
Evolvement of Scheduling Theories for
Autonomous Vehicles

Wanli Chang, Nan Chen, Shuai Zhao, and Xiaotian Dai

1 Introduction

There is a clear trend in the automotive industry towards autonomous vehicles which
brings a series of new requirements for real-time scheduling, due to the evolving
complexity. First, in the scheduling of real-time autonomous systems, scheduling
theories for simple task models and uniprocessors have been well established, but
multiprocessor systems are increasingly being employed and dependencies between
tasks need to be considered [10]. Many existing works use a single recurrent event
or time-triggered DAG tasks to model functional dependencies in a system [7, 8,
26, 46, 59, 60]. For example, a complete automotive task chain from on to control
is described in [59] and converted to a single periodic DAG task. In addition, to
avoid migration and cache-related preemption overhead, a non-preemptive global
scheduling scheme is often deployed [15, 59]. That is, the nodes of a DAG are
scheduled globally on all cores and preemption is not allowed during the execution
of a node [47].

Figure 1 provides an example DAG which contains eight nodes with a set of
edges. A node indicates a computation unit that must be executed sequentially and
a directed edge describes the execution dependency of two nodes (e.g., node . v5

W. Chang (�)
Hunan University, Changsha, China

Huawei Technologies, Shenzhen, China

N. Chen · X. Dai
University of York, York, UK
e-mail: nc952@york.ac.uk; xiaotian.dai@york.ac.uk

S. Zhao
Sun Yat-sen University, Guangzhou, China
e-mail: zhaosh56@mail.sysu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. K. Kukkala, S. Pasricha (eds.), Machine Learning and Optimization Techniques for
Automotive Cyber-Physical Systems, https://doi.org/10.1007/978-3-031-28016-0_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28016-0protect T1	extunderscore 2&domain=pdf

 885 52970 a 885 52970 a

mailto:nc952@york.ac.uk
mailto:nc952@york.ac.uk
mailto:nc952@york.ac.uk

 8520 52970 a 8520 52970 a

mailto:xiaotian.dai@york.ac.uk
mailto:xiaotian.dai@york.ac.uk
mailto:xiaotian.dai@york.ac.uk
mailto:xiaotian.dai@york.ac.uk

 885
56845 a 885 56845 a

mailto:zhaosh56@mail.sysu.edu.cn
mailto:zhaosh56@mail.sysu.edu.cn
mailto:zhaosh56@mail.sysu.edu.cn
mailto:zhaosh56@mail.sysu.edu.cn
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2
https://doi.org/10.1007/978-3-031-28016-0_2

44 W. Chang et al.

Fig. 1 An example DAG

and .v7). When there are adequate cores in the system, nodes with no dependency
e.g., node .v2, .v3 and .v4 can be executed in parallel. However, when the number of
paralleled nodes is bigger than the number of cores available, the priority ordering
between nodes becomes an issue which can impose non-negligible effects to the
makespan (i.e. the execution between the start of the first node and finish time of
the last node) of a DAG. In the mean time, the Worst-Case Response Time (WCRT)
analysis in [33, 39] are pessimistic which can result in low system schedulability.
Hence, a fine-grained scheduling policy and a less pessimistic WCRT bound are
necessary.

Second, the increasing demand of autonomous systems to realize both complex
functionality and high performance with limited resources necessitates extensive
resource sharing. For example, to facilitate partially or fully automated driving,
the AUTOSAR Classic standard (which implements static task configuration with
resource isolation) is evolving to AUTOSAR Adaptive with dynamic resource shar-
ing on multiprocessor architectures [4]. Resources sharing is referred as sharing data
structures, special memory locations, and code segments, which need to be accessed
in a mutually exclusive fashion. Consequently, the increasing applications of shared
resources in the autonomous systems can cause blocking due to contention, while
conventional requirements of timing predictability and reliability still need to be
satisfied. That is, the deadlines of tasks must be met while failures during task
executions must be resolved.

Satisfying both timing and reliability requirements is particularly hard. Several
multiprocessor resource sharing protocols have been proposed to bound and min-
imize blocking time, including MSRP [27] and MrsP [14]. However, reliability
has not been accounted for, which is imperative in safety-critical scenarios like
autonomous systems. The common fault-tolerance methods are based on redun-
dancy, and they may be directly applied to shared resources by scheduling repeated
task executions and resource accesses a sufficient number of times to get the
correct output. However, this leads to severe resource contention and undermines
system schedulability. Therefore, a solution for guaranteeing both reliability and
schedulability for autonomous systems with the presence of shared resource is
required.

Third, on communication, Ethernet as a data link layer protocol has evolved
from standard computer networks to applications of in-vehicle communication

Evolvement of Scheduling Theories for Autonomous Vehicles 45

(e.g., deterministic real-time Ethernet [55]). In the emerging safety-critical systems
such as highly automated vehicles, a large volume of messages with mixed types
need to be transmitted on the same infrastructure, which requires deterministic
and predictable timing to guarantee safety. Traditional real-time networks use non-
standard Ethernet to enable high-bandwidth deterministic communication, which
prohibits connectivity between different protocols and components from different
vendors, as well as increases uncertainty and difficulty in timing and hazard
analysis.

TSN proposed as an IEEE standard, offers an interoperable and flexible determin-
istic Ethernet-based solution [36]. It is widely considered as the network solution for
future automobiles. The IEEE 802.1 TSN standard includes a wide range of subsets,
in which one of the most important protocols is the 802.1Qbv [20, 35, 63]. The IEEE
802.1Qbv supports time-aware shaper (TAS) using TDMA (time-division multiple
access)-scheduled queues to access the egress port—controlled by a gate switching
logic that is driven by a synchronized global timer and a look-up scheduling table.

Control loops are often involved in the safety-critical systems, where guarantees
are required on both timing of communication and control performances (measured
by settling time). In general, short sampling periods enable the potential to achieve
good control performance with frequent interactions between the controller and the
plant. The state-of-the-art network scheduling techniques for TSN (e.g., [5, 41, 63])
cannot be directly applied, as they consider neither the hard real-time constraints on
network packets nor the control performance of the system. Therefore, an integrated
solution of network scheduling and controller co-design for TSN is essential for
autonomous in-vehicle communications from the CPS perspective.

1.1 Organization

In this chapter, we present three interconnected fundamental works along the above
directions: the real-time scheduling for DAGs on multiprocessor architectures; the
reliable resource sharing in autonomous systems; and real-time scheduling and
controller co-design for TSN. The rest of the chapter is organized as follows:

• Section 2 provides the background knowledge and related research outputs of
the work presented in the following sections.

• Section 3 introduces a CPC model based on the work-conserving schedule and
the classic analysis, alongside a priority ordering algorithm.

• Section 4 presents the first fault-tolerant solution for multiprocessor MCS
with shared resources. The solution contains a system execution model that is
compatible with an arbitrary number of criticality levels, and a protocol, namely
Multiprocessor Stack Resource Protocol Fault Tolerance (MSRP-FT) which aims
to address faults during critical sections while minimizing blocking time.

• Section 5 presents the first integrated solution of network scheduling and
controller co-desig for TSN 802.1Qbv. Specifically, the first FPS approach for
TSN is demonstrated. Moreover, a finer-grained analysis for the above scheduling

46 W. Chang et al.

approach at the frame level is also included. Based on FPS and the analysis, we
formulate a co-design optimization problem to decide the sampling periods and
poles of real-time controllers.

• Section 6 concludes the contents of this chapter.

2 Background

In this section, we provide the background information and related literature to
motivate the research output demonstrated in the following sections. First, Sect. 2.1
reviews the work in scheduling and analysis of DAG tasks. Second, work related to
fault-tolerance, resource sharing, and MCS is reviewed in Sect. 2.2. Last, relevant
literature on the scheduling of TSN network is presented in Sect. 2.3.

2.1 Scheduling and Analyzing DAG Tasks in Autonomous
Vehicles

The majority of the existing work on scheduling DAG tasks assumes a work-
conserving scheduler [39]. A scheduling algorithm is said to be work-conserving if
it never idles a processor when there exists pending workload. A generic bound that
captures the worst-case response time of tasks scheduled globally with any work-
conserving method is provided in Graham [28]. This analysis is later formalized in
Melani [39] and Fonseca [25] for DAG tasks. The analysis of a single DAG task
is given in Eq. (1). Notation . τx denotes a DAG task with index x, .Rx denotes the
response time of . τx , . Lx denotes the length of the longest path in the DAG, .Wx gives
the sum of Worst-Case Execution Time (WCETs) of all nodes in the DAG, and m
denotes the number of cores.

.Rx = Lx +
⌈

1

m
(Wx − Lx)

⌉
(1)

In this analysis, the worst-case response time of a DAG task . τx is upper bounded
by the length of the critical path and the intra-task interference imposed by the non-
critical nodes of . τx itself. However, this analysis assumes the critical path can be
delayed by all the concurrent nodes, which is pessimistic for scheduling methods
with an explicit execution order known a priori [33, 39].

2.1.1 The State-of-the-Art in DAG Scheduling and Analysis

For homogeneous multiprocessors with a global scheme, existing scheduling (and
their analysing) methods aim at reducing the makespan and tightening the worst-
case analytical bound. They can be classified as either slice-based [17, 29] or
node-based [18, 33]. The slice-based schedule enforces node-level preemption and

Evolvement of Scheduling Theories for Autonomous Vehicles 47

divides each node into a number of small computation units (e.g., units with a
WCET of one in Chang [17]). By doing so, the slice-based methods can improve
node-level parallelism but to achieve an improvement the number of preemptions
and migrations need to be controlled.

The node-based methods provide a more generic solution by producing an
explicit node execution order, based on heuristics derived from either the spatial
(e.g., number of successors of a node [37] and topological order of nodes [33])
or the temporal (execution time of nodes [18, 54, 59]) characteristics of the DAG.
Below we describe two most recent node-based methods.

In Chen et al. [18], an non-preemptive scheduling method is proposed for a
single periodic DAG, which always executes the ready node with the longest
WCET to improve parallelism. Chen [18] prevents anomalies from occurring when
nodes are executing less than their WCETs, which can lead to an execution order
different from the schedule. This is achieved by guaranteeing nodes are executed in
the same order as the offline simulation. However, without considering inter-node
dependencies, this schedule cannot minimize the delay on the completion of DAG.

In He et al. [33], a new response time analysis is presented, which dominates the
traditional bound in Graham [28] and Melani [39] when an explicit node execution
order is known a priori. That is, a node . vj can only incur a delay from the concurrent
nodes that are scheduled prior to . vj . Then, a scheduling method is proposed that
always executes: (i) the critical path first; and (ii) the immediate interference nodes
first (nodes that can cause the most immediate delay on the currently-examined
path). The novelty in He [33] is considering both topology and path length in a DAG,
and provides the state-of-the-art analysis against which our approach is compared.
However, the method in He [33] schedules concurrent nodes based on the length
of their longest complete path (a path from the source to the sink node), i.e., nodes
in the longest complete path first. This heuristic is not dependency-aware, which
reduces the level of parallelism that can be exploited, and hence, lengthen the finish
time of a DAG task.

2.2 Real-Time Scheduling for Reliable Autonomous Driving

In this subsection, the background information and related work about real-
time scheduling of reliable autonomous system are provided. More specifically,
Sect. 2.2.1 introduces common faults and solutions in the embedded systems,
Sect. 2.2.2 presents the research in the field of resources sharing protocols. Sec-
tion 2.2.3 demonstrates the research output related to MCS.

2.2.1 Fault Tolerance

Faults in modern embedded systems can be broadly categorized as permanent or
transient faults. Transient faults affect the functionality of systems for a short period
of time, where permanent faults happen repeatedly and cannot be easily recovered

48 W. Chang et al.

from. Some software faults (bugs) are caused by erroneous program design, are
permanent faults, and cannot be recovered by re-starting the operation [58]. Other
software errors can be transient faults caused by unexpected interference among
threads, and may be resolved by restarting the program [40]. Transient hardware
faults can occur due to issues such as power supply fluctuations or electromagnetic
interference which happen increasingly more frequently due to the decrease in
transistor size and operating voltage [32]. Permanent hardware faults are the result
of hardware damage or wear, and cannot be dealt with until the faulty component
is replaced. In this chapter, we focus on transient faults which can be recovered by
retrying the operation.

Three mainstream redundancy techniques are widely adopted in the literature
to tolerate faults: re-execution [1], checkpointing [19], and replication [45]. The
re-execution approach saves task status at the beginning and detects faults at the
end. Once a fault is detected, the roll-back technique is applied and the whole task
is re-executed. The checkpointing technique introduces additional checkpoints in
a task and normally divides task execution into a set of uniform segments. Each
small segment is tested for faults, and when a fault is detected the system rolls
back to the most recent checkpoint and only re-executes the faulty segment. With
replication, each task is replicated to several copies. The task and its replicas are
released simultaneously and execute in parallel. When an execution finishes without
incurring faults, the others are discarded.

Generally, fault detection mechanisms focus on analyzing the outputs of an
execution. For example, in a lockstep dual-core architecture [50] or Triple Modular
Redundancy architecture [4], multiple identical cores execute the same code and
the system applies a majority vote to find the faulty component. Acceptance tests
are often applied at the checkpoint to determine the correctness of an operation by
checking a set of conditions that are expected to be met if the program has executed
correctly [44]. In contrast, another type of fault-detection mechanism focuses on
detecting the stimulus of the fault instead of the computation results. For example,
acoustic wave detectors are adopted in the hardware architecture [56] to detect
particle strikes that can result in transient faults during computation. Instead of using
built-in hardware to detect faults, the Argus approach [38] uses detection equipment
to monitor the variations of the circuits. Detailed descriptions and comparisons of
such type of detecting mechanisms are included in [57].

2.2.2 Resource Sharing

Resource sharing in multicore real-time systems has been extensively studied in the
past few decades with numerous resource sharing protocols available [2, 14, 27]. A
comprehensive survey can be found in [11]. Here we describe the Multiprocessor
Stack Resource Protocol (MSRP) [27].

The MSRP is a First-In-First-Out (FIFO) spin-based resource sharing protocol
developed for fully-partitioned systems. In MSRP, each global resource (i.e., shared
between cores) is associated with a FIFO queue. A task requesting a global resource

Evolvement of Scheduling Theories for Autonomous Vehicles 49

Fig. 2 The AMC model

Overrun

is placed in the FIFO queue and busy-waits (spins) non-preemptively until it moves
to the head of the queue, at which point it will be granted the resource. The task
then keeps executing non-preemptively until it releases the resource. For a local
resource (i.e., shared in one core), a priority ceiling is applied, which equals the
highest priority of tasks that request the resource. A task raises its priority to the
ceiling during the entire access to the local resource.

When contending for shared resources, tasks will incur additional waiting time
(i.e. blocking) due to mutually exclusive executions. The blocking effects incurred
by tasks for accessing shared resources under MSRP can be classified as spin delay
and arrival blocking [62]. With shared resources, a task can incur spin delay either
directly or indirectly. Direct spin delay occurs when a task is being blocked directly
for accessing a shared resource by other resource accesses issued from remote cores.
In this case, the task is added at the tail of the FIFO queue and spin-waits until
it is granted the resource. A task incurs indirect spin delay when it is preempted
by a local higher priority task, which in turn is blocked directly from accessing a
resource. Arrival blocking occurs when a task is released but is then immediately
blocked by a local low priority task which is running non-preemptively (resp. with
a higher resource ceiling) for accessing a global (resp. local) resource.

Resource sharing protocols define rules for accessing shared resources and bound
the blocking delay [11]. However, they are not developed with a particular focus on
system reliability, in which a resource request has to be potentially executed multiple
times sequentially to tolerate faults. Hence, the additional blocking time imposed for
addressing faults cannot be effectively minimized by these protocols. Based on the
above, this chapter focuses on fault-tolerance for shared resources in MCS and aims
to reduce the additional blocking from tolerating faults.

2.2.3 Mixed Criticality System

Baruah et al. [6] propose an Adaptive Mixed Criticality (AMC) model which is
widely regarded as the most effective approach within Fixed-Priority Preemptive
Scheduling [34]. The AMC model has two system modes (LO and HI) for the
system that has tasks with two criticality levels (i.e., .L ∈ low, high). As shown
in Fig. 2, the system starts in LO mode and all tasks are allowed to execute up to
.Ci,low. If a task overruns these budgets, the system upgrades to the HI mode (a mode
switch), in which high-criticality tasks are allowed to execute with a larger budget
.Ci,high and low-criticality tasks are suspended. The AMC model assumes system

50 W. Chang et al.

can monitor the running time of tasks and can be extended to have an arbitrary
number of system modes according to the number of criticality levels in the system.
Later on, concerning the quality of service (QoS) of low-criticality tasks after a
mode switch, instead of dropping tasks brutally, many research [13, 30] propose
mechanisms for MCS to degrade low-criticality tasks gracefully.

With the presence of faults, Pathan [42] proposes a mixed-criticality fault-
tolerant algorithm called FTMC for systems with two criticality levels. In FTMC,
the system would transit from a low-criticality mode to a high-criticality mode
if any overrun happens or the number of transient faults incurred in the system
exceeds a predefined threshold. Chen et al. [19] propose an online fault-tolerant
MCS scheduling framework called the FTS-RHS. The framework applies the
checkpointing recovery schemes which outperforms re-execution in scheduling. In
addition, the DVFS techniques have been applied in MCS in [9] to provide systems
with precise real-time and energy-efficient scheduling. Safari et al. [45] further
extend the research topic by including the consideration of energy consumption
in fault-tolerant MCS and propose a LETR-MC scheme for a system with two
criticality levels.

With shared resources, Burns [12] applies the Original Priority Ceiling Protocol
(OPCP) to the MCS on a uni-processor platform with two criticality levels. When
the system transits to the high-criticality mode, low-criticality resource holders
which are computing with the ceiling priority are suspended. They can continue to
execute by inheriting the execution budget of their next release. Zhao et al. [61]
extend the Priority Ceiling Protocol (PCP) [48] to HLC-PCP (Highest-Locker
Criticality, Priority-Ceiling Protocol) to manage resource sharing in the MCS under
AMC scheme. Han et al. [31] migrate the MSRP to the MCS and develop a
criticality-aware utilization bound. However, none of the above works consider the
presence of both shared resources and faults.

2.3 Real-Time TSN Scheduling for Automotive CPS

Time-sensitive networking is an enabler for Ethernet-based communication services
that were not originally built to support hard real-time guarantees, such as OPC Uni-
fied Architecture (OPC-UA)1 and Distributed Data Service (DDS).2 The objective
of TSN is to reduce the worst-case end-to-end latency for critical traffics. Here we
briefly discuss the IEEE 802.1Qbv TSN (referred to as Qbv in the following text). A
diagrammatic view of a Qbv-enabled switch is depicted in Fig. 3. From the figure,
it can be seen that a Qbv TSN switch consists of the following major components:

1 https://opcfoundation.org/about/opc-technologies/opc-ua/.
2 https://www.omg.org/spec/DDS/1.4/PDF.

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF

Evolvement of Scheduling Theories for Autonomous Vehicles 51

Fig. 3 An overview structure of a 802.1Qbv-capable TSN switch

• Scheduled FIFO queues: In a Qbv-enabled TSN switch, there are eight inde-
pendent time-divided FIFO queues which are controlled by transmission gates.
The incoming traffic is filtered by the packet filtering unit which sends a packet
to its designated queue. This information is encoded as Class of Service (CoS) in
the priority code point (PCP) header in the Ethernet frame.

• Gate control list (GCL): The GCL can trigger gate-open and gate-close events
periodically with a gate control cycle. The time granularity between events can be
as low as 1ns depending on the specific implementation. The schedule is located
in a GCL look-up table that is distributively configured to each TSN node. If
multiple gates are opened at the same time, the policy in the priority selection
unit will determine which queue is forwarded to the egress port first.

• Time synchronization: To allow time-divided transmission that is distributed
through the network, a timer is globally synchronized with all the switches in
the same network using precision time protocols (PTPs), e.g., IEEE 802.1AS or
IEEE 802.1AS-Rev.

The mechanisms of Qbv TSN improve the flexibility in terms of traffic sched-
ule and control. It enables interoperability between standard-compliant industrial
devices thus allowing open data exchange. It also removes the need for physical
separation of critical and non-critical communication networks. However, in a
different aspect these introduce increased design complexity that needs to be
elaborately handled.

52 W. Chang et al.

3 Scheduling of DAGs on Multiprocessor Architectures

The content of this section is organized as follows. Section 3.1 presents the system
and task model. Section 3.2 presents the CPC model that captures the two key factors
of the DAG structure. Finally, Sect. 3.3 describes the scheduling algorithm for DAG
tasks, based on the CPC model.

3.1 Task Model and Scheduling Preliminaries

A DAG task . τx is defined by .{Tx,Dx,Gx = (Vx, Ex)}, with . Tx denoting its
minimum inter-arrival time, .Dx gives a constrained relative deadline, i.e., .Dx ≤ Tx ,
and . Gx is a graph defining the set of activities forming the task. The graph is defined
as .Gx = (Vx, Ex) where . Vx denotes the set of nodes and .Ex ⊆ (Vx × Vx) gives
the set of directed edges connecting any two nodes. Each node .vx,j ∈ Vx represents
a computation unit that must be executed sequentially and is characterized by its
Worst-Case Execution Time (WCET), .Cx,j . For simplicity, the subscript of the DAG
task (i.e., x for . τx) is omitted when the system has only one DAG task.

For any two nodes . vj and . vk connected by a directed edge ((.vj , vk) ∈ E), . vk

can start execution only if . vj has finished its execution. That is, . vj is a predecessor
of . vk , whereas . vk is a successor of . vj . A node . vj has at least one predecessor
.pre(vj) and at least one successor .suc(vj), formally defined as . pre(vj) = {vk ∈
V | (vk, vj) ∈ E} and .suc(vj) = {vk ∈ V | (vj , vk) ∈ E}, respectively. Nodes
that are either directly or transitively predecessors and successors of a node . vj are
termed as its ancestors .anc(vj) and descendants .des(vj) respectively. A node . vj

with .pred(vj) = ∅ or .succ(vj) = ∅ is referred to as the source .vsrc or sink . vsink

respectively. Without loss of generality, we assume each DAG has one source and
one sink node. Nodes that can execute concurrently with . vj are given by . C(vj) =
{vk|vk /∈ (anc(vj) ∪ des(vj)),∀vk ∈ V } [33].

A DAG task has the following fundamental features. First, a path . λa =
{vs, · · · , ve} is a node sequence in V and follows .(vk, vk+1) ∈ E,∀vk ∈ λa\ve.
The set of paths in V is defined as . �V . A local path is a sub-path within the task
and as such does not feature both the source .vsrc and the sink . vsink . A complete
path features both. Function .len(λa) = ∑

∀vk∈λa
Ck gives the length of . λa . Second,

the longest complete path is referred to as the critical path . λ∗, and its length is
denoted by L, where .L = max{len(λa),∀λa ∈ �V }. Nodes in . λ∗ are referred to
as the critical nodes. Other nodes are referred to as non-critical nodes, denoted

as .
¬
V = V \λ∗. Finally, the workload W is the sum of a task’s WCETs, i.e.

.W = ∑
∀vk∈V Ck . The workload of all non-critical nodes is referred to as the non-

critical workload.

Evolvement of Scheduling Theories for Autonomous Vehicles 53

3.2 Concurrent Provider and Consumer Model

Equation (1) indicates that minimizing the delay from non-critical nodes to the
critical path (i.e., 1

m (W − L)) effectively reduces makespan of the DAG. Achieving
this requires the complete knowledge of the topology (i.e., the dependency and
parallelism of each node) of a DAG so that the potential delay of the critical path
can be identified. To support this the CPC model is presented to fully exploit node
dependency and parallelism.

The CPC model has two key stages. First, the critical path is divided into a set of
consecutive sub-paths based on the potential delay it can incur. Second, for each sub-
path, the CPC model identifies the non-critical nodes that can 1) execute in parallel
with the sub-path and 2) delay the start of the next sub-path, based on precedence
constraints.

The intuition of the CPC model is: when the critical path is executing, it utilizes
just one core so that the non-critical ones can execute in parallel on the remaining
(m − 1) cores. The time allowed for executing non-critical nodes in parallel is
termed as the capacity, which is the length of the critical path. Note that non-critical
nodes that utilize this capacity to execute cannot cause any delay to the critical path.
The sub-paths in the critical path are termed capacity providers �∗ and all non-
critical nodes are capacity consumers �. For each provider θ∗

i ∈ �∗, it has a set
of consumers F(θ∗

i) that can execute using θ∗
i ’s capacity as well as delay the next

provider θ∗
i+1 in the critical path.

Algorithm 1 presents a two-step process for constructing the CPC model of
an input DAG G with its critical path λ∗. Starting from the head node in λ∗,
capacity providers are formed by analyzing node dependency between the critical
path and non-critical nodes (Line 3-9). For a provider θ∗

i , its nodes should execute
consecutively without delay from non-critical nodes in terms of dependency. That
is, each node in θ∗

i , other than the head node (Line 5), only has one predecessor
which is the previous node in θ∗

i .
Then, for each θ∗

i ∈ �∗, its consumers F(θ∗
i) are identified as the nodes that

(1) can execute concurrently with θ∗
i , and (2) can delay the start of θ∗

i+1 (i.e.,

anc(θ∗
i+1)∩

¬
V in Line 12). Accordingly, nodes in F(θ∗

i) that finish later than θ∗
i will

delay the start of θ∗
i+1 (if it exists). By doing so, the CPC model provides detailed

knowledge of the potential delay caused by non-critical nodes on the critical path.
Furthermore, given an arbitrary DAG structure, a consumer vj ∈ F(θ∗

i) can
start earlier than, synchronous with, or later than the start of θ∗

i . For synchronous
and late-released consumers, they will only utilize the capacity of θ∗

i . However, an
early-released consumer can execute concurrently with certain previous providers,
and therefore interfere with their consumers and impose an indirect delay to those
providers. For a provider θ∗

i , G(θ∗
i) (in line 13) denotes the nodes that belong to the

consumer groups of later providers, but which can execute in parallel (in terms of
topology) with θ∗

i .

54 W. Chang et al.

Algorithm 1: CPC(G, λ∗): CPC model construction
Inputs : {G = (V , E)}
Outputs : �∗, F(θ∗

i), G(θ∗
i),∀θ∗

j ∈ �∗

Parameters : λ∗,
¬
V = V \λ∗

1 �∗ = ∅;
2 for each vj ∈ λ∗, in topological order do
3 θ∗

i = {vj }; λ∗ = λ∗\vj ;
4 while pre(vj+1) = {vj } do
5 θ∗

i = θ∗
i ∪ {vj+1}; λ∗ = λ∗ \ vj ;

6 end
7 �∗ = �∗ ∪ θ∗

i ;
8 end
9 for each θ∗

i ∈ �∗, in topological order do

10 F(θ∗
i) = anc(θ∗

i+1) ∩
¬
V ;

11 G(θ∗
i) =

⋃
vj ∈F(θ∗

i)
{C(vj) ∩

¬
V };

12
¬
V =

¬
V \ F(θ∗

i);
13 end
14 return �∗, F(θ∗

i), G(θ∗
i), ∀θ∗

i ∈ �∗

With the CPC model, a DAG is transformed into a set of capacity providers
and consumers, with a time complexity of O(|V | + |E|). The CPC model provides
complete knowledge of both direct and indirect delays from non-critical nodes on
the critical path. For each provider θ∗

i , nodes in F(θ∗
i) can utilize a capacity of

len(θ∗
i) on each of m−1 cores to execute in parallel while incurring potential delay

from G(θ∗
i).

We now formally define the parallel and interfering workload of a capacity
provider. Let f (·) denote the finish time of a provider θ∗

i or a consumer node vj ,
Li = len(θ∗

i) gives the length of θ∗
i and Wi = Li+∑

vk∈F(θ∗
i)

{Ck}+∑
vk∈G(θ∗

i)
{Ck}

gives the total workload of θ∗
i , F(θ∗

i) and G(θ∗
i). We formally define the terms

parallel and interfering workload of a provider θ∗
i . Note, W ≤ ∑

θ∗
i ∈� Wi as a

consumer can be accounted for more than once if it can execute concurrently with
multiple providers.

Definition 1 (Parallel Workload of θ∗
i) The parallel workload αi of θ∗

i is the
workload in Wi − Li that can execute before the time instant f (θ∗

i).

For a node vj in F(θ∗
i) ∪ G(θ∗

i), it contributes to αi if either f (vj) ≤ f (θ∗
i) or

f (vj)−Cj < f (θ∗
i). The former case (i.e., f (vj) ≤ f (θ∗

i)) indicates vj is finished
before the finish of θ∗

i and cannot cause any delay, whereas f (vj) − Cj < f (θ∗
i)

means vj can partially execute in parallel with θ∗
i so that its delay on θ∗

i+1 is less
than Cj .

Definition 2 (Interfering Workload of θ∗
i) The interfering workload of θ∗

i is the
workload in Wi − Li that executes after the time instant f (θ∗

i). For a provider θ∗
i ,

its interfering workload is Wi − Li − αi .

Evolvement of Scheduling Theories for Autonomous Vehicles 55

With Definitions 1 and 2, Lemma 1 follows.

Lemma 1 For providers θ∗
i and θ

∗
i+1, the workload in Wi that can delay the start

of θ∗
i+1 is at most Wi − Li − αi .

Proof Based on the CPC model, the start of θ∗
i+1 depends on the finish of both θ∗

i
and F(θ∗

i), which is max{f (θ∗
i), maxvj ∈F(θ∗

i) f (vj)}. By Definition 1, αi will not
cause any delay as it always finishes before f (θ∗

i), and hence, the lemma follows.
Note that although G(θ∗

i) cannot delay θ∗
i+1 directly, it can delay on nodes in F(θ∗

i),
and in turn, causes an indirect delay to θ∗

i+1. 	

3.3 DAG Scheduling: A Parallelism and Dependency Exploited
Method

Based on the CPC model, a scheduling method is then presented to maximize node
parallelism. This is achieved by a rule-based priority assignment, in which three
rules are developed to statically assign a priority to each node in the DAG. Firstly to
always execute the critical path first (Sect. 3.3.1), and then two rules (Sect. 3.3.2) to
maximize parallelism and minimize the delay to the critical path.

The entire presented approach has general applicability to DAGs with any topol-
ogy (unlike, e.g., [25], which assumes nested fork-join DAGs only). It assumes a
homogeneous architecture, however, it is not restricted by the number of processors.

3.3.1 The “Critical Path First” Execution (CPFE)

In the CPC model, the critical path is conceptually modelled as a set of capacity
providers. Arguably, each complete path can be seen as the providers, which offers
the time interval of its path length for other nodes to execute in parallel. However,
the critical path provides the maximum capacity and hence, enables the maximized
total parallel workload (denoted as .α = ∑

θ∗
i ∈�∗ αi). This provides the foundation

to minimize the interfering workload on the complete critical path.

Theorem 1 For a schedule . S with CPFE and a schedule . S′ that prioritizes a
random complete path over the critical path, the total parallel workload of providers
in S is always equal to or higher than that of . S′, i.e., .α ≥ α′.

Proof The change from . S to . S′ leads to two effects: (1) a reduction on the length
of the provider path, and (2) an increase on length of one consumer path. Below we
prove both effects cannot increase the parallel workload after the change.

First, suppose the length of provider . θ∗
i is shortened by . � after the change from

. S to . S′, the same reduction applies on its finish time, i.e., .f ′(θ∗
i) = f (θ∗

i) − �.
Because nodes in . θ∗

i are shortened, the finish time .f (vj) of a consumer node . vj ∈
F(θ∗

i) ∪ G(θ∗
i) can also be reduced by a value from .�/m (i.e., a reduction on . vj ’s

56 W. Chang et al.

interference, if all the shortened nodes in . θ∗
i belong to . C(vj)) to . � (if all such nodes

belong to .pre(vj)) [28, 39]. By definition 1, a consumer .vj ∈ F(θ∗
i) ∪ G(θ∗

i) can
contribute to the . αi if .f (vj) ≤ f (θ∗

i) or .f (vj)−Cj ≤ f (θ∗
i). Therefore, . αi cannot

increase in . S′, as the reduction on .f (θ∗
i) (i.e., . �) is always equal or higher than that

of .f (vj) (i.e., .�/m or . �).
Second, let L and . L′ denote the length of the provider path under . S and . S′ (with

.L ≥ L′), respectively. The time for non-critical nodes to execute in parallel with the
provider path is . L′ on each of .m − 1 cores under . S′. Thus, a consumer path with
its length increased from . L′ to L directly leads to an increase of .(L − L′) in the
interfering workload, as at most . L′ in the consumer can execute in parallel with the
provider.

Therefore, both effects cannot increase the parallel workload after the change
from . S to . S′, and hence, .α ≥ α′. 	

Rule 1. .∀vj ∈ �∗,∀vk ∈ � ⇒ pj > pk .

Theorem 1 leads to the first assignment rule that assigns critical nodes with the
highest priority, in which . pj denotes the priority of node . vj . With Rule 1, the
maximum parallel capacity is guaranteed so that an immediate reduction (i.e., . α)
on the interfering workload of . λ∗ can be obtained.

3.3.2 Exploiting Parallelism and Node Dependency

With CPFE, the next objective is to maximize the parallelism of non-critical nodes
and reduce the delay on the completion of the critical path. Based on the CPC model,
each provider . θ∗

i is associated with .F(θ∗
i) and . G(θ∗

i). For .vj ∈ G(θ∗
i), it can execute

before .F(θ∗
i) and use the capacity of . θ∗

i to execute, if assigned with a high priority.
Under this case, . vj can (1) delay the finish of .F(θ∗

i) and the start of .θ∗
i+1, and (2)

waste the capacity of its own provider. A similar observation is also obtained in [33],
which avoids this delay by the heuristic of early interference node first.

Rule 2. .∀θ∗
i , θ∗

l ∈ �∗ : i < l ⇒ min
vj ∈F(θ∗

i)
pj > max

vk∈F(θ∗
l)

pk .

Therefore, the second assignment rule is derived to specify the priority between
consumer groups of each provider. For any two adjacent providers . θ∗

i and . θ∗
i+1, the

priority of any consumer in .F(θ∗
i) is higher than that of all consumers in .F(θ∗

i+1).
With Rule 2, the delay from .G(θ∗

i) on .F(θ∗
i) (and hence .θ∗

i+1) can be minimized,
because all nodes in .G(θ∗

i) belong to consumers of following providers and are
always assigned with a lower priority than nodes in .F(θ∗

i).
We now schedule the consumer nodes in each . F(θ∗

i). In [33], concurrent nodes
with the same earliness (in terms of the time they become ready during the execution
of the critical path) are ordered by the length of their longest complete path (i.e.,
from .vsrc to .vsink). However, based on the CPC model, a complete path can be
divided into several local paths, each of these local paths belong to the consumer
group of different providers. For local paths in .F(θ∗

i), the order of their lengths can

Evolvement of Scheduling Theories for Autonomous Vehicles 57

Algorithm 2: .EA(�∗,�): priority assignment
Inputs : �∗,�
Parameters : p, pmax

Initialize : p = pmax , ∀vj ∈ �∗ ∪ �, pj = −1
1 /* Assignment Rule 1. */

2 ∀vj ∈ �∗, pj = p; p = p − 1;
3 /* Assignment Rule 2. */

4 for each θ∗
i ∈ �∗, in topological order do

5 while F(θ∗
i) �= ∅ do

6 /* Find the longest local path in F(θ∗
i). */

7 ve, vj ∈ F(θ∗
i) :

8 ve = argmax
ve

{le(F (θ∗
i))|suc(ve) = ∅};

9 λve = ve ∪ λvj , argmax
vj

{lj (F (θ∗
i))|∀vj ∈ pre(ve)};

10 if |pre(vj)| > 1, ∃vj ∈ λve then
11 {�∗′,�′} = CPC(F(θ∗

i), λve);
12 EA(�∗′,�′);
13 break;
14 else
15 /* Assignment Rule 3. */

16 ∀vj ∈ λve , pj = p; p = p − 1;
17 F(θ∗

i) = F(θ∗
i) \ λve ;

18 end
19 end
20 end

be the exact opposite to that of their complete paths. Therefore, this approach can
lead to a prolonged finish of .F(θ∗

i).
In the constructed schedule, we guarantee a longer local path is always assigned

with a higher priority in a dependency-aware manner. This derives the final
assignment rule, as given below. Notation .lj (F (θ∗

i)) denotes the length of the
longest local path in .F(θ∗

i) that includes . vj . This length can be computed by
traversing .anc(vj) ∪ des(vj) in .F(θ∗

i) [33]. With Rules 1-3 applied to the example
DAG, it finally leads to the best-case schedule with a makespan of 13.

Rule 3. 	. . vj , vk ∈ F(θ∗
i) : lj (F (θ∗

i)) > lk(F (θ∗
i)) ⇒ pj > pk

However, simply applying Rule 3 to each .F(θ∗
i) is not sufficient. Given a

complex DAG structure, every .F(θ∗
i) can form a smaller DAG . G′, and hence, an

inner nested CPC model with the longest path in .F(θ∗
i) is the provider. Furthermore,

this procedure can be recursively applied to keep constructing inner CPC models for
each consumer group in a nested CPC model, until all local paths in a consumer
group are fully independent. For each inner nested CPC model, Rules 1 and 2
should be applied for maximized capacity and minimized delay of each consumer
group, whereas Rule 3 is only applied to independent paths in a consumer group for
maximized parallelism (and hence, the star mark on Rule 3). This enables complete
awareness of inter-node dependency and guarantees the longest path first in each
nested CPC model.

58 W. Chang et al.

Algorithm 2 provides the complete approach of the rule-based priority assign-
ment. The method starts from the outer-most CPC model (.CPC(G, λ∗)), and
assigns all provider nodes with the highest priority based on Rule 1 (Line 2). By
Rule 2, the algorithm starts from the earliest .F(θ∗

i) (Line 4) and finds the longest
local path .λve in .F(θ∗

i) (Line 8-9). If there exists dependency between nodes in
.λve and .F(θ∗

i)\λve (Line 9), .F(θ∗
i) is further constructed as an inner CPC model

with the assignment algorithm applied recursively (Line 11-12). This resolves the
detected dependency by dividing .λve into a set of providers. Otherwise, .λve is an
independent local path so that priority is assigned to its nodes based on Rule 3. The
algorithm then continues with .F(θ∗

i)\λve . The process continues until all nodes in
V are assigned with a priority.

The time complexity of Algorithm 2 is quadratic. At most, .|V | + |E| calls
to Algorithm 1 are invoked to construct the inner CPC models (Line 11), which
examines each node and edge in the DAG. Mutually exclusively, Lines 16-17 assign
each node with a priority value. Given that the time complexity of Algorithm 1
is .O(|V | + |E|), we have the time complexity .O((|V | + |E|)2) for Algorithm 2.
Although Algorithm 2 is recursive, this result holds as a node assigned with a
priority will be removed from further iterations (Line 17), i.e., each node (edge)
is processed only once.

With the CPC model and the schedule, the complete process for scheduling
a DAG consists of three phases: (i) transferring the DAG to CPC; (ii) statically
assigning a priority to each node by the rule-based priority assignment, and (iii)
executing the DAG by a fixed-priority scheduler. With the input DAG known a
priori, phases (i) and (ii) can be performed offline so that the scheduling cost at
run-time is effectively reduced to that of the traditional fixed-priority system.

4 Reliable Resource Sharing in Reliable Autonomous Driving

The contents of this section is organized as follows. Section 4.1 describes the
system and task model assumed in this section. Section 4.2 presents a fault-tolerance
solution for MCS with shared resources, which includes a system execution model
and a protocol MSRP-FT for faults which occur during critical sections.

4.1 System and Task Model

This section consider a fully partitioned system containing z identical cores (. m1
to . mz) and a set of sporadic tasks (.
) that are scheduled by the Fixed Priority
Preemptive Scheduling (FPPS) scheme. For generality, the system has tasks with
. N criticality levels which are defined by the system engineer according to their
importance, denoted as .L ∈ {A,B, . . . ,N} in which A is the lowest criticality and
. N is the highest. Tasks being allocated to higher criticality levels implies a severe

Evolvement of Scheduling Theories for Autonomous Vehicles 59

consequence for overall system performance if their execution in some way fails.

Each task . τi is defined by a 6-tuple .{Ti,Di, prii , mi, li ,
−→
Ci }, including its minimum

release period . Ti , constrained deadline . Di (with .Di ≤ Ti), priority .prii , designated
core . mi , criticality .li ∈ L, and a set of Worst-Case Execution Times (WCET)

.
−→
Ci = {Ci,A, Ci,B, . . . , Ci,N} without accessing shared resources. The verification is
more conservative for a higher criticality level [6], hence .Ci,A ≤ Ci,B ≤ . . . ≤ Ci,N.

The task . τi with criticality . li can execute up to .Ci,li from its .
−→
Ci .

Within the system, there also exists a set of resources . R, each of which may be
accessed by all tasks in the system in a mutually exclusive fashion by executing
the critical section associated with the resource. Each shared resource . rx is defined
by two notations: .

−→
cx
i and . Nx

i , in which .
−→
cx
i = {cx

i,A, cx
i,B, . . . , cx

i,N} denotes the

set of worst-case computation time . τi needed to execute . rk with different levels
of criticality, and .Nx

i gives the number of requests from . τi in one release. In this
section the execution budgets of different segments of the same task (e.g. .Ci,A and
.cx

i,A) increase or decrease simultaneously with the transition of system modes (see
Sect. 4.2). However, to ease the presentation, the notation . cx is used to denote the
worst-case time for executing . rx by all requesting tasks with any criticality level.
Nested resource sharing is not considered in this section, i.e., a task can only hold
one resource at a time, but can be directly supported by group locks [62].

Transient faults which can be resolved by redundancy approaches (e.g. re-
execution and replication) in this section. Each fault can only affect one task at a
time and the acceptance test is applied as the fault-detection technique.

4.2 A Fault-Tolerant Solution for MCS with Shared Resources

In this section, we present a new fault-tolerant solution for generic MCS that have
two or more criticality levels with shared resources, to handle both task overruns
and transient faults. First, we introduce a new fault-aware system model for MCS.
The system model distinguishes faults occurring in normal and critical sections,
which enables different fault-tolerance schemes to be implemented. Then, based on
MSRP, a novel fault-tolerance multiprocessor resource sharing protocol is presented
for handling faults in critical sections, which reduces the blocking time incurred for
tolerating faults and guaranteeing the reliability of the system.

4.2.1 The Fault-Tolerance System Model

To handle task overruns and faults which occur during both normal and critical
sections of a MCS, a fault-tolerant system model based on the extension of the
AMC model [6] is introduced. Figure 4 illustrates the execution flow of the system
and tasks in the model.

60 W. Chang et al.

Task Fault Request Resource Request ResourceFault
Free

Task FaultFault
Free

Overrun

Overrun

Mode Mode

Roll-back New approach Roll-backNew approachOverrun

Fig. 4 The fault-tolerance system model

During a task’s execution, faults can occur either in a normal or a critical section.
The former is called a task fault and the latter a resource fault in this section. In the
presented model, different fault-tolerant techniques are adopted to tolerate these two
types of fault. The fault detection and tolerance techniques for normal and critical
sections are presented in Sect. 4.2.2 and 4.2.3.

As shown in Fig. 4, each task has three execution states under a system mode
(say L): fault-free (L-FF), task-fault (L-TF) and resource-access (L-RA). They are
allowed to execute up to an execution budget .Ci,L. A task executing in state L-FF
is executing a normal section without incurring any faults. Once a fault occurs in a
normal section, the task moves to state L-TF, at which the fault will be resolved. If
a task requests a resource, it moves to state L-RA directly, where the fault-tolerance
procedure for critical sections will be activated immediately, guaranteeing a fault-
free resource access (see Sect. 4.2.3). The task moves back to state L-FF from L-TF
or L-RA if the fault is resolved or the resource access is finished, respectively.

The system advances to the next system mode .L+ if any task in mode L overruns
its budget. When an overrun occurs, tasks with criticality .li ≥ L+ that are running
in states L-FF, L-TF and L-RA will move directly to .L+-FF, .L+-TF and .L+-RA
respectively with elevated execution budgets .Ci,L+ and other tasks are dropped. By
doing so, each overrun can bring the system to the next mode. However, there is
an exception for tasks with criticality .li < L+ running in the state L-RA while
executing with a shared resource, they are allowed to be dropped after finishing
the underway critical section for the consideration of data integrity [31]. Moreover,
mode changes can go in the reverse direction, when the system has less computation
pressure it will resume suspended tasks and start in the lowest mode. Details of this
will not be addressed here due to space constraints.

4.2.2 Fault-Tolerance of Normal Sections

In this section, we focus on transient faults which can be resolved by redundancy
approaches. However, in systems with shared resources, detecting faults at the end
of a task and re-executing the whole task to resolve a transient fault can lead to

Evolvement of Scheduling Theories for Autonomous Vehicles 61

Normal 1 Normal 2Critical 1

Release Deadline
Correct

τ1

Correct

Normal 2

Error Correct

Check 2 Check 3 Check 4

Rollback

Check 1 Check 5

Save Detect Restore

Fig. 5 Fault-tolerance in normal sections

substantial blocking time and the risk of transferring incorrect data to other tasks. To
minimize the blocking time and provide reliable resource sharing, we apply different
fault-tolerance approaches to handle faults that occur in normal and critical sections.
This is achieved by not only inserting checkpoints at the start and end of each task
but also introducing additional checkpoints around each critical section of the task.
By doing so, the task execution is divided into a set of normal and critical sections.
The acceptance test is assumed to be applied as the fault detection technique at each
checkpoint.

In the presented fault-tolerance approach, the purposes of the checkpoints are
slightly different, and so their operations vary. As shown in Fig. 5, a checkpoint (e.g.
Check 1) will be set at the beginning of a task to perform a Save operation which
involves storing the current architectural state of the system, including register files,
counter values and etc. For fault-tolerance in normal sections, each checkpoint
will operate a Detect operation to detect faults after the execution of each normal
segment. If no faults are detected (e.g. at Check 2) the checkpoint will perform
the Save operation. Otherwise, if a fault is detected (e.g. at Check 4) the task
will roll back to the most recent checkpoint and perform the Restore operation
which restores the previous data and re-performs the execution. This process repeats
until the normal section is executed without any fault. Each re-attempt requires
an additional Detect operation (e.g. at Check 5). However, for the end of the last
execution segment, the Save operation is not needed at the checkpoint.

4.2.3 Fault-Tolerance of Critical Sections by MSRP-FT

For faults occurring in critical sections, the presented model utilizes a novel fault-
tolerance multiprocessor resource sharing protocol, called MSRP-FT, in which tasks
waiting for a resource can assist the resource holder to execute the associated
critical section in parallel to address potential faults. The objective is to reduce

62 W. Chang et al.

FIFO

(a) (b)

Enqueue

Dequeue

resource holder spinning task replica

3 tasks requesting 2 tasks requesting 1 task requesting

Fig. 6 Fault tolerance in critical section. (a) An example of a FIFO queue. (b) Replicas allocation
based on the number of tasks in the queue

the additional blocking time caused by resolving faults in critical sections via re-
executions. The mentioned MSRP-FT is introduced with the following steps.

4.2.3.1 Allocation of Replicas

Figure 6 demonstrates an example of the implementation of MSRP-FT, which is
based on the resource sharing protocol MSRP. According to MSRP [27], tasks are
inserted into a FIFO queue when they request a global resource. The task at the head
of the queue (e.g. . τ1 in the figure) is granted the resource, other tasks spin on their
own cores while checking the lock non-preemptively. With MSRP-FT, tasks are also
placed at the FIFO queue when requesting shared resources. The task at the head of
the FIFO queue will access the shared resource and the code segment to be executed
by the head task and the internal states (e.g. variables) of the resource are replicated
to a number according to the number of tasks in the FIFO queue as shown in Fig. 6b.
It is worth noting that the access to the resource is always performed by the head
task which obeys the mutually exclusive principle of shared resources and will not
incur a race condition. Afterwards, replicas are stored in the local memory of each
core and each task in the FIFO queue (including the head task) executes a replica on
their host cores in parallel and updates the results on the local replica independently.
If there is only one task in the FIFO queue, the head task has to execute the critical
section by itself.

4.2.3.2 Submission of Replicas

Each execution of the replica is tested for faults on different cores. As shown in
Fig. 7b, if a replica finishes without incurring any fault (e.g. on core . m3), it will

Evolvement of Scheduling Theories for Autonomous Vehicles 63

Normal 1 Normal 2Critical 1

Release Deadline
Correct Error

Check 1 Check 2

Save Detect Restore Replication Fetch

(a)

Replcia 2

Error

Replica 1

Replica 3

Correct

R

Error

(b)

Fig. 7 Fault-tolerance in a critical section. (a) Operations of checkpoints around a critical section.
(b) Submission of execution results

obtain the lock and update the shared resource with its local variables. If two
overlapping requests to acquire the lock arrive, one task will commit the result and
another will have no effect on the resource. The update of the resource is assumed
to be conducted with an atomic action which once performed no other action can
interleave with it, hence, race conditions are avoided. Once the resource is updated,
other tasks are signaled to abandon the computation. In contrast, if all the resource-
accessing tasks fail to obtain the correct result, they roll back and re-execute the
replica until the correct result is successfully submitted. With a successful commit
by any task in the FIFO queue, the head task (i.e., . τ1) is removed from the queue
and continues its execution. The same procedure then repeats for the next head task
within the FIFO queue.

Figure 7a shows the operations performed at the checkpoints around the critical
section of . τ1. The checkpoint at the start of the critical section (e.g. Check 1) first
performs Detect and Save operations to detect for faults and save the results of
the execution of the previous segment, which is the same as mentioned above. It
also applies Fetch and Replicate operations to fetch and replicate the corresponding
operation and the shared resources to the spinning cores. A Detect operation is
performed after the execution of the replica. Although the replica incurs faults, . τ3
already updated the result and a Save operation is performed to save the architectural
states of the system and . τ1 continues its execution.

4.2.3.3 Working example

To clarify the implementation of the above fault-tolerance approach, the detailed
execution procedure of the example stated above under two different fault-tolerance
approaches is presented in Fig. 8. Figure 8a assumes that each critical section is
checked for faults and any detected fault is tolerated directly by the roll-back and re-
execution approach. As shown in Fig. 8a, . τ1, . τ2 and . τ3 request for a shared resource
concurrently at .t = 1. According to MSRP, . τ1 ranks first in the FIFO queue so it
is granted with the resource and starts to execute its critical section immediately.

64 W. Chang et al.

0 1 2 3 4 5 6 7 8 9

Normal Section Critical Section

Spinning

Assisting

Acquire Resource Release Resource

t10 11

Fault

(a)

0 1 2 3 4 5 6 7 8 9 t10 11

Replica 1

Replica 2

Replica 3

(b)

Fig. 8 A comparison between two fault-tolerance approaches under the same checkpoints setting.
(a) Fault tolerance by simple segment re-execution. (b) The presented fault-tolerance method

Other tasks (. τ2 and . τ3) spin on their own cores and wait for the resource. However,
. τ1 incurs two faults consecutively and re-executes its critical section twice. It finally
releases the resource and leaves the FIFO queue at .t = 7. . τ2 then becomes the head
of the queue, which acquires the resource and starts its critical section from then.

With the application of the presented fault-tolerant approach, as shown in the
Fig. 8b, the cores of . τ2 and . τ3 are utilized to execute .τ ′

1s critical section in parallel
instead of spinning. Although only one piece of the replica (i.e., Replica 3) is
executed without faults, . τ1 can still continue its execution at .t = 3. The chief
principle of the fault-tolerant approach for critical sections is to replace wasted

Evolvement of Scheduling Theories for Autonomous Vehicles 65

cycles of the spinning tasks in the FIFO queue to provide the reliability guarantee
for each critical section in a single access, in pursuance of reducing the time spent
on fault-tolerance and resource contention. For local resources, each task has to
execute by itself as there exists no spinning tasks on remote cores.

4.2.3.4 Implementation and Run-Time Overhead

The implementation of the above approach requires the hardware architecture to
have individual cache memory or dedicated memory space for each core to store
replicas during the execution of the MSRP-FT, where most commercially off-the-
shelf (COTS) architectures can satisfy. From the software aspect, a global scheduler
will be adopted to communicate with tasks on different cores. For example, the
scheduler will signal tasks to assist the head task (i.e. the resource holder) to execute
the replicas in parallel. Once a successful result is submitted, the scheduler will
signal other tasks to abandon the execution on replicas. Threads control methods
such as wait() and notify() can be used to construct the above communication logic.

The feasibility of a task executing operations on behalf of other tasks has
been validated in [51], in which once a task is preempted while spinning in
the FIFO queue, the task behind it can acquire the lock first and execute the
operation on behalf of the preempted task. Burns and Wellings [14] also briefly
describes how the associated computations of the preempted task holder can be
executed by the spinning tasks in parallel on different cores, but a detailed system
design and implementation execution framework are not provided. Although the
presented fault-tolerance approach is developed within a different context and serves
a different purpose, that of reducing blocking time caused by resource faults,
the above work has provided sufficient evidence towards the applicability and
practicability of the presented approach.

Moreover, the setting of checkpoints can bring additional overheads in terms of
execution time. However, there is a clear trade-off between the number of check-
points being set and the final schedulability benefits of the presented approach. If
the task has intensive resource requests (i.e. contains voluminous critical sections),
the engineer can set fewer checkpoints in a flexible manner so that a balanced result
can still be achieved between the time spent for each checkpoint and the advantage
brought by the approach presented.

Finally, the presented fault-tolerance method can also be applied to other FIFO
spin-based resource sharing protocol, e.g. MrsP [14]. The choice of MSRP made in
this chapter is due to its non-preemptive spinning feature, which provides a strong
guarantee to the resource-accessing and helping process. Under MSRP, spinning
tasks are prevented from being preempted while assisting the resource holder, and
hence avoids prolonging the helping process as well as over-complicated execution
scenarios.

66 W. Chang et al.

5 Real-Time TSN Scheduling for Automotive CPS

In this section, we present the frame-level FPS method for TSN scheduling and anal-
ysis. We present an overview in Sect. 5.1. Followed by scheduling of TSN with FPS
in Sect. 5.2 and deferred queue in Sect. 5.3. A corresponding schedulability analysis
is given in Sect. 5.4. Finally, the network and control co-design is formulated in
Sect. 5.5 by period and control poles assignment.

5.1 Overview of Traffic Scheduling of TSN

In this section, we present an integrated solution that solves the controller-network
co-design problem. Scheduling on a single TSN switch is considered and can be
extended to the entire network. As we focus on the scheduling aspect, it is assumed
the network communication is ideal: (i) the depth of the queues is sufficient, i.e., no
traffic overflows; (ii) the channel is error-free and has a constant transmission rate.
These ease the analysis and helps to understand the nature of the problem. Relaxing
them in practice needs limited modifications and will be discussed in the future. The
network is subjected to two basic traffic types: scheduled and unscheduled traffic,
depending on a certain level of quality-of-service (QoS) is required or not. In this
section, we focus on scheduled traffic and leave unscheduled traffic be transmitted
using residual bandwidth with best effort.

TSN provides time synchronization and time-division transmission, which
enables global scheduling through GCLs [63]. Although the schedule of TSN can
be designed by hand, it soon becomes impractical as the network turns complex and
more packets are added to the network. In this section, we specify the scheduling
policy adopted for TSN while control systems are considered. The presented
schedule minimizes the blocking of packets (including ones sent by control tasks),
to improve schedulability and control performance. We then introduce a fine-grained
response time analysis that bounds the worst-case latency of packets in a single Qbv
switch. Below we first discuss the system model.

System Model The system contains N periodic packets3
.
 = {τ1, τ2, . . . , τN },

including both control (.
c) and non-control packets (.
nc) sent by tasks from the
application. Each packet . τi is modelled as a 7-tuple .{Li, Ci, Ti,Di, Pi, Ri,�i},
representing the worst-case length of the packet . Li , transmission time . Ci , period
. Ti , deadline . Di , priority . Pi , worst-case latency . Ri and the set of frames . �i in each
release, respectively. Frames are transmitted in a non-preemptive fashion. A global

3 Continuously released periodic packets will form a flow. For simplicity, we use these two terms
interchangeably.

Evolvement of Scheduling Theories for Autonomous Vehicles 67

packet transmission rate v is applied to all packets, thus .Ci = Li/v for . τi . Each
control packet is assigned with an implicit deadline i.e., .Di = Ti . To provide a more
general network model for the system, the non-control packets can have arbitrary
deadlines without any constraint imposed. As a consequence, at a given time instant
there could be several instances of a non-control packet waiting for transmission
in the switch. The priorities of all packets are assigned according to the deadline
monotonic algorithm (.Pi > Pj if .Di < Dj), and each packet has a unique priority.
In addition, the Maximum Transmission Unit (MTU) is considered, denoted as M ,
which defines the maximum data size allowed in a single transmission. For the ease
of presentation, we denote M as the transmission time for sending data with a size
equal to one MTU. Thus, each packet could be divided into a set of successive
frames, i.e., .�i = {λ1

i , λ
2
i , . . . , λ

m
i }, with .m = �Li/M�. For a given frame . λj

i , it
inherits the analytical properties of . τi (i.e., . Ti , . Di and . Pi), and has its own data
length, . Lj

i , and transmission time, . Cj
i .

5.2 Scheduling Network Packets in TSN

In a typical Qbv switch, the network packets are queued by their arriving time
(i.e., FIFO queuing) and are transmitted non-preemptively [35]. Traditionally, the
synthesis of GCL schedule is performed using Satisfiability Modulo Theories
(SMT) [20, 41] or Integer Linear Programming (ILP) [5]. The defined end-to-end
latency imposes zero-jitter, however, with significantly reduced solution space. The
scheduling in TSN networks with Quality-of-Service (QoS) requirements can be
either performed at the queue level [63] or packet level [43]. With the queue-level
scheduling, each FIFO queue in the Qbv switch is assigned with a priority, and
packets in a queue with a higher priority are always transmitted first. However, as
packets in each queue are transmitted strictly in a FIFO order, packets under the
queue-level scheduling approach can incur substantial blocking, where packets with
a tighter deadline but at the end of a queue cannot be favored. That is, with the
queue-level scheduling, packets with different deadlines in the same FIFO queue are
treated equally without concerning individual temporal requirements. For control
systems, such a scheduling is not appropriate, as the delay for transmitting control
packets can introduce significant impact on the control performance of the system.
Thus, the packet-level (more precisely, the frame-level) scheduling is adopted to
provide a finer-grained schedule, where each packet (and its frames) is scheduled
strictly by its priority.

However, even with the packet-level scheduling, packets can still incur additional
delay due to the FIFO queuing, as the actual transmission largely depends on the
arriving time of the packets. In the worst-case, a late-arrived packet with a high
priority can be blocked by all the released packets with lower priorities. To minimize
the delay due to FIFO queuing, an alternative is to perform the scheduling off-line

68 W. Chang et al.

(i.e., prior to execution), with the complete knowledge of all packets in the system.4

The offline scheduling can be performed by assuming all packets are arrived at the
same time, with a packets transmission order obtained based on their priorities. If
packets have different arrival times during run-time, a simple mechanism that defers
the queuing of the early-arrived low-priority frames can be adopted, to maintain the
queuing order obtained from the offline FPS-NP without imposing extra latency to
packet transmission (see Sect. 5.3 for deferred queuing). By maintaining the offline
packets transmission order during run-time, the blocking time of each packet during
transmission can be minimized to one frame only, i.e., identical to the classic non-
preemptive fixed-priority scheduling (FPS-NP) [23].

Based on the above discussion, to provide a fine-grained schedule and to
minimize the delay due to the queuing problems, the scheduling adopted in this
section is conducted before runtime on the frames of each packet in one hyper-
period, with the scheduling decisions encoded into the GCL. Once a schedule is
obtained, the frames can be statically allocated to the FIFO queues according to the
schedule while the scheduling decisions can be mapped to the GCL to control the
gates of all queues to achieve the desired execution order. To this end, the scheduling
on TSN can be successfully mapped to the traditional FPS-NP, in which each packet
is scheduled strictly by its priority and can be blocked maximum once during the
entire transmission.

With the described scheduling approach, we avoid the packets queuing problem
and can achieve the minimized delay for all packets, in the context of a Qbv switch.
This is crucial for control systems as the resulting control performance can be
affected by transmission delay for the control packets. To our best knowledge, this
is one of the earliest work targeting at control systems in which the timeliness and
performance are sensitive to the transmission delay of certain critical (i.e., control
and non-control) packets. For the non-control packets, meeting their timing require-
ments is essential for guaranteeing the system correctness, whereas minimizing
transmission delay of the time-triggered control packets are essential crucial for
control performance.

For unscheduled packet flows that do not have a temporal requirements, the
traffics can be scheduled using residual bandwidth left by the critical traffics
with time-aware shapers [52, 53] and queue partitioning. Supporting such flows
has been well-described by the above work, and will not be re-presented in this
section. Targeting at such systems, a complete scheduling solution is presented that
minimizes the transmission delay for all packets, in the context of the TSN Qbv
switch. Last but not least, different from [20], our approach makes no assumption
on the isolation of incoming packets and the construction of the GCL, e.g., isolating
certain queues for a specific packet type, to provide a more general approach for
using TSN in control systems.

4 Such an approach is feasible as the packets are deterministic i.e., the packets sent by each task
are known a prior with periodic release.

Evolvement of Scheduling Theories for Autonomous Vehicles 69

5.3 Deferred Queue

As described in Sect. 5.2, for packets with different arriving times, a mechanism
is required to delay the queuing of the early-arrived low priority packets so that
the minimized blocking can be guaranteed. To achieve this, a deferred queue with
priority ordering is introduced into the Qbv switch, which is integrated into the
packet filtering unit (see Fig. 3) for holding early-arrived packets temporarily, until
they can be added into the scheduled queues with a correct order.

Assuming simultaneous release for all packets at the start of the system, the
offline FPS-NP schedule can produce a well-planned transmission order for all
packet instances released in one hyperperiod, in which each packet (a set of
successive frames) is scheduled strictly based on priority. For this schedule, the
blocking of each packet is minimized, as in the worst case, the ready packet with
the highest priority can start transmitting after the currently transmitting frame of
a low priority packet has completed. During run-time, this offline scheduling order
is encoded into the priority filtering unit, which provides a reference of the expect
order for incoming packets.

For each incoming packets, the priority filter examines whether this packets
arrives by the expected order, i.e., all its previous packets with a higher priority
have arrived. If so, this packet is dispatched to the scheduled queues immediately,
at which it will be select to transmit by GCL. Otherwise (i.e., certain previous high
priority packets haven’t arrived yet), this packet is hold by the priority filter until (a)
the missing packets arrives or (b) the scheduled queues are empty and this packet
has the highest priority among all the deferred packets.

Note that the condition (b) can lead to a transmission order different from the
expected one, as certain packets can be transmitted before a late-arriving higher
priority packet. However, this does not introduce extra delay and can help increasing
the throughput. With the deferred queuing, it is possible that all scheduled queues
are empty while some packets are stored in the priority filter. Under this situation,
the priority filter selects the packet at the head of the queue (i.e., with the highest
priority) and send its frames into the scheduled queue for a direct transmission one
by one, until a higher priority packet arrives. This guarantees that the transmission
never stops as long as there exist waiting packets (either in the priority filter or
the scheduled queues). In addition, for the late arriving high priority packet, its
blocking is still at most . Cj

i , where it can be transmitted directly after the currently-
transmitting frame.

5.4 Worst-Case Response Time Analysis

With the scheduling in TSN mapped to the traditional FPS-NP, the worst-case
response time for transmitting a packet in a single Qbv switch can be obtained,
which bounds the time duration from when the packet enters into the switch to when

70 W. Chang et al.

the packet is transmitted. Due to the different deadline constraints of the control
and non-control packets (i.e., implicit and arbitrary deadlines respectively), different
analysis techniques are applied for each packet type. However, as both control and
non-control packets are scheduled strictly by the FPS-NP, the basic philosophy for
analyzing both types of packets is similar to that in [23], but with modifications
and improvements in order to reflect the unique features of the Qbv switch and to
support the analysis at the frame level.

The response time equation of a packet . τi is given in the following equation for
both control and non-control packets:

.Ri = max
∀λ

j
i ∈�i

⎧⎨
⎩

R
j
i (0), if τi ∈
c

max
n=0...

⌈
ti+Ji

Ti

⌉
−1

(
R

j
i (n)

)
, if τi ∈
nc

(2)

In Eq. (2), .Rj
i (n) denotes the response time for transmitting the nth instance

of frame . λj
i in . τi’s busy period . ti , and . Ji denotes the queuing time, i.e., the time

window from when the first frame of . τi reaches the Qbv Switch, until when the last

frame is queued. .
⌈

ti+Ji

Ti

⌉
gives the total number of times that a non-control packet

can be sent within its busy period [23].
The analysis of a control packet is relatively straight forward, as at any given

time, there can only exist one instance of a control packet in the system i.e., implicit
deadlines. Thus, the worst-case response time of a control packet can be safely
bounded by computing the maximum response time of all its frames.5 However, for
a non-control packet, multiple instances of each of its frames can co-exist due to the
arbitrary deadline. Thus, the response time of a frame (with an arbitrary deadline)
must be obtained by computing the maximum response time of all its instances
within the busy period . ti .

Similar to [23], the busy period of a non-control packet is computed by Eq. (3),
where . Bi gives the worst-case blocking that . τi can experience due to transmitting
a low priority frame and .hep(i) refers to all indices of packets that have equal or
higher priorities than . Pi , including i. The recursive calculation can starts with . ti =
Bi+Ci , and is guaranteed to converge [23], given that the total utilization for packets
in .hep(i) is less than 1, i.e., .

∑
∀j∈hep(i)(Cj/Tj) ≤ 1. We later decompose . Bi in Eq.

(6).

.ti = Bi +
∑

∀k∈hep(i)

⌈
ti + Jk

Tk

⌉
Ck (3)

5 From Eq. (2), the response time of a packet equals to the response time of its last frame in
each transmission, which takes into account the delay for transmitting the previous frames in one
transmission.

Evolvement of Scheduling Theories for Autonomous Vehicles 71

The response time of a frame is bounded by Eq. (4), in which . J
j
i denotes the time

to en-queue frame . λj
i , .Wj

i gives the maximum queuing delay that . λj
i can incur in a

FIFO queue before it is selected to be transmitted and .Cj
i denotes its transmission

time. The time for queuing . λj
i into a FIFO queue also contains the enqueue time of

frames of . τi that are prior to . λ
j
i in one transmission. In addition, for the non-control

frames, .n · Ti is subtracted as this is the arrival time of its nth instance, relative to
the start of the busy period. Note, for control frames, n is always 0.

.R
j
i (n) =

∑
q∈[1,j]

J
q
i + W

j
i (n) + C

j
i − n · Ti (4)

Equation (5) gives the queuing delay .Wj
i of frame . λj

i , where .hp(i) returns a set
of packets with a priority strictly higher than . Pi . This equation is also applicable
to either control or non-control frames, with .n = 0 for all control frames. Figure 9
provides an example illustrating the worst-case delay of the third (.n = 2) instance
of the second frame (i.e., .j = 2) in packet . τi . As shown in the figure, in the worst
case, the frame (in bold) has to wait for five types of other frames to transmit before
it can start, which are mapped to four types of delay, as follows. In the worst case, a
frame can incur four sources of delay when waiting in a FIFO queue: (i) the blocking
caused by a low-priority frame that is currently transmitting i.e., . Bi ; (ii) the delay
by . τi’s frames prior to . λj

i (with potential existence of multiple instances); (iii) the

delay by previous instances of . λj
i and the frames after . λj

i in each . τi’s instance sent

before . λj
i ; and (iv) the interference from the frames of each packet with a higher

priority than . Pi . Note that (iii) accounts for the delay cause by both the previous
instances of . λ

j
i itself and the frames after . λ

j
i in previous instances. These delays are

captured by the equation respectively.

. W
j
i (n) = Bi + (n + 1) ·

∑
q∈[1,j−1]

C
q
i + n ·

∑
q∈[j,|�i |]

C
q
i

+
∑

∀λ
q
k ∈�k,∀k∈hp(i)

⌈
W

j
i (n) + J

q
k

Tk

⌉
C

q
k (5)

Finally, . Bi is given by Eq. (6), where .lp(i) returns the packets with a priority
lower than . Pi . The maximum blocking time that . τi (and any of its frames) can incur
is the longest transmission time among the frames of all the lower priority packets.

.Bi = max
∀λ

q
k ∈�k,∀k∈lp(i)

(C
q
k) (6)

Equations (2)–(6) summarises the response time analysis for bounding the
worst-case transmission latency (i.e., the response time) of packets in a Qbv

72 W. Chang et al.

Fig. 9 The worst-case delay of a frame, which is caused by a low priority frame, high priority
packets, instances of . τi ’s frames prior to . λ

j
i , previous instances of . λj

i and previous instance of . τi ’s

frames after . λ
j
i

switch for time-critical control systems. The analysis considers both implicit and
arbitrary deadlines for different packet types and is fine-grained, which provides
the worst-case transmission latency of each frame. Arguably, by intuition, a trivial
modification that treats each frame as an independent task can be applied in an
existing packet-level analysis (e.g., the one in [24]), to support the analysis at
the frame-level. However, additional techniques are still required to guarantee the
correct transmission order between frames that belong to the same packet and
instance so that the transmission time of each individual frame can be obtained. This
is achieved in our analysis by Eq. (5), which carefully examines the transmission
order of different types of frames (including the ones in . τi) and provides a tighter
upper bound compared to a packet-level analysis.

The presented analysis and scheduling techniques for a single switch can be
extended to support the network topology level with multiple switches and end-
nodes. For the presented method, it can be implemented in each switch. For a given
switch, the presented schedule takes all packets that will go through this switch and
then produced a static schedule. In addition, the deferred queue is applied in each
switch to handle the case in which low priority packets arrive earlier than expected.
To compute the end-to-end worst-case transmission time of a packet . τi that travels
through more than one switches, the input packets of each of the switches should be
given and the worst-case delay of . τi in each switch can be effectively upper bounded
by summing the worst-case delay it can incur in each switch by the above analysis.

However, with only one switch, the worst-case delay of a packet can be bounded
by considering all the input packets with a synchronous release at the begin of
the system. This assumption, however, may not hold in the scenario of multiple
switches, in which the actual arrival time of a packet at a given switch depends on
the delay it incurs at the previous switches. Thus, the analysing approach above
would contain certain degree of pessimism as not all the input packets in a switch
will cause a delay on . τi , depending on their arrival times.

Evolvement of Scheduling Theories for Autonomous Vehicles 73

5.5 Controller Synthesis and Period Allocation

For a safety-critical autonomous system, for example, a self-driving car, the
control functions are crucial and should always be a major concern. Further
to the introduced scheduling and analysis that guarantee the timing of control
packets, a well-designed controller is also required, in order to satisfy the control
performance requirement and even maximize it under the schedulability constraint
of the network.

Most real-time controllers targeting settling time (which will be formally defined
later in this section) can run at different frequencies [3, 21, 22]. In the TSN context,
this rate is bounded by (i) the maximum transmission capability; (ii) the lowest
control performance requirement. Hence, there exists an optimized operational
point that would produce acceptable network schedulability with maximized control
performance.

5.5.1 Control Model

For a linear-time-invariant (LTI) controlled plant, its system dynamics can be
described using the following differential equations:

. ẋ(t) = Ax(t) + Bu(t), y(t) = Hx(t) (7)

in which A, B and H are system matrices that represent the system physical
properties; .x(t) is the system state(s); .y(t) is the system output(s) and .u(t) is the
control input(s). Assuming the sampling time is . Ts and the sensor-to-actuator delay
is within one sampling period, at discrete time instant k, the system dynamics evolve
with the following equations:

. x(k + 1) = Adx(k) + Bdu(k − 1), y(k) = Hx(k) (8)

where .u(−1) = 0 for .k = 0 and

.Ad = eA·Ts , Bd =
∫ Ts

0
eAτ dτ · B (9)

To further simplify the equation, define an augmented variable z as: . z(k) =[
x(k) u(k − 1)

]T
, and substitute .x(k), .u(k) with .z(k) in Eq. (8):

.z(k + 1) =
[

Ad Bd

0 0

]
z(k) +

[
0
1

]
u(k) (10)

Assuming a full state-feedback controller is used, the control input .u(k) is calculated
by:

74 W. Chang et al.

.u(k) = −Kz(k) + Fr(k) (11)

where K is the feedback gain, F is the feedforward gain and .r(k) is the reference.
By combining Eqs. (10) and (11), the system equation therefore becomes:

.
z(k + 1) = (Ad − BdK︸ ︷︷ ︸

Acl

)z(k) + BdFr(k)
(12)

To satisfy control stability, all the eigenvalues of the closed loop dynamic matrix,
i.e. .Acl in Eq. (12), have to be inside the unit circle. The exact value of .Ad and . Bd

is dependent on the sampling period . Ts as seen from Eq. (9), which is equal to the
period of the control packet, . Ti . This control model will be used through the rest of
this section.

5.5.2 Problem Definition

We use settling time (. ts) as the index of quality-of-control (QoC), which is widely
used in control engineering as a compulsory design requirement [16]. Settling
time is defined as the time duration from when a control system is subjected to
a disturbance to when it enters steady-state, i.e., the current output has reached
and stays within .5% deviation of the targeted output. There is an upper bound
requirement on the settling time, e.g., the settling time of a control system should
not be longer than 0.5 seconds.

Finding an optimal period is crucial for (i) guaranteeing the performance of
the controller itself; and (ii) ensuring enough residual time slots for non-control-
related packets so they can also meet their deadlines. Based on the aforementioned
objectives and constraints, the period assignment problem can be solved as an
optimization problem, which is formulated as follows:

.

minimize J =
∑
D

wj · t∗s,j

subject to Ri ≤ Di, ts,j ≤ t+s,j |uj (k)| ≤ umax, Ti = n · tgcd , n ∈ N+

where i ∈
, j ∈
c

(13)

where .wj ∈ (0, 1] is the weight (i.e., relative importance) of the corresponding
control task and .

∑
wj = 1; .t∗s,j ∈ [0, 1] is the normalized settling time of the

j th controller; . D represents the solution space of all poles that can ensure control
stability; .ts,j is the settling time of the j th controller, and .t+s,j is the maximum
allowed settling time; .uj (k) is input at discrete instance k, which is constrained
by .umax as the maximum input threshold; The last constraint defines the time-
granularity of a feasible period. To benefit from harmonic periods and to reduce
the size of the GCL table, each . Ti must be an integer multiple of .tgcd , the greatest

Evolvement of Scheduling Theories for Autonomous Vehicles 75

Algorithm 3: Periods and control poles assignment

1 Input:
 = {
c,
nc}
2 Output: schedulability, S∗

3 Initialise: feasible and best solutions: Sf = Ø, S∗ = Ø
/* construct candidate solutions: */

4 formulate the solution space: S = {S1, S2, . . . , Sn}.
/* explore each candidate: */

5 for Sk in S do
6 if RTA_schedulability(
k) is True then
7 for j in
k

c do
8 {ts,j , uj } = pso_find_control_parameters(Tj)
9 end

10 if ∀j in
k
c : ts,j ≤ t+

s,j and |uj | ≤ umax then
11 Jk =

∑
wj · ts,j

12 Sk → Sf

13 end
14 end
15 end

/* find the best candidate solution: */

16 for Sk in Sf do
17 if Jk < J∗ then
18 S∗ = Sk
19 end
20 end

/* return feasibility: */
21 if S∗ is not Ø then
22 return (feasible, S∗)
23 else
24 return (infeasible, Ø)
25 end

common divisor of all the packet periods. This is in accordance with common
practice.

5.5.3 Solving the Network and Control Co-Design Problem

In a typical control application, while the periods of non-control-related packets are
inflexible, the control-related packets often have adjustable periods. This additional
flexibility allows fine tuning of controller periods to achieve the best overall
performance (defined as in Eq. (13)). To solve the defined problem, a controller’s
period and its corresponding parameters under that period both have to be decided.
These two steps are dependent on each other but can be decomposed into two
sub-problems, i.e., the optimization process needs to (i) find the feasible periods
that can satisfy schedulability constraints; (ii) find the controller parameters under
the feasible periods that would satisfy control stability and minimal performance

76 W. Chang et al.

requirement, and on top of that, maximize the control performance as much as
possible.

For the first problem, due to the existence of harmonic periods and that the
number of control tasks is often small, the search space is manageable and thus can
be solved through exhaustive search. For larger scale problems, heuristic methods
can be used instead to find the feasible period configurations.

For the second problem, as pole placement for the minimum settling time
under input constraints is a non-convex and non-linear problem, the solution space
cannot be searched easily. We use Particle Swarm Optimization (PSO) to find
the optimal controller parameters (by pole placement [16]) under certain sampling
period that can minimize the settling time, while given the control performance and
input saturation as constraints. PSO is a population-based optimization approach
for iterative improvement of candidate solutions given a non-linear non-convex
objective function and a metric of quality [49].

The optimization process is given in Algorithm 3. The solution space is first
formulated in Line 4. The schedulability is then tested (Line 6) to obtain potential
period configurations, and under each period configuration, the optimal poles of
each control task can be found through PSO (Line 8). To speedup the process, the
optimal poles under the feasible range of periods can be obtained in advance. The
identified configuration is appended into the feasible solutions provided that the
minimum control performance and the input constraints are both satisfied (Line 10-
13). Finally, the best candidate that has the minimum . J is selected from all the
feasible solutions (Line 16-20). No feasible solution is found if .S∗ = Ø, in which
case the algorithm fails to find a solution that satisfies all the constraints.

6 Conclusion

This chapter introduces the state-of-the-art techniques which cover three major
directions of scheduling and analyzing autonomous systems. The presented solu-
tions range from DAG task scheduling, and reliable resource sharing, to in-
vehicle TSN networking. The goal is to provide autonomous systems with high-
performance hard real-time scheduling, reliable resource sharing, and deterministic
networking scheduling.

For scheduling and analyzing DAG tasks in autonomous systems, a CPC model
is constructed to capture the two key factors of a DAG structure: dependency and
parallelism. Then, a rule-based scheduling method is presented which maximizes
node parallelism to improve the schedulability of single DAG tasks.

To provide reliable resource sharing in multiprocessor mixed-criticality systems,
this chapter describes a fault-tolerance solution for multiprocessor MCS with shared
resources. The presented system execution model and fault-tolerance resource
sharing protocol reduces the blocking time imposed by guaranteeing reliable
resource sharing.

Evolvement of Scheduling Theories for Autonomous Vehicles 77

To provide hard real-time guarantee for network, we introduced a network
scheduling model using non-preemptive fixed-priority scheduling (FPS-NP) and
the mapping of the schedule into the TSN gate control list. The schedulability
of the network is discussed using non-preemptive response-time analysis with the
consideration of multi frames and unconstrained deadlines. An optimization method
is also proposed that could find the feasible solution with maximized overall quality
of control constrained by network schedulability.

References

1. Al-bayati, Z., Caplan, J., Meyer, B.H., Zeng, H.: A four-mode model for efficient fault-tolerant
mixed-criticality systems. In: IEEE Design, Automation & Test in Europe Conference &
Exhibition (DATE) (2016)

2. Alfranseder, M., Deubzer, M., Justus, B., Mottok, J., Siemers, C.: An efficient spin-lock based
multi-core resource sharing protocol. In: IEEE International Performance Computing and
Communications Conference (IPCCC) (2014)

3. Arzén, K.-E., Cervin, A., Eker, J., Sha, L.: An introduction to control and scheduling co-design.
In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 5, pp. 4865–4870.
IEEE, Piscataway (2000)

4. Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A., Peri, M., Pezzini, S.:
Fault-tolerant platforms for automotive safety-critical applications. In: Proceedings of the 2003
International Conference on Compilers, Architecture and Synthesis for Embedded Systems, pp.
170–177 (2003)

5. Bansal, B.: Divide-and-conquer scheduling for time-sensitive networks. Master’s Thesis,
University of Stuttgart (2018)

6. Baruah, S.K., Burns, A., Davis, R.I.: Response-time analysis for mixed criticality systems. In:
IEEE Real-Time Systems Symposium (RTSS) (2011)

7. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., Wiese, A.: A generalized
parallel task model for recurrent real-time processes. In: Real-Time Systems Symposium, pp.
63–72 (2012)

8. Becker, M., Dasari, D., Mubeen, Behnam, S.M., Nolte, T.: Synthesizing job-level dependencies
for automotive multi-rate effect chains. In: International Conference on Embedded and Real-
Time Computing Systems and Applications, pp. 159–169 (2016)

9. Bhuiyan, A., Sruti, S., Guo, Z., Yang, K.: Precise scheduling of mixed-criticality tasks by
varying processor speed. In: Proceedings of the 27th International Conference on Real-Time
Networks and Systems, pp. 123–132 (2019)

10. Bhuiyan, A., Yang, K., Arefin, S., Saifullah, A., Guan, N., Guo, Z.: Mixed-criticality real-time
scheduling of gang task systems. Real-Time Syst. 57(3), 268–301 (2021)

11. Brandenburg, B.B.: Multiprocessor real-time locking protocols: a systematic review (2019).
arXiv:1909.09600

12. Burns, A.: The application of the original priority ceiling protocol to mixed criticality systems.
In: Proceedings of ReTiMiCS, RTCSA (2013)

13. Burns, A., Baruah, S.: Towards a more practical model for mixed criticality systems. In:
Workshop on Mixed-Criticality Systems (colocated with RTSS) (2013)

14. Burns, A., Wellings, A.J.: A schedulability compatible multiprocessor resource sharing
protocol–mrsp. In: IEEE Euromicro Conference on Real-Time Systems (ECRTS). IEEE,
Piscataway (2013)

15. Buttazzo, G., Cervin, A.: Comparative assessment and evaluation of jitter control methods. In:
Conference on Real-Time and Network Systems, pp. 163–172 (2007)

78 W. Chang et al.

16. Chang, W., Chakraborty, S.: Resource-aware automotive control systems design: a cyber-
physical systems approach. Found. Trends Electron. Des. Autom. 10(4), 249–369 (2016)

17. Chang, S., Zhao, X., Liu, Z., Deng, Q.: Real-time scheduling and analysis of parallel tasks on
heterogeneous multi-cores. J. Syst. Architect. 105, 101704 (2020)

18. Chen, P., Liu, W., Jiang, X., He, Q., Guan, N.: Timing-anomaly free dynamic scheduling of
conditional DAG tasks on multi-core systems. ACM Trans. Embed. Comput. Syst. 18(5), 1–19
(2019)

19. Chen, G., Guan, N., Huang, K., Yi, W.: Fault-tolerant real-time tasks scheduling with dynamic
fault handling. J. Syst. Architect. 102, 101688 (2020)

20. Craciunas, S.S., Oliver, R.S., Chmelík, M., Steiner, W.: Scheduling real-time communication in
IEEE 802.1 Qbv time sensitive networks. In: Proceedings of the 24th International Conference
on Real-Time Networks and Systems, pp. 183–192. ACM, New York (2016)

21. Dai, X., Burns, A.: Period adaptation of real-time control tasks with fixed-priority scheduling
in cyber-physical systems. J. Syst. Architect. 103, 101691 (2020)

22. Dai, X., Chang, W., Zhao, S., Burns, A.: A dual-mode strategy for performance-maximisation
and resource-efficient cps design. ACM Trans. Embed. Comput. Syst. 18(5s), 85 (2019)

23. Davis, R.I., Kollmann, S., Pollex, V., Slomka, F.: Controller area network (CAN) schedulability
analysis with FIFO queues. In 2011 23rd Euromicro Conference on Real-Time Systems, pp.
45–56. IEEE, Piscataway (2011)

24. Davis, R.I., Kollmann, S., Pollex, V., Slomka, F.: Schedulability analysis for Controller Area
Network (CAN) with FIFO queues priority queues and gateways. Real-Time Syst. 49(1), 73–
116 (2013)

25. Fonseca, J., Nelissen, G., Nélis, V.: Improved response time analysis of sporadic DAG tasks
for global FP scheduling. In: International Conference on Real-Time Networks and Systems,
pp. 28–37 (2017)

26. Forget, J., Boniol, F., Grolleau, E., Lesens, D., Pagetti, C.: Scheduling dependent periodic
tasks without synchronization mechanisms. In: Real-Time and Embedded Technology and
Applications Symposium, pp. 301–310 (2010)

27. Gai, P., Lipari, G., Di Natale, M.: Minimizing memory utilization of real-time task sets in single
and multi-processor systems-on-a-chip. In: IEEE Real-Time Systems Symposium (RTSS)
(2001)

28. Graham, R.L.: Bounds on multiprocessing timing anomalies. J. Appl. Math. 17(2), 416–429
(1969)

29. Guan, F., Qiao, J., Han, Y.: DAG-fluid: a real-time scheduling algorithm for DAGs. IEEE Trans.
Comput. 70, 471–482 (2020)

30. Guo, Z., Yang, K., Vaidhun, S., Arefin, S., Das, S.K., Xiong, H.: Uniprocessor mixed-criticality
scheduling with graceful degradation by completion rate. In: 2018 IEEE Real-Time Systems
Symposium (RTSS), pp. 373–383. IEEE, Piscataway (2018)

31. Han, J.-J., Tao, X., Zhu, D., Yang, L.T.: Resource sharing in multicore mixed-criticality
systems: utilization bound and blocking overhead. IEEE Trans. Parallel Distrib. Syst. 28, 3626–
3641 (2017)

32. Haque, M.A., Aydin, H., Zhu, D.: Real-time scheduling under fault bursts with multiple recov-
ery strategy. In: IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS) (2014)

33. He, Q., Jiang, X., Guan, N., Guo, Z.: Intra-task priority assignment in real-time scheduling of
DAG tasks on multi-cores. IEEE Trans. Parallel Distrib. Syst. 30(10), 2283–2295 (2019)

34. Huang H.-M., Gill, C., Lu, C.: Implementation and evaluation of mixed-criticality scheduling
approaches for sporadic tasks. ACM Trans. Embed. Comput. Syst. 13(4s), 1–25 (2014)

35. IEEE 802.1 Task Group: Standard for local and metropolitan area networks – bridges and
bridged networks - amendment 25: enhancements for scheduled traffic. Standard, IEEE (2016)

36. Kehrer, S., Kleineberg, O., Heffernan, D.: A comparison of fault-tolerance concepts for IEEE
802.1 time sensitive networks (TSN). In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA), pp. 1–8. IEEE, Piscataway (2014)

Evolvement of Scheduling Theories for Autonomous Vehicles 79

37. Lin, H., Li, M.-F., Jia, C.-F., Liu, J.-N., An, H: Degree-of-node task scheduling of fine-grained
parallel programs on heterogeneous systems. J. Comput. Sci. Technol. 34(5), 1096–1108
(2019)

38. Meixner, A., Bauer, M.E., Sorin, D.: Argus: low-cost, comprehensive error detection in simple
cores. In: IEEE/ACM International Symposium on Microarchitecture (MICRO) (2007)

39. Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo, G.C.: Response-
time analysis of conditional DAG tasks in multiprocessor systems. In: Euromicro Conference
on Real-Time Systems, pp. 211–221 (2015)

40. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and
reproducing heisenbugs in concurrent programs. In OSDI’08: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (2008)

41. Oliver, R.S., Craciunas, S.S., Steiner, W.: IEEE 802.1 Qbv gate control list synthesis using
array theory encoding. In: 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 13–24. IEEE, Piscataway (2018)

42. Pathan, R.M.: Fault-tolerant and real-time scheduling for mixed-criticality systems. Real-Time
Syst. 50, 509–547 (2014)

43. Piro, G., Grieco, L.A., Boggia, G., Fortuna, R., Camarda, P.: Two-level downlink scheduling
for real-time multimedia services in LTE networks. IEEE Trans. Multimedia 13(5), 1052–1065
(2011)

44. Punnekkat, S., Burns, A., Davis, R.I.: Analysis of checkpointing for real-time systems. Real-
Time Syst. 20, 83–102 (2001)

45. Safari, S., Ansari, M., Ershadi, G., Hessabi, S.: On the scheduling of energy-aware fault-
tolerant mixed-criticality multicore systems with service guarantee exploration. IEEE Trans.
Parallel Distrib. Syst. 30, 2338–2354 (2019)

46. Saidi, S.E., Pernet, N., Sorel, Y.: Automatic parallelization of multi-rate fmi-based co-
simulation on multi-core. In: Symposium on Theory of Modeling and Simulation , p. 5 (2017)

47. Serrano, M.A., Melani, A., Bertogna, M., Quiñones, E.: Response-time analysis of DAG tasks
under fixed priority scheduling with limited preemptions. In: Design, Automation & Test in
Europe Conference & Exhibition, pp. 1066–1071 (2016)

48. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach to real-time
synchronization. IEEE Trans. Comput. 39, 1175–1185 (1990)

49. Shi, Y., et al.: Particle swarm optimization: developments, applications and resources. In:
Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81–86. IEEE,
Piscataway (2001)

50. Spainhower, L., Gregg, T.A.: IBM s/390 parallel enterprise server G5 fault tolerance: a
historical perspective. IBM J. Res. Develop. 43, 863–873 (1999)

51. Takada, H., Sakamura, K.: A novel approach to multiprogrammed multiprocessor synchro-
nization for real-time kernels. In: IEEE Proceedings Real-Time Systems Symposium (RTSS)
(1997)

52. Thangamuthu, S., Concer, N., Cuijpers, P.J.L., Lukkien, J.J.: Analysis of ethernet-switch traffic
shapers for in-vehicle networking applications. In 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 55–60. IEEE, Piscataway (2015)

53. Thiele, D., Ernst, R., Diemer, J.: Formal worst-case timing analysis of ethernet tsn’s time-aware
and peristaltic shapers. In: 2015 IEEE Vehicular Networking Conference (VNC), pp. 251–258.
IEEE, Piscataway (2015)

54. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task schedul-
ing for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

55. Tsai, T.-Y., Chung, Y.-L., Tsai, Z.: Introduction to packet scheduling algorithms for communi-
cation networks. In: Communications and Networking. IntechOpen, London (2010)

56. Upasani, G., Vera, X., González, A.: Setting an error detection infrastructure with low cost
acoustic wave detectors. In: IEEE Annual International Symposium on Computer Architecture
(ISCA) (2012)

80 W. Chang et al.

57. Upasani, G., Vera, X., González, A.: Avoiding core’s due SDC via acoustic wave detectors
and tailored error containment and recovery. In: ACM/IEEE International Symposium on
Computer Architecture (ISCA) (2014)

58. Vaidyanathan, K., Trivedi, K.S.: Extended classification of software faults based on aging.
In: Fast Abstract, International Symposium on Software Reliability Engineering, Hong Kong.
Citeseer (2001)

59. Verucchi, M., Theile, M., Caccamo, M., Bertogna, M: Latency-aware generation of single-rate
DAGs from multi-rate task sets. In: Real-Time and Embedded Technology and Applications
Symposium, pp. 226–238 (2020)

60. Vincentelli, A.S., Giusto, P., Pinello, C., Zheng, W., Natale, M.D.: Optimizing end-to-end
latencies by adaptation of the activation events in distributed automotive systems. In: Real
Time and Embedded Technology and Applications Symposium, pp. 293–302 (2007)

61. Zhao, Q., Gu, Z., Zeng, H.: HLC-PCP: aresource synchronization protocol for certifiable mixed
criticality scheduling. IEEE Embed. Syst. Lett. 6, 8–11 (2013)

62. Zhao, S., Garrido, J., Burns, A., Wellings, A.J.: New schedulability analysis for MRSP. In:
IEEE Embedded and Real-Time Computing Systems and Applications (ERTCSA) (2017)

63. Zhao, L., Pop, P., Craciunas, S.S.: Worst-case latency analysis for IEEE 802.1 Qbv time
sensitive networks using network calculus. IEEE Access 6, 41803–41815 (2018)

	Evolvement of Scheduling Theories for Autonomous Vehicles
	1 Introduction
	1.1 Organization

	2 Background
	2.1 Scheduling and Analyzing DAG Tasks in Autonomous Vehicles
	2.1.1 The State-of-the-Art in DAG Scheduling and Analysis

	2.2 Real-Time Scheduling for Reliable Autonomous Driving
	2.2.1 Fault Tolerance
	2.2.2 Resource Sharing
	2.2.3 Mixed Criticality System

	2.3 Real-Time TSN Scheduling for Automotive CPS

	3 Scheduling of DAGs on Multiprocessor Architectures
	3.1 Task Model and Scheduling Preliminaries
	3.2 Concurrent Provider and Consumer Model
	3.3 DAG Scheduling: A Parallelism and Dependency Exploited Method
	3.3.1 The ``Critical Path First'' Execution (CPFE)
	3.3.2 Exploiting Parallelism and Node Dependency

	4 Reliable Resource Sharing in Reliable Autonomous Driving
	4.1 System and Task Model
	4.2 A Fault-Tolerant Solution for MCS with Shared Resources
	4.2.1 The Fault-Tolerance System Model
	4.2.2 Fault-Tolerance of Normal Sections
	4.2.3 Fault-Tolerance of Critical Sections by MSRP-FT

	5 Real-Time TSN Scheduling for Automotive CPS
	5.1 Overview of Traffic Scheduling of TSN
	5.2 Scheduling Network Packets in TSN
	5.3 Deferred Queue
	5.4 Worst-Case Response Time Analysis
	5.5 Controller Synthesis and Period Allocation
	5.5.1 Control Model
	5.5.2 Problem Definition
	5.5.3 Solving the Network and Control Co-Design Problem

	6 Conclusion
	References

