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1 Introduction 

The increasing maturity of Advanced Driver Assistance Systems (ADAS) [30] is  
enabling the introduction of vehicles with greater levels of autonomy. The degree to 
which ADAS can effectively reduce human intervention during driving is classified 
by SAE according to the J3016 standard [1], into five levels of autonomy. 

Level 0 characterizes vehicles that have no assistive features. Level 1 autonomy 
encompasses vehicles that have the ability to share control between the driver and 
the vehicle. Adaptive cruise control and park assist are examples of features that 
can assist the driver in this level. Level 2 autonomy vehicles have the capability 
to perform all acceleration, steering, and braking tasks that require longitudinal 
and lateral control. Examples of features supported in this level include forward 
collision warning and blind spot warning, in addition to features from level 1. Level 
3 autonomy vehicles can assess the risk of a situation and additionally perform 
path planning. At Level 4 autonomy, no driver intervention is required in most 
cases, unless requested, in contrast to level 3. Level 5 autonomy requires no human 
intervention or safety driver in the vehicle, unlike in level 4. Most vehicles today are 
beginning to support level 2 autonomy. 

The higher autonomy levels require support for increasingly sophisticated 
ADAS features such as Lane Keep Assist (LKA) and Forward Collision Warning 
(FCW), which in turn defines requirements for sensing capabilities and perception 
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Table 1 ADAS sensor trade 
offs 

Characteristics Camera LiDAR Radar 

Perception reliability Medium High Medium 
Spatial resolution High High Low 
Noise susceptibility High Low Low 
Velocity detection Low Low High 
Weather durability Low Low High 

performance of the vehicle. This increased demand for vehicle autonomy resulted 
in various challenges related to reliability [31–34], security [35–39], and real-time 
perception [40–44] of the vehicle. In this chapter, we focus on real-time perception, 
specifically, challenges associated with sensor configuration for achieving vehicle 
autonomy goals. Table 3 summarizes the trade-offs between popular sensors used to 
support ADAS features and their relative performance. Using a camera as a vision 
sensor is a widely used approach to perform the classification and detection of 
objects on the road. However, cameras have high susceptibility to noise and are 
not reliable in extreme weather or lighting conditions [2]. A radar sensor is also 
capable of object detection and is particularly suited for accurate velocity detection 
of neighboring vehicles even under harsh weather and poor visibility conditions. 
Long-range radars (typically at 77GHz) used to support ADAS features such as 
adaptive cruise control (ACC) and automatic emergency braking (AEB) have a 
shorter azimuth than mid or short-range radars (typically at 24GHz), to prioritize 
monitoring vehicle velocity and approaching distance. However, long range radars 
can also detect more number of objects than short or mid-range radars. A drawback 
of the radar is their high false positive rate when detecting objects, and an upper 
bound on the number of objects that can be detected at the same time, e.g., the 
Bosch midrange radar with a maximum range of 160 meters can only detect up to 
32 objects simultaneously [3]. A LiDAR sensor uses invisible laser light to measure 
the distance to objects in a similar way to radars. It can create an incredibly detailed 
3D view (point cloud) of the environment around the vehicle. However, LiDAR 
data processing is computationally very expensive and relies on moving parts which 
can make it more vulnerable to damage. Ultrasonic sensors listed in Table 3 use 
the principle of ‘time of flight’ to measure distance from targets by computing the 
travel time of the ultrasonic echo from a neighboring vehicle or obstacle [4]. Usage 
of ultrasonic sensors for ADAS feature implementation are not uncommon, however 
they require accurate modelling for their use case, since their performance is highly 
dependent on the physical properties (shape, surface material) of the target being 
tracked [5] (Table 1). 

Most level 2 and higher autonomy vehicles today rely on a combination of 
sensors, to overcome their individual drawbacks (see Table 3). For example, Waymo 
(a subsidiary of Alphabet Inc., originally started as a project by Google in 2009) 
combines 3 different types of LiDAR sensors, 5 radar sensors, and 8 cameras. 
Tesla’s vehicles avoid LiDARs due to their high costs and instead their Autopilot 
uses 8 surround cameras, 12 ultrasonic sensors (primarily for short-range self-
parking support), and 1 forward-facing radar. Each of the cameras has a maximum
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visibility range of up to 250 meters, so this configuration ensures a 360-degree 
coverage up to 250 meters around the vehicle. 

An important challenge facing emerging vehicles is to determine a sensor config-
uration that can be responsible for environment perception as per the SAE autonomy 
level supported by the vehicle. An optimal sensor configuration should consist of 
carefully selected location and orientation of each sensor in a heterogeneous suite 
of sensors, to maximize coverage from the combined field of view obtained from 
the sensors, and also maintain a high object detection rate. Today there are no 
generalized rules for the synthesis of sensor configurations, as the location and 
orientation of sensors depends heavily on the target features and use cases to be 
supported in the vehicle. 

In this chapter, we propose a novel framework called VESPA (VEhicle Sensor 
Placement and orientation for Autonomy) (first introduced in [43]), to optimize 
heterogeneous sensor synthesis. More precisely, for a given set of heterogeneous 
sensors and ADAS features to be supported, VESPA performs intelligent algorithmic 
design space exploration to determine the optimal placement and orientation for 
each sensor on the vehicle, to support the required ADAS features for SAE level 2 
autonomy systems. The VESPA framework can be easily utilized to generate optimal 
sensor configurations across different vehicle types. Our experimental results 
indicate that the proposed framework is able to optimize perception performance 
across multiple ADAS features for the 2019 Chevrolet Blazer and 2016 Chevrolet 
Camaro vehicles. 

2 Related Work 

State-of-the-art SAE level 2 autonomy systems require the selection and placement 
of sensors based on the assistive target features required to be supported, e.g., 
forward collision warning (FCW) and lane keep assist (LKA). While several 
prior works evaluate the performance of a specific sensor configuration and its 
deployment, very fewworks have explored the problem of generating optimal sensor 
configurations for vehicles. 

An optimal sensor placement approach was proposed in [6] for a blind spot 
detection and warning system. The work recognizes the inability of the camera to 
perform in non-ideal lighting conditions and selects an ultrasonic sensor to measure 
distance of vehicles trailing in the vehicle’s blind spot. The time response of the 
system with the position of the sensor above the rear tire is analyzed for two 
scenarios: when the vehicle is at rest and when it is moving at a constant velocity. 
The sensor selection identifies price as a constraint and optimizes the price of the 
total sensor setup through usage of an ultrasonic sensor instead of a more expensive 
camera sensor. The work in [7] focuses on generating a LiDAR configuration 
from a set of LiDARs with the goal of reducing occurrences of dead zones and 
improving point cloud resolution. A LiDAR occupancy grid is constructed for a 
homogenous set of LiDARs and the configuration is generated using a genetic 
algorithm. An approach for optimal positioning and calibration of a three LiDAR
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system is proposed in [8] that uses a neural network to qualify the effectiveness of 
different sensor location and orientations. Unlike these prior works that focus on 
generating configurations for a homogenous set of sensors, our work in this chapter 
presents a novel sensor placement and orientation optimization framework for a 
heterogeneous set of sensors. Moreover, our framework is also shown to be capable 
of easily adapting to different vehicle types. 

3 Background 

3.1 ADAS Features for Level 2 Autonomy 

We target four ADAS features in this chapter that need to be supported by a 
deployed sensor configuration on a vehicle (henceforth referred to as an ego 
vehicle). A sensor configuration consists of the location and orientation of each 
sensor within a heterogeneous set of sensors. Our VESPA framework optimizes the 
sensor configuration to support four features: adaptive cruise control (ACC), lane 
keep assist (LKA) forward collision warning (FCW), and blind spot warning (BW). 
Each of the features discussed above, require varying degrees of sensing and control 
along longitudinal (i.e., within the same lane as the ego vehicle) and lateral (i.e., 
along neighboring lanes) regions. 

SAE J3016 defines ACC and LKA individually as level 1 features, as they only 
perform the dynamic driving task in either the latitudinal or longitudinal direction of 
the vehicle. FCW and BW are defined in SAE J3016 as level 0 active safety systems, 
as they only enhance the performance of the driver without performing any portion 
of the dynamic driving task. However, when all four features are combined, the 
system can be described as a level 2 autonomy system. Many new vehicles being 
released today support level 2 autonomy. For instance, Volvo announced that its 
upcoming Level 2+ vehicles will use surround sensors for 360-degree perception, 
as well as deep neural networks running in parallel for robust object detection [9]. 
It is not only relevant, but also important to optimize sensor placement for ADAS 
systems as more and more vehicles with these features become available. Figure 1 
shows an overview of the four features we focus on for level 2 autonomy, which are 
discussed next. 

Adaptive cruise control (ACC) was first introduced in the Mercedes-Benz S-
Class sedan in 1999, with the goal of increased driver comfort. ACC causes the ego 
vehicle to follow a lead vehicle at a specified distance (Fig. 1) without exceeding 
the speed limit specified by the operator upon activation of the feature [10]. If the 
lead vehicle slows down, then it is the responsibility of ACC to slow down the ego 
vehicle to maintain the specified distance. Although implementations differ, all ACC 
systems take over longitudinal control from the driver (Fig. 1). The challenge in 
ACC is to maintain an accurate track of the lead vehicle with a forward facing sensor 
and using longitudinal control to maintain the specified distance while maintaining 
driver comfort (e.g., avoiding sudden velocity changes).
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: Ego vehicle 

: Non-ego vehicle 

: Blind spot 

Minimum longitudinal 
separation for ACC, FCW 

Minimum lateral 
separation for LKA 

Lead vehicle 

BW feature senses non-ego vehicle approaching 
from blind spot region and notifies driver 

Fig. 1 Visualization of common scenarios in ACC, FCW, LKA, and BW 

Lane keep assist (LKA) is an evolution of lane departure warning systems. It 
involves a forward-facing sensor (often a camera) to identify where the lane lines 
exist in front of the ego vehicle. Once the lane lines have been detected (e.g., using 
Canny edge detection and Hough transforms on forward-facing images), LKA can 
then determine if the ego vehicle lies between those lines (Fig. 1). If the ego vehicle 
appears to be drifting toward a position where it will cross lane line boundaries, 
LKA engages steering torque to steer the vehicle in the opposite direction of the 
lane line until it no longer has the trajectory to cross that lane. LKA systems have 
been known to over-compensate, creating a “ping-pong” effect where the vehicle 
oscillates back and forth between the lane lines [11]. The main challenges in LKA 
are to reduce this ping-pong effect and the accurate detection of lane lines on 
obscured (e.g., dirt covered) roads. 

Forward collision warning (FCW) uses information gathered via various forward 
facing sensors to determine whether the ego vehicle is going to collide with an 
object in front of it (Fig. 1). As objects approach the boundary where the vehicle 
can no longer come to a stop, an audio-visual warning notifies drivers instructing 
them to apply the brakes. As this is a safety-critical system, it is important that FCW 
avoids false positives as well as false negatives to improve driver comfort, safety, and 
reduce rear end accidents [12]. For this to be achieved, it is a necessary prerequisite 
that the sensors used by the FCW system be placed where they have an accurate 
view of the vehicle in front of them. The United States National Transportation 
Safety Board has recommended that FCW be included in all new vehicles [13]. 

Lastly, blind spot warning (BW) uses sensors mounted on the sides of the ego 
vehicle to determine whether there is a vehicle towards the rear on either side of 
the ego vehicle in a location the driver cannot see with their side mirrors [14] (Fig. 
1). This area is typically referred to as the “blind spot” and must be verified as
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clear of any vehicles before the driver can attempt to make a lane change. Without 
BW, the driver must turn their head to make that verification on their own. With 
BW, the driver can maintain their concentration on the road ahead. As BW requires 
information about a specific area near the rear of the vehicle, it is a challenge to 
find an optimal sensor placement that maximizes the view of the blind spot. If the 
sensor is too far forward, it will miss the blind spots entirely, causing a vehicle 
accident when the driver makes a lane change. If the sensor is too far back, it will 
end up capturing information for areas around the ego vehicle that are not in the 
blind spot, decreasing the sensor’s effectiveness at viewing the presence of vehicles 
surrounding the blind spot. 

3.2 Feature Performance Metrics 

To quantify the performance of a sensor configuration on a vehicle being evaluated 
over drive cycle test cases (i.e., across various driving scenarios; see Section V), we 
define eight metrics (m1–m8) that are characteristic of the configuration’s ability 
to track and detect non-ego vehicles across various road geometries and traffic 
scenarios. The eight metrics are defined as follows: 

.Longitudinal Position Error (m1) =
∑

(y − ygroundtruth)

Number of non ego vehicle
(1) 

.Lateral Position Error (m2) =
∑

(x − xgroundtruth)

Number of non ego vehicle
(2) 

. Object Occlusion Rate (m3) = Number of non ego vehicle undetected

T otal number of passing non ego vehicles

(3) 

. Velocity Uncertainty (m4) = Number of invalid detected non ego vehicle velocities

T otal number of non ego velocities

(4) 

.Rate of late detection (m5) = Number of late non ego vehicle detection

T otal number of non ego vehicles
(5) 

. False positive lane detecion rate (m6) = Number of false positive lane detections

T otal number of lane detections

(6)
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. False negative lane detecion rate (m7) = Number of false negative lane detections

T otal number of lane detections

(7) 

. False positive object detecion rate (m8) = Number of false positive non ego vehicle detections

Total number of non ego vehicle detections
(8) 

The longitudinal position error (m1) and lateral position error (m2) are computed 
as the deviation of the positional data detected by the sensor configuration from the 
ground truth of non-ego vehicle positions along the y and x axes respectively. The 
lateral position error is relevant for LKA, while longitudinal position error is most 
relevant for ACC and FCW. The object occlusion rate (m3) measures the percentage 
of passing non-ego vehicles that go undetected in the vicinity of the ego vehicle. The 
minimization of this metric optimizes BW capabilities of a sensor configuration. 
The velocity uncertainty (m4) is the fraction of times that the velocity of a non-ego 
vehicle is measured incorrectly, which matters for ACC and FCW. The rate of late 
detection metric (m5) is computed as a fraction of the number of ‘late’ non ego 
vehicle detections made by the total number of non-ego vehicles, which matters 
for BW. A detection is classified as late if it is made after the non-ego vehicle 
crosses the minimum safe longitudinal or lateral distance defined by Intel RSS 
(Responsibility Sensitive Safety) models on NHTSA for pre-crash scenarios [15]. 
When a lane marker is detected but there exists no ground truth lane in simulation it 
is classified as a false positive lane detection, conversely, if a ground truth lane exists 
in simulation but is not detected, it is classified as a false negative lane detection 
[16]. Metrics 6 and 7 (m6 and m7) characterize the perception system’s ability to 
make a correct case for lane keep assist by taking into account the false positive and 
false negative lane detection rate. False positive object detection rate (m8) measures 
the fraction of total vehicle detections which were classified as non-ego vehicle 
detections but did not actually exist in ground truth in the test cases. 

4 VESPA Framework 

The following section describes the proposed VESPA framework in detail. 

4.1 Overview 

Figure 2 shows an overview of our proposed VESPA framework. The physical 
dimensions of the vehicle model and the number and type of sensors to be 
considered are inputs to the framework. A design space exploration algorithm is
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Fig. 2 Overview of VESPA framework 

used to generate a sensor configuration which is subsequently evaluated based on 
a cumulative score from the performance metrics presented in the previous section. 
We evaluate three design space exploration algorithms: simulated annealing with 
greedy randomized adaptive search (SA + GRASP), genetic algorithm (GA), and 
particle swarm optimization (PSO). The process of sensor configuration generation 
and evaluation continues until an algorithm-specific stopping criteria is met, at 
which point the best configuration is output. The following subsections describe 
our framework in more detail. 

4.2 Inputs 

Each of the design space exploration algorithms generates sensor configurations that 
consider feature to field of view (FOV) zone correlations around the ego vehicle. 
Figure 3a shows the FOV zones around the ego-vehicle. These zones of interest are 
defined as the most important perception areas in the environment for a particular 
feature. Figure 3b shows the regions on the vehicle on which sensors can be mounted 
(in blue). Regions F and G (in yellow) are exempt from sensor placement due to the 
mechanical instability of placing sensors on the door of a vehicle. 

The correlation between features, zones, regions, and performance metrics shown 
in Fig. 3 is summarized in Table 4. For example, in Fig. 3a, for ACC, the zones of 
interests are 6, and 7, and the corresponding regions for possible sensor placement 
are A and C. For exploration of possible locations within a region, a fixed step 
size of 5 cm in two dimensions across the surface of the vehicle is considered, 
which generates a 2D grid of possible positions in each zone shown in Fig. 3b, 
c. The orientation exploration of each sensor involves rotation at a fixed step size
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Fig. 3 (a) Field of view (FOV) zones; (b) sensor placement regions; (c) design space breakdown 

Table 2 Feature, region, 
zone and performance metric 
relationship 

Feature Region Zone Associated metrics 

BW B.H.I 1, 2,3,10 (m3, m5, m8) 
LKA E, I 3,4,5 (m2, m3, m6, m7) 

D, H 8, 9, 10 
ACC, FCW A, B,C 6, 7, 11 (m1, m4, m8) 

of 1 degree between an upper and lower bounding limit for roll, pitch and yaw 
respectively, at each of these possible positions within the 2D grid. 

The orientation exploration limits were chosen with caution to the caveat that 
long range radars with extreme orientations increase the number of recorded 
false positives. The combined position and orientation exploration generates an 
intractably large design space as discussed next (Table 2). 

4.3 Design Space Exploration 

All of the metrics (m1 – m8) defined in 2.3.2 represent good performance at 
lower values. We create a cost function that combines these metrics and frame our 
sensor placement and optimization problem as a minimization problem. The most 
important metrics are identified and grouped for each feature, as shown in Table 
4, and are used to model the cost function as a weighted sum of these five metrics, 
where the weights are chosen on the basis of their total cardinality across all feature. 
By searching through the design space of sensor configurations for a minimum cost 
function value, a sensor configuration can thus be generated where the metrics are 
cumulatively minimized. 

The design space considered in this chapter uses 4 radars and 4 cameras that can 
be placed in any zone. With a fixed step size of 5 cm in each dimensions and 1 degree
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rotation in orientation, the number of ways 8 sensors can be placed in all unique 
locations and orientations is 2.56e+23C8 for the 2019 Blazer and 6.4e+22C8 for 
the 2016 Camaro. As this design space is so large that it cannot be exhaustively 
traversed in a practical amount of time, we explore the use of intelligent design 
space search algorithms that support hill climbing to escape local minima. The three 
algorithms implemented as part of VESPA are discussed next. 

4.3.1 SA + Greedy Random Adaptive Search Procedure (SA + Grasp) 

Simulated annealing (SA) is a search algorithm that is useful in finding the 
global optima when the design space has multiple local optima [17]. The process 
is analogous to the way metals cool and anneal [18]. Typically, SA picks the 
best solution at each iteration, but can also pick the worst solution based on a 
temperature-dependent probability, which can allow it to climb out of local minima 
to arrive at global minima [19]. But SA suffers from the drawback of behaving like 
a greedy algorithm at lower temperatures as it tends to accepts only those solution 
configurations very close in cost function value to the previous solution, so it can 
get stuck in local minima in more complex design spaces [20]. The GRASP (Greedy 
Randomized Adaptive Search Procedure) algorithm is another search algorithm that 
is used in many exploration problems [21], but it does not always generate optimal 
solutions during the greedy construction phase and can get stuck in local optima 
easily. The SA + GRASP algorithm eliminates the inherent drawbacks of each 
algorithm. Specifically, the greedy randomized construction phase of the algorithm 
is used to create disturbances in the existing list of best sensor configurations in 
our problem, to generate better solutions. A new solution is generated in each 
iteration by selecting the better solution between the greedy solution from the greedy 
randomized construction phase and the configuration found from the local search. 
We decreased the SA temperature variable from Tmax = 10,000 to Tmin = 0 at the  
rate of 4 degrees per iteration. The search repeats by decreasing SA temperature till 
an optimal solution is found or a stopping criterion is achieved. 

4.3.2 Genetic Algorithm (GA) 

The GA is an evolutionary algorithm that can solve optimization problems by 
mimicking the process of natural selection [22]. It repeatedly selects a population 
of candidate solutions and then improves the solutions by modifying them. GA has 
the ability to optimize problems where the design space is discontinuous and also if 
the cost function is non differentiable [23]. The GA is adapted for our design space 
such that a chromosome is defined by the combined location and orientation of each 
sensor’s configuration (consisting of six parameters: x, y, z, roll, pitch, and yaw). 
For a given set of N sensors, the number of parameters stored in each chromosomes 
is thus ‘6 N’. Next, in the selection stage, the cost function values are computed 
for 100 configurations at a time, and a roulette wheel selection method is used to
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select which set of chromosomes will be involved in the crossover step based on 
their cost function probability value, computed as a fraction of the cumulative cost 
function sum of all chromosomes considered in the selection. In the crossover stage, 
the crossover parameter is set to 0.5, which allows 50 out of the 100 chromosomes 
to produce offspring. The mutation parameter is set to 0.2 such that in the mutation 
stage, the mutation rate is set to 10, which is the number of new genes allowed for 
mutation in each iteration. 

4.3.3 Particle Swarm Optimization (PSO) 

PSO considers a group of particles where each particle has a position and velocity 
and is a solution to the optimization problem [24]. In our problem each sensor 
configuration in the design space is represented as a particle having a defined 
position and velocity. With a random start, the cost function in (5) evaluates the 
quality of the solution of a particle. The particle’s velocity and position values are 
updated recursively using a linear update [24]. Each particle stores a trace of its best 
position within the group and globally as well. The history of the cost function 
values for this trace can explain the effectiveness of changing the position of a 
particular sensor from the set of heterogeneous sensors [25]. Unlike GA, PSO does 
not have any evolution operators like crossovers or mutation [26]. PSO also does 
not require any binary encoding of solution configurations like in GA [27]. The 
total number of particles considered were 50, and the importance of personal best 
and importance of neighborhood best parameters were both empirically selected to 
be 2. 

5 Experiments 

The following section describes the experimental setup and results involving the 
VESPA framework. 

5.1 Experimental Setup 

To evaluate our VESPA framework, we consider a scenario with a maximum of 8 
sensors: 4 radars and 4 camera vision sensors. Many recent contributions such as 
the work presented in [28, 29] combine radar and camera modalities for ADAS 
applications. We did not include LiDARs in this heterogeneous set of sensors due to 
their relatively poor performance in adverse weather conditions as shown in Table 3. 
For the given set of test cases, it was observed that if less than 4 sensors were used, 
the ability of the perception system to make an accurate prediction was relatively 
poor. Conversely, on increasing the number of radars and cameras to more than
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Table 3 VESPA generated solution vs baseline configuration 

VESPA Camaro Baseline Camaro VESPA Blazer Baseline Blazer 

Cost function 0.9971 2.1367 1.2841 2.4630 
Longitudinal 
position error 

0.0523 0.1427 0.0845 0.2419 

Lateral position 
error 

0.1810 0.2566 0.0958 0.2204 

Object occlusion 
rate 

0.1331 0.2351 0.2062 0.3158 

Velocity uncertainty 0.0823 0.1851 0.0474 0.2056 
Rate of late 
detection 

0.1158 0.2123 0.1578 0.2315 

False positive lane 
detection rate 

0.0142 0.1335 0.0221 0.1571 

False negative lane  
detection rate 

0.0214 0.0236 0.0393 0.0412 

False positive 
object detection rate 

0.0431 0.1283 0.0976 0.0954 

Fig. 4 2019 Chevrolet Blazer (Left) and 2016 Chevrolet Camaro (Right) 

4 each, there was minimal improvement in cost function score. Hence to keep 
implementation cost low while still achieving good accuracy, we decided to use 
these 8 sensors. Please note that these modalities and number of sensors have been 
used to show a proof of concept for our VESPA framework, which can be extended 
to scenarios with different modalities and numbers of sensors. We considered two 
vehicles for evaluation: a 2019 Chevrolet Blazer and a 2016 Chevrolet Camaro. 
Figure 4 shows the dimensions for the vehicles. Figure 5 shows images of the sensor 
placements on both car models in our workspace. 

Each configuration generated by the SA+GRASP, GA, and PSO algorithms was 
optimized on 40 test cases designed (10 test cases each for evaluating performance 
with ACC, FCW, LKA, and BW) using the Automated Driving Toolbox in Matlab. 
Half (20) of these test cases for each feature are used during the optimization phase 
and the remaining (20) test cases are used during the evaluation phase.
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Fig. 5 Sensors mounted in workspace on both car models 

Finally, the optimized configurations were evaluated on a different set of evalu-
ation test cases. Each of the test cases was characterized by unique road geometry, 
variations in road elevation, curvature, banking, and different traffic densities. In 
some test cases, the number of lanes were varied to make the framework optimize 
the sensor configuration for challenging and realistic driving scenarios. 

A Kalman filter sensor fusion algorithm was used to combine readings from 
sensors in a sensor configuration being evaluated, to make predictions. The longi-
tudinal and lateral ground truth were defined for non-ego vehicles and the position 
error was calculated from the fused sensor measurements. The deviation of sensor 
measurements from ground-truth was used to calculate the values of metrics m1– 
m8, and hence the cost function over all test cases. Lastly, we set the stopping 
criterion for all three algorithms as the case when the cost function does not show a 
greater than 5% change over 200 iterations. 

5.2 Experimental Results 

In our first experiment we were interested in evaluating the efficacy of different 
optimization algorithms (SA + GRASP, GA, and PSO) in finding optimal sensor 
configurations as well as exploring the consistency of the quality of solution 
returned by each. The cost function values for the best solution found by each 
algorithm for the 2016 Camaro and 2019 Blazer are shown in Fig. 6 As shown 
in Fig. 6, GA returned the solution configuration with the lowest cost function score 
of 0.7648 for the Camaro and 0.9252 for the Blazer. GA was able to better traverse 
the complex design space for our problem to arrive at the global minima compared 
to the SA + GRASP and PSO algorithms. 

Next, we compared the solution generated by VESPA (utilizing the GA algorithm 
which gives the best results) with a baseline sensor configuration selected manually, 
based on best practices by a vehicle design expert in our team. This baseline 
configuration involved coupling a radar and camera in zones A, B, E and H each 
such that every mutually perpendicular direction in the 2D plane of the ego vehicle 
was covered using a radar and camera combined. All 8 sensors were fixed in the 
orientation angle, which matched the orientation of surface normal vector of the
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Fig. 6 Cost function values 
for the best solution found by 
the SA + GRASP, GA, and 
PSO algorithms on the 
Camaro and Blazer vehicles 
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respective zone in which they were placed. The selected baseline configuration 
maximizes coverage by considering feature to zone correlation. This is ensured by 
placing at least one sensor in each region such that all zones dedicated to each of 
the 4 selected features is covered in the field of view of that particular sensor. 

Table 3 shows the results of the comparison between the VESPA generated 
solution and the baseline configuration for the 2016 Camaro and 2019 Blazer. The 
final cost function score was higher for the baseline approach, showing that VESPA 
generated a significantly better (lower cost) solution for both vehicles. 

Table 4 summarizes the specific locations and orientations of the eight sensors 
on the two vehicles, generated by VESPA. The location and orientation information 
of each sensor in Table 6 is measured with respect to a global co-ordinate frame for 
the car model, whose origin is at the geometric center of the vehicle. An interesting 
observation from the table is that the sensors in the Blazer’s configuration favor 
higher Z values than the Camaro, since the Blazer is 0.3 m taller than the Camaro. 

Figure 7 visualizes sensor coverage in a bird’s eye plot between the best 
configuration generated by VESPA in Fig. 7a and the baseline configuration in 
Fig. 7b for the Camaro (results for Blazer are omitted for brevity). The baseline 
configuration was optimized with a conventional approach towards improving 
sensor coverage, with a secondary focus on sensor reliability. 

In contrast, the solution generated by VESPA took into account the unique 
strengths and weaknesses of each sensor to obtain a configuration having sig-
nificantly better performance for the features supported, despite having lower 
overlap between field of view of different sensors than the baseline solution Fig. 
7 and also uses lesser number of sensors. The superiority of the VESPA solution 
configuration, despite using lesser number of sensors, can be accounted for by the 
optimized placement of camera 1, radar 2 and radar 3 in zones A and C maximizing 
performance of ACC and FCW. Further, in physical testing it was observed that
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Fig. 7 Coverage for (a): VESPA Camaro solution (b) Baseline Camaro 
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Fig. 8 Performance on real drive cycle in Colorado for best solution generated by VESPA and the 
baseline configuration for the 2019 Blazer 

using a radar coupled with camera in zone B for LKA reduces the number of false 
positives during detections. In Fig. 7a, radars 3, 4 and cameras 2, 3 placed in zones D 
and E respectively were sufficient for improving performance of ACC and FCW by 
reducing the number of false positive object detections. The combined optimization 
of orientation and location with VESPA resulted in a sensor configuration that 
maximized performance for each feature. 

Our last experiment involved testing the best sensor configuration from our 
VESPA framework and the baseline configuration for the 2019 Blazer on data from a 
real world drive cycle over 1 h in Colorado. We focus only on assessing performance 
for the ACC and FCW features. Figure 8 shows an image from the real drive cycle
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with data collected by the vehicle from the radar and camera sensors on it. The figure 
also shows a plot of the object occlusion rate (OOR). The OOR for the baseline 
configuration was 19.64% (it did not detect 11 out of 56 non ego vehicles), while 
the VESPA generated best solution had an OOR of 7.14% (it failed to detect only 
4 out of 56 non ego vehicles). The results show the effectiveness of our proposed 
VESPA framework in generating higher quality sensor configurations. 

6 Conclusions 

In this chapter, we propose an automated framework called VESPA that is capable of 
generating sensor placement and orientation in modern semi-autonomous vehicles. 
VESPA has the ability to optimize locations and orientations for a set of heteroge-
neous sensors on a given target vehicle. The framework can be tuned to improve 
perception on a desired collection of test cases. VESPA is also scalable across 
different vehicle models as shown in our analysis on the Chevrolet Camaro and 
Blazer vehicles. Further, despite the sensor locations in the baseline configuration 
of Fig. 7b being the most intuitive, the best configuration is the one generated by 
VESPA, showing that even people skilled in the art of sensor placement may find 
it challenging to synthesize a significantly better placement than that generated by 
VESPA. We also validated VESPA with real drive cycle data to show its effectiveness 
for real-world scenarios. 
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