
Real-Time Intrusion Detection
in Automotive Cyber-Physical Systems
with Recurrent Autoencoders

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha

1 Introduction

Modern-day vehicles are highly sophisticated cyber-physical systems (CPS) that
consist of multiple interconnected embedded systems known as Electronic Control
Units (ECUs). The ECUs run various real-time automotive applications that control
different vehicular subsystem functions. Moreover, ECUs are distributed across the
vehicle and communicate with each other using the in-vehicle network. In recent
years, the number of ECUs being integrated into the vehicles and the complexity of
software running on these ECUs has been rapidly increasing to enable various state-
of-the-art Advanced Driver Assistance Systems (ADAS) features such as adaptive
cruise control, lane keep assist, collision avoidance, and blind spot warning. This
resulted in an increase in the complexity of the in-vehicle network over which huge
volumes of automotive sensor and real-time decision data, and control directives are
communicated. This increased complexity of modern-day vehicles has led to various
complex challenges that pose a serious threat to the reliability [1–4], security [5–9],
and real-time control of automotive systems [10–13].

V. K. Kukkala (�)
NVIDIA, Santa Clara, CA, USA
e-mail: vipin.kukkala@colostate.edu

S. V. Thiruloga
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO,
USA
e-mail: sooryaa@colostate.edu

S. Pasricha
Colorado State University, Fort Collins, CO, USA
e-mail: sudeep.pasricha@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. K. Kukkala, S. Pasricha (eds.), Machine Learning and Optimization Techniques for
Automotive Cyber-Physical Systems, https://doi.org/10.1007/978-3-031-28016-0_10

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28016-0protect T1	extunderscore 10&domain=pdf

 885 47989 a 885 47989 a

mailto:vipin.kukkala@colostate.edu
mailto:vipin.kukkala@colostate.edu
mailto:vipin.kukkala@colostate.edu

 885 52970 a 885 52970 a

mailto:sooryaa@colostate.edu
mailto:sooryaa@colostate.edu

 885 56845 a 885 56845
a

mailto:sudeep.pasricha@colostate.edu
mailto:sudeep.pasricha@colostate.edu
mailto:sudeep.pasricha@colostate.edu
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10
https://doi.org/10.1007/978-3-031-28016-0_10

318 V. K. Kukkala et al.

Today’s vehicles heavily rely on information from various external systems that
utilize advanced communication standards such as 5G technology and Vehicle-to-
X (V2X) [14] to support various ADAS functionalities. Unfortunately, this makes
automotive embedded systems highly vulnerable to various cyber-attacks that can
have catastrophic consequences. The cyber-attacks on vehicles discussed in [15–
17] have presented different ways to gain unauthorized access to the in-vehicle
network and override the vehicle controls by injecting malicious messages. With
connected and autonomous vehicles (CAVs) on the horizon, these security concerns
will get further aggravated and become a serious threat to the safety of future
autonomous vehicles. Therefore, it is crucial to prevent unauthorized access to in-
vehicle networks by external attackers to ensure the security of automotive CPS.

Traditional computer networks utilized firewalls to defend the networks from
external attackers. However, no firewall is foolproof, and no network can be fully
secure from attackers. Thus, there is a need for an active monitoring system that
continuously monitors the network to identify malicious messages in the system.
These systems are commonly referred to as intrusion detection systems (IDS). An
IDS that is deployed in a vehicle can be used to continuously monitor the in-vehicle
network traffic and trigger alerts when suspicious messages or known threats are
detected. Thus, IDS acts as the last line of defense in automotive CPSs.

At a high level, IDSs are categorized into two types: (i) rule-based and (ii)
machine learning based. Rule-based IDSs look for traces of previously observed
attack signatures in the network traffic, whereas machine learning-based IDSs
observe for the deviation from the learned normal system behavior to detect
cyber-attacks. Rule-based IDS can have faster detection rates and very few false
alarms (false positive rate) but are limited to detecting only previously observed
attacks. On the other hand, machine learning-based IDS can detect both previously
observed and novel attacks but can suffer from relatively slower detection times and
higher false alarm rates. An efficient IDS needs to be lightweight (have minimal
overhead), robust, and highly scalable. More importantly, practical IDSs need to
have comprehensive attack coverage (i.e., detect both known and unknown attacks)
with high detection accuracy and low false alarms, as recovering from false alarms
can be costly.

Moreover, obtaining the signature of every possible attack is highly impractical
and would limit us to only detecting known attacks. Hence, we believe that
machine learning-based IDSs provide a more pragmatic solution to this problem.
Additionally, large volumes of message data can be collected due to the ease of
acquiring in-vehicle network data, which further assists the use of advanced deep
learning models for detecting cyber-attacks in automotive CPS [9].

In this chapter, we present a novel IDS framework called INDRA, first introduced
in [6], that monitors the in-vehicle network messages in a Controller Area Network
(CAN) based automotive CPS to detect various cyber-attacks. During the offline
phase, INDRA uses a deep learning-based recurrent autoencoder model to learn
the normal system behavior in an unsupervised manner. At runtime, INDRA
continuously monitors the in-vehicle network for deviations from learned normal

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 319

system behavior to detect malicious messages. Moreover, INDRA aims to maximize
the detection accuracy with minimal false alarms and overhead on the ECUs.

Our novel contributions in this work are as follows:

1. We introduced a Gated Recurrent Unit (GRU) based recurrent autoencoder
network to learn the normal system behavior during the offline phase;

2. We proposed an intrusion score (IS) metric to measure deviation from the normal
operating system behavior;

3. We presented a comprehensive analysis of the selection of thresholds for the
intrusion score metric;

4. Lastly, we compared our proposed INDRA framework with the best-known prior
works in the area to demonstrate its effectiveness.

2 Related Work

Several techniques have been proposed in the literature to design IDS for protecting
time-critical automotive CPS. These works try to detect various attacks by monitor-
ing the in-vehicle network traffic. In this section, we first discuss the key rule-based
IDSs and then discuss machine learning based IDSs.

Rule-based IDS detects known attacks by using the information from previously
observed attack signatures. In [18], a language theory-based model was introduced
to derive attack signatures. However, this technique fails to detect attacks when
it misses the packets transmitted during the early stages of the attack interval. A
transition matrix-based attack detection scheme for CAN bus systems was proposed
in [19], but this approach only works for simple attacks and fails to detect advanced
replay attacks. In [20], the authors identified key attack signatures such as increased
message frequency and missing messages to detect cyber-attacks. In [21], the
authors proposed a specification-based approach to detect cyber-attacks, which
analyzes the system behavior and compares it with the predefined attack patterns
to detect anomalies. However, their approach fails to detect unknown attacks. The
authors in [22] propose an ADS technique using the Myers algorithm [23] under
the map-reduce framework. A time-frequency analysis of CAN messages is used to
detect multiple anomalies in [24]. In [25], the authors analyzed message frequency
at design time to derive a regular operating mode region, which is used as a baseline
during runtime to detect cyber-attacks. In [26], the sender ECU’s clock skew, and
the messages are fingerprinted at design time and used at runtime to detect attacks
by observing for variations. The authors in [27] presented a formal analysis of
clock-skew-based IDS and evaluated it on a real vehicle. In [28], a memory heat
map is used to characterize the memory behavior of the operating system to detect
anomalies. An entropy-based IDS that observes the change in system entropy to
detect anomalies was proposed in [29]. Nonetheless, the technique fails to detect
complex attacks for which the entropy change is minimal. In conclusion, rule-

320 V. K. Kukkala et al.

based IDSs offer a fast solution to the intrusion detection problem with lower false
positive rates but fail to detect more complex and novel attacks. Moreover, obtaining
signatures of every possible attack pattern is not practical.

On the other hand, machine learning-based IDSs aim to learn the normal system
behavior in an offline phase and observe for any deviation from the learned normal
behavior to detect anomalies at runtime. In [30], the authors proposed a sensor-based
IDS that utilizes attack detection sensors in the vehicle to monitor various system
events and observe for deviations from normal behavior. However, this approach is
expensive and suffers from poor detection rates. In [31], a One-Class Support Vector
Machine (OCSVM) based IDS was introduced, but it suffers from poor detection
latency. In [32], an ensemble of different nearest neighbor classifiers was used to
distinguish between normal and an attack-induced CAN messages. A decision-tree-
based detection model to monitor the physical features of the vehicle was proposed
in [33] to detect cyber-attacks. However, this model is impractical and suffers from
high anomaly detection latencies. In [34], a Hidden Markov Model (HMM) based
technique was proposed to monitor the temporal relationships between messages to
detect cyber-attacks. In [35], a deep neural network-based approach was proposed
to scan the messages in the in-vehicle network to detect attacks. This approach is
finetuned for a low-priority tire pressure monitoring system (TPMS), which makes
it hard to adapt to high-priority powertrain applications. In [36], a Long Short-
Term Memory (LSTM) based IDS for multi-message ID detection was proposed.
However, due to the high complexity of model architecture, this approach has a high
computational overhead on the ECUs. In [37], an LSTM-based IDS was proposed
to detect insertion and dropping attacks (explained in Sect. 4.3). In [38], an LSTM-
based predictor model is proposed to predict the next time step message value at a
bit level and observe for large variations to detect anomalous messages. A recurrent
neural network (RNN) based IDS to learn the normal CAN message pattern in the
in-vehicle network is proposed in [39]. A hybrid IDS was proposed in [40], which
utilizes a specification-based system in the first stage and an RNN-based model
in the second stage to detect anomalies in time-series data. Several other machine
learning models, such as the stacked LSTMs and temporal convolutional neural
networks (TCNs) based techniques, were proposed in [7, 8], respectively. However,
none of these techniques provides a complete system-level solution that is scalable,
reliable, and lightweight to detect various attacks for in-vehicle networks.

In this chapter, we introduce a lightweight recurrent autoencoder-based IDS
using gated recurrent units (GRUs) to monitor the in-vehicle network messages at
a signal level to detect various attacks with higher efficiency than various state-
of-the art works in this area. A summary of some of the state-of-the-art works’
performance under different metrics and our proposed INDRA framework is shown
in Table 1.

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 321

Table 1 Performance metrics comparison between our proposed INDRA
framework and state-of-the-art machine learning-based intrusion detection
works

3 Background on Sequence Learning

The availability of increased compute power from GPUs, and custom hardware
accelerators enabled the training of deep neural networks with many hidden layers,
which led to the creation of powerful models for solving complex problems in many
domains. One such problem is detecting cyber-attacks in automotive CPS. In an
automotive CPS, the communication between ECUs occurs in a time-dependent
manner. Therefore, the temporal relationship between the messages in the system
can be exploited in order to detect cyber-attacks. However, this cannot be achieved
using traditional feedforward neural networks as the output of any input at any
instance is independent of the other inputs. This makes sequence models appropriate
for such problems, as they inherently handle sequences and time-series data.

3.1 Sequence Models

A sequence model is a function that ensures that the outcome is reliant on both
current and prior inputs. The recurrent neural network (RNN), which was introduced
in [41], is an example of such a sequence model. Other sequence models, such as
gated recurrent unit (GRU) and long short-term memory (LSTM), have also become
popular in recent years.

3.1.1 Recurrent Neural Networks (RNN)

An RNN is a form of artificial neural network that takes the sequential data as input
and tries to learn the relationships between the input samples in the sequence. The
RNNs use a hidden state to allow learned information from previous time steps to
persist over time. A single RNN unit with feedback is shown in Fig. 1a, and an RNN
unit unrolled in time is shown in Fig. 1b.

322 V. K. Kukkala et al.

Fig. 1 (a) A single RNN unit and (b) RNN unit unrolled in time; f is the RNN unit, x is the input,
and h represents hidden states

The output (ht) of an RNN unit is a function of both the input (xt) and the previous
output (ht − 1):

.ht = f (Wxt + Uht−1 + b) (1)

where f is a nonlinear activation function (e.g., sigmoid or tanh), U and W
are weight matrices, and b is the bias term. One of the major limitations of
RNNs is that they are very hard to train. As RNNs and other sequence models
handle time-series data or sequences as inputs, backpropagation happens through
various time steps (commonly known as backpropagation through time (BPTT)).
During the BPTT step, the feedback loop in RNNs causes the errors to expand
or shrink rapidly thereby creating exploding or vanishing gradients respectively.
This destroys the information in backpropagation and makes the training process
obsolete. Moreover, the vanishing gradient problem prohibits RNNs from learning
long-term dependencies. To solve this problem, additional states and gates were
introduced in the RNN unit in [42] to remember long-term dependencies, which led
to the development of LSTM Networks.

3.1.2 Long Short-Term Memory (LSTM) Networks

LSTMs use cell state, hidden state information, and multiple gates to capture long-
term dependencies between messages. The cell state can be visualized as a freeway
that carries relevant information throughout the processing of an input sequence.
The cell state stores information from previous time steps and passes it to the
subsequent time steps to reduce the effects of short-term memory. Moreover, the
information in the cell state is modified by the gates in the LSTM unit, which helps
the model in determining which information should be retained and which should
be ignored.

An LSTM unit contains 3 gates: (i) forget gate (ft) (ii) output gate (ot), and (iii)
input gate (it) as shown in Fig. 2a. The forget gate is a binary gate that determines
which information to retain from the previous cell state (ct−1). The output gate uses
information from the previous two gates to produce an output. Lastly, the input gate

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 323

h1

x1 x2 x3 xt

h0

c1 c2 c3
c0

f f f

h2 h3

h1 h2 h3

ht

xt

ht

a

ht
ht–1ht–1

ct–1
ct–1 ct

...

...

...

...
sigmoid

sigmoid
sigmoid

tanh

tanh

forget gate output gate

Cell state

input gate

 f

b

Fig. 2 (a) A single LSTM unit with different gates and activations, and (b) LSTM unit unrolled
in time; f is an LSTM unit, x is input, c is cell state, and h is the hidden state

Fig. 3 (a) A single GRU unit with different gates and activations, and (b) GRU unit unrolled in
time; f is a GRU unit, x is input, and h is the hidden state.

adds relevant information to the cell state (ct). An illustration of an LSTM unit
unrolled in time is shown in Fig. 2b.

LSTMs learn long-term dependencies in a sequence by using a combination of
different gates and hidden states. However, they are computationally expensive due
to the complex sequence path from having multiple gates (compared to RNNs), and
require more runtime memory. Moreover, training LSTMs have a high computation
overhead even when advanced training methods such as truncated backpropagation
are employed. To overcome the above-mentioned limitations, a simpler sequence
model called gated recurrent unit (GRU) was introduced in [43]. GRUs can be
trained faster than LSTMs and also capture dependencies in long sequences with
minimal overhead (in both memory and runtime) while solving the vanishing
gradient problem.

3.1.3 Gated Recurrent Unit (GRU)

Unlike LSTMs, a GRU unit takes a different route for gating information. The input
and forget gate in the LSTM unit are combined into a solitary update gate. Moreover,
hidden and cell states are combined into one state, as shown in Fig. 3a, b.

A GRU unit consists of two gates (i) reset gate and (ii) update gate. The reset
gate combines new input with previous memory, while the update layer determines

324 V. K. Kukkala et al.

how much relevant information should be stored. Thus, a GRU unit controls the
data stream similar to an LSTM by uncovering its hidden layer contents. Moreover,
GRUs are computationally more efficient and have a low memory overhead than
LSTMs as they achieve this using fewer gates and states. It is highly crucial to
use lightweight machine learning models when working with automotive systems,
as real-time automotive ECUs are highly resource-constrained embedded systems
with strict energy and power budgets. This makes GRU-based networks an ideal fit
for inference in resource-constrained automotive systems. Thus, INDRA utilizes a
lightweight GRU-based model to implement the IDS (explained in detail in Sect. 5).

One of the significant advantages of sequence models is that they can be trained
in both supervised and unsupervised learning fashion. Due to the large volume of
CAN message data in a vehicle, high variability in the messages between vehicle
models from the same manufacturer, and the proprietary nature of this information
make it highly challenging and tedious to label messages correctly. However, due
to the ease of obtaining CAN message data via onboard diagnostics (OBD-II), large
amounts of unlabeled data can be collected easily. Thus, INDRA uses GRUs in an
unsupervised learning setting.

3.2 Autoencoders

Autoencoders are a special class of neural networks that try to reconstruct the input
by learning the latent input features in an unsupervised fashion. They achieve this
by encoding the input data (x) to a hidden layer which produces the embedding,

and finally decoding the embedding to produce a reconstruction .
∼
x (as shown in

Fig. 4). The layers used to create this embedding are called the encoder, and the

Fig. 4 An autoencoder network with encoder, decoder, and embedding layers

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 325

layers used in reconstructing the embedding into the original input (decoding) are
called the decoder. During the training process, the encoder tries to learn a nonlinear
mapping of the inputs, while the decoder tries to learn the nonlinear mapping of the
embedding to the inputs. The encoder and decoder achieve this using various non-
linear activation functions such as tanh and rectified linear unit (ReLU). Moreover,
the autoencoder aims to recreate the input as closely as possible by extracting the
key features from the inputs with the goal of minimizing reconstruction loss. The
most commonly used loss functions in autoencoders include mean squared error
(MSE) and Kullback-Leibler (KL) divergence.

As autoencoders aim to reconstruct the input by learning the underlying distri-
bution of the input data, they are an excellent choice for efficiently learning and
re-constructing highly correlated time-series data by learning the temporal relations
between messages. Hence, our proposed INDRA framework uses lightweight GRUs
in an autoencoder to learn latent representations of CAN message data in an
unsupervised learning setting.

4 Problem Definition

4.1 System Model

In this chapter, we consider a generic automotive system consisting of multiple
ECUs connected using an in-vehicle network, as shown in Fig. 5. Each ECU in
the system runs a specific set of automotive applications that are hard-real time
in nature (i.e., they have strict timing and deadline constraints). Moreover, we
assume that each ECU also runs intrusion detection applications (IDS) that are
responsible for monitoring and detecting cyber-attacks in the in-vehicle network.

Fig. 5 Overview of the system model considered in INDRA

326 V. K. Kukkala et al.

In the INDRA framework, we consider a distributed IDS approach (where intrusion
detection applications are collocated with automotive applications) as opposed to a
centralized IDS approach in which one central ECU handles all intrusion detection
tasks due to the following reasons:

• A centralized IDS approach is prone to single-point failures, which can com-
pletely expose the system to the attacker.

• In extreme scenarios such as during a flooding attack (explained in Sect. 4.3), the
in-vehicle network would get highly congested, and the centralized system might
not be able to communicate with the victim ECUs.

• If an attacker successfully tricks the centralized IDS ECU, the attacks can go
undetected by the other ECUs, compromising the entire system; however, in
the case of a distributed IDS, it requires fooling multiple ECUs (which is more
difficult) to compromise the system. Moreover, the decentralized intelligence in
a distributed IDS scenario can still detect the attacks, even if one of the ECU is
compromised.

• In a distributed IDS, ECUs can stop accepting messages as soon as an intrusion
is detected. This results in significantly faster reaction times as there is no need
for a notification from a centralized system.

• Lastly, in a distributed IDS, the computation load of IDS is divided among the
ECUs, and monitoring can be limited to only required messages. As a result,
multiple ECUs can independently monitor a subset of messages with lesser
overhead.

Distributed IDS approach has been adopted in many state-of-the-art works, such
as [18, 25], for the above-mentioned reasons. Moreover, with the increasing
computation power of automotive ECUs, the collocation of IDS applications with
real-time automotive applications in a distributed manner should not be a problem if
the IDS has minimal overhead. INDRA framework is not only lightweight but also
highly scalable and achieves superior intrusion detection performance (discussed in
detail in Sect. 6).

An ideal IDS should have a low power/energy footprint, low cost, and low
susceptibility to noise. The following are some of the key characteristics of an
efficient IDS, that were taken into consideration when designing the INDRA IDS:

• Lightweight: Intrusion detection tasks can incur additional overhead on ECU,
which can have a broad range of impact ranging from poor application perfor-
mance to catastrophic events due to missed deadlines for real-time applications.
Therefore, INDRA aims to have a lightweight IDS that incurs minimal overhead
on the ECU.

• Coverage: This is defined as the range of attacks that an IDS can detect. A good
IDS must be capable of detecting more than one type of attack. Moreover, high
coverage for IDS will make the system resilient to multiple attack surfaces.

• Few false positives: This is a highly desired quality in any IDS (even outside
of the automotive domain), as dealing with false positives can quickly become
costly. Thus, a good IDS is expected to have few false positives or false alarms.

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 327

• Scalability: As the number of ECUs in emerging vehicles is growing along with
software and network complexity, this is an essential requirement. A good IDS
should be highly scalable and capable of supporting multiple system sizes.

4.2 Communication Model

In this subsection, we discuss the communication model that was considered
for the INDRA framework. INDRA primarily focuses on detecting anomalies in
Controller Area Network (CAN) bus-based automotive CPS, as CAN is the most
commonly used in-vehicle network protocol. CAN offers a low-cost, lightweight,
event-triggered communication where messages are transmitted in the form of
frames. A standard CAN frame structure with the length of each field (in bits)
on the top is shown in Fig. 6. The standard CAN frame consists of (i) header,
(ii) payload, and (iii) trailer segments. The header contains information about the
message identifier (ID) and the length of the message, whereas the payload segment
contains the actual data that needs to be transmitted. The trailer section is mainly
used for error checking at the receiver. More recently, a new variation of the CAN
protocol, called CAN-extended or CAN 2.0B, is also being deployed increasingly
in modern vehicles. The key difference is that CAN-extended has a 29-bit identifier
which allows for a greater number of message IDs.

The INDRA IDS focuses on monitoring the payload of the CAN frame and
observes for anomalies within the payload segment to detect cyberattacks. This
is because most modern-day attacks involve an attacker modifying the payload to
accomplish malicious activities. On the other hand, if an attacker targets the header
or trailer segments, the message would get rejected at the receiver. The typical
payload segment of a CAN message comprises of multiple data entities called
signals. Figure 7 illustrates a real-world example CAN message with the list of
signals within the message. Each signal has a particular data type, fixed size (in bits),
and a start bit which specifies the signal’s location in the 64-bit payload segment of
the CAN frame.

INDRA focuses on monitoring individual signals within CAN payload to observe
for anomalies and detect attacks. During training, INDRA learns the temporal
relationships between the messages at a signal level and observes for deviations
at runtime to detect attacks. This ability to detect attacks at a signal level enables

Fig. 6 Standard frame format of a Controller Area Network (CAN) message

328 V. K. Kukkala et al.

Fig. 7 A real-world example CAN message with signal information [44]

INDRA to not only detect the presence of an attacker but also help in identifying the
signal under attack. This can provide valuable information related to the attack and
help in understanding the intentions of the attacker, which can be used to initiate
appropriate countermeasures. The signal level monitoring technique employed in
INDRA IDS is discussed in detail in Sect. 5.2.

Note: Even though the INDRA framework focuses on detecting attacks by
monitoring CAN messages, our approach is protocol-agnostic and can be used
with other in-vehicle network protocols (such as FlexRay and LIN) with minimal
changes.

4.3 Attack Model

Our proposed INDRA IDS aims to protect the vehicle from various types of state-
of-the-art attacks that are most commonly seen and difficult to detect in automotive
CPS. Moreover, these attacks have been widely studied in literature to evaluate
IDSs.

1. Plateau attack: In this attack, an attacker overwrites a signal value with a
constant value for the entirety of the attack interval. The severity of this attack
is determined by the magnitude of change in signal value and the duration for
which the signal magnitude is changed. Larger changes in signal values are easier
to detect compared to shorter changes.

2. Flooding attack: This is the most common and simple to launch attack, as it
requires no knowledge of the system. In this attack, the attacker continuously
floods the in-vehicle network with random or specific messages with the goal of
preventing other ECUs from accessing the bus and rendering the bus unusable.
These attacks are typically detected by the gateways and network bridges in the
vehicle and often do not reach the last line of defense (the IDS). However, it
is crucial to consider these attacks as they can have serious security and safety
consequences when poorly handled.

3. Playback attack: In this attack, the attacker attempts to trick the IDS by replaying
a valid series of message transmissions from the past. This attack is hard to
detect if the IDS lacks the ability to capture the temporal relationships between
messages and detect when they are violated.

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 329

4. Continuous attack: In this attack, an attacker gradually overwrites the signal
value to some target value while avoiding the activation of an IDS. These attacks
are difficult to detect and can be sensitive to the IDS parameters (discussed in
Sect. 5.2).

5. Suppress attack: In this attack, the attacker suppresses the signal value(s) by
either disabling the target ECU’s communication controller or shutting down the
ECU. These attacks are easy to detect when they disrupt message transmission
for long durations but are harder to detect for shorter durations.

Moreover, in this work, we assume that the attacker can gain access to the in-
vehicle network using the most common attack vectors, such as connecting to the
OBD-II port, connecting to V2X systems that communicate with the outside world
(for e.g., infotainment and connected ADAS systems), probe-based snooping on the
in-vehicle bus, and by replacing an existing ECU with a malicious ECU. We also
assume that the attacker has access to the network parameters (such as parity, flow
control, and BAUD rate) that can further assist in gaining access to the in-vehicle
network.

Objective The goal of our proposed INDRA framework is to implement a
lightweight IDS that can detect a variety of attacks (discussed above) in a CAN
bus-based automotive CPS, with a high detection accuracy and low false positive
rate while having a large attack coverage.

5 INDRA Framework Overview

INDRA framework utilizes a machine learning-based signal level IDS for moni-
toring real-time CAN messages in automotive CPS. An overview of the INDRA
framework is depicted in Fig. 8. The INDRA framework consists of design-time
and runtime steps. During design time, INDRA uses CAN message data from a
trusted vehicle to train a recurrent autoencoder-based model to learn the normal
system behavior. At runtime, the trained recurrent autoencoder model observes
for the deviation from the learned normal system behavior using the proposed
intrusion score metric to detect cyberattacks. These steps are described in detail
in the subsequent subsections.

5.1 Recurrent Autoencoder

Recurrent autoencoders are powerful neural networks that are similar to an encoder-
decoder structure but can handle time-series or sequence data inputs. They typically
consist of units such as RNNs, LSTMs, or GRUs (discussed in Sect. 3). Similar to
regular autoencoders, recurrent autoencoders have an encoder and a decoder stage.
The encoder generates a latent representation of the input data in an n-dimensional

330 V. K. Kukkala et al.

Fig. 8 Overview of the INDRA IDS framework

space, and the decoder uses this latent representation from the encoder output and
tries to reconstruct the input data with minimal reconstruction loss. In INDRA, we
propose a novel lightweight recurrent autoencoder model that is tailored for the
design of IDS to detect cyberattacks in the in-vehicle network. The details of the
proposed neural network architecture and the various steps involved in its training
and evaluation are discussed in the subsequent sections.

5.1.1 Model Architecture

Our proposed recurrent autoencoder model architecture is illustrated in Fig. 9, with
each layer’s input and output dimensions on the top. The model comprises of a
linear layer at the input, a GRU-based encoder, a GRU-based decoder, and a linear
layer before the final output. The input time-series CAN message data with signal
level information consisting of f features (where f is the number of signals in
the message) is given as input to the first linear layer. The output from the first
linear layer is then passed to the GRU-based encoder, which generates the latent
representation of the time-series signal inputs, which is referred to as a message
context vector (MCV) in this chapter. The MCV captures the context of various
signals in the input message as a vector. Each MCV can be viewed as a point in an
n-dimensional space containing the context of the series of signal values provided as
input. The MCV is fed into a GRU-based decoder, which is then followed by a linear
layer to generate the reconstruction of the input CAN message data with individual
signal values. The loss between the input and the reconstructed input is calculated
using mean square error (MSE), and the weights are updated using backpropagation
through time. INDRA designs a recurrent autoencoder model for each message ID.

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 331

Fig. 9 Proposed recurrent autoencoder model used in INDRA (f is the number of features, i.e.,
number of signals in the input CAN message, MCV is message context vector)

5.1.2 Training Process

The training procedure starts with pre-processing the CAN message data collected
from a trusted vehicle. Each sample in the CAN message dataset consists of a
message ID and the corresponding signal values contained within that message ID.
As signals represent a wide variety of information in the vehicle, the range of signal
values can also be very large. This can make the training process extremely slow or
unstable. To prevent this, we scale the signal values between 0 to 1 for each signal
type. Moreover, scaling signal values also helps to avoid the problem of exploding
gradients (as discussed in Sect. 3).

The pre-processed CAN dataset is divided into training data (85%) and validation
data (15%), which is then prepared for training. We use a rolling window-based
approach, which involves choosing a fixed-size window and rolling it to the right by
one sample every time step. An example rolling window approach with a window
size of three samples and its movement for the three consecutive time steps is
illustrated in Fig. 10. The term . S

j
i represents the ith signal value at jth sample.

The elements in the rolling window are referred to as a subsequence, and the size
of the rolling window is defined as the subsequence length. As each subsequence
consists of a set of signal values over time, our proposed recurrent autoencoder
model attempts to learn the temporal relationships between the series of signal
values. These signal-level temporal relationships aid in detecting more complex
attacks such as continuous and playback (as discussed in Sect. 4.3). The process
of training using subsequences is done iteratively until the end of the training data.

Each training iteration consists of a forward pass and a backward pass (using
backpropagation through time to update the weights and biases of the neurons based
on the error value (as discussed in Sect. 3)). At the end of the training, the model’s
performance is evaluated (forward pass only) using the validation data, which was
not seen by the model during the training. The end of the validation step marks the
completion of one epoch during which the model has seen the complete dataset
once. The model is trained for a set number of epochs until the model reaches

332 V. K. Kukkala et al.

Fig. 10 An example of a rolling window approach and its movement for three consecutive time
steps

convergence. Moreover, the process of training and validation using subsequences
is sped up by training the input subsequences data in groups known as mini-batches.
Each mini-batch is made up of several consecutive subsequences that are given as
the input to the model in parallel. The size of each mini-batch is referred to as a
batch size. Lastly, to control the rate of update of the model parameters during the
backpropagation phase, a learning rate is defined. These hyperparameters, such as
subsequence size, batch size, learning rate, etc., are covered in detail in Sect. 6.1.

5.2 Inference and Detection

At runtime, the trained model is set to evaluation mode, where only forward passes
are performed, and the weights are not updated. During this phase, various attack
conditions are simulated in the CAN message dataset, and the trained model is tested
under multiple attack scenarios (mentioned in Sect. 4.3).

During inferencing, each data sample that passes through the model is recon-
structed, and the reconstruction loss is computed. This reconstruction loss is sent
to the detection module to compute the proposed intrusion score (IS) metric, which
helps in determining whether a signal is malicious or normal. The IS is calculated
at a signal level to predict which signal is under attack. The IS is calculated as
a squared error during each iteration of the inference to estimate the prediction
deviation from the input signal value, as shown in (2).

.ISi =
(
S

j
i − Ŝ

j
i

)2 ∀i ∈ [1,m] (2)

where, . Sj
i denotes the ith signal value at jth sample, . Ŝj

i represents its reconstruction,
and m is the number of signals in the message. We observe a large deviation for
predicted value from the input signal value (i.e., large IS value) when the current

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 333

signal pattern is not seen by the model during the training phase and a smaller IS
value otherwise. This serves as the foundation for our detection phase.

Since the dataset lacks a signal-level attack label information, INDRA combines
the signal level IS information into a message-level IS by calculating the maximum
IS of the signals in that message, as shown in (3).

.MIS = max (IS1, IS2 . . . , ISm) (3)

To achieve adequate detection accuracy, it is critical to choose the intrusion
threshold (IT) for flagging messages. INDRA investigates multiple choices for IT,
using the best model (model with the lowest running validation loss) from the
training phase. From this model, multiple metrics such as maximum, mean, median,
99.99%, 99.9%, 99%, and 90% validation loss are recorded across all iterations as
the potential choices for the IT. The analysis for the selection of the IT metric is
presented in detail in Sect. 6.2.

A working snapshot of INDRA IDS is illustrated in Fig. 11a, b, with a plateau
attack on a message with three signals between time 0 and 50. Figure 11a compares
the input (true) vs. IDS predicted signal value for three signals, and the attack
interval is highlighted in red. It can be observed that the reconstruction is close
for almost all signals except during the attack interval for the majority of the
time. Signal 3 is subjected to a plateau attack in which the attacker maintains a
constant value until the end of the attack interval. This is illustrated in the third
subplot of Fig. 11a (note the larger difference between the predicted and actual
input signal values in that subplot, compared to signals 1 and 2). Figure 11b depicts
the signal intrusion scores for all three signals, and the dotted black line represents
the intrusion threshold (IT). As stated previously, the maximum of signal intrusion
scores is chosen as message intrusion score (MIS), which in this case is the IS of
signal 3. As seen in Fig. 11b, the intrusion score of signal 3 is above the IT for the
entire duration of the attack interval, which clearly highlights INDRA’s ability to
detect such attacks. The value of IT (equal to 0.002) in Fig. 11b is calculated using
the method discussed in Sect. 6.2. However, it is important to note that this value is
specific to the example case shown in Fig. 11 and is not the IT value used for the
remaining experiments. The details of IT selection is discussed in detail in Sect. 6.2.

6 Experiments

6.1 Experimental Setup

A series of experiments have been conducted to evaluate the real-time performance
of our proposed INDRA IDS. We begin by presenting an analysis for the selection
of intrusion threshold (IT). The derived IT is used to contrast against two variants
of the same framework known as INDRA-LED and INDRA-LD. The INDRA-LED

334 V. K. Kukkala et al.

Fig. 11 Internal working of INDRA IDS checking a message with three signals under a plateau
attack, where (a) shows the signal comparisons and (b) shows IS of three signals and the IT

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 335

removes the linear layer before the output, essentially leaving the task of decoding
the message context vector (i.e., reconstructing the input) to GRU based decoder.
The abbreviation LED stands for (L)linear layer, (E) encoder GRU, and (D) decoder
GRU. The INDRA-LD variant replaces the GRU and the linear layer at the decoder
with a series of linear layers (LD stands for linear decoder). These experiments were
carried out to assess the importance of different layers in the network. However, the
encoder part of the network is not changed because it is required to generate an
encoding (MCV) of the input time-series data. INDRA investigates other variants as
well, but they were not included in the discussion as their performance was subpar
compared to that of INDRA-LED and INDRA-LD variants.

Subsequently, the best INDRA variant is compared with three state-of-the-
art prior works that use different machine learning-based techniques to detect
intrusions: (i) Predictor LSTM (PLSTM [38]), (ii) Replicator Neural Network
(RepNet [39]), and (iii) CANet [36]. The first comparison work (PLSTM) employs
an LSTM-based network that has been trained to predict the signal values in the
following message transmission. PLSTM accomplishes this by taking the 64-bit
CAN message payload as the input and learning to predict the signal at a bit-
level granularity by minimizing prediction loss. The bit level deviations between
the actual and the predicted next signal values are computed using a log loss
or binary cross-entropy loss function. Additionally, PLSTM uses the prediction
loss values at runtime to decide whether a particular message is malicious or
not. The second comparison work (RepNet) employs a series of RNN layers to
increase the dimensionality of the input data and reconstruct the input signal values
by decreasing back to the original dimensionality. RepNet accomplishes this by
reducing the mean squared error (MSE) between the input and the reconstructed
signal values. At runtime, RepNet uses large deviations between the input received
signal and the reconstructed signal values to detect cyberattacks. Lastly, CANet uses
a quadratic loss function to minimize the signal reconstruction error by combining
multiple LSTMs and linear layers in an autoencoder architecture. All experiments
conducted with INDRA and its variants and prior works are discussed in detail in
subsequent subsections.

In this work, we use the SynCAN dataset developed by ETAS and Robert
Bosch GmbH [36] to evaluate the effectiveness of the INDRA framework with
its variants and against the above-mentioned prior works. The SynCAN dataset
consists of CAN message data for ten different IDs that have been modeled after
real-world CAN message data. Furthermore, the dataset consists of both training
and test data with multiple attacks (discussed in Sect. 4.3). Each row in the dataset
consists of a timestamp, message ID, and individual signal values. Additionally,
the test data contains a label column with either 0 or 1 values indicating normal
or malicious messages. However, the label information is only available on per
message basis and does not specify which signal within the message is under attack.
It is important to note that the label information in the training data is not used
to train the INDRA model, as the INDRA model learns the patterns in the input
data in an unsupervised manner. This label information in the dataset is only used
to evaluate the performance of the proposed IDS using several metrics such as

336 V. K. Kukkala et al.

detection accuracy and false positive rate. Moreover, to simulate a more realistic
attack scenario in the in-vehicle networks, the test data also contains normal CAN
traffic between the attack injections.

All the machine learning-based frameworks, including the INDRA framework
and its variants as well as comparison works, are implemented using Pytorch
1.4 with CUDA support. We conducted several experiments to select the best-
performing model hyperparameters (number of layers, hidden unit sizes, and
activation functions). The final model discussed in Sect. 5.1 was trained using the
SynCAN data set, with 85% of train data used for training and the remaining for
validation. The validation data is primarily used to assess the model performance
at the end of each epoch. The model is trained for 500 epochs, using a rolling
window approach (as discussed in Sect. 5.1.2) with a subsequence size of 20
messages and a batch size of 128. Moreover, an early stopping mechanism is
employed to monitor the validation loss across epochs and stop the training process
if there is no improvement after 10 (patience) epochs. The initial learning rate is
chosen as 0.0001, and tanh activations are applied after each linear and GRU layer.
Furthermore, the ADAM optimizer is used with the mean squared error (MSE) as
the loss criterion to compute the reconstruction loss. The trained model is used
during testing and subjected to multiple simulated attack scenarios using the test
dataset. The intrusion score metric (as stated in Sect. 5.2) was used to calculate the
intrusion threshold to flag the message as malicious or normal. Lastly, to evaluate
the performance of the IDS, several performance metrics such as detection accuracy
and false positive rate were considered. All the simulations were executed on an
AMD Ryzen 9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Additionally, we present the following definitions in the context of IDS before
discussing the experimental results:

• True Positive (TP)- when the IDS detects an actual malicious message as
malicious;

• False Negative (FN)- when the IDS detects an actual malicious message as
normal;

• False Positive (FP)- when the IDS detects a normal message as malicious (aka
false alarm);

• True Negative (TN)- when the IDS detects an actual normal message as normal.

INDRA framework primarily focuses on two key performance metrics: (i) Detection
accuracy- a measure of IDS’s ability to detect malicious messages correctly, and
(ii) False positive rate: also known as false alarm rate. These metrics are computed
using (4) and (5), respectively.

.Detection Accuracy = T P + T N

T P + FN + FP + T N
(4)

.False Positive Rate = FP

FP + T N
(5)

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 337

6.2 Intrusion Threshold Selection

In this subsection, we present a detailed analysis on the selection of intrusion
threshold (IT) by investigating various options such as maximum (max), median,
mean, and different quantile bins of validation loss of the final model. As the model
is trained only on attack-free data, the reconstruction error for the malicious message
will be much larger than the error for normal messages. Hence, INDRA explores
several candidate options for IT to achieve this goal that would work across multiple
attack and no-attack scenarios. A high threshold value can make it harder for the
model to detect the attacks that change the input pattern minimally (e.g., continuous
attack). On the other hand, having a small threshold value can cause multiple false
positives, which is highly undesirable. Thus, it is crucial to select an appropriate
intrusion threshold value to achieve optimal model performance.

The detection accuracy and false positive rate for various candidate options used
to calculate IT is shown in Fig. 12a, b, respectively, under different attack scenarios.
The results from the Fig. 12 indicates that selecting a higher validation loss as the IT
can lead to high accuracy and a low false alarm rate. However, selecting a very high
value (such as ‘max’ or ‘99.99 percentile’) may result in missing small variations
in the input patterns that are found in more sophisticated attacks. We empirically
conclude that the maximum and 99.99 percentile values are very close. Moreover,
to capture attacks that produce small deviations, a slightly smaller threshold value is
selected that would still perform similar to the max and 99.99 percentile thresholds
under all attack scenarios. Thus, the 99.9th percentile value of the validation loss is
chosen as the intrusion threshold (IT) value, and the same IT value is used for the
remainder of the experiments (discussed in the following subsections).

6.3 Comparison of INDRA Variants

After selecting the appropriate intrusion threshold from the previous subsection,
we use that same criterion for evaluating against two other variants: INDRA-LED
and INDRA-LD. The main intuition behind evaluating different variants of INDRA
is to study the impact of different layers in the model on the performance metrics
discussed in Sect. 6.1.

Figure 13a illustrates the detection accuracy for the INDRA framework and
its variants on the y-axis with multiple types of attacks and a no-attack scenario
(normal) on the x-axis. It can be clearly seen that INDRA outperforms the other two
variants and has high accuracy in most attack scenarios.

The false positive rate or false alarm rate of INDRA and other variants under
different attack scenarios is illustrated in Fig. 13b. When compared to other variants,
INDRA has the lowest false positive rate and highest detection accuracy. Moreover,
INDRA-LED, which is just short of a linear layer on the decoder side, is the
second-best performing model after INDRA. The ability of INDRA-LED to use

338 V. K. Kukkala et al.

Fig. 12 Comparison of (a) detection accuracy and (b) false positive rate for various choices of
intrusion threshold (IT) as a function of validation loss under different attack scenarios. (% refers
to percentile, not percentage)

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 339

Fig. 13 Comparison of (a) detection accuracy and (b) false positive rate under different attack
scenarios for INDRA and its variants (INDRA-LED and INDRA-LD)

340 V. K. Kukkala et al.

a GRU-based decoder helps in efficiently reconstructing the MCV back to the
original input signals. Moreover, it can be clearly seen in both Fig. 13a, b that the
absence of GRU layers on the decoder end of INDRA-LD resulted in significant
performance degradation. Thus, INDRA is chosen as the candidate model for
subsequent experiments.

6.4 Comparison with Prior Works

Our proposed INDRA framework is compared with some of the best-known prior
works in the IDS area, such as PLSTM [38], RepNet [39], and CANet [36]. The
detection accuracy and false positive rate for different techniques under different
attack scenarios is illustrated in Fig. 14a, b, respectively.

From Fig. 14a, b, it is evident that INDRA achieves high detection accuracy
under each attack scenario while achieving lower false positive rates. The ability to
monitor signal level variations combined with a more cautious selection of intrusion
threshold gives INDRA an advantage over comparison works. PLSTM and RepNet
use the maximum validation loss in the final model as the threshold, whereas CANet
uses interval-based monitoring to detect malicious messages. Choosing a higher
threshold helped PLSTM to achieve slightly lower false positive rates for some
scenarios, but it hurt the ability of both PLSTM and RepNet to detect attacks with
minor variations in the input data. This is because the deviations produced by some
of the complex attacks are small, and the attacks go undetected due to the large
thresholds. Moreover, the interval-based monitoring approach employed in CANet
struggles to find an optimal threshold resulting in subpar performance. It is essential
to highlight that INDRA achieves this superior performance by monitoring at a
signal level as opposed to prior works that monitor at the message level. Lastly, the
false positive rates of INDRA remain significantly low, with a maximum of 2.5% for
plateau attacks.

6.5 IDS Overhead Analysis

In this section, we present a detailed analysis of the overhead incurred by our
proposed INDRA IDS. We quantify the IDS overhead in terms of memory footprint
and time taken to process an incoming message, i.e., inference time. The former
metric is important as the automotive ECUs are highly resource-constrained and
have limited memory and compute capacities. Therefore, it is critical to have a
low memory overhead to avoid interference with real-time automotive applications.
The inference time metric provides important information about the time it takes to
detect the attacks and can also be used to compute the utilization overhead on the
ECU. Hence, the above-mentioned two metrics are analyzed to study the overhead
and quantify the lightweight nature of INDRA IDS.

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 341

Fig. 14 Comparison of (a) detection accuracy and (b) false positive rate of INDRA and the prior
works PLSTM [38], RepNet [39], and CANet [36]

342 V. K. Kukkala et al.

Table 2 Memory footprint
comparison between our
proposed INDRA framework
and the prior works PLSTM
[38], RepNet [39], and
CANet [36]

IDS framework Memory footprint (KB)

PLSTM [38] 13,417
RepNet [39] 55
CANet [36] 8718
INDRA 443

Table 3 Inference time comparisons between our proposed INDRA framework and the prior
works PLSTM [38], RepNet [39], and CANet [36] using single and dual-core configurations

Average inference time (μs)
IDS framework Single core ARM Cortex A57 CPU Dual core ARM Cortex A57 CPU

PLSTM [38] 681.18 644.76
RepNet [39] 19.46 21.46
CANet [36] 395.63 378.72
INDRA 80.35 72.91

To quantify the overhead of our proposed INDRA framework and the prior works,
we implemented the IDSs on the NVIDIA Jetson Tx2 board, consisting of an ARM
Cortex- A57 CPU, which has similar specifications to the state-of-the-art multi-
core ECUs. The memory footprint of the INDRA framework and the prior works
mentioned in the previous subsections is shown in Table 2. It is evident that the
INDRA framework has a low memory footprint compared to the prior works, except
for the RepNet [39]. However, it is important to observe that even though the INDRA
framework has a slightly higher memory footprint compared to the RepNet [39],
INDRA outperforms all the prior works, including RepNet [39], in all performance
metrics under various attack scenarios, as shown in Fig. 14. The heavier (high
memory footprint) models can capture a wide range of system behaviors; however,
they are not an ideal choice for resource-constrained automotive CPS. On the other
hand, a much lighter model (such as RepNet) fails to capture necessary details about
the system behavior due to its limited model parameters, which in turn suffers from
performance issues.

We benchmarked different IDS frameworks on an ARM Cortex- A57 CPU
to study the inference overhead. In this study, we considered different system
configurations to explore a wide variety of ECU hardware that is available in state-
of-the-art vehicles. Based on the available hardware resources, single-core (uses
only one CPU core) and dual-core (uses two CPU cores) system configurations were
selected on the Jetson TX2. The IDS frameworks are executed 10 times for each
CPU configuration, and the average inference times (in μs) are recorded in Table 3.
From the results in Table 3, it is clear that the INDRA framework has significantly
faster inference times compared to the prior works (excluding RepNet) under all
system configurations. From the results in Fig. 14, it can be seen that RepNet
has the worst performance of any comparison framework, despite having a lower
inference time. The large inference times for the better-performing frameworks
can have a significant impact on the real-time performance of the vehicle and
can be catastrophic in the event of deadline misses. We also believe that using a

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 343

dedicated deep learning accelerator (DLA) further enhances the performance of the
IDS models.

Thus, from Fig. 14, Table 2 and 3, it is clear that INDRA achieves a clear
balance of having superior intrusion detection performance while maintaining a low
memory footprint and fast inference times, making it a powerful and lightweight
IDS solution.

6.6 Scalability Results

In this subsection, we present a detailed analysis on the scalability of the INDRA
framework by studying the system performance using the ECU utilization metric as
a function of increasing system complexity (i.e., number of ECUs and messages).
Each ECU in the system has a real-time utilization (URT) and an IDS utilization
(UIDS) from running real-time and IDS applications, respectively. We focus on
analyzing the IDS overhead (UIDS), as it is a direct measure of the compute
efficiency of the IDS. Moreover, as the safety-critical messages monitored by the
IDS are periodic, the IDS can be modeled as a periodic application with a period that
is the same as the message period [5]. As a result, monitoring an ith message (mi)
results in an induced IDS utilization (UIDS, mi) at an ECU, which can be calculated
using (6).

.UIDS,mi
=

(
TIDS

Pmi

)
(6)

where, TIDS and Pmi represent the time taken by the IDS to process one message
(inference time) and the period of the monitored message, respectively. Moreover,
the sum of all IDS utilizations because of monitoring different messages is the
overall IDS utilization at that ECU (UIDS) and is computed using (7).

.UIDS =
∑n

i=1
UIDS,mi

(7)

To evaluate the scalability of the INDRA IDS, six different system sizes were
considered. Moreover, a set of commonly used message periods {1, 5, 10, 15, 20,
25, 30, 45, 50, 100} (all periods in ms) in automotive CPS is considered to sample
uniformly, when assigning periods to the messages in the system. These messages
are distributed evenly among different ECUs, and the IDS utilization is calculated
using (6) and (7). INDRA assumes a pessimistic scenario where all the ECUs in the
system have only a single core, which would allow us to analyze the worst-case
overhead of the IDS.

The average ECU utilization for different system sizes denoted by {p, q}, where p
is the number of ECUs and q is the number of messages in the system, is illustrated
in Fig. 15. In this study, a very pessimistic estimate of 50% real-time ECU utilization

344 V. K. Kukkala et al.

Fig. 15 Scalability analysis of our proposed INDRA IDS for different system sizes and the prior
works PLSTM [38], RepNet [39], and CANet [36]

for real-time automotive applications (“RT Util”, as shown in the dotted bars) is
assumed. The solid bars on top of the dotted bars represent the IDS overhead on
the ECUs, and the horizontal dotted line in red represents the 100% ECU utilization
mark. It is critical to ensure that the ECU utilization does not exceed 100% under any
scenario, as it could introduce undesired latencies resulting in missing deadlines for
time-critical automotive applications, which can be catastrophic. It is clear from the
results that the prior works, such as PLSTM and CANet, incur heavy overhead on
the ECUs, while RepNet and our proposed INDRA framework have a very minimal
overhead that is favorable to increasing system sizes. Thus, from the results in
this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that INDRA not only
achieves better performance in terms of detection accuracy and false positive rate
for intrusion detection than state-of-the-art prior works, but it is also lightweight and
highly scalable.

7 Conclusion

In this chapter, we presented a novel recurrent autoencoder-based lightweight
real-time intrusion detection system called INDRA for automotive CPS. INDRA
framework uses the intrusion score (IS) metric to measure the deviation from the

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 345

learned system behavior to detect intrusions. Moreover, we presented a thorough
analysis on the intrusion threshold selection process and compared the INDRA
IDS with the best-known prior works in this area. The promising results indicate a
compelling potential for utilizing our proposed INDRA IDS in emerging automotive
platforms.

References

1. Kukkala, V.K., Bradley, T., Pasricha, S.: Priority-based multi-level monitoring of signal
integrity in a distributed powertrain control system. In: Proceedings of IFAC Workshop on
Engine and Powertrain Control, Simulation and Modeling (2015)

2. Kukkala, V.K., Bradley, T., Pasricha, S.: Uncertainty analysis and propagation for an auxiliary
power module. In: Proceedings of IEEE Transportation Electrification Conference (TEC)
(2017)

3. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS: Jitter-aware message scheduling for flexray
automotive networks. In: Proceedings of IEEE/ACM International Symposium on Network-
on-Chip (NOCS) (2017)

4. Kukkala, V.K., Pasricha, S., Bradley, T.: JAMS-SG: A framework for jitter-aware message
scheduling for time-triggered automotive networks. ACM Trans. Design Autom. Electron.
Syst. (TODAES). 24(6) (2019)

5. Kukkala, V., Pasricha, S., Bradley, T.: SEDAN: Security-aware design of time-critical automo-
tive networks. IEEE Trans. Vehic. Technol. (TVT). 69(8) (2020)

6. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: INDRA: Intrusion detection using recurrent
autoencoders in automotive embedded systems. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. (TCAD). 39(11) (2020)

7. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: LATTE: LSTM self-attention based anomaly
detection in embedded automotive platforms. ACM Trans. Embed. Comput. Syst. (TECS).
20(5s), Article 67 (2021)

8. Thiruloga, S.V., Kukkala, V.K., Pasricha, S.: TENET: Temporal CNN with attention for
anomaly detection in automotive cyber-physical systems. In: Proceedings of IEEE/ACM Asia
& South Pacific Design Automation Conference (ASPDAC) (2022)

9. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: Roadmap for cybersecurity in autonomous
vehicles. In: IEEE Consum. Electron. Magaz. (CEM) (2022)

10. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards improving vehicle fuel economy
with ADAS. SAE Int. J. Connect. Autom. Veh. 1(2) (2018)

11. Tunnell, J., Asher, Z., Pasricha, S., Bradley, T.H.: Towards improving vehicle fuel economy
with ADAS. In: Proceedings of SAE World Congress Experience (WCX) (2018)

12. Asher, Z., Tunnell, J., Baker, D.A., Fitzgerald, R.J., Banaei-Kashani, F., Pasricha, S., Bradley,
T.H.: Enabling prediction for optimal fuel economy vehicle control. In: Proceedings of SAE
World Congress Experience (WCX) (2018)

13. Dey, J., Taylor, W., Pasricha, S.: VESPA: A framework for optimizing heterogeneous sensor
placement and orientation for autonomous vehicles. IEEE Consum. Electron. Magaz. (CEM).
10(2) (2021)

14. Kukkala, V.K., Pasricha, S., Bradley, T.: Advanced driver-assistance systems: A path toward
autonomous vehicles. IEEE Consum. Electron. Magaz. 7(5) (2018)

15. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor,
B., Anderson, D., Shacham, H., Savage, S.: Experimental security analysis of a modern
automobile. In: Proceedings of IEEE Symposium on Security and Privacy (SP) (2010)

16. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA
(2015)

346 V. K. Kukkala et al.

17. Izosimov, V., Asvestopoulos, A., Blomkvist, O., Törngren, M.: Security-aware development of
cyber-physical systems illustrated with automotive case study. In: Proceedings of IEEE/ACM
Design, Automation & Test in Europe & Exhibition (DATE) (2016)

18. Studnia, I., Alata, E., Nicomette, V., Kaâniche, M., Laarouchi, Y.: A language-based intrusion
detection approach for automotive embedded networks. Int. J. Embed. Syst. (IJES). 10(8)
(2018)

19. Marchetti, M., Stabili, D.: Anomaly detection of CAN bus messages through analysis of ID
sequences. In: Proceedings of IEEE Intelligent Vehicle Symposium (IV) (2017)

20. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks- practical
examples and selected short-term countermeasures. Reliab. Eng. Syst. Saf. 96(1) (2011)

21. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack detection
for in-vehicle networks. In: Proceedings of IEEE Intelligent Vehicles Symposium (IV) (2008)

22. Aldwairi, M., Abu-Dalo, A.M., Jarrah, M.: Pattern matching of signature-based IDS using
Myers algorithm under MapReduce framework. EURASIP J. Inf. Secur. 1 (2017)

23. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica (1986)
24. Hoppe, T., Kiltz, S., Dittmann, J.: Applying intrusion detection to automotive IT-early insights

and remaining challenges. J. Inf. Assur. Secur. (JIAS). 4(6) (2009)
25. Waszecki, P., Mundhenk, P., Steinhorst, S., Lukasiewycz, M., Karri, R., Chakraborty, S.:

Automotive electrical and electronic architecture security via distributed in-vehicle traffic
monitoring. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (TCAD). 36(11) (2017)

26. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection.
In: Proceedings of USENIX (2016)

27. Ying, X., Sagong, S.U., Clark, A., Bushnell, L., Poovendran, R.: Shape of the Cloak: Formal
analysis of clock skew-based intrusion detection system in controller area networks. IEEE
Trans. Inf. Forensics Secur. (TIFS). 14(9) (2019)

28. Yoon, M.K., Mohan, S., Choi, J., Sha, L.: Memory heat map: Anomaly detection in real-
time embedded systems using memory behavior. In: Proceedings of IEEE/ACM/EDAC Design
Automation Conference (DAC) (2015)

29. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In: Proceedings
of IEEE Intelligent Vehicles Symposium (IV) (2011)

30. Müter, M., Groll, A., Freiling, F.C.: A structured approach to anomaly detection for in-vehicle
networks. In: Proceedings of IEEE International Conference on Intelligent and Advanced
System (ICIAS) (2010)

31. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for the automotive
CAN bus. In: Proceedings of World Congress on Industrial Control Systems Security (WCI-
CSS) (2015)

32. Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Car hacking identification through fuzzy
logic algorithms. In: Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE) (2017)

33. Vuong, T.P., Loukas, G., Gan, D.: Performance evaluation of cyber-physical intrusion detection
on a robotic vehicle. In: Proc. of IEEE International Conference on Computer and Informa-
tion Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM) (2015)

34. Levi, M., Allouche, Y., Kontorovich, A.: Advanced analytics for connected car cybersecurity.
In: Proceedings of IEEE Vehicular Technology Conference (VTC) (2018)

35. Kang, M.J., Kang, J.W.: A novel intrusion detection method using deep neural network for
in-vehicle network security. In: IEEE Proceedings of Vehicular Technology Conference (VTC)
(2016)

36. Hanselmann, M., Strauss, T., Dormann, K., Ulmer, H.: CANet: An unsupervised intrusion
detection system for high dimensional CAN bus data. IEEE Access. (2020)

37. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-
physical intrusion detection for vehicles using deep learning. IEEE Access. (2018)

Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 347

38. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control network data
with long short-term memory networks. In: Proceedings of IEEE International Conference on
Data Science and Advanced Analytics (DSAA) (2016)

39. Weber, M., Wolf, G., Sax, E., Zimmer, B.: Online detection of anomalies in vehicle signals
using replicator neural networks. In: Proceedings of ESCAR USA (2018)

40. Weber, M., Klug, S., Sax, E., Zimmer, B.: Embedded hybrid anomaly detection for automotive
can communication. In: Embedded Real Time Software and Systems (ERTS) (2018)

41. Schmidhuber, J.: Habilitation Thesis: System Modeling and Optimization (1993)
42. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient Flow in Recurrent Nets: The

Difficulty of Learning Long-Term Dependencies. IEEE Press (2001)
43. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio,

Y.: Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv Preprint, arXiv:1406.1078, 2014

44. DiDomenico, G.C, Bair, J., Kukkala, V.K, Tunnell, J., Peyfuss, M., Kraus, M., Ax, J., Lazarri,
J., Munin, M., Cooke, C., Christensen, E.: Colorado State University EcoCAR 3 final technical
report. In: SAE World Congress Experience (WCX) (2019)

	Real-Time Intrusion Detection in Automotive Cyber-Physical Systems with Recurrent Autoencoders
	1 Introduction
	2 Related Work
	3 Background on Sequence Learning
	3.1 Sequence Models
	3.1.1 Recurrent Neural Networks (RNN)
	3.1.2 Long Short-Term Memory (LSTM) Networks
	3.1.3 Gated Recurrent Unit (GRU)

	3.2 Autoencoders

	4 Problem Definition
	4.1 System Model
	4.2 Communication Model
	4.3 Attack Model

	5 INDRA Framework Overview
	5.1 Recurrent Autoencoder
	5.1.1 Model Architecture
	5.1.2 Training Process

	5.2 Inference and Detection

	6 Experiments
	6.1 Experimental Setup
	6.2 Intrusion Threshold Selection
	6.3 Comparison of INDRA Variants
	6.4 Comparison with Prior Works
	6.5 IDS Overhead Analysis
	6.6 Scalability Results

	7 Conclusion
	References

