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1 Resiliency Needs and Challenges in CAV Applications 

Automotive systems have evolved over the last two decades from primarily mechan-
ical and electro-mechanical systems into complex cyber-physical systems with a 
wide range of communication and sensory capabilities. In addition to a variety of 
sensors (e.g., Radar, Lidar, etc.), a modern vehicle is equipped with various inter-
faces for Internet connectivity, and vehicular communications (V2X) technology 
(e.g., Digital Short Range Radio) to interact with other vehicles (V2V), components 
of transportation infrastructure (V2I), or other electronic devices connected to the 
Internet (V2IoT). The combination of sophisticated sensors and communication 
enables connected and autonomous vehicle (CAV) applications, i.e., applications 
that exploit cooperative information sharing among vehicles and infrastructures 
for streamlining traffic movement, improving road safety, and efficient infras-
tructure utilization. CAV applications being developed today include platooning 
[5], cooperative dynamic route management [2, 3], intersection management [12], 
etc. With increasing proliferation of connectivity and autonomy of vehicles, the 
trend is towards increasing sophistication of such applications and the consequent 
potential to bring in transformative impact on road safety, passenger comfort, and 
environmental sustainability. 

However, one critical challenge with CAV applications is their vulnerability to 
a spectrum of cyber-attacks. An adversary can easily compromise the sensory and 
communication inputs to disrupt traffic movement, cause catastrophic accidents, and 
bring down the transportation infrastructure. A key problem with these attacks is 
that an adversary no longer needs to actually hack into the hardware or software 
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of the vehicle that is the target of the cyber-attack: sending misleading or even 
malformed V2X messages or sensory data is often sufficient to disrupt the connected 
car ecosystem. 

The focus of this chapter is the problem of real-time resiliency in CAV appli-
cations, against adversaries that target compromising V2X or sensory inputs. We 
refer to these inputs as “perception inputs” or “perception channels”. The impact 
of a successful compromise can be a perturbation of some (subset of) perception 
channels involved in the application, such that the inputs received would be different 
from actual. For instance, in Cooperative Adaptive Cruise Control (CACC), a 
vehicle . E receives the velocity, relative position, and acceleration of its preceding 
vehicle . P; during an attack, the values received by . E would be perceived to be 
different from ground truth. The focus of real-time resiliency is to augment the 
application functionality so that . E can perform safely and efficiently, even during 
attack. 

1.1 Constraints 

Designing real-time resiliency for practical CAV applications is a challenging 
proposition. A viable solution must address the following key issues (among others). 

How Can We Identify a Suitable Threat Model for a Given Application? The 
security requirements vary from one cooperative driving application to the other 
based on the application objectives. Consequently, the relevant adversaries to defend 
against, and the impact of a given attack on the target vehicle also vary from one 
application to the other. For instance, an eavesdropping attack may be considered 
unimportant for cooperative collision detection application. However, for a routing 
service application it may be paramount to protect private navigation data of the 
target vehicles from an unauthorized entity. While it is important to consider a 
realistic threat model that can account for the relevant attack orchestrations, an 
all-powerful adversary with limitless capabilities cannot be defended against by 
any security solution. For instance, consider a CAV application where a vehicle 
computes driving decisions based on the sensory data specifying the states (position, 
velocity, acceleration, etc.) of all the vehicles in the vicinity. If an adversary 
collusively corrupts all the sensory data in a way that all kinematics equations 
remain valid but the values are different from ground truth, then it is impossible 
for the victim vehicle to determine if the values it receives are ground reality 
or corrupted. For instance, an multi-channel adversary could replace the velocity 
of the preceding vehicle with a different value while adjusting the position and 
acceleration accordingly so that the laws of kinematics are satisfied. Such an 
adversary is clearly “all powerful” in the sense that it is impossible to defend against. 
Therefore it becomes essential to strike the right balance between identifying a 
threat model that is practical while also accounting for the most relevant adversaries 
compromising the application objectives.
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How Can We Make Sure that the Resiliency Is Viable? A viable solution should 
address the diverse spectrum of attacks on CAVs, while obeying the safety 
requirements and automotive platform constraints including limited computational 
resources, strict timing requirements, stringent cost and time to market constraints, 
etc. At the same time, it is required that the security solution should be capable of 
handling unknown attack scenarios. 

How Can We Validate the Solution? Testing and validation are crucial in developing 
a security solution for CAV systems. However, real-world testing is not a feasible 
option due to road safety concerns. This may require the use of simulation 
environments for validation instead. Unfortunately, most automotive simulators 
available for the research community are not sophisticated enough to provide a 
flexible simulation environment to validate the solution in realistic attack scenarios. 
The diverse and evolving attack spectrum further complicates the validation process. 

1.2 REDEM: Vision for ML-Based Resiliency 

In recent work [6], we have put forward a generic approach, which we call REDEM 
(for “Real-time Detection and Mitigation”), to address real-time resiliency require-
ments in CAV applications to protect adversaries compromising perception inputs. 
REDEM is not a specific architecture: after all, note from above that a resiliency 
solution must be customized for different CAV applications and different target 
adversaries. Instead, REDEM represents a systematic methodology for architecting, 
tuning, and validating a resiliency solution. At the heart of REDEM is the idea that 
it is possible for a vehicle to detect adversarial actions through a machine learning 
model designed (and tuned) to predict normal behavior pattern when engaged in 
the targeted CAV application. The REDEM infrastructure includes a configurable, 
flexible “architectural skeleton” (described below) to realize this vision, together 
with recipes for (1) configuring the skeleton into an architectural solution for a 
given CAV application against a specific adversary model, and (2) providing a 
comprehensive validation of such architectures. 

1.3 Overview of the Chapter 

In this chapter, we provide the vision of REDEM and its realization in a fundamental 
but representative CAV application, Cooperative Adaptive Cruise Control (CACC). 
Our goal for this chapter is not necessarily to advocate REDEM as an instrument 
for designing CAV resiliency. Furthermore, we eschew rehashing technical results 
about the various REDEM incarnations, except as necessary for the completeness 
of the chapter or to explain the intuition behind a specific design choice; the 
readers interested in a more technical treatment of the REDEM architecture for
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specific CAV applications and their validation are referred to previous publications 
on the subject [7, 9–11]. Instead, in this chapter we endeavor to elucidate the 
thinking behind the many architectural decisions, challenges encountered, and the 
approaches taken to address them. We believe the lessons from REDEM could carry 
over to other applications of ML targeting real-time security resiliency in various 
critical infrastructures, particularly under computational resource limitations. 

The remainder of the chapter is organized as follows. Section 2 introduces the 
high-level design of REDEM and explains the relevance (and requirements) of 
ML-based resiliency for CAV applications. Sections 3 and 4 present a variety of 
challenges involved in making such a solution work, and REDEM’s approach to 
address these challenges. In Sect. 5 we demonstrate the efficacy of REDEM in an  
illustrative, foundational CAV application. We conclude in Sect. 6. 

2 REDEM Basics 

At the level of usage, REDEM can be envisioned as a vehicular service for connected 
vehicles. A vehicle can subscribe to the service as long as it includes a certain 
on-board architecture for ML-based anomaly detection described below. Figure 1 
shows the overall setup of REDEM. We refer to the subscribing vehicle as the ego 
vehicle,“. E”, and all of REDEM analysis is done from the point of view of this 
vehicle. Data from all subscribing vehicles is periodically uploaded to a trusted 
cloud server for progressively refining ML models used by the on-board hardware; . E
periodically updates the on-board system by downloading the latest MLmodels. The 
communication with cloud is performed when . E is connected to Internet through a 

Fig. 1 REDEM-augmented CAV engaging in cooperative autonomous driving with neighbouring 
CAVs
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trusted network, e.g., when stationary at the owner’s residence; on-road connectivity 
with cloud is not necessary. During driving operations, the on-board hardware 
automatically detects anomalies using the trained ML model installed in . E , and 
performs mitigation. 

2.1 Architecture 

The key insight behind REDEM on-board design is that the architecture of most 
CAV applications follow a standard template with two major components: (1) 
Decision Computation Module and (2) Actuation Control Module. Given the sensory 
and V2X inputs pertaining to the application, Decision Computation Module com-
putes the desired actions of the vehicle, and Actuation Control Module generates 
the control commands for the actuators. Correspondingly, REDEM augments this 
template with the following two resiliency components to defend against adversarial 
attacks. 

1. Anomaly Detector is responsible for detecting suspicious communication or 
sensory inputs. 

2. Mitigator is responsible for applying the appropriate alternate action to the 
vehicle in response to a detected anomaly. 

The role of ML in REDEM is in the design of the Anomaly Detector and 
Mitigator components. More precisely, anomaly detection is implemented through 
deployment of an ML-based predictor model that is trained to learn the normal 
behavior of Decision Computation Module. The output of Predictor is compared 
against the (real) output Decision Computation Module. A deviation beyond a pre-
defined threshold is classified as an anomaly. If no anomaly is detected, the output 
of Decision Computation Module is applied to the vehicle; otherwise, Mitigator is 
triggered. 

2.2 Appropriateness of ML-Based Solution 

CAV applications represent a domain where safety requirements are paramount. 
Given that the resiliency solution influences the driving behavior of a vehicle, safety 
requirements obviously extend to the resiliency solution as well. In particular, any 
driving decision generated from an automated source must not increase the risk of 
accident. This applies particularly to any system that performs real-time mitigation 
in response to detected anomalies: road safety should not be compromised by the 
mitigating action irrespective of whether the response is to an input classified as 
anomalous in the context of a real attack or simply due to the imprecision/inaccuracy 
in the detection algorithm. Given the criticality of safety requirement, it is natural 
to ask why one would consider ML-based solutions to address the resiliency
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question in CAV applications. After all, machine learning approaches are inherently 
probabilistic: even the best ML solution would incur errors in some cases. Would 
it not be more appropriate to consider a technology that would provide a more 
deterministic safety guarantee? 

Unfortunately, the answer is “no”. To understand the reason, note that a key 
requirement for resiliency solutions is that they must enable protection against a 
spectrum of attacks. In particular, it is infeasible to have a different solution for each 
individual attack. Aside of the fact that the number of potential attack mechanisms 
already available today is prohibitively large, we can anticipate several more to be 
discovered during the long life time of the vehicle. Since resiliency is a design 
solution, it will be difficult (and sometimes impossible) to patch the design in field 
in response to each new attack discovered after deployment. A corollary is that 
the resiliency solution must be equipped with mechanisms to address the so-called 
zero-day attacks, i.e., attacks not known at design time but subsequently discovered 
when the vehicle is in field. To our knowledge, machine learning is one of the only 
few known technologies that enable potential prediction and analysis of previously 
unknown scenarios, based on the similarity of the new scenario with those the 
model has been trained for. Furthermore, the need for zero-day attack resiliency 
undermines any argument of deterministic (or complete) protection against the 
spectrum of attacks: after all, if an attack is not known at design time one cannot 
directly guarantee that the resiliency solution protects against that attack. 

Nevertheless, it is non-trivial to actually create a practically viable resiliency 
solution using the technology. In Sects. 3 and 4, we consider some of the challenges 
and considerations involved. For each of the challenges discussed, we briefly 
mention the REDEM approach to addressing the challenge. Note that the goal is 
not to specifically advocate the REDEM approach itself but to provide a sense of the 
kind of thinking that one has to carry on to make an ML-based resiliency solution 
viable for a safety-critical multi-agent cyber-physical application domain. 

There has been significant research in developing resiliency solutions for CAVs 
against adversaries compromising the perception systems. In addition to machine 
learning approaches, there has been work on control-theoretic approaches for 
detecting attacks on CAV applications [1, 13, 17]. Control-theoretic solutions enable 
a more deterministic analysis than machine learning. However, these solutions 
indeed suffer from the problem of being point solutions to specific vulnerabilities 
alone. For instance, control-theoretic solutions proposed to defend Cooperative 
Adaptive Cruise Control against Denial-of-Service attacks on V2X communications 
or spoofing attacks on sensor systems are tightly coupled to specific attack 
mechanisms. Consequently, an adversary can easily evade these protections by 
tweaking the attack mechanisms to break the assumptions made in the solution 
design. Correspondingly, while ML-based solutions have been devised before to 
detect anomalies in cooperative connected vehicle applications [4, 14], they did 
not account for real-time resiliency. Rather, these techniques are used to detect a 
compromised execution off-line through post-analysis of the communications or 
sensory inputs provided to the vehicle vis-a-vis ground truth.
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3 Architectural Considerations 

Coming up with a resiliency architecture requires addressing a variety of challenges. 
While ML is the central component of a viable real-time resiliency, it is not the 
only thing. The resiliency solution must define a system that incorporates the ML 
prediction together with other components (e.g., the original application, mitigation, 
anomaly source identification, etc.). In this section, we consider the thought process 
behind coming up with the architecture of this overall system, the exploration 
challenges, and the REDEM approach for addressing them. Implementation, tuning, 
and validation of the ML components in particular will be discussed in Sect. 4. 

3.1 Small Data Problem 

The efficacy of any ML-based system depends upon the availability of high-
quality data. So a critical question task is: how do we get copious high-quality 
data necessary to make the ML-based predictions viable? Note that in traditional 
applications of ML (e.g., recommendation systems) this problem is addressed 
simply by collecting data for a longer duration. Unfortunately, that does not work 
for a domain like cyber-security, since finding one (or a few) security vulnerabilities 
generally triggers a mitigation response (possibly through patching, point fixes, or 
sometimes design overhaul) resulting in the previous vulnerabilities being obsolete 
and possibly making ways for newer attacks and compromises. The lack of data 
represents a vexing problem in security and is known to be a bottleneck in the 
application of ML in cyber-security solutions. 

To address the small data problem in REDEM, our key insight is that while the 
data on security attacks is indeed limited, normal behavior data is in fact plentiful. 
Furthermore, normal behavior data follows the typical characteristic of standard ML 
domains: more data can be obtained by simply collecting data for a longer duration. 
REDEM makes use of this observation by defining the resiliency problem in terms 
of anomaly detection (capturing deviations from normal behavior), rather than as 
classification (categorizing an input into normal or attack classes). The formulation 
as anomaly detection implies that the ML models need to be trained to predict only 
the normal behavior; attack or adversarial data is not necessary. Furthermore, data 
collector in REDEM enables progressive improvement of the ML model through 
continuous real-world data collection. 

However, the small data problem does have repercussions on parameter tuning 
and validation, which must be done before the application is deployed in field. We 
discuss those challenges in Sect. 4.
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3.2 Resource Constraints 

Vehicular systems are resource-constrained in terms of performance and power. 
Although automotive systems can be considered relatively high-performance com-
pared to many other Internet-of-Things devices, operations with high computational 
complexity are infeasible. The situation is exacerbated in the case of resiliency 
solutions because of the need for real-time response: if the response of a resiliency 
solution depends on the result of a computation, viability of the solution relies 
on the feasibility of carrying out the computation within limited computing 
resources under a tight upper bound on time. Indeed, resource constraints preclude 
traditional hardware security mitigations such as high-overhead cryptography-based 
approaches or authentication techniques. Resource limitations affect the choice of 
ML as a resiliency solution as well, given the computational needs of ML. 

Addressing the resource limitation problem in REDEM requires a more careful 
dissection of the source of computational overhead in ML. Roughly, there are two 
sources of computational overhead in ML-based systems. First is the cost of training 
through a substantially large set of examples to ensure sufficient prediction accuracy. 
Second is the cost of inference (or prediction) of an input in field as normal or 
anomalous. The way REDEM architecture ameliorates the training cost is to separate 
the training from in-field inference. Training in REDEM is performed offline in the 
cloud, and no real-time communication is required with the trained model during 
prediction in-field: the trained model is downloaded periodically and deployed 
into the on-board architecture. Optimizing inference cost is more tricky. Inference 
has to be done in real time using in-vehicle electronics: reliance on a cloud-
based infrastructure for this activity would result in a requirement of continuous 
connectivity which may not be viable for various terrains and geographical regions. 
Reduction of inference cost therefore requires reducing the complexity of the ML 
model itself: the more elaborate the model, the more likely that the inference entails 
increasingly sophisticated computation and consequently higher inference cost. On 
the other hand, prediction accuracy does require the ML model to be sufficiently 
elaborate both in terms of the sophistication of the underlying algorithm and in 
the number of features/parameters incorporated in the model. REDEM addresses 
this conundrum by making the trade-off between cost and accuracy explicit and 
providing the user the ability to tune their model to customize for the trade-off 
target for the application. The framework itself is agnostic to the specifics of the 
underlying ML model. Rather, the user chooses a target for prediction accuracy (in 
terms of metrics like precision, recall, and f1-score) and can select the simplest ML 
model that addresses that accuracy need.
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3.3 Multi-Channel Adversary 

In typical CAV applications, more than one perception channel can be compromised. 
For instance, in CACC application, there are three perception channels that corre-
spond to the velocity, position, and acceleration of the preceding vehicle. Generally 
acceleration is communicated through V2X messages and velocity and position 
data computed by the follower vehicle through its on-board sensors. Different 
adversary models would be interesting for different implementations or even a 
specific instance of the application, e.g., it may be appropriate for some CACC 
implementation to consider an adversary to corrupt only acceleration information 
(V2X corruption), or velocity and position information (corruption of sensor data), 
or some combination thereof.1 When an adversary can corrupt multiple channels, 
one crucial requirement for ML-based resiliency is source identification, i.e., deter-
mining which channels are “actually” corrupted. Considering the CACC example 
above, suppose the adversary actually corrupts the acceleration information. From 
the perspective of the following vehicle, however, all that can be perceived is 
that pattern of acceleration values and velocity/position values received from the 
preceding vehicle are mutually inconsistent based on standard kinematics equations. 
Without some contextual information about the environment (e.g., what acceleration 
values are feasible under a specific driving condition), it is not possible to derive 
which ones the acceleration or velocity/position channels correspond to ground 
truth and which ones are anomalous. Furthermore, if we want to enumerate all 
subsets of potentially compromised channels, we will quickly run into combinatorial 
explosion. For instance, consider a platooning scenario consisting of five non-lead 
vehicles following a leader to create a platoon string. Suppose each vehicle receives 
three inputs (e.g., position, velocity, acceleration) from the leader and the vehicle 
immediately preceding it in the platoon. Assuming that at most three of the six 
inputs each non-lead vehicle receives can be corrupted by an adversary, there are 15 
possibly compromised channels in the platoon at any point. Consequently, the total 
number of possible subsets of corrupt channels will be . 215. Clearly, a naive approach 
of systematically examining each subset of channels for possible anomalies would 
be computationally prohibitive. 

REDEM addresses the problem of multi-channel adversaries through a process 
of source identification that exploits selective sensitivity. The key insight is that 
the same anomaly can affect behavior of different functions in different ways. For 
instance, an anomalous value of a preceding vehicle acceleration would not affect a 
machine learning model in the following vehicle that is trained to predict based on 
only the values of the velocity and position of the preceding vehicle. REDEM source 
identification creates a number of ML models with selective sensitivity to different

1 When doing this, care has to be taken so that we are still considering an adversary against whom it 
is possible to have a viable defense, e.g., if the adversary can collusively corrupt all the perception 
channels of the ego vehicle it is easy to see that no resiliency solution is possible. 
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parameters which can then be used cumulatively to narrow down the number of 
adversarial channels. 

3.4 Error Control and Recoverability 

The error control and recovery challenges arise from the imperfections in ML-
based systems. The ideal case for a CAV resiliency is that the resilient system, 
when provided with any input whether benign or malicious, always behaves the 
way that the application is targeted to behave when all inputs receive ground truth, 
i.e., with no adversarial action. However, since ML techniques can only provide 
accuracy with a certain probability, it is important for any ML-based resiliency 
solution to account for the situations when ML would perform misprediction. There 
are two different ways in which the misprediction can impact the application. One 
is the direct way, where the impact would be a risk to safety or efficiency of the 
application. Another, more subtle way is the indirect effect on the vehicle state 
after the attack is completed. Under the latter, consider a platooning application 
where a vehicle computes its acceleration at each instance based on the acceleration, 
velocity, and position of the preceding vehicle. Consider an attack in which the 
position and velocity channels are collusively corrupted, i.e., the values of these 
channels are changed such that the kinematics equations are satisfied. The upshot 
of this attack will be that the victim vehicle would receive values of velocity and 
position that are mutually consistent, but inconsistent with the acceleration values. 
By analysis of the inconsistency alone, the victim vehicle would have no reason to 
deduce a vel-pos attack instead of the acceleration attack. (Indeed, if a vehicle does 
in fact deduce this then it would likely mis-predict the complementary scenario 
where acceleration is the channel being corrupted and vel-pos channels provide 
the ground truth.) A good mitigation would likely be conservative and ensure 
safe operation irrespective of the channels corrupted. Nevertheless, the vehicle’s 
“perception” of its environment would be different depending on whether it 
correctly identifies the source of corruption. Furthermore, if the source identification 
is erroneous, it is possible that a subsequent benign (ground-truth) input would 
then be deduced as malicious. In the platooning example, after having wrongly 
deduced that the acceleration value received is corrupted and the velocity-position 
values are ground truths, the resiliency system would have a perception of the 
preceding vehicle’s state velocity, position, and acceleration which is different from 
reality. Consequently, when it receives benign (ground truth) values of these three 
parameters it might wrongly consider (any subset of) them anomalous. 

From the discussion above, we see that a resiliency solution must have the 
property of recoverability, i.e., the ability to return to a state in which when it 
is provided benign inputs when its perception of the environment is not too far 
from ground truth. We also observe that in particular with multi-channel adversary, 
recoverability may be difficult to ensure.
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REDEM introduces a variety of techniques to reduce inaccuracies for solutions 
abating the errors resulting from the imperfections in ML systems. This includes 
additional rule-based validation steps in each decision-making cycle, which can 
control errors from previous time steps to propagate and accumulate. In addition 
to checks, REDEM “exploits” adversary assumptions to address recoverability 
issues, e.g., the adversaries handled by REDEM are constrained in terms of the 
degree of bias they can introduce during a corruption at different time steps and 
the number of channels that can be corrupted at the same time. This permits 
REDEM solutions to correct mistakes, e.g., the scenario where velocity and position 
are continually corrupted can be precluded by the requirement that an adversary 
during one episode of continuous attack can only select one untrusted channel. 
We put the word “exploits” in quote, since in practice a resiliency solution clearly 
cannot get to choose the adversaries against which to defend; the quality and 
power of the adversary ought to be defined by the characteristics of the application 
and deployment. Nevertheless, as we argued in Sect. 1.1, it is impossible (in 
principle and practice) to develop resiliency against an adversary that is all powerful. 
Consequently, it is fair to constrain the set of adversaries that can be handled by a 
specific resiliency solution. Nevertheless, we must still ensure that the adversary 
is realistic, i.e., it is worth developing a resiliency solution to focus specifically 
on the adversary for a threat model. For each incarnation of REDEM for different 
applications, we define a threat model constraining adversary power and argue why 
it is a realistic adversary. 

4 Design, Implementation, Tuning, and Validation of ML 
Component 

The considerations discussed in the preceding section pertained to the design of the 
overall resiliency system. In this section we delve a bit more into the ML component 
of the system. Some representative questions we need to address here include: (1) 
Which ML architecture should we choose? (2) How should we train it? (3) Where 
do we find valid data to train it? (4) How can we perform validation? We discuss 
some of these issues here, and the methodologies developed in REDEM to address 
them. 

4.1 Architecture Selection and Tuning 

One of the key activities to enable ML application is to identify the appropriate ML 
model for the task and determine its parameters. In case of ML-based resiliency, 
selection and tuning of ML model incurs several interesting challenges. First, the 
complexity of the ML model itself is constrained by the available computation
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resource as discussed in Sect. 3.2. Second, accuracy of different MLmodels depends 
on the specifics of the scenario, e.g., a model may be more accurate under benign 
conditions or a specific type of corruption. Navigating this space of models to 
identify the accurate one for a target application is highly challenging. The small 
data problem discussed in Sect. 3.1 exacerbates the problem: given the very low 
amount of data available, it is difficult for any ML model to learn the features to 
make it generalizable for all target applications, with a real danger of over-fitting. 

To address this problem, a key insight is that the goal of an ML-based resiliency 
is to ideally behave like the naive application (i.e., application with no resiliency 
introduced) when provided data corresponding to the ground reality. In other words, 
the efficiency (and accuracy) of the solution would be determined primarily by the 
prediction accuracy under benign scenario. With that in mind, the following steps 
provide a recipe for selecting the ML architecture. 

1. Identify a set of candidate ML architectures that can be deployed under the 
resource constraints. The constraints preclude overtly complicated ML systems, 
and generally permit only a small set of simple candidate architectures. It is 
generally possible to effectively navigate the space of architectures left through 
quick sampling. 

2. Train the candidate architectures with benign data, discarding ones with unac-
ceptable prediction accuracy under benign conditions. 

3. Among the architectures with acceptable prediction accuracy under benign 
scenarios, select the one with the highest prediction accuracy under malicious 
conditions. 

Obviously, the above steps should be used as a guideline, not a procedure cast 
in stone. For instance, determining the accuracy entails tuning the right set of 
hyperparameters, which in turn requires trade-offs between time, cost, computation 
capability, and many others. 

4.2 Data Preprocessing and Feature Selection 

CAV application anomalies are contextual, i.e., determining whether a specific input 
is anomalous requires understanding of the driving environment. For instance, a 
speed of 70Mph is normal in a rural highway during a clear summer evening but 
perhaps not in a snowy winter morning or during rush hours near a big city. To 
be able to accurately qualify some input as normal or anomalous, the ML system 
ideally must have access to a large quantity of fine-grained data (sampled at high 
frequency), together with sufficient context. Unfortunately, real-world datasets are 
generally incomplete and inadequate. For instance, HighD Dataset [15], which 
provides trajectory data corresponding to real vehicles driving in German highways, 
has individual vehicle trajectory data encompassing approximately 15 s. Data from 
real datasets also include noise and inconsistency, arising from errors in collection 
and measurement from the physical environment. One can augment this with
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synthetic data, collected from a variety of simulators. However, for synthetic data it 
is critical to ensure that data characteristics are consistent with what the application 
is expected to encounter in field. Note that the accuracy of ML can be harmed by 
having irrelevant features and lack of diversity in the data. Insufficient diversity in 
data may lead to overfitting. Poor feature selection may also affect generalizability. 
So, feature selection and feature engineering must be done, and it completely 
depends upon the purpose of the ML model used in the CAV application resiliency. 

Data preprocessing is the idea of preparing the raw data to make it suitable for 
consumption by ML algorithms. This includes several components. Data cleaning 
entails filling in missing values, smoothing or removing noisy data and outliers, and 
resolving inconsistencies. Data integration involves integrating data from multiple 
sources such as databases, data cubes, files, etc. To solve the complexities arising 
due to feature selection, the input features should be selected such that they have 
actual impact on the learning behavior. In such cases redundant features and features 
having no importance for the prediction objective of the ML target in question 
should be ignored while training to boost up the performance. At the same time 
new features can be engineered from existing features in order to get better results. 

REDEM addresses the data preprocessing issues by using “realistic synthetic 
data”. In particular, REDEM uses a  physical simulator platform, RDS1000® [16]. 
This platform can be used to acquire data as follows. The system permits configu-
ration of various different driving environment, and an immersive environment for 
a human to have the experience of driving in the programmed environment. We can 
record the actions of humans as they perform driving, and use that as a proxy for 
what a vehicle does under similar situation. It also includes autonomous driving 
modules that can be used to study reaction of autonomous driving algorithms under 
similar situations. We curated an extensive dataset of vehicular behavior under 24 
different driving conditions by first acquiring the data and then performing cleaning, 
reformatting and validation. This setup can produce fine-grained and real-time data. 
However, it leaves open the issue whether the environments programmed (and 
the vehicular behavior recorded) do in fact correspond to reality. To address this 
question, we show that the real dataset snippets in fact match in pattern with our 
curated dataset. The real dataset only includes short snippets of time as mentioned 
above. Nevertheless, if these snippets match the synthetic data for the corresponding 
environment, we can gain confidence that the synthetic data is indeed realistic. 

Finally, note the apparent dichotomy in the discussion above and the discussion 
in Sect. 3.1. We argued that normal behavior data is in fact plentiful, and it is the 
anomaly data that is limited. The discussion here at cursory glance would appear in 
contradiction to that statement, is that right? 

Actually, it is wrong: there is no contradiction. Normal behavior data is in 
fact plentiful once the application is deployed and can collect such data in field. 
However, when determining the parameter set and performing feature engineering, 
the application is not yet deployed in field, so we have to depend on synthetic data 
or available real-vehicle datasets.
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4.3 Decision Threshold Selection 

Given that ML in CAV resiliency is targeted specifically for anomaly detection, 
an important issue is to determine the anomaly threshold. A high threshold may 
result in reduced detection accuracy, whereas a low threshold may result in more 
false reports in detection. An ideal threshold is one that would provide both safety 
and efficiency under adversarial scenarios while incurring minimal performance 
overhead in benign conditions. A more subtle impact of the choice of the threshold is 
the robustness of the resiliency system to subversion attacks. The idea of subversion 
attacks is for the adversary to create anomalous data that is nevertheless accepted as 
normal by the detector, thereby bypassing any mitigation against the attack. A high 
anomaly threshold can make the CAV application vulnerable to subversion attacks, 
impacting the safety, efficiency, and recoverability of the resiliency solution. 

To address this problem, REDEM includes systematic methodology for identify-
ing and tuning anomaly threshold. REDEM accounts for the fact that the choice 
of threshold also depends on the operating environment and may require re-
configuration as the driving conditions change during the application engagement. 
In REDEM methodology, the threshold is determined by analyzing the distribution 
of test-set error incurred by the ML prediction model under benign conditions as 
well as a finite set of representative attacks. This is achieved in two steps. First, 
the threshold is coarsely tuned to minimize false positives and false negatives 
under benign conditions determining a ball-park range. Subsequently, a series 
of special subversion attacks are orchestrated to fine-tune the threshold that can 
balance the trade-off between the conflicting design goals of minimizing inference 
cost, achieving required detection accuracy, and minimizing overhead due to false-
positives/false-negatives. While achieving the ideal outcome for all the design goals 
simultaneously is impractical, REDEM identifies the tolerable imperfections that 
can still ensure overall resiliency (guaranteed safety and optimal efficiency at all 
times) for CAVs. The threshold selection then accounts for the re-defined practical 
design goals carefully allowing for a small amount of inference cost, false-positives, 
and false-negatives, while achieving the required detection accuracy. 

4.4 Validation 

Validation is crucial for a CAV resiliency system, since it targets highly safety-
critical applications. However, the unique nature of ML-based resiliency makes it 
highly challenging to achieve effective validation. Obviously, validation is a broad 
topic with many different facets. Here we provide a very quick summary of the 
challenges involved, and our approach to address these challenges. The reader 
interested in a fuller discussion of validation in REDEM is referred to our companion 
publication [9] that provides an exclusive treatment of the subject.
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Roughly, validation of ML-based prediction involves addressing three critical 
problems as described below. 

1. Inadequacy of data. The challenge with data for validation is similar to that for 
parameter estimation and tuning discussed in Sect. 4.2: before the application is 
deployed, how can we obtain copious amount of realistic data to validate an ML 
system? 

2. Validation against zero-day attacks. This issue arises from the fact that it is 
inadequate for a resiliency solution to only provide protection against a specific 
set of known attacks. New attacks not considered during resiliency design can 
become feasible during the life-time of the application after technology (and 
hence sophistication of attack) advances in ways not necessarily anticipated at 
deployment. This results in a conundrum for security validation: how can we 
ensure that the resiliency system is indeed effective, not only against known 
attacks but against a spectrum of attacks that are unknown at deployment time? 

3. Validation challenges for an inherently probabilistic system. This challenge 
is the verification counterpart of the design challenge we discussed in Sect. 3.4. 
Since no ML system is accurate in .100% of cases, we must be able to verify that, 
either (1) no matter what attack is instigated, the victim vehicle’s perception is 
always within tolerable limits of reality; or (2) if the perception of the victim 
vehicle deviates significantly from reality then its response still ensures safe and 
efficient operation, and after the attack is over it eventually returns to a state in 
which benign inputs are treated as benign. 

REDEM addresses the first two problems discussed above through new validation 
techniques. The third problem (probabilistic system challenge) is relegated to 
design (and validation) of resiliency solutions with the property of recoverability 
as discussed in Sect. 3.4. We address the problem of data for validation in the same 
way we did for model training, e.g., by creation of realistic synthetic data from 
a physical simulator. The uniqueness of REDEM validation is in how it addresses 
the second problem, i.e., validating resiliency against unknown adversary. The key 
insight is that it is possible to develop a resiliency system that accounts for attacks 
based on its manifestation features, stealth, and impact rather than detailed attack 
mechanism. Furthermore, it is possible to comprehensively classify the spectrum of 
attacks in this manner simply from the threat model. For instance, consider a CACC 
application where a vehicle follows its preceding vehicle by maintaining a specific 
time headway. If the adversary is confined to V2V communications, the only choices 
for the adversary are to (1) mutate an existing message, (2) fabricate a new message, 
and (3) prevent the delivery of a message. Going through this argument enables 
us to create a taxonomy of V2X attacks. Note that if our validation covers attack 
space defined by the taxonomy then the above argument suggests that we indeed 
comprehensively cover the space of all attacks defined by the threat model, including 
unknown attacks. REDEM additionally includes an automated evaluation framework 
for systematically generating attacks from the adversary taxonomy [8].
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5 REDEM Case Study: Resilient Cooperative Adaptive 
Cruise Control 

We have instantiated REDEM to incorporate resiliency on platooning applications 
[6, 7, 10]. Here we quickly summarize the instantiation of REDEM architecture on 
Cooperative Adaptive Cruise Control (CACC).We also present a summary of results 
showing the overall efficacy of the REDEM resiliency for CACC. 

5.1 CACC Overview 

In CACC, the following vehicle autonomously adapts its velocity in accordance to 
the acceleration of the vehicle in front (received through V2V communication), as 
well as the relative velocity and inter-vehicle gap (obtained from the ranging sensor 
readings). CACC enables improved road safety and efficiency (e.g., a much smaller 
headway) compared to its non-cooperative counterpart, Adaptive Cruise Control 
(ACC). Figure 2a depicts vehicles engaged in CACC. Figure 2b demonstrates the 
high-level functionality of a CACC decision computation module that implements 
constant time headway policy. Following vehicle receives the preceding vehicle’s 
instantaneous acceleration as a V2V message. It utilizes this information in addition 
to the on-board ranging sensor readings providing the relative position and velocity 
of the preceding vehicle. Consequently, the following vehicle efficiently adapts its 
velocity in accordance with the acceleration of the preceding vehicle achieving 
improved efficiency and safety. CACC forms the basis for several connected car 
applications such as multi-vehicle platooning, cooperative on-ramp merging, etc. 

A vehicle engaging in CACC can be exploited by an adversary that is capable 
of manipulating the V2V communication or a malicious preceding vehicle that 
shares false information. For instance, a malicious preceding vehicle can report 
a fake acceleration value that is greater than its true value. This can mislead the 
vehicle to accelerate at a higher value than desired that can lead to an increased 
risk of a collision. Similarly, a Man-In-The-Middle (MITM) adversary can mutate 
the messages from the preceding vehicle by adding a negative bias. The vehicle 
receives false acceleration value and fails to maintain the optimal space gap. This 
leads to loss in efficiency or can cause string instability in the traffic.

V2V(Acc) 

Ranging Ranging 

PrecedingEgo 

Collision 
Avoidance 

Mode 
Gap is smaller than gsafe 

gsafe: min safe gap 

Gap is larger than gsafe 
Gap 

Control 
Mode 

a  b

Fig. 2 (a) Two vehicles engaged in CACC; (b) Modes of operation of a conventional CACC 
decision computation module 
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5.2 Evaluation of REDEM Resiliency on CACC 

We extended CACCwith REDEM architecture to generate a resilient CACC solution 
which we call RACCON (for “Resilient Cooperative Adaptive Cruise Control). Our 
evaluation of RACCON also represents one of the most comprehensive resiliency 
evaluations performed on a connected vehicle application up to date. As pointed 
out in Sects. 3 and 4, this means consideration of a number of different factors. In 
summary, the evaluation of RACCON included the following components. 

1. Data Validation: We validated that the vehicular driving patterns reflected in our 
simulation data conform to real-world patterns from a public dataset. 

2. Identification of Appropriate ML Model: We developed a systematic evalua-
tion methodology for identifying and tuning the optimal ML architecture. 

3. Attack Impact Analysis: The viability of attack orchestration framework for 
RACCON evaluation depends on the quality of the orchestrated attacks them-
selves. We developed a methodology to analyze attacks, in terms of stealth and 
impact. 

4. Anomaly Detection Threshold: A key factor in the effectiveness of RACCON 

is the identification of anomaly threshold, i.e., the extent of deviation from 
normal behavior pattern that would be classified as a potential threat. Selecting 
an appropriate threshold involves balancing the trade-off between maximizing 
attack detection accuracy and minimizing false alarms. We present a series of 
experiments to compute the optimal threshold, achieving the balance between 
maximizing attack detection accuracy and minimizing false alarms. 

5. V2V Attack Resiliency: The central component of our evaluation shows the 
robustness of RACCON against various V2V attacks. 

6. Resiliency Against Detector Subversion: We designed a set of experiments 
to address evaluating the robustness of RACCON against detector subversion, 
and tune anomaly threshold accounting for the trade-off between robustness to 
subversion and minimizing false alarms. 

Here we show some representative plots from our experiments to give a flavor 
of the evaluation and the extent and quality of REDEM resiliency for CACC. 
Figure 3 shows a representative plot for the scenario . 〈highway, windy, day. 〉, for  
discrete, cluster, and continuous attacks. The frequency of the malicious activity 
and the magnitude of deviation between the false V2V message received and the 
ground truth, determine the stealth of the attack. The detection system is capable of 
capturing attacks of varying stealth as can be seen from the figure. Figures 4, 5, 
and 6 show the conclusions from our experiments on Mitigator efficacy under 
collision-causing, efficiency-degrading, and delivery prevention attacks. Under each 
category, different types of attacks for discrete, cluster, and continuous adversaries 
are simulated. Mitigation guarantees safety while keeping the efficiency optimal. 
This is reflected in the time headway values achieved by the mitigation that closely 
resemble the ideal values.
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6 Conclusion 

We have considered the problem of introducing resiliency in CAV applications 
against attacks on perception inputs. With increasing proliferation of connectivity 
and autonomy in vehicles, perception inputs can create a large and highly vulnerable 
attack surface that can be easily exploited with catastrophic consequences. We 
discussed the promise and challenges in adopting ML-based solutions to achieve 
resiliency in this domain. We also discussed one effective framework, REDEM, to 
achieve this resiliency, and explained REDEM’s approach to address the various 
challenges in system design, architecture, and validation. The efficacy of REDEM 
was demonstrated in Cooperative Adaptive Cruise Control application. 

REDEM is very much a work in progress, and is under active development. What 
we presented is representative of our thinking at the time of this writing, but the 
thinking will inevitably evolve as we extend REDEM for newer applications. Indeed, 
it is important to try REDEM on applications of diverse flavors to identify weakness 
in the current line of thinking and determining how to expand the methodology 
to incorporate new challenges. Some critical applications that can provide such
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Fig. 6 Evaluation under random mutation and delivery prevention attacks: comparison of resultant 
time headway for resiliency augmented CACC and naive CACC with no resiliency; (a) Continuous 
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communication

challenges include Distributed Cooperative Collision Detection, Cooperative Route 
Management, etc. These applications are different from the current platooning appli-
cations in that they involve communication of perceived environment in addition 
to the state of the communicating vehicle. We will explore security challenges in 
perception of such scenarios and investigate the applicability of REDEM. 
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