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1 Introduction 

Automotive CPS, also called Autonomous Vehicles (AV), aims to revolutionize 
personal mobility, logistics, and road safety [17]. However, accidents involving per-
ception errors in modern self-driving cars are still a regular occurrence, highlighting 
that the development of safe and robust AVs remains a difficult challenge [26–28]. 
What is worse is that these perception errors often seem completely irrational from 
our perspective. In one crash, a self-driving car failed to perceive a semi-truck 
that was utterly obstructing the highway [28]. Another crash involved a vehicle 
steering directly into the freeway divider in broad daylight [27]. These events cast 
serious doubt on the ability of current AV perception systems to understand the 
state of the road. According to a statistic [24], perception and prediction errors were 
the primary factors in over 40% of driver-related crashes between conventional 
vehicles. In complex urban environments, navigation is particularly challenging 
because the scenarios are highly variable and involve pedestrians and bicyclists, 
heavy traffic, blind driveways, blocked roadways, etc. [23, 30, 46]. Within this 
context, the effectiveness of understanding the driving scenes becomes particularly 
crucial, leading researchers and industry leaders to race to address these problems 
via more advanced AV perception systems. 

One might ask, how are humans able to perceive the state of the road effectively 
without succumbing to the common mistakes of AV perception systems? Recent 
research suggests that humans rely on cognitive mechanisms to identify the structure 
of a scene and reason about inter-object relations when performing complex tasks 
such as identifying risk during driving [5]. However, existing AV perception 
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architectures use road geometry information and vehicle trajectory models for esti-
mating the state of the road scene (model-based methods) [29, 37]. More recently, 
architectures using deep learning techniques that leverage Convolutional Neural 
Networks (CNNs), Long-Short Term Memory Networks (LSTMs), or Multi-Layer 
Perceptrons (MLPs) [6, 19, 20, 38, 41, 47] have proven effective at capturing features 
essential for modeling subjective risk in both spatial and temporal domains [47]. 
However, these approaches cannot obtain a high-level, human-like understanding 
of complex road scenarios due to their inability to explicitly capture inter-object 
relationships or the overall structure of the road scene. Failing to capture these 
relationships can result in poor perception performance in complex scenarios. 
Overall, designing a robust perception system for automotive CPSs using data-
driven approaches poses the following challenges: 

1. Designing a reliable method that can handle a wide range of complex and 
unpredictable traffic scenarios, 

2. Building a model that is transferable from the simulation setting to the real-world 
setting because the real-world datasets for supervised training are limited, 

3. Building a model that can provide explainable decisions. 

Take risk assessment tasks as an example. To overcome the first challenge, 
deep learning-based methods must be trained on large datasets covering a wide 
range of “corner cases” (especially risky driving scenarios), which are expensive 
and time-consuming to generate [9]. In this case, many researchers resort to using 
synthesized datasets containing many examples of these corner cases to address 
this issue. However, as mentioned in the second challenge, for these to be valuable, 
a model must be able to transfer the knowledge gained from simulated training 
data to real-world situations. A standard method for measuring a model’s ability 
to generalize is transferability, where a model’s accuracy on a dataset different 
from the training dataset is evaluated. Suppose a model can effectively transfer 
the knowledge gained from a simulated training set to a real-world testing set. In 
that case, it will likely perform better in unseen real-world scenarios. Even if these 
existing methods can transfer knowledge well, the predictions of such methods lack 
explainability, which is crucial for establishing trust between ADSs and human 
drivers [1, 2, 4]. In the third research challenge, Explainability refers to the ability of 
a model to effectively communicate the factors that influenced its decision-making 
process for a given input, particularly those that might lead the model to make 
incorrect decisions [1, 13]. Suppose a model can give attention to the aspects or 
entities in a traffic scene that make the scenario risky or non-risky. In that case, it 
can improve its decision, and its decisions become more explainable [39].
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2 Scene-Graph Representation of Road Scenes 

2.1 ADS Design Philosophies and Intermediate Representation 

Many design philosophies for ADS have been proposed over the years, such as 
the modular design and the end-to-end design. Most modular design approaches 
comprise a pipeline of separate components from the sensory inputs to the actuator 
outputs. In contrast, end-to-end approaches generate output directly from their 
sensory inputs [6, 31]. One advantage of a modular design approach is the division 
of a task into an easier-to-solve set of sub-tasks that have been addressed in other 
fields such as robotics [14], computer vision [12, 19, 20] and vehicle dynamics [32]. 
As a result, prior knowledge from these fields can be leveraged when designing 
the components corresponding to the sub-tasks. However, one disadvantage of 
such an approach is the complexity of the whole pipeline [46]. End-to-end design 
approaches can achieve good performance with a smaller network size because 
they perform feature extraction from sensor inputs implicitly through the network’s 
hidden layers [6, 18]. However, the authors in [8] point out that the needed level 
of supervision is too weak for the end-to-end model to learn critical controlling 
information (e.g., from image to steering angle), so it can fail to handle complicated 
driving maneuvers. 

Recently, few methodologies have leveraged the benefits of an intermediate 
representation (IR). DeepDriving [8], called the direct perception, was one of the 
first approaches to use an IR methodology. In their methodology, a set of affordance 
indicators, such as the distance to lane markings and cars in the current and adjacent 
lanes, are extracted from an image and serve as an IR for generating the final control 
output. The authors of [8] prove that the use of this IR is effective for simple 
driving tasks such as lane following and for generalizing the learned knowledge 
from simulation to real-world environments, thus improving transferability. Authors 
in [3] use a collection of filtered images, each representing a piece of distinct 
information, as the IR. They state that the IR used in their methodology allows the 
training to be conducted on real or simulated data, facilitating testing and validation 
in simulations before testing on a real car. Moreover, they show that it is easier 
to synthesize perturbations to the driving trajectory at the mid-level representations 
than at the level of raw sensors, enabling them to produce non-expert behaviors such 
as off-road driving and collisions. As such, the capability to capture and identify 
the complex relationships between road objects is critical in designing an effective 
human-like perception system for automotive CPS. 

2.2 Graph-Based Driving Scene Understanding 

In literature, several groups have adopted a variant of Knowledge Graphs known 
as scene-graphs to model the road state and the relationships between objects [16,
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Fig. 1 How camera data can be used to construct a road scene-graph representation 

21, 22, 25, 45]. A scene-graph representation encodes rich semantic information of 
an image or observed scene, essentially bringing an abstraction of objects and their 
complex relationships as illustrated in Fig. 1. While each of these related works 
proposes a different form of scene-graph representation, all demonstrate significant 
performance improvements over conventional perception methods. In [16], the 
authors propose a 3D-aware egocentric spatio-temporal interaction framework that 
uses both an Ego-Thing graph and an Ego-Stuff graph, which together encode 
how the ego vehicle interacts with both moving and stationary objects in a scene, 
respectively. In [25], the authors propose a pipeline using a multi-relational graph 
convolutional network (MR-GCN) for classifying the driving behaviors of traffic 
participants. The MR-GCN combines spatial and temporal information, including 
relational information between moving objects and landmark objects. Our prior 
work has demonstrated that the use of spatio-temporal scene-graph embeddings 
improves performance at subjective risk assessment and collision prediction versus 
state-of-the-art methods [21, 22, 45]. In addition, our method can better transfer 
knowledge and is more explainable. 

2.3 Scene-Graph Extraction from Driving Scenes 

In literature, several approaches have been proposed for extracting scene-graphs 
from images by detecting the objects in a scene and then identifying their visual 
relationships [42, 44]. However, these works focus on extracting scene-graphs for 
single general images for tasks like automated image captioning instead of modeling
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these graphs to maximize performance over a temporally-correlated sequence of 
images as are typically used for autonomous driving. Thus, we adopted a partially 
rule-based process to extract objects and their attributes from images. Object 
attributes and bounding boxes are extracted directly from images using state-of-
the-art image processing techniques. As Fig. 1 shows, we first convert each image 
. It into a collection of objects . Ot using Faster RCNN [34], a state of the art object 
detection algorithm in the Detectron2 [40] computer vision library. Next, we use 
OpenCV’s perspective transformation library to generate a top-down perspective of 
the image, commonly known as a “birds-eye view” projection [7]. This projection 
lets us approximate each object’s location relative to the road markings and the ego 
vehicle. Next, for each detected object in . Ot , we use its estimated location and class 
type (cars, motorcycles, pedestrians, lanes, etc.) to compute the attributes required 
in building the scene-graph. 

After collecting the list of objects in each image and their attributes, we can 
begin constructing the corresponding scene-graphs. For each image . It , we denote 
the corresponding scene-graph by .Gt = {Ot,At } and model it as a directed multi-
graph where multiple types of edges connect nodes. The nodes of a scene-graph, 
denoted as . Ot , represent the objects in a scene such as lanes, roads, traffic signs, 
vehicles, pedestrians, etc. The edges of . Gt are represented by the adjacency matrix 
. At , where each value in . At represents the type of the corresponding edge in . Gt . 
The edges between two nodes represent the different kinds of relations between 
them (e.g., near, Front_Left, isIn, etc.). For assessing the risk of driving behaviors, 
we consider both distance and directional relations between traffic participants 
useful. We assume that one object’s local proximity and positional information will 
influence the other’s motion only if they are within a certain distance. Therefore, 
in this work, we extract only the location information for each object and adopt 
a simple rule to determine the relations between the objects using their attributes 
(e.g., relative location to the ego car), as shown in Fig. 1. For distance relations, 
we assume two objects are related by one of the relations .r ∈ {Near_Collision 
(4 ft.), Super_Near (7 ft.), Very_Near (10 ft.), Near (16 ft.), Visible (25 ft.)} if 
the objects are physically separated by a distance that is within that relation’s 
threshold. In the case of the directional relations, we assume two objects are related 
by the relation .r ∈ {Front_Left, Left_Front, Left_Rear, Rear_Left, Rear_Right, 
Right_Rear, Right_Front, Front_Right} based on their relative positions if they are 
within the Near threshold distance from one another. 

In addition to directional and distance relations, we also implement the isIn 
relation that connects vehicles with their respective lanes. Specifically, we use 
each vehicle’s horizontal displacement relative to the ego vehicle to assign cars to 
either the Left Lane, Middle Lane, or  Right Lane based on known lane width. Our 
abstraction only includes these three-lane areas, and, as such, we map vehicles in all 
left lanes to the same Left Lane node and all vehicles in right lanes to the Right Lane 
node. If a vehicle overlaps two lanes (i.e., during a lane change), we assign it an isIn 
relation to both lanes. Figure 1 illustrates an example of resultant scene-graph.
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3 Spatio-Temporal Scene-Graph Embedding Approach for 
Robust Automotive CPS Perception 

To tackle the research challenges, we propose a scene-graph augmented data-driven 
approach for assessing the subjective risk of driving maneuvers, where the scene-
graphs serve as intermediate representations (IR) as shown in Fig. 1. The key  
advantage of using scene-graph as IR is that they allow us to model the relationships 
between the participants in a traffic scene, thus potentially improving the model’s 
understanding of a scene. Our proposed architecture consists of three major 
components: (1) a pipeline to convert the images of a driving clip to a sequence 
of scene-graphs, (2) a Multi-Relational Graph Convolution Network (MR-GCN) to 
convert each of the scene-graphs to an embedding (a vectorized representation), and 
(3) an LSTM for temporally modeling the sequence of embeddings of the respective 
scene-graphs. Our model also contains multiple attention layers: (1) a node attention 
layer before the embedding of a scene-graph is computed, and (2) an attention 
layer on top of the LSTM, both of which can further improve its performance and 
explainability. 

3.1 Problem Formulation 

For training the model, we formulate the problem of subjective risk assessment as 
a supervised scene-graph sequence classification problem. Our approach makes the 
same assumption used in [47] that the set of driving sequences can be partitioned 
into two jointly exhaustive and mutually exclusive subsets: risky and safe. We 
denote the sequence of images of length T by .I = {I1, I2, I3, . . . , IT }. We assume 
the existence of a spatio-temporal function f that outputs whether a sequence of 
driving actions x is safe or risky via a risk label y, as given in Eq. (1). 

.y = f (I) = f ({I1, I2, I3, . . . , IT −1, IT }), (1) 

where 

.y =
{

(1, 0), if the driving sequence is safe
(0, 1), if the driving sequence is risky.

(2) 

The goal of our approach is to propose a suitable model for approximating the 
function f . Here, the first step is the extraction of the scene-graph . Gt from each 
image . It of the video clip . I. This step is achieved by a series of processes that 
we collectively call the Scene-Graph Extraction Pipeline (described in Sect. 2.3). 
In the second step, these scene-graphs are passed through graph convolution layers 
and an attention-based graph pooling layer. The graph-level embeddings of each 
scene-graph, . hGt , are then calculated using a graph readout operation. Next, these
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Fig. 2 An illustration of spatio-temporal scene-graph embedding approach 

scene-graph embeddings are passed sequentially to LSTM cells to acquire the 
spatio-temporal representation, denoted as . Z, of each scene-graph sequence. Lastly, 
we use a Multi-Layer Perceptron (MLP) layer with a Softmax activation function to 
acquire the final inference, denoted as . ŷ, of the risk for each driving sequence . I. 

To sum up, the model of our approach consists of three major components: 
a spatial model, a temporal model, and a risk inference component. The spatial 
model outputs the embedding .hGt for each scene-graph . Gt . The temporal model 
processes the sequence of scene-graph embeddings .hI = {hG1, hG2 , . . . , hGT

} and 
produces the spatio-temporal embedding . Z. The risk inference component outputs 
each driving clip’s final risk assessment, denoted as . ŷ, by processing the Spatio-
temporal embedding . Z. The overall network architecture is shown in Fig. 2. We  
discuss each of these components in detail below. 

3.2 Spatial Modeling 

The spatial model we propose uses MR-GCN layers to compute the embedding for 
a scene-graph. The use of MR-GCN allows us to capture multiple types of relations 
on each scene-graph .Gt = {Ot,At }. In the  Message Propagation phase, a collection 
of node embeddings and their adjacency information serve as the inputs to the 
MR-GCN layer. Specifically, the l-th MR-GCN layer updates the node embedding, 
denoted as . h(l)

v , for each node v as follows:
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.h(l)
v = �0 · h(l−1)

v +
∑
r∈At

∑
u∈Nr (v)

1

|Nr (v)|�r · h(l−1)
u , (3) 

where .Nr(v) denotes the set of neighbor indices of node v with the relation .r ∈ At . 
.�r is a trainable relation-specific transformation for relation r in MR-GCN layer. 
Since the information in .(l − 1)-th layer can directly influence the representation 
of the node at l-th layer, MR-GCN uses another trainable transformation .�0 to 
account for the self-connection of each node using a special relation [35]. Here, 
we initialize each node embedding .h(0)

v , .∀v ∈ Ot , by directly converting the node’s 
type information to its corresponding one-hot vector. 

Typically, the node embedding becomes more refined and global as the number of 
graph convolutional layers, L, increases. However, the authors in [43] also suggest 
that the features generated in earlier iterations might generalize the learning better. 
Therefore, we consider the node embeddings generated from all the MR-GCN 
layers. To be more specific, we calculate the embedding of node v at the final 
layer, denoted as . HL

v , by concatenating the features generated from all the MR-GCN 
layers, as follows, 

.HL
v = CONCAT({h(l)

v }|l = 0, 1, . . . , L). (4) 

We denote the collection of node embeddings of scene-graph .Gt after passing 
through L layers of MR-GCN as .Xprop

t (L can be 1, 2 or 3). 
The node embedding .Xprop

t is further processed with an attention-based graph 
pooling layer. As stated in [13], such an attention-based pooling layer can improve 
the explainability of predictions and is typically considered a part of a unified 
computational block of a graph neural network (GNN) pipeline. In this layer, nodes 
are pooled according to the scores predicted from either a trainable simple linear 
projection [10] or a separate trainable GNN layer [15]. We denote the graph pooling 
layer that uses the SCORE function in [10] as  TopkPool and the one that uses 
the SCORE function in [15] as  SAGPool. The calculation of the overall process 
is presented as follows: 

.α = SCORE(Xprop
t ,At), (5) 

.P = topk(α), (6) 

where . α stands for the coefficients predicted by the graph pooling layer for nodes 
in . Gt and . P represents the indices of the pooled nodes, which are selected from 
the top k of the nodes ranked according to . α. The number k of the nodes to be 
pooled is calculated by a pre-defined pooling ratio, pr , and using .k = pr × |Ot |, 
where we consider only a constant fraction pr of the embeddings of the nodes of 
a scene-graph to be relevant (i.e., 0.25, 0.5, 0.75). We denote the node embeddings 
and edge adjacency information after pooling by .Xpool

t and .Apool
t and are calculated 

as follows:
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.Xpool
t = (Xprop

t � tanh(α))P, (7) 

.Apool
t = Aprop

t (P,P)
. (8) 

where . � represents an element-wise multiplication, .()P refers to the operation that 
extracts a subset of nodes based on P , and .()(P,P) refers to the formation of the 
adjacency matrix between the nodes in this subset. 

Finally, our model aggregates the node embeddings of the graph pooling layer, 
.Xpool

t , using a graph READOUT operation, to produce the final graph-level 
embedding .hGt for each scene-graph . Gt as given by 

.hGt = READOUT(Xpool
t ), (9) 

where the READOUT operation can be either summation, averaging, or selecting 
the maximum of each feature dimension, over all the node embeddings, known 
as sum-pooling, mean-pooling, or  max-pooling, respectively. The process until this 
point is repeated across all images in . I to produce the sequence of embedding, . hI . 

3.3 Temporal Modeling 

The temporal model we propose uses an LSTM for converting the sequence of 
scene-graph embeddings . hI to the combined spatio-temporal embedding . Z. For  
each timestamp t , the LSTM updates the hidden state . pt and cell state . ct as follows, 

.pt , ct = LSTM(hGt , ct−1), (10) 

where .hGt is the final scene-graph embedding from timestamp t . After the LSTM 
processes all the scene-graph embeddings, a temporal readout operation is applied 
to the resultant output sequence to compute the final Spatio-temporal embedding Z 
given by 

.Z = TEMPORAL_READOUT(p1, p2, . . . , pT ) (11) 

where the .TEMPORAL_READOUT operation could be extracting only the last 
hidden state . pT (LSTM-last), or be a temporal attention layer (LSTM-attn). 

In [2], adding an attention layer b to the encoder-decoder based LSTM architec-
ture is shown to achieve better performance in Neural Machine Translation (NMT) 
tasks. For the same reason, we include LSTM-attn in our architecture. LSTM-attn 
calculates a context vector q using the hidden state sequence . {p1, p2, . . . , pT }
returned from the LSTM encoder layer as given by
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.q =
T∑

t=1

βtpt (12) 

where the probability . βt reflects the importance of . pt in generating q. The  
probability . βt is computed by a Softmax output of an energy function vector e, 
whose component . et is the energy corresponding to . pt . Thus, the probability . βt is 
formally given by 

.βt = exp(et )∑T
k=1 exp(ek)

, (13) 

where the energy . et associated with . pt is given by .et = b(s0, pt ). The temporal 
attention layer b scores the importance of the hidden state . pt to the final output, 
which in our case is the risk assessment. The variable . s0 in the temporal attention 
layer b is computed from the last hidden representation . pT . The final Spatio-
temporal embedding for a video clip, Z, is computed by feeding the context vector 
q to another LSTM decoder layer. 

3.4 Risk Inference 

The last piece of our model is the risk inference component that computes the risk 
assessment prediction . Ŷ using the spatio-temporal embedding . Z. This component 
is composed of a MLP layer followed by a Softmax activation function. Thus, the 
prediction . Ŷ is given by 

.Ŷ = Sof tmax(MLP(Z)) (14) 

During training, the loss for the prediction is calculated as follows, 

.CrossEntropyLoss(Y, Ŷ ) (15) 

For training our model, we use a mini-batch gradient descent algorithm that updates 
its parameters by training on a batch of scene-graph sequences. To account for label 
imbalance, we apply class weighting when calculating loss. Besides, several dropout 
layers are inserted into the network to reduce overfitting. 

4 Experimental Results 

To illustrate the benefits of our scene-graph augmented approach, we present exper-
imental results for assessing the risk of several common driving tasks, including
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lane changes, turns, and merges into (merging) and out of (branching) the traffic 
flow. We also evaluate a state-of-the-art SMT+CNN+LSTM based risk assessment 
model [47] on these tasks to serve as the baseline. We evaluate several different 
aspects of performance, including risk assessment accuracy, capability to transfer 
knowledge from synthetic data to real-world data, and explainability. Next, let us 
discuss the experimental setup. 

4.1 Experimental Setup 

We prepare two types of datasets for the experiments (1) synthesized datasets and 
(2) real-world driving datasets. To create the synthesized datasets, we collected 
data from various driving conditions simulated in the CARLA driving simulator.1 

We generated the real-world dataset by extracting various driving actions from 
the Honda Driving Dataset (HDD) [33]. We generated a wide range of simulated 
lane changes using the various presets in CARLA that allowed us to specify the 
number of cars, pedestrians, weather and lighting conditions, driver behavior, etc. 
The lane changes that resulted in collisions, near collisions, or otherwise dangerous 
conditions are considered our risky samples, while the safe lane changes are labeled 
as safe. Common factors that can affect the risk of a driving action include the 
distance to other cars and the side curbs, the speed relative to other vehicles, the 
sizes of adjacent vehicles, the presence of bikers or pedestrians, and the traffic light 
status. 

We generated two synthesized datasets: a 271-syn dataset and a 1043-syn dataset, 
containing 271 and 1043 lane-changing clips, respectively. In addition, we sub-
sampled the 271-syn and 1043-syn datasets further to create two balanced datasets 
that have a 1:1 distribution of risky to safe lane changes: 96-syn and 306-syn. Our  
synthesized driving datasets are available online in both raw image and scene-
graph format [11]. For real driving datasets, we processed the HDD dataset to 
create a dataset called 1361-honda composed of 571 lane changing, 350 turning, 
297 branching, and 149 merging video clips. For evaluating the capability of the 
model to transfer knowledge after training on the synthesized lane change datasets, 
we subsampled 1361-honda to create a lane-changing dataset that contains 571 real-
world lane changing clips, called 571-honda. The final score of a model on a dataset 
is computed by averaging over the testing set scores for ten different train-test splits, 
where 30% of the dataset is reserved as the testing set. 

In our experiments, we trained each model for 500 epochs. From our experimen-
tation, we found that the best configuration of our model consisted of two MR-GCN 
layers with 64 hidden units, a SAGPool pooling layer with a ratio of 0.5, sum-
pooling for graph readout operation, and LSTM-attn for temporal modeling.

1 https://github.com/carla-simulator/carla. 

https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
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4.2 Experiments on Risk Assessment 

We evaluate each model’s performance on each dataset by measuring its classifi-
cation accuracy and the Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC). The classification accuracy is the ratio of the number of 
correct predictions on the test set of a dataset to the total number of samples in 
the testing set. AUC, sometimes referred to as a balanced accuracy measure [36], 
quantifies the likelihood that a binary classifier ranks a positive sample more highly 
than a random negative sample. This metric is especially useful for imbalanced 
datasets (i.e. 271-syn, 1043-syn, 571-honda). 

Figure 3 shows the comparison between our model’s performance and the 
baseline [47] for the synthetic datasets. The results show that our approach performs 
best across all datasets.

The results also show that the performance difference between our approach and 
the baseline increased when the training datasets were smaller. This result indicates 
that our approach can learn an accurate model even from a smaller dataset, likely 
resulting from its use of a scene-graph based IR. We also found that our approach 
performs better than the baseline on balanced datasets, meaning that our approach is 
better at discriminating between the two classes in general. For context, the datasets 
271-syn and 306-syn contain roughly the same number of clips but differ in the 
distribution of safe to risky lane changes (2.30:1 for 271-syn vs. 1:1 for 306-syn). 

Although these results are impressive, we must ask, how much does each 
component in the model contribute to the overall performance? One easy way to 
answer this question is with an ablation study, where we measure the performance 
of our model after adding each modeling component one at a time, as is shown 
in Table 1. From Table 1 we find that the simplest of the models, with no MR-
GCN layer (replaced with an MLP layer) and a simple average of the embeddings 
in . hI for the temporal model (denoted as mean in Table 1), achieves a relatively 
low classification accuracy of 75%. Starting from this base model, we find that 
replacing mean with an LSTM layer for temporal modeling yields a 10.5% increase 
in performance. Next, we try adding a single MR-GCN layer with 64 hidden units 
and sum-pooling to the base model, resulting in a 14.8% performance gain. The 
performance gain achieved by including the MR-GCN layer alone demonstrates 
the effectiveness of explicitly modeling the relations between objects. Now, we try 
the single MR-GCN layer with sum-pooling and the LSTM model together, which 
yields the maximum performance gain of 18.1% over the simplest model. This result 
clearly illustrates that our model’s spatial and temporal components are both crucial 
for maximizing performance.
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Fig. 3 Accuracy and AUC comparison between our approaches (Real Image and CARLA GT) 
and [47] on different datasets. Our approach outperforms the baseline across datasets
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Table 1 The results of the CARLA GT approach on 1043-syn dataset with various spatial and 
temporal modeling settings. In these experiments, we used MR-GCN layers with 64 hidden 
units and sum-pooling as the graph readout operation. The bolded numbers indicate the highest 
performing configuration in terms of Average Accuracy (Avr. Acc.) and Average AUC Score (Avr. 
AUC) for the grouping indicated by the leftmost column 

Spatial modeling Temporal modeling Avr. Acc. Avr. AUC 

Ablation study No MR-GCN mean 0.762 0.823 

No MR-GCN LSTM-last 0.867 0.929 

1 MR-GCN mean 0.910 0.960 

1 MR-GCN LSTM-last 0.943 0.977 
Temporal attention No MR-GCN LSTM-last 0.867 0.929 

No MR-GCN LSTM-attn 0.868 0.928 

1 MR-GCN LSTM-last 0.943 0.977 

1 MR-GCN LSTM-attn 0.950 0.977 
Spatial attention 1 MR-GCN mean 0.910 0.960 

1 MR-GCN, TopkPool mean 0.886 0.930 

1 MR-GCN, SAGPool mean 0.937 0.968 

4.3 Evaluation of Attention Mechanisms on Risk Assessment 

Next, we evaluate the various attention components of our proposed model. To 
evaluate the benefit of attention over the spatial domain, we tested our model with 
three different graph attention methods: no attention, SAGPool, and TopkPool. To  
evaluate the impact of attention on the temporal domain, we tested our model with 
the following temporal models: mean, LSTM-last, and LSTM-attn. The results of 
this analysis are also shown in Table 1. 

For evaluating the benefits of graph attention, we start with an attention-free 
model: one MR-GCN layer with sum-pooling + mean. In comparison, the model 
that uses SAGPool for attention on the graph shows a 2.7% performance gain over 
the attention-free model because using attention over both nodes and relations 
allows SAGPool to better filter out irrelevant nodes from each scene-graph. We  
found that the model using TopkPool as the graph-attention layer became relatively 
unstable, resulting in a 2.4% performance drop compared to the attention-free 
model. This drop is likely because TopkPool ignores the relations between nodes 
when calculating . α. 

For evaluating the impact of attention on the temporal model, we assessed the 
effects of adding a temporal attention layer to the following two models: (1) with 
no MR-GCN layers and no temporal attention and (2) with one MR-GCN layer 
and no temporal attention. Our model with no MR-GCN and no temporal attention 
performed nearly the same as our model with no MR-GCN and LSTM-attn. We  
also find that adding LSTM-attn to the model with one MR-GCN layer increases its 
performance by 0.7% over the same model with no temporal attention. These results 
demonstrate that the inclusion of temporal attention improves performance, though 
only marginally compared to the benefits of spatial attention. This might be because
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Fig. 4 The visualization of attention weights in both spatial (. α) and temporal (. β) domains using 
a risky lane changing clip as an example. We used a gradient color from light yellow to red to 
visualize each node’s projection score indicating its relative importance. The white to red bar chart 
visualizes the temporal attention scores of each frame 

LSTM-last learns a good enough temporal model that LSTM-attn can only slightly 
improve on it. 

Figure 4 demonstrates how we can use the attention weights of our model to 
pinpoint the critical factors related to driving risk in both temporal and spatial 
domains, thus enabling it to explain its decisions. As described previously in Eq. (7), 
the node attention weights . α are used by our graph pooling layer to filter out the 
objects in a scene-graph that are less relevant to the overall risk of the scene. 
Meanwhile, the temporal attention weights, . β, allow the LSTM encoder to score 
each intermediate hidden state (. pt ) and retain only the most useful information in Z 
for the final risk assessment. We demonstrate our model’s capability to explain its 
decisions better using the visualization of both spatial and temporal attention shown 
in Fig. 4. The figure shows a clearly increasing trend of temporal attention scores 
.β1, β2, . . . βT as the lane-changing scenario becomes riskier over time. Intuitively, 
the frames with higher attention scores are weighted more heavily when calculating 
Z and thus contribute more to the final risk assessment decision. In this risky lane 
changing example, the temporal attention scores progressively increase between 
frames 19 and 32 during the lane change; and the highest frame attention weights
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appear in frames 33 and 34, which are the frames immediately before the collision 
occurs. Figure 4 also shows the projection scores for the node attention layer, where 
a higher score for a node indicates that it contributes more to the final decision of risk 
assessment. As shown in this example, as the ego car approaches the yellow vehicle, 
the node attention weights for the ego car and the yellow vehicle are increased 
proportionally to the scene’s overall risk. In the first few frames, the risk of collision 
is low; thus, the node attention weights are low; however, in the last few frames, 
a collision between these two vehicles is imminent; thus, the attention weights for 
the two cars are much higher than for any other nodes in the graph. This example 
clearly shows how graph representations and models, when used with attention, can 
effectively explain their decision-making process. This capability can be valuable 
for debugging edge cases at design time, thus reducing the chances of ADS making 
unexpected, erroneous decisions in real-world scenarios and improving human trust 
in the system. 

4.4 Transferability from Virtual To Real Driving 

This section demonstrates our approach’s capability to effectively transfer the 
knowledge learned from a simulated dataset to a real-world dataset. As mentioned 
previously, this capability is vital since little real-world data exists for rare scenarios. 
Models must primarily rely on simulation data to improve driving safety in the real 
world. To demonstrate this capability, we use the model weights and parameters 
learned from training on the 271-syn dataset or the 1043-syn dataset directly 
for testing on the real-world driving dataset: 571-honda. We also compare the 
transferability of our model with that of the baseline method [47]. The results are 
shown in Fig. 5.

As expected, the performance of both our approach and the baseline degrades 
when tested on 571-honda dataset. However, as Fig. 5 shows, the accuracy of our 
approach only drops by 6.7% and 3.5% when the model is trained on 271-syn and 
1043-syn, respectively, while the baseline’s performance drops drastically by a much 
higher 21.3% and 14.9%, respectively. The results show that our proposed model 
can transfer knowledge more effectively than the baseline. 

4.5 Risk Assessment By Action Type 

This section shows results from evaluating our model’s performance on other 
kinds of driving scenarios available in the HDD besides lane changes: turning, 
branching, merging, etc. The results for training and evaluating our model on the 
1361-honda dataset are shown in Table 2. From Table 2, we can see that our graph-
based approach significantly outperforms [47] in both overall accuracy (0.86 v.s. 
0.58) and overall AUC (0.91 v.s. 0.61), indicating that our approach can better
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Fig. 5 Transferability comparison between our real image model and the baseline [47]. In this 
experiment, we trained each model on both 271-syn dataset and 1043-syn dataset. Then we tested 
the accuracy of each model on both original dataset and 571-honda dataset

Table 2 Breakdown of risk 
assessment performance by 
driver action types (Lane 
Changing, Merging, 
Branching, and Turning) 
evaluated on 1361-Honda 
dataset. The bolded numbers 
indicate the highest score 
between Ours and the 
baseline [47] on each of the 
categories of driver actions 
(rows) 

Metric Action type Ours [47] 

Accuracy Overall 0.8655 0.5844 

Lane changing 0.8710 0.5714 

Merging 0.8462 0.5854 

Branching 0.9101 0.5556 

Turning 0.8211 0.6218 

AUC Overall 0.9124 0.6078 

Lane changing 0.9105 0.5877 

Merging 0.9395 0.6526 

Branching 0.9462 0.5807 

Turning 0.8645 0.6400 

assess risk across diverse driving scenarios and driving action types. In Table 2 
we also show the performance for each action type. The results show that our 
approach also outperforms [47] on each class of driving action. Our approach 
slightly under-performs on turning scenarios compared to its performance on other 
action types. This discrepancy is likely because turning scenarios are intrinsically 
more complicated than straight-road driving scenarios (lane change, branch, merge). 
Another reason could be that the heading of vehicles is a more significant factor 
in complicated scenarios, while the scene-graph used in our work contains only 
distance and directional relations.
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5 Conclusion 

In this chapter, we discovered how the expressive power of graph representations 
of data could be leveraged to significantly improve the perception performance of 
automotive CPS. There were clear improvements across experiments and datasets, 
with our graph-based approach outperforming conventional CNN-based methods 
in terms of accuracy, explainability, and transferability. All of these benefits can 
be attributed to the explicit modeling of inter-object relationships via the graph’s 
topology, thus improving the model’s ability to semantically understand each scene. 
Although the approach presented here was effective at modeling risk, several other 
problems in the AV domain remain unsolved, including motion prediction, object 
detection, and control. When adapted to fit these problems, graph-based methods 
could potentially provide the same benefits over existing methods. 
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