
Scene-Graph Embedding for Robust
Autonomous Vehicle Perception

Shih-Yuan Yu, Arnav Vaibhav Malawade, and Mohammad Abdullah
Al Faruque

1 Introduction

Automotive CPS, also called Autonomous Vehicles (AV), aims to revolutionize
personal mobility, logistics, and road safety [17]. However, accidents involving per-
ception errors in modern self-driving cars are still a regular occurrence, highlighting
that the development of safe and robust AVs remains a difficult challenge [26–28].
What is worse is that these perception errors often seem completely irrational from
our perspective. In one crash, a self-driving car failed to perceive a semi-truck
that was utterly obstructing the highway [28]. Another crash involved a vehicle
steering directly into the freeway divider in broad daylight [27]. These events cast
serious doubt on the ability of current AV perception systems to understand the
state of the road. According to a statistic [24], perception and prediction errors were
the primary factors in over 40% of driver-related crashes between conventional
vehicles. In complex urban environments, navigation is particularly challenging
because the scenarios are highly variable and involve pedestrians and bicyclists,
heavy traffic, blind driveways, blocked roadways, etc. [23, 30, 46]. Within this
context, the effectiveness of understanding the driving scenes becomes particularly
crucial, leading researchers and industry leaders to race to address these problems
via more advanced AV perception systems.

One might ask, how are humans able to perceive the state of the road effectively
without succumbing to the common mistakes of AV perception systems? Recent
research suggests that humans rely on cognitive mechanisms to identify the structure
of a scene and reason about inter-object relations when performing complex tasks
such as identifying risk during driving [5]. However, existing AV perception

S.-Y. Yu · A. V. Malawade (�) · M. A. Al Faruque
The University of California, Irvine, Irvine, CA, USA
e-mail: shihyuay@uci.edu; malawada@uci.edu; alfaruqu@uci.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. K. Kukkala, S. Pasricha (eds.), Machine Learning and Optimization Techniques for
Automotive Cyber-Physical Systems, https://doi.org/10.1007/978-3-031-28016-0_18

525

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28016-0protect T1	extunderscore 18&domain=pdf

 885 56845 a 885 56845
a

mailto:shihyuay@uci.edu
mailto:shihyuay@uci.edu

 8385 56845 a 8385 56845 a

mailto:malawada@uci.edu
mailto:malawada@uci.edu

 16283
56845 a 16283 56845 a

mailto:alfaruqu@uci.edu
mailto:alfaruqu@uci.edu
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18
https://doi.org/10.1007/978-3-031-28016-0_18

526 S.-Y. Yu et al.

architectures use road geometry information and vehicle trajectory models for esti-
mating the state of the road scene (model-based methods) [29, 37]. More recently,
architectures using deep learning techniques that leverage Convolutional Neural
Networks (CNNs), Long-Short Term Memory Networks (LSTMs), or Multi-Layer
Perceptrons (MLPs) [6, 19, 20, 38, 41, 47] have proven effective at capturing features
essential for modeling subjective risk in both spatial and temporal domains [47].
However, these approaches cannot obtain a high-level, human-like understanding
of complex road scenarios due to their inability to explicitly capture inter-object
relationships or the overall structure of the road scene. Failing to capture these
relationships can result in poor perception performance in complex scenarios.
Overall, designing a robust perception system for automotive CPSs using data-
driven approaches poses the following challenges:

1. Designing a reliable method that can handle a wide range of complex and
unpredictable traffic scenarios,

2. Building a model that is transferable from the simulation setting to the real-world
setting because the real-world datasets for supervised training are limited,

3. Building a model that can provide explainable decisions.

Take risk assessment tasks as an example. To overcome the first challenge,
deep learning-based methods must be trained on large datasets covering a wide
range of “corner cases” (especially risky driving scenarios), which are expensive
and time-consuming to generate [9]. In this case, many researchers resort to using
synthesized datasets containing many examples of these corner cases to address
this issue. However, as mentioned in the second challenge, for these to be valuable,
a model must be able to transfer the knowledge gained from simulated training
data to real-world situations. A standard method for measuring a model’s ability
to generalize is transferability, where a model’s accuracy on a dataset different
from the training dataset is evaluated. Suppose a model can effectively transfer
the knowledge gained from a simulated training set to a real-world testing set. In
that case, it will likely perform better in unseen real-world scenarios. Even if these
existing methods can transfer knowledge well, the predictions of such methods lack
explainability, which is crucial for establishing trust between ADSs and human
drivers [1, 2, 4]. In the third research challenge, Explainability refers to the ability of
a model to effectively communicate the factors that influenced its decision-making
process for a given input, particularly those that might lead the model to make
incorrect decisions [1, 13]. Suppose a model can give attention to the aspects or
entities in a traffic scene that make the scenario risky or non-risky. In that case, it
can improve its decision, and its decisions become more explainable [39].

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 527

2 Scene-Graph Representation of Road Scenes

2.1 ADS Design Philosophies and Intermediate Representation

Many design philosophies for ADS have been proposed over the years, such as
the modular design and the end-to-end design. Most modular design approaches
comprise a pipeline of separate components from the sensory inputs to the actuator
outputs. In contrast, end-to-end approaches generate output directly from their
sensory inputs [6, 31]. One advantage of a modular design approach is the division
of a task into an easier-to-solve set of sub-tasks that have been addressed in other
fields such as robotics [14], computer vision [12, 19, 20] and vehicle dynamics [32].
As a result, prior knowledge from these fields can be leveraged when designing
the components corresponding to the sub-tasks. However, one disadvantage of
such an approach is the complexity of the whole pipeline [46]. End-to-end design
approaches can achieve good performance with a smaller network size because
they perform feature extraction from sensor inputs implicitly through the network’s
hidden layers [6, 18]. However, the authors in [8] point out that the needed level
of supervision is too weak for the end-to-end model to learn critical controlling
information (e.g., from image to steering angle), so it can fail to handle complicated
driving maneuvers.

Recently, few methodologies have leveraged the benefits of an intermediate
representation (IR). DeepDriving [8], called the direct perception, was one of the
first approaches to use an IR methodology. In their methodology, a set of affordance
indicators, such as the distance to lane markings and cars in the current and adjacent
lanes, are extracted from an image and serve as an IR for generating the final control
output. The authors of [8] prove that the use of this IR is effective for simple
driving tasks such as lane following and for generalizing the learned knowledge
from simulation to real-world environments, thus improving transferability. Authors
in [3] use a collection of filtered images, each representing a piece of distinct
information, as the IR. They state that the IR used in their methodology allows the
training to be conducted on real or simulated data, facilitating testing and validation
in simulations before testing on a real car. Moreover, they show that it is easier
to synthesize perturbations to the driving trajectory at the mid-level representations
than at the level of raw sensors, enabling them to produce non-expert behaviors such
as off-road driving and collisions. As such, the capability to capture and identify
the complex relationships between road objects is critical in designing an effective
human-like perception system for automotive CPS.

2.2 Graph-Based Driving Scene Understanding

In literature, several groups have adopted a variant of Knowledge Graphs known
as scene-graphs to model the road state and the relationships between objects [16,

528 S.-Y. Yu et al.

Fig. 1 How camera data can be used to construct a road scene-graph representation

21, 22, 25, 45]. A scene-graph representation encodes rich semantic information of
an image or observed scene, essentially bringing an abstraction of objects and their
complex relationships as illustrated in Fig. 1. While each of these related works
proposes a different form of scene-graph representation, all demonstrate significant
performance improvements over conventional perception methods. In [16], the
authors propose a 3D-aware egocentric spatio-temporal interaction framework that
uses both an Ego-Thing graph and an Ego-Stuff graph, which together encode
how the ego vehicle interacts with both moving and stationary objects in a scene,
respectively. In [25], the authors propose a pipeline using a multi-relational graph
convolutional network (MR-GCN) for classifying the driving behaviors of traffic
participants. The MR-GCN combines spatial and temporal information, including
relational information between moving objects and landmark objects. Our prior
work has demonstrated that the use of spatio-temporal scene-graph embeddings
improves performance at subjective risk assessment and collision prediction versus
state-of-the-art methods [21, 22, 45]. In addition, our method can better transfer
knowledge and is more explainable.

2.3 Scene-Graph Extraction from Driving Scenes

In literature, several approaches have been proposed for extracting scene-graphs
from images by detecting the objects in a scene and then identifying their visual
relationships [42, 44]. However, these works focus on extracting scene-graphs for
single general images for tasks like automated image captioning instead of modeling

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 529

these graphs to maximize performance over a temporally-correlated sequence of
images as are typically used for autonomous driving. Thus, we adopted a partially
rule-based process to extract objects and their attributes from images. Object
attributes and bounding boxes are extracted directly from images using state-of-
the-art image processing techniques. As Fig. 1 shows, we first convert each image
. It into a collection of objects . Ot using Faster RCNN [34], a state of the art object
detection algorithm in the Detectron2 [40] computer vision library. Next, we use
OpenCV’s perspective transformation library to generate a top-down perspective of
the image, commonly known as a “birds-eye view” projection [7]. This projection
lets us approximate each object’s location relative to the road markings and the ego
vehicle. Next, for each detected object in . Ot , we use its estimated location and class
type (cars, motorcycles, pedestrians, lanes, etc.) to compute the attributes required
in building the scene-graph.

After collecting the list of objects in each image and their attributes, we can
begin constructing the corresponding scene-graphs. For each image . It , we denote
the corresponding scene-graph by .Gt = {Ot,At } and model it as a directed multi-
graph where multiple types of edges connect nodes. The nodes of a scene-graph,
denoted as . Ot , represent the objects in a scene such as lanes, roads, traffic signs,
vehicles, pedestrians, etc. The edges of . Gt are represented by the adjacency matrix
. At , where each value in . At represents the type of the corresponding edge in . Gt .
The edges between two nodes represent the different kinds of relations between
them (e.g., near, Front_Left, isIn, etc.). For assessing the risk of driving behaviors,
we consider both distance and directional relations between traffic participants
useful. We assume that one object’s local proximity and positional information will
influence the other’s motion only if they are within a certain distance. Therefore,
in this work, we extract only the location information for each object and adopt
a simple rule to determine the relations between the objects using their attributes
(e.g., relative location to the ego car), as shown in Fig. 1. For distance relations,
we assume two objects are related by one of the relations .r ∈ {Near_Collision
(4 ft.), Super_Near (7 ft.), Very_Near (10 ft.), Near (16 ft.), Visible (25 ft.)} if
the objects are physically separated by a distance that is within that relation’s
threshold. In the case of the directional relations, we assume two objects are related
by the relation .r ∈ {Front_Left, Left_Front, Left_Rear, Rear_Left, Rear_Right,
Right_Rear, Right_Front, Front_Right} based on their relative positions if they are
within the Near threshold distance from one another.

In addition to directional and distance relations, we also implement the isIn
relation that connects vehicles with their respective lanes. Specifically, we use
each vehicle’s horizontal displacement relative to the ego vehicle to assign cars to
either the Left Lane, Middle Lane, or Right Lane based on known lane width. Our
abstraction only includes these three-lane areas, and, as such, we map vehicles in all
left lanes to the same Left Lane node and all vehicles in right lanes to the Right Lane
node. If a vehicle overlaps two lanes (i.e., during a lane change), we assign it an isIn
relation to both lanes. Figure 1 illustrates an example of resultant scene-graph.

530 S.-Y. Yu et al.

3 Spatio-Temporal Scene-Graph Embedding Approach for
Robust Automotive CPS Perception

To tackle the research challenges, we propose a scene-graph augmented data-driven
approach for assessing the subjective risk of driving maneuvers, where the scene-
graphs serve as intermediate representations (IR) as shown in Fig. 1. The key
advantage of using scene-graph as IR is that they allow us to model the relationships
between the participants in a traffic scene, thus potentially improving the model’s
understanding of a scene. Our proposed architecture consists of three major
components: (1) a pipeline to convert the images of a driving clip to a sequence
of scene-graphs, (2) a Multi-Relational Graph Convolution Network (MR-GCN) to
convert each of the scene-graphs to an embedding (a vectorized representation), and
(3) an LSTM for temporally modeling the sequence of embeddings of the respective
scene-graphs. Our model also contains multiple attention layers: (1) a node attention
layer before the embedding of a scene-graph is computed, and (2) an attention
layer on top of the LSTM, both of which can further improve its performance and
explainability.

3.1 Problem Formulation

For training the model, we formulate the problem of subjective risk assessment as
a supervised scene-graph sequence classification problem. Our approach makes the
same assumption used in [47] that the set of driving sequences can be partitioned
into two jointly exhaustive and mutually exclusive subsets: risky and safe. We
denote the sequence of images of length T by .I = {I1, I2, I3, . . . , IT }. We assume
the existence of a spatio-temporal function f that outputs whether a sequence of
driving actions x is safe or risky via a risk label y, as given in Eq. (1).

.y = f (I) = f ({I1, I2, I3, . . . , IT −1, IT }), (1)

where

.y =
{

(1, 0), if the driving sequence is safe
(0, 1), if the driving sequence is risky.

(2)

The goal of our approach is to propose a suitable model for approximating the
function f . Here, the first step is the extraction of the scene-graph . Gt from each
image . It of the video clip . I. This step is achieved by a series of processes that
we collectively call the Scene-Graph Extraction Pipeline (described in Sect. 2.3).
In the second step, these scene-graphs are passed through graph convolution layers
and an attention-based graph pooling layer. The graph-level embeddings of each
scene-graph, . hGt , are then calculated using a graph readout operation. Next, these

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 531

Fig. 2 An illustration of spatio-temporal scene-graph embedding approach

scene-graph embeddings are passed sequentially to LSTM cells to acquire the
spatio-temporal representation, denoted as . Z, of each scene-graph sequence. Lastly,
we use a Multi-Layer Perceptron (MLP) layer with a Softmax activation function to
acquire the final inference, denoted as . ŷ, of the risk for each driving sequence . I.

To sum up, the model of our approach consists of three major components:
a spatial model, a temporal model, and a risk inference component. The spatial
model outputs the embedding .hGt for each scene-graph . Gt . The temporal model
processes the sequence of scene-graph embeddings .hI = {hG1, hG2 , . . . , hGT

} and
produces the spatio-temporal embedding . Z. The risk inference component outputs
each driving clip’s final risk assessment, denoted as . ŷ, by processing the Spatio-
temporal embedding . Z. The overall network architecture is shown in Fig. 2. We
discuss each of these components in detail below.

3.2 Spatial Modeling

The spatial model we propose uses MR-GCN layers to compute the embedding for
a scene-graph. The use of MR-GCN allows us to capture multiple types of relations
on each scene-graph .Gt = {Ot,At }. In the Message Propagation phase, a collection
of node embeddings and their adjacency information serve as the inputs to the
MR-GCN layer. Specifically, the l-th MR-GCN layer updates the node embedding,
denoted as . h(l)

v , for each node v as follows:

532 S.-Y. Yu et al.

.h(l)
v = �0 · h(l−1)

v +
∑
r∈At

∑
u∈Nr (v)

1

|Nr (v)|�r · h(l−1)
u , (3)

where .Nr(v) denotes the set of neighbor indices of node v with the relation .r ∈ At .
.�r is a trainable relation-specific transformation for relation r in MR-GCN layer.
Since the information in .(l − 1)-th layer can directly influence the representation
of the node at l-th layer, MR-GCN uses another trainable transformation .�0 to
account for the self-connection of each node using a special relation [35]. Here,
we initialize each node embedding .h(0)

v , .∀v ∈ Ot , by directly converting the node’s
type information to its corresponding one-hot vector.

Typically, the node embedding becomes more refined and global as the number of
graph convolutional layers, L, increases. However, the authors in [43] also suggest
that the features generated in earlier iterations might generalize the learning better.
Therefore, we consider the node embeddings generated from all the MR-GCN
layers. To be more specific, we calculate the embedding of node v at the final
layer, denoted as . HL

v , by concatenating the features generated from all the MR-GCN
layers, as follows,

.HL
v = CONCAT({h(l)

v }|l = 0, 1, . . . , L). (4)

We denote the collection of node embeddings of scene-graph .Gt after passing
through L layers of MR-GCN as .Xprop

t (L can be 1, 2 or 3).
The node embedding .Xprop

t is further processed with an attention-based graph
pooling layer. As stated in [13], such an attention-based pooling layer can improve
the explainability of predictions and is typically considered a part of a unified
computational block of a graph neural network (GNN) pipeline. In this layer, nodes
are pooled according to the scores predicted from either a trainable simple linear
projection [10] or a separate trainable GNN layer [15]. We denote the graph pooling
layer that uses the SCORE function in [10] as TopkPool and the one that uses
the SCORE function in [15] as SAGPool. The calculation of the overall process
is presented as follows:

.α = SCORE(Xprop
t ,At), (5)

.P = topk(α), (6)

where . α stands for the coefficients predicted by the graph pooling layer for nodes
in . Gt and . P represents the indices of the pooled nodes, which are selected from
the top k of the nodes ranked according to . α. The number k of the nodes to be
pooled is calculated by a pre-defined pooling ratio, pr , and using .k = pr × |Ot |,
where we consider only a constant fraction pr of the embeddings of the nodes of
a scene-graph to be relevant (i.e., 0.25, 0.5, 0.75). We denote the node embeddings
and edge adjacency information after pooling by .Xpool

t and .Apool
t and are calculated

as follows:

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 533

.Xpool
t = (Xprop

t � tanh(α))P, (7)

.Apool
t = Aprop

t (P,P)
. (8)

where . � represents an element-wise multiplication, .()P refers to the operation that
extracts a subset of nodes based on P , and .()(P,P) refers to the formation of the
adjacency matrix between the nodes in this subset.

Finally, our model aggregates the node embeddings of the graph pooling layer,
.Xpool

t , using a graph READOUT operation, to produce the final graph-level
embedding .hGt for each scene-graph . Gt as given by

.hGt = READOUT(Xpool
t), (9)

where the READOUT operation can be either summation, averaging, or selecting
the maximum of each feature dimension, over all the node embeddings, known
as sum-pooling, mean-pooling, or max-pooling, respectively. The process until this
point is repeated across all images in . I to produce the sequence of embedding, . hI .

3.3 Temporal Modeling

The temporal model we propose uses an LSTM for converting the sequence of
scene-graph embeddings . hI to the combined spatio-temporal embedding . Z. For
each timestamp t , the LSTM updates the hidden state . pt and cell state . ct as follows,

.pt , ct = LSTM(hGt , ct−1), (10)

where .hGt is the final scene-graph embedding from timestamp t . After the LSTM
processes all the scene-graph embeddings, a temporal readout operation is applied
to the resultant output sequence to compute the final Spatio-temporal embedding Z
given by

.Z = TEMPORAL_READOUT(p1, p2, . . . , pT) (11)

where the .TEMPORAL_READOUT operation could be extracting only the last
hidden state . pT (LSTM-last), or be a temporal attention layer (LSTM-attn).

In [2], adding an attention layer b to the encoder-decoder based LSTM architec-
ture is shown to achieve better performance in Neural Machine Translation (NMT)
tasks. For the same reason, we include LSTM-attn in our architecture. LSTM-attn
calculates a context vector q using the hidden state sequence . {p1, p2, . . . , pT }
returned from the LSTM encoder layer as given by

534 S.-Y. Yu et al.

.q =
T∑

t=1

βtpt (12)

where the probability . βt reflects the importance of . pt in generating q. The
probability . βt is computed by a Softmax output of an energy function vector e,
whose component . et is the energy corresponding to . pt . Thus, the probability . βt is
formally given by

.βt = exp(et)∑T
k=1 exp(ek)

, (13)

where the energy . et associated with . pt is given by .et = b(s0, pt). The temporal
attention layer b scores the importance of the hidden state . pt to the final output,
which in our case is the risk assessment. The variable . s0 in the temporal attention
layer b is computed from the last hidden representation . pT . The final Spatio-
temporal embedding for a video clip, Z, is computed by feeding the context vector
q to another LSTM decoder layer.

3.4 Risk Inference

The last piece of our model is the risk inference component that computes the risk
assessment prediction . Ŷ using the spatio-temporal embedding . Z. This component
is composed of a MLP layer followed by a Softmax activation function. Thus, the
prediction . Ŷ is given by

.Ŷ = Sof tmax(MLP(Z)) (14)

During training, the loss for the prediction is calculated as follows,

.CrossEntropyLoss(Y, Ŷ) (15)

For training our model, we use a mini-batch gradient descent algorithm that updates
its parameters by training on a batch of scene-graph sequences. To account for label
imbalance, we apply class weighting when calculating loss. Besides, several dropout
layers are inserted into the network to reduce overfitting.

4 Experimental Results

To illustrate the benefits of our scene-graph augmented approach, we present exper-
imental results for assessing the risk of several common driving tasks, including

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 535

lane changes, turns, and merges into (merging) and out of (branching) the traffic
flow. We also evaluate a state-of-the-art SMT+CNN+LSTM based risk assessment
model [47] on these tasks to serve as the baseline. We evaluate several different
aspects of performance, including risk assessment accuracy, capability to transfer
knowledge from synthetic data to real-world data, and explainability. Next, let us
discuss the experimental setup.

4.1 Experimental Setup

We prepare two types of datasets for the experiments (1) synthesized datasets and
(2) real-world driving datasets. To create the synthesized datasets, we collected
data from various driving conditions simulated in the CARLA driving simulator.1

We generated the real-world dataset by extracting various driving actions from
the Honda Driving Dataset (HDD) [33]. We generated a wide range of simulated
lane changes using the various presets in CARLA that allowed us to specify the
number of cars, pedestrians, weather and lighting conditions, driver behavior, etc.
The lane changes that resulted in collisions, near collisions, or otherwise dangerous
conditions are considered our risky samples, while the safe lane changes are labeled
as safe. Common factors that can affect the risk of a driving action include the
distance to other cars and the side curbs, the speed relative to other vehicles, the
sizes of adjacent vehicles, the presence of bikers or pedestrians, and the traffic light
status.

We generated two synthesized datasets: a 271-syn dataset and a 1043-syn dataset,
containing 271 and 1043 lane-changing clips, respectively. In addition, we sub-
sampled the 271-syn and 1043-syn datasets further to create two balanced datasets
that have a 1:1 distribution of risky to safe lane changes: 96-syn and 306-syn. Our
synthesized driving datasets are available online in both raw image and scene-
graph format [11]. For real driving datasets, we processed the HDD dataset to
create a dataset called 1361-honda composed of 571 lane changing, 350 turning,
297 branching, and 149 merging video clips. For evaluating the capability of the
model to transfer knowledge after training on the synthesized lane change datasets,
we subsampled 1361-honda to create a lane-changing dataset that contains 571 real-
world lane changing clips, called 571-honda. The final score of a model on a dataset
is computed by averaging over the testing set scores for ten different train-test splits,
where 30% of the dataset is reserved as the testing set.

In our experiments, we trained each model for 500 epochs. From our experimen-
tation, we found that the best configuration of our model consisted of two MR-GCN
layers with 64 hidden units, a SAGPool pooling layer with a ratio of 0.5, sum-
pooling for graph readout operation, and LSTM-attn for temporal modeling.

1 https://github.com/carla-simulator/carla.

https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla

536 S.-Y. Yu et al.

4.2 Experiments on Risk Assessment

We evaluate each model’s performance on each dataset by measuring its classifi-
cation accuracy and the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC). The classification accuracy is the ratio of the number of
correct predictions on the test set of a dataset to the total number of samples in
the testing set. AUC, sometimes referred to as a balanced accuracy measure [36],
quantifies the likelihood that a binary classifier ranks a positive sample more highly
than a random negative sample. This metric is especially useful for imbalanced
datasets (i.e. 271-syn, 1043-syn, 571-honda).

Figure 3 shows the comparison between our model’s performance and the
baseline [47] for the synthetic datasets. The results show that our approach performs
best across all datasets.

The results also show that the performance difference between our approach and
the baseline increased when the training datasets were smaller. This result indicates
that our approach can learn an accurate model even from a smaller dataset, likely
resulting from its use of a scene-graph based IR. We also found that our approach
performs better than the baseline on balanced datasets, meaning that our approach is
better at discriminating between the two classes in general. For context, the datasets
271-syn and 306-syn contain roughly the same number of clips but differ in the
distribution of safe to risky lane changes (2.30:1 for 271-syn vs. 1:1 for 306-syn).

Although these results are impressive, we must ask, how much does each
component in the model contribute to the overall performance? One easy way to
answer this question is with an ablation study, where we measure the performance
of our model after adding each modeling component one at a time, as is shown
in Table 1. From Table 1 we find that the simplest of the models, with no MR-
GCN layer (replaced with an MLP layer) and a simple average of the embeddings
in . hI for the temporal model (denoted as mean in Table 1), achieves a relatively
low classification accuracy of 75%. Starting from this base model, we find that
replacing mean with an LSTM layer for temporal modeling yields a 10.5% increase
in performance. Next, we try adding a single MR-GCN layer with 64 hidden units
and sum-pooling to the base model, resulting in a 14.8% performance gain. The
performance gain achieved by including the MR-GCN layer alone demonstrates
the effectiveness of explicitly modeling the relations between objects. Now, we try
the single MR-GCN layer with sum-pooling and the LSTM model together, which
yields the maximum performance gain of 18.1% over the simplest model. This result
clearly illustrates that our model’s spatial and temporal components are both crucial
for maximizing performance.

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 537

Fig. 3 Accuracy and AUC comparison between our approaches (Real Image and CARLA GT)
and [47] on different datasets. Our approach outperforms the baseline across datasets

538 S.-Y. Yu et al.

Table 1 The results of the CARLA GT approach on 1043-syn dataset with various spatial and
temporal modeling settings. In these experiments, we used MR-GCN layers with 64 hidden
units and sum-pooling as the graph readout operation. The bolded numbers indicate the highest
performing configuration in terms of Average Accuracy (Avr. Acc.) and Average AUC Score (Avr.
AUC) for the grouping indicated by the leftmost column

Spatial modeling Temporal modeling Avr. Acc. Avr. AUC

Ablation study No MR-GCN mean 0.762 0.823

No MR-GCN LSTM-last 0.867 0.929

1 MR-GCN mean 0.910 0.960

1 MR-GCN LSTM-last 0.943 0.977
Temporal attention No MR-GCN LSTM-last 0.867 0.929

No MR-GCN LSTM-attn 0.868 0.928

1 MR-GCN LSTM-last 0.943 0.977

1 MR-GCN LSTM-attn 0.950 0.977
Spatial attention 1 MR-GCN mean 0.910 0.960

1 MR-GCN, TopkPool mean 0.886 0.930

1 MR-GCN, SAGPool mean 0.937 0.968

4.3 Evaluation of Attention Mechanisms on Risk Assessment

Next, we evaluate the various attention components of our proposed model. To
evaluate the benefit of attention over the spatial domain, we tested our model with
three different graph attention methods: no attention, SAGPool, and TopkPool. To
evaluate the impact of attention on the temporal domain, we tested our model with
the following temporal models: mean, LSTM-last, and LSTM-attn. The results of
this analysis are also shown in Table 1.

For evaluating the benefits of graph attention, we start with an attention-free
model: one MR-GCN layer with sum-pooling + mean. In comparison, the model
that uses SAGPool for attention on the graph shows a 2.7% performance gain over
the attention-free model because using attention over both nodes and relations
allows SAGPool to better filter out irrelevant nodes from each scene-graph. We
found that the model using TopkPool as the graph-attention layer became relatively
unstable, resulting in a 2.4% performance drop compared to the attention-free
model. This drop is likely because TopkPool ignores the relations between nodes
when calculating . α.

For evaluating the impact of attention on the temporal model, we assessed the
effects of adding a temporal attention layer to the following two models: (1) with
no MR-GCN layers and no temporal attention and (2) with one MR-GCN layer
and no temporal attention. Our model with no MR-GCN and no temporal attention
performed nearly the same as our model with no MR-GCN and LSTM-attn. We
also find that adding LSTM-attn to the model with one MR-GCN layer increases its
performance by 0.7% over the same model with no temporal attention. These results
demonstrate that the inclusion of temporal attention improves performance, though
only marginally compared to the benefits of spatial attention. This might be because

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 539

Fig. 4 The visualization of attention weights in both spatial (. α) and temporal (. β) domains using
a risky lane changing clip as an example. We used a gradient color from light yellow to red to
visualize each node’s projection score indicating its relative importance. The white to red bar chart
visualizes the temporal attention scores of each frame

LSTM-last learns a good enough temporal model that LSTM-attn can only slightly
improve on it.

Figure 4 demonstrates how we can use the attention weights of our model to
pinpoint the critical factors related to driving risk in both temporal and spatial
domains, thus enabling it to explain its decisions. As described previously in Eq. (7),
the node attention weights . α are used by our graph pooling layer to filter out the
objects in a scene-graph that are less relevant to the overall risk of the scene.
Meanwhile, the temporal attention weights, . β, allow the LSTM encoder to score
each intermediate hidden state (. pt) and retain only the most useful information in Z
for the final risk assessment. We demonstrate our model’s capability to explain its
decisions better using the visualization of both spatial and temporal attention shown
in Fig. 4. The figure shows a clearly increasing trend of temporal attention scores
.β1, β2, . . . βT as the lane-changing scenario becomes riskier over time. Intuitively,
the frames with higher attention scores are weighted more heavily when calculating
Z and thus contribute more to the final risk assessment decision. In this risky lane
changing example, the temporal attention scores progressively increase between
frames 19 and 32 during the lane change; and the highest frame attention weights

540 S.-Y. Yu et al.

appear in frames 33 and 34, which are the frames immediately before the collision
occurs. Figure 4 also shows the projection scores for the node attention layer, where
a higher score for a node indicates that it contributes more to the final decision of risk
assessment. As shown in this example, as the ego car approaches the yellow vehicle,
the node attention weights for the ego car and the yellow vehicle are increased
proportionally to the scene’s overall risk. In the first few frames, the risk of collision
is low; thus, the node attention weights are low; however, in the last few frames,
a collision between these two vehicles is imminent; thus, the attention weights for
the two cars are much higher than for any other nodes in the graph. This example
clearly shows how graph representations and models, when used with attention, can
effectively explain their decision-making process. This capability can be valuable
for debugging edge cases at design time, thus reducing the chances of ADS making
unexpected, erroneous decisions in real-world scenarios and improving human trust
in the system.

4.4 Transferability from Virtual To Real Driving

This section demonstrates our approach’s capability to effectively transfer the
knowledge learned from a simulated dataset to a real-world dataset. As mentioned
previously, this capability is vital since little real-world data exists for rare scenarios.
Models must primarily rely on simulation data to improve driving safety in the real
world. To demonstrate this capability, we use the model weights and parameters
learned from training on the 271-syn dataset or the 1043-syn dataset directly
for testing on the real-world driving dataset: 571-honda. We also compare the
transferability of our model with that of the baseline method [47]. The results are
shown in Fig. 5.

As expected, the performance of both our approach and the baseline degrades
when tested on 571-honda dataset. However, as Fig. 5 shows, the accuracy of our
approach only drops by 6.7% and 3.5% when the model is trained on 271-syn and
1043-syn, respectively, while the baseline’s performance drops drastically by a much
higher 21.3% and 14.9%, respectively. The results show that our proposed model
can transfer knowledge more effectively than the baseline.

4.5 Risk Assessment By Action Type

This section shows results from evaluating our model’s performance on other
kinds of driving scenarios available in the HDD besides lane changes: turning,
branching, merging, etc. The results for training and evaluating our model on the
1361-honda dataset are shown in Table 2. From Table 2, we can see that our graph-
based approach significantly outperforms [47] in both overall accuracy (0.86 v.s.
0.58) and overall AUC (0.91 v.s. 0.61), indicating that our approach can better

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 541

Fig. 5 Transferability comparison between our real image model and the baseline [47]. In this
experiment, we trained each model on both 271-syn dataset and 1043-syn dataset. Then we tested
the accuracy of each model on both original dataset and 571-honda dataset

Table 2 Breakdown of risk
assessment performance by
driver action types (Lane
Changing, Merging,
Branching, and Turning)
evaluated on 1361-Honda
dataset. The bolded numbers
indicate the highest score
between Ours and the
baseline [47] on each of the
categories of driver actions
(rows)

Metric Action type Ours [47]

Accuracy Overall 0.8655 0.5844

Lane changing 0.8710 0.5714

Merging 0.8462 0.5854

Branching 0.9101 0.5556

Turning 0.8211 0.6218

AUC Overall 0.9124 0.6078

Lane changing 0.9105 0.5877

Merging 0.9395 0.6526

Branching 0.9462 0.5807

Turning 0.8645 0.6400

assess risk across diverse driving scenarios and driving action types. In Table 2
we also show the performance for each action type. The results show that our
approach also outperforms [47] on each class of driving action. Our approach
slightly under-performs on turning scenarios compared to its performance on other
action types. This discrepancy is likely because turning scenarios are intrinsically
more complicated than straight-road driving scenarios (lane change, branch, merge).
Another reason could be that the heading of vehicles is a more significant factor
in complicated scenarios, while the scene-graph used in our work contains only
distance and directional relations.

542 S.-Y. Yu et al.

5 Conclusion

In this chapter, we discovered how the expressive power of graph representations
of data could be leveraged to significantly improve the perception performance of
automotive CPS. There were clear improvements across experiments and datasets,
with our graph-based approach outperforming conventional CNN-based methods
in terms of accuracy, explainability, and transferability. All of these benefits can
be attributed to the explicit modeling of inter-object relationships via the graph’s
topology, thus improving the model’s ability to semantically understand each scene.
Although the approach presented here was effective at modeling risk, several other
problems in the AV domain remain unsolved, including motion prediction, object
detection, and control. When adapted to fit these problems, graph-based methods
could potentially provide the same benefits over existing methods.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial
intelligence (xai). IEEE Access 6, 52138–52160 (2018)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and
translate. Preprint (2014). arXiv:14090473

3. Bansal, M., Krizhevsky, A., Ogale, A.: Chauffeurnet: learning to drive by imitating the best
and synthesizing the worst. Preprint (2018). arXiv:181203079

4. Bao, N., Yang, D., Carballo, A., Özgüner, Ü., Takeda, K.: Personalized safety-focused control
by minimizing subjective risk. In: 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pp. 3853–3858. IEEE (2019)

5. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,
M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.: Relational inductive biases,
deep learning, and graph networks. Preprint (2018). arXiv:180601261

6. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D.,
Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for self-driving cars. Preprint
(2016). arXiv:160407316

7. Bradski, G.: The OpenCV Library. Dr Dobb’s Journal of Software Tools (2000)
8. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct

perception in autonomous driving. In: Proceedings of the IEEE International Conference on
Computer Vision, pp 2722–2730 (2015)

9. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban driving
simulator. Preprint (2017). arXiv:171103938

10. Gao, H., Ji, S.: Graph u-nets. Preprint (2019). arXiv:190505178
11. Hsu, B., Yu, S.Y., Malawade, A.V., Muthirayan, D., Khargonekar, P., Al Faruque, M.A.: Scene-

graph-risk-assessment dataset (2021). https://doi.org/10.21227/c0z9-1p30
12. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision, vol. 5. McGraw-Hill, New York (1995)
13. Knyazev, B., Taylor, G.W., Amer, M.: Understanding attention and generalization in graph

neural networks. In: Advances in Neural Information Processing Systems, pp 4202–4212.
Curran Associates, Inc. (2019)

14. Laumond, J.P., et al.: Robot Motion Planning and Control, vol 229. Springer, Berlin (1998)
15. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. Preprint (2019). arXiv:190408082
16. Li, C., Meng, Y., Chan, S.H., Chen, Y.T.: Learning 3d-aware egocentric spatial-temporal

interaction via graph convolutional networks. Preprint (2019). arXiv:190909272

https://doi.org/10.21227/c0z9-1p30
https://doi.org/10.21227/c0z9-1p30
https://doi.org/10.21227/c0z9-1p30
https://doi.org/10.21227/c0z9-1p30
https://doi.org/10.21227/c0z9-1p30
https://doi.org/10.21227/c0z9-1p30
https://doi.org/10.21227/c0z9-1p30

Scene-Graph Embedding for Robust Autonomous Vehicle Perception 543

17. Litman, T.: Autonomous Vehicle Implementation Predictions. Victoria Transport Policy
Institute, Victoria (2017)

18. Malawade, A.V., Odema, M., Lajeunesse-DeGroot, S., Al Faruque, M.A.: Sage: a split-
architecture methodology for efficient end-to-end autonomous vehicle control. ACM Trans.
Embedd. Comput. Syst. 20(5s), 1–22 (2021)

19. Malawade, A.V., Mortlock, T., Faruque, M.A.A.: Ecofusion: energy-aware adaptive sensor
fusion for efficient autonomous vehicle perception. In: Design Automation Conference (DAC).
ACM (2022)

20. Malawade, A.V., Mortlock, T., Faruque, M.A.A.: Hydrafusion: context-aware selective sensor
fusion for robust and efficient autonomous vehicle perception. In: International Conference on
Cyber-Physical Systems (ICCPS). IEEE (2022)

21. Malawade, A.V., Yu, S.Y., Hsu, B., Kaeley, H., Karra, A., Al Faruque, M.A.: roadscene2vec: a
tool for extracting and embedding road scene-graphs. Knowl.-Based Syst. 242, 108245 (2022)

22. Malawade, A.V., Yu, S.Y., Hsu, B., Muthirayan, D., Khargonekar, P.P., Al Faruque, M.A.:
Spatio-temporal scene-graph embedding for autonomous vehicle collision prediction. IEEE
Internet Things J. 9(12), 9379–9388 (2022) https://doi.org/10.1109/JIOT.2022.3141044

23. Montgomery, W.D., Mudge, R., Groshen, E.L., Helper, S., MacDuffie, J.P., Carson, C.:
Securing America’s future energy. 52 p. Available: https://avworkforce.secureenergy.org/

24. Mueller, A.S., Cicchino, J.B., Zuby, D.S.: What humanlike errors do autonomous vehicles need
to avoid to maximize safety? J. Saf. Res. 75, 310–318 (2020) ISSN 0022-4375, https://doi.org/
10.1016/j.jsr.2020.10.005

25. Mylavarapu, S., Sandhu, M., Vijayan, P., Krishna, K.M., Ravindran, B., Namboodiri, A.:
Towards accurate vehicle behaviour classification with multi-relational graph convolutional
networks. Preprint (2020). arXiv:200200786

26. National Transportation Safety Board: Collision between vehicle controlled by developmental
automated driving system and pedestrian. Technical Report, NTSB/HAR-19/03, National
Transportation Safety Board, 2019

27. National Transportation Safety Board: Collision between a sport utility vehicle operating
with partial driving automation and a crash attenuator. Technical Report, NTSB/HAR-20/01,
National Transportation Safety Board, 2020

28. National Transportation Safety Board: Collision between car operating with partial driving
automation and truck-tractor semitrailer. Technical Report, NTSB/HAB-20/01, National Trans-
portation Safety Board, 2020

29. Nistér, D., Lee, H.L., Ng, J., Wang, Y.: The safety force field. NVIDIA White Paper (2019)
30. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and

control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)
31. Pomerleau, D.A.: Alvinn: an autonomous land vehicle in a neural network. In: Advances in

Neural Information Processing Systems, pp 305–313. Morgan Kaufmann Publishers (1989)
32. Rajamani, R.: Vehicle Dynamics and Control. Springer Science & Business Media, New York

(2011)
33. Ramanishka, V., Chen, Y.T., Misu, T., Saenko, K.: Toward driving scene understanding: A

dataset for learning driver behavior and causal reasoning. In: Conference on Computer Vision
and Pattern Recognition (2018)

34. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with
region proposal networks. In: Advances in Neural Information Processing Systems, pp 91–99.
Curran Associates, Inc. (2015)

35. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling
relational data with graph convolutional networks. In: European Semantic Web Conference, pp
593–607. Springer (2018)

36. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification
tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

37. Sontges, S., Koschi, M., Althoff, M.: Worst-case analysis of the time-to-react using reachable
sets. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp 1891–1897. IEEE (2018)

https://doi.org/10.1109/JIOT.2022.3141044
https://doi.org/10.1109/JIOT.2022.3141044
https://doi.org/10.1109/JIOT.2022.3141044
https://doi.org/10.1109/JIOT.2022.3141044
https://doi.org/10.1109/JIOT.2022.3141044
https://doi.org/10.1109/JIOT.2022.3141044
https://doi.org/10.1109/JIOT.2022.3141044
https://doi.org/10.1109/JIOT.2022.3141044
https://avworkforce.secureenergy.org/
https://avworkforce.secureenergy.org/
https://avworkforce.secureenergy.org/
https://avworkforce.secureenergy.org/
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005
https://doi.org/10.1016/j.jsr.2020.10.005

544 S.-Y. Yu et al.

38. Tao, C., He, H., Xu, F., Cao, J.: Stereo priori rcnn based car detection on point level for
autonomous driving. Knowl.-Based Syst. 229, 107346 (2021)

39. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing
Systems, pp 5998–6008. Curran Associates, Inc. (2017)

40. Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., Girshick, V.: Facebook AI research (FAIR).
Available: https://github.com/facebookresearch/detectron2. (2019)

41. Xiao, D., Yang, X., Li, J., Islam, M.: Attention deep neural network for lane marking detection.
Knowl. Based Syst. 194, 105584 (2020)

42. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp
5410–5419 (2017)

43. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? Preprint
(2018). arXiv:181000826

44. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph r-cnn for scene graph generation. In:
Proceedings of the European Conference on Computer Vision (ECCV), pp 670–685 (2018)

45. Yu, S.Y., Malawade, A.V., Muthirayan, D., Khargonekar, P.P., Al Faruque, M.A.: Scene-graph
augmented data-driven risk assessment of autonomous vehicle decisions. IEEE Trans. Intell.
Trans. Syst. 23(7), 7941–7951 (2021) https://doi.org/10.1109/TITS.2021.3074854

46. Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous driving: common
practices and emerging technologies. Preprint (2019). arXiv:190605113

47. Yurtsever, E., Liu, Y., Lambert, J., Miyajima, C., Takeuchi, E., Takeda, K., Hansen, J.H.:
Risky action recognition in lane change video clips using deep spatiotemporal networks with
segmentation mask transfer. In: 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pp 3100–3107. IEEE (2019)

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1109/TITS.2021.3074854
https://doi.org/10.1109/TITS.2021.3074854
https://doi.org/10.1109/TITS.2021.3074854
https://doi.org/10.1109/TITS.2021.3074854
https://doi.org/10.1109/TITS.2021.3074854
https://doi.org/10.1109/TITS.2021.3074854
https://doi.org/10.1109/TITS.2021.3074854
https://doi.org/10.1109/TITS.2021.3074854

	Scene-Graph Embedding for Robust Autonomous Vehicle Perception
	1 Introduction
	2 Scene-Graph Representation of Road Scenes
	2.1 ADS Design Philosophies and Intermediate Representation
	2.2 Graph-Based Driving Scene Understanding
	2.3 Scene-Graph Extraction from Driving Scenes

	3 Spatio-Temporal Scene-Graph Embedding Approach for Robust Automotive CPS Perception
	3.1 Problem Formulation
	3.2 Spatial Modeling
	3.3 Temporal Modeling
	3.4 Risk Inference

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experiments on Risk Assessment
	4.3 Evaluation of Attention Mechanisms on Risk Assessment
	4.4 Transferability from Virtual To Real Driving
	4.5 Risk Assessment By Action Type

	5 Conclusion
	References

