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1 Introduction 

There is a clear trend in the automotive industry towards autonomous vehicles which 
brings a series of new requirements for real-time scheduling, due to the evolving 
complexity. First, in the scheduling of real-time autonomous systems, scheduling 
theories for simple task models and uniprocessors have been well established, but 
multiprocessor systems are increasingly being employed and dependencies between 
tasks need to be considered [10]. Many existing works use a single recurrent event 
or time-triggered DAG tasks to model functional dependencies in a system [7, 8, 
26, 46, 59, 60]. For example, a complete automotive task chain from on to control 
is described in [59] and converted to a single periodic DAG task. In addition, to 
avoid migration and cache-related preemption overhead, a non-preemptive global 
scheduling scheme is often deployed [15, 59]. That is, the nodes of a DAG are 
scheduled globally on all cores and preemption is not allowed during the execution 
of a node [47]. 

Figure 1 provides an example DAG which contains eight nodes with a set of 
edges. A node indicates a computation unit that must be executed sequentially and 
a directed edge describes the execution dependency of two nodes (e.g., node . v5
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Fig. 1 An example DAG 

and .v7). When there are adequate cores in the system, nodes with no dependency 
e.g., node .v2, .v3 and .v4 can be executed in parallel. However, when the number of 
paralleled nodes is bigger than the number of cores available, the priority ordering 
between nodes becomes an issue which can impose non-negligible effects to the 
makespan (i.e. the execution between the start of the first node and finish time of 
the last node) of a DAG. In the mean time, the Worst-Case Response Time (WCRT) 
analysis in [33, 39] are pessimistic which can result in low system schedulability. 
Hence, a fine-grained scheduling policy and a less pessimistic WCRT bound are 
necessary. 

Second, the increasing demand of autonomous systems to realize both complex 
functionality and high performance with limited resources necessitates extensive 
resource sharing. For example, to facilitate partially or fully automated driving, 
the AUTOSAR Classic standard (which implements static task configuration with 
resource isolation) is evolving to AUTOSAR Adaptive with dynamic resource shar-
ing on multiprocessor architectures [4]. Resources sharing is referred as sharing data 
structures, special memory locations, and code segments, which need to be accessed 
in a mutually exclusive fashion. Consequently, the increasing applications of shared 
resources in the autonomous systems can cause blocking due to contention, while 
conventional requirements of timing predictability and reliability still need to be 
satisfied. That is, the deadlines of tasks must be met while failures during task 
executions must be resolved. 

Satisfying both timing and reliability requirements is particularly hard. Several 
multiprocessor resource sharing protocols have been proposed to bound and min-
imize blocking time, including MSRP [27] and MrsP [14]. However, reliability 
has not been accounted for, which is imperative in safety-critical scenarios like 
autonomous systems. The common fault-tolerance methods are based on redun-
dancy, and they may be directly applied to shared resources by scheduling repeated 
task executions and resource accesses a sufficient number of times to get the 
correct output. However, this leads to severe resource contention and undermines 
system schedulability. Therefore, a solution for guaranteeing both reliability and 
schedulability for autonomous systems with the presence of shared resource is 
required. 

Third, on communication, Ethernet as a data link layer protocol has evolved 
from standard computer networks to applications of in-vehicle communication
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(e.g., deterministic real-time Ethernet [55]). In the emerging safety-critical systems 
such as highly automated vehicles, a large volume of messages with mixed types 
need to be transmitted on the same infrastructure, which requires deterministic 
and predictable timing to guarantee safety. Traditional real-time networks use non-
standard Ethernet to enable high-bandwidth deterministic communication, which 
prohibits connectivity between different protocols and components from different 
vendors, as well as increases uncertainty and difficulty in timing and hazard 
analysis. 

TSN proposed as an IEEE standard, offers an interoperable and flexible determin-
istic Ethernet-based solution [36]. It is widely considered as the network solution for 
future automobiles. The IEEE 802.1 TSN standard includes a wide range of subsets, 
in which one of the most important protocols is the 802.1Qbv [20, 35, 63]. The IEEE 
802.1Qbv supports time-aware shaper (TAS) using TDMA (time-division multiple 
access)-scheduled queues to access the egress port—controlled by a gate switching 
logic that is driven by a synchronized global timer and a look-up scheduling table. 

Control loops are often involved in the safety-critical systems, where guarantees 
are required on both timing of communication and control performances (measured 
by settling time). In general, short sampling periods enable the potential to achieve 
good control performance with frequent interactions between the controller and the 
plant. The state-of-the-art network scheduling techniques for TSN (e.g., [5, 41, 63]) 
cannot be directly applied, as they consider neither the hard real-time constraints on 
network packets nor the control performance of the system. Therefore, an integrated 
solution of network scheduling and controller co-design for TSN is essential for 
autonomous in-vehicle communications from the CPS perspective. 

1.1 Organization 

In this chapter, we present three interconnected fundamental works along the above 
directions: the real-time scheduling for DAGs on multiprocessor architectures; the 
reliable resource sharing in autonomous systems; and real-time scheduling and 
controller co-design for TSN. The rest of the chapter is organized as follows:

• Section 2 provides the background knowledge and related research outputs of 
the work presented in the following sections.

• Section 3 introduces a CPC model based on the work-conserving schedule and 
the classic analysis, alongside a priority ordering algorithm.

• Section 4 presents the first fault-tolerant solution for multiprocessor MCS 
with shared resources. The solution contains a system execution model that is 
compatible with an arbitrary number of criticality levels, and a protocol, namely 
Multiprocessor Stack Resource Protocol Fault Tolerance (MSRP-FT) which aims 
to address faults during critical sections while minimizing blocking time.

• Section 5 presents the first integrated solution of network scheduling and 
controller co-desig for TSN 802.1Qbv. Specifically, the first FPS approach for 
TSN is demonstrated. Moreover, a finer-grained analysis for the above scheduling
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approach at the frame level is also included. Based on FPS and the analysis, we 
formulate a co-design optimization problem to decide the sampling periods and 
poles of real-time controllers.

• Section 6 concludes the contents of this chapter. 

2 Background 

In this section, we provide the background information and related literature to 
motivate the research output demonstrated in the following sections. First, Sect. 2.1 
reviews the work in scheduling and analysis of DAG tasks. Second, work related to 
fault-tolerance, resource sharing, and MCS is reviewed in Sect. 2.2. Last, relevant 
literature on the scheduling of TSN network is presented in Sect. 2.3. 

2.1 Scheduling and Analyzing DAG Tasks in Autonomous 
Vehicles 

The majority of the existing work on scheduling DAG tasks assumes a work-
conserving scheduler [39]. A scheduling algorithm is said to be work-conserving if 
it never idles a processor when there exists pending workload. A generic bound that 
captures the worst-case response time of tasks scheduled globally with any work-
conserving method is provided in Graham [28]. This analysis is later formalized in 
Melani [39] and Fonseca [25] for DAG tasks. The analysis of a single DAG task 
is given in Eq. (1). Notation . τx denotes a DAG task with index x, .Rx denotes the 
response time of . τx , . Lx denotes the length of the longest path in the DAG, .Wx gives 
the sum of Worst-Case Execution Time (WCETs) of all nodes in the DAG, and m 
denotes the number of cores. 

.Rx = Lx +
⌈

1

m
(Wx − Lx)

⌉
(1) 

In this analysis, the worst-case response time of a DAG task . τx is upper bounded 
by the length of the critical path and the intra-task interference imposed by the non-
critical nodes of . τx itself. However, this analysis assumes the critical path can be 
delayed by all the concurrent nodes, which is pessimistic for scheduling methods 
with an explicit execution order known a priori [33, 39]. 

2.1.1 The State-of-the-Art in DAG Scheduling and Analysis 

For homogeneous multiprocessors with a global scheme, existing scheduling (and 
their analysing) methods aim at reducing the makespan and tightening the worst-
case analytical bound. They can be classified as either slice-based [17, 29] or  
node-based [18, 33]. The slice-based schedule enforces node-level preemption and
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divides each node into a number of small computation units (e.g., units with a 
WCET of one in Chang [17]). By doing so, the slice-based methods can improve 
node-level parallelism but to achieve an improvement the number of preemptions 
and migrations need to be controlled. 

The node-based methods provide a more generic solution by producing an 
explicit node execution order, based on heuristics derived from either the spatial 
(e.g., number of successors of a node [37] and topological order of nodes [33]) 
or the temporal (execution time of nodes [18, 54, 59]) characteristics of the DAG. 
Below we describe two most recent node-based methods. 

In Chen et al. [18], an non-preemptive scheduling method is proposed for a 
single periodic DAG, which always executes the ready node with the longest 
WCET to improve parallelism. Chen [18] prevents anomalies from occurring when 
nodes are executing less than their WCETs, which can lead to an execution order 
different from the schedule. This is achieved by guaranteeing nodes are executed in 
the same order as the offline simulation. However, without considering inter-node 
dependencies, this schedule cannot minimize the delay on the completion of DAG. 

In He et al. [33], a new response time analysis is presented, which dominates the 
traditional bound in Graham [28] and Melani [39] when an explicit node execution 
order is known a priori. That is, a node . vj can only incur a delay from the concurrent 
nodes that are scheduled prior to . vj . Then, a scheduling method is proposed that 
always executes: (i) the critical path first; and (ii) the immediate interference nodes 
first (nodes that can cause the most immediate delay on the currently-examined 
path). The novelty in He [33] is considering both topology and path length in a DAG, 
and provides the state-of-the-art analysis against which our approach is compared. 
However, the method in He [33] schedules concurrent nodes based on the length 
of their longest complete path (a path from the source to the sink node), i.e., nodes 
in the longest complete path first. This heuristic is not dependency-aware, which 
reduces the level of parallelism that can be exploited, and hence, lengthen the finish 
time of a DAG task. 

2.2 Real-Time Scheduling for Reliable Autonomous Driving 

In this subsection, the background information and related work about real-
time scheduling of reliable autonomous system are provided. More specifically, 
Sect. 2.2.1 introduces common faults and solutions in the embedded systems, 
Sect. 2.2.2 presents the research in the field of resources sharing protocols. Sec-
tion 2.2.3 demonstrates the research output related to MCS. 

2.2.1 Fault Tolerance 

Faults in modern embedded systems can be broadly categorized as permanent or 
transient faults. Transient faults affect the functionality of systems for a short period 
of time, where permanent faults happen repeatedly and cannot be easily recovered
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from. Some software faults (bugs) are caused by erroneous program design, are 
permanent faults, and cannot be recovered by re-starting the operation [58]. Other 
software errors can be transient faults caused by unexpected interference among 
threads, and may be resolved by restarting the program [40]. Transient hardware 
faults can occur due to issues such as power supply fluctuations or electromagnetic 
interference which happen increasingly more frequently due to the decrease in 
transistor size and operating voltage [32]. Permanent hardware faults are the result 
of hardware damage or wear, and cannot be dealt with until the faulty component 
is replaced. In this chapter, we focus on transient faults which can be recovered by 
retrying the operation. 

Three mainstream redundancy techniques are widely adopted in the literature 
to tolerate faults: re-execution [1], checkpointing [19], and replication [45]. The 
re-execution approach saves task status at the beginning and detects faults at the 
end. Once a fault is detected, the roll-back technique is applied and the whole task 
is re-executed. The checkpointing technique introduces additional checkpoints in 
a task and normally divides task execution into a set of uniform segments. Each 
small segment is tested for faults, and when a fault is detected the system rolls 
back to the most recent checkpoint and only re-executes the faulty segment. With 
replication, each task is replicated to several copies. The task and its replicas are 
released simultaneously and execute in parallel. When an execution finishes without 
incurring faults, the others are discarded. 

Generally, fault detection mechanisms focus on analyzing the outputs of an 
execution. For example, in a lockstep dual-core architecture [50] or Triple Modular 
Redundancy architecture [4], multiple identical cores execute the same code and 
the system applies a majority vote to find the faulty component. Acceptance tests 
are often applied at the checkpoint to determine the correctness of an operation by 
checking a set of conditions that are expected to be met if the program has executed 
correctly [44]. In contrast, another type of fault-detection mechanism focuses on 
detecting the stimulus of the fault instead of the computation results. For example, 
acoustic wave detectors are adopted in the hardware architecture [56] to detect 
particle strikes that can result in transient faults during computation. Instead of using 
built-in hardware to detect faults, the Argus approach [38] uses detection equipment 
to monitor the variations of the circuits. Detailed descriptions and comparisons of 
such type of detecting mechanisms are included in [57]. 

2.2.2 Resource Sharing 

Resource sharing in multicore real-time systems has been extensively studied in the 
past few decades with numerous resource sharing protocols available [2, 14, 27]. A 
comprehensive survey can be found in [11]. Here we describe the Multiprocessor 
Stack Resource Protocol (MSRP) [27]. 

The MSRP is a First-In-First-Out (FIFO) spin-based resource sharing protocol 
developed for fully-partitioned systems. In MSRP, each global resource (i.e., shared 
between cores) is associated with a FIFO queue. A task requesting a global resource
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Fig. 2 The AMC model 

Overrun 

is placed in the FIFO queue and busy-waits (spins) non-preemptively until it moves 
to the head of the queue, at which point it will be granted the resource. The task 
then keeps executing non-preemptively until it releases the resource. For a local 
resource (i.e., shared in one core), a priority ceiling is applied, which equals the 
highest priority of tasks that request the resource. A task raises its priority to the 
ceiling during the entire access to the local resource. 

When contending for shared resources, tasks will incur additional waiting time 
(i.e. blocking) due to mutually exclusive executions. The blocking effects incurred 
by tasks for accessing shared resources under MSRP can be classified as spin delay 
and arrival blocking [62]. With shared resources, a task can incur spin delay either 
directly or indirectly. Direct spin delay occurs when a task is being blocked directly 
for accessing a shared resource by other resource accesses issued from remote cores. 
In this case, the task is added at the tail of the FIFO queue and spin-waits until 
it is granted the resource. A task incurs indirect spin delay when it is preempted 
by a local higher priority task, which in turn is blocked directly from accessing a 
resource. Arrival blocking occurs when a task is released but is then immediately 
blocked by a local low priority task which is running non-preemptively (resp. with 
a higher resource ceiling) for accessing a global (resp. local) resource. 

Resource sharing protocols define rules for accessing shared resources and bound 
the blocking delay [11]. However, they are not developed with a particular focus on 
system reliability, in which a resource request has to be potentially executed multiple 
times sequentially to tolerate faults. Hence, the additional blocking time imposed for 
addressing faults cannot be effectively minimized by these protocols. Based on the 
above, this chapter focuses on fault-tolerance for shared resources in MCS and aims 
to reduce the additional blocking from tolerating faults. 

2.2.3 Mixed Criticality System 

Baruah et al. [6] propose an Adaptive Mixed Criticality (AMC) model which is 
widely regarded as the most effective approach within Fixed-Priority Preemptive 
Scheduling [34]. The AMC model has two system modes (LO and HI) for the 
system that has tasks with two criticality levels (i.e., .L ∈ low, high). As shown 
in Fig. 2, the system starts in LO mode and all tasks are allowed to execute up to 
.Ci,low. If a task overruns these budgets, the system upgrades to the HI mode (a mode 
switch), in which high-criticality tasks are allowed to execute with a larger budget 
.Ci,high and low-criticality tasks are suspended. The AMC model assumes system
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can monitor the running time of tasks and can be extended to have an arbitrary 
number of system modes according to the number of criticality levels in the system. 
Later on, concerning the quality of service (QoS) of low-criticality tasks after a 
mode switch, instead of dropping tasks brutally, many research [13, 30] propose 
mechanisms for MCS to degrade low-criticality tasks gracefully. 

With the presence of faults, Pathan [42] proposes a mixed-criticality fault-
tolerant algorithm called FTMC for systems with two criticality levels. In FTMC, 
the system would transit from a low-criticality mode to a high-criticality mode 
if any overrun happens or the number of transient faults incurred in the system 
exceeds a predefined threshold. Chen et al. [19] propose an online fault-tolerant 
MCS scheduling framework called the FTS-RHS. The framework applies the 
checkpointing recovery schemes which outperforms re-execution in scheduling. In 
addition, the DVFS techniques have been applied in MCS in [9] to provide systems 
with precise real-time and energy-efficient scheduling. Safari et al. [45] further 
extend the research topic by including the consideration of energy consumption 
in fault-tolerant MCS and propose a LETR-MC scheme for a system with two 
criticality levels. 

With shared resources, Burns [12] applies the Original Priority Ceiling Protocol 
(OPCP) to the MCS on a uni-processor platform with two criticality levels. When 
the system transits to the high-criticality mode, low-criticality resource holders 
which are computing with the ceiling priority are suspended. They can continue to 
execute by inheriting the execution budget of their next release. Zhao et al. [61] 
extend the Priority Ceiling Protocol (PCP) [48] to HLC-PCP (Highest-Locker 
Criticality, Priority-Ceiling Protocol) to manage resource sharing in the MCS under 
AMC scheme. Han et al. [31] migrate the MSRP to the MCS and develop a 
criticality-aware utilization bound. However, none of the above works consider the 
presence of both shared resources and faults. 

2.3 Real-Time TSN Scheduling for Automotive CPS 

Time-sensitive networking is an enabler for Ethernet-based communication services 
that were not originally built to support hard real-time guarantees, such as OPC Uni-
fied Architecture (OPC-UA)1 and Distributed Data Service (DDS).2 The objective 
of TSN is to reduce the worst-case end-to-end latency for critical traffics. Here we 
briefly discuss the IEEE 802.1Qbv TSN (referred to as Qbv in the following text). A 
diagrammatic view of a Qbv-enabled switch is depicted in Fig. 3. From the figure, 
it can be seen that a Qbv TSN switch consists of the following major components:

1 https://opcfoundation.org/about/opc-technologies/opc-ua/. 
2 https://www.omg.org/spec/DDS/1.4/PDF. 
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Fig. 3 An overview structure of a 802.1Qbv-capable TSN switch 

• Scheduled FIFO queues: In a Qbv-enabled TSN switch, there are eight inde-
pendent time-divided FIFO queues which are controlled by transmission gates. 
The incoming traffic is filtered by the packet filtering unit which sends a packet 
to its designated queue. This information is encoded as Class of Service (CoS) in 
the priority code point (PCP) header in the Ethernet frame.

• Gate control list (GCL): The GCL can trigger gate-open and gate-close events 
periodically with a gate control cycle. The time granularity between events can be 
as low as 1ns depending on the specific implementation. The schedule is located 
in a GCL look-up table that is distributively configured to each TSN node. If 
multiple gates are opened at the same time, the policy in the priority selection 
unit will determine which queue is forwarded to the egress port first.

• Time synchronization: To allow time-divided transmission that is distributed 
through the network, a timer is globally synchronized with all the switches in 
the same network using precision time protocols (PTPs), e.g., IEEE 802.1AS or 
IEEE 802.1AS-Rev. 

The mechanisms of Qbv TSN improve the flexibility in terms of traffic sched-
ule and control. It enables interoperability between standard-compliant industrial 
devices thus allowing open data exchange. It also removes the need for physical 
separation of critical and non-critical communication networks. However, in a 
different aspect these introduce increased design complexity that needs to be 
elaborately handled.



52 W. Chang et al.

3 Scheduling of DAGs on Multiprocessor Architectures 

The content of this section is organized as follows. Section 3.1 presents the system 
and task model. Section 3.2 presents the CPC model that captures the two key factors 
of the DAG structure. Finally, Sect. 3.3 describes the scheduling algorithm for DAG 
tasks, based on the CPC model. 

3.1 Task Model and Scheduling Preliminaries 

A DAG task . τx is defined by .{Tx,Dx,Gx = (Vx, Ex)}, with . Tx denoting its 
minimum inter-arrival time, .Dx gives a constrained relative deadline, i.e., .Dx ≤ Tx , 
and . Gx is a graph defining the set of activities forming the task. The graph is defined 
as .Gx = (Vx, Ex) where . Vx denotes the set of nodes and .Ex ⊆ (Vx × Vx) gives 
the set of directed edges connecting any two nodes. Each node .vx,j ∈ Vx represents 
a computation unit that must be executed sequentially and is characterized by its 
Worst-Case Execution Time (WCET), .Cx,j . For simplicity, the subscript of the DAG 
task (i.e., x for . τx) is omitted when the system has only one DAG task. 

For any two nodes . vj and . vk connected by a directed edge ((.vj , vk) ∈ E), . vk

can start execution only if . vj has finished its execution. That is, . vj is a predecessor 
of . vk , whereas . vk is a successor of . vj . A node . vj has at least one predecessor 
.pre(vj ) and at least one successor .suc(vj ), formally defined as . pre(vj ) = {vk ∈
V | (vk, vj ) ∈ E} and .suc(vj ) = {vk ∈ V | (vj , vk) ∈ E}, respectively. Nodes 
that are either directly or transitively predecessors and successors of a node . vj are 
termed as its ancestors .anc(vj ) and descendants .des(vj ) respectively. A node . vj

with .pred(vj ) = ∅ or .succ(vj ) = ∅ is referred to as the source .vsrc or sink . vsink

respectively. Without loss of generality, we assume each DAG has one source and 
one sink node. Nodes that can execute concurrently with . vj are given by . C(vj ) =
{vk|vk /∈ (anc(vj ) ∪ des(vj )),∀vk ∈ V } [33]. 

A DAG task has the following fundamental features. First, a path . λa =
{vs, · · · , ve} is a node sequence in V and follows .(vk, vk+1) ∈ E,∀vk ∈ λa\ve. 
The set of paths in V is defined as . �V . A  local path is a sub-path within the task 
and as such does not feature both the source .vsrc and the sink . vsink . A  complete 
path features both. Function .len(λa) = ∑

∀vk∈λa
Ck gives the length of . λa . Second, 

the longest complete path is referred to as the critical path . λ∗, and its length is 
denoted by L, where .L = max{len(λa),∀λa ∈ �V }. Nodes in . λ∗ are referred to 
as the critical nodes. Other nodes are referred to as non-critical nodes, denoted 

as .
¬
V = V \λ∗. Finally, the workload W is the sum of a task’s WCETs, i.e. 

.W = ∑
∀vk∈V Ck . The workload of all non-critical nodes is referred to as the non-

critical workload.
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3.2 Concurrent Provider and Consumer Model 

Equation (1) indicates that minimizing the delay from non-critical nodes to the 
critical path (i.e., 1 

m (W − L)) effectively reduces makespan of the DAG. Achieving 
this requires the complete knowledge of the topology (i.e., the dependency and 
parallelism of each node) of a DAG so that the potential delay of the critical path 
can be identified. To support this the CPC model is presented to fully exploit node 
dependency and parallelism. 

The CPC model has two key stages. First, the critical path is divided into a set of 
consecutive sub-paths based on the potential delay it can incur. Second, for each sub-
path, the CPC model identifies the non-critical nodes that can 1) execute in parallel 
with the sub-path and 2) delay the start of the next sub-path, based on precedence 
constraints. 

The intuition of the CPC model is: when the critical path is executing, it utilizes 
just one core so that the non-critical ones can execute in parallel on the remaining 
(m − 1) cores. The time allowed for executing non-critical nodes in parallel is 
termed as the capacity, which is the length of the critical path. Note that non-critical 
nodes that utilize this capacity to execute cannot cause any delay to the critical path. 
The sub-paths in the critical path are termed capacity providers �∗ and all non-
critical nodes are capacity consumers �. For each provider θ∗

i ∈ �∗, it has a set 
of consumers F(θ∗

i ) that can execute using θ∗
i ’s capacity as well as delay the next 

provider θ∗
i+1 in the critical path. 

Algorithm 1 presents a two-step process for constructing the CPC model of 
an input DAG G with its critical path λ∗. Starting from the head node in λ∗, 
capacity providers are formed by analyzing node dependency between the critical 
path and non-critical nodes (Line 3-9). For a provider θ∗

i , its nodes should execute 
consecutively without delay from non-critical nodes in terms of dependency. That 
is, each node in θ∗

i , other than the head node (Line 5), only has one predecessor 
which is the previous node in θ∗

i . 
Then, for each θ∗

i ∈ �∗, its consumers F(θ∗
i ) are identified as the nodes that 

(1) can execute concurrently with θ∗
i , and (2) can delay the start of θ∗

i+1 (i.e., 

anc(θ∗
i+1)∩

¬ 
V in Line 12). Accordingly, nodes in F(θ∗

i ) that finish later than θ∗
i will 

delay the start of θ∗
i+1 (if it exists). By doing so, the CPC model provides detailed 

knowledge of the potential delay caused by non-critical nodes on the critical path. 
Furthermore, given an arbitrary DAG structure, a consumer vj ∈ F(θ∗

i ) can 
start earlier than, synchronous with, or later than the start of θ∗

i . For synchronous 
and late-released consumers, they will only utilize the capacity of θ∗

i . However, an 
early-released consumer can execute concurrently with certain previous providers, 
and therefore interfere with their consumers and impose an indirect delay to those 
providers. For a provider θ∗

i , G(θ∗
i ) (in line 13) denotes the nodes that belong to the 

consumer groups of later providers, but which can execute in parallel (in terms of 
topology) with θ∗

i .
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Algorithm 1: CPC(G, λ∗): CPC model construction 
Inputs : {G = (V , E)} 
Outputs : �∗, F(θ∗

i ), G(θ∗
i ),∀θ∗

j ∈ �∗ 

Parameters : λ∗, 
¬ 
V = V \λ∗ 

1 �∗ = ∅; 
2 for  each vj ∈ λ∗, in topological order do 
3 θ∗

i = {vj }; λ∗ = λ∗\vj ; 
4 while  pre(vj+1) = {vj } do 
5 θ∗

i = θ∗
i ∪ {vj+1}; λ∗ = λ∗ \ vj ; 

6 end  
7 �∗ = �∗ ∪ θ∗

i ; 
8 end  
9 for  each θ∗

i ∈ �∗, in topological order do 

10 F(θ∗
i ) = anc(θ∗

i+1) ∩ 
¬ 
V ; 

11 G(θ∗
i ) =

⋃
vj ∈F(θ∗

i )
{C(vj ) ∩ 

¬ 
V }; 

12
¬ 
V = 

¬ 
V \ F(θ∗

i ); 
13 end 
14 return �∗, F(θ∗

i ), G(θ∗
i ), ∀θ∗

i ∈ �∗ 

With the CPC model, a DAG is transformed into a set of capacity providers 
and consumers, with a time complexity of O(|V | + |E|). The CPC model provides 
complete knowledge of both direct and indirect delays from non-critical nodes on 
the critical path. For each provider θ∗

i , nodes in F(θ∗
i ) can utilize a capacity of 

len(θ∗
i ) on each of m−1 cores to execute in parallel while incurring potential delay 

from G(θ∗
i ). 

We now formally define the parallel and interfering workload of a capacity 
provider. Let f (·) denote the finish time of a provider θ∗

i or a consumer node vj , 
Li = len(θ∗

i ) gives the length of θ∗
i and Wi = Li+∑

vk∈F(θ∗
i )

{Ck}+∑
vk∈G(θ∗

i )
{Ck} 

gives the total workload of θ∗
i , F(θ∗

i ) and G(θ∗
i ). We formally define the terms 

parallel and interfering workload of a provider θ∗
i . Note, W ≤ ∑

θ∗
i ∈� Wi as a 

consumer can be accounted for more than once if it can execute concurrently with 
multiple providers. 

Definition 1 (Parallel Workload of θ∗
i ) The parallel workload αi of θ∗

i is the 
workload in Wi − Li that can execute before the time instant f (θ∗

i ). 

For a node vj in F(θ∗
i ) ∪ G(θ∗

i ), it contributes to αi if either f (vj ) ≤ f (θ∗
i ) or 

f (vj )−Cj < f  (θ∗
i ). The former case (i.e., f (vj ) ≤ f (θ∗

i )) indicates vj is finished 
before the finish of θ∗

i and cannot cause any delay, whereas f (vj ) − Cj < f  (θ∗
i ) 

means vj can partially execute in parallel with θ∗
i so that its delay on θ∗

i+1 is less 
than Cj . 

Definition 2 (Interfering Workload of θ∗
i ) The interfering workload of θ∗

i is the 
workload in Wi − Li that executes after the time instant f (θ∗

i ). For a provider θ∗
i , 

its interfering workload is Wi − Li − αi .
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With Definitions 1 and 2, Lemma 1 follows. 

Lemma 1 For providers θ∗
i and θ

∗
i+1, the workload in Wi that can delay the start 

of θ∗
i+1 is at most Wi − Li − αi . 

Proof Based on the CPC model, the start of θ∗
i+1 depends on the finish of both θ∗

i 
and F(θ∗

i ), which is max{f (θ∗
i ), maxvj ∈F(θ∗

i ) f (vj )}. By Definition 1, αi will not 
cause any delay as it always finishes before f (θ∗

i ), and hence, the lemma follows. 
Note that although G(θ∗

i ) cannot delay θ∗
i+1 directly, it can delay on nodes in F(θ∗

i ), 
and in turn, causes an indirect delay to θ∗

i+1. 	


3.3 DAG Scheduling: A Parallelism and Dependency Exploited 
Method 

Based on the CPC model, a scheduling method is then presented to maximize node 
parallelism. This is achieved by a rule-based priority assignment, in which three 
rules are developed to statically assign a priority to each node in the DAG. Firstly to 
always execute the critical path first (Sect. 3.3.1), and then two rules (Sect. 3.3.2) to  
maximize parallelism and minimize the delay to the critical path. 

The entire presented approach has general applicability to DAGs with any topol-
ogy (unlike, e.g., [25], which assumes nested fork-join DAGs only). It assumes a 
homogeneous architecture, however, it is not restricted by the number of processors. 

3.3.1 The “Critical Path First” Execution (CPFE) 

In the CPC model, the critical path is conceptually modelled as a set of capacity 
providers. Arguably, each complete path can be seen as the providers, which offers 
the time interval of its path length for other nodes to execute in parallel. However, 
the critical path provides the maximum capacity and hence, enables the maximized 
total parallel workload (denoted as .α = ∑

θ∗
i ∈�∗ αi). This provides the foundation 

to minimize the interfering workload on the complete critical path. 

Theorem 1 For a schedule . S with CPFE and a schedule . S′ that prioritizes a 
random complete path over the critical path, the total parallel workload of providers 
in S is always equal to or higher than that of . S′, i.e., .α ≥ α′. 

Proof The change from . S to . S′ leads to two effects: (1) a reduction on the length 
of the provider path, and (2) an increase on length of one consumer path. Below we 
prove both effects cannot increase the parallel workload after the change. 

First, suppose the length of provider . θ∗
i is shortened by . � after the change from 

. S to . S′, the same reduction applies on its finish time, i.e., .f ′(θ∗
i ) = f (θ∗

i ) − �. 
Because nodes in . θ∗

i are shortened, the finish time .f (vj ) of a consumer node . vj ∈
F(θ∗

i ) ∪ G(θ∗
i ) can also be reduced by a value from .�/m (i.e., a reduction on . vj ’s
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interference, if all the shortened nodes in . θ∗
i belong to . C(vj )) to . � (if all such nodes 

belong to .pre(vj )) [28, 39]. By definition 1, a consumer .vj ∈ F(θ∗
i ) ∪ G(θ∗

i ) can 
contribute to the . αi if .f (vj ) ≤ f (θ∗

i ) or .f (vj )−Cj ≤ f (θ∗
i ). Therefore, . αi cannot 

increase in . S′, as the reduction on .f (θ∗
i ) (i.e., . �) is always equal or higher than that 

of .f (vj ) (i.e., .�/m or . �). 
Second, let L and . L′ denote the length of the provider path under . S and . S′ (with 

.L ≥ L′), respectively. The time for non-critical nodes to execute in parallel with the 
provider path is . L′ on each of .m − 1 cores under . S′. Thus, a consumer path with 
its length increased from . L′ to L directly leads to an increase of .(L − L′) in the 
interfering workload, as at most . L′ in the consumer can execute in parallel with the 
provider. 

Therefore, both effects cannot increase the parallel workload after the change 
from . S to . S′, and hence, .α ≥ α′. 	

Rule 1. .∀vj ∈ �∗,∀vk ∈ � ⇒ pj > pk . 

Theorem 1 leads to the first assignment rule that assigns critical nodes with the 
highest priority, in which . pj denotes the priority of node . vj . With Rule 1, the 
maximum parallel capacity is guaranteed so that an immediate reduction (i.e., . α) 
on the interfering workload of . λ∗ can be obtained. 

3.3.2 Exploiting Parallelism and Node Dependency 

With CPFE, the next objective is to maximize the parallelism of non-critical nodes 
and reduce the delay on the completion of the critical path. Based on the CPC model, 
each provider . θ∗

i is associated with .F(θ∗
i ) and . G(θ∗

i ). For .vj ∈ G(θ∗
i ), it can execute 

before .F(θ∗
i ) and use the capacity of . θ∗

i to execute, if assigned with a high priority. 
Under this case, . vj can (1) delay the finish of .F(θ∗

i ) and the start of .θ∗
i+1, and (2) 

waste the capacity of its own provider. A similar observation is also obtained in [33], 
which avoids this delay by the heuristic of early interference node first. 

Rule 2. .∀θ∗
i , θ∗

l ∈ �∗ : i < l ⇒ min
vj ∈F(θ∗

i )
pj > max

vk∈F(θ∗
l )

pk . 

Therefore, the second assignment rule is derived to specify the priority between 
consumer groups of each provider. For any two adjacent providers . θ∗

i and . θ∗
i+1, the  

priority of any consumer in .F(θ∗
i ) is higher than that of all consumers in .F(θ∗

i+1). 
With Rule 2, the delay from .G(θ∗

i ) on .F(θ∗
i ) (and hence .θ∗

i+1) can be minimized, 
because all nodes in .G(θ∗

i ) belong to consumers of following providers and are 
always assigned with a lower priority than nodes in .F(θ∗

i ). 
We now schedule the consumer nodes in each . F(θ∗

i ). In [33], concurrent nodes 
with the same earliness (in terms of the time they become ready during the execution 
of the critical path) are ordered by the length of their longest complete path (i.e., 
from .vsrc to .vsink). However, based on the CPC model, a complete path can be 
divided into several local paths, each of these local paths belong to the consumer 
group of different providers. For local paths in .F(θ∗

i ), the order of their lengths can
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Algorithm 2: .EA(�∗,�): priority assignment 
Inputs : �∗,�
Parameters : p, pmax 

Initialize : p = pmax , ∀vj ∈ �∗ ∪ �, pj = −1 
1 /* Assignment Rule 1. */ 

2 ∀vj ∈ �∗, pj = p; p = p − 1; 
3 /* Assignment Rule 2. */ 

4 for  each θ∗
i ∈ �∗, in topological order do 

5 while  F(θ∗
i ) �= ∅ do 

6 /* Find the longest local path in F(θ∗
i ). */ 

7 ve, vj ∈ F(θ∗
i ) : 

8 ve = argmax 
ve 

{le(F (θ∗
i ))|suc(ve) = ∅}; 

9 λve = ve ∪ λvj , argmax 
vj 

{lj (F (θ∗
i ))|∀vj ∈ pre(ve)}; 

10 if |pre(vj )| > 1, ∃vj ∈ λve then 
11 {�∗′,�′} =  CPC(F(θ∗

i ), λve ); 
12 EA(�∗′,�′); 
13 break; 
14 else 
15 /* Assignment Rule 3. */ 

16 ∀vj ∈ λve , pj = p; p = p − 1; 
17 F(θ∗

i ) = F(θ∗
i ) \ λve ; 

18 end 
19 end 
20 end 

be the exact opposite to that of their complete paths. Therefore, this approach can 
lead to a prolonged finish of .F(θ∗

i ). 
In the constructed schedule, we guarantee a longer local path is always assigned 

with a higher priority in a dependency-aware manner. This derives the final 
assignment rule, as given below. Notation .lj (F (θ∗

i )) denotes the length of the 
longest local path in .F(θ∗

i ) that includes . vj . This length can be computed by 
traversing .anc(vj ) ∪ des(vj ) in .F(θ∗

i ) [33]. With Rules 1-3 applied to the example 
DAG, it finally leads to the best-case schedule with a makespan of 13. 

Rule 3. 	. . vj , vk ∈ F(θ∗
i ) : lj (F (θ∗

i )) > lk(F (θ∗
i )) ⇒ pj > pk

However, simply applying Rule 3 to each .F(θ∗
i ) is not sufficient. Given a 

complex DAG structure, every .F(θ∗
i ) can form a smaller DAG . G′, and hence, an 

inner nested CPC model with the longest path in .F(θ∗
i ) is the provider. Furthermore, 

this procedure can be recursively applied to keep constructing inner CPC models for 
each consumer group in a nested CPC model, until all local paths in a consumer 
group are fully independent. For each inner nested CPC model, Rules 1 and 2 
should be applied for maximized capacity and minimized delay of each consumer 
group, whereas Rule 3 is only applied to independent paths in a consumer group for 
maximized parallelism (and hence, the star mark on Rule 3). This enables complete 
awareness of inter-node dependency and guarantees the longest path first in each 
nested CPC model.
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Algorithm 2 provides the complete approach of the rule-based priority assign-
ment. The method starts from the outer-most CPC model (.CPC(G, λ∗)), and 
assigns all provider nodes with the highest priority based on Rule 1 (Line 2). By 
Rule 2, the algorithm starts from the earliest .F(θ∗

i ) (Line 4) and finds the longest 
local path .λve in .F(θ∗

i ) (Line 8-9). If there exists dependency between nodes in 
.λve and .F(θ∗

i )\λve (Line 9), .F(θ∗
i ) is further constructed as an inner CPC model 

with the assignment algorithm applied recursively (Line 11-12). This resolves the 
detected dependency by dividing .λve into a set of providers. Otherwise, .λve is an 
independent local path so that priority is assigned to its nodes based on Rule 3. The 
algorithm then continues with .F(θ∗

i )\λve . The process continues until all nodes in 
V are assigned with a priority. 

The time complexity of Algorithm 2 is quadratic. At most, .|V | + |E| calls 
to Algorithm 1 are invoked to construct the inner CPC models (Line 11), which 
examines each node and edge in the DAG. Mutually exclusively, Lines 16-17 assign 
each node with a priority value. Given that the time complexity of Algorithm 1 
is .O(|V | + |E|), we have the time complexity .O((|V | + |E|)2) for Algorithm 2. 
Although Algorithm 2 is recursive, this result holds as a node assigned with a 
priority will be removed from further iterations (Line 17), i.e., each node (edge) 
is processed only once. 

With the CPC model and the schedule, the complete process for scheduling 
a DAG consists of three phases: (i) transferring the DAG to CPC; (ii) statically 
assigning a priority to each node by the rule-based priority assignment, and (iii) 
executing the DAG by a fixed-priority scheduler. With the input DAG known a 
priori, phases (i) and (ii) can be performed offline so that the scheduling cost at 
run-time is effectively reduced to that of the traditional fixed-priority system. 

4 Reliable Resource Sharing in Reliable Autonomous Driving 

The contents of this section is organized as follows. Section 4.1 describes the 
system and task model assumed in this section. Section 4.2 presents a fault-tolerance 
solution for MCS with shared resources, which includes a system execution model 
and a protocol MSRP-FT for faults which occur during critical sections. 

4.1 System and Task Model 

This section consider a fully partitioned system containing z identical cores (. m1
to . mz) and a set of sporadic tasks (. 
) that are scheduled by the Fixed Priority 
Preemptive Scheduling (FPPS) scheme. For generality, the system has tasks with 
. N criticality levels which are defined by the system engineer according to their 
importance, denoted as .L ∈ {A,B, . . . ,N} in which A is the lowest criticality and 
. N is the highest. Tasks being allocated to higher criticality levels implies a severe
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consequence for overall system performance if their execution in some way fails. 

Each task . τi is defined by a 6-tuple .{Ti,Di, prii , mi, li ,
−→
Ci }, including its minimum 

release period . Ti , constrained deadline . Di (with .Di ≤ Ti), priority .prii , designated 
core . mi , criticality .li ∈ L, and a set of Worst-Case Execution Times (WCET) 

.
−→
Ci = {Ci,A, Ci,B, . . . , Ci,N} without accessing shared resources. The verification is 
more conservative for a higher criticality level [6], hence .Ci,A ≤ Ci,B ≤ . . . ≤ Ci,N. 

The task . τi with criticality . li can execute up to .Ci,li from its . 
−→
Ci . 

Within the system, there also exists a set of resources . R, each of which may be 
accessed by all tasks in the system in a mutually exclusive fashion by executing 
the critical section associated with the resource. Each shared resource . rx is defined 
by two notations: .

−→
cx
i and . Nx

i , in which .
−→
cx
i = {cx

i,A, cx
i,B, . . . , cx

i,N} denotes the 

set of worst-case computation time . τi needed to execute . rk with different levels 
of criticality, and .Nx

i gives the number of requests from . τi in one release. In this 
section the execution budgets of different segments of the same task (e.g. .Ci,A and 
.cx

i,A) increase or decrease simultaneously with the transition of system modes (see 
Sect. 4.2). However, to ease the presentation, the notation . cx is used to denote the 
worst-case time for executing . rx by all requesting tasks with any criticality level. 
Nested resource sharing is not considered in this section, i.e., a task can only hold 
one resource at a time, but can be directly supported by group locks [62]. 

Transient faults which can be resolved by redundancy approaches (e.g. re-
execution and replication) in this section. Each fault can only affect one task at a 
time and the acceptance test is applied as the fault-detection technique. 

4.2 A Fault-Tolerant Solution for MCS with Shared Resources 

In this section, we present a new fault-tolerant solution for generic MCS that have 
two or more criticality levels with shared resources, to handle both task overruns 
and transient faults. First, we introduce a new fault-aware system model for MCS. 
The system model distinguishes faults occurring in normal and critical sections, 
which enables different fault-tolerance schemes to be implemented. Then, based on 
MSRP, a novel fault-tolerance multiprocessor resource sharing protocol is presented 
for handling faults in critical sections, which reduces the blocking time incurred for 
tolerating faults and guaranteeing the reliability of the system. 

4.2.1 The Fault-Tolerance System Model 

To handle task overruns and faults which occur during both normal and critical 
sections of a MCS, a fault-tolerant system model based on the extension of the 
AMC model [6] is introduced. Figure 4 illustrates the execution flow of the system 
and tasks in the model.
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Task Fault Request Resource Request ResourceFault 
Free 

Task FaultFault 
Free 

Overrun 

Overrun 

Mode  Mode 

Roll-back New approach Roll-backNew approachOverrun 

Fig. 4 The fault-tolerance system model 

During a task’s execution, faults can occur either in a normal or a critical section. 
The former is called a task fault and the latter a resource fault in this section. In the 
presented model, different fault-tolerant techniques are adopted to tolerate these two 
types of fault. The fault detection and tolerance techniques for normal and critical 
sections are presented in Sect. 4.2.2 and 4.2.3. 

As shown in Fig. 4, each task has three execution states under a system mode 
(say L): fault-free (L-FF), task-fault (L-TF) and resource-access (L-RA). They are 
allowed to execute up to an execution budget .Ci,L. A task executing in state L-FF 
is executing a normal section without incurring any faults. Once a fault occurs in a 
normal section, the task moves to state L-TF, at which the fault will be resolved. If 
a task requests a resource, it moves to state L-RA directly, where the fault-tolerance 
procedure for critical sections will be activated immediately, guaranteeing a fault-
free resource access (see Sect. 4.2.3). The task moves back to state L-FF from L-TF 
or L-RA if the fault is resolved or the resource access is finished, respectively. 

The system advances to the next system mode .L+ if any task in mode L overruns 
its budget. When an overrun occurs, tasks with criticality .li ≥ L+ that are running 
in states L-FF, L-TF and L-RA will move directly to .L+-FF, .L+-TF and .L+-RA 
respectively with elevated execution budgets .Ci,L+ and other tasks are dropped. By 
doing so, each overrun can bring the system to the next mode. However, there is 
an exception for tasks with criticality .li < L+ running in the state L-RA while 
executing with a shared resource, they are allowed to be dropped after finishing 
the underway critical section for the consideration of data integrity [31]. Moreover, 
mode changes can go in the reverse direction, when the system has less computation 
pressure it will resume suspended tasks and start in the lowest mode. Details of this 
will not be addressed here due to space constraints. 

4.2.2 Fault-Tolerance of Normal Sections 

In this section, we focus on transient faults which can be resolved by redundancy 
approaches. However, in systems with shared resources, detecting faults at the end 
of a task and re-executing the whole task to resolve a transient fault can lead to
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Fig. 5 Fault-tolerance in normal sections 

substantial blocking time and the risk of transferring incorrect data to other tasks. To 
minimize the blocking time and provide reliable resource sharing, we apply different 
fault-tolerance approaches to handle faults that occur in normal and critical sections. 
This is achieved by not only inserting checkpoints at the start and end of each task 
but also introducing additional checkpoints around each critical section of the task. 
By doing so, the task execution is divided into a set of normal and critical sections. 
The acceptance test is assumed to be applied as the fault detection technique at each 
checkpoint. 

In the presented fault-tolerance approach, the purposes of the checkpoints are 
slightly different, and so their operations vary. As shown in Fig. 5, a checkpoint (e.g. 
Check 1) will be set at the beginning of a task to perform a Save operation which 
involves storing the current architectural state of the system, including register files, 
counter values and etc. For fault-tolerance in normal sections, each checkpoint 
will operate a Detect operation to detect faults after the execution of each normal 
segment. If no faults are detected (e.g. at Check 2) the checkpoint will perform 
the Save operation. Otherwise, if a fault is detected (e.g. at Check 4) the task 
will roll back to the most recent checkpoint and perform the Restore operation 
which restores the previous data and re-performs the execution. This process repeats 
until the normal section is executed without any fault. Each re-attempt requires 
an additional Detect operation (e.g. at Check 5). However, for the end of the last 
execution segment, the Save operation is not needed at the checkpoint. 

4.2.3 Fault-Tolerance of Critical Sections by MSRP-FT 

For faults occurring in critical sections, the presented model utilizes a novel fault-
tolerance multiprocessor resource sharing protocol, called MSRP-FT, in which tasks 
waiting for a resource can assist the resource holder to execute the associated 
critical section in parallel to address potential faults. The objective is to reduce
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Fig. 6 Fault tolerance in critical section. (a) An example of a FIFO queue. (b) Replicas allocation 
based on the number of tasks in the queue 

the additional blocking time caused by resolving faults in critical sections via re-
executions. The mentioned MSRP-FT is introduced with the following steps. 

4.2.3.1 Allocation of Replicas 

Figure 6 demonstrates an example of the implementation of MSRP-FT, which is 
based on the resource sharing protocol MSRP. According to MSRP [27], tasks are 
inserted into a FIFO queue when they request a global resource. The task at the head 
of the queue (e.g. . τ1 in the figure) is granted the resource, other tasks spin on their 
own cores while checking the lock non-preemptively. With MSRP-FT, tasks are also 
placed at the FIFO queue when requesting shared resources. The task at the head of 
the FIFO queue will access the shared resource and the code segment to be executed 
by the head task and the internal states (e.g. variables) of the resource are replicated 
to a number according to the number of tasks in the FIFO queue as shown in Fig. 6b. 
It is worth noting that the access to the resource is always performed by the head 
task which obeys the mutually exclusive principle of shared resources and will not 
incur a race condition. Afterwards, replicas are stored in the local memory of each 
core and each task in the FIFO queue (including the head task) executes a replica on 
their host cores in parallel and updates the results on the local replica independently. 
If there is only one task in the FIFO queue, the head task has to execute the critical 
section by itself. 

4.2.3.2 Submission of Replicas 

Each execution of the replica is tested for faults on different cores. As shown in 
Fig. 7b, if a replica finishes without incurring any fault (e.g. on core . m3), it will
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Fig. 7 Fault-tolerance in a critical section. (a) Operations of checkpoints around a critical section. 
(b) Submission of execution results 

obtain the lock and update the shared resource with its local variables. If two 
overlapping requests to acquire the lock arrive, one task will commit the result and 
another will have no effect on the resource. The update of the resource is assumed 
to be conducted with an atomic action which once performed no other action can 
interleave with it, hence, race conditions are avoided. Once the resource is updated, 
other tasks are signaled to abandon the computation. In contrast, if all the resource-
accessing tasks fail to obtain the correct result, they roll back and re-execute the 
replica until the correct result is successfully submitted. With a successful commit 
by any task in the FIFO queue, the head task (i.e., . τ1) is removed from the queue 
and continues its execution. The same procedure then repeats for the next head task 
within the FIFO queue. 

Figure 7a shows the operations performed at the checkpoints around the critical 
section of . τ1. The checkpoint at the start of the critical section (e.g. Check 1) first 
performs Detect and Save operations to detect for faults and save the results of 
the execution of the previous segment, which is the same as mentioned above. It 
also applies Fetch and Replicate operations to fetch and replicate the corresponding 
operation and the shared resources to the spinning cores. A Detect operation is 
performed after the execution of the replica. Although the replica incurs faults, . τ3
already updated the result and a Save operation is performed to save the architectural 
states of the system and . τ1 continues its execution. 

4.2.3.3 Working example 

To clarify the implementation of the above fault-tolerance approach, the detailed 
execution procedure of the example stated above under two different fault-tolerance 
approaches is presented in Fig. 8. Figure 8a assumes that each critical section is 
checked for faults and any detected fault is tolerated directly by the roll-back and re-
execution approach. As shown in Fig. 8a, . τ1, . τ2 and . τ3 request for a shared resource 
concurrently at .t = 1. According to MSRP, . τ1 ranks first in the FIFO queue so it 
is granted with the resource and starts to execute its critical section immediately.
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0 1 2 3 4 5 6 7 8 9  
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Replica 2 
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Fig. 8 A comparison between two fault-tolerance approaches under the same checkpoints setting. 
(a) Fault tolerance by simple segment re-execution. (b) The presented fault-tolerance method 

Other tasks (. τ2 and . τ3) spin on their own cores and wait for the resource. However, 
. τ1 incurs two faults consecutively and re-executes its critical section twice. It finally 
releases the resource and leaves the FIFO queue at .t = 7. . τ2 then becomes the head 
of the queue, which acquires the resource and starts its critical section from then. 

With the application of the presented fault-tolerant approach, as shown in the 
Fig. 8b, the cores of . τ2 and . τ3 are utilized to execute .τ ′

1s critical section in parallel 
instead of spinning. Although only one piece of the replica (i.e., Replica 3) is 
executed without faults, . τ1 can still continue its execution at .t = 3. The chief 
principle of the fault-tolerant approach for critical sections is to replace wasted
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cycles of the spinning tasks in the FIFO queue to provide the reliability guarantee 
for each critical section in a single access, in pursuance of reducing the time spent 
on fault-tolerance and resource contention. For local resources, each task has to 
execute by itself as there exists no spinning tasks on remote cores. 

4.2.3.4 Implementation and Run-Time Overhead 

The implementation of the above approach requires the hardware architecture to 
have individual cache memory or dedicated memory space for each core to store 
replicas during the execution of the MSRP-FT, where most commercially off-the-
shelf (COTS) architectures can satisfy. From the software aspect, a global scheduler 
will be adopted to communicate with tasks on different cores. For example, the 
scheduler will signal tasks to assist the head task (i.e. the resource holder) to execute 
the replicas in parallel. Once a successful result is submitted, the scheduler will 
signal other tasks to abandon the execution on replicas. Threads control methods 
such as wait() and notify() can be used to construct the above communication logic. 

The feasibility of a task executing operations on behalf of other tasks has 
been validated in [51], in which once a task is preempted while spinning in 
the FIFO queue, the task behind it can acquire the lock first and execute the 
operation on behalf of the preempted task. Burns and Wellings [14] also briefly 
describes how the associated computations of the preempted task holder can be 
executed by the spinning tasks in parallel on different cores, but a detailed system 
design and implementation execution framework are not provided. Although the 
presented fault-tolerance approach is developed within a different context and serves 
a different purpose, that of reducing blocking time caused by resource faults, 
the above work has provided sufficient evidence towards the applicability and 
practicability of the presented approach. 

Moreover, the setting of checkpoints can bring additional overheads in terms of 
execution time. However, there is a clear trade-off between the number of check-
points being set and the final schedulability benefits of the presented approach. If 
the task has intensive resource requests (i.e. contains voluminous critical sections), 
the engineer can set fewer checkpoints in a flexible manner so that a balanced result 
can still be achieved between the time spent for each checkpoint and the advantage 
brought by the approach presented. 

Finally, the presented fault-tolerance method can also be applied to other FIFO 
spin-based resource sharing protocol, e.g. MrsP [14]. The choice of MSRP made in 
this chapter is due to its non-preemptive spinning feature, which provides a strong 
guarantee to the resource-accessing and helping process. Under MSRP, spinning 
tasks are prevented from being preempted while assisting the resource holder, and 
hence avoids prolonging the helping process as well as over-complicated execution 
scenarios.
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5 Real-Time TSN Scheduling for Automotive CPS 

In this section, we present the frame-level FPS method for TSN scheduling and anal-
ysis. We present an overview in Sect. 5.1. Followed by scheduling of TSN with FPS 
in Sect. 5.2 and deferred queue in Sect. 5.3. A corresponding schedulability analysis 
is given in Sect. 5.4. Finally, the network and control co-design is formulated in 
Sect. 5.5 by period and control poles assignment. 

5.1 Overview of Traffic Scheduling of TSN 

In this section, we present an integrated solution that solves the controller-network 
co-design problem. Scheduling on a single TSN switch is considered and can be 
extended to the entire network. As we focus on the scheduling aspect, it is assumed 
the network communication is ideal: (i) the depth of the queues is sufficient, i.e., no 
traffic overflows; (ii) the channel is error-free and has a constant transmission rate. 
These ease the analysis and helps to understand the nature of the problem. Relaxing 
them in practice needs limited modifications and will be discussed in the future. The 
network is subjected to two basic traffic types: scheduled and unscheduled traffic, 
depending on a certain level of quality-of-service (QoS) is required or not. In this 
section, we focus on scheduled traffic and leave unscheduled traffic be transmitted 
using residual bandwidth with best effort. 

TSN provides time synchronization and time-division transmission, which 
enables global scheduling through GCLs [63]. Although the schedule of TSN can 
be designed by hand, it soon becomes impractical as the network turns complex and 
more packets are added to the network. In this section, we specify the scheduling 
policy adopted for TSN while control systems are considered. The presented 
schedule minimizes the blocking of packets (including ones sent by control tasks), 
to improve schedulability and control performance. We then introduce a fine-grained 
response time analysis that bounds the worst-case latency of packets in a single Qbv 
switch. Below we first discuss the system model. 

System Model The system contains N periodic packets3 
.
 = {τ1, τ2, . . . , τN }, 

including both control (. 
c) and non-control packets (. 
nc) sent by tasks from the 
application. Each packet . τi is modelled as a 7-tuple .{Li, Ci, Ti,Di, Pi, Ri,�i}, 
representing the worst-case length of the packet . Li , transmission time . Ci , period 
. Ti , deadline . Di , priority . Pi , worst-case latency . Ri and the set of frames . �i in each 
release, respectively. Frames are transmitted in a non-preemptive fashion. A global

3 Continuously released periodic packets will form a flow. For simplicity, we use these two terms 
interchangeably. 
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packet transmission rate v is applied to all packets, thus .Ci = Li/v for . τi . Each 
control packet is assigned with an implicit deadline i.e., .Di = Ti . To provide a more 
general network model for the system, the non-control packets can have arbitrary 
deadlines without any constraint imposed. As a consequence, at a given time instant 
there could be several instances of a non-control packet waiting for transmission 
in the switch. The priorities of all packets are assigned according to the deadline 
monotonic algorithm (.Pi > Pj if .Di < Dj ), and each packet has a unique priority. 
In addition, the Maximum Transmission Unit (MTU) is considered, denoted as M , 
which defines the maximum data size allowed in a single transmission. For the ease 
of presentation, we denote M as the transmission time for sending data with a size 
equal to one MTU. Thus, each packet could be divided into a set of successive 
frames, i.e., .�i = {λ1

i , λ
2
i , . . . , λ

m
i }, with .m = �Li/M�. For a given frame . λj

i , it  
inherits the analytical properties of . τi (i.e., . Ti , . Di and . Pi), and has its own data 
length, . Lj

i , and transmission time, . Cj
i . 

5.2 Scheduling Network Packets in TSN 

In a typical Qbv switch, the network packets are queued by their arriving time 
(i.e., FIFO queuing) and are transmitted non-preemptively [35]. Traditionally, the 
synthesis of GCL schedule is performed using Satisfiability Modulo Theories 
(SMT) [20, 41] or Integer Linear Programming (ILP) [5]. The defined end-to-end 
latency imposes zero-jitter, however, with significantly reduced solution space. The 
scheduling in TSN networks with Quality-of-Service (QoS) requirements can be 
either performed at the queue level [63] or packet level [43]. With the queue-level 
scheduling, each FIFO queue in the Qbv switch is assigned with a priority, and 
packets in a queue with a higher priority are always transmitted first. However, as 
packets in each queue are transmitted strictly in a FIFO order, packets under the 
queue-level scheduling approach can incur substantial blocking, where packets with 
a tighter deadline but at the end of a queue cannot be favored. That is, with the 
queue-level scheduling, packets with different deadlines in the same FIFO queue are 
treated equally without concerning individual temporal requirements. For control 
systems, such a scheduling is not appropriate, as the delay for transmitting control 
packets can introduce significant impact on the control performance of the system. 
Thus, the packet-level (more precisely, the frame-level) scheduling is adopted to 
provide a finer-grained schedule, where each packet (and its frames) is scheduled 
strictly by its priority. 

However, even with the packet-level scheduling, packets can still incur additional 
delay due to the FIFO queuing, as the actual transmission largely depends on the 
arriving time of the packets. In the worst-case, a late-arrived packet with a high 
priority can be blocked by all the released packets with lower priorities. To minimize 
the delay due to FIFO queuing, an alternative is to perform the scheduling off-line
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(i.e., prior to execution), with the complete knowledge of all packets in the system.4 

The offline scheduling can be performed by assuming all packets are arrived at the 
same time, with a packets transmission order obtained based on their priorities. If 
packets have different arrival times during run-time, a simple mechanism that defers 
the queuing of the early-arrived low-priority frames can be adopted, to maintain the 
queuing order obtained from the offline FPS-NP without imposing extra latency to 
packet transmission (see Sect. 5.3 for deferred queuing). By maintaining the offline 
packets transmission order during run-time, the blocking time of each packet during 
transmission can be minimized to one frame only, i.e., identical to the classic non-
preemptive fixed-priority scheduling (FPS-NP) [23]. 

Based on the above discussion, to provide a fine-grained schedule and to 
minimize the delay due to the queuing problems, the scheduling adopted in this 
section is conducted before runtime on the frames of each packet in one hyper-
period, with the scheduling decisions encoded into the GCL. Once a schedule is 
obtained, the frames can be statically allocated to the FIFO queues according to the 
schedule while the scheduling decisions can be mapped to the GCL to control the 
gates of all queues to achieve the desired execution order. To this end, the scheduling 
on TSN can be successfully mapped to the traditional FPS-NP, in which each packet 
is scheduled strictly by its priority and can be blocked maximum once during the 
entire transmission. 

With the described scheduling approach, we avoid the packets queuing problem 
and can achieve the minimized delay for all packets, in the context of a Qbv switch. 
This is crucial for control systems as the resulting control performance can be 
affected by transmission delay for the control packets. To our best knowledge, this 
is one of the earliest work targeting at control systems in which the timeliness and 
performance are sensitive to the transmission delay of certain critical (i.e., control 
and non-control) packets. For the non-control packets, meeting their timing require-
ments is essential for guaranteeing the system correctness, whereas minimizing 
transmission delay of the time-triggered control packets are essential crucial for 
control performance. 

For unscheduled packet flows that do not have a temporal requirements, the 
traffics can be scheduled using residual bandwidth left by the critical traffics 
with time-aware shapers [52, 53] and queue partitioning. Supporting such flows 
has been well-described by the above work, and will not be re-presented in this 
section. Targeting at such systems, a complete scheduling solution is presented that 
minimizes the transmission delay for all packets, in the context of the TSN Qbv 
switch. Last but not least, different from [20], our approach makes no assumption 
on the isolation of incoming packets and the construction of the GCL, e.g., isolating 
certain queues for a specific packet type, to provide a more general approach for 
using TSN in control systems.

4 Such an approach is feasible as the packets are deterministic i.e., the packets sent by each task 
are known a prior with periodic release. 
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5.3 Deferred Queue 

As described in Sect. 5.2, for packets with different arriving times, a mechanism 
is required to delay the queuing of the early-arrived low priority packets so that 
the minimized blocking can be guaranteed. To achieve this, a deferred queue with 
priority ordering is introduced into the Qbv switch, which is integrated into the 
packet filtering unit (see Fig. 3) for holding early-arrived packets temporarily, until 
they can be added into the scheduled queues with a correct order. 

Assuming simultaneous release for all packets at the start of the system, the 
offline FPS-NP schedule can produce a well-planned transmission order for all 
packet instances released in one hyperperiod, in which each packet (a set of 
successive frames) is scheduled strictly based on priority. For this schedule, the 
blocking of each packet is minimized, as in the worst case, the ready packet with 
the highest priority can start transmitting after the currently transmitting frame of 
a low priority packet has completed. During run-time, this offline scheduling order 
is encoded into the priority filtering unit, which provides a reference of the expect 
order for incoming packets. 

For each incoming packets, the priority filter examines whether this packets 
arrives by the expected order, i.e., all its previous packets with a higher priority 
have arrived. If so, this packet is dispatched to the scheduled queues immediately, 
at which it will be select to transmit by GCL. Otherwise (i.e., certain previous high 
priority packets haven’t arrived yet), this packet is hold by the priority filter until (a) 
the missing packets arrives or (b) the scheduled queues are empty and this packet 
has the highest priority among all the deferred packets. 

Note that the condition (b) can lead to a transmission order different from the 
expected one, as certain packets can be transmitted before a late-arriving higher 
priority packet. However, this does not introduce extra delay and can help increasing 
the throughput. With the deferred queuing, it is possible that all scheduled queues 
are empty while some packets are stored in the priority filter. Under this situation, 
the priority filter selects the packet at the head of the queue (i.e., with the highest 
priority) and send its frames into the scheduled queue for a direct transmission one 
by one, until a higher priority packet arrives. This guarantees that the transmission 
never stops as long as there exist waiting packets (either in the priority filter or 
the scheduled queues). In addition, for the late arriving high priority packet, its 
blocking is still at most . Cj

i , where it can be transmitted directly after the currently-
transmitting frame. 

5.4 Worst-Case Response Time Analysis 

With the scheduling in TSN mapped to the traditional FPS-NP, the worst-case 
response time for transmitting a packet in a single Qbv switch can be obtained, 
which bounds the time duration from when the packet enters into the switch to when
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the packet is transmitted. Due to the different deadline constraints of the control 
and non-control packets (i.e., implicit and arbitrary deadlines respectively), different 
analysis techniques are applied for each packet type. However, as both control and 
non-control packets are scheduled strictly by the FPS-NP, the basic philosophy for 
analyzing both types of packets is similar to that in [23], but with modifications 
and improvements in order to reflect the unique features of the Qbv switch and to 
support the analysis at the frame level. 

The response time equation of a packet . τi is given in the following equation for 
both control and non-control packets: 

.Ri = max
∀λ

j
i ∈�i

⎧⎨
⎩

R
j
i (0), if τi ∈ 
c

max
n=0...

⌈
ti+Ji

Ti

⌉
−1

(
R

j
i (n)

)
, if τi ∈ 
nc

(2) 

In Eq. (2), .Rj
i (n) denotes the response time for transmitting the nth instance 

of frame . λj
i in . τi’s busy period . ti , and . Ji denotes the queuing time, i.e., the time 

window from when the first frame of . τi reaches the Qbv Switch, until when the last 

frame is queued. .
⌈

ti+Ji

Ti

⌉
gives the total number of times that a non-control packet 

can be sent within its busy period [23]. 
The analysis of a control packet is relatively straight forward, as at any given 

time, there can only exist one instance of a control packet in the system i.e., implicit 
deadlines. Thus, the worst-case response time of a control packet can be safely 
bounded by computing the maximum response time of all its frames.5 However, for 
a non-control packet, multiple instances of each of its frames can co-exist due to the 
arbitrary deadline. Thus, the response time of a frame (with an arbitrary deadline) 
must be obtained by computing the maximum response time of all its instances 
within the busy period . ti . 

Similar to [23], the busy period of a non-control packet is computed by Eq. (3), 
where . Bi gives the worst-case blocking that . τi can experience due to transmitting 
a low priority frame and .hep(i) refers to all indices of packets that have equal or 
higher priorities than . Pi , including i. The recursive calculation can starts with . ti =
Bi+Ci , and is guaranteed to converge [23], given that the total utilization for packets 
in .hep(i) is less than 1, i.e., .

∑
∀j∈hep(i)(Cj/Tj ) ≤ 1. We later decompose . Bi in Eq. 

(6). 

.ti = Bi +
∑

∀k∈hep(i)

⌈
ti + Jk

Tk

⌉
Ck (3)

5 From Eq. (2), the response time of a packet equals to the response time of its last frame in 
each transmission, which takes into account the delay for transmitting the previous frames in one 
transmission. 
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The response time of a frame is bounded by Eq. (4), in which . J
j
i denotes the time 

to en-queue frame . λj
i , .Wj

i gives the maximum queuing delay that . λj
i can incur in a 

FIFO queue before it is selected to be transmitted and .Cj
i denotes its transmission 

time. The time for queuing . λj
i into a FIFO queue also contains the enqueue time of 

frames of . τi that are prior to . λ
j
i in one transmission. In addition, for the non-control 

frames, .n · Ti is subtracted as this is the arrival time of its nth instance, relative to 
the start of the busy period. Note, for control frames, n is always 0. 

.R
j
i (n) =

∑
q∈[1,j ]

J
q
i + W

j
i (n) + C

j
i − n · Ti (4) 

Equation (5) gives the queuing delay .Wj
i of frame . λj

i , where .hp(i) returns a set 
of packets with a priority strictly higher than . Pi . This equation is also applicable 
to either control or non-control frames, with .n = 0 for all control frames. Figure 9 
provides an example illustrating the worst-case delay of the third (.n = 2) instance 
of the second frame (i.e., .j = 2) in packet . τi . As shown in the figure, in the worst 
case, the frame (in bold) has to wait for five types of other frames to transmit before 
it can start, which are mapped to four types of delay, as follows. In the worst case, a 
frame can incur four sources of delay when waiting in a FIFO queue: (i) the blocking 
caused by a low-priority frame that is currently transmitting i.e., . Bi ; (ii) the delay 
by . τi’s frames prior to . λj

i (with potential existence of multiple instances); (iii) the 

delay by previous instances of . λj
i and the frames after . λj

i in each . τi’s instance sent 

before . λj
i ; and (iv) the interference from the frames of each packet with a higher 

priority than . Pi . Note that (iii) accounts for the delay cause by both the previous 
instances of . λ

j
i itself and the frames after . λ

j
i in previous instances. These delays are 

captured by the equation respectively. 

. W
j
i (n) = Bi + (n + 1) ·

∑
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q
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Finally, . Bi is given by Eq. (6), where .lp(i) returns the packets with a priority 
lower than . Pi . The maximum blocking time that . τi (and any of its frames) can incur 
is the longest transmission time among the frames of all the lower priority packets. 

.Bi = max
∀λ

q
k ∈�k,∀k∈lp(i)

(C
q
k ) (6) 

Equations (2)–(6) summarises the response time analysis for bounding the 
worst-case transmission latency (i.e., the response time) of packets in a Qbv
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Fig. 9 The worst-case delay of a frame, which is caused by a low priority frame, high priority 
packets, instances of . τi ’s frames prior to . λ

j
i , previous instances of . λj

i and previous instance of . τi ’s 

frames after . λ
j
i

switch for time-critical control systems. The analysis considers both implicit and 
arbitrary deadlines for different packet types and is fine-grained, which provides 
the worst-case transmission latency of each frame. Arguably, by intuition, a trivial 
modification that treats each frame as an independent task can be applied in an 
existing packet-level analysis (e.g., the one in [24]), to support the analysis at 
the frame-level. However, additional techniques are still required to guarantee the 
correct transmission order between frames that belong to the same packet and 
instance so that the transmission time of each individual frame can be obtained. This 
is achieved in our analysis by Eq. (5), which carefully examines the transmission 
order of different types of frames (including the ones in . τi) and provides a tighter 
upper bound compared to a packet-level analysis. 

The presented analysis and scheduling techniques for a single switch can be 
extended to support the network topology level with multiple switches and end-
nodes. For the presented method, it can be implemented in each switch. For a given 
switch, the presented schedule takes all packets that will go through this switch and 
then produced a static schedule. In addition, the deferred queue is applied in each 
switch to handle the case in which low priority packets arrive earlier than expected. 
To compute the end-to-end worst-case transmission time of a packet . τi that travels 
through more than one switches, the input packets of each of the switches should be 
given and the worst-case delay of . τi in each switch can be effectively upper bounded 
by summing the worst-case delay it can incur in each switch by the above analysis. 

However, with only one switch, the worst-case delay of a packet can be bounded 
by considering all the input packets with a synchronous release at the begin of 
the system. This assumption, however, may not hold in the scenario of multiple 
switches, in which the actual arrival time of a packet at a given switch depends on 
the delay it incurs at the previous switches. Thus, the analysing approach above 
would contain certain degree of pessimism as not all the input packets in a switch 
will cause a delay on . τi , depending on their arrival times.
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5.5 Controller Synthesis and Period Allocation 

For a safety-critical autonomous system, for example, a self-driving car, the 
control functions are crucial and should always be a major concern. Further 
to the introduced scheduling and analysis that guarantee the timing of control 
packets, a well-designed controller is also required, in order to satisfy the control 
performance requirement and even maximize it under the schedulability constraint 
of the network. 

Most real-time controllers targeting settling time (which will be formally defined 
later in this section) can run at different frequencies [3, 21, 22]. In the TSN context, 
this rate is bounded by (i) the maximum transmission capability; (ii) the lowest 
control performance requirement. Hence, there exists an optimized operational 
point that would produce acceptable network schedulability with maximized control 
performance. 

5.5.1 Control Model 

For a linear-time-invariant (LTI) controlled plant, its system dynamics can be 
described using the following differential equations: 

. ẋ(t) = Ax(t) + Bu(t), y(t) = Hx(t) (7) 

in which A, B and H are system matrices that represent the system physical 
properties; .x(t) is the system state(s); .y(t) is the system output(s) and .u(t) is the 
control input(s). Assuming the sampling time is . Ts and the sensor-to-actuator delay 
is within one sampling period, at discrete time instant k, the system dynamics evolve 
with the following equations: 

. x(k + 1) = Adx(k) + Bdu(k − 1), y(k) = Hx(k) (8) 

where .u(−1) = 0 for .k = 0 and 

.Ad = eA·Ts , Bd =
∫ Ts

0
eAτ dτ · B (9) 

To further simplify the equation, define an augmented variable z as: . z(k) =[
x(k) u(k − 1)

]T
, and substitute .x(k), .u(k) with .z(k) in Eq. (8): 

.z(k + 1) =
[

Ad Bd

0 0

]
z(k) +

[
0
1

]
u(k) (10) 

Assuming a full state-feedback controller is used, the control input .u(k) is calculated 
by:
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.u(k) = −Kz(k) + Fr(k) (11) 

where K is the feedback gain, F is the feedforward gain and .r(k) is the reference. 
By combining Eqs. (10) and (11), the system equation therefore becomes: 

.
z(k + 1) = (Ad − BdK︸ ︷︷ ︸

Acl

)z(k) + BdFr(k)
(12) 

To satisfy control stability, all the eigenvalues of the closed loop dynamic matrix, 
i.e. .Acl in Eq. (12), have to be inside the unit circle. The exact value of .Ad and . Bd

is dependent on the sampling period . Ts as seen from Eq. (9), which is equal to the 
period of the control packet, . Ti . This control model will be used through the rest of 
this section. 

5.5.2 Problem Definition 

We use settling time (. ts) as the index of quality-of-control (QoC), which is widely 
used in control engineering as a compulsory design requirement [16]. Settling 
time is defined as the time duration from when a control system is subjected to 
a disturbance to when it enters steady-state, i.e., the current output has reached 
and stays within .5% deviation of the targeted output. There is an upper bound 
requirement on the settling time, e.g., the settling time of a control system should 
not be longer than 0.5 seconds. 

Finding an optimal period is crucial for (i) guaranteeing the performance of 
the controller itself; and (ii) ensuring enough residual time slots for non-control-
related packets so they can also meet their deadlines. Based on the aforementioned 
objectives and constraints, the period assignment problem can be solved as an 
optimization problem, which is formulated as follows: 

.

minimize J =
∑
D

wj · t∗s,j

subject to Ri ≤ Di, ts,j ≤ t+s,j |uj (k)| ≤ umax, Ti = n · tgcd , n ∈ N+

where i ∈ 
, j ∈ 
c

(13) 

where .wj ∈ (0, 1] is the weight (i.e., relative importance) of the corresponding 
control task and .

∑
wj = 1; .t∗s,j ∈ [0, 1] is the normalized settling time of the 

j th controller; . D represents the solution space of all poles that can ensure control 
stability; .ts,j is the settling time of the j th controller, and .t+s,j is the maximum 
allowed settling time; .uj (k) is input at discrete instance k, which is constrained 
by .umax as the maximum input threshold; The last constraint defines the time-
granularity of a feasible period. To benefit from harmonic periods and to reduce 
the size of the GCL table, each . Ti must be an integer multiple of .tgcd , the greatest
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Algorithm 3: Periods and control poles assignment 

1 Input: 
 = {
c, 
nc} 
2 Output: schedulability, S∗ 

3 Initialise:  feasible and best solutions: Sf = Ø,  S∗ = Ø  
/* construct candidate solutions: */ 

4 formulate the solution space: S = {S1, S2, . . . , Sn}. 
/* explore each candidate: */ 

5 for  Sk in S do 
6 if  RTA_schedulability(
k) is True then 
7 for  j in 
k 

c do 
8 {ts,j , uj } = pso_find_control_parameters(Tj ) 
9 end  

10 if ∀j in 
k 
c : ts,j ≤ t+ 

s,j and |uj | ≤  umax then 
11 Jk =

∑
wj · ts,j 

12 Sk → Sf 

13 end 
14 end 
15 end 

/* find the best candidate solution: */ 

16 for Sk in Sf do 
17 if Jk < J∗ then 
18 S∗ = Sk 
19 end 
20 end 

/* return feasibility: */ 
21 if S∗ is not Ø then 
22 return (feasible, S∗) 
23 else 
24 return (infeasible, Ø)  
25 end 

common divisor of all the packet periods. This is in accordance with common 
practice. 

5.5.3 Solving the Network and Control Co-Design Problem 

In a typical control application, while the periods of non-control-related packets are 
inflexible, the control-related packets often have adjustable periods. This additional 
flexibility allows fine tuning of controller periods to achieve the best overall 
performance (defined as in Eq. (13)). To solve the defined problem, a controller’s 
period and its corresponding parameters under that period both have to be decided. 
These two steps are dependent on each other but can be decomposed into two 
sub-problems, i.e., the optimization process needs to (i) find the feasible periods 
that can satisfy schedulability constraints; (ii) find the controller parameters under 
the feasible periods that would satisfy control stability and minimal performance
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requirement, and on top of that, maximize the control performance as much as 
possible. 

For the first problem, due to the existence of harmonic periods and that the 
number of control tasks is often small, the search space is manageable and thus can 
be solved through exhaustive search. For larger scale problems, heuristic methods 
can be used instead to find the feasible period configurations. 

For the second problem, as pole placement for the minimum settling time 
under input constraints is a non-convex and non-linear problem, the solution space 
cannot be searched easily. We use Particle Swarm Optimization (PSO) to find 
the optimal controller parameters (by pole placement [16]) under certain sampling 
period that can minimize the settling time, while given the control performance and 
input saturation as constraints. PSO is a population-based optimization approach 
for iterative improvement of candidate solutions given a non-linear non-convex 
objective function and a metric of quality [49]. 

The optimization process is given in Algorithm 3. The solution space is first 
formulated in Line 4. The schedulability is then tested (Line 6) to obtain potential 
period configurations, and under each period configuration, the optimal poles of 
each control task can be found through PSO (Line 8). To speedup the process, the 
optimal poles under the feasible range of periods can be obtained in advance. The 
identified configuration is appended into the feasible solutions provided that the 
minimum control performance and the input constraints are both satisfied (Line 10-
13). Finally, the best candidate that has the minimum . J is selected from all the 
feasible solutions (Line 16-20). No feasible solution is found if .S∗ = Ø, in which 
case the algorithm fails to find a solution that satisfies all the constraints. 

6 Conclusion 

This chapter introduces the state-of-the-art techniques which cover three major 
directions of scheduling and analyzing autonomous systems. The presented solu-
tions range from DAG task scheduling, and reliable resource sharing, to in-
vehicle TSN networking. The goal is to provide autonomous systems with high-
performance hard real-time scheduling, reliable resource sharing, and deterministic 
networking scheduling. 

For scheduling and analyzing DAG tasks in autonomous systems, a CPC model 
is constructed to capture the two key factors of a DAG structure: dependency and 
parallelism. Then, a rule-based scheduling method is presented which maximizes 
node parallelism to improve the schedulability of single DAG tasks. 

To provide reliable resource sharing in multiprocessor mixed-criticality systems, 
this chapter describes a fault-tolerance solution for multiprocessor MCS with shared 
resources. The presented system execution model and fault-tolerance resource 
sharing protocol reduces the blocking time imposed by guaranteeing reliable 
resource sharing.
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To provide hard real-time guarantee for network, we introduced a network 
scheduling model using non-preemptive fixed-priority scheduling (FPS-NP) and 
the mapping of the schedule into the TSN gate control list. The schedulability 
of the network is discussed using non-preemptive response-time analysis with the 
consideration of multi frames and unconstrained deadlines. An optimization method 
is also proposed that could find the feasible solution with maximized overall quality 
of control constrained by network schedulability. 
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