training section

Table 1 Feature set properties

Feature set Included feature vector
Train array shape (m . =
1200)

Test array shape (m . =
300)

0 Gray (3,718,800, 1) (929,700, 1)

1 Gray X loc, Y loc (3,718,800, 1) (929,700, 1)

2 Red, Green, Blue (3,718,800, 3) (929,700, 3)

3 Red, Green, Blue, X
loc, Y loc

(3,718,800, 5) (929,700, 5)

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 599

in close proximity. Classes with comparable properties are close to one another,
which is the assumption by KNN. The user specifies the K value, where K is
the desired number of nearest neighbors. We also used other techniques such as
linear regression classifier, logistic regression classifier and naive bayes classifier.
Both logistic regression and naive bayes are probabilistic classifiers, which means
they calculate probabilities of each element in the dataset whereas linear regression
predicts continuous values for the elements. These models were chosen for their
characteristics and capabilities in commuting binary classification [26–28]. Other
models such as support vector machines do not perform well with large datasets so
they were not included.

2.4.2 Model Training

We trained a variety of machine learning models by using our input features which
were defined in the data pipeline section and their associated labels. The image pre-
processing and feature extraction block extracted the input feature array X and label
vector y, which were then used as inputs to the machine learning model. Six distinct
models, discussed in the classical ML model section were tested with each feature
set (refer to Sect. 2.3.3) in order to discover the feature set/model combination that
resulted in the best performance metrics.

In total we have 24 different classical ML models that can be tested. The models
were trained on a desktop machine with 16 GB of RAM, an Intel i7 processor, and an
Nvidia GeForce GTX 1060 graphics on Ubuntu 20.04 LTS as the operating system.

2.5 Deep Neural Network Models

A wide range of tasks, including image recognition, natural language processing,
and speech recognition, have been proven to be significantly improved by deep
learning approaches. When compared to classical machine learning methods, deep
networks scale effectively with data, do not necessitate feature engineering, are
adaptable and transferable, and perform better on larger datasets with unbalanced
classes [29].

CNNs are a sort of deep neural network whose architecture is designed to do
feature extraction automatically, obviating the need for this step [30]. CNNs produce
feature maps by performing convolutions to the input layers, which are subsequently
passed to the next layer. CNNs, unlike classical machine learning approaches,
can extract relevant features from raw data, removing the need for manual image
processing [31, 32]. As previously indicated, our ML models were not an end-to-
end pipeline for tire track detection as they required feature engineering. In this
study we look at using CNN’s to simplify the process and enhance overall accuracy.

Figure 6 shows a basic convolutional neural network architecture with one
convolutional layer and one max-pooling layer; we will discuss more about this

600 P. Kadav et al.

Fully connected (Dense)
Layer

(5 x 5) Kernel
padding = ‘valid’ (2 x 2)

With Activation Function
Fully connected

Flattened
output

n3 units
n3 = number of

classes
(if classification)

INPUT
(28 x 28 x 1)

n1 filters/feature maps
(24 x 24 x n1)

n1 filters/feature maps
(12 x 12 x n1)

n2 units

Convolution 1
Max-Pooling

Fig. 6 An example of a simple Convolutional Neural Network. The input image goes through a
convolutional layer which has a specified kernel, the convolutional operation makes a feature map
which includes important feature information from the input image. The Max-Pooling operation
reduces the dimensions (halves the dimensions in this case) of the feature map. The feature maps
are then flattened and passed through a fully connected layer with the output neurons equalling the
number of classes/desired outputs

in the coming sections. We only focus on CNNs in context of the images to keep the
discussion simpler.

Before we examine the various CNN architectures, we should examine the
various types of model blocks; to simplify things, we will examine model blocks
that can be combined to form various models. The convolutional block consists
of a convolutional layer and a pooling layer to perform feature extraction. The
convolution operation with a given filter size or a kernel size slides over the input
data to perform an element-wise multiplication which is essentially matrix multi-
plication over the 2-dimensional data, the results inside the kernel are summed up
into a single output. The pooling layer down-samples the dimensions of the feature
maps, which are the outputs from the convolutional layers. The fully connected
block performs classification tasks based on input from previous operations [33].
Recurrent, residual, and attention operations, explained in the next section will be
added to the convolutional block to make different model architectures.

2.6 Model Architectures

We have examined the fundamentals of a deep neural network in the context of
images, which in our case is a convolutional neural network (CNN), as well as
the numerous operations that a CNN is capable of performing. In the following
subsections, a standard U-Net architecture, different convolutional model blocks
such as Recurrent, Residual, and Attention, and the concept of Backbones will be
discussed.

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 601

Outputs

Conv. + Activation

Conv. + Activation

Conv. + Activation

Conv. + Activation

Conv. + Activation
Conv. + Activation

Inputs

Outputs

a b c

Inputs

Outputs

+

Inputs

Standard convolutional
block

Recurrent
convolutional block

Residual convolutional
block

Fig. 7 (a) Standard convolutional block, (b) Recurrent convolutional block, and (c) Residual
convolutional block

1. Standard U-Net
2. Recurrent U-Net (Rec U-Net)
3. Attention U-Net (Att U-Net)
4. Residual Attention U-Net (Res-Att U-Net)
5. Backbone U-Net

2.6.1 Standard U-Net

Figure 7a shows a standard convolutional block. The two red blocks are the
convolutional layers with the respective activation function such as ‘ReLu’ or
‘Sigmoid’. The inputs to these layers are tensors of shape .(w × h × c) where . w =
width of the image, h = height of the image , c = number of channels .
The convolutional layers learn local patterns, which are patterns observed in
the input windows. These windows are also known as kernels, and the patterns
learned by these convolutions are transitionally invariant, which means that if the
convolution learns one pattern somewhere, it may apply that knowledge in another
place. This is why convolution layers outperform dense layers at recognizing image
features. Figure 8 shows a sample code for a simple convolutional operation.

Now that we have introduced the concept of a standard convolutional block,
we can look at the model architecture. The standard convolutional neural network
provides an output based on the number of neurons in the output layer, if we want
a binary output such as 0,1 or Cat and Dog, the output layer will only have one
neuron which states that the output can only be either one of the classes. In our
case, to have an end-to-end solution of obtaining tire tracks as the output image
from the raw image input, we have to upsample/upscale the layers to have the
same shape as the input layer and preserve the spatial information at the same
time. To accomplish this, we look at a U-Net architecture. The U-Net architecture

602 P. Kadav et al.

Layer (type)

>> model.summary()

Output Shape Param# Connected to

lambda (Lambda)

conv2d (Conv2D)

dropout (Dropout)

conv2d_1 (Conv2D)

(None, 256, 256, 3)

==

(None, 256, 256, 3)

(None, 256, 256, 32)

(None, 256, 256, 32)

(None, 256, 256, 32)

[]
[‘input_1[0][0]’]

[‘lambda[0][0]’]

[‘conv2d[0][0]’]

[‘dropout[0][0]’]

0

0

0

896

9248

input_1 (InputLayer)

Fig. 8 Standard keras model summary for a standard convolutional block in a U-Net architecture

input
image

tile

Encoder Block

conv 3x3, ReLU

output
segmentation
map

Decoder Block

up-conv 2x2

copy and crop

max pool 2x2

conv 1x1

641 64

57
2

x
57

2

57
0

x
57

0

56
8

x
56

8

128

28
42

28
22

14
02

13
82

68
2

66
2

64
2

32
2

30
2

28
2

56
2

54
2

52
2

10
22

10
02

20
02

19
82

19
62

10
42

13
62

28
02

128

256 256

512 512

1024

1024 512

512 256

256 128
39

2
x

39
2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

128 64 64 2

Fig. 9 Standard U-Net architecture from [35] modified to support the discussion

has been shown to perform exceptionally well in computer vision segmentation
[34]. CNN’s fundamental assumption is to learn the feature mapping of an image
and then utilize that knowledge to construct more sophisticated feature maps. This
technique is effective for classification problems since it converts the image to a
vector, which is subsequently classified. However, image segmentation requires not
only the transformation of a feature map to a vector but also the reconstruction of
an image from the vector. Figure 9 shows the standard U-Net architecture. The red
box shows the encoder path and the blue box shows the decoder path.

A standard convolutional block can either serve as an encoder or a decoder. The
encoder path makes the input array smaller (also known as downsampling) with

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 603

every max-pooling operation and doubles the feature maps. Conversely, the decoder
path scales the input back to its original shape with every up-convolution operation.

While converting an image to a vector, the U-Net architecture learns the image’s
feature maps, which are then utilized to convert it back to an image. The contracting
path or the encoder path is on the left side of the U-Net architecture, while the
expansive path or the decoder path is on the right. After each downsampling block,
the number of feature channels/filters doubles in order to learn more intricate
structures from the previous layer’s output, while the image size reduces. This path
is filled with numerous contraction blocks. Each block accepts the input and applies
it to a .3×3 convolutional layer (where .n×n is also known as the kernel, n can be any
number, usually it is common to see .n = 3 or 5) and with an activation function and
padding (usually rectified linear unit or ‘ReLU’). A .2× 2 max-pooling layer is used
for downsampling. We begin with 32 feature channels and increase them by a factor
of two with each contraction block until we reach 512 feature channels, at which
point we reach the expansive path. Each block in the expansive path (shown on the
right) is composed of two .3× 3 convolution layers and one .2× 2 upsampling or up-
convolution layer with an activation function and padding. The input is concatenated
by appending the feature maps of the matching encoder block to the corresponding
decoder block as represented by the gray arrow connecting the two layers. Each
block in the expansive path reduces the number of feature channels by half. In the
final layer, a .1 × 1 convolution layer is applied, with the number of feature maps
corresponding to the number of needed classes/segments. Additionally, we add a
dropout layer between each convolution layer in the encoder and decoder blocks to
combat overfitting. Note the number of feature channels and input size shown in the
figure are not the same for every model. Depending on the requirements such as the
input shape, the kernel size, feature channels, the parameters can be modified in the
architecture.

These general concepts of how a convolutional layer works and how it’s used
in a neural network architecture like a U-Net to achieve image segmentation are
important for development of the Recurrent and Residual Deep Neural Networks
discussed next. We will now discuss the various convolutional blocks and operations
that will result in different model architectures.

2.6.2 Recurrent U-Net

Figure 7b. shows an example of a recurrent convolutional block; the recurrent net-
work can store information over time by using the feedback connection represented
by the arrows on the convolution layer. Even though the input is constant, the
network in a recurrent convolutional layer can evolve over time. We can specify the
number of iterations that the recurrent block must undergo. We simply substitute the
standard convolution blocks with recurrent convolutional blocks in the encoder and
the decoder path.

Figure 10 shows a sample code for a recurrent convolutional operation. If we
combine the recurrent convolutional block with a standard U-Net we get a recurrent

604 P. Kadav et al.

>> model.summary()

Layer (type)
==

Output Shape Param # Connected to

[‘input_1[0][0]’]

[]

[‘conv2d[0][0]’]

[‘conv2d_1[0][0]’]

input_1 (InputLayer)

conv2d (Conv2D)

conv2d_1 (Conv2D)

dropout (Dropout)

add (Add)

conv2d_2 (Conv2D)

[(None, 256, 256, 3)] 0
(None, 256, 256, 32) 128

(None, 256, 256, 32) 9248

(None, 256, 256, 32) 0

(None, 256, 256, 32) 0 [‘dropout[0][0]’,

‘conv2d[0][0]’]

(None, 256, 256, 32)

(None, 256, 256, 32)

9248 [‘add[0][0]’]

[‘conv2d_2[0][0]’,0

conv2d_3 (Conv2D)

add_1 (Add)

max_pooling2d

(MaxPooling2D)

(None, 256, 256, 32)
(None, 128, 128, 32)

9248

0

‘conv2d[0][0]’,

‘conv2d_3[0][0]’,

‘conv2d[0][0]’]

[‘add_1[0][0]’]

[‘add_1[1][0]’]

Fig. 10 Model summary of a recurrent convolutional operation

convolutional U-Net (RCU-Net) which is shown in Fig. 11. In Fig. 11 we can see
that the recurrent convolutional layers replace the standard convolutional layers to
make the RCU-Net.

The recurrent convolutional layers will look at the same features throughout
the provided recurrency number, in our instance the layers will look at the same
characteristics of pixels having a tire track multiple times, which will help the model
reinforce when its learning process is taking place.

2.6.3 Attention U-Net (Att U-Net)

In image segmentation training, attention is used to highlight only relevant activa-
tions. This saves processing resources and improves the network’s generalization
power. Basically, the network may “focus” on selected areas of the image. We use
Soft attention. Soft attention weighs different parts of the image. High relevance
areas are given to areas of higher weight, whereas low relevance areas are given
a lower weight. As the model learns, higher weighted regions get more attention
[36, 37].

Figure 12 shows the overall layout of an attention gate along with the gating
signal (g) and skip connection (x) Two inputs are required for the attention gate:
x and g, g is the gating signal that originates at the network’s sub-layer. Since
g originates from a deeper layer of the network, it contains a more complete

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 605

input
image

tile

Encoder Block

conv 3x3, ReLU

Recurrent block

output
segmentation
map

Decoder Block

up-conv 2x2

copy and crop

max pool 2x2

conv 1x1

641 64

57
2

x
57

2

57
0

x
57

0

56
8

x
56

8

128

28
42

28
22

14
02

13
82

68
2

66
2

64
2

32
2

30
2

28
2

56
2

54
2

52
2

10
22

10
02

20
02

19
82

19
62

10
42

13
62

28
02

128

256 256

512 512

1024

1024 512

512 256

256 128

39
2

x
39

2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

128 64 64 2

Fig. 11 Recurrent U-Net architecture obtained from modifying the standard U-Net by replacing
the standard convolutional blocks with recurrent convolutional blocks, original figure modified
from [35]

ReLU (s 1) Sigmoid (s 2) Resampler
Wg : 1x 1x 1

g
a

b
g

x
Ups.

1x1, stride=(1,1),
Filters = 128

1x1, stride=(2,2),
Filters = 128

L X W x Features
1x1,
filters = 1 64 x 64 x1 Sig.ReLU

Y : 1x 1x 1

Wx : 1x 1x 1
x l

Fg x Hg x Wg x Dg

Fl x Hx x Wx x Dx

64 x 64 x 64 64 x 64 x 128

64 x 64 x 128128 x 128 x 128

Hx x Wx x DxFint x Hg Wg Dg Hg Wg Dg

xa ∧l

Fig. 12 (a) Attention gate, obtained from [37] and (b) Attention gate with two inputs x and g
having different input dimensions

representation of features.While x originates in the early levels (concatenation
of encoder blocks), and so contains more spatial information. Consider the first

606 P. Kadav et al.

attention gate, which is at the topmost part of the decoder block (output layer). Input
x is the encoder block’s output, which is .64×64×64 (height ×width×f ilters).
The output from the preceding layers (decoder block) is input g, which has
dimensions of .128 × 128 × 128 (height × width × f ilters). To make x have the
same dimensions and feature numbers as g, we pass it through a convolutional layer
with a stride of .(2, 2) and a filter count of 128, halving the dimensionalities while
maintaining the same filter count for both x and g. We can perform the operations
on both inputs because they have the same dimensions. The addition operation
adds aligned weights and makes them larger. Upsampling is used to restore the
dimensions to their original values .(128×128 in this case). Finally, the output of the
upsample is multiplied by the input x to perform the attention operation. Figure 12
summarizes the operation performed by the attention gate.

If we combine the attention operation with a standard U-Net we get an Attention
U-Net which is shown in Fig. 13. Since we are using soft attention, the key
activations would be the contrasting regions between tire tracks and the snowy road
surface.

input
image

tile

Encoder Block

output
segmentation
map

Decoder Block

Concalenation

Gating Signal

Skip connection

Attention Gate

Up Convolution

641 64

57
2

x
57

2

57
0

x
57

0

56
8

x
56

8

128

28
42

28
22

14
02

13
82

68
2

66
2

64
2

32
2

30
2

28
2

54
2

52
2

10
22

10
02

20
02

19
82

19
62

13
62

28
02

128

256 256

512 512

1024

1024 512

512 256

256 128

39
2

x
39

2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

128 64 64 2

Fig. 13 Attention U-Net architecture obtained from modifying the standard U-Net by adding
attention gates and skip connections to each convolutional block in the decoder path, original figure
modified from [35]

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 607

f(x) – x

x

Activation function

f(x)

f(x) x

Weight Layer

a

Weight Layer

Activation function

Weight layer

Activation function

Weight layer

Activation function

x

b

Fig. 14 (a) Traditional network with a single input which goes through the weight layers and
specified activation functions such as ‘ReLu’ and (b) Network with residual function which uses
the idea of skip connections to learn from inputs provided by previous layers

2.6.4 Residual Operation

Having more convolutional layers and making the model deeper hurts the general-
ization ability of the network which causes overfitting. To address this issue we use
the residual operation which is shown in Fig. 7c. The residual network addresses
this issue by introducing the concept of skip connections [38]. The skip connections
address the vanishing gradient problem. One group of researchers [39] discusses
this problem and how Residual-Net reduces the risk of overfitting and smoothens
the loss surfaces [39]. Figure 14a shows the traditional feedforward network, where
the block is trying to learn .f (x), so learning true output .f (x), whereas the residual
block in Fig. 14b is trying to learn the residual .R(x) = f (x) − x. The x which
is being added to the residual from the input is also known as the identity. So
essentially, in networks with residual blocks, each layer feeds into the next layer
and directly into the layers about 2–3 hops away. Inputs can forward propagate
faster through residual (shortcuts) across layers.

2.6.5 Residual + Attention U-Net (Res-Att U-Net)

Additionally, it is possible to combine two distinct blocks, such as a residual
convolutional block with an attention operation. This generates a Residual Attention

608 P. Kadav et al.

Residual + Attention
block, Decoder side

Output

Output

Attention Block,
Decoder side

concat from
encoder layer

Residual block,
Decoder side

Conv. + Activation

Conv. + Activation

Conv. + Activation

Conv. + Activation

Inputs from
previous Upsamp.

concat from
encoder layer

Inputs from
previous Upsamp.

Attention Gate

Skip connection

Gating Signal

Fig. 15 We can combine two operations such as attention and residual. This results in the Residual
Attention block or Res-Att. block. This block can only be used on the decoder path as it needs the
spatial information from the previously concatenated layers by the use of skip connections

Convolutional Neural Network, or ResAtt-U-Net. Figure 15 illustrates the com-
bination of the attention block and the residual convolutional block. The residual
convolutional blocks can be substituted for the standard convolutional blocks on
both the encoder and decoder ends of the model, whereas the attention operation can
only be applied to the decoder path/blocks. And hence, the encoder path contains the
residual convolutional blocks and the decoder path contains the Residual + Attention
convolutional blocks.

Figure 16 shows the architecture for the ResAtt U-Net. Combining attention
gates with residual convolutional blocks could increase the model’s ability to
detect features and reduce overfitting. This should improve the model’s ability to
generalize image feature recognition, in our instance tire track detection, with little
overfitting.

2.6.6 Backbone U-Net

Another way of making model architectures is by using backbones. Backbones are
pre-made architectures that can be used to replace the encoder path of our U-Net.
A few of them are VGG, ResNet, and Inception [40]. These backbones are trained
on datasets for example ImageNet [41] and we can benefit from transfer learning by
using the pre-trained weights.

We used the segmentation models library that contains various Python libraries
with Neural Networks for Image segmentation tasks[40]. This library consists
of 4 model architectures for binary and multi-class image segmentation. Each
architecture has 25 available backbones. All backbones have pre-trained weights
for faster and better convergence. We used the resnet34 as our model architecture

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 609

input
image

tile

Encoder Block

output
segmentation
map

Decoder Block

Concalenation

Gating Signal

Skip connection

Attention Gate

Up Convolution

Residual operation

641 64

57
2

x
57

2

57
0

x
57

0

56
8

x
56

8

128

28
42

28
22

14
02

13
82

68
2

66
2

64
2

32
2

30
2

28
2

54
2

52
2

10
22

10
02

20
02

19
82

19
62

13
62

28
02

128

256 256

512 512

1024

1024 512

512 256

256 128

39
2

x
39

2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

128 64 64 2

Fig. 16 Residual attention U-Net or Res-Att U-Net architecture obtained from adding residual
blocks to the encoder path and Res-Att. blocks to the decoder path mentioned in Fig. 15, original
figure modified from [35]

>> BACKBONE = ’ r e s n e t 3 4 ’
>> model = sm . Unet (BACKBONE,

c l a s s e s =1 ,
a c t i v a t i o n = ’ s igmoid ’ ,
e n c od e r _we i gh t s = ’ imagene t ’)

Listing 1 Model backbone and encoder weights used from segmentation models library

and ImageNet as encoder weight. ResNet34 is a 34-layer residual network [38, 41].
ImageNet is a large dataset containing over 1000 classes, 1.28million training
images, and 50 thousand validation images. The encoder weights which are set
to ImageNet are the pre-trained weights from the same network, which will make
training faster. Listing 1 shows the model backbone and encoder weights used from
the segmentation models library.

2.7 Model Training

The inputs to the model are an image with (width x height x channels). As we are
using the raw RGB image (feature set 2, refer to data pipeline section) which has
been resized to the desired size for training. In our case, the inputs are of shape (256

610 P. Kadav et al.

>> impo r t t e n s o r f l ow a s t f
f rom t e n s o r f l ow impo r t k e r a s

>> model = t f . k e r a s . Model (i n p u t s =[i n p u t s] , o u t p u t s =[o u t p u t s])
>> model . c ompi l e (o p t im i z e r = ’ adam ’ ,
l o s s = ’ b i n a r y _ c r o s s e n t r o p y ’ ,
m e t r i c s = [IoU , t f . k e r a s . m e t r i c s . Accuracy () ,

t f . k e r a s . m e t r i c s . R e c a l l () ,
t f . k e r a s . m e t r i c s . P r e c i s i o n ()])

Listing 2 Lines of code used for compilation of CNN models

. × 256 . × 3). Unlike the classical machine learning models, no feature engineering
is used to train the CNN models, we can directly feed in the raw RGB image as the
input to the model. We resize the images to make the training process faster and is
a standard practice while training CNNs. We split the dataset into 1200 images for
training and 300 images for testing. We compiled the 5 CNN models with the same
optimizer, loss function and metrics. We set the optimizer to ‘adam’ and the loss
function as ‘binary cross entropy’, both have been applied successfully to similar
semantic segmentation tasks [42–44]. Listing 2 shows the line to compile the CNN
models.

We can evaluate both the classical ML models and the different CNN models
using different metrics. These metrics should serve as good evaluations to test the
output of the predicted model .ypred with the ground truth. Intersection over union
(IoU), pixel prediction accuracy, precision, recall, F1 score, and frame per second
(FPS) were the evaluation metrics. These measures were evaluated based on the
ability to make conclusive inferences from the performance of the model [26].
Below are the equations explaining these metrics and the four corners of a confusion
matrix, which determine the true positives, true negatives, false positives, and false
negatives, respectively. We only predict tire tracks, hence it’s a binary classification
task, hence classes . = 1

1. True Positive (TP): no. of pixels which were a tire track and correctly identified
as a tire track

2. False Positive (FP): no. of pixels which were not a tire track but identified as a
tire track

3. True Negative (TN): no. of pixels which were not a tire tracks and identified as
not a tire track

4. False Negative (FN): no. of pixels which were a tire track but identified as not a
tire track

.Accuracy = total correct predictions

all predictions
= T P + TN

T P + TN + FP + FN
(1)

.IoU(Intersection over Union) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (2)

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 611

.mIoU = 1

n
×

n∑

n=1

intersection

union
= 1

n
×

n∑

n=1

× T Pi

T Pi + FPi + FNi

(3)

where n is the number of classes

.Precision = T P

T P + FP
(4)

.Recall = T P

T P + FN
(5)

.F/F1 Score = 2 × precision × recall

precision + recall
(6)

The accuracy Eq. 1 is the proportion of total accurate predictions made by our
model over all the predictions. But accuracy alone does not tell the whole story
when working with a dataset with an imbalance class distribution [45]. Accuracy
is calculated over all classes. In our sample, there is a significant imbalance
between the tire tracks and not tire tracks (background), therefore accuracy is not
an appropriate evaluation metric. In terms of pixel-wise accuracy, this implies that
the inaccuracy of minority classes is dominated by the accuracy of majority classes.
IoU, also known as the Jaccard Index or the Jaccard coefficient, is significantly
more indicative of success for segmentation tasks, particularly when input data is
sparse and there is a high class imbalance. When training labels consist of 80 to
90% background and a small number of positive labels, a basic metric such as
accuracy can acquire a high score by being dominated by the larger class. This naive
problem will never arise with IoU, since IoU is unconcerned about true negatives,
even with incredibly limited data. IoU calculates the overlapping region for the true
and predicted labels by comparing the similarity of finite sample sets A, B as the
IoU [46]. According to Eq. 7, T represents the true label image and P represents
the output prediction. This is used as a measure, giving us a more precise means
of quantifying IoU in the segmentation region of our model. The mIoU or mean
intersection over union is nothing but the IoU computed over each class. We would
only be looking at IoU because we only have one class.

.Jaccard Index (IoU) = |T ∩ P | (Area of Overlap)

|T ∪ P | (Area of Union)
(7)

Listing 3 shows the implementation of IoU as a metric in the model and then used
to compile the model.

2.8 Results

In this section, we will set forth the results, beginning with the metrics for the
different ML models and their feature sets, and then moving on to the metrics for

612 P. Kadav et al.

>> from t e n s o r f l ow impo r t k e r a s
>> d e f IoU (y _ t r u e , y_p red) :

y _ t r u e _ f = k e r a s . backend . f l a t t e n (y _ t r u e)
Y_pred_f = k e r a s . backend . f l a t t e n (y_pred)
i n t e r = k e r a s . backend . sum (y _ t r u e _ f ∗ y_p r ed_ f)
r e t u r n (i n t e r + 1 . 0) / (k e r a s . backend . sum (y _ t r u e _ f) +

k e r a s . backend . sum (y _p r ed_ f) − i n t e r + 1 . 0)
Listing 3 Jaccard coefficient/ Intersection over Union (IoU) as a metric

the CNN models. As described in the previous section, IoU is the relevant metric
since, unlike accuracy, it provides better and complete information about the model.

2.8.1 Classical Machine Learning Models

We obtained the metrics for the 24 different model combinations, which included
the 6 different ML models with 4 feature sets each. We are mainly interested in
IoU scores for each model. We used the standard scaling method to plot the IoU of
each model and feature set as shown in Fig. 17, where . Standard scale value =
.(IoUx − IoUmean)/IoUstd.dev . The random forest model performed the best using
feature set 1 containing grayscale pixel values and pixel X,Y locations as the feature
set input. All models that use pixel locations outperform those that do not. In

naive-3
knn-2 –1.09

naive-1 –1.02
naive-0 –0.99

knn-0 –0.95

–1.23

linear-0 –0.68
–0.68logistic-0

rforest-0 –0.53
dtrees-0 –0.53

–0.30
–0.30

logistic-1
linear-1

logistic-2
linear-2

–0.15

M
ac

h
in

e
L

ea
rn

in
g

 m
o

d
el

s
an

d
 f

ea
tu

re
 s

et
s

–0.15
dtrees-2 –0.13
rforest-2 –0.13

0.61logistic-3
linear-3 0.61

dtrees-3 0.73
knn-3 1.60

rforest-3 1.60
dtrees-1 1.64

knn-1 1.64
rforest-1 1.70

–2 –1 0 1 2

Standard scaling, mean = 77.5%

Fig. 17 Standard scaled IoU for all the classical ML models, standard scaling centers all the values
around the mean with a unit standard deviation. The model/feature set combinations with positive
values are good performing models, where Random forest with feature set 1 obtains the highest
IoU score. This technique allows us to rule out models that perform poorly

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 613

addition, the image demonstrates that grayscale pixels provide a higher IoU than
RGB pixels, as the three highest-performing models are all grayscale. Random
forest seems to be the most effective method for every feature set. This is another
indicator that feature engineering improves the performance of our machine learning
models.

2.8.1.1 Performance Comparison Between Classical ML Models

Figure 18 shows the metrics for the best performing classical ML models. KNN with
feature set 1 obtained an IoU score of 83.2%, Accuracy of 90% and an F1 score of
91.0%. Naive Bayes with feature set 0 obtained an IoU score of 74.1%, Accuracy
of 82% and an F1 score of 85.1%. Random Forest with feature set 1 attained the
highest IoU score at 83.4% with an Accuracy of 90% and F1 score of 91%. From
an initial analysis this might indicate that Random forest with feature set 1 is the
best performing model/feature-set combination. Decision trees with feature set 1
follows Random forest with an IoU score of 83.2%. Regression based classifiers
such as linear regression classifier and logistic regression classifier achieved the
same scores and performed well on feature set 3. Both of these models needed more
feature information than the other models.

Random Forest with feature set 1 performed best in terms of key metrics like
IoU, Accuracy, and F1 score, followed by Decision trees with feature set 1. As
described in section 2.8, the IoU score provides a more comprehensive assessment

Fig. 18 Classical ML model metrics for the best performing models, where models with high IoU
score, Accuracy and F1 score are of interest

614 P. Kadav et al.

of a model’s performance. A high training IoU score indicates that there is a greater
overlap between the predicted and ground-truth tire track pixels. Since accuracy is
calculated across all classes, it does not account for the imbalance between classes
and is not the metric of interest. By computing their harmonic mean, the F1 score
accounts for both precision and recall. When other metrics are taken into account,
random forest, decision trees, and KNN achieve a high F1 score.

2.8.1.2 Real Time Compute Speed Comparison

We may state that models like Random forest, Decision trees, and KNN, along with
their provided feature sets, are suitable for our application based on the previous
metrics, however real-time computation is important as well since the inability to
provide outputs in time removes the approach from realistic implementation. In
our case, we can use the relationship between compute speeds and feature sets to
determine the best model/feature-set combination. The model with the greatest IoU
score performed poorly in real-time computation at 11.3 FPS, whereas Decision
Trees, which achieved an IoU of 83.2%, just 0.2% below the best model, performed
at 1084 FPS. KNN, which performed well on key metrics, struggled in real-time
compute performance. Based on the metrics and real-time compute speed, we can
say that Decision trees with feature set 1 is a good fit for our application. The real
time compute speeds for all the models is shown in Fig. 19.

KNN - 1

Naive - 0 7675.5

M
o

d
el

 -
 F

ea
tu

re
 S

et

Rforest - 1

Dtrees - 1 1084.4

Logistic - 3 10746.7

Linear - 3 5377.6

10.0 100.0 1000.0 10000.0

FPS

6.9

11.3

Fig. 19 Real time compute speeds in FPS for the best model/feature set combination. Low
computational cost algorithms have a high FPS and high computational cost algorithms have a
low FPS. More efficient models might yield faster a FPS score

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 615

Fig. 20 Qualitative prediction from our classical ML model. This was produced by overlaying the
predictions from the Decision trees with feature set 1 onto the raw image

In addition to quantitative analysis, we must also consider qualitative analysis
for the models. Performing both of these procedures will ensure a thorough review
of the models and aid in selecting the most appropriate model for our application.
Figure 20 displays a qualitative model output. The anticipated array of tire track
pixels within the ROI was then overlaid on the raw image. This was derived from
Decision trees with feature set 1, our most effective ML model.

2.8.2 Convolutional Neural Network Models

The CNN model’s output is shown in Fig. 19; all of the models will produce
an image that reflects the segmentation mask for the predicted tire track. Unlike
the classical ML models, where the output is a flattened array of points which
include the prediction values for each pixel in the ROI, the CNN models output
a segmentation mask of the predicted tire track. Semantic segmentation means that
each pixel is assigned a label based on the prediction. The output from the CNN
models gives out a segmentation mask which is of the same image as the input to the
model which tells us where the tire tracks lie given a new image. These prediction
masks can be used to obtain pixel values in terms of labels for the image. By
changing the input dimensions of the image, we can obtain a predicted segmentation
mask with the same input dimensions. Figure 21a shows the raw image which is the
input to the model obtained from the test set, this image was resized to the shape of
.256 × 256 to make the prediction faster. Figure 21b shows the ground truth label

616 P. Kadav et al.

Fig. 21 (a) Raw image, (b) Ground truth label and (c) Predicted tire track. The CNN prediction is
the image of the segmentation mask with the same size as that of the input image

Fig. 22 CNN model metrics for the best performing models, where models with high IoU score,
Accuracy and F1 score are of interest

that was annotated using CVAT and Figure 21c shows the output from the standard
CNN U-Net model. The prediction resembles the ground truth label.

2.8.2.1 Performance Comparison Between CNN Models

The metrics for each CNN model are displayed in Fig. 22. All of the CNN models
use feature set, as mentioned previously, CNN models do not require feature
engineering, the input to the models is the raw image, which is feature set 2. The
Standard U-Net model obtains an IoU score of 88%, Accuracy of 89%, and F1
score of 95%. The Recurrent U-Net model achieved an IoU score of 89%, Accuracy
of 89% and F1 score of 95%. The Residual Attention U-Net and the Attention U-
Net both performed poorly in terms of IoU and Accuracy. The Backbone U-Net

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 617

attained the highest IoU, Accuracy and F1 score among all the other models. This
might indicate that the Backbone U-Net model is the best performing CNN model.
However, real time compute speeds also need to be considered as part of a qualitative
analysis.

2.8.2.2 Real Time Compute Speed Comparison

Figure 23 shows the real time compute speed of the five different CNN models. The
Recurrent U-Net model achieved the fastest real-time compute speeds, followed by
the U-Net. Backbone U-Net, which had the best IoU score, had the slowest compute
speed of 25 FPS. A qualitative investigation is required to determine which model
produces good results.

The outputs from all of the CNN models on new images are shown in Fig. 24,
along with the IoU score earned on each of the models during training. On the
training set, all of the models perform well, but when tested on new images, the
results in Fig. 24 demonstrate which model produces good results. Model 1 and 2
perform well and output diverse tire tracks as their predictions complement their
IoU scores. Models 3 and 4 have poor performance. Model 5, which has the highest
IoU, performs well, but it has a tendency to overfit the tire tracks by merging the
space between them and does not distinguish between the left and right tracks like
models 1 and 2. This could also explain why Model 5 has the highest IoU score and
shows evidence of overfitting. Looking at the real time compute speeds, both Model
1 and 2 perform better then model 5. Based on the metrics and real time compute

U-net - 2

28.00

30.00

M
o

d
el

s
an

d
 F

ea
tu

re
 s

et
s Recurrent U-net - 2

Res Att U-net - 2 26.00

Attention U-net - 2

28.00

Backbone U-net - 2 25.00

10 10 20
FPS

30

Fig. 23 Real time compute speeds in FPS for the best CNN model. Low computational cost CNN
models have a high FPS and high computational cost algorithms have a low FPS. More efficient
architectures might yield faster a FPS score

618 P. Kadav et al.

Fig. 24 Qualitative analysis of the outputs from the 5 CNN models. A high IoU score means the
model performs better, which is true in case of models 1 and 2, their outputs show distinct tire
tracks. The highest IoU which is attained by model 5 shows signs of over fitting as the left and the
right tracks have merged into one solid body. Models 3 and 4 with low IoU scores show poor tire
tracks

Accuracy Recall Precision F1 Score Normalized FPSloU

M
o

d
el

s
an

d
 F

ea
tu

re
 S

et
s

Recurrent U-
Net - 2 (CNN)

Dtrees - 2
(ML)

Dtrees - 1
(ML)

0.00 0.25 0.50 0.75 1.00

Score

0.83

0.89

0.77

0.90

0.86

0.89

0.91

0.89

0.95

0.91

0.85

0.96

0.91

0.87

0.95

0.81

1.00

0.22

Fig. 25 Best classical ML model and best CNN model metrics comparison. The FPS values
have been normalized between 0 and 1. The CNN model performs much better in terms of IoU,
Accuracy and F1 score without using any kind of feature engineering. The classical ML models
outperform the CNN model in real time compute speeds (FPS)

speeds shown in Fig. 22 and Fig. 23, and a qualitative analysis shown in Fig. 24, we
can conclude that Recurrent U-Net is a good fit for our application.

2.8.3 Best ML Models vs Best CNN Model

When comparing the best model from the classical ML model section, Decision
Trees with feature set 1, to CNN models that use feature set 2, we should also
compare Decision Trees with feature set 2, which is the raw RGB image as input.
We compare these to the Recurrent U-Net, which is the best performing CNNmodel.
We look at all the key metrics and normalized real time compute values.

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 619

Fig. 26 The overall process of using this system to obtain the drivable region. By implementing
a few CV transformations, we can extract the drivable region from tire tracks, this can be further
expanded to get lane line information

Figure 25 shows that the CNN performs much better at metrics such as IoU,
Accuracy, Recall, Precision, and F1 score. To perform a fairer comparison, Decision
Trees with feature set 2 and the Recurrent U-Net with feature set 2 should be
compared, as both have the same feature sets. Recurrent U-Net outperforms the
Decision Trees in all of the key metrics except for real time compute speeds.

2.9 Drivable Region Extraction from Tire Tracks

Once the tire tracks are identified, the drivable region can be extracted using
standard computer vision transformations. Figure 26 illustrates an example of
overlaying the predicted tire tracks on the raw image to generate the drivable region.
Likewise, we can extract the lane lines. Our results show that using tire tracks, we
have an alternate method in obtaining the drivable region unlike the predictions from
the leading CV provider.

Figure 27 depicts the three cases: (a) Detections from the leading CV provider
without lane line occlusion. (b) Detections from the leading CV provider with snow
occlusion on lane lines and (c) Detections from our algorithm to extract the drivable
lane (Fig. 26). In Fig. 27a, the leading CV provider is able to detect the lane lines,
which are indicated by the two green lines that show the left lane line and right lane
line while the third red line indicates the road boundary. In Fig. 27b both the left and
right lane lines appear red, indicating that the system lacks confidence in detecting
the lane lines. Figure 27c shows the drivable lane detection from our model.

620 P. Kadav et al.

Fig. 27 We looked at a road section from our drive cycle, where we collected camera data and
detections from a leading CV provider in two conditions (1) clear weather with no lane line
occlusion and (2) snowy weather with lane line occlusion. In (a) we can see that the leading CV
provider system is able to detect lane lines with full confidence. In (b) the system is misidentifying
lane lines and has poor confidence in detecting the drivable region whereas in (c) our algorithm is
able to detect the drivable region using the predictions and transformations

3 Conclusion

This study investigates the research gap in driveable region detection for snow-
covered roads with a single camera sensor that can be incorporated in current
ADAS systems. We proposed a new method for identifying the drivable region in
snowy road conditions when lane lines are occluded by focusing on tire tracks and
extracting the drivable region with that information. Data was first acquired using
our instrumented vehicle, and then processed by extracting frames from videos,
segmenting them into batches, and labeling them with CVAT. That data was then
utilized to build a CV model. We explored both classical ML approaches and Deep
Neural Networks, specifically CNN, for detecting the driveable region based on tire
tracks. We developed 5 different neural network architectures and compared their
performance to that of classical machine learning methods. We evaluated the U-Net
based CNN models for IoU, Accuracy, Recall, F1 score, and FPS using only the

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 621

raw image with no image pre-processing or feature extraction. The Recurrent U-
Net model had an IoU score of 89%, followed by the U-Net model which achieved
88%. The best performing ML model was Random Forest with feature set 1 with
an IoU of 83.4%, however when we looked at the FPS, we chose Decision Trees
with feature set 1 that had an IoU of 83.2%. We also examined F1 score, Accuracy,
Recall, and Precision. The classical ML models performed much better in terms
of real-time computational speeds (FPS) but at the expense of considerable pre-
and post-processing processing effort as well as extensive feature engineering. The
CNN models provide an end-to-end solution for detecting drivable regions in snowy
road surfaces by feeding in the raw image and predicting tire tracks without any
feature engineering at the cost of slower real time compute speeds. The classical
ML models do not handle variation and noise as well as the CNN models do. The
CNN models offer a more mature solution to identify tire tracks in regions of snow-
occluded lane lines. This study demonstrates that it is possible to detect drivable
regions for specific scenarios of lane line occlusion due to snow using a single
camera and existing technology. By enhancing image processing and tuning the
CNN hyper-parameters, the results can be further improved. Additionally, having
more data would significantly improve the CNN models and offer a more flexible
model. Running the CNN models on a powerful computing machine would also
result in faster compute speeds and allow data scalability. Future work to expand this
study includes addressing other circumstances such as traffic lights, intersections,
road curvature, turns, lane changes, active snowfall, and various lighting conditions.
Overall, the problem of automated driving in adverse weather needs to be addressed
in order to reduce the fatalities and economic costs that occur annually.

References

1. Benson, A.J., Tefft, B.C., Svancara, A.M., Horrey, W.J.: Potential Reductions in Crashes,
Injuries, and Deaths from Large-Scale Deployment of Advanced Driver Assistance Systems,
pp. 1–8. Res. Brief (2018) [Online]. Available: https://trid.trb.org/view/1566022

2. Wenwen, S., Fuchuan, J., Qiang, Z., Jingjing, C.: Analysis and control of human error. Proc.
Eng. 26, 2126–2132 (2011)

3. Varghese, J.Z., Boone, R.G., et al.: Overview of autonomous vehicle sensors and systems.
In: International Conference on Operations Excellence and Service Engineering, pp. 178–191
(2015)

4. Sternlund, S., Strandroth, J., Rizzi, M., Lie, A., Tingvall, C.: The effectiveness of lane departure
warning systems-a reduction in real-world passenger car injury crashes. Traffic Inj. Prev. 18,
225–229 (2017)

5. Kusano, K., Gabler, H., Gorman, T.: Fleetwide safety benefits of production forward collision
and lane departure warning systems, SAE Int. J. Passeng. Cars - Mech. Syst. 7(2), 514–527
(2014). https://doi.org/10.4271/2014-01-0166

6. Kusano, K.D., Gabler, H.C.: Comparison of expected crash and injury reduction from
production forward collision and lane departure warning systems. Traffic Inj. Prev. 16(Suppl
2), S109–14 (2015)

7. IIHS-real-world-CA-benefits.pdf, [Online]. Available: https://www.iihs.org/media/
259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER
%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf

https://trid.trb.org/view/1566022
https://trid.trb.org/view/1566022
https://trid.trb.org/view/1566022
https://trid.trb.org/view/1566022
https://trid.trb.org/view/1566022
https://trid.trb.org/view/1566022
https://doi.org/10.4271/2014-01-0166
https://doi.org/10.4271/2014-01-0166
https://doi.org/10.4271/2014-01-0166
https://doi.org/10.4271/2014-01-0166
https://doi.org/10.4271/2014-01-0166
https://doi.org/10.4271/2014-01-0166
https://doi.org/10.4271/2014-01-0166
https://doi.org/10.4271/2014-01-0166
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf
https://www.iihs.org/media/259e5bbd-f859-42a7-bd54-3888f7a2d3ef/e9boUQ/Topics/ADVANCED%20DRIVER%20ASSISTANCE/IIHS-real-world-CA-benefits.pdf

622 P. Kadav et al.

8. Advanced driver assistance systems: global revenue growth 2020-2023, Statista. https://www.
statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-
systems/ (accessed Apr. 24, 2023)

9. Jiménez, F., Naranjo, J.E., Anaya, J.J., García, F., Ponz, A., Armingol, J.M.: Advanced driver
assistance system for road environments to improve safety and efficiency. Trans. Res. Proc. 14,
2245–2254 (2016)

10. Asher, Z.D., Tunnell, J.A., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S.,
Bradley, T.H.: Enabling prediction for optimal fuel economy vehicle control. Technical Report,
SAE Technical Paper, 2018

11. Motallebiaraghi, F., Yao, K., Rabinowitz, A., Hoehne, C., Garikapati, V., Holden, J., Wood, E.,
Chen, S., Asher, Z., Bradley, T.: Mobility energy productivity evaluation of prediction-based
vehicle powertrain control combined with optimal traffic management. Technical Report, 2022-
01-0141, SAE Technical Paper, 2022

12. Kadav, P., Asher, Z.D.: Improving the range of electric vehicles. In: 2019 Electric Vehicles
International Conference (EV), pp. 1–5 (2019)

13. Rabinowitz, A., Araghi, F.M., Gaikwad, T., Asher, Z.D., Bradley, T.H.: Development and
evaluation of velocity predictive optimal energy management strategies in intelligent and
connected hybrid electric vehicles. Energies 14, 5713 (2021)

14. Mahmoud, Y.H., Brown, N.E., Motallebiaraghi, F., Koelling, M., Meyer, R., Asher, Z.D.,
Dontchev, A., Kolmanovsky, I.: Autonomous Eco-Driving with traffic light and lead vehicle
constraints: An application of best constrained interpolation. IFAC-PapersOnLine 54, 45–50
(2021)

15. How Do Weather Events Impact Roads? https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm.
Accessed 08 Oct. 2022

16. Gern, A., Moebus, R., Franke, U.: Vision-based lane recognition under adverse weather
conditions using optical flow. In: Intelligent Vehicle Symposium, 2002, vol. 2, pp. 652–657.
IEEE (2002)

17. Brandon, S.: Sensor fusion: a comparison of capabilities of human highly automated, [Online].
Available: http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf

18. Lei, Y., Emaru, T., Ravankar, A.A., Kobayashi, Y., Wang, S.: Semantic image segmentation
on snow driving scenarios. In: 2020 IEEE International Conference on Mechatronics and
Automation (ICMA) (2020). https://doi.org/10.1109/icma49215.2020.9233538

19. Rawashdeh, N.A., Bos, J.P., Abu-Alrub, N.J.: Drivable path detection using CNN sensor
fusion for autonomous driving in the snow. In: Autonomous Systems: Sensors, Processing,
and Security for Vehicles and Infrastructure 2021, vol. 11748, pp. 36–45. SPIE (2021)

20. Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.S.: Improving autonomous vehicles safety
in snow weather using federated YOLO CNN learning. In: Mobile Web and Intelligent
Information Systems, pp. 121–134. Springer International Publishing, New York (2021)

21. Goberville, N.A., Kadav, P., Asher, Z.D.: Tire track identification: a method for drivable region
detection in conditions of Snow-Occluded lane lines. Technical Report, SAE Technical Paper,
2022

22. ZED 2 - AI stereo camera: https://www.stereolabs.com/zed-2/. Accessed 19 May 2022
23. Uddin, M.F., Lee, J., Rizvi, S., Hamada, S.: Proposing enhanced feature engineering and a

selection model for machine learning processes. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 8, 646
(2018)

24. Duboue, P.: The Art of Feature Engineering: Essentials for Machine Learning. Cambridge
University Press, Cambridge (2020)

25. Puget, J.-F.: Feature engineering for deep learning (2017). https://medium.com/inside-
machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace, Accessed 19 May
2022

26. Shetty, S.H., Shetty, S., Singh, C., Rao, A.: supervised machine learning: algorithms and
applications, fundamentals and methods of machine and deep learning. Wiley, pp. 1–16 (2022).
https://doi.org/10.1002/9781119821908.ch1

https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://www.statista.com/statistics/442726/global-revenue-growth-trend-of-advanced-driver-assistance-systems/
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
https://ops.fhwa.dot.gov/weather/q1_roadimpact.htm
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
http://websites.umich.edu/~umtriswt/PDF/SWT-2017-12.pdf
https://doi.org/10.1109/icma49215.2020.9233538
https://doi.org/10.1109/icma49215.2020.9233538
https://doi.org/10.1109/icma49215.2020.9233538
https://doi.org/10.1109/icma49215.2020.9233538
https://doi.org/10.1109/icma49215.2020.9233538
https://doi.org/10.1109/icma49215.2020.9233538
https://doi.org/10.1109/icma49215.2020.9233538
https://doi.org/10.1109/icma49215.2020.9233538
https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://medium.com/inside-machine-learning/feature-engineering-for-deep-learning-2b1fc7605ace
https://doi.org/10.1002/9781119821908.ch1
https://doi.org/10.1002/9781119821908.ch1
https://doi.org/10.1002/9781119821908.ch1
https://doi.org/10.1002/9781119821908.ch1
https://doi.org/10.1002/9781119821908.ch1
https://doi.org/10.1002/9781119821908.ch1
https://doi.org/10.1002/9781119821908.ch1

Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 623

27. Chourasiya, S., Jain, S.: A study review on supervised machine learning algorithms. Interna-
tional Journal of Computer Science and Engineering. 6(8), 16–20 (2019). https://doi.org/10.
14445/23488387/ijcse-v6i8p104

28. Osisanwo, F.Y., Akinsola, J.E.T., Awodele, O., Hinmikaiye, J.O., Olakanmi, O., Akinjobi, J.:
Supervised machine learning algorithms: classification and comparison. International Journal
of Computer Trends and Technology (IJCTT). 48(3), 128–138 (2017)

29. Seif, G.: Deep learning vs classical machine learning (2018). https://towardsdatascience.com/
deep-learning-vs-classical-machine-learning-9a42c6d48aa, Accessed 19 May 2022

30. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2015)

31. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network.
In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017)

32. Why convolutional neural networks are the go-to models in deep learning, Analytics
India Magazine, (2018). https://analyticsindiamag.com/why-convolutional-neural-networks-
are-the-go-to-models-in-deep-learning/. Accessed 13 Feb 2022

33. Chatterjee, H.S.: A basic introduction to convolutional neural network (2019). https://medium.
com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-
8e39019b27c4, Accessed 19 May 2022

34. Sankesara, H.: UNet (2019). https://towardsdatascience.com/u-net-b229b32b4a71, Accessed
19 May 2022

35. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: MICCAI (2015)

36. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.:
Show, attend and tell: neural image caption generation with visual attention. In: Bach, F., Blei,
D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings
of Machine Learning Research, (Lille, France), vol. 37, pp. 2048–2057. PMLR (2015)

37. Oktay, O., et al.: Attention U-net: learning where to look for the. Pancreas. arXiv [cs.CV]
(2018). https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU

38. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition, arXiv
[cs.CV], (2015). [Online]. Available: http://arxiv.org/abs/1512.03385

39. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the Loss Landscape of Neural
Nets. arXiv [cs.LG] (2017) [Online]. Available: http://arxiv.org/abs/1712.09913

40. Iakubovskii, P.: segmentation_models: Segmentation models with pretrained backbones. Keras
and TensorFlow Keras. Github. [Online]. Available: https://github.com/qubvel/segmentation_
models,. Accessed 06 May 2022

41. Wikipedia Contributors: ImageNet (2022). https://en.wikipedia.org/w/index.php?title=
ImageNet&oldid=1083632180

42. Kingma D.P., Ba, J. A.: A method for stochastic optimization, arXiv [cs.LG], (2014). [Online].
Available: http://arxiv.org/abs/1412.6980

43. Godoy, D.: Understanding binary cross-entropy/log loss: a visual explanation (2018). https://
towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-
a3ac6025181a, Accessed 12 Feb 2022

44. Yaqub, M., Jinchao, F., Zia, M.S., Arshid, K., Jia, K., Rehman, Z.U., Mehmood, A.: State-of-
the-Art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci.
10 (2020)

45. Classification: Accuracy, Google Developers. https://developers.google.com/machine-
learning/crash-course/classification/accuracy, Accessed 24 Apr 2023

46. Duque-Arias, D., Velasco-Forero, S., Deschaud, J.-E., Goulette, F., Serna, A., Decencière, E.,
Marcotegui, B.: On power jaccard losses for semantic segmentation. In: Proceedings of the 16th
International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications. SCITEPRESS - Science and Technology Publications (2021)

https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://doi.org/10.14445/23488387/ijcse-v6i8p104
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://analyticsindiamag.com/why-convolutional-neural-networks-are-the-go-to-models-in-deep-learning/
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://medium.com/@himadrisankarchatterjee/a-basic-introduction-to-convolutional-neural-network-8e39019b27c4
https://towardsdatascience.com/u-net-b229b32b4a71
https://towardsdatascience.com/u-net-b229b32b4a71
https://towardsdatascience.com/u-net-b229b32b4a71
https://towardsdatascience.com/u-net-b229b32b4a71
https://towardsdatascience.com/u-net-b229b32b4a71
https://towardsdatascience.com/u-net-b229b32b4a71
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=1083632180
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy

	Development of Computer Vision Models for Drivable Region Detection in Snow Occluded Lane Lines
	1 Introduction
	2 Methodology
	2.1 Drive Cycles
	2.2 Equipment and Instrumentation
	2.2.1 Camera Sensor
	2.2.2 Vehicle Type

	2.3 Data Pipeline
	2.3.1 Data Preparation
	2.3.2 Image Ground Truth Labeling
	2.3.3 Data Conditioning

	2.4 Classical Machine Learning Models
	2.4.1 Model Description
	2.4.2 Model Training

	2.5 Deep Neural Network Models
	2.6 Model Architectures
	2.6.1 Standard U-Net
	2.6.2 Recurrent U-Net
	2.6.3 Attention U-Net (Att U-Net)
	2.6.4 Residual Operation
	2.6.5 Residual + Attention U-Net (Res-Att U-Net)
	2.6.6 Backbone U-Net

	2.7 Model Training
	2.8 Results
	2.8.1 Classical Machine Learning Models
	2.8.2 Convolutional Neural Network Models
	2.8.3 Best ML Models vs Best CNN Model

	2.9 Drivable Region Extraction from Tire Tracks

	3 Conclusion
	References

