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1 Introduction 

Controller area network (CAN) protocol has strong anti-interference ability and 
can effectively suppress electromagnetic interference [1]. It relies on differential 
signals to transmit messages. Differential signals with dominant state (logical 0) and 
recessive state (logical 1) are transmitted through high (CAN-H) and low (CAN-L) 
lines. When the signal represents dominant state, CAN-H voltage is approximately 
3.5 V, and CAN-L voltage is approximately 1.5 V, which results in a dominant 
differential voltage of approximately 2.0 V on CAN bus. For recessive state, both 
CAN-H and CAN-L voltages are approximately 2.5 V, yielding the differential 
voltage . ≈0 V [2]. 

There are growing instances of hacking vehicles due to loose security protection 
of CAN protocol [3–7]. We have seen various IDSs of in-vehicle CAN networks 
for decades [8–13]. These suggestions cannot determine which ECU launches the 
particular attacks. Moreover, a smart attacker might mimic certain characteristics of 
the target ECU to launch an attack [9, 10, 12, 13]. Fortunately, some seminal work 
[1, 14–17] can not only detect malicious frames but identify their sender ECUs. 
The strategy counts on CAN signal unique characteristics, e.g., the hardware and 
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topology information (delineated by the signal’s characteristics so that even if two 
ECUs send identical message, corresponding signals are divergent). 

Signal characteristics are not only affected by vehicle power supply but also 
related to the hardware characteristics of the sending device itself. It is difficult 
for an attacker to imitate some particular device’s signal characteristics. Thus CAN 
signals show special functionality in detecting attack messages and identifying 
sender ECUs. Murvay and Groza [18] pioneered the methodology of studying 
the differences in CAN signals (sent by ECUs), which are significant for ECU 
identification. However, they only used the signals corresponding to the CAN 
frame’s identifier field and did not account for the blended signals caused by the 
collisions between ECUs’ simultaneous messages. The limitation was tackled in 
[15] where 18-bit identifier extension was used as the ECU’s fingerprint. 

One more interesting work-Sample was proposed in [17] with low time com-
plexity and the advantage of robustness and recognition rates. Kneib and Huth [1] 
proposed Scission with in-depth analysis of CAN signals. Scission uses the rising 
and falling edges of CAN signal to design IDS. However, their method could be 
affected by CAN topology easily. Once the number of ECUs or the length of stub 
lines change, the characteristics of rising and falling edges would become different. 

2 System Model and Ringing Effect 

We can further look into the ringing generation mechanism and recognize the fuzzy 
discrepancy between transitions from dominant to recessive state and those from 
recessive to dominant state. Ringing intensity is related to the number of ECUs and 
the stub line length of CAN topology [19–21]. When we fix the number of electronic 
control units, longer stub line results in more intense ringing. The fluctuation of 
ringing intensity would further tweak falling edges’ voltage, which might set off 
false alarms of IDS (i.e., not triggered by real attacks). We will investigate the factors 
that enlarge ringing effect and demonstrate the discrepancy between rising edges 
and falling edges. Our attempt is to design ECU identification scheme and IDS only 
from the characteristics of dominant states and rising edges (D.R for short). 

Figure 1 shows CAN bus topology deployed widely in automotive applications. 
In particular, Fig. 1a presents linear topology and Fig. 1b depicts start-like topology. 
A twisted wire is commonly used for CAN bus, and the twisted wire’s characteristic 

Fig. 1 CAN topology
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impedance is marked as R. For linear topology (as recommended in the standards 
[22, 23]), the longest bus is called main bus. Two terminating resistors are arranged 
at left end and right end, and the resistor resistance is set to R to match the 
bus’s characteristic impedance. In the automotive field, terminating resistors are 
commonly installed in the two farthest CAN nodes (called the terminal CAN nodes) 
to improve productivity. Other nodes are referred to as non-terminal nodes. ECUs 
are connected to the main bus using a twisted wire (i.e., stub lines). Stub line is 
attached to the main bus through a connector (indicated by the black circle in Fig. 1) 
called junction [21]. 

2.1 Threat Models 

We consider two types of in-vehicle attacks: known-ECUs attack manipulates 
existing ECUs, and unknown-ECUs attack inserts extra devices to CAN bus. 

Automotive manufacturers install ECUs during vehicle production. Attackers 
rely on additional interfaces to compromise a known ECU to transmit malicious 
CAN frames. These interfaces include WiFi, Bluetooth, and cellular communication 
modules. Telematics ECU [6, 24] is a prevalent example, installed widely in modern 
vehicles to enable supplementary functions. This kind of ECUs are connected to an 
external network (e.g., a cellular network), providing a target for the attackers. 

Instead of exploiting existing ECU’s vulnerability, an attacker can connect an 
unknown ECU to attack CAN network directly. Alternatively, he may plugin a 
special device to the network via the vehicle’s On-Board Diagnostics (OBD)-II port. 

2.2 Difference Between ECUs Voltage Outputs 

The differences in voltage stabilizing ability of the regulator inside an ECU results in 
different outputs (. VOUT ) [14], even for the same power supply (.VIN ). ECU output 
voltage variations may stem from the differences in ground voltage and capacitors 
(denoted . C1,. C2 and . C3 in Fig. 2). Further, industrial typical 5% error tolerance is 
employed in CAN transceiver resistors, which leads to voltage changes.

2.3 Ringing Effect 

The impedance mismatch occurs at two points over the CAN bus (Fig. 3) [20, 21], 
one at the junction and another at the front of non-terminal ECUs. Non-terminal 
ECU causes positive reflection as its impedance can be up to several tens of k. �, 
significantly larger than the stub line characteristic impedance which is further larger 
than the junction’s impedance, resulting in negative reflection.
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Fig. 2 CAN application 
schematic

Fig. 3 Reflection 

2.3.1 From Dominant to Recessive States 

Let n denote the number of ECUs connected to the junction through stub lines and 
ECU1 a transmitter whose signal voltage would be reduced by . �V to transfer from 
dominant state to recessive state. Since the dominant state’s value is approximately 
2 V, . �V has a negative polarity. In Fig. 3, a total of (n+ 2) lines are connected to the 
junction (i.e., the overall number of connected stub lines and the two main bus lines). 
The signal transmitted from ECU1 to the junction follows (n+ 1) lines in parallel. 
Thus, the stub lines have the same impedance .

ZR

n+1 , where the . ZR’s nominal value is 
120. �. The reflectance (. �d ) and transmittance (. Td ) at the junction are calculated as: 

.�d =
ZR

n+1 − ZR

ZR

n+1 + ZR

= − n

n + 2
, Td = 1 + �d = 2

n + 2
(1) 

Since . �d has a negative polarity, a larger portion of the incident signal is reflected 
as n increases, and its small part is delivered into other ECUs.
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Fig. 4 Ringing for signals 
from dominant to recessive 
states 

Denote .Zdiff as ECU1’s differential input impedance. Now, we have ECU1’s 
front reflectance and transmittance (i.e., . �s and . Ts): 

.�s = Zdiff − ZR

Zdiff + ZR

, Ts = 1 + �s = 2Zdiff

Zdiff + ZR

(2) 

When the signal is at the recessive state, .Zdiff is much larger than . ZR . Conse-
quently, . �s has a positive polarity, and equals approximately one. Thus, ECU1 front 
end reflection direction is the same as the incident signal direction, and the incident 
signal and reflected signal superposition is about twice the original incident signal. 

For a dominant-to-recessive transition, the negative transition signal . �V is trans-
mitted from ECU1 to the junction, undergoing partial transmission and reflection. 
The signals are transmitted to other ECUs through the junction and are partially 
reflected on the other ECUs’ front end without changing the direction. At the 
ECU1’s front, the signal returned from the connection is partially transmitted to 
ECU1. These reflections and transmissions are repeated, resulting in ringing (Fig. 4). 

2.3.2 From Recessive to Dominant States 

In the transitions from recessive state to dominant state, ECU1’s output impedance 
is very low. In the recessive state, the electrical energy is released on the network. 
However, when the signal transfers from recessive to dominant states, ECU1’s 
differential output impedance becomes lower and starts charging the network. ECU1 
generates the signal of 2 V, whose polarity is inverted at the junction and reflected 
onto ECU1. Unlike the dominant-to-recessive transition, the reflection signal is 
partly received at ECU1 due to the low impedance of ECU1. Since there are no 
reflections’ repetitions, we have small ringing at the recessive-to-dominant state 
transition.



458 X. Li et al.

3 Dominant States and Rising Edges for Source 
Identification 

3.1 Signal Measurement and Preprocessing 

In order to measure the differential signal on the CAN bus, we connect two channels 
of an oscilloscope CAN-H and CAN-L, respectively. Each CAN frame’s differential 
signal would be obtained based on the oscilloscope’s differential function. 

Several preprocessing steps are applied to each CAN signal captured by the 
oscilloscope. First, all dominant states are extracted from the signals. We set a 
voltage threshold value as 0.9 V: voltage greater than the threshold marks the start 
of the dominant state. The dominant states are then classified into five sets (denoted 
as . L1, . L2, . L3, . L4, and . L5) based on the number of contained bits. Let . Li represent 
all dominant states containing exactly i bits (see Fig. 5). Note that CAN standard 
specifies that a recessive bit is automatically inserted whenever five consecutive 
dominant bits appear in a CAN signal. Thus, no dominant state can contain more 
than five consecutive dominant bits. By dividing a CAN frame into 5 sets, we have 
the following gains: (a) redundant features can be eliminated (the dominant states 
with the same number of dominant bits in a CAN frame have similar characteristics, 
and these dominant states with similar characteristics are in the same set); and (b) the 
influence of outliers might be eliminated to make the classification more accurate. 

3.2 Feature Extraction 

The sets obtained above are subjected to feature extraction, where the measured 
voltages are discrete values. Feature extraction is essential in ECU identification and 
needs to be time-efficient. Domain transformations should be avoided if possible. To 
reflect the characteristics of these discrete values, Table 1 qualifies the features that 
reflect the characteristics of a group of discrete values from the time domain feature 
quantities (x is time domain representation of data and N its dimension). Some work 
also discussed various features for ECU identification [15].

Fig. 5 A CAN frame is divided into 5 sets 
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Table 1 Features Feature Description 

Maximum . Max = Max(x(i))i=1....N

Minimum . Min = Min(x(i))i=1....N

Mean . μ = 1
N

∑N
i=1 x(i)

Range . R = Max − Min

Average deviation . adv = 1
N

∑N
i=1 |x(i) − μ|

Variance . σ 2 = 1
N

∑N
i=1(x(i) − μ)2

Standard deviation . σ =
√

1
N

∑N
i=1(x(i) − μ)2

Root mean square . rms =
√

1
N

∑N
i=1 x(i)2

Table 2 Selected features 
ordered by ranks 

Order Feature Order Feature 

1 rms(.L40
5 ) 11 max(. L1

1) 

2 adv(.L13
2 ) 12 min (.L26

4 ) 

3 . σ 2 (.L30
4 ) 13 R(.L20

3 ) 

4 rms(.L21
3 ) 14 rms(.L32

4 ) 

5 mean (. L3
1) 15 max(.L25

4 ) 

6 . σ (.L31
4 ) 16 adv(. L5

1) 

7 . σ 2 (.L22
3 ) 17 mean (.L11

2 ) 

8 . σ (.L15
2 ) 18 rms(.L16

2 ) 

9 R(.L28
4 ) 19 max(.L17

3 ) 

10 min(.L18
3 ) 20 . σ (.L39

5 ) 

Dominant states with the same number of dominant bits indicate analogous 
characteristics. Thus, CAN frames are divided into five sets (Sect. 3.1). For the 
unlikely case of empty sets (all characteristics obtain null values), one may replace 
the missing values with statistical properties, e.g., mean or median. For each set, 
eight features (Table 1) are extracted, yielding 40 CAN signal features in total. 

Relief-F [25] can evaluate the features by calculating a score for each one and 
selecting the most important ones. We finally opt for 20 feature subsets for each 
CAN frame (Table 2). The order column represents the sequence number that 
Relief-F sorts in descending order according to the scores of the features, and these 
sequence numbers correspond to the dimension of each feature in the input feature 
set. 

3.3 Training and Testing 

We view ECU identification from a received CAN frame as a classification 
problem and use supervised learning to identify the signals’ sender. The training 
set comprises 200 CAN frames for each ECU. After the training phase, a classifier 
is created that can be used to identify the sender of a CAN frame.
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Algorithm 1 ECU identification and IDS 
1: function TRAINING(S: original CAN signal) 
2: for i=1 to len(S) do 
3: /*Divide the signal Si into ECUI */ 
4: ECUI ← DECODE(Si ) 
5: /*dominant state and rising edge*/ 
6: [L1, L2, . . ., L5] ← PREPROCESSING (Si ∈ S) 
7: Fi ← EXTRACTION(L1, L2, . . ., L5) 
8: TrainingSet(i)←[Fi : ECUI ] 
9: end for 

10: Classifier←GET_TRAINING_ 
ALGORITHM(T rainingSet) 

11: return Classifier 
12: end function 
13: 
14: function TESTING(S: a new CAN signal) 
15: /*Divide the signal S into ECUI */ 
16: ECUI ← DECODE(S) 
17: /*dominant state and rising edge*/ 
18: [L1, L2, . . ., L5] ← PREPROCESSING (S) 
19: F ← EXTRACTION(L1, L2, . . ., L5) 
20: [Result, Probability]← IDENTIFICATION 

(F , classifier) 
21: if Probability < threshold then 
22: return Unknown ECU Adversary 
23: else if Result �= ECUI then 
24: return Known ECU Adversary 
25: else 
26: return Normal 
27: end if 
28: end function 

Table 3 Comparison among voltage-based approaches 

Choi et al. [15] Scission [1] Simple [17] Our system 

Sampling rate 2.5 GS/s 20 MS/s 50 MS/s 50 MS/s 

Identification rate 96.48% 99.85% 99.10% 99.15% 

False positive 3.52% 0% 0.899% 0.85% 

Signal type Differential Differential Differential Differential 

Domain transformations Yes Yes No No 

Unknown ECU No Yes Yes Yes

The training phase results in a classifier, which is then used to predict new frames 
in testing phase. The testing phase includes two tasks. ECU identification tests 
whether the system correctly identifies frames’ source and examines the impact of 
stub lines’ length on the execution ability. Intrusion detection assesses the system’s 
capability of detecting attacks (Sect. 2.1). The system performance on identification 
and intrusion detection will be discussed in Sect. 4. Algorithm 1 describes the 
training and testing processes. Table 3 compares some voltage-based proposals. 
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4 Evaluation 

Four CAN bus prototypes (each containing 3/6/9/13 ECUs) are equipped to simulate 
different CAN networks. All prototypes have the same configuration (except the 
number of ECUs). Take the prototype with 3 ECUs and 1-m stub lines as example. 
We first assemble 3 ECUs, each containing an Arduino UNO board and a CAN 
shield. The shield comprises MCP2515 CAN controller [26] and MCP2551 CAN 
transceiver [27]. Each ECU is connected through a stub line to the main bus of 
length 3 m. Two 120. � resistors are connected to the two ends of the main bus. Use 
an oscilloscope, one of its probes being connected to the CAN-H line of the main 
bus and another to CAN-L. Adjust the sampling rate of the oscilloscope to 20 MS/s. 

The system can also be evaluated on real vehicles, e.g., Nissan Sentra 2016 and 
Subaru Outback 2011 [17]. 

4.1 ECU Identification 

CAN signals are acquired using the digital storage in the oscilloscope PicoScope 
5244D MSO with a sampling rate of 1 GS/s (the oscilloscope captures 1G data 
points from the signal waveform in one second) and a flexible resolution. Set the 
sampling rate as 20 MS/s (higher sampling rate increases data volume and hardware 
costs). 

4.1.1 Classification Algorithms 

To evaluate the influence of classification algorithms on system performance, two 
algorithms are employed: Linear Regression (LR) and Support Vector Machine 
(SVM). For each ECU in the prototype, approximately 200 frames are collected. 
Table 4 demonstrates that the model accuracy on a simple topology (i.e., only 3 
ECUs in the entire network) averages above 99.99% irrespective of the classification 
algorithms. When the topology becomes complicated (e.g., 13 ECUs, Table 5), the 
average SVM and LR accuracies are above 98.25%. When the stub line length 
equals 3 m, the SVM average accuracy is 98.01%, and LR’s is 98.11%. In other 
words, the proposed model accuracy remains high for complex network structures. 

4.1.2 CAN Topology 

We also explore the effect of changes in stub lines’ length on the developed system 
performance. The system identification rate is tested for the stub line’s length = 1, 2, 
or 3 m. Figure 6 just shows the topology for 1-m stub line.
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Fig. 6 Topologies of 1-m stub line and 3/6/9/13 ECUs 

Same feature extraction and classification algorithms are utilized for each topol-
ogy (i.e., 3/6/9/13 ECUs). Tables 4 and 5 show that if the number of ECUs is fixed, 
increasing stub lines’ length has no impact on the system recognition accuracy. 
When using (falling edges and recessive states, F.R for short) and ((dominant 
states and rising edges) and (falling edges and recessive states), D.R.F.R for short) 
respectively, recognition rates decrease with the increasing of stub lines’ length.

4.1.3 CAN Signal States 

A series of comparative experiments are conducted to inspect the influence of CAN 
signal states on the system using F.R only, or D.R.F.R. As discussed above, the 
ringing mainly occurs in dominant-to-recessive states transitions, and the more 
complex the CAN bus topology, the more intense the ringing effect. Table 5 shows 
the results when the system uses D.R, and the average minimum recognition rates 
are 98.25% (for 13 ECUs and one-meter stub-line), 98.21% (for 13 ECUs and two-
meter stub line), and 98.01% (for 13 ECUs and 3-meter stub line). When the system
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Table 4 Recognition rate and recognition rate for 3/6 ECUs 

Signal state (3 ECUs) Signal state (6 ECUs) 

Stub line Algorithm D.R F.R D.R.F.R D.R F.R D.R.F.R 

1-m SVM Min 100 71.05 96 99.31 69.75 95.15 

SVM Avg 100 74.42 97.6 99.97 71.23 95.89 

LR Min 99.99 79.61 96 99.41 70.11 94.63 

LR Avg 99.99 80.66 98.4 99.99 72.36 95.99 

2-m SVM Min 99.35 70.09 96.21 98.89 68.11 94.21 

SVM Avg 99.98 72.32 97.32 99.85 69.87 94.32 

LR Min 99.98 79.61 96.12 99.01 69.11 94.21 

LR Avg 99.99 81.32 97.21 99.49 70.55 95.1 

3-m SVM Min 99.98 72.27 95.41 98.89 67.99 92.01 

SVM Avg 99.99 73.43 96.67 99.25 69.43 92.85 

LR Min 99.99 77.1 96.21 99.31 68.01 92.21 

LR Avg 99.99 78.29 97.32 99.55 70.53 93.32 

Table 5 Recognition rate and recognition rate for 9/13 ECUs 

Signal state (9 ECUs) Signal state (13 ECUs) 

Stub line Algorithm D.R F.R D.R.F.R D.R F.R D.R.F.R 

1-m SVM Min 99.21 58.75 88.51 97.99 59.57 83.98 

SVM Avg 99.51 59.23 89.91 98.45 61.89 84.21 

LR Min 98.89 59.51 89.01 97.76 58.01 83.9 

LR Avg 99.25 60.35 90.11 98.25 62.58 84.11 

2-m SVM Min 98.8 57.35 87.11 97.51 54.25 80.99 

SVM Avg 99.01 58.25 88.26 98.21 56.75 81.21 

LR Min 98.38 57.11 88.11 97.55 54.91 79.21 

LR Avg 98.89 58.55 88.39 98.25 55.35 81.68 

3-m SVM Min 98.59 53.99 86.21 97.35 47.99 75.21 

SVM Avg 98.99 54.43 87.77 98.01 48.43 78.77 

LR Min 98.19 53.01 85.81 97.45 46.01 73.99 

LR Avg 98.71 55.53 86.34 98.11 47.53 77.34

uses F.R, the average minimum recognition rates are 61.89%, 55.35%, and 47.53%, 
respectively. If the system uses D.R.F.R, the average minimum recognition rates are 
84.11%, 81.21%, and 77.34%. This demonstrates that using D.R is not affected by 
ringing and enables a higher recognition rate than other states. 

4.1.4 On Real Vehicles 

We can also check the method on real vehicles, Nissan Sentra 2016 and Subaru 
Outback 2011 and [17]. There will be 11 rounds of CAN signal, collected from 
these two vehicles. Table 6 shows that, for Nissan Sentra, using F.R yields the lowest
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Table 6 Minimum/average 
recognition rate in Nissan 
Sentra and Subaru Outback 

Signal state 

Vehicle Algorithm D.R F.R D.R.F.R 

Nissan Sentra SVM Min 98.85 44.4 96.01 

SVM Avg 99.15 46.42 96.87 

LR Min 98.34 58.61 94.01 

LR Avg 99.08 60.20 95.41 

Subaru Outback SVM Min 98.37 62.05 91.80 

SVM Avg 99.10 63.88 93.05 

LR Min 98.05 77.23 88.52 

LR Avg 99.09 80.13 91.47 

Table 7 IDS for known ECUs (support vector machine and logistic regression) 

Predicted (SVM) Predicted (LR) 

Vehicle True No attack Yes No attack Yes 

Prototype No attack 98.11 1.89 97.98 2.02 

Yes 2.15 97.85 2.59 97.41 

Nissan Sentra No attack 99.12 0.88 99.16 0.84 

Yes 1.89 98.11 1.79 98.21 

Subaru Outback No attack 98.99 1.01 99.01 0.99 

Yes 1.69 98.31 1.75 98.25 

average accuracy of 46.42%. When D.R.F.R is used, the lowest average accuracy is 
95.41%. For the Subaru outback, the lowest average accuracy equals 99.09% for 
D.R, 63.88% when using F.R, and 91.47% when using D.R.F.R. 

4.2 Intrusion Detection 

4.2.1 Known ECUs 

We assume that the system has the knowledge: which identifiers are used, which 
ECUs are allowed to use them. If the ECU selected by the model as source is not 
allowed to send frames with the identifier of the received frame, an attack will be 
assumed. It is not allowed that multiple ECUs use same identifier. 

We consider the most complex topology (i.e., 13 ECUs and 3-m stub lines) as a 
prototypical setup. 11 out of the 13 ECUs are seen as legitimate, and the remaining 
two as attackers. More than 1400 frames are collected, 500 of which are valid, and 
more than 900 counterfeit. Table 7 show the detection rate 97.85%. 

Similar tests are conducted on real data of Nissan Sentra and Subaru Outback. 
The compromised ECUs are simulated on the real vehicles by adding two additional 
ECUs. These ECUs consist of an Arduino board and a CAN shield. Adding 
these ECUs differs from the situation of unknown ECU attack. Namely, unknown 
ECUs’ electrical signals are not trained by the algorithm. In contrast, the two
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Fig. 7 FN and FP rates at varying thresholds (Subaru outback) 

additional ECUs are based on the five original ECUs, and the CAN electrical 
signals’ characteristics of the seven ECUs can be extracted and retrained. In the 
Nissan Sentra case, the additional ECUs imitate ECU A and ECU B, and 400 
counterfeit frames are collected for each one. For Subaru Outback, the ECUs are 
used to fake ECU I and ECU J, and generate two sets of 400 counterfeit frames. The 
detection results for Nissan Sentra and Subaru Outback are shown in Table 7. 

4.2.2 Unknown ECUs 

Unknown ECUs’ identification is related to novelty detection, i.e., the identification 
of new or unknown data not used in a machine learning algorithm’s training [28]. 
We use the threshold trick (Fig. 7) and the instances with probabilities lower than 
the threshold are classified into unknown class. 

We set the number of ECUs as 13, and the stub line’s length as 3 m. To 
evaluate whether the system is capable of detecting unknown ECUs, the network 
is configured using 12 ECUs, and the 13th ECU is removed. Then monitor the 
resulting network and collect approximately 500 frames from each ECU for feature 
extraction. Now a new model can be trained (without the knowledge of the 13th 
ECU in the signals). Once the model training completes, ECU #13 is re-inserted to 
the network. Then, 3290 frames are acquired from the network with all 13 ECUs. 
The appropriate threshold is obtained by calculating the false positive (FP) and false 
negative (FN) rates (Fig. 8). The threshold 0.83 yields approximately equal values 
of FP and FN. And the system’s identification rate is 97.89%.

For Nissan Sentra and Subaru Outback, 400 normal frames from each vehicle are 
selected. For Nissan Sentra, ECU M is added with the message ID {1201}, and 200 
corresponding frames are collected. Overall, 600 frames are obtained from Nissan 
Sentra. Again, FN and FP are used to calculate the appropriate threshold (resulting 
in threshold value = 0.8). Figure 9 shows the results. The system achieves 98.54%
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Fig. 8 FN and FP rates at varying thresholds (Prototype)
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Fig. 9 FN and FP rates at varying thresholds (Nissan Sentra) 

identification rate. Similarly, for Subaru Outback, ECU N sending e messages with 
IDs{537, 538} is inserted. Six hundred frames are collected and utilized to calculate 
the appropriate threshold (i.e., 0.7, see Fig. 7), and the system’s accuracy is 98.15%. 

4.3 Discussions 

4.3.1 Environmental Factors 

The voltage signal is really sensitive to environmental factors, such as temperature 
change. To pursue robustness against environmental factors, we adopt a method of 
threshold-based online model update. When the recognition rate of the model is 
lower than a threshold, the IDS composes an update batch with already classified 
fingerprints from all ECUs and thus does not require additional computing capacity.
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We use the data Nissan sentra (on 02/01/2019 and 02/18/2019 [17]) to evaluate the 
system: select the frames sent by ECU A and ECU B from these two data sets, and 
then perform preprocessing and feature extraction. 

We first see whether robust sender identification can be kept up over the entire 
training data without performing update operations. We extract approximately 2500 
normal frames from the 02/01/2019 data set, the first 200 frames per ECU of the 
set are used for the initial training and the remaining 1000 frames of the data set 
for test, and this leads to the average recognition accuracy 99.31%. Then we select 
1200 frames from the 02/18/2019 data set, and all the frames are classified using the 
already trained classifiers. The classification accuracy is 95.23%. 

Next, we introduce automatic update mechanism to improve the recognition 
rate. The following metrics are used: recognition rate, false positive rate, false 
negative rate, and F-Score. Recognition rate represents the source of how many 
frames the model can correctly identify. False positive rate refers to the case 
that an unknown ECU is incorrectly classified as valid. False negative rate refers 
to the case that an valid ECU is classified as unknown. F-Score represents the 
comprehensive classification ability used to evaluate the model. We update the 
model online according to F-Score. When the F-Score is lower than the threshold 
(0.9, as demonstrated in experiments), the model will be automatically updated: the 
02/01/2019 data is used to train the model and the 02/18/2019 data is used to verify 
the average recognition rate of the updated model. Now we manage the average 
recognition rate 99.12%. 

4.3.2 Sample Rate 

We duplicate the experiments at various sample rates to inspect system effec-
tiveness, especially in a complex network environment (i.e., 13 ECUs and 3-m 
stub lines). Note that at different sample rate one will be at different position of 
sample sizes (which might convey tight relationship with system performance). The 
approach manifests robustness as expected (due to the contribution of rising edges 
and dominant states). Table 8 shows the average identification and false positive 
rates at the sample rates 2. ∼20 MS/s. The experiments allow each ECU to use 1000 
frames. 

Table 8 Performance at 
various sample rates for 
Linear Regression 

Sample rate (MS/s) 2 5 10 15 20 

Identification rate 97.11 97.85 98.11 98.15 98.21 

False positive rate 2.89 2.15 1.89 1.85 1.79
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4.3.3 Limitation and Battery/ECU Aging 

The method can detect compromised ECUs by monitoring CAN bus. An attack 
will be detected once a known ECU professes some message identifier affiliated 
with another normal ECUs. However, if a known ECU abuses its own identifier 
(that is permitted under normal circumstances) to launch some attack, our system 
cannot recognize the attack. We mention that this is an open problem in signaling-
based ECU identification schemes [1, 14–16] and our focus of the work is on the 
connection between signal ringing and ECU identification. 

Generally, the service life of car battery is of 3 . ∼ 5 years and its real usage 
duration is also related to the driver’s driving habits. Therefore, the aging of the 
car’s battery might affect the characteristics of the electrical signal sent by each 
ECU, and one would see different impact level for different position of the ECU in 
the CAN network [29]. On the other hand, ECU has a relatively long service life 
and the aging process is really slow. One may thus not consider the impact of aging 
on electrical signals. 

5 Source Identification on In-Vehicle CAN-FD Networks 

Controller area network with flexible data rate (CAN-FD) is supposed to be the next 
generation of in-vehicle network to dispose of CAN limitations of data payload 
size and bandwidth. The section discusses ECU identification on CAN-FD network 
from bus signaling. If a model shows robustness to source identification, then we 
get convincing evidence on its applicability to forthcoming real vehicles set up by 
CAN-FD network. ECU identification can be easily extended to intrusion detection 
against attacks not only initiated by external devices but also internal devices. 

5.1 CAN-FD 

Robert Bosch GmBH recommends CAN-FD [30] to dispose of CAN limitations of 
data payload size and bandwidth. Besides its compatibility with CAN, CAN-FD has 
the advantages: the maximum length of the data field is 64 bytes; it supports variable 
rates (namely, a frame can use different transmission rates in different stages) and 
the maximum rate can reach 5Mbit/s (the maximum rate of CAN is 1Mbit/s). 

CAN-FD itself does not convey security protection either (similar to CAN) and 
existing attacks on CAN might also be feasible on CAN-FD. Take masquerade 
attack on CAN network [13] as an example. Initiating a masquerade attack and not 
being detected by the system, an adversary needs to stop the transmission of targeted 
ECU and imitate it to inject attack messages. The attack also works on in-vehicle 
CAN-FD network. We should explore ECU identification on in-vehicle CAN-FD 
network.
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Fig. 10 CAN/CAN-FD frames with 11-bit identifier. (a) CAN data frame format. (b) CAN-FD 
data frame format 

Comparing CAN-FD with CAN CAN-FD is defined to be compatible with CAN 
at the physical layer. All CAN-FD controllers can handle a mix of CAN frames 
and CAN-FD frames. One might use CAN-FD controllers in conjunction with CAN 
controllers on in-vehicle network. Thus one might see pure CAN frames or both 
CAN and CAN-FD frames on the bus. 

CAN-FD and CAN differ in the format and the length of the data frame (Fig. 10). 
Compared with CAN frame, CAN-FD adds FDF (Flexible Data Rate Format), BRS 
(Bit Rate Switch) and ESI (Error State Indicator) fields (see Fig. 10b) [30]. Therein, 
FDF indicates whether the sent frame is a CAN frame or a CAN-FD frame and BRS 
stands for bit rate conversion. When the bit is a recessive bit (1), the rate is variable, 
and when the bit is a dominant bit (0), it is transmitted at a constant rate. ESI is an 
error status indicator: when ESI is a recessive bit (1), it means that the sending node 
is in a passive error (otherwise active error) state. A CAN-FD frame is divided into 
different fields (Fig. 10b). For example, we can set the rate of 2Mbit/s for the data 
field and 1Mbit/s for the arbitration field, control field and CRC field. The length of 
the CAN-FD data field is up to 64 bytes, increasing available load. 

The maximum rate of CAN arbitration field and data field is no more than 
1Mbit/s [3]. However, CAN-FD supports variable rates, and the bit rate of its 
arbitration field and data field might be different. The arbitration and the ACK stages 
continue to use CAN2.0 specification (i.e., the highest rate does not exceed 1Mbit/s), 
and the data field can reach 5Mbit/s through hardware setting, or even higher. 

CAN-FD Security For CAN-FD, security experts can pursue stronger security 
tricks via its higher transmission rates and larger loads. In [31], an IDS was proposed
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Fig. 11 Network topology. (a) CAN-FD network. (b) CAN/CAN-FD hybrid. (c) CAN network 

for in-vehicle CAN-FD network based on topology verification. It uses variations of 
network topology to identify intrusions by external intruding devices (XIDs), but 
it cannot detect attacks via the vulnerabilities of existing ECUs. Woo et al. [32] 
proposed a security architecture for in-vehicle CAN-FD according to ISO 26262. 
This method may cause GECU (gate ECU) to generate excessive load as it has 
to encrypt data packets using the targeted ECU’s unique key. To relieve pressure on 
GECU, Agrawal et al. [33] proposed a group-based approach for the communication 
among different ECUs. However, it should manage a large number of keys which 
requires a large amount of computing resources of the ECUs, making it beyond 
instant communication. 

Ringing on CAN-FD Bus For CAN-FD, internal components of an ECU mainly 
include CAN-FD controller, CAN-FD transceiver, and voltage regulator and we 
have the same rationale of the dominant voltages of (CAN-FD)-H and (CAN-FD)-L 
on the bus. As in Sect. 2.3, ringing might exist on CAN-FD bus [19, 34, 35]. 

5.2 System Model 

CAN-FD is designed to transmit large amounts of data at a faster rate and to replace 
CAN in future design. For possible transition mechanism from CAN to CAN-FD, 
we allow a hybrid topology of CAN and CAN-FD, namely, there exist on the 
network ECUs sending purely CAN frames, ECUs sending purely CAN-FD frames, 
and ECUs sending both CAN and CAN-FD frames. In Fig. 11a, the ECUs can send 
both CAN-FD and CAN frames. In Fig. 11b, blue nodes represent the ECUs that 
can send both CAN-FD frames and CAN frames, and yellow nodes only send CAN 
frames. In Fig. 11c, the ECUs only send CAN frames. 

Signal Acquisition and Preprocessing To obtain differential signals from CAN-
FD/CAN bus prototypes, we first link two probes of an oscilloscope to (CAN-FD)-
H/CAN-H and (CAN-FD)-L/CAN-L lines respectively. Then we use the difference 
function in the software of the oscilloscope to calculate the differential signal. As in 
Sect. 3.1 (and Fig. 5), the trick of five sets . L1, . L2, . L3, . L4, and . L5 is used as well 
(Fig. 12).

Feature Extraction Statistical features could be extracted from the preprocessed 
electrical CAN-FD/CAN signals. We use the features in Table 1 as well for each set
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Fig. 12 A CAN-FD/CAN frame is divided into 5 sets

and a total of 40 features for each electrical CAN-FD/CAN signal. Relief-F [25] is  
also used to weight these features and the feature set in Table 2 can thus be obtained. 

Identifying ECUs We use supervised learning, logistic regression (LR) and SVM, 
to identify the source of CAN-FD/CAN signal. The training phase generates 
fingerprints from multiple CAN-FD/CAN frames of each ECU. The resulting 
fingerprints are then used together to train the classifiers. For the testing phase, we 
have two types of tests. The first is to evaluate the trained model (i.e., whether or not 
it can determine the source of newly received frames), and the second is on intrusion 
detection. 

5.3 Source Identification and Intrusion Detection 

5.3.1 Experiment Setup 

The system adapts to different bus prototypes (Fig. 13). Type A (Fig. 13a) contains 
five CAN-FD nodes that can send both CAN-FD and CAN frames. Type B 
(Fig. 13b) contains five CAN-FD nodes (the same as in Type A) and four extra CAN 
nodes that send purely CAN frames. Type C (Fig. 13c) contains five CAN nodes. 
Although the total number of ECUs in real cars might be up to 70 or even larger, in-
vehicle networks are physically divided into several subnets, e.g., power-related or 
comfort-related. As ringing mainly exists between ECUs and junctions, the rationale 
of fingerprinting ECUs in real cars is the same as that in our experiments. CAN 
protocol defines low-speed CAN and high-speed CAN. High-speed CAN connects 
the ECUs related to the important functions of the vehicles. For example, the ECU 
that controls the brakes and the ECU that controls acceleration are both on high-
speed CAN, and the data transmission speed of high-speed CAN is 500kbit/s. Our 
CAN bus prototype takes high-speed CAN network topology.

Each CAN node consists of an Arduino UNO board and a CAN shield from Seed 
Studio. Each CAN shield consists of an MCP2515 controller [26] and an MCP2551 
transceiver [27], and the bit rate is 500kbit/s. For CAN-FD nodes, each one consists 
of a STM32F105 shield and a MCP2517FD controller [36]. MCP2517FD is known 
as compact, cost-effective and efficient CAN-FD controller and uses SPI interface
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Fig. 13 Three prototypes. (a) Type A: CAN-FD nodes, (b) Type B: CAN-FD nodes and CAN 
nodes, (c) : CAN nodes

and MCU (Microcontroller Unit) communication. In the experiments, we set the 
bit rate of MCP2517FD as 1Mbit/s in the arbitration phase, control phase and 
CRC phase, and 2Mbit/s in the data transmission phase. We mention that using 
signal characteristics sampled at high bit rate to identify devices is more difficult 
than at low bit rate. If our method shows effectiveness on the high-speed CAN-
FD (and CAN), it would also function well on the low-speed CAN-FD (and CAN, 
respectively). To maintain the consistency of experimental environments, we require 
that all the stub lines, oscilloscope, and other components used in the experiments 
are the same in all three prototypes (except the nodes of different functions). 

All ECUs are powered by a battery which supplies electric power to each ECU 
via USB ports. Main bus (twisted pair as well) should be longer than any other stub 
line on the network (our configuration sets the length of main bus as the sum of those 
of stub lines). There is a 120 ohm resistor at each of the two ends of main bus. CAN-
FD/CAN signals are measured by the oscilloscope PicoScope 5244D MSO with a 
sampling rate of 25 MS/s and a resolution of 8 bits. Two probes of the oscilloscope 
are connected to (CAN-FD)-H/CAN-H and (CAN-FD)-L/CAN-L respectively. For
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each ECU (CAN-FD or CAN node), we use 200 frames as training set (its size could 
be adjusted according to the performance of the model). 

5.3.2 Sender Identification 

5.3.2.1 Sender Identification on Pure CAN 

For Type C (Fig. 13c), we consider ringing effect. We execute SVM and LR by using 
D.R, F.R, and D.R.F.R. The results are shown in Tables 9, 10, and 11. Each diagonal 
cell represents the accuracy of the two classification algorithms. As expected, D.R 
suffice to fingerprint ECUs. 

5.3.2.2 Using Dominant States and Rising Edges (D.R) 

We then evaluate whether the system can correctly classify ECUs for Type A and 
Type B. Table 12 lists the confusion matrix for 5 ECUs that send CAN-FD frames 
(Type A). The recognition rate of the system is sufficient to correctly recognize 
ECUs, and the error rate is very low. Table 13 lists the confusion matrix of 9 ECUs

Table 9 SVM/LR for Type C and D.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 99.89/99.77 0/0 0/0 0.11/0.23 0/0 

ECU 2 0/0 99.59/99.79 0/0 0.41/0.21 0/0 

ECU 3 0.14/0.46 0/0 99.76/99.54 0/0 0/0 

ECU 4 0/0 0/0 0.2/0.02 99.8/99.98 0/0 

ECU 5 0.2/0.08 0/0 0/0 0/0 99.8/99.92 

Table 10 SVM/LR for Type C and F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 86.52/84.66 0/0 5.23/6.01 8.25/9.33 0/0 

ECU 2 0/0 88.21/87.11 6.47/7.56 0/0 5.32/5.33 

ECU 3 14.34/11.46 0/0 85.66/88.54 0/0 0/0 

ECU 4 0/0 0/0 15.12/14.62 84.88/85.38 0/0 

ECU 5 4.32/5.01 0/0 4.66/3.84 5.17/6.23 85.85/84.92 

Table 11 SVM/LR for Type C, D.R.F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 96.12/95.34 1.81/2.56 0/0 2.07/2.1 0/0 

ECU 2 4.79/5.03 95.21/94.97 0/0 0/0 0/0 

ECU 3 5.44/4.16 0/0 94.56/95.84 0/0 0/0 

ECU 4 0/0 0/0 4.12/5.02 95.88/94.98 0/0 

ECU 5 2.81/2.9 0/0 2.34/2.18 0/0 94.85/94.92 
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Table 12 SVM/LR for Type A and D.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 99.12/99.34 0/0 0/0 0.88/0.66 0/0 

ECU 2 0/0 99.21/99 0/0 0/0 0.79/1 

ECU 3 0.24/0.46 0/0 99.76/99.54 0/0 0/0 

ECU 4 0/0 0/0 0.12/0.02 99.88/99.98 0/0 

ECU 5 0.15/0.08 0/0 0/0 0/0 99.85/99.92

(Type B), of which 5 ECUs send CAN-FD frames, and the remaining 4 ECUs send 
CAN frames. One may see the system can still correctly classify and recognize 
ECUs in hybrid network. 

5.3.2.3 Using Falling Edges and Recessive States (F.R) 

We also consider the recognition rate if F.R are used. As ringing intensity of falling 
edges of signals is higher than that of rising edges, recognition rate would be 
affected when falling edges are used. Table 14 shows the results for Type B and 
Table 15 shows the recognition rates 81.54. ∼86.21% for Type A. We can see really 
low recognition rates.

5.3.2.4 Using (Dominant States and Rising Edges) and (Falling Edges and 
Recessive States) (D.R.F.R) 

We also compare the execution rates when the system uses D.R.F.R. Tables 16 
and 17 show the results of Type A and Type B respectively, both lower than that 
using D.R.

5.3.3 Detecting Known ECUs 

Now we evaluate whether our system can recognize malicious frames sent by an 
attacker using known ECUs. For Type C (Fig. 13c), we assume that ECU 1 is normal 
and an attacker can use other ECUs to send messages with the same identifier as 
ECU 1. We collect a total of 500 frames, of which 300 are used as attack frames and 
the rest as normal. Table 18 shows a detection rate 99.01%. For Type A (Fig. 13a), 
we use the same assumptions and operations as for Type C and achieve a detection 
rate of 98.5% (Table 18). For Type B (Fig. 13b), we regard ECU 7, ECU 8 and ECU 
9 as attackers (capable of sending both CAN and CAN-FD frames). We collect 1000 
frames, of which 600 are used as attack frames and the rest are normal. Table 18 
shows the results with comparable performance to Type A and Type C.
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Table 15 SVM/LR for Type A and F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 84.12/85.34 12/13.14 0/0 3.88/1.52 0/0 

ECU 2 0/0 86.21/85 11.79/12.78 2/2.22 0/0 

ECU 3 5.14/6.46 4.12/4.36 82.76/81.54 3.51/3.96 4.47/3.68 

ECU 4 0/0 15.82/16.62 0/0 84.18/83.38 0/0 

ECU 5 0/0 12.32/12.01 2.93/3.17 0/0 84.75/84.82

Table 16 SVM/LR for Type A, D.R.F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 94.32/95.24 3.36/3.14 0/0 0/0 2.32/1.62 

ECU 2 0/0 93.21/94.21 5.78/5.01 0/0 1.01/0.78 

ECU 3 5.14/1.46 0/0 93.76/94.54 1.1/0.45 0/0 

ECU 4 0/0 5.2/6.33 0/0.09 94.8/93.58 0/0 

ECU 5 5.05/5.15 0.2/0.23 0/0 0/0 94.75/94.62

5.3.4 Detecting Unknown ECUs 

We adopt a threshold-based method. For Type A, we first remove ECU 5 and obtain 
about 500 frames from the remaining ECUs to train a model. Then we plug ECU 5 
back to the network and sample a total of 600 frames now. The obtained model is 
used to classify newly collected data and Fig. 14 shows False Positive (FP) and False 
Negative (FN) rates. The recognition rate can be up to 99.36% at threshold = 0.8. For 
Type B, we remove ECU 8, use the remaining ECUs to train a new model, and then 
plug ECU 8 back to the network. We collect now a total of 1000 data which will be 
classified by the obtained model. Figure 15 shows recognition rate 99% at 0.7. Type 
C uses similar method and Fig. 16 shows 99.1% recognition rate at 0.83.

5.4 Discussions 

Sample Rate The experiments could be reproduced at various sample rates, espe-
cially for Type B. At different sample rate one will be at different position of sample 
sizes (which might be closely related to system performance). Table 19 shows the 
average identification and false positive rates at the sample rates 10 . ∼25 MS/s (1000 
frames for each ECU).

Comparable Performance Between Type A and Type C For same topology, one 
may note considerable performance for Type A (CAN-FD) and Type C (CAN) by 
using any signal characteristics (rising edges, dominant states, falling edges, and 
recessive states). In fact, Type C could obtain generally a tiny little better recognition 
rate than Type A. First, CAN-FD supports data size up to 512 bits, drastically larger 
than 64 bits in CAN specification, thus the cumulative effect of ringing for Type 
A might be more powerful than for Type C. Second, CAN-FD provides variable
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Table 18 IDS using Support Vector Machines/Logistic Regression 

Predicted (SVM) Predicted (LR) 

Prototype True No attack Yes No attack Yes 

CAN-FD No attack 99.38 0.62 99.85 0.42 

Yes 1.5 98.5 1.88 98.12 

CAN-FD&CAN No attack 99.01 0.99 99.11 0.89 

Yes 1.18 98.82 1.89 98.11 

CAN No attack 99.58 0.52 99.44 0.56 

Yes 0.99 99.01 0.89 99.11
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Fig. 14 Error rates at varying thresholds (Type A) 
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Fig. 15 Error rates at varying thresholds (Type B)

transmission rate and the experiments specify 2Mbit/s for data field of CAN-FD 
frames and 1Mbit/s for other fields (e.g., arbitration, control and CRC), whereas 
Type C regulates 500kbit/s. Namely, we have the bit width 2000 ns in a CAN frame, 
and 1000 ns in non-data field of and 500 ns in data field of a CAN-FD frame. Now, 
it is more likely for Type A (than Type C) that ringing of recessive states functions
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Fig. 16 Error rates at varying thresholds (Type C)

Table 19 LR Performance at 
various sample rates 

Sample rate (MS/s) 10 15 20 25 

Identification rate 97.11 98.95 99.01 99.15 

False positive rate 2.89 1.05 0.99 0.85

unceasing (even though the bit itself was already completed on the network)1 and 
thus involves the coming dominant states before it attenuates to be unnoticeable. 

Applicability to CAN-FD Network in Real Vehicles The controllers used herein 
conform to ISO11898-1:2015 and support CAN-FD [36]. Possible transition mech-
anism from CAN to CAN-FD (i.e., Type A and Type B) is also considered. The 
results show expressive evidence on the applicability to forthcoming real vehicles 
set up by CAN-FD network. These results could be used as a step forward and 
a guidance on securing the commercialization and batch production of in-vehicle 
CAN-FD network in the near future. 

Environmental Factors In real vehicles, the changes of internal temperature will 
affect the characteristics of electrical signals. A typical example is that the voltage 
output may deviate from 0.012 to 0.026 V [1] when we start the vehicle from a 
cooled turn-off engine to warmed-up. This may also exist for CAN-FD network. 
Howbeit, CAN-FD frames are longer than 512 bits, and the number of dominant 
states contained would be much likely greater than that in CAN frame. We might 
thus expect an acceptable impact of temperature changes on signal characteristics 
(and further on the system).

1 It is reported [34, 37] that for CAN-FD, high-speed data phase and low-speed arbitration phase 
challenge the same ringing surrounds (as ringing does not depend on transmission rate), and ring 
of some recessive bit might not converge until criterion and interfere with the next dominant bit. 
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Battery/ECU Aging Battery aging might affect the characteristics of the electrical 
signals. For now, however, we can not track the impact of battery aging on the 
system by simulating CAN-FD nodes and car battery as there is no CAN-FD vehicle 
for real driving. This interesting topic might be explored in the coming future. On 
the other hand, ECU has a relatively long service life and the aging process is really 
slow. It is thus rational not to consider the impact of ECU aging on electrical signals. 

6 Conclusion 

The chapter introduces in-vehicle ECU identification by using CAN electrical Sig-
naling. This can be viewed as side-channel information exploit on CAN networks. In 
designing the identification algorithms, signal characteristics of different phases in 
the signals has different impacts on the algorithm accuracy. The problem of source 
identification is also important on in-vehicle CAN-FD networks. ECU identification 
algorithms can be trivially extended to in-vehicle IDS systems. 
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