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1 Introduction 

Modern-day vehicles are highly sophisticated cyber-physical systems (CPS) that 
consist of multiple interconnected embedded systems known as Electronic Control 
Units (ECUs). The ECUs run various real-time automotive applications that control 
different vehicular subsystem functions. Moreover, ECUs are distributed across the 
vehicle and communicate with each other using the in-vehicle network. In recent 
years, the number of ECUs being integrated into the vehicles and the complexity of 
software running on these ECUs has been rapidly increasing to enable various state-
of-the-art Advanced Driver Assistance Systems (ADAS) features such as adaptive 
cruise control, lane keep assist, collision avoidance, and blind spot warning. This 
resulted in an increase in the complexity of the in-vehicle network over which huge 
volumes of automotive sensor and real-time decision data, and control directives are 
communicated. This increased complexity of modern-day vehicles has led to various 
complex challenges that pose a serious threat to the reliability [1–4], security [5–9], 
and real-time control of automotive systems [10–13]. 
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Today’s vehicles heavily rely on information from various external systems that 
utilize advanced communication standards such as 5G technology and Vehicle-to-
X (V2X) [14] to support various ADAS functionalities. Unfortunately, this makes 
automotive embedded systems highly vulnerable to various cyber-attacks that can 
have catastrophic consequences. The cyber-attacks on vehicles discussed in [15– 
17] have presented different ways to gain unauthorized access to the in-vehicle 
network and override the vehicle controls by injecting malicious messages. With 
connected and autonomous vehicles (CAVs) on the horizon, these security concerns 
will get further aggravated and become a serious threat to the safety of future 
autonomous vehicles. Therefore, it is crucial to prevent unauthorized access to in-
vehicle networks by external attackers to ensure the security of automotive CPS. 

Traditional computer networks utilized firewalls to defend the networks from 
external attackers. However, no firewall is foolproof, and no network can be fully 
secure from attackers. Thus, there is a need for an active monitoring system that 
continuously monitors the network to identify malicious messages in the system. 
These systems are commonly referred to as intrusion detection systems (IDS). An 
IDS that is deployed in a vehicle can be used to continuously monitor the in-vehicle 
network traffic and trigger alerts when suspicious messages or known threats are 
detected. Thus, IDS acts as the last line of defense in automotive CPSs. 

At a high level, IDSs are categorized into two types: (i) rule-based and (ii) 
machine learning based. Rule-based IDSs look for traces of previously observed 
attack signatures in the network traffic, whereas machine learning-based IDSs 
observe for the deviation from the learned normal system behavior to detect 
cyber-attacks. Rule-based IDS can have faster detection rates and very few false 
alarms (false positive rate) but are limited to detecting only previously observed 
attacks. On the other hand, machine learning-based IDS can detect both previously 
observed and novel attacks but can suffer from relatively slower detection times and 
higher false alarm rates. An efficient IDS needs to be lightweight (have minimal 
overhead), robust, and highly scalable. More importantly, practical IDSs need to 
have comprehensive attack coverage (i.e., detect both known and unknown attacks) 
with high detection accuracy and low false alarms, as recovering from false alarms 
can be costly. 

Moreover, obtaining the signature of every possible attack is highly impractical 
and would limit us to only detecting known attacks. Hence, we believe that 
machine learning-based IDSs provide a more pragmatic solution to this problem. 
Additionally, large volumes of message data can be collected due to the ease of 
acquiring in-vehicle network data, which further assists the use of advanced deep 
learning models for detecting cyber-attacks in automotive CPS [9]. 

In this chapter, we present a novel IDS framework called INDRA, first introduced 
in [6], that monitors the in-vehicle network messages in a Controller Area Network 
(CAN) based automotive CPS to detect various cyber-attacks. During the offline 
phase, INDRA uses a deep learning-based recurrent autoencoder model to learn 
the normal system behavior in an unsupervised manner. At runtime, INDRA 
continuously monitors the in-vehicle network for deviations from learned normal
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system behavior to detect malicious messages. Moreover, INDRA aims to maximize 
the detection accuracy with minimal false alarms and overhead on the ECUs. 

Our novel contributions in this work are as follows: 

1. We introduced a Gated Recurrent Unit (GRU) based recurrent autoencoder 
network to learn the normal system behavior during the offline phase; 

2. We proposed an intrusion score (IS) metric to measure deviation from the normal 
operating system behavior; 

3. We presented a comprehensive analysis of the selection of thresholds for the 
intrusion score metric; 

4. Lastly, we compared our proposed INDRA framework with the best-known prior 
works in the area to demonstrate its effectiveness. 

2 Related Work 

Several techniques have been proposed in the literature to design IDS for protecting 
time-critical automotive CPS. These works try to detect various attacks by monitor-
ing the in-vehicle network traffic. In this section, we first discuss the key rule-based 
IDSs and then discuss machine learning based IDSs. 

Rule-based IDS detects known attacks by using the information from previously 
observed attack signatures. In [18], a language theory-based model was introduced 
to derive attack signatures. However, this technique fails to detect attacks when 
it misses the packets transmitted during the early stages of the attack interval. A 
transition matrix-based attack detection scheme for CAN bus systems was proposed 
in [19], but this approach only works for simple attacks and fails to detect advanced 
replay attacks. In [20], the authors identified key attack signatures such as increased 
message frequency and missing messages to detect cyber-attacks. In [21], the 
authors proposed a specification-based approach to detect cyber-attacks, which 
analyzes the system behavior and compares it with the predefined attack patterns 
to detect anomalies. However, their approach fails to detect unknown attacks. The 
authors in [22] propose an ADS technique using the Myers algorithm [23] under 
the map-reduce framework. A time-frequency analysis of CAN messages is used to 
detect multiple anomalies in [24]. In [25], the authors analyzed message frequency 
at design time to derive a regular operating mode region, which is used as a baseline 
during runtime to detect cyber-attacks. In [26], the sender ECU’s clock skew, and 
the messages are fingerprinted at design time and used at runtime to detect attacks 
by observing for variations. The authors in [27] presented a formal analysis of 
clock-skew-based IDS and evaluated it on a real vehicle. In [28], a memory heat 
map is used to characterize the memory behavior of the operating system to detect 
anomalies. An entropy-based IDS that observes the change in system entropy to 
detect anomalies was proposed in [29]. Nonetheless, the technique fails to detect 
complex attacks for which the entropy change is minimal. In conclusion, rule-
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based IDSs offer a fast solution to the intrusion detection problem with lower false 
positive rates but fail to detect more complex and novel attacks. Moreover, obtaining 
signatures of every possible attack pattern is not practical. 

On the other hand, machine learning-based IDSs aim to learn the normal system 
behavior in an offline phase and observe for any deviation from the learned normal 
behavior to detect anomalies at runtime. In [30], the authors proposed a sensor-based 
IDS that utilizes attack detection sensors in the vehicle to monitor various system 
events and observe for deviations from normal behavior. However, this approach is 
expensive and suffers from poor detection rates. In [31], a One-Class Support Vector 
Machine (OCSVM) based IDS was introduced, but it suffers from poor detection 
latency. In [32], an ensemble of different nearest neighbor classifiers was used to 
distinguish between normal and an attack-induced CAN messages. A decision-tree-
based detection model to monitor the physical features of the vehicle was proposed 
in [33] to detect cyber-attacks. However, this model is impractical and suffers from 
high anomaly detection latencies. In [34], a Hidden Markov Model (HMM) based 
technique was proposed to monitor the temporal relationships between messages to 
detect cyber-attacks. In [35], a deep neural network-based approach was proposed 
to scan the messages in the in-vehicle network to detect attacks. This approach is 
finetuned for a low-priority tire pressure monitoring system (TPMS), which makes 
it hard to adapt to high-priority powertrain applications. In [36], a Long Short-
Term Memory (LSTM) based IDS for multi-message ID detection was proposed. 
However, due to the high complexity of model architecture, this approach has a high 
computational overhead on the ECUs. In [37], an LSTM-based IDS was proposed 
to detect insertion and dropping attacks (explained in Sect. 4.3). In [38], an LSTM-
based predictor model is proposed to predict the next time step message value at a 
bit level and observe for large variations to detect anomalous messages. A recurrent 
neural network (RNN) based IDS to learn the normal CAN message pattern in the 
in-vehicle network is proposed in [39]. A hybrid IDS was proposed in [40], which 
utilizes a specification-based system in the first stage and an RNN-based model 
in the second stage to detect anomalies in time-series data. Several other machine 
learning models, such as the stacked LSTMs and temporal convolutional neural 
networks (TCNs) based techniques, were proposed in [7, 8], respectively. However, 
none of these techniques provides a complete system-level solution that is scalable, 
reliable, and lightweight to detect various attacks for in-vehicle networks. 

In this chapter, we introduce a lightweight recurrent autoencoder-based IDS 
using gated recurrent units (GRUs) to monitor the in-vehicle network messages at 
a signal level to detect various attacks with higher efficiency than various state-
of-the art works in this area. A summary of some of the state-of-the-art works’ 
performance under different metrics and our proposed INDRA framework is shown 
in Table 1.
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Table 1 Performance metrics comparison between our proposed INDRA 
framework and state-of-the-art machine learning-based intrusion detection 
works 

3 Background on Sequence Learning 

The availability of increased compute power from GPUs, and custom hardware 
accelerators enabled the training of deep neural networks with many hidden layers, 
which led to the creation of powerful models for solving complex problems in many 
domains. One such problem is detecting cyber-attacks in automotive CPS. In an 
automotive CPS, the communication between ECUs occurs in a time-dependent 
manner. Therefore, the temporal relationship between the messages in the system 
can be exploited in order to detect cyber-attacks. However, this cannot be achieved 
using traditional feedforward neural networks as the output of any input at any 
instance is independent of the other inputs. This makes sequence models appropriate 
for such problems, as they inherently handle sequences and time-series data. 

3.1 Sequence Models 

A sequence model is a function that ensures that the outcome is reliant on both 
current and prior inputs. The recurrent neural network (RNN), which was introduced 
in [41], is an example of such a sequence model. Other sequence models, such as 
gated recurrent unit (GRU) and long short-term memory (LSTM), have also become 
popular in recent years. 

3.1.1 Recurrent Neural Networks (RNN) 

An RNN is a form of artificial neural network that takes the sequential data as input 
and tries to learn the relationships between the input samples in the sequence. The 
RNNs use a hidden state to allow learned information from previous time steps to 
persist over time. A single RNN unit with feedback is shown in Fig. 1a, and an RNN 
unit unrolled in time is shown in Fig. 1b.



322 V. K. Kukkala et al.

Fig. 1 (a) A single RNN unit and (b) RNN unit unrolled in time; f is the RNN unit, x is the input, 
and h represents hidden states 

The output (ht) of an RNN unit is a function of both the input (xt) and the previous 
output (ht − 1): 

.ht = f (Wxt + Uht−1 + b) (1) 

where f is a nonlinear activation function (e.g., sigmoid or tanh), U and W
are weight matrices, and b is the bias term. One of the major limitations of
RNNs is that they are very hard to train. As RNNs and other sequence models
handle time-series data or sequences as inputs, backpropagation happens through
various time steps (commonly known as backpropagation through time (BPTT)).
During the BPTT step, the feedback loop in RNNs causes the errors to expand
or shrink rapidly thereby creating exploding or vanishing gradients respectively.
This destroys the information in backpropagation and makes the training process
obsolete. Moreover, the vanishing gradient problem prohibits RNNs from learning
long-term dependencies. To solve this problem, additional states and gates were
introduced in the RNN unit in [42] to remember long-term dependencies, which led 
to the development of LSTM Networks. 

3.1.2 Long Short-Term Memory (LSTM) Networks 

LSTMs use cell state, hidden state information, and multiple gates to capture long-
term dependencies between messages. The cell state can be visualized as a freeway 
that carries relevant information throughout the processing of an input sequence. 
The cell state stores information from previous time steps and passes it to the 
subsequent time steps to reduce the effects of short-term memory. Moreover, the 
information in the cell state is modified by the gates in the LSTM unit, which helps 
the model in determining which information should be retained and which should 
be ignored. 

An LSTM unit contains 3 gates: (i) forget gate (ft) (ii) output gate (ot), and (iii) 
input gate (it) as shown in Fig. 2a. The forget gate is a binary gate that determines 
which information to retain from the previous cell state (ct−1). The output gate uses 
information from the previous two gates to produce an output. Lastly, the input gate
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Fig. 2 (a) A single LSTM unit with different gates and activations, and (b) LSTM unit unrolled 
in time; f is an LSTM unit, x is input, c is cell state, and h is the hidden state 

Fig. 3 (a) A single GRU unit with different gates and activations, and (b) GRU unit unrolled in 
time; f is a GRU unit, x is input, and h is the hidden state. 

adds relevant information to the cell state (ct). An illustration of an LSTM unit 
unrolled in time is shown in Fig. 2b. 

LSTMs learn long-term dependencies in a sequence by using a combination of 
different gates and hidden states. However, they are computationally expensive due 
to the complex sequence path from having multiple gates (compared to RNNs), and 
require more runtime memory. Moreover, training LSTMs have a high computation 
overhead even when advanced training methods such as truncated backpropagation 
are employed. To overcome the above-mentioned limitations, a simpler sequence 
model called gated recurrent unit (GRU) was introduced in [43]. GRUs can be 
trained faster than LSTMs and also capture dependencies in long sequences with 
minimal overhead (in both memory and runtime) while solving the vanishing 
gradient problem. 

3.1.3 Gated Recurrent Unit (GRU) 

Unlike LSTMs, a GRU unit takes a different route for gating information. The input 
and forget gate in the LSTM unit are combined into a solitary update gate. Moreover, 
hidden and cell states are combined into one state, as shown in Fig. 3a, b. 

A GRU unit consists of two gates (i) reset gate and (ii) update gate. The reset 
gate combines new input with previous memory, while the update layer determines
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how much relevant information should be stored. Thus, a GRU unit controls the 
data stream similar to an LSTM by uncovering its hidden layer contents. Moreover, 
GRUs are computationally more efficient and have a low memory overhead than 
LSTMs as they achieve this using fewer gates and states. It is highly crucial to 
use lightweight machine learning models when working with automotive systems, 
as real-time automotive ECUs are highly resource-constrained embedded systems 
with strict energy and power budgets. This makes GRU-based networks an ideal fit 
for inference in resource-constrained automotive systems. Thus, INDRA utilizes a 
lightweight GRU-based model to implement the IDS (explained in detail in Sect. 5). 

One of the significant advantages of sequence models is that they can be trained 
in both supervised and unsupervised learning fashion. Due to the large volume of 
CAN message data in a vehicle, high variability in the messages between vehicle 
models from the same manufacturer, and the proprietary nature of this information 
make it highly challenging and tedious to label messages correctly. However, due 
to the ease of obtaining CAN message data via onboard diagnostics (OBD-II), large 
amounts of unlabeled data can be collected easily. Thus, INDRA uses GRUs in an 
unsupervised learning setting. 

3.2 Autoencoders 

Autoencoders are a special class of neural networks that try to reconstruct the input 
by learning the latent input features in an unsupervised fashion. They achieve this 
by encoding the input data (x) to a hidden layer which produces the embedding, 

and finally decoding the embedding to produce a reconstruction . 
∼
x (as shown in 

Fig. 4). The layers used to create this embedding are called the encoder, and the 

Fig. 4 An autoencoder network with encoder, decoder, and embedding layers



Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 325

layers used in reconstructing the embedding into the original input (decoding) are 
called the decoder. During the training process, the encoder tries to learn a nonlinear 
mapping of the inputs, while the decoder tries to learn the nonlinear mapping of the 
embedding to the inputs. The encoder and decoder achieve this using various non-
linear activation functions such as tanh and rectified linear unit (ReLU). Moreover, 
the autoencoder aims to recreate the input as closely as possible by extracting the 
key features from the inputs with the goal of minimizing reconstruction loss. The 
most commonly used loss functions in autoencoders include mean squared error 
(MSE) and Kullback-Leibler (KL) divergence. 

As autoencoders aim to reconstruct the input by learning the underlying distri-
bution of the input data, they are an excellent choice for efficiently learning and 
re-constructing highly correlated time-series data by learning the temporal relations 
between messages. Hence, our proposed INDRA framework uses lightweight GRUs 
in an autoencoder to learn latent representations of CAN message data in an 
unsupervised learning setting. 

4 Problem Definition 

4.1 System Model 

In this chapter, we consider a generic automotive system consisting of multiple 
ECUs connected using an in-vehicle network, as shown in Fig. 5. Each ECU in 
the system runs a specific set of automotive applications that are hard-real time 
in nature (i.e., they have strict timing and deadline constraints). Moreover, we 
assume that each ECU also runs intrusion detection applications (IDS) that are 
responsible for monitoring and detecting cyber-attacks in the in-vehicle network. 

Fig. 5 Overview of the system model considered in INDRA
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In the INDRA framework, we consider a distributed IDS approach (where intrusion 
detection applications are collocated with automotive applications) as opposed to a 
centralized IDS approach in which one central ECU handles all intrusion detection 
tasks due to the following reasons:

• A centralized IDS approach is prone to single-point failures, which can com-
pletely expose the system to the attacker.

• In extreme scenarios such as during a flooding attack (explained in Sect. 4.3), the 
in-vehicle network would get highly congested, and the centralized system might 
not be able to communicate with the victim ECUs.

• If an attacker successfully tricks the centralized IDS ECU, the attacks can go 
undetected by the other ECUs, compromising the entire system; however, in 
the case of a distributed IDS, it requires fooling multiple ECUs (which is more 
difficult) to compromise the system. Moreover, the decentralized intelligence in 
a distributed IDS scenario can still detect the attacks, even if one of the ECU is 
compromised.

• In a distributed IDS, ECUs can stop accepting messages as soon as an intrusion 
is detected. This results in significantly faster reaction times as there is no need 
for a notification from a centralized system.

• Lastly, in a distributed IDS, the computation load of IDS is divided among the 
ECUs, and monitoring can be limited to only required messages. As a result, 
multiple ECUs can independently monitor a subset of messages with lesser 
overhead. 

Distributed IDS approach has been adopted in many state-of-the-art works, such 
as [18, 25], for the above-mentioned reasons. Moreover, with the increasing 
computation power of automotive ECUs, the collocation of IDS applications with 
real-time automotive applications in a distributed manner should not be a problem if 
the IDS has minimal overhead. INDRA framework is not only lightweight but also 
highly scalable and achieves superior intrusion detection performance (discussed in 
detail in Sect. 6). 

An ideal IDS should have a low power/energy footprint, low cost, and low 
susceptibility to noise. The following are some of the key characteristics of an 
efficient IDS, that were taken into consideration when designing the INDRA IDS:

• Lightweight: Intrusion detection tasks can incur additional overhead on ECU, 
which can have a broad range of impact ranging from poor application perfor-
mance to catastrophic events due to missed deadlines for real-time applications. 
Therefore, INDRA aims to have a lightweight IDS that incurs minimal overhead 
on the ECU.

• Coverage: This is defined as the range of attacks that an IDS can detect. A good 
IDS must be capable of detecting more than one type of attack. Moreover, high 
coverage for IDS will make the system resilient to multiple attack surfaces.

• Few false positives: This is a highly desired quality in any IDS (even outside 
of the automotive domain), as dealing with false positives can quickly become 
costly. Thus, a good IDS is expected to have few false positives or false alarms.
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• Scalability: As the number of ECUs in emerging vehicles is growing along with 
software and network complexity, this is an essential requirement. A good IDS 
should be highly scalable and capable of supporting multiple system sizes. 

4.2 Communication Model 

In this subsection, we discuss the communication model that was considered 
for the INDRA framework. INDRA primarily focuses on detecting anomalies in 
Controller Area Network (CAN) bus-based automotive CPS, as CAN is the most 
commonly used in-vehicle network protocol. CAN offers a low-cost, lightweight, 
event-triggered communication where messages are transmitted in the form of 
frames. A standard CAN frame structure with the length of each field (in bits) 
on the top is shown in Fig. 6. The standard CAN frame consists of (i) header, 
(ii) payload, and (iii) trailer segments. The header contains information about the 
message identifier (ID) and the length of the message, whereas the payload segment 
contains the actual data that needs to be transmitted. The trailer section is mainly 
used for error checking at the receiver. More recently, a new variation of the CAN 
protocol, called CAN-extended or CAN 2.0B, is also being deployed increasingly 
in modern vehicles. The key difference is that CAN-extended has a 29-bit identifier 
which allows for a greater number of message IDs. 

The INDRA IDS focuses on monitoring the payload of the CAN frame and 
observes for anomalies within the payload segment to detect cyberattacks. This 
is because most modern-day attacks involve an attacker modifying the payload to 
accomplish malicious activities. On the other hand, if an attacker targets the header 
or trailer segments, the message would get rejected at the receiver. The typical 
payload segment of a CAN message comprises of multiple data entities called 
signals. Figure 7 illustrates a real-world example CAN message with the list of 
signals within the message. Each signal has a particular data type, fixed size (in bits), 
and a start bit which specifies the signal’s location in the 64-bit payload segment of 
the CAN frame. 

INDRA focuses on monitoring individual signals within CAN payload to observe 
for anomalies and detect attacks. During training, INDRA learns the temporal 
relationships between the messages at a signal level and observes for deviations 
at runtime to detect attacks. This ability to detect attacks at a signal level enables 

Fig. 6 Standard frame format of a Controller Area Network (CAN) message
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Fig. 7 A real-world example CAN message with signal information [44] 

INDRA to not only detect the presence of an attacker but also help in identifying the 
signal under attack. This can provide valuable information related to the attack and 
help in understanding the intentions of the attacker, which can be used to initiate 
appropriate countermeasures. The signal level monitoring technique employed in 
INDRA IDS is discussed in detail in Sect. 5.2. 

Note: Even though the INDRA framework focuses on detecting attacks by 
monitoring CAN messages, our approach is protocol-agnostic and can be used 
with other in-vehicle network protocols (such as FlexRay and LIN) with minimal 
changes. 

4.3 Attack Model 

Our proposed INDRA IDS aims to protect the vehicle from various types of state-
of-the-art attacks that are most commonly seen and difficult to detect in automotive 
CPS. Moreover, these attacks have been widely studied in literature to evaluate 
IDSs. 

1. Plateau attack: In this attack, an attacker overwrites a signal value with a 
constant value for the entirety of the attack interval. The severity of this attack 
is determined by the magnitude of change in signal value and the duration for 
which the signal magnitude is changed. Larger changes in signal values are easier 
to detect compared to shorter changes. 

2. Flooding attack: This is the most common and simple to launch attack, as it 
requires no knowledge of the system. In this attack, the attacker continuously 
floods the in-vehicle network with random or specific messages with the goal of 
preventing other ECUs from accessing the bus and rendering the bus unusable. 
These attacks are typically detected by the gateways and network bridges in the 
vehicle and often do not reach the last line of defense (the IDS). However, it 
is crucial to consider these attacks as they can have serious security and safety 
consequences when poorly handled. 

3. Playback attack: In this attack, the attacker attempts to trick the IDS by replaying 
a valid series of message transmissions from the past. This attack is hard to 
detect if the IDS lacks the ability to capture the temporal relationships between 
messages and detect when they are violated.
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4. Continuous attack: In this attack, an attacker gradually overwrites the signal 
value to some target value while avoiding the activation of an IDS. These attacks 
are difficult to detect and can be sensitive to the IDS parameters (discussed in 
Sect. 5.2). 

5. Suppress attack: In this attack, the attacker suppresses the signal value(s) by 
either disabling the target ECU’s communication controller or shutting down the 
ECU. These attacks are easy to detect when they disrupt message transmission 
for long durations but are harder to detect for shorter durations. 

Moreover, in this work, we assume that the attacker can gain access to the in-
vehicle network using the most common attack vectors, such as connecting to the 
OBD-II port, connecting to V2X systems that communicate with the outside world 
(for e.g., infotainment and connected ADAS systems), probe-based snooping on the 
in-vehicle bus, and by replacing an existing ECU with a malicious ECU. We also 
assume that the attacker has access to the network parameters (such as parity, flow 
control, and BAUD rate) that can further assist in gaining access to the in-vehicle 
network. 

Objective The goal of our proposed INDRA framework is to implement a 
lightweight IDS that can detect a variety of attacks (discussed above) in a CAN 
bus-based automotive CPS, with a high detection accuracy and low false positive 
rate while having a large attack coverage. 

5 INDRA Framework Overview 

INDRA framework utilizes a machine learning-based signal level IDS for moni-
toring real-time CAN messages in automotive CPS. An overview of the INDRA 
framework is depicted in Fig. 8. The  INDRA framework consists of design-time 
and runtime steps. During design time, INDRA uses CAN message data from a 
trusted vehicle to train a recurrent autoencoder-based model to learn the normal 
system behavior. At runtime, the trained recurrent autoencoder model observes 
for the deviation from the learned normal system behavior using the proposed 
intrusion score metric to detect cyberattacks. These steps are described in detail 
in the subsequent subsections. 

5.1 Recurrent Autoencoder 

Recurrent autoencoders are powerful neural networks that are similar to an encoder-
decoder structure but can handle time-series or sequence data inputs. They typically 
consist of units such as RNNs, LSTMs, or GRUs (discussed in Sect. 3). Similar to 
regular autoencoders, recurrent autoencoders have an encoder and a decoder stage. 
The encoder generates a latent representation of the input data in an n-dimensional
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Fig. 8 Overview of the INDRA IDS framework 

space, and the decoder uses this latent representation from the encoder output and 
tries to reconstruct the input data with minimal reconstruction loss. In INDRA, we  
propose a novel lightweight recurrent autoencoder model that is tailored for the 
design of IDS to detect cyberattacks in the in-vehicle network. The details of the 
proposed neural network architecture and the various steps involved in its training 
and evaluation are discussed in the subsequent sections. 

5.1.1 Model Architecture 

Our proposed recurrent autoencoder model architecture is illustrated in Fig. 9, with 
each layer’s input and output dimensions on the top. The model comprises of a 
linear layer at the input, a GRU-based encoder, a GRU-based decoder, and a linear 
layer before the final output. The input time-series CAN message data with signal 
level information consisting of f features (where f is the number of signals in 
the message) is given as input to the first linear layer. The output from the first 
linear layer is then passed to the GRU-based encoder, which generates the latent 
representation of the time-series signal inputs, which is referred to as a message 
context vector (MCV) in this chapter. The MCV captures the context of various 
signals in the input message as a vector. Each MCV can be viewed as a point in an 
n-dimensional space containing the context of the series of signal values provided as 
input. The MCV is fed into a GRU-based decoder, which is then followed by a linear 
layer to generate the reconstruction of the input CAN message data with individual 
signal values. The loss between the input and the reconstructed input is calculated 
using mean square error (MSE), and the weights are updated using backpropagation 
through time. INDRA designs a recurrent autoencoder model for each message ID.
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Fig. 9 Proposed recurrent autoencoder model used in INDRA (f is the number of features, i.e., 
number of signals in the input CAN message, MCV is message context vector) 

5.1.2 Training Process 

The training procedure starts with pre-processing the CAN message data collected 
from a trusted vehicle. Each sample in the CAN message dataset consists of a 
message ID and the corresponding signal values contained within that message ID. 
As signals represent a wide variety of information in the vehicle, the range of signal 
values can also be very large. This can make the training process extremely slow or 
unstable. To prevent this, we scale the signal values between 0 to 1 for each signal 
type. Moreover, scaling signal values also helps to avoid the problem of exploding 
gradients (as discussed in Sect. 3). 

The pre-processed CAN dataset is divided into training data (85%) and validation 
data (15%), which is then prepared for training. We use a rolling window-based 
approach, which involves choosing a fixed-size window and rolling it to the right by 
one sample every time step. An example rolling window approach with a window 
size of three samples and its movement for the three consecutive time steps is 
illustrated in Fig. 10. The term . S

j
i represents the ith signal value at jth sample. 

The elements in the rolling window are referred to as a subsequence, and the size 
of the rolling window is defined as the subsequence length. As each subsequence 
consists of a set of signal values over time, our proposed recurrent autoencoder 
model attempts to learn the temporal relationships between the series of signal 
values. These signal-level temporal relationships aid in detecting more complex 
attacks such as continuous and playback (as discussed in Sect. 4.3). The process 
of training using subsequences is done iteratively until the end of the training data. 

Each training iteration consists of a forward pass and a backward pass (using 
backpropagation through time to update the weights and biases of the neurons based 
on the error value (as discussed in Sect. 3)). At the end of the training, the model’s 
performance is evaluated (forward pass only) using the validation data, which was 
not seen by the model during the training. The end of the validation step marks the 
completion of one epoch during which the model has seen the complete dataset 
once. The model is trained for a set number of epochs until the model reaches
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Fig. 10 An example of a rolling window approach and its movement for three consecutive time 
steps 

convergence. Moreover, the process of training and validation using subsequences 
is sped up by training the input subsequences data in groups known as mini-batches. 
Each mini-batch is made up of several consecutive subsequences that are given as 
the input to the model in parallel. The size of each mini-batch is referred to as a 
batch size. Lastly, to control the rate of update of the model parameters during the 
backpropagation phase, a learning rate is defined. These hyperparameters, such as 
subsequence size, batch size, learning rate, etc., are covered in detail in Sect. 6.1. 

5.2 Inference and Detection 

At runtime, the trained model is set to evaluation mode, where only forward passes 
are performed, and the weights are not updated. During this phase, various attack 
conditions are simulated in the CAN message dataset, and the trained model is tested 
under multiple attack scenarios (mentioned in Sect. 4.3). 

During inferencing, each data sample that passes through the model is recon-
structed, and the reconstruction loss is computed. This reconstruction loss is sent 
to the detection module to compute the proposed intrusion score (IS) metric, which 
helps in determining whether a signal is malicious or normal. The IS is calculated 
at a signal level to predict which signal is under attack. The IS is calculated as 
a squared error during each iteration of the inference to estimate the prediction 
deviation from the input signal value, as shown in (2). 

.ISi =
(
S

j
i − Ŝ

j
i

)2 ∀i ∈ [1,m] (2) 

where, . Sj
i denotes the ith signal value at jth sample, . Ŝj

i represents its reconstruction, 
and m is the number of signals in the message. We observe a large deviation for 
predicted value from the input signal value (i.e., large IS value) when the current
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signal pattern is not seen by the model during the training phase and a smaller IS 
value otherwise. This serves as the foundation for our detection phase. 

Since the dataset lacks a signal-level attack label information, INDRA combines 
the signal level IS information into a message-level IS by calculating the maximum 
IS of the signals in that message, as shown in (3). 

.MIS = max (IS1, IS2 . . . , ISm) (3) 

To achieve adequate detection accuracy, it is critical to choose the intrusion
threshold (IT) for flagging messages. INDRA investigates multiple choices for IT,
using the best model (model with the lowest running validation loss) from the
training phase. From this model, multiple metrics such as maximum, mean, median,
99.99%, 99.9%, 99%, and 90% validation loss are recorded across all iterations as
the potential choices for the IT. The analysis for the selection of the IT metric is
presented in detail in Sect. 6.2. 

A working snapshot of INDRA IDS is illustrated in Fig. 11a, b, with a plateau 
attack on a message with three signals between time 0 and 50. Figure 11a compares 
the input (true) vs. IDS predicted signal value for three signals, and the attack 
interval is highlighted in red. It can be observed that the reconstruction is close 
for almost all signals except during the attack interval for the majority of the 
time. Signal 3 is subjected to a plateau attack in which the attacker maintains a 
constant value until the end of the attack interval. This is illustrated in the third 
subplot of Fig. 11a (note the larger difference between the predicted and actual 
input signal values in that subplot, compared to signals 1 and 2). Figure 11b depicts 
the signal intrusion scores for all three signals, and the dotted black line represents 
the intrusion threshold (IT). As stated previously, the maximum of signal intrusion 
scores is chosen as message intrusion score (MIS), which in this case is the IS of 
signal 3. As seen in Fig. 11b, the intrusion score of signal 3 is above the IT for the 
entire duration of the attack interval, which clearly highlights INDRA’s ability to 
detect such attacks. The value of IT (equal to 0.002) in Fig. 11b is calculated using 
the method discussed in Sect. 6.2. However, it is important to note that this value is 
specific to the example case shown in Fig. 11 and is not the IT value used for the 
remaining experiments. The details of IT selection is discussed in detail in Sect. 6.2. 

6 Experiments 

6.1 Experimental Setup 

A series of experiments have been conducted to evaluate the real-time performance 
of our proposed INDRA IDS. We begin by presenting an analysis for the selection 
of intrusion threshold (IT). The derived IT is used to contrast against two variants 
of the same framework known as INDRA-LED and INDRA-LD. The INDRA-LED
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Fig. 11 Internal working of INDRA IDS checking a message with three signals under a plateau 
attack, where (a) shows the signal comparisons and (b) shows IS of three signals and the IT
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removes the linear layer before the output, essentially leaving the task of decoding 
the message context vector (i.e., reconstructing the input) to GRU based decoder. 
The abbreviation LED stands for (L)linear layer, (E) encoder GRU, and (D) decoder 
GRU. The INDRA-LD variant replaces the GRU and the linear layer at the decoder 
with a series of linear layers (LD stands for linear decoder). These experiments were 
carried out to assess the importance of different layers in the network. However, the 
encoder part of the network is not changed because it is required to generate an 
encoding (MCV) of the input time-series data. INDRA investigates other variants as 
well, but they were not included in the discussion as their performance was subpar 
compared to that of INDRA-LED and INDRA-LD variants. 

Subsequently, the best INDRA variant is compared with three state-of-the-
art prior works that use different machine learning-based techniques to detect 
intrusions: (i) Predictor LSTM (PLSTM [38]), (ii) Replicator Neural Network 
(RepNet [39]), and (iii) CANet [36]. The first comparison work (PLSTM) employs 
an LSTM-based network that has been trained to predict the signal values in the 
following message transmission. PLSTM accomplishes this by taking the 64-bit 
CAN message payload as the input and learning to predict the signal at a bit-
level granularity by minimizing prediction loss. The bit level deviations between 
the actual and the predicted next signal values are computed using a log loss 
or binary cross-entropy loss function. Additionally, PLSTM uses the prediction 
loss values at runtime to decide whether a particular message is malicious or 
not. The second comparison work (RepNet) employs a series of RNN layers to 
increase the dimensionality of the input data and reconstruct the input signal values 
by decreasing back to the original dimensionality. RepNet accomplishes this by 
reducing the mean squared error (MSE) between the input and the reconstructed 
signal values. At runtime, RepNet uses large deviations between the input received 
signal and the reconstructed signal values to detect cyberattacks. Lastly, CANet uses 
a quadratic loss function to minimize the signal reconstruction error by combining 
multiple LSTMs and linear layers in an autoencoder architecture. All experiments 
conducted with INDRA and its variants and prior works are discussed in detail in 
subsequent subsections. 

In this work, we use the SynCAN dataset developed by ETAS and Robert 
Bosch GmbH [36] to evaluate the effectiveness of the INDRA framework with 
its variants and against the above-mentioned prior works. The SynCAN dataset 
consists of CAN message data for ten different IDs that have been modeled after 
real-world CAN message data. Furthermore, the dataset consists of both training 
and test data with multiple attacks (discussed in Sect. 4.3). Each row in the dataset 
consists of a timestamp, message ID, and individual signal values. Additionally, 
the test data contains a label column with either 0 or 1 values indicating normal 
or malicious messages. However, the label information is only available on per 
message basis and does not specify which signal within the message is under attack. 
It is important to note that the label information in the training data is not used 
to train the INDRA model, as the INDRA model learns the patterns in the input 
data in an unsupervised manner. This label information in the dataset is only used 
to evaluate the performance of the proposed IDS using several metrics such as
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detection accuracy and false positive rate. Moreover, to simulate a more realistic 
attack scenario in the in-vehicle networks, the test data also contains normal CAN 
traffic between the attack injections. 

All the machine learning-based frameworks, including the INDRA framework 
and its variants as well as comparison works, are implemented using Pytorch 
1.4 with CUDA support. We conducted several experiments to select the best-
performing model hyperparameters (number of layers, hidden unit sizes, and 
activation functions). The final model discussed in Sect. 5.1 was trained using the 
SynCAN data set, with 85% of train data used for training and the remaining for 
validation. The validation data is primarily used to assess the model performance 
at the end of each epoch. The model is trained for 500 epochs, using a rolling 
window approach (as discussed in Sect. 5.1.2) with a subsequence size of 20 
messages and a batch size of 128. Moreover, an early stopping mechanism is 
employed to monitor the validation loss across epochs and stop the training process 
if there is no improvement after 10 (patience) epochs. The initial learning rate is 
chosen as 0.0001, and tanh activations are applied after each linear and GRU layer. 
Furthermore, the ADAM optimizer is used with the mean squared error (MSE) as 
the loss criterion to compute the reconstruction loss. The trained model is used 
during testing and subjected to multiple simulated attack scenarios using the test 
dataset. The intrusion score metric (as stated in Sect. 5.2) was used to calculate the 
intrusion threshold to flag the message as malicious or normal. Lastly, to evaluate 
the performance of the IDS, several performance metrics such as detection accuracy 
and false positive rate were considered. All the simulations were executed on an 
AMD Ryzen 9 3900X server with an Nvidia GeForce RTX 2080Ti GPU. 

Additionally, we present the following definitions in the context of IDS before 
discussing the experimental results:

• True Positive (TP)- when the IDS detects an actual malicious message as 
malicious;

• False Negative (FN)- when the IDS detects an actual malicious message as 
normal;

• False Positive (FP)- when the IDS detects a normal message as malicious (aka 
false alarm);

• True Negative (TN)- when the IDS detects an actual normal message as normal. 

INDRA framework primarily focuses on two key performance metrics: (i) Detection 
accuracy- a measure of IDS’s ability to detect malicious messages correctly, and 
(ii) False positive rate: also known as false alarm rate. These metrics are computed 
using (4) and (5), respectively. 

.Detection Accuracy = T P + T N

T P + FN + FP + T N
(4) 

.False Positive Rate = FP

FP + T N
(5)
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6.2 Intrusion Threshold Selection 

In this subsection, we present a detailed analysis on the selection of intrusion 
threshold (IT) by investigating various options such as maximum (max), median, 
mean, and different quantile bins of validation loss of the final model. As the model 
is trained only on attack-free data, the reconstruction error for the malicious message 
will be much larger than the error for normal messages. Hence, INDRA explores 
several candidate options for IT to achieve this goal that would work across multiple 
attack and no-attack scenarios. A high threshold value can make it harder for the 
model to detect the attacks that change the input pattern minimally (e.g., continuous 
attack). On the other hand, having a small threshold value can cause multiple false 
positives, which is highly undesirable. Thus, it is crucial to select an appropriate 
intrusion threshold value to achieve optimal model performance. 

The detection accuracy and false positive rate for various candidate options used 
to calculate IT is shown in Fig. 12a, b, respectively, under different attack scenarios. 
The results from the Fig. 12 indicates that selecting a higher validation loss as the IT 
can lead to high accuracy and a low false alarm rate. However, selecting a very high 
value (such as ‘max’ or ‘99.99 percentile’) may result in missing small variations 
in the input patterns that are found in more sophisticated attacks. We empirically 
conclude that the maximum and 99.99 percentile values are very close. Moreover, 
to capture attacks that produce small deviations, a slightly smaller threshold value is 
selected that would still perform similar to the max and 99.99 percentile thresholds 
under all attack scenarios. Thus, the 99.9th percentile value of the validation loss is 
chosen as the intrusion threshold (IT) value, and the same IT value is used for the 
remainder of the experiments (discussed in the following subsections). 

6.3 Comparison of INDRA Variants 

After selecting the appropriate intrusion threshold from the previous subsection, 
we use that same criterion for evaluating against two other variants: INDRA-LED 
and INDRA-LD. The main intuition behind evaluating different variants of INDRA 
is to study the impact of different layers in the model on the performance metrics 
discussed in Sect. 6.1. 

Figure 13a illustrates the detection accuracy for the INDRA framework and 
its variants on the y-axis with multiple types of attacks and a no-attack scenario 
(normal) on the x-axis. It can be clearly seen that INDRA outperforms the other two 
variants and has high accuracy in most attack scenarios. 

The false positive rate or false alarm rate of INDRA and other variants under 
different attack scenarios is illustrated in Fig. 13b. When compared to other variants, 
INDRA has the lowest false positive rate and highest detection accuracy. Moreover, 
INDRA-LED, which is just short of a linear layer on the decoder side, is the 
second-best performing model after INDRA. The ability of INDRA-LED to use
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Fig. 12 Comparison of (a) detection accuracy and (b) false positive rate for various choices of 
intrusion threshold (IT) as a function of validation loss under different attack scenarios. (% refers 
to percentile, not percentage)
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Fig. 13 Comparison of (a) detection accuracy and (b) false positive rate under different attack 
scenarios for INDRA and its variants (INDRA-LED and INDRA-LD)
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a GRU-based decoder helps in efficiently reconstructing the MCV back to the 
original input signals. Moreover, it can be clearly seen in both Fig. 13a, b that the 
absence of GRU layers on the decoder end of INDRA-LD resulted in significant 
performance degradation. Thus, INDRA is chosen as the candidate model for 
subsequent experiments. 

6.4 Comparison with Prior Works 

Our proposed INDRA framework is compared with some of the best-known prior 
works in the IDS area, such as PLSTM [38], RepNet [39], and CANet [36]. The 
detection accuracy and false positive rate for different techniques under different 
attack scenarios is illustrated in Fig. 14a, b, respectively. 

From Fig. 14a, b, it is evident that INDRA achieves high detection accuracy 
under each attack scenario while achieving lower false positive rates. The ability to 
monitor signal level variations combined with a more cautious selection of intrusion 
threshold gives INDRA an advantage over comparison works. PLSTM and RepNet 
use the maximum validation loss in the final model as the threshold, whereas CANet 
uses interval-based monitoring to detect malicious messages. Choosing a higher 
threshold helped PLSTM to achieve slightly lower false positive rates for some 
scenarios, but it hurt the ability of both PLSTM and RepNet to detect attacks with 
minor variations in the input data. This is because the deviations produced by some 
of the complex attacks are small, and the attacks go undetected due to the large 
thresholds. Moreover, the interval-based monitoring approach employed in CANet 
struggles to find an optimal threshold resulting in subpar performance. It is essential 
to highlight that INDRA achieves this superior performance by monitoring at a 
signal level as opposed to prior works that monitor at the message level. Lastly, the 
false positive rates of INDRA remain significantly low, with a maximum of 2.5% for 
plateau attacks. 

6.5 IDS Overhead Analysis 

In this section, we present a detailed analysis of the overhead incurred by our 
proposed INDRA IDS. We quantify the IDS overhead in terms of memory footprint 
and time taken to process an incoming message, i.e., inference time. The former 
metric is important as the automotive ECUs are highly resource-constrained and 
have limited memory and compute capacities. Therefore, it is critical to have a 
low memory overhead to avoid interference with real-time automotive applications. 
The inference time metric provides important information about the time it takes to 
detect the attacks and can also be used to compute the utilization overhead on the 
ECU. Hence, the above-mentioned two metrics are analyzed to study the overhead 
and quantify the lightweight nature of INDRA IDS.
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Fig. 14 Comparison of (a) detection accuracy and (b) false positive rate of INDRA and the prior 
works PLSTM [38], RepNet [39], and CANet [36]
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Table 2 Memory footprint 
comparison between our 
proposed INDRA framework 
and the prior works PLSTM 
[38], RepNet [39], and 
CANet [36] 

IDS framework Memory footprint (KB) 

PLSTM [38] 13,417 
RepNet [39] 55 
CANet [36] 8718 
INDRA 443 

Table 3 Inference time comparisons between our proposed INDRA framework and the prior 
works PLSTM [38], RepNet [39], and CANet [36] using single and dual-core configurations 

Average inference time (μs) 
IDS framework Single core ARM Cortex A57 CPU Dual core ARM Cortex A57 CPU 

PLSTM [38] 681.18 644.76 
RepNet [39] 19.46 21.46 
CANet [36] 395.63 378.72 
INDRA 80.35 72.91 

To quantify the overhead of our proposed INDRA framework and the prior works, 
we implemented the IDSs on the NVIDIA Jetson Tx2 board, consisting of an ARM 
Cortex- A57 CPU, which has similar specifications to the state-of-the-art multi-
core ECUs. The memory footprint of the INDRA framework and the prior works 
mentioned in the previous subsections is shown in Table 2. It is evident that the 
INDRA framework has a low memory footprint compared to the prior works, except 
for the RepNet [39]. However, it is important to observe that even though the INDRA 
framework has a slightly higher memory footprint compared to the RepNet [39], 
INDRA outperforms all the prior works, including RepNet [39], in all performance 
metrics under various attack scenarios, as shown in Fig. 14. The heavier (high 
memory footprint) models can capture a wide range of system behaviors; however, 
they are not an ideal choice for resource-constrained automotive CPS. On the other 
hand, a much lighter model (such as RepNet) fails to capture necessary details about 
the system behavior due to its limited model parameters, which in turn suffers from 
performance issues. 

We benchmarked different IDS frameworks on an ARM Cortex- A57 CPU 
to study the inference overhead. In this study, we considered different system 
configurations to explore a wide variety of ECU hardware that is available in state-
of-the-art vehicles. Based on the available hardware resources, single-core (uses 
only one CPU core) and dual-core (uses two CPU cores) system configurations were 
selected on the Jetson TX2. The IDS frameworks are executed 10 times for each 
CPU configuration, and the average inference times (in μs) are recorded in Table 3. 
From the results in Table 3, it is clear that the INDRA framework has significantly 
faster inference times compared to the prior works (excluding RepNet) under all 
system configurations. From the results in Fig. 14, it can be seen that RepNet 
has the worst performance of any comparison framework, despite having a lower 
inference time. The large inference times for the better-performing frameworks 
can have a significant impact on the real-time performance of the vehicle and 
can be catastrophic in the event of deadline misses. We also believe that using a
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dedicated deep learning accelerator (DLA) further enhances the performance of the 
IDS models. 

Thus, from Fig. 14, Table 2 and 3, it is clear that INDRA achieves a clear 
balance of having superior intrusion detection performance while maintaining a low 
memory footprint and fast inference times, making it a powerful and lightweight 
IDS solution. 

6.6 Scalability Results 

In this subsection, we present a detailed analysis on the scalability of the INDRA 
framework by studying the system performance using the ECU utilization metric as 
a function of increasing system complexity (i.e., number of ECUs and messages). 
Each ECU in the system has a real-time utilization (URT ) and an IDS utilization 
(UIDS) from running real-time and IDS applications, respectively. We focus on 
analyzing the IDS overhead (UIDS), as it is a direct measure of the compute 
efficiency of the IDS. Moreover, as the safety-critical messages monitored by the 
IDS are periodic, the IDS can be modeled as a periodic application with a period that 
is the same as the message period [5]. As a result, monitoring an ith message (mi) 
results in an induced IDS utilization (UIDS, mi) at an ECU, which can be calculated 
using (6). 

.UIDS,mi
=

(
TIDS

Pmi

)
(6) 

where, TIDS and Pmi represent the time taken by the IDS to process one message
(inference time) and the period of the monitored message, respectively. Moreover,
the sum of all IDS utilizations because of monitoring different messages is the
overall IDS utilization at that ECU (UIDS) and is computed using (7). 

.UIDS =
∑n

i=1
UIDS,mi

(7) 

To evaluate the scalability of the INDRA IDS, six different system sizes were
considered. Moreover, a set of commonly used message periods {1, 5, 10, 15, 20,
25, 30, 45, 50, 100} (all periods in ms) in automotive CPS is considered to sample
uniformly, when assigning periods to the messages in the system. These messages
are distributed evenly among different ECUs, and the IDS utilization is calculated
using (6) and (7). INDRA assumes a pessimistic scenario where all the ECUs in the 
system have only a single core, which would allow us to analyze the worst-case 
overhead of the IDS. 

The average ECU utilization for different system sizes denoted by {p, q}, where p 
is the number of ECUs and q is the number of messages in the system, is illustrated 
in Fig. 15. In this study, a very pessimistic estimate of 50% real-time ECU utilization
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Fig. 15 Scalability analysis of our proposed INDRA IDS for different system sizes and the prior 
works PLSTM [38], RepNet [39], and CANet [36] 

for real-time automotive applications (“RT Util”, as shown in the dotted bars) is 
assumed. The solid bars on top of the dotted bars represent the IDS overhead on 
the ECUs, and the horizontal dotted line in red represents the 100% ECU utilization 
mark. It is critical to ensure that the ECU utilization does not exceed 100% under any 
scenario, as it could introduce undesired latencies resulting in missing deadlines for 
time-critical automotive applications, which can be catastrophic. It is clear from the 
results that the prior works, such as PLSTM and CANet, incur heavy overhead on 
the ECUs, while RepNet and our proposed INDRA framework have a very minimal 
overhead that is favorable to increasing system sizes. Thus, from the results in 
this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that INDRA not only 
achieves better performance in terms of detection accuracy and false positive rate 
for intrusion detection than state-of-the-art prior works, but it is also lightweight and 
highly scalable. 

7 Conclusion 

In this chapter, we presented a novel recurrent autoencoder-based lightweight 
real-time intrusion detection system called INDRA for automotive CPS. INDRA 
framework uses the intrusion score (IS) metric to measure the deviation from the
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learned system behavior to detect intrusions. Moreover, we presented a thorough 
analysis on the intrusion threshold selection process and compared the INDRA 
IDS with the best-known prior works in this area. The promising results indicate a 
compelling potential for utilizing our proposed INDRA IDS in emerging automotive 
platforms. 
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