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1 Introduction 

Looking at traffic scenarios microscopically, there is an infinite number of scenarios. 
A somewhat higher visual range shows that they nevertheless follow certain 
patterns and can be assigned to categories with a high degree of similarity. Testing 
representatives from each category ensures a broad scope, while minimizing the 
effort in the validation process. In order to perform a relevance evaluation, one has 
to memorize and structure traffic scenarios. Therefore, the vast amount of sensor 
data needs to be shrinked. This can be achieved by representing a traffic situation 
with a set of relevant features. These features can then be used in machine learning 
algorithms for analysis purposes. 

A training dataset of recorded traffic scenarios is usually manually labeled in 
order to run supervised classification algorithms. In contrast to that, unsupervised 
learning yields to identify patterns in datasets, where the availability of labels for 
training machine learning models is absent. The main focus here is the introduction 
of an unsupervised learning procedure for the categorization of traffic scenarios, 
only given the input from arbitrary data sources. 

The chapter is organized as follows. After the methodological introduction into 
Decision Trees and Random Forests in Sects. 2 and 3, the method is extended 
for its usage in the field of unsupervised learning in Sect. 4. Its application for 
the unsupervised clustering of real world traffic scenarios is discussed in Sect. 5. 
Finally, the versatility of Random Forests is demonstrated by another method, which 
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integrates a Random Forest into a Deep Learning architecture to tackle the problem 
of Open-Set recognition for traffic scenarios. 

Before moving to the next section about Decision Trees, some notations will be 
introduced. A dataset . D consists of M datapoints .xm ∈ R

N , referred to as feature 
vectors. Supervised learning requires a training dataset containing a target vector . ym

for each feature vector . xm. Assuming that the possible output is a scalar it yields 

.Ds = {
(x1, y1) , . . . ,

(
xMs , yMs

)}
. (1) 

Contrary to that, in unsupervised learning the dataset does not provide any informa-
tion about the objective values. Therefore, those datasets are defined as

.Du = {
x1, . . . , xMu

}
. (2) 

The feature vector . x as well as the target y are not deterministic. Therefore, the 
feature vector . x is a realization of the random variable . x and y a realization of the 
random variable . y . 

Supervised machine learning aims to find a function f based on . Ds, which 
performs the mapping from the input variable . x to the target . y . Depending on the 
target value characteristics, supervised learning can be in the form of classification 
or regression. If  . y is of categorical type, the function is called classification. With 
.x ∈ R

N , the classification is defined as 

.f : RN → {c1, . . . , cK },x �→ ŷ , (3) 

where .ŷ ∈ {c1, . . . , cK } is the categorical predicted output. If the output is 
continuous, i.e. .ŷ ∈ R, the function is called regression: 

.f : RN → R, x �→ ŷ . (4) 

The aim of all supervised learning methods is to find a function f , which gains 
the highest performance. Therefore, the performance measurement called risk 

.R (f ) = Ex,y {L (y , f (x))}
︸ ︷︷ ︸

expectation ofL

=
∫

RN

K∑

k=1

L (ck, f (x)) p (x = x, y = ck)︸ ︷︷ ︸
joint probability density function

dx (5) 

.R(f ) = Ex,yL(y , f (x)) =
∫

RN

∫

R

L(y, f (x)) p(x = x, y = y) dydx, (6) 

for classification and regression is introduced. . L denotes the loss and . E the 
expectation. The goal is to find a function . fB, which gains the highest performance 
by minimizing .R(f )
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.fB = argmin
f

{R (f )}, (7) 

where . fB is known as the Bayes classifier or Bayes regression function. The density 
functions are usually unknown. Instead, risk can be estimated through the empirical 
risk by employing the dataset . Ds, 

.Remp (f,Ds) = 1

Ms

Ms∑

m=1

L (ym, f (xm)) . (8) 

Various approaches try to minimize the empirical risk in order to find a good 
mapping f . The approaches differ in their architecture and hence the realized 
function. In the following, we focus on the proven-in-use ensemble method termed 
Random Forests, which is constructed from a set of Classification and Regression 
trees. 

2 Classification and Regression Trees 

Classification and Regression Trees (CART) have several benefical properties for 
real world applications. They can model relations between an input . x and the output 
. y independent of the number of features or dataset size. The input variables can 
be either categorial or ordered, and even both types may be apparent in the feature 
set. Probably the most important aspect to favor decision trees over many other 
methods, is the interpretability. All decisions and interactions among features can 
be interpreted by humans, and thus provide the white-box character of CARTs. 

The CART algorithm, introduced in [8], is a specific form of binary decision 
trees. As depicted in Fig. 1 and explained in detail in what follows, a binary tree 
can be thought of a multi decision process, as well as a directed graph. In an 
algorithmic view, binary trees consist of many if/else queries. The intuition behind 
trees is simple, yet understanding the underlying principles is mandatory since they 
build the basis for the more sophisticated Random Forest algorithms. 

Fig. 1 Example of a binary 
classification tree
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Before diving into the methodology, a set of definitions considering a binary 
tree is established first. A binary tree . T is constructed with nodes . t, which are 
connected by edges. The top node is designated as the root, such that all edges 
are directed downwards from the root. Two nodes are connected by a single edge. 
The information flows from the parent node to the child node. In a binary tree, 
intermediate nodes have exactly two children, but only one parent node. If a node 
does not possess children, it is termed as terminal node, or  leaf. 

Starting from the input space .X ∈ R
N , at each if/else decision stage the input is 

split into two disjoint subspaces . Xi and . Xj of .RN for which .p(x ∈ t) > 0. These 
subspaces are represented by the two children nodes. When propagating through all 
stages of a tree, each datapoint . xm is assigned to a constant prediction . ̂y within that 
subspace. This subspace is corresponding to the terminal node in the tree. 

2.1 Computing the Optimal Split 

The aim of growing a tree is to minimize the risk according to Eq. (5) and Eq. (6) 
for classification or regression problems, respectively. This is achieved by finding 
the best splits and will be derived in the following. 

We define . T̃ as the subspace of . X representing all terminal nodes of a tree. The 
function, which assigns each input . x to a terminal node .t ∈ T̃ can be formalized as 

.ρ : X→ T̃,x �→ t. (9) 

Given an assignment function .υ(t) ∈ {c1, . . . , cK } for classification, or . υ(t) ∈ R

for regression, a mapping f corresponds to . T̃ so that .f (x) = υ(t) for all inputs 
.x ∈ t, then 

.f (x) = υ (ρ(x)) . (10) 

Based on the previous equations, one obtains the risk of the mapping realized as

.R(f ) =
∫

X

Ey |x {L (y , f (x))} p (x = x) dx. (11) 

=
∑

t∈T̃

Ey |x∈t {L (y , υ (t))} p (x ∈ t) . (12) 

The global error in Eq. (11) is equal to sum of the local errors within all terminal 
nodes, Eq. (12). Hence, the risk can be minimized locally with 

.rmin(t) = min
υ

{
Ey |x∈t {L (y , υ (t))}} , (13) 

leading to the overall minimum prediction risk for . T̃ of .R
N
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.Rmin(T̃) =
∑

T̃

rmin(t)p(x ∈ t). (14) 

The local minimum risk for regression in a node .t ∈ T̃ is 

.rmin(t) = σ̂ 2
T̃
. (15) 

For classification, the minimum local risk is obtained with the class of highest
posterior probability

.rmin(t) = min
cl

{
K∑

k=1

(1 − δ(ck, cl))p(y = ck|x ∈ t)
}

. (16) 

= 1 − max
ck

{p(y = ck|x ∈ t)} , (17) 

where .δ(·, ·) is one if both arguments are equal, otherwise zero. Typically, classi-
fication is realized through a class probability estimation, which leads to the local 
risk in a node .t ∈ T̃ as 

.rmin(t) =
K∑

k=1

p(y = ck|x ∈ t)(1 − p(y = ck|x ∈ t)). (18) 

When growing a tree, the aim is to reduce the local risk as best as possible with an 
optimal split . sopt in order to divide a node .t ∈ T̃ into a left . tL and right . tR childnode. 

We define this as a new fraction of . T̃′ of . RN . A split reduces the risk with 

.�R(s, t) = Rmin(T̃) − Rmin(T̃
′). (19) 

= p(x ∈ t)(rmin(t) − p(x ∈ tL|x ∈ t)rmin(tL) − p(x ∈ tR|x ∈ t)rmin(tR)),
(20) 

and the relative risk reduction is

.�r(s|t) = Rmin(T̃) − Rmin(T̃
′)

p(x ∈ t) . (21) 

= rmin(t) − p(x ∈ tL|x ∈ t)rmin(tL) − p(x ∈ tR|x ∈ t)rmin(tR). (22) 

Now, the best split . sopt for a node . t is achieved by maximizing . �r(s|t)

.sopt(t) = argmax
s̃

{
�r(s̃|t)} . (23)
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In practice the required probability density functions are not known. Therefore, in 
the following we consider how to perform a split with a given dataset . Ds. 

2.2 Growing a Tree 

Since the probability function .p(x ∈ t) is unknown, it has to be approximated with 
a training dataset . Ds containing M datapoints. We define a set . M(t) = {m ∈ M :
xm ∈ t}, which contains all datapoints of . Ds in the node . t. The empirical estimate . ̂p
can then be computed with 

.p̂(x ∈ t) = |M(t)|
M

= M(t)

M
, (24) 

with the assumption that .p̂(x ∈ t) > 0 for all .t ∈ T̃. Now, we can reformulate Eq. 
(13) and Eq. (14) 

.r̂min(t) = min
υ

∑
M(t)L(ym, υ(ρ(xm)))

M(t)
, and (25) 

.R̂min(f ) =
∑

T̃

r̂min(t)p̂(x ∈ t). (26) 

For regression we set .υ = μ̂(t), so that .r̂min(t) = σ̂ 2
T̃
(t), with . μ and . σ 2 denoting the 

expectation and variance. 
For classification the estimate for .p(y = ck|x ∈ t), k = 1, . . . , K has to be 

calculated to compute .r̂min(t). We define another set . Mk(t) = {m ∈ M : xm ∈
t and ym = ck} for all datapoints in the node . t belong to a class . ck , so that the 
empirical probability estimation is 

.p̂(y = ck|x ∈ t) = Mk(t)

M(t)
. (27) 

Hence, Eq. (18) turns into 

.r̂min(t) =
K∑

k=1

p̂(y = ck|x ∈ t)(1 − p̂(y = ck|x ∈ t)). (28) 

=
K∑

k=1

K∑

k’ = 1
k′ �=k

p̂(y = ck|x ∈ t)p̂(y = ck′ |x ∈ t), (29)
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and Eq. (17) turns into 

.r̂min(t) = min
cl

{
∑

k

(1 − δ(ck, cl))p̂(y = ck|x ∈ t)
}

. (30) 

= 1 − max
ck

{
p̂(y = ck|x ∈ t)} . (31) 

In order to compute the best split, we need to formulate the empirical relative risk
reduction, which is

.�r̂(s|t) = r̂min(t) − p̂(x ∈ tL|x ∈ t)r̂min(tL) − p̂(x ∈ tR|x ∈ t)r̂min(tR), (32) 

where

.p̂(x ∈ tL|x ∈ t) = p̂(x ∈ tL)

p̂(x ∈ t) = M(tL)

M(t)
, (33) 

and

.p̂(x ∈ tR|x ∈ t) = p̂(x ∈ tR)

p̂(x ∈ t) = M(tR)

M(t)
. (34) 

Now, that all parts for .�r̂(s|t) are defined, the optimal empirical split at a node . t

can be computed with 

.ŝopt(t) = argmax
s̃

{
�r̂(s̃|t)} . (35) 

Note, that the border of the partition of . t is a hyperplane perpendicular to one of the 
axes of . xn. The evaluation to set the threshold for the split along a feature n can be 
conducted with a brute-force approach. If all datapoints in . t are distinct with respect 
to feature n, .M(t) − 1 splits for the n-th feature have to be evaluated in order to find 
the optimal split. 

Equation. (29) computes the relative risk reduction .r̂min(t) for classification, 
known as the Gini impurity . i(t). The purity gain due to a split can be formulated 
as 

.�i(s, t) = i(t) − M(tL)

M(t)
i(tL) − M(tR)

M(t)
i(tR), (36) 

such that the optimization task turns into

.ŝopt(t) = argmax
s̃

{
�i(s̃, t)

}
. (37)



572 F. Kruber et al.

Growing a tree until the impurity in terminal nodes becomes .i(t) = 0, so that 
all datapoints belong to a single class, is likely to cause overfitting on the training 
dataset. On contrary, if the growing process is abrupted too early, the subspaces 
might not be defined well enough to separate the classes properly. In practice, a 
tree is first fully grown and then pruned. The goal is to prune those nodes, which 
only have a minor effect on the estimated risk. Several heuristics can be applied as 
pruning criterias. For example, one can define a minimum number of .M(t) samples 
per terminal node. Another criterion is to define a maximum tree depth to reduce 
complexity. Lastly, a threshold for the minimum purity gain, provided by a split, 
can be defined as pruning criterion. Tuning these parameters appropriately is task-
specific and should be monitored with a validation dataset. 

After pruning, assigning a class to a terminal node is achieved by choosing the 
class with the highest estimated probability .p̂(y = ck|x ∈ t). 

3 Ensemble Learning with Random Forests 

A Random Forest is a randomized ensemble learning method, which uses a set of 
binary trees as base learners. Before addressing Random Forests, we will first take 
a brief look at the concepts of ensemble learning. 

3.1 Ensemble Learning 

Ensemble Learning methods use several base learning models and combine the 
predictions of each individual learner with the aim to improve the final prediction. 
In case of the Random Forest algorithm, each tree is grown independently of the 
other trees forming the ensemble. The final prediction of the ensemble method is 
computed as an average or majority vote of all independently constructed predictors. 

The advantage of ensemble methods will be illustrated with a simple example 
based on the principle of collective wisdom. For our example, we assume two 
possible outputs, where one of the two is the correct answer. All voters predict 
independently of each other with the same error rate . ε. Each voter is considered 
to be competent, i. e. the probability of a false prediction is .p(ε) < 0.5 [14]. Under 
these assumptions, the error limit is going towards zero for an infinite number of 
voters B 

. lim
B→inf

ε(B) = 0. (38) 

Given these restrictions, a voter can be interpreted as a Bernoulli variable with
.μ = ε and .σ = ε(1 − ε). The error rate for majority voting can then be calculated 
using the binominal distribution
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.ε(B) =
B∑

b=b

(
B

b

)
εb(1 − ε)B−b with b =

⌊
B

2

⌋
+ 1. (39) 

In our example we assume .B = 50 predictors and an individual error rate of 
.ε = 0.35 for all predictors. The ensemble error rate for this majority vote is then 

.εens =
50∑

b=26

(
50

b

)
εb(1 − ε)50−b = 0.01 < ε. (40) 

Although in practice the predictor models are not completely independent, alone
due to the shared training dataset, this examples illustrates the benefits of ensemble
methods. Generally, the predictive error is composed of the bias and variance
components. The key behind the success of ensemble methods is related to the
reduction of the variance component. Ensembles work effectively as long as the bias
and correlation of the base learners is low. CARTs, for example, have a small bias
but large variance. A set of CARTs reduce variance, and by inducing randomization
techniques, the correlation between all base learners can be reduced as described in
the next section. Interested readers are referred to [11] for a detailed explanation of 
the bias-variance decomposition. 

Following [10], three fundamental reasons explain why ensembles perform 
well. The first reason is statistical. A learning algorithm tries to identify the best 
hypothesis in space. When the amount of training data available is too small, the 
algorithm can find many different hypotheses of similar accuracy. By averaging 
the hypotheses one can find a good approximation for f by avoid the risk of 
choosing a wrong hypothesis. The second reason is computational. Finding a split to 
grow decision trees is conducted in a brute-force manner. Running the local search 
from many different starting points often provides a better approximation to the 
true unknown function. The third reason is representational. Given a finite training 
dataset, none of the candidate models is able to find the true function. Due to the 
limited dataset, will explore only a finite set of hypotheses and stop searching when 
the hypothesis fits the training data. By combining several learners to an ensemble, 
it can be possible to expand the space of representable functions. 

Figure 2 illustrates the potential performance gain of ensemble methods. The 
spiral training dataset .Dt,0 consists of .Mt,0 = 20,000 and the test dataset of 
.Mv = 500 datapoints. Additional noise is added to the test dataset to increase 
the difficulty of the two-class classification task. The first two columns depict the 
training and test dataset, respectively. The two plots on the right-hand side depict the 
classification performance of a CART (.B = 1) and a Random Forest constructed 
with .B = 10 tree models. In the first row, the classification performance for both 
methods is comparable due to the relatively large dataset for the problem to be 
solved. The ensemble reduces the error rate . ε by 1%. In the second and third row, 
the number of training datapoints is being reduced to .Mt,1 = 2000 and .Mt,2 = 200, 
where .Dt,2 ⊂ Dt,1 ⊂ Dt,0. With a decreasing training dataset size, the gap
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Fig. 2 Classification example on a spiral dataset. The error prediction gap between a single CART 
model with .B = 1 and an ensemble method with .B = 10 learners increases considerably, when 
the size of the training dataset is a limiting factor for the task to be solved 

between a single CART and the ensemble method increases to 3.9% for .Mt,1, and 
a considerable gain of 12% for .Mt,2. The number of samples required for a good 
classification performance certainly depends on the difficulty of the problem to be 
solved. In practice, however, the dataset is often a limiting factor, making ensemble 
methods appealing. 

3.2 Random Forests 

The Random Forest algorithm [6] constructs a set of several individual CART as 
base learners, where each tree is grown independently. After growing the trees, the 
final ensemble prediction is made by taking the average over the predictions of 
all trees for regression problems, or by majority vote for classification. Since the 
Random Forest is composed of CARTs, it inherits the advantages of CARTs, such 
as the robustness to outliers and noise. The Random Forest is able to handle ordered 
and categorial variables. It is able to perform a prediction, even when some entries 
in the input data are missing. Interpretability, though, is not inherited due to the 
averaging approach for its prediction. 

Let a Random Forest be the collection of B trees, where a tree is expressed 
by .{Tb(x, θb)}. . θb is an independent identically distributed random vector. In
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order to obtain a low variance, the trees should be as uncorrelated as possible. 
Therefore, the learning procedure is perturbed by two elements forming the vector 
. θb, which largely define the characteristics of the Random Forest algorithm. The 
first element is bagging [5], a bootstrap aggregating technique. This means that B 
new bootstrapped datasets .Ds,b, b = 1, . . . , B are randomly drawn by sampling . MS
datapoints with replacement from . Ds. On average, around 37% of the datapoints in 
. Ds are omitted in each bootstrapped set . Ds,b

. lim
MS→inf

(
1 − 1

MS

)MS

= 1

e
≈ 0.368. (41) 

Bagging constructs individual trees by learning with a different dataset .Ds,b. The  
second element defines a rule, how the process of splitting a node is conducted. 
Instead of searching the best split over all N features, only a subset of .NRF features 
is randomly chosen at each node, where .NRF < N holds. A common choice is 

.NRF =
⌈√

N
⌉
. Limitating the list of candidates with accelerates the learning 

procedure as well. 
Applying both strategies, bagging and the random subset of features for splitting 

a node, generate individual base learners and make the Random Forest algorithm 
likely to benefit from the averaging process. As shown in [6], a Random Forest 
does not overfit. Therefore, increasing the number of base learners decreases 
the generalization error, which converges to a limiting value. Another beneficial 
property of Random Forests and bagging in particular is, that the construction of 
the base learners is performed with bootstrap samples. The omitted samples of . Ds
enable an unbiased estimate of the generalization error during the building process. 
This is denoted as out-of-bag estimates (oob). 

3.2.1 Out-of-Bag Estimates 

Bagging allows an unbiased estimate of the generalization error while constructing 
the ensemble of trees. It comes for free and it can replace an additional validation 
dataset. As shown in Eq. (41), approximately 37% of all datapoints in . Ds are not part 
of the bootstrap set .Ds,b. We denote the trees, which did not use a certain datapoint 
.{xm, ym}, as the  set  . Bm. Furthermore, we define the out-of-bag class probability 
estimator as 

.f oob(xm, θ) = 1

|Bm|
∑

b∈Bm

f b(xm, θb), (42) 

with .f b(xm, θb) = [
p̂(y = c1|x ∈ tTb

), . . . , y = cK |x ∈ tTb
)
]T the vector of all K 

class probability estimates of the b-th tree. Hence, .f oob(xm, θ) contains the average 
class probability over all trees. The majority voting is realized by selecting the class 
with the highest probability in .f oob(xm, θ) as .foob(xm). Then, the oob estimate for



576 F. Kruber et al.

the empirical prediction risk is the averaged sum of errors 

.R̂oob(f ) = 1

M

M∑

m=1

δ(foob(xm), ym). (43) 

The oob estimate has two attractive properties. First, it is equivalent to a test
dataset [5]. Second, in contrast to the cross-validation technique, the oob estimate is 
unbiased, if the number of trees in the Random Forest is large enough. 

3.2.2 Proximity Measure 

The Random Forest algorithm allows to determine the similarity between two 
datapoints. Unlike other proximity measures such as the Euclidean, Manhattan 
or Mahalanobis distance, the Random Forest proximity follows a data-adaptive 
principle, since the trees are grown according to the training dataset. In order to 
evaluate the similarity between two datapoints . xi and . xj , one observes if both 
datapoints end in the same terminal node of a tree. In this case, the similarity value 
is increased by one. This process is repeated over all trees and the final similarity 
measure is the average similarity over all trees 

.prox(xi , xj ) = 1

B

B∑

b=1

δ(tTb
(xi ), tTb

(xj )), (44) 

with .tTb
(xi ) denoting the leaf of the b-th CART in which  . xi terminates. Following 

the idea of proximity, the next Section demonstrates how the Random Forest 
algorithm can be adapted in order to establish an unsupervised learning method. 

4 Random Forests for Unsupervised Learning 

In the unsupervised learning method [15], which is described in what follows, the 
training data . Du consists of a set of input vectors . xm without any corresponding 
target values. Furthermore, no assumptions are made about the number of clusters 
potentially present. The goal is to discover groups of similar examples within the 
data, which is called clustering. Intuitively, a cluster represents a group of datapoints 
whose distances are small compared with the distances to points outside of the 
cluster [4]. Hence, clustering aims to partition the dataset by finding K clusters 
.{C1, . . . , CK } of unlabeled datapoints. 

A general approach for the clustering process is depicted in Fig. 3. The dataset is 
often first subjected to pre-processing. An essential part of this pre-processing is the 
extraction of relevant features of . xm. In the next step, all datapoints .

{
x1, . . . , xMu

}
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Fig. 3 A general approach for clustering an unlabeled dataset 

of . Du are being compared with a similarity measure. This relation is described in 
terms of the proximity, which can be defined through the similarity or dissimilarity. 
The proximity measure strongly influences how the data is going to be clustered. 
Since the proximity between all datapoints of the dataset . Du has to be specified, the 
proximity is a .Mu × Mu symmetric matrix .P = (Pij ). The higher the value of . Pij , 
the more similar the datapoints . xi and . xj are. The diagonal elements . Pii always 
have to be one. After performing the similarity comparison between all datapoints, 
the matrix . P is fed into a clustering algorithm, with the aim to partition the dataset 
into homogeneous groups and to identify patterns. Finally, the clustering results 
have to be validated and interpreted. 

Given the general overview of a clustering procedure, in the following we 
introduce an unsupervised learning approach based on Random Forests and focus 
on defining a similarity measure and the choice of the clustering algorithm. A big 
advantage over many other clustering techniques is, that the proposed method does 
not require a pre-defined number of clusters. 

4.1 Similarity Measure Based on Random Forests 

In order to perform unsupervised learning with Random Forests, first a similarity 
measure is proposed. Therefore, the procedure of growing the trees has to be 
adapted. In a first step we define a classification task with two classes, A and 
S, where all datapoints .xm of .Du are labeled with A. The tricky part arises 
with the construction of the second class S. We define S as a synthetic dataset 
.S = {z1, . . . , zK} , z ∈ X based on some distribution, such that the synthetic dataset 
can be considered as noise. Given A and S, the Random Forest is trained just as 
a normal classification task, described in the previous Sections. The aim here is to 
distinguish between the given dataset . Du and the generated noise dataset . S. The  
underlying mechanism is that, if there is a structure in the data in . Du the Random 
Forest has to fit its leaves to it in order to achieve a low error. Figure 4 illustrates 
the mechanism of distinguishing between A and S, which leads to the separation 
of . Du. Once the Random Forest is trained, two datapoints . xi and . xj at a time 
are run through all trees to determine the similarity . Pij , similarly as described in 
Sect. 3.2.2. But, instead of evaluating the proximity solely on leaves, the proposed 
similarity measure takes into account the full paths of the datapoints through the 
trees instead. Thereby the complete information provided by the Random Forest is 
captured, which makes the process robust. The principle behind this path proximity
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Fig. 4 Assuming a separable 
structure in the dataset . Du, 
the separation between class 
A and class S will implicitly 
learn the underlying structure 
of . Du

is detailed in Sect. 4.1.2. Before describing the path proximity, we will first examine 
what needs to be considered when constructing the noise dataset . S. 

4.1.1 Constructing the Noise Dataset 

In [7] the construction of . S is realized by “independent sampling from the 
one-dimensional marginal distributions of the original data” . Du, as depicted in 
Fig. 4. Another construction principle is explained in [21], where . S is build by 
sampling randomly from an assumed uniform distribution within the Q-dimensional 
hypercube defined by the minimum and maximum values of . Du. Independent of 
the way how the synthetic data is generated, the appearing task is to distinguish 
between noise and the actual data. One main drawback of the proposed noise 
generation methods occur with high dimensional input spaces. In order to force 
the Random Forest to fit properly to the inherent structure, the noise distribution 
has to be very dense. If there is no more noise data left to perform the dividing 
task, the resulting leaves become large. Due to the curse of dimensionality [4], for 
high dimensional input spaces this leads to a huge amount of necessary synthetic 
datapoints and accordingly to a highly unbalanced ratio between A and S. Even  
though the sampling from marginal distributions addresses this issue by sampling 
mainly in the regions of interest, the results in high dimensional spaces might not 
be satisfactory. 

A solution to this problem is to not explicitly generate the noise, but to estimate 
the required number of noise datapoints in each split. The number of noise points 
in a node of the tree is chosen to be equal to the number of datapoints from . Du in 
that node. When growing the trees, a randomly chosen distribution from a set of 
predefined distributions is used in order to construct the noise dataset at each split. 

We re-formulate the estimated Gini impurity for the node . t in an arbitrary tree as
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.rg(t) =
2∑

c=1

Mc(t)

M(t)

(
1 − Mc(t)

M(t)

)
, (45) 

where .Mc(t) the number of datapoints in node . t, which belong to class c. The gini 
gain resulting by splitting . t into the child nodes . tL (left) and . tR (right) is then 

.�i(t, tL, tR) = rg(t) − M(tL)

M(t)
rg(tL) − M(tR)

M(t)
rg(tR). (46) 

The optimal split is given if .�i(t, tL, tR) is maximal. Hence, the number of 
datapoints of each class in each node (. t, . tL and . tR) is required. The number of 
original datapoints .MDu,b

(
tj,b

)
of the bagged dataset .Du,b belonging to the b-th 

tree in the j -th node .tj,b of this tree, as well as in the possible child nodes can 
simply be counted. The number of noise datapoints in the same node needs to be 
estimated for a given split value . τñ. Let  . zñ be the standardized value of . τñ (see Eq. 
(49)). Then, the number of noise datapoints for the left and right child nodes of a 
node . tj,b is calculated as 

.MS,lj,b (zñ) = MDu,b

(
tj,b

)
P (zñ ≤ zñ) and. (47) 

MS,rj,b (zñ) = MDu,b

(
tj,b

) − MS,lj,b (zñ) , (48) 

where . ̃n stands for the .ñ-th dimension of the vector whose features are chosen 
randomly in each node when constructing the trees. The values .MS,lj,b and . MS,rj,b
denote the number of corresponding noise points in the left and right child note 
of . tj,b, given that the split . τñ is chosen, since . zñ is the standardized value of . τñ. 
.P (zñ ≤ zñ) is the value of the cumulative density function (cdf) at the standardized 
threshold . zñ. The standardized threshold . zñ in the .ñ-th dimension is determined with 

.zñ = τñ − μñ

σñ

, . (49) 

μñ = max
{
Xtj,b

}
ñ

+ min
{
Xtj,b

}
ñ

2
, . (50) 

σñ = max
{
Xtj,b

}
ñ

− min
{
Xtj,b

}
ñ

6
, (51) 

where .max
{
Xtj,b

}
ñ
and .min

{
Xtj,b

}
ñ
yield the maximum or minimum value of the 

subspace .Xtj,b in the dimension specified by . ̃n. The interval of a node covers .±3 σñ. 
Next, we define a set of distributions. The first distribution used is the uniform 

distribution, where its cdf is given by 

.Pu (zñ ≤ zñ) = 1

6
zñ + 1

2
. (52)
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The standard normal distribution is the second used distribution and is approximated 
through [22] 

.Pn (zñ ≤ zñ) = 1

1 + e−√
π

(
β1z

5
ñ
+β2z

3
ñ
+β3zñ

) , (53) 

where .β1 = −0.0004406, .β2 = 0.04181198 and .β3 = 0.9 holds. Third, a bimodal 
distribution is used, which is build as the sum of two shifted standard normal 
distributions . Pn with 

.Pb (zñ ≤ zñ) = Pn (zñ−3 ≤ zñ−3) + Pn (zñ+3 ≤ zñ+3) . (54) 

The randomly selected noise distributions at each split relax the dependency of the
proximity measure to one specific distribution. Obviously, the set of three proposed
distributions can also be extended with or replaced by other distributions.

Up to this point, we know how to grow the forest and how to compute the noise 
data to solve the classification task. The last missing element to obtain the data 
adaptive similarity measure is to describe the proposed path proximity. 

4.1.2 Path Proximity 

The proposed proximity measure takes into account the full paths of the datapoints 
through the trees instead of just using the terminal nodes. 

Let a Random Forest consist of B trees . T, where the b-th tree . Tb is constructed 
based on the bagged dataset .Du,b. Then a tree . Tb consists of . Nb nodes . tn,b. A path 
of a datapoint through a tree can be defined by a set including all nodes the datapoint 
passed. This leads to the path formulation 

.Ti,b =
{
t1,b, tni2 ,b, . . . , tNi,b

}
, (55) 

where the index i represents the i-th datapoint . xi . The node . t1,b is the root node of 
the b-th tree . Tb and hence the first node on the path of the i-th datapoint. The node 
.tni2 ,b is the second node on the path, where .ni2,b represents the node number n the 
datapoint has passed. The last node on the path of the i-th datapoint in the b-th tree 
is .tNi,b. 

In order to compare the paths of two datapoints through the b-th tree, the 
corresponding sets .Ti,b and .Tj,b need to be compared. The Jaccard Index [13] 

.Pij (b) = |Ti,b ∩ Tj,b|
|Ti,b ∪ Tj,b| . (56) 

= |Ti,b ∩ Tj,b|
|Ti,b| + |Tj,b| − |Ti,b ∩ Tj,b| (57)
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Fig. 5 Path proximity 
example 1 
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5mutual path
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is used for this purpose. It holds that .Pij (b) ∈ (0, 1], since at least the root node is 
present in both sets. This way, a similarity measure, given the two datapoints . xi and 
. xj , based on the b-th tree is defined. In Fig. 5 an example tree with two arbitrary 
paths is shown. The mutual path of both datapoints is colored in blue, and the single 
paths are depicted in green and red. Interpreting Eq. (57) based on Fig. 5 leads to 
.|Ti,b ∩ Tj,b| being the length of the mutual path and .|Ti,b| being the length of the 
i-th path (i-th datapoint) starting from the root node, .|Tj,b| respectively. For the 
depicted example, the corresponding Jaccard index would be . 2/5. In other words, 
the i-th and j -th datapoints have a similarity of . 0.4. A value of 1 indicates, that both 
datapoints are identical or very similar according to the given tree. 

By averaging over all B values .Pij (b) in a forest, we obtain the path proximity 

.Pij = 1

B

B∑

b=1

|Ti,b ∩ Tj,b|
|Ti,b| + |Tj,b| − |Ti,b ∩ Tj,b| . (58) 

If two datapoints have the same paths in all trees the proximity will be one. Contrary,
if they only share the root nodes, the proximity will be very small tending towards
zero. The path proximity enables one to cover more than just the leaf information
of the forest within one scalar value. Extracting the Random Forest based path
proximity for a given dataset we obtain a data adaptive similarity measure.

With the proximities between all datapoints structured in the similarty matrix 
. P , we can advance to the next step according to Fig. 3 by applying a clustering 
algorithm, which has the task to group similar datapoints given . P . Clustering 
algorithms can be categorized into several types and various algorithms, in the 
following we briefly discuss the hierarchical clustering method applied for the 
proposed unsupervised learning technique with Random Forests. 

4.2 Hierarchical Clustering 

Hierarchical clustering methods can be distinguished between agglomerative or 
divisive. Due to the computation complexity, divisive methods are not commonly
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used in practice [23]. At the beginning of the clustering process, agglomerative 
algorithms consider each datapoint as a single cluster, so that the number of 
datapoints equals the number of clusters. Then, in each iteration a pair of clusters 
is successively merged until one single cluster remains. This hierarchy can be 
visualized with a dendrogram. The methods differ in how the dissimilarity from 
a merged cluster to all the remaining is computed, the so-called linkage function. 
Among several other functions [17], two commonly used linkage functions are the 
single and average linkage. 

For single linkage, the minimum dissimilarity between all the elements of both 
clusters is used as dissimilarity of the clusters 

.dkl = min
i∈Ck
j∈Cl

{
dij

}
, (59) 

where . dkl denotes the dissimilarity between two arbitrary clusters . Ck and . Cl . 
For average linkage, dissimilarity is determined through the average of all 

dissimilarities between the points of the two clusters 

.dkl = 1

|Ck||Cl |
∑

i∈Ck

∑

j∈Cl

dij , (60) 

where .|Ck| denotes the number of objects in cluster . Ck , and .|Ck| the number in . Ck . 
The agglomerative hierarchical clustering results in a hierarchy, the hierarchy can 

be visualized as dendrogram. When using the order of the leaves in the dendrogram, 
permutations on . P can be performed, such that a reordered proximity matrix (. P o), is 
obtained. The matrix . P o represents the clusters in the data and provides a graphical 
interpretation of the data inherent structure. 

4.3 Cluster Analysis and Visualization 

Cluster analysis can be performed with a visualization as depicted in Fig. 6. On the  
right-hand side, the two-dimensional toy dataset, consisting of four clusters with 
different shapes and densities, is depicted. The proximity matrices are represented 
as squared images (a)–(d), where dark pixels represent zero entries (.Pij = 0) and 
bright pixels with higher similarity. The bright squares along the diagonal represent 
the four clusters. Squares, which are not aligned the diagonal represent the inter-
cluster similarity. It should be noted, that these matrices represent the similarities 
before applying hierarchichal clustering. The main purpose of Fig. 6 is to show the 
beneficial effects of the path proximity and ensemble noise. 

For example, the compact cluster no. 4 reveals a brighter square on the similarity 
matrix at the bottom right side along the diagonal axis compared to the widely 
spread cluster no. 2. That is, because the datapoints within cluster no. 4 share a
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Fig. 6 Comparison of uniformly distributed noise versus ensemble noise, as well as path 
proximity versus terminal node (TN) for computing the similarity. The right hand-side depicts 
the two-dimensional toy dataset, consisting of four clusters with different shapes and densities. (a) 
Uniform, TN. (b) Uniform, Path. (c) Ensemple, TN. (d) Ensemple, Path 

higher similarity in along both axes compared to cluster no. 2. Additionally, the 
inter-cluster similarity between both clusters, depicted with ’2/4’, is low, since the 
datapoints of the two clusters show almost no overlap along the axes. 

In addition, the four subfigures (a)–(d) depict the effects of the noise ensemble 
compared to a single uniform distribution, as well as extracting the similarity out of 
the datapoints’ paths through the trees instead of only taking the terminal nodes 
(TN) into account. The similarity of the four clusters can best be identified in 
subfigure (d), where the ensemble noise and especially the path proximity support 
an improved similarity measure. 

5 Applications 

Possible applications of Random Forests in the automotive domain are manifold. 
In the following, two methods for categorizing traffic scenarios are presented. The 
first case applies the unsupervised learning method from the previous section for 
the identification of similar traffic scenarios. The second case demonstrates how 
Random Forests can be integrated into Deep Learning architectures to tackle the 
problem of Open-Set recognition for traffic scenarios.
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5.1 Traffic Scenario Clustering 

Traffic scenario categorization is an important component for downstream tasks 
like trajectory planning, emergency braking and other functions for autonomous 
driving. Road traffic does not evolve completely random, since it’s framed by the 
infrastructure, traffic rules, etc. [12], so that traffic scenarios do follow certain 
patterns, and can be categorized according to the set of features selected. In this 
section the unsupervised method, as presented in the previous section, is applied to 
real world traffic scenarios to identify such patterns. Figure 7 depicts the overview 
of the complete framework, starting from data generation and feature extraction, up 
to the cluster identification and validation. 

First, a set of vehicle trajectories from a public roundabout is extracted with drone 
imagery by applying the method published in [16, 19]. A second trajectory dataset 
is recorded on a vehicle test track in order to create scenarios with critical driving 
maneuvers. The criticality is achieved via strong braking and cut-in maneuvers with 
small gaps between the vehicles, which are not commonly seen in public traffic. 
Since the two datasets are recorded at different places, a coordinate transformation 
is applied as well, so that both can be overlayed on a road map. All scenarios involve 
at least two vehicles and the timespan is set to 5 s. In total 110 critical scenarios are 
generated, the same quantity of scenarios of the public road is randomly selected. 
The extracted trajectories are then geo-referenced and coupled with a road map, 
which allows one to generate road-adaptive features. Especially for road sections 
with curvatures and crossings, one has to align the paths driven by vehicles in 
accordance to the road layout, in order to compute features such as time gaps. The 
aim of this demonstration is to identify several scenario categories and especially to 
distinguish between critical and non-critical scenarios. 

Given the trajectories and the road information, a set of four features 

.x = [v̄, vx, ax, �] (61) 

is extracted from the two datasets. All features relate to the ego vehicle within that
5 s scenario length. . ̄v denotes the average speed, . vx and . ax denote the minimum 

Feature 
Extraction 

Clustering 

Similarity 
Computation 

Hierachial 
Clustering 

o 

Fig. 7 Traffic scenario clustering: from data generation up to cluster visualization
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Fig. 8 Proximity matrix: The 
scenarios are coarsely divided 
into five clusters A to E. 
Below, the normalized values 
for all variables are depicted, 
where bright coloring 
indicates high values 

longitudinal velocity and acceleration. . � denotes the minimum time-headway 
between the ego and a target vehicle in a crossing scenario, assuming constant 
velocity, similarly as with the typical time-headway estimation for car-following 
scenarios. For demonstration purposes the number of features is limited to four, 
which should separate the critical from the non-critical ones. In general, the choice 
and number of features has to be aligned according to the application. 

As depicted in Fig. 8, five clusters, A to E, are selected. One can recognize 
smaller clusters within these clusters and differentiate them more fine-grained 
accordingly. Instead of visually selecting the clusters, one could also use the elbow 
method instead. The clustering result can be physically validated by illustrating the 
feature values below the proximity matrix, as depicted in Fig. 8. For each cluster 
one typical scenario is depicted in Fig. 9. The left column in Fig. 9 shows the paths 
of the vehicles, the two right hand-side columns depict the start and the end of the 
scenario. 

Cluster A and B represent critical crossing scenarios with two vehicles, one 
gray and one black vehicle. In both cases, the merging vehicle (gray) approaches 
the roundabout without considering the second vehicle (black). In cluster A, both 
vehicles are able to brake just before a potential collision. Whereas in cluster B, the 
merging vehicle continues its drive and violates the right-of-way, hence the black 
vehicle has to perform a braking. Similarly to B, in cluster D the merging vehicle 
violates the right-of-way, thus forcing a third vehicle (green) to react and brake. 

Cluster C and E contain most of the casual driving scenarios, which were filmed 
on the public road. Since a few scenarios are randomly selected from a large dataset,
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Fig. 9 Typical scenarios from each cluster: Cluster A,B and D represent critical scenarios, cluster 
C and E casual driving on a public road
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these scenarios are correspondingly diverse. The selection and number of features 
only allows a rough separation. This can be confirmed with the proximity matrix 
in Fig. 8, where especially for cluster C several smaller clusters can be detected. 
Cluster C and E contain casual driving scenarios, such as car-following and leaving 
the roundabout, see the white car depicted in the example for cluster C. The example 
in cluster E depicts the gray colored ego vehicle approaching the roundabout behind 
another vehicle and entering the roundabout, while other cars are leaving the scene 
above. 

After the cluster validation, these five groups can be defined as classes. If further 
data is collected during operation, the new scenarios can be assigned to already 
known classes. However, one must expect to find novel scenario types. The next 
section shows how the Random Forest, embedded in a deep learning architecture, 
can help to deal with new scenarios that cannot be assigned to any of the known 
classes. 

5.2 Open Set Recognition for Traffic Scenarios 

Typically, learning models proposed in the literatures [9, 18] work under the closed-
world assumption, which means that the model will classify all the inputs only to 
one of the K classes used in the training. This is an issue in the real-world, as there 
are possibilities to encounter new scenario classes when the vehicle is driving on-
road. The models trained with closed-world assumptions will fail in the cases where 
they encounter new classes as the models classify the inputs to only one of the K 
trained classes. This is a challenging and important problem to be addressed and 
leads to a new paradigm called Open-Set Recognition (OSR) [20]. 

An OSR model trained on K classes should be able to classify a given input to 
one of the K classes - or as an unknown. According to [2, 3], simply thresholding a 
closed-world model with a user defined threshold might not be satisfactory and the 
performance of such models deteriorates in an open-world case. 

OSR models are either distance based, reconstruction based or extreme value 
based. In [1], a method based on a combination of Convolutional Neural Networks 
(CNN) and a Random Forest is proposed. An overview of the architecture is shown 
in Fig. 10. The scenarios are represented as a sequence of occupancy grids, with each 
occupancy grid representing the occupancy of objects and infrastructure in the scene 
at a time stamp. These grids are fed into the CNN to extract the features. Finally, 
the classification is done by the Random Forest algorithm combined with extreme 
value distributions. During the training phase, firstly a CNN is trained on a set of K 
labelled classes. As a second step, the fully connected layer of the CNN is removed 
and the flattened output is used as input for a Random Forest algorithm. The Random 
Forest is trained on a set of extracted features from the CNN for a given training set. 
In this second phase, the trained Random Forest and the CNN classify an input based 
on the majority voting scheme by the Random Forest algorithm. In the third step the 
class-specific vote patterns are modelled using Extreme Value Theory (EVT) based
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Fig. 10 Open-Set Recognition architecture: CNN for feature extraction, Random Forest and EVT 
based voting patterns for classification, Figure adapted from [1] 

distributions. Class-specific vote patterns collected for the training dataset provide 
comprehensive information about the uncertainty of the classifier for each class. 
In the inference or the test phase, the class-specific EVT distributions are used to 
estimate the probability that a sample belongs to a class . ck or an unknown class 
based on the number of trees in the Random Forest voting for each class. 

The method was tested on real world datasets. The ensemble nature of the 
Random Forest algorithm when combined with EVT distributions is shown to 
provide a much more robust OSR accuracy when compared to using other OSR 
methods and using standard scores like Softmax or majority voting. 

6 Conclusion 

This chapter proposes an unsupervised learning method in order to categorize traffic 
scenarios. The knowledge about traffic scenario categories is an important aspect for 
an efficient validation process for automated driving functions. Hence, the scenario 
categorization has the potential to accelerate the validation process by selecting 
representatives of each cluster and thereby reducing redundancies by avoiding to 
test very similar scenarios. 

The proposed method is based on Random Forests and performs the pattern 
recognition only given the input data, i. e., where the availability of labels for 
training is absent. The goal is to discover groups of similar examples within the 
data. To achieve this, one has to memorize, compress and structure the data. This 
can be done by representing a traffic situation with a set of relevant features. These 
features can then be used to train the proposed method. 

The core of the presented method lies in the data-adaptive similarity measure, 
so that data points can be compared in order to decide, whether they are similar
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and belong to the same cluster. The underlying mechanism is that, if a separable 
structure in the dataset is existent, the separation between the actual data and 
the second, synthetic data, will implicitly learn the underlying structure of the 
unlabeled dataset. Once the Random Forest is trained, two data points at a time 
are run through all trees to determine the similarity between both. The similarities 
between all traffic scenarios can be written in a similarity matrix. By applying 
hierarchical clustering techniques on that matrix, clusters of traffic scenarios with 
similar characteristics emerge, while being separated from those with low similarity. 
The chapter concludes with an exemplified application. It is shown how scenarios, 
represented by vehicle trajectories, can be categorized according to the vehicle 
dynamics, as well as the interaction between the traffic participants. 
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