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Preface 

Modern vehicles are examples of complex cyber-physical systems (CPS) with tens 
to hundreds of interconnected Electronic Control Units (ECUs) that manage various 
vehicular subsystems. The ECU functionalities range from simple window control 
to highly complex Advanced Driver Assistance System (ADAS) applications such 
as adaptive cruise control, lane-keeping assist, and collision avoidance. With the 
shift toward autonomous driving and ever-increasing connectivity with external 
systems, connected and autonomous vehicles (CAVs) have emerged as one of the 
most complex automotive CPS. The modern CAV ecosystem is characterized by 
increased ECU count, greater software complexity, and highly complex heteroge-
neous vehicular networks (within and outside the vehicle). Moreover, the aggressive 
attempts of automakers to make vehicles fully autonomous have led to the adoption 
of artificial intelligence (AI)-based techniques for advanced perception and control. 

These paradigm shifts have resulted in increased overall complexity and have 
severe performance and safety implications on the automotive CPS. This book 
identifies and explores the most challenging issues (listed below) in designing a 
safe, secure, and robust automotive CPS.

• Safety: The increased complexity of automotive CPS has resulted in significant 
overhead on resource-constrained ECUs, which can lead to missing real-time 
deadlines. Missing deadlines for safety-critical automotive applications can be 
catastrophic, and this problem will be further aggravated in the case of future 
autonomous vehicles. Thus, designing efficient techniques to guarantee real-time 
performance (i.e., ensure no deadline and timing constraints are violated) is vital 
to ensure the safety of automotive CPS.

• Security: The increased connectivity of modern vehicles has made them highly 
vulnerable to various sophisticated cyber-attacks. However, imposing security 
mechanisms on the resource-constrained ECUs can result in additional com-
putation and communication overhead, potentially leading to further missed 
deadlines. Therefore, it is crucial to design lightweight security mechanisms 
that are tailored toward automotive systems. Moreover, the increased complexity 
of automotive cyber-attacks is a growing concern, and this requires developing
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vi Preface

advanced intrusion detection systems (IDS) that can detect these sophisticated 
cyber-attacks.

• Robustness: The adoption of various machine learning and deep learning 
techniques for the perception and control of vehicular subsystems has resulted 
in high reliance on data from external systems and sensors. However, small 
uncertainties in the input data can lead to undesired outcomes from these 
perception and control systems, which can degrade the performance of the 
vehicle and potentially have catastrophic consequences. Hence, designing robust 
perception techniques and control algorithms is essential to automotive CPS 
design. 

In summary, designing a safe, secure, and robust automotive CPS while meeting all 
timing and deadline constraints is not a trivial task. 

To address these challenges, this book discusses emerging machine learning and 
optimization algorithm-based solutions for real-time scheduling (Part I), security-
aware design (Part II), intrusion detection systems (Part III), robust perception (Part 
IV), and robust control (Part V). The brief outline of the book with different parts 
and the chapters within them is summarized below. 

1. Real-Time Scheduling: Since automotive CPS are highly resource-constrained 
and handle various safety-critical functions, efficient scheduling is critical to 
enable safe and reliable vehicles. Hence, the first part of the book focuses on 
real-time scheduling techniques in automotive CPS.

• Chapter “Reliable Real-Time Message Scheduling in Automotive Cyber-
Physical Systems” presents a novel real-time message scheduling framework 
that utilizes both design time and runtime scheduling to mitigate the impact 
of jitter in time-triggered automotive CPS.

• Chapter “Evolvement of Scheduling Theories for Autonomous Vehicles” 
describes three real-time scheduling techniques at the task, resource, and 
network levels to address different scheduling challenges in automotive CPS.

• Chapter “Distributed Coordination and Centralized Scheduling for Automo-
biles at Intersections” discusses distributed and centralized real-time schedul-
ing approaches for solving the problem of intersection management in 
connected and autonomous vehicles. 

2. Security-Aware Design: To protect vehicles from devastating cyber-attacks, it 
is crucial to include security as one of the fundamental requirements when 
designing automotive CPS. Therefore, the second part of the book focuses on 
security-aware design of automotive CPS.

• Chapter “Security Aware Design of Time-Critical Automotive Cyber-Physical 
Systems” presents a novel security framework that combines design time 
schedule optimization with runtime key management to improve the security 
of time-critical automotive CPS.

• Chapter “Secure by Design Autonomous Emergency Braking Systems in 
Accordance with ISO 21434” discusses security-aware design using ISO
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Preface vii

21434 by considering an autonomous emergency braking system as a case 
study and evaluates the impact of various adversarial actions.

• Chapter “Resource Aware Synthesis of Automotive Security Primitives” 
develops methods for security-aware automotive CPS design by leveraging 
adaptive lightweight attack detection and mitigation schemes.

• Chapter “Gradient-Free Adversarial Attacks on 3D Point Clouds from LiDAR 
Sensors” presents an approach using evolutionary algorithms to design novel 
attacks on LiDAR scans used in autonomous driving.

• Chapter “Internet of Vehicles-Security and Research Roadmap” describes 
various challenges in designing a secure automotive system in the context 
of the Internet of Vehicles (IoV) and presents a research roadmap to address 
the challenges. 

3. Intrusion Detection Systems: An intrusion detection system (IDS) often acts as 
the last line of defense in cyber-attacks. Traditionally, firewalls and rule-based 
systems are employed to detect cyber-attacks. However, they are not effective 
in detecting sophisticated cyber-attacks due to the lack of ability to learn the 
complex dependencies in vehicular network data. Hence, the third part of the 
book focuses on machine learning-based IDS that encompasses monitoring and 
attack detection at an in-vehicle network level and vehicular ad hoc network 
(VANET) level.

• Chapter “Protecting Automotive Controller Area Network: A Review on 
Intrusion Detection Methods Using Machine Learning Algorithms” describes 
the evolution of in-vehicle networks and presents a comprehensive review 
of machine learning-based intrusion detection approaches in Controller Area 
Network (CAN)-based automotive CPS.

• Chapter “Real-Time Intrusion Detection in Automotive Cyber-Physical Sys-
tems with Recurrent Autoencoders” proposes a novel lightweight IDS that 
utilizes Gated Recurrent Unit (GRU)-based recurrent autoencoder networks 
to detect cyber-attacks in automotive CPS.

• Chapter “Stacked LSTMs Based Anomaly Detection in Time-Critical Auto-
motive Networks” develops a novel anomaly detection framework that uses 
stacked Long Short-Term Memory (LSTM) with an attention mechanism and 
One-Class Support Vector Machine (OCSVM) to detect various cyber-attacks 
in automotive CPS.

• Chapter “Deep AI for Anomaly Detection in Automotive Cyber-Physical Sys-
tems” presents an anomaly detection framework that uses temporal convolu-
tional neural attention (TCNA) network to detect cyber-attacks in automotive 
CPS.

• Chapter “Physical Layer Intrusion Detection and Localization on CAN Bus” 
explores different machine learning techniques to detect cyber-attacks and 
identify the ECU transmitting malicious messages using voltage character-
istics of CAN signals.

• Chapter “Spatiotemporal Information Based Intrusion Detection Systems for 
In-Vehicle Networks” develops a convolutional LSTM-based IDS that uses
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spatiotemporal information of CAN data frames to detect cyber-attacks in 
automotive CPS.

• Chapter “In-Vehicle ECU Identification and Intrusion Detection from Elec-
trical Signaling” describes a linear regression and support vector machine 
(SVM)-based IDS that relies on electrical signaling to detect cyber-attacks 
and identify the source ECU in CAN-FD-based automotive CPS.

• Chapter “Machine Learning for Security Resiliency in Connected Vehi-
cle Applications” presents a machine learning-based solution for real-time 
resiliency in CAV applications against cyber-attacks on perception inputs. 

4. Robust Perception: Many safety-critical functions in today’s vehicles rely on 
data from different sensors and external systems, and employ various machine 
learning models to perceive the environment. The fourth part of the book 
discusses robust perception techniques in automotive CPS.

• Chapter “Object Detection in Autonomous Cyber-Physical Vehicle Platforms: 
Status and Open Challenges” provides a comprehensive review of state-of-
the-art perception models used for object detection and discusses the open 
challenges in integrating them into autonomous vehicles.

• Chapter “Scene-Graph Embedding for Robust Autonomous Vehicle Percep-
tion” develops a novel spatiotemporal graph learning approach based on 
scene-graph representation to improve perception performance of automotive 
CPS.

• Chapter “Sensing Optimization in Automotive Platforms” explores different 
optimization techniques to synthesize heterogeneous sensor placement and 
orientation to enhance perception in modern semi-autonomous vehicles.

• Chapter “Unsupervised Random Forest Learning for Traffic Scenario Cate-
gorization” introduces a random forest-based unsupervised learning approach 
to detect patterns in traffic scenarios that are used for efficient validation of 
perception models designed for autonomous driving.

• Chapter “Development of Computer Vision Models for Drivable Region 
Detection in Snow Occluded Lane Lines” presents a CNN-based model that is 
used to identify the drivable region in snowy road conditions when lane lines 
are occluded by snow.

• Chapter “Machine Learning Based Perception Architecture Design for Semi-
autonomous Vehicles” describes a machine learning-based automated percep-
tion architecture exploration framework to generate robust, vehicle-specific 
perception solutions. 

5. Robust Control: It is vital to design robust control strategies to ensure safe and 
real-time performance in vehicles. To address these challenges, the fifth part of 
the book focuses on robust control techniques in automotive CPS.

• Chapter “Predictive Control During Acceleration Events to Improve Fuel 
Economy” presents a predictive control strategy for hybrid electric vehicles
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that dynamically allocates the torque between the engine and electric motor 
by predicting the acceleration behavior.

• Chapter “Learning-Based Social Coordination to Improve Safety and Robust-
ness of Cooperative Autonomous Vehicles in Mixed Traffic” describes a 
multi-agent reinforcement learning (MARL)-based control approach that 
enables social coordination between autonomous and human-driven vehicles 
to improve road safety.

• Chapter “Evaluation of Autonomous Vehicle Control Strategies Using 
Resilience Engineering” employs resiliency engineering (RE) and resilience 
assessment grid (RAG) to enhance performance and asses the operational 
robustness of controllers in an autonomous vehicle.

• Chapter “Safety-Assured Design and Adaptation of Connected and 
Autonomous Vehicles” discusses different challenges in the design and 
operations of CAVs that use neural network-based components for advanced 
perception and control, and proposes solutions for improving their safety.

• Chapter “Identifying and Assessing Research Gaps for Energy Efficient 
Control of Electrified Autonomous Vehicle Eco-Driving” presents a review of 
vehicle control systems that enables eco-driving in autonomous vehicles and 
discusses critical research gaps and initial studies that addressed this problem. 

We hope this book provides a comprehensive review and useful information on the 
recent advances in safety, real-time scheduling, security, perception, and control 
approaches for emerging automotive cyber-physical systems. 

Santa Clara, CA, USA Vipin Kumar Kukkala 
Fort Collins, CO, USA Sudeep Pasricha 
December 17, 2022
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Part I 
Real-Time Scheduling



Reliable Real-Time Message Scheduling 
in Automotive Cyber-Physical Systems 

Vipin Kumar Kukkala, Thomas Bradley, and Sudeep Pasricha 

1 Introduction 

Modern vehicles have several processing elements called Electronic Control Units 
(ECUs) that control different functionalities in a vehicle. ECUs run various automo-
tive applications, such as anti-lock braking control, collison avoidance, lane-keeping 
assist, and adaptive cruise control [50]. These automotive applications are hard real-
time in nature, meaning they have strict timing (deadline) and latency constraints 
[1]. The ECUs are distributed across the vehicle and communicate with each other 
by exchanging messages. These messages can be classified as either time-triggered 
or event-triggered. Time-triggered messages are periodic messages, typically gen-
erated from safety-critical software applications. On the other hand, event-triggered 
messages are generated asynchronously due to the occurrence of an event. Event 
triggered messages are typically low priority and consist of maintenance and 
diagnostic messages. 

The diverse nature of communication in automotive systems requires different 
network protocols to support them. The Controller Area Network (CAN) protocol 
is one of the most popular and widely used communication protocols in automotive 
systems [40]. CAN is a lightweight, low cost, broadcast communication protocol, 
and support message priorities and error handling [3, 4]. CAN communication 
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supports transmission rates of up to 1 Mbps and a maximum payload of 8 bytes 
[2]. In a CAN based system, when multiple ECUs are trying to transmit messages 
on the bus simultaneously, the message with the lowest CAN message ID wins the 
arbitration and gets access to the bus first, while all the other messages wait till 
the next arbitration event. Some of the other commonly used in-vehicle network 
protocols include Local Interconnect Network (LIN), FlexRay, Media Oriented 
Systems Transport (MOST), and Ethernet [9]. 

The onset of state-of-the-art x-by-wire automotive applications (throttle-by-
wire, steer-by-wire, etc.) has led to an increase in the complexity of automotive 
applications [8]. This has resulted in a demand for an efficient, reliable, and 
deterministic in-vehicle communication protocol to satisfy the deadline constraints 
of all time-critical applications, while still being able to meet the high bandwidth 
requirements of these applications [12]. This is difficult to achieve using the industry 
de facto standard CAN bus, as it lacks time determinism and suffers from limited 
bandwidth (a maximum transmission rate of only 1 Mbps, which is insufficient for 
many high-bandwidth vehicular applications such as pedestrian detection and lane 
tracking). Moreover, the event-triggered nature of the CAN makes it harder to adapt 
for state-of-the-art high bandwidth demanding safety-critical applications. FlexRay 
emerged as an alternative communication protocol that overcomes the above-
mentioned limitations of the CAN protocol and offers added flexibility, higher data 
rates (at least 10× higher compared to CAN [7]), better time determinism, and 
support for both time-triggered and event-triggered transmissions. As a result, it is 
deployed in many state-of-the-art vehicles that implement demanding applications 
such as Audi A4’s electronic stabilization control [10], Volvo XC 90’s VDDM [11], 
etc. 

The high complexity of the embedded systems in modern-day vehicles led to 
many challenges that threaten the reliability [12, 27, 38, 39], security [41–45], 
and real-time control [46–49] of modern-day automotive systems. In this chapter, 
we specifically focus on one of the key reliability challenges in time-triggered 
transmissions known as jitter. Jitter is the stochastic delay-induced deviation from 
the actual periodicity of a message. At a high level, jitter can be classified into 
two types: (i) bounded (deterministic) jitter and (ii) unbounded (random) jitter. 
The former is a periodic variation that is caused by the systematic occurrences 
of certain events in the system (such as queuing of messages, clock jitter, etc.) 
whose peak-to-peak value is bounded. Moreover, due to its deterministic nature, 
this type of jitter can be easily predicted based on observations. The latter is an 
unpredictable timing noise whose peak-to-peak values are unbounded. Some of the 
causes of random jitter include thermal noise in an electrical circuit (resulting in 
delayed task executions or message transmissions) and external disturbances. Unlike 
deterministic jitter, such random jitter is hard to predict based on system design and 
simple observations. 

In this study, we address the problem of random jitter in automotive systems 
as it can have a significant impact on the performance and safety of the vehicle. 
Specifically, we focus on one of the most important sources of random jitter: delay in 
the execution of tasks in ECUs. Failure to effectively handle jitter-induced messages 
from such tasks can severely affect system performance and be catastrophic. For
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instance, when the airbag deployment signal from the impact sensor to the inflation 
module gets delayed due to jitter, it can be fatal to the vehicle occupants. We 
conjecture that jitter handling must be incorporated from the early design phase, 
while designing schedules for time-critical automotive applications. At the same 
time, unexpected jitter variations at runtime must also be carefully handled. Hence, 
there is a need for an effective jitter handling approach that can be applied when 
designing and enforcing the schedules for time-critical automotive applications. 

In this chapter, we present a novel message scheduling framework called JAMS-
SG that was first introduced in [39] to handle both jitter-affected time-triggered and 
high-priority event-triggered messages in an automotive communication system. 
Our framework is demonstrated for the FlexRay protocol, but it is protocol agnostic 
and can be extended to other time-triggered protocols with minimal changes. JAMS-
SG combines design time schedule optimization with a runtime jitter handling 
mechanism, to minimize the impact of jitter in the FlexRay-based automotive 
network. 

Our novel contributions in this chapter can be summarized as follows: 

• We developed a hybrid heuristic to achieve jitter-aware frame packing (packing 
of different signals from an ECU into messages) for the FlexRay protocol; 

• We developed a heuristic approach for the synthesis of jitter-aware design time 
schedules for FlexRay-based automotive systems; 

• We introduced a runtime scheduler that opportunistically packs the jitter-affected 
time-triggered and high-priority event-triggered messages in the FlexRay static 
segment slots; 

• We compared our JAMS-SG framework with the best-known prior works in the 
area and demonstrated its effectiveness and scalability. 

The rest of this chapter is organized as follows. Section 2 presents an overview of the 
FlexRay protocol, and Sect. 3 presents the related works that address the problem of 
message scheduling in FlexRay-based systems. We define the problem statement by 
introducing the system and jitter models, heuristics used in this work, and important 
definitions and assumptions in Sect. 4. In Sect. 5, we discuss our proposed JAMS-
SG framework in detail. We discuss the experimental setup and the results from our 
simulation-based analysis in Sect. 6 and conclude with a summary of our work in 
Sect. 7. 

2 FlexRay Overview 

FlexRay is a high-speed serial in-vehicle network protocol designed for x-by-
wire automotive applications. It supports both time-triggered and event-triggered 
transmissions. The overview of the FlexRay protocol is illustrated in Fig. 1. 
According to the FlexRay specification [5], a communication cycle is one complete 
instance of a communication structure that repeats periodically (e.g., every 5 ms). 
Each communication cycle in FlexRay consists of a mandatory static segment, an
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optional dynamic segment, an optional symbol window, and a mandatory network 
idle time block. 

The static segment in FlexRay consists of multiple equal-sized slots called static 
segment slots that are used to transmit time-triggered messages. The static segment 
employs a Time Division Multiple Access (TDMA) media access scheme for 
the transmission of time-triggered messages, which results in a repetition of the 
schedule periodically. In this TDMA scheme, each ECU is assigned one or more 
static segment slots and cycle numbers during which its messages can be transmitted 
on the FlexRay bus. This ensures time determinism, which guarantees message 
delivery. Each static segment slot transmits one FlexRay frame, which consists of 
three segments: header, payload, and trailer. The header segment is 5-bytes long and 
consists of status bits, frame ID (FID), payload length, header cyclic redundancy 
check (CRC), and cycle count. The payload segment can be up to 127 words (254 
Bytes) long and consists of actual data that has to be transmitted. Lastly, the trailer 
segment consists of three 8-bit CRC fields to detect errors. 

The dynamic segment in FlexRay consists of variable-sized slots called dynamic 
segment slots that are used to transmit event-triggered and low-priority messages. 
A dynamic segment slot consists of a variable number of minislots (as shown in 
Fig. 1), where each minislot is one microtick (usually 1 μs) long. The dynamic 
segment employs a Flexible Time DivisionMultiple Access (FTDMA) media access 
scheme where ECUs are assigned minislots according to their priorities. If an 
ECU is selected to transmit a message, then it is assigned the required number 
of minislots depending on the size of the FlexRay frame, and hence the length 
of a dynamic segment slot can vary in the dynamic segment (as shown in Fig. 
1). During a message transmission, all the other ECUs have to wait until the one 
that is transmitting finishes. If an ECU chooses not to transmit, then that ECU is 
assigned only one minislot and the next ECU is assigned the subsequent minislot. 
The symbol window (SW) is used for network maintenance and signaling for the 
starting of the communication cycle, while the network idle time (NIT) is used to 
maintain synchronization between ECUs. 

Fig. 1 Overview of the FlexRay protocol
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Fig. 2 Message generation and transmission in ECUs 

Every automotive ECU consists of two major components: a host processor and a 
communication controller. The host processor is responsible for running automotive 
applications, while the communication controller acts as the interface between the 
host processor and the communication network. In a FlexRay-based ECU, the 
communication controller consists of a communication host interface (CHI) and 
a protocol engine (PE), as illustrated in Fig. 2. The CHI handles the message data 
generated by the host processor and sends the qualified FlexRay frames to the PE, 
which transmits the frames on a physical FlexRay bus (as shown in Fig. 2). Each 
FlexRay frame has a unique frame ID (FID) that is equal to the slot ID in which 
the frame is transmitted [5]. A FlexRay frame is considered to be “qualified” when 
the message data is available at the CHI before the beginning of the allocated static 
segment slot. Otherwise, a special frame called NULL frame is sent by setting a 
bit in the header segment of the FlexRay frame and setting all the data bytes in the 
payload to zero. 

Jitter is one of the major reasons for the delay in the availability of message 
data at the CHI. Hence in this chapter, we focus on a novel frame packing and 
scheduling framework to overcome the delays and performance losses due to jitter 
in time-critical automotive systems. 

3 Related Work 

The message scheduling works for the FlexRay-based systems can be classified into 
two groups: (i) time-triggered and (ii) event triggered message scheduling. These 
works synthesize message schedules by optimizing various parameters, such as 
bandwidth, number of allocated static segment slots, response time, and end-to-end 
latency while ensuring all timing constraints are satisfied. 

A common and crucial step prior to message scheduling is frame packing. Frame 
packing refers to the process of packing multiple signals into messages, to maximize 
the bandwidth utilization of the network [6]. In [7], an Integer Linear Programming 
(ILP) formulation was proposed to solve the frame packing problem, which requires 
multiple iterations with ILP to find an optimal solution. In [13], a Constraint Logic
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Programming (CLP) formulation and heuristic were presented for reliability-aware 
frame packing. However, this approach could require multiple retransmissions of 
the packed frames to meet reliability requirements. In [14], the frame packing 
problem is treated as a one-dimensional allocation problem and an ILP formulation 
and a heuristic approach were proposed. A genetic algorithm based frame packing 
approach was proposed for CAN-FD systems in [15]. A fast greedy heuristic-based 
frame packing approach was proposed in [27]. The above-mentioned techniques 
either focus on optimizing bandwidth utilization or minimizing the time taken to 
generate a frame packing solution. However, none of the above-mentioned works 
focus on generating a jitter-aware frame packing solution. Our proposed frame 
packing technique in this chapter uses a hybrid heuristic approach to generate a 
near-optimal set of messages that together make the system more resilient to jitter-
induced uncertainties. 

In the case of hard real-time automotive cyber-physical systems, most parameters 
such as period, worst-case execution time, and deadline are known at design time. 
This facilitates the synthesis of highly optimized design-time schedules that are 
deployed during runtime to minimize the unpredictability in the system. Many 
works have addressed the issue of design-time scheduling of the static segment 
of FlexRay. One of the main objectives in these works is to minimize the number 
of static segment slots allocated to ensure future extensibility of the system while 
maximizing bandwidth utilization. An ILP-based approach is proposed in [16] to  
minimize the number of allocated static segment slots by considering task and 
message scheduling. This work was later extended in [18] by including support 
for multiple real-time operating systems and using ILP reduction techniques. The 
message scheduling problem was transformed into a two dimensional bin-packing 
problem in [17], and an ILP formulation and a heuristic approach were proposed 
for minimizing the number of allocated static segment slots. A CLP and ILP 
formulation for jointly solving the problem of task and message scheduling in 
FlexRay systems was proposed in [20] and [21], respectively. In [23], a set of 
algorithms was proposed to enable scheduling of event-triggered messages in time-
triggered communication slots using a virtual communication layer. A few other 
works solve the same problem with heuristics and variants of ILP and CLP [13, 
19, 22, 24, 25]. Some recent works such as [33] and [34] combine schedulability 
analysis and control theory, and were able to achieve fewer FlexRay static segment 
slots compared to many of the above-mentioned prior works. Additionally, there 
are works that focus on scheduling time-triggered systems using other network 
protocols in [28, 29, 30]. However, the above-mentioned works focus on developing 
scheduling algorithms without incorporating the idea of jitter which makes them 
unreliable for use in real-time scenarios where jitter is prevalent and can signifi-
cantly impact scheduling decisions. 

Jitter in FlexRay-based systems has been largely ignored, and there is limited 
literature on this topic. In [7], the authors proposed a jitter minimization technique 
using an ILP formulation. In [26], the message frequency is increased for the 
messages that are likely to be affected by jitter, to minimize the message response 
time. However, in both [7] and [26], it is assumed that the jitter value and number of
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messages that are affected by jitter are known at design time, which is unlikely 
in real-world scenarios. Moreover, [26] introduces significant load on the in-
vehicle network due to multiple retransmissions, which is not a desired quality 
for resource constrained automotive systems. A jitter-aware message scheduling 
technique called JAMS was proposed in [27] that uses both design time and 
runtime schedulers to opportunistically pack jitter-affected messages in the system. 
However, the non-jitter-aware frame packing in [27] results in sub-optimal packing 
of signals into messages leading to increased message response times in the 
presence of jitter. Moreover, [27] considers a simple jitter model, which makes 
the evaluation process less efficient. In [31], an iterative design time scheduling 
algorithm was proposed to minimize the impact of jitter on mixed-criticality time-
triggered messages. However, [31] does not effectively handle unpredictabilities 
due to random jitter at runtime. As random jitter can affect any message in the 
system, there is a need for a jitter handling mechanism that can handle jitter more 
comprehensively at the signal and message level, at both design time and runtime. 
In this chapter, we introduce a realistic jitter model and propose a holistic message 
scheduling framework that achieves a jitter-aware frame packing and combines the 
design time schedule optimization with an improvised runtime jitter handling, to 
minimize the impact of jitter in FlexRay based systems. We extensively evaluate the 
proposed JAMS-SG framework to demonstrate its effectiveness and scalability. 

4 Problem Definition 

4.1 System Model 

In this study, we consider a generic automotive system model with multiple ECUs 
that run different time-critical automotive applications and are connected using a 
FlexRay bus. Executing an application may result in the generation of signal data 
at an ECU, which may be required for another application running at a different 
ECU. A signal can be a control pulse or raw data value. These signals are packed 
into messages by a process called frame-packing and transmitted as FlexRay frames 
on the bus. As discussed earlier, there are two types of applications in a typical 
automotive system: (i) time-triggered, and (ii) event-triggered. 

Moreover, every ECU or node in the system can send both time-triggered and 
event-triggered messages. In a typical FlexRay system, time-triggered messages 
are transmitted in the static segment slots of the FlexRay while event-triggered 
messages are transmitted in the dynamic segment slots. However, in this work, 
in addition to the time-triggered messages, we facilitate the transmission of high 
priority event-triggered messages in the static segment of the FlexRay (details in 
Sect. 5.2). Hence, in this work, we focus on the challenging problem of scheduling 
time-triggered messages and high priority event-triggered messages in the static 
segment of FlexRay. We ignore the scheduling of low-priority (and typically low-
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frequency) event-triggered messages in the FlexRay dynamic segment, which is a 
much trivial problem and has a negligible impact on vehicle safety. Lastly, the terms 
ECU and node are used interchangeably henceforth. 

4.2 Jitter Model 

As discussed earlier, jitter is defined as the delay-induced deviation from the actual 
periodicity of the message. There are two types of jitter: (i) bounded or deterministic 
jitter and (ii) unbounded or random jitter. In this work, we primarily focus on 
random jitter, as it is hard to predict and can have a significant impact on the 
safety and performance of the vehicle. Our goal is to mitigate the effect of random 
jitter on task execution and message transmission delays. Moreover, we assume that 
both time-triggered and event-triggered messages are susceptible to such random 
jitter. However, we do not consider the impact of random jitter on low priority 
event-triggered messages, as such messages have minimal impact on the safety and 
performance of the vehicle. 

Random jitter is also known as Gaussian jitter because it follows a normal 
distribution because of the central limit theorem [35]. In this work, we devise a 
specific jitter model for each signal in the system based on the signal priority and 
signal period. Signals with a period of less than or equal to 40 ms are treated as 
high priority signals and other signals are considered as low priority signals. In 
this work, we also model the mean jitter associated with high-priority signals as 
(signal_period/5) and (signal_period/4) for low priority signals. These mean jitter 
values are customizable and can be tuned based on the designer requirements and 
system specifications. A similar but more simplistic model is presented in [32] 
which does not consider the mixed criticality nature of the automotive applications. 
In a normal distribution representing jitter values (on x-axis) and number of 
occurrences (on y-axis), the jitter values in the tail region far from the mean occur 
less frequently than the values close to the mean. Hence, in this work, we mainly 
focus on mitigating the effect of mean jitter value associated with each signal and 
ensure that there are no missed deadlines. 

4.3 Hybrid SA+GRASP Heuristic 

A hybrid heuristic combines two or more heuristics that combine the advantages 
of individual heuristics and minimizes each other’s disadvantages. In this study, 
we propose a hybrid heuristic by combining simulated annealing (SA) and greedy 
randomized adaptive search procedure (GRASP). Similar attempts were made in 
the past to combine SA and GRASP and build a hybrid heuristic in [36] and [37]. 
However, these efforts do not focus on the automotive domain, and they do not 
optimize the search space or perform tuning of hyperparameters. Our proposed
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SA + GRASP hybrid heuristic aims to improve the computation speed, design space 
search capability, and solution optimality. Moreover, as our proposed framework 
uses the baseline model from JAMS [27], and the proposed SA + GRASP hybrid 
heuristic. Hence, we name our framework JAMS-SG where S and G represents SA 
and GRASP, respectively. 

4.3.1 Simulated Annealing 

Simulated Annealing (SA) metaheuristic is inspired from the annealing technique 
in metallurgy. It models the physical process of heating and controlled cooling of a 
material to strengthen and reduce defects. SA can effectively approximate the global 
optimum in very large discrete solution spaces. 

There are five steps in any SA problem formulation (shown in Fig. 3): (i) 
initial solution, (ii) initial temperature, (iii) random perturbations, (iv) acceptance 
probability, and (v) annealing schedule. The SA is an iterative process, that begins 
by taking the initial solution and initial temperature as the inputs and tries to achieve 
a better solution at the end of every iteration. The temperature is progressively 
decreased from an initial positive value until a stopping condition is met (e.g., until 
temperature > 0). Each iteration constructs a new solution after making random 
perturbations to the current solution. If the new solution (objective function value) 
after making perturbations is better than the previous solution, then the new solution 
is accepted. Otherwise, the new solution is accepted probabilistically. SA uses an 
acceptance probability function, that takes the difference between the objective 
function values of the new and previous solutions and the current temperature 
of the system as the inputs, and computes the acceptance probability value. The 
new solution is accepted when the acceptance probability value is greater than 
a randomly generated number between 0 and 1. Otherwise, the new solution is 
discarded. In the initial stages, the SA tries to accept even a relatively poor solution 
when the system temperature is high. As the SA progresses, i.e., when the system 
temperature is lower, SA will favor accepting only those new solutions that are very 
close to the new solution. It is important to note that when the temperature reaches 
0, SA behaves like a pure greedy algorithm. Lastly, at the end of each iteration, 
the temperature of the system is updated using an annealing schedule, which is 
responsible for the controlled cooling of the system. 

Fig. 3 Various steps involved in SA
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SA is highly versatile and can deal with highly non-linear solution spaces. It is 
also good at dealing with arbitrary systems and cost functions while statistically 
guarantying an approximate global optimum. However, SA can take a very long 
time to converge to a good solution. Moreover, the optimality of the SA solution 
is heavily dependent on the selected hyperparameters, such as initial temperature, 
annealing schedule, and acceptance function. 

4.3.2 Greedy Randomized Adaptive Search Procedure 

The greedy randomized adaptive search procedure (GRASP) is a multi-start meta-
heuristic. GRASP repeatedly sample stochastically greedy solutions and use an 
adaptive local search to refine them to a local optimum. At the end, the best of 
the local optima is chosen as the final solution. 

The two key steps in GRASP (illustrated in Fig. 4) are:  (i) the greedy randomized 
construction phase that tries to build a feasible solution and (ii) the local search 
phase that tries to explore a defined neighborhood for a local optimum. The best of 
the local optima is chosen as the final solution at the end. The two important aspects 
of the greedy randomized construction phase are its greedy aspect and probabilistic 
aspect. The greedy aspect involves generating a Restricted Candidate List (RCL), 
which consists of the best elements that will improve the partial solution (solution 
within the greedy randomized construction phase). The probabilistic aspect involves 
the random selection of an element from the RCL, to be incorporated into the 
partial solution. However, the solutions generated during the greedy randomized 
construction phase are not necessarily optimal. Hence, the local search phase 
tries to improve the constructed solution by iteratively using destroy and repair 
mechanisms, which are used to perturb the current solution and reconstruct a new 
solution, respectively. They help in searching for the local optimum within a defined 
neighborhood. Lastly, when an improved solution is found, then the best solution is 
updated. 

GRASP is simple to construct and can be used for large optimization problems. 
However, as GRASP uses a greedy algorithm to evaluate the quality of the solution, 

Fig. 4 Key steps involved in GRASP
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it can get stuck at a local optima. Moreover, GRASP might restart at the same 
solution multiple times leading to re-discovering of the same local solution. 

4.3.3 Hybrid Heuristic Formulation 

To overcome the above-mentioned individual limitations of SA and GRASP, we 
propose a hybrid heuristic that combines both of them. The proposed hybrid 
heuristic uses SA to explore the large solution space and GRASP to find an improved 
local solution within a smaller neighborhood around the solution obtained from SA. 
In particular, the greedy construction phase of GRASP is used to make perturbations 
in the SA and the local search phase is used to explore the neighborhood to find a 
better solution. Our proposed hybrid heuristic is discussed in detail in Sect. 5.1. 

4.4 Inputs and Definitions 

We consider an automotive system with the following inputs: 

• Ɲ denotes the set of nodes, where Ɲ = {1, 2, 3, . . . , N}; 
• For each node n ∈ Ɲ, Sn = {  . sn

1 , . s
n
2 , . . .  , . sn

Kn
} represents the set of signals 

transmitted from that node and Kn represents the maximum number of signals 
in node n; 

• Every signal . sn
i ∈ Sn, (i = 1, 2 . . . , Kn) is characterized by the tuple { . pn

i , . d
n

i , . b
n

i , 
. γ n

i }, where . pn
i , . d

n

i , . b
n

i and . γ n
i denote the period, deadline, data size (in bytes), 

and mean jitter of the signal . sn
i , respectively; 

• After frame-packing, every node maintains a set of messages Mn = { . mn
1, . m

n
2, 

. . . , . mn
Rn

} in which every message . mn
j ∈ Mn, (j = 1, 2, . . . , Rn) (where Rn denotes 

the maximum number of messages in node n) is characterized by the tuple { . an
j , 

. pn
j , . d

n
j , . b

n
j , . μ

n
j }, where . an

j , . p
n
j , . d

n
j , . b

n
j and . μ

n
j represent the arrival time, period, 

deadline, data size (in bytes), and mean jitter of the message . mn
j , respectively. 

In this chapter, we assume the following definitions: 

• Slot number or Slot identifier (slot ID): A number used to identify a specific slot 
within a communication cycle; 

• Cycle number: A number used to identify a particular communication cycle in 
the FlexRay schedule; 

• To transmit a message . mn
j on the FlexRay bus, it needs to be allocated a slot ID 

sl ∈ {1, 2, . . . , Nss} and a base cycle number bc ∈ {0, 1, . . .  , Cfx} where Nss and 
Cfx are the total number of static segment slots in a cycle and the total number of 
cycles, respectively. This allocation is referred to as message-to-slot assignment; 

• If a message . mn
j is assigned to a particular slot and a cycle, then the source node n 

of that message is allocated ownership of that slot. This is known as node-to-slot 
assignment.
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Fig. 5 Illustration of an example FlexRay 3.0.1 schedule (on the left) with slot IDs and cycle 
numbers; and the message-to-slot and node-to-slot allocation are shown in the table on the right 

All the above-mentioned definitions are illustrated in Fig. 5 with an example 
FlexRay 3.0.1 schedule. In the example, message (m1) is allocated a slot ID = 1 
and cycle number = 0, which is the message-to-slot assignment. This implies that 
the source node (ECU4) sending the message (m1) is allocated ownership of the 
slot, which is the node-to-slot assignment. 

Thus, for the above inputs, the goal of our work is to satisfy deadline constraints 
for time-triggered and high-priority event-triggered messages sent over the FlexRay 
bus. This is achieved by enabling jitter resilience during communication, which 
includes: (i) performing jitter-aware frame packing, and design time scheduling 
(message-to-slot assignment, node-to-slot assignment) for the time-triggered mes-
sages without violating any deadlines, and (ii) effectively handle jitter-affected 
time-triggered messages and high priority event-triggered messages at runtime and 
minimize the impact of jitter. 

5 JAMS-SG Framework Overview 

Our proposed JAMS-SG framework aims to enable jitter-aware scheduling of 
time-triggered messages and collocating high-priority event-triggered messages in 
the static segment of a FlexRay-based automotive system. The overview of our 
proposed JAMS-SG framework is illustrated in Fig. 6. At a high level, the JAMS-
SG framework consists of design-time and runtime steps. At design time, JAMS-SG 
uses the proposed hybrid heuristic approach (SA + GRASP) to achieve jitter-aware 
frame packing of time-triggered messages and a feasible design-time schedule. 
At runtime, JAMS-SG handles both jitter-affected time-triggered and high-priority 
event-triggered messages using a multi-level feedback queue (MLFQ). The output 
of MLFQ and the design time schedule are given as the inputs to a runtime scheduler 
that opportunistically packs these jitter-affected messages into the already allocated
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Fig. 6 Overview of our proposed JAMS-SG framework 

FlexRay slots based on the available slack. Each of these steps is discussed in detail 
in the subsequent subsections. 

5.1 Jitter-Aware Design Time Frame Packing 

Frame packing refers to packing multiple periodic signals in a node into messages. 
This step is crucial to maximize bandwidth utilization, as it improves system 
performance and enhances the extensibility of the system by utilizing fewer slots 
than without frame packing. However, frame packing with a goal of just maximizing 
the bandwidth utilization can result in sub-optimal results at runtime. For instance, 
if one of the signals packed in the message is not available before the start of 
the message’s allocated static segment slot due to jitter-induced delays, the entire 
message will be delayed and the CHI will transmit a NULL frame due to the lack 
of availability of complete message data. Once all of the signals in the message are 
available, the message can be transmitted in the next allocated static segment slot. 
This delayed transfer will result in increased response time of the messages and can 
potentially lead to missed deadlines, which can have catastrophic consequences for 
safety-critical applications. Thus, it is essential to have a jitter-aware frame packing 
technique that co-optimizes bandwidth utilization and mitigates the impact of jitter. 

In this work, we define the following four necessary conditions (shown in (1)– 
(4)) that govern how signals can be packed into the same message. The first 
necessary condition is the source node condition and is expressed in (1). 

mn 
k =

{
s n1 i , s  n2 j

}
iff src

(
s n1 i

) == src
(
s n2 j

)
i, j ∈ [1,Kn] & i �= j (1)
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The source node condition states that if two signals .(sn1
i , s

n2
j ) are packed into the 

same message .(mn
k) they should belong to the same source node (src() in (1) returns 

the source node of the signal). This is because the FlexRay protocol specification [5] 
dictates that any static segment slot in a given FlexRay cycle can be assigned to at 
most one node, which prevents the packing of signals from different nodes into the 
same message. Therefore, the frame packing problem can be solved independently 
for different nodes. 

mn 
k =

{
sn 
i , s

n 
j

}
iff pn 

i == pn 
j i, j ∈ [1,Kn] & i �= j (2) 

The periodicity condition in (2) states that, only the signals with the same periods 
should be packed into one message. This is done primarily to minimize the retrans-
missions of the message frames, which in turn reduces the number of allocated static 
segment slots, leading to efficient bandwidth utilization. For instance, consider a 
scenario where two signals with periods 5 and 15 ms are packed into the same 
message. The resulting message will have a period of 5 ms and will retransmit the 
old value of 15 ms signal twice before sending the updated signal value. Therefore, 
packing signals with different periods leads to inefficient bandwidth utilization.

∑
i∈sigIDs(mn 

k ) 
b n 

i ≤ Bslot (3) 

The payload condition in (3) states that, the sum of all signal sizes packed in a 
message (sigIDs() returns the set of IDs of the signals packed in the message) should 
not exceed the maximum payload (Bslot) of the FlexRay static segment slot. 

ResponseT ime
(
mn 

k

) ≤ dn 
k ∀n, k = 1, 2, . . .  ,  Rn (4) 

Lastly, the deadline condition in (4) states that, the set of messages generated from 
frame packing should result in a feasible schedule, i.e., the response time (end-
to-end latency) for all the messages should not exceed their deadline. In addition, 
JAMS-SG allows the system designers to specify additional timing constraints for 
signals, such as latency, worst-case response time, etc., which will be treated as 
additional constraints to the problem. The timing constraints are further discussed 
in Sect. 5.1.3. 

Given the above-mentioned constraints, the goal of our proposed jitter-aware 
frame packing technique is to maximize the laxity of each resulting message while 
minimizing the total number of FlexRay frames. In other words, we prioritize 
packing of signals with similar jitter profile into the same messages. This is because 
of the following reason. 

Consider an example scenario shown in Fig. 7, where four different signals 
are packed into messages in three different ways. For simplicity, we considered 
packing a maximum of two signals per message in this example. This constraint 
is not enforced anywhere else in the framework. In case (i), signals with similar 
jitter profile .(γ n

i ) are packed together .((sn
1 ), . sn

2 ) and . (sn
3 , .s

n
4 )) which resulted in two
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Fig. 7 Motivation example for selection of objective function for frame packing 

messages . (mn
1, .m

n
2) with their effective mean jitter value .(μn

k) close to the individual 
signal jitter values. This results in maximizing the laxity of the messages, which is 
important as it provides more opportunities to pack and transmit other jitter-affected 
messages and also to better cope with unpredictable runtime jitter. On the other 
hand, in cases (ii) and (iii), the signals with very different jitter profiles are packed 
together resulting in lower laxity values. This makes the messages less resilient to 
random jitter compared to the frame packing in case (i). It is important to note that, 
packing one signal per message would maximize the laxity but would lead to very 
inefficient bandwidth utilization. Thus, to avoid packing one signal per message, we 
formulated a weighted objective function that achieves jitter-aware frame packing 
while effectively minimizing the total number of messages in the system. 

In this work, we use a weighted harmonic sum of average laxity of the messages 
in each node as the objective function to achieve jitter-aware frame packing (shown 
in (5)). Laxity of any message is defined as the difference between the message 
deadline and sum of mean jitter value of the message and time required to transmit 
the message payload. The laxity of any message .(mn

j ) can be computed using (6). 
The mean jitter value of a message (shown in (7)) is the maximum mean jitter value 
of all signals packed in that message. In this study, our proposed hybrid heuristic 
(SA + GRASP) aims to minimize the objective function (in (5)) while satisfying all 
of the constraints mentioned above ((1)–(4)). The parameters Rn, . b

n

i and τ represent, 
the number of messages in the node n, data size of signal i in node n and time taken 
to transmit 1 byte of data on FlexRay bus, respectively. 

minimize
∑N 

n=1

(
w ∗ 

Rn∑Rn 
j=1 laxityn 

j

)
(5)
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laxityn 
j = dn 

j −
(

μn 
j + τ.

∑
i∈sigIDs

(
mn 

j

) b n 
i

)
(6) 

μn 
j = max

({
γ n 

i | i ∈ sigIDs
(
mn 

j

)})
(7) 

Our proposed JAMS-SG framework uses SA to explore the overall solution space 
and GRASP to create and refine new solutions at every iteration. The solution here 
refers to the signal to message packing for all the nodes in the system. To the best 
of our knowledge, this is the first work in this area that attempts to achieve a jitter-
aware frame packing. The pseudo-code of our proposed hybrid heuristic is shown 
in Algorithm 1. 

Algorithm 1: SA + GRASP Based Frame Packing 

Inputs: Set of nodes (Ɲ), Set of time-triggered signals in each node (Sn), 
GRASP parameters (α, β), temperature (T), cooling rate (Cr) 
1:     Initialize: cur_sol, prev_sol, best_sol ← initial_solution(Sn) 
2:     for each iteration until max_iterations do 
3:            δ = random_int(1, Ɲ) 

4:            λ = random_selection(Ɲ, δ) 

5:            gr_sol ← greedy_randomized_construction(α, λ, cur_sol) 
6:            ls_sol ← local_search(β, Ɲ, gr_sol) 
7:            cur_sol ← choose_solution(gr_sol, ls_sol) 
8:            if feasibility(cur_sol) then 
9:                   Pacc = acceptance_probability(cur_sol, prev_sol, T) 

10:                 if Pacc > random(0,1) then 
11:                        prev_sol ← cur_sol 
12:                        if Φ(cur_sol) < Φ(best_sol) then 
13:                               best_sol ← cur_sol 
14:                        end if 
15:                 end if 
16:          end if 
17:          T *= Cr 
18:   end for 
19:   output_sol ← best_sol 
20:   output_schedule ← design_time_schedule(output_sol) 
Output: Set of messages in each node and a feasible design time schedule 

The inputs to Algorithm 1 are: a set of nodes (Ɲ), set of time-triggered signals 
for each node (Sn), GRASP control parameters (α – which is the RCL threshold 
discussed later in Sect. 5.1.1, β – which is the destroy-repair threshold discussed 
later in Sect. 5.1.2), and the SA hyper-parameters: temperature (T) and cooling 
rate (Cr). The algorithm begins by initializing the current (cur_sol), previous 
(prev_sol), and best (best_sol) solutions with one signal per message (one-to-one
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frame packing) in step 1. This acts as the initial solution for the SA. All solutions 
described in this pseudo code are data structures that have information about the 
signal to message packing for each node (solution← [M1, M2 . . .  MN]). Each 
element in the list corresponds to a frame-packing configuration for a particular 
node. At the beginning of each iteration in steps 3, 4, the algorithm selects a 
random number (δ) of nodes (λ) to be perturbed. In step 5, a new solution (gr_sol) 
is constructed from the current solution (cur_sol) using the greedy randomized 
construction phase of GRASP. This new solution (gr_sol) is given as the input to 
the local search phase of GRASP in step 6 to search for a local optimum solution 
(ls_sol) within the defined neighborhood. The better of the two solutions (gr_sol, 
ls_sol), i.e., the solution that results in a minimal objective function value is chosen 
as the current solution (cur_sol) in step  7. In step  8, the  feasibility() function is used 
to check for the feasibility of the chosen solution. The feasibility() function returns 
true when there are no missed deadlines for any message in the given solution; 
otherwise, it returns false. When a solution is feasible, the decision of accepting 
or discarding it is dependent on the probability of acceptance (Pacc). This value 
is computed in step 9 using the acceptance_probability() function, which takes 
the current system temperature (T), and both current and previous solutions as the 
input. If the current solution is accepted, then the previous solution is assigned the 
current solution and the best solution is also updated if the current solution has lower 
objective function value compared to the best solution (steps 10–16). The function 
Φ() is used to compute the objective function value of the solution. Additionally, at 
the end of each iteration, the annealing schedule performs a controlled cooldown of 
the system, as shown in step 17. At the end of max_iterations, the best solution is 
chosen as the output solution (output_sol) and a design-time schedule is synthesized 
using it (steps 19, 20). Thus, Algorithm 1 outputs a jitter-aware frame packing 
solution and a feasible design time schedule. 

It is important to note that the resulting output messages will have the same 
period as the signal period, and their deadline will be equal to the lowest signal 
deadline packed in that message. In this work, we assume that all the messages have 
deadlines equal to their periods. 

5.1.1 Greedy Randomized Construction 

In this subsection, we discuss the greedy randomized construction phase of GRASP 
that is used to perturb the solution in SA, in step 5 of Algorithm 1.
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Algorithm 2: greedy_randomized_construction (α, λ, cur_sol) 

Inputs: RCL threshold (α), perturbed nodes (λ), and cur_sol 
1:      function greedy_construct(α, Ŝn, partial_sol) 
2:           while Ŝn ≠ { } do 
3:                 s = random_selection(Ŝn, 1) 

4:                 Ω ← feasible_frame_ids(s, partial_sol) 
5:                 if Ω ≠ { } then 
6:                      Cfids ← cost(s, Ω) 

7:                      Cmin = min(Cfids); Cmax = max(Cfids) 

8:                      RCL ← {fid ∈ Ω | Cfids(fid) ≤ Cmin + α*(Cmax - Cmin)} 

9:                      chosen_fid = random_select(RCL,1) 

10:                    assign_fid(s, chosen_fid, partial_sol); 
11:               end if 
12:               Remove s from Ŝn 

13:         end while 
14:         return partial_sol 
15:    end function 
16:    Initialize: greedy_randomized_sol ← cur_sol 
17:    for each node n in λ do 
18:         ρ = random_int(1,length(Sn)) 

19:         Ŝn = random_selection(Sn, ρ) 

20:         greedy_randomized_sol(n) ← greedy_construct(α, Ŝn, cur_sol(n)) 

21:    end for 
22:    return greedy_randomized_sol 
Output: greedy randomized constructed solution; nodes n λ 

The pseudo-code of the greedy randomized construction phase is shown in 
Algorithm 2. The inputs to Algorithm 2 are: RCL threshold (α; discussed in 
more detail below), set of nodes whose frame packing will be perturbed (λ), 
and the solution that needs to be perturbed (cur_sol). The Algorithm 2 begins 
by assigning the current solution (cur_sol) to the greedy randomized solution 
(greedy_randomized_sol) in  step  16. For each node n whose current frame packing 
needs to be perturbed, the algorithm selects a random number (ρ) of signals (Ŝn) in  
that node and tries to greedily construct a new solution using the greedy_construct() 
function, as shown in steps 17–21. In step  20, the newly generated solution for the 
node n is updated in the greedy_randomized_sol(n) function. At the end, the final 
solution for all nodes is returned to Algorithm 1 in step 22. 

The function greedy_construct() in steps 1–15 takes the RCL threshold (α), set 
of signals whose frame packing will be changed (Ŝn), and the current frame packing 
(partial_sol) as the inputs and tries to assign the signal to a new message. The 
addition of signals to new messages happens in a greedy manner, which tries to 
minimize the objective function value. Until the set Ŝn is empty, in every iteration 
a signal is randomly chosen from (Ŝn) (step  3), and a list of feasible frames (
) to  
which the signal (s) can be packed into is generated (step 4). For a frame ID (fid)
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to be feasible, it must satisfy all three necessary conditions mentioned in (1)–(3). If 
there exist no feasible frame IDs for the signal (s), its frame packing configuration 
is left unchanged. Otherwise, the individual cost of adding that signal to each frame 
is computed using the cost() in step 6. In step  7, the minimum cost (Cmin) and 
maximum cost (Cmax) are computed, which are used in generating the restricted 
candidate list (RCL) in step  8. The  RCL consists of the feasible frame IDs whose 
associated cost of adding the signal is within the interval [Cmin, Cmin + α*(Cmax -
Cmin)]. This is the greedy aspect of the algorithm. The quality of RCL depends on 
the RCL threshold (α) (where 0 ≤ α ≤ 1), which controls the amount of randomness 
and greediness in the algorithm. For instance, when α = 0, the algorithm exhibits 
a pure greedy behavior and when α = 1, the algorithm exhibits a purely random 
behavior. In step 9, a random frame ID (chosen_fid) is selected from the RCL, and 
the signal s is assigned to that frame ID in step 10. Furthermore, after an attempt 
to change the frame packing for signal s, it is removed from  Ŝn in step 12. The  
function terminates in step 14 when all the signals in Ŝn are explored and returns the 
perturbed solution (partial_sol) as the output. 

5.1.2 Local Search 

This is the second phase of the GRASP metaheuristic, invoked in step 6 of 
Algorithm 1. It iteratively explores the defined neighborhood around the greedy 
randomized constructed solution to look for a local optimum. This is accomplished 
using destroy and repair mechanisms that try to randomly remove a part of the 
solution and reconstruct it. In this study, we define neighborhood as the set of 
solutions that are generated by randomly changing the frame packing of β number 
of signals. The parameter β is known as the destroy-repair threshold and it controls 
the amount of destroy and repair operations in each iteration of the local search 
phase. Algorithm 3 illustrates the pseudo-code for the local search. 

Algorithm 3: local_search (β, Ɲ, gr_sol) 
Inputs: Destroy-repair threshold (β), set of nodes (Ɲ), and greedy randomized 
constructed solution (gr_sol) 
1:     Initialize: interm_sol, new_sol ← gr_sol 
2:     for each ls_iteration until max_ls_iterations do 
3:          η = random_selection(Ɲ, 1) 

4:          Ŝ = random_selection(Sη , β) 

5:          new_sol(η) = greedy_construct (α, Ŝ , interm_sol(η)) 

6:          if Φ(new_sol) < Φ(interm_sol) then 
7:                interm_sol ← new_sol 
8:        end if 
9:   end for 
10:   return interm_sol 
Output: Local optimum with in the defined neighborhood- if there exists one; 
Otherwise, the same solution as greedy_randomized_construction( ).
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The inputs to the local search in Algorithm 3 are: destroy-repair threshold (β), 
set of nodes (Ɲ), and greedy randomized constructed solution (gr_sol). The local 
search begins by initializing the intermediate solution (interm_sol) and new solution 
(new_sol) with the greedy randomized constructed solution (in step 1). The destroy 
mechanism randomly selects a node (η) and changes the frame packing for β 
random signals .(Ŝη

ls) belonging to a random node (η) in steps 3, 4. A new solution 
(new_sol) is reconstructed using the greedy_construct() function in step 5 (repair 
mechanism), and it is accepted if the new solution (new_sol) resulted in a smaller 
objective function value compared to the prior solution (interm_solution) (steps 
6–8). At the end of max_ls_iterations, the algorithm returns the final local search 
solution (interm_sol) in step  10. 

5.1.3 Design Time Scheduling 

In this subsection, we present the jitter-aware design time scheduling heuristic 
that is invoked in step 20 of Algorithm 1. The heuristic takes the frame packing 
solution of the system as input and generates a design-time schedule. The design 
time schedule consists of: (i) message-to-slot allocation, where slot ID and cycle 
numbers are assigned to messages, and (ii) node-to-slot allocation, where their 
source nodes are assigned slot IDs. In this work, we design this schedule with 
the goal to allocate the messages as early as possible to minimize the response 
time of messages. In addition, we also try to minimize the number of allocated 
static segment slots for effective bandwidth utilization while ensuring no deadline 
constraints are violated. Moreover, we take advantage of cycle multiplexing in 
FlexRay 3.0.1, where multiple nodes can be assigned slots with the same slot 
ID in different communication cycles. This helps to maximize the static segment 
utilization while using only a minimal number of slots [17]. We add jitter awareness 
to the scheduling framework by considering the previously computed mean jitter of 
the message .(μn

j ). Additionally, we introduce a control parameter called coefficient 
of jitter resilience (σ ) that dictates the resiliency of the design time schedule to 
jitter. The parameter σ is a non-negative real number that dictates how resilient the 
schedule is for jitter. For instance, when σ = 0, it reflects a special case called 
zero-jitter (ZJ) scheduling. However, in real-time systems, ZJ scheduling is not 
encouraged as it has no resilience to jitter. On the other hand, having a higher value 
for σ results in longer response times and leads to potentially missing message 
deadlines. Hence, it is crucial to choose an appropriate value of σ that provides 
sufficient jitter resilience while not resulting in longer response times and missed 
deadlines. In this work, we empirically set the value of σ as 0.8. In addition, we 
consider the concept of message repetition and slot ID utilization in a FlexRay 
system. For any time-triggered message in FlexRay, message repetition .(rmn

j ) is 
defined as the ratio of message period to the cycle time of the FlexRay, and can be 
computed using (8).
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rmn 
j = 

pn 
j 

Cf x  
(8) 

The message repetition is an integer value as the FlexRay cycle time is chosen to 
be the greatest common divisor of all the message periods in the system. Moreover, 
any time-triggered message that is assigned a particular slot ID will end up using 

.

(
1/rmn

j

)
of the available slots within that slot ID. 

The pseudo-code of our proposed jitter-aware design time schedule considering 
the above-mentioned metrics is shown in Algorithm 4. The heuristic begins by 
taking the set of time-triggered messages in the system (M) and FlexRay parameters 
as the inputs and initializes all slot utilizations to zero. In addition, we define a slot 
cycle list (SCL) to keep track of the list of available cycles in a particular slot ID, 
and each element in it is initialized with a list [0, 1, . . . ,63] as Cfx = 64 (Sect. 
4.4). After the initialization in step 1, all the time-triggered messages (M) in the  
system are sorted in increasing order of message periods (step 2). For each time-
triggered message .(mn

j ) in the system, we begin the search for slot ID and cycle 
number allocation from the computed slot and cyc in steps 4, 5. The calculations for 
the initial slot ID and cycle number are based on the message parameters: arrival 
time .(an

j ), mean jitter value .(μn
j ), and the design parameters: coefficient of jitter 

resilience (σ ), static segment slot duration (tds), and cycle time (tdc). The computed 
slot and cyc are subjected to checks for three constraints in steps 7–9: (i) arrival 
time constraint (constraint 1) – checks if the current slot (slot, cyc) begins after the 
arrival time plus the effective jitter ( .σ ∗μn

j ) of the message; (ii) allocation constraint 
(constraint 2) – checks if the current slot is not allocated to any other message; and 
(iii) utilization constraint (constraint 3) – checks if the slot ID (slot) utilization is 
below 100% after adding the current message. If all these constraints are satisfied 
(step 10) and the finish time of the (slot, cyc) exceeds the message deadline (step 11), 
the algorithm terminates with no feasible solution for the given input message set 
(M). Otherwise, the feasibility of allocating the current slot and cyc to the message 
is checked using sc_allocation(). In step 14, the function returns a binary variable 
indicating feasibility (feasible) and a list of cycles (cyc_list) that can be allocated 
to the message. If the current slot and cyc are feasible, they are allocated as slot 
ID and base cycle, respectively, for the current message. Additionally, other cycles 
in the cyc_list are allocated to the message, and the ownership of the allocated slot 
ID and cycles are assigned to the message and its source node (steps 15–17). The 
SCL for the allocated slot ID (slot) is updated by removing the allocated cycles 
(cyc_list) in step  18, and the search for allocation of slot ID and cycle number for 
the next message is initiated. If the computed slot ID (slot) and cycle number (cyc) 
fail to meet any of the three constraints mentioned in steps 7–9, the slot ID and (if 
needed) the cycle number is incremented accordingly (steps 23, 24). The algorithm 
terminates successfully when all the messages in the system are allocated slot and 
cycle numbers.
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Algorithm 4: design_time_schedule (solution) 

Inputs: Set of all time-triggered messages in the system (M), FlexRay pa-
rameters (Nss, Cfx, Bslot, tds, tdc), and coefficient of jitter resilience (σ) 
1:    Initialize: all slot utilizations ← 0; SCL= [SC1,..,SC62]; SCx= [0,..,63] 

2:    Sort M in the increasing order of message periods 

3:    for each message in M do 
4:          = ( + ∗ )/ 

5:          = ( + (  ∗ ) −  ( ∗ ))/ + 1  
6:          while is not allocated do 
7:               constraint1 = (start(slot, cyc) ≥ + ∗ ) 
8:               constraint2 = ((slot, cyc) is not allocated to any message) 

9:               constraint3 = (slot_util(slot) + 1/ ≤ 1) 

10:             if constraint1, constraint2, constraint3 are all True then 
11:                  if start(slot, cyc) + > then 
12:                       exit(“No feasible solution”) 

13:                  else 
14:                       feasible, cyc_list = sc_allocation( , slot, cyc, SCslot) 

15:                       if feasible then 
16:                            ←slot; ←cyc; _ ←cyc_list 
17:                            Assign ownership( , _ ) → src( ) 

18:                            Remove elements in cyc_list from SCslot 

19:                            allocated ← True; break( ) 

20:                       end if 
21:                  end if 
22:             end if 
23:             slot += 1; 

24:       if slot > Nss then slot = 1; cyc += 1 

25:        end while 
26:  end for 
Output: Message-to-slot assignment ( , ) for each time-trig-
gered message , and slot ownership of each node n. 

Algorithm 5 shows the pseudo-code for sc_allocation() function, which checks 
for the feasibility of allocating the slot ID and base cycle to the current message. 
The inputs to Algorithm 5 are: current message .(mn

j ), slot ID (slot), base cycle (cyc), 
and SCL corresponding to the slot ID (SCslot). The function begins by initializing a 
feasibility flag (feasible) to zero and cycle list (cyc_list) with an empty list and then 
computes the minimum number of instances (num_instances) of the message in Cfx 

cycles (in step 1). From steps 2–14, the function tries to find a feasible cycle number 
for each instance of the message. The search begins by initializing the feasible 
cycle exists flag (fc_exists) to zero and computing the first cycle (k = 0) under 
consideration (step 3). In steps 4–11, the function tries to find a cycle before the
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message deadline (i.e., .rmn
j - 1 cycles) by checking three different conditions (steps 

5–7): (i) allocation condition – checks if the cycle number in the current slot ID is 
unallocated; (ii) arrival time condition – checks if the slot begins after the message 
arrival time .(an

j ) and effective jitter .(σ ∗ μn
j ) and; (iii) deadline constraint – checks 

if the finish time of the slot is before the deadline of the (k + 1)th instance. If all 
the three conditions are satisfied, the cycle number is added to the cyc_list, fc_exists 
is changed to 1 (in steps 8–10), and the search for the next instance begins. When 
all the message instances are allocated a feasible cycle, the function returns feasible 
as 1, and the list of allocated cycles (cyc_list). Otherwise, the algorithm determines 
that the current slot ID and cycle number are infeasible for allocating to the current 
message. 

Algorithm 5: sc_allocation . (mn
j , slot, cyc, SCslot) 

Inputs: current message ( ), slot ID (slot), base cycle (cyc), and 
SCL corresponding to slot ID (SCslot) 
1:    Initialize: feasible = 0; cyc_list = [ ]; k = 0; num_instances = ; 

2:    while k < num_instances do 
3:         fc_exists = 0; test_cyc = cyc + k* 

4:         for i from 0 to ( - 1) do 
5:              condition1 = ((test_cyc+i) in SCslot) 

6:              condition2 = ( + ∗ ) ≤ start(slot, test_cyc + i) 
7:              condition3 = start(slot, test_cyc + i) + ≤ (k+1)* 

8:              if conditions 1, 2, 3, and 4 are all True then 
9:                  Append cyc_list ← (test_cyc + i); fc_exists = 1; break( ) 

10:            end if 
11:       end for 
12:       if fc_exists == 0 then break( ) 

13:       k += 1 

14:  end while 
15:  feasible = 1 if length(cyc_list) == num_instances; else feasible = 0 

16:  return feasible, cyc_list 
Output: feasibility flag (feasible) and list of communication cycles 
allocated to message ( ) for the given slot and cyc. 

5.1.4 Acceptance and Cooling Functions 

The acceptance function is used to probabilistically accept the solution generated 
in every iteration (step 9 in Algorithm 1). The probability of acceptance of a new 
solution is computed using (9). The term E is the difference between the objective
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function value of the current solution (cur_sol) and the previous solution (prev_sol), 
as shown in (10). This is analogous to the energy difference between the new 
and previous states in SA. Lastly, the cooling function shown in (11) defines the 
controlled cooling of the system, where Cr is the cooling rate. 

Pacceptance = e−
(

E 
T

)
(9) 

E = � (cur_sol) − � (prev_sol) (10) 

T emperature  (T )  = Cr ∗ T (11) 

5.2 Runtime Multi-level Feedback Queue 

The schedule generated by the design time scheduler will only guarantee latencies 
for time-triggered messages when the runtime jitter experienced by the messages 
does not exceed their effective jitter .(σ ∗ μn

j ) value. However, at runtime, various 
internal and external disturbances may interfere with the normal operation of the 
FlexRay bus and might result in additional, larger jitter. Thus, it is important 
to handle a multitude of jitter values during runtime to minimize the impact of 
random jitter. In this work, we focus on handling jitter at runtime using a runtime 
scheduler that re-schedules jitter-affected time-triggered messages using the design-
time generated schedule and the output of the Multi-Level Feedback Queue (MLFQ; 
discussed next) as the inputs. Moreover, in this work, we allow the transmission 
of high-priority event-triggered messages within the static segment of FlexRay. 
Consider an example scenario where a high-priority event-triggered message arrives 
just after the beginning of the dynamic segment, and there is a low-priority event-
triggered message that is already being transmitted and ends up taking the entire 
duration of the dynamic segment due to its large message size. In this scenario, 
the high-priority event-triggered message has to wait until the beginning of the 
dynamic segment in the next communication cycle to start transmission if there 
are no other higher-priority messages. This could result in a missed deadline. 
Hence, we facilitate the transmission of high-priority event-triggered messages 
in the static segment of FlexRay by treating them similar to jitter-affected time-
triggered messages within the MLFQ but with a priority lower than time-triggered 
messages during the runtime scheduling. This facilitates the easy rescheduling of 
high-priority event-triggered messages in the static segment of the FlexRay. 

The MLFQ typically consists of two or more queues that have different priorities 
and are capable of exchanging messages between different levels of the queues 
using feedback connections (as shown earlier in Fig. 6). The number of queues in 
an MLFQ defines the number of levels, and each level queue can have a different
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prioritization scheme and scheduling policy. Moreover, the MLFQ attempts to 
resolve the issues associated with the traditional scheduling schemes (such as first 
come first serve (FCFS) and shortest job first (SJF)) by minimizing inefficient 
turnaround times for the messages and preventing message starvation. 

In this work, we considered an MLFQ consisting of three level queues (as shown 
in Fig. 6), with queue 1 (Q1) having the highest priority, followed by queue 2 (Q2) 
and queue 3 (Q3), with lower priorities. In addition to prioritization between differ-
ent level queues, we set priorities between different types of messages and within 
the messages of the same type. In this work, we prioritize time-triggered messages 
over event-triggered messages. Moreover, within the time-triggered messages, we 
compute static priorities using a Rate Monotonic (RM) policy to prioritize messages 
with a high frequency of occurrence. In case of a tie, priorities are resolved using 
a First Come First Serve (FCFS) strategy. In this work, we assume that the event-
triggered messages inherit the priority of their generating node. In cases of multiple 
event-triggered messages from the same node, an Earliest Deadline First (EDF) 
scheme is employed to prioritize messages. These static priorities of the messages 
are used to reorder the messages in the queues and promote messages to upper-level 
queues. In addition, the MLFQ takes input from two separate buffers that are used 
to handle jitter-affected time-triggered messages and high-priority event-triggered 
messages. 

The operation flow of the MLFQ is depicted in the flowchart in Fig. 8. It begins  
by checking the time-triggered (TT) message buffer for jitter-affected messages. If 
a TT message is available, the load TT message function is executed. The load TT 
message checks for a vacancy in the queues in the order Q1, Q2, and Q3 and stores 
the TT message in the first available queue. If the TT message buffer is empty and 
an event-triggered (ET) message is available in the ET message buffer, the load ET 

Fig. 8 The operation flow of the runtime MLFQ
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Fig. 9 Packing of 
jitter-affected messages at 
runtime 

message function is executed. The load ET message checks for a vacancy in the 
queues in the order Q2, Q3, and Q1 and stores the ET message in the first available 
queue. In either of the cases, when all three queues are full, the message is stored in 
the corresponding buffer, and the same function is executed in the next clock cycle. 
Whenever there are no messages available in both the buffers and the reorder queue 
function is not executed in the preceding clock cycle, messages in the queues are 
reordered. The reordering happens in the order of their priorities by executing the 
reorder queues function. Otherwise, the queues are checked in the order Q1, Q2, 
and Q3 by running the POP queue function based on the conditions discussed in the 
following subsection. 

5.3 Runtime Scheduler 

We introduce a runtime scheduler that takes the output of the MLFQ and the design-
time generated schedule as inputs. The runtime scheduler computes the available 
slack using the design-time generated schedule and stores this information, which is 
used at runtime to pack jitter-affected messages in the FlexRay static segment slots 
opportunistically. If there is a jitter-affected message in the MLFQ, the runtime 
scheduler checks the ownership of the next incoming slot. If the incoming slot is 
owned by the source node of the jitter-affected message in the MLFQ, the runtime 
scheduler checks for the available slack in the incoming slot. If there is non-
zero slack in the incoming slot, the jitter-affected message is collocated with the 
jitter-unaffected message, as shown in Fig. 9. The entire jitter-affected message is 
rescheduled in the incoming slot if there is sufficient slack to accommodate the full 
jitter-affected message. Otherwise, the jitter-affected message is partitioned into two 
parts. The size of the first part is equal to the available slack in the incoming slot, and 
the remaining is the size of the second part. The second part of the message remains 
in the queue and is transmitted in the next feasible incoming slot by bumping up its 
priority. 

Similarly, whenever a high-priority event-triggered message is available in the 
MLFQ, it is treated similar to the jitter-affected time-triggered message, except with 
a lower priority than the regular time-triggered message. The same steps discussed 
above are used to schedule the ET message at runtime.
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Fig. 10 The updated frame format of the FlexRay frame using the proposed segmentation and 
addressing scheme. The parts of the frame highlighted in a darker shade represent our modifications 

This method of scheduling messages at runtime can result in packing two 
different message data into the payload segment of one FlexRay frame, which, 
unfortunately, leads to two major challenges. Firstly, there is a need for a mechanism 
at the receiver node to decode the payload segment correctly and distinguish 
between the two messages. Secondly, the implicit addressing scheme of FlexRay 
is lost because of combining two different messages, and the receiving nodes will 
not be able to identify to which specific node the message is meant. 

To overcome the above-mentioned challenges, we propose a custom segmenta-
tion and addressing scheme to distinguish multiple messages that are packed in the 
same frame. In this scheme, we introduce one additional segment in the payload 
segment of the FlexRay frame that is common to multiple jitter-affected messages 
packed in that frame. We also introduce two more segments for each jitter-affected 
message packed into the frame. An illustration of our proposed segmentation and 
addressing scheme with two jitter-affected messages being collocated with a jitter-
unaffected message is shown in Fig. 10. The first common segment is called append 
counter (AC), which is also the first segment in the payload. AC is a 3-bit field 
indicating the number of different jitter-affected messages that are packed in the 
current frame. In this work, we support partial message transmission to fully utilize 
the available bandwidth in allocated static segment slots. The second segment is 
called the custom header (CH), which is private for each jitter-affected message in 
the FlexRay frame. Every CH segment further consists of a type field and a length 
field. The type is a 15-bit field that specifies different message types (defined in 
[5]). The type field consists of one bit each for the payload preamble indicator, 
null frame indicator, sync frame indicator, and startup frame indicator, and an 11-
bit frame ID (FID) field for specifying the FID of the jitter-affected message. The 
length field is 8-bit long and specifies the data length of the jitter-affected message 
in bytes. The length field in the custom header and the payload length field in 
the frame header are used to find the start bit of the jitter-affected message in the 
payload segment. The third segment we introduced in the payload is called the end 
of message (EOM), which is a 1-bit segment that is private to each jitter-affected
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message. The EOM field is 1 when the entire message is transmitted; otherwise, 
the EOM field is set to 0, indicating a partial message transmission. The remaining 
message data transmitted in the next feasible slot will have the remaining data size in 
the length field of its custom header. If there is more than one jitter-affected message 
packed in the FlexRay frame, the headers of all the messages are at the beginning 
of the payload segment. This gives the receiver node information about all the jitter-
affected messages that are packed in the FlexRay frame. Moreover, it is important 
to note that the regular operation of the FlexRay protocol is not altered in any way 
by implementing these changes. 

6 Experiments 

6.1 Experimental Setup 

To evaluate the effectiveness of the proposed JAMS-SG framework, we first 
compare it against two variants of the same framework: JAMS-SA and JAMS-ACC-
SG. The first variant JAMS-SA uses a simulated annealing (SA) approach with no 
GRASP-based local search. The motivation for implementing JAMS-SA is to study 
the importance of local search. In JAMS-SA, the solution is subjected to random 
perturbations, and a new solution is created every iteration with the randomly 
chosen signals having an equal likelihood of grouping or splitting. The second 
variant JAMS-ACC-SG (accelerated SA + GRASP), behaves similar to JAMS-
SA in the beginning, but then it switches to a JAMS-SG behavior (i.e., including 
GRASP-based local search) when the temperature of the system is sufficiently low. 
Based on empirical analysis, in this work, we set the threshold temperature to be 
30% of the initial temperature. The motivation for an accelerated version is to 
save the computation time spent looking for the local optimum initially and only 
perform the local search after a reasonable solution is achieved. The performance 
of these three techniques (JAMS-SA, JAMS-SG, and JAMS-ACC-SG) is discussed 
in detail in Sect. 6.2. In addition, we perform a series of experiments with different 
weight values to determine the optimal weight parameters for the best variant of our 
framework. 

Subsequently, we compare the best variant of our framework with various prior 
works: Optimal Message Scheduling with Jitter minimization (OMSC-JM [26]), 
Optimal Message Scheduling with FID minimization (OMSC-FM [26]), Policy-
based Message Scheduling (PMSC [23]), and JAMS-greedy [27]. OMSC-JM [26] 
and OMSC-FM [26] use an ILP-based frame packing technique from [7] and 
change the message repetition to minimize the effect of jitter. OMSC-JM tries to 
minimize the effect of jitter by allocating more slots and performing more frequent 
message transmissions, while OMSC-FM aims to minimize the number of allocated 
slots. PMSC [23] uses a priority-based preemptive runtime scheduler that uses 
the message arrival times and priorities to schedule messages using heuristics.
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JAMS-greedy [27] uses a greedy frame packing approach to generate the set of 
messages and uses a heuristic-based scheduler to synthesize design time schedules. 
In addition, JAMS-greedy also supports a runtime scheduler to reschedule jitter-
affected messages similar to JAMS-SG. However, JAMS-greedy lacks the ability 
to send multiple jitter-affected messages in one FlexRay frame and also does not 
support partial message transmission. We also implemented a genetic algorithm 
(GA) based frame packing approach for FlexRay-based systems using the frame 
packing technique proposed for CAN-FD in [15]. We further adapted the scheduling 
policy proposed in [27] and combined it with [15] (hence the name JAMS-GA) to 
compare it with our framework. All experiments conducted with these prior works 
are discussed in detail in the following subsections. 

To evaluate our proposed framework with its variants and against prior work, 
we derived a set of test cases using automotive network data extracted from a real-
world 2016 Chevrolet Camaro vehicle that we have access to. In this study, for all 
our experiments, we considered a FlexRay 3.0.1 based system with the following 
network parameters: cycle duration of 5 ms (tdc) with 62 static segment slots (Nss), 
with a slot size of 42 bytes (Bslot) and 64 communication cycles (Cfx). Moreover, 
each experiment was run for 1000 iterations with an initial temperature = 10,000 
and the cooling rate (Cr) set to 0.993. We chose the RCL threshold parameter (α) of  
GRASP 0.4, which resulted in a relatively near greedy solution in the presence of a 
relatively large variance. The destroy-repair parameter (β) is set to 2, which helped 
avoid exploring a larger neighborhood around the greedy randomized constructed 
solution. We randomly sampled jitter values as a function of the message period 
to modify the arrival times of randomly selected messages originating from a set 
of randomly selected jitter-affected nodes. Moreover, as discussed earlier, we chose 
the coefficient of jitter resilience (σ) = 0.8. To account for the overhead of MLFQ 
operations, we model additional message latency as a function of the static priority 
of the message (derived using the RM scheme), message data size, and the queue 
it is in. All the simulations are run on an Intel Core i7 3.6GHz server with 16 GB 
RAM. 

6.2 Comparison of JAMS-SG Variants 

In this subsection, we compare the proposed JAMS-SG framework with the two 
other variants, JAMS-SA and JAMS-ACC-SG. A series of experiments were 
conducted by changing the weight in the objective function (in (5)). The results 
were analyzed under four different scenarios: (i) zero, (ii) low, (iii) medium, and 
(iv) high jitter. Under zero jitter, none of the messages in the system are affected by 
jitter. Hence, their arrival times remain unchanged. Under the next three different 
jitter scenarios, the arrival times of randomly selected time-triggered messages 
originating from a randomly selected set of jitter-affected nodes are modified as 
a function of the message period. In low, medium, and high jitter scenarios, the



32 V. K. Kukkala et al.

randomly chosen messages are subjected to jitter values equal to . pn
j /8, . p

n
j /5 and 

. pn
j /4, respectively (where . p

n
j represents the period of message j belonging to node 

n). We considered a real-world automotive case study (discussed in Sect. 6.1) 
consisting of 19 ECUs and 248 signals to evaluate all the variants. 

Figures 11a–d show the average response time of all the messages in the system 
for the three variants with different objective function weights under zero, low, 
medium, and high jitter conditions, respectively. The error bars on top of each 
bar represent the minimum and maximum of the average response time, and the 
number on top of the bar represents the number of missed deadlines. From Fig. 
11a–d, across all weight values and jitter scenarios, it is evident that JAMS-SG has 
superior performance in response time compared to JAMS-SA and JAMS-ACC-SG 
in most of the cases. Most importantly, JAMS-SG never misses any deadline for any 
weight value and jitter scenario. This is because JAMS-SG is able to find a better 
jitter-aware frame-packing solution from the beginning due to its more effective 
GRASP-based optimization. This early exploration using GRASP helps achieve 
a solution that efficiently balances between minimizing the number of FlexRay 
messages and maximizing the laxity of the messages. Due to the lack of local 
search mechanisms, JAMS-SA fails to find a comparable solution. JAMS-ACC-SG 
suffers similarly to JAMS-SA until the local search process is initiated. But, when 
the local search process begins, the system temperature is already low. This forces 
the system to only accept the better solutions, as the acceptance probability function 
outputs a smaller probability value in case of a relatively bad solution. This often 
results in getting stuck at a local minimum, leading to subpar results. From Fig. 11, 
it can also be observed that as the weight value increases, the number of missed 
deadlines decreases across the frameworks and under different jitter scenarios. This 
is because of the increasing emphasis on minimizing the number of FlexRay frames 
in all three frameworks, resulting in fewer frames to be scheduled, which simplifies 
the problem. Moreover, it can be observed from Fig. 11 that choosing a very high 
or a very low weight value makes the system heavily biased towards optimizing the 
number of FlexRay frames or the laxity. To avoid this bias, we select an intermediate 
weight value of 2. Henceforth, all the other comparisons are made against JAMS-SG 
(the best variant in our analysis) with weight (w) = 2. 

6.3 Response Time Analysis 

In this subsection, we present a response time analysis by comparing JAMS-SG with 
message scheduling frameworks from prior works. We consider the same vehicle 
test case as used in the previous subsection. To induce jitter in simulations, we 
randomly select messages from the randomly chosen nodes, and their arrival times 
are delayed. Moreover, we consider an equal probability of being selected to be 
impacted by jitter for all nodes and the messages. 

Figures 12a–c show the average response time of the messages under low, 
medium, and high jitter scenarios (using the configurations discussed in the previous
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Fig. 11 Average response 
time of all signals for 
different objective function 
weights (with the number of 
missed deadlines shown on 
the top of each bar) under (a) 
zero, (b) low, (c) medium,  
and (d) high jitter conditions; 
for JAMS-SA, JAMS-SG, and 
JAMS-ACC-SG
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Fig. 12 Message deadlines vs. average response time (with the number of missed deadlines shown 
on the top of each bar) under (a) low, (b) medium, and (c) high jitter conditions; for the comparison 
frameworks (OMSC-JM [26], OMSC-FM [26], PMSC [23], JAMS-GREEDY [27], JAMS-GA [15, 
27]), and our proposed JAMS-SG framework
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subsection). The error bar on each bar represents the minimum and maximum 
average response time of the messages achieved, and the number on top of each 
bar represents the number of missed deadlines. The response time results are 
clustered into groups based on the message deadlines (on the x-axis), and the 
dashed horizontal line represents the deadlines. It can be seen that using OMSC-
FM results in high response times under all jitter scenarios. This is because of the 
high emphasis on minimizing the number of static segment slots, which resulted 
in poor jitter resilience. On the other hand, OMSC-JM performs relatively better 
as it allocates extra slots for message transmission. However, it still has issues 
handling random jitter during runtime, especially for high-priority messages. In the 
PMSC technique, jitter has a strong impact on the high-priority messages because 
of the frame packing approach used in it. PMSC aims to use the entire static 
segment slot by packing the signals that are larger than the slot size and uses 
EDF-based preemption at the beginning of each slot. In a scenario where a high-
priority message arrival gets delayed due to jitter, the node has to wait for the next 
transmitting slot to preempt existing transmissions of low-priority messages when 
using PMSC. This additional delay due to jitter and scheduling constraints can result 
in missed deadlines. Additionally, JAMS-greedy and JAMS-GA result in suboptimal 
frame packing that focuses on minimizing the number of FlexRay frames. Moreover, 
JAMS-greedy and JAMS-GA are relatively jitter resilient compared to other prior 
works due to the runtime scheduler in these works. However, these frameworks start 
missing deadlines when there is high jitter. It is evident that under all three jitter 
scenarios, JAMS-SG outperforms all the other prior works with no deadline misses. 
JAMS-SG achieves this by finding a balanced solution that results in optimal frame 
packing and jitter resilience. Moreover, the support for partial message transmission 
helps JAMS-SG to meet the deadline constraints under different jitter scenarios. 

6.4 Sensitivity Analysis 

In this subsection, we analyze the impact of the jitter on a specific subset of 
messages and study the behavior of the system. The same test case considered in 
the previous subsection is used, and the results are compared with the prior works 
mentioned in the previous subsection. 

Figure 13a–c illustrates the message deadline vs. average response time plots 
under low, medium, and high jitter, for the case where only the high-priority 
messages (messages with a deadline ≤40 ms) are subjected to jitter. The high-
priority messages affected by jitter are randomly chosen from a randomly chosen 
set of nodes. It can be observed that the impact of jitter results in higher response 
times and deadline misses for the high-priority messages in most of the prior works. 
In particular, for OMSC-JM and OMSC-FM, some of the low-priority messages 
suffer from very long response times and deadline misses. However, JAMS-SG not 
only results in minimal response times for most cases but also in no deadline misses, 
which is a crucial requirement for time-critical automotive cyber-physical systems.
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Fig. 13 Message deadlines vs. average response time with jitter affecting high-priority messages 
only; (with the number of missed deadlines on the top of each bar) under (a) low, (b) medium,  
and (c) high jitter conditions; for the comparison frameworks (OMSC-JM [26], OMSC-FM[26], 
PMSC [23], JAMS-GREEDY[27], JAMS-GA [15, 27]), and JAMS-SG
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The message deadline vs. average response time plots for three jitter scenarios 
where only the low-priority messages (messages with deadline >40 ms) are 
subjected to jitter is shown in Fig. 14. It is clear that almost all of the frameworks 
except JAMS-SG fail to meet the deadline constraint for specific scenarios. 

Thus, from Figs. 12, 13, and 14, it is evident that JAMS-SG can handle a 
wide variety of jitter patterns and can still meet the deadline constraints for all the 
messages in the system. 

6.5 Scalability Analysis 

To evaluate the scalability of JAMS-SG, we analyzed the performance of our 
JAMS-SG and comparison works under various system configurations using the 
test cases with varying combinations of the number of nodes and number of signals. 
The average response times of all the messages for the high jitter scenario for 
different system configurations is illustrated in Fig. 15. In the system configuration 
is represented as {p, q} (on the x-axis), where p denotes the number of nodes and q 
is the number of signals. 

The number on the top of each bar represents the number of signals that missed 
the deadline in that configuration. For larger test cases, some of the prior works 
(OMSC-JM, OMSC-FM) failed to result in a feasible solution within the 24-h time 
limit. It can be observed that even with increasing system size, JAMS-SG is able to 
meet all message deadlines for every configuration. On the other hand, the prior 
works suffer from multiple deadline misses due to the lack of jitter awareness. 
Among them, OMSC-FM seems to perform particularly poorly compared to all 
other works because of its heavy emphasis on minimizing the number of allocated 
slots, resulting in a minimal number of available slots but a lack of jitter resilience. 

Lastly, Table 1 shows the time taken (at design time) for JAMS-SG and prior 
works to generate the best solution for the different system configurations. It is clear 
that JAMS-SG is able to achieve a superior solution (jitter resilient frame packing 
and schedule) with no deadline misses under 20 min, even for the largest test case 
configuration. Thus, our proposed JAMS-SG framework is highly scalable across 
various system complexities and jitter profiles. Moreover, unlike the frameworks 
proposed in prior works, JAMS-SG has no missed deadlines for all the test cases. 

7 Conclusion 

In this chapter, we presented a novel message scheduling framework called JAMS-
SG that utilizes both design time and runtime scheduling to mitigate the effect of 
jitter in time-triggered automotive systems. At design time, our framework uses 
a hybrid heuristic (SA + GRASP) for generating jitter-aware frame packing and 
synthesizing a design time schedule. At runtime, our framework effectively handles
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Fig. 14 Message deadlines vs. average response time with jitter affecting low-priority messages 
only; (with the number of missed deadlines on the top of each bar) under (a) low, (b) medium,  
and (c) high jitter conditions; for the comparison frameworks (OMSC-JM [26], OMSC-FM [26], 
PMSC [23], JAMS-GREEDY [27], JAMS-GA [15, 27]), and JAMS-SG
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Fig. 15 Average response time for different system configurations (with the number of missed 
deadlines on the top of each bar) under high jitter; OMSC-JM [26], OMSC-FM [26], PMSC [23], 
JAMS-GREEDY [27], JAMS-GA [15, 27], and our JAMS-SG framework 

Table 1 Time taken to generate the solution (in seconds) for different configurations: OMSC-JM 
[26], OMSC-FM [26], PMSC [23], JAMS-Greedy [27], JAMS-GA and our JAMS-SG framework 

Configurations 
{20,274} {25,304} {35,292} {40,345} {60,360} {80,392} 

OMSC-JM 2700.54 2700.89 2700.94 2700.93 – – 
OMSC-FM 2700.49 2700.85 1116.09 2700.95 – – 
PMSC 0.72 1.89 1.947 2.58 1.31 1.65 
JAMS-GREEDY 0.71 1.811 2.52 3.48 3.01 5.93 
JAMS-GA 66.05 142.6 152.15 178.75 122.08 157.97 
JAMS-SG 94.15 134.96 298.62 449.71 576.02 1149.80 

both jitter-affected time-triggered and high-priority event-triggered messages using 
the proposed MLFQs and a runtime scheduler. We also devise a custom frame 
format to solve the addressing and segmentation challenges associated with packing 
multiple jitter-affected messages in the same frame. We compared our JAMS-
SG framework with the best-known prior works in the area under varying jitter 
conditions. Our experimental analysis indicates that JAMS-SG is able to achieve 
significantly lower response times for most cases and, more importantly, no 
deadline misses. Moreover, our experiments also show that JAMS-SG is highly 
scalable and outperforms the best-known prior works for various system sizes and 
under different jitter scenarios. This makes our proposed JAMS-SG framework 
a promising approach to cope with random jitter in emerging automotive cyber-
physical systems.
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Evolvement of Scheduling Theories for 
Autonomous Vehicles 

Wanli Chang, Nan Chen, Shuai Zhao, and Xiaotian Dai 

1 Introduction 

There is a clear trend in the automotive industry towards autonomous vehicles which 
brings a series of new requirements for real-time scheduling, due to the evolving 
complexity. First, in the scheduling of real-time autonomous systems, scheduling 
theories for simple task models and uniprocessors have been well established, but 
multiprocessor systems are increasingly being employed and dependencies between 
tasks need to be considered [10]. Many existing works use a single recurrent event 
or time-triggered DAG tasks to model functional dependencies in a system [7, 8, 
26, 46, 59, 60]. For example, a complete automotive task chain from on to control 
is described in [59] and converted to a single periodic DAG task. In addition, to 
avoid migration and cache-related preemption overhead, a non-preemptive global 
scheduling scheme is often deployed [15, 59]. That is, the nodes of a DAG are 
scheduled globally on all cores and preemption is not allowed during the execution 
of a node [47]. 

Figure 1 provides an example DAG which contains eight nodes with a set of 
edges. A node indicates a computation unit that must be executed sequentially and 
a directed edge describes the execution dependency of two nodes (e.g., node . v5
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Fig. 1 An example DAG 

and .v7). When there are adequate cores in the system, nodes with no dependency 
e.g., node .v2, .v3 and .v4 can be executed in parallel. However, when the number of 
paralleled nodes is bigger than the number of cores available, the priority ordering 
between nodes becomes an issue which can impose non-negligible effects to the 
makespan (i.e. the execution between the start of the first node and finish time of 
the last node) of a DAG. In the mean time, the Worst-Case Response Time (WCRT) 
analysis in [33, 39] are pessimistic which can result in low system schedulability. 
Hence, a fine-grained scheduling policy and a less pessimistic WCRT bound are 
necessary. 

Second, the increasing demand of autonomous systems to realize both complex 
functionality and high performance with limited resources necessitates extensive 
resource sharing. For example, to facilitate partially or fully automated driving, 
the AUTOSAR Classic standard (which implements static task configuration with 
resource isolation) is evolving to AUTOSAR Adaptive with dynamic resource shar-
ing on multiprocessor architectures [4]. Resources sharing is referred as sharing data 
structures, special memory locations, and code segments, which need to be accessed 
in a mutually exclusive fashion. Consequently, the increasing applications of shared 
resources in the autonomous systems can cause blocking due to contention, while 
conventional requirements of timing predictability and reliability still need to be 
satisfied. That is, the deadlines of tasks must be met while failures during task 
executions must be resolved. 

Satisfying both timing and reliability requirements is particularly hard. Several 
multiprocessor resource sharing protocols have been proposed to bound and min-
imize blocking time, including MSRP [27] and MrsP [14]. However, reliability 
has not been accounted for, which is imperative in safety-critical scenarios like 
autonomous systems. The common fault-tolerance methods are based on redun-
dancy, and they may be directly applied to shared resources by scheduling repeated 
task executions and resource accesses a sufficient number of times to get the 
correct output. However, this leads to severe resource contention and undermines 
system schedulability. Therefore, a solution for guaranteeing both reliability and 
schedulability for autonomous systems with the presence of shared resource is 
required. 

Third, on communication, Ethernet as a data link layer protocol has evolved 
from standard computer networks to applications of in-vehicle communication
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(e.g., deterministic real-time Ethernet [55]). In the emerging safety-critical systems 
such as highly automated vehicles, a large volume of messages with mixed types 
need to be transmitted on the same infrastructure, which requires deterministic 
and predictable timing to guarantee safety. Traditional real-time networks use non-
standard Ethernet to enable high-bandwidth deterministic communication, which 
prohibits connectivity between different protocols and components from different 
vendors, as well as increases uncertainty and difficulty in timing and hazard 
analysis. 

TSN proposed as an IEEE standard, offers an interoperable and flexible determin-
istic Ethernet-based solution [36]. It is widely considered as the network solution for 
future automobiles. The IEEE 802.1 TSN standard includes a wide range of subsets, 
in which one of the most important protocols is the 802.1Qbv [20, 35, 63]. The IEEE 
802.1Qbv supports time-aware shaper (TAS) using TDMA (time-division multiple 
access)-scheduled queues to access the egress port—controlled by a gate switching 
logic that is driven by a synchronized global timer and a look-up scheduling table. 

Control loops are often involved in the safety-critical systems, where guarantees 
are required on both timing of communication and control performances (measured 
by settling time). In general, short sampling periods enable the potential to achieve 
good control performance with frequent interactions between the controller and the 
plant. The state-of-the-art network scheduling techniques for TSN (e.g., [5, 41, 63]) 
cannot be directly applied, as they consider neither the hard real-time constraints on 
network packets nor the control performance of the system. Therefore, an integrated 
solution of network scheduling and controller co-design for TSN is essential for 
autonomous in-vehicle communications from the CPS perspective. 

1.1 Organization 

In this chapter, we present three interconnected fundamental works along the above 
directions: the real-time scheduling for DAGs on multiprocessor architectures; the 
reliable resource sharing in autonomous systems; and real-time scheduling and 
controller co-design for TSN. The rest of the chapter is organized as follows:

• Section 2 provides the background knowledge and related research outputs of 
the work presented in the following sections.

• Section 3 introduces a CPC model based on the work-conserving schedule and 
the classic analysis, alongside a priority ordering algorithm.

• Section 4 presents the first fault-tolerant solution for multiprocessor MCS 
with shared resources. The solution contains a system execution model that is 
compatible with an arbitrary number of criticality levels, and a protocol, namely 
Multiprocessor Stack Resource Protocol Fault Tolerance (MSRP-FT) which aims 
to address faults during critical sections while minimizing blocking time.

• Section 5 presents the first integrated solution of network scheduling and 
controller co-desig for TSN 802.1Qbv. Specifically, the first FPS approach for 
TSN is demonstrated. Moreover, a finer-grained analysis for the above scheduling
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approach at the frame level is also included. Based on FPS and the analysis, we 
formulate a co-design optimization problem to decide the sampling periods and 
poles of real-time controllers.

• Section 6 concludes the contents of this chapter. 

2 Background 

In this section, we provide the background information and related literature to 
motivate the research output demonstrated in the following sections. First, Sect. 2.1 
reviews the work in scheduling and analysis of DAG tasks. Second, work related to 
fault-tolerance, resource sharing, and MCS is reviewed in Sect. 2.2. Last, relevant 
literature on the scheduling of TSN network is presented in Sect. 2.3. 

2.1 Scheduling and Analyzing DAG Tasks in Autonomous 
Vehicles 

The majority of the existing work on scheduling DAG tasks assumes a work-
conserving scheduler [39]. A scheduling algorithm is said to be work-conserving if 
it never idles a processor when there exists pending workload. A generic bound that 
captures the worst-case response time of tasks scheduled globally with any work-
conserving method is provided in Graham [28]. This analysis is later formalized in 
Melani [39] and Fonseca [25] for DAG tasks. The analysis of a single DAG task 
is given in Eq. (1). Notation . τx denotes a DAG task with index x, .Rx denotes the 
response time of . τx , . Lx denotes the length of the longest path in the DAG, .Wx gives 
the sum of Worst-Case Execution Time (WCETs) of all nodes in the DAG, and m 
denotes the number of cores. 

.Rx = Lx +
⌈

1

m
(Wx − Lx)

⌉
(1) 

In this analysis, the worst-case response time of a DAG task . τx is upper bounded 
by the length of the critical path and the intra-task interference imposed by the non-
critical nodes of . τx itself. However, this analysis assumes the critical path can be 
delayed by all the concurrent nodes, which is pessimistic for scheduling methods 
with an explicit execution order known a priori [33, 39]. 

2.1.1 The State-of-the-Art in DAG Scheduling and Analysis 

For homogeneous multiprocessors with a global scheme, existing scheduling (and 
their analysing) methods aim at reducing the makespan and tightening the worst-
case analytical bound. They can be classified as either slice-based [17, 29] or  
node-based [18, 33]. The slice-based schedule enforces node-level preemption and
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divides each node into a number of small computation units (e.g., units with a 
WCET of one in Chang [17]). By doing so, the slice-based methods can improve 
node-level parallelism but to achieve an improvement the number of preemptions 
and migrations need to be controlled. 

The node-based methods provide a more generic solution by producing an 
explicit node execution order, based on heuristics derived from either the spatial 
(e.g., number of successors of a node [37] and topological order of nodes [33]) 
or the temporal (execution time of nodes [18, 54, 59]) characteristics of the DAG. 
Below we describe two most recent node-based methods. 

In Chen et al. [18], an non-preemptive scheduling method is proposed for a 
single periodic DAG, which always executes the ready node with the longest 
WCET to improve parallelism. Chen [18] prevents anomalies from occurring when 
nodes are executing less than their WCETs, which can lead to an execution order 
different from the schedule. This is achieved by guaranteeing nodes are executed in 
the same order as the offline simulation. However, without considering inter-node 
dependencies, this schedule cannot minimize the delay on the completion of DAG. 

In He et al. [33], a new response time analysis is presented, which dominates the 
traditional bound in Graham [28] and Melani [39] when an explicit node execution 
order is known a priori. That is, a node . vj can only incur a delay from the concurrent 
nodes that are scheduled prior to . vj . Then, a scheduling method is proposed that 
always executes: (i) the critical path first; and (ii) the immediate interference nodes 
first (nodes that can cause the most immediate delay on the currently-examined 
path). The novelty in He [33] is considering both topology and path length in a DAG, 
and provides the state-of-the-art analysis against which our approach is compared. 
However, the method in He [33] schedules concurrent nodes based on the length 
of their longest complete path (a path from the source to the sink node), i.e., nodes 
in the longest complete path first. This heuristic is not dependency-aware, which 
reduces the level of parallelism that can be exploited, and hence, lengthen the finish 
time of a DAG task. 

2.2 Real-Time Scheduling for Reliable Autonomous Driving 

In this subsection, the background information and related work about real-
time scheduling of reliable autonomous system are provided. More specifically, 
Sect. 2.2.1 introduces common faults and solutions in the embedded systems, 
Sect. 2.2.2 presents the research in the field of resources sharing protocols. Sec-
tion 2.2.3 demonstrates the research output related to MCS. 

2.2.1 Fault Tolerance 

Faults in modern embedded systems can be broadly categorized as permanent or 
transient faults. Transient faults affect the functionality of systems for a short period 
of time, where permanent faults happen repeatedly and cannot be easily recovered
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from. Some software faults (bugs) are caused by erroneous program design, are 
permanent faults, and cannot be recovered by re-starting the operation [58]. Other 
software errors can be transient faults caused by unexpected interference among 
threads, and may be resolved by restarting the program [40]. Transient hardware 
faults can occur due to issues such as power supply fluctuations or electromagnetic 
interference which happen increasingly more frequently due to the decrease in 
transistor size and operating voltage [32]. Permanent hardware faults are the result 
of hardware damage or wear, and cannot be dealt with until the faulty component 
is replaced. In this chapter, we focus on transient faults which can be recovered by 
retrying the operation. 

Three mainstream redundancy techniques are widely adopted in the literature 
to tolerate faults: re-execution [1], checkpointing [19], and replication [45]. The 
re-execution approach saves task status at the beginning and detects faults at the 
end. Once a fault is detected, the roll-back technique is applied and the whole task 
is re-executed. The checkpointing technique introduces additional checkpoints in 
a task and normally divides task execution into a set of uniform segments. Each 
small segment is tested for faults, and when a fault is detected the system rolls 
back to the most recent checkpoint and only re-executes the faulty segment. With 
replication, each task is replicated to several copies. The task and its replicas are 
released simultaneously and execute in parallel. When an execution finishes without 
incurring faults, the others are discarded. 

Generally, fault detection mechanisms focus on analyzing the outputs of an 
execution. For example, in a lockstep dual-core architecture [50] or Triple Modular 
Redundancy architecture [4], multiple identical cores execute the same code and 
the system applies a majority vote to find the faulty component. Acceptance tests 
are often applied at the checkpoint to determine the correctness of an operation by 
checking a set of conditions that are expected to be met if the program has executed 
correctly [44]. In contrast, another type of fault-detection mechanism focuses on 
detecting the stimulus of the fault instead of the computation results. For example, 
acoustic wave detectors are adopted in the hardware architecture [56] to detect 
particle strikes that can result in transient faults during computation. Instead of using 
built-in hardware to detect faults, the Argus approach [38] uses detection equipment 
to monitor the variations of the circuits. Detailed descriptions and comparisons of 
such type of detecting mechanisms are included in [57]. 

2.2.2 Resource Sharing 

Resource sharing in multicore real-time systems has been extensively studied in the 
past few decades with numerous resource sharing protocols available [2, 14, 27]. A 
comprehensive survey can be found in [11]. Here we describe the Multiprocessor 
Stack Resource Protocol (MSRP) [27]. 

The MSRP is a First-In-First-Out (FIFO) spin-based resource sharing protocol 
developed for fully-partitioned systems. In MSRP, each global resource (i.e., shared 
between cores) is associated with a FIFO queue. A task requesting a global resource
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Fig. 2 The AMC model 

Overrun 

is placed in the FIFO queue and busy-waits (spins) non-preemptively until it moves 
to the head of the queue, at which point it will be granted the resource. The task 
then keeps executing non-preemptively until it releases the resource. For a local 
resource (i.e., shared in one core), a priority ceiling is applied, which equals the 
highest priority of tasks that request the resource. A task raises its priority to the 
ceiling during the entire access to the local resource. 

When contending for shared resources, tasks will incur additional waiting time 
(i.e. blocking) due to mutually exclusive executions. The blocking effects incurred 
by tasks for accessing shared resources under MSRP can be classified as spin delay 
and arrival blocking [62]. With shared resources, a task can incur spin delay either 
directly or indirectly. Direct spin delay occurs when a task is being blocked directly 
for accessing a shared resource by other resource accesses issued from remote cores. 
In this case, the task is added at the tail of the FIFO queue and spin-waits until 
it is granted the resource. A task incurs indirect spin delay when it is preempted 
by a local higher priority task, which in turn is blocked directly from accessing a 
resource. Arrival blocking occurs when a task is released but is then immediately 
blocked by a local low priority task which is running non-preemptively (resp. with 
a higher resource ceiling) for accessing a global (resp. local) resource. 

Resource sharing protocols define rules for accessing shared resources and bound 
the blocking delay [11]. However, they are not developed with a particular focus on 
system reliability, in which a resource request has to be potentially executed multiple 
times sequentially to tolerate faults. Hence, the additional blocking time imposed for 
addressing faults cannot be effectively minimized by these protocols. Based on the 
above, this chapter focuses on fault-tolerance for shared resources in MCS and aims 
to reduce the additional blocking from tolerating faults. 

2.2.3 Mixed Criticality System 

Baruah et al. [6] propose an Adaptive Mixed Criticality (AMC) model which is 
widely regarded as the most effective approach within Fixed-Priority Preemptive 
Scheduling [34]. The AMC model has two system modes (LO and HI) for the 
system that has tasks with two criticality levels (i.e., .L ∈ low, high). As shown 
in Fig. 2, the system starts in LO mode and all tasks are allowed to execute up to 
.Ci,low. If a task overruns these budgets, the system upgrades to the HI mode (a mode 
switch), in which high-criticality tasks are allowed to execute with a larger budget 
.Ci,high and low-criticality tasks are suspended. The AMC model assumes system
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can monitor the running time of tasks and can be extended to have an arbitrary 
number of system modes according to the number of criticality levels in the system. 
Later on, concerning the quality of service (QoS) of low-criticality tasks after a 
mode switch, instead of dropping tasks brutally, many research [13, 30] propose 
mechanisms for MCS to degrade low-criticality tasks gracefully. 

With the presence of faults, Pathan [42] proposes a mixed-criticality fault-
tolerant algorithm called FTMC for systems with two criticality levels. In FTMC, 
the system would transit from a low-criticality mode to a high-criticality mode 
if any overrun happens or the number of transient faults incurred in the system 
exceeds a predefined threshold. Chen et al. [19] propose an online fault-tolerant 
MCS scheduling framework called the FTS-RHS. The framework applies the 
checkpointing recovery schemes which outperforms re-execution in scheduling. In 
addition, the DVFS techniques have been applied in MCS in [9] to provide systems 
with precise real-time and energy-efficient scheduling. Safari et al. [45] further 
extend the research topic by including the consideration of energy consumption 
in fault-tolerant MCS and propose a LETR-MC scheme for a system with two 
criticality levels. 

With shared resources, Burns [12] applies the Original Priority Ceiling Protocol 
(OPCP) to the MCS on a uni-processor platform with two criticality levels. When 
the system transits to the high-criticality mode, low-criticality resource holders 
which are computing with the ceiling priority are suspended. They can continue to 
execute by inheriting the execution budget of their next release. Zhao et al. [61] 
extend the Priority Ceiling Protocol (PCP) [48] to HLC-PCP (Highest-Locker 
Criticality, Priority-Ceiling Protocol) to manage resource sharing in the MCS under 
AMC scheme. Han et al. [31] migrate the MSRP to the MCS and develop a 
criticality-aware utilization bound. However, none of the above works consider the 
presence of both shared resources and faults. 

2.3 Real-Time TSN Scheduling for Automotive CPS 

Time-sensitive networking is an enabler for Ethernet-based communication services 
that were not originally built to support hard real-time guarantees, such as OPC Uni-
fied Architecture (OPC-UA)1 and Distributed Data Service (DDS).2 The objective 
of TSN is to reduce the worst-case end-to-end latency for critical traffics. Here we 
briefly discuss the IEEE 802.1Qbv TSN (referred to as Qbv in the following text). A 
diagrammatic view of a Qbv-enabled switch is depicted in Fig. 3. From the figure, 
it can be seen that a Qbv TSN switch consists of the following major components:

1 https://opcfoundation.org/about/opc-technologies/opc-ua/. 
2 https://www.omg.org/spec/DDS/1.4/PDF. 
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Fig. 3 An overview structure of a 802.1Qbv-capable TSN switch 

• Scheduled FIFO queues: In a Qbv-enabled TSN switch, there are eight inde-
pendent time-divided FIFO queues which are controlled by transmission gates. 
The incoming traffic is filtered by the packet filtering unit which sends a packet 
to its designated queue. This information is encoded as Class of Service (CoS) in 
the priority code point (PCP) header in the Ethernet frame.

• Gate control list (GCL): The GCL can trigger gate-open and gate-close events 
periodically with a gate control cycle. The time granularity between events can be 
as low as 1ns depending on the specific implementation. The schedule is located 
in a GCL look-up table that is distributively configured to each TSN node. If 
multiple gates are opened at the same time, the policy in the priority selection 
unit will determine which queue is forwarded to the egress port first.

• Time synchronization: To allow time-divided transmission that is distributed 
through the network, a timer is globally synchronized with all the switches in 
the same network using precision time protocols (PTPs), e.g., IEEE 802.1AS or 
IEEE 802.1AS-Rev. 

The mechanisms of Qbv TSN improve the flexibility in terms of traffic sched-
ule and control. It enables interoperability between standard-compliant industrial 
devices thus allowing open data exchange. It also removes the need for physical 
separation of critical and non-critical communication networks. However, in a 
different aspect these introduce increased design complexity that needs to be 
elaborately handled.
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3 Scheduling of DAGs on Multiprocessor Architectures 

The content of this section is organized as follows. Section 3.1 presents the system 
and task model. Section 3.2 presents the CPC model that captures the two key factors 
of the DAG structure. Finally, Sect. 3.3 describes the scheduling algorithm for DAG 
tasks, based on the CPC model. 

3.1 Task Model and Scheduling Preliminaries 

A DAG task . τx is defined by .{Tx,Dx,Gx = (Vx, Ex)}, with . Tx denoting its 
minimum inter-arrival time, .Dx gives a constrained relative deadline, i.e., .Dx ≤ Tx , 
and . Gx is a graph defining the set of activities forming the task. The graph is defined 
as .Gx = (Vx, Ex) where . Vx denotes the set of nodes and .Ex ⊆ (Vx × Vx) gives 
the set of directed edges connecting any two nodes. Each node .vx,j ∈ Vx represents 
a computation unit that must be executed sequentially and is characterized by its 
Worst-Case Execution Time (WCET), .Cx,j . For simplicity, the subscript of the DAG 
task (i.e., x for . τx) is omitted when the system has only one DAG task. 

For any two nodes . vj and . vk connected by a directed edge ((.vj , vk) ∈ E), . vk

can start execution only if . vj has finished its execution. That is, . vj is a predecessor 
of . vk , whereas . vk is a successor of . vj . A node . vj has at least one predecessor 
.pre(vj ) and at least one successor .suc(vj ), formally defined as . pre(vj ) = {vk ∈
V | (vk, vj ) ∈ E} and .suc(vj ) = {vk ∈ V | (vj , vk) ∈ E}, respectively. Nodes 
that are either directly or transitively predecessors and successors of a node . vj are 
termed as its ancestors .anc(vj ) and descendants .des(vj ) respectively. A node . vj

with .pred(vj ) = ∅ or .succ(vj ) = ∅ is referred to as the source .vsrc or sink . vsink

respectively. Without loss of generality, we assume each DAG has one source and 
one sink node. Nodes that can execute concurrently with . vj are given by . C(vj ) =
{vk|vk /∈ (anc(vj ) ∪ des(vj )),∀vk ∈ V } [33]. 

A DAG task has the following fundamental features. First, a path . λa =
{vs, · · · , ve} is a node sequence in V and follows .(vk, vk+1) ∈ E,∀vk ∈ λa\ve. 
The set of paths in V is defined as . �V . A  local path is a sub-path within the task 
and as such does not feature both the source .vsrc and the sink . vsink . A  complete 
path features both. Function .len(λa) = ∑

∀vk∈λa
Ck gives the length of . λa . Second, 

the longest complete path is referred to as the critical path . λ∗, and its length is 
denoted by L, where .L = max{len(λa),∀λa ∈ �V }. Nodes in . λ∗ are referred to 
as the critical nodes. Other nodes are referred to as non-critical nodes, denoted 

as .
¬
V = V \λ∗. Finally, the workload W is the sum of a task’s WCETs, i.e. 

.W = ∑
∀vk∈V Ck . The workload of all non-critical nodes is referred to as the non-

critical workload.
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3.2 Concurrent Provider and Consumer Model 

Equation (1) indicates that minimizing the delay from non-critical nodes to the 
critical path (i.e., 1 

m (W − L)) effectively reduces makespan of the DAG. Achieving 
this requires the complete knowledge of the topology (i.e., the dependency and 
parallelism of each node) of a DAG so that the potential delay of the critical path 
can be identified. To support this the CPC model is presented to fully exploit node 
dependency and parallelism. 

The CPC model has two key stages. First, the critical path is divided into a set of 
consecutive sub-paths based on the potential delay it can incur. Second, for each sub-
path, the CPC model identifies the non-critical nodes that can 1) execute in parallel 
with the sub-path and 2) delay the start of the next sub-path, based on precedence 
constraints. 

The intuition of the CPC model is: when the critical path is executing, it utilizes 
just one core so that the non-critical ones can execute in parallel on the remaining 
(m − 1) cores. The time allowed for executing non-critical nodes in parallel is 
termed as the capacity, which is the length of the critical path. Note that non-critical 
nodes that utilize this capacity to execute cannot cause any delay to the critical path. 
The sub-paths in the critical path are termed capacity providers �∗ and all non-
critical nodes are capacity consumers �. For each provider θ∗

i ∈ �∗, it has a set 
of consumers F(θ∗

i ) that can execute using θ∗
i ’s capacity as well as delay the next 

provider θ∗
i+1 in the critical path. 

Algorithm 1 presents a two-step process for constructing the CPC model of 
an input DAG G with its critical path λ∗. Starting from the head node in λ∗, 
capacity providers are formed by analyzing node dependency between the critical 
path and non-critical nodes (Line 3-9). For a provider θ∗

i , its nodes should execute 
consecutively without delay from non-critical nodes in terms of dependency. That 
is, each node in θ∗

i , other than the head node (Line 5), only has one predecessor 
which is the previous node in θ∗

i . 
Then, for each θ∗

i ∈ �∗, its consumers F(θ∗
i ) are identified as the nodes that 

(1) can execute concurrently with θ∗
i , and (2) can delay the start of θ∗

i+1 (i.e., 

anc(θ∗
i+1)∩

¬ 
V in Line 12). Accordingly, nodes in F(θ∗

i ) that finish later than θ∗
i will 

delay the start of θ∗
i+1 (if it exists). By doing so, the CPC model provides detailed 

knowledge of the potential delay caused by non-critical nodes on the critical path. 
Furthermore, given an arbitrary DAG structure, a consumer vj ∈ F(θ∗

i ) can 
start earlier than, synchronous with, or later than the start of θ∗

i . For synchronous 
and late-released consumers, they will only utilize the capacity of θ∗

i . However, an 
early-released consumer can execute concurrently with certain previous providers, 
and therefore interfere with their consumers and impose an indirect delay to those 
providers. For a provider θ∗

i , G(θ∗
i ) (in line 13) denotes the nodes that belong to the 

consumer groups of later providers, but which can execute in parallel (in terms of 
topology) with θ∗

i .
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Algorithm 1: CPC(G, λ∗): CPC model construction 
Inputs : {G = (V , E)} 
Outputs : �∗, F(θ∗

i ), G(θ∗
i ),∀θ∗

j ∈ �∗ 

Parameters : λ∗, 
¬ 
V = V \λ∗ 

1 �∗ = ∅; 
2 for  each vj ∈ λ∗, in topological order do 
3 θ∗

i = {vj }; λ∗ = λ∗\vj ; 
4 while  pre(vj+1) = {vj } do 
5 θ∗

i = θ∗
i ∪ {vj+1}; λ∗ = λ∗ \ vj ; 

6 end  
7 �∗ = �∗ ∪ θ∗

i ; 
8 end  
9 for  each θ∗

i ∈ �∗, in topological order do 

10 F(θ∗
i ) = anc(θ∗

i+1) ∩ 
¬ 
V ; 

11 G(θ∗
i ) =

⋃
vj ∈F(θ∗

i )
{C(vj ) ∩ 

¬ 
V }; 

12
¬ 
V = 

¬ 
V \ F(θ∗

i ); 
13 end 
14 return �∗, F(θ∗

i ), G(θ∗
i ), ∀θ∗

i ∈ �∗ 

With the CPC model, a DAG is transformed into a set of capacity providers 
and consumers, with a time complexity of O(|V | + |E|). The CPC model provides 
complete knowledge of both direct and indirect delays from non-critical nodes on 
the critical path. For each provider θ∗

i , nodes in F(θ∗
i ) can utilize a capacity of 

len(θ∗
i ) on each of m−1 cores to execute in parallel while incurring potential delay 

from G(θ∗
i ). 

We now formally define the parallel and interfering workload of a capacity 
provider. Let f (·) denote the finish time of a provider θ∗

i or a consumer node vj , 
Li = len(θ∗

i ) gives the length of θ∗
i and Wi = Li+∑

vk∈F(θ∗
i )

{Ck}+∑
vk∈G(θ∗

i )
{Ck} 

gives the total workload of θ∗
i , F(θ∗

i ) and G(θ∗
i ). We formally define the terms 

parallel and interfering workload of a provider θ∗
i . Note, W ≤ ∑

θ∗
i ∈� Wi as a 

consumer can be accounted for more than once if it can execute concurrently with 
multiple providers. 

Definition 1 (Parallel Workload of θ∗
i ) The parallel workload αi of θ∗

i is the 
workload in Wi − Li that can execute before the time instant f (θ∗

i ). 

For a node vj in F(θ∗
i ) ∪ G(θ∗

i ), it contributes to αi if either f (vj ) ≤ f (θ∗
i ) or 

f (vj )−Cj < f  (θ∗
i ). The former case (i.e., f (vj ) ≤ f (θ∗

i )) indicates vj is finished 
before the finish of θ∗

i and cannot cause any delay, whereas f (vj ) − Cj < f  (θ∗
i ) 

means vj can partially execute in parallel with θ∗
i so that its delay on θ∗

i+1 is less 
than Cj . 

Definition 2 (Interfering Workload of θ∗
i ) The interfering workload of θ∗

i is the 
workload in Wi − Li that executes after the time instant f (θ∗

i ). For a provider θ∗
i , 

its interfering workload is Wi − Li − αi .
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With Definitions 1 and 2, Lemma 1 follows. 

Lemma 1 For providers θ∗
i and θ

∗
i+1, the workload in Wi that can delay the start 

of θ∗
i+1 is at most Wi − Li − αi . 

Proof Based on the CPC model, the start of θ∗
i+1 depends on the finish of both θ∗

i 
and F(θ∗

i ), which is max{f (θ∗
i ), maxvj ∈F(θ∗

i ) f (vj )}. By Definition 1, αi will not 
cause any delay as it always finishes before f (θ∗

i ), and hence, the lemma follows. 
Note that although G(θ∗

i ) cannot delay θ∗
i+1 directly, it can delay on nodes in F(θ∗

i ), 
and in turn, causes an indirect delay to θ∗

i+1. 	


3.3 DAG Scheduling: A Parallelism and Dependency Exploited 
Method 

Based on the CPC model, a scheduling method is then presented to maximize node 
parallelism. This is achieved by a rule-based priority assignment, in which three 
rules are developed to statically assign a priority to each node in the DAG. Firstly to 
always execute the critical path first (Sect. 3.3.1), and then two rules (Sect. 3.3.2) to  
maximize parallelism and minimize the delay to the critical path. 

The entire presented approach has general applicability to DAGs with any topol-
ogy (unlike, e.g., [25], which assumes nested fork-join DAGs only). It assumes a 
homogeneous architecture, however, it is not restricted by the number of processors. 

3.3.1 The “Critical Path First” Execution (CPFE) 

In the CPC model, the critical path is conceptually modelled as a set of capacity 
providers. Arguably, each complete path can be seen as the providers, which offers 
the time interval of its path length for other nodes to execute in parallel. However, 
the critical path provides the maximum capacity and hence, enables the maximized 
total parallel workload (denoted as .α = ∑

θ∗
i ∈�∗ αi). This provides the foundation 

to minimize the interfering workload on the complete critical path. 

Theorem 1 For a schedule . S with CPFE and a schedule . S′ that prioritizes a 
random complete path over the critical path, the total parallel workload of providers 
in S is always equal to or higher than that of . S′, i.e., .α ≥ α′. 

Proof The change from . S to . S′ leads to two effects: (1) a reduction on the length 
of the provider path, and (2) an increase on length of one consumer path. Below we 
prove both effects cannot increase the parallel workload after the change. 

First, suppose the length of provider . θ∗
i is shortened by . � after the change from 

. S to . S′, the same reduction applies on its finish time, i.e., .f ′(θ∗
i ) = f (θ∗

i ) − �. 
Because nodes in . θ∗

i are shortened, the finish time .f (vj ) of a consumer node . vj ∈
F(θ∗

i ) ∪ G(θ∗
i ) can also be reduced by a value from .�/m (i.e., a reduction on . vj ’s
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interference, if all the shortened nodes in . θ∗
i belong to . C(vj )) to . � (if all such nodes 

belong to .pre(vj )) [28, 39]. By definition 1, a consumer .vj ∈ F(θ∗
i ) ∪ G(θ∗

i ) can 
contribute to the . αi if .f (vj ) ≤ f (θ∗

i ) or .f (vj )−Cj ≤ f (θ∗
i ). Therefore, . αi cannot 

increase in . S′, as the reduction on .f (θ∗
i ) (i.e., . �) is always equal or higher than that 

of .f (vj ) (i.e., .�/m or . �). 
Second, let L and . L′ denote the length of the provider path under . S and . S′ (with 

.L ≥ L′), respectively. The time for non-critical nodes to execute in parallel with the 
provider path is . L′ on each of .m − 1 cores under . S′. Thus, a consumer path with 
its length increased from . L′ to L directly leads to an increase of .(L − L′) in the 
interfering workload, as at most . L′ in the consumer can execute in parallel with the 
provider. 

Therefore, both effects cannot increase the parallel workload after the change 
from . S to . S′, and hence, .α ≥ α′. 	

Rule 1. .∀vj ∈ �∗,∀vk ∈ � ⇒ pj > pk . 

Theorem 1 leads to the first assignment rule that assigns critical nodes with the 
highest priority, in which . pj denotes the priority of node . vj . With Rule 1, the 
maximum parallel capacity is guaranteed so that an immediate reduction (i.e., . α) 
on the interfering workload of . λ∗ can be obtained. 

3.3.2 Exploiting Parallelism and Node Dependency 

With CPFE, the next objective is to maximize the parallelism of non-critical nodes 
and reduce the delay on the completion of the critical path. Based on the CPC model, 
each provider . θ∗

i is associated with .F(θ∗
i ) and . G(θ∗

i ). For .vj ∈ G(θ∗
i ), it can execute 

before .F(θ∗
i ) and use the capacity of . θ∗

i to execute, if assigned with a high priority. 
Under this case, . vj can (1) delay the finish of .F(θ∗

i ) and the start of .θ∗
i+1, and (2) 

waste the capacity of its own provider. A similar observation is also obtained in [33], 
which avoids this delay by the heuristic of early interference node first. 

Rule 2. .∀θ∗
i , θ∗

l ∈ �∗ : i < l ⇒ min
vj ∈F(θ∗

i )
pj > max

vk∈F(θ∗
l )

pk . 

Therefore, the second assignment rule is derived to specify the priority between 
consumer groups of each provider. For any two adjacent providers . θ∗

i and . θ∗
i+1, the  

priority of any consumer in .F(θ∗
i ) is higher than that of all consumers in .F(θ∗

i+1). 
With Rule 2, the delay from .G(θ∗

i ) on .F(θ∗
i ) (and hence .θ∗

i+1) can be minimized, 
because all nodes in .G(θ∗

i ) belong to consumers of following providers and are 
always assigned with a lower priority than nodes in .F(θ∗

i ). 
We now schedule the consumer nodes in each . F(θ∗

i ). In [33], concurrent nodes 
with the same earliness (in terms of the time they become ready during the execution 
of the critical path) are ordered by the length of their longest complete path (i.e., 
from .vsrc to .vsink). However, based on the CPC model, a complete path can be 
divided into several local paths, each of these local paths belong to the consumer 
group of different providers. For local paths in .F(θ∗

i ), the order of their lengths can
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Algorithm 2: .EA(�∗,�): priority assignment 
Inputs : �∗,�
Parameters : p, pmax 

Initialize : p = pmax , ∀vj ∈ �∗ ∪ �, pj = −1 
1 /* Assignment Rule 1. */ 

2 ∀vj ∈ �∗, pj = p; p = p − 1; 
3 /* Assignment Rule 2. */ 

4 for  each θ∗
i ∈ �∗, in topological order do 

5 while  F(θ∗
i ) �= ∅ do 

6 /* Find the longest local path in F(θ∗
i ). */ 

7 ve, vj ∈ F(θ∗
i ) : 

8 ve = argmax 
ve 

{le(F (θ∗
i ))|suc(ve) = ∅}; 

9 λve = ve ∪ λvj , argmax 
vj 

{lj (F (θ∗
i ))|∀vj ∈ pre(ve)}; 

10 if |pre(vj )| > 1, ∃vj ∈ λve then 
11 {�∗′,�′} =  CPC(F(θ∗

i ), λve ); 
12 EA(�∗′,�′); 
13 break; 
14 else 
15 /* Assignment Rule 3. */ 

16 ∀vj ∈ λve , pj = p; p = p − 1; 
17 F(θ∗

i ) = F(θ∗
i ) \ λve ; 

18 end 
19 end 
20 end 

be the exact opposite to that of their complete paths. Therefore, this approach can 
lead to a prolonged finish of .F(θ∗

i ). 
In the constructed schedule, we guarantee a longer local path is always assigned 

with a higher priority in a dependency-aware manner. This derives the final 
assignment rule, as given below. Notation .lj (F (θ∗

i )) denotes the length of the 
longest local path in .F(θ∗

i ) that includes . vj . This length can be computed by 
traversing .anc(vj ) ∪ des(vj ) in .F(θ∗

i ) [33]. With Rules 1-3 applied to the example 
DAG, it finally leads to the best-case schedule with a makespan of 13. 

Rule 3. 	. . vj , vk ∈ F(θ∗
i ) : lj (F (θ∗

i )) > lk(F (θ∗
i )) ⇒ pj > pk

However, simply applying Rule 3 to each .F(θ∗
i ) is not sufficient. Given a 

complex DAG structure, every .F(θ∗
i ) can form a smaller DAG . G′, and hence, an 

inner nested CPC model with the longest path in .F(θ∗
i ) is the provider. Furthermore, 

this procedure can be recursively applied to keep constructing inner CPC models for 
each consumer group in a nested CPC model, until all local paths in a consumer 
group are fully independent. For each inner nested CPC model, Rules 1 and 2 
should be applied for maximized capacity and minimized delay of each consumer 
group, whereas Rule 3 is only applied to independent paths in a consumer group for 
maximized parallelism (and hence, the star mark on Rule 3). This enables complete 
awareness of inter-node dependency and guarantees the longest path first in each 
nested CPC model.
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Algorithm 2 provides the complete approach of the rule-based priority assign-
ment. The method starts from the outer-most CPC model (.CPC(G, λ∗)), and 
assigns all provider nodes with the highest priority based on Rule 1 (Line 2). By 
Rule 2, the algorithm starts from the earliest .F(θ∗

i ) (Line 4) and finds the longest 
local path .λve in .F(θ∗

i ) (Line 8-9). If there exists dependency between nodes in 
.λve and .F(θ∗

i )\λve (Line 9), .F(θ∗
i ) is further constructed as an inner CPC model 

with the assignment algorithm applied recursively (Line 11-12). This resolves the 
detected dependency by dividing .λve into a set of providers. Otherwise, .λve is an 
independent local path so that priority is assigned to its nodes based on Rule 3. The 
algorithm then continues with .F(θ∗

i )\λve . The process continues until all nodes in 
V are assigned with a priority. 

The time complexity of Algorithm 2 is quadratic. At most, .|V | + |E| calls 
to Algorithm 1 are invoked to construct the inner CPC models (Line 11), which 
examines each node and edge in the DAG. Mutually exclusively, Lines 16-17 assign 
each node with a priority value. Given that the time complexity of Algorithm 1 
is .O(|V | + |E|), we have the time complexity .O((|V | + |E|)2) for Algorithm 2. 
Although Algorithm 2 is recursive, this result holds as a node assigned with a 
priority will be removed from further iterations (Line 17), i.e., each node (edge) 
is processed only once. 

With the CPC model and the schedule, the complete process for scheduling 
a DAG consists of three phases: (i) transferring the DAG to CPC; (ii) statically 
assigning a priority to each node by the rule-based priority assignment, and (iii) 
executing the DAG by a fixed-priority scheduler. With the input DAG known a 
priori, phases (i) and (ii) can be performed offline so that the scheduling cost at 
run-time is effectively reduced to that of the traditional fixed-priority system. 

4 Reliable Resource Sharing in Reliable Autonomous Driving 

The contents of this section is organized as follows. Section 4.1 describes the 
system and task model assumed in this section. Section 4.2 presents a fault-tolerance 
solution for MCS with shared resources, which includes a system execution model 
and a protocol MSRP-FT for faults which occur during critical sections. 

4.1 System and Task Model 

This section consider a fully partitioned system containing z identical cores (. m1
to . mz) and a set of sporadic tasks (. 
) that are scheduled by the Fixed Priority 
Preemptive Scheduling (FPPS) scheme. For generality, the system has tasks with 
. N criticality levels which are defined by the system engineer according to their 
importance, denoted as .L ∈ {A,B, . . . ,N} in which A is the lowest criticality and 
. N is the highest. Tasks being allocated to higher criticality levels implies a severe
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consequence for overall system performance if their execution in some way fails. 

Each task . τi is defined by a 6-tuple .{Ti,Di, prii , mi, li ,
−→
Ci }, including its minimum 

release period . Ti , constrained deadline . Di (with .Di ≤ Ti), priority .prii , designated 
core . mi , criticality .li ∈ L, and a set of Worst-Case Execution Times (WCET) 

.
−→
Ci = {Ci,A, Ci,B, . . . , Ci,N} without accessing shared resources. The verification is 
more conservative for a higher criticality level [6], hence .Ci,A ≤ Ci,B ≤ . . . ≤ Ci,N. 

The task . τi with criticality . li can execute up to .Ci,li from its . 
−→
Ci . 

Within the system, there also exists a set of resources . R, each of which may be 
accessed by all tasks in the system in a mutually exclusive fashion by executing 
the critical section associated with the resource. Each shared resource . rx is defined 
by two notations: .

−→
cx
i and . Nx

i , in which .
−→
cx
i = {cx

i,A, cx
i,B, . . . , cx

i,N} denotes the 

set of worst-case computation time . τi needed to execute . rk with different levels 
of criticality, and .Nx

i gives the number of requests from . τi in one release. In this 
section the execution budgets of different segments of the same task (e.g. .Ci,A and 
.cx

i,A) increase or decrease simultaneously with the transition of system modes (see 
Sect. 4.2). However, to ease the presentation, the notation . cx is used to denote the 
worst-case time for executing . rx by all requesting tasks with any criticality level. 
Nested resource sharing is not considered in this section, i.e., a task can only hold 
one resource at a time, but can be directly supported by group locks [62]. 

Transient faults which can be resolved by redundancy approaches (e.g. re-
execution and replication) in this section. Each fault can only affect one task at a 
time and the acceptance test is applied as the fault-detection technique. 

4.2 A Fault-Tolerant Solution for MCS with Shared Resources 

In this section, we present a new fault-tolerant solution for generic MCS that have 
two or more criticality levels with shared resources, to handle both task overruns 
and transient faults. First, we introduce a new fault-aware system model for MCS. 
The system model distinguishes faults occurring in normal and critical sections, 
which enables different fault-tolerance schemes to be implemented. Then, based on 
MSRP, a novel fault-tolerance multiprocessor resource sharing protocol is presented 
for handling faults in critical sections, which reduces the blocking time incurred for 
tolerating faults and guaranteeing the reliability of the system. 

4.2.1 The Fault-Tolerance System Model 

To handle task overruns and faults which occur during both normal and critical 
sections of a MCS, a fault-tolerant system model based on the extension of the 
AMC model [6] is introduced. Figure 4 illustrates the execution flow of the system 
and tasks in the model.
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Task Fault Request Resource Request ResourceFault 
Free 

Task FaultFault 
Free 

Overrun 
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Mode  Mode 

Roll-back New approach Roll-backNew approachOverrun 

Fig. 4 The fault-tolerance system model 

During a task’s execution, faults can occur either in a normal or a critical section. 
The former is called a task fault and the latter a resource fault in this section. In the 
presented model, different fault-tolerant techniques are adopted to tolerate these two 
types of fault. The fault detection and tolerance techniques for normal and critical 
sections are presented in Sect. 4.2.2 and 4.2.3. 

As shown in Fig. 4, each task has three execution states under a system mode 
(say L): fault-free (L-FF), task-fault (L-TF) and resource-access (L-RA). They are 
allowed to execute up to an execution budget .Ci,L. A task executing in state L-FF 
is executing a normal section without incurring any faults. Once a fault occurs in a 
normal section, the task moves to state L-TF, at which the fault will be resolved. If 
a task requests a resource, it moves to state L-RA directly, where the fault-tolerance 
procedure for critical sections will be activated immediately, guaranteeing a fault-
free resource access (see Sect. 4.2.3). The task moves back to state L-FF from L-TF 
or L-RA if the fault is resolved or the resource access is finished, respectively. 

The system advances to the next system mode .L+ if any task in mode L overruns 
its budget. When an overrun occurs, tasks with criticality .li ≥ L+ that are running 
in states L-FF, L-TF and L-RA will move directly to .L+-FF, .L+-TF and .L+-RA 
respectively with elevated execution budgets .Ci,L+ and other tasks are dropped. By 
doing so, each overrun can bring the system to the next mode. However, there is 
an exception for tasks with criticality .li < L+ running in the state L-RA while 
executing with a shared resource, they are allowed to be dropped after finishing 
the underway critical section for the consideration of data integrity [31]. Moreover, 
mode changes can go in the reverse direction, when the system has less computation 
pressure it will resume suspended tasks and start in the lowest mode. Details of this 
will not be addressed here due to space constraints. 

4.2.2 Fault-Tolerance of Normal Sections 

In this section, we focus on transient faults which can be resolved by redundancy 
approaches. However, in systems with shared resources, detecting faults at the end 
of a task and re-executing the whole task to resolve a transient fault can lead to
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Fig. 5 Fault-tolerance in normal sections 

substantial blocking time and the risk of transferring incorrect data to other tasks. To 
minimize the blocking time and provide reliable resource sharing, we apply different 
fault-tolerance approaches to handle faults that occur in normal and critical sections. 
This is achieved by not only inserting checkpoints at the start and end of each task 
but also introducing additional checkpoints around each critical section of the task. 
By doing so, the task execution is divided into a set of normal and critical sections. 
The acceptance test is assumed to be applied as the fault detection technique at each 
checkpoint. 

In the presented fault-tolerance approach, the purposes of the checkpoints are 
slightly different, and so their operations vary. As shown in Fig. 5, a checkpoint (e.g. 
Check 1) will be set at the beginning of a task to perform a Save operation which 
involves storing the current architectural state of the system, including register files, 
counter values and etc. For fault-tolerance in normal sections, each checkpoint 
will operate a Detect operation to detect faults after the execution of each normal 
segment. If no faults are detected (e.g. at Check 2) the checkpoint will perform 
the Save operation. Otherwise, if a fault is detected (e.g. at Check 4) the task 
will roll back to the most recent checkpoint and perform the Restore operation 
which restores the previous data and re-performs the execution. This process repeats 
until the normal section is executed without any fault. Each re-attempt requires 
an additional Detect operation (e.g. at Check 5). However, for the end of the last 
execution segment, the Save operation is not needed at the checkpoint. 

4.2.3 Fault-Tolerance of Critical Sections by MSRP-FT 

For faults occurring in critical sections, the presented model utilizes a novel fault-
tolerance multiprocessor resource sharing protocol, called MSRP-FT, in which tasks 
waiting for a resource can assist the resource holder to execute the associated 
critical section in parallel to address potential faults. The objective is to reduce



62 W. Chang et al.

FIFO 

(a) (b) 

Enqueue 

Dequeue 

resource holder spinning task replica 

3 tasks requesting 2 tasks requesting 1 task requesting 

Fig. 6 Fault tolerance in critical section. (a) An example of a FIFO queue. (b) Replicas allocation 
based on the number of tasks in the queue 

the additional blocking time caused by resolving faults in critical sections via re-
executions. The mentioned MSRP-FT is introduced with the following steps. 

4.2.3.1 Allocation of Replicas 

Figure 6 demonstrates an example of the implementation of MSRP-FT, which is 
based on the resource sharing protocol MSRP. According to MSRP [27], tasks are 
inserted into a FIFO queue when they request a global resource. The task at the head 
of the queue (e.g. . τ1 in the figure) is granted the resource, other tasks spin on their 
own cores while checking the lock non-preemptively. With MSRP-FT, tasks are also 
placed at the FIFO queue when requesting shared resources. The task at the head of 
the FIFO queue will access the shared resource and the code segment to be executed 
by the head task and the internal states (e.g. variables) of the resource are replicated 
to a number according to the number of tasks in the FIFO queue as shown in Fig. 6b. 
It is worth noting that the access to the resource is always performed by the head 
task which obeys the mutually exclusive principle of shared resources and will not 
incur a race condition. Afterwards, replicas are stored in the local memory of each 
core and each task in the FIFO queue (including the head task) executes a replica on 
their host cores in parallel and updates the results on the local replica independently. 
If there is only one task in the FIFO queue, the head task has to execute the critical 
section by itself. 

4.2.3.2 Submission of Replicas 

Each execution of the replica is tested for faults on different cores. As shown in 
Fig. 7b, if a replica finishes without incurring any fault (e.g. on core . m3), it will
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Fig. 7 Fault-tolerance in a critical section. (a) Operations of checkpoints around a critical section. 
(b) Submission of execution results 

obtain the lock and update the shared resource with its local variables. If two 
overlapping requests to acquire the lock arrive, one task will commit the result and 
another will have no effect on the resource. The update of the resource is assumed 
to be conducted with an atomic action which once performed no other action can 
interleave with it, hence, race conditions are avoided. Once the resource is updated, 
other tasks are signaled to abandon the computation. In contrast, if all the resource-
accessing tasks fail to obtain the correct result, they roll back and re-execute the 
replica until the correct result is successfully submitted. With a successful commit 
by any task in the FIFO queue, the head task (i.e., . τ1) is removed from the queue 
and continues its execution. The same procedure then repeats for the next head task 
within the FIFO queue. 

Figure 7a shows the operations performed at the checkpoints around the critical 
section of . τ1. The checkpoint at the start of the critical section (e.g. Check 1) first 
performs Detect and Save operations to detect for faults and save the results of 
the execution of the previous segment, which is the same as mentioned above. It 
also applies Fetch and Replicate operations to fetch and replicate the corresponding 
operation and the shared resources to the spinning cores. A Detect operation is 
performed after the execution of the replica. Although the replica incurs faults, . τ3
already updated the result and a Save operation is performed to save the architectural 
states of the system and . τ1 continues its execution. 

4.2.3.3 Working example 

To clarify the implementation of the above fault-tolerance approach, the detailed 
execution procedure of the example stated above under two different fault-tolerance 
approaches is presented in Fig. 8. Figure 8a assumes that each critical section is 
checked for faults and any detected fault is tolerated directly by the roll-back and re-
execution approach. As shown in Fig. 8a, . τ1, . τ2 and . τ3 request for a shared resource 
concurrently at .t = 1. According to MSRP, . τ1 ranks first in the FIFO queue so it 
is granted with the resource and starts to execute its critical section immediately.
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Fig. 8 A comparison between two fault-tolerance approaches under the same checkpoints setting. 
(a) Fault tolerance by simple segment re-execution. (b) The presented fault-tolerance method 

Other tasks (. τ2 and . τ3) spin on their own cores and wait for the resource. However, 
. τ1 incurs two faults consecutively and re-executes its critical section twice. It finally 
releases the resource and leaves the FIFO queue at .t = 7. . τ2 then becomes the head 
of the queue, which acquires the resource and starts its critical section from then. 

With the application of the presented fault-tolerant approach, as shown in the 
Fig. 8b, the cores of . τ2 and . τ3 are utilized to execute .τ ′

1s critical section in parallel 
instead of spinning. Although only one piece of the replica (i.e., Replica 3) is 
executed without faults, . τ1 can still continue its execution at .t = 3. The chief 
principle of the fault-tolerant approach for critical sections is to replace wasted
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cycles of the spinning tasks in the FIFO queue to provide the reliability guarantee 
for each critical section in a single access, in pursuance of reducing the time spent 
on fault-tolerance and resource contention. For local resources, each task has to 
execute by itself as there exists no spinning tasks on remote cores. 

4.2.3.4 Implementation and Run-Time Overhead 

The implementation of the above approach requires the hardware architecture to 
have individual cache memory or dedicated memory space for each core to store 
replicas during the execution of the MSRP-FT, where most commercially off-the-
shelf (COTS) architectures can satisfy. From the software aspect, a global scheduler 
will be adopted to communicate with tasks on different cores. For example, the 
scheduler will signal tasks to assist the head task (i.e. the resource holder) to execute 
the replicas in parallel. Once a successful result is submitted, the scheduler will 
signal other tasks to abandon the execution on replicas. Threads control methods 
such as wait() and notify() can be used to construct the above communication logic. 

The feasibility of a task executing operations on behalf of other tasks has 
been validated in [51], in which once a task is preempted while spinning in 
the FIFO queue, the task behind it can acquire the lock first and execute the 
operation on behalf of the preempted task. Burns and Wellings [14] also briefly 
describes how the associated computations of the preempted task holder can be 
executed by the spinning tasks in parallel on different cores, but a detailed system 
design and implementation execution framework are not provided. Although the 
presented fault-tolerance approach is developed within a different context and serves 
a different purpose, that of reducing blocking time caused by resource faults, 
the above work has provided sufficient evidence towards the applicability and 
practicability of the presented approach. 

Moreover, the setting of checkpoints can bring additional overheads in terms of 
execution time. However, there is a clear trade-off between the number of check-
points being set and the final schedulability benefits of the presented approach. If 
the task has intensive resource requests (i.e. contains voluminous critical sections), 
the engineer can set fewer checkpoints in a flexible manner so that a balanced result 
can still be achieved between the time spent for each checkpoint and the advantage 
brought by the approach presented. 

Finally, the presented fault-tolerance method can also be applied to other FIFO 
spin-based resource sharing protocol, e.g. MrsP [14]. The choice of MSRP made in 
this chapter is due to its non-preemptive spinning feature, which provides a strong 
guarantee to the resource-accessing and helping process. Under MSRP, spinning 
tasks are prevented from being preempted while assisting the resource holder, and 
hence avoids prolonging the helping process as well as over-complicated execution 
scenarios.
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5 Real-Time TSN Scheduling for Automotive CPS 

In this section, we present the frame-level FPS method for TSN scheduling and anal-
ysis. We present an overview in Sect. 5.1. Followed by scheduling of TSN with FPS 
in Sect. 5.2 and deferred queue in Sect. 5.3. A corresponding schedulability analysis 
is given in Sect. 5.4. Finally, the network and control co-design is formulated in 
Sect. 5.5 by period and control poles assignment. 

5.1 Overview of Traffic Scheduling of TSN 

In this section, we present an integrated solution that solves the controller-network 
co-design problem. Scheduling on a single TSN switch is considered and can be 
extended to the entire network. As we focus on the scheduling aspect, it is assumed 
the network communication is ideal: (i) the depth of the queues is sufficient, i.e., no 
traffic overflows; (ii) the channel is error-free and has a constant transmission rate. 
These ease the analysis and helps to understand the nature of the problem. Relaxing 
them in practice needs limited modifications and will be discussed in the future. The 
network is subjected to two basic traffic types: scheduled and unscheduled traffic, 
depending on a certain level of quality-of-service (QoS) is required or not. In this 
section, we focus on scheduled traffic and leave unscheduled traffic be transmitted 
using residual bandwidth with best effort. 

TSN provides time synchronization and time-division transmission, which 
enables global scheduling through GCLs [63]. Although the schedule of TSN can 
be designed by hand, it soon becomes impractical as the network turns complex and 
more packets are added to the network. In this section, we specify the scheduling 
policy adopted for TSN while control systems are considered. The presented 
schedule minimizes the blocking of packets (including ones sent by control tasks), 
to improve schedulability and control performance. We then introduce a fine-grained 
response time analysis that bounds the worst-case latency of packets in a single Qbv 
switch. Below we first discuss the system model. 

System Model The system contains N periodic packets3 
.
 = {τ1, τ2, . . . , τN }, 

including both control (. 
c) and non-control packets (. 
nc) sent by tasks from the 
application. Each packet . τi is modelled as a 7-tuple .{Li, Ci, Ti,Di, Pi, Ri,�i}, 
representing the worst-case length of the packet . Li , transmission time . Ci , period 
. Ti , deadline . Di , priority . Pi , worst-case latency . Ri and the set of frames . �i in each 
release, respectively. Frames are transmitted in a non-preemptive fashion. A global

3 Continuously released periodic packets will form a flow. For simplicity, we use these two terms 
interchangeably. 
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packet transmission rate v is applied to all packets, thus .Ci = Li/v for . τi . Each 
control packet is assigned with an implicit deadline i.e., .Di = Ti . To provide a more 
general network model for the system, the non-control packets can have arbitrary 
deadlines without any constraint imposed. As a consequence, at a given time instant 
there could be several instances of a non-control packet waiting for transmission 
in the switch. The priorities of all packets are assigned according to the deadline 
monotonic algorithm (.Pi > Pj if .Di < Dj ), and each packet has a unique priority. 
In addition, the Maximum Transmission Unit (MTU) is considered, denoted as M , 
which defines the maximum data size allowed in a single transmission. For the ease 
of presentation, we denote M as the transmission time for sending data with a size 
equal to one MTU. Thus, each packet could be divided into a set of successive 
frames, i.e., .�i = {λ1

i , λ
2
i , . . . , λ

m
i }, with .m = �Li/M�. For a given frame . λj

i , it  
inherits the analytical properties of . τi (i.e., . Ti , . Di and . Pi), and has its own data 
length, . Lj

i , and transmission time, . Cj
i . 

5.2 Scheduling Network Packets in TSN 

In a typical Qbv switch, the network packets are queued by their arriving time 
(i.e., FIFO queuing) and are transmitted non-preemptively [35]. Traditionally, the 
synthesis of GCL schedule is performed using Satisfiability Modulo Theories 
(SMT) [20, 41] or Integer Linear Programming (ILP) [5]. The defined end-to-end 
latency imposes zero-jitter, however, with significantly reduced solution space. The 
scheduling in TSN networks with Quality-of-Service (QoS) requirements can be 
either performed at the queue level [63] or packet level [43]. With the queue-level 
scheduling, each FIFO queue in the Qbv switch is assigned with a priority, and 
packets in a queue with a higher priority are always transmitted first. However, as 
packets in each queue are transmitted strictly in a FIFO order, packets under the 
queue-level scheduling approach can incur substantial blocking, where packets with 
a tighter deadline but at the end of a queue cannot be favored. That is, with the 
queue-level scheduling, packets with different deadlines in the same FIFO queue are 
treated equally without concerning individual temporal requirements. For control 
systems, such a scheduling is not appropriate, as the delay for transmitting control 
packets can introduce significant impact on the control performance of the system. 
Thus, the packet-level (more precisely, the frame-level) scheduling is adopted to 
provide a finer-grained schedule, where each packet (and its frames) is scheduled 
strictly by its priority. 

However, even with the packet-level scheduling, packets can still incur additional 
delay due to the FIFO queuing, as the actual transmission largely depends on the 
arriving time of the packets. In the worst-case, a late-arrived packet with a high 
priority can be blocked by all the released packets with lower priorities. To minimize 
the delay due to FIFO queuing, an alternative is to perform the scheduling off-line
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(i.e., prior to execution), with the complete knowledge of all packets in the system.4 

The offline scheduling can be performed by assuming all packets are arrived at the 
same time, with a packets transmission order obtained based on their priorities. If 
packets have different arrival times during run-time, a simple mechanism that defers 
the queuing of the early-arrived low-priority frames can be adopted, to maintain the 
queuing order obtained from the offline FPS-NP without imposing extra latency to 
packet transmission (see Sect. 5.3 for deferred queuing). By maintaining the offline 
packets transmission order during run-time, the blocking time of each packet during 
transmission can be minimized to one frame only, i.e., identical to the classic non-
preemptive fixed-priority scheduling (FPS-NP) [23]. 

Based on the above discussion, to provide a fine-grained schedule and to 
minimize the delay due to the queuing problems, the scheduling adopted in this 
section is conducted before runtime on the frames of each packet in one hyper-
period, with the scheduling decisions encoded into the GCL. Once a schedule is 
obtained, the frames can be statically allocated to the FIFO queues according to the 
schedule while the scheduling decisions can be mapped to the GCL to control the 
gates of all queues to achieve the desired execution order. To this end, the scheduling 
on TSN can be successfully mapped to the traditional FPS-NP, in which each packet 
is scheduled strictly by its priority and can be blocked maximum once during the 
entire transmission. 

With the described scheduling approach, we avoid the packets queuing problem 
and can achieve the minimized delay for all packets, in the context of a Qbv switch. 
This is crucial for control systems as the resulting control performance can be 
affected by transmission delay for the control packets. To our best knowledge, this 
is one of the earliest work targeting at control systems in which the timeliness and 
performance are sensitive to the transmission delay of certain critical (i.e., control 
and non-control) packets. For the non-control packets, meeting their timing require-
ments is essential for guaranteeing the system correctness, whereas minimizing 
transmission delay of the time-triggered control packets are essential crucial for 
control performance. 

For unscheduled packet flows that do not have a temporal requirements, the 
traffics can be scheduled using residual bandwidth left by the critical traffics 
with time-aware shapers [52, 53] and queue partitioning. Supporting such flows 
has been well-described by the above work, and will not be re-presented in this 
section. Targeting at such systems, a complete scheduling solution is presented that 
minimizes the transmission delay for all packets, in the context of the TSN Qbv 
switch. Last but not least, different from [20], our approach makes no assumption 
on the isolation of incoming packets and the construction of the GCL, e.g., isolating 
certain queues for a specific packet type, to provide a more general approach for 
using TSN in control systems.

4 Such an approach is feasible as the packets are deterministic i.e., the packets sent by each task 
are known a prior with periodic release. 
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5.3 Deferred Queue 

As described in Sect. 5.2, for packets with different arriving times, a mechanism 
is required to delay the queuing of the early-arrived low priority packets so that 
the minimized blocking can be guaranteed. To achieve this, a deferred queue with 
priority ordering is introduced into the Qbv switch, which is integrated into the 
packet filtering unit (see Fig. 3) for holding early-arrived packets temporarily, until 
they can be added into the scheduled queues with a correct order. 

Assuming simultaneous release for all packets at the start of the system, the 
offline FPS-NP schedule can produce a well-planned transmission order for all 
packet instances released in one hyperperiod, in which each packet (a set of 
successive frames) is scheduled strictly based on priority. For this schedule, the 
blocking of each packet is minimized, as in the worst case, the ready packet with 
the highest priority can start transmitting after the currently transmitting frame of 
a low priority packet has completed. During run-time, this offline scheduling order 
is encoded into the priority filtering unit, which provides a reference of the expect 
order for incoming packets. 

For each incoming packets, the priority filter examines whether this packets 
arrives by the expected order, i.e., all its previous packets with a higher priority 
have arrived. If so, this packet is dispatched to the scheduled queues immediately, 
at which it will be select to transmit by GCL. Otherwise (i.e., certain previous high 
priority packets haven’t arrived yet), this packet is hold by the priority filter until (a) 
the missing packets arrives or (b) the scheduled queues are empty and this packet 
has the highest priority among all the deferred packets. 

Note that the condition (b) can lead to a transmission order different from the 
expected one, as certain packets can be transmitted before a late-arriving higher 
priority packet. However, this does not introduce extra delay and can help increasing 
the throughput. With the deferred queuing, it is possible that all scheduled queues 
are empty while some packets are stored in the priority filter. Under this situation, 
the priority filter selects the packet at the head of the queue (i.e., with the highest 
priority) and send its frames into the scheduled queue for a direct transmission one 
by one, until a higher priority packet arrives. This guarantees that the transmission 
never stops as long as there exist waiting packets (either in the priority filter or 
the scheduled queues). In addition, for the late arriving high priority packet, its 
blocking is still at most . Cj

i , where it can be transmitted directly after the currently-
transmitting frame. 

5.4 Worst-Case Response Time Analysis 

With the scheduling in TSN mapped to the traditional FPS-NP, the worst-case 
response time for transmitting a packet in a single Qbv switch can be obtained, 
which bounds the time duration from when the packet enters into the switch to when
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the packet is transmitted. Due to the different deadline constraints of the control 
and non-control packets (i.e., implicit and arbitrary deadlines respectively), different 
analysis techniques are applied for each packet type. However, as both control and 
non-control packets are scheduled strictly by the FPS-NP, the basic philosophy for 
analyzing both types of packets is similar to that in [23], but with modifications 
and improvements in order to reflect the unique features of the Qbv switch and to 
support the analysis at the frame level. 

The response time equation of a packet . τi is given in the following equation for 
both control and non-control packets: 

.Ri = max
∀λ

j
i ∈�i

⎧⎨
⎩

R
j
i (0), if τi ∈ 
c

max
n=0...

⌈
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⌉
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j
i (n)

)
, if τi ∈ 
nc
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In Eq. (2), .Rj
i (n) denotes the response time for transmitting the nth instance 

of frame . λj
i in . τi’s busy period . ti , and . Ji denotes the queuing time, i.e., the time 

window from when the first frame of . τi reaches the Qbv Switch, until when the last 

frame is queued. .
⌈

ti+Ji

Ti

⌉
gives the total number of times that a non-control packet 

can be sent within its busy period [23]. 
The analysis of a control packet is relatively straight forward, as at any given 

time, there can only exist one instance of a control packet in the system i.e., implicit 
deadlines. Thus, the worst-case response time of a control packet can be safely 
bounded by computing the maximum response time of all its frames.5 However, for 
a non-control packet, multiple instances of each of its frames can co-exist due to the 
arbitrary deadline. Thus, the response time of a frame (with an arbitrary deadline) 
must be obtained by computing the maximum response time of all its instances 
within the busy period . ti . 

Similar to [23], the busy period of a non-control packet is computed by Eq. (3), 
where . Bi gives the worst-case blocking that . τi can experience due to transmitting 
a low priority frame and .hep(i) refers to all indices of packets that have equal or 
higher priorities than . Pi , including i. The recursive calculation can starts with . ti =
Bi+Ci , and is guaranteed to converge [23], given that the total utilization for packets 
in .hep(i) is less than 1, i.e., .

∑
∀j∈hep(i)(Cj/Tj ) ≤ 1. We later decompose . Bi in Eq. 

(6). 

.ti = Bi +
∑

∀k∈hep(i)

⌈
ti + Jk

Tk

⌉
Ck (3)

5 From Eq. (2), the response time of a packet equals to the response time of its last frame in 
each transmission, which takes into account the delay for transmitting the previous frames in one 
transmission. 
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The response time of a frame is bounded by Eq. (4), in which . J
j
i denotes the time 

to en-queue frame . λj
i , .Wj

i gives the maximum queuing delay that . λj
i can incur in a 

FIFO queue before it is selected to be transmitted and .Cj
i denotes its transmission 

time. The time for queuing . λj
i into a FIFO queue also contains the enqueue time of 

frames of . τi that are prior to . λ
j
i in one transmission. In addition, for the non-control 

frames, .n · Ti is subtracted as this is the arrival time of its nth instance, relative to 
the start of the busy period. Note, for control frames, n is always 0. 

.R
j
i (n) =

∑
q∈[1,j ]

J
q
i + W

j
i (n) + C

j
i − n · Ti (4) 

Equation (5) gives the queuing delay .Wj
i of frame . λj

i , where .hp(i) returns a set 
of packets with a priority strictly higher than . Pi . This equation is also applicable 
to either control or non-control frames, with .n = 0 for all control frames. Figure 9 
provides an example illustrating the worst-case delay of the third (.n = 2) instance 
of the second frame (i.e., .j = 2) in packet . τi . As shown in the figure, in the worst 
case, the frame (in bold) has to wait for five types of other frames to transmit before 
it can start, which are mapped to four types of delay, as follows. In the worst case, a 
frame can incur four sources of delay when waiting in a FIFO queue: (i) the blocking 
caused by a low-priority frame that is currently transmitting i.e., . Bi ; (ii) the delay 
by . τi’s frames prior to . λj

i (with potential existence of multiple instances); (iii) the 

delay by previous instances of . λj
i and the frames after . λj

i in each . τi’s instance sent 

before . λj
i ; and (iv) the interference from the frames of each packet with a higher 

priority than . Pi . Note that (iii) accounts for the delay cause by both the previous 
instances of . λ

j
i itself and the frames after . λ

j
i in previous instances. These delays are 

captured by the equation respectively. 
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Finally, . Bi is given by Eq. (6), where .lp(i) returns the packets with a priority 
lower than . Pi . The maximum blocking time that . τi (and any of its frames) can incur 
is the longest transmission time among the frames of all the lower priority packets. 

.Bi = max
∀λ

q
k ∈�k,∀k∈lp(i)

(C
q
k ) (6) 

Equations (2)–(6) summarises the response time analysis for bounding the 
worst-case transmission latency (i.e., the response time) of packets in a Qbv
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Fig. 9 The worst-case delay of a frame, which is caused by a low priority frame, high priority 
packets, instances of . τi ’s frames prior to . λ

j
i , previous instances of . λj

i and previous instance of . τi ’s 

frames after . λ
j
i

switch for time-critical control systems. The analysis considers both implicit and 
arbitrary deadlines for different packet types and is fine-grained, which provides 
the worst-case transmission latency of each frame. Arguably, by intuition, a trivial 
modification that treats each frame as an independent task can be applied in an 
existing packet-level analysis (e.g., the one in [24]), to support the analysis at 
the frame-level. However, additional techniques are still required to guarantee the 
correct transmission order between frames that belong to the same packet and 
instance so that the transmission time of each individual frame can be obtained. This 
is achieved in our analysis by Eq. (5), which carefully examines the transmission 
order of different types of frames (including the ones in . τi) and provides a tighter 
upper bound compared to a packet-level analysis. 

The presented analysis and scheduling techniques for a single switch can be 
extended to support the network topology level with multiple switches and end-
nodes. For the presented method, it can be implemented in each switch. For a given 
switch, the presented schedule takes all packets that will go through this switch and 
then produced a static schedule. In addition, the deferred queue is applied in each 
switch to handle the case in which low priority packets arrive earlier than expected. 
To compute the end-to-end worst-case transmission time of a packet . τi that travels 
through more than one switches, the input packets of each of the switches should be 
given and the worst-case delay of . τi in each switch can be effectively upper bounded 
by summing the worst-case delay it can incur in each switch by the above analysis. 

However, with only one switch, the worst-case delay of a packet can be bounded 
by considering all the input packets with a synchronous release at the begin of 
the system. This assumption, however, may not hold in the scenario of multiple 
switches, in which the actual arrival time of a packet at a given switch depends on 
the delay it incurs at the previous switches. Thus, the analysing approach above 
would contain certain degree of pessimism as not all the input packets in a switch 
will cause a delay on . τi , depending on their arrival times.
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5.5 Controller Synthesis and Period Allocation 

For a safety-critical autonomous system, for example, a self-driving car, the 
control functions are crucial and should always be a major concern. Further 
to the introduced scheduling and analysis that guarantee the timing of control 
packets, a well-designed controller is also required, in order to satisfy the control 
performance requirement and even maximize it under the schedulability constraint 
of the network. 

Most real-time controllers targeting settling time (which will be formally defined 
later in this section) can run at different frequencies [3, 21, 22]. In the TSN context, 
this rate is bounded by (i) the maximum transmission capability; (ii) the lowest 
control performance requirement. Hence, there exists an optimized operational 
point that would produce acceptable network schedulability with maximized control 
performance. 

5.5.1 Control Model 

For a linear-time-invariant (LTI) controlled plant, its system dynamics can be 
described using the following differential equations: 

. ẋ(t) = Ax(t) + Bu(t), y(t) = Hx(t) (7) 

in which A, B and H are system matrices that represent the system physical 
properties; .x(t) is the system state(s); .y(t) is the system output(s) and .u(t) is the 
control input(s). Assuming the sampling time is . Ts and the sensor-to-actuator delay 
is within one sampling period, at discrete time instant k, the system dynamics evolve 
with the following equations: 

. x(k + 1) = Adx(k) + Bdu(k − 1), y(k) = Hx(k) (8) 

where .u(−1) = 0 for .k = 0 and 

.Ad = eA·Ts , Bd =
∫ Ts

0
eAτ dτ · B (9) 

To further simplify the equation, define an augmented variable z as: . z(k) =[
x(k) u(k − 1)

]T
, and substitute .x(k), .u(k) with .z(k) in Eq. (8): 

.z(k + 1) =
[

Ad Bd

0 0

]
z(k) +

[
0
1

]
u(k) (10) 

Assuming a full state-feedback controller is used, the control input .u(k) is calculated 
by:
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.u(k) = −Kz(k) + Fr(k) (11) 

where K is the feedback gain, F is the feedforward gain and .r(k) is the reference. 
By combining Eqs. (10) and (11), the system equation therefore becomes: 

.
z(k + 1) = (Ad − BdK︸ ︷︷ ︸

Acl

)z(k) + BdFr(k)
(12) 

To satisfy control stability, all the eigenvalues of the closed loop dynamic matrix, 
i.e. .Acl in Eq. (12), have to be inside the unit circle. The exact value of .Ad and . Bd

is dependent on the sampling period . Ts as seen from Eq. (9), which is equal to the 
period of the control packet, . Ti . This control model will be used through the rest of 
this section. 

5.5.2 Problem Definition 

We use settling time (. ts) as the index of quality-of-control (QoC), which is widely 
used in control engineering as a compulsory design requirement [16]. Settling 
time is defined as the time duration from when a control system is subjected to 
a disturbance to when it enters steady-state, i.e., the current output has reached 
and stays within .5% deviation of the targeted output. There is an upper bound 
requirement on the settling time, e.g., the settling time of a control system should 
not be longer than 0.5 seconds. 

Finding an optimal period is crucial for (i) guaranteeing the performance of 
the controller itself; and (ii) ensuring enough residual time slots for non-control-
related packets so they can also meet their deadlines. Based on the aforementioned 
objectives and constraints, the period assignment problem can be solved as an 
optimization problem, which is formulated as follows: 

.

minimize J =
∑
D

wj · t∗s,j

subject to Ri ≤ Di, ts,j ≤ t+s,j |uj (k)| ≤ umax, Ti = n · tgcd , n ∈ N+

where i ∈ 
, j ∈ 
c

(13) 

where .wj ∈ (0, 1] is the weight (i.e., relative importance) of the corresponding 
control task and .

∑
wj = 1; .t∗s,j ∈ [0, 1] is the normalized settling time of the 

j th controller; . D represents the solution space of all poles that can ensure control 
stability; .ts,j is the settling time of the j th controller, and .t+s,j is the maximum 
allowed settling time; .uj (k) is input at discrete instance k, which is constrained 
by .umax as the maximum input threshold; The last constraint defines the time-
granularity of a feasible period. To benefit from harmonic periods and to reduce 
the size of the GCL table, each . Ti must be an integer multiple of .tgcd , the greatest
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Algorithm 3: Periods and control poles assignment 

1 Input: 
 = {
c, 
nc} 
2 Output: schedulability, S∗ 

3 Initialise:  feasible and best solutions: Sf = Ø,  S∗ = Ø  
/* construct candidate solutions: */ 

4 formulate the solution space: S = {S1, S2, . . . , Sn}. 
/* explore each candidate: */ 

5 for  Sk in S do 
6 if  RTA_schedulability(
k) is True then 
7 for  j in 
k 

c do 
8 {ts,j , uj } = pso_find_control_parameters(Tj ) 
9 end  

10 if ∀j in 
k 
c : ts,j ≤ t+ 

s,j and |uj | ≤  umax then 
11 Jk =

∑
wj · ts,j 

12 Sk → Sf 

13 end 
14 end 
15 end 

/* find the best candidate solution: */ 

16 for Sk in Sf do 
17 if Jk < J∗ then 
18 S∗ = Sk 
19 end 
20 end 

/* return feasibility: */ 
21 if S∗ is not Ø then 
22 return (feasible, S∗) 
23 else 
24 return (infeasible, Ø)  
25 end 

common divisor of all the packet periods. This is in accordance with common 
practice. 

5.5.3 Solving the Network and Control Co-Design Problem 

In a typical control application, while the periods of non-control-related packets are 
inflexible, the control-related packets often have adjustable periods. This additional 
flexibility allows fine tuning of controller periods to achieve the best overall 
performance (defined as in Eq. (13)). To solve the defined problem, a controller’s 
period and its corresponding parameters under that period both have to be decided. 
These two steps are dependent on each other but can be decomposed into two 
sub-problems, i.e., the optimization process needs to (i) find the feasible periods 
that can satisfy schedulability constraints; (ii) find the controller parameters under 
the feasible periods that would satisfy control stability and minimal performance
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requirement, and on top of that, maximize the control performance as much as 
possible. 

For the first problem, due to the existence of harmonic periods and that the 
number of control tasks is often small, the search space is manageable and thus can 
be solved through exhaustive search. For larger scale problems, heuristic methods 
can be used instead to find the feasible period configurations. 

For the second problem, as pole placement for the minimum settling time 
under input constraints is a non-convex and non-linear problem, the solution space 
cannot be searched easily. We use Particle Swarm Optimization (PSO) to find 
the optimal controller parameters (by pole placement [16]) under certain sampling 
period that can minimize the settling time, while given the control performance and 
input saturation as constraints. PSO is a population-based optimization approach 
for iterative improvement of candidate solutions given a non-linear non-convex 
objective function and a metric of quality [49]. 

The optimization process is given in Algorithm 3. The solution space is first 
formulated in Line 4. The schedulability is then tested (Line 6) to obtain potential 
period configurations, and under each period configuration, the optimal poles of 
each control task can be found through PSO (Line 8). To speedup the process, the 
optimal poles under the feasible range of periods can be obtained in advance. The 
identified configuration is appended into the feasible solutions provided that the 
minimum control performance and the input constraints are both satisfied (Line 10-
13). Finally, the best candidate that has the minimum . J is selected from all the 
feasible solutions (Line 16-20). No feasible solution is found if .S∗ = Ø, in which 
case the algorithm fails to find a solution that satisfies all the constraints. 

6 Conclusion 

This chapter introduces the state-of-the-art techniques which cover three major 
directions of scheduling and analyzing autonomous systems. The presented solu-
tions range from DAG task scheduling, and reliable resource sharing, to in-
vehicle TSN networking. The goal is to provide autonomous systems with high-
performance hard real-time scheduling, reliable resource sharing, and deterministic 
networking scheduling. 

For scheduling and analyzing DAG tasks in autonomous systems, a CPC model 
is constructed to capture the two key factors of a DAG structure: dependency and 
parallelism. Then, a rule-based scheduling method is presented which maximizes 
node parallelism to improve the schedulability of single DAG tasks. 

To provide reliable resource sharing in multiprocessor mixed-criticality systems, 
this chapter describes a fault-tolerance solution for multiprocessor MCS with shared 
resources. The presented system execution model and fault-tolerance resource 
sharing protocol reduces the blocking time imposed by guaranteeing reliable 
resource sharing.
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To provide hard real-time guarantee for network, we introduced a network 
scheduling model using non-preemptive fixed-priority scheduling (FPS-NP) and 
the mapping of the schedule into the TSN gate control list. The schedulability 
of the network is discussed using non-preemptive response-time analysis with the 
consideration of multi frames and unconstrained deadlines. An optimization method 
is also proposed that could find the feasible solution with maximized overall quality 
of control constrained by network schedulability. 
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Distributed Coordination and 
Centralized Scheduling for Automobiles 
at Intersections 

Yi-Ting Lin, Chung-Wei Lin, Iris Hui-Ru Jiang, and Changliu Liu 

1 Introduction 

The fundamental goal of vehicles is to perform transportation tasks between sources 
and destinations safely and efficiently. The conflicts between vehicles occur when 
the corresponding vehicles intend to pass through a location at the same time, and 
intersections are one of the most common conflicting scenarios. Traditionally, traffic 
lights, stop signs, and priorities defined by traffic rules can be applied to resolve 
conflicts at intersections. As the technology advances, connected and autonomous 
vehicles (CAVs) provide a revolutionary solution at intersections, where: 

• Connectivity provides sufficient information between vehicles and/or roadside 
units so that a safe and efficient passing order of vehicles can be decided. 

• Autonomy provides precise control so that the decided passing order of vehicles 
can be performed. 
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In this chapter, we consider connected and autonomous vehicles at intersections and 
introduce approaches solving the problem of intersection management, also known 
as the problem of conflict resolution in a more general perspective. The approaches 
are categorized into two categories: 

• Distributed coordination, where vehicles coordinate and then decide a passing 
order of vehicles separately. 

• Centralized scheduling, where a centralized unit, called intersection manager, 
decides a passing order of vehicles and provides the instructions to vehicles. 

No matter an approach is distributed or centralized, also no matter from the 
perspective of an individual vehicle or the overall transportation system, the 
approach should provide the following properties: 

• Feasibility. The decided passing order of vehicles and the corresponding trajec-
tories, including spatial and temporal constraints, much be physically achievable 
by the vehicles. 

• Safety (collision-freeness). The deciding passing order must resolve the conflict 
for each pair of vehicles which intend to pass through a same location. Here, 
we define a conflict zone, and the safety requirement is that there is at most one 
vehicle occupying a conflict zone at the same time. 

• Liveness (deadlock-freeness). The deciding passing order must not lead to a 
deadlock, i.e., an infinite waiting between multiple vehicles. 

• Stability. The passing order must be stable along with the time line. 
• Efficiency. The passing order should try to optimize the traffic efficiency or 

minimize delays of vehicles, i.e., allow vehicles to pass through intersections 
as soon as possible. 

• Real-Time Decision. The passing order should be decided in real time without 
delaying vehicles due to waiting the decision or the corresponding instructions. 

The chapter is organized as follows. Sections 2 and 3 present our distributed coor-
dination and centralized scheduling approaches, respectively. Section 4 provides a 
summary. 

2 Distributed Coordination 

In this section, we present a distributed coordination approach for the problem of 
intersection management. The approach does not require a centralized intersection 
manager. There are three steps to implement the approach: 

1. Each vehicle broadcasts its estimated time intervals to occupy the corresponding 
conflict zones. 

2. Given the broadcast information, all vehicles reach a consensus of the passing 
order by solving a conflict graph locally.
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Fig. 1 Example environments: (a) intersection and (b) roundabout 

3. Each vehicle adjusts its speed profile according to the passing order and updates 
its estimated time intervals to occupy the corresponding conflict zones. 

We assume that the communication has no delay or packet loss. Figure 1 illustrates 
two example environments: a (real) intersection and a roundabout. A conflict zone 
is formulated when the extensions of two incoming lanes intersect with each other. 

The rest of the discussion is organized as follows: Sect. 2.1 formulates the prob-
lem. Section 2.2 introduces the distributed approach and its theoretical guarantees. 
Section 2.3 provides simulation results, and Sect. 2.4 concludes the discussion. 

2.1 Problem Formulation 

A conflict zone is formulated when the extensions of two incoming lanes intersect 
with each other. The conflict zones are denoted by .C1, C2, . . . , CL, where L is the 
total number of conflict zones. There are N vehicles, indexed from 1 to N , intend to 
pass through an intersection. The intention (the target lane after passing through the 
intersection) of vehicle i is . Gi . The state of vehicle i at time t is denoted as .xi(t). 
The system state at time step t is denoted as .x(t) := [x1(t); x2(t); . . . ; xN(t)]. 

The system objective is to ensure that the intentions of the vehicles are satisfied 
efficiently and maintain the system safety. The safety constraint requires that the 
minimum distance between any two vehicles is larger than or equal to a threshold 
.dmin, e.g., 

.X := {x | d(xi, xj ) ≥ dmin, ∀i, j, i �= j}, (1) 

where the function d measures the minimum distance between two vehicles i and j . 
In a distributed setting, each individual vehicle only has a local view and 

local information, i.e., vehicle i only considers the vehicles in its neighborhood 
. Ni . Moreover, the other vehicles’ states in the safety constraint are not directly
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accessible, so they need to be estimated. The navigation problem for vehicle i can 
be formulated as the following optimization problem: 

.min
xi

J (xi,Gi), (2a) 

.s.t. ẋi (t) ∈ �(xi(t)), (2b) 

.d(xi(t), x̂
i
j (t)) ≥ dmin, ∀j ∈ Ni , (2c) 

where J is the objective, and .x̂i
j (t) is the estimation of .xj (t) made by vehicle i. 

Equation (2b) is the feasibility constraint to ensure that there is a low level controller 
to track the trajectory, e.g., 

.�(xi) := {ẋi | ∃ui, ẋi = f (xi, ui)}, (3) 

where .ẋi = dxi/dt , . ui is the vehicle control input (wheel angle and throttle torque), 
and f describes the vehicle dynamics. It is assumed that all vehicles are equipped 
with perfect controllers that can execute the planned trajectories without any error 
if the planned trajectory is feasible. 

In current design of autonomous vehicles, . x̂i
j is estimated based on local 

sensors [1, 2]. In order to account for uncertainties in the estimation, the behaviors 
of autonomous vehicles tend to be conservative. As a result, all vehicles may decide 
to slow down to yield, which is very inefficient. The behaviors of “connected” 
and autonomous vehicles can be less conservative due to more information and 
more accurate estimation. From the system level, less conservative behaviors imply 
smaller delay and larger throughput. Before we dive deep into the distributed 
coordination solution, we first introduce several assumptions and notation. 

2.1.1 Assumption on Fixed Paths 

We assume that each vehicle follows a fixed path, and Eq. (2) only optimizes for the 
speed profile along the path. Let . x∗

i be the optimal trajectory of vehicle i that does 
not consider the collision avoidance constraint, e.g., 

.x∗
i = arg min

ẋi (t)∈�(xi (t))
J (xi,Gi). (4) 

Hence, the path of vehicle i is fixed along . x∗
i , and the vehicle only adjusts its speed 

profile to meet the collision avoidance constraint. This assumption is reasonable 
since vehicles are usually not allowed to change lanes at intersections. In the 
following discussion, let .x∗

i (s) be the distance s parameterized path for vehicle i. 
The speed profile for vehicle i is denoted as .si(t) which is a mapping from time to 
the distance along the path. Then, .x∗

i (si(t)) is the trajectory.
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We say that vehicle i passes through the conflict zone . Cl if there exists . s ∈ R
+

such that .Bi (x
∗
i (s)) ∩ Cl �= ∅, where . Bi denotes the area occupied by vehicle i at 

state .x∗
i (s). Define the segment on path . x∗

i that intersects with the conflict zone . Cl

as .Li,l := {s | Bi (x
∗
i (s)) ∩ Cl �= ∅}. Hence, .Li,l = ∅ if and only if vehicle i does 

not pass through the conflict zone . Cl . Denote the set of indices of conflict zones that 
vehicle i passes through as .Ai := {l | Li,l �= ∅}. Then, two vehicles i and j pass 
through a same conflict zone if and only if .Ai ∩ Aj �= ∅. 

2.1.2 Notations of Discrete States 

In addition to the continuous vehicle state . xi , to better describe the vehicle behaviors 
at intersections, we define a discrete state . Si for vehicle i, where 

• .Si = IL if vehicle i is on an incoming lane, and it is not the first vehicle on the 
lane. 

• .Si = FIL if vehicle i is on an incoming lane, and it is the first vehicle on the 
lane. 

• .Si = I if vehicle i is at the intersection. 
• .Si = OL if vehicle i is on an outgoing lane. 

Vehicle i may enter the control area with .Si = IL or FIL. . Si can transit from IL  
to FIL, from FIL  to I , and from I to OL, i.e., becoming the first vehicle on an 
incoming lane, entering the intersection, and leaving the intersection, respectively. 
It can leave the control area when .Si = OL. For any vehicle i such that .Si = IL or 
OL, its front vehicle is denoted . Fi . 

2.2 Distributed Coordination Approach 

The key insight here is that communication can help the ego vehicle to better 
determine the constraint in Eq. (2c). Indeed, instead of estimating others’ trajectories 
. x̂i

j , what really matters to the ego vehicle is the time that other vehicles occupy the 
conflict zones. We design the communication protocol to be that each vehicle should 
broadcast the following two types of information: 

• The estimated times to occupy the conflict zones once the vehicle enters a control 
area of the intersection, e.g., the shaded area in Fig. 1. 

• The basic information such as the vehicle ID, the current state (position, heading, 
speed, and . Si), and the time stayed in the control area. 

Based on the broadcast information, the vehicles will seek a consensus on the 
passing order and compute desired time slots to pass through the conflict zones, 
which are then taken as temporal constraints on the vehicles’ trajectories. This 
naturally breaks the problem into two parts as shown in Fig. 2a:
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Fig. 2 Architecture of the conflict resolution mechanism. (a) System block diagram. (b) Time  
flow of execution 

1. Decision making: determination of passing order and hence temporal constraints. 
2. Motion planning: computation of trajectory. 

The time flow and the coordination among different modules are shown in Fig. 2b. It 
is assumed that all vehicles are synchronized. At time step .n− 1, the estimated time 
interval .[Tin,n−1

j,l ,T
out,n−1
j,l ] for vehicle j to occupy . Cl is broadcast for all j and l. 

At time step n, vehicle i evaluates all information received from other vehicles and 
computes the desired time slots to pass through the conflict zones in the decision 
maker, i.e., .[T in,n

i,l , T
out,n
i,l ] for all l, which are then sent to the motion planner as 

temporal constraints. After motion planning, the planned trajectory is sent to the 
controller for execution and the estimated time slots to occupy the conflict zones 
given the new trajectory, i.e., .[Tin,n

i,l ,T
out,n
i,l ] for all l, are broadcast to other vehicles. 

The decomposition of decision making and motion planning can also be adopted 
in centralized intersection management, where the manager takes the responsibility
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Algorithm 1 The decision making algorithm for vehicle i for computing 
the temporal constraints [T in,n 

i,l , T  out,n 
i,l ], ∀l at time step n given information 

[T in,n−1 
j,l , T out,n−1 

j,l ],∀j, l 
Initialize, n = 0 
while Si ∈ {IL,  FIL,  I } do 

Receive other’s information T in,n−1 
j,l , T out,n−1 

j,l 
Initialize Yi = ∅, T in,n 

i,l = −∞, T out,n 
i,l = ∞  

if Si = IL  then 
i yields its front vehicle (Yi = {Fi}) 

end if 
for j that has spatial conflicts with i (j ∈ Ui ) do 

if j has a temporal advantage over i (j ∈ Vi ) then 
if �Tie(i, j) or j has priority over i then 

i yields j (Yi = Yi ∪ {j}) 
end if 

end if 
if i has a temporal advantage over j (i ∈ Vj ) then 

if ∃Tie(j, i) and j has priority over i then 
i yields j (Yi = Yi ∪ {j}) 

end if 
end if 

end for 
for j that i yields (j ∈ Yi ) do 

for Cl that both i and j traverse (l ∈ Ai ∩ Aj ) do 
T in,n 

i,l = max{T in,n 
i,l , T out,n−1 

j,l + �Si
} 

end for 
end for 
n = n + 1 

end while 

of decision making, and the vehicles takes the responsibility of motion planning [3]. 
We discuss the decision making in Sect. 2.2.1 and the motion planning in Sect. 2.2.2. 

2.2.1 Decision Making 

At time step n, vehicle i needs to compute the desired time interval .[T in,n
i,l , T

out,n
i,l ] to 

pass through the conflict zones given the broadcast information . [Tin,n−1
j,l ,T

out,n−1
j,l ]

for all j and l. The basic strategy is that whoever arrives first in a conflict zone 
goes first.1 However, this strategy may create deadlocks when one vehicle arrives 
earlier in one conflict zone, while the other vehicle arrives earlier in another conflict 
zone. As a result, a tie breaking mechanism is needed. Here, we first discuss a

1 Note that this is different from the strategies discussed in [4], which only considers the arrival 
time at the intersection. 
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general methodology to deal with distributed coordination with multiple conflict 
zones, which is summarized in Algorithm 1. 

If .Si = IL, it is physically “constrained” by its front vehicle and should yield 
all vehicles that its front vehicle yields. The decisions when .Si = FIL or I are 
the most important as conflicts usually come among vehicles in these two states. 
When .Si = OL, the vehicle no longer needs to compute the desired time interval. 
However, its information should be broadcast in order for the proceeding vehicles 
to follow the lane safely. In the following discussion, we focus on vehicle i with 
.Si = FIL or I . 

2.2.1.1 Spatial Conflict 

We say that there is a spacial conflict between vehicles i and j if and only if their 
paths pass through a same conflict zone. Consider the scenario shown in Fig. 3a, 
where nine vehicles locate in a six-way intersection. The shaded area denotes the 
six conflict zones. By adding edges between any pair of vehicles that have spatial 
conflicts, we formulate an undirected graph as shown in Fig. 3b, where every vertex 
represents one vehicle. Whenever there is an edge between two vehicles, we need 
to decide which vehicle goes first. In other words, the undirected graph needs to be 
transformed into a directed graph as shown in Fig. 3d such that the passing order 
is decided by the topological order. Denote the set of vehicles that have spacial 
conflicts with vehicle i as 

.Ui := {j | Sj = FIL or I,Ai ∩ Aj �= ∅}. (5) 

Recall that . Ai denotes the set of indices of conflict zones that vehicle i passes 
through. Hence, .Ai ∩ Aj �= ∅ means that vehicle j passes through one or more 
conflict zones that vehicle i also needs to pass through. The graph in Fig. 3b is  
denoted as .U := ∪i ∪j∈Ui

(i, j), where .(i, j) represents an edge between i and j . 
There is an undirected edge between any i and j such that .j ∈ Ui . In literature, 
this graph is identified as a conflict graph [5]. Finding the optimal passing order 
regarding the conflict graph is NP-hard. The approach presented here is a heuristic 
approach which finds one feasible passing order in linear time. 

2.2.1.2 Temporal Advantage 

At time step n, we say that vehicle .i ∈ Uj has a temporal advantage over vehicle j , 
if one of the following conditions holds: 

• .Si = I,Sj = FIL and vehicle j leaves some conflict zones later than vehicle i 
enters, i.e., 

.∃l ∈ Ai ∩ Aj ,T
out,n−1
j,l > T

in,n−1
i,l . (6)
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Fig. 3 The conflict graphs. (a) The scenario: nine vehicles in a six-way intersection. (b) Graph of 
spacial conflicts . U at one time step. Edge .(i, j) ∈ U implies that vehicle j has spacial conflicts 
with vehicle i at some conflict zone. (c) Graph of temporal advantages . V at one time step. Edge 
.(i, j) ∈ V implies that vehicle i has temporal advantages over vehicle j . (d) Graph of passing 
order . Y at one time step. Edge .(i, j) ∈ Y implies that vehicle j yields vehicle i. (e) Convergence 
of the graph . Y through time. The passing order converges at time 0 for leaf vertices in . R0, then for 
vertices with depth 1 in . R1 at time 1, and so on 

• .Si = FIL,Sj = I and vehicle i leaves all conflict zones earlier than vehicle j 
enters, i.e., 

.∀l ∈ Ai ∩ Aj ,T
out,n−1
i,l ≤ T

in,n−1
j,l . (7) 

• .Si = Sj = FIL or I and vehicle i enters some conflict zones earlier than vehicle 
j , i.e., 

.∃l ∈ Ai ∩ Aj ,T
in,n−1
i,l ≤ T

in,n−1
j,l . (8) 

According to the above definitions, for vehicles i and j with different discrete 
states, either i or j should have a temporal advantage over the other. If vehicles
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i and j have the same discrete state, it is possible that both i and j have temporal 
advantages over the other. Denote the set of vehicles that have temporal advantages 
over vehicle j at time step n as . Vn

j . The superscript n in the following discussion 
is ignored for simplicity. It is obvious that .Vj ⊂ Uj ; and .V := ∪j ∪i∈Vj

(i, j) is a 
directed graph as shown in Fig. 3c, where there is a directed edge from any . i ∈ Vj

to any j . However, there are cycles among vertices with the same discrete state, e.g., 
between vertices 6 and 7, as well as among vertices with different discrete states, 
e.g., among vertices 6, 7, and 3. If vehicles yield each other according to the graph, 
there are deadlocks. We will introduce a tie breaking mechanism to avoid these 
deadlocks. 

2.2.1.3 Tie Breaking 

For any vehicle i and vehicle .j ∈ Vi , it is called a tie if: 

• .Si = Sj and there exists a sequence of vehicles .{qm}M1 with .q1 = i, .qM = j , 
.M ≥ 2 and .Sqm = Si for all m such that .qm ∈ Vqm+1 for .m = 1, 2, . . . ,M − 1. 

• .Si = I , .Sj = FIL and there exists a sequence of vehicles .{qm}M1 with .q1 = i, 
.qM = j and .M ≥ 2 such that .qm ∈ Vqm+1 for .m = 1, 2, . . . ,M − 1. 

Let .Tie(i, j) denote all these sequences. The relationship in a tie is neither 
symmetric nor exclusive, i.e., .∃Tie(i, j) neither implies .∃Tie(j, i) nor .�Tie(j, i). 
For example, in Fig. 3c, there is a tie from vertex 5 to vertex 6 via the sequence 
.{5, 7, 6}, but there is not a tie from vertex 6 to vertex 5 since .5 /∈ V6. There is a tie 
from vertex 2 to vertex 3 via the sequence .{2, 3} and a tie from vertex 3 to vertex 2 
via the sequence .{3, 2}. 

We assume that each vehicle has a unique priority score P . For example, the 
priority score of a fire truck is higher than that of a passenger vehicle. We say that 
vehicle i has priority over vehicle j if there exists a sequence in .Tie(i, j) such that 
.P(i) > P (k) for all .k �= i in the sequence. The basic principles are: (1) vehicles 
already in the intersection should always have priority over vehicles on the incoming 
lanes; (2) for vehicles in the same discrete state, the order implied by the priority 
score should not change over time. If vehicle i has priority over vehicle .j ∈ Vi , 
instead of i yielding j , vehicle j should yield vehicle i, although vehicle j has a 
temporal advantage. For example, in Fig. 3, we identify the score P with the vehicle 
index. Since vertex 5 has priority in the sequence .{5, 7, 6}, the edge from 5 to 6 is 
reversed in Fig. 3d. Since there is a tie between vertex 2 and vertex 6, the edge from 
2 to 6 is also reversed in Fig. 3d. 

2.2.1.4 Passing Sequence 

After tie breaking, all those remaining edges for vehicle j represent the set of 
vehicles that vehicle j decides to yield at time step n, which is denoted by . Yn

j . 
The superscript n in the following discussion is ignored for simplicity. Indeed,
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.Y := ∪j ∪i∈Yj
(i, j) is a directed graph as shown in Fig. 3d, which encodes the 

order for the vehicles to pass through the intersection. Note that it is not necessary 
for vehicle i to construct the whole graphs . U and . V to determine . Yi . For example, 
vehicle 4 in Fig. 3 only needs to compute . U4 and . V4 locally to determine that 
.Y4 = ∅. Those local decisions form the passing sequence globally. In the extreme 
case, the passing order follows the order specified by the priority scores. If all 
vehicles agree on the above tie breaking mechanism, they can solve the conflicts 
even if the vehicles plan and control their motions differently. 

According to Algorithm 1, if .Sj = IL, the vehicle j yields its front vehicle, i.e., 
.Yj = {Fj }, as shown by vehicle 9 in Fig. 3d. If vehicle j decides to yield vehicle i, 
then for all .l ∈ Ai ∩ Aj , we set  

.T
in,n
j,l ≥ T

out,n−1
i,l + �Sj

, (9) 

where .�Sj
is a margin to increase the robustness of the algorithm, which is chosen 

such that .�IL > �FIL > �I . .�IL is chosen to be larger than .�FIL to ensure 
the leading vehicles have temporal advantages over vehicles on the middle of other 
lanes. For example, vehicle 7 has a temporal advantage over vehicle 9 in Fig. 3d. 
Similarly, .�FIL is chosen to be larger than . �I . 

2.2.2 Motion Planning under Temporal Constraints 

At time step n, given the temporal constraint .[T in,n
i,l , T

out,n
i,l ] specified by the 

decision maker, the problem in Eq. (2) for vehicle i can be rewritten as: 

.min
si

J (x∗
i (si),Gi) (10a) 

.s.t.
∂x∗

i (si )

∂si
ṡi ∈ �(x∗

i (si)), (10b) 

. si(t) /∈ Li,l , ∀t /∈ [T in,n
i,l , T

out,n
i,l ], ∀l, (10c) 

where .si(t) is the speed profile that needs to be optimized. Equation (10c) specifies 
that the vehicle should only enter the conflict zone . Cl in the time interval 
.[T in,n

i,l , T
out,n
i,l ]. For simplicity, the constraint for vehicle following is omitted in 

presentation (but included in problem solution). 
A method to efficiently solve the problem in Eq. (10) via temporal optimization 

is discussed in [6]. Here, we assume that vehicles can take unbounded deceleration, 
which is reasonable when vehicle speeds are low. Considering .T out,n

i,l = ∞ by 
Algorithm 1, there is always a solution of problem in Eq. (10). In the worst case, 
vehicle i just stops immediately. In practice, the vehicles do not necessarily need 
to take unbounded deceleration as this will be demonstrated in Sect. 2.3, since 
the conflicts are resolved before they enter the intersection. The feasibility of the 
problem in Eq. (10) under bounded deceleration is left as future work.
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Given the optimal solution . s∗
i of the problem in Eq. (10), the expected time slot 

.[Tin,n
i,l ,T

out,n
i,l ] for vehicle i to occupy the conflict zone . Cl is computed as: 

.T
in,n
i,l := min

s∗
i (t)∈Li,l

t ≥ T
in,n
i,l , T

out,n
i,l := max

s∗
i (t)∈Li,l

t ≤ T
out,n
i,l (11) 

If .Li,l = ∅, then .T
in,n
i,l := ∞ and .T

out,n
i,l := −∞. If vehicle i has entered or left . Cl , 

then .T
in,n
i,l and .T

out,n
i,l are chosen as the time that it entered or left . Cl , respectively. 

2.2.3 Theoretical Guarantees 

Here, we introduce the theoretical results to show that the proposed strategy solves 
the conflicts safely and efficiently in real time. The physical feasibility of the 
trajectories is verified in the motion planning part. Proposition 1 ensures that 
the passing order is completely determined. Proposition 2 states that there is no 
deadlock for any pair of vehicles that pass through a same conflict zone at every 
time step. Proposition 3 shows that a stable consensus on conflict-resolution can be 
reached in finite time steps. The proofs can be found in [7]. 

Proposition 1 (Completeness) For any j that has spacial conflicts with i, at least 
one statement is true: “i yields j” or “j yields i”. In other words, .j ∈ Ui implies 
.j ∈ Yi or .i ∈ Yj . 

Proposition 2 (Deadlock-Freeness) There is no cycle in the directed graph . Y of 
passing order. 

Proposition 3 (Finite Time Convergence) If . Si and . Ui remain the same for all i 
for more than N time steps, then . Yn

i and .[Tin,n
i,l ,T

out,n
i,l ] converge in at most N steps 

to . Y∗
i and .[Tin∗

i,l ,Tout∗
i,l ] such that 

.T
in∗
i,l ≥ T

out∗
j,l + �Si

, ∀l, ∀j ∈ Y∗
i (12) 

Proposition 3 implies that if the sampling time is short enough compared with 
the time needed between two transitions of . Si’s, the system can still reach consensus 
when . Si’s are changing. Nonetheless, after a transition of some . Si , the system needs 
several steps to settle down. The consistency of the passing orders . Yn considering 
those transitions is more intricate to prove, which is left as future work. Indeed, the 
consistency is demonstrated in simulation. 

2.3 Simulation Results 

In this section, we illustrate the performance of the proposed distributed conflict 
resolution mechanism through extensive traffic simulations. The sampling time in
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the system is chosen to be .dt = 0.1 s. The robustness margins are chosen as . �IL =
0.5 s, .�FIL = 0.3 s and .�I = 0.1 s. The priority score P for a vehicle is chosen to 
be the time that the vehicle stays in the control area. If there is a tie, then the vehicle 
with smaller ID has the priority. The cost function of the vehicle penalizes (1) the 
deviation from a target speed, (2) the magnitude of acceleration or deceleration, (3) 
the magnitude of jerk, and 4) the time spent in every conflict zone. The target speed 
varies for different vehicles. 

The simulation environment is a narrow four-way intersection as shown in 
Fig. 1a. There is only one incoming lane and one outgoing lane in every direction. 
Four conflict zones are identified. The control area is the whole graph. For any 
.i �= j , there is a path from lane i to lane . −j , so there are 12 different paths. Right 
turn paths only go through one conflict zone. Straight paths go through two conflict 
zones. Left turn paths go through all four conflict zones (a vehicle is treated as a 2D 
object instead of a point). In the following discussion, a microscopic case study is 
presented first followed by the result of macroscopic traffic simulation. 

2.3.1 Microscopic Case Study 

In the case study, there are four vehicles. The conditions of the vehicles (target 
speed, current lane, target lane, and time to enter the control area) are shown in 
Table 1. The paths and the executed trajectories are shown in the time-augmented 
space in Fig. 4a. The planned speed profiles in different time steps are shown in 
Fig. 4b. The left most speed profile in every subplot is the traffic-free speed profile 
and the others are the replanned speed profiles given the temporal constraints. 
Figure 5 shows the expected time intervals (the colored thick bars) for the vehicles 
to occupy the conflict zones. The thin vertical line indicates the current time. 

In this case, vehicles 1, 2 and 3 enter the control area at the same time. According 
to the traffic-free speed profiles, there are temporal conflicts between vehicle 1 and 
vehicle 3 in conflict zones 1 and 2, and between vehicle 2 and vehicle 3 in all conflict 
zones. Since vehicle 2 has a temporal advantage over vehicle 3, vehicle 3 yields 
vehicle 2. Similarly, vehicle 1 yields vehicle 3. It takes two time steps to resolve the 
conflicts. 

At 0.6 s, vehicle 4 enters, which creates new conflicts. The system settles down 
after 3 time steps as shown in Fig. 5, which verifies Proposition 3. The planned 

Table 1 Conditions in the case study 

Vehicle ID Target speed (m/s) From To Enter time (s) 

1 10 Lane 1 Lane .−3 0.2 

2 12.5 Lane 2 Lane .−1 0.2 

3 10.75 Lane 3 Lane .−2 0.2 

4 17.75 Lane 4 Lane .−2 0.6
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Fig. 4 Speed profiles and trajectories in the case study. (a) Executed trajectories in the time-
augmented space. (b) Planned speed profiles in different time steps
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Fig. 5 Conflict resolution in the case study. The scenario in .0.5s is omitted since it is the same as 
the scenario in .0.4s
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speed profiles change accordingly as shown in Fig. 4b. The right most speed profile 
in each subplot is the executed speed profile. 

2.3.2 Macroscopic Traffic Simulation 

2.3.2.1 Traffic 

In the macroscopic traffic simulation, the traffic is generated at every incoming lane 
by a Poisson distribution where the density . λ is chosen to be . 0.5, .0.25 and . 0.1, 
which implies that on average, vehicles arrive every 2, 4, and 10 s. Two groups of 
traffic are generated: 

• Group 1 (G1): .50% of vehicles go straight, .25% turn right and .25% turn left. 
• Group 2 (G2): all vehicles go straight. 

The second group is introduced to create a relatively fair comparison among 
performances under distributed strategies and performances under traffic lights. 
Since we don’t have left turn lane or left turn light, when a vehicle wants to turn left, 
it will block all the vehicles behind, thus significantly increase the delay time. The 
desired longitudinal speed . vr

i of the vehicle i follows from a uniform distribution 
from . 7.5 to 15m/s. 

2.3.2.2 Comparison 

The proposed mechanism is compared against other mechanisms as listed below. 

• Case 1 (3D): 3D intersection such as overpass without connectivity. In this case, 
there is no conflict among vehicles at the intersection. Since the delay is only 
caused by car following, the simulation result provides a lower bound for the 
delay time and an upper bound for the throughput. 

• Case 2 (NC): unmanaged 2D intersection without connectivity. Vehicles are able 
to see vehicles from other directions when approaching the intersection. Then 
vehicles’ strategy is: if there is no other vehicles from other directions or other 
vehicles are too far from the intersection (i.e., there is no temporal conflict even if 
the other vehicle accelerates with maximum acceleration), cross the intersection 
without stop; if there are other vehicles from other directions that are close to the 
intersection, stop and “first stop first go”. The delay time in this case is upper 
bounded by the delay time in the case of a four-way-stop intersection. 

• Case 3 (TL-5): 2D intersection with traffic light that changes every 5 s without 
connectivity. For example, the traffic light for the horizontal direction (lane 1 and 
lane 3) is green from 0 to 5 s and red from 5 to 10 s while the traffic light for the 
vertical direction (lane 2 and lane 4) is red from 0 to 5 s and green from 5 to 10 s. 

• Case 4 (TL-10): 2D intersection with traffic light that changes every 10 s without 
connectivity.
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• Case 5 (MP-IP): 2D intersection with the maximum progression intersection 
protocol (MP-IP) [4]. Vehicles broadcast their intentions and estimated time slots 
to occupy the conflict zones. Conflicting vehicles can make concurrent progress 
inside the intersection, though low priority vehicles need to yield high priority 
vehicles, i.e., entering the conflict zones after the high priority vehicles leave. In 
the simulation, the priority is determined by the priority score P . 

• Case 6 (AMP-IP): 2D intersection with the advanced maximum progression 
intersection protocol (AMP-IP) [4]. In addition to MP-IP, the lower priority 
vehicles are allowed to cross and clear the conflict zone before the earliest 
possible arrival of the higher-priority vehicle to that conflict zone. 

In Cases 1 to 4, there is no communication among vehicles and the vehicles are 
equipped with adaptive cruise control for car following. In Cases 5 and 6, vehicles 
communicate with one another. The two protocols only determine the passing order, 
not the vehicle trajectories. In the simulation, the vehicles under the two cases adopt 
the motion planning algorithm discussed in the previous section. The temporal 
constraints are determined by Eq. (9) according to the passing order. To create a 
fair comparison, the adaptive cruise control algorithm is integrated into the motion 
planning algorithm. At each time step, the output of the adaptive cruise control 
module will be treated as an upper bound on vehicle’s acceleration, which is added 
to the optimization Eq. (10). In the following discussion, we analyze: (1) the average 
delay time and (2) the throughput in certain time horizon. 

2.3.2.3 Average Delay 

The delay time of a vehicle is computed as the difference between the actual time 
and the traffic-free time for the vehicle to travel cross the control area as shown in 
Fig. 4b. The average delay (mean . ± standard deviation) of all vehicles traveled in 
the control area in 10min under different mechanisms are shown in Table 2. The  
proposed strategy always outperforms other mechanisms except for the case with 
3D intersection which provides a theatrical lower bound of this problem. When 
the traffic density is low, the performances of Case 2 (without communication) and 
Cases 5 and 6 (with communication) are similar to the performance of the proposed 
method, which outperforms the cases with traffic lights. When the traffic density 
goes up, the performance of Case 2 gets worse dramatically as it almost functions 
as a stop sign mechanism. The proposed method still outperforms the cases with 
traffic lights (Cases 3 and 4) since it is more flexible. For example, in the proposed 
mechanism, four simultaneous right turns are allowed, while in the traffic light case, 
at most two simultaneous right turns can be tolerated. 

The proposed method always outperforms Cases 5 and 6. Though more par-
allelism inside the intersection area (i.e., allowing more vehicles to cross the 
intersection at the same time) has been introduced in these two cased compared 
to Case 2, the rigidity of the priority queue (which does not adjust in real time) 
limits their performances. For example, consider the case study in Sect. 2.3.1. Since
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Table 2 The delay time for traffic in 10min 

.λ Case 1: 3D Case 2: NC Case 3: TL-5 Case 4: TL-10 

G1 .0.5 .0.5 ± 0.8 s .135.6 ± 78.6 s .53.2 ± 30.6 s .57.8 ± 34.4 s 

.0.25 .0.2 ± 0.4 s .2.9 ± 2.8 s .3.2 ± 2.6 s .5.2 ± 3.8 s 

.0.1 .0.1 ± 0.2 s .0.4 ± 0.7 s .2.1 ± 2.0 s .3.8 ± 3.9 s 

G2 .0.5 .0.5 ± 0.8 s .134.8 ± 81.0 s .22.0 ± 14.1 s .29.3 ± 17.6 s 

.0.25 .0.2 ± 0.6 s .9.2 ± 9.3 s .2.8 ± 2.3 s .4.4 ± 3.9 s 

.0.1 .0.1 ± 0.4 s .0.5 ± 0.7 s .1.9 ± 1.8 s .3.9 ± 3.9 s 

.λ Case 5: MP-IP Case 6: AMP-IP Proposed 

G1 .0.5 .31.2 ± 19.7 s .20.5 ± 13.2 s .11.4 ± 7.0 s 

.0.25 .1.9 ± 1.7 s .1.2 ± 1.2 s .0.5 ± 0.7 s 

.0.1 .0.4 ± 0.6 s .0.3 ± 0.6 s .0.2 ± 0.3 s 

.0.5 .8.8 ± 6.4 s .6.3 ± 4.7 s .4.3 ± 3.3 s 

G2 .0.25 .2.5 ± 2.9 s .2.2 ± 2.9 s .2.1 ± 2.7 s 

.0.1 .0.3 ± 0.5 s .0.3 ± 0.5 s .0.3 ± 0.5 s 

vehicle 4 arrives later than others, it has to wait for others according to MP-IP in 
Case 5. Even with AMP-IP in Case 6, vehicle 4 wouldn’t be able to cut in front of 
vehicle 2, since it does not leave conflict zone 1 before vehicle 2 enters. Hence high-
speed vehicles in Cases 5 and 6 experience larger delay compared to those in the 
proposed method, where they can cut into the queue only causing other vehicles to 
slow down slightly. Moreover, the average delay goes up from . 8.8 to .52.4 s in Case  
5 with “straight only” traffic .λ = 0.5 if the motion planning algorithm is replaced 
with only adaptive cruise control (ACC). Since the travel time in the intersection 
is not penalized in ACC, vehicles tend to stop right before the intersection and 
consequently take longer time to traverse the intersection (as their acceleration is 
bounded) than they do when they optimize their speed profiles to slow down before 
approaching the intersection and then speed up to pass the intersection at full speed. 
Hence the efficiency of the proposed algorithm benefits from both the decision 
making module (determination of efficient passing order) and the motion planning 
module (temporal optimization) as well as their integration. 

2.3.2.4 Throughput 

The throughput is computed as the number of vehicles that cross the control area in 
a given time slot. The throughput in 10min in all scenarios are shown in Table 3. 
When the traffic density is high, Case 2 reduces to the case with stop signs. Hence 
the throughput is roughly upper bounded by .10 · 60/δ where . δ is the average time 
in seconds that is required for a single vehicle to cross the intersection. In the
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Table 3 The traffic throughput (# of vehicles) in 10min 

.λ Case 1: 3D Case 2: NC Case 3: TL-5 Case 4: TL-10 

G1 .0.5 1170 660 984 965 

.0.25 590 589 589 587 

.0.1 230 230 230 228 

G2 .0.5 1206 641 1121 1091 

.0.25 599 597 595 589 

.0.1 245 245 245 . 245

.λ Case 5: MP-IP Case 6: AMP-IP Proposed 

G1 .0.5 1023 1099 1139 

.0.25 590 590 590 

.0.1 230 230 230 

G2 .0.5 1166 1186 1199 

.0.25 599 599 599 

.0.1 245 245 245

simulation, .δ ≈ 1. Hence the throughput in Case 2 is around 600 when .λ = 0.5, 
which is much smaller than that in other cases. However, in the proposed method, 
the throughput almost doubles, which is higher than those in Cases 3 to 6 with traffic 
light or existing V2V intersection protocols, and is very close to that in Case 1 where 
the intersection is 3D, thus verifies the effectiveness of the proposed method. 

2.4 Conclusion 

This section discuss a communication-enabled distributed coordination strategy 
for connected and autonomous vehicles to navigate at intersections. Based on 
the received information, a vehicle computes a set of vehicles that it needs to 
yield and the desired time slots to pass the conflict zones in a decision maker. 
Then, it computes a desired speed profile according to the desired time slots in a 
motion planner and broadcasts the estimated times to occupy the conflict zones. 
The aggregation of these local decisions forms a global solution to a multi-vehicle 
navigation problem. In the simulation, it is shown that the proposed mechanism has 
smaller average delay and larger throughput than the comparative cases. 

Although the fixed-path assumption and the discrete partitioning of the conflict 
zone simplifies our problem, they may potentially exclude some feasible conflict 
resolution strategy that can be achieved by adjusting the vehicle paths. These non-
fixed-path strategies are studied in [8, 9]. A thorough analysis and comparison 
among all these strategies will be left for future work.
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3 Centralized Scheduling 

In this section, we present a centralized scheduling approach for the problem of 
intersection management. As shown in Fig. 6, a centralized unit installed in the 
roadside unit, called intersection manager, decides the passing order of the vehicles 
periodically. For each period, the intersection manager receives the information 
from vehicles within its communication range. Based on the received information, 
the intersection manager computes a time window to each vehicle at each conflict 
zone on the trajectory of the vehicle. After that, the intersection manager broadcasts 
these results and prepares for the next period. 

The rest of the discussion is organized as follows: Sect. 3.1 presents our 
timing conflict graph model and problem formulation. Section 3.2 demonstrates 
our resource conflict model and verification approach. Section 3.3 describes our 
scheduling algorithm based on cycle removal. Section 3.4 discusses lane merging, a 
special case of intersection management. Section 3.5 provides experimental results, 
and Sect. 3.6 concludes the discussion. 

3.1 Problem Formulation 

In this section, we introduce our graph-based model and formulate the centralized 
intersection management problem. The notation is summarized in Table 4. 

Conflict Zone Same as the definition in Sect. 2, a conflict zone is the crossing 
location of two trajectories, and two vehicles cannot be at (occupy) the same 
conflict zone at the same time. There are n conflict zones, .�1, �2, . . . , �n, in  
the intersection. This model allows us to consider different granularities of an 
intersection, as shown in Fig. 7. 

Vehicle Each vehicle has a fixed route—it fixes its source lane, destination lane, 
and trajectory, and it does not change lanes before and after the intersection. Two 

Fig. 6 A centralized unit 
installed in the roadside unit, 
called intersection manager, 
decides the passing order of 
the vehicles
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Table 4 The notation Index i, i′ The index of a vehicle 

j, j ′, j ′′ The index of a conflict zone 

(i, j) The index of a vertex 

k The index of an edge 

Given (Input) G A timing conflict graph 

m The number of vehicles 

n The number of conflict zones

�i The i-th vehicle

�j The j -th conflict zone 

vi,j The (i, j)-th vertex 

ek The k-th edge 

ai The earliest arrival time of �i 
pi,j The vertex passing time of vi,j 
wk The edge waiting time of ek 

Output G′ An acyclic timing conflict graph 

si,j The vertex entering time of vi,j 

Conflict Zone 

Fig. 7 The model allows us to consider different granularities of an intersection. The intersection 
can be modeled by 1, 4, 16, and 24 conflict zone(s), and much more alternatives are possible 

vehicles have a potential conflict at zone . �j if and only if . �j is on the both 
trajectories. 

Timing Conflict Graph A directed timing conflict graph .G = (V ,E) is constructed 
by the following rules: 

• There is a vertex .vi,j if and only if . �j is on the trajectory of . �i . 
• There is a Type-1 edge .(vi,j , vi,j ′) if and only if the next conflict zone of . �j on 

the trajectory of . �i is . �j ′ . 
• There is a Type-2 edge .(vi,j , vi′,j ) if and only if . �i and . �i′ , on the same source 

lane and with the order where . �i is in front of . �i′ , have a conflict at . �j . 
• There are two Type-3 edges .(vi,j , vi′,j ) and .(vi′,j , vi,j ) if and only if . �i and . �i′ , 

on different source lanes, have a conflict at . �j .
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Fig. 8 (a) An example  and (b) its timing conflict graph 

Note that the vertex set is a subset of the Cartesian product of the sets of vehicles 
and conflict zones. An example and its timing conflict graph are shown in Fig. 8a, 
b, respectively. 

Earliest Arrival Time Each vehicle . �i is associated with . ai , the earliest arrival time 
for . �i to arrive at the first conflict zone on its trajectory, without being delayed by 
any other vehicle (i.e., no vehicle is in front of . �i before the intersection). It can be 
either computed or provided by . �i or computed by the intersection manager. 

Edge Waiting Time Each edge .ek = (vi,j , vi′,j ′) is associated with . wk , the waiting 
time “length” from . �i leaving . �j to .�i′ entering . �j ′ , without being delayed by 
any other vehicle. For a Type-1 edge . ek (where .i = i′), . wk is the time from . �i

leaving . �j to . �i entering . �j ′ ; for a Type-2 or Type-3 edge . ek (where .j = j ′), . wk

is the time from . �i leaving . �j to . �i′ entering . �j . In practice, the waiting time of a 
Type-2 edge . ek is smaller than that of a Type-3 edge . ek′ as vehicles from the same 
source lane can perform better in vehicle-following. 

Vertex Passing Time Edge vertex .vi,j is associated with . pi,j , the time “length” for 
. �i from entering . �j to leaving . �j . 

Vertex Entering Time Each vertex .vi,j is associated with . si,j , the time for . �i to 
enter . �j , which implies that the earliest time for . �i to leave . �j is .si,j + pi,j . 
If a timing conflict graph . G′ is acyclic, the vertex entering time of each vertex is 
assigned as follows:2 

• As the graph is acyclic, the assignment can follow a topological order. If there 
are multiple options, a Type-1 edge has a higher priority than a Type-2 or Type-3 
edge. 

• If .vi,j is the first conflict zone on the trajectory of . �i ,

2 As there is dependency between vehicles, the vertex entering time of each vertex cannot be given 
as an input. 
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.

si,j = max

{
ai, max

k|ek=(vi′,j ′ ,vi,j )∈G′
{
si′,j ′ + pi′,j ′ + wk

}
,

max
k′|ek=(vi′,j ′ ,vi,j )∈G′,ek′=(vi′,j ′ ,vi′,j ′′ )∈G′,ek �=ek′

{
si′,j ′′ − wk′ + wk

}} (13) 

Note that .j = j ′ is always true in this case. The last maximum term is to make 
sure that . �i′ leaves . �j ′ for .�j ′′ so that . �i can enter . �j . For easier understanding, 
we can also set the intersection-entering point of each source lane as a conflict 
zone so that it is the first conflict zone of the trajectory of each vehicle from the 
source lane. 

• Otherwise, 

.

si,j = max

{
max

k|ek=(vi′,j ′ ,vi,j )∈G′
{
si′,j ′ + pi′,j ′ + wk

}
,

max
k′|ek=(vi′,j ′ ,vi,j )∈G′,ek′=(vi′,j ′ ,vi′,j ′′ )∈G′,ek �=ek′

{
si′,j ′′ − wk′ + wk

}} (14) 

Note that either .i = i′ or .j = j ′ is always true in this case. If .i = i′, the  last  
maximum term is not needed. 

Problem Formulation Given a conflict graph G, the earliest arrival time . ai of each 
vehicle . �i , the edge waiting time . wk of each edge . ek , and the vertex passing time 
.pi,j of each vertex . vi,j , the problem is to 

1. Compute an acyclic subgraph . G′ of G, where 

• For each vertex . vi in G, . vi is also in . G′, 
• For each Type-1 edge . ek in G, . ek is also in . G′, 
• For each Type-2 edge . ek in G, . ek is also in . G′,3 and 
• For each pair of vertices . vi,j and .vi′,j in G, there exists a path either from . vi,j

to .vi′,j or from .vi′,j to .vi,j in . G′, 

2. Guarantee no deadlock, 
3. Assign the vertex entering time . si,j of each vertex .vi,j (as the paragraph above), 

and 
4. Minimize 

.max
vi,j

(
si,j + pi,j

)
, (15) 

which is the total time needed for all vehicles to go through the intersection.

3 We do not consider overtaking in this section; otherwise, we can relax the constraint to potentially 
change Type-2 edges. 
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Fig. 9 (a)–(c) Examples with deadlocks and (d)–(e) examples without deadlocks 

The item 1 is the safety (collision-freeness) property to guarantee an order for 
vehicles having a conflict. The item 3 follows the order to schedule vehicles, and 
the item 4 is the objective function. The item 2 is the liveness (deadlock-freeness) 
property. To this point, we have not detailed how to guarantee no deadlock—it will 
be demonstrated in the following section. 

3.2 Deadlock-Freeness Verification 

In this section, we will demonstrate a graph-based verification approach which can 
guarantee deadlock-freeness. A tailored Petri net [10] can also verify the deadlock-
freeness. The verification can serve as a routine for the scheduling in Sect. 3.3 to 
verify deadlock-freeness for . G′. 

Having no cycle in . G′ or G does not guarantee deadlock-freeness.4 Some 
examples are shown in Fig. 9.5 All of them have no cycle in . G′, but Fig. 9a–c have 
deadlocks, and Fig. 9d–e are deadlock-free. In Fig. 9a, . �1 needs to enter . �2 after 
. �2. However, . �2 even cannot enter . �1(also, . �2) because it is waiting . �1 to leave 
. �1. That causes a deadlock. Similarly, there are deadlocks in Fig. 9b, c. On the 
contrary, in Fig. 9d, there is no deadlock as . �1 enters both . �1 and . �2 before . �2. In  
Fig. 9e, even if . �2 enters . �1 first, . �2 can enter . �2 after that so that . �1 is able to 
enter . �1 (after . �2) and . �3 (before . �2) without a deadlock.

4 This is the reason that we need the item 2 in the problem formulation. 
5 To demonstrate the examples concisely, the examples in Fig. 9 are not associated with any 
intersection modeling in Fig. 7. 
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Fig. 10 The construction rules of resource conflict graphs 

As illustrated above, having no cycle in . G′ cannot verify that there is no deadlock. 
Therefore, we introduce resource conflict graphs as follows: 

Resource Conflict Graph The directed resource conflict graph . H ′ of . G′ is con-
structed by the following rules: 

• There is a vertex .ui,j,j ′ if and only if there is a Type-1 edge .(vi,j , vi,j ′) in . G′. 
• If there are edges .(vi,j , vi,j ′) and .(vi,j ′ , vi,j ′′) in . G′, then there is an edge 

.(ui,j,j ′ , ui,j ′,j ′′) in . H ′ (illustrated in Fig. 10a). 
• If there are edges .(vi,j , vi′,j ), .(vi,j , vi,j ′), and .(vi′,j , vi′,j ′′) in . G′, then there is an 

edge .(ui,j,j ′ , ui′,j,j ′′) in . H ′ (illustrated in Fig. 10b). 
• If there are edges .(vi,j , vi′,j ), .(vi,j ′ , vi,j ), and .(vi′,j ′′ , vi′,j ) in . G′, then there is an 

edge .(ui,j ′,j , ui′,j ′′,j ) in . H ′ (illustrated in Fig. 10c). 
• If there are edges .(vi,j , vi′,j ), .(vi,j , vi,j ′), and .(vi′,j ′′ , vi′,j ) in . G′, then there is an 

edge .(ui,j,j ′ , ui′,j ′′,j ) in . H ′ (illustrated in Fig. 10d). 
• If there are edges .(vi,j , vi′,j ), .(vi,j ′ , vi,j ), and .(vi′,j , vi′,j ′′) in . G′, then there is an 

edge .(ui,j ′,j , ui′,j,j ′′) in . H ′ (illustrated in Fig. 10e). 

The general concept of the last four rules is that, if there is an edge . (vi,j , vi′,j )
in . G′, then there is an edge from each vertex (which corresponds to an edge in . G′) 
involving .vi,j to each vertex (which corresponds to an edge in . G′) involving . vi′,j
in . H ′. It implies that, if  . �i enters . �j before .�i′ enters . �j , then . �i must leave 
. �j before . �i′ enters . �j . The resource conflict graphs of the examples in Fig. 9 are 
shown in Fig. 11. We can observe that they are cyclic in Fig. 11a–c, while they are 
acyclic in Fig. 11d–e. 

Theorem 4 . H ′ is cyclic if and only if . G′ has a deadlock. 

Proof From left-hand side (LHS) to right-hand side (RHS): If there is a cycle in . H ′, 
we assume the cycle as .((i0, j0, j ′

0), (i1, j1, j
′
1), . . . , (ik, jk, j

′
k), . . . , (il, jl, j

′
l )),
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Fig. 11 The resource conflict graphs of the examples in Fig. 9 

where .(il, jl, j
′
l ) = (i0, j0, j

′
0). By the construction rules of . H

′, for any pair of 
.(ik, jk, j

′
k) and .(ik+1, jk+1, j

′
k+1), at least one equality of .jk = jk+1, .jk = j ′

k+1, 
.j ′
k = jk+1, and .j ′

k = j ′
k+1 is true. Assume that it is equal to . j∗ in the true equality. 

By the definition of a conflict zone (that two vehicles cannot be at the same conflict 
zone at the same time), .�ik must leave .�j∗ before .�ik+1 enters . �j∗ . This means 
that .(ik, jk, j

′
k) blocks .(ik+1, jk+1, j

′
k+1), and thus, considering .0 ≤ k ≤ l − 1, the  

cycle forms a deadlock. 
From RHS to LHS: If there is a deadlock, without loss of generality, we assume 

that . �i cannot move from . �j to . �j ′ . The conditions that . �i cannot move from 
. �j to .�j ′ include6 (1) . �i cannot move from another conflict zone .�j ′′ to . �j , 
(2) another vehicle . �i′ scheduled to enter . �j earlier cannot enter . �j , (3) another 
vehicle .�i′ scheduled to leave . �j earlier cannot leave . �j , (4) another vehicle 
.�i′ scheduled to enter .�j ′ earlier cannot enter . �j ′ , and (5) another vehicle . �i′
scheduled to leave . �j ′ earlier cannot leave . �j ′ . By the construction rules of . H ′, each 
of the conditions constructs an edge to vertex .(i, j, j ′) in . H ′. Repeating applying 
the same conditions, those edges must form a cycle7 since the numbers of vehicles 
and conflict zones are finite. ��

6 If all of the conditions are false, then . �i can move from . �j to . �j ′ . A similar claim is not true for 
. G′, so having no cycle in . G′ cannot guarantee deadlock-freeness. 
7 Though it may not go back to .(i, j, j ′). 



Distributed Coordination and Centralized Scheduling for Automobiles at Intersections 107

By Theorem 4, . H ′ is acyclic if and only if . G′ has no deadlock (deadlock-freeness). 
Note that we construct . H ′ from . G′. After the construction, we do not need . G′ in the 
verification. 

3.3 Centralized Scheduling Approach 

In this section, we develop a cycle removal algorithm based on the graph model in 
Sect. 3.1 and the verification approaches in Sect. 3.2. 

A greedy strategy, a First-Come-First-Serve approach, can be adopted here to 
schedule the vehicles based on their earliest arrival times. However, this approach 
ignores the interactions between vehicles and conflict zones, and thus possibly leads 
to extra waiting time. To address this problem, with the graph-based model and the 
verification approaches, we can decide the passing order for vehicles to go through 
the intersection safely and efficiently by removing all cycles in the graph. 

The most common method to detect and remove cycles in a directed graph is the 
Depth-First Search (DFS) algorithm [11]. There is a cycle in a graph only if a back 
edge, which is an edge from a vertex to itself or its ancestors, is found during the 
DFS traversal of the graph. Then, the method can remove any edge in the cycle to 
avoid having cycle in the graph. However, without optimization objective, the DFS 
method may not remove “good” edges to perform optimization. Furthermore, to 
decide a passing order, we cannot remove some edges because of the safety property 
(item 1) in our problem formulation, and thus the direct use of a DFS method is not 
feasible. On the other hand, the minimum feedback arc set problem, a special case 
of our problem, is NP-hard [12] and has not known to be approximable within a 
constant [13]. 

Our objective is to minimize the total time needed for all vehicles to go through 
the intersection, equivalent to the leaving time of the last vehicle. To remove cycles 
while considering the edge costs, finding a minimum spanning tree (MST) of the 
graph can be a potential solution, and one approach is the Kruskal’s algorithm [14]. 
The Kruskal’s algorithm repeatedly chooses a minimum-cost edge which does 
not form any cycle with those already-chosen edges. Kruskal also proposed the 
backward version of the original one, and it repeatedly removes a maximum-cost 
edge whose removal does not disconnect the graph. Inspired by this method, we do 
intend to remove the edge which results in the largest delay to the objective. This 
can remove cycles and benefit the objective minimization at the same time. 

Based on our graph model, we develop a cycle removal algorithm. First, we 
compute the vertex entering time of each vertex without considering Type-3 edges. 
Next, the costs of Type-3 edges are estimated by their impacts on the objective. 
Then, we remove a Type-3 edge which has the largest cost from the graph. The 
impact of .(vi,j , vi′,j ) on the objective is measured by considering .(vi,j , vi′,j ) when 
recomputing the vertex entering time of each vertex. Repeating those steps, we can 
remove cycles and compute the vertex entering time of each vertex in the graph. 
It should be noted that, sometimes, we cannot remove an edge because of the last
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constraint of the item 1 in the problem formulation. In this case, we divide the 
problem into sub-problems and solve the sub-problems. 

3.3.1 Definitions 

We first provide some definitions which will be used in our algorithm as follows. 

Edge State There are four possible states for an edge: 

• An edge is ON if it has been decided to be kept (in . G′). By the item 1 in the 
problem formulation, a Type-1 or Type-2 edge is always ON. When discussing 
the graph . G′, we only consider ON edges. 

• An edge is OFF if it has been decided to be removed. 
• An edge is UNDECIDED if it is going to be decided in the current sub-problem. 
• An edge is DONTCARE if it is not considered in the current sub-problem. 

Vertex State There are three possible states for a vertex: 

• A vertex is  BLACK if its vertex entering time has been scheduled. If .vi,j is 
BLACK, then each edge .ek = (vi,j , vi′,j ′) or .(vi′,j ′ , vi,j ) must be ON or OFF. 
On the other hand, if .ek = (vi,j , vi′,j ′) is ON, then .vi,j must be BLACK. 

• A vertex is  GRAY if its vertex entering time can still be influenced by Type-3 
edges. If .vi,j is GRAY, then for each Type-1 or Type-2 edge .ek = (vi′,j ′ , vi,j ), 
.vi′,j ′ must be BLACK. When we remove edges, we only estimate the cost of an 
edge .ek = (vi,j , vi′,j ′), where at least one of .vi,j and .vi′,j ′ is GRAY. 

• A vertex is  WHITE if its vertex entering time can be influenced by any type of 
edges. 

Vertex Slack The vertex slack is the maximum time which can be delayed at the 
vertex without increasing the objective. We consider ON edges only. Similar to 
the computation of the vertex entering time, if . G′ is acyclic, we follow a reverse 
topological order and compute the vertex slack of each vertex .vi,j as follows: 

• If . �j is the last conflict zone on the trajectory of . �i , 

.

slack [vi,j ] = min

{
max

vi′,j ′ ∈G′
(
si′,j ′ + pi′,j ′

) − (
si,j + pi,j

)
,

min
k|ek=(vi,j ,vi′,j ′ )∈G′

{
slack [vi′,j ′ ]}

} (16) 

• Otherwise, 

.slack [vi,j ] = min
k|ek=(vi,j ,vi′,j ′ )∈G′

{
slack [vi′,j ′ ]} (17)
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Algorithm 2 Cycle-removal-based scheduling 
Input: G 
Output: G′
1: Initialization; 
2: for each vertex vi,j ∈ V do 
3: state[vi,j ] ← WHITE; 
4: slack[vi,j ] ← ∞; 
5: end for 
6: for each edge ek ∈ E do 
7: if ek is a Type-3 edge then 
8: state[ek] ← UNDECIDED; 
9: else 
10: state[ek] ← ON; 
11: end if 
12: end for 
13: Update-Time-Slack (G); 
14: Remove-Type-3-Edges (G, 0,m); 
15: Output the resultant graph as G′; 

Edge Cost The edge cost of a Type-3 edge is the delay time of the objective caused 
by this edge if we keep it. For the edge .ek = (vi,j , vi′,j ), .(si,j + pi,j + wk) and . si′,j
are the vertex entering times of .vi′,j with and without considering . ek , respectively. 
If the delay time caused by . ek is larger than the slack of .vi′,j , the objective will 
increase if we keep . ek . The edge cost of a Type-3 edge .ek = (vi,j , vi′,j ) is defined 
as follows: 

.cost [ek] = (si,j + pi,j + wk) − si′,j − slack [vi′,j ] (18) 

Note that, although the edge cost may be negative, the objective will never decrease. 

3.3.2 Cycle-Removal-Based Scheduling 

To solve the cycle removal problem, we follow the steps listed in Algorithm 2. First,  
based on the problem formulation in Sect. 3.1, Type-1 and Type-2 edges must be 
included in . G′. Thus, we set the states of all Type-1 and Type-2 edges to ON and the 
states of all Type-3 edges to UNDECIDED. 

Next, we apply Algorithm 3 to compute the vertex entering times and slacks of 
vertices. At this moment, the graph . G′ contains only Type-1 and Type-2 edges and 
thus is an acyclic graph. According to its topological order, we compute the vertex 
entering time of each vertex by Eqs. (13) and (14) and the leaving time of the last 
vehicle. We also compute the slack of each vertex according to reverse topological 
order by Eqs. (16) and (17). 

Then, we decide which edges to be removed by Algorithm 4. First, in the process 
of Find-Leaders, a vertex .vi,j is identified as a leader vertex if . �i is the first 
vehicle of its source lane and . �j the first conflict zone on the trajectory of . �i .
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Algorithm 3 Update-time-slack 
Input: G 
1: Initialization; 
2: Topological-Sort (G) 
3: for each vertex vi,j in topological order do 
4: Compute si,j by Eq. ( 13) or (14); 
5: end for 
6: maxLeavingT ime ← maxvi,j (si,j + pi,j ); 
7: for each vertex vi,j in reverse topological order do 
8: slack[vi,j ] ←  maxLeavingT ime − si,j − pi,j ; 
9: for each edge ek = (vi,j , vi′,j ′ ) ∈ E do 
10: slack[vi,j ] ←  min{slack[vi,j ], slack[vi′,j ′ ]}; 
11: end for 
12: end for 

Second, an UNDECIDED edge .ek = (vi,j , vi′,j ), i.e., a Type-3 edge, is identified 
as a candidate edge if .vi,j or .vi′,j is a leader vertex. Third, we compute the edge 
cost of each candidate edge by Eq. (18). Fourth, we try to remove Type-3 edges in 
descending order of edge cost. Removing edge .ek = (vi,j , vi′,j ) means its reverse 
edge .ek′ = (vi′,j , vi,j ) must be included in . G′ and cannot be removed. As a result, 
we temporarily set the state of . ek to OFF and . ek′ to ON. Then, we verify deadlock-
freeness for the current . G′ by the verification approaches in Sect. 3.2. If  . G′ is not 
deadlock-free, we recover . ek and remove . ek′ by exchanging their states and verify 
deadlock-freeness for . G′ again. If . G′ is deadlock-free after we decide the states of . ek

and . ek′ , we update the states of related vertices, identify newly set GRAY vertices as 
leader vertices, and recompute vertex entering times and slacks. Then, we perform 
the same process to the next highest cost edge. 

However, sometimes . G′ may have a deadlock no matter we remove either . ek or 
. ek′ . The reason is that the previous assignments of edges conflict with the decision 
of choosing . ek or . ek′ . Backtracking the already removed edges is a solution for 
resolving the dilemma. Unfortunately, the backtracking suffers from a long runtime 
of finding a valid assignment. Therefore, instead of backtracking the removed edges, 
we divide the original problem to sub-problems. We partition all vehicles into two 
parts according to the ascending order of their earliest arrival times. The first part 
contains vehicles ordered before . iend , the second part contains the rest. Consider 
each pair of vehicles . �i and . �i′ , where . �i is in the first part, while . �i′ the second. 
If . �j is a common conflict zone on the trajectories of . �i and . �i′ , we assume that . �i

will pass zone . �j before . �i′ . The assumption implies the state of edge . (vi,j , vi′,j )
is ON and the state of edge .(vi′,j , vi,j ) is OFF. Therefore, when solving the sub-
problem associated with the first part, we consider only Type-3 edges in between 
two vehicles belonging to the first part. For both . �i and . �i′ in the first part, the state 
of their Type-3 edge .(vi,j , vi′,j ) is set to UNDECIDED (to be decided in the current 
sub-problem); for both . �i and . �i′ in the second part, the state of their Type-3 edge 
.(vi,j , vi′,j ) is set to DONTCARE (ignored in the current sub-problem). After we have 
solved the sub-problem associated with the first part, we turn to the sub-problem
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Algorithm 4 Remove-type-3-edges 
Input: . G, istart , iend

1: Initialization 
2: for each vertex vi,j ∈ V do 
3: if order[�i ] ≥  istart then 
4: state[vi,j ] ← WHITE; 
5: end if 
6: end for 
7: for each Type-3 edge ek = (vi,j , vi′,j ) ∈ E do 
8: case 1: order[�i ], order[�i′ ] < istart do do nothing; 
9: case 2: iend ≤ order[�i ], order[�i′ ] do state[ek] ← DONTCARE; 
10: case 3: istart ≤ order[�i ], order[�i′ ] < iend do state[ek] ← UNDECIDED; 
11: case 4: istart ≤ order[�i ] < iend ≤ order[�i′ ] do state[ek] ← ON; 
12: case 5: istart ≤ order[�i′ ] < iend ≤ order[�i ] do state[ek] ← OFF; 
13: end for 
14: ff ail  ← FALSE; 
15: LeaderVertices ← Find-Leaders (istart , iend ); 
16: while LeaderVertices �= ∅  do 
17: CandidateEdges ← Find-Candidates (LeaderVertices); 
18: for each edge ek = (vi,j , vi′,j ) in CandidateEdges do 
19: cost[ek] ←  si,j + pi,j + wk − si′,j − slack[vi′,j ]; 
20: end for 
21: emax ← Find-Max-Cost-Edge (CandidateEdges); 
22: emax′ ← (vi′,j , vi,j ) when emax = (vi,j , vi′,j ); 
23: state[emax ] ← OFF; 
24: state[emax′ ] ← ON; 
25: if VerifyGraph (G) is  FALSE then 
26: state[emax ] ← ON; 
27: state[emax′ ] ← OFF; 
28: if VerifyGraph (G) is  FALSE then 
29: ff ail  ← TRUE; break; 
30: end if 
31: end if 
32: LeaderVertices ← Update-Leaders (LeaderVertices); 
33: Update-Time-Slack (G); 
34: end while 
35: if ff ail  is TRUE then 
36: imid ← 1 2 (istart + iend ); 
37: Remove-Type-3-Edges (G, istart , imid ); 
38: Remove-Type-3-Edges (G, imid , iend ); 
39: end if 

associated with the second part based on the result derived in previously solved 
sub-problems. We set the Type-3 edges within the second part to UNDECIDED and 
keep those in the first part unchanged. These procedure is repeated until there are 
no UNDECIDED edges and all the vertices are BLACK.Finally, we obtain an acyclic 
graph . G′ and schedule the vertex entering time of each vertex in . G′ by Eqs. (13) 
and (14). 

Theorem 5 Our scheduling algorithm always finds a feasible solution.
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Proof A feasible solution should satisfy items (i) and (ii) in the problem formula-
tion. Type-1 and Type-2 edges must be included in . G′, and they do not generate 
cycles or deadlocks. For Type-3 edges between any pair of .vi,j and .vi′,j , only one 
edge (either .ek = (vi,j , vi′,j ) or .ek′ = (vi′,j , vi,j )) is selected by our algorithm. If 
we cannot determine all Type-3 edges at a time, the original problem of all vehicles 
is recursively divided into two sub-problems according to the ascending order of 
their earliest arrival times. For Type-3 edges in between two parts, we select only 
Type-3 edges from the first part to the second part. Hence, only Type-3 edges within 
one sub-problem have to be discussed. Every time, including a Type-3 edge in 
one sub-problem is verified by our verification approaches in Sect. 3.2 to guarantee 
cycle-freeness and deadlock-freeness. In the worst case of sub-problem division, 
each sub-problem solves only one vehicle. In this case, no Type-3 edges exist in 
between two vertices belonging to the same vehicle. As a result, the resultant . G′ is 
guaranteed to be acyclic and deadlock-free. ��
Theorem 6 The time complexity of our scheduling algorithm is .O(E2 logV ). 

Proof Our scheduling algorithm (Algorithm 2) contains three parts: vertex and edge 
state initialization, updating vertex entering times and slacks (Algorithm 3), and 
Type-3 edge removal (Algorithm 4). Vertex/edge state initialization can be done by 
graph traversal in .O(V +E) time. Vertex entering times and slacks can be computed 
in .O(V + E) time based on topological sort and graph traversal. For Type-3 edge 
removal, assume the induced subgraph for a sub-problem covers a vertex subset 
.Vs ⊆ V and an edge subset .Es ⊆ E. The running time of each sub-problem is 
dominated by the while loop and sub-problem division in Algorithm 4. The while 
loop examines each Type-3 edge at most once, and the verifier takes .O(V +E) time. 
Thus, the while loop takes a total of .O(Es(V + E)) time. The recurrence for the 
running time .T (Vs, Es, V ,E) of Algorithm 4 can be written as . T (Vs, Es, V ,E) =
T

(
Vs

2 , αEs, V,E
)
+T

(
Vs

2 , βEs, V ,E
)
+O(Es(V +E)), where .α+β ≤ 1. In the  

base case, every sub-problem contains only one vehicle, and .T (1, Es, V ,E) takes 
.O(E) time. The overall running time .T (V,E, V,E) of Algorithm 4 is . O(V E +
E(V + E) logV ). Therefore, our scheduling algorithm takes .O(E2 logV ) time. 

��
In practical cases, the number of vehicles near an intersection is less than 100, and 
the experimental results will show the efficiency applicable in real time. 

3.4 A Special Case: Lane Merging 

Lane merging is the process that vehicles from different incoming lanes merge into 
one outgoing lane and is one of the major sources causing traffic congestion and 
delay. For example, in a two-lane merging problem, we have two incoming lanes 
merging into one outgoing lane. There is no priority for each lane (i.e., no main 
or secondary lane), and vehicles are not allowed to overtake other vehicles during
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the process. For two-lane merging, the merging intersection is the sole conflict 
zone, the merging point is a representative point of the merging intersection. We 
can optimally solve the two-lane merging scenario by a dynamic programming 
algorithm. It decomposes the problem into a series of sub-problems to schedule 
the passing order for vehicles while minimizing the time needed for all vehicles 
to go through the merging point (equivalent to the time that the last vehicle goes 
through the merging point). We can extend the problem to a consecutive lane-
merging scenario, which is fundamental to further generalization. 

3.5 Experimental Results 

We implemented the verification approach and scheduling algorithms in the C++ 
programming language. The experiments were run on a macOS mojave notebook 
with 2.3 GHz Intel CPU and 8 GB memory. The traffic is generated at every source 
lane by Poisson distribution where the parameter of Poisson distribution . λ is set to 
as . 0.1, . 0.3, . 0.5, . 0.6, and . 0.7. The higher . λ, the higher traffic density. When .λ = 0.1, 
the average time interval between two incoming vehicles is 10 s, while it is 2 s when 
.λ = 0.5. The respective edge waiting time of a Type-1 edge, Type-2 edge, and Type-
3 edge is . 0.1, . 0.2, and . 0.2, respectively. The minimum time for a vehicle to pass a 
conflict zone is set to 1 second, which means a vehicle takes 1 s to pass a conflict 
zone without considering other vehicles. 

3.5.1 Scheduling Effectiveness and Efficiency 

In the first experiment, a four-way intersection is considered. For each direction, 
there is only one incoming lane and one outgoing lane. Four conflict zones are 
generated according to the crossing locations of four incoming lanes. Two traffic 
settings are generated. In the first setting, the earliest arrival time of the last vehicle 
is 30 s, meaning that the intersection manager is required to have a communication 
range covering all vehicles that will arrive in 30 s. In the second setting, the 
earliest arrival time of the last vehicle is 60 s. For each vehicle, the probability of 
going straight, taking a right turn, or taking a left turn is generated by a uniform 
distribution. 

As listed in Tables 5 and 6, the proposed scheduling algorithm is compared with 
three approaches: (1) 3D-Intersection, (2) First-Come-First-Serve, and (3) Priority-
Based. In the 3D-Intersection approach, vehicles do not consider the conflicts with 
vehicles on other lanes so that a vehicle is delayed only by vehicles on the same 
lane and in front of it. Thus, the 3D-Intersection approach provides a lower bound 
for the objective (. TL), although it may not be collision-free. The First-Come-First-
Serve approach was introduced in Sect. 3.3. The distributed priority-based approach 
in [7] is modified to fit in our graph-based model and problem formulation. The 
Priority-Based approach iteratively decides the passing order of vehicles by their
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Table 5 Results under 
different . λ when the earliest 
arrival time of the last vehicle 
is 30 s where . TL, . TD , and RT  
are the leaving time of the last 
vehicle, the average delay 
time of all vehicles, and the 
runtime, respectively (all 
units are in second) 

3D-intersection First-come-first-serve 

.λ m .TL .TD RT .TL .TD RT 

0.1 11 33.40 0 0.001 33.40 0.00 0.003 

0.3 34 40.70 0 0.003 50.70 5.85 0.005 

0.5 58 42.40 0 0.006 82.40 19.58 0.009 

0.6 66 40.50 0 0.009 90.39 24.65 0.011 

0.7 77 46.10 0 0.010 90.20 23.68 0.013 

Priority-Based Ours 

.λ m .TL .TD RT .TL .TD RT 

0.1 11 33.40 0.00 0.009 33.40 0.00 0.002 

0.3 34 44.50 3.17 0.007 40.80 2.23 0.015 

0.5 58 68.20 10.62 0.013 60.40 6.91 0.057 

0.6 66 70.10 12.31 0.020 68.70 13.65 0.119 

0.7 77 74.90 13.44 0.024 72.80 13.46 0.174 

Table 6 Results under different . λ when the earliest arrival time of the last vehicle is 60 s where 
. TL, . TD , and RT are the leaving time of the last vehicle, the average delay time of all vehicles, and 
the runtime, respectively (all units are in second) 

3D-Intersection First-Come-First-Serve 

.λ m .TL .TD RT .TL .TD RT 

0.1 25 66.30 0 0.002 68.80 0.48 0.005 

0.3 66 68.80 0 0.009 89.19 10.84 0.013 

0.5 104 74.00 0 0.015 131.10 26.75 0.020 

0.6 129 71.50 0 0.026 149.20 37.62 0.033 

0.7 157 72.90 0 0.039 176.50 54.67 0.049 

Priority-Based Ours 

.λ m .TL .TD RT .TL .TD RT 

0.1 25 68.80 0.48 0.008 66.90 0.32 0.006 

0.3 66 73.50 2.36 0.015 71.10 1.78 0.070 

0.5 104 105.30 12.30 0.052 98.40 11.80 0.229 

0.6 129 133.00 27.64 0.091 116.90 20.77 0.626 

0.7 157 157.80 38.49 0.157 139.50 34.22 1.825 

priorities, and the priorities may change after each iteration. In our experiment, for 
every . 1.0 second, the priorities are updated according to the newly estimated earliest 
arrival times to intersection. 

All approaches are evaluated by two criteria: (1) the leaving time of the last 
vehicle . TL and (2) the average delay time of all vehicles . TD . . TL is equivalent to the 
total time needed for all vehicles to go through the intersection. On the other hand, 
since the 3D-Intersection approach provides the lower bound of . TL, the average 
delay time of all vehicles . TD is computed as the average of the difference between 
each vehicle’s leaving time and its leaving time in the 3D-Intersection solution. The 
average delay time of the 3D-Intersection approach itself is always 0.
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We demonstrate the effectiveness and efficiency of our algorithm by changing (1) 
the traffic density and (2) the communication range. 

Different Traffic Densities Table 5 shows the impact of traffic density on schedul-
ing. Note that 3D-Intersection provides the lower bounds of . TL and . TD . When . λ is 
. 0.1, all approaches can achieve the optimal solution on . TL and . TD due to low traffic 
density. However, when . λ becomes higher, the . TL and . TD of the First-Come-First-
Serve approach increase rapidly, and our algorithm can always achieve better results 
than the First-Come-First-Serve approach. This is because our algorithm considers 
more vehicles and their interactions, i.e., a global view, and provides a systematic 
approach to optimize the objective. Only few cases, e.g., .λ = 0.6 or . 0.7 when the 
earliest arrival time of the last vehicle is 30 s, the priority-based approach achieves 
better . TD than ours. The main reason is that its frequent updates (every 1.0 second) 
on the earliest arrival times can sometimes mend the lack of a global view. If the 
update is not fast enough, its effectiveness will decline. 

Different Communication Ranges The communication range of an intersection 
manager is an important factor. To show the flexibility of communication ranges 
of our algorithm, we compare Table 5 with 6 to observe the results generated by 
different communication ranges under same . λ. In Table 5, the communication range 
of the intersection manager covers all vehicles that will arrive in 30 s. In Table 6, the  
communication range of the intersection manager covers all vehicles that will arrive 
in 60 s. As the communication range becomes twice larger, the . TL of our algorithm 
also becomes approximately twice larger, which means different communication 
ranges do not affect the solution quality of our algorithm. 

Overall, the proposed scheduling algorithm always achieves better solutions than 
the First-Come-First-Serve approach under different scenarios. Our algorithm is 
sufficiently efficient for real-time use even when the number of vehicles reaches 100, 
which can be completed in around 1 second.8 As the number of vehicles exceeds 
100, the runtime grows up. However, the number of vehicles in an intersection will 
not exceed 100 in most cases. Even if the number of vehicles is large, we can still 
split the traffic and schedule the front vehicles first because it is impossible for 100 
vehicles to go through the intersection in 1 second. 

3.5.2 Modeling Expressiveness 

In the second experiment, we show the expressiveness and generality of our 
modeling for different granularities of an intersection. The four-way intersection 
is modeled by 1 (like the previous work [7]), 4, and 16 conflict zone(s) as shown in 
Fig. 7. As shown in Table 7, when . λ is low, different granularities of an intersection 
lead to near-optimal solutions because of few conflicts between vehicles. However,

8 It is believed that an intersection manager has much better computational capability than a current 
vehicle. 
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Table 7 Results of the proposed algorithm under different numbers of conflict zones, where . TL, 
. TD , and RT are the leaving time of the last vehicle, the average delay time of all vehicles, and the 
runtime, respectively (all units are in second) 

1 Conflict Zone 4 Conflict Zones 16 Conflict Zones 

.λ m .TL .TD RT .TL .TD RT .TL .TD RT 

0.1 11 33.40 0.09 0.004 33.40 0.00 0.002 34.50 0.72 0.004 

0.3 34 50.30 6.29 0.016 40.80 2.23 0.014 44.20 3.05 0.020 

0.5 58 77.70 16.87 0.092 60.40 6.91 0.057 51.40 5.13 0.103 

0.6 66 89.00 24.03 0.188 68.70 13.65 0.119 55.80 6.34 0.134 

0.7 77 100.70 28.84 0.284 72.80 13.46 0.174 64.20 9.37 0.769 

when . λ becomes higher, the intersection modeled by 4 conflict zones always 
has better solutions than that modeled by 1 conflict zone. Similarly, intersection 
modeled by 16 conflict zones has better solution than those modeled by 1 and 4 
conflict zone(s) in most cases. The finer granularity of an intersection, the more 
delicate intersection modeling and solution space, and thus the better scheduling 
results. It should be mentioned that we provide general modeling, scheduling, and 
verification for intersection management, and they can further assist intersection 
designers (i.e., governments or city planners) to design intersections (e.g., the 
number of conflict zones, the passing speed, the safety gap, the communication 
range, etc.). 

3.6 Conclusion 

In this section, we propose a timing conflict graph model for centralized intersection 
management. The model is very general and applicable to different granularities of 
intersections and other conflicting scenarios. We devise a resource conflict graph for 
formally verifying deadlock-freeness. Based on the graph-based models, we develop 
a cycle removal algorithm to schedule vehicles to go through the intersection 
safely (without collisions) and efficiently without deadlocks. The algorithm is 
sufficiently efficient to consider more conflict zones and more vehicles in real time. 
Experimental results demonstrate the expressiveness of the proposed model and the 
effectiveness and efficiency of the proposed algorithm. 

4 Summary 

In this chapter, we consider connected and autonomous vehicles at intersections and 
introduce distributed and centralized approaches solving the problem of intersection 
management. The approaches provide feasibility, safety (collision-freeness), live-
ness (deadlock-freeness), stability, efficiency, and real-time decision. Distributed
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and centralized approaches have their own advantages and disadvantages. We 
believe that they are suitable for different intersections. For example, a distributed 
approach for a small intersection; a centralized approach for a large intersection. 
The trade-offs between different factors and properties should be handled to match 
the real-world scenarios. 
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Part II 
Security-Aware Design



Security-Aware Design of Time-Critical 
Automotive Cyber-Physical Systems 

Vipin Kumar Kukkala, Thomas Bradley, and Sudeep Pasricha 

1 Introduction 

Today’s vehicles are complex cyber-physical systems with tens of interconnected 
Electronic Control Units (ECUs) that control various subsystems in the vehicle. 
The introduction of Advanced Driver Assistance Systems (ADAS) in vehicles 
to support the goals of autonomy has resulted in an increase in the number of 
ECUs, which in turn has increased the complexity of the in-vehicle network that 
connects the ECUs. Moreover, state-of-the-art ADAS relies on information from 
various external systems using advanced communication protocols such as vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) [1]. These advances increased 
the complexity of automotive systems, which introduced several other challenges 
related to reliability [2–6], real-time performance [7–10] and security [11–15] of  
automotive systems. In this chapter, we focus on improving security in automotive 
systems. The increased connectivity of today’s vehicles has made them highly 
vulnerable to various sophisticated cyber-attacks. Therefore, ensuring the security 
of automotive systems is a crucial concern and will become further crucial as 
connected and autonomous vehicles (CAVs) become more ubiquitous. 

The most commonly seen cyber-attacks on vehicles include masquerade, replay, 
and denial of service (DoS) attacks [16]. In a masquerade attack, the attacker 
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pretends to be an existing ECU in the system. In a replay attack, the attacker 
eavesdrops on the in-vehicle network, captures valid messages transmitted by other 
ECUs, and sends them on the network in the future. In a DoS attack, the attacker 
ECU floods the in-vehicle network with random messages, thereby preventing the 
normal operation of valid ECUs. Most of these attacks require access to the in-
vehicle network, which can be acquired either physically (e.g., using on-board 
diagnostics (OBD-II)) or remotely (e.g., using LTE or Bluetooth). Various real-
world approaches to gaining access to the in-vehicle network and taking control 
of the vehicle by sending malicious messages are discussed in detail in [17–20]. 

Traditional in-vehicle network protocols, such as controller area network (CAN), 
FlexRay, etc., fail to address key security concerns such as confidentiality, authen-
tication, and authorization as they do not have any inherent security features. Thus, 
additional security mechanisms (e.g., encryption-decryption) must be implemented 
in ECUs to prevent unauthorized access to the in-vehicle network. The two most 
widely used encryption techniques are - symmetric key encryption and asymmetric 
key encryption. The former uses the same key for encryption and decryption opera-
tions, while the latter uses a public-private key pair that has a strong mathematical 
relation. Both mechanisms incur computational overhead on the ECUs, which may 
catastrophically delay the execution of real-time automotive tasks and message 
transfers, e.g., a delay in the messages from impact sensors to airbag deployment 
systems could lead to severe injuries for vehicle occupants. Thus, it is highly crucial 
to carefully introduce security mechanisms in the vehicles. 

The individual ECU utilizations of a FlexRay-based automotive system consist-
ing of four ECUs running 12 different hard real-time automotive applications (each 
with multiple tasks) is illustrated in Fig. 1. Each ECU has a real-time utilization due 
to the execution of real-time automotive tasks (RT Util) and a security utilization 
because of the execution of security operations (Sec Util). The numbers on top of 
each bar show the number of applications that miss their deadlines when executed 
on the corresponding ECU. Along the x-axis, the no security mechanism case has no 
security mechanism implemented (hence it only has the real-time utilization), while 
in the unoptimized security mechanism case, all the ECUs employ AES-256 for 
encryption and decryption of messages. In the latter case, it can be seen that the total 
utilization for ECUs 3 and 4 (sum of real-time and security task utilizations) exceeds 
100% (represented by the red dotted line) because of the overhead of security-
specific encryption/decryption task executions, resulting in missed deadlines for 
four applications. Lastly, the optimized security mechanism case represents our goal 
in this work, to integrate all required security mechanisms while keeping utilization 
of all ECUs below 100%, without any deadline violations. 

In this chapter, we present a novel security framework called SEDAN, which was 
first introduced in [11]. SEDAN is a lightweight (minimal overhead on the ECUs) 
security framework that aims to maximize the overall security of the automotive 
system without violating real-time deadline constraints and per-message security 
constraints. Moreover, the SEDAN framework employs symmetric key cryptography 
as it is less computationally intense compared to the asymmetric key cryptography 
to enhance the security of the vehicle. Our novel contributions in SEDAN are:
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Fig. 1 Motivation for a lightweight (low overhead) vehicular security framework. The number on 
top of each bar indicates the number of missed real-time application deadlines

• We introduced a novel quantitative methodology to derive the security require-
ments for various messages in an automotive system based on ISO 26262 
standard and formulated a new metric to quantify the overall security of a system;

• We devised a heuristic-based key management technique to provide adequate 
security for various message types and ensure that the utilization of all ECUs is 
below 100%;

• We developed an approach for the joint exploration and synthesis of message 
schedules and security characteristics in TDMA-based automotive systems and 
also proposed a technique to efficiently map tasks to ECUs while meeting real-
time message deadlines and ECU utilization goals;

• We extracted network traffic and ECU execution data from a real-world vehicle 
(2016 Chevrolet Camaro) and compared SEDAN with [21], the best-known prior 
work in the area, to demonstrate the effectiveness and scalability of SEDAN. 

2 Related Work 

Security in automotive systems was not a primary concern until recently. The first 
full vehicle hack in 2010 [17] highlighted the need for concrete security measures in 
automotive systems. In [17], the researchers had physical access to the vehicle and 
were able to control various systems in the vehicle by injecting custom messages 
into the CAN bus. Moreover, they reverse-engineered a subset of the ECUs and 
were able to update the firmware on those ECUs by sending custom CAN messages. 
Later in [18], they were able to perform the same attacks remotely. In [19], the
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researchers hacked the radio in a 2014 Jeep Cherokee and were able to control 
the vehicle remotely. They used the telematics system in the radio to send remote 
messages to the vehicle, which were injected into the CAN bus to take control of 
various vehicular subsystems. In [20], the authors recently developed a Trojan app 
that was executed on a smartphone connected to the vehicle infotainment system 
via Bluetooth. They used this app to send custom CAN messages into the in-vehicle 
network. All these attacks have raised serious concerns about security in automotive 
systems. 

Since the traditional in-vehicle network protocols do not provide any security 
features, it is hard to prevent unauthorized access to the in-vehicle network. 
However, one of the popular solutions in the literature to prevent unauthorized 
access is authenticating the sender ECU using message authentication codes 
(MACs). Several works, such as [22–28], advocate the use of MACs to improve 
security in automotive systems. In [23], a mixed integer linear programming (MILP) 
formulation was proposed to minimize the overhead for MAC computation and end-
to-end application latency in a CAN-based system. Moreover, the authors in [23] use  
the same MAC for a group of ECUs. In [24], the authors extended [23] to minimize 
the security risks associated with grouping different ECUs. An authentication 
protocol called LCAP was presented in [26] to encrypt messages that utilized 
hash functions to generate hashed MACs to authenticate ECUs. In [27], an RC4 
encryption-based authentication was implemented to improve security in CAN-
based systems. Another lightweight authentication scheme based on PRESENT 
[29] was introduced in [28] and evaluated on FPGAs. However, cryptanalysts have 
demonstrated successful attacks on both RC4 and PRESENT. In [30], a technique 
based on obfuscating CAN message identifiers (IDs) was presented to protect a 
fleet of vehicles. However, all the above-mentioned techniques are designed for 
event-triggered protocols (such as CAN) and do not apply to more scalable and 
sophisticated time-triggered protocols. 

A lightweight authentication technique is proposed in [22] that uses cipher-
based MACs that are generated using the ECU local time stamp and a secret key. 
However, this technique requires strong synchronization between the ECUs, and 
any uncertainty can result in a full system failure. In [31], a device-level technique 
is presented, which uses an enhanced network interface (NI) to authenticate ECUs 
in the system by using hardware-based security modules (HSMs). In [25], FPGAs 
are employed as co-processors for ECUs to handle all security tasks that are 
implemented based on the TESLA [32] protocol. However, the techniques in [25, 
31] require additional compute resources and many modifications to the existing 
automotive systems, which is not very practical and cost-efficient. In [33], the 
authors proposed a virtual local network (VLAN) based solution for improving 
security in Ethernet-based automotive systems. They introduced an integer linear 
programming (ILP) model to minimize message routing times and authenticate the 
messages by making multiple message transmissions on different routes. However, 
this technique results in inefficient bandwidth utilization and poor scalability. A 
co-design framework is introduced in [34] to improve message response times 
while meeting security concerns. However, only a small subset of messages
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are considered for encryption to guarantee control performance, which makes it 
impractical for safety-critical automotive systems and also exposes the system to 
various vulnerabilities. 

A time delayed release of keys approach (adapted from the TESLA protocol 
[32]) is proposed in [21], in conjunction with simulated annealing based heuristic 
to minimize the end-to-end latency of messages by co-optimizing task allocation 
and message scheduling. This is one of the very few holistic frameworks that 
integrate the concept of security with real-time system design from the beginning 
of the system design phase. This work is extended in [35] by including V2V 
communication, using dedicated short-range communication (DSRC). In [36], a 
lightweight authentication technique for vehicles called LASAN is proposed, which 
uses the Kerberos protocol. The authors extended this work in [37] by presenting a  
comprehensive analysis of LASAN and compared with the TESLA [32] protocol. 
Though the LASAN technique demonstrated superior performance over other 
works, it has stringent requirements for a trusted centralized ECU, which creates a 
single point of failure. A security mechanism using different authentication methods 
was proposed for real-time systems in [38]. A group-based security service model 
is presented in [39] that tries to maximize the combined security of the system. 
However, as the model does not consider the timing constraints, it cannot be 
implemented in time-critical automotive systems. 

An intrusion detection system (IDS) based on principal component analysis 
(PCA) is proposed in [40]. An IDS that detects the presence of an attacker by 
monitoring the increased transmission rates of the messages is proposed in [41]. 
In [42], the usage of reactive runtime enforcers called safety guards is proposed 
to detect the discrepancies between the input data from sensors and the output of 
the controllers. In [43], a challenge-response authentication approach was proposed 
to detect the presence of attackers. However, this technique requires prior and 
proprietary information about the sensors to function correctly. 

All the above-mentioned prior works for securing time-triggered systems have 
various limitations: (i) they do not consider the utilization overhead on ECUs 
and latency overhead on messages due to the implemented security mechanisms, 
which results in over-optimistic results; (ii) they utilize only one key size for all 
messages, which that does not account for the heterogeneous security goals in 
real-time systems; (iii) they do not consider precedence constraints between tasks 
and messages, and; (iv) they consider homogenous single core ECUs which do 
not accurately represent today’s vehicles. In this chapter, we present the SEDAN 
framework that addresses these limitations of the prior works. Moreover, SEDAN 
improves the security in vehicles with time-triggered networks while satisfying 
all security, utilization, and message timing constraints. We demonstrate it for the 
FlexRay protocol, but it can be easily extended to other time-triggered protocols, 
e.g., TTEthernet.
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3 Problem Definition 

3.1 System and Application Model 

In this subsection, we present the automotive system model that was considered 
in SEDAN, where multiple ECUs execute different time-critical applications and 
are connected using a FlexRay-based network, as shown in Fig. 2. Each ECU has 
of two major components: a host processor (HP) and a communication controller 
(CC). The HP primarily runs the automotive and security applications, whereas a 
CC acts as an interface between the HP and the in-vehicle network (in this case, 
FlexRay bus) and is responsible for packing message data into frames, sending 
and receiving messages, and filtering out unwanted messages. Moreover, SEDAN 
considers heterogeneous HPs with different numbers of cores, which aligns with the 
state-of-the-art. It is important to note that the heterogeneity in this work is limited 
to varying the number of homogeneous cores per HP (i.e., multicore parallelism). 

Each automotive application consists of dependent and independent tasks that 
are mapped to different ECUs and executed in the corresponding HPs. If two 
dependent tasks are mapped to the same ECU, they exchange information using 
shared memory. Otherwise, the tasks communicate with each other by exchanging 
messages over the FlexRay bus. A message contains one or multiple signals that 
are generated as a result of task execution on the ECU. The Signals are packed 
into messages by the HP and are sent to the CC to transmit as FlexRay frames 
on the bus. Automotive applications can be categorized into one of two types: 
(i) time-triggered (periodic) or (ii) event-triggered (aperiodic). Most safety-critical 
applications, e.g., collision avoidance, lane keep assist, anti-lock braking, etc., are 

Fig. 2 Overview of the automotive system model used in SEDAN
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time-triggered and generate time-triggered messages. Event-triggered messages are 
generated by maintenance and diagnostic applications. Moreover, much like real-
time applications across other domains, the execution characteristics of time-critical 
automotive applications are known at design time. In this work, we focus on time-
triggered applications as they significantly impact system performance and vehicle 
safety. Additionally, time-triggered messages generated by these applications have 
strict timing and deadline constraints. Thus, it is vital to optimize the security of 
the time-triggered messages while ensuring that no real-time deadline constraints 
are violated. In this work, we adapt various state-of-the-art standards, namely, 
Advanced Encryption Standard (AES) with key sizes 128,192 and 256 bits and 
evaluate Rivet-Shamir-Adleman (RSA) with key sizes 512, 1024, 2048, and 4096 
bits, and Elliptic Curve Cryptography (ECC) with key sizes 256 and 384 bits to 
improve system security. 

3.2 FlexRay Communication Protocol 

FlexRay is an in-vehicle network protocol designed to support high-speed real-time 
complex automotive applications such as drive-by-wire applications. It supports 
both time-triggered and event-triggered transmissions and offers a data rate of 
up to 10 Mbps. The structure of the FlexRay protocol is illustrated in Fig. 3. A  
communication cycle is one complete instance of a communication structure that 
repeats periodically. Each communication cycle (also known as cycle) consists of a 
mandatory static segment, optional dynamic segment, optional symbol window, and 
mandatory network idle time. The static segment consists of multiple equally sized 
time slots that are used to send time-triggered messages. Each static segment slot 
consists of a header, payload (up to 254 bytes), and trailer segments. The TDMA 
media access scheme is employed in FlexRay static segment, where each ECU is 
assigned a particular static segment slot and a cycle number to transmit messages. 

Fig. 3 Structure of the FlexRay protocol
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On the other hand, the dynamic segment consists of variable-sized dynamic segment 
slots that are used to send event-triggered messages. Moreover, the dynamic 
segment employs a Flexible-TDMA media access scheme where the highest priority 
ECU gets access to the bus. The symbol window segment is used for signaling the 
start of the first communication cycle and network maintenance. Lastly, the network 
idle time segment helps with maintaining inter-ECU synchronization. 

3.3 Attack Models 

In this work, we focus on protecting the vehicle from masquerade and replay attacks 
as they are the most common, hard to detect, and can have a severe impact. The 
increased connectivity of modern vehicles with the external environment has created 
multiple pathways (attack vectors) to gain access to the in-vehicle network and 
ECUs. An attacker can choose a variety of attack vectors to gain access to the 
in-vehicle network and masquerade as an existing ECU or replay valid message 
transmissions to achieve malicious goals. In this study, we considered the most 
common and practical attack vectors in vehicles, which include connecting to the 
OBD-II port, connecting to systems that communicate with the external systems 
(such as infotainment systems), probe-based snooping on the vehicle bus, and 
replacing an existing ECU. Our framework can still be effective even when the 
attacker gains access to the in-vehicle network via other attack vectors. 

3.4 Security Model 

In this work, we focus on achieving the following key security objectives in vehicles: 
(i) confidentiality of message data and (ii) the authentication of ECUs. Meeting 
these objectives is crucial as it can help prevent masquerade and replay attacks. 
Confidentiality refers to the practice of protecting information from unauthorized 
ECUs, whereas authentication refers to the process of correctly identifying an ECU. 
In this study, we employ AES to achieve confidentiality by encrypting message 
data using a shared secret key. Moreover, we evaluate the choice of using RSA and 
ECC for setting up shared secret keys. However, it should be noted that neither 
RSA nor ECC is used for encrypting messages as they are much slower than 
AES. While AES with 128-bit keys (AES-128) is considered very secure today, 
the advent of quantum computing may challenge this assumption. Hence, we also 
consider AES-192 and AES-256. As each ECU can have messages of various 
criticalities, every ECU in the system can run all three variants of AES. Section 4.6 
discusses the complete encryption/decryption flow in detail. Moreover, the key size 
for encrypting/decrypting messages is assigned based on the security requirements 
of a message, which is discussed in detail in Sect. 4.3.
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3.5 Definitions 

The SEDAN system model has the following inputs:

• Set of heterogeneous (1 or 2 core) ECUs N = {1, 2, . . .  , Ɲ};
• Set of automotive applications A = {1, 2, . . .  , λ} and set of tasks in the system 

T = {T1 ∪ T2 . . .  ∪ Tλ}, where Ta is the set of tasks in an application a ∈ A;
• Each task in T has a unique task ID TID = {1, 2, . . .  , G};
• After task allocation, each task t is represented as tq,n where q ∈ TID is the task 

ID, and n ∈ N is the ECU to which the task t is mapped;
• Every task t is characterized by the 4-tuple {ãq,n, . ̃pq,n, . ˜dq,n, ẽq,n}, where ãq,n„ 

. ̃pq,n, . ˜dq,n, and ẽq,n represent the arrival time, period, deadline, and execution 
time of the task, respectively;

• For each ECU n ∈ N, Sn = {s1, n, s2, n . . . , . sKn,n} is the set of signals transmitted 
from the ECU; Kn is the total number of signals in n;

• Every signal si,n ∈ Sn, (i = 1, 2 . . . , Kn) is characterized by the 4-tuple { . ai,n, 
. pi,n, . bi,n, . d i,n}, where . ai,n . pi,n, . bi,n, and . d i,n are the arrival time, period, deadline, 
and data size (in bytes) of signal si, n respectively;

• After frame packing, each ECU has a set of messages Mn = {m1, n, m2, n, . . . , 
. mRn,n}, where Rn is the total number of messages in n;

• Every message mj,n ∈ Mn, (j = 1, 2, . . . , Rn) is characterized by the 5-tuple {aj,n, 
pj,n, dj,n, bj,n, �j,n, ψj,n} where aj,n, pj,n, dj,n, bj,n, �j,n, and ψj,n are the arrival 
time, period, deadline, data size (in bytes), and minimum security requirement of 
the message mj,n (see Sect. 4.3), respectively. ψj,n is a binary variable that has a 
value = 1 when the security constraints of the message are satisfied. Otherwise 
ψj,n = 0; 

Problem Objective: In this work, we focus on maximizing security (aggregate 
security value, described in Sect. 4.4) while synthesizing a design time schedule 
for time-triggered tasks and messages that satisfy three types of constraints: (i) real-
time timing and deadline constraints for tasks and messages in all applications; (ii) 
minimum security constraints for each message in the system, (iii) ensure no ECU 
utilization exceeds 100%. 

4 SEDAN Framework: Overview 

A high-level overview of the SEDAN framework is illustrated in Fig. 4, with all the  
design time steps in gray boxes and the runtime steps in green boxes. The steps 
involved in the SEDAN framework can be mainly classified into two categories: 
(i) security operations that improve the security of the system and (ii) real-time 
operations that satisfy the application’s real-time performance objectives. At design 
time, SEDAN begins by allocating tasks to available ECUs in the system and 
generates the set of signals needed for inter-task communication. These signals are 
packed into messages using a frame packing approach, and security requirements
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Fig. 4 Overview of the SEDAN framework 

are derived for each message. The size of the keys used for encryption and 
decryption of the messages are optimized using a greedy randomized adaptive 
search procedure (GRASP) metaheuristic. At runtime, SEDAN starts with setting 
up the session keys, which will be used for generating keys used for authenticated 
encryption and decryption of messages. Lastly, a runtime scheduler schedules 
messages at runtime by using the previously generated keys and the optimal 
design time schedule. Each of these steps is discussed in detail in the subsequent 
subsections. 

4.1 Task Allocation 

This is the first step of the SEDAN framework and occurs at design time. The main 
goal of this step is to quickly allocate each task in the system to an available ECU 
that results in uniform real-time utilization across ECUs. This makes the load-
balancing task allocation scheme a good choice for this step. Moreover, if there 
are some tasks that need to be allocated to certain ECUs, e.g., due to being in 
close proximity to sensors or actuators that they use heavily (or exclusively), we 
pre-allocate those tasks and do not include them in the set of mappable tasks for 
allocation. 

For any task (tq), the real-time utilization of the task ( . ˜Utq ) is defined as the ratio 
of execution time (ẽq) and the period (p̃q) of the task, as shown in (1). The real-time
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utilization of any given ECU ( . ˜Un) is the sum of the real-time utilizations of the 
tasks ( .˜Utq,n) allocated to that ECU, and is computed using (2): 

.˜Utq = ẽq

p̃q

(1) 

.˜Un =
Gn
∑

q=1

(

˜Utq,n

)

(2) 

Our proposed load-balancing task allocation scheme begins by initializing all the
ECUs’ real-time utilization ( . ˜Un) to zero and computing the real-time utilization of 
all the tasks ( . ˜Utq ) in the system using (1). The allocation subsequently occurs in 
three steps: (i) the set of ECUs in the system is sorted in the increasing order of the 
ECU real-time utilization ( . ˜Un); (ii) the first unallocated task in the set of tasks (T), 
sorted in decreasing order of real-time utilization, is selected and allocated to the 
least loaded ECU (i.e., ECU with the lowest utilization); and (iii) the task’s real-
time utilization ( .˜Utq ) is added to the allocated ECU’s real-time utilization ( . ˜Un). 
These three steps are repeated until all the unallocated tasks in T are allocated. If 
any task, t ∈ T, cannot be allocated to an ECU during this process, then there exists 
no solution for the given configuration. Otherwise, at the end of this step, each task 
in the system is allocated to an ECU. After the task allocation step, the set of signals 
Sn is generated for each ECU based on the precedence constraints of tasks in the 
application. 

We also explored other allocation schemes that minimize the total communi-
cation volume between ECUs. However, it resulted in allocations that resulted in 
non-uniform load across ECUs, which violated the ECU utilization constraints after 
implementing security mechanisms. 

4.2 Frame Packing 

Frame packing is defined as the grouping of signals in each ECU into messages. 
This is done to maximize the bandwidth utilization of the communication bus. 
The set of signals generated by the task allocation step is given as the input to 
this step. The following conditions need to be satisfied to successfully pack the 
signals into messages: (i) for any two signals to be packed into the same message, 
they must originate from the same source ECU; (ii) signals with the same periods 
are packed together to avoid multiple message transmissions; and (iii) the total 
computed payload of the message is the sum of the size of the cipher generated 
by AES and the size of the MAC; and should not exceed the maximum possible 
FlexRay payload size. Because of the nature of AES, the size of the generated cipher 
is independent of the key size. However, the size of the cipher is dependent on the
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input size to the AES, which is the sum of signal sizes grouped in that message. 
Thus, the cipher size can be expressed as �sum of signal sizes in the message/16�, 
and the size of MAC is set to the maximum of the minimum required MAC size (49 
bits, explained further in Sect. 4.3; a designer can also use a value greater than 49). 
In this work, we adapted a fast greedy frame packing heuristic proposed in [2] and 
enhanced it by integrating the computed payload size definition to generate a set of 
messages for each ECU. 

4.3 Deriving Security Requirements 

In this subsection, we present a novel methodology used in SEDAN to derive 
security requirements for each message. We employ a risk classification scheme 
defined in ISO 26262 [44] known as the Automotive Safety Integrity Level (ASIL) 
as the basis for deriving security requirements for each message in the system. 
Four different ASILs: ASIL-A, ASIL-B, ASIL-C, and ASIL-D, are defined in 
the ISO 26262 standard to classify applications based on their risk upon failure. 
Applications classified as ASIL-D have the lowest failure rate limit indicating high 
criticality, while ASIL-A applications are less critical and subject to fewer security 
requirements. The underlying assumption for deriving security requirements based 
on ASIL groups is that the applications that demand high safety levels are more 
critical and need to be better protected from cyber-attacks. Hence, the higher the 
safety requirement, the higher the security requirement. 

In this work, we define two security requirements for every message based on 
their ASIL classification. 

The first requirement is the minimum key size required to encrypt the message 
depending on its ASIL group, which is as follows: ASIL-A (128 bits), ASIL-B (128 
bits), ASIL-C (192 bits), and ASIL-D (256 bits). The following methodology is 
followed to derive ASIL groups for all messages in the system. Each application is 
assigned an ASIL depending on the criticality and tolerance to failure. Each task in 
that application inherits the same ASIL, and so do the signals generated by these 
tasks. When these signals are packed into messages, the highest ASIL group among 
the signals in that message is assigned as the ASIL group ( .mAG

j,n ) of the message. 

We also assign a security score .

(

mSS
j,n

)

to each safety-critical message depending on 

its assigned key size. In this study, we consider the following score based on the key 
size: 128-bit key (score = 1), 192-bit key (score = 2), and 256-bit key (score = 3). 

Additionally, each message is assigned a weight value called ASIL weight .
(

mAW
j,n

)

. 

A high  ASIL weight value indicates a high message criticality and is analogous to 
a Risk Priority Number (RPN) that can be calculated using Hazard Analysis and 
Risk Assessment (HARA) approaches [45]. Using the above-mentioned metrics, 

we derive a security value .
(

mSV
j,n

)

for each message as shown in (3). Lastly, to
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quantitatively compare the security of different systems, we propose a metric called 
Aggregate Security Value (ASV), which is computed using (4). 

.mSV
j,n = mAW

j,n ∗ mSS
j.n (3) 

.Aggregate Security Value (ASV) =
∑Ɲ

n=1

∑Rn

j=1

(

ψj,n∗mSV
j,n

)

∑Ɲ
n=1 Rn

(4) 

where ψ j,n, and Rn are defined in Sect. 3.5. ASV is the ratio of the sum of security 
values of all messages in the system for which minimum security requirements are 
satisfied to the total number of messages in the system. ASV can be used to compare 
the security of various systems using the same encryption scheme. A system with a 
higher ASV value is more secure than a system with a lower value. 

The second requirement is the minimum number of Message Authentication 
Code (MAC) bits required for a message based on the assigned ASIL group. This 
is derived using the failure rate limit of the ASIL group of the message. The 
failure rate limit is typically expressed as FIT (Failure in Time), which denotes 
the maximum number of acceptable failures per 1 billion hours of usage. Based 
on the specifications in the standard, ASIL-D has 10 FIT, ASIL-B and C have 100 
FIT, and ASIL-A has 1000 FIT as their maximum limits. In other words, ASIL-D 
applications need less than 10−8 failures per hour, while ASIL-A applications can 
have up to 10−5 failures per hour. In this work, we derive the security requirements 
for each message in the system using the following method:

• Consider a message (mj,n) with period (pj,n) (in milliseconds);
• The number of transmissions of mj,n per second are 103/pj,n.
• The number of transmissions of mj,n per hour are (3600*103)/pj,n.
• If there are k bits in the MAC field of a message, the probability of failure due to 

an attacker guessing a valid MAC (e.g., using brute-forcing or other methods) is 
2-k for one transmission of that message;

• Therefore, the probability of failure due to a compromised MAC for an hour-long 
transmission is ((3600*103)/pj,n)*2-k.

• For an ASIL-D application, the probability of failure needs to be less than 
10−8 per hour, i.e., ((3600*103)/pj,n)*2-k ≤ 10−8.

• Thus, the minimum number of MAC bits (�j,n) required for the message (mj,n) 
according to the ASIL-D requirement is: 

.�j,n(D) = k ≥
⌈

Q + log2

(

1

pj,n

)⌉

(5) 

where Q is a constant and has a value of 48.35 for ASIL-D. Similarly, the minimum 
number of MAC bits required (�j,n) for other ASIL groups are calculated using
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(5) by using Q = 45.04 for ASIL-B and ASIL-C and Q = 41.72 for ASIL-A. The 
different values of Q for each ASIL group are computed based on the FIT limit of 
that ASIL. Thus, for an ASIL-D message, for the most stringent (smallest) period, 
we observed (=1 ms), �j, n(D) = 49 bits (thus this is used in frame packing). 

4.4 Optimizing Message Key Sizes Using GRASP 

This is the last step of the design time process in SEDAN. This step aims to assign 
an optimal key size for each message in the system that maximizes the ASV while 
meeting all the security requirements and real-time deadline constraints. Addition-
ally, we model the overhead caused by the security tasks (i.e., encryption and 
decryption) in terms of the additional ECU utilization (security-induced utilization) 
and latency (response time) of the message. For any given message (mj,n) that is 
encrypted or decrypted using a block cipher, the security-induced ECU utilization 
.(Umj,n) due to the message is computed using (6). 

.Umj,n =
(⌈

bj

bsize

⌉

∗ Tencr/decr

pj

)

(6) 

where bsize denotes the block size in bytes, and Tencr/decr represents the time taken
to encrypt or decrypt one block of data. Since AES is the encryption algorithm used
in this study, the above equation can be re-written as shown in (7). 

.Umj,n =
(⌈

bj

16

⌉

∗ TAES(X)

pj

)

(7) 

where TAES(X) is the time taken to encrypt or decrypt one block (16 Bytes) of data
using AES with an X-bit long key (where X can be 128, 192, or 256). The security-
induced utilization of any ECU .

(

Un

)

(computed using (8)) is the sum of the security-
induced utilizations of all transmitted and received messages .

(

Umj

)

for that ECU. 
Hence, the total utilization of any ECU (Un) is the sum of the real-time utilization 
.
(

˜Un

)

and security-induced utilization ( . Un) as shown in (9). Moreover, to avoid 
uncertainties and undesired latency overheads, we always ensure that the utilization 
of any ECU does not exceed 100%. 

.Un =
∑Rn

j=1
Umj,n

(8) 

.Un = ∼
Un + Un (9)
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Fig. 5 Overview of the GRASP-based optimal message key size allocation step in SEDAN 

In this study, we propose a heuristic approach to achieve this goal based on the 
greedy randomized adaptive search procedure (GRASP) metaheuristic [46]. An 
overview of this approach is illustrated in Fig. 5. Our proposed approach begins 
by taking the set of messages from the output of frame packing (Sect. 4.2) and the 
derived security requirements (Sect. 4.3) as inputs. An initial solution is generated 
by assigning the minimum required key sizes for all the messages based on the 
derived security requirements. This initial solution is subjected to a feasibility check 
which investigates the: (i) total ECU utilization (Un) for all ECUs and (ii) number 
of missed deadlines using a design time scheduler. Moreover, we adapt the fast 
design time scheduling heuristic proposed in [2] to generate an optimal design 
time schedule. The initial solution is given to the GRASP only when there are no 
utilization violations at any ECU (i.e., Un ≤ 100% ∀ ECUs) and deadline misses for 
any message. If any of the above-mentioned conditions fail, the optimal message 
key size allocation step terminates, and the system does not have a feasible solution. 
GRASP intelligently explores various message key sizes (that are greater than or 
equal to the minimum key size requirement for a message) and design time schedule 
configurations (i.e., assigning messages and ECUs to FlexRay static segment slots) 
to select a solution that maximizes ASV, with no security violations, real-time 
deadline misses, and ECU utilization violations (i.e., no ECU utilization exceeds 
100%). 

The GRASP metaheuristic is an iterative process in which each iteration has two 
major phases: (i) greedy randomized construction phase that tries to build a local 
feasible solution and (ii) local search phase that tries to investigate the neighborhood 
for a local optimum. In the end, the best overall solution is chosen as the final 
solution. The greedy randomized construction phase has two key aspects- the 
greedy aspect and the probabilistic aspect. The greedy aspect involves generating
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a Restricted Candidate List (RCL), which consists of the best elements that will 
improve the partial solution (solution within the greedy randomized construction 
phase). And the probabilistic aspect involves selecting a random element from 
the RCL, which will be incorporated into the partial solution. It is important to 
note that the solutions generated during the greedy randomized construction phase 
are not necessarily optimal. Hence, a local search phase is used to improve the 
partial solution from the greedy randomized construction phase. The local search 
is an iterative process that uses destroy and repair mechanisms to search for local 
optimum within a defined neighborhood. The best solution is updated if an improved 
solution is found during the local search. 

Algorithm 1: GRASP Based Optimal Message Key Size Assignment 

Algorithm 1 presents an overview of our GRASP-based optimal message key 
size assignment approach. The inputs to Algorithm 1 are a set of nodes (N), a set 
of all the messages in the system (M), and the minimum required message key size 
assignment (init_solution), which is the initial solution given to GRASP to reduce 
the search space. In addition, the tunable parameters such as maximum iterations 
(max_iterations), RCL threshold (α), and a destroy-repair threshold (β) are given as  
input to GRASP to efficiently look for solutions in the search space. The algorithm 
starts by assigning the init_solution to the best_solution in step 1. GRASP iteratively 
tries to find a better solution in steps 2–8 until max_iterations is reached. In each 
iteration greedy_randomized_construction() in step 3, generates a local feasible 
solution (current_solution) which is updated using local_search() in step 4. If a  
better solution is found at the end of the local search phase, the best_solution is 
updated in steps 5–7. The output of the algorithm is an optimal message key size 
for every message and a feasible design time schedule with no deadline misses, no 
security violations, and no ECU utilization exceeding 100%. Note: Every solution in 
GRASP consists of two attributes (i) key sizes for all the messages and (ii) ASV of 
the system as a result of the key size assignment. Moreover, every solution generated 
by GRASP ensures that no message is allocated a key size less than the key size 
assigned in the initial solution, and the overall system ASV is always greater than 
the ASV of the initial solution.
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4.4.1 Greedy Randomized Construction Phase 

The greedy randomized construction phase tries to generate a feasible solution in 
every iteration of GRASP by increasing the key sizes of some of the non-ASIL-D 
messages. The goal here is to maximize the ASV of the system without any deadline, 
security, and ECU utilization violations. Moreover, it also ensures that no message is 
allocated a key size less than the key size allocated in the initial solution (minimum 
required key size). The solution generated by the greedy randomized construction 
phase will be given as the input to the local search phase for refinement. 

Algorithm 2: greedy_randomized_construction (α, N, M) 

Algorithm 2 shows the pseudocode of the greedy randomized construction phase 
where the inputs are: set of nodes (N), set of messages (M), and RCL threshold (α). 
A set of non-ASIL-D messages ( . ˜M) is generated in step 1. In step 2, the security 
score of each message (mSS) in . ˜M is incremented by one, and the security values of 
the messages (mSV ) are updated using (3). The . ˜M is sorted in the increasing order 
of mSVand the ties are resolved based on the message period in step 3. In steps 4– 
15, the algorithm tries to find a local solution by incrementing key sizes for some 
messages that would result in no deadline, security, and ECU utilization violations. 

The minimum (SVmin) and maximum (SVmax) security values of messages in . 
∼
M are 

computed in steps 5, 6 respectively. The RCL consists of messages in . 
∼
M , that will 

result in increased ASV when their key size is incremented. Hence, the messages 
whose security value (mSV ) is within the interval [SVmin + α (SVmax - SVmin), SVmax] 
are added to the RCL in step 7. This is the greedy aspect of the greedy randomized 
construction step. Moreover, GRASP employs an RCL threshold (α ∈ [0, 1]) to
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regulate the quality of the generated RCL. The threshold (α) controls the amount of 
greediness and randomness in the algorithm. The α = 1 case corresponds to a pure 
greedy approach, while α = 0 is equivalent to a purely random approach. A random 
message ( . m) is selected from the RCL (probabilistic selection) in step 8, and its 
key size is incremented to the next higher key size in step 9 (i.e., 128 → 192 or 
192 → 256). The feasibility_check() in step 10, checks for any (i) ECU utilization 
violations (i.e., any ECU utilization >100%) and (ii) deadline misses using the 
design time scheduling heuristic proposed in [2]. If any of the above-mentioned 
checks fail, the feasibility_check() will return false and reverts the key size of ( . m) 
back to its previous key size in step 11. Moreover, the mSV of . m is re-computed after 
decrementing the mSS by one in step 12. Otherwise, the key size increment is left 

unchanged. The message ( . m) is removed from . 
∼
M and the steps 5–14 are repeated 

until there are no messages left in . 
∼
M . Lastly, in step 16, the current message key 

size assignment and the ASV of the system (using calculate_ASV()) are assigned to 
the current_solution. The function calculate_ASV() is implemented using (4). 

4.4.2 Local Search Phase 

The local search phase tries to iteratively improve the solution found in the greedy 
randomized construction phase by investigating a defined neighborhood in the 
search space. The local search phase achieves this by using destroy and repair 
methods, which remove a part of the solution and recreate a feasible solution, 
respectively. In this study, we define the neighborhood as the set of solutions that 
are generated by randomly changing key sizes for β number of messages. The 
parameter β is known as the destroy-repair threshold, which controls how much 
to destroy or repair in each iteration of the local search. These random changes 
in message key sizes help in recovering from suboptimal ordering (sorting in the 
increasing order of msv) of messages in the greedy randomized construction phase. 

The pseudocode of the local search procedure is illustrated in Algorithm 3. 
The destroy() function in steps 1–4 randomly selects a message from the set of 
messages that are allocated a key size higher than the minimum required key size 
and decreases the key size to the next smaller key size. The function min_score() 
in step 2 returns the minimal security score demanded by the assigned ASIL group. 
The repair() method in steps 5–18 aims to increase the key size for β non-ASIL-
D messages and computes the local solution using local_solution(). The  repair() 
step always selects a message that results in a maximum increase in the ASV 
of the system (as shown in step 8). The ties in step 8 are resolved based on the 
ASIL group, and if multiple messages have the same ASIL group, one message is 
selected at random. In steps 19–29, the local search algorithm iteratively explores 
the neighborhood around the current_solution using destroy() and repair() to find 
a better solution. In each iteration, the value of β is chosen randomly from [2, 
βmax]. In steps 21–24, the function destroy() is modeled as a stochastic process 
that is controlled by the key decrease probability (pkd). Lastly, the current_solution
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is updated if a better local_solution is found in the repair method in steps 25–28. In  
each iteration of GRASP, at the end of the local search phase, a local optimum is 
found if there exits one. Otherwise, the solution remains unchanged from the greedy 
randomized construction phase. 

Algorithm 3: local_search (β, N, M, current_solution 

Inputs: Destroy-repair threshold (β), set of nodes (N), set of all messages 
(M), and current_solution 
1:     function destroy (M) 

2:           Md = {m ∈ M | > min_score( )} 

3:           Decrement the key size of a random message ( ) in Md 

4:     end function 
5:     function repair (β, M, N) 

6:           Mr = {m ∈ M | ≠ ASIL-D} 

7:           while (β > 0) or (Mr ≠ { }) do 
8:                 = {m ∈ Mr | ∆ASV is maximum} 

9:                 Increment the key size of the message ( ) 

10:               if feasiblity_check( ) == false do 
11:                     Revert the key size of ( ) back to the previous key size 

12:               else do 
13                      β = β – 1 

14:               end if 
15:               Remove ( ) from Mr 

16:         end while 
17:         return {calculate_ASV( ), message key size assignment} 

18:   end function 
19:   for local_iteration = 1,…, max_local_iterations do 
20:          β = random_integer(2, βmax) 

21:          if pkd > random(0,1) do 
22:                 destroy (M) 

23:                 β = β – 1  

24:          end if 
25:          local_solution ← repair (β, M, N) 

26:          if local_solution > current_solution do 
27:                 current_solution ← local_solution 
28:          end if 
29:   end for 
Output: Local optimum with in the defined neighborhood- if there exists 
one; Otherwise, the same solution as greedy_randomized_construction( ). 

It is important to note that when the message key size is changed, the size of 
the output cipher and MAC (or the message size) remains unchanged. The key 
size only affects the time taken to encrypt/decrypt the message, which impacts 
the security-induced utilization of the sender and receiver ECUs. Moreover, the 
real-time utilization of the ECUs also remains unchanged, as the execution time 
of time-triggered tasks does not change with changing message key sizes.
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Fig. 6 Overview of steps involved in setting up a session key using the STS protocol with ECC 

4.5 Setting Up Session Key 

In this subsection, we discuss the first runtime step of the SEDAN framework. It 
involves settings up session keys required for generating keys that will be used 
for the encryption and decryption of messages. This is a crucial step in improving 
the security of the vehicle, as using the same key every time for encryption 
and decryption for the entirety of the vehicle’s lifetime makes the system highly 
vulnerable to cyber-attacks. Hence, during runtime, we generate a new key for every 
session (called session key), which will be used for generating keys that will be used 
for encryption and decryption of messages. 

A session is defined as the time duration between the start of a vehicle to turning 
off the vehicle. Since we use symmetric key encryption, all ECUs in the system 
need to have the same secret key to function properly. As traditional automotive 
networks do not have any inbuilt security features, exchanging the session keys 
between ECUs over an unsecured channel is a major challenge. In this work, we 
adapt the Station-to-Station (STS) key agreement protocol [47], which is based on 
the famous Diffie-Hellman key exchange method [45], to the automotive domain 
(as simple Diffie-Hellman is vulnerable to man-in-the-middle attacks), to securely 
transfer session keys between ECUs over an unsecured FlexRay bus. Moreover, 
within the STS protocol, we employ elliptic curve cryptography (ECC) as the basis 
for key agreement instead of RSA. This is mainly because ECC is faster and has 
a lower memory footprint for the same level of security compared to the RSA (as 
discussed in Sect. 5.2). The overview of steps involved in STS protocol with ECC 
for two ECU cases is illustrated in Fig. 6. 

The STS approach begins with two ECUs agreeing upon a set of domain 
parameters that define the elliptic curve. These parameters are shown in the first 
step in Fig. 6, where the parameter p defines the field, a and b define the elliptic 
curve, G is the generator and n is its order, and h is the co-factor. Additionally, 
each ECU utilizes an asymmetric key pair for authentication operations (sign and 
verify). In the second step, each ECU generates a random private number (d1 in
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ECU 1 and d2 in ECU 2), which is not shared with any other ECU in the system. 
In step 3, ECU1 performs an elliptic curve scalar multiplication (hereafter referred 
to as scalar multiplication) of the private number d1 and generator G. The output 
Q1 is transmitted to ECU2 over an unsecured FlexRay bus. In step 4, a similar 
scalar multiplication between d2 and G is performed at ECU2, but the output Q2 

is not sent to ECU1. ECU2 then computes the common secret key K (session key) 
by performing the scalar multiplication of the private number d2 and the received 
output Q1. In step 5, ECU2 computes the signature (S2 ()) of the concatenation of 
Q2 and Q1 (represented as Q2 || Q1) using its private key of the asymmetric key 
pair. The output signature is encrypted (Ek ()) using the computed session key from 
the previous step, which produces the cipher α2. The scalar multiplication output 
(Q2), output cipher (α2), and certificate (Cert2) are all transmitted to ECU1 over the 
unsecured FlexRay bus. The certificate is issued by a trusted certificate authority 
(CA), which is used to prove the ownership of a public key. The certificate consists 
of the public key of the owner and signature of the CA and will be programmed 
in the ECUs by the manufacturer. The public key of the CA is used to verify the 
certificate and extract the public key of the owner. In step 6, when the ECU1 receives 
the output of step 5 from ECU2, it performs a scalar multiplication of private 
number d1 and Q2 to produce the shared secret key K (session key). Moreover, 
ECU1 utilizes the key K to decrypt (Dk ()) the received cipher (α2) and verifies 
(V1()) the decrypted output using the public key extracted from the certificate of 
ECU2 (Cert2). The session key K is accepted by ECU1 only when the verification 
is successful, implying a successful authentication of ECU2. In step 7, ECU1 
computes the signature (S1()) of the concatenation of Q1 and Q2 (represented as 
Q1 || Q2) using its private key of the asymmetric key pair. The resulting output is 
encrypted using the key K that generates the cipher (α1), which is transmitted to 
ECU2 along with the certificate (Cert1). Lastly, in step 8, at ECU 2, the received 
cipher (α1) is decrypted using the key K, and the output is verified using the public 
key extracted from the certificate of ECU1 (Cert1). The session key K is accepted to 
use for the session only when the verification is successful. Thus, all the ECUs are 
authenticated, and a common secret key (session key) is established at every ECU 
without actually exchanging the actual key over the unsecured bus. Additionally, 
the STS protocol uses no timestamps and provides perfect forward secrecy. Using a 
standard AES key schedule at every ECU, this session key is then used to generate 
128-bit, 192-bit, and 256-bit keys. These resulting keys are used for encrypting and 
decrypting messages at runtime. Moreover, in order to avoid interference with the 
time-critical messages, the messages related to the security operations utilize a small 
number of reserved FlexRay frames. To speed up the startup process, we assume 
that the manufacturer pre-programs some of the session keys during manufacturing. 
New keys are generated continuously during the idle time of an ECU, saved in local 
memory, and used in future sessions. To further speedup this process, the public keys 
of the trusted ECUs can be pre-programmed in the ECU’s tamper-proof memory, 
thereby avoiding the verification of the certificate, which saves both computation 
time and network bandwidth.
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Fig. 7 (a) Authenticated encryption at sender ECU; (b) Authenticated decryption at receiver ECU 

It is essential to highlight that, even if there was an attacker already in the system 
during the key setup phase, the attacker could not compute the secret key with the 
publicly available results due to the discrete logarithm problem [48]. Moreover, 
the common man-in-the-middle attack that breaks the standard Diffie-Hellman 
approach [49] fails with STS as the attacker cannot authenticate successfully. 

4.6 Authenticated Encryption/Decryption 

In this subsection, we discuss the various steps involved in authenticated encryption 
employed in SEDAN. Authenticated encryption refers to simultaneously providing 
a message with confidentiality and authenticity, which is a well-known technique in 
the literature. We discuss this step in detail here to highlight how SEDAN leverages 
this process to achieve a more secure runtime system. The authenticated encryption 
and decryption phases are illustrated in Fig. 7a, b, respectively. 

The authenticated encryption at the sender ECU begins with an XOR operation 
between the plain text (message data) and a nonce (random number), and the result 
is encrypted using AES with the key size assigned to the message (as discussed in 
Sect. 4.4). The XOR operation with a nonce is performed to avoid generating the 
same cipher every time when the input data is the same for long durations. Even 
though protecting the system from side-channel attacks is not within the scope of 
this work, this simple step could be the first step in preventing information leakage. 
A cryptographic hash function (MD5) takes the output cipher and the key used for
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encryption to produce a hash, which is XORed with a nonce to generate the MAC. 
The output MAC size is truncated if needed and set to be at least the size computed 
in Sect. 4.3. The generated MAC is then transmitted with the encrypted message 
data in the payload section of the FlexRay frame. 

The authentication decryption at the receiver ECU begins by authenticating the 
sender ECU of a received message. The received cipher and the selected key are 
given to the same cryptographic hash function whose result is XORed with a nonce 
to generate a local MAC. The authentication of the sender ECU is successful only 
when the local MAC matches the received MAC. Otherwise, the authentication 
process fails, and the received message is discarded. After successful authentication 
of a sender ECU, AES decryption is initiated, and the output is XORed with the 
nonce to extract the original message data as plain text. 

As discussed in Sect. 3.3, we mainly focus on protecting the system from 
masquerade and replay attacks as they are the most common, hard to detect, and 
severely impact system safety and performance. The system is protected against 
masquerade or impersonation attacks by authenticating the ECUs in the system 
using the STS protocol, which establishes the session keys used for encryption and 
decryption only after successful authentication. The attacker fails to authenticate 
due to the lack of trusted certificates and cannot masquerade as a legitimate ECU. 
Moreover, the MAC generated in the authenticated encryption protects the system 
from replay attacks. During the MAC generation, it is essential to XOR the output 
of the hash function with the nonce as it makes the messages resilient to replay 
attacks. During a replay attack, the authenticity of the replayed message fails as the 
nonce used in computing the local MAC at the receiver is different from the nonce 
used in generating the received MAC at the sender. This mismatch in MAC will 
result in discarding the message sent by the attacker. Moreover, in the event of a 
man-in-the-middle attack, where the attacker tries to modify the message payload, 
the MAC comparison fails, resulting in protecting the integrity of the messages. 
Also, if an attacker eavesdrops on the network, the attacker would still be unable 
to decrypt the encrypted messages, as no keys are exchanged on the network. In this 
manner, we achieve confidentiality of the message data. Hence, using the proposed 
SEDAN framework, we were able to achieve all the security objectives, namely 
confidentiality, integrity, and ECU authenticity (as discussed in Sect. 3.4). 

4.7 Runtime Message Scheduler 

Runtime message scheduling is the last step in the SEDAN framework. It takes the 
unique values of the cipher and MAC generated in the previous step and packs them 
into FlexRay frames generated during the frame packing step (Sect. 4.2). Other 
control fields, such as the fields in the header and trailer segments that are required 
for the transmission of FlexRay frames, are also added by the scheduler. The runtime 
scheduler uses the design time generated message schedule and interacts with the 
FlexRay protocol engine to schedule messages on to the FlexRay bus at runtime.
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5 Experiments 

5.1 Experimental Setup 

We evaluated the performance of our proposed SEDAN framework by comparing 
it with the best-known prior work [21]. In [21], the authors proposed a technique 
that uses simulated annealing to minimize the end-to-end latencies of all in-vehicle 
network messages and uses symmetric key encryption with the time-delayed release 
of keys to improve security in a vehicle system. Since [21] does not support 
variable key sizes, three different variants of [21] are implemented using AES 
encryption with fixed key sizes of 128, 192, and 256 bits, which are referred to 
as ‘Lin et al. AES-128’, ‘Lin et al. AES-192’, and ‘Lin et al. AES-256’ respectively 
in the experimental results. We generated several test cases based on automotive 
network and ECU computation data extracted from a real-world vehicle (2016 
Chevrolet Camaro) that we have access to. We modeled the network and ECU 
computation data as directed acyclic graphs (DAGs), which were generated using 
TGFF [50]. We developed multiple synthetic test cases by scaling this data based 
on different combinations of the number of ECUs, number of applications, number 
of tasks in each application, and the range of periods. Moreover, we assume that 
the deadline for both tasks and messages are equal to their period. Lastly, we 
considered the FlexRay 3.0.1 [51] protocol with the following network parameters 
for all experiments: cycle duration of 5 ms with 62 static segment slots, with a slot 
size of 42 bytes, and 64 communication cycles. 

5.2 Benchmarking Encryption Algorithms 

To accurately capture the runtime behavior of session key generation and authenti-
cated encryption/decryption steps, we implemented various encryption algorithms 
in the software. We implemented AES-CBC with key sizes of 128, 192, and 256 
bits, RSA with key sizes of 512, 1024, 2048, and 4096 bits, and the ECC with key 
sizes of 256 and 384-bits using OpenSSL [52]. All these algorithms were executed 
on an ARM Cortex-A9 CPU on a ZedBoard, which has similar specifications as 
state-of-the-art ECUs [53, 54]. 

Table 1 shows the average AES encryption/decryption times with different 
standard key sizes for one block of data (16 Bytes) on an ARM Cortex A9 CPU. 
These values are used to model the latency overhead on each message due to 
the added security mechanisms at design time. They are also used in scheduling 
decisions and computing the response time of the messages. The encryption and 
decryption times of RSA with 512, 1024, 2048, and 4096-bit keys and ECC with 
256 and 384-bit keys are also shown in Table 1. These values are considered 
in choosing between RSA and ECC as the cryptographic scheme in the STS 
protocol. The NIST recommends a key size of 2048-bits for RSA [55], while
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Table 1 Execution time (ms) of AES, RSA, and ECC on ARM Cortex A9 

Cryptographic scheme Key size Encryption / Decryption 
AES 128 0.35 

192 0.393 
256 0.415 

Cryptographic scheme Key size Public key operation Private key operation 
RSA 512 2.01 19.89 

1024 6.48 139.15 
2048 23.65 911.8 
4096 91.52 6283.2 

ECC 256 59.8 17.1 
384 182.4 50.4 

NSA recommends a 256-bit key size for SECRET level and a 384-bit key size 
for TOP SECRET level using ECC [56]. Moreover, ECC with 224, 256, and 384-
bit key sizes provides similar security as RSA with 2048, 3072, and 7680 key 
sizes, respectively [57]. In this work, we consider the minimum key sizes based 
on the above-mentioned recommendations. From Table 1, it can be seen that RSA is 
faster for verifying signatures (operation performed using the public key) and much 
slower for generating signatures (operation performed using the private key). On 
the other hand, ECC is much faster for generating signatures while relatively slower 
for verifying signatures. It is important to note that the security (provided by RSA 
using the equivalent key size) doubles when the ECC key size is increased from 256 
to 384. However, since the automotive systems are highly resource-constrained, we 
choose to employ ECC with a 256-bit key size (which still provides higher security 
than the minimum recommended key size for RSA) for cryptographic operations 
in the STS key agreement protocol. Moreover, the ECC execution time values are 
used in estimating the worst-case time required for setting up a session key, which 
is 0.24 s for a 256-bit key, while an equivalent RSA 2048 takes 3.72 s. Thus, 
it is evident that ECC is much faster than RSA for a similar level of security. 
Moreover, ECC can provide a similar level of security compared to RSA, with a 
much shorter key size. Lastly, when we profiled the MD5 hashing algorithm used 
in the authenticated encryption step, we observed that processing one block of data 
takes about 2.68 μs. 

Moreover, with the increasing complexity of automotive applications, designing 
security mechanisms that result in minimal power consumption is crucial. Hence, 
we profiled the security mechanisms studied in this work and presented the power 
consumption results in Table 2. Other overheads, such as memory consumption, are 
not explicitly modeled as most modern-day ECUs have sufficient memory to store 
the small keys needed for secure transfers. Additionally, the designer can limit the 
number of pre-computed session keys that can be stored to minimize the memory 
overhead. Based on the results in Tables 1 and 2, it is evident that ECC has lower 
computation and memory overhead than RSA for the same level of security. Hence, 
in SEDAN, we authenticate the ECUs in the system and setup session keys using the
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Table 2 Power consumption of AES, RSA and ECC on ARM Cortex A9 

Cryptographic scheme Key size Encryption / Decryption 
AES (mW) 128 57.76 

192 58.04 
256 60.19 

Cryptographic scheme Key size Public key operation Private key operation 
RSA (W) 512 0.28 0.65 

1024 0.34 1.22 
2048 0.72 1.91 
4096 1.08 2.58 

ECC (W) 256 0.62 0.33 
384 0.93 0.58 

STS protocol using the ECC. Additionally, we use AES to encrypt and decrypt the 
messages in the system using the keys computed from the session key. 

5.3 GRASP Parameter Selection 

To get an efficient solution using the GRASP, it is essential to select the appropriate 
values for the threshold parameters α and βmax. We ran a series of simulations 
by changing the value of α from 0 to 1 with an increment of 0.2, and the greedy 
randomized construction phase was run 1000 times using different input test cases. 
We observed that the mean solution approached a greedy solution, while the 
variance approached zero as α tends to 1. On the other hand, when α is small and 
close to zero, the mean solution approaches a random solution with high variance. 
Therefore, we selected α = 0.8, which provided a good quality solution to the local 
search phase that resulted in a near greedy solution in the presence of a relatively 
large variance. 

Moreover, we observed that βmax = 3 provided enough randomness to look for 
other solutions in each iteration of the local search phase. A higher value of βmax 

could result in an exhaustive local search leading to unreasonably long computation 
times. Also, the minimum value of β needs to be 2 to increase the key size of at 
least one message when the key size is reduced in the event of a destroy operation. 
This prevents the generation of a solution that results in lower ASV compared to 
the solutions in previous iterations. Lastly, a relatively small value for pkd = 0.3 is 
chosen to avoid frequent key size decrements.
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5.4 Response Time Analysis 

In this subsection, we present the response time analysis by comparing our proposed 
SEDAN framework with the three variants of [21]. Response time of a message is 
defined as the end-to-end latency, which is the aggregate of the time for encryption 
and MAC generation, and queuing delay at the sender ECU; transmission time on 
the Flexray bus, and the time for MAC verification and decryption at the receiver 
ECU. We evaluated our proposed SEDAN framework, and the comparison works 
using three different test cases: (1) low input load- system with 5 ECUs (3 single-
core and 2 dual-core) and 77 tasks that produced 57 (time-triggered) signals; (2) 
medium input load- system with 12 ECUs (9 single-core and 3 dual-core) and 126 
tasks with 93 signals; and (3) high input load- system with 16 ECUs (12 single-core 
and 4 dual-core) and 243 tasks with 196 signals. The average message response 
time for the low, medium, and high input load cases with their deadlines on the x-
axis is illustrated in Figs. 8(a–c). The confidence interval on each bar represents the 
minimum and maximum average response time of messages. The dashed horizontal 
lines represent different message deadlines. The number on top of each bar is the 
number of deadlines misses. 

From Figs. 8(a–c), it is clear that SEDAN outperforms the three variants of 
[21] and achieves significantly lower average response times for all the messages 
under all input load cases. SEDAN achieves this by balancing security and real-
time performance goals by optimizing key sizes while meeting message security 
requirements and ensuring that all ECU utilizations are below 100%. This prevents 
the messages from experiencing additional delays on top of the latency caused by 
the encryption-decryption processes. Moreover, all three variants of [21] experience 
significant authentication delays (time taken from the transmission of the message 
to decryption of the message) compared to SEDAN, which increases the response 
time of the messages when using [21]. These high authentication delays in [21] are  
because of the time-delayed release of keys, which is employed in all three variants 
of [21]. Also, the periodic computation of keys in every session at each ECU in all 
three variants of [21] results in high ECU utilization overhead resulting in increased 
response time and power consumption. Lastly, the requirement of large message 
buffers to hold multiple messages for longer durations in [21] (due to the time-
delayed release of keys) further increases power consumption and response time. 

5.5 Security Analysis 

Table 3 shows the number of security violations in each technique under three 
different input load cases (as discussed in the previous sub-section). A security 
violation is defined as an instance when the derived security constraints (defined 
in Sect. 4.3) for a message are not met. From Table 3, it can be seen that the SEDAN 
and Lin et al. AES-256 are the only techniques that do not violate any security
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Fig. 8 Comparison of the average response time of all messages under (a) low; (b) medium, and 
(c) high input application load conditions for Lin et al. AES-128, AES-192, AES-256 [21], and 
SEDAN (with the number of missed deadlines shown on the top of the bars)
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Table 3 Total number of security violations for each input load configuration 

Framework Lin et al. 128 Lin et al. 192 Lin et al. 256 SEDAN 

Low load 28 12 0 0 
Medium load 45 16 0 0 
High load 96 31 0 0 

Fig. 9 Comparison of aggregate Security Value (ASV) under each input load configuration for 
Lin et al. AES-128, AES-192, AES-256 [21], and SEDAN (with the number of missed deadlines 
on top of bars) 

requirements. However, it is essential to note that, unlike SEDAN, Lin et al. AES-
256 has no intelligent key size assignment scheme and assigns all the messages with 
256-bit keys irrespective of their ASIL group, which helps in meeting the message 
security requirements. But this results in increased ECU utilization, which in turn 
incurs additional latency overheads for messages. Moreover, unlike all three variants 
of [21], SEDAN does not exchange or release keys on an unsecured communication 
bus. This helps prevent an attacker from gaining knowledge about the current and 
previously used keys, which provides additional security to the systems. SEDAN 
also does not require frequent key computation at each ECU within a single session, 
as done in [21], which helps reduce utilization overheads in ECUs when SEDAN is 
employed. 

Lastly, the ASV for the three input load cases, with numbers on top of each bar 
showing the number of messages that missed deadlines, is illustrated in Fig. 9. It  
can be seen that Lin et al. AES-256 achieves the highest ASV. However, this comes 
at the cost of multiple missed deadlines. Thus, SEDAN is able to satisfy minimum 
security requirements (i.e., all messages have at least the minimum key size required 
by the designer) and all real-time deadlines for all messages while providing an ASV 
value that is higher than that for Lin et al. AES-128 and Lin et al. AES-192.
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Thus, SEDAN represents a promising framework that can intelligently manage 
the limited computing resources in vehicles while improving the overall security 
of the system. Moreover, from Fig. 9 and Table 3, it is evident that SEDAN is 
able to do a better job of balancing security and real-time performance goals by 
intelligently optimizing key sizes and accurately integrating overheads of security 
primitives while making task and message scheduling decisions. 

6 Conclusions 

In this chapter, we presented a novel security framework called SEDAN that 
combines design time schedule optimization with runtime symmetric key manage-
ment to improve security in time-critical automotive systems without utilizing any 
additional hardware. We demonstrated the feasibility of our SEDAN framework 
by implementing cryptographic algorithms on real-world processors. Moreover, 
the experimental results indicate that SEDAN is able to reason about security 
overheads to intelligently adapt security primitives during the message and task 
scheduling, ultimately ensuring that both security and real-time constraints are met. 
Such a framework promises to be extremely useful as we move towards connected 
autonomous vehicles with large attack surfaces by enabling security to be a first-
class design objective without sacrificing real-time performance objectives. 
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Secure by Design Autonomous 
Emergency Braking Systems in 
Accordance with ISO 21434 

Adriana Berdich and Bogdan Groza 

1 Introduction 

In the past century, vehicles mediated a dramatic change of our ecosystem, not 
only by allowing us to safely travel over great distances but also by allowing us to 
change the environment in which we live by deploying cutting-edge infrastructure 
that would have been impossible to build on human power alone. More recently, the 
degree of autonomy of vehicles drastically improved. This happened not only by 
the introduction of various driver assistance technologies, such as automatic cruise 
control and autonomous emergency braking systems, but also with basic self-driving 
capabilities that are going to be extended until fully autonomous vehicles will travel 
the roads. Being such an important asset and now having such an enormous potential 
for being controlled by malicious pieces of software, it is no surprise that vehicles 
become a potential cybersecurity target. 

Fortunately, so far, attacks on vehicles have been only demonstrative in nature, 
such as the experimental analysis provided the research in [8], a now famous attack 
on a Jeep car [21], and more recently some remote attacks on TESLA cars [25]. 
As security become manifest, the stakeholders had to react with standards and 
regulations that facilitate the deployment of security countermeasures and the proper 
incident response mechanisms. The array of standards ranges from AUTOSAR 
requirements on cryptography layers and secure on-board communication [3] to the  
more recently released requirements for intrusion detection systems on Electronic 
Control Units (ECU) [2]. In parallel to these, standards for security evaluation and 
for the assessment of security incidents were released. These include the more recent 
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Fig. 1 Car equipped with camera and radar sensors for driver assistance or partial autonomous 
driving 

ISO 21434 [15] containing the cybersecurity guidelines which we will follow in this 
work. 

The introduction of these standards provides enormous help for an industry 
which now produces almost 80 million vehicles each year. But the problems are 
far from being solved since specifications inside standards do not provide the exact 
procedures and security mechanisms to mitigate the attacks which are up to the 
manufacturer. And more, no security mechanism is perfect and manufacturers have 
to imagine clever ways to mitigate the attacks. For this reason, we will focus on a 
secure-by-design Automatic Emergency Breaking (AEB) system, a system which 
is intended to trigger the brakes in order to avoid collisions with another vehicle 
or pedestrian. A car equipped with an AEB system and various other sensors is 
suggested in Fig. 1. Various long or short-distance radars and cameras report data to 
an Advanced Driver-Assistance Systems (ADAS) ECU which decides to request 
braking to the Electronic Stability Control (ESC) ECU. More details about this 
architecture will be added in a forthcoming section. To facilitate a security analysis 
according to ISO 21434 [15] we will need to proceed to a more in-depth evaluation 
at the control system level, clarifying the security mechanisms that should be put in 
place as well as the effects of various types of attacks. 

The exposition in this chapter is structured as follows. We begin by providing 
some background for the reader that is unfamiliar with the AEB system and ISO 
21434 in Sect. 2. Then we proceed to an in-depth analysis on adversary actions and 
their impact on the AEB system in Sect. 3. This is the most demanding section of our 
work and is extremely important since it allows us to set room for the exact security 
specifications for such systems. In Sect. 4 we proceed to an analysis following the 
ISO 21434 activities leading to specific security goals. Finally, Sect. 5 holds the 
conclusion of our work.
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2 Background 

In this section we set a brief background on the AEB system that will serve to us as 
a case study and on ISO 21434 which provides the guidelines for a security-aware 
design. 

2.1 The AEB System in a Nutshell 

The Automatic Emergency Braking (AEB) is one of the main ADAS functionalities 
designed to detect slow or stopped vehicles and pedestrians ahead and to trigger the 
brakes immediately. It is thus a system that can save the lives of passengers and of 
the traffic participants, pedestrians in particular. Other ADAS functionalities include 
the Adaptive Cruise Control (ACC) which is present in many older vehicles as well 
and the more recent Blind Spot Monitoring (BSM), Forward Collision Warning 
(FCW), Lane Departure Warning (LDW) and Lane Keeping Assist (LKA). As the 
names suggests, these systems ensure that the driver is signalled for the presence of 
objects on the sides (BSM), the approach toward a stationary object on the front 
(FCW) or the departure from the lane (LDW), eventually helping the driver by 
keeping the car to follow the lane (LKA). To provide a crisper case study, we will 
focus on the AEB system alone. 

The scope of the AEB module is to prevent the accidents or to minimize the 
injuries resulting from such accidents by reducing the vehicle speed automatically 
when an obstacle, e.g., bicycle, pedestrian or sudden braking of the lead vehicle, is 
detected with the help of the long-range radar and front camera. The AEB system 
has more than a decade of use, Volvo first introduced the system in 2009. Since 2014, 
the European New Car Assessment Program (Euro NCAP)1 introduced specific 
evaluations for the autonomous braking in the AEB City and AEB Interurban tests 
for low speed and high speed scenarios. The AEB feature is available in the majority 
of the recently released cars thus becoming an ubiquitous functionality. 

The AEB module is a safety component and is part of the Forward Collision 
Avoidance (FCA) system. In Fig. 2 we give an overview of the AEB system function 
suggesting one vehicle that approaches a pedestrian. When the front camera and 
the front long-range radar detect the obstacle, an acoustic signal is activated and a 
visible warning light for the driver is displayed on the cluster. Afterwards, three 
braking stages follow: a first stage of slow pre-braking (partial braking), then a 
second stage of intensive pre-braking (partial braking) and finally the full braking 
stage. This image should be sufficient to understand the functionality of the AEB, 
the concrete system model will be detailed later.

1 https://www.euroncap.com/en/vehicle-safety/safety-campaigns/2013-aeb-tests/. 
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Fig. 2 Overview of the AEB system signalling and actions 

2.2 Overview of ISO 21434 Activities 

The automotive industry heavily relies on the V model for the development cycle of 
in-vehicle components. There are good reasons behind this choice, the most relevant 
being the rigorous interaction between the design and testing stages. It is no coin-
cidence that a similar view can be expressed for the cybersecurity-aware design of 
in-vehicle components. On the left side of Fig. 3 we illustrate a generic development 
cycle in the automotive industry as a V model. It starts on the left branch with 
the stakeholder’s requests which come from costumers and legislation, followed by 
requirement engineering, architecture design, software design, implementation and 
integration. On the right branch we have software testing, system testing, system 
validation and finally the homologation of the product. Similarly, on the right side 
of Fig. 3 we depict as a V-model the cybersecurity related tasks according to ISO 
21434 using some of the activities outlined in Annex A of the standard. They start 
on the left branch with the item definition, followed by a Threat Analysis and Risk 
Assessment (TARA) then the definition of the cybersecurity goals and claims, the 
cybersecurity concept, specification and requirements and finally the integration and 
verification. On the right branch there are verification reports for each of these 
steps culminating with a final validation. In the cybersecurity related V model 
from Fig. 3b we highlight the first four steps, from item definition to cybersecurity 
specifications and requirements which are the subject of our analysis in this work. 
These four activities will be detailed for our AEB model in a forthcoming section. 

Although it was published less than one year ago, it is worth mentioning that 
ISO 21434 has been already also used in several recent works. An earlier overview 
of ISO 21434 can be found in [18]. A whitepaper which places ISO 21434 in 
the context of other automotive and cybersecurity standards is also made available 
by BSI Group (British Standards Institution) [6]. A tool entitled ThreatGet which
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Fig. 3 Development cycle in the automotive industry as a V model (a) and cybersecurity related 
activities according to ISO 21434 expressed as a V-model (b)
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is compliant to the ISO 21434 is proposed by the authors in [30]. The authors 
exemplify the use of the tool that they design for an automotive gateway ECU. As 
underlined by the authors [30], the analysis which ISO 21434 facilitates is an asset 
driven security analysis which focuses on assets to determine the impact as well as 
the attack path—this requires specific treatment for each component. The authors 
in [27] present an ISO 21434 risk assessment methodology. The risk assessment 
they propose is based on an offline phase, which assess the damage scenarios and 
asset dependencies, etc., and on an online phase which assess the risk of a reported 
incident. Another attack surface assessment based on ISO 21434 is presented in 
[26]. Their analysis is mostly focused on the attack feasibility rating. This rating 
along with the impact rating can be used to determine the risks according to ISO 
21434. The analysis that we perform here on the AEB system is in-line with the 
previously mentioned works as we follow the same specifications from ISO 21434. 
What differs is the component on which we focus and the in-depth adversary model 
and protection mechanisms at the control system level which are not present in the 
previously mentioned works. 

It is also worth mentioning that there are several other works concerned with 
security assessments for automotive components, which were published well before 
the release of the ISO 21434. Maybe the earliest is [13] which tries to drive 
security requirements from various threat scenarios, including ECU corruption and 
spoofed CAN messages, etc. An analysis centered on the use of the Body Control 
Module (BCM) as the critical gateway component is done in [11]. The work in 
[12] performs a similar risk analysis but it is centered on vehicle instrument clusters 
which can be corrupted to mislead the driver and thus cause accidents. Another risk 
and countermeasure analysis was done in [4]. The authors in [28] discuss a risk 
assessment and cybersecurity analysis based on ISO/IEC 27001. In [34] another 
cybersecurity risk assessment is discussed which accounts for several types of 
attacks on the CAN bus. 

3 In-Depth Analysis of Adversarial Actions on AEB Control 
Systems 

Existing research works that apply the ISO 21434 security standard, generally take 
a straight forward way in classifying adversary actions and their impact based on 
generic assumptions regarding the attack of a component. Here we will proceed to 
a more in-depth analysis that accounts for exact adversarial manipulations of CAN 
frames and we try to determine the exact impact that these actions will have on 
safety. This analysis is needed in order to accurately assess the risks and understand 
the countermeasures.
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3.1 Detailed AEB System Model 

In order to simulate the vehicle reaction in case of distinct attacks on the CAN 
bus, we will use an existing Simulink model for Autonomous Emergency Braking 
with Sensor Fusion from MathWorks2 and add adversarial behaviour to the model. 
Other works have also used Simulink models to test and validate attacks from the 
CAN bus. For example, the authors in [9] use a Simulink model of the Anti-lock 
Braking System (ABS) developed by Mathworks to test a multilevel monitor for 
the isolation and detection of attacks over the senors and CAN bus for a Cyber 
Physical System (CPS). In [17] an ACC model from Simulink is used to validate a 
method for the detection and mitigation of spoofing attacks on the radars which are 
used by the ACC system. The authors check the integrity of the radar sensor data 
based on a spatio-temporal challenge-response (STCR) which transmits signals in 
random directions and identifies then excludes signals reflected from untrustworthy 
directions. 

In Fig. 4 we depict the model of the AEB and the placement of six potential 
adversaries denoted as A1–A6. The Simulink AEB model contains two functional 
parts, the AEB functionality and the vehicle and environment component. The AEB 
functionality is also split in two ECUs: Camera/Radar ECU and AEB/ADAS ECU. 
The Camera ECU acquires data from the hardwired components, i.e., camera and 
radar, based on which it derives the information about obstacles and computes 
the relative distance and velocity which are transmitted to the ADAS ECU using 
the Private CAN bus communication (Pr-CAN). The ADAS ECU, in addition to 
this information received from the Camera ECU, also receives the longitudinal 
velocity from the ESC ECU using the Chassis CAN bus communication (C-CAN). 
The ADAS ECU implements an AEB controller which computes the deceleration 
request needed to stop the vehicle in order to avoid the collision with the obstacle, 
i.e., the pre-braking stages which is the AEB status. Additionally the ADAS ECU 
implements a speed controller (designed as a PID controller) to determine the 
required acceleration in order to maintain the ego velocity setpoint, i.e., the throttle. 
Finally, based on the AEB status and the internally computed acceleration, the 
ADAS ECU computes the throttle position. The deceleration request and the throttle 
position are transmitted over the C-CAN to the ESC ECU which controls the 
vehicle based on the requested commands. Additionally, in our model, the ESC 
ECU computes the vehicle position and trajectory represented as: XY position, 
XY velocity, yaw rate, yaw angle and longitudinal velocity. For simplicity, in the 
Simulink scenario, the curvature of the road is set as a constant. As stated, there are 
six adversary positions in Fig. 4, representing the six signals which can be attacked 
in the model.

2 https://nl.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-
fusion.html 



162 A. Berdich and B. Groza

3.2 Adversary Model and Attack Strategies 

For an accurate description of the attacks at the control system level, we need 
to formalize the adversarial actions. The adversary actions consist in manipu-
lating a specific signal and we will use .y�(k) to denote a signal at step k 
which is a positive integer, i.e., .k ∈ Z+

N , and . � is a placeholder to denote 
the six possible adversaries A1–A6 on six possible signals: deceleration (i.e., 
the braking stages), acceleration, ego velocity, relative distance, relative velocity 
and curvature (each corresponding to the 6 location points in Fig. 4), i.e., . � ∈
{brake, throttle, vego, rdist, rvel, curvature}. Then the value of .y�(k) at each step 
will be either the legitimate signal .y�(k) or a signal originating from the adversary 
.̃y�(k). For example, .yvego(k) will be the legitimate signal for ego velocity and 
.̃yvego(k) is the adversarial signal corresponding for the ego velocity. 

Most, if not all, of the existing works focusing on attacks and intrusion detection 
for CAN buses consider three types of attacks: replay, Denial of Service (DoS) and 
fuzzing attacks. These attacks can be easily formalized as follows: 

1. replay attacks—by this attack, CAN frames are re-transmitted, possibly with a 
random delay, containing previously recorded signals, i.e., . ̃y�(k) ← y�(i), i <

k

2. fuzzing attacks—are a modification attack in which random values are injected in 
the datafield of CAN frames, essentially meaning that the attack signal becomes 
a random value, i.e., .̃y�(k) ← rand, 

3. DoS attacks—prohibit CAN frames from being transmitted on the bus and are 
specifically difficult to address since an adversary can always write high priority 
frames on the bus or even destroy legitimate frames with error flags or by 
distortions of the data-field that deem them unusable, which means that the 
signals are effectively lost, i.e., .̃y�(k) ←⊥. 

For all of the previous attacks, in the later model where we evaluate them, we 
assume a probability of occurrence, simply denoted as p, which is the probability 
of an adversarial signal (or CAN frame) to replace a legitimate one. Assigning a 

Fig. 4 The AEB model with the attach surfaces
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probability to the event of an attack is in line with the practical side of the problem 
since adversaries usually insert manipulated frames that compete with legitimate 
frames on the bus. This also responds to the situation in which an intrusion detection 
system is in place on the controller and only some of the adversary frames will go 
undetected and accepted as legitimate. 

Still, these three types of attacks described above are insufficient for giving 
a complete image over both the attacker and defense capabilities. Notably, an 
intrusion detection system may be into place and arithmetic attacks which take 
advantage of the system model and inject specific values that are expected to cause 
a particular behavior of the car may be an option. Such a scenario has received 
little or no attention at all in the research literature related to car security. A reason 
for which will carefully examine three flavours of stealthy attacks which were also 
pointed out in well known control system security paper [7]. These include three 
flavours of stealthy attacks: surge attacks, bias attacks and geometric attacks [7]. 

For this reason, let us consider that an intrusion detection system may be 
in place. The problem addressed by an intrusion detection system is thus to 
distinguish between the two values .y�(k) and .̃y�(k),∀k ∈ Z+

N . Since no intrusion 
detection system is perfect, a small false negative rate exists, i.e., some of the 
adversarial frames may go undetected. To introduce more specialized attacks and 
countermeasures, we may consider that a simple change detection algorithm stays 
at the core of the intrusion detection method implemented on the ECU. Such an 
algorithm may account for statistical distances between value and various range 
checks. The work in [7] dedicated to control systems security, suggests the use of 
cumulative sums (CUSUM) statistics over the reported value and some predicted 
value for the same signal. This methodology is indeed well suited for our scenario 
since we can infer the value of one signal from another signals available in the car. 
For example, using the relative velocity reported by a radar and the velocity of the 
car, we can compute the distance to the object and compare it with the reported one, 
etc. Generally speaking, having the predicted value of the signal . y′

�(k) and a bias b 
we can use the following recurrent sum to detect an attack [7]: 

. S�(k) = max
{

0, S�(k − 1) + |y�(k) − y′
�(k)| − b

}

, S(0) = 0

Whenever the error between the predicted value and the reported value is greater 
than the bias b, the error is added and, when the sum reaches a signalling threshold 
. τ , the signal will be deemed as adversarial. That is, if .S�(k) > τ we consider . y�(k)

to be an attack signal and if .S�(k) ≤ τ we consider .y�(k) to be legitimate. Having 
this change detection procedure in mind, an adversary can mount the following three 
stealthy attacks that are described in [7]: 

1. surge attacks—are the modification attacks in which the value of the signal is set 
to the maximum value (or minimum value) such that it will inflict the maximum 
damage on the system; to remain stealthy and go undetected by the cumulative 
summing, the attack value at step .k + 1 will be .y�,max only if the corresponding 
sum at the next step .S�(k + 1) ≤ τ while otherwise the attack signal will stay at
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.y′
�(k) + |τ + b − S�(k)| (note that in this way .|τ + b − S�(k)| is the maximum 

value that can be added to the legitimate signal such that an intrusion will not be 
detected). 

2. bias attacks—are the modification attacks in which a small constant . c = τ/n+b

is added at each step to the attacked signal, i.e., .̃y�(k) ← y�(k) + τ/n + b, 
ensuring that the attack remains undetected for n steps (this happens so since the 
threshold is divided over the n steps of the attack), 

3. geometric attacks—are the modification attacks in which a small drift is added to 
the attacked signal in the beginning and the drift becomes increasingly larger in 
the next steps using a geometric expansion, i.e., .̃y�(k) ← y�(k) + βαn−k where 

. α is fixed and .β = (τ+nb)(α−1−1)
1−αn . 

To sum up, in the light of these attack strategies, we are concerned with assessing 
the impact of two kinds of adversarial actions: those attacks that will go undetected 
due to the non-zero false negative rate of the in-vehicle IDS and the stealthy attacks 
in which adversary actions deviate by a small margin from the predicted values, thus 
remaining undetected. We discuss the impact of the attacks in what follows. 

3.3 Attack Evaluation on the AEB Model 

One of the test scenarios from the Euro NCAP car safety performance assessment 
programme [33] is the Car-to-Pedestrian Nearside Child test dedicated to the AEB 
functionality. In Fig. 5 we depict this scenario. Two vehicles are stationary on the 
right side of the road and there is a pedestrian nearby, crossing the road at one 
meter from the cars. The ego vehicle is travelling on the left lane of the road, the 
view of the pedestrian crossing is obstructed for the driver. The AEB system has to 
activate the automatic braking in order for the car to stop and avoid collision with 
the pedestrian. 

This scenario is used in the Simulink model as well and we will analyze the 
adversarial impact on it. We consider attack points A1–A5 and leave A6 outside the 
discussion since A6 represents the curvature of the road and attacking this value will 
lead the vehicle outside the lane, not causing a collision with the pedestrian in front 

Fig. 5 Overview of the AEB scenario
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which is our attack target. An attack on the curvature is relevant, but will not fit our 
specific use case. More, the countermeasure which we later propose will hold for 
manipulating data related to A6 as well. 

Signal Interpretation To clarify the impact of the attacks, in Figs. 6, 7 and 8 we 
illustrate the signals starting from a clear scenario without adversarial interventions 
and then add several types of attacks to the signals. We show the plot markers for 
each signal in Fig. 6 which corresponds to the case when there is no adversarial 
intervention. We use two types of plots: (i) FCW/AEB status plots which show 
the status of the collision warning and deceleration/acceleration stages and (ii) 
velocity/distance plots which show the velocities and the distances toward the object 
in front. Note that each plot has distinct axes on the left and right side. For the 
FCW/AEB status, we plot the status signals on the left axis (marked with black) and 
the accelerations measured in .m/s2 on the right axis (marked with gray). The status 
signal from the left axis includes the signal which indicates the activation of the 
FCW with solid line, AEB status (braking stages) with dashed line and the signal 
which indicates that the ego car was stopped which is marked with a dashed-dotted 
line. On the right axis, we plot the deceleration with dotted line and the acceleration 
with a dotted line marked by circles. For the velocity/distance plots, we again plot 
two axes, one for the velocity and another one for the distance. The signals plotted 
on the left axis (marked with black) are the following: the preset velocity for the 
vehicle marked with dashed-dotted line, the ego velocity marked with solid line and 
the relative velocity marked with dashed line. The signals plotted on the right axis 
(marked with gray) are the following: the relative distance marked with dotted line 
and the headway marked with dotted-circle line. 

Attack-Free Scenario A few words on the plots for the attack-free scenario may 
be helpful. In Fig. 6 we illustrate the signals without the adversarial interventions. 
As the relative distance between the ego car and the obstacle becomes lower than 
15 meters (velocity/distance plot), the FCW system becomes active (FCW/AEB 
status) and the AEB begins the braking stage for the car. As expected, the AEB 
status follows the three pre-braking stages until the car is stopped. The acceleration 
is decreasing during braking, thus the ego velocity is decreasing from the preset 
velocity until the car eventually stops. The dotted line marked with circles shows 
the headway which is the difference between the relative distance and the length of 
the car (the headway is about 2 meters when the cars stops). 

Replay Attacks In Fig. 7 we depict the AEB signals under a replay attack on the 
braking (deceleration) signal and the adversarial signal .̃ybrake(k) corresponding 
to the deceleration. To inflict maximum damage, the replayed valued for the 
deceleration is the minimum value known to the intruder, i.e., .̃ybrake(k) = 0. We  
will use the following attack probabilities: .p = 0.25, .p = 0.5 and .p = 0.75. In  
the FCW/AEB status plots from Fig. 7 it can be easily observed that the adversarial 
signal .̃ybrake(k) corresponding to deceleration (gray dotted line) is set to zero more 
often when the attack probability is increasing, which means that the adversary 
deactivates the brake request more often. In the velocity/distance plots from the
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Fig. 6 Signals without adversarial intervention. (a) FCW/AEB status plot. (b) Velocity/distance 
plot 

Fig. 7 we depict the response of the car to the attack. The ego velocity (black solid 
line) in Fig. 7b is 0 km/h when the headway is 0.19 meters which means that there is 
no impact at an attack probability of .p = 0.25. In Fig. 7d, the ego velocity is 25.53 
km/h when the headway is 0 meters which means that at an attack probability of 
.p = 0.5 the impact will take place. In Fig. 7f, the ego velocity is 42.08 km/h when 
the headway is 0 meters which means that at an attack probability of .p = 0.75 again 
there will be an impact at a considerable speed. As expected, the impact severity of 
the attack is increasing with the attack probability. 

Fuzzing Attacks In Fig. 8 we illustrate the signals when fuzzing attacks take place, 
with an attack probability of .p = 0.5, on three attack surfaces A1, A3 and A4. 
In Fig. 8a, b we depict the impact for a fuzzing attack on the deceleration signal. 
The adversarial signal .̃ybrake(k) corresponding to deceleration (gray dotted line) has 
random values which reduce the brake intensity or even deactivate the brake request 
in order to produce impact. The ego velocity (black solid line) is 50.54 km/h when 
the headway is 0 meters which means that when the fuzzing attack on deceleration 
takes place with probability of .p = 0.5 it induces an impact at considerable speed. 
In Fig. 8c, d we show the fuzzing attack on acceleration. The adversarial signals
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Fig. 7 Signals after a replay attack on deceleration .ybrake with distinct attack probabilities: (a) 
.p = 0.25—FCW/AEB status, (b) .p = 0.25—velocity/distance plot (c) .p = 0.5—FCW/AEB 
status, (d) .p = 0.5—velocity/distance plot, (e) .p = 0.75—FCW/AEB status and (f) .p = 0.75— 
velocity/distance plot 

.̃ythrottle(k) do not significantly impact the functionality of the AEB system. The car 
is stopped in time, in some cases only the FCW is activated after the car is stopped. 
In Fig. 8e, f we depict the impact of a fuzzing attack on the relative distance signal.
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Fig. 8 Signals under fuzzing attack with attack probability of .p = 0.5 on: (a) decelera-
tion .ybrake—FCW/AEB status, (b) deceleration .ybrake—velocity/distance plot, (c) acceleration 
.ythrottle—FCW/AEB status, (d) acceleration .ythrottle—velocity/distance plot, (e) relative distance 
.yrdist—FCW/AEB status and (f) relative distance .yrdist—velocity/distance plot 

The adversarial signal .̃yrdist(k) corresponding to the relative distance (gray dotted 
line) produces a delay in the activation of the AEB system which causes an impact 
at a velocity of 45.61 km/h.
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Table 1 AEB results: collision velocity and distance to target in case of replay, fuzzing and DoS 
attacks at various success rates 

.p = 0.25 (0.2 for DoS) .p = 0.5 .p = 0.75 (0.7 for DoS) 

Attack Signal Collision 
veloc-
ity[km/h] 

Distance 
to 
target[m] 

Collision 
veloc-
ity[km/h] 

Distance 
to 
target[m] 

Collision 
veloc-
ity[km/h] 

Distance 
to 
target[m] 

Replay A3: 
decelera-
tion 

No coll. 0.19 25.53 0 42.08 0 

Fuzzing A3: 
decelera-
tion 

43.99 0 50.54 0 57.27 0 

A4: 
throttle 

No coll. 2.32 No coll. 2.37 No coll. 2.26 

A1: 
relative 
distance 

33.89 0 45.61 0 45.61 0 

A2: 
relative 
velocity 

No coll. 1.32 No coll. 1.32 No coll. 1.32 

A5: long. 
velocity 

No coll. 1.46 No coll. 1.46 No coll. 1.90 

DoS A3: 
decelera-
tion 

No coll. 1.32 9.01 0 32.33 0 

DoS Attacks In case of DoS attacks we chose to apply the attack again only on 
deceleration signal. Since our simulation is running with a step of 0.1s we can 
simulate only the attack probabilities which are multiple of 0.1, i.e., .p = 0.2, 
.p = 0.5 and .p = 0.7. For brevity, we omit the plots for this attack scenario and 
we refer the reader to the results in Table 1. The DoS attack on deceleration does 
not cause an impact for an attack probability .p = 0.2, but it produce impact with a 
collision velocity of 9.01km/h and 32.33 km/h in case of attack probabilities . p = 0.5
and .p = 0.75 respectively. We use “no coll.” to denote that no collision took place. 

Also, in Table 1 we summarize as numerical data the collision velocity and 
distance to target in case of replay and fuzzing at various attack success rate, i.e., 
.p = 25, .p = 0.5 and .p = 0.75. In case of the replay attack we apply the attack 
only on the deceleration signal since it has the most significant effect. The attacks 
are causing a collision at .p = 0.5 and .p = 0.75 and the collision velocity is 
increasing with the attack probability. In case of fuzzing attacks, as can be already 
observed in the previous figures, no collision happens when the adversarial signals 
are .̃ythrottle(k), .̃yrvel(k) and .̃yvego(k) corresponding to the throttle, relative distance 
and longitudinal velocity. On the other hand, when the fuzzing attacks are applied on 
deceleration and relative distance, the collision takes place at all attack probabilities 
with an impact velocity which increases with the attack success rate from 43.99 to 
57.27 km/h in case of the deceleration and from 33.89 to 45.61 km/h in case of the 
relative distance.
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3.4 Impact of Stealthy Attacks 

We now discuss the impact of the three types of stealthy attacks: surge attacks, bias 
attacks and geometric attacks. The work in [7] evaluated the impact of these attacks 
on a control system for a chemical reactor process and we will now evaluate it on 
our AEB system. This type of attacks assume that a change detection mechanism 
is in place. Distinct from the work in [7], we do not use a state predictor to infer 
the next value but we can infer the value of some of the parameters from the others 
and use this in the cumulative sum. Namely, we estimate the relative distance from 
the relative velocity along with the longitudinal velocity and we also estimate the 
deceleration as the derivative of the longitudinal velocity. The estimated values of 
the signals are used in place of .y′

�(k) when computing the cumulative sum .S�(k). 
The rest is similar in the change detection mechanism and in the computation of the 
attack values. In what follow we will demonstrate the impact of stealthy attacks on 
the relative distance and deceleration. The attacks on the relative distance will have 
little effects and will not cause a collision, while the attacks on deceleration will 
lead to collisions at significant speed. 

Stealthy Attacks on Relative Distance In Fig. 9 we illustrate the signals when a 
stealthy attack on relative distance takes place, i.e., the adversarial signal is .̃yrdist(k). 
In the FCW/AEB status plots from Fig. 9 it can be seen that the AEB functionality 
is not influenced by the stealthy attacks on relative distance as the car stops in time 
to avoid the collision. This is because the stealthy attack cannot take advantage 
of the larger random values of the previously demonstrated fuzzy attack (this will 
make the attack detectable). In the velocity/distance plots of Fig. 9 we show the 
adversarial signal .̃yrdist(k) corresponding to the relative distance and the headway 
which is also influenced by the attack. In Figure (b), corresponding to surge attacks, 
the adversarial signal .̃yrdist(k) sets the relative distance to 15 meters (maximum 
value of the relative distance in normal conditions) on several points. But still, 
no impact occurs. In Figure (d), corresponding to a bias attack, the adversarial 
signal .̃yrdist(k) smoothly distorts the relative distance signal placing it slightly 
below the real distance—still, there is no collision. In Figure (f), corresponding 
to a geometric attack, the adversarial signal .̃yrdist(k) starts from the real signal value 
and progressively increases in time in order to maximize the damage at the end. But 
again, there is no collision. Thus, in our simulation, none of the stealthy attacks on 
the relative distance influenced the AEB functionality in such way as to cause an 
accident. The effects will become more serious when the deceleration is attacked in 
the same way. 

In terms of parameters for the stealthy attacks on relative distance, we did set the 
bias .b = 2 because the maximum error between the signal computed by the ECU 
and the predicted signal is around 2 m. The threshold was set equal with the bias, 
i.e., .τ = 2 and the number of steps was set to .n = 25 for the bias and geometric 
attacks, because our simulation has 50 steps in case when no attack takes place and
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Fig. 9 Signals under stealthy attacks on relative distance . yrdist: (a) surge attack—FCW/AEB 
status, (b) surge attack—velocity/distance plot (c) bias attack—FCW/AEB status, (d) bias  
attack—velocity/distance plot, (e) geometric attack—FCW/AEB status and (f) geometric attack— 
velocity/distance plot 

as such we will obtain the full attack during the first half of the simulation. For the 
geometric attack we set parameter .α = 0.9 to maximize the attack impact. Different 
parameters may yield distinct results.
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Fig. 10 Signals under stealthy attacks on deceleration . ybrake: (a) surge attack—FCW/AEB 
status, (b) surge attack—velocity/distance plot (c) bias attack—FCW/AEB status, (d) bias  
attack—velocity/distance plot, (e) geometric attack—FCW/AEB status and (f) geometric attack— 
velocity/distance plot
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Stealthy Attacks on Deceleration In Fig. 10 we illustrate the signals when a stealthy 
attack on deceleration takes place, i.e., the adversarial signal is .̃ybrake(k). Now the  
attack will clearly result in an impact with the pedestrian. In Figure (a) and (b) we 
depict the effect of a surge attack on the deceleration signal. In the FCW/AEB status 
plots of the figure, the adversarial signal .̃ybrake(k) is always .0 m/s2 (gray dotted 
line) because in the attack implementation .ymin = 0, the acceleration is small (close 
to .0 m/s2) as the vehicle speed is constant and in the velocity/distance plots it can be 
observed that the ego velocity remains near the preset velocity, i.e., no brake request 
comes from the AEB controller. Even if the AEB status is correctly shown in the 
FCW/AEB status plot, which follows the 3 braking stages, the deceleration request 
signal received by the ESC ECU is corrupt, requesting no deceleration, and thus the 
car continues to maintain the preset velocity. Note that the AEB status parameter 
is internal to the AEB controller and only the deceleration is communicated to the 
ESC ECU for the car to decelerate (this can be easily seen in the model from Fig. 4). 
Therefore in the plot from Fig. 10, while the AEB status is still set to 3 (full braking) 
inside the AEB controller, the deceleration value is subject to a stealthy attack and 
is much lower, misleading the ESC controller that the car should not brake and 
eventually leading to a collision. This attack causes an impact at an ego velocity 
of 47.51 km/h (note that the headway is 0 m) which means that the surge attack 
on deceleration creates an impact at considerable speed. In Figures (c) and (d) we 
depict the effect of the bias attack on the deceleration signal. In the FCW/AEB status 
plot, (c), the adversarial signal .̃ybrake(k) (gray dotted line) is increasing until . 4 m/s2

are reached, but in normal conditions the deceleration should reach a much higher 
.10 m/s2 (Fig. 6). This leads to a much slower braking even if the AEB status request 
is set to full braking. In the velocity/distance plot (iv), the ego velocity is still near 
the preset velocity, reaching around 44.42 km/h at the time when the headway is 
0 meters, i.e., when the collision occurs. This again means that the bias attack on 
deceleration produces an impact at considerable speed. Finally, in Figure (e) and 
(f) we depict the effect of a geometric attack on the deceleration signal. In Figure 
(e), the adversarial signal .̃ybrake(k) (gray dotted line) is increasing until .8 m/s2 are 
reached after which the geometric attack occurs and maximizes the damage as it 
abruptly decreases and the deceleration request gets near .0 m/s2. In Figure (f), the 
effect of this attack can be observed as the ego velocity is decreasing to 23.37 km/h 
when the headway is 0 m, i.e., the time of collision. This is a slightly lower impact 
velocity compared to the other two stealthy attacks. Still, all the three stealthy 
attacks on deceleration had caused an impact while they remained undetected by 
the change detection mechanism. We also note that in this case, another protection 
mechanism may be put in place: as the AEB controller orders the car to decelerate 
and the reported velocity does not decrease according to the expectations, the AEB 
controller may determine that an attack takes place. However, the ESC controller 
will not know which of the frames are the legitimate ones, i.e., lower or higher 
deceleration, and cannot act to correct the issue. 

In terms of parameters for the stealthy attacks on deceleration, we set the bias 
.b = 6 because the maximum error between the signal computed by the ECU and
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Table 2 AEB results: collision velocity and distance to target in case of stealthy attacks or 
deceleration and relative distance 

Attack Signal Collision velocity[km/h] Distance to target [m] 

Surge A1: relative distance No coll. 2.01 

Bias No coll. 3.40 

Geometric No coll. 4.63 

Surge A3: deceleration 47.52 0 

Bias 44.42 0 

Geometric 23.37 0 

Fig. 11 Example of activities flow according to ISO 21434 

the predicted signal is around 6 .m/s2. The threshold was set equal with the bias, i.e., 
.τ = 6, the number of steps and parameter . α were set again to .n = 25 and . α = 0.9
respectively. 

Table 2 summarizes in terms of numerical data the collision velocity and the 
distance to the target in case of stealthy attacks on deceleration and relative distance. 
The collision occurs in case of all the three attacks on deceleration signal, while no 
collision occurs when the stealthy attacks are applied to the relative distance as 
discussed previously. We use “no coll.” to denote that no collision took place. 

4 Secure-by-Design AEB in Accordance to ISO 21434 

Benefiting from the previous attack analysis, we will now follow the steps of ISO 
213434 in order to point out specific security goals and the means to assure them 
for the AEB system. 

4.1 Overview of the ISO 21434 Cybersecurity Design Flow 

For an accurate overview of the steps required by ISO 21434, we will first introduce 
an operational overview of the activities presented in the standard. These activities 
will be then detailed with respect to the AEB system that we use as an example. 
Figure 11 gives an overview of the activities presented in ISO 21434. These
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activities are also exemplified in case of a headlight system which is used as a case 
study inside the standard. 

The security related activities start from the definition of the item which is 
going to be secured, the boundaries of the system in which it is incorporated, its 
functions and a preliminary architecture. All these form the first step of the concept 
phase. A more tedious step follows which consists in the TARA (Threat Analysis 
and Risk Assessment). This step asks us to delve into more details regarding the 
identification of assets that need to be protected (either logical assets such as CAN 
frames, or physical assets as a specific sensor), rating the impact, identifying the 
threat, attack path, rating the attack feasibility, determining the risk level and the 
treatment option. The last step of the concept phase consists in the determination 
of the cybersecurity goals, claims and the introduction of the concept. After a 
correct understanding of the security goals, claims and concept are available, the 
specifications and requirements will be detailed in the product development phase. 
Next, the specifications are reviewed and then the product is integrated and verified, 
e.g., by the use of penetration testing tools, etc. Then the final validation report 
is completed. We address the concept phase according to ISO 21434 for the AEB 
system in what follows. 

4.2 From Item Definition to Risk Determination 

Item Definition The first step of the concept phase is the item definition which 
includes the boundary, functions of the item and its preliminary architecture. The 
item boundary for the AEB system is presented in Fig. 12. It includes the interfaces 

Fig. 12 In-vehicle network 
architecture and item 
boundary for the AEB system
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Fig. 13 Steps for risk determination according with to ISO 21434 

with internal and external items, forming as such the environment in which the 
AEB system resides. The function of the AEB, i.e., assisting the driver in avoiding 
collision with front objects, has already been clarified. The preliminary architecture 
of the AEB is encircled in the middle and it includes two CAN buses: the Chassis 
CAN (C-CAN) which is used for data exchange between the ADAS ECU, the ESC 
ECU and the cluster and the Private CAN bus (Pr-CAN) which is used for data 
exchange between the ADAS ECU, Camera and Radar. 

Once the item is defined, a series of activities follow starting with the identi-
fication of the asset which needs to be protected up to the determination of the 
risk level. In Fig. 13 we show these activities according to ISO 21434. For an 
easier understanding of these steps, we formulate one question for each step which 
summarizes its expected outcome. Next, we will address all the steps in this image 
for the AEB. 

Asset Identification The first step consists in identifying the assets that we are going 
to protect. These assets include logical objects such as the firmware or the CAN 
frames. Due to obvious space constraints for the current work, we will focus on 
CAN frames alone and consider that the rest of the components, such as the firmware 
and the hardware components are secured, e.g., by digitally signed software updates 
and the appropriate tamper resistant hardware such as TPMs (Truster Platform 
Module). 

According to ISO 21434, the CAN frames as an asset, have to respond to the 
three classical security objectives: Confidentiality, Integrity and Availability (CIA). 
Confidentiality may not be a necessary requirement since there is no need to hide 
the content of the frames from an adversary (there are no privacy concerns). But 
integrity and availability are critical. The former has to ensure that the content has 
not been modified or injected by an adversary, while the later must ensure that the 
corresponding frames are delivered on time by the ECU. 

In Table 3 we detail the consequences when the two objectives, i.e., integrity (I) 
and availability (A), are not met for the frames which carry the signals from the AEB 
system. In the third column, the damage inflicted on the system is outlined. This 
includes the activation/deactivation of brakes, inability of the vehicle to maintain 
speed or estimate the time or distance toward the front object, etc. Generally, the 
attacks on integrity will mislead the car or the AEB system on the distance to the



Secure Design of AEB in Accordance with ISO 21434 177

object or the time to collision, etc. The attacks on the availability of the signal will 
simply disable the corresponding functionality in the absence of required data. 

Impact Rating Impact rating is divided on four distinct chapters: safety (S), 
financial (F), operational (O) and privacy (P). A few justification on how we select 
these values in Table 3 may be needed. First, our table contains only the value for 
the safety impact since the financial, operational and privacy impact is identical as 
we argue at the end of this paragraph. The unexpected deactivation of automatic 
braking, in case of signal integrity which complies to the adversary manipulations 
from the previous section, can have fatal consequences on the life of pedestrians, 
etc. For this reason, we consider attacks on integrity to have a severe impact due to 
the fatal injuries that may result from accidents. In case when the communication 
is lost, i.e., a DoS attack, the driver may still be warned by a visible or audible 
signal from the instrument cluster, showing that the functionality is not responding 
and as such he should increase his vigilance. A reason for which we consider 
that the loss of availability will have a more moderate safety impact. The same 
impact assessment holds for the rest of the parameters: throttle, relative distance, 
relative and longitudinal velocity. Not last, it is worth mentioning that based on 
our detailed analysis from Sects. 3.3 and 3.4, attacks on relative and longitudinal 
velocities will have more impact at higher speeds. The current version of ISO 21434, 
explicitly states that the financial impact refers to the costs of the road user. In most 
instances, car insurance companies cover these costs, although they may only cover 
the repair costs of the cars that are damaged by an inattentive driver and not the 
costs to repair their own car. We will consider that the financial costs should be 
moderate in general, although we cannot exclude that the financial impact may 
also run up to major, e.g., in case of impact at high velocities and the lack of the 
appropriate insurance. The operational impact is moderate since in case when the 
AEB functionality is lost, there is partial degradation of a vehicle function but the 
car is still fully controllable by the driver who is still able to brake. The privacy risks 
should be negligible. 

Threat Identification This step has been refined by the specific attacks embedded 
in our adversary model. The threat to availability (A) is posed by the DoS 
attacks. When it comes to integrity (I) our model accounts for different kinds of 
manipulations, i.e., replay, fuzzing, surge, bias and geometric attacks. Separating 
these threats is relevant, because they can be addressed in different ways as we 
will discuss later when introducing the cybersecurity requirements, e.g., some of 
the attacks can be addressed by simple change detection mechanism while others 
require cryptographic authentication, etc. 

Attack Path Analysis For the attack paths we considered the regulations concerning 
the approval of vehicles with regard to cybersecurity and cybersecurity management 
systems [1] proposed by the United Nations Economic Commission for Europe 
(UNECE). These regulations were recently investigated by the authors in [5]. Due 
to page limitations, we only use here the most significant attack surfaces, e.g., OBD 
(On-Board Diagnostics) connector, cellular interface, USB ports, etc.
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Table 3 Asset identification and impact assignment 

Asset Obj. Damage scenario Safety Justification 

Deceleration 
(CAN frame) 

I D1. Unexpected activation or 
deactivation of the brakes or 
jumping from one braking 
stage to another 

severe Can lead to accidents at high 
speed, see attack assessment 
from Sects. 3.3 and 3.4 

A D2. Unable to activate AEB 
function 

Moderate The AEB can’t activate the 
brakes and stop the car, driver 
may be warned of the lost 
functionality 

Throttle (CAN 
frame) 

I D3. Unexpected self 
acceleration/ deceleration 

severe Unexpected self 
acceleration/deceleration may 
produce accidents at high 
speed 

A D4. Car unable to self 
accelerate and maintain preset 
velocity 

Moderate Unexpected loss of throttle 
signal would slow down the 
car but the driver should 
eventually notice this and 
compensate for the correct 
speed, visible/audible signal 
may also warn the driver for  
loss function 

Relative 
distance (CAN 
frame) 

I D5. AEB system is mislead on  
the correct distance to front 
obstacle, results in unexpected 
activation/deactivation of the 
AEB system 

severe Similar to the integrity (I) 
attack on throttle, may produce 
severe accidents 

A D6. AEB system is unable to 
estimate the distance to the 
front object 

Moderate Similar to the availability (A) 
attack on throttle, may still be 
noticeable for the driver that 
can compensate 

Relative 
velocity (CAN 
frame) 

I D7. AEB system is mislead on  
the correct time to collision, 
unexpected 
activation/deactivation of the 
AEB system 

severe Similar to the integrity (I) 
attack on throttle, may produce 
severe accidents 

A D8. AEB system unable to 
estimate time to collision 

Moderate Similar to the availability (A) 
attack on throttle, may still be 
noticeable for the driver that 
can compensate 

Ego velocity 
(CAN frame) 

I D9. AEB system is mislead on  
the correct acceleration 
request, results in self 
acceleration/deceleration 

severe Similar to the integrity (I) 
attack on throttle, may produce 
severe accidents 

A D10. AEB system unable to 
compute the acceleration 
request, results in car unable to 
self accelerate and maintain 
the preset velocity 

Moderate Similar to the availability (A) 
attack on throttle, may still be 
noticeable for the driver that 
can compensate
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Table 4 Risk determination for deceleration under the first two damage scenarios D1 and D2 

Threat Feasibility Risk 

Damage scenario scenario Attack path rating value 

D1.Unexpected 
activation or 
deactivation of the 
brakes or switching 
between braking stages 

T1. Replay, OBD II connector High 5 

T2. Fuzzing, Cellular interface High 5 

T3. Stealthy 
attacks 

Corrupted applications (3rd 
party) 

Low 3 

USB port Medium 4 

Malicious software (malware) Low 3 

Software/hardware 
vulnerabilities from the 
development process 

Low 3 

Unauthorized hardware added Low 3 

Corrupted software update Low 3 

D2. Unable to activate 
AEB function 

T4. DoS OBD II connector High 3 

Cellular interface High 3 

Corrupted applications (3rd 
party) 

Low 2 

USB port Medium 2.5 

Malicious software (malware) Low 2 

Software/hardware 
vulnerabilities from the 
development process 

Low 2 

Unauthorized hardware added Low 2 

Corrupted software update Low 2 

Attack Feasibility Rating According to the specifications in the Annex G of the 
standard [15], attack feasibility is a mixture between 5 components: required time, 
expertise, knowledge of the component, window of opportunity and equipment. 
The aggregate attack potential resulting from the scores of these 5 components 
ranges from very low to high. For simplicity we will not detail the score based on 
each of the previous 5 components, but provide some arguments for the aggregate 
rating that we present in Table 4. The OBD II connector has an attack path with 
a feasibility rating set to high since such an attack can be accomplished with low 
effort due to existing commercial 3-rd party OBD devices that are common. The 
feasibility rating in case of the cellular interface is also high, i.e., the attack path 
can be accomplished with low effort because the cellular interface are used for 
telematics and several attacks were already reported, e.g., [8, 21]. Hosted 3-rd party 
corrupted applications have a low feasibility rating because they require expertise 
and a corrupted provider while the automotive software market is well controlled.
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The USB port has a medium feasibility rating since USB sticks commonly carry 
unwanted software. The introduction of malicious software (malware) has a low 
feasibility since it requires expertise from multiple experts. Also, we score a low 
feasibility rating for the software or hardware development which is again subject to 
a mature development process. Vulnerabilities may still be possible due to the high 
software complexity, possibly reaching 8 million lines of code for a single ECU, and 
numerous companies, e.g., 8–11, working on the software for a single ECU [19]. 
A low feasibility is associated to the addition of a new unauthorized ECU and for 
software updates, i.e., corrupted software stacks on the ECU which evades detection 
to cause the attack, since this requires multiple experts to design. Additionally, 
for damage scenarios D8 and D10, another attack path can be considered, i.e., the 
manipulation of information collected by the sensors from the environment which 
can be at least ranked as having a medium feasibility. There is an increasing number 
of works that show clever manipulations of environmental data such as traffic signs 
[24], traffic lights [35], road lanes [29] and distances toward objects [32, 36]. 

We note that the attack path can be subject to a more complex feasibility analysis 
as done by the authors in [27]. They consider that the feasibility of an attack path is 
the product of probabilities associated to each edge from the path. The ISO 21434 
however does not quantify feasibility as a probability and it was the choice of the 
authors from [27] to associate a probability to each rating, e.g., when the risk is high 
p ∈ [0.9, 1] and when the risk is medium p ∈ [0.5, 0.9). 

Risk determination. According to ISO 21434 [15], risk values are determined 
based on the impact rating and the attack feasibility using the following relation: 
R = 1 + I × F , where R is the risk value, I is the impact rating and F is the 
feasibility rating. For the impact rating, in our calculation for the risk values we 
consider the maximum of the four types of impact (safety, financial, operational 
and privacy) which in this case is given by the safety component. This means 
that in case of the threats T1, T2, T3 which correspond to fuzzing, replays and 
stealthy attacks, the impact is major. While for a DoS the impact is only moderate. 
These values can be retrieved from Table 3. According to the standard, the four 
class impact, expressed as {negligible,moderate,major, severe}, is translated to 
numerical values as {0, 1, 1.5, 2}. The feasibility which is expressed as a four rank 
class {very low, low, moderate, high} is translated to numerical values as follows 
{0, 1, 1.5, 2}. Consequently, a moderate impact incurs a numerical cost I = 1 and 
the severe impact corresponds to I = 2. A high feasibility ranking corresponds to 
F = 2 and consequently the impact ranking is R = 1 + 2 × 2 = 5. In Table 4 
we depict the attack paths and the determined risk only for deceleration under the 
first two damage scenarios D1 and D2. For the rest of the signals and associated 
damages, risk determination should be done in a similar manner.
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Fig. 14 Steps for product development according with to ISO 21434 

4.3 From Determined Risks to Cybersecurity Goals and 
Concept 

In Fig. 14 we illustrate the steps that follow from risk determination to integration 
and verification in case of cybersecurity attacks according to ISO 21434. Again, 
for an easier understanding of these steps, we formulate one question for each 
step which summarizes its expected outcome. According to ISO 21434 [15], the 
determined risks have to be treated in one of the following four ways: (a) avoided 
by not starting or continuing a specific activity, (b) reduced by using a proper 
security mechanism, (c) shared, for example with insurances or (d) retained. The 
cybersecurity goals are the result of the threat analysis and risk assessment (TARA) 
which we performed in the previous section. A cybersecurity goal, which results 
from the previous threat analysis, is a requirement to protect an assets against a 
threat according to ISO 21434 [15]. The cybersecurity claims must be formulated 
only in case of rationales for retaining or sharing the risks according to the same 
requirement. The claims can also include conditions for specific goals or functions 
for specific aspects, such as the use of a secure communication channel according 
to ISO 21434 [15]. 

Returning to the AEB system, in Table 5 we show the treatment option, 
cybersecurity goals and requirements for the threat scenarios on deceleration signal. 
For the rest of the assets (signals) in our analysis the details would be similar and 
we omit them for brevity. 

Treatment The treatment is the same in case of all assets: to reduce the risk. It is not 
acceptable to share the risk with an insurance company since they may result in fatal 
accidents. Clearly, the risk cannot be retained either, nor avoided by cancelling the 
AEB functionality which would contradict the main purpose of the system. Thus, 
the only treatment is to reduce the security risk. For this reason, the cybersecurity 
claims are not needed in our table. Cybersecurity claims are needed only when the 
treatment option is to retain or share the risk. 

Cybersecurity Goals and Requirements The decision to reduce the risk, moves us 
to the obvious goal to protect the signals, deceleration in particular, as outlined in 
Table 5, against spoofing, DoS, replay as well as against stealthy attacks. 

For fuzzing on deceleration we proposed two requirements: (a) a change 
detection mechanism which needs to be implemented on the deceleration signal 
form the AEB ECU and (b) a verification procedure enforced by cryptographic 
security for the received data, which needs to be implemented on all ECUs in order
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Table 5 Treatment option, cybersecurity goal and requirements for the threat scenarios on the 
deceleration signal 

Treatment Cybersecurity requirement 

Threat scenario option Cybersecurity goal Description Allocation 

T1. Fuzzing on 
deceleration 

Reducing 
the risk 

Deceleration shall be protected 
against spoofing by authentication or 
change detection mechanism 

Verify if 
received data 
comes from a  
valid entity 

All ECUs 
from attack 
path 

Implement 
change 
detection 
mechanism 

AEB ECU 

T2. DoS on 
deceleration 

Reducing 
the risk 

Deceleration shall be protected 
against DoS attacks by detection and 
recover the signal 

Measures to 
detect and 
recover from a 
denial of 
service attack 
shall be 
employed 

AEB ECU 
and 
Instrument 
cluster 

T3. Replay on 
deceleration 

Reducing 
the risk 

Deceleration shall be protected 
against replay attacks by 
authentication (including the 
appropriate freshness parameters, 
timestamp) 

Authentication 
(include 
strong time 
parameters, 
timestamp) 

AEB ECU 

T4. Stealthy on 
deceleration 

Reducing 
the risk 

Deceleration shall be protected 
against stealthy attacks by 
authentication 

Verify if 
received data 
comes from a  
valid entity 

All ECUs 
from attack 
path 

to check that CAN frames comes from a valid entity. The implementation of the 
second requirement should offer sufficient protection but it requires cryptographic 
capabilities that may be too expensive for some controllers and the use of a change 
detection mechanism may be cheaper and still provide some degree of protection. 
For DoS on deceleration, the cybersecurity requirement is to implement measures to 
detect and recover from a denial of service attack on the AEB ECU and instrument 
cluster. Authentication, implying the existence of strong time-variant parameters, 
i.e., timestamps, is needed against replay attacks. For the stealthy attacks, i.e, surge, 
bias and geometric, the requirement is to implement mechanisms to verify the source 
of the received data. 

This description of the cybersecurity goals and requirements would be incom-
plete if we do not further give concrete suggestion on the exact mechanism that 
should be used for achieving these goals. Regarding intrusion detection, we have 
already pointed out a basic change detection mechanism. There are various other 
mechanisms that have been considered for intrusion detection in the literature 
including changes of specific parameters in heavy-duty J1939 vehicles [16], entropy 
analysis [20, 22] or Hamming distances possibly coupled with Bloom filters [10].
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Other authors have proposed the use of precedence graphs [14], Markov models 
[23] or finite-state automatons [31]. 

Regarding authentication mechanisms that validate the source of the frames, we 
have to leverage the discussion toward the AUTOSAR security standard for on-
board communication [3]. According to the AUTOSAR SecOC [3] standard, the 
communication between two ECUs needs to be secured by authentication. In order 
to achieve this, the messages from the sender ECU contains a Protocol Data Unit 
(PDU) which helds the data and the timestamp or the freshness value (CNT) which 
is computed internally by the sender ECU and increases in time. Based on the PDU, 
including the freshness value (CNT), a cipher-based message authentication code 
(CMAC) is computed and the sender ECU transmits the PDU, CNT and CMAC 
to the receiver. Subsequently, the receiver ECU checks the CNT and if the CNT is 
correct it is used for the CMAC verification. 

The AUTOSAR SecOC [3] standard specifies three security profiles on pages 62– 
63 that have to use 32-bit truncated CMAC-AES for authentication. Assuming that 
the secret key is secure, this would lead to a probability of .2−32 for an adversary 
to inject a valid frame (this is equivalent to a false negative event). However, the 
situation is much worse if we consider replays, not last correlated with stealthy 
manipulations, since the authentication tag of replayed frames is computed with the 
correct key. The only way to circumvent these attacks is with the proper freshness 
parameters which according to AUTOSAR SecOC [3] have 8 bits in profile 1, 0 bits 
in profile 2 and 4 bits in profile 3. This means that there are 256, 0 and 16 possible 
values for the time-variant parameter which is slightly low (or non-existent). At best, 
assuming an 8 bit counter, the probability of an injection would be .2−8 = 0.3%. The  
4-bit length for the freshness parameter is too low for serious security demands. 

To illustrate the effectiveness of this layer of cryptographic protection, we chose 
the deceleration signal which had significant impact in case of fuzzing and stealthy 
attacks. We illustrate the behaviour in case of attacks with attack probability 
.p = 2−4 and .p = 2−8 that would result from using the corresponding freshness 
parameter on 4 or 8 bits. In Fig. 15 we illustrate the signals under: (a), (b) fuzzing 
attack with .p = 2−4, (c), (d) surge attack with .p = 2−4 and (e), (f) fuzzing attack 
with .p = 2−8. When the attack probability is reduced to .p = 2−8, the AEB system 
is not affected by the adversarial signal .̃ybrake(k). In Table 6 we show the collision 
velocity and distance to target in case of fuzzing, and stealthy attacks on deceleration 
with attack probability .p = 2−4 and .p = 2−8. In case of an attack probability 
of .p = 2−4, the fuzzing attack causes an impact at significant velocity, the surge 
and bias attack cause impact at low velocity, while in case of the geometric attack 
no collision takes place. In case of an attack probability of .p = 2−8 no collision 
takes place. Also, by comparing with the results from Sects. 3.3 and 3.4 the collision 
velocity is decreasing as the attack probability decreases, leading eventually to no 
impact when the attack probability is only .p = 2−8. The 8-bit freshness parameter 
is sufficient if we consider randomized injections with previously recorded frames, 
but it is too low for a more powerful adversary that records the order of the frames 
on the bus. For this reason, extending the 8-bit freshness parameter to a larger, 32 
or 64-bit counter is needed, but this can only be achieved with the larger CAN-FD
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Fig. 15 Signals under fuzzing and surge attacks on deceleration .ybrake with .p = 2−4 and . p =
2−8: (a) fuzzing attack with .p = 2−4—FCW/AEB status, (b) fuzzing attack with .p = 2−4— 
velocity/distance plot (c) surge attack with .p = 2−4—FCW/AEB status, (d) surge attack with 
.p = 2−4—velocity/distance plot, (e) fuzzing attack with .p = 2−8—FCW/AEB status and (f) 
fuzzing attack with .p = 2−8—velocity/distance plot
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Table 6 AEB results: collision velocity and distance to target in case of fuzzing, and stealthy 
attacks on deceleration with attack probability .p = 2−4 and . p = 2−8

.p = 2−4 . p = 2−8

Collision Distance to Collision Distance to 
Attack velocity[km/h] target[m] velocity[km/h] to target[m] 

Fuzzing 38.91 0 No coll. 1.32 

Surge 7.99 0 no coll. 1.32 

Bias 6.38 0 no coll. 1.32 

Geometric no coll. 0.92 no coll. 1.32 

frames that have 512 bit datafields. We believe this is the only alternative for a high 
level of security. 

A further step is the cybersecurity validation at the vehicle level which is 
followed by the production of the actual item or component, i.e., clauses 11 and 12 
of ISO 21434 [15]. These details are out of scope for the current presentation which 
was focused on the cybersecure-aware design alone. Lastly, specific operation and 
maintenance activities, suggested in clause 13 of ISO 21434 [15], will also occur 
during the vehicle lifetime which may also lead to re-designs of the cybersecurity 
goals and claims. 

5 Conclusion 

Two lines of defence are advocated by our analysis. One of them is the inclusion 
of intrusion detection systems, such as the basic change detection outlined in our 
analysis. This line of defense requires a careful selection of specific parameters, i.e., 
thresholds and biases, which have to be the subject of careful engineering maturity 
testing and verification which are not fully possible in our work. The second line 
of defense is the adoption of cryptographic security that will ensure that each frame 
is authentic and, similarly important, fresh in order to remove the possibility of 
a replay attack. For this, using regular 64 bit CAN frames has its limit. More 
specifically, in accordance to AUTOSAR SecOC [3], at most 8 bits are used as 
freshness parameter which offers only a limited protection against replay attacks. 
For this reason, we believe that the adoption of CAN-FD which extends the datafield 
to 512 bits and allows a larger freshness parameter, such as a 64 bit timestamps as 
commonly available in network synchronization protocols, is the only way to ensure 
that freshness and thus complete source authentication is achieved.
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Resource Aware Synthesis of Automotive 
Security Primitives 

Soumyajit Dey , Ipsita Koley , and Sunandan Adhikary 

1 Introduction 

With the evolution of transportation systems, modern-day vehicles are no more 
mere mechanical systems. Contemporary automotive architectures are designed as 
a collection of cyber-physical control loops with an aim to provide energy-efficient 
performance, safety, comfort, and connected mobility features. These software-
governed automotive controllers supervise a plethora of functionalities like engine 
control, power management, regenerative braking, lane-keeping, comfort features, 
etc. Examples from domains like safety would be features like Vehicle Stability 
Control (VSC), Anti-lock Braking System (ABS), Roll Stability Control (RSC), 
etc. Convenience features like Adaptive Cruise Control (ACC) are also ubiquitous 
in most vehicles nowadays. 

Features are implemented in the form of control programs mapped to Electronic 
Control Units (ECUs) as real-time tasks. Sensing tasks process sensor measure-
ments, communication tasks interface with communication hardware and send such 
measurements over the communication channels and control tasks compute the 
desired control input for respective actuators. An ECU may host multiple control 
tasks. Moreover, some control functionalities may require tasks spanning over 
multiple ECUs to attain some global control objective. For example, on identifying a 
life-threatening situation, the Central Locking System (CLS) that controls the power 
door locking mechanism works alongside the crash detection system to ensure 
occupants’ safety. 

With time, the number of ECUs in modern vehicles has been increasing with 
the quest for more features that make transportation safer and more convenient. 
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Fig. 1 Automotive software development flow 

For example, BMW 7-series models have as many as 150 ECUs. Generalized 
bus-oriented architectures have come into the picture to realize the real-time 
collaboration of such a large number of ECUs. The electrical/electronic (E/E) [1] 
architecture of modern vehicles is divided into different functional domains (power-
train, body control, infotainment, etc). Based on the bit rate, fault-tolerance, and 
soft/hard real-time requirements of each domain, the intra-vehicular network [2] of  
a contemporary car comprises network elements with multiple lightweight protocols 
making it heterogeneous in nature. Example protocols include Controller Area 
Network (CAN) [3], FlexRay [4], Local Interconnect Network (LIN) [5], Media 
oriented systems transport (MOST) [6]. The E/E architecture of modern vehicles 
ensures the inter-operability of such heterogeneous network protocols. 

The current design flow of automotive architectures (Fig. 1) in the industry 
is compartmentalized into model-based design, development, and standardized 
implementation on target platforms, each followed by testing and verification 
against certain specifications. The implementations of control software in ECUs 
are generalized by certain standard guidelines set by AUTOmotive Open System 
ARchitecture also known as AUTOSAR [7], which is a predominant entity built as 
a worldwide development partnership among automotive industries. Such standards 
encourage the model-based development of modularized and reusable control 
functionalities for automotive subsystems. This is followed by an AUTOSAR 
compliant conversion of these model-based designs of controllers into runnable 
programs. Then the control programs are implemented on the ECUs and invoked 
from the system level as control tasks based on the task allocations in ECUs. 

Today, the design specification and implementation of automotive controllers are 
mostly carried out using Synchronous Reactive (SR) models such as those modeled 
in the Simulink and Stateflow tools [8]. TIER 1 suppliers organize the control func-
tionalities as a hierarchy of subsystems and define them as a network of blocks in 
Simulink. Code implementation of each subsystem is generated as a set of functions. 
These sets of runnables are then standardized with AUTOSAR-guided specifications 
as Autosar Software Components (SWC) [8, 9]. The AUTOSAR model specifies the 
data, execution, and call dependencies for all the functions. All the SWCs from the 
TIER 1 suppliers are collected and connected to a system-level model by the OEMs 
and Carmakers. Using AUTOSAR tools, they map the runnables or the functions 
into tasks. Schedulability analysis is performed using platform-specific utilities (eg. 
symtavision for Infineon ECUs). Accordingly, tasks are allocated to the processors. 
Formal tests are conducted on the initial designs using some verification tool, like
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Fig. 2 Effect of CMAC/AES on CAN Traffic (numerals denote message id-s) 

Simulink Test. Simulink Test facilitates test case and test suite definitions along with 
automation of test harness generation. Following the simulation tests, the C-code of 
the model is generated using Embedded Coder or Simulink Coder and implemented 
on the processor. 

Security requirements have been an afterthought in the automotive software 
development flow discussed above. AUTOSAR mandates cryptographic mecha-
nisms, like MAC (Message Authentication Code) to authenticate communications 
through the intra-vehicular network [10]. However, such cryptographic methods 
incur computation and communication overload. For example, securing an 8 byte 
CAN message using AES encryption and SHA-2 MAC algorithm will generate 
6 CAN frames for a single CAN frame [11]. To deal with such bus load issues, 
AUTOSAR has suggested using truncated MAC [10]. The problem with MAC 
is that it can detect an external cyber attack, but fails to detect insider attacks 
and denial-of-service attacks like bus-off [12]. The embedded platforms where 
the automotive controllers are implemented are mostly of low computation power. 
On the other hand, cryptographic security algorithms, like MAC, incur significant 
computation and communication load. For example, on a 96 MHz ARM Cortex-
M3-based Electronic Control Unit (ECU), some of the well-known control law 
computations take approximately 5 . μs while a 128-bit MAC computation for a 
single message takes 100 . μs [13]. On the other hand, if CMAC hash and AES-
128 encryption algorithm are used to secure CAN frames, each CAN frame will be 
replaced by 4 CAN frames (Fig. 2) [11]. Imagine the load on CAN traffic if every 
CAN packet is secured this way. As most automotive CPSs are safety-critical with 
hard real-time deadlines, it naturally raises the question of how practical it is to 
implement cryptographic security algorithms on such embedded platforms. As an 
alternate solution, a number of researchers have proposed to use control-theoretic 
light-weight attack detectors[14] in place of periodic cryptographic security checks. 
These detectors are designed by exploiting the control theoretic properties of 
automotive CPSs [14, 15]. 

This naturally leads us to the problem of evolving automotive software design 
flows, which must consider the smooth integration of lightweight security primitives 
along with software controllers while maintaining verifiability, schedulability, and 
other platform constraints. The above also brings up the question of how such 
detection systems can be of practical use and in what way such existing approaches 
may be improved, more specifically in the automotive context. In this regard, we 
now discuss the major contributions to this chapter. 

1. In control-theoretic light-weight attack detectors, the residue i.e., the difference 
between the actual sensor measurements and the estimated sensor measurements
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is compared with a threshold. An alarm is raised when the residue surpasses the 
threshold value. The performance of the detector depends on the value of the 
threshold. If a lower valued threshold is selected, even noise can be considered 
an attack. This will lead to false alarms. On the other hand, a smartly crafted 
stealthy attack, like a zero-dynamic attack [15], can easily bypass a higher-valued 
threshold. So, the question is how to wisely compute the threshold value. In 
Sect. 3, we discuss some methodologies to synthesize such fixed threshold-based 
detectors. 

2. Next, we consider a more informed attack scenario. An external attacker can 
snoop into intra-vehicular networks through OBD port and telematic units 
[16]. Widely used intra-vehicular network protocols like CAN transmits data 
in broadcast mode. Therefore, an attacker who has access to the intra-vehicular 
network can analyze transmitted data packets and design optimal attacks. We 
discuss in Sect. 4, how adaptive and intelligent threshold-based detectors can be 
designed to thwart such attack attempts. 

3. While light-weight detection is an important task in the context of security-aware 
automotive CPS design, another important feature is what to do when an attack 
is detected. A number of researchers have proposed robust controller design 
methods to make the system robust against attacks. In this chapter, we discuss 
an alternative approach. In Sect. 5, we present how an intermittent MAC along 
with additional control logic can diminish the effect of the attack on the system. 

4. Finally, in Sect. 6, we have presented how to realize some of these security-aware 
automotive CPS design methods in a Hardware-in-Loop (HIL) experimental 
setup. 

2 Background and Related Work 

2.1 System Model for Secure CPS 

Similar to other model-based CPSs, the automotive software design life-cycle 
also conceptualizes modular subsystems for certain desired operating regions. For 
efficient and real-time control computation, a nonlinear plant .ẋ(t) = f (x) is usually 
linearized around such an operating point in the form of a linear time-invariant (LTI) 
system expressed as follows. 

.ẋ(t) = �x(t) + �u(t) + w(t), y(t) = Cx(t) + v(t) (1) 

Here .x(t) ∈ R
n is system state, .u(t) is output of the controller, .y(t) ∈ R

m is system 
output under the influence of physical process noise .w(t) ∈ R

n ∼ N (0, �w) and 
measurement noise .v(t) ∈ R

m ∼ N (0, �v) at time t (w and v are independent 
Gaussian random variables with .�w and . �v as variance parameters). Also, . �,. �, 
and C are transition matrices, derived from the physical plant equations. . � is known
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as the state transition matrix, . � is known as the input-to-state transition matrix and 
C is the output matrix. The output of the plant is sensed and used for control input 
generation. 

Depending on the plant-state characteristics and the available sampling periods 
in the ECU, the plant outputs are sampled periodically. For this, the control program 
uses the discretized versions of the above state-space equations, i.e. 

.x[k + 1] = Ax[k] + Bu[k] + w[k], y[k + 1] = Cx[k + 1] + v[k] (2) 

Above equations express the k-th sampling iteration of the discretized system
i.e.,.t ∈ [hk, h(k + 1)], where h is the chosen sampling interval. Therefore, the new 
transition matrices become .A = e�h, B = ∫ h(k+1)

hk
e�s�ds [17]. At the controller 

side, this sensed plant output .y[k + 1] is received once every sampling period. The 
controller needs to estimate the actual plant states using this output in order to 
calculate a suitable control input u to control the plant dynamics. To estimate the 
plant states from the sensed outputs, typically an observer is used. 

. x̂[k + 1] = Ax̂[k] + Bu[k] + Lr[k], r[k] = y[k] − Cx̂[k], u[k + 1]
= −Kx̂[k + 1] (3) 

As shown in Eq. 3 the estimated state at .(k + 1)-th iteration is denoted using 
.x̂[k + 1] ∈ R

n and it is derived using a similar state-space equation like Eq. 2 
along with a suitable correction .Lr[k] in order to track the actual state. The 
quantity .r[k] = y[k] − Cx̂[k] is known as system residue and it signifies the 
error between estimated and actual outputs. The observer gain L is designed in 
such a way that minimizes the residue [17]. The feedback control input . u[k + 1]
at the .(k + 1)-th sampling iteration is calculated based on the current estimated 
state .x̂[k + 1]. We consider K as a pre-calculated optimal control gain. The control 
input thus calculated is then used to actuate the plant and stabilize it around the 
target operating point. As an example, consider Fig. 3 which demonstrates such 
closed-loop interaction between plant(s) and controller(s). We represent as a high-
level view of a system under control where different subsystems with corresponding 
dynamics are modeled as plants (denoted as . Pi for the i-th plant) and for each of 
them, suitable measurements are obtained using a set of sensors (denoted as . Si for 
the i-th plant). For each . Pi , we have a corresponding control (denoted as . ci) and 
estimation task (denoted as . ei) implemented in the ECU. The communicated data 
and control outputs are suffixed with the plant names and tasks are suffixed with the 
plant indices for better understanding. 

Like standard information processing systems, there are three fundamental 
security properties of any computer-controlled system and the information it deals 
with, i.e., confidentiality, integrity and availability (CIA). Now, there are several 
kinds of Man-in-the-Middle attacks that can observe and then utilize some system-
specific knowledge to corrupt the communicated data to hamper its integrity. Insider 
attacks of this kind do not target confidentiality and can not be stopped by the
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Fig. 3 Component-level overview of secure CPS under false data injection (FDI) 

encryption policies mandated as per the AUTOSAR standards (truncated CMAC 
with 128 bit AES). Such attacks can be generalized as False Data Injection Attacks 
which corrupt the actual sensor and actuator data with a certain amount of false 
data. Our discussion in this chapter will primarily focus on the effects and counter-
measures of False Data Injection (FDI)-type Man-in-the-middle attacks on control 
loops. In Fig. 3, such attacks on measurement and actuation are denoted by the 
variables .ayPi

and .auPi
for a plant . Pi . We assume that the ECU also runs a detection 

task . di for every i-th loop in the system. We start with an example of simple 
threshold-based detection. Threshold-based detection tasks (Fig. 3) are designed to 
monitor the transmitted sensor data and flag an attack or anomaly in system output 
whenever the residue (or some derived statistics from it) surpasses some pre-fixed 
constant detector threshold T h  i.e., 

.‖r[k]‖p > T h, (‖r‖p = (
∑

‖r‖p)1/p) (4) 

where p is the chosen norm. A suitable threshold value on the residue statistics can
be chosen to constrain the estimation error. For a control loop, the state progression
under FDI attacks can be expressed as follows.

.xa[k + 1] = Axa[k] + Bũa[k] + w[k], . (5) 

ya[k + 1] = Cxa[k + 1] + v[k] + ay[k], (6)
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.x̂a[k + 1] = Ax̂a[k] + Bua[k] + Lra[k], ra[k] = ya[k] − Cx̂a[k]. (7) 

ua[k + 1] = −Kx̂a[k + 1], ũa[k + 1] = −Kx̂a[k + 1] + au[k] (8) 

Here .xa[k] , .ũa[k], .ya[k] and .x̂a[k] are the attacked variants of the state, control 
input, output and estimated state vectors (from Eqs. 2 and 3) respectively at k-th 
iteration. By attacked, we mean to say under the influence of additive false data 
.au[k] injected on actuation, and .ay[k] injected on sensor data at k-th sampling 
iteration. Also, .ra[k] denotes the system residue under attack scenario (from Eq. 3) 
at k-th sampling instance. Note the difference between .ũa[k] and .ua[k]. The first 
one is the control input at k-th iteration under the influence of an additive FDI 
attack on actuation (.au[k]) and the second one is not affected by the actuation attack 
but is calculated using the estimated states derived from the FDI affected (.ay[k]) 
sensor readings . ya . The estimated states are calculated in the controller side itself 
(i.e., not transmitted via the network under attack or not actuated via the actuator 
under attack). Therefore, unlike the actual plant state calculation, (where .ũa[k] is 
used to calculate .xa[k + 1]), .ua[k] is used for the calculation of estimated state 
.x̂a[k+1]. In Fig. 3, we demonstrate such a data falsification attack on an automotive 
communication network. The attack vector at k-th sampling iteration is symbolically 
represented as .A[k]T = [au[k]T , ay[k]T ]T . If the attacker continues the false data 
injection for l sampling iterations, then the l length attack vector is expressed as 
follows. 

. Al = [A[1] · · ·A[l]] =
[
au[1] · · · au[l]
ay[1] · · · ay[l]

]

Since automotive control loops are highly safety-critical, an intelligent attacker 
can design the FDIs while utilizing system model knowledge with an aim to 
make the system states unsafe. To achieve this, the attacker has to compromise 
the sensors/actuators or the intra-vehicular communication networks (e.g. the CAN 
bus). In this process, the attacker might get detected as the residue-based detection 
tasks are always running in the ECU looking for anomalies where the residue-
statistic changes undesirably or beyond a certain threshold. Therefore, the attacker 
also needs to design the false data in a way such that it can maintain its stealth 
while making the system eventually unsafe [15]. Considering n as the dimension of 
the system and .XS ⊂ R

n being the safe region of system states, the following is 
the criteria that an N -length stealthy and successful FDI attack vector .AN has to 
satisfy. 

.‖ra[k]‖p ≤ T h ∀k ∈ [1, N ] and xa[N + 1] �∈ XS (9) 

Figure 4 demonstrates such a successful attack injected into the sensor and actuation 
data of an Automatic Cruise Control (ACC) system. The states of the system are 
deviation (D) from the reference trajectory and the velocity (V) of the vehicle. The 
velocity (V) is considered as system output and is controlled using acceleration
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Fig. 4 A successful yet stealthy FDI 

control input. The safety boundary for V is considered to be .30m/s to maintain 
a safe distance from the preceding vehicle. Following are the states and transition 

matrices of the ACC plant sampled at every .Ts = 0.1 s, . A =
[
1 0.1
0 1

]

, B =
[
0.005
0.1

]

, C =
[
0
1

]

, D = [
0
]
, xa = x̂a =

[
D

V

]

. The controller and 

observer gains used to achieve the closed-loop functionalities are respectively . K =
[0.9171 1.6356] and .L = [0.8327 2.5029]T . The system is equipped with a residue-
based detector with .threshold = 2.5. The stealthy attacker can inject falsified 
velocity and acceleration data communicated between the plant and controller. 
Figure 4 is a plot of velocity and residue under a 13 length false data injection attack 
vector launched on this Automatic Cruise Control system (ACC). We can see that 
the false data is successfully pushing the velocity of the follower vehicle beyond the 
safety limit, i.e., .30m/s at 14 sec time instant but the residue still remains below 
threshold. Hence, this is a successful 13-length attack vector as per Eq. 9 as it 
successfully makes the system unsafe before the alarm is raised by the detector. In 
this chapter, we consider this generalised set of false data injection type attack, and 
discuss a security-aware design that can protect the system against them. 

2.2 Automotive Software Tools and Standards 

Automotive controllers are developed in a modularized fashion with different 
initial models representing different subsystems aimed to handle specific control 
operations. The high-level modeling is typically done using a formalism that 
supports hybrid specification of continuous dynamics and discrete switching logic 
together. In this development process, Model-Based Design (MBD) methodology 
is used in early stages by the TIER-I suppliers. MBD tools enable design, testing 
and verification to be performed in a single design platform. Stateflow/Simulink is 
widely used by control system designers for this purpose. Controller specifications 
are defined as networks of Simulink components or state-flow models that are
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developed and validated separately as part of a hierarchical system model [18]. 
Along with simulation-based testing in the system state-space, the design verifiers 
associated with these platforms verify the high-level design as a hybrid automaton 
using formal engines. This enables an integrated verification and correction of 
the developed control system model in the development stage itself. The code 
generation for the target platform is another feature integrated into these model-
based design tools. The Simulink Coder is one such popularly used tool that 
modularizes the functionalities of each subsystem and provides the binaries for 
integration to a system-level model. An AUTOSAR compliant conversion of these 
model-based designs of controllers into runnable programs is done thereafter. These 
modular tasks are then cluster-wise mapped to the ECUs so that they can be invoked 
from the system level as control tasks based on the task allocations following the 
AUTOSAR standards [8, 9]. Thereafter, a thorough schedulability analysis of the 
collection of tasks in a given ECU core is done in order to validate this. Given the 
safety-critical and real-time nature of tasks, such automotive performance analysis 
tools need to be correct with high confidence (even if conservative). Tools like 
Symtavision SymTA suite (for Infineon ECUs), Inchron chronSUITE are popularly 
used for this purpose. These tools help in calculating the end-to-end response time 
for a given task mapping and verifying simulated system response given certain 
safety, performance criteria, and resource budget. Standard protocols like CAN, 
Flexray, etc., are also supported in order to analyze the communication busloads 
and optimize them. After rounds of tests and required design updates, the code for 
the final design is generated for the target ECUs. After analysing and verifying the 
generated code using integrated code verifiers (e.g., Polyspace [19]), the binaries are 
implemented in the ECU following the mapping strategy. Modern automotive ECUs 
follow a layered software architecture with the AUTOSAR runtime environment 
(RTE) interfacing with the AUTOSAR software components (SWCs). A service 
layer follows this application layer that interacts with ECU and Microcontroller 
abstraction layer (MCAL), which is equipped with complex and low-level device 
drivers. This facilitates multiple control features to be executed as real-time tasks 
while sharing the same physical platform. 

The crypto stack of AUTOSAR provides an interface for Message Authentication 
Codes (MACs), Secure Hash Algorithms (SHA), and key-based authentication 
methods. Crypto service manager (CSM) [20] is the service layer module that 
interacts with the crypto interface (CryIf) in the ECU abstraction layer and enables 
communication with the cryptographic software or hardware via the crypto driver 
module in MCAL. Data packets are transmitted as Protocol Data Units (PDUs) and 
unpacked into Service Data Units (SDUs) at the receiver’s end following the proto-
col control information (PCI). Standard AUTOSAR guidelines for Secure Onboard 
communication mandate the use of 128-bit AES with Cipher-based MACs while 
transmitting PDUs through the communication buses. This prevents unauthorized 
tampering of data communication but it does not ensure protection against false-data 
injection type insider attacks. To thwart one such powerful attack i.e., Record and 
Replay Attack, freshness value (FV) is introduced along with the MACs. But the use 
of these cryptographic authentications increases the processing and communication
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overheads. This is why the AUTOSAR Secure onboard communication (SecOC) 
directive suggests the use of truncated MACs. This might result in a lower security 
level, but the use of a 128-bit key size with more than 64-bit MAC is considered 
to provide significant security against unauthorized intrusions. The security profile 
for CAN communication suggests the use of 28 most significant bits from MAC 
(calculated using 128-bit AES with CMAC) and 4 least significant bits from the 
freshness value. 

2.3 Related Studies 

There exists a significant amount of work that had shown how an adversary can 
gain access to the intra-vehicular network physically or remotely [16, 21–24]. 
Once the access to the intra-vehicular network is gained, any ECU with safety-
critical tasks can be compromised and the attack will pose like an insider attack 
effort. Since CAN is a protocol using which most of the safety-critical control 
messages are broadcasted, it is an ideal attack surface for an FDI attacker. The 
authors in [12] exploit the in-built error-handling protocol of CAN to send a victim 
ECU to bus-off mode using a compromised ECU. Authors in [25] take this attack 
strategy further by extending the bus-off period. They choose an optimal victim 
message ID, observe when the ECU recovers from bus-off, and re-transmit that 
ID to target the preceding error transmission frames, thus pushing the ECU back 
to bus-off. Now that the victim ECU is compromised repeatedly, the attacker can 
inject fabricated data packets in the CAN bus in the disguise of this victim ECU for 
a long enough period to make a control loop unsafe. A denial-of-service type attack 
is demonstrated in [21]. Authors show how individual brakes of a real car can be 
locked and communication with the engine control module, body control module 
can be disabled by injecting random data packets into the CAN bus. A false data 
injection attack can be inflicted in this way by crafting data packets with false speed 
information and injecting them into the CAN bus. A replay attack methodology 
is discussed in [26] on the keyless entry system of a vehicle. There are various 
other automotive attacks in the literature [27, 28]. Such intrusions can cause serious 
damage to the system but are hard to catch. 

To combat such attacks, the integration of cryptographic schemes is proposed 
by researchers in the automotive domain. The use of Cipher-based Message 
Authentication Codes (CMAC) based on symmetric key ciphers like AES was 
chosen as part of Secure Hardware Extension (SHE) for automotives [29]. Since 
these are computationally simpler than the asymmetric approaches, they are ideal for 
real-time use with less computational power. But sharing of secret keys among all 
participating ECUs makes the intra-vehicular network prone to insider attacks. Keys 
being pre-programmed into the ECUs have been exploited in [21]. To prevent this, 
the use of Cyclic Redundancy Codes (CRC) along with CMAC suggested in [30] 
ensures the integrity of intra-vehicular communication.
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Control-theoretic monitoring systems are also proposed to deal with power-
hungry cryptographic algorithms [13]. These mechanisms offer basic safety checks 
on a CPS while it operates. There are statistical change detection methods like 
.χ2-test, Cumulative Sum (CUSUM) [31, 32], that are implemented to detect 
whether the system output or the system states are anomalous. The residue of 
the system is monitored for this purpose. If the residue statistic goes beyond a 
certain pre-calculated threshold, the system is found to be anomalous. Though such 
lightweight control-theoretic security primitives can limit the attacks, they can also 
be fooled [14, 15]. 

Since the standalone use of cryptographic algorithms to secure a CPS is 
not resource-friendly and control-theoretic anomaly/attack detection units are not 
sufficient for security either, combining both is usually suggested and is a good 
choice to build a resource-aware Intrusion Detection System (IDS) for CPSs. 
Authors in [33] proposed such an IDS for securing plant controller communication 
with reduced resources by sporadically using the cryptographic schemes with 
attack-resilient control-theoretic detection tasks running in the background. Such 
intermittent activation of cryptographic schemes is made further resource-aware by 
utilizing the weakly-hard design constraints of a CPS in [34]. They also explore 
formal methodologies to ensure that resource awareness would not compromise the 
safety and security of the CPS. 

Another approach is to design the detection task adaptively enough to detect 
attacks based on the current state of the systems. Authors of [35, 36] have proposed 
such anomaly detectors that vary their detection thresholds. The work in [35] 
proposes two greedy algorithms based on formal methods to generate a set of 
monotonically decreasing thresholds in off-line mode. On the other hand, the 
authors of [36] formulate an attacker-defender game to solve the adaptive threshold 
selection problem. In [37], the authors show that the using windowed residue 
statistic with an optimally chosen threshold, one can have a better idea about the 
history of the states which can be useful in terms of better attack detection. The 
work in [38] takes this statistical analysis further toward guided learning of attacked 
state detection using reinforcement learning (RL) and model knowledge. 

In the context of attack mitigation, [39] presented a secure state estimation 
problem which is further leveraged to compute attack-mitigating robust control 
inputs using RL. A recent work [40] presented an online attack recovery method by 
estimating the current system state from the latest trusted data using the checkpoint 
method from [41] followed by which they synthesized recovery control inputs using 
a linear program (LP) and formal methods. In [42], trusted hardware components are 
used as a high-assurance unit to increase the security of the system. As the decider 
unit, they proposed a side-channel analysis-based intrusion detection system. In the 
case of connected and automated vehicles, as discussed in [43], on detection of an 
attack, the system is switched to adaptive cruise control from cooperative adaptive 
cruise control. 

There are several works that address the overall security-aware co-design 
perspective for automotives. Authors in [44] propose a Lightweight Authentication 
for Secure Automotive Networks (LASAN), which suggests optimization of the
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cryptographic protocols with asymmetric key encryption based on available power, 
compute, and communication resources. The work in [45] suggests cross-layer 
co-design of security framework, keeping the performance in mind along with 
a schedulable solution. This design space exploration solution was applied to an 
automotive case study to achieve a refined co-design. 

3 Lightweight Attack Detection 

As we discuss the security-aware design of automotive CPSs, we must keep 
in mind that the design should ensure the real-time requirements of the safety-
critical systems. Hundreds of ECUs collaboratively work together to attain global 
objectives. Additional communication load due to security primitives must not 
hamper the real-time aspects of automotive networks. Being light-weight and 
handling real-time communication has been the primary motivation for designing 
intra-vehicular network protocols like CAN, FlexRay, etc. Most safety-critical CPSs 
are connected via CAN but CAN does not have any authentication scheme. It does 
contain a cyclic redundancy check (CRC) field, however, it can be broken via simple 
reverse engineering [46]. To ensure utmost security, securing every data packet 
using some cryptographic method seems the most promising strategy. To date, the 
traditional cryptographic techniques (for example, message authentication code also 
known as MAC along with some encryption techniques like RSA, AES, etc.) are 
known to provide the best security against false data injection (FDI) attacks. But, 
they incur computational and communication overheads which may lead some of 
the safety-critical tasks to miss their deadlines (refer to Fig. 2 and corresponding 
discussion in Sect. 1). 

An alternative solution that has been widely suggested by a number of 
researchers in the literature to deal with the above limitations in the context of 
security-aware automotive CPSs is to use residue-based attack detectors [14, 15, 32]. 
A residue is computed as the difference between actual and estimated sensor 
measurements .ra[k] = ya[k] − Cx̂a[k] (see Eq. 7). As explained in Sect. 2.1 
either some norm of the residue or some statistical derivation of the residue [37] 
is compared with a threshold value T h. The detector’s efficiency depends highly 
on the value of the threshold. The following two measures are used to quantify the 
detector’s performance. The first one is true positive rate (TPR) i.e., the probability 
at which the detector raises an alarm when an FDI attack is taking place. The second 
one is false alarm rate (FAR) i.e., the probability at which the detector raises an 
alarm when no attack is taking place. An efficient detector will have higher TPR 
and lower FAR. 

Let us consider an example of a zero-dynamic attack demonstrated on a trajectory 
tracking control (TTC) system (see Fig. 5). The states of TTC are deviation (D) 
from the reference trajectory and the velocity (V) of the vehicle, .xa = [D V ]T . 
The system matrices are .A =

[
1 0.1
0 1

]

, .B = [0.005 0.1]T . The system is equipped
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Fig. 5 Zero dynamic attack: (a) Attack vectors (b) Effect of attack on system and detector 

with only distance sensor i.e. .C = [1 0]. Here, the control input is the acceleration 
of the vehicle. The controller and observer gains of this TTC system are . K =
[16.03 5.66] and .L = [1.87 9.65]T respectively. The attacker can modify both 
distance measurement and acceleration data. A residue-based attack detector is also 
in place with a constant threshold .T h = 0.4. The safety limit for state D has been 
set as . 0.2 unit. Consider an FDI attacker crafted stair-case-like attack vector as given 
in Fig. 5a. Here, by attack vector we mean a sequence of false data to be injected 
to sensor data or actuator signal as mentioned earlier in Sect. 2.1. The intensity of 
the attack values is constant for a certain number of consecutive samples and then 
it is increased. While the actuation attacks .au[k] are positive, attacks on sensor 
measurements .ay[k] are negative. This is because the attack on the control signal 
accelerates the changes in plant states and drives the system towards an unsafe 
region. On the other hand, the attack on sensor measurement hides the reflection 
of the system’s drastic change in the measurements (see Eq. 9). Thus, the detector 
task that can only see the measurements, not the actual system states, is hoodwinked 
into thinking that the system is operating as desired. This smartly crafted attack can 
successfully make the system unsafe as can be seen in Fig. 5b. We are saying the 
attack is stealthy because following the successful attack criteria mentioned in Eq. 9, 
the residue remains below the threshold value all the time. It will never trigger an 
alarm to notify that an attack has taken place. This reduces the detector’s TPR. 
One can reduce the threshold further to improve the detection rate. But, in that 
case, the detector will consider even small process and/or measurement noises as 
attacks. This increases FAR and thus reduces the detector’s efficacy. Therefore, it is 
necessary to determine an optimal threshold for which the detector’s performance 
is enhanced. We now discuss 2 state-of-the-art approaches that can be found in the 
literature for determining the optimal threshold to improve detectability as well as 
to reduce false alarms.
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3.1 Optimal Static Threshold-Based Detector 

In [37, 47], the authors considered a stateful [32] detection system and provided a 
theoretical base on how to correlate the characteristics of the detector with system 
dynamics. A stateful detector in the context of residue-based light-weight detection 
mechanism means the decision of the attack detector does not rely only on the 
current measurement; rather, a number of past measurements are also considered. 
Examples of such detectors include CUmulative SUm (CUSUM), windowed .χ2-test 
statistics-based detectors, etc. Let us summarize the idea by considering a CUSUM 
detector. Consider we have m sensors to measure that plant state i.e.,. y[k], ya[k] ∈
R

m. Therefore, the residue .r[k], ra[k] ∈ R
m. When no attack is taking place, the 

mean and covariance of residue are respectively .E[rk] = 0 and .E[rkrT
k ] = �. 

Using the subscript i, we denote the i-th sensor as .yi[k] where .i ∈ {1, 2, . . . , m}. 
Consequently, we have .ri[k] ∼ N (0, σ 2

i ). Here, . σi is the i-th diagonal entry of the 
covariance matrix . �. The condition for detecting a false data injection attack using 
CUSUM detector [48] is:  

.Si[k] = max(0, Si[k − 1] + | ra
i [k] | −bi) if Si[k − 1] ≤ T hi . (10) 

= 0 if Si[k − 1] > T hi (11) 

The test sequence . Si is initialized with 0 for all .i ∈ {1, 2, . . . , m}. .T hi and . bi are 
the threshold and bias selected for the i-th sensor. So, basically, CUSUM detector 
checks whether a certain sensor is under attack. When the cumulative sum sequence 
. Si exceeds . T hi , an alarm is triggered to raise an attack situation. 

The efficacy of this detector depends on the bias . bi and the threshold . T hi . Since 
.| ra

i [k] | is non-negative, if a sufficiently large value is not selected for . bi , the  test  
sequence . Si may grow unboundedly. This inherent unboundedness of CUSUM may 
lead to false alarms. Because, due to some measurement and process noise, the value 
of .| ra

i [k] | can be greater than 0 even if an attack is not taking place. Therefore, first, 
the value of . bi must be selected wisely relative to the characteristics of the residue 
. ri . Following this, a suitable .T hi needs to be computed to achieve a desired FAR. 

The authors of [37] established a lower bound on . bi as .bi > b̄ = σi

√
2/π in 

Theorem 1 in [37]. Once, . bi is determined, the value of the threshold .T hi has to be 
computed such that the false alarm rate never crosses a desired value. To do so, we 
define run length . κi of CUSUM (Eq. 11) as the number of iterations needed to reach 
.Si[k] > T hi i.e. 

.κi = inf {k ≥ 1 : Si[k] > T hi} (12) 

The average run length (.ARLi) is the expected value . κi which is related to FAR as 
.ARL = 1/FAR. Considering the desired FAR as .FAR∗, we need to find out . T hi

such that .ARLi = 1/FAR∗ provided .bi > b̄i . Authors of [37] presented a Markov 
chain approach for approximating .ARLi to determine the pair .< bi, T hi > such 
that Eq. 12 holds.
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3.2 Variable Threshold-Based Attack Detector 

A different line of approach was presented in [35] to synthesize the threshold for 
residue-based detectors to enhance TPR and reduce FAR. As a potential example 
of a targeted performance degrading attack, they consider the situation when the 
reference point of a controller changes due to the occurrence of some event. For 
example, if the driver rotates the steering wheel, the yaw rate of the vehicle needs 
to be changed to maintain the lateral dynamics of the vehicle. For such kinds of 
systems, an attacker can obstruct the vehicle from reaching the proximity of the new 
reference by injecting even smaller faults at the later stage of the system dynamics 
(when nearing the reference). From the perspective of designing a security-aware 
system, this brings in an interesting trade-off. Assume we want to design a static 
threshold-based detector where a constant threshold will be used throughout. We 
look into two cases. First, a lower-valued threshold is determined considering the 
required false data to be injected at the later phase of settling time. In this case, 
any process or measurement noise induced by the environmental disturbances in 
the system will be considered an attack. This will lead to false alarms. Second, a 
higher-valued threshold is selected considering the required attack amount at the 
earlier phase of settling time. This will help an attacker easily bypass the detector. 
The attacker can inject a sequence of small false data to make the system unsafe (as 
demonstrated in Fig. 5). Such scenarios have motivated the authors of [35] to design 
a variable threshold-based detector that may ensure reduced FAR while identifying 
even small attack efforts that may lead to potential performance degradation. 

As a motivating example, we again consider the same example trajectory tracking 
control (TTC) system. We can see in Fig. 6a, that due to the process noise .w[k] and 
measurement noise .v[k] (Eq. 2), the violation in system’s desired performance is 
negligible. This is due to the intrinsic robustness of the controller. On the other hand, 
we can see the system gradually becomes unstable when the system is under the 
influence of a smart attacker (Fig. 6a). Consider three  such possible residue based 
detectors: with the smaller threshold th, the bigger threshold T h  and the variable 
threshold curve . vth in Fig. 6b. The detector considers even the harmless noise as an 
attack when th  is used, while the actual attacker could bypass the detector when 

Fig. 6 Noise and attack simulation on trajectory tracking system. (a) Effect of noise and attack. 
(b) Static vs dynamic threshold
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T h  is used. However, using the variable threshold curve . vth (dotted black line in 
Fig. 6b), the attack does not remain stealthy while harmless noise is allowed to pass, 
reducing the false alarm rate. With this motivation, the authors of [35] presented 
two greedy approaches for synthesizing variable thresholds by leveraging formal 
methods like Satisfiability Modulo Theory (SMT) [49]. The following paragraph 
contains detailed explanations of those methods. 

Given the closed-loop system dynamics in Eq. 2, and the reference point .xdes , 
the target performance criteria pf c is to reach some n-dimensional closed ball 
(polytope) .Bε(xdes) with radius .ε > 0 around .xdes (i.e., the closed region . {x ∈
Rn || x − xdes ||≤ ε}) within a finite number of iterations, starting from an initial 
state .x[0] ∈ I ⊂ R

n. Hence, 

. pf c : x[l] ∈ Bε(xdes), where l > 0 is the finite number of iterations.

The attacker’s objective would be .x[l] /∈ Bε(xdes) after l closed-loop iterations 
(Eqs. 5–8). The property pf c captures both control performance and stability 
criteria. Assume the system already has some rudimentary monitoring scheme, 
like a range monitor for the sensor measurements, in place. Let us denote such 
monitoring rules as mdc. Authors of [35] present two counter-example guided 
methods to synthesize variable thresholds. They generate a stealthy attack vector 
i.e., a sequence of attacks that can ensure violation of pf c while mdc fails to detect 
it. Using this attack vector, they include a new threshold to the variable threshold 
set and again generate another attack vector. This step is continued until no attack 
vector can be generated with the current set of thresholds. We first explain the attack 
vector generation method using SMT [35]. 

The following are fed to Algorithm 1 as input: i) dynamics of the plant P , 
ii) the controller gain K to control the plant P , iii) estimator gain L, iv) desired 
performance criteria pf c of the closed-loop system, v) specification of existing 
attack monitor mdc, vi) set of thresholds T h  (this is initially a null set), and vii) 
finite duration T for satisfying pf c. The system states, estimated states, and control 
inputs are initialized in line 2. Note that, . ua differs from . ̃ua by the fact that . ua is 
the control input before being communicated to the plant, and . ̃ua is the control 
input which is modified by the attacker and received by the plant (see Eq. 8). 
Consider attack is taking place at every iteration in .{1, 2, . . . , T }. At every iteration 
.k ∈ {1, . . . , T }, the variable .ay[k] and .au[k] signifying false data are assigned a 
value non-deterministically (line 4). Following Eq. 6, the false data .ay[k] is added 
to the measurement .ya[k] which is transmitted from plant to controller (line 5). The 
controller computes estimated measurement .ŷa[k] and thereby the residue .ra[k]. 
System states .xa[k + 1] and estimated states .x̂a[k + 1] are updated in lines 8–9. 
Note that since estimator and controller reside in the same embedded platform and 
we are only considering network-level attack on CPS, . xa is updated with . ̃ua while 
. x̂a is updated with . ua . Finally, control input .ua[k + 1] is computed in line 10 and 
modified control input .ũa[k + 1] is calculated by introducing .au[k] to .ua[k + 1] in 
line 11. This way, the closed-loop system progression for T iterations is unrolled 
and symbolically represented. We say that an attack is stealthy but successful
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Algorithm 1 Attack vector synthesis [35] 
Require: Plant P , controller K , observer L, Control property pf c, existing monitoring constraint 

mdc, computed threshold vector T h, attack duration T 
Ensure: Attack vector A(if it exists, otherwise NULL) 
1: function ATTVECSYN(P , K , L, T h, pf c, mdc, T ) 
2: xa[1] ← I; x̂a[1] ← 0; ua[1], ũa[1] ← −K ̂xa[1]; � Initialization 
3: for k = 1 to  T do 
4: ay [k], au[k] ← non − deterministic_choice; 
5: ya[k] ← Cxa[k] + Dũa[k] + ay [k]; 
6: ŷa[k] ← Cx̂a[k] + Dua[k]; 
7: ra[k] ←  ya[k] −  ̂ya[k]; 
8: xa[k + 1] ←  Axa[k] +  Bũa[k]; 
9: x̂a[k + 1] ←  Ax̂a[k] +  Bua[k] + Lra[k]; 
10: ua[k + 1] ← −K ̂x[k + 1]; 
11: ũa[k + 1] ← ua[k + 1] + au[k]; 
12: end for 
13: A ←assert((∀T h[p] ∈ T h, ‖ra[p]‖ < T  h[p] && mdc) → pf c) 
14: if A is violated then 
15: return A ←

[
au[1]  · · ·  au[T ] 
ay [1]  · · ·  ay [T ]

]

; 

16: else 
17: return NULL; 
18: end if 
19: end function 

when predicates .|| ra[k] ||< T h[k] and mdc are satisfied, but pf c is violated. 
Negation of this is modeled by assertion . A in line 13. The function ATTVECSYN() 
in Algorithm 1 thus non-deterministically models all possible T consecutive closed-
loop executions under stealthy attacks. After this, the assertion on the system states 
and residue is given as input to an SMT tool with the assert clause. If the assertion is 
violated, the algorithm gives as output a successful stealthy attack vector (line 15). 
Else, it returns NULL (line 18) which signifies that the performance criteria pf c of 
the system can not be violated by any stealthy attack of duration T samples. Using 
this algorithm, the authors of [35] presented two greedy algorithms to synthesize a 
set of variable thresholds. 

3.2.1 Pivot-Based Threshold Synthesis Method 

This method generates a new threshold at every iteration. The steps of the method 
are demonstrated in Figs. 7, 8, 9, and 10 and discussed in detail below. 

Step 1: Initially, the threshold set is considered to be empty. The function 
ATTVECSYN() in Algorithm 1 is called with the empty threshold set and other 
parameters. If an attack vector . A is returned, it implies that the existing monitor 
mdc fails to detect the successful attack and a new threshold for the residue-based 
detector is needed. The maximum residue generated by the current attack vector
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Fig. 7 Step 1 (pivot-based 
threshold synthesis): from the 
1-st attack vector, add 1st 
threshold to T h  that can 
detect maximum residue 

Fig. 8 Step 2 (pivot-based 
threshold synthesis): check if 
attack vector exists with new 
T h, look for new threshold on 
LHS of existing ones keeping 
monotonic decreasing order 
intact 

Fig. 9 Step 3 (pivot-based 
threshold synthesis): check if 
attack vector exists with new 
Th and step 2 fails, look for 
new threshold on RHS of 
existing ones keeping 
monotonic decreasing order 
intact 

Fig. 10 Step 4 (pivot-based 
threshold synthesis): check if 
attack vector exists with new 
T h  and step 3 fails, modify 
an existing threshold keeping 
monotonic decreasing order 
intact 

is selected as the first threshold (Fig. 7). This ensures that the new threshold will 
be able to detect the current attack vector. 

Step 2: The function ATTVECSYN() is called again with the updated threshold 
set to check if any attack vector exists. If so, it implies that the current threshold 
set is not enough to detect all attacks, and a new threshold must be included to 
T h. As we aim to generate a monotonic decreasing set of thresholds, first we 
see if we can add a new threshold on the left-hand side of the existing ones such 
that the monotonic decreasing order is maintained. It is demonstrated in Fig. 8. 
For any of the existing thresholds .T h[p] ∈ T h, we try to find out whether the 
current attack has produced any residue .|| ra[k] ||≥ T h[p] for .k ≤ p. Multiple 
such candidate residues may exist. The maximum of them is considered to be the 
new threshold. This new threshold ensures the current attack will be detected.
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Step 3: In step 2, if any higher valued threshold can not be found on the left-
hand side of any existing threshold, the method checks if a new threshold can 
be added on the right-hand side of some existing threshold (Fig. 9). For any of 
the thresholds .T h[p] ∈ T h, we try to find out whether the current attack has 
produced any residue .|| ra[k] ||≥ T h[p] after p-th instance, i.e., .k > p. A new  
threshold is added at i if only .ra[i] is at least as much as .T h[k] for all .k > i. 
This ensures the monotonic decreasing order. 

Step 4: If no new threshold can be added following the rules in Steps 2 and 3, 
then one of the existing thresholds needs to be modified to detect the current 
attack vector. To do so, the proposed approach computes the difference between 
existing thresholds .T h[p] ∈ T h and the corresponding residue .|| ra[p] ||. The  
threshold .T h[i] is selected as a candidate if .T h[i]− || ra[i] || is minimum 
among all .T h[i] ∈ T h and the value of .T h[i] is comparatively reduced than 
earlier. If this modification violates the monotonic decreasing property of T h, all  
the .T h[p] ∈ T h for .p > i are reduced. This is demonstrated in Fig. 10. 

Steps 2–4 are repeated until the function ATTVECSYN() returns no attack vector 
with the modified threshold set. This returned threshold set T h  is the final one. 
Since this approach may take a longer time to converge, the authors of [35] proposed 
another greedy approach that we discuss next. 

3.2.2 Step-Wise Threshold Synthesis Method 

While the previous approach computes a single threshold at each iteration, this 
method computes a sequence of thresholds together at each step. The steps of this 
method are pictorially presented in Fig. 11. Let us discuss the steps in detail. 

Step 1: Here as well, the threshold set is initialized to be empty. The function 
ATTVECSYN() in Algorithm 1 is called with the empty set. If it returns an attack 
vector, it implies that there is a need for a threshold to detect this attack vector. 
For introducing the first sequence of thresholds, the maximum value among the 
.|| ra[i] ||’s where .1 ≤ i ≤ T is selected, say .|| ra[j ] ||. The first sequence 
of thresholds is computed as .T h[p] =|| ra[j ] ||, for all .p ∈ {1, .., j}. This is  
demonstrated in Fig. 11a. The name of the method is justified by the fact that the 
threshold set computed using this method will always looks like steps. 

Step 2: With the updated threshold set T h, the function ATTVECSYN() is again 
called to check if the new threshold is enough to detect every attack vector. If 
the function returns an attack vector, it indicates the need for new thresholds. 
Let .T h[i] be the last non-zero threshold value. To create a new step, this method 
finds out maximum .|| ra[k] || for .k > i such that .|| ra[k] ||≤ T h[i]. Say, the 
maximum is .|| ra[j ] ||. The threshold set is then updated as . T h[p] =|| ra[j ] ||
for all .i < p ≤ j (Fig. 11b). This ensures the desired monotonic decreasing 
order property of T h.
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Fig. 11 Step-wise threshold synthesis. (a) Step 1: from 1-st attack vector, add 1st step of 
thresholds in T h. (b) Step 2: check if attack vector exists with new threshold T h, look for new 
step downwards to maintain the monotonic decreasing order. (c) Step 3: check if attack vector 
exists with new threshold T h, and step 2 fails, create new steps out of the old ones by keeping the 
monotonic decreasing order intact 

Step 3: A situation may occur when no new step can be generated in the threshold 
set. This can happen when there is no zero element in T h. In such cases, the 
height of some existing steps needs to be modified to ensure that the current 
attack will be detected with the modified threshold set. Instead of reducing 
the height of an entire step, we break a portion or the whole step whichever 
involves minimum effort i.e., the minimum area under the threshold curve that 
can be removed to detect the current attack. From Fig. 11, it can be seen that 
the thresholds in T h  create an area under the threshold curve. At each sampling 
instant i, an area  .Areai is computed as follows. Find p, .i < p ≤ T such that 
for all .k > p, .T h[k] ≤|| ra[i] || but for all .k ≤ p, .T h[k] >|| ra[i] ||. . Areai

is the segment under threshold curve T h  from i-th to p-th sample. The sampling 
instant for which this area is minimum is selected, say that is the j -th instance. By 
removing .Areaj , new step is generated as .T h[l] =|| ra[j ] || for all .l ∈ (j, p]. 
This is demonstrated in Fig. 11c. 

Steps 2–3 are repeated until no new attack vector can be found upon calling 
ATTVECSYN() every time T h  is updated. In [35], authors analyzed that the step-
wise method converges must faster than the pivot-based one. Also, the step-wise 
method performs better in terms of FAR than the pivot-based method.
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4 AI-Based Adaptive Attack Detection 

The previous section brings forth some algorithmic and heuristic-based approaches 
to improve the detection tasks in CPSs. It introduces the concept of an adaptive 
detection technique. These heuristic-based approaches definitely improve the detec-
tion when compared to a fixed threshold-based detector, but it does not formalize or 
quantify the improvements. In an attempt to achieve so, the authors of [36] presented 
an attacker-defender game to guide the adaptive threshold selection problem though 
the proposed detector is not evaluated on any closed-loop CPS. Moreover, the 
optimization problem for threshold selection is solved in real-time and may cause 
computation overhead. Reinforcement learning is already been successfully used 
in the domain of estimation [50], energy efficiency [51] of safety-critical CPSs 
with real-time requirements. An RL-based adaptive threshold-based attack detector 
learns from the affected system dynamics and adaptively tunes the threshold of 
the residue-based anomaly detectors. The main motivation behind considering an 
RL-based strategy is the following challenge. The false data injected into sensors 
and actuators by the stealthy attacker are highly system-specific, random, and do 
not follow any statistical distribution. Therefore, the parameters of the adaptive 
attack detector cannot be directly derived from the injected false data signature. 
The performance of the proposed detector depends on how well it is trained against 
the optimal attack vectors. Thus, we also design an RL agent for mimicking the 
attacker’s behavior during the training phase. 

Let, for the discrete LTI system shown earlier in Eq. 2, the estimation error . e[k]
be defined as .e[k] = (x[k] − x̂[k]). The Gaussian assumptions of noise and initial 
states (.x[0] ∼ N (0, �x[0])) ensure that .e[k] ∼ N (0, �e) (steady state covariance 
matrix of this estimation error is . �e). Therefore, the system residue . r[k] =
Ce[k] + v[k]. Being a linear function of two other independent gaussian random 
variables estimation error and measurement noise, the residue is also normally 
distributed i.e., . r ∼ N (0, �r), where, �r = E[r[k]r[k]T ] − E[r[k]]E[r[k]]T =
E[(Ce[k])(Ce=[k])T ] + E[v[k]v[k]T ] = C�eC

T + �v . 
As a popular detection scheme, the .χ2-test can be used on .r[k] to find out how 

anomalous .x[k] is i.e., whether it is affected by injected false data. This helps one 
understand how bad the estimated output is compared to the actual controlled-
plant output according to the .χ2-test. Let .g[k] denote the .χ2-test result at k-th 
sample and .g[k] = ∑k

i=k−l[k]+1 rT
i �−1

r ri . A window size of .l[k] is considered 
during the .χ2-test at k-th sampling instance since taking historical data into account 
produces a more accurate estimation compared to only considering instantaneous 
data. Consider that there are m available sensors to sense different plant outputs 
(i.e., .m ≤ n, n being the dimension of the system). The degree of freedom (DOF) 
for this test is .m × l[k]. When there is no FDI attack, .g[k] follows . χ2 distribution 
with mean .ml[k] (Fig. 12) since .r[k] and .e[k] follows 0 mean Gaussian distribution 
as discussed above. If .T h[k] is the threshold that is chosen at k-th sampling instance, 
.g[k]’s probability density function (PDF) along with its cumulative distribution 
function (CDF) w.r.t. .T h[k] can be defined as,



210 S. Dey et al.

Fig. 12 .χ2-distribution 

.P(g[k]) = g[k]ml[k]
2 −1e− g[k]

2

2
ml[k]
2 �(ml[k]

2 )
(13) 

.P(g[k] ≤ T h[k]) = γ (ml[k]
2 , T h[k]

2 )

�(ml[k]
2 )

(14) 

Here, . � and . γ are ordinary and lower incomplete gamma functions respectively 
[52, 53]. It is considered to be a false alarm when .g[k] > T h[k] even in the absence 
of an attacker. We quantify this with the false alarm rate (FAR), calculated with 
the ratio of the number of times a false alarm is raised falsely and the total number 
of alarms raised. We denote the FAR at k-th sample where the .χ2-test result . g[k]
is compared with the threshold .T h[k] as .FAR[k]. In Fig. 12, the black area under 
the solid curve and the grey area under the dashed curve represent the distribution 
of .g[k] under no attack and attack respectively. Therefore, .FAR[k] should be the 
fraction of area under the probability distribution curve of un-attacked .g[k] that is 
constrained by .g[k] > T h[k]; thus computed as .FAR[k] = 1 − P(g[k] ≤ T h[k]). 

As proven in Theorem 1 in [38], the spurious data .ay[k] and .au[k] added by 
the attacker to the sensor, and the actuator transmissions respectively introduce 
non-centrality to the actual . χ2 distribution of system residue. The gray area under 
the dashed curve in Fig. 12 is the distribution of .ga[k] obtained from the residue 
.ra[k] (Eq. 7). The resulting .ga[k] is compared to .T h[k] in order to flag an attack. 
Following Corollary 1 in [38], the variance of .g[k] is .σ [k] = 2ml[k] and variance 
of .ga[k] is .σa[k] = 2(ml[k] + 2λ[k]), where .λ[k] > 0 �⇒ σa[k] > σ [k]. 
From the Theorem 1 in [38] we can see that the expected deviation of .ga[k] from 
its mean is more than the expected deviation of .g[k] from .ml[k] which makes the 
distribution of P(.ga[k]) wider and thereby flatter (since the area under both curves is 
unity). Therefore, P(.ga[k] > T h[k]) . > P(.g[k] > T h[k]) as shown in Fig. 12. As the  
window size .l[k] increases, the PDF of .ga[k] becomes even flatter and hence more 
distinguishable from the PDF of .g[k]. So, intuitively speaking, the non-centrality 
of . χ2 distribution improves .T PR[k] i.e., attacks are more detectable for a properly 
chosen window size .l[k] parameter. 

For an optimally chosen . l[k], the non-centrality of .ga[k] is more evident and 
hence produces better T PR  for a certain threshold .T h[k]. We can also optimally 
choose a .T h[k] to attain the minimum possible .FAR[k] (for a certain window
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size) during the absence of an attack (i.e., when only noise is present, in PDF 
of .g[k]) and change it during the attack to attain the maximum possible T PR. 
The main trick here is to understand that the system is under attack more often 
in the true positive case and reduce false alarms. Therefore, the pertinent problem 
becomes how to achieve the above by suitable choice of threshold .T h[k] and the 
test parameter .l[k] in order to identify the attack as quickly as possible without 
too many false alarms. So, given a closed-loop CPS, one needs to learn when is 
the system under some stealthy FDI attack and when it is running normally. The 
work in [38] leverages the non-centrality property of .ga[k] and learns when the 
system is becoming affected by a successful and stealthy FDI attack. The problem of 
synthesizing an optimal detector at every k-th simulation step can thus be formulated 
as the following optimization problem. 

.Jt = max
l[k],T h[k] w1×T PR[k]−w2×FAR[k] s.t. FAR[k] < ε, l[k] < lmax (15) 

The cost function . Jt aims to minimize .FAR[k] and maximize .T PR[k] at 
every simulation step. Here, .w1, w2 are respective non-negative weights assigned 
to TPR and FAR depending on attacked (TPR increment gets more importance) and 
non-attacked (FAR reduction gets more importance) situations. . ε is the maximum 
allowable FAR and .lmax is the maximum allowed . χ2 window length. At each k-th 
step, given the current measurement .y[k]a , the solution of the above optimization 
problem is a pair .< l[k]∗, T h[k]∗ >, where .l[k]∗ and .T h[k]∗ are the optimal 
. χ2 window length and threshold respectively that lead to maximum . T PR[k]
and minimum .FAR[k] w.r.t. current measurement of the system states. But this 
formulation has to work for all possible FDI attacks within the sensor and actuation 
limits. The authors in [38] take a nice approach to ensure that the detection works 
even in the worst case. They learn the optimal attack possible at k-th iteration that 
maintains its stealth but imparts the most significant damage to the system safety. 
The following subsection explains how such an attacking policy can be learned. 

4.1 Optimal Attack Policy Design 

As we discussed in Sect. 2, the attacker’s motive is to steer the system beyond the 
safe set . XS while trying to remain stealthy by reducing the TPR i.e., fooling the 
detector. Given the sensor measurement .ya[k −1], we present this attack estimation 
problem as the following optimization problem. 

. Ja = max
ay [k],au[k] −w1 × T PR[k] + w2 × FAR[k]+
∞∑

i=0

(| xa[i + 1] | −XS |)T W3(| xa[i + 1] | − | XS |). (16)
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s.t. xa 
0 , x̂a 

0 ∈ XR. (17) 

ua[k] = −Kx̂a[k], ũa[k] = ua[k] + au[k], | ua[k] |,
| ũa[k] |≤ εu ∀k ∈ [0, ∞]. (18) 

ya[k] = Cxa[k] + Dũa[k] + v[k] + ay[k],
| ya[k] |≤ εy ∀k ∈ [0, ∞]. (19) 

ra[k] = Cxa[k] − Cx̂a[k], ga[k] ≤ T h[k] ∀k ∈ [0, ∞]. (20) 

x̂a[k + 1] = Ax̂a[k] + Bua[k] + L(Cxa[k] − Cx̂a[k]), ∀k ∈ [0, ∞]. (21) 

xa[k + 1] = Axa[k] + Bũa[k], ∀k ∈ [0, ∞] (22) 

Here, . w1 and . w2 are weights that denote the relative priorities of the attack initiative 
similar to the optimal threshold cost function . Jt (Eq. 15). This is because our 
intention is to design an optimal and stealthy FDI attack for a system equipped with 
the adaptive detector designed above. While an attacker tries to decrease . T PR[k]
(and increase .FAR[k] simultaneously as a by-product), the detector’s objective is 
to increase .T PR[k] and decrease .FAR[k] based on the value of .λ[k] (Eq. 15). The 
last component of . Ja is important to establish it as the worst-case attack. It accounts 
for the deviation of the current system state from the safety boundary . XS using 
a quadratic weighted distance metric where . W3 is a diagonal matrix with relative 
weights signifying the safety-criticality of each dimension. The constraints in 18 
and 19 ensure that the attack efforts are practical, within the allowable ranges and 
utilize the LTI system properties. In case of an invalid or beyond the range sensor 
data and control signal, their effects will be trimmed by the saturation limit and 
won’t produce a desirable effect of the attack. An intelligent adversary’s another 
aim is to remain stealthy, thus bypassing the detector. This is taken into account in 
constraint 20 while estimating the optimal attack. The constraints 21 and 22 ensure 
system progression following Eqs. 5–8. 

4.2 The MARL Based Framework 

This section discusses the Multi-Agent Reinforcement Learning (MARL) based 
implementation that is the methodology to build an adaptive threshold-based 
detection module as discussed in [38]. The goal of the adaptive detector is to detect 
a stealthy FDI attack before it is successful in making the system unsafe. In the 
introduction of Sect. 4, we have explained how changing the detection thresholds by 
leveraging the non-centrality of the system residue can be useful to increase TPR 
and reduce FAR. We utilize that notion here. The detection and attacker modules 
implicitly learn how the system model behaves normally and under FDI attacks by 
analyzing system outputs, states, residue, etc. The smart attacker module should 
challenge the adaptive detection module by posing the most stealthy yet effective
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Fig. 13 The RL-based methodology [38] 

FDI attacks depending on current system behavior. On the other hand, the intelligent 
detector module learns the best possible FDI attack on the CPS by observing the 
non-centrality of the .χ2-distribution of system residue and it adaptively changes the 
threshold to expose the attacker with a promise of increased TPR and reduced FAR. 
RL algorithms are capable of automatically updating their strategy by learning from 
prior experiences. Moreover, since labeled data for falsified system states are not 
available, a simulation environment for the targeted system model can be useful. 
This explains how integrating an MARL framework like this can be useful in the 
context of a security-aware CPS design. In the context of the timing overhead, it is 
reasonably low when we use a trained RL agent for inferencing at run time as seen 
in previous literature [51]. 
A plant-controller closed-loop system equipped with a .χ2-based detector (as shown 
in Fig. 3) is modeled similar to the real-world system under test. This is then 
used as the environment for the RL agents (both under attack and without attack 
situations). Individual RL agents are built as part of our methodology to act as the 
FDI attacker and the adaptive threshold-based detector that run simultaneously in 
a closed-loop with the system environment (see Fig. 13). These agents (. �) interact 
with the environment by observing certain states from the environment (obs) and 
learn how intelligent choice of action (act) values can influence the environment 
towards the fulfillment of their objectives i.e., earning higher rewards (Rwd). 

RL Agent For FDI Attack Estimation Following the intelligent attacker mod-
eling in Sect. 4.1, it can be considered that the attacker has information about 
the system characteristics (Eq. 2) and it can manipulate the sensor and actuator 
data communicated between the plant and controller side. An Attacker RL Agent 
. �a intelligently injects false data into the system by observing the sensor data, 
actuator data, and the .χ2-test result on the system residue. These false data 
injections should be bounded by the sensor and actuator saturation limits (refer
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Eqs. 18 and 19). The actions of . �a are .acta = [ay, au] and the observations are 
.obsa = [y, u, g] (refer Fig. 13). Here .y, u, ay, au denote sensor and actuator data 
and false data injected in sensor and actuator respectively (refer Eq. 8). Here, g is 
the .χ2-test result on the system residue r as mentioned earlier. We also provide 
the last set of actions chosen by the agent . �a as its observation, i.e.,. obsa[k] =
[y[k], u[k], g[k], acta[k − 1]] at k-th simulation instance. At every simulation 
instance, the attacker agent aims to choose proper .acta[k] in order to make the 
system state unsafe without being detected by observing the above data. This 
measurement of stealth and success of the chosen attack effort is captured in the 
reward function .Rwd[k]a(obsa[k], acta[k], obsa[k + 1]). Like usual RL policies, 
the agent is rewarded against its choice of .acta[k] at every k-th simulation instance 
following this reward function. The reward function for . �a is built following . Ja

(Eq. 16) i.e., 

. Rwda[k] = −w1 × T PR[k] + w2 × FAR[k]
+ (| xa[k + 1] | − | XS |)T W3(| xa[k + 1] | − | XS |) (23) 

The notations carry the same meaning as in Eq. 16 and the index k denotes 
their value at k-th simulation instance. As described earlier, the two parts of 
.Rwda[k](obsa[k], acta[k], obsa[k+1]) have opposing objectives. The part . −w1×
T PR[k] + w2 × FAR[k] accounts for stealthiness with minimized FAR and 
.(| xa[k + 1] | − | XS |)T W3(| xa[k + 1] | − | XS |) accounts for the success of 
a chosen FDI attack action .acta[k]. . �a moves towards gaining a higher . Rwda[k]
at every simulation instance by choosing an optimal action .acta[k]. Therefore, a 
learned optimal attack estimation agent would ensure that the overall return (the 
cumulative reward discounted over time) is maximized, which translates to the fact 
that the attacker agent will estimate the false data in a way such that the system 
under attack goes unsafe as quickly as possible without being detected. Note that 
this agent also gives an idea of the actual system states which we can use for secure 
state estimation. 

RL Agent For Adaptive Detection The Variable Threshold-based Detector Agent 
. �d also acts on the same system environment under FDI attack as a competitor 
to the Attacker RL Agent. It chooses an optimal attack detection threshold . T h[k]
and a suitable .χ2-window .l[k] at k-th iteration by observing the . χ2 statistics g of 
the system residue, current non-centrality . λ of this . χ2 distribution and the previous 
action .actd [k − 1] chosen by itself. The intuition behind its formulation is already 
discussed above and the authors in [38] provide rigorous mathematical proof. 
Depending on the observations from the attacked environment, the Detector agent 
chooses a .χ2-window length and threshold. Therefore, we consider the action vector 
.actdk = [T h[k], l[k]] and observation vector . obsd [k] = [g[k], λ[k], actd [k − 1]]
(refer Fig. 13). The reward function .Rwdd [k](obsd [k], actd [k], obsd [k + 1]) is 
designed following . Jt from Eq. 15, i.e.,
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. Rwdd [k](obsd [k], actd [k], obsd [k + 1]) =
{

T PR[k] when λ[k] > δ

−FAR[k] when λ[k] ≤ δ

(24) 

Here also, the variables carry a similar meaning as in Eq. 15. With a goal to 
increase the discounted reward over time in an episode, .�d chooses .actd [k] at 
every k-th simulation instance. The structure of the reward function thus ensures 
that the Neural Network will be trained such that it can always choose its actions to 
maximize T PR  and minimize FAR. 

Learning Technique Here we use Deep Deterministic Policy Gradient (DDPG) 
algorithm [54]. Each DDPG agent consists of an actor neural network that determin-
istically chooses an action (act) by observing the states (obs) of the environment. 
Another Deep Q-Network(DQN) acts as a critic. In each simulation instance, the 
actor chooses an action (.act[k]) by exploring the action space randomly. The 
transitions from .obs[k] to .obs[k + 1] due to the action .act[k] taken are stored in 
the experience replay buffer along with the corresponding reward .Rwd[k] achieved 
during this transition. Note that this action was chosen based on the maximum 
possible return. The critic network calculates corresponding Q values in every 
iteration picking a random batch from the replay buffer and updates itself by the 
mean square loss between the calculated Q values from consecutive iterations. The 
actor-network policies are updated using the policy gradient over the expected Q 
value return. Figure 14 depicts the learning flow of a DDPG agent. The training 
algorithm finally learns the highest expected return from its experiences and then 
keeps updating the RL policy to output the optimal action that earns the expected 
maximum return. This, in turn ensures the objective functions we chose to define 

Fig. 14 A DDPG RL agent 
with actor and critic networks 
[38]
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.Rwdd [k] and .Rwda[k] in Eq. 15 and Eq. 16 respectively are maximized. Given 
a secure CPS model, we first train such DDPG agents as discussed with system-
specific simulation data so that they can reprise their designated roles in the 
environment. The learning process is collaborative and competitive. The standard 
DDPG algorithm as in Algorithm 1 in [54] is modified according to the requirements 
in our case. Interested readers are encouraged to read [54] for a detailed discussion 
on how DDPG policy optimization works. The work in [55] is also another 
interesting read to know more about how Agent Environment Cycle (AEC) Games 
model turn-based games like our MARL setup where the Attacker and Detector 
compete with each other in every iteration by taking optimal action in a stochastic 
system environment. Without going into those implementation-specific challenges, 
we stick to the CPS design aspect without sidelining the main topic of discussion 
in this section. In the next section, we move on to describe the most plausible next 
action that should follow an intelligent attack detection in a secure CPS design. 

5 Attack Mitigation 

To complete the circle of the discussion on the security-aware design of CPS, in 
this section we briefly talk about system recovery steps to be taken once attack 
attempts are detected. The idea proposed by most researchers is to switch the system 
to a secure mode once an attack is detected. We explain this idea using Fig. 15. By  
secure mode, we mean an operational mode where every communication is secured 
via some cryptographic methods, like MAC, RSA, AES, etc. For schedulability, un-
important messages can be dropped in this mode. We assume that the cryptographic 
methods provide utmost security and that no stealthy attacks are possible in this 
mode. Therefore, the attack model is to exploit the normal mode of operations 

XR 

XS 

Detected Mitigated 

Secure 
channel Time 

S
ta

te
s 

Fig. 15 Attack mitigation through secure channel
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and stealthily drive the system to some unsafe region. In Fig. 15, .XR denotes the 
operating region (in a single dimension) where the system is expected to reside 
when no attack is taking place. Also, . XS denotes the safety region of the system. 
An attacker would try to steer the system toward an unsafe zone (see Eq. 9). Once 
such an attack is detected, the system will be switched to a secure channel. And, 
during this secure mode, the controller will mitigate the damage done by the attacker 
(Fig. 15) by steering the system back to its preferable operating region. 

While in [34] it is suggested to simply use the available controller gain (K as 
mentioned in Eq. 2) for attack mitigation, the authors in [38] have suggested using 
additional control input along with the inputs from the usual feedback controller, 
following the theory of [56]. As it is shown in Fig. 15, due to an attack, the system 
may go beyond the preferred operating region . XR . It is desirable to bring back 
the system from .XS \ XR as early as possible. The motivation behind this is that 
the duration spent in secure mode must be as minimum as possible. Also, the 
faster the system is back to the desired operating region, the better will be its 
average performance. As we have already discussed in Sect. 3, the cryptographic 
methods incur quite a significant computational and communication load. Thus, it is 
infeasible to secure every communication. Releasing a secure channel at the earliest 
will help other control loops to use it. It can be seen in [38] that the use of additional 
control inputs can actually speed up the recovery process. We briefly demonstrate 
the idea here. 

The authors in [56] have proposed an SMT-based method to pre-calculate a 
sequence of control inputs that take the system from .XS \XR to . XR provided during 
this time, system state should always be retained within . XS . This means safety is 
guaranteed during recovery. Since .XS \ XR ∈ Rn, it is not possible to compute 
control sequence for all possible points in .XS \ XR . As a solution to this problem, 
the authors in [56] proposed a region-wise control synthesis method. They divide 
.XS\XR into such sub-regions that the control sequence computed to take the system 
trajectory from the center of each sub-region to . XR will also work for every other 
point in that sub-region, as elaborated in Fig. 16. Initially, the length of the control 
sequence is set as .t = 1 and the method tries to compute safe control sequences 
considering the entire .XS \ XR as the source region. If failed, the source region is 
reduced to half and this process repeats until a safe control sequence can be found. If 

If yes 

If safe control 
inputs can not 
be synthesized 

If safe control 
inputs can not 
be synthesized 
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U0, U1, 
.., Ut 
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Fig. 16 Fast control action synthesis
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the final safe control sequence of length t can not take the system to . XR , the length 
t is incremented by 1 and the process is repeated until a safe and successful control 
sequence is found for every sub-region in .XS \XR . This incremental process is also 
adapted in [35] such that it also ensures that the length of the final control sequence 
is minimum. This means this is the minimum required sequence of control inputs to 
bring back the system from .XS \ XR to . XR while safety remains intact. 

The above line of work however relies on attacks getting detected in the normal 
mode of operations. The security model assumes that using the secure mode is 
costly for the entire system and hence it should be relinquished to other potential 
subsystems under attack as soon as possible. In that case, how do we guarantee 
safety from stealthy attacks in a non-probabilistic way? For that, the use of secure 
and normal modes of operations must be interleaved by design so that every control 
task switches among such modes periodically. The normal model duration should 
be chosen in such a way that a stealthy attack cannot drive the system to an 
unsafe region as verified formally in the model itself [34]. This duration should 
be followed by a secure mode of suitable duration which helps the system crawl 
back to its desired performance region [34, 38]. The sequence keeps repeating 
with such sporadic integrity checks in between [33] coupled with recovery control 
mechanisms [56]. In the next section, we present a hardware-in-loop experimental 
set-up on a real-time platform to demonstrate the security-aware design of an 
automotive CPS considering the variable threshold-based security scheme discussed 
in Sect. 3.2. 

6 A Platform Level Example 

In this section, we first discuss a security-aware control implementation on an 
automotive-grade ECU setup. The setup contains an Infineon Tricore AURIX 
TC397 ECU where software controllers are mapped. A Hardware-In-Loop (HIL) 
simulator (ETAS LabCar) is used to emulate the automotive plants. These plants 
are periodically manipulated by control tasks co-scheduled in a single core of the 
Infineon ECU. The plant and ECUs are connected via CAN bus, interfaced using 
the integrated CAN shield in the ECU. The closed-loop setup is depicted in Fig. 17. 
The ECU is running two control tasks for two automotive plants i.e., Trajectory 
Tracking Control (TTC) and Electronic Stability Program (ESP). The details of the 
TTC loop is described in Sect. 3. It controls the longitudinal deviation (D) of the  
vehicle from a desired trajectory and maintains a target Velocity (V ) by changing 
the acceleration(acc) of the vehicle. The ESP regulates the yaw rate (. γ ) and side-
slip (. β) of the vehicle by controlling the steering angle (. θ ). The system transition, 
controller, and observer gain matrices of the ESP are taken from [38]. Both of 
these tasks are implemented as runnables and invoked periodically depending on the 
sampling period of the discretized plant model considered while designing the LQR 
controllers, i.e., 100 ms for TTC and 40 ms for ESP. In every sampling period, these 
statically scheduled tasks are invoked, and control inputs are calculated using the
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Fig. 17 Real-time automotive test bed 

estimated plant states and transmitted via CAN. The control inputs actuate the plant, 
which emulates itself in real-time in the HIL. The plant states are estimated using 
estimation tasks that read the received plant output data from the sensor readings 
transmitted from the plant through CAN. These functions are called before the 
control tasks in order to supply the estimated plant state to the control tasks. The 
estimation tasks also run with similar periodicity as their corresponding control 
calculations. Note that the last calculated control input is also used in order to 
estimate the current state based on the sensor data. As a detection task, we consider 
the variable threshold-based detector. The detection task synthesizes thresholds 
using the pivot-based method as explained in Sect. 3.2. It uses the norm-based 
generalized detection scheme as mentioned in Eq. 4. 

We consider an attack model where an ECU connected to the same CAN bus 
is compromised. Therefore, it has the capability to inject false data into the CAN 
transmissions. The attack model is feasible because a compromised ECU can send a 
real sender to bus-off mode for some interval and mimic the actual sender [12]. We 
emulated this insider attack scenario by running the attacker routine from a different 
core of the same ECU. The false data injected were synthesized for TTC using the 
SMT-based FDI attack synthesis method used in [34, 35]. As mentioned in our attack 
model in Sect. 2.1, the successful attack criteria while synthesizing the attack vectors 
is given by Eq. 9. The plot in Fig. 18 shows the outputs of the TTC plant under 
attack. This is a screenshot taken from the ETAS LabCar environment that shows 
a 1.3 seconds long stealthy (i.e., 1-norm of the residue under this attack always
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Fig. 18 Successful FDI emulation on TTC 

Fig. 19 Adaptive detection of attack before success for TTC 

remains below a static threshold of 2.5) attack vector injection (refer Fig. 4, which 
shows a simulation of the same ). The x-axis of Figs. 18 and 19 represents time. The 
two different scales in the y-axis of Fig. 18 represent two states of TTC i.e., deviation 
from the trajectory (D) in meters (the first scale from the right) and velocity (V ) in  
meters/sec (the second scale from the right). Y axis of Fig. 19 denotes the detector 
output. 1 signifies attack detection and 0 signifies no attack scenario. The variable 
threshold-based detection task is implemented as mentioned earlier in this section. 
As we can see, both states are starting from 0 units and the 13-length FDI attack 
vector drives the velocity of the vehicle (the bold one) beyond the safety limit 
i.e., .30m/s at 23-rd sec bypassing the static threshold-based detector (in Fig. 18). 
Whereas, the variable threshold-based detection task selects certain thresholds in 
real-time which are able to detect this attack attempt (at .∼ 21.8 s in Fig. 19) before 
the attack becomes successful or the system becomes unsafe. Validation of MARL-
based detectors and mitigation strategies have been reported in [38] where the full 
system is simulated in Matlab. In the future, we plan to have a HIL-based validation 
of the same in this automotive test-bed.
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7 Conclusion 

This chapter discusses methods for security-aware automotive CPS design lever-
aging adaptive lightweight attack detection and mitigation schemes. The presented 
design methodology reduces the compute and communication overhead incurred 
by standard cryptographic methods suggested by AUTOSAR. We discuss two 
heuristic-based algorithms for variable threshold selection and a multi-agent rein-
forcement learning (MARL)-based adaptive threshold selection method in order to 
increase false data injection attack detectability and decrease false alarm rate in 
a system. The heuristic-based methods choose thresholds based on solver based 
vulnerability analysis. Thus, this design technique provides a guarantee that the 
synthesized variable threshold-based detectors will detect a false data injection 
attack attempt. The more scalable approach employing the adaptive detector infers 
a stochastically optimal threshold in order to catch a competing FDI attacker agent, 
which is designed to falsify the sensed and actuated data. We also discuss a formal 
method-based attack mitigation scheme which is activated via a secure channel once 
the attacks are detected. Overall they promote an end-to-end security-aware CPS 
design idea. 

The objectives of this security-aware co-design framework targeting automotive 
systems had been, (i) lightweight, real-time detection of FDI attacks (ii) while 
maintaining the least possible false alarm rate; and (iii) guaranteeing the mitigation 
of the attack-effect as early as possible so that (iv) the compute and communication 
overhead incurred by the cryptographic schemes are reduced. We discuss the evalu-
ation of the variable threshold-based detection technique in a real-time automotive 
test bed in order to demonstrate its applicability. Essential future extension of such 
work is to test the performance of the proposed RL-based adaptive detection and 
formal mitigation units in this automotive test bed. 
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Gradient-Free Adversarial Attacks on 3D 
Point Clouds from LiDAR Sensors 

Jan Urfei, Fedor Smirnov, Andreas Weichslgartner, and Stefan Wildermann 

1 Introduction 

In recent years, more and more research is being done in the area of automated 
driving and the first autonomous vehicles are in use already today. In California, 
for instance, Google subsidiary Waymo is launching its self-driving vehicles [17] 
in some cities and in Beijing, the company Baidu Inc. has introduced the first 
autonomous cabs [26]. But also for the drivers of non-autonomous cars, driving 
is made easier and safer by a steadily increasing number of assistance systems [13], 
which are envisioned to pave the road to fully autonomous cars. 

SAE International has defined various stages (so-called levels) for the transition 
towards automated driving [27]. At the highest level, Level 5, a vehicle must be able 
to respond autonomously to every possible situation without the intervention of a 
driver. Increased levels of automation necessitate more and more information about 
the surroundings of the car, making it necessary to develop new sensors to improve 
the vehicle’s perception capabilities. 
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One of these sensors is a LiDAR system, which measures the distance to an 
object via the time of flight of the reflection of an emitted light beam [3]. In contrast 
to object detection via a camera system, a LiDAR sensor does not necessarily require 
perfect visibility conditions, therefore it can be used very well both during the day 
and at night [34]. The complete coverage of a vehicle’s entire surroundings is often 
achieved by deploying a laser scanner that can move by 360° and mounting it on 
the roof of the vehicle. Alternatively, it is possible to install multiple immovable 
LiDAR sensors and then combining their data. For example, five LiDAR sensors 
were mounted on the roof of a vehicle for recording the Audi Autonomous Driving 
Dataset [9]. Almost all car manufacturers are expected to install such a LiDAR 
system in future vehicles with autonomous driving functions in addition to the 
existing sensor technology in order to detect three-dimensional objects and thus 
ensure safe automated driving [30]. 

Machine learning algorithms, especially deep neural networks, are becoming 
more and more common for the recognition and classification of 3D objects or 2D 
images. Hereby, their main objectives are to (a) recognize patterns—i.e., objects— 
in the given data and (b) classify these objects by mapping each recognized pattern 
onto one of multiple known classes, e.g., cars, pedestrians or bicycles. However, the 
inner logic of these algorithms is very difficult to interpret for humans, so that it is 
typically difficult or even impossible to understand how they arrive at a particular 
recognition/classification decision. 

Due to its crucial role for the control of autonomous vehicles and the necessity to 
operate on data from outside the car, the LiDAR system is becoming a potential 
target for so-called Adversarial Attacks, where classification errors are induced 
by purposefully introducing changes to the input (see Sect. 2.3). The resulting 
classification errors can have negative consequences ranging from the display of 
erroneous warnings to accidents which could involve property damage or even 
the loss of human life [23, 30]. Consequently, it is of utmost importance that the 
classification models not only accurately classify the objects in the input data, but 
are also resilient to adversarial attacks. 

In order to develop resilient classification algorithms, it is—in the first step— 
necessary to identify attack patterns to which the currently used classification 
algorithms are particularly vulnerable, to then—in the second step—research how 
the algorithms can be adapted to make them resilient to these patterns, e.g., using 
adversarial training techniques [10] (see Sect. 2.3.3). 

In this work, we evaluate how gradient-free optimization methods can generate 
attack patterns in situations where none or very little information is available 
about the classification system. Since the implementation details of the classifying 
algorithms are typically kept secret by the manufacturers—and therefore, are 
unlikely to be available for the development of attack patterns—this attack scenario 
seems more realistic, so that the resulting insights are likely to prove more relevant 
than gradient-based techniques which require insights of the attacked machine-
learning model.
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1.1 Contributions 

The manuscript at hand provides the following contributions to the research of 
adversarial attacks on neural networks used for segmentation tasks in the context 
of autonomous driving: 

• formalization of adversarial attack for LiDAR as generic multi-objective opti-
mization problem 

• solving this optimization problem by a gradient-free optimization 
• black box for adversarial attacks, works independent of used classifier 
• experimental results providing insights about the suitability of evolutionary 

approaches and their encoding for the design of adversarial attacks on LiDAR 

1.2 Outline 

The remainder of this article is structured as follows. In Sect. 2, we give the  
background to the addressed research problem by introducing the usage and 
technology of LiDAR sensor data in the context of autonomous driving. We 
review adversarial attacks in the space of machine learning in general as well as 
existing attacks on LiDAR in specific. Afterwards, we specify the underlying threat 
model in Sect. 3 before we present our proposed approach in Sect. 4. In Sect. 5, 
we use LiDAR data from the real-world dataset KITTI to evaluate the proposed 
Evolutionary Algorithms (EAs)-based methodology to generate attack patterns. 
Section 6 concludes our work and outlines future research directions. 

2 Background 

This section presents the basic principle of LiDAR sensors, segmentation of their 
data as the basis for autonomous driving, as well as existing attacks on them. 

2.1 Semantic Segmentation of LiDAR Data 

Light Detection and Ranging (LiDAR) sensors use an optical measurement method 
to determine distances to objects and to locate them [20]. For this purpose, a 
light wave is emitted in the form of a laser beam pulse and the reflection of this 
light wave is detected again. Due to the constant speed of light, the distance to 
the reflecting object is then calculated based on the time-of-flight method. 3D 
LiDAR systems are increasingly propagated to be deployed for driver assistance 
systems. For this purpose, the sensor is mounted on a vehicle, usually together with
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Fig. 1 Example of 2D segmentation (left): camera image (top) and 2D segmentation (bottom) of 
a data sample from [9]. Example of 3D segmentation of a LiDAR point cloud (right). Data sample 
is from [4] 

cameras, in order to be able to provide the three-dimensional image with textures. 
Often, inclinometer and GPS sensors are also added in order to be able to correct 
the coordinates of the measured points. LiDAR sensors are gaining increasingly 
importance in autonomous driving, as they are able to capture high-resolution 360° 
3D data and, in contrast to, e.g., cameras, are more robust to varying weather and 
lighting conditions. 

The first fundamental step for interpreting data from LiDAR but also camera is 
semantic segmentation. A semantic segmentation represents a mapping between an 
object (pixel, 3D point) and a category (e.g., street, car, pedestrian, etc.). Sometimes 
this step is also referred as pixelwise or pointwise classification. We use both terms 
with the same semantic meaning in the remainder of this article. Examples of 2D 
and 3D semantic segmentations can be seen in Fig. 1. In the field of autonomous 
driving, semantic segmentations are enormously important because they can assign 
meaning to objects and thus form the basis for autonomous decisions. For example, 
semantic segmentation is often the base for object detection, object location [16], 
and further planning such as trajectory and motion planning [15]. 

Deep Learning models like deep neural networks are often used to calculate such 
semantic segmentations. Various networks exist, which produce different results. 
For example, [25] and [36] propose techniques where each individual point is 
assigned a class. In [11], an additional enclosing frame is computed for each object. 
In most cases, e.g., also for [11, 25, 36], these networks are a special kind of 
Convolutional Neural Networks (CNNs). The topology differs from network to 
network, but is also not relevant for the methodology presented in this section: It 
is the stated goal to consider the segmentator as a black box, so that no knowledge 
of how it works is required to apply the proposed adversarial attack.
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2.2 Existing Attacks on LiDAR Sensors 

Several attacks on perception for autonomous vehicles have already been inves-
tigated. However, the study of attacks on perception based on LiDAR sensors is 
still very young. Attacks can happen on different levels, and thus there are also 
different classifications of attacks on LiDAR. For example, [5] classifies attacks as 
sensor-level attacks that directly target the manipulation of the sensors measurement 
scheme, physical-world attacks in which the environment is modified (e.g., by 
adding stickers on traffic signs), and Trojan attacks that directly target the software, 
particularly the neural networks. Shin et al. [28] classify the attacks according to the 
channels of the sensor: Regular channel sensor attacks correspond to attacks on the 
sensor level, side-channel attacks misuse any physical quantity to indirectly attack 
the sensor, whereas transmission-channel attacks target the sensor data when it is 
transmitted from the sensor to the system which processes it. 

A big part of work on sensor-level attacks on LiDAR focuses on spoofing 
attacks. A LiDAR sensor works by sending a laser pulse and listening for its echo 
to determine the distance to an object. In a spoofing attack, the attacker sends a 
laser pulse with a second laser during the listening phase of the LiDAR sensor 
which will be interpreted as the echo from an object [24]. The attacker can thus 
create fake objects and obstacles or change the position of existing objects with this 
technique. To do this, however, the attacker must know the frequency at which the 
system operates, the order in which the environment is scanned, and the size of the 
listening window, since these parameters differ between the various systems. If this 
knowledge is known, the time can be determined at which a response pulse must be 
sent in order to make points appear at an arbitrary location from the LiDAR’s point 
of view. 

Besides spoofing, saturation attacks are further sensor-level attacks. Here, a 
powerful second laser is used to illuminate the LiDAR sensor [29]. This leads the 
measurement into a saturation so that the sensor becomes blind. Such attacks are 
consequently also called blinding attacks or jamming attacks. 

Such attacks manipulate the sensor measurement. However, the goal of an 
attacker would not only be the mere modification of 3D points. Rather, he or she 
would specifically want to manipulate the vehicle’s decisions in that way. As the 
perception and planning of autonomous vehicles strongly rely on sensors, attacks 
on LiDAR would have the potential to manipulate the reactive behavior of the 
vehicle. Examples are forcing the car into an emergency break which may harm 
the passengers, and freezing attacks in which the car does not move any more to 
cause traffic jams [5]. Meshcheryakov et al. [21] categorize such attack vectors as 
adversarial machine learning attacks when directly targeting the machine learning 
component of the perception system. In this context, Cao et al. [35] as well as Sun  
et al. [30] have shown that machine learning techniques for perception are robust to 
randomly generated fake points; it was not possible to effectively reach the goal of 
fooling the perception system when blindly spoofing points. Instead, it is necessary 
to search for effective patterns for spoofing fake points. As a consequence, [5] and
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[30] propose adversarial attacks to find such patterns. The remainder of this section 
concentrates on such adversarial machine learning attacks, which have the aim to 
deceive the machine learning algorithms by applying artificial modifications to the 
input data. 

2.3 Adversarial Attacks 

The term adversarial attacks describe attacks that attempt to exploit vulnerabilities in 
the machine learning models [33]. While also cluster algorithms, regression models, 
as well as other classifiers like a support vector machine [33] are susceptible, we will 
focus on attacks on neural networks in the following. 

The goal of an adversarial attack is to slightly alter (tamper) the input of a 
classifier resulting in a different outcome. These alterations are often not perceivable 
by the human eye [6]. The goal of neural networks is to generalize well and to 
be robust to small input perturbations. However, Szegedy et al. [31] showed that 
adversarial examples exist which exhibits exactly these attributes. 

These examples are rooted in the non-linear nature of neural networks and the 
resulting blind spots. The non-linear layers (each layer with a non-linear activation 
function such as the ReLu or sigmoid function) of a neural network generalize 
between input and output. This is the case even for very different inputs of the 
same class. In the case of image classification, e.g., this could be an object seen 
from another side and thus has a different contour and features. If this case is not 
represented in the training data, the network has to abstract from the other training 
data to identify the object correctly anyway. This results in blind spots, because the 
classification is not based on any known training data but on a generalization. If 
this learned generalization is not correct, these blind spots can then be deliberately 
exploited or used to generate incorrect output [31]. 

Szegedy et al. [31], have thus shown for the first time that neural networks are 
vulnerable and that small changes in the input can achieve large changes in the 
output. A further step would be to check whether there are general patterns that 
always lead to the same change and are transferable to other networks. This will be 
discussed in more detail in a subsequent section. Figure 2 shows several examples 
from the MNIST dataset [14] where, despite a small change, the original figure is 
still recognizable to the human eye. The altered images were used as input to a CNN 
that is supposed to recognize the given number. The output of the CNN can be seen 
in the caption, showing that the alterations resulted in an incorrect classification. 

2.3.1 Attack Goal 

Adversarial attacks can be categorized into two classes targeted and un-targeted 
attacks. While the former tries to classify the input with a given output class, the
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Fig. 2 Adversarial examples using the MNIST dataset. The left image represents the original 
image, the right image the corresponding attack. The number recognized by the neural network is 
shown in the caption. (a) Classified as 5. (b) Classified as 8. (c) Classified as 8. (d) Classified as 3 

latter has the goal of any misclassification and therefore decrease the reliability of 
the model [33]. An untargeted attack has less conditions and is easier to perform [6]. 

These two categories can be also formalized [6]. If x is a valid input and . x′ is the 
altered input, y is the target class, and .c∗(x) the classification function, then follows 
for an untargeted attack: 

.c∗(x) �= c∗(x′) (1) 

We can extend Eq. (1) for a targeted attack as follows: 

. c∗(x) �= y ∧ c∗(x′) = y ∧ x �= x′ (2) 

The generation of an attack can then be seen as an optimization problem that 
tries to minimize the input perturbations (see for example Eq. (3), so that depending 
on the attack target the formula (1) or (2) applies. The p stands for the selected . Lp

norm. 

. argmin
x′

{||x − x′||p} (3) 

According to Carlini and Wagner [6], it is important to design an effective 
objective function with a good distance measure. However, current distance metrics 
are not perfectly reproducing differences experienced by the human perception. This 
leaves room for future research. 

2.3.2 Known Information of the Attacker 

Adversarial attacks can be further categorized depending on the given information 
of the model [33]: black-box, white-box, and gray-box attacks. 

White-box attacks assume complete knowledge of the model [1]. This also 
includes all parameters and hyperparameters of the model [33]. Once this is known, 
there is an effective way to compute an adversarial example using the fast gradient 
sign method [10]. Since by white-box access the objective function is known, its 
derivation can be used in a back-propagation algorithm to optimize or create an 
attack like this.
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If no exact information about the model and its parameters is available, this is 
referred to as a black-box attack [33]. Furthermore, it must then be clarified whether 
the attacker has the ability to make queries to the model. If the attacker is able to 
do this, he must at least know the structure of the input and output data in order to 
be able to correctly formulate the input and interpret the output for a query made to 
the model [33]. Often, however, the possible queries to a model are limited within a 
time period and it is a matter of having to make as few queries as possible [7]. 

An intermediate solution, but rarely used in existing literature, is a gray-box 
attack. In this, the attacker has incomplete information about the system [33]. 

2.3.3 Adversarial Training 

In literature, many counter measurements against adversarial attacks were proposed. 
While a lot of these mechanisms were broken, adversarial training seems to add 
certain robustness. Adversarial training describes the attempt to better protect neural 
networks against adversarial attacks by giving the predicted data from the normal 
neural network to another network that uses that classification instead of the original 
classification from the training data [6]. The second model then learns the behavior 
of the first model including its already learned knowledge [6]. Adversarial training 
can therefore also be seen as active learning, where new training data is generated 
and classifications are automatically applied [10]. 

Furthermore, the deliberate use of adversarial examples, in conjunction with the 
original classifications, leads to a better ability of the network to generalize [31]. 
With a better ability to generalize, the network is at the same time more robust 
against minor changes. 

Normally-trained neural networks are by themselves not protected against adver-
sarial attacks [10]. However, if adversarial examples are included in the training 
process (for example by an objective function based on the fast gradient signmethod 
and including the adversarial example), this leads to a noticeable improvement of 
the error probability of the network [10]. Adversarial training, however, still does 
not prevent the existence of adversarial examples [6]. 

2.4 Adversarial Attacks on LiDAR Point Clouds 

In [35], attacks on 3D point classification are performed by modifying existing 
points of the point cloud and adding new points. The classification model is the 
PointNet deep neural network. The goal of the attack is to generate a point cloud 
that is as little different as possible from the original input, but causes the classifier 
to assign the input an incorrect class label. The authors of [35] formulate this as an 
optimization problem and use a gradient-based optimization algorithm to determine 
the adversarial point cloud.



Adversarial Attack on LiDAR Data 233

Cao et al. [5] and Sun et al. [30] investigate adversarial machine learning on 
LiDAR-based point cloud classification in the context of autonomous driving. Both 
works have the goal of fooling the system into classifying a vehicle in close range 
of the attacked vehicle, as these can cause an emergency stop or a vehicle freezing. 
Moreover, in both works a maximum of 200 points are added to the point cloud. 
[5] has empirically evaluated how many points can be practically spoofed by such 
an attack. While this depends on the angle between the attacking laser (used for 
spoofing points) and the LiDAR sensor, 60 points could be generated reliably. As a 
consequence, both try to cause a false classification with as few additional points as 
possible. 

Sun et al. [30] observed that LiDAR measures only few points of cars which 
are partially occluded, e.g., by other cars, and vehicles that are very distant. They 
therefore took point clouds of partially occluded and distant cars from LiDAR 
measurements as well as generated some artificially with a 3D renderer. Then, they 
added these point clouds into pristine LiDAR measurements and found out that the 
attack has a very high success rate of the point cloud classifiers detecting fake cars 
in the close vicinity. 

Cao et al. [5] follow an optimization-based approach to find adversarial points 
by minimizing an adversarial loss function. The formalization of this function is 
based on the functionality of the applied machine learning algorithm. They solve 
the corresponding optimization problem using an Adam optimizer in conjunction 
with global sampling. The global sampling is needed to reduce sticking in local 
optima, which in a gradient-based method like the Adam optimizer can lead to the 
optimization converging to sub-optimal solutions. A major disadvantage is that by 
using such a gradient-based method, knowledge of the model used is necessary. In 
contrast, Sun et al. [30] treat it as a black-box problem, as this is more similar to a 
real scenario. 

Also physical-world attacks on LiDAR-based perception systems have been 
investigated. In general, adversarial examples are special input patterns with the goal 
of leading a neural network to a wrong classification. Such adversarial examples 
can also be objects in the physical world scanned by the sensor. For example, Tu et 
al. [32] present an adversarial example that can be physically realized, e.g., by means 
of a 3D printer. When mounting the object on the rooftop of a car, this car will be 
entirely hidden from the LiDAR-based perception of other autonomous vehicles. 

3 Threat Model 

The state-of-the-art approach to estimate the security risk a system imposes is 
a Security Risk Assessment (SRA). For example, in the automotive domain, 
Modular Risk Assessment (MoRa) [2] is used to be compliant with ISO/SAE 
21434 [19]. Recently, specific risk assessment frameworks for autonomous driving, 
like SARA [22], were proposed. An SRA consists of identifying assets, security 
goals, threat analysis, an attacker model, damage potentials, and an overall risk
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Table 1 Attacker types according to [22] 

Attacker Expertise Knowledge Equipment 

Thief Layman Public Standard 

Evil Mechanic Expert Restricted Specialized 

Organized Crime Proficient Sensitive Specialized 

Hacktivist Experts Sensitive Multibespoke 

Researchers Experts Public Specialized 

Foreign Government Experts Critical Multibespoke 

level. Classical security goals, known as the CIA triad, are confidentiality, integrity, 
and availability. As these three attributes are often insufficient, the authors of [22] 
extended the model with authenticity, non-repudiation, authorization, unlinkability, 
and trustworthiness. These security goals are targets of certain threats. In the classic 
STRIDE model [12] threats are: spoofing, tampering, repudiation, information 
disclosure, denial of service, elevation of privilege. They origin from a certain 
attacker type who has certain knowledge, expertise, and equipment/budget. Table 1 
gives an overview of various attacker types and their capabilities. In the case of 
our work, the threat of tampering the input data of the neural network pointwise 
classifier would target the integrity of the segmentation. This could have safety 
implications, as for example, classifying a pedestrian or an e-bike rider as driveable 
area could have severe consequences. We assume that the attacker has public 
knowledge, like the researcher attacker (see Table 1), hence a black-box attack (see 
Sect. 2.3.2), as the intrinsics of commercial classifiers used in autonomous driving 
are only available to the manufacturer. Treating the neural network as a black box 
is more realistic and makes the attack more achievable than a white-box attack. 
Further, we assume that the attacker can directly manipulate the 3D point clouds 
that serve as inputs to the semantic segmentation neural network. The format of the 
3D points can be obtained by sniffing the communication between the LiDAR sensor 
and the black box or by reverse engineering the interface. Besides, we have no time 
constraints on creating tampered input points, i.e., we target an offline attack. 

4 Gradient-Free Adversarial Attacks on Semantic 
Segmentation of LiDAR Data 

In this section, we formalize the adversarial attack on semantic segmentation of 
LiDAR point clouds as a multi-objective optimization problem. We summarize 
the main principles of optimization and give a short outline of the functionality 
of Evolutionary Algorithms (EAs), before presenting our gradient-free adversarial 
attack methodology using EA-based optimization.
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4.1 Adversarial Attack as Multi-Objective Optimization 
Problem 

Given a 3D point cloud .X = {
xi |xi ∈ R

3, i = 1, . . . , n
}
. Each of the n 3D points 

.xi ∈ X can be uniquely identified by identifier i. Moreover, let .X ⊆ {
R
3
}n

denote 
the domain of 3D point clouds. Semantic segmentation is given as a function . c :
X → Y with .Y ⊆ Z

n that maps a point cloud .X ∈ X to a segmentation . Y =
c(X) ∈ Y. Particularly, each 3D point .xi ∈ X is assigned a corresponding class 
label .yi ∈ Y . 

Attack Capabilities In general, a 3D LiDAR scan can be attacked by (a) modifying 
existing points, (b) removing points, and (c) adding points, where (a) can be 
realized, e.g., by spoofing attacks and (b) by blinding attacks. In the following, we 
concentrate on (a) by modifing existing points of the original scan. 

Formally, with X being the pristine scan, we modify a subset .T ⊆ X of 3D 
points according to a transformation . π . The modified points are given as .T ′ = πT . 
Each of the attacked points .xi ∈ T is modified by vector . πi , thus .x′

i = xi + πi . The  
attacked 3D scan is given as .X′ = X \ T ∪ T ′ and the resulting segmentation is 
.Y ′ = c(X′). 

The degrees of freedom for the attack are thus given as (i) the selection of the set 
T of points to modify as well as (ii) the transformation . π to apply on these points. 

Attack Goals The first goal, as usual for adversarial attacks, is to minimize the 
perturbation inflicted by the attack. Ideally, the modification is not recognizable by 
the human eye. We can use an . Lp norm to measure the distance between the two 
point clouds X and . X′. The  . Lp norm is a commonly used metric for adversarial 
perturbation of fixed-shape data [35]. The first goal is therefore to minimize the 
distance between both point clouds: 

.minimize
∥∥X − X′∥∥

p
. (4) 

The second goal is to cause misclassification or classification errors due to the 
modified points. In this section, we focus on an untargeted attack. Thus, we aim at 
changing the label of as many 3D points as possible with our attack. With Y being 
the segmentation of the original scan and . Y ′ the segmentation of the attacked scan, 
this objective is formulated as 

.maximize
∣∣{xi ∈ X ∩ R|yi ∈ Y ∧ y′

i ∈ Y ′ ∧ yi �= y′
i

}∣∣ . (5) 

Here, R is a region of interest and only the labels of points .xi ∈ R within this region 
are evaluated. In general, this region can cover the complete scan, thus containing 
all points .xi ∈ X. In some cases, however, it may be of interest to target a specific 
region of the point cloud, e.g., a region containing another car, a pedestrian, or an 
e-bike rider.
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The attack can thus be perceived as a multi-objective optimization problem with 
the two objectives in Eqs. (4) and (5). Both objectives are conflicting, that is, an 
improvement in one can lead to the deterioration of the other. We thus first give an 
introduction to multi-objective optimization and EAs as a meta-heuristic for solving 
them, before presenting our gradient-free adversarial attack methodology. 

4.2 Evolutionary Algorithms for Multi-Objective Optimization 

An optimization problem is defined by a single objective function . O or multiple 
objective functions . Ok , .k = 1, 2, . . . which represent some system properties 
resulting from a particular action. The set of all possible actions which can be taken 
constitutes the search space. The optimal solution is the action which is preferable to 
any other solution within the entire search space. The notion of preference depends 
on the optimization problem and, in particular, on the number of objective functions: 
With one minimization objective function .O(s), solution . si is preferable to solution 
. sj iff it is at least as good w.r.t. the objective function, i.e., iff .O(si) ≤ O(sj ).1 

In case of multiple objective functions, the notion of preference between problem 
solutions is established using the concept of dominance. Solution . si is said to weakly 
dominate solution . sj iff . si is at least as good as solution . sj w.r.t. all objective 
functions. Furthermore, solution . si is said to strongly dominate solution . sj iff . si
weakly dominates . sj and . si is better than . sj in at least one objective function. 
In a multi-objective optimization problem, all solutions which are not strongly 
dominated by any other solution in the search space are considered Pareto-optimal 
and are summarized to the so-called Pareto front of the optimization problem. 

Brute-force enumeration of the search space is impractical for very large search 
spaces and/or objective functions which require prohibitively long computation 
times for each considered action. Typically, such problems are solved using meta-
heuristic optimization approaches which only consider a small subset of the search 
space but cannot provide guarantees about the optimality of the found solutions. 
Gradient descent (gradient ascent in case of maximization problems) is an example 
of a metaheuristic optimizer. In this approach, a problem is optimized by iteratively 
selecting a single solution and determining its quality and the gradient of the 
objective function at the corresponding point of the search space. The solution 
in the next iteration is then selected by following the direction for which the 
objective value grows/decreases (in case of a maximization/minimization problem, 
respectively). Approaches based on gradient descent have recently gained great 
popularity, in particular for the training of neural networks (which can be considered 
as an optimization problem minimizing the loss function). While they do have many

1 The phrasing in this explanation refers to a minimization problem. An explanation focused on 
maximization problems is omitted since minimization problems can be trivially transformed into 
maximization problems and vice versa. 



Adversarial Attack on LiDAR Data 237

advantages, their application is restricted to problems with (a) a single objective 
function which is (b) explicitly known and (c) differentiable. Since in this work, the 
generation of attack patterns is interpreted as a multi-objective optimization problem 
whose objective functions can only be accessed as a black-box, the presented 
approach is instead based on an EA. 

Evolutionary Algorithms (EAs) are population-based iterative metaheuristic 
optimizers which tackle optimization problems by emulating biological evolution. 
The optimization problem is interpreted as an iterative adaptation of a population 
(a set of evaluated problem solutions), where the fitness of individuals is measured 
by the objective function(s). In each iteration, a group of individuals is selected 
as parents, with individuals with higher fitness having a higher probability of 
being selected. These parent individuals are then used to create new individuals by 
means of crossover and mutation operators which mimic the reproduction in nature. 
These new individuals are then used to update the population, where low-quality 
individuals from previous iterations are replaced with high-quality individuals 
generated in the current iteration, hereby improving the average fitness level of the 
whole population. 

The individuals of the population are represented by a phenotype and a genotype. 
The phenotype of the individual is a representation which can be processed by the 
objective function(s), while the genotype is typically represented as a simple data 
structure which can be easily stored, deconstructed into subparts, and modified— 
such as a bit- or an integer string. This “genetic” representation of problem solutions 
makes it possible to use problem-independent recombination operators to create 
new, previously unknown problem solutions, while at the same time making sure 
that these solutions will be of similar or even better quality than their parents. 

In the context of this work, the usage of EAs is mainly motivated by their 
independence from the objective function of the optimization problem: In contrast 
to, e.g., gradient-based approaches, EAs use the objective function merely as a 
look-up table to determine the quality of individuals without, however, requiring 
any knowledge of the function or relying on any assumptions about its properties 
such as linearity or continuity. Furthermore, operating on a population of solutions 
and, in particular, generating new individuals based on a diverse set of known 
solutions, enables EAs to direct the exploration into multiple search space direc-
tions. Compared to optimizers operating based on a single solution, EAs are, thus, 
typically much more effective at optimizing problems with multiple objectives. 
Consequently, EA are a natural fit for the problem addressed in this work. In the 
following, we describe how to solve the gradient-free adversarial attack described 
before with an EA. 

4.3 Gradient-Free Adversarial Attack Methodology 

An EA can be used to generate adversarial attacks by solving the proposed 
multi-objective optimization problem. Figure 3 illustrates the methodology. The
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Fig. 3 Schematic illustration of gradient-free adversarial attacks on LiDAR classification using 
EAs 

optimization part (left) consists of the EA-based optimization loop. A population 
of solution candidates is iteratively updated by first selecting individuals from the 
population for reproduction based on their fitness values. Offsprings are created 
by recombination of the genotype information of the selected individuals and by 
mutation. The evaluation step evaluates the objective functions according to Eqs. (4) 
and (5) for each offspring. The fitness is based on the obtained objective function 
values and the population is updated with the new solution candidates. 

EAs as meta-heuristics can be adopted for solving arbitrary single-objective and 
multi-objective combinatorial optimization problem. However, it is necessary to 
provide a “genetic” encoding (genotype) of the search space. In case of the presented 
adversarial attack, the search space is defined by choosing (i) the set T of attacked 
3D points, and (ii) the transformation . π applied on them. Sect. 4.4 presents two 
options for encoding this search space. 

Let j be a specific individual of the population of the EA with .T(j) and . π(j)

resulting in attacked point cloud .X′
(j). The evaluation of the distance objective in 

Eq. (4) requires to compute the distance between .X′
(j) and the pristine point cloud 

X. The computation of the classification error objective in Eq. (5) is based on the 
class labels obtained when applying segmentation function c on .X′

(j). As EAs do not 
require any gradients of objective functions, we treat the machine-learning model c 
as a black box and simply apply it on the attacked scan to obtain the class labels 
.Y ′

(j) = c(X′
(j)). With this information, the EA computes the fitness of j . 

The encoding of the search space is fundamental. In fact, the choice of encoding 
influences the specific attack capabilities on the one hand. On the other hand, it has 
a direct impact on the size of the search space, and with that, the convergence of the 
optimization process towards optimized solutions. We next present two encoding 
alternatives of the adversarial attack.
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4.4 Encoding 

There exist multiple degrees of freedom to encode the selection of attacked 3D 
points T and the chosen transformation . π of the adversarial attack. We propose 
two approaches for encoding this scheme. The first encoding enables to choose 
a fixed amount of 3D points and to select the modification of their position. The 
second encoding describes the shape and position of a cuboid in space. All 3D points 
contained within this volume will be modified according to a transformation vector 
that is also encoded. Both approaches are described next. 

4.4.1 Manipulation of Arbitrary 3D Points 

The first alternative is a straight-forward encoding of the search space. It encodes 
the selection of a fixed amount of 3D points as subset of the LiDAR scan and the 
transformation of each point of the subset in each axis individually. The points are 
identified with their identifiers (denoted by ID  in the following) and the concrete 
selection of points will be a degree of freedom during optimization. Always the 
same amount of points will be modified (except one point is chosen twice). By 
default the amount is set to 60 points, because Cao et al. [5] have empirically 
shown that it is possible to reliably modify 60 points in a practical spoofing attack. 
This value can be set as parameter for the optimization and is denoted by m in 
the following. Each of the selected m points can be manipulated individually and 
the respective transformation vectors are the second degree of freedom for the 
optimizer. Figure 4 visualizes the structure of the encoding. The genotype contains 
m fields for the selection of 3D points by their IDs, and .m × 3 fields that contain 
a transformation vector for each of the selected points. The first field encodes the 
modification of the first point on x-axis, the second the modification on y-axis, and 
the third on z-axis. The next triple belongs to the second point and so on. 

Fig. 4 Setup of one individual within the approach of manipulate individual points
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When the EA is initialized before the start of the optimization loop, an initial 
population has to be generated by randomly setting genotype instances. For the 
random initialization of the ID  fields, a uniform distribution over all n points of 
the 3D point cloud is used. Also the transformation vectors are randomly initialized 
based on a uniform distribution, but this time over the maximum boundaries of the 
space captured by the LiDAR sensor. 

Every LiDAR sensor has a maximal range and a field of view, which depends on 
the sensor itself and its mount point at the vehicle. After applying the transforma-
tions on the selected points, it is possible that a point is outside of the space that is 
captured by the sensor. This means the point would not appear in the recorded scan 
and therefore not in the interpreted segmentation. To prevent this case, a clipping 
into the visible area is implemented. In a first step the .(x, y)-coordinates are checked 
(i.e., the position in the horizontal plane) and possibly set to the borders of the 
visible area. The vertical field of view depends on the distance of 3D points to the 
sensor and the sensor parameters such as the viewing angle. Due to the physics and 
geometry of the perceptual field of the sensor, the greater the distance to the sensor, 
the greater the range of vision it covers. In a second step, the point is thus clipped 
into the vertical perceptual area of the LiDAR sensor. This approach is comparable 
to the clipping done in [6]. 

Additionally, it is recognized if the same point is selected multiple times. In this 
case, the point is modified only once. This is the only case, where less than the 
defined amount of points will be edited. 

As mentioned above, the choice of an encoding also affects the size of the search 
space. For our analysis of the search space encoded by the presented genotype, only 
the combinations for selecting the m 3D points are in focus without considering 
the selection of the point transformations. This encoding chooses an amount of 
m points from an overall of n 3D points within the original scan. The number of 
possible combinations is thus given by . nm. To give a better understanding of the 
complexity from a practical point of view, the LiDAR scans used in our experimental 
evaluation contained .n =150 000 3D points. A value of .m = 60 will yield to 
.150 00060 ≈ 3.676 847 × 10310 possibilities. Even though only the selection of 
points is considered for this complexity analysis, this alone represents an immense 
search space. For any optimization algorithm, it is hard to deal with such a big space 
and it will be hard to find good solutions. 

4.4.2 Manipulation of 3D Points within Cuboid 

Selection of individual points results in an immense search space. As second 
alternative, the points are not individually selected by their ID, but rather through 
their position in space. The selection of points is done via a cuboid whose size 
and position can be freely varied. All points of the scan that are within the volume 
defined by the cuboid are selected. The position as well as the size of the cuboid can 
be determined by the EA. The same transformation vector is applied to all points 
within the volume. In difference to the first approach, the amount of modified points
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depth width height 

9 fields 

Fig. 5 Architecture of a solution for modifications inside a volume in space 

is not fixed but depends on how many points fall into the volume. This not only 
depends on the cuboid size but also its position because the density of points in the 
environment is not uniformly distributed and usually much denser directly in front 
of a vehicle. As illustrated in Fig. 5, the complete encoding only has nine values, 
which can describe an attack: the coordinate of one corner of the cuboid, its width, 
depth, and height, and finally the transformation vector to apply on the selected 
points. 

While with the first encoding, the number of modified points is bounded, the 
selection via a cuboid volume could result in an arbitrary amount of points, ranging 
from a shape containing zero points to a shape containing the complete point cloud. 
To steer the optimization towards more practical attacks, it is thus also possible to 
specify constraints for feasible cuboids, e.g., that they contain a minimal number 
of points as well as constraints on the maximum cuboid size. Whenever offspring 
is obtained through recombination that violates the constraints, it is marked as 
infeasible and not used for advancing the population. We evaluate the impact of 
such constraints on the attack in Sect. 5.4. 

For generating the initial population, genotype instances are randomly initialized 
as follows. The first values for the position are randomly selected according 
to a normal distribution. The remaining values are initialized within a uniform 
distribution. For the values which define the cuboid size, the interval borders are 
set to cover the maximum boundaries of the space captured by the LiDAR sensor. 
When constraints are defined regarding the cuboid size, an infeasible genotype 
instance will be initialized repeatedly until the constraint is fulfilled. The same 
clipping procedure as presented for the previous encoding is applied to ensure that 
transformed points are in the visible space of the sensor. 

The analysis of the size of the search space has to consider which point 
combinations can be selected by different cuboids. As for the first analysis, the 
point transformation is not considered, even though there are less combinations 
than in the first encoding as all points are modified according to the same vector. 
So the solution space depends on the possible sizes and positions of the cuboid. 
The spanning corners of the cuboid (a rectangle can be described by two opposite 
corners) could be every pair of 3D point from the scan. With knowledge about the 
maximal range and resolution of the sensor, the number of points that are in the 
horizontal plane spanned by the x-axis and y-axis are calculated with: 

.
xmax − xmin

�x
· ymax − ymin

�y
(6)
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Here, .xmin and .xmax are the minimum and maximum measurable distances along 
the x-axis. For a LiDAR which is installed on the roof of a vehicle and takes a 
360° measurement, .xmin should have the same absolute distance as .xmax . The  same  
applies to .ymax and .ymin. Accordingly, .xmax−xmin results in the measurable interval 
in x direction. The resolution .�x and . �y is measured per axis and indicates how 
fine-grained points can be recognized. For a resolution of two centimeters for a 
LiDAR sensor as used to obtain the scans from our experiments, there would be 
1.44 × 108 possible points in the horizontal plane described by the x-axis and y-
axis. When additionally considering the vertical field of view of the sensor, i.e., the 
z-axis, this will be . ≈ 4.32 × 1011 possible points as an over-approximation. The 
amount of possible points has to be squared because the cuboid is described by 
two corners. This will lead to .≈ 1.866 × 1023 different solutions (i.e., cuboids). In 
comparison with the first encoding, this search space is much smaller and therefore 
better tractable for optimization algorithms. 

4.5 Evaluation 

For evaluating an individual j , the first step is to decode the information encoded 
in the genotype. When the set of selected points and the transformation vector(s) 
are obtained, the transformation is applied resulting in attacked point cloud .X′

(j), 
i.e., the phenotype. For the evaluation of the classification error objective in Eq. (5), 
we defined a Region of Interest (RoI) R. In the general case, this would cover the 
complete space captured by the LiDAR sensor. For the evaluation, the class labels 
of all points would be considered. However, the RoI enables attacks on concrete 
objects in a point cloud like pedestrians, cyclist, or cars. The encoding will be the 
same as presented before, i.e., all n points of the point cloud can be selected for 
manipulation. The difference is in the evaluation of .X′

(j). For the evaluation of the 
number of classification errors acc. to Eq. (5), we only consider those points which 
lie in the RoI and whose class labels have changed, i.e., all points .xi ∈ X ∩ R with 
.yi �= y′

i . In contrast, for calculating the distance metric acc. to Eq. (4), all points are 
included no matter whether they are inside or outside the RoI. 

4.6 Implementation Details 

The optimization of the attack can be divided into two larger sections in general as 
illustrated in Fig. 3: the optimization loop itself and the segmentation of the attacked 
LiDAR scan. For the optimization, the Java-based framework Opt4J [18] is used.  
As the framework should be able to work with any machine-learning model or even 
other techniques for semantic segmentation, we chose to provide segmentation as 
a service on a local web server, accessible through a standardized Internet Protocol 
(IP). The advantage of this approach is that the segmentation is encapsulated and can
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be exchanged easier, resulting in a high flexibility and interchangeability. The com-
munication between the segmentation and the optimization framework is provided 
via HTTP, and thus works independently from the used programming language of 
the segmentator. Ideally, both optimizer and segmentator are recommended to be on 
the same machine to avoid communication becoming the bottleneck, as the EA has 
to access the segmentation very often during evaluation. 

5 Experiment Results 

5.1 Hypotheses and Focus of Experiments 

In this section, the presented adversarial attack methodology is evaluated exper-
imentally. The main goal of the experiments is to assess whether it is possible 
to introduce attack patterns resulting in a change of the classification results 
and whether the EA is an appropriate tool to achieve this. Furthermore, the 
different encodings are compared to investigate how they differ in effectiveness. 
The hypothesis and research questions to be validated by the experiments are: 

• How does the employed norm influence the result? 
• How do the different encodings differ in effectiveness? 
• Are EAs effective to generate adversarial attack patterns? 

For the following experiments, the convolutional neural network SqueezeSegV3 
[36] was used. However, the experiments can also be performed with any other 
semantic segmenter, since it is assumed to be a black box in which only the data 
formats have to match. 

5.2 Run Time and Effectiveness 

During the generation of the attack pattern, the time required for the classification of 
a 3D point cloud is the main bottle neck, since this operation has to be run for each 
considered pattern. The time required to generate such an attack is highly dependent 
on the underlying computer architecture and is essentially determined by the time 
required to classify a 3D point cloud. For example, on a computer with an Intel i7-
8700 processor, an Nvidia GeForce RTX 2080 with 8GB of graphics memory as the 
graphics card, and 32GB of RAM, classifying a point cloud takes 0.12 s on average. 

For all experiments presented in the following, we used an implementation of 
the NSGA2 algorithm [8] provided by the OPT4J framework [18] as the EA. The 
algorithm was used with a population size of 100 individuals, with 25 new indi-
viduals generated in each iteration. The time per iteration including classification
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and all further calculations took approx. 11.5 s. The following experiments have 
been optimized over 10,000 iterations, which thus corresponds to a total run time of 
about 32 h. 

5.3 Manipulation of Arbitrary 3D Points 

The first experiment evaluates the encoding presented in Sect. 4.4.1. In this exper-
iment, we used the KITTI data set [4], which amongst others includes LiDAR 
point clouds recorded from a driving car. We executed the gradient-free attack 
methodology to generate attack patterns by modifying up to 60 3D points, with 
a maximal displacement of 3m in each direction. The attack patterns in this 
experiment were generated as untargeted attacks, and we used and compared the 
. L1 and the . L2 norms for evaluating the distance objective function from Eq. (4). 

Figure 6 illustrates the change of the two design objectives (number of classi-
fication errors and distance between pristine and attacked scans) over the course 
of the optimization when using each of the two norms. Figure 6a displays the 
number of classification errors, whereas the distance is depicted in Fig. 6b. The 
x-values correspond to the iteration of the optimization in both diagrams. The y-
axis shows the values of the respective objective functions. In each case, the figure 
shows the number of misclassifications or the distance objective of the individual 
that achieved the best corresponding value up to the respective iteration. They also 
display the average of each objective over all non-dominated solutions found up 
until the respective iteration of the optimization. 

The two metrics result in a similar course of the optimization, where the objective 
values of the generated solutions exhibit a rapid convergence towards (local) optima 
in the initial phase of the optimization, followed by only minor improvements in 

Fig. 6 Results using the encoding for arbitrary point modifications (see Sect. 4.4.1). (a) Maximiz-
ing the incorrect classifications. (b) Minimizing the perturbation
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the later optimization stages. These results, thus, suggest that an EA is capable of 
improving attack patterns without relying on gradients of the objective functions. 

The two investigated distance metrics lead to similar results w.r.t. the achieved 
number of classification errors, with the . L1 metric being slightly better on average. 
The differences between the two metrics w.r.t. the distance between pristine and 
attacked point cloud are even smaller. This could be caused by the fact that in this 
particular case, the metrics produce very similar results, since the distances in each 
dimension are close to 1. It is, however, important to point out that the same values 
of the metrics do not necessarily suggest identical modifications. For instance, a 
displacement by (0.5; 0.5; 0.5m) would result in a value of 1.5m when using the . L1
metric, while a calculation with the . L2 metric would yield 0.87m. The choice of the 
distance metric, therefore, determines how much a certain modification influences 
the design objective quantifying the overall perturbation. 

Based on the depicted results, it is also possible to draw conclusions about the 
functionality of the segmentation algorithm. Figure 6a shows that the best attack 
patterns were able to change the classification results for between 1300 and 1550 
3D points. Thus, since only 60 points were modified in this experiment, it follows 
that the modification of a single point can have an impact on the classification results 
of a large number of other points. Figure 7 shows the final Pareto fronts obtained 
when using the L1 norm (red) and the L2 norm (blue). Each point represents the 
number of misclassifications and the distance of one non-dominated individual at 
the end of the optimization. Naturally, a larger modification of the 3D points also 
results in a larger number of classification errors. Figure 7 also shows that an attack 
pattern generated with this encoding results in 1574 and 1316 classification errors 
if each of the selected 60 3D points from a LiDAR scan is changed on average by 
.
52.50m

60 ≈ 0.88m (L1-norm) and .
61.65m

60 ≈ 1.03m (L2-norm), respectively. 
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Fig. 7 Pareto fronts of the individuals at the end of the optimization using the encoding for 
arbitrary point modifications
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5.4 Manipulation of 3D Points Within Cuboid 

In addition, we evaluated the adversarial attack when using the cuboid-based 
selection of the 3D points for manipulation. To keep the results comparable, we 
used the same LiDAR scan as in the previous experiments. The maximum extend to 
which a single point could be modified w.r.t. a single dimension was also constrained 
to 3m and, just like in the previous experiment, the focus was on untargeted attacks 
comparing the . L1 and . L2 norms for evaluation of the distance metric in Eq. (4). We  
evaluated an attack in which no constraint on the size of the cuboids was set, and 
an attack with the constraints that there are at least 30 points inside the cuboid and 
the maximum cuboid size is 125m3. Figure 8 shows the results of the unconstrained 
attack, whereas Fig. 9 shows the results of the constrained attack, however, only for 
the . L2 norm. 

The two plots in Fig. 8 show the course of two optimizations using the encoding 
presented in Sect. 4.4.2 without constraints on the cuboid size. The x-values 
correspond to the iteration of the optimization in both diagrams. The y-axis shows 
the values of the respective objective functions. In these plots, the (a) best (w.r.t. 
the number of misclassifications and the distance) individual found up until the 
respective iteration and (b) the average over all non-dominated solutions found so 
far ar shown are shown in (a) red and (b) purple, respectively, when using the . L1
metric for the distance objective. The plots illustrating the optimization using the 
. L2 metric highlights the best solution in blue and a light blue for the average over 
all non-dominated solutions. Figure 8a shows the objective function measuring the 
number of classification errors. The perturbation required to achieve this is shown 
in the diagram on the right (Fig. 8b). 

It is noticeable that when only the number of classification errors is considered, 
the two metrics do not differ significantly from each other. Both the best solution 
and the average are close to each other. On average, at the end of the optimization, 

Fig. 8 Experiment results when using a cuboid to select the attacked 3D points (see Sect. 4.4.2). 
(a) Maximizing the incorrect classifications. (b) Minimizing the perturbation
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classification errors can be introduced for approximately 75,000 points (.≈ 61% of 
all points). The sum of all point shifts in an attack is on average 5500 km (. L1 norm) 
or approx. 3500 km (. L2 norm). Hereby, it is difficult to estimate the number of the 
3D points that were actually modified. The best solution in both experiments in 
terms of distance is from the beginning a solution that hardly modifies the LiDAR-
scan and therefore has a distance of close to zero. Since the corresponding individual 
is nearly optimal w.r.t. the distance objective, it can hardly be dominated and 
remains in the set of non-dominated solutions throughout the entire optimization. 
The average of the solutions in Fig. 8b is subject to a lot of noise. This possibly 
suggests an excessively large search space. 

Immediately after the first iterations (for both . L1 and . L2), a non-dominated 
solution is found that is close to the achievable maximum regarding the number 
of classification errors (all points in a scan, in this case 122,526). At this point, it 
should be noted that the perturbation (distance) necessary to create this solution 
is very high influencing the average curve. Since the distance increases rapidly, 
although it should be minimized, and Sect. 5.3 has shown that it is correlated to 
the achieved number of classification errors (see Fig. 7), it can be assumed that the 
majority of the solutions of a population at the beginning of the optimization are 
oriented towards the solution with the maximum amount of misclassifications 

It is also noticeable that after approximately 2000 iterations the values of the 
objective functions no longer improve, but roughly stagnate. Overall, such attacks 
do lead to a large number of classification errors (i.e., misclassifications). However, 
the underlying attack patterns hardly represent sensible or feasible attacks, since 
they require vast modifications and, given the number of classification errors, have to 
cover a large part of the measurable range (assuming that the ratio between number 
of classification errors and the number of modified points remains roughly the same 
as the ratio observed in Sect. 5.3 (.≈ 25)). 

The two plots in Fig. 9 show the course of an optimization with the same 
parametrization as in the experiments in Fig. 8. The difference is that in this 
experiment the constraints on the generated cuboids were used. 

The values of the objective functions are also plotted on the y-axis and the values 
on the x-axis correspond to the respective generation. The development of number 
of classification errors is similar to the previous experiment. At the beginning of the 
optimization, high-quality solutions are quickly found and from the 2000th iteration 
onward the optimization stagnates. This experiment thus confirms the previous 
assumption according to which not all 10,000 generations have to be calculated. 

In contrast to the results illustrated in Fig. 8a, however, a much smaller number of 
classification errors is achieved in this experiment. At the end of the optimization, 
the number of classification errors is on average 22,000 (.≈ 17.4% of all points), 
instead of 75,000. The constraints thus seem to demonstrate that the volume of the 
cuboid has a strong influence on the effectiveness of the attack pattern, a smaller 
cuboid results in a significantly smaller number of classification errors. Please note 
that the plot on the right illustrates the change of the average value of the distance 
metric throughout the experiment and not the minimal value found during the 
optimization (this explains the fact that the illustrated value increases in later phases
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Fig. 9 Results using a cuboid to select the attacked 3D points, the . L2 distance norm, and constraint 
cuboid size (see Sect. 4.4.2). (a) Maximizing the incorrect classifications. (b) Minimizing the 
perturbation 

of the experiment, in spite of the fact that the distance is being minimized). With 
a smaller cuboid, it is also not surprising that the average distance is significantly 
lower than in the experiment without constraints. In the experiment with restrictions, 
the average distance is about 30 km. Furthermore, since the beginning of the 
optimization, a solution with a very small distance is present in the population. 
Hereby, cuboids which do not contain at least thirty points are excluded by the 
constraint. Since the distance is to be minimized, this solution is optimal with regard 
to the distance objective function and is kept as a non-dominated solution by the EA 
until the end of the optimization. Compared to the results in Fig. 8b, the average 
shown in Fig. 9b is subject to less change from generation to generation. This could 
also be caused by the limited size of the cuboid, which means that fewer points fall 
out of or fall into to the cuboid that results from recombining parent individuals in 
the EA. 

Overall, the introduction of constraints significantly narrows down the search 
space, while at the same time limiting the achievable number of classification errors. 
Due to smaller perturbation (distance), the resulting attack patterns would be easier 
to implement in reality. The usage of constraints thus makes it possible to adapt the 
optimization more easily to real conditions. 

5.5 Attacking Class Labels of 3D Points Within an RoI 

Since the results presented in Sect. 5.4 gave evidence that a restriction of the search 
space has a positive effect on the results, two additional experiments have been 
carried out where an RoI is defined. An attack only targets at changing class
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Fig. 10 Experiment results when using a predefined RoI. (a) Maximizing the incorrect classifica-
tions. (b) Minimizing the perturbation 

labels within the RoI. The implementation details of the approach used in these 
experiments is provided in Sect. 4.5. 

Similarly to the previous sections, we first detail the parameter settings we chose 
for the experiment. A region with a pedestrian has been selected as the focus of 
the attack. A second region contains a bicycle. Since both regions are significantly 
smaller than 125m3, the maximum cuboid size has been reduced to 25m3. Both  
a pedestrian and a bicycle can thus be covered. In these two experiments, the . L2
metric has been used. All other parameters are the same as in the Sects. 5.4 and 5.3. 

Figure 10a illustrates the change of the number of classification errors over the 
course of the optimization. In contrast to previous plots, the values on the y-axis are 
not shown in absolute terms, but as a percentage of the maximum number of points 
within the selected region (which is 884 for the attack on the bicycle and 221 for the 
attack on the person). This allows the two attacks to be compared. Figure 10a shows  
that classification errors can be introduced for on average 15% of all points of the 
region containing the person. In the case of the bicycle, this number is even higher 
with up to 60%. Although these numbers of classification errors are quite high, 
the question whether they would be sufficient to deceive or confuse a subsequent 
interpreting algorithm cannot be deduced from this experiment. 

Figure 10b illustrates the distances which were generated in the two experiments. 
In contrast to the previous experiments, the y-axis is shown logarithmically to pro-
vide a better overview of the data. The plots clearly show that the objective function 
gradually converges towards a minimum over the course of the optimization, which 
represents a significant difference compared to the experiment using a cuboid-
based selection without constraints. Compared to the solutions generated in the 
early phase of the optimization, the solutions generated later require a perturbation 
(distance) which is smaller by a factor of up to 66. The best solution even only has 
a distance of approx. 1.6m. Since in this variant solutions are only evaluated in a 
subspace of the possible solution space, it can be assumed that the EA optimizes
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the population in such a way that the cuboid size mainly includes the points that 
achieve a change in the RoI. Thus, points that result in a change outside the RoI 
increase the distance but at the same time do not necessarily increase the number of 
classification errors, enabling the EA to minimize the distance without decreasing 
the number of classification errors. 

The average distance of these two attacks is approximately 65m and is thus 
also physically possible, since, e.g., 300 classification errors can be achieved by 
introducing an average modification of merely 21.6 cm per point. In Fig. 11 the 
points which are modified and/or classified incorrectly are highlighted by color. 
The first image on the top left shows the original segmentation. There, the person 
is marked in red and the bicycle in cyan. It is clearly visible that the points that 
are changed (which are highlighted yellow and green) are all contiguous due to 
the encoding, but often only cover a part of the person or bicycle. Furthermore, 
often already the modification of a single point introduces classification errors in its 
surrounding area. This is, for instance, the case for the red points: In all but the top 
left image, points are highlighted in red when their positions were not modified but 
their class labels have changed due to the modification of other points. There are 
also cases where such points are not contiguous but individually spread in the scan. 
This is an interesting phenomenon, but such single misclassified points will likely 
be considered as noise and only have a minor influence on subsequent algorithms, 
as they only affect individual points of an object. 

Table 2 provides a more detailed description of the modifications of the points. 
It shows the average number of classification errors and the average distance of 
all attack patterns at the end of the optimization. The standard deviation as well 
as the minimum and maximum deviations per coordinate axis were also calculated 
for the distance. According to this, in the region of the bicycle and the person on 
average 300 and 62 points are modified, respectively. In the attack on the person, 
it is noticeable that the points are mainly modified in the vertical direction. In the 
y-direction (to the left and right from the direction of view of the person in the scan), 
the modifications are very different across the solutions, which can be seen in the 
comparatively high standard deviation. Likewise, the solutions vary greatly in the 
height modification of the points. Only in the x-direction (direction in which the 
person is walking) are the points hardly modified in almost all solutions of the last 
generation. In the attack on the bicycle, it is mainly the height of the points that is 
modified. It can therefore be assumed that modifying the height of the points has 
a greater influence on the classification of these objects than modifications in the 
other directions. 

5.6 Interpretation of Results 

In the following, we come back to the hypotheses and research questions formulated 
at the beginning of this section.
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Fig. 11 Different attacks focused on the region of a person (top) and a bicycle (bottom) generated 
by the optimization. Marked in red are points that have not been modified but whose class has 
changed. Those shown in yellow have been modified in position with a change in class and for 
those shown in green modifying their position has not caused a classification errors. The first 
image shows the original segmentation 

How Does the Employed Norm Influence the Result? The experimental results 
provide the opportunity to compare different distance metrics (. L1 and . L2). It can 
be observed that the two metrics result in solutions of similar quality regarding the
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Table 2 Modifications of the population at the end of the optimization 

.∅ Point 

Attacked Object Modifications X Y Z 

Bicycle 300.29 .∅ 0.035 −0.001 0.035 

Min 0.033 −0.004 −0.127 

Max 0.051 0.009 0.163 

Std 0.003 0.004 0.086 

Person 61.66 .∅ 0.1 −0.14 0.86 

Min −0.028 −1.206 −0.049 

Max 0.158 0.323 1.255 

Std 0.032 0.323 0.333 

number of classification errors, with the . L1 metric performing slightly better for 
the experiment with targeted points. Comparing the changed point classifications 
achieved in the experiment shown in Fig. 8a, the two metrics work similarly well. 

How Do the Different Encodings Differ in Effectiveness? Overall, encoding the 
entire available space enables to generate attack patterns spanning larger contiguous 
areas, compared to the approach which modifies only specific points. Within this 
larger area, there are then more classification errors, but the creation of these patterns 
also requires significantly more extensive perturbations. A different takeaway is 
that constraints which are used to constrain the cuboid size (see Fig. 9) or to focus 
misclassifications within a predefined RoI (see Fig. 10) improve the ability of the 
EA to generate effective attack patterns. 

Are EAs Effective to Generate Adversarial Attack Patterns? The results of the 
experiments measuring the effectiveness of the attacks are illustrated in Figs. 6a, 8a 
and 9a. Hereby, successful attacks can be recognized by a positive value of the 
average or the maximum, since this can be interpreted as a change of at least one 
classification result. The results depicted in the figures, therefore, give evidence that 
the patterns generated by the EA result in successful attacks on the LiDAR sensor 
with the used segmentation network (the SqueezeSegV3 [36]). A first conclusion 
from the experiments is, thus, that a gradient-free approach such as an EA can be 
used to generate effective attack patterns. 

Moreover, all experiment runs presented in this article have in common that no 
significant quality improvement could be observed after approximately 2000 gener-
ations. Thus, 80% of the optimization run time could be saved without reducing the 
solution quality. Since EAs are heuristic optimizers, there is a possibility that they 
converge in local optima. This problem is usually addressed by a large number of 
optimization runs, which is why the time saved should be used to repeatedly start 
new EA runs. 

In order to assess the usage of an EA as an approach for the generation of attack 
patterns, the results of this work have to be compared to already existing attacks in 
this area (see Sect. 2.4). In [30], Sun et al. were able to perform a successful attack
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with 60 changed points in 80% of all cases by spoofing a car into the close proximity 
of the vehicle. If more points are modified, the chances of success are even greater. 
However, Sun et al. work with object detection, which measures whether a whole 
object (the car) is detected. In this case, the attack is considered successful. Our 
work modifies and evaluates the changes of individual points that together form an 
object. Success is thus defined differently in our work (see Sect. 5.2). Since we do 
not make assumptions about a subsequent interpretive algorithm, or how objects 
are created from a segmented point cloud, the successes can only be compared to a 
limited extent. However, the number of points changed in an attack on a pedestrian 
is in a similar range to a successful attack from [30]. In the case of the attack 
on a bicycle, there are even significantly more, which means higher chances of 
success (see above). In [30] there are also restrictions on the horizontal angle within 
which points can be changed. Our work also restricts the size of the transformation 
vectors. 

Randomly generated attack patterns have been tested in both [30] and [5], with 
no success. With the approach proposed in this work, where the EA was used for 
a structured modification of random points, it was possible to achieve a number of 
classification errors which significantly exceeded the number of modified points, 
i.e., we were able to change the class labels of a higher number of points than the 
number of points whose positions were manipulated. 

With a predefined RoI, the average number of modified points is well within 
the range or close to the number used for the attacks from [30] and [5]. Thus, we 
consider the attack patterns generated by the presented approach as realistic for, e.g., 
spoofing attacks. 

6 Conclusion and Future Work 

6.1 Conclusion 

In this work, we have proposed an approach for the design of attacks on LiDAR 
scans used in the area of autonomous driving. In contrast to existing approaches 
for similar attacks, the presented approach treats the functionality of the image 
recognition approach as a black box, i.e., the presented approach requires no 
information except the input and the output data of the machine-learning model. 
The approach was implemented and integrated into an EA-based optimization 
framework. The presented experimental results show that the approach can not only 
be used to generate attacks which result in misclassifications, but can additionally 
minimize the number of input changes required to cause a misclassification. 
They also demonstrate how the effectiveness of the approach varies for different 
ways of modifying the input, different genetic encodings, and different distance 
metrics.



254 J. Urfei et al.

6.2 Outlook 

Beside the natural options of conducting additional experiments and investigating 
the usage of other optimizers and/or other classification systems, there are three 
main directions for possible extensions of the work at hand: (1) In order to reduce 
the large search space, it would be interesting to investigate approaches for the 
formulation of search space constraints. Such approaches would also be promising 
to introduce additional rules for the modifications of the input. (2) Designing 
additional objectives would enable more focused attacks where the goal could, 
for instance, be to not just maximize the number of classifications but instead to 
deliberately change the classification label of an object (e.g., a pedestrian) to a 
particular other target label (e.g. a car). (3) Finally, it would be highly interesting to 
investigate whether the attack patterns designed for a given LiDAR scan can also be 
used as an adversarial example for the attack on other LiDAR scans. 
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1 Evolution of Automotive Connectivity 

With growth of autonomy, and connectivity, the automobile industry is undergoing 
tremendous change. Autonomous Vehicles are being adopted in various scenarios, 
including public transport, due to its sophisticated user experience, value-added 
services, and higher efficiency. This is aided by wide-ranging communication 
protocols allowing a vehicle to interact with other vehicles, roadside infrastructure 
as well as pedestrians with handheld smart devices (Fig. 1). These includes Wi-
Fi, Bluetooth, Ultra-WideBand (UWB), Near Field Communication (NFC), IEEE 
802.11p (DSRC). These protocols help in data collection, storage, transfer, and live 
updates about the overall traffic scenario in real-time, which helps in an overall 
improved transportation management. In the following sections, these communica-
tion protocols are discussed in the context of IoV and their corresponding security 
challenges. 
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Fig. 1 IoV ecosystem 

2 Autonomous Vehicle Standards 

VANET (Vehicular Ad hoc NETwork) is a type of wireless ad hoc network in which 
automobiles serve as mobile nodes. VANETs have a standardized communication 
system that integrates all elements from the hardware to the application layer. Dedi-
cated short-range communications (DSRC), wireless access in vehicle environments 
(WAVE), and IEEE 802.11p are the key components available in VANETs [1, 2]. 

• DSRC: Dedicated Short Range Communications—For DSRC, the Federal 
Communications Commission (FCC) set allocated the 75-MHz range between 
5850 and 5925GHz. The DSRC spectrum consists of 7 channels, each with a 
10MHz range [3]. From low to high, these channels are numbered 172, 174, 
176, 178, 180, 182, and 184, with channel 178 serving as the master controller 
and the other six used for consumer services. Channel 172 is responsible for data 
integrity check and low bandwidth, whereas channel 184 which requires high 
power to operate is allocated for user’s security. 

• WAVE: Wireless Access in Vehicular Environments—The WAVE IEEE 1609 
series specifies a framework for establishing V2V and V2I communications 
[4]. It defines safety standards and regulatory procedures for adopting wireless 
communication protocols with different transportation applications like remote 
connectivity, location sharing, etc. 

• IEEE 802.11p—An update from IEEE 802.11b where it works between the 
data link and physical layers for connection and communication establishment 
between high-speed vehicles that requires rapid data exchange with zero or least 
possible latency in real-time [5]. The specifications of the physical and data link 
layer in VANETs ecosystem are defined in 802.11p.
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2.1 IEEE 1609 

The absence of high-speed connections and standardized communications interfaces 
between automobile manufacturers limits the capabilities of AV. The IEEE 1609 
addresses these two issues by providing a suitable framework with multiple 
adversarial functions and operating modes at the device and operation levels [2, 6]. 
WAVE defines a collection of independent, standardized services and interfaces that 
enable safe vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connection 
and communication. Certain specifications and procedures form the basis for a wide 
range of services, including automated tolling, navigation, traffic management, and 
localization. IEEE 1609 series defines the V2X framework and communications 
procedures for secured mobile connectivity between automobiles and network ser-
vice providers [7]. These protocols can be used in combination with RF equipment 
for remote system diagnostics. 

• IEEE P1609.0 —Framework for multi-channel DSRC/WAVE devices which 
helps in establishing communication with remote vehicular infrastructure. 

• IEEE 1609.1-2006—Resource Overview—It describes the steps for vehicular 
safety services, data and device-level safety management schemes. 

• IEEE 1609.2-2006—Security Services—Assists in message analysis, and for-
matting. It provides a suitable networking infrastructure for data and message 
exchange. 

• IEEE 1609.3-2007—Networking Services—It provides frameworks and pro-
cedures for secured data exchange, access point management and protocol 
selections. 

• IEEE 1609.4 -2006- Multi-Channel Operations—Exclusive for MAC and Data 
link layers. Assists in secured transactions and digital payments. 

• IEEE P1609.11 Intelligent Transportation Systems (ITS)—It Provides security 
frameworks for V2I and V2V via OTA support. 

5G networks are redesigned (6G) to make use of new technologies like 
software-defined networking (SDN) which supports faster installation, updated 
device drivers, software patches and network virtualized functions (NFV). This 
intensely linked connectivity eventually makes automobiles and connected networks 
more vulnerable to attacks [8–10]. SAE, ISO and NIST have conducted a 
series of related studies and released corresponding guidelines to identify IoV 
vulnerabilities and firmware upgrade challenges. As an outcome, “Information 
Security and Information Security Management System” and “Software Upgrade 
and Software Upgrade Management System” were released. These guidelines 
help the manufacturers, and automotive software service providers to understand 
their requirements and prepare them for new design updates for limiting the 
vulnerabilities [11]. The Cybersecurity Management System (CSMS) provides 
safety guidelines and a set of design procedures for vehicle manufacturers.
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2.2 ISO/SAE DIS 21434 Automotive Cybersecurity Standard 

The ISO and SAE are collaborating on the creation of a cybersecurity guideline 
for vehicular traffic. The ultimate objective of the ISO-SAE 21434 and NIST [12] 
are to (a) define a formal methodology in ensuring information security for in-
vehicle components and systems-level applications, (b) reduce the probability of 
successful attack surfaces and attack vectors, and (c) provide quick response to 
cyber threats without affecting the normal vehicular operations. These guidelines 
helps to create a foundation for a standardized information security cycle in the 
automobile sector. This specification describes the important features for hardware 
or process improvement. ISO/SAE DIS 21434 [13] focuses on cyberattacks across 
the vehicle life cycle, including development, testing, production, installation and 
maintenance, and dismantling. ISO/SAE 21434 “Road Vehicle Information Security 
Engineering” developed jointly by ISO and SAE is primarily concerned with the 
vehicle’s infrastructure building exclusively to protect vehicle data. 

In Europe, the communication architecture and protocols are conceived and 
standardised by the European Telecommunications Standards Institute (ETSI) [14], 
through the ETSI Intelligent Transport Systems (ITS) series of standards. ETSI 
ITS is inspired by IEEE 1609 whereas ISO 24089 is established with the goal 
of proposing safe vehicular operation and data security requirements for onboard 
equipment. GB-T32960 is a technical standard for electric vehicle’s wireless 
communication systems. It provides guidelines for charging, navigation and vehicle 
health management. 

3 Network Model 

Interactions among IoV elements such as vehicle, cloud, roadside units (RSU) 
naturally result in a multi-level information exchange that helps in safe and secured 
vehicular movements. It assists the motorists/passengers with relevant data for 
smooth transportation [15]. The IoV components act as smart objects and interact 
with one another in message and command exchange. 

3.1 Various Connectivity Platforms 

• In-vehicle platforms—OSEK/VDX is an open-ended architecture for 
distributed control units in automobiles just as Android Auto and Apple Carplay. 
It establishes a software architecture for automobile’s process control with 
the goal of software portability, and promotes reusability. Development of 
conceptual protocols for real-time operating frameworks (OS-OSEK OS and
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OSEKtime OS), connectivity within and between ECUs (OSEK COM), and 
networking structures and monitoring techniques are all part of OSEK/VDX. 

• Mobile platforms—Data offered by mobiles can be used to operate automotive 
apps and helps with connectivity. WiFi and Bluetooth available within the mobile 
devices can potentially be used to interact with RSUs and other V2I facilities. 
Digital payments, localization and remote monitoring facilities can be enabled 
while the vehicle is connected to the mobile network [16]. Automotive software 
developers may offer conventional software testing platforms that can be tested 
using these devices when connected with the vehicle’s internal network. 

• Internet-based platforms—Through the Internet, apps may connect with other 
automobiles or with trusted third party service providers. Google Play Store and 
Apple Software Store, for example, offer navigational guidance, audio streaming 
including Android Auto and Apple CarPlay. 

Several initiatives have been developed by ISO and SAE to eliminate applica-
tion barriers and improve interoperability [13]. Several efforts have centered on 
creating generic multi-platform interface frameworks which allow various vehicular 
networks, components and sensors to communicate with each other. This not only 
promotes code compatibility between different manufacturers but also limit the 
possibility of attacking surfaces in real-time. 

3.2 V2V Communication 

Vehicle-to-vehicle (V2V) communication allows cars to communicate wirelessly 
about their movement, geo-location, and traffic patterns. V2V allows vehicles to 
multi-cast signals thereby giving them 360-degree “consciousness” of surrounding 
vehicles. Vehicles having the necessary software (or safety programs) can use the 
information from other vehicles to defend themselves against potential risks. To alert 
the driver, the apps and software tools use graphical, vibrations, and sound signals, 
or a mix of these alerts. These alerts can enable drivers to take action in order to 
avoid collisions [3]. These V2V signals may detect risks during traffic, topography, 
or weather and have a range of more than 200m. Vehicle-to-vehicle digital 
communication can boost the effectiveness of safety systems and save lives [17]. 

3.3 V2I Communication 

Vehicle-to-Infrastructure (V2I) communication is the wireless exchange of data 
between vehicles and road infrastructure. V2I is often wireless and bi-directional 
and is enabled by a system of infrastructure, firmware, and circuitry. Infrastructure 
components including road markings, street signs, and traffic signals can transmit 
information to the vehicle, and vice versa. Rich, timely information may be 
leveraged to provide security, accessibility, and potential impacts with the recorded



262 A. Manimuthu et al.

and shared data from both vehicle and infrastructure ends. Greater redundancies 
are needed to assist AV to read and decode road laws in more simple and easy 
way [4]. Here are a few examples of new technologies that can help to enhance 
transportation, accessibility, and security. 

• Smart Road Marks: In any driving conditions, we require pavement markers 
that are noticeable to both humans and computers. Pavement road signs integrate 
with vehicle sensors help to detect boundaries beyond the eyesight range, 
enhancing detection and tracking them even in the worst weather. 

• Smart Digital Signs: In addition, we require guiding signs that are visible to 
both humans and vehicles in all types of road conditions. Retro-reflective signs 
improve readability, resulting in more precise navigation and smart decision-
making. Furthermore, smart signs can be used in conjunction with traditional 
signage. The Dedicated short-range multi-Channel test tools are stand-alone 
and used for V2V and V2I connection and communication. The test tools are 
unbiased third-party solution that supports SAE J2735, IEEE 802.11b, IEEE 
802.11p and WAVE protocols [13]. 

3.4 In-Vehicle Infrastructure 

Internal communication between different sub-systems within the vehicle introduce 
considerable complexity in an AV system design, which also needs to flawlessly 
operate in tandem with the IoV communication modules. ECUs are typically 
responsible for engine control, gearbox operations, ignitions, power transmission 
or steering, as well as GPS and Bluetooth functions. Thus, multi-layered security 
and decentralized security solution must be developed and integrated with such a 
heterogeneous ECU environment. 

4 Security 

Security becomes an indigenous component in the autonomous vehicle domain. 
Every activities performed and the operations executed must be secured from 
external attackers. In recent times, numerous cyberattacks are reported with multiple 
data breaches, theft and ransomware issues. Vulnerabilities can be everywhere and 
thus, it is very essential to ensure that passenger’s data and transportation is secured 
throughout the operation. This chapter will provide inputs on the current challenges 
in IoV along with the importance of automotive standards. Further, this chapter will 
explain few security models which helps to ensure security in real-time. 

Current Challenges in IoV 
Attackers pose a potential threat to car security in the IoV ecosystem. Some of the 
actions carried out as a result of data breaches include exposing the passenger’s data,
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compromising the vehicle’s critical equipment (brakes, ABS, etc.) and compliance 
processes, and, in extreme cases, compromised access control of the vehicle. With 
an increase in the number of actuators and sensors in vehicles, attackers may be 
able to get personally identifiable information (PII) from the vehicular network, 
including location history, entertainment preferences, and financial data. Attackers 
can get unauthorized entry to automobiles through the use of remote keys, wireless 
key cards, and mobile applications, which have already supplanted conventional 
physical car keys. This is possible by eavesdropping on the communication between 
a smartphone or digital key cards and the vehicle. As a result of security and safety 
concerns, managing virtual automobile keys may be just as complex as keeping real 
keys. Automobiles pose a severe threat because of their numerous communication 
ports, which may be used as possible attack surface. Once the attacker has access to 
the internal AV systems, further attacks towards the safety breach follows. 

The increased technological improvements has widened the security gaps. 
Researchers have demonstrated the ability to hack into a car (either directly or 
remotely) via telematics systems, the on-board diagnostics (OBD-II) port or any 
other open ports with least security encryptions [18, 19]. 

As more mobile applications for interacting with automobiles, they become a 
target for malicious operators. In the instance of the Nissan Leaf, for example, 
security experts revealed how they might access the vehicle’s AC, steering control, 
armrests, telematics unit, and ABS. These unauthorized operations may drain the 
battery and leave the car inoperable in an EV scenario. Concerns have also been 
raised about the number of security flaws in the Android and iOS mobile hardware 
and software [12, 13]. 

4.1 CPS-IoT Design Challenges 

An AV is considered as Cyber-Physical System (CPS). Usually, CPS is a sophis-
ticated, standalone decentralized distributed system linked to a pool of computing 
and storage nodes. The CPS intends to recognize and understand the impact on the 
physical environment and evaluate the effects of any modifications on its operating 
condition. It will help to make automated intelligent decisions without altering the 
physical setting within the vehicle. CPS can remotely control, monitor, regulate, 
and automate various in-vehicle activities because it is a distributed decentralized 
closed-loop process with few customizations from every automaker. 

The widespread use of Web-based components and application usages in CPS 
networks has bridged the gap between CPS and IoT. As a result, there are abundant 
application models and real-time use cases in the traditional Operational Technology 
(OT) domain. This includes distributed network of sensor nodes to control and 
regulate vehicle operations like braking, acceleration and remote diagnostics. Due 
to the increase in attacks and vulnerabilities, automakers are searching for ways 
to combine ECUs by their operation domains. However, for a variety of reasons, 
this simplistic and restricted analysis of threats and related defense methods are
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insufficient and misleading due to the absence of common SAE/ISO/NIST standards 
for CPS operations. 

4.2 Need for Security by Design 

There is a lack of rigorous security assessment, with much of it occurring too late 
in the design process. Furthermore, some fail-safe system tasks may pool data to 
the external repositories for processing. This activity can become a potential target 
for the attacker. The only way of creating “Security by Design” systems that will 
be robust, resilient and flexible in the long run is to design from the attacker’s 
perspective focusing more on the vulnerable components and processes [20]. Third-
party suppliers are extensively relied upon by automakers to offer system-level 
components, firmware, and physical embedded devices for their cars. However, 
automakers lag in setting stringent firewall criteria [21]. Thus, any component in 
charge of vital functions, such as acceleration, brakes, etc. must fulfill the highest 
security standards and updates listed by ISO and SAE. Many of these updates are 
given via authorized security patches and authenticated firmware updates. However, 
each embedded device may pose their own set of security challenges. One of the 
best examples of cyberattack is data breach in Jeep [22]. In the current version of 
JEEP, the Renesas V850ES/FJ3 chip resides between the CAN bus and the head unit. 
It is set up as a read-only device, collecting vehicle information via the CAN and 
informing the operator about regular maintenance status, diagnostics, and warnings. 
The study observed and reverse-engineered the V850 firmware, reconfigured it to 
grant read/write rights, learned the CAN message, and successfully updated the 
software itself from a remote location. This capability, like other vulnerabilities, 
required a few security researchers many weeks to create, but once identified, it 
could be weaponized and bundled along with other penetration testing tools and 
vulnerability scanners. 

4.3 Design-Thinking Concepts 

As digital cabin equipment providing unique, customized digital experiences for 
drivers and passengers, it also poses serious security concerns and information 
security problems. It will affect the overall customer experience thereby breaking 
the integrity of the whole system. There are many differences in design, execution 
and customization between vehicle manufacturers. Some common design-thinking 
concepts must be addressed while customization. These are as follows: 

• No common scheme for confirming the integrity, authenticity, and reliability of 
firmware and software updates
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• Limited security monitoring system for data flow, accessibility control or unau-
thorized message filtering schemes 

• No common standard followed for connection and communication with cloud 
and infrastructure. 

4.4 Cyberattacks in Recent Times 

Security flaws have been identified most notably in the authentication procedure. 
Nissan, for example, released a mobile app that allows access to the car to 
obtain data such as battery charge level and range, as well as enabling climate 
control ahead of the journey and other functions [23]. The only authentication 
information necessary while pairing the smart gadget to the vehicle was the Vehicle 
Identification Number (VIN). The VIN is usually found at the bottom area of the 
windscreen, accessible from the outside. To interrupt the vehicle’s normal operation, 
an attacker may pool the vehicle with vulnerable software such as ransomware. The 
Association of British Insurers (ABI) reported 160k claims in the quarterly May 
2019, equivalent to around 100 million pounds or 1.5 million per day. Attackers are 
exploiting known loopholes in Keyless Entry Systems utilizing low-cost and easily 
available technologies such as software-defined radio (SDR) frequency devices. 

Researchers [24] discovered 19 flaws in the Mercedes-Benz E-Class in August 
2020, which might allow hackers to wirelessly open the car door and start the engine. 
In September 2016, the IoT botnet ‘Mirai’ [25] has momentarily disabled numerous 
high-profile services, including OVH—A SaaS-based web service provider and 
Dyn—a web security company via a DDoS. Thus, AVs equipped with multiple 
sensors and wireless communication capabilities pose a potential threat and can be 
easily exploitable by external attackers. 

5 Security Objectives 

An attack may, either intentionally or unintentionally, cause a safety threat for the 
vehicle’s occupants. These assaults can be indirect, such as distracting the driver 
with alert and modifying the loudness of the multimedia unit, manipulating the 
throttle or steering angle. An example of such an attack is the Lexus OTA update 
failure. More recently, a Mobileye 630 PRO and Tesla Model X hack [26] duped the 
Advanced driver assistance and autopilot control triggering the brakes and steering 
towards moving cars. These activities are executed by spoofing the vehicle control 
system. As we become more reliant on authentication and real-time in-vehicle safety 
monitoring from things like traffic congestion, emergency signs, roadworks, or 
accidents, it will have an influence on human driving behavior. But over-reliance 
on these activities may lead to increased implications from attacks like DoS and
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Distributed Denial-of-Service (DDoS) assaults [23, 27]. Spywares like ransomware 
might be used to construct botnets for cryptojacking or to perform DDoS attacks. 

6 Importance of Automotive Standards 

Most generic attack assessments frequently misguide the CPS security objectives, 
which may aim to bring balance between vulnerabilities, cost, and accessibility. As 
a result, any unsafe procedures may be operationally acceptable. These procedures 
operate within a regulated environment formed by the SAE/ISO standards [9] that 
allows for certain security protocols to be used in CPS operations. 

Root of Trust (RoT), security perimeter analysis and modeling are some of the 
basic security by design elements that are yet to be focused in depth during CPS 
security testing, analysis and evaluation. Addressing individual threats in an ad-hoc 
and isolated fashion will not assist much in security design techniques. Therefore, 
security by design can help to identify the vulnerabilities and isolate any particular 
system without affecting the complete AV. But in reality, this tendency of generic 
attack studies is worsened by the lack of strong guidelines that assists the AV’s road 
safety regulations. 

7 Trust Management 

Several prior studies offered techniques for enabling security, authentication, and 
credential verification in vehicular networks. For example, VANETs uses digital 
signature (DSA) during message broadcast to preserve privacy, security, and 
defense against DDoS threats. Furthermore, IEEE 802.11p was modified for 
V2I communications with a lightweight authentication that targets vehicle data 
security, confidentiality and privacy. Proven methods for security management for 
VANETs help to secure all the interconnected networking devices used for data 
exchanges, command executions and condition monitoring in real-time. With these 
features, the probability of attacks can be gradually reduced thereby ensuring the 
privacy preserved safe driving in a closed-loop connected environment. Researchers 
[25] has enhanced the location accuracy by incorporating neighborhood locations 
and geospatial information into account. Furthermore, researchers [28] employed 
portable design suits that provide security for the vehicle during location sharing 
and navigation. While vehicle networks are opened up to other heterogeneous 
connections, various security concerns arise, as described by Kaiwartya et al. [29]. 
These design problems are closely linked with data that compromises the location 
precision, authenticity, confidentiality, and in some worst cases, attackers can spoof 
the location with their desirable coordinates. 

Many experts, regardless of field, define trust as a level of risk, or ambiguity, and 
it sets an expectation about how an automobile industry will perform in the future.
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Trust is a multifaceted concept frequently described as the degree of probability 
of an individual’s readiness towards any anticipated/expected outcomes from the 
vehicle irrespective of its operations, control and command execution. Despite 
adopting concepts and categories of trust from the scientific literature, there is no 
clear consensus on the notion of trust in communications systems, especially in the 
AV domain. Thus, trust becomes a critical component of security in vehicle ad hoc 
networks. 

Security experts have presented a unique situation-based trust model, called 
Situation-Aware Trust (SAT). The purpose of SAT is to create a new security 
framework through the use of cryptographic techniques that provide trust informa-
tion as well as used for dynamic key management. A real-time message content 
validation (RMCV) schemes were proposed to address similar trust management 
issues. This RMCV will provide a trust score for all forms of commands and 
messages shared in IoV environment. The maximum value of final trust ratings 
received from neighborhood devices or vehicles are used to determine the message 
trustworthiness. Similar trust models include Lightweight Self-Organized Trust 
(LSOT) which uses both security certifications and user recommendations for trust 
management. There are many hybrid trust management mechanisms available. 
One such hybrid scheme is the Beacon-based Trust Management (BTM) system 
which uses message beacons for cross-checking and validating the level of trust. 
In general, the trust management methods use public key infrastructure (PKI) and 
digital signatures to validate trust and provide trust scores. 

7.1 Components of Trust 

The concept of trust is based on the quality of interactions and quantity of data 
exchanged between involved entities without the need for cross verification and 
security checks. 

• Direct Trust—It is characterized by an AV user’s immediate observations and 
their level of interactions. For example, general command executions like toll 
ticketing, speed limit verification etc where trust level will be very high as 
these are monitored by the government agencies. Some security experts describe 
trust as “direct information obtained by the AV to analyze the RSU using 
predetermined metrics and evaluation methods”. Although it is considered that 
direct trust is more important than indirect trust, the combination of both is 
considered when evaluating a vehicle’s trust during vulnerability assessment in 
V2X environment. 

• Indirect Trust— It expresses the views of AVs neighboring/trusted nodes about 
the target infrastructure, taking into consideration of every previous interaction 
with the node. This includes the history of interactions, trust levels with 
other AVs, etc. Some researchers analyzed the indirect observation of trust by 
combining the robustness and reliability of nodes. Reliability is achieved when



268 A. Manimuthu et al.

the connection between the AV and the RSU happens in a controlled and secured 
environment without worrying about any cyberattacks. Robustness is the ability 
of both parties to carry out the task and perform operations only based on 
fool-proof trust management without any bias or altercations due to external 
interference. 

7.2 Attributes of Trust 

When calculating the above-mentioned trust components, some potential trust 
qualities are taken into account [30]. 

1. Similarity level—The degree of similarity between any two vehicles refers 
to the degree of comparable digital services, network connectivity, operation 
execution and control methods with externals resources. This includes AVs mode 
of message exchange, design standards and protocol usage. In many cases, 
message beacons, location tracking and navigation details are used to analyse, 
evaluate and generate the trust score. 

2. Familiarity Index—Familiarity expresses how smooth AV and RSU are inter-
acting with each other. A high familiarity score indicates that the AV has 
extensive information about the RSU or vice versa. This characteristic is inspired 
by social media websites like Facebook and Instagram, where an increased 
familiarity index leads to increased trust which eventually leads to a smooth 
relationship with one another. 

3. Timeliness— It denotes how often the interaction between two parties has 
happened. This includes their recent history of connections. These values are 
calculated by combining the present interaction instance and the time when 
similar interaction occurred earlier. 

4. Packet Delivery Rate—The delivery rate is directly related to data integrity. 
Any unauthorized activities identified will directly be reflected in the trust 
management index. Thus, the packet delivery rate is kept as one of the major 
criteria in determining the trust level between all the participating agents in the 
IoV network. Any malicious activities will limit the delivery rate and affect the 
whole data exchange process. In this way, AVs can become more resilient to 
similar attacks in the future. 

5. Coordinated Operation—This attribute prioritizes the type of service offered 
by the RSU rather than the mode of connectivity or operational procedures. 
On-demand services are exclusively offered from the external devices or infras-
tructure only to particular AV due to very high trust score and zero history 
of attacks. Similar to social media, network entities demonstrate a mutual 
connection establishment and share their services via decentralized multi-hop 
communication without the need for data integrity check, analysis, testing and 
evaluation.
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6. Connection Readiness—AVs readiness to interact with infrastructure or external 
devices for operations or service utilization. This characteristic is critical while 
maintaining robustness and reliability. Thus many third party service providers 
offer rewards, discount coupons to encourage cooperative behavior and boost 
their platform usage among the AV manufacturers. 

7. Interaction time—It is predicted that significantly longer interactions contribute 
to improved collaboration among parties, which paves way for increased confi-
dentiality. This eventually leads to an increased trust level in every upcoming 
interaction between the two entities in the IoV environment. 

8. Interaction Frequency—Greater the frequency of communication, the higher 
the opportunity to understand each entity’s behavior. 

7.3 Classification of Trust Management Models 

Vehicle trust management is broadly classified into three categories [31–33]: Data-
centric, Participant-centric, and Hybrid trust management models. 

1. Data-Centric Trust Management—This type of trust management strategy is 
primarily concerned with the data credibility and authenticity of information 
communicated between participating entities. This information mostly consists 
of logged data and alerts. Because data-centric trust models analyze the authen-
ticity and integrity of each occurrence, bottlenecks and security breaches. Due to 
a lack of sufficient evidence, reasonable connection time and trustability between 
the participants, this model will perform poorly in many cases. Thus recent 
research in data-centric trust management focuses on the 2 different levels of 
trust. 

• Data trustworthiness is determined by assigning weights to observations 
or incidents or activities (e.g., connection frequency, time, etc.) shared by 
surrounding vehicles/RSUs. Scores are based on a vehicle’s connection 
duration, the number of instances, connection history and location vicinity. 
Thus, a vehicle with longer connection time or frequent data exchanges or 
a high level of vicinity from neighborhood vehicles/RSU will have a higher 
level of trust. 

• The message trust level is determined by warning, conflicts and similarity 
between the participating agents. 

2. Participant-Centric Trust Management—The model category focuses on the 
trustworthiness of the participating vehicles by accessing each of their reliability, 
credibility, and neighborhood endorsements. As a result, the authenticity of the 
data, originality of the sender/receiver and data consistency are ensured. In this 
method, the efficiency of the vehicles and security levels of all the participants 
have to be assessed frequently to restrict any vulnerabilities. If this process is not 
ensured then confidentiality becomes a big question as there is no assurance that
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the data is free of errors or originated from the authorized vehicle. In this method, 
there are 2 different levels as follows: 

• Prior to picking a cluster leader, the trust score of each vehicle is evaluated 
by combining direct (participant themselves) and indirect (neighbor vehicle 
or infrastructure) trust ratings. A vehicle with a trust level greater than a 
set threshold (combined value from all the participants irrespective of time, 
connection and mode of operation) is considered reliable; otherwise, it is 
classified as a vulnerable entity. As per the trust score, notifications will be 
shared before and after data exchange to all participating members. 

• To isolate the network or vehicle from connecting with a vulnerable entity, 
trust scores obtained from the last instance of connection and communication 
are used as reference points. Thus any participant will have the privilege to 
get access to this score. But the major drawback of this mode is the degree of 
trustworthiness. Since the operation is purely based on the last connection and 
communication instances, any history of vulnerable activities will be masked 
from the participants. Thus reliability becomes a big question in this method 
of trust evaluation. 

3. Hybrid Trust Management—This type of trust management approach com-
bines both data and participant-based trust assessment, i.e., the legitimacy of the 
transferred data along with the neighbor’s endorsement towards the entities. 

8 Security Model for Automotive CPS 

In the IoV environment due to the emergence of high level automation, it becomes 
mandatory to focus on the safety and security of AVs. As the number of vulnerabili-
ties and attack surfaces are increasing, it is very much essential for the automaker to 
look for smart methods and algorithms to ensure a safe operating environment for 
their vehicles. Irrespective of design, all the manufacturers follow NIST and SAE 
automation standards [9, 13] for ensuring the safety and security. Their guideline 
suggests series of steps in an orderly fashion: “Identify, Protect, Detect, Respond, 
and Recover” in order to protect the AV. Government organizations and federal 
agencies play their part in providing frameworks, guidelines, amendments and 
measures that help to maintain a safe IoV ecosystem thereby attracting more public 
participation. 

8.1 Storage Security 

Storage is one of the potential attack vectors targeted by hackers. User data and 
applications are the key components considered to be vulnerable and thus additional 
security is provided. Storage security are series of rules and settings based on
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a certain level of control parameters. Access to these parameters and settings 
will be given only to the authorized participants and trusted third parties. This 
helps to ensure system security where the entire AV is closely monitored for any 
malicious and vulnerable activities. Storage security is not alone the responsibility 
of AV but also all the participating entities. Each of the participating agents 
must ensure their storage is free from any malicious activities and vulnerabilities. 
Storage area network (SAN) is one of the emerging concepts to ensure storage 
security [8]. SAN helps with the customized high-speed storage network. It provides 
infrastructure support for sharing storage facilities with multiple devices. Thus many 
automakers use SAN for safe data storage. SAN implementation requires certain 
considerations: 

1. Network accessibility must be provided to the authorized users alone with two 
levels of authorization 

2. Reliability of data and signal strength during the connection and communication 
must be ensured all the time 

3. Cyberattacks and malicious activities must be closely monitored 
4. Authenticity of the participating agents must be carefully verified by high-level 

security schemes 

Storage security and data protection is monitored using certain primary tasks 
according to NIST 800. These procedures are generic and followed by the SAN 
users with certain customization as per the consumer’s requirements. These include 
the following: 

• Encrypting the data that are highly sensitive 
• Frequent software updates and security patch releases 
• Removing unauthorized, unlicensed and vulnerable services from the network 
• Promoting the security policies among the users and notifying them about the 

malicious activities 
• Deploying the latest data security algorithms that ensures data privacy 

By following these set of procedures, it is very much possible for the AV user to 
ensure data and storage security. Some of the common functions listed above help 
to protect the system from Ransomware attacks, and data leakages. 

8.2 Computing Node Security 

It refers to the security provided for the embedded devices and controllers available 
in the IoV environment to perform their assigned tasks without any attacks and 
vulnerabilities. Since different components have a different levels of security.They 
are categorised based on several parameters as per the NIST 800 and SAE J3016 
[13]. Some of them include:
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1. Connectivity—Depends on the protocol used for connecting the system with 
other RSU or IoV elements, their security is provided/updated. 

2. Level of criticality—Device computation, performance and operation are 
directly related to different levels of criticality. For example, the controller 
circuitry responsible for braking and acceleration are highly critical when 
compared to the music system. Depending on the tasks and computing nature, 
their security levels have to be prioritized. 

3. Performance time—In general the operating time plays a significant role in 
determining the computing behavior of the devices. High-speed computation is 
more desirable in any application execution. The attacker and the defender need 
to cautiously handle time. 

Virus, malware, malicious instant push messages, unauthenticated software 
updates, and vulnerable codes are some of the key players that are actively 
compromising computation security. Thus, it becomes mandatory to implement 
suitable encryption techniques at the device level. This helps to ensure the credibility 
of the computing devices in every action they perform. 

8.3 Communication Security 

In the communication network, the motive of the attacker is to breach the security 
perimeter thereby gaining unauthorized access to the data. Some of the common 
communication network attacks include DoS, DDoS, Man-in-the-Middle, malicious 
code injection, privilege escalation, etc. All these attacks primarily focus on 
breaching confidentiality, integrity and availability (CIA triad) [34]. According 
to the National Security Agency (NSA)—“Measures and controls put in place 
to prevent unauthorized individuals from accessing information obtained from a 
communications network and to ensure the integrity and authenticity of such com-
munication channel”. Despite the level of security provided for the communication 
network, these are the predominant threats identified: 

1. Malicious code injection—Injected code will potentially mask, modify, destroy 
or bypass sensitive information intended for the authorized agents, thereby 
worsening the entire system behavior. These infiltrated data can misguide the 
users about the services offered by the RSU or other infrastructure devices within 
their close proximity. 

2. Localization attack—Intercepting communications containing the localization 
details of sensors or other IoT devices provides attackers an ability to infiltrate 
the entire AV system from remote locations. The importance of encrypting 
the location details from an intruder emerges from the fact that sensor nodes 
have standard operating procedures. But when connected with ECUs, it is least 
possible to track them among the pool of AV components. Thus, it is critical to 
hide the node sensor positions and their associated operations.
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3. Application centric attack—Communication establishment differs as per the 
type of application used by the AV. For example, Digital payment uses NFC, 
Telematics uses Bluetooth and internal ECUs use CAN bus for communication. 
It is possible for the attacker to specifically target these application-specific 
communication protocols. Apple Carplay, Android Auto and Google Assisted 
Navigation have provided additional authentication and security functions to 
ensure the credibility of the communication network before the communication 
establishment. It is now the responsibility of the users to safely handle the 
application installations. 

8.4 Sensor and Actuator Security 

In general it is also stated as device-level security. For every operation, the command 
executions are carried out by the controllers and their associated sensors and 
actuators. Hence it is very much essential to protect these devices from any potential 
threats. Sensor security is directly related to the confidentiality, authenticity and 
integrity of the vehicle operation. Thus they become the potential target vectors 
for the attackers. Some of the following security concerns were focused on by 
the security experts in order to secure the sensors from performing their normal 
operations: 

1. Labelling the sensors based in the type of operations 
2. Operating voltage range 
3. Operating time including the reverse response time 
4. Criticality levels 
5. Type of connectivity and communication protocol used 

Some of the most common attacks with the sensors and actuators are snooping, 
sinkhole, jamming, tampering, Sybil, wormhole, spoofing, etc. Any attacks with 
these devices will have a direct and immediate impact on the users as well as the 
surrounding environment. Thus, the Target of Evaluation (TOE) and its security 
objectives (SO) depends purely on their security functional requirement (SFR) [35]. 
SFR holds a list of objectives with which it is possible to record, monitor and closely 
evaluate the activities performed by the sensors. During this process of evaluation, 
all anonymous activities can be easily identified. In order to protect the devices from 
attacks there are few hardware security guidelines proposed by SAE and ISO. These 
includes: 

• Secure booting 
• Authorized device level security patch installations 
• Device level encryption
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9 Privacy 

Today, automobiles rolled out of factories are enabled with a huge amount of 
innovative technologies and sophisticated embedded devices. Consumers use their 
functions to ease their use cases like navigation, traffic awareness, voice assis-
tance, RSU assistance, remote diagnostics, parking assistance, etc. Such technical 
advancements frequently rely on user’s personally identifiable information to work 
efficiently and provide precise details. Several automakers, security agencies and 
research groups have realized the need for privacy and have already begun to 
develop guidelines. 

ISO and SAE standards are frequently updated in order to ensure privacy 
for all connected devices. Auto alliance group has developed a framework for 
vehicle manufacturers in developing a privacy-preserving scheme at the device 
level. Fair Information Practice Principles (FIPPs) lays the foundation for safe 
privacy practices and provided regulatory laws for global automakers to practice in 
their automobile manufacturing processes [36]. In US, Government Accountability 
Office (GAO) has managed to release data and other asset privacy reports for 
vehicles. According to GAO, automakers must ensure privacy from the very 
beginning step of their manufacturing process and provide software support to their 
users for an extended time duration. It has also provided guidelines for vehicle 
owners to practice operations in a safe and secured way. Federal Trade Commission 
(FTC) circulated a notice to all vehicle manufacturers under the title “Careful 
Connections: Building Security in the Internet of Things”. Notifying the user’s about 
their device-level security, type of encryption used, license details and privacy-
preserving policies are stressed in this FTC guidelines. 

Regulatory policies proposed under Electronic Communications Privacy Act 
(“ECPA”) help with the norms for anti-interception of data associated with the 
user’s privacy. These norms are applicable for all third party applications, network 
service providers, connection and communication support and storage service 
agents. Federal Communications Act (“FCA”) has enforced laws and usage policies 
for the network service providers while providing infrastructure support to the 
users. Depending on the user request and duration of the subscription, the service 
provider need to take full responsibility for all the activities happening within its 
network. The European Union General Data Protection Regulation (GDPR) derived 
a regulatory policy to limit the e-privacy (electronic-privacy) issues. According to 
GDPR, 6 laws are kept as standard measurement metrics while handling the personal 
information of the users [37]. These are as follows:
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1. User consent 
2. Contract period 
3. Legal policies and compliance 
4. Risk assessment duration 
5. Legitimacy of ownership 
6. Transparent data handling mechanisms 

Methodologies adopted by the manufacturer have also updated frequently with 
security and software updates to retain their credibility in the consumer market. 

9.1 Location Privacy 

GPS and GNS play a predominant role in collecting the location details from the 
vehicle. Common factors identified from the location details are Time, Position and 
Orientation and Asset Identification. 

• Time—Every user within the IoV will follow certain driving and operation 
patterns while using their vehicles. These include playing music, using Alexa 
or Siri, connecting to Bluetooth, attending calls, standard toll ticketing, digital 
payments, and pit stop points. All these activities can be easily identified by 
tracking the vehicle timing information. For example, consider the following 
scenario where a person buys food from the same outlet continuously for several 
months within the same time duration using some mode of digital payment. By 
analyzing the time details, it is easy for the attacker to visit the same outlet at the 
same time without the knowledge of the user. 

• Position and Orientation—It is completely taken care by available sensors like 
GPS, GNS and LiDAR within the AV. When these components are hacked, 
the location coordinates can be easily obtained. Information shared in social 
networking websites like Facebook, WeChat, etc will hold enough details 
about their users including their most recent visit location and time. Another 
important consideration while using these sensors is the period of data storage. 
As these sensors operate continuously, their associated data storage facility is 
also supposed to be completely secured. 

• Asset Identification—This location privacy factor is purely based on the type of 
application used by the user. On the basis of authorization provided by the user, 
applications will collect the details about the asset. With these details, desired 
services will be offered to the users. Example: Using Google maps for finding the 
nearest hotel or booking a taxi or ordering food online etc. Thus it is very much 
essential to understand the privacy-preserving policies offered before using any 
third party apps.
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9.2 Data Privacy 

Data privacy is different from data security. The former focus on personal privileges, 
preference and rights while later concentrating on protecting it from attacks. Thus 
rights of the individual are the top priority and in ensuring their rights government 
agencies, and application service providers often revise their user policies. These 
regulations and laws concentrate on the attacks and the level of criticality faced by 
different entities within the IoV. Privacy-preserving programs offered by application 
developers help the user to keep track of recent privacy issues and alert them with 
necessary precautions. Privacy policies are carefully developed by the third party 
service providers. Their policies must address the following things completely to 
the users before and after collecting data: 

• Mode of data collection 
• Type of storage 
• Data management and usage policies 
• Data sharing privileges 
• Regulatory compliance 
• Code of conduct and enforcement regulations 

OTA security patch updates helped around 100 billion people around the globe 
saving about 3.5 billion USD from data breaches. Since IoV has many potential 
attacks vectors, it is complex to manage the data privacy without the user’s support. 
Despite recent breakthroughs in data privacy policies, legal strategies and laws, 
companies and governments often infringe or undermine consumers’ privacy. As 
a result, some claim that users have already lost the privacy battle. Some of the key 
questionnaires every application service provider must transparently address to their 
users: 

• Security levels while gathering, usage, storage and sharing of data 
• Clarity in building an adequate data governance regulatory foundation capable of 

dealing with privacy issues 
• Ensuring the authenticity and credibility of the information shared with the user 
• Showing transparency in data handling with its use cases 
• Detailing the users about their data portability and erasure 
• Maintaining legitimacy by implementing the latest government privacy regula-

tions 

Service providers are forced to practice this mode of operation due to the emerging 
nature of data-related attacks. Privacy Impact Assessment (PIA) is done in a sys-
tematic and regular fashion to completely access the privacy levels. The company’s 
reputation and credibility will be at risk in the event of any adversaries. As data 
privacy is critical, it needs to be double-checked and carefully handled while 
sharing with any third parties. In the event of long-term storage, suitable security 
infrastructure has to be provided. Some companies have combined the privacy and
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compliance functions. By combining both, they tried to bring more clarity to the 
roles and responsibilities of all the participating entities within the IoV. 

10 Security for IoV 

Threats and vulnerabilities are evolving continuously along with number of sensors 
and embedded controllers within the vehicular surface. Thus it becomes mandatory 
to execute threat, vulnerability and risk analysis (TVRA). In this chapter, we have 
discussed TVRA model with suitable steps and procedures. It is evident from the 
recent attacks and threats, the attack surfaces are also need to be focused. We have 
listed few potential attack surfaces along with their know attacks within the IoV 
systems. Finally, we have discussed few crucial aspects for continuous assessment 
of security with some common testing methods that are in practice by the vehicle 
manufacturers and testers in real-time. 

10.1 Threat, Vulnerability and Risk Analysis (TVRA) 

According to the European Telecommunications Standards Institute (ETSI), TVRA 
uses the product of the likelihood of an attack and the impact of that attack on 
a system to identify the risk to the system [8]. TVRA identifies the assets of the 
system and their weaknesses, threats and threat agents that may attack the system. 

This is the brief overview of TVRA model: 

• Assets (physical, human or logical) may have weaknesses that may be attacked 
by threats. 

• A threat is enacted by a threat agent, which may lead to unwanted incidents. 
• A vulnerability, which is a combination of weaknesses, can be exploited by 

threats. 

The TVRA method consists of these following steps: 

• Step 1: Identify Target of Evaluation (TOE), which includes a high-level 
description of the main assets of TOE, TOE environment and a specification of 
the goal, purpose, scope of TVRA. 

• Step 2: Identify the security objectives, which includes a high-level statement of 
the security aims and issues to be resolved. 

• Step 3: Identify functional security requirements from security objectives. 
• Step 4: Refine the high-level asset descriptions (step 1) and additional assets 

derived from steps 2 and 3. 
• Step 5: Identify and classify system’s vulnerabilities, threats, and unwanted 

incidents. 
• Step 6: Quantify occurrence likelihood and impact of the threats.
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• Step 7: Establish the risks. 
• Step 8: Identify countermeasure framework, which results in a list of alternative 

security devices and capabilities to reduce the risk. 
• Step 9: Analyse countermeasure cost-benefit, which helps identify the most 

suitable security devices and capabilities. 
• Step 10: Specify detailed requirements for security devices and capabilities. 

10.2 Security Perimeter 

According to Anupam et al. [20], security perimeter aims to segregate AV into 
different security domains, with different threat environments, which has a direct 
impact on the validity of the trust model. Therefore, a design for the trust 
infrastructure as well as the security mechanisms is essential. 

A security perimeter enables a holistic and systematic approach to AV system 
design and analysis. Figure 2 visualizes a three-layer design showcasing AV security 
perimeters. An AV security architecture is considered well-designed if it implements 
decent control mechanisms to reinforce the boundary of each layer so that practical 
security assumptions can be made to enable systematic security analysis and design. 

Fig. 2 Three-layer AV design
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10.3 Vehicular Attack Surfaces 

For an autonomous vehicle, there are a wide range of attack surfaces such as: 

• Airbag ECU 
• Remote Link Type App 
• OBD II 
• Bluetooth 
• USB 
• DSRC-Based Receiver (V2X) 
• Passive Keyless Entry 
• Remote Key 
• TPMS (Tire Pressure Monitoring Sensor) 
• ADAS System ECU 
• Lighting System ECU (interior and exterior) 
• Engine and Transmission ECU 
• Steering and Braking ECU 
• Vehicle Access System ECU 

These attack surfaces above are visualized through Fig. 3. 
In [39], the author stated that the number of cyber-attacks in the connected 

automotive industry is increased by a factor of six from 2010 to 2018. Of all the 
attacks: 

• 21.4% are remote attacks 
• 8% are keyless-entry attacks 
• 5% are physical attacks via OBD port 
• 8% are against OEM’s mobile applications 

Fig. 3 AV attack surfaces [38]
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In the context of black-hat attacks, 91% of the attacks are wireless. 

11 Known Attacks on IoV Systems 

11.1 Sensor/Actuator Attack 

Today’s modern vehicles often contain from 60 to more than 100 sensors [40] 
in various types, which lie in vehicle’s sensing layer. Each of these sensors is 
responsible for a specific functionality such as safety, diagnostics, convenience, 
and environment monitoring. The sensing layer is vulnerable to both physical and 
remote attacks. A lot of research has been conducted to explore the vulnerability 
of vehicular sensors such as magnetic encoder (used in ABS) [41], inertial sensor 
(accelerometer, gyroscope) [42, 43], TPMS [44], GPS, LiDAR, and camera [28], 
etc. 

Autonomous vehicles nowadays rely heavily on sensors so that the vehicle’s 
machine learning models can make precise decision. Attacks on LiDAR and camera 
system has recently drawn a lot of attention from researchers since these sensors 
are the first components of the perception module, which is crucial for most 
functionalities in a typical AV system. 

With the advancement of deep learning techniques for perception models, more 
researchers are focusing on adversarial attacks, whose aim is to fool the machine 
learning model. Previous camera attacks involve blinding a camera with extra 
sources of light, i.e., Light Amplification by Stimulated Emission of Radiation 
(LASER) beam or infrared LED. LiDAR attacks follow pretty similar trend to 
camera attacks. One of the pioneering work is from [45] where they created a fake 
object nearer than spoofer. Most recently, there was research into LiDAR-camera 
fusion system attack, in which the authors create a 3-D adversarial object that can 
fool either camera, LiDAR or even LiDAR-camera fusion algorithms. 

11.2 Remote Wireless Network Attacks 

Modern intelligent vehicles contain a great number of ECUs and various types 
of wireless connection protocols. These growing connectivity in vehicles leads to 
the increase in security vulnerability. By exploiting the connection mechanisms, 
attackers can compromise telematics ECUs. In 2011, Checkoway et al. [46] got 
access to remote code executions on a telematics ECU of a vehicle via Bluetooth 
and long-range wireless connection. They extracted the ECU’s firmware and 
reverse-engineered the code. According to the authors, if attackers can pair their 
smartphones with Bluetooth ECU, they can send malicious codes from their 
smartphones to compromise the ECU.
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11.3 OTA Software Update Attacks 

Nowadays Over-the-air (OTA) update is becoming a standard option in automotive 
industry. OTA update enables upgrading of vehicle’s functionalities, bug fixation 
in ECU’s software, remotely. It is really conducive for both OEM and vehicle’s 
owners since the software update can be applied immediately. Thus, these are a few 
advantages of OTA update [47]: 

• Lower cost: nearly real-time, without requiring vehicle’s owner to go to dealer 
for software updates. 

• Improved safety: updates are applied immediately to improve safe functionali-
ties. 

• Improved customer satisfaction: hassle-free experience, can get information 
about the update without going to the dealer. 

• Frequent updates: in case of more severe issues, manufacturers can just roll 
out the updates without requires a mass recall, which makes the updates more 
frequent due to reduced cost concerns. 

• Increased values: vehicle’s value can increase by maintaining consistent OTA 
updates, which help automakers gain more revenue. 

Despite the fact that OTA update brings a lot of advantages, it requires access 
to in-vehicle communication network, which is highly critical. In 2020, researchers 
from U.S. National Highway Traffic Safety Administration (NHTSA) studied about 
automotive update mechanisms via both physical and OTA means. They proposed 
five feasible attack scenarios which may happen during OTA update process, i.e. 
malicious control of vehicles, denial-of-service, vehicle/contents theft, intellectual 
property theft/private information exfiltration and performance tuning/unauthorized 
feature activation. In 2012, Mulliner and Michele [48] exploited the insecurity 
of firmware installation process during firmware over-the-air (FOTA) update. 
This research shows that the downloaded firmware is vulnerable to adversarial 
modification by a time-of-check-to-time-of-use (TOCTTOU) attack. In 2020, Wen 
et al. [49] made a comprehensive analysis using OBD-II USB dongles as a new OTA 
attack surface. 

11.4 OBD-Based Attacks 

On-board Diagnostic (OBD) port is a connection port that allows people to 
collect information such as emission, mileage, speed and data from other vehicle’s 
components. Since the OBD port does not usually encrypt the transmitted data, it is 
an open gateway for attacks to access various components of vehicles. To perform 
attacks, attackers have to physically access the OBD port, since it does not allow any 
kinds of remote access. Some devices that are attached to OBD port can transfer 
data between the port and a computer through wired or wireless connection. In
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2019, Christensen and Dannberg successfully performed a man-in-the-middle attack 
through AutoPi Cloud interface [19]. Moreover, once attackers gain access to OBD 
port, it is shown that they can control other components such as warning light [44], 
window lift, airbag control system, horn [50], or even injecting codes into ECU. 

12 Security Management 

Security management for autonomous vehicles is a crucial aspect for continuous 
assessment of security challenges. Below are the two AV security incidents [20]: 

1. Threat Analysis and Risk Assessment (TARA): there are some methods for 
assessment of these factors: 

• Attack Tree Analysis: the threat is analysed using the attack trees. The worst-
case scenario and the risk can be determined using the combination of multiple 
potential threats. 

• Threat, Vulnerability and Risk Analysis: this is a standard approach in 
cyber-physical system, where the threat is associated with system’s assets. 

• Software Vulnerability Analysis: this is an assessment technique for soft-
ware code’s vulnerability. The development environment and real-world 
environment of software implementation significantly differs from each other, 
which is the root cause for software vulnerability. The Open Web Application 
Security Software (OWASP) is a methodology to build secure software 
projects. 

2. Security testing methods 

• Penetration testing: this is part of a security audit, either in a black-box or 
white-box setting. In black-box setting, the system details are unknown to 
the tester, while in white-box setting, it is assumed that the attackers have 
knowledge about internal details of a system. 

• Red teaming: this process detects network and system vulnerabilities by 
assuming the role of attacker. 

• Fuzz testing: a tremendous amount of random data passes through the system 
to make it crash. This kind of testing aims to test coding errors and security 
loopholes. 

• Network testing: a large number of packets bypasses through system’s 
network, which serves as a network resilience testing. 

13 IoV Security Analysis: Research Roadmap 

The IoV is developed on top of an existing vehicular infrastructure that supports 
multiple embedded devices, networking platforms and computational device. As a
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result, IoV encounters certain similar security issues just as conventional vehicular 
networks (communication and application based threats and vulnerabilities) in real-
time. Thus it is very much essential to concentrate on both traditional attacks along 
with other emerging network or autonomy-related threats. Guidelines provided by 
the NIST and SAE helps the designers to develop simulation models and testing 
prototypes to understand the behaviour of the vehicular system during attacks. These 
activities guides the developers and automakers to adapt new security mechanisms 
to protect the AV. 

14 Security Analysis Through Simulation 

Simulation modeling is used to tackle critical challenges in a safe and effective 
manner as IoV involves multiple players for its smooth operation. AV simulation 
gives a significant approach of analysis that is simple to verify, discuss, and deploy 
in the actual environment. Simulation modeling delivers important solutions for 
vulnerabilities related to all OSI layers. Depending on the Simulation software 
capabilities, AV design can be simulated and analyzed in a dynamic environment 
including the ability to clearly visualize the traffic scenario. It helps to predict 
and estimate the key parameters required for design, development, analysis, test-
ing,installation, control, process, operation, and support [46, 51] Some of the key 
benefits of simulation are as follows: 

1. Detailed Visualization—Simulation models may be animated in 2D/3D, making 
designs and ideas easier to verify, share, and interpret. By witnessing a model in 
operation, developer acquire faith in it and can convincingly implement findings 
to develop AV prototype. 

2. Increased accuracy—A simulation model may record many more characteris-
tics of AV than an analytical model, allowing for more accuracy and precision in 
predicting and analyzing the impact of any faults in the design. 

3. Insights to system dynamics—Modeling and analysis help to understand the 
system dynamics in a more detailed way especially the risk prone areas. 

4. Reduced risk- Simulation modeling allows the developer to test and explore 
many “what-if” possibilities in a safe and controlled environment. 

5. Save money and time—Simulation of AV takes lesser time and incurs less 
money than testing and analyzing using hardware components and tools. 

6. Limits uncertainty—Uncertainty in design, operation duration, component 
selections and outcomes may be easily represented in simulation models, 
enabling for risk measurement and the development of more sustainable and 
robust AV system.
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15 Lightweight and Side-Channel Resistant Security 
Protocols 

Security protocols are set of operating procedures capable of assisting the system 
or device in executing a series of commands and perform tasks in safe and secured 
environment. The ultimate goal of lightweight security protocol is to consume less 
storage, computing resources, and less energy to deliver improved security solutions 
to the system [52]. Lightweight security protocol design is also linked with the 
initiatives in the world of cryptography to propose smaller and faster cryptographic 
primitives. 

Kocher et al. [53] first proposed the idea of side-channel analysis for crypto-
graphic schemes. They observed that any physical device will leave behind certain 
footprints during its operation and computing procedures. Side-channel information 
such as computing time, electromagnetic radiation and power consumption can 
therefore lead to system-level attacks. Countermeasures to these attacks need to be 
incorporated at cipher-level and eventually to the security protocol. 

16 Post-Quantum Cryptography (PQC) 

Continuous progress in the field of quantum computing presents a threat towards 
current public-key cryptographic primitives, which form an integral part of many 
security protocols, e.g., TLS/IPSec. As a result, new cryptographic primitives are 
being designed and standardized, which are generally known as quantum-safe 
cryptography or Post quantum cryptography. Future IoV communication needs to 
consider quantum-safe cryptography as part of the protocol. 

17 Conclusion 

Safety and security for IoV will remains as an important area as the communication 
and connectivity related threats and vulnerabilities are continuously emerging. 
Even though many standards and protocols are developed and deployed, it is 
essential to perform TVRA. This helps to ensure privacy and data protection. The 
challenges discussed and the security objectives furnished will gives an overview 
about the attacks happened in IoV. Network models, security models and their 
allied trust management helps with smooth and secured IoV operation. Attack 
surfaces listed will helps the designer, manufacturer and developers to concentrate 
at the component and firmware levels. Finally, the proposed research road map 
will showcase the recent development in the automotive domain using simulation 
models, cryptography tools and methods.
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Part III 
Intrusion Detection Systems



Protecting Automotive Controller Area 
Network: A Review on Intrusion 
Detection Methods Using Machine 
Learning Algorithms 

Jia Zhou, Weizhe Zhang, Guoqi Xie, Renfa Li, and Keqin Li 

1 Introduction 

1.1 Background and Motivation 

The automotive industry is undergoing rapid changes. The in-depth integration of 
advanced information technology and automotive technology enables the vehicles 
equipped with more intelligent functions and more connections with outside. 
Despite a higher level of comfort, safety, efficiency and personalized experience 
providing for drivers, the vehicles are also exposed to negative risks brought by 
the new technologies. The rich connectivity with external environments also means 
more potential access points which can be exploited by malicious adversaries. The 
adversaries can further intrude the safety-critical in-vehicle network via compromis-
ing the bridge nodes. Considering that vehicle is a man-in-the-loop cyber physical 
system, the attacker can further gain the ability to control the physical components 
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of automotive and manipulate its behaviors. It may result in a threat to human life 
or deeper security issues to the whole society. Security concern has become one of 
the most challenging issues for in-vehicle network which cannot be ignored. 

In-vehicle network is the underlying base for the implementation of automotive 
functions such as driving safety, autonomous driving, intelligent in-cabin system, 
and body control. Accordingly, the in-vehicle network is also in the process of 
innovation to meet future requirements. With the rapid development of intelligence 
and connectivity of vehicles, the architecture of in-vehicle network is undergoing 
evolution from distributed model to domain model and zonal model. It is getting 
more complex and sophisticated, which usually comprises several networks respon-
sible for different functions. In this chapter, we mainly focus on currently the most 
popular in-vehicle communication protocol Controller Area Network (CAN), which 
is directly responsible for the safety of vehicles. From our point of view, CAN 
will still bear an important role in ensuring driving safety in the future in-vehicle 
network. How to defend automotive CAN bus draws much attention from the public 
as well as academia. 

CAN is capable of providing reliable and real-time communication to ensure the 
safety of the automotive control systems. But there is no any inherent mechanism at 
its birth to defend against malicious adversary. Its characteristics such as broadcast 
nature, plain-text transmission, lack of message authentication, and weak access 
control make the automotive CAN network vulnerable to cyber attack. Security 
schemes such as cryptographic measures are introduced in the automotive domain. 
Message Authentication Code (MAC), which can provide the ability to verify 
the data integrity as well as identify the sender seems like a good option. It is 
implemented based on a symmetric cryptographic mechanism, which can favor 
the deployment on automotive embedded systems by reducing the computational 
complexity. However, the extremely limited length of the CAN frame cuts the effect 
of the deployment of message authentication codes. For example, the maximum 
data payload of a data frame of the standard CAN protocol is only 8 bytes. The 
longer message authentication code results in a shorter payload which degrades the 
efficiency of the communication system, while the shorter message authentication 
code results in an insufficient security level. To mitigate this issue, the longer 
authentication tag can be transmitted via extra frames. Unfortunately, it can result 
in a heavier bus load which might affect the real-time performance of the system. 

The intrusion detection method can be a simple but efficient solution for pro-
tecting in-vehicle network. It can monitor the network traffic and detect anomalies 
during the runtime of vehicles. Different from the encryption and authentication 
measures, intrusion detection methods do not occupy the limited bandwidth and 
payload of the in-vehicle network. It works based on the observation and analysis 
of network traffic. The intrusion detection system was firstly introduced for in-
vehicle network by Hoppe et al. [12]. The authors proposed three ways to utilize 
features, which are the increase in the frequency of CAN frames, the observation of 
signal characteristics as well as the abuse of CAN identifiers to detect attacks. More 
schemes based on intrusion detection methods are designed since then. One way of
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designing the intrusion detection system is to build a physical model or pre-defined 
rules to detect unexpected behaviors. However, the in-depth knowledge about the 
system is always required for this kind of approaches. Besides, it is difficult to design 
a closed-loop expression to detect attacks in real cases. Machine learning (ML) is 
one of the most promising technologies nowadays which can also favor the solution 
for security concerns of in-vehicle network. ML can extract latent patterns from 
traffic to provide an effective and flexible solution for intrusion detection on in-
vehicle network. 

1.2 Contributions and Outline 

In this chapter, we survey the studies which take advantage of machine learning 
technologies to detect intrusion for automotive CAN bus. The structure of our 
chapter can be seen in Fig. 1. To provide a better understanding about the application 
scenarios, we firstly introduce the in-vehicle network architecture and how it 
evolves. Next, we provide a detailed description about the intrusion detection 
methods exploiting ML algorithms. According to the domain knowledge used 
for extracting features by ML, we divide these approaches into four categories, 
which are semantics-based methods, literal-based methods, timing-based methods 
and signal characteristics-based methods respectively. Our contributions can be 
concluded as follows:

Fig. 1 Structure of the chapter
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1. We provide an introduction about current and future in-vehicle network architec-
ture. The evolution trend emphasizes the importance of CAN for driving safety 
and the necessity to protect it. 

2. We classify the machine learning-based intrusion detection methods based on the 
domain knowledge exploited to extract features. The domain knowledge can be 
referred to those low-level characteristics in CAN such as timing characteristics 
or signal shapes, or the high-level characteristics such as the data payload of 
CAN frames or their semantic values. 

3. We provide a detailed description for each category of intrusion detection 
methods. In each section, we firstly introduce the basic insight of how it works 
and discuss the disadvantages of the traditional methods. Then, we introduce the 
existing work based on machine learning algorithms.

The organization of this chapter is as follows: Sect. 2 provides the descrip-
tion about the current and future in-vehicle network architecture. Sections 3 
to 6 describes the intrusion detection methods exploiting machine learning algo-
rithms from four aspects, which are semantics-based methods, literal-based meth-
ods, timing-based methods and signal characteristics-based methods respectively. 
Finally, Sect. 7 concludes this chapter. 

2 In-Vehicle Network Architecture 

In this section, we first provide a description of the in-vehicle network architecture 
and how it will upgrade in the near future. We also briefly conclude the benefits 
brought by the architectural evolution. Then, we provide a primer on CAN and 
illustrate the necessity for research on protecting CAN. From our point of view, 
CAN will not be abandoned by the future in-vehicle network and will face more 
security risks. Thus, defending CAN from attacks is important for protecting 
vehicles no matter for the current or future in-vehicle network. 

2.1 Evolution of In-Vehicle Network 

The hardware of in-vehicle network mainly consists of two parts, which are the 
Electronic Control Units (ECUs) and wired cables to connect the ECUs. The 
ECU is an automotive embedded device equipped with abilities of computing, 
communication and control. The data and control signals of ECUs can be exchanged 
over the wired cables. All ECUs inside the vehicle are networked with each other 
through the internal communication system to form a whole. The whole system can 
provide the ability from sensing the driving environment to making decisions and 
implementing high-level automotive driving.
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Fig. 2 Distributed in-vehicle network architecture 

The traditional in-vehicle network adopts a distributed architecture (as shown in 
Fig. 2). All ECUs are scattered on the network and work distributively. Generally, it 
equips low-speed communication protocols such as CAN and LIN (Local Intercon-
nect Network) as the backbone network. The distributed in-vehicle network enables 
the transition of automotive from mechanization to electronics. However, the 
increasing number of electronic functions and ECUs has lead to a heavy, large-scale 
in-vehicle network, making the wiring harness system the third-heaviest automotive 
component after the engine and chassis [35]. The bulky wiring harness system 
increases the total weight of the vehicle, resulting in higher energy consumption 
and cost. Besides, the increasing number of ECUs makes the in-vehicle network 
more complex. It could lead to a higher cost of software development as well as a 
higher cost of software verification and validation which might increase the risk of 
uncertainty. 

Furthermore, the demand for automobile intelligence and the rising connections 
with outside are forcing the innovation of the communication architecture of in-
vehicle network. Various advanced communication technologies such as 5G, WIFI, 
Bluetooth, and Vehicle-to-Everything (V2X) have been deployed on vehicles, which 
makes vehicles as a complex communication system. To realize the advanced 
intelligent functions of vehicles, the concept of Software Defined Vehicles (SDV) 
has gradually become the mainstream for automotive software development. The 
high integration of automotive technology and information technology increases 
the complexity of the intelligent connected vehicles continuously, which requires 
a scalable design of architecture and coordination of ECUs with higher computing 
power. To meet these requirements, the architecture of in-vehicle network would 
evolve from the traditional distributed architecture to a new generation of centralized 
architecture. Specifically, as shown in Fig. 3, it would gradually evolve into a
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Fig. 3 New in-vehicle network architecture. (a) Domain architecture. (b) Zonal architecture 

domain architecture (Fig. 3a), and further, a more centralized architecture called 
zonal architecture (Fig. 3b). 

One common scheme of domain architecture is to divide the in-vehicle network 
into five different control domains according to their functions. Each domain is 
equipped with a Domain Control Unit (DCU) to centralize the functions and 
computing resources within the domain. The DCU is a higher-performance auto-
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motive microcontroller designed to solve the problem of performance bottleneck of 
distributed in-vehicle network. As shown in the left of Fig. 3, it consists of the power 
domain responsible for powertrain control and optimization, the chassis domain 
responsible for driving behavior (braking, steering, transmission, etc.), the body 
domain responsible for body and comfort control, the in-cabin domain responsible 
for entertainment, and the automatic driving domain responsible for assisting 
vehicle driving. The DCU consolidates the functionality within each domain 
and communicates with other DCUs via high-speed backbone network (such as 
Ethernet, etc.). In-domain ECUs attached to the DCU are degraded to low-level 
ECUs or actuators with limited computing and communication resources. Low-
speed communication protocols (such as CAN, LIN, etc.) are exploited to connect 
the DCU with the in-domain nodes. 

The zonal architecture further improves the degree of centralization by organiz-
ing a three-layer architecture. It consists of the following key components, including 
(1) computing resources which are a central computing platform, multiple zonal 
ECUs and many low-level ECUs; (2) communication resources which are high-
speed backbone network (such as Ethernet, etc.) to connect the central computing 
platform with zone ECUs and low-speed local area network (such as CAN, LIN, 
etc.) to connect the zone ECUs with low-level ECUs. The hardware inside the local 
area network can be consolidated by the upper level zone ECU, while the hardware 
of zone ECUs can be further consolidated by the central computing platform. Highly 
consolidation of hardware resources makes it more available to separate software 
and hardware to achieve the concept of software-defined vehicles. It can manage 
the needs of more advanced and intelligent functions for future vehicles. 

Currently, most car manufactures are in the stage of transition from distributed 
architecture to domain architecture. In general, the upgrade of the in-vehicle 
network architecture can bring advantages in terms of cost reduction and driving 
intelligence, which are listed as follows: 

1. Reduction on hardware cost: Benefiting from architecture evolution, the total 
number of ECUs can be significantly reduced to optimize the utilization of 
computing resources. In addition, the layout of the wiring harness system can 
be optimized, lowering the total weight and hardware cost of vehicles. 

2. Reduction on development and verification cost: The highly integration of 
hardware can favor the application of scalable software-driven framework for 
decoupling of hardware and software, leading to faster development cycle and 
lower cost of software development and verification. 

3. Support for implementation of OTA: The Over the Air (OTA) technology can 
achieve the goal to upgrade the automotive software remotely through wireless 
access points of vehicles. It can provide a convenient, timely, and lower cost 
of recall management by cutting the necessity to bring the vehicles back. The 
centralized architecture with fewer ECUs and unified software architecture can 
reduce the verification complexity of the OTA update process. 

4. Support for implementation of advanced intelligent functions: Vehicle intelli-
gence requires the powerful hardware as well as the advanced software devel-
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opment model. The application of the scalable software-driven framework, high 
performance computing platform and heterogeneous communication architecture 
which are benefited from the new in-vehicle architecture can make it possible 
to implement advanced functions like intelligent in-cabin system and high-level 
autonomous driving. 

2.2 The Necessity for Protecting CAN 

CAN is currently the most mature protocol with the highest market share, and 
has been required to be implemented on production vehicles. It is widely used 
in automotive network related to safety-critical functions such as automobile 
transmission and body control. The safety-critical information, e.g., the engine or 
cruise control is exchanged over the CAN bus. The data in CAN is exchanged via 
the unit called data frame. Its structure can be divided into five fields, including 
arbitration field, control field, data field, CRC (Cyclic Redundancy Check) field and 
ACK (Acknowledgement) field (can be seen in Fig. 4). The arbitration field bears 
the identifier which can be used for identifying different frames as well as competing 
the rights of transmitting on the bus. 

Safety is always the first priority for vehicles. Despite the proportion of CAN for 
the in-vehicle network is getting smaller as the architecture evolves, the urgency for 
research on protecting CAN is even getting stronger. The reasons can be explained 
as follows. Firstly, CAN will not be abandoned by the future in-vehicle network 
due to its high efficiency and low cost. Despite many advanced technologies such 
as high-speed Ethernet and high performance computing devices are introduced, 
the lowest level network for both the domain model and zone model would still be 
developed as a signal-oriented communication paradigm. Such design can provide 
reliable and real-time data exchange to ensure the safety of vehicles. CAN is 
still going to play critical role in these areas, especially the networks for safety-
critical functions. Secondly, the risk of in-vehicle network being attacked increases 
significantly. The evolution of in-vehicle network architecture is along with the trend 
that the number of communication technologies used in vehicles increases. That 
also opens more doors for attacks, resulting in higher security concerns for vehicles. 
The attackers can intrude on the in-vehicle network by exploiting the flaws in the 
hardware or software of these access points. Since CAN was originally designed 
to work in an isolated environment, CAN does not take any security concerns into 

Fig. 4 The CAN data frame format
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consideration [8], making CAN vulnerable to attacks. It has been demonstrated that 
the adversary can manipulate the vehicles’ behavior after obtaining access to the 
safety-critical CAN bus [18]. Thus, we claim that defending CAN from attacks is 
critical for ensuring the safety of vehicles no matter on the current or future in-
vehicle network. 

3 Semantic-Based Intrusion Detection Methods 

3.1 Motivation and Basic Idea 

The data transmitted on the in-vehicle network has specific physical meaning for 
describing the current states and dynamics of the vehicle. An example of physical 
variables transmitted on in-vehicle CAN is listed in Table 1. For instance, the data 
can be explained as the speed of the engine, vehicle velocity or the state of the 
headlights. These data are transmitted and exchanged over the in-vehicle network to 
control the various functions of vehicle. 

For a given dynamic of automotive system, there should be a certain correlation 
between data read from different sensors since they obey the same physical law. 
Under normal circumstance, the variable which indicates the inclination angle of 
the accelerator pedal should change accordingly when the driver presses the pedal. 
The speed of the engine and vehicle velocity would increase. In the meantime, 
the automotive gear would also switch in time. The different parts of the vehicle 
collectively respond to the act of pressing the accelerator pedal in a correlated 
and consistent manner. Therefore, the physical properties of vehicles can be 
abstracted by the physical model built from the semantic traffic. The correlation 
among different sensors can be exploited to detect anomaly. We assume that the 
attacker cannot compromise all relevant ECUs simultaneously which is plausible 
in real scenarios. The intrusion detection is to identify any observation which is 
inconsistent with expected behavior. 

To detect unexpected behavior, the first priority is to construct the model for 
describing the relationship between variables obeying same physical laws. One 

Table 1 An example of 
physical variables on CAN 

Physical variables 

Vehicle speed Position of steer 

GPS speed Torque of wheel 

Acceleration pedal Wheel angle 

Brake pedal Gear 

Engine RPM Coolant temperature 

Fuel rate Ambient temperature 

Fuel/Air commanded equivalence Air intake temperature 

Master cylinder pressure Boost pressure
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way is to build the physical model manually based on the physical expression or 
experience. Cho et al. [5] proposed an anomaly detection method called Brake 
Anomaly Detection for the brake-by-wire system. Under normal circumstances, 
the behavior of the vehicle should be consistent with the driver’s intent and the 
surrounding driving environment. The authors chose the Brush tire model [2] as the  
normal behavior model to characterize the frictional relationship between the tire 
and the ground. The attack to the brake-by-wire system can be observed by checking 
the consistency between the driver’s input and the actual data captured from the in-
vehicle network. The model also takes into account the change in the coefficient of 
friction of the tires under different weather and road conditions. Similarly, Ref. [10] 
designed a delicate ring-based architecture to organize multiple correlations by 
utilizing the physical model and experience. In this study, ten variables and nine 
nodes in total comprise the well-designed correlation ring to improve the robustness 
of detection while reducing the overall computation overhead. 

However, these methods require in-depth understanding about the target system 
and expertise, which may not always be available. Researchers resort to machine 
learning algorithms to construct the model automatically that reflects the physical 
laws. It is mainly based on the insight that multiple sensors readings are directly 
proportional to the same physical phenomenon under normal circumstances [1]. 
Thus, the model can be generated from semantic traffic of in-vehicle network 
without the requirement for the in-depth knowledge of the control system. The 
machine learning algorithms to be exploited can be varied including artificial neural 
network [33], random forest regressor [20], deep autoencoder [11], and CNN 
model [13]. 

3.2 Machine Learning-Based Methods 

Reference [20] formulated the problem to detect anomalies as a machine learning 
prediction problem that can be resolved by the regression model. The authors 
selected a set of correlated sensor data as features of the regression model based on 
domain knowledge and pairwise correlations firstly. The sensor signals which can 
be used for calculating vehicles’ speed are taken as an example in this study. They 
included engine speed, acceleration on both longitudinal and lateral orientation, 
brake pedal ratio, steering angle, gear, and so on. During the training phase, the 
feature readings are fed into a Random Forest Regressor to train a regression 
model. While in the testing phase, the output values of the model can be estimated 
continuously based on the trained regression model. The anomaly can be flagged 
once the difference between the observed value and the estimated value is larger 
than a predefined threshold. 

A more advanced learning technique for generating the physical model automat-
ically is introduced in an intrusion detection system called context-aware intrusion 
detection system (CAID) [33]. CAID exploits the Bottleneck Artificial Neural 
Network (ANN) to develop the reference model of the automotive control system.
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Fig. 5 Architecture of deep autoencoder neural network 

The bottleneck ANN is designed as a network model in that the input and output 
layers are with the same number of neurons while the hidden layer is with a 
significantly less number of neurons. The sensor signals to describe the state of 
the engine control unit, such as fuel rate, absolute throttle position, engine RPM, 
and seven other signals, are collected to validate the performance of the proposed 
method. The parameters of the model can be generated in the training phase. During 
the testing phase, the estimated value can be obtained by reconstructing an input via 
the trained bottleneck ANN. CAID can detect anomalies by checking the similarity 
of actual readings of the sensor against the estimated values. 

Reference [11] devised a deep autoencoder-based intrusion detector to extract 
the inherent redundancy of related sensors. The autoencoder (as shown in Fig. 5) is  
composed of two parts which are the encoder and the decoder respectively. Both the 
encoder and decoder are deep neural networks with multiple hidden layers. The aim 
of the encoder is to compress the input into low-dimensional features as much as 
possible, while the decoder aims to restore the compressed features to the original 
data as much as possible. By cascading the encoder and the decoder together, the 
autoencoder can extract the pattern of the input data. The overall process of the 
research [11] is as follows. Firstly, the authors selected a set of correlated data 
as input. The evaluation is performed on a publicly available dataset. It includes 
three categories of data, which are data from sensors on CAN bus, data from GPS 
sensors, and data from IMU sensors. Next, the deep autoencoder is adopted to learn 
the consistent pattern of these sensor data from the trustful training dataset. The 
learned consistent pattern can be expressed as the normal behavior of the automotive 
control system. In [11], the evaluated autoencoder network is designed with a 4-
layers encoder and 4-layers decoder. The authors defined three different means to
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measure the error of the input against the reconstructed output. The training process 
of the encoder and decoder can be repeated to update the parameters of the model by 
minimizing the reconstruction error. Finally, anomalous behaviors can be detected 
by checking the reconstruction error during running. The reconstruction error shall 
be ranged within a predefined bound. If the reconstruction error exceeds the bound, 
an intrusion can be alarmed. 

Reference [13] designed a framework that comprises an anomaly detection 
method based on Convolutional Neural Network (CNN) as well as an ensemble 
classifier which consists of multiple traditional machine learning algorithms. The 
ensemble classifier is to evaluate the effectiveness of the proposed CNN-based 
anomaly detection method. The proposed CNN-based method introduces a multi-
stage attention Long Short-Term Memory (LSTM) model to enable the algorithm 
can focus on the significant parts of the data. The authors provided a comprehensive 
evaluation of four distinct anomaly types generated by [31] which are instant, con-
stant, gradual drift, and bias to a publicly available dataset, and their combinations. 

3.3 Summary 

The semantic-based methods exploit the fact that the CAN traffic over the auto-
motive network bears specific physical meanings for representing the dynamics or 
states of vehicles. Thus, these physical variables can be used to construct the abstract 
of the physical properties of vehicles. Machine learning algorithms can build the 
model automatically without requiring in-depth knowledge of the target system. 
The inconsistency with expected behavior can be regarded as an intrusion. Despite 
reducing the effort for generating the model compared to the traditional methods, 
the proprietary nature of CAN makes the obtainment of the specific meanings of the 
CAN frames a non-trivial work. It hinders the research on semantics-based methods 
since the specific meanings of the frames are kept confidential from the public. 

4 Literal-Based Intrusion Detection Methods 

4.1 Motivation and Basic Idea 

There are two main limitations of semantic-based intrusion detection methods. First, 
it is non-trivial to obtain the semantic meaning of data from in-vehicle network. The 
automotive industry is not willing to disclose the detailed specification of their CAN 
messages considering the concerns on intellectual property and security. That is, 
the detailed meaning of automotive CAN messages cannot be obtained publicly. 
Second, the selection of input data requires domain knowledge or correlation 
computation. The performance of such methods on irrelevant data beyond the
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selected sensor has not been verified. These limitations hinder the application of 
semantic-based intrusion detection methods. 

In this section, we introduce one more intuitive kind of method called literal-
based intrusion detection method. It is unnecessary to obtain or derive the semantics 
of the CAN messages painstakingly. The binary streams (literal value) can be 
exploited directly as the input for the intrusion detection system. Firstly, the inherent 
correlations are extracted by analyzing the binary stream of CAN traffic. The 
extracted correlations can be used to characterize the normal behavior of the system 
or pattern of the anomalies. After building the required model for the target system, 
the intrusion can be reported by comparing the expected data with the observed one. 

The main insight behind the literal-based intrusion detection methods can 
be summarized as follows. CAN is highly deterministic and predictable during 
operations to manage the requirements for strict real-time, and provide stable and 
reliable services. The stable operational patterns for CAN shall be observed in 
the absence of cyber attack. It has been pointed out in [9, 21] that the model 
of normal behavior can be established from the analysis of CAN data streams 
without understanding the semantics of CAN messages. Information entropy is 
a measurement to describe the uncertainty of a system. The more orderly and 
deterministic the system is, the lower the information entropy is. Reference [24] 
proposed the entropy-based intrusion detection methods for in-vehicle network. The 
entropy of the data traffic can be computed for representing the state of CAN traffic. 
When the entropy value deviates from the normal range, it means that there is an 
attack mounted on the in-vehicle network. However, the estimation of the entropy 
value can be affected easily by different driving scenes, which results in a high false 
positive rate. 

Machine learning algorithms are better options for processing the binary streams 
of CAN messages. Generally speaking, the overall process of these methods can 
be concluded as two phases, which are the training phase and the testing phase as 

Fig. 6 The training phase 

Observed 
Data 

Trained Model 
Expected 

Data 
Attack Detector 

Normal 

Anomaly 

Fig. 7 The testing phase
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illustrated in Figs. 6 and 7 respectively. The aim of the training phase is to develop 
the model for intrusion detection by extracting latent patterns from the traffic of 
in-vehicle network. The raw data, i.e. the literal binary data of CAN messages 
after pre-processing can be fed into the machine learning algorithm to train the 
model. The feedback process is to minimize the reconstruction/prediction error to 
improve the model performance. The training phase can be performed offline in a 
controlled environment considering it is a time-consuming task. During the testing 
phase, the observed data is compared with the output (expected data) by the trained 
model to detect anomalies. The observed data and the expected data are fed into the 
attack detector together to identify whether their difference exceeds a well-designed 
threshold. 

The methods in this section can be divided into two categories according to 
whether the attack sample is required in the training phase, which is specification-
based methods using attack samples for the training model and anomaly-based 
methods using normal samples for generating the model. 

4.2 Specification-Based Methods 

Methods in this category require labeled attack samples for training the classifi-
cation model. The model can learn the patterns of the CAN traffic under attack 
during the training phase. The intrusion can be detected once any similar patterns 
are observed during the testing phase. 

Xie et al. [34] proposed a generative adversarial network (GAN) based intrusion 
detection method, which can be shown in Fig. 8. Technically, the GAN model 
consists of two core components: generator (G) and discriminator (D). The basic 
principle of how GAN works is as follows. The generator utilizes random noise as 
input and tries to output synthetic data to deceive the discriminator. On the contrary, 
the discriminator utilizes the ground truth as input and tries to make decisions as 
accurately as possible that the data from the generator is whether fake or not. The 
performance of the generator and discriminator can thus be improved during the 
repeated adversarial process. In [34], the real attacked CAN messages are fed into 
GAN for training the intrusion detection model. 

CANintelliIDS [14] is designed based on a convolutional neural network (CNN) 
combined with an attention-based gated recurrent unit (GRU) model. Similar to 
LSTM, the GRU model is suitable for solving the prediction problem of sequential 
data. Besides, the utilization of GRU can be helpful for improving the efficiency as 
well as reducing the memory consumption considering its more simplified design 
and fewer parameters compared to LSTM. The intrusion detection model is trained 
based on the attack dataset. Different attack scenarios with single or mixed attack 
types are evaluated in this work.
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Fig. 8 Training process of GAN generator in Ref. [34] 

4.3 Anomaly-Based Methods 

The methods belonging to this category do NOT require the attack labeled data 
during the training phase. The intrusion detection model is generated from the 
attack-free CAN traffic under normal circumstances. If there is any deviation 
from the normal model is detected, an intrusion can be alarmed. Compared with 
specification-based methods, the performance of anomaly-based methods to detect 
unknown attacks is preferable. 

CANnolo [21] implements LSTM as the hidden layer of the auto-encoder. The 
auto-encoder is used to automatically learn the normal patterns of raw CAN data 
without semantics. At runtime, CANnolo utilizes the trained model to reconstruct 
the CAN streams. The Mahalanobis distance between the reconstructed and the 
observed sequences is computed as an anomaly score to indicate how likely the 
CAN bus is under attack. Reference [29] designed an LSTM-based RNN model 
constituted by two non-recurrent hidden layers and two recurrent LSTM layers. To 
improve the accuracy of the detection model, the features on the time dimension 
are combined with features on the data dimension as input for LSTM neural 
network [39]. Besides, the multi-task LSTM framework is utilized to implement 
parallel computing locally as well as on the mobile edge. The mobile edge can 
break the limitation of onboard computing capacity. 

HDAD [32] introduces the concept of hyper-dimensional computing (HDC) to 
detect intrusion for in-vehicle network. HDC is a novel computing paradigm that
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simulates the working mechanism of neuronal circuits in the human brain. It works 
using high-level and abstract patterns of neural activity. Firstly, the training data are 
encoded into hypervectors (HVs) to learn pattern. Only normal patterns are required 
in the training dataset. The number of dimension for HV can be set as 10,000 or 
larger. Then, the pattern decoder is subject to reconstruct the HV to the original 
data. Finally, the reconstruction error is used for determining if there is an intrusion. 
The authors claimed that the adoption of HDC can benefit from compact model size, 
reduced computation cost, and one-shot learning in contrast to deep learning-based 
approaches. 

The research on HDC is still at the preliminary stage. To improve the efficiency 
of the intrusion detection model, CLAM [28] improves the process of data pre-
processing to cut the dimensionality of raw CAN traffic which can favor the 
acceleration of computation. Specifically, READ [22] method designed for reverse 
engineering of automotive data frames is introduced to assist the data reduction 
in CLAM. READ method can analyze the traffic and extract signals that vary 
continuously without supervision. These extracted signals can be explained as 
physical signals with specific physical meanings such as vehicle speed and engine 
speed. In the step of data pre-processing, the signal boundaries can be determined 
by READ methods. Thus, instead of using the whole CAN frame as input, only the 
bits bounded by data pre-processing are conveyed to the intrusion detection model 
for improving efficiency. It should be noted that the CLAM model also does NOT 
need to know the semantics of CAN frames. The CLAM model consists of a 1-D 
Convolution Network and bi-directional LSTM with an attention mechanism. The 
attention mechanism can enable the model to focus on the important parts of the 
data. 

4.4 Summary 

The literal-based intrusion detection methods can automatically extract intrinsic 
relationships among variables and develop the intrusion detection model by ana-
lyzing the binary stream of CAN frames. The semantics of frames are not required. 
The intrusion detection model can be trained by either the attack-free samples to 
generate the normal patterns of CAN frames or the attack-labeled samples to detect 
well-known intrusion. That is, the literal-based intrusion detection can be directly 
applied to CAN frames from the data link layer without knowledge of the protocol 
specifications of the upper layer (application layer). The protocol specifications 
of the application layer for automotive CAN bus are kept confidential from the 
public. Different specifications are defined for different car manufacturers and even 
different car models. From this perspective, compared to semantic-based methods, 
literal-based intrusion detection methods seem more attractive to both security 
technicians in the automotive industry as well as researchers from academia.
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5 Timing-Based Intrusion Detection Methods 

5.1 Motivation and Basic Idea 

Considering that the vast majority of CAN frames are triggered periodically, i.e. 
CAN frames are queued for transmission at a fixed rate, there are some regularities 
of timing characteristics that can be found from CAN frames traffic. Illegal data 
due to unauthorized intrusion attacks can disrupt the regularities. Based on this 
observation, researchers propose that intrusion detection can be implemented by 
digging into the temporal patterns of CAN data traffic. The inconsistency with 
expected temporal patterns can be regarded as an anomaly. Similar to literal value-
based methods, the timing-based method can also cope with the disadvantage of the 
proprietary nature of CAN data specifications. The traditional approach [25] builds 
the mathematical model to describe the timing behavior precisely of CAN frames 
traffic by utilizing real-time scheduling theory. However, the main downside is that 
it requires in-depth domain knowledge for building the model and it is hard to build 
a model adapted to different driving scenes. 

5.2 Machine Learning-Based Methods 

Tomlinson et al. [30] introduced three straightforward machine learning 
algorithms (Autoregressive Integrated Moving Average, Z-score, and supervised 
threshold) combined with time-defined windows to identify abnormal timing 
changes for CAN traffic. Reference [26] proposed a deep convolutional neural 
network (DCNN) model-based intrusion detection method. The authors designed 
a data pre-processing module called frame builder to convert the raw CAN traffic 
to the data fitted for the CNN model. Subsequently, the DCNN model learns 
temporal sequential patterns of raw CAN traffic automatically without hand-
designed features. The CAN data with labels indicating whether normal or not is 
required for the training process. The Recurrent neural network (RNN) is naturally 
designed to cope with time sequence data. Reference [27] designed an RNN model 
with a 1-layer hidden layer of 100 nodes. From the evaluation results, the proposed 
RNN model can handle more realistic scenarios in that the period can fluctuate. The 
period fluctuation can often be observed in CAN traffic collected from real vehicles. 
It is mainly caused by the process of multiple ECUs to compete with the right of 
CAN bus usage. The attack samples are needed for computing the final output. 

Generative Adversarial Network (GAN) is introduced in [15] to extract temporal 
features for modeling normal behaviors by attack-free training dataset. The authors 
improved the original GAN model by introducing a modified evolutionary algorithm 
to produce multiple generators instead of one single generator. This modification 
can increase the chance to obtain a better performance generator in the process 
of adversary game, which can mitigate the issue of instability in GAN. Since no
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given attack sample is used for the training model, the data collection process shall 
be undertaken when driving under different conditions to capture as many normal 
features as possible. It can be helpful for reducing false positives. 

5.3 Summary 

Timing-based methods build the intrusion detection model by analyzing the timing 
characteristics of CAN traffic automatically. As same as the literal-based methods, 
the semantic values of CAN traffic are NOT required for timing-based methods. 
The timing-based methods can effectively detect attacks that essentially change the 
timing behavior of CAN frames, such as denial of service (DoS) attack, suspension 
attack and injection attack. However, from another perspective, the performance of 
such methods can be significantly degraded when dealing with more sophisticated 
attacks which do not influence the timing characteristics. Due to the broadcast nature 
of CAN, the attacker can eavesdrop and learn the temporal patterns of the target 
frames silently and stealthy. Next, the attacker can bypass the deployed timing-based 
intrusion detection system by injecting malicious frames with the same identifier 
and similar transmission pattern as the victim. 

6 Signal Characteristics-Based Intrusion Detection Methods 

6.1 Motivation and Basic Idea 

Another way to design an intrusion detection system is to exploit the unique 
hardware characteristics of automotive ECUs to generate a digital fingerprint. 
Specially, the tiny but measurable differences in specific characteristics (such as 
voltage or timing) can be obtained from the electrical signal transmitted on the 
bus medium. The extracted difference can then be utilized as a device fingerprint 
to enable authentication in CAN. The intrusion can be detected when the actual 
sending ECU (predicted data) of the newly received CAN frame is inconsistent with 
its legitimate sending ECU (expected data). 

The difference in hardware is mainly due to the imperfect manufacturing 
processes, which results in the characteristics of unique, stable, and hard to replicate 
to enable higher security. It was first introduced in [23] which exploits the difference 
of signal characteristics in the physical layer to identify ECUs for in-vehicle 
network. This study has demonstrated that the signal characteristics driven by the 
hardware of ECUs can be unique while remaining stable within a certain range 
for several months. Inspired by this observation, more researches to protect the 
in-vehicle network by utilizing low-level signal characteristics of CAN frames are 
proposed.
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An idea of implementing intrusion detection based on signal characteristics is to 
explicitly define the relationship between the collected data and the hardware char-
acteristics of the sending ECU by establishing a model. Most of such works exploit 
a linear model to represent the relationship of the accumulation of derived signal 
characteristics over time or data samples. Viden [4] adopts voltage measurements 
to build the model to source the sending node. Viden measures the voltage of CAN 
high and CAN low respectively during the transmission of dominant bits. These 
measurements are gathered to derive a voltage instance containing six statistics to 
describe the distribution of measurements. The voltage instance can be expressed as 
the transient behavior of voltage of sending ECU. At last, Viden constructs a linear 
model called voltage profile by utilizing the continuously obtained voltage instance. 
The main reason why Viden can work is that the voltage instances derived from the 
same ECU shall be nearly equivalent. Thus, the voltage profile can be constructed 
as a linear model by which the sending ECU can be correctly identified. 

Different from Viden, Refs. [3, 19, 38] exploited the skew in clocks of electronic 
devices to establish the linear model for intrusion detection. The clock skew is 
defined as the difference in frequency between clocks. The common insight behind 
these methods is based on the observation that the clock skew is nearly constant 
for single ECU and unique among different ECUs. Thus, the linear model which 
represents the timing behavior of clock can be built for detect anomalies. Deviations 
from the established model can be used to trigger an alarm for intrusion on in-
vehicle network. For example, the sudden change of the slope of the linear model 
can be regarded as an indication that the attack is mounted. 

6.2 Machine Learning-Based Methods 

Besides the model-based methods, the problem of identifying the sending ECU for 
newly received CAN frames can also be regarded as a classification problem. The 
CAN frames from the same ECU are considered to be of the same class. If the 
actual class of any CAN frames (identified by the intrusion detection system) is 
inconsistent with its expected class (determined by the frame identifier), it indicates 
that the adversary performs an attack by injecting frames with falsified ID. The 
supervised machine learning algorithms can be used to solve such classification 
problem. Generally speaking, the overall process of methods belonging to this 
category can be summarized into three phases as shown in Fig. 9. 

The first step is to preprocess the electrical CAN signal to derive the char-
acteristics from the physical layer. The signal characteristics exploited in this 
phase can be varied from voltages measurements to timing characteristics, which 
is the same as the model-based methods. Subsequently, the statistical features in 
the time and/or frequency domain are extracted from the measurements. Finally, 
the supervised learning-based classification algorithms are adopted to generate a 
classifier to distinguish the attack from the normal CAN traffic.
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Fig. 9 Workflow of the supervised learning algorithms-based methods 

6.2.1 Signal Characteristics Derivation 

6.2.1.1 Using Voltage as Signal Characteristics 

Choi et al. [6] proposed an approach to source the transmitting ECU by measuring 
the voltage of an array of the same consecutive bits. Specifically, it requires that 
an identical predefined bit sequence is embedded in all CAN frames transmitted 
on the bus. To achieve this, all data frames on the bus are set as the extended 
frame format with a 29-bit identifier. A predefined bit sequence which is 18-bit 
long is placed at the extended identifier field. Subsequently, the voltages of the 
pre-assigned bit sequence for every newly received CAN frame are sampled and 
measured. Obviously, reprogramming for all active ECUs on CAN bus is required 
to add the predefined bit sequence to each CAN frame. Besides, it can NOT be 
applied to the natural extended frames (the extended part of the identifier is already 
occupied). These limitations hinder its deployment on real production vehicles. 

References [7, 16, 17] improved the process for extracting signal characteristics 
based on voltage. More specifically, SCISSION [16] and EASI [17] divide the  
string of consecutive dominant bits into three parts, which are the rising edge, 
the falling edge, and the holding edge of the dominant state part (as shown in 
Fig. 10). The approach adopted by VoltageIDS [7] is similar except that it only 
considers the 1-bit length holding edge of the dominant state part. Next, the voltage 
is measured and gathered separately for each part. The significant features of 
voltage on the rising edge and falling edge could be suppressed without such 
actions considering that their length is too short (resulting in much fewer samples) 
compared to the holding edge. By doing so, the combined features including the 
voltage measurements as well as the signal shape can be extracted to better represent
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Fig. 10 An example of CAN electrical signal 

the signal characteristics of the sending ECU. In addition, EASI [17] designs a 
low-cost solution to improve the efficiency of preprocessing the electrical signal. 
The authors optimized the interval for signal sampling and introduce the Random 
Interleaved Sampling technique, which greatly reduces the sampling rate and system 
resource requirements. It can favor the development on in-vehicle network. 

6.2.1.2 Using Timing as Signal Characteristics 

Apart from the voltage characteristics, the timing characteristics of CAN electrical 
signal can also be utilized to construct the intrusion detection system. Most existing 
works [3, 19, 36] using timing characteristics estimate the clock skew based on the 
periodic CAN traffic. Considering that most CAN frames are transmitted nearly 
periodically, the skew in the clock of the transmitter can be estimated by the 
difference between the expected and the actual arrival time of periodic traffic. From 
the observations of CAN traffic from real vehicles, the actual period of many frames 
can fluctuate a little wild and some frames might stop transmission for a while in 
real cases [19]. To mitigate these challenges, CANvas [19] improves the estimation 
process by introducing the concept of hyper-period. However, the dependency on 
periodic traffic still remains which makes it unavailable to aperiodic frames or 
sporadic frames. 

BTMonitor [37] employs the timing characteristics of a single CAN frame to 
build the intrusion detection model, by which the dependency on periodic traffic 
can be cut. The insight behind BTMonitor is that the electrical signal length which 
is driven by the hardware of the transmitter can reflect the timing characteristics of 
sending ECU. Thus, the clock skew can be derived by measuring the signal length 
from a single frame, making the signal preprocessing process independent of the 
periodic traffic. To capture the signal which can accurately reveal the hardware 
characteristics of sending ECU, the signal segment in the identifier field shall be 
excluded from the measurement process. The reason is that multiple ECUs on the 
bus might initiate the transmission simultaneously and compete for the right of bus
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Fig. 11 Signal characteristics derivation in BTMonitor [37] 

usage during the arbitration process. Thus, the signal segment in the identifier field 
might reflect the signal characteristics of more ECUs beyond the transmitter. For the 
same reason, the duration of the signal during the acknowledge field is also excluded 
to remove the effect on signal length by other nodes. 

After the trimming, BTMonitor divides the remaining signal into different 
segments along the consecutive edges. These signal segments can be referred 
to as two categories, which are dominant bits and recessive bits. To reduce the 
requirement for a high sampling rate for measuring device, BTMonitor takes the 
rising edge as well as the falling edge into consideration. The point to divide 
the signal on the rising edge is different from the point on the falling edge. 
Finally, BTMonitor measures and computes a corresponding bit time for each signal 
segment. The calculated bit time of each category is gathered up to form data 
samples that represent the timing characteristics of sending ECU. The process is 
shown in Fig. 11. 

6.2.2 Feature Extraction and Intrusion Detection 

Once the signal characteristics are obtained, the preprocessed data is fed into the 
next phase to extract statistical features in the time and/or frequency domain. The 
extracted features can be used as device fingerprints to identify different ECUs. 
As an example, BTMonitor adopts eight statistical features in the time domain for 
each of the categories of dominant bits and recessive bits, i.e. 16 statistical features 
in total to represent one received data sample. The selected features are shown in 
Table 2. Then, the generated fingerprint is input into the classifier for intrusion 
detection. 

During the training phase, supervised learning algorithms along with labeled 
samples (training datasets) are used to train the classifier. During the runtime phase, 
the newly derived device fingerprints are fed into the trained classifier to predict its
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Table 2 Selected features in 
time domain by 
BTMonitor [37]. x represents 
bit time. N is the number of 
data 

Feature Description 

Mean . x = 1
N

∑N
i=1 x(i)

Standard deviation . σ =
√

1
N

∑N
i=1(x(i) − x)2

Variance . σ 2 = 1
N

∑N
i=1(x(i) − x)2

Skewness . γ = 1
N

∑N
i=1(

x(i)−x
σ

)3

Kurtosis . β = 1
N

∑N
i=1(

x(i)−x
σ

)4 − 3

RMS (Root mean square) . A =
√

1
N

∑N
i=1 x(i)2

Highest value . H = max(x(i))

Energy . en = 1
N

∑N
i=1 x(i)2

actual sending ECU. If the predicted sending ECU is inconsistent with the legitimate 
sending ECU, an intrusion is alarmed. Varied machine learning algorithms, such as 
Linear Support Vector Machines [6, 7, 17], Packed Decision Trees (BDT) [6, 7], 
Logistic Regression [16, 17, 37], Naive Bayes Classifiers [17], Neural Networks [6], 
etc. are used to generate classification models. 

6.3 Summary 

The difference in the signal can be utilized to generate the fingerprint for the ECU. 
The derived fingerprint can then provide the ability to authenticate the sending 
ECU and detect intrusion. We summarize the overall process of machine learning-
based methods in three steps, which are signal characteristics derivation, feature 
extraction, and intrusion detection respectively. These methods can be divided 
into two categories based on the exploited signal characteristics, which are the 
methods using signal voltage and the methods using signal timing. The general 
process of feature extraction and intrusion detection in both categories is similar. 
The statistical features in the time and/or frequency domain are extracted from 
the extracted signal characteristic and combined as the device fingerprint. Finally, 
popular machine learning algorithms are utilized as the classification model to detect 
intrusion. The signal characteristics-based methods can provide high security for 
automotive CAN bus considering that the fingerprint is derived from the inherent 
physical characteristics and is hard to be duplicated. However, how to obtain an 
effective but stable fingerprint from the mutable and sensitive signal is the major 
challenge to be solved. 

7 Conclusion 

CAN is the most important communication protocol for the current in-vehicle 
network and aged for over 35 years. With the rapid development of connectivity
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and intelligence for today’s vehicles, the underlying internal communication system 
is updated accordingly to manage the future’s needs. In this chapter, we firstly take 
a discussion about the traditional and tomorrow in-vehicle network architecture as 
well as the advantages brought by the new architecture, aiming to provide a whole 
picture of how in-vehicle network evolves. The necessity of protecting CAN for 
ensuring the safety of vehicles is emphasized to motivate the research on defending 
techniques. Subsequently, we introduce different approaches to detect intrusion by 
categories based on the domain knowledge used in machine learning algorithms. 

The variables with specific physical meanings in CAN can respond to a 
physical phenomenon in a correlated way. These observations can be exploited to 
detect intrusion which is detailed in semantic-based intrusion detection methods. 
Further studies reveal that the latent relationship can be extracted without requiring 
semantics of CAN frames. Literal-based intrusion detection methods provide a 
detailed description of how it works from two aspects according to whether the 
attack sample is required for training the model. Timing-based intrusion detection 
methods exploit the fact that most CAN traffic is triggered periodically thus the 
timing of CAN traffic can exhibit specific patterns. However, the main drawback is 
that it cannot deal with attack scenarios in which the timing characteristics are not 
affected. At last, signal characteristics-based intrusion detection provides a novel 
way of fingerprinting the ECUs by measuring the low-level characteristics of CAN 
electrical signals. Considering it is derived from the unique and inherent hardware 
characteristics, it can provide high security for in-vehicle CAN bus. 

In conclusion, we survey the machine learning-based intrusion detection methods 
for automotive CAN bus and provide the introduction from the perspective of the 
exploited domain knowledge. We hope this chapter can help the interested reader 
to understand and grasp the status and research of machine learning-based intrusion 
detection methods comprehensively. 
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Real-Time Intrusion Detection 
in Automotive Cyber-Physical Systems 
with Recurrent Autoencoders 

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha 

1 Introduction 

Modern-day vehicles are highly sophisticated cyber-physical systems (CPS) that 
consist of multiple interconnected embedded systems known as Electronic Control 
Units (ECUs). The ECUs run various real-time automotive applications that control 
different vehicular subsystem functions. Moreover, ECUs are distributed across the 
vehicle and communicate with each other using the in-vehicle network. In recent 
years, the number of ECUs being integrated into the vehicles and the complexity of 
software running on these ECUs has been rapidly increasing to enable various state-
of-the-art Advanced Driver Assistance Systems (ADAS) features such as adaptive 
cruise control, lane keep assist, collision avoidance, and blind spot warning. This 
resulted in an increase in the complexity of the in-vehicle network over which huge 
volumes of automotive sensor and real-time decision data, and control directives are 
communicated. This increased complexity of modern-day vehicles has led to various 
complex challenges that pose a serious threat to the reliability [1–4], security [5–9], 
and real-time control of automotive systems [10–13]. 
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Today’s vehicles heavily rely on information from various external systems that 
utilize advanced communication standards such as 5G technology and Vehicle-to-
X (V2X) [14] to support various ADAS functionalities. Unfortunately, this makes 
automotive embedded systems highly vulnerable to various cyber-attacks that can 
have catastrophic consequences. The cyber-attacks on vehicles discussed in [15– 
17] have presented different ways to gain unauthorized access to the in-vehicle 
network and override the vehicle controls by injecting malicious messages. With 
connected and autonomous vehicles (CAVs) on the horizon, these security concerns 
will get further aggravated and become a serious threat to the safety of future 
autonomous vehicles. Therefore, it is crucial to prevent unauthorized access to in-
vehicle networks by external attackers to ensure the security of automotive CPS. 

Traditional computer networks utilized firewalls to defend the networks from 
external attackers. However, no firewall is foolproof, and no network can be fully 
secure from attackers. Thus, there is a need for an active monitoring system that 
continuously monitors the network to identify malicious messages in the system. 
These systems are commonly referred to as intrusion detection systems (IDS). An 
IDS that is deployed in a vehicle can be used to continuously monitor the in-vehicle 
network traffic and trigger alerts when suspicious messages or known threats are 
detected. Thus, IDS acts as the last line of defense in automotive CPSs. 

At a high level, IDSs are categorized into two types: (i) rule-based and (ii) 
machine learning based. Rule-based IDSs look for traces of previously observed 
attack signatures in the network traffic, whereas machine learning-based IDSs 
observe for the deviation from the learned normal system behavior to detect 
cyber-attacks. Rule-based IDS can have faster detection rates and very few false 
alarms (false positive rate) but are limited to detecting only previously observed 
attacks. On the other hand, machine learning-based IDS can detect both previously 
observed and novel attacks but can suffer from relatively slower detection times and 
higher false alarm rates. An efficient IDS needs to be lightweight (have minimal 
overhead), robust, and highly scalable. More importantly, practical IDSs need to 
have comprehensive attack coverage (i.e., detect both known and unknown attacks) 
with high detection accuracy and low false alarms, as recovering from false alarms 
can be costly. 

Moreover, obtaining the signature of every possible attack is highly impractical 
and would limit us to only detecting known attacks. Hence, we believe that 
machine learning-based IDSs provide a more pragmatic solution to this problem. 
Additionally, large volumes of message data can be collected due to the ease of 
acquiring in-vehicle network data, which further assists the use of advanced deep 
learning models for detecting cyber-attacks in automotive CPS [9]. 

In this chapter, we present a novel IDS framework called INDRA, first introduced 
in [6], that monitors the in-vehicle network messages in a Controller Area Network 
(CAN) based automotive CPS to detect various cyber-attacks. During the offline 
phase, INDRA uses a deep learning-based recurrent autoencoder model to learn 
the normal system behavior in an unsupervised manner. At runtime, INDRA 
continuously monitors the in-vehicle network for deviations from learned normal
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system behavior to detect malicious messages. Moreover, INDRA aims to maximize 
the detection accuracy with minimal false alarms and overhead on the ECUs. 

Our novel contributions in this work are as follows: 

1. We introduced a Gated Recurrent Unit (GRU) based recurrent autoencoder 
network to learn the normal system behavior during the offline phase; 

2. We proposed an intrusion score (IS) metric to measure deviation from the normal 
operating system behavior; 

3. We presented a comprehensive analysis of the selection of thresholds for the 
intrusion score metric; 

4. Lastly, we compared our proposed INDRA framework with the best-known prior 
works in the area to demonstrate its effectiveness. 

2 Related Work 

Several techniques have been proposed in the literature to design IDS for protecting 
time-critical automotive CPS. These works try to detect various attacks by monitor-
ing the in-vehicle network traffic. In this section, we first discuss the key rule-based 
IDSs and then discuss machine learning based IDSs. 

Rule-based IDS detects known attacks by using the information from previously 
observed attack signatures. In [18], a language theory-based model was introduced 
to derive attack signatures. However, this technique fails to detect attacks when 
it misses the packets transmitted during the early stages of the attack interval. A 
transition matrix-based attack detection scheme for CAN bus systems was proposed 
in [19], but this approach only works for simple attacks and fails to detect advanced 
replay attacks. In [20], the authors identified key attack signatures such as increased 
message frequency and missing messages to detect cyber-attacks. In [21], the 
authors proposed a specification-based approach to detect cyber-attacks, which 
analyzes the system behavior and compares it with the predefined attack patterns 
to detect anomalies. However, their approach fails to detect unknown attacks. The 
authors in [22] propose an ADS technique using the Myers algorithm [23] under 
the map-reduce framework. A time-frequency analysis of CAN messages is used to 
detect multiple anomalies in [24]. In [25], the authors analyzed message frequency 
at design time to derive a regular operating mode region, which is used as a baseline 
during runtime to detect cyber-attacks. In [26], the sender ECU’s clock skew, and 
the messages are fingerprinted at design time and used at runtime to detect attacks 
by observing for variations. The authors in [27] presented a formal analysis of 
clock-skew-based IDS and evaluated it on a real vehicle. In [28], a memory heat 
map is used to characterize the memory behavior of the operating system to detect 
anomalies. An entropy-based IDS that observes the change in system entropy to 
detect anomalies was proposed in [29]. Nonetheless, the technique fails to detect 
complex attacks for which the entropy change is minimal. In conclusion, rule-
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based IDSs offer a fast solution to the intrusion detection problem with lower false 
positive rates but fail to detect more complex and novel attacks. Moreover, obtaining 
signatures of every possible attack pattern is not practical. 

On the other hand, machine learning-based IDSs aim to learn the normal system 
behavior in an offline phase and observe for any deviation from the learned normal 
behavior to detect anomalies at runtime. In [30], the authors proposed a sensor-based 
IDS that utilizes attack detection sensors in the vehicle to monitor various system 
events and observe for deviations from normal behavior. However, this approach is 
expensive and suffers from poor detection rates. In [31], a One-Class Support Vector 
Machine (OCSVM) based IDS was introduced, but it suffers from poor detection 
latency. In [32], an ensemble of different nearest neighbor classifiers was used to 
distinguish between normal and an attack-induced CAN messages. A decision-tree-
based detection model to monitor the physical features of the vehicle was proposed 
in [33] to detect cyber-attacks. However, this model is impractical and suffers from 
high anomaly detection latencies. In [34], a Hidden Markov Model (HMM) based 
technique was proposed to monitor the temporal relationships between messages to 
detect cyber-attacks. In [35], a deep neural network-based approach was proposed 
to scan the messages in the in-vehicle network to detect attacks. This approach is 
finetuned for a low-priority tire pressure monitoring system (TPMS), which makes 
it hard to adapt to high-priority powertrain applications. In [36], a Long Short-
Term Memory (LSTM) based IDS for multi-message ID detection was proposed. 
However, due to the high complexity of model architecture, this approach has a high 
computational overhead on the ECUs. In [37], an LSTM-based IDS was proposed 
to detect insertion and dropping attacks (explained in Sect. 4.3). In [38], an LSTM-
based predictor model is proposed to predict the next time step message value at a 
bit level and observe for large variations to detect anomalous messages. A recurrent 
neural network (RNN) based IDS to learn the normal CAN message pattern in the 
in-vehicle network is proposed in [39]. A hybrid IDS was proposed in [40], which 
utilizes a specification-based system in the first stage and an RNN-based model 
in the second stage to detect anomalies in time-series data. Several other machine 
learning models, such as the stacked LSTMs and temporal convolutional neural 
networks (TCNs) based techniques, were proposed in [7, 8], respectively. However, 
none of these techniques provides a complete system-level solution that is scalable, 
reliable, and lightweight to detect various attacks for in-vehicle networks. 

In this chapter, we introduce a lightweight recurrent autoencoder-based IDS 
using gated recurrent units (GRUs) to monitor the in-vehicle network messages at 
a signal level to detect various attacks with higher efficiency than various state-
of-the art works in this area. A summary of some of the state-of-the-art works’ 
performance under different metrics and our proposed INDRA framework is shown 
in Table 1.
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Table 1 Performance metrics comparison between our proposed INDRA 
framework and state-of-the-art machine learning-based intrusion detection 
works 

3 Background on Sequence Learning 

The availability of increased compute power from GPUs, and custom hardware 
accelerators enabled the training of deep neural networks with many hidden layers, 
which led to the creation of powerful models for solving complex problems in many 
domains. One such problem is detecting cyber-attacks in automotive CPS. In an 
automotive CPS, the communication between ECUs occurs in a time-dependent 
manner. Therefore, the temporal relationship between the messages in the system 
can be exploited in order to detect cyber-attacks. However, this cannot be achieved 
using traditional feedforward neural networks as the output of any input at any 
instance is independent of the other inputs. This makes sequence models appropriate 
for such problems, as they inherently handle sequences and time-series data. 

3.1 Sequence Models 

A sequence model is a function that ensures that the outcome is reliant on both 
current and prior inputs. The recurrent neural network (RNN), which was introduced 
in [41], is an example of such a sequence model. Other sequence models, such as 
gated recurrent unit (GRU) and long short-term memory (LSTM), have also become 
popular in recent years. 

3.1.1 Recurrent Neural Networks (RNN) 

An RNN is a form of artificial neural network that takes the sequential data as input 
and tries to learn the relationships between the input samples in the sequence. The 
RNNs use a hidden state to allow learned information from previous time steps to 
persist over time. A single RNN unit with feedback is shown in Fig. 1a, and an RNN 
unit unrolled in time is shown in Fig. 1b.
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Fig. 1 (a) A single RNN unit and (b) RNN unit unrolled in time; f is the RNN unit, x is the input, 
and h represents hidden states 

The output (ht) of an RNN unit is a function of both the input (xt) and the previous 
output (ht − 1): 

.ht = f (Wxt + Uht−1 + b) (1) 

where f is a nonlinear activation function (e.g., sigmoid or tanh), U and W
are weight matrices, and b is the bias term. One of the major limitations of
RNNs is that they are very hard to train. As RNNs and other sequence models
handle time-series data or sequences as inputs, backpropagation happens through
various time steps (commonly known as backpropagation through time (BPTT)).
During the BPTT step, the feedback loop in RNNs causes the errors to expand
or shrink rapidly thereby creating exploding or vanishing gradients respectively.
This destroys the information in backpropagation and makes the training process
obsolete. Moreover, the vanishing gradient problem prohibits RNNs from learning
long-term dependencies. To solve this problem, additional states and gates were
introduced in the RNN unit in [42] to remember long-term dependencies, which led 
to the development of LSTM Networks. 

3.1.2 Long Short-Term Memory (LSTM) Networks 

LSTMs use cell state, hidden state information, and multiple gates to capture long-
term dependencies between messages. The cell state can be visualized as a freeway 
that carries relevant information throughout the processing of an input sequence. 
The cell state stores information from previous time steps and passes it to the 
subsequent time steps to reduce the effects of short-term memory. Moreover, the 
information in the cell state is modified by the gates in the LSTM unit, which helps 
the model in determining which information should be retained and which should 
be ignored. 

An LSTM unit contains 3 gates: (i) forget gate (ft) (ii) output gate (ot), and (iii) 
input gate (it) as shown in Fig. 2a. The forget gate is a binary gate that determines 
which information to retain from the previous cell state (ct−1). The output gate uses 
information from the previous two gates to produce an output. Lastly, the input gate
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Fig. 2 (a) A single LSTM unit with different gates and activations, and (b) LSTM unit unrolled 
in time; f is an LSTM unit, x is input, c is cell state, and h is the hidden state 

Fig. 3 (a) A single GRU unit with different gates and activations, and (b) GRU unit unrolled in 
time; f is a GRU unit, x is input, and h is the hidden state. 

adds relevant information to the cell state (ct). An illustration of an LSTM unit 
unrolled in time is shown in Fig. 2b. 

LSTMs learn long-term dependencies in a sequence by using a combination of 
different gates and hidden states. However, they are computationally expensive due 
to the complex sequence path from having multiple gates (compared to RNNs), and 
require more runtime memory. Moreover, training LSTMs have a high computation 
overhead even when advanced training methods such as truncated backpropagation 
are employed. To overcome the above-mentioned limitations, a simpler sequence 
model called gated recurrent unit (GRU) was introduced in [43]. GRUs can be 
trained faster than LSTMs and also capture dependencies in long sequences with 
minimal overhead (in both memory and runtime) while solving the vanishing 
gradient problem. 

3.1.3 Gated Recurrent Unit (GRU) 

Unlike LSTMs, a GRU unit takes a different route for gating information. The input 
and forget gate in the LSTM unit are combined into a solitary update gate. Moreover, 
hidden and cell states are combined into one state, as shown in Fig. 3a, b. 

A GRU unit consists of two gates (i) reset gate and (ii) update gate. The reset 
gate combines new input with previous memory, while the update layer determines
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how much relevant information should be stored. Thus, a GRU unit controls the 
data stream similar to an LSTM by uncovering its hidden layer contents. Moreover, 
GRUs are computationally more efficient and have a low memory overhead than 
LSTMs as they achieve this using fewer gates and states. It is highly crucial to 
use lightweight machine learning models when working with automotive systems, 
as real-time automotive ECUs are highly resource-constrained embedded systems 
with strict energy and power budgets. This makes GRU-based networks an ideal fit 
for inference in resource-constrained automotive systems. Thus, INDRA utilizes a 
lightweight GRU-based model to implement the IDS (explained in detail in Sect. 5). 

One of the significant advantages of sequence models is that they can be trained 
in both supervised and unsupervised learning fashion. Due to the large volume of 
CAN message data in a vehicle, high variability in the messages between vehicle 
models from the same manufacturer, and the proprietary nature of this information 
make it highly challenging and tedious to label messages correctly. However, due 
to the ease of obtaining CAN message data via onboard diagnostics (OBD-II), large 
amounts of unlabeled data can be collected easily. Thus, INDRA uses GRUs in an 
unsupervised learning setting. 

3.2 Autoencoders 

Autoencoders are a special class of neural networks that try to reconstruct the input 
by learning the latent input features in an unsupervised fashion. They achieve this 
by encoding the input data (x) to a hidden layer which produces the embedding, 

and finally decoding the embedding to produce a reconstruction . 
∼
x (as shown in 

Fig. 4). The layers used to create this embedding are called the encoder, and the 

Fig. 4 An autoencoder network with encoder, decoder, and embedding layers
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layers used in reconstructing the embedding into the original input (decoding) are 
called the decoder. During the training process, the encoder tries to learn a nonlinear 
mapping of the inputs, while the decoder tries to learn the nonlinear mapping of the 
embedding to the inputs. The encoder and decoder achieve this using various non-
linear activation functions such as tanh and rectified linear unit (ReLU). Moreover, 
the autoencoder aims to recreate the input as closely as possible by extracting the 
key features from the inputs with the goal of minimizing reconstruction loss. The 
most commonly used loss functions in autoencoders include mean squared error 
(MSE) and Kullback-Leibler (KL) divergence. 

As autoencoders aim to reconstruct the input by learning the underlying distri-
bution of the input data, they are an excellent choice for efficiently learning and 
re-constructing highly correlated time-series data by learning the temporal relations 
between messages. Hence, our proposed INDRA framework uses lightweight GRUs 
in an autoencoder to learn latent representations of CAN message data in an 
unsupervised learning setting. 

4 Problem Definition 

4.1 System Model 

In this chapter, we consider a generic automotive system consisting of multiple 
ECUs connected using an in-vehicle network, as shown in Fig. 5. Each ECU in 
the system runs a specific set of automotive applications that are hard-real time 
in nature (i.e., they have strict timing and deadline constraints). Moreover, we 
assume that each ECU also runs intrusion detection applications (IDS) that are 
responsible for monitoring and detecting cyber-attacks in the in-vehicle network. 

Fig. 5 Overview of the system model considered in INDRA
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In the INDRA framework, we consider a distributed IDS approach (where intrusion 
detection applications are collocated with automotive applications) as opposed to a 
centralized IDS approach in which one central ECU handles all intrusion detection 
tasks due to the following reasons:

• A centralized IDS approach is prone to single-point failures, which can com-
pletely expose the system to the attacker.

• In extreme scenarios such as during a flooding attack (explained in Sect. 4.3), the 
in-vehicle network would get highly congested, and the centralized system might 
not be able to communicate with the victim ECUs.

• If an attacker successfully tricks the centralized IDS ECU, the attacks can go 
undetected by the other ECUs, compromising the entire system; however, in 
the case of a distributed IDS, it requires fooling multiple ECUs (which is more 
difficult) to compromise the system. Moreover, the decentralized intelligence in 
a distributed IDS scenario can still detect the attacks, even if one of the ECU is 
compromised.

• In a distributed IDS, ECUs can stop accepting messages as soon as an intrusion 
is detected. This results in significantly faster reaction times as there is no need 
for a notification from a centralized system.

• Lastly, in a distributed IDS, the computation load of IDS is divided among the 
ECUs, and monitoring can be limited to only required messages. As a result, 
multiple ECUs can independently monitor a subset of messages with lesser 
overhead. 

Distributed IDS approach has been adopted in many state-of-the-art works, such 
as [18, 25], for the above-mentioned reasons. Moreover, with the increasing 
computation power of automotive ECUs, the collocation of IDS applications with 
real-time automotive applications in a distributed manner should not be a problem if 
the IDS has minimal overhead. INDRA framework is not only lightweight but also 
highly scalable and achieves superior intrusion detection performance (discussed in 
detail in Sect. 6). 

An ideal IDS should have a low power/energy footprint, low cost, and low 
susceptibility to noise. The following are some of the key characteristics of an 
efficient IDS, that were taken into consideration when designing the INDRA IDS:

• Lightweight: Intrusion detection tasks can incur additional overhead on ECU, 
which can have a broad range of impact ranging from poor application perfor-
mance to catastrophic events due to missed deadlines for real-time applications. 
Therefore, INDRA aims to have a lightweight IDS that incurs minimal overhead 
on the ECU.

• Coverage: This is defined as the range of attacks that an IDS can detect. A good 
IDS must be capable of detecting more than one type of attack. Moreover, high 
coverage for IDS will make the system resilient to multiple attack surfaces.

• Few false positives: This is a highly desired quality in any IDS (even outside 
of the automotive domain), as dealing with false positives can quickly become 
costly. Thus, a good IDS is expected to have few false positives or false alarms.
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• Scalability: As the number of ECUs in emerging vehicles is growing along with 
software and network complexity, this is an essential requirement. A good IDS 
should be highly scalable and capable of supporting multiple system sizes. 

4.2 Communication Model 

In this subsection, we discuss the communication model that was considered 
for the INDRA framework. INDRA primarily focuses on detecting anomalies in 
Controller Area Network (CAN) bus-based automotive CPS, as CAN is the most 
commonly used in-vehicle network protocol. CAN offers a low-cost, lightweight, 
event-triggered communication where messages are transmitted in the form of 
frames. A standard CAN frame structure with the length of each field (in bits) 
on the top is shown in Fig. 6. The standard CAN frame consists of (i) header, 
(ii) payload, and (iii) trailer segments. The header contains information about the 
message identifier (ID) and the length of the message, whereas the payload segment 
contains the actual data that needs to be transmitted. The trailer section is mainly 
used for error checking at the receiver. More recently, a new variation of the CAN 
protocol, called CAN-extended or CAN 2.0B, is also being deployed increasingly 
in modern vehicles. The key difference is that CAN-extended has a 29-bit identifier 
which allows for a greater number of message IDs. 

The INDRA IDS focuses on monitoring the payload of the CAN frame and 
observes for anomalies within the payload segment to detect cyberattacks. This 
is because most modern-day attacks involve an attacker modifying the payload to 
accomplish malicious activities. On the other hand, if an attacker targets the header 
or trailer segments, the message would get rejected at the receiver. The typical 
payload segment of a CAN message comprises of multiple data entities called 
signals. Figure 7 illustrates a real-world example CAN message with the list of 
signals within the message. Each signal has a particular data type, fixed size (in bits), 
and a start bit which specifies the signal’s location in the 64-bit payload segment of 
the CAN frame. 

INDRA focuses on monitoring individual signals within CAN payload to observe 
for anomalies and detect attacks. During training, INDRA learns the temporal 
relationships between the messages at a signal level and observes for deviations 
at runtime to detect attacks. This ability to detect attacks at a signal level enables 

Fig. 6 Standard frame format of a Controller Area Network (CAN) message
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Fig. 7 A real-world example CAN message with signal information [44] 

INDRA to not only detect the presence of an attacker but also help in identifying the 
signal under attack. This can provide valuable information related to the attack and 
help in understanding the intentions of the attacker, which can be used to initiate 
appropriate countermeasures. The signal level monitoring technique employed in 
INDRA IDS is discussed in detail in Sect. 5.2. 

Note: Even though the INDRA framework focuses on detecting attacks by 
monitoring CAN messages, our approach is protocol-agnostic and can be used 
with other in-vehicle network protocols (such as FlexRay and LIN) with minimal 
changes. 

4.3 Attack Model 

Our proposed INDRA IDS aims to protect the vehicle from various types of state-
of-the-art attacks that are most commonly seen and difficult to detect in automotive 
CPS. Moreover, these attacks have been widely studied in literature to evaluate 
IDSs. 

1. Plateau attack: In this attack, an attacker overwrites a signal value with a 
constant value for the entirety of the attack interval. The severity of this attack 
is determined by the magnitude of change in signal value and the duration for 
which the signal magnitude is changed. Larger changes in signal values are easier 
to detect compared to shorter changes. 

2. Flooding attack: This is the most common and simple to launch attack, as it 
requires no knowledge of the system. In this attack, the attacker continuously 
floods the in-vehicle network with random or specific messages with the goal of 
preventing other ECUs from accessing the bus and rendering the bus unusable. 
These attacks are typically detected by the gateways and network bridges in the 
vehicle and often do not reach the last line of defense (the IDS). However, it 
is crucial to consider these attacks as they can have serious security and safety 
consequences when poorly handled. 

3. Playback attack: In this attack, the attacker attempts to trick the IDS by replaying 
a valid series of message transmissions from the past. This attack is hard to 
detect if the IDS lacks the ability to capture the temporal relationships between 
messages and detect when they are violated.



Real-Time Intrusion Detection in Automotive Cyber-Physical Systems. . . 329

4. Continuous attack: In this attack, an attacker gradually overwrites the signal 
value to some target value while avoiding the activation of an IDS. These attacks 
are difficult to detect and can be sensitive to the IDS parameters (discussed in 
Sect. 5.2). 

5. Suppress attack: In this attack, the attacker suppresses the signal value(s) by 
either disabling the target ECU’s communication controller or shutting down the 
ECU. These attacks are easy to detect when they disrupt message transmission 
for long durations but are harder to detect for shorter durations. 

Moreover, in this work, we assume that the attacker can gain access to the in-
vehicle network using the most common attack vectors, such as connecting to the 
OBD-II port, connecting to V2X systems that communicate with the outside world 
(for e.g., infotainment and connected ADAS systems), probe-based snooping on the 
in-vehicle bus, and by replacing an existing ECU with a malicious ECU. We also 
assume that the attacker has access to the network parameters (such as parity, flow 
control, and BAUD rate) that can further assist in gaining access to the in-vehicle 
network. 

Objective The goal of our proposed INDRA framework is to implement a 
lightweight IDS that can detect a variety of attacks (discussed above) in a CAN 
bus-based automotive CPS, with a high detection accuracy and low false positive 
rate while having a large attack coverage. 

5 INDRA Framework Overview 

INDRA framework utilizes a machine learning-based signal level IDS for moni-
toring real-time CAN messages in automotive CPS. An overview of the INDRA 
framework is depicted in Fig. 8. The  INDRA framework consists of design-time 
and runtime steps. During design time, INDRA uses CAN message data from a 
trusted vehicle to train a recurrent autoencoder-based model to learn the normal 
system behavior. At runtime, the trained recurrent autoencoder model observes 
for the deviation from the learned normal system behavior using the proposed 
intrusion score metric to detect cyberattacks. These steps are described in detail 
in the subsequent subsections. 

5.1 Recurrent Autoencoder 

Recurrent autoencoders are powerful neural networks that are similar to an encoder-
decoder structure but can handle time-series or sequence data inputs. They typically 
consist of units such as RNNs, LSTMs, or GRUs (discussed in Sect. 3). Similar to 
regular autoencoders, recurrent autoencoders have an encoder and a decoder stage. 
The encoder generates a latent representation of the input data in an n-dimensional
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Fig. 8 Overview of the INDRA IDS framework 

space, and the decoder uses this latent representation from the encoder output and 
tries to reconstruct the input data with minimal reconstruction loss. In INDRA, we  
propose a novel lightweight recurrent autoencoder model that is tailored for the 
design of IDS to detect cyberattacks in the in-vehicle network. The details of the 
proposed neural network architecture and the various steps involved in its training 
and evaluation are discussed in the subsequent sections. 

5.1.1 Model Architecture 

Our proposed recurrent autoencoder model architecture is illustrated in Fig. 9, with 
each layer’s input and output dimensions on the top. The model comprises of a 
linear layer at the input, a GRU-based encoder, a GRU-based decoder, and a linear 
layer before the final output. The input time-series CAN message data with signal 
level information consisting of f features (where f is the number of signals in 
the message) is given as input to the first linear layer. The output from the first 
linear layer is then passed to the GRU-based encoder, which generates the latent 
representation of the time-series signal inputs, which is referred to as a message 
context vector (MCV) in this chapter. The MCV captures the context of various 
signals in the input message as a vector. Each MCV can be viewed as a point in an 
n-dimensional space containing the context of the series of signal values provided as 
input. The MCV is fed into a GRU-based decoder, which is then followed by a linear 
layer to generate the reconstruction of the input CAN message data with individual 
signal values. The loss between the input and the reconstructed input is calculated 
using mean square error (MSE), and the weights are updated using backpropagation 
through time. INDRA designs a recurrent autoencoder model for each message ID.
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Fig. 9 Proposed recurrent autoencoder model used in INDRA (f is the number of features, i.e., 
number of signals in the input CAN message, MCV is message context vector) 

5.1.2 Training Process 

The training procedure starts with pre-processing the CAN message data collected 
from a trusted vehicle. Each sample in the CAN message dataset consists of a 
message ID and the corresponding signal values contained within that message ID. 
As signals represent a wide variety of information in the vehicle, the range of signal 
values can also be very large. This can make the training process extremely slow or 
unstable. To prevent this, we scale the signal values between 0 to 1 for each signal 
type. Moreover, scaling signal values also helps to avoid the problem of exploding 
gradients (as discussed in Sect. 3). 

The pre-processed CAN dataset is divided into training data (85%) and validation 
data (15%), which is then prepared for training. We use a rolling window-based 
approach, which involves choosing a fixed-size window and rolling it to the right by 
one sample every time step. An example rolling window approach with a window 
size of three samples and its movement for the three consecutive time steps is 
illustrated in Fig. 10. The term . S

j
i represents the ith signal value at jth sample. 

The elements in the rolling window are referred to as a subsequence, and the size 
of the rolling window is defined as the subsequence length. As each subsequence 
consists of a set of signal values over time, our proposed recurrent autoencoder 
model attempts to learn the temporal relationships between the series of signal 
values. These signal-level temporal relationships aid in detecting more complex 
attacks such as continuous and playback (as discussed in Sect. 4.3). The process 
of training using subsequences is done iteratively until the end of the training data. 

Each training iteration consists of a forward pass and a backward pass (using 
backpropagation through time to update the weights and biases of the neurons based 
on the error value (as discussed in Sect. 3)). At the end of the training, the model’s 
performance is evaluated (forward pass only) using the validation data, which was 
not seen by the model during the training. The end of the validation step marks the 
completion of one epoch during which the model has seen the complete dataset 
once. The model is trained for a set number of epochs until the model reaches
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Fig. 10 An example of a rolling window approach and its movement for three consecutive time 
steps 

convergence. Moreover, the process of training and validation using subsequences 
is sped up by training the input subsequences data in groups known as mini-batches. 
Each mini-batch is made up of several consecutive subsequences that are given as 
the input to the model in parallel. The size of each mini-batch is referred to as a 
batch size. Lastly, to control the rate of update of the model parameters during the 
backpropagation phase, a learning rate is defined. These hyperparameters, such as 
subsequence size, batch size, learning rate, etc., are covered in detail in Sect. 6.1. 

5.2 Inference and Detection 

At runtime, the trained model is set to evaluation mode, where only forward passes 
are performed, and the weights are not updated. During this phase, various attack 
conditions are simulated in the CAN message dataset, and the trained model is tested 
under multiple attack scenarios (mentioned in Sect. 4.3). 

During inferencing, each data sample that passes through the model is recon-
structed, and the reconstruction loss is computed. This reconstruction loss is sent 
to the detection module to compute the proposed intrusion score (IS) metric, which 
helps in determining whether a signal is malicious or normal. The IS is calculated 
at a signal level to predict which signal is under attack. The IS is calculated as 
a squared error during each iteration of the inference to estimate the prediction 
deviation from the input signal value, as shown in (2). 

.ISi =
(
S

j
i − Ŝ

j
i

)2 ∀i ∈ [1,m] (2) 

where, . Sj
i denotes the ith signal value at jth sample, . Ŝj

i represents its reconstruction, 
and m is the number of signals in the message. We observe a large deviation for 
predicted value from the input signal value (i.e., large IS value) when the current
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signal pattern is not seen by the model during the training phase and a smaller IS 
value otherwise. This serves as the foundation for our detection phase. 

Since the dataset lacks a signal-level attack label information, INDRA combines 
the signal level IS information into a message-level IS by calculating the maximum 
IS of the signals in that message, as shown in (3). 

.MIS = max (IS1, IS2 . . . , ISm) (3) 

To achieve adequate detection accuracy, it is critical to choose the intrusion
threshold (IT) for flagging messages. INDRA investigates multiple choices for IT,
using the best model (model with the lowest running validation loss) from the
training phase. From this model, multiple metrics such as maximum, mean, median,
99.99%, 99.9%, 99%, and 90% validation loss are recorded across all iterations as
the potential choices for the IT. The analysis for the selection of the IT metric is
presented in detail in Sect. 6.2. 

A working snapshot of INDRA IDS is illustrated in Fig. 11a, b, with a plateau 
attack on a message with three signals between time 0 and 50. Figure 11a compares 
the input (true) vs. IDS predicted signal value for three signals, and the attack 
interval is highlighted in red. It can be observed that the reconstruction is close 
for almost all signals except during the attack interval for the majority of the 
time. Signal 3 is subjected to a plateau attack in which the attacker maintains a 
constant value until the end of the attack interval. This is illustrated in the third 
subplot of Fig. 11a (note the larger difference between the predicted and actual 
input signal values in that subplot, compared to signals 1 and 2). Figure 11b depicts 
the signal intrusion scores for all three signals, and the dotted black line represents 
the intrusion threshold (IT). As stated previously, the maximum of signal intrusion 
scores is chosen as message intrusion score (MIS), which in this case is the IS of 
signal 3. As seen in Fig. 11b, the intrusion score of signal 3 is above the IT for the 
entire duration of the attack interval, which clearly highlights INDRA’s ability to 
detect such attacks. The value of IT (equal to 0.002) in Fig. 11b is calculated using 
the method discussed in Sect. 6.2. However, it is important to note that this value is 
specific to the example case shown in Fig. 11 and is not the IT value used for the 
remaining experiments. The details of IT selection is discussed in detail in Sect. 6.2. 

6 Experiments 

6.1 Experimental Setup 

A series of experiments have been conducted to evaluate the real-time performance 
of our proposed INDRA IDS. We begin by presenting an analysis for the selection 
of intrusion threshold (IT). The derived IT is used to contrast against two variants 
of the same framework known as INDRA-LED and INDRA-LD. The INDRA-LED
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Fig. 11 Internal working of INDRA IDS checking a message with three signals under a plateau 
attack, where (a) shows the signal comparisons and (b) shows IS of three signals and the IT
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removes the linear layer before the output, essentially leaving the task of decoding 
the message context vector (i.e., reconstructing the input) to GRU based decoder. 
The abbreviation LED stands for (L)linear layer, (E) encoder GRU, and (D) decoder 
GRU. The INDRA-LD variant replaces the GRU and the linear layer at the decoder 
with a series of linear layers (LD stands for linear decoder). These experiments were 
carried out to assess the importance of different layers in the network. However, the 
encoder part of the network is not changed because it is required to generate an 
encoding (MCV) of the input time-series data. INDRA investigates other variants as 
well, but they were not included in the discussion as their performance was subpar 
compared to that of INDRA-LED and INDRA-LD variants. 

Subsequently, the best INDRA variant is compared with three state-of-the-
art prior works that use different machine learning-based techniques to detect 
intrusions: (i) Predictor LSTM (PLSTM [38]), (ii) Replicator Neural Network 
(RepNet [39]), and (iii) CANet [36]. The first comparison work (PLSTM) employs 
an LSTM-based network that has been trained to predict the signal values in the 
following message transmission. PLSTM accomplishes this by taking the 64-bit 
CAN message payload as the input and learning to predict the signal at a bit-
level granularity by minimizing prediction loss. The bit level deviations between 
the actual and the predicted next signal values are computed using a log loss 
or binary cross-entropy loss function. Additionally, PLSTM uses the prediction 
loss values at runtime to decide whether a particular message is malicious or 
not. The second comparison work (RepNet) employs a series of RNN layers to 
increase the dimensionality of the input data and reconstruct the input signal values 
by decreasing back to the original dimensionality. RepNet accomplishes this by 
reducing the mean squared error (MSE) between the input and the reconstructed 
signal values. At runtime, RepNet uses large deviations between the input received 
signal and the reconstructed signal values to detect cyberattacks. Lastly, CANet uses 
a quadratic loss function to minimize the signal reconstruction error by combining 
multiple LSTMs and linear layers in an autoencoder architecture. All experiments 
conducted with INDRA and its variants and prior works are discussed in detail in 
subsequent subsections. 

In this work, we use the SynCAN dataset developed by ETAS and Robert 
Bosch GmbH [36] to evaluate the effectiveness of the INDRA framework with 
its variants and against the above-mentioned prior works. The SynCAN dataset 
consists of CAN message data for ten different IDs that have been modeled after 
real-world CAN message data. Furthermore, the dataset consists of both training 
and test data with multiple attacks (discussed in Sect. 4.3). Each row in the dataset 
consists of a timestamp, message ID, and individual signal values. Additionally, 
the test data contains a label column with either 0 or 1 values indicating normal 
or malicious messages. However, the label information is only available on per 
message basis and does not specify which signal within the message is under attack. 
It is important to note that the label information in the training data is not used 
to train the INDRA model, as the INDRA model learns the patterns in the input 
data in an unsupervised manner. This label information in the dataset is only used 
to evaluate the performance of the proposed IDS using several metrics such as
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detection accuracy and false positive rate. Moreover, to simulate a more realistic 
attack scenario in the in-vehicle networks, the test data also contains normal CAN 
traffic between the attack injections. 

All the machine learning-based frameworks, including the INDRA framework 
and its variants as well as comparison works, are implemented using Pytorch 
1.4 with CUDA support. We conducted several experiments to select the best-
performing model hyperparameters (number of layers, hidden unit sizes, and 
activation functions). The final model discussed in Sect. 5.1 was trained using the 
SynCAN data set, with 85% of train data used for training and the remaining for 
validation. The validation data is primarily used to assess the model performance 
at the end of each epoch. The model is trained for 500 epochs, using a rolling 
window approach (as discussed in Sect. 5.1.2) with a subsequence size of 20 
messages and a batch size of 128. Moreover, an early stopping mechanism is 
employed to monitor the validation loss across epochs and stop the training process 
if there is no improvement after 10 (patience) epochs. The initial learning rate is 
chosen as 0.0001, and tanh activations are applied after each linear and GRU layer. 
Furthermore, the ADAM optimizer is used with the mean squared error (MSE) as 
the loss criterion to compute the reconstruction loss. The trained model is used 
during testing and subjected to multiple simulated attack scenarios using the test 
dataset. The intrusion score metric (as stated in Sect. 5.2) was used to calculate the 
intrusion threshold to flag the message as malicious or normal. Lastly, to evaluate 
the performance of the IDS, several performance metrics such as detection accuracy 
and false positive rate were considered. All the simulations were executed on an 
AMD Ryzen 9 3900X server with an Nvidia GeForce RTX 2080Ti GPU. 

Additionally, we present the following definitions in the context of IDS before 
discussing the experimental results:

• True Positive (TP)- when the IDS detects an actual malicious message as 
malicious;

• False Negative (FN)- when the IDS detects an actual malicious message as 
normal;

• False Positive (FP)- when the IDS detects a normal message as malicious (aka 
false alarm);

• True Negative (TN)- when the IDS detects an actual normal message as normal. 

INDRA framework primarily focuses on two key performance metrics: (i) Detection 
accuracy- a measure of IDS’s ability to detect malicious messages correctly, and 
(ii) False positive rate: also known as false alarm rate. These metrics are computed 
using (4) and (5), respectively. 

.Detection Accuracy = T P + T N

T P + FN + FP + T N
(4) 

.False Positive Rate = FP

FP + T N
(5)
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6.2 Intrusion Threshold Selection 

In this subsection, we present a detailed analysis on the selection of intrusion 
threshold (IT) by investigating various options such as maximum (max), median, 
mean, and different quantile bins of validation loss of the final model. As the model 
is trained only on attack-free data, the reconstruction error for the malicious message 
will be much larger than the error for normal messages. Hence, INDRA explores 
several candidate options for IT to achieve this goal that would work across multiple 
attack and no-attack scenarios. A high threshold value can make it harder for the 
model to detect the attacks that change the input pattern minimally (e.g., continuous 
attack). On the other hand, having a small threshold value can cause multiple false 
positives, which is highly undesirable. Thus, it is crucial to select an appropriate 
intrusion threshold value to achieve optimal model performance. 

The detection accuracy and false positive rate for various candidate options used 
to calculate IT is shown in Fig. 12a, b, respectively, under different attack scenarios. 
The results from the Fig. 12 indicates that selecting a higher validation loss as the IT 
can lead to high accuracy and a low false alarm rate. However, selecting a very high 
value (such as ‘max’ or ‘99.99 percentile’) may result in missing small variations 
in the input patterns that are found in more sophisticated attacks. We empirically 
conclude that the maximum and 99.99 percentile values are very close. Moreover, 
to capture attacks that produce small deviations, a slightly smaller threshold value is 
selected that would still perform similar to the max and 99.99 percentile thresholds 
under all attack scenarios. Thus, the 99.9th percentile value of the validation loss is 
chosen as the intrusion threshold (IT) value, and the same IT value is used for the 
remainder of the experiments (discussed in the following subsections). 

6.3 Comparison of INDRA Variants 

After selecting the appropriate intrusion threshold from the previous subsection, 
we use that same criterion for evaluating against two other variants: INDRA-LED 
and INDRA-LD. The main intuition behind evaluating different variants of INDRA 
is to study the impact of different layers in the model on the performance metrics 
discussed in Sect. 6.1. 

Figure 13a illustrates the detection accuracy for the INDRA framework and 
its variants on the y-axis with multiple types of attacks and a no-attack scenario 
(normal) on the x-axis. It can be clearly seen that INDRA outperforms the other two 
variants and has high accuracy in most attack scenarios. 

The false positive rate or false alarm rate of INDRA and other variants under 
different attack scenarios is illustrated in Fig. 13b. When compared to other variants, 
INDRA has the lowest false positive rate and highest detection accuracy. Moreover, 
INDRA-LED, which is just short of a linear layer on the decoder side, is the 
second-best performing model after INDRA. The ability of INDRA-LED to use
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Fig. 12 Comparison of (a) detection accuracy and (b) false positive rate for various choices of 
intrusion threshold (IT) as a function of validation loss under different attack scenarios. (% refers 
to percentile, not percentage)
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Fig. 13 Comparison of (a) detection accuracy and (b) false positive rate under different attack 
scenarios for INDRA and its variants (INDRA-LED and INDRA-LD)
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a GRU-based decoder helps in efficiently reconstructing the MCV back to the 
original input signals. Moreover, it can be clearly seen in both Fig. 13a, b that the 
absence of GRU layers on the decoder end of INDRA-LD resulted in significant 
performance degradation. Thus, INDRA is chosen as the candidate model for 
subsequent experiments. 

6.4 Comparison with Prior Works 

Our proposed INDRA framework is compared with some of the best-known prior 
works in the IDS area, such as PLSTM [38], RepNet [39], and CANet [36]. The 
detection accuracy and false positive rate for different techniques under different 
attack scenarios is illustrated in Fig. 14a, b, respectively. 

From Fig. 14a, b, it is evident that INDRA achieves high detection accuracy 
under each attack scenario while achieving lower false positive rates. The ability to 
monitor signal level variations combined with a more cautious selection of intrusion 
threshold gives INDRA an advantage over comparison works. PLSTM and RepNet 
use the maximum validation loss in the final model as the threshold, whereas CANet 
uses interval-based monitoring to detect malicious messages. Choosing a higher 
threshold helped PLSTM to achieve slightly lower false positive rates for some 
scenarios, but it hurt the ability of both PLSTM and RepNet to detect attacks with 
minor variations in the input data. This is because the deviations produced by some 
of the complex attacks are small, and the attacks go undetected due to the large 
thresholds. Moreover, the interval-based monitoring approach employed in CANet 
struggles to find an optimal threshold resulting in subpar performance. It is essential 
to highlight that INDRA achieves this superior performance by monitoring at a 
signal level as opposed to prior works that monitor at the message level. Lastly, the 
false positive rates of INDRA remain significantly low, with a maximum of 2.5% for 
plateau attacks. 

6.5 IDS Overhead Analysis 

In this section, we present a detailed analysis of the overhead incurred by our 
proposed INDRA IDS. We quantify the IDS overhead in terms of memory footprint 
and time taken to process an incoming message, i.e., inference time. The former 
metric is important as the automotive ECUs are highly resource-constrained and 
have limited memory and compute capacities. Therefore, it is critical to have a 
low memory overhead to avoid interference with real-time automotive applications. 
The inference time metric provides important information about the time it takes to 
detect the attacks and can also be used to compute the utilization overhead on the 
ECU. Hence, the above-mentioned two metrics are analyzed to study the overhead 
and quantify the lightweight nature of INDRA IDS.
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Fig. 14 Comparison of (a) detection accuracy and (b) false positive rate of INDRA and the prior 
works PLSTM [38], RepNet [39], and CANet [36]
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Table 2 Memory footprint 
comparison between our 
proposed INDRA framework 
and the prior works PLSTM 
[38], RepNet [39], and 
CANet [36] 

IDS framework Memory footprint (KB) 

PLSTM [38] 13,417 
RepNet [39] 55 
CANet [36] 8718 
INDRA 443 

Table 3 Inference time comparisons between our proposed INDRA framework and the prior 
works PLSTM [38], RepNet [39], and CANet [36] using single and dual-core configurations 

Average inference time (μs) 
IDS framework Single core ARM Cortex A57 CPU Dual core ARM Cortex A57 CPU 

PLSTM [38] 681.18 644.76 
RepNet [39] 19.46 21.46 
CANet [36] 395.63 378.72 
INDRA 80.35 72.91 

To quantify the overhead of our proposed INDRA framework and the prior works, 
we implemented the IDSs on the NVIDIA Jetson Tx2 board, consisting of an ARM 
Cortex- A57 CPU, which has similar specifications to the state-of-the-art multi-
core ECUs. The memory footprint of the INDRA framework and the prior works 
mentioned in the previous subsections is shown in Table 2. It is evident that the 
INDRA framework has a low memory footprint compared to the prior works, except 
for the RepNet [39]. However, it is important to observe that even though the INDRA 
framework has a slightly higher memory footprint compared to the RepNet [39], 
INDRA outperforms all the prior works, including RepNet [39], in all performance 
metrics under various attack scenarios, as shown in Fig. 14. The heavier (high 
memory footprint) models can capture a wide range of system behaviors; however, 
they are not an ideal choice for resource-constrained automotive CPS. On the other 
hand, a much lighter model (such as RepNet) fails to capture necessary details about 
the system behavior due to its limited model parameters, which in turn suffers from 
performance issues. 

We benchmarked different IDS frameworks on an ARM Cortex- A57 CPU 
to study the inference overhead. In this study, we considered different system 
configurations to explore a wide variety of ECU hardware that is available in state-
of-the-art vehicles. Based on the available hardware resources, single-core (uses 
only one CPU core) and dual-core (uses two CPU cores) system configurations were 
selected on the Jetson TX2. The IDS frameworks are executed 10 times for each 
CPU configuration, and the average inference times (in μs) are recorded in Table 3. 
From the results in Table 3, it is clear that the INDRA framework has significantly 
faster inference times compared to the prior works (excluding RepNet) under all 
system configurations. From the results in Fig. 14, it can be seen that RepNet 
has the worst performance of any comparison framework, despite having a lower 
inference time. The large inference times for the better-performing frameworks 
can have a significant impact on the real-time performance of the vehicle and 
can be catastrophic in the event of deadline misses. We also believe that using a
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dedicated deep learning accelerator (DLA) further enhances the performance of the 
IDS models. 

Thus, from Fig. 14, Table 2 and 3, it is clear that INDRA achieves a clear 
balance of having superior intrusion detection performance while maintaining a low 
memory footprint and fast inference times, making it a powerful and lightweight 
IDS solution. 

6.6 Scalability Results 

In this subsection, we present a detailed analysis on the scalability of the INDRA 
framework by studying the system performance using the ECU utilization metric as 
a function of increasing system complexity (i.e., number of ECUs and messages). 
Each ECU in the system has a real-time utilization (URT ) and an IDS utilization 
(UIDS) from running real-time and IDS applications, respectively. We focus on 
analyzing the IDS overhead (UIDS), as it is a direct measure of the compute 
efficiency of the IDS. Moreover, as the safety-critical messages monitored by the 
IDS are periodic, the IDS can be modeled as a periodic application with a period that 
is the same as the message period [5]. As a result, monitoring an ith message (mi) 
results in an induced IDS utilization (UIDS, mi) at an ECU, which can be calculated 
using (6). 

.UIDS,mi
=

(
TIDS

Pmi

)
(6) 

where, TIDS and Pmi represent the time taken by the IDS to process one message
(inference time) and the period of the monitored message, respectively. Moreover,
the sum of all IDS utilizations because of monitoring different messages is the
overall IDS utilization at that ECU (UIDS) and is computed using (7). 

.UIDS =
∑n

i=1
UIDS,mi

(7) 

To evaluate the scalability of the INDRA IDS, six different system sizes were
considered. Moreover, a set of commonly used message periods {1, 5, 10, 15, 20,
25, 30, 45, 50, 100} (all periods in ms) in automotive CPS is considered to sample
uniformly, when assigning periods to the messages in the system. These messages
are distributed evenly among different ECUs, and the IDS utilization is calculated
using (6) and (7). INDRA assumes a pessimistic scenario where all the ECUs in the 
system have only a single core, which would allow us to analyze the worst-case 
overhead of the IDS. 

The average ECU utilization for different system sizes denoted by {p, q}, where p 
is the number of ECUs and q is the number of messages in the system, is illustrated 
in Fig. 15. In this study, a very pessimistic estimate of 50% real-time ECU utilization
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Fig. 15 Scalability analysis of our proposed INDRA IDS for different system sizes and the prior 
works PLSTM [38], RepNet [39], and CANet [36] 

for real-time automotive applications (“RT Util”, as shown in the dotted bars) is 
assumed. The solid bars on top of the dotted bars represent the IDS overhead on 
the ECUs, and the horizontal dotted line in red represents the 100% ECU utilization 
mark. It is critical to ensure that the ECU utilization does not exceed 100% under any 
scenario, as it could introduce undesired latencies resulting in missing deadlines for 
time-critical automotive applications, which can be catastrophic. It is clear from the 
results that the prior works, such as PLSTM and CANet, incur heavy overhead on 
the ECUs, while RepNet and our proposed INDRA framework have a very minimal 
overhead that is favorable to increasing system sizes. Thus, from the results in 
this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that INDRA not only 
achieves better performance in terms of detection accuracy and false positive rate 
for intrusion detection than state-of-the-art prior works, but it is also lightweight and 
highly scalable. 

7 Conclusion 

In this chapter, we presented a novel recurrent autoencoder-based lightweight 
real-time intrusion detection system called INDRA for automotive CPS. INDRA 
framework uses the intrusion score (IS) metric to measure the deviation from the
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learned system behavior to detect intrusions. Moreover, we presented a thorough 
analysis on the intrusion threshold selection process and compared the INDRA 
IDS with the best-known prior works in this area. The promising results indicate a 
compelling potential for utilizing our proposed INDRA IDS in emerging automotive 
platforms. 
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Stacked LSTM Based Anomaly Detection 
in Time-Critical Automotive Networks 

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha 

1 Introduction 

The increased interest in enabling full self-driving cars and the growing demand for 
the integration of advanced safety features in today’s vehicles have rapidly increased 
the complexity of embedded systems being integrated into various vehicular subsys-
tems. The aggressive competition between automakers to reach autonomy goals is 
further driving the complexity of Electronic Control Units (ECUs) and the in-vehicle 
network that connects them [1]. Moreover, recent solutions for Advanced Driver 
Assistance Systems (ADAS) require interactions with various external systems 
using a variety of advanced communication standards such as Wi-Fi, 5G, and 
Vehicle-to-X (V2X) protocols [2]. The V2X communication enables a spectrum 
of connections such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), 
vehicle-to-pedestrian (V2P), and vehicle-to-cloud (V2C) [3]. These new solutions 
are transforming modern vehicles by making them highly connected to the external 
environment. Moreover, to support the increasingly sophisticated ADAS functions 
and connectivity to the outside world, ECUs in today’s vehicles run highly complex 
software to handle various highly safety-critical and time-sensitive automotive 
applications, e.g., pedestrian and traffic sign detection, lane changing, automatic 
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parking, and path planning. This increased software and hardware complexity of 
the automotive electrical/electronic (E/E) architecture and increased connectivity 
with external environment resulted in various challenged related to reliability [49– 
52], security [14, 32, 45–47], and real-time performance [53–56]. In this work, we 
mainly focus on improving security in automotive networks. The above-mentioned 
advances have one crucial security implication: they provide a large attack surface 
and thus give rise to more opportunities for attackers to gain unauthorized access to 
the in-vehicle network and execute cyber-attacks. Additionally, the high complexity 
in emerging vehicles resulted in poor attack visibility over the in-vehicle network, 
making it hard to detect attacks that can be easily hidden within normal operational 
activities. Many cyber-attacks on vehicles can induce various anomalies in the 
network, resulting in a change in the normal behavior of the network as well as 
the ECU behavior. Due to the highly safety-critical and time-sensitive nature of 
automotive applications, any minor instability in the system due to these induced 
anomalies could lead to a major catastrophe, e.g., preventing an airbag from 
deploying in the case of a collision, delaying the perception of a pedestrian, or 
erroneously changing lanes into oncoming traffic, due to maliciously corrupted 
sensor readings. 

An attack via an externally linked component or compromised ECU can manifest 
in several forms over the in-vehicle network. One of the most commonly observed 
and easy-to-launch attacks is flooding the in-vehicle network with random or 
specific messages. This increases the overall network traffic and results in halting 
any useful activity over the network. An advanced attack on an ECU could involve 
remotely sending a kill command to the engine during normal driving. More 
sophisticated attacks could involve installing malware (e.g., trojan) on the ECU 
and using it to achieve malicious goals. State-of-the-art cyber-attacks on vehicles 
have used a variety of attack vectors, such as infotainment systems to launch buffer 
overflow and denial of service attacks [5] and reverse engineering keyless entry 
systems to wirelessly lock pick the vehicle immobilizer [6]. Researchers in [4] 
foresees a much more severe attack involving potentially targeting the U. S. electric 
power grid by using public electric vehicle charging stations as an attack vector to 
infect vehicles that use these stations with malware. Several other cyber-attacks on 
different real-world vehicles are presented in [7–10]. The common aspect of these 
attacks is that they involve gaining unauthorized access to the in-vehicle network 
and modifying certain fields in the message frames, thereby tricking the receiving 
ECU into thinking that the malicious message is legitimate. All these attacks can 
have catastrophic consequences and must be detected before they are executed. This 
problem will get exacerbated with the onset of connected and autonomous vehicles. 
Thus, it is crucial to restrict the attackers via early detection to achieve a secure 
automotive system. 

Traditional computer networks utilize different protective mechanisms such as 
firewalls (software) and isolation units such as gateways and switches (hardware) 
to protect from external cyber-attacks [11]. However, advanced persistent attackers 
have been coming up with various novel attacks that leverage the increased 
compute and communication capabilities in modern ECUs, causing the traditional 
protection systems to become obsolete. Thus, it is essential to have an advanced
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Fig. 1 Illustration of an example anomaly detection framework that monitors the in-vehicle 
network traffic and detects deviations from expected normal system behavior during the attack 
intervals shown in red 

solution that can continuously monitor the vehicle network, to detect cyber-attacks. 
One promising solution is to deploy an anomaly detection system (ADS), which 
continuously monitors the network for unusual activities and raises the alarm when 
suspicious activity is detected. The ADS frameworks learn the normal system 
behavior at design time and monitor the network for anomalies at runtime. This 
approach can be extended to detect and classify various cyber-attacks on the in-
vehicle network. A traditional approach for anomaly detection uses rule-based 
techniques such as, monitoring message frequency [12] and memory heat map [13] 
to detect known attack signatures. However, due to the increased complexity of 
today’s cyber-attacks, such traditional rule-based systems fail to recognize new and 
complex attack patterns, rendering these approaches ineffective. Fortunately, recent 
advances in deep learning and the availability of in-vehicle network data have paved 
the path to using sophisticated deep learning models for anomaly detection. 

In this chapter, we present a novel anomaly detection framework called LATTE, 
which was first introduced in [45] to detect cyber-attacks in time-critical automotive 
networks. Our proposed LATTE framework uses advanced deep learning models 
(discussed in Sect. 5.2) in an unsupervised setting to learn the normal behavior 
of the system. LATTE leverages that information at runtime to detect anomalies 
by observing for any deviations from the learned normal behavior. This process is 
illustrated in Fig. 1. The plot on the top right in Fig. 1 shows the expected deviation 
(computed using the model that was trained at design time) vs. the observed 
deviation. The deviation in signal values during the attack intervals (shown in the 
red area) can be used to detect cyber-attacks as anomalies. Our proposed LATTE 
framework aims to maximize the anomaly detection accuracy, precision, and recall, 
while minimizing the false-positive rate. Our novel contributions in LATTE are:

• We introduce a stacked Long-Short Term Memory (LSTM) based predictor 
model that integrates a novel self-attention mechanism to learn the normal system 
behavior at design time;

• We devise a one class support vector machine (OCSVM) based detector model 
that works in tandem with the predictor model to detect various cyber-attacks at 
runtime;
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• We present modifications to the communication controller in the ECU that can 
help in realizing the proposed anomaly detection system;

• We perform a comprehensive analysis on the selection of deviation measures that 
quantify the deviation from the normal system behavior;

• We explored several variants of our proposed LATTE framework and selected the 
best-performing one, which is then compared with the best-known prior works 
in the area to show LATTE’s effectiveness. 

2 Related Work 

Researchers studied various cyber-attacks on vehicles to discover vulnerabilities in 
automotive systems. Recent attacks such as [15] exploit the vulnerability in security 
access algorithms to deploy airbags without any actual impact. In [16], the attackers 
reverse-engineered a telematics control unit to exploit a memory vulnerability in the 
firmware to circumvent the existing firewall and remotely send diagnostic messages 
to control an ECU. Other attacks that compromised the ADAS camera sensor were 
studied in [17]. All these attacks introduce anomalous behavior during vehicle 
operation, which a good anomaly detection framework must detect. 

Anomaly detection has been a popular research topic in the domain of computer 
networks, and several solutions have been proposed to detect cyber-attacks in 
large-scale computer networks [18]. However, these solutions require high com-
pute power, which makes them hard to adapt to resource-constrained automotive 
cyber-physical systems for detecting cyber-attacks in in-vehicle networks. Several 
solutions were developed in the past decade to tackle the problem of anomaly 
detection in automotive systems [19–34]. These works can be broadly categorized 
into two types (i) heuristic-based and (ii) machine learning based. Heuristic-based 
anomaly detection approaches observe for traces of known attack signatures. In con-
trast, a machine-learning-based approach learns the normal system behavior during 
an offline phase and observes for any deviation from the learned normal behavior 
at runtime to detect anomalies. The heuristic-based techniques can be simple and 
have fast detection times compared to machine learning-based techniques. However, 
machine learning based techniques can detect both known and unknown attacks, 
which is not possible with heuristic-based techniques. Some of the key prior works 
in these categories are discussed in the subsequent subsections. 

2.1 Heuristi-Based Anomaly Detection 

A language theory-based model is used to obtain signatures of known attacks from 
the vehicle’s CAN bus in [19]. However, this approach fails to detect anomalous 
messages when the model misses the packets transmitted during the early stages of 
an attack. The transition matrices-based anomaly detection scheme was introduced 
in [20] to detect anomalous sequences in CAN bus-based systems. Although this
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approach was able to achieve low false-positive rates for simple attacks, it failed 
to detect realistic replay attacks. In [21], the authors proposed a Hamming-distance 
based model which monitors the CAN network to detect cyber-attacks. However, 
the model had very limited attack coverage. A specification-based approach was 
presented in [22], which compared the messages with predefined attack signatures to 
detect anomalies. A time-frequency analysis model is used to continuously monitor 
CAN message frequency to detect anomalies in [23]. In [24], a heuristic-based 
approach is used to build a normal operating region by analyzing the messages at 
design time and a message-frequency-based in-vehicle network monitoring system 
to detect anomalies at runtime. In [25], clock-skew based fingerprints are recorded 
at design time, and at runtime, the variations in clock-skew at sender ECUs are used 
to detect anomalies. An anomaly detection system introduced in [26], monitors the 
entire system for changes in entropy to detect anomalies. However, their approach 
fails to detect smaller anomalous sequences that result in minimal change in the 
entropy. In summary, heuristic-based anomaly detection systems provide low-cost 
and high-speed detection techniques but fail to detect complex and novel attacks. 
Additionally, modeling every possible attack signature is impractical, and hence 
heuristic-based anomaly detection approaches have a limited scope. 

2.2 Machine Learning Based Anomaly Detection 

Many recent works leverage advances in machine learning to build highly efficient 
anomaly detection systems. In [27], a deep neural network (DNN) based approach 
that continuously monitors the network is used to observe for changes in commu-
nication patterns to detect anomalies. However, this approach is only designed and 
tested for a low-priority system (a tire pressure monitoring system), which limits 
us from directly adapting this technique to safety-critical systems. A recurrent 
neural network (RNN) based intrusion detection system that attempts to learn the 
normal behavior of CAN messages in the in-vehicle network was introduced in 
[28]. In [29], a hybrid approach, which utilizes both specification and RNN-based 
systems in two stages is used to detect anomalies. In [30], an LSTM-based predictor 
model that predicts the next time step message value at a bit level and detects 
intrusions by observing for large deviations in prediction errors. A long short-term 
memory (LSTM) based multi message-id detection model was proposed in [31]. 
However, the model is highly complex and has a high implementation overhead 
when deployed on an ECU. A GRU-based lightweight recurrent autoencoder and 
a static threshold-based detection scheme to detect cyber-attacks was introduced in 
[32]. However, using static thresholds limits the system to detecting only simple 
attacks. In [33], a deep convolutional neural network (CNN) model was proposed 
to detect anomalies in the vehicle’s CAN bus. However, the model does not 
consider the temporal relationships between messages, which limits the model from 
predicting certain attacks. In [34], an LSTM framework with a hierarchical attention 
mechanism and a non-parametric kernel density estimator, along with a k-nearest
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Table 1 Comparison between our proposed LATTE framework and the state-of-the-art machine 
learning-based anomaly detection works 

Technique ADS task 
Requires 
labeled data? 

Network 
architec-
ture Attention type Detection model 

BWMP [30] Bit level 
prediction 

Yes LSTM 
network 

– Static threshold 

RepNet [28] Input 
recreation 

No Replicator 
network 

– Static threshold 

HAbAD [34] Input 
recreation 

Yes Autoencoder Hierarchical KDE and KNN 

LATTE [45] Next 
message 
value 
prediction 

No Encoder-
decoder 

Self-attention OCSVM 

neighbors classifier, is used to detect anomalies. Although most of these techniques 
attempt to increase detection accuracy and attack coverage, none of them offers 
the ability to process very long sequences with relatively low runtime and memory 
overhead and still achieve reasonably high performance. 

In this chapter, we introduce a robust deep learning model that integrates a 
stacked LSTM-based encoder-decoder model with a self-attention mechanism to 
learn normal system behavior by learning to predict the next message instance. 
At runtime, we continuously monitor in-vehicle network messages and provide 
a reliable detection mechanism using a non-linear classifier. A summary of the 
state-of-the-art anomaly detection works and their key features, and the unique 
characteristics of our proposed LATTE framework is presented in Table 1. The  
details of the proposed model and the overall framework are presented in Sects. 
4 and 5. In Sect. 6, we present different experimental results that demonstrate the 
efficiency of our LATTE framework compared to various state-of-the-art anomaly 
detection works in identifying a variety of attack scenarios. 

3 Background 

Solving complex problems using deep learning was made possible due to advances 
in computing hardware and the availability of large high-quality datasets. Anomaly 
detection is one such problem that can leverage the power of deep learning. In an 
automotive system, ECUs exchange safety-critical messages periodically over the 
in-vehicle network. These periodic messages have temporal relationships between 
them, which can be exploited to detect anomalies. However, this requires a special 
type of neural network called Recurrent Neural Network (RNN). Unlike traditional 
feed-forward neural networks, where the output at any point is independent of any 
previous inputs, RNNs use information from previous sequences when computing 
the output, which makes them an ideal choice for handling time-series data.
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3.1 Recurrent Neural Network (RNN) 

An RNN [35] is the most basic sequence model that takes sequential or time-series 
data as the input and learns the underlying temporal relationships between data 
samples. An RNN block consists of an input, an output, and a hidden state that 
allows it to remember the learned temporal information. The input, output, and 
hidden state all correspond to a particular time step in the sequence. The hidden-
state information can be visualized as a latent space data point containing important 
temporal information about the inputs from previous time steps. RNNs compute 
the current stage output by taking the previous hidden-state information along with 
the current input. Moreover, the backpropagation in RNNs occurs through time, 
resulting in the error value shrinking or growing rapidly, leading to vanishing or 
exploding gradients. This severely hampers RNN’s ability to learn patterns in the 
input data that have long-term dependencies [36]. To overcome this problem, long 
short-term memory (LSTM) networks [37] were introduced. 

3.2 Long Short-Term Memory (LSTM) Network 

LSTMs are enhanced RNNs that use a combination of cell state, hidden state, and 
multiple gates to learn long-term dependencies in the sequences. The cell state 
carries the relevant long-term dependencies throughout the processing of an input 
sequence, whereas the hidden state contains relevant information from the recent 
time steps accommodating short-term dependencies. The gates in LSTM are used 
to regulate the flow of information from the hidden state to the cell state. These 
combinations of gates and states give LSTM an edge over the simple RNN in 
remembering long-term dependencies in sequences. LSTMs have therefore replaced 
simple RNNs in the areas of time-series forecasting, natural language processing, 
and machine translation [36]. 

In general, LSTMs overcome many of the limitations of RNNs and provide a 
more than acceptable solution for the vanishing and exploding gradient problems. 
However, they suffer a significant performance drop when handling very long input 
sequences (e.g., with 100 or more time steps). This is mainly because the predictions 
of an LSTM unit at the current time step t, are heavily influenced by the hidden and 
cell states at the previous time step t-1 compared to the past time steps. Hence, for a 
very long input sequence, the representation of the input at the first time step tends 
to diminish as the LSTM processes inputs at the future time steps. To overcome this 
limitation, we need a mechanism that can look back and identify the information that 
can influence future sequences. One such look-back mechanism is neural attention.
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3.3 Attention 

Attention or neural attention is a mechanism in neural networks that mimics the 
visual attention mechanism in humans [38]. The human eye can focus on certain 
objects or regions with higher resolution compared to their surroundings. Similarly, 
the attention mechanism in neural networks allow focusing on the relevant parts 
of the input sequence and selectively output only the most relevant information. 
Although LSTMs take the previous hidden state information and the input at the 
current time step to compute the current output, they suffer a significant drop 
in performance when processing very long input sequences. This is because the 
information from the first time step is less representative in the hidden states than 
the information from the recent time steps. To overcome this problem, we can 
incorporate attention mechanisms with LSTMs, which allows them to capture the 
crucial information from any past time steps of the input sequence. 

Attention mechanisms are frequently used in encoder-decoder architectures [36]. 
An encoder-decoder architecture mainly consists of three major components (i) 
encoder, (ii) latent vector, and (iii) decoder. The encoder takes the input sequence 
and converts it to a fixed-size latent representation called a latent vector. The latent 
vector consists of all the information representing the input sequence in a latent 
space. The decoder takes the latent vector as input and converts it to the desired 
output. However, as the latent vector uses a fixed length to represent the input 
sequence, the fixed-length vector fails to encapsulate all the information from a 
very long input sequence, resulting in poor performance. To address this problem, 
the authors in [39] introduced an attention mechanism in sequence models that 
enabled encoders to build a context vector by creating customized shortcuts to parts 
of the inputs. This ensures that the context vector represents the crucial parts and 
learns the very long-term dependencies in the input sequence leading to improved 
decoder outputs. A self-attention mechanism for an LSTM encoder-decoder model 
was presented in [40], which consumes all the encoder hidden states to compute the 
attention weights. 

The input to the decoder in an LSTM-based encoder-decoder model (rolled out 
in time for 4 time steps) using no attention and self-attention is illustrated in Fig. 
2. The input to the LSTM encoder at each time step is represented as xt, and the 
initial hidden vector is represented as h0. The colored rectangle next to each LSTM 
unit for every time step represents the hidden state information, and the height of 
each color in the rectangle signifies the amount of information from each time step. 
At each time step, a square filled with a different color inside the LSTM cell is 
used to represent the hidden state information of that time step. Moreover, for this 
example, we consider a scenario where the output at the last time step (t = 4) has 
a high dependency on the input at the second time step (x2). We can see that in 
the case of no attention, shown in Fig. 2a, the LSTM hidden state at t = 4 largely 
comprises of information from the third (blue) and fourth (orange) time steps. This 
results in providing the decoder with an inaccurate representation of current time 
step dependency, which leads to poor results at the output of the decoder. On
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Fig. 2 Decoder input in case of (a) no attention, (b) with attention in sequence models using 
LSTMs 

the contrary, in the case with attention, shown in Fig. 2b, the self-attention block 
consumes all hidden state representations at each time step as well as the current 
time step (t = 4) and generates the context vector (decoder input). It can be observed 
that the self-attention mechanism clearly captures the high dependency of output at 
t = 4 on the output at t = 2 (shown in the hidden state information at the output 
of self-attention). This can also be seen in the attention weights computed by the 
attention mechanism, where the information from the second (green) time step is 
given high weightage compared to others. Therefore, by accurately representing the 
key portions of the input sequence in the decoder input, the self-attention mechanism 
is able to facilitate better decoder outputs. Also, unlike other attention mechanisms 
such as [41], the attention vector in self-attention aligns encoder outputs to encoder 
hidden states, thereby eliminating the need for any feedback from previous decoder 
predictions. This lack of feedback loop enables the self-attention mechanism to
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quickly learn the temporal dependencies in the long input sequences. Hence, for 
the first time, LATTE adapts the self-attention mechanism to a stacked LSTM-based 
encoder-decoder network to learn the temporal relationships between messages in 
the automotive network. 

4 Problem Formulation 

4.1 System Overview 

In this chapter, we consider an automotive system that consists of multiple ECUs 
connected using a CAN-based in-vehicle network, as shown in Fig. 3. Each ECU 
consists of a processor, communication controller, and transceiver. A processor 
can have single or multiple cores that are used to run various real-time automotive 
applications. Most of these automotive applications are hard real-time in nature, 
i.e., they have strict timing and deadline constraints that must be satisfied. Each 
application can be modeled as a set of data dependent and independent tasks mapped 
to different ECUs. The dependent tasks communicate by exchanging messages 
over the CAN network. A communication controller bridges the compute and 
communication fabric, facilitating data movement from the processor to the network 
and vice versa. Some of the key functions of a communication controller include 
packing of data from the processor into CAN frames, managing the transmission 
and reception of CAN frames, and filtering CAN messages based on the pre-
programmed CAN filters (setup by the original equipment manufacturer (OEM) 
when programming the communication controller). Lastly, a transceiver acts as an 
interface between the physical CAN network and the ECU. It facilitates the actual 
transmission and reception of CAN frames to and from the network. Moreover, in 
this work, we do not consider monitoring the execution within the CAN hardware 
IPs as it would require access to proprietary information that is only available to 
OEMs. 

To realize anomaly detection system in today’s ECUs, we propose a few 
modifications to existing CAN communication controllers, as shown in Fig. 3. A  
traditional CAN communication controller consists of message filters that are used 
to filter out unwanted CAN messages and message buffers to temporarily store 
the messages before they are sent to the processor. This can be observed in the 
right region of Fig. 3. We introduce message counters inside the communication 
controller, which keeps track of message frequencies. This bookkeeping helps in 
the observation of any abnormal message rates that may occur during a distributed 
denial of service (DDoS) attack (see Sect. 4.3). After confirming the message rate, 
the message is sent to the deployed anomaly detection system, which uses a two-
step process to determine whether the message is anomalous or not. We chose 
the communication controller instead of the processor to avoid jitter in real-time 
application execution.
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Fig. 3 Overview of the system model and proposed modifications to the communication controller 
in LATTE [45] 

In the first step, our trained LSTM-based attention model is used to predict the 
next message instance, which is then used to compute the deviation from the true 
message. This deviation measure is given as the input to a detector model that uses a 
non-linear classifier to determine if a given deviation measure represents a normal or 
an anomalous message. The details related to the models and the deviation metrics 
used in our framework are discussed in Sects. 5.2 and 5.3, respectively. Messages 
are temporarily stored in the message buffer while they are being evaluated. If the 
anomaly detection system determines a particular message to be anomalous, it is 
discarded from the message buffer and will not be sent to the processor, thereby 
avoiding the execution of attacker messages. 

Our anomaly detection system is implemented in the communication controller 
instead of a centralized ECU because of the following reasons: 

(i). Avoid single-point failures; 
(ii). Prevent scenarios where the in-vehicle network load increases significantly 

due to high message injection (e.g., during a DDoS attack, explained in Sect. 
4.3), where the centralized ECU will not be able to communicate with a target 
ECU; 

(iii). Enable independent and immediate detection without additional delay com-
pared to relying on a message from a centralized ECU. 

4.2 Communication Overview 

In this study, we consider Controller Area Network (CAN) as the in-vehicle network 
protocol used to exchange time-critical messages between ECUs. CAN is a low-
cost, lightweight, event-triggered in-vehicle network protocol and is the defacto 
industry standard. Several variants of CAN have been proposed over time, but the 
CAN standard 2.0B is the most widely used in-vehicle network protocol [48].



360 V. K. Kukkala et al.

Fig. 4 Frame format of Controller Area Network (CAN) 2.0B 

A CAN message consists of one or multiple signal values. Each signal contains 
independent information corresponding to a sensor value, actuator control, or 
computation output of a task on an ECU. Signals are grouped with additional 
information to form CAN frames, which are exchanged between ECUs. The frame 
format of a CAN 2.0B is illustrated in Fig. 4. Each CAN frame consists of a header, 
payload, and trailer segments. The header segment consists of an 11-bit (CAN 
standard) or 29-bit (CAN extended) unique message identifier and a 6-bit control 
field. This is followed by a 64-bit payload segment and a 15-bit cyclic redundancy 
check (CRC) field in the trailer segment. The payload segment (in green) consists of 
multiple signals that are arranged in a predetermined order as per the definitions in 
the CAN database (.dbc) files. In addition to the above-mentioned fields, the CAN 
frame also has a 1-bit start of the frame (SOF) field at the beginning of the header, 
two 1-bit delimiters separating the 1-bit acknowledgment (ACK) field and a 7-bit 
end of frame (EOF) field in the trailer segment. 

In this study, our proposed LATTE framework operates on the payload segment 
of the CAN frame, i.e., signals within each message. The primary motivation for 
monitoring the payload field is that the attacker needs to modify the bits in the 
payload to achieve malicious goals. A modification in the header or trailer segments 
would simply result in the frame getting invalidated at the receiving ECU. Since we 
mainly focus on monitoring the payload segment, our technique is agnostic to the in-
vehicle network protocol. It can be extended to other in-vehicle network protocols, 
such as CAN-FD and FlexRay, with minimal changes. 

4.3 Threat Model 

In this subsection, we present details of the threat model considered in LATTE. We  
assume that the attacker can gain access to the in-vehicle network using the most 
common attack vectors, such as connecting to the vehicle OBD-II port, probing 
into the in-vehicle network, and via advanced attack vectors such as connected 
V2X ADAS systems, insecure infotainment systems, or by replacing a trusted ECU 
with a malicious ECU. We also assume that the attacker has access or can easily 
gain access to the in-vehicle network parameters such as BAUD rate, flow control, 
channel information, and parity. This information can be obtained by using a simple
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CAN data logger and can help in the transmission of malicious CAN messages. We 
further assume a pessimistic situation where the attacker can access the in-vehicle 
network at any instance and try to send malicious messages. 

Considering the above assumptions, in this work, we try to protect the in-vehicle 
network from various cyber-attacks listed below. These attacks are modeled based 
on the most common and hard-to-detect attacks in the automotive domain. 

1. Constant attack: In this attack, the attacker overwrites the signal value to a 
constant value for the entire duration of the attack interval. A small change in the 
magnitude of the signal value is more challenging to detect than larger changes. 

2. Continuous attack: In this attack, the attacker tries to trick the anomaly detection 
system by continuously overwriting the signal value in small increments until a 
target value is achieved. The complexity of detecting this attack depends on the 
rate at which the signal value is overwritten. Larger change rates are easier to 
detect than smaller rates. 

3. Replay attack: In this attack, the attacker plays back a valid message transmission 
from the past, tricking the anomaly detection system into believing it to be a 
valid message. The complexity of detecting this attack depends mainly on the 
frequency and sometimes the duration of the playbacks. High-frequency replays 
are easier to detect compared to low-frequency replays. 

4. Dropping attack: In this attack, the attacker disables the transmission of a 
message or group of messages resulting in the dropping of communication 
frames. Longer durations of this attack are easier to detect due to missing 
messages for a prolonged time compared to shorter durations. 

5. Distributed Denial of Service (DDoS) attack: This is the most common and easy-
to-launch attack as it requires no information about the nature of the message. In 
this attack, the attacker floods the in-vehicle network with an arbitrary or specific 
message with the goal of increasing the overall network traffic and rendering the 
network unusable for other ECUs. These attacks are fairly simple to detect, even 
using a rule-based approach, as the message frequencies are fixed and known at 
design time for automotive systems. Any deviation in this message rate can be 
used as an indicator for detecting this attack. 

Thus, the main objective of our work is to develop a real-time anomaly detection 
framework that can detect various cyber-attacks in CAN-based automotive networks 
that has (i) high detection accuracy, (ii) low false-positive rate, (iii) high precision 
and recall, (iv) large attack coverage, and (v) minimal implementation overhead (low 
memory footprint and fast runtime) for practical anomaly detection in resource-
constrained ECUs. 

5 Proposed Framework 

The overview of our proposed LATTE framework is illustrated in Fig. 5. LATTE 
begins by collecting trusted in-vehicle network data under a controlled environment
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Fig. 5 Overview of LATTE framework 

in the data acquisition step and processes the data for training. The processed data is 
used to train a novel stacked LSTM predictor model with an integrated self-attention 
mechanism in an unsupervised setting to learn the normal operating behavior of the 
system. We also developed a one class support vector machine (OCSVM) based 
detector model that utilizes the predictions from the earlier trained LSTM predictor 
model to detect various cyber-attacks as anomalies at runtime. After training, the 
framework is tested by being subjected to multiple attacks. The details of this 
framework are presented in the subsequent subsections. 

5.1 Data Acquisition 

This is the first step of the LATTE framework and involves collecting the in-vehicle 
network data from a trusted vehicle under a controlled environment. It is essential 
to ensure that the in-vehicle network and the ECUs in the vehicle are free from 
attackers. This is mainly to avoid logging corrupt in-vehicle network data that 
falsely represents the normal operating conditions, leading to learning an inaccurate 
representation of the normal system behavior with our proposed models. Moreover, 
to ensure high confidence in the collected data, it is crucial to cover a wide range 
of normal operating conditions and have the data collected over multiple intervals. 
Since the performance of the anomaly detection system is highly dependent on the 
quality of the collected data, this step is a crucial part of the LATTE framework. 
Additionally, the type of data collected depends on the functionalities or ECUs that 
are subjected to monitoring by the anomaly detection system. The OBD-II port is the 
most common access point to collect the in-vehicle network data, as it gives access 
to the diagnostic and most commonly used messages. However, we recommend 
logging the messages by probing into the CAN network, as it provides unrestricted 
access to the in-vehicle network, unlike the OBD-II port.
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The collected in-vehicle network data is prepared for pre-processing to make it 
easier for the training models to learn the temporal relationships between messages. 
The full dataset is split into groups based on the unique CAN message identifier, and 
each group is processed independently. The data entries in the dataset are arranged 
as rows and columns, with each row representing a single data sample corresponding 
to a particular timestamp and each column representing a unique feature of the 
message. The dataset consists of the following features (i.e., columns): (i) timestamp 
at which the message was logged, (ii) message identifier, (iii) number of signals in 
the message, (iv) individual signal values (one per column), and (v) a binary field 
representing the label of the message. The label column is 0 for non-anomalous 
samples and 1 for anomalous samples. In the training and validation datasets, the 
label column is set to 0 for all samples, as all the data samples are non-anomalous 
and collected from a trusted vehicle. In the test dataset, the label column will have 
a value of 1 for the samples during the attack interval and 0 for the other cases. 
Since we train our models in an unsupervised setting, it is important to highlight 
that we do not use this label information while training our predictor and detector 
models. Moreover, the signal values are scaled between 0 to 1, as there can be high 
variance in the signal magnitudes. Such high variance in the input data can result 
in very slow or unstable training. Additionally, in this study, we do not consider 
time stamps as a unique feature. We use the concept of time in a relative manner 
when training (to learn patterns in sequences) and during deployment. We use the 
dataset presented in [31] to train and evaluate our proposed LATTE framework. The 
dataset consists of both normal and attack data. Details related to the models and 
the training procedure are discussed in the following subsections, while the dataset 
is discussed in Sect. 6.1. 

5.2 Predictor Model 

In this work, we designed predictor and detector models that work in tandem to 
detect cyber-attacks as anomalies in the in-vehicle network. At design time, the 
predictor model learns the normal system behavior in an unsupervised learning 
approach to predict the next message instance with high accuracy using the normal 
(non-anomalous) data. During the training process, our predictor model learns the 
underlying distribution of the normal data and relates it to the normal system 
behavior. This knowledge of the learned distribution is used to make accurate 
predictions of the next message instances at runtime for normal messages. In 
the event of a cyber-attack, the message values no longer represent the learned 
distribution or maintain the same temporal relationships between messages, leading 
to large deviations between the predictions and the true (observed) messages. In 
this study, we develop a detector model using a non-linear classifier to learn the 
deviation patterns that correspond to the normal messages, which is then used to 
detect anomalies (i.e., attacks that cause anomalous deviations) at runtime. The 
details related to the detector model are discussed in detail in Sect. 5.3.
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Fig. 6 Our proposed predictor model for the LATTE anomaly detection framework showing the 
stacked LSTM-based encoder-decoder model rolled out in time for t time steps along with the self-
attention mechanism generating context vector (ϕt) for time step t. The output at time step t ( . x̂t ) 
is the prediction of the input at time step t + 1 (xt + 1) 

Our proposed predictor model consists of a stacked LSTM-based encoder-
decoder architecture with the self-attention mechanism, as shown in Fig. 6. The  
first linear layer in the predictor model takes the time series CAN message data and 
generates a 128-dimension embedding for each input. Each input sample consists 
of k features, where each feature represents a particular signal value within that 
message. The output embedding from the linear layer is given as input to the stacked 
two-layer LSTM encoder to produce a 64-dimension encoder output ( .he

1, h
e
2 . . . he

t ). 
The encoder output is the latent representation of the input time-series signal values 
that encompass the temporal relationships between messages. The encoder outputs 
are passed to the self-attention block to generate the context vector (ϕt). The self-
attention mechanism begins by applying a linear transformation to the encoder’s 
current hidden state ( . he

t ) and multiplies the result with the encoder output. The 
output from the multiplication is given to a softmax activation to compute the 
attention weights. The attention weights represent the importance of each hidden 
state information from the earlier time steps at the current time step. The attention 
weights are scalar multiplied with the encoder outputs to compute the attention 
applied vector (an), which is then combined with the encoder output to generate the 
context vector (ϕt). The context vector, along with the previous decoder’s hidden 
state ( .hd

t−1) is given as input to the stacked two-layer decoder. The decoder block 
produces a 64-dimension output that is passed through the last linear layer to obtain 
a k-dimensional output. This k-dimension output represents the signal values of the 
next message instance. Thus, given an input sequence X = {x1, x2, . . .  xt}, our 
predictor model predicts the sequence .X̂ = {

x̂1, x̂2, . . . , x̂t

}
, where the output at 

time step t ( . x̂t ) is the prediction of the input at time step t + 1 (xt + 1). Moreover, 
the last prediction ( . x̂t ) is generated by consuming the complete input sequence (X). 

The predictor model is trained using non-anomalous (normal) data in an unsu-
pervised manner (i.e., without any labels). We employ a rolling window approach, 
with a window of fixed size length (known as subsequence length) consisting of
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signal values over time. And the sequence of signal values within the window is 
called a subsequence. Our predictor model learns the temporal dependencies that 
exist between the signal values within the subsequence and uses them to predict 
the signal values in the next subsequence (i.e., window shifted to the right by 
one-time step). The signal values corresponding to the last time step in the output 
subsequence represent the final prediction, as the model consumes the entire input 
subsequence to generate them. The prediction error is computed by comparing 
this last time step in the output subsequence with the actual signal values using 
the mean square error (MSE) loss function. This process is repeated until the 
end of the training dataset. The subsequence length is a hyperparameter related 
to the LSTM network, that needs to be selected before training the model and is 
independent of the vehicle and message data. We conducted multiple experiments 
with different model parameters and selected the hyperparameters that gave us the 
best performance results. The predictor model is trained by splitting the dataset 
into training (80%) and validation (20%) data without shuffling, as shuffling would 
destroy the existing temporal relationships between messages. During the training 
process, the model tries to minimize the prediction error (i.e., MSE loss) in each 
iteration (a forward and backward pass) by adjusting the weights of the neurons in 
each layer using backpropagation through time. At the end of each training epoch, 
the model is validated (forward pass only) using the validation dataset to evaluate the 
model performance. We employ mini-batches to speed up the training process and 
use an early stopping mechanism to avoid overfitting. The details related to the non-
anomalous dataset and the hyperparameters selected for the model are presented in 
Sect. 6.1. 

5.3 Detector Model 

In this subsection, we present the details of the detector model used in LATTE to 
detect cyber-attacks. After training the predictor model, we train a separate non-
linear classifier (detector model) that utilizes the information from the predictor 
to detect cyber-attacks. In this study, we treat the anomaly detection problem as 
a binary classification problem since we are mainly interested in distinguishing 
between normal and anomalous messages. Due to the large volumes of data being 
exchanged on the in-vehicle network, the network data recordings can grow very 
rapidly in size, which makes labeling this data very expensive. Additionally, due 
to the low frequency of attack scenarios, the number of attack samples would 
be significantly smaller compared to normal samples even when the dataset is 
labeled. This results in having a highly imbalanced dataset that would result in 
poor performance when trained using a traditional binary classifier in a supervised 
learning setting. However, a popular non-linear classifier known as a support vector 
machine (SVM) can be altered to make it work with unbalanced datasets where 
there is only one class. Hence, in this work, we employ a one class support vector 
machine (OCSVM) to classify the messages as anomalous or normal. At design
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Fig. 7 OCSVM decision boundary shown in the blue sphere with the green dots showing the 
normal samples from training data and yellow and red dots showing the normal and anomalous 
samples, respectively, from test data 

time, the OCSVM learns the distribution of the training dataset by constructing the 
smallest hypersphere that contains the training data. We train an OCSVM by using 
the output from the previously trained predictor model. At design time, we begin by 
giving the previously used normal training dataset as the input to the predictor model 
to generate the predictions. We then compute the deviations (prediction errors) for 
all the training data and pass them as input to the OCSVM. The OCSVM tries 
to generate the smallest hypersphere that can fit most of the deviation points and 
uses it at runtime to detect anomalies. Any sample deviation that falls outside the 
hypersphere is treated as an anomaly at runtime. An example hypersphere generated 
by training an OCSVM for a message with three signals is illustrated in Fig. 7. 
Each axis in the figure represents the relevant signal deviation, and the dark blue 
sphere represents the decision boundary. It can be observed that almost the entirety 
of training data (shown as green dots) is confined to within the decision boundary 
(shown as a blue sphere). The yellow and red dots in Fig. 7 represent the OCSVM 
classified normal and anomalous samples in the test dataset. 

In this work, the deviation of a message is represented as a vector where each 
element of the vector corresponds to the difference between the true and predicted 
signal value. Therefore, for a message m with km number of signals, the deviation 
vector (�m,t) at time step t can be computed using (1). 

.�m,t =
(
Ŝi,t − Si,t+1

)
∈ R

2,∀i ∈ [1, km] (1) 

where .Ŝi,t is the prediction of the next true ith signal value (Si, t + 1) made at time 
step t. We also experimented with other deviation measures that are modeled using
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(2), (3), and (4). 

.�sum
m,t =

km∑

i=1

∣∣�m,t

∣∣ ,∀i ∈ [1, km] (2) 

.�
avg
m,t = 1

km

km∑

i=1

∣∣�m,t

∣∣ ,∀i ∈ [1, km] (3) 

.�max
m,t = max

(∣∣�m,t

∣∣) ,∀i ∈ [1, km] (4) 

Moreover, there can be scenarios where some signal deviations in a message can be
positive while others are negative. This could potentially result in making the sum
or mean of signal deviations zero or near zero, falsely indicating no deviation or
very small deviation. To avoid these situations, we use absolute signal deviations to
compute the deviations for the variants. It is important to note that, unlike Eq. (1) 
which uses a vector of k-dimensions to represent the message deviation, Eqs. (2), 
(3), and (4) use different reduction operations to reduce the vector to a scalar value. 
We explored all four deviation measures to determine the best one (discussed in 
Sect. 6.2.) 

In summary, our predictor model predicts normal samples with very small 
deviations and anomalous samples with high deviations. The OCSVM considers 
this unique property of the predictor when constructing the hypersphere. It can be 
observed that when the test data with anomalies is given as input to the OCSVM, 
it generally correctly classifies the normal samples (shown as yellow dots in Fig. 
7) within the hypersphere and anomalous samples (shown as red dots in Fig. 7) 
outside the hypersphere. Thus, both predictor and detector models work collectively 
to detect cyber-attacks as anomalies. 

5.4 Model Testing 

In this step, we present a test dataset consisting of anomalous samples representing 
multiple attacks (discussed in Sect. 4.3) along with the normal samples to the 
LATTE framework. The normal messages have a label value of 0, and the attack 
or anomalous messages have a label value of 1. During this step, each sample 
(signal values in a message) is first sent to the predictor model to predict the signal 
values of the next message instance, and the deviation is computed based on the true 
message data. This deviation vector is then passed to the OCSVM detector model 
to compute the position of the deviation vector in the k-dimensional space, where 
k represents the number of signals in the message. The message is marked as non-
anomalous when the point corresponding to the deviation vector falls completely 
inside the learned hypersphere. Otherwise, the message is marked as anomalous,
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and an anomaly alert is raised. This alert can be used to invoke an appropriate 
remedial action to suppress further actions from the attacker. However, the design of 
remedial measures and response mechanisms falls outside the scope of this chapter. 
The performance evaluation of our proposed LATTE framework under various attack 
scenarios is presented in detail in Sects. 6.2 and 6.3. 

5.5 Anomaly Detection System Deployment 

Our proposed anomaly detection system can be deployed in a real-world vehicle 
in two different approaches. The first is a centralized approach, where a powerful 
centralized ECU monitors all messages on the in-vehicle network to detect cyber-
attacks. The second is a distributed or decentralized approach, where the anomaly 
detection task is distributed across ECUs and is limited to monitoring only the 
messages that are relevant to that particular ECU. Both choices have pros and 
cons, but we believe that distributed monitoring has multiple advantages over the 
centralized approach because of the following reasons:

• A centralized anomaly detection approach is prone to single-point failures, which 
can completely expose the system to the attacker;

• If an attacker succeeds in fooling the centralized ECU, attacks can go undetected 
by the other ECUs, resulting in compromising the entire system. On the other 
hand, with a distributed detection scheme, fooling multiple ECUs is required, 
which is much more challenging. Even if an ECU is compromised, this can still 
be detected by the decentralized intelligence in a distributed detection approach;

• In extreme scenarios, such as during a DDoS attack (explained in Sect. 4.3), the 
in-vehicle network can get highly congested, and the centralized ECU might not 
be able to communicate with the victim ECUs;

• A distributed detection scheme has faster response times compared to centralized 
detection, as ECUs can stop accepting messages as soon as an anomaly is 
detected without waiting for a centralized system to notify them;

• Moreover, the overall computation load of detection is split among the ECUs 
with a distributed approach, and the monitoring can be limited to only the 
required messages. This enables multiple ECUs to monitor a subset of messages 
independently, with relatively low overhead; 

For these reasons, many prior works, such as [19, 24], considered a distributed 
detection approach. Moreover, with automotive ECUs becoming increasingly pow-
erful, the collocation of anomaly detection tasks with real-time automotive appli-
cations in a distributed manner should not be a problem, provided the overhead 
from the detection is minimal. The lightweight nature and anomaly detection 
performance of our proposed LATTE framework are discussed in detail in Sect. 
6. Since the detector model looks at the payload segment individually, it needs to 
keep track of the previous messages to detect anomalous patterns. We can cache the 
previous normal samples and predictions (in the case of anomalies) and use them
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to preserve the dependencies within the data. This can be later used in determining 
whether the next sample is normal or anomalous. Moreover, to minimize the storage 
overhead, we can employ a circular buffer of size equal to the subsequence length 
(configured at design time). This approach would enable us to look into the message 
dependencies in the past. 

6 Experiments 

6.1 Experimental Setup 

We conducted a series of experiments to evaluate the effectiveness of our proposed 
LATTE framework. We first explored five variants of the same framework with 
different deviation criteria: LATTE-ST, LATTE-Diff, LATTE-Sum, LATTE-Avg, and 
LATTE-Max. LATTE-ST uses our proposed predictor model with a static threshold 
(ST) value to determine whether a given message is normal or anomalous based on 
the deviation. The other four variants use the same predictor model but different 
criteria for computing the deviations, which are then given as the input to the 
OCSVM-based detector model. LATTE-Diff uses the difference in signal values 
(Eq. (1)), while LATTE-Sum and LATTE-Avg use a sum and mean of absolute signal 
deviations, respectively (Eqs. (2) and (3)). LATTE-Max uses the maximum absolute 
signal deviation (Eq. (4)). 

Subsequently, we compare the best variant of our framework with four state-
of-the-art works: Bitwise Message Predictor (BWMP [30]), Hierarchical Attention-
based Anomaly Detection (HAbAD [34]), a variant of [34] called Stacked HAbAD 
(S-HAbAD [34]), and RepNet [28]. The first comparison work, BWMP [30], trains 
an LSTM-based network that aims to predict the next 64 bits of the payload of 
a CAN message by minimizing the bitwise prediction error using a binary cross-
entropy loss. At runtime, BWMP uses prediction loss as a measure to detect 
anomalies. The second comparison work, HAbAD [34], uses an LSTM-based 
autoencoder model with hierarchical attention. The HAbAD model attempts to 
recreate the input message sequences at the output with the goal of minimizing 
reconstruction loss. Additionally, HAbAD uses supervised learning in the second 
step to model a detector using the combination of a non-parametric kernel density 
estimator (KDE) and k-nearest neighbors (KNN) algorithm to detect cyber-attacks 
at runtime. The S-HAbAD is a variant of HAbAD that uses stacked LSTMs as 
autoencoders and uses the same detection logic used by the HAbAD. The S-HAbAD 
variant is compared against to show the effectiveness of using stacked LSTM layers. 
Lastly, RepNet [28] uses vanilla RNNs to increase the dimensionality of input signal 
values and tries to reconstruct the signal values at the output by minimizing the 
reconstruction error using mean squared error. At runtime, RepNet monitors for 
large reconstruction errors to detect anomalies. The results of all experiments are 
discussed in detail in Sects. 6.2, 6.3 and 6.4.
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In this work, all experiments are conducted using an open-source CAN message 
dataset called SynCAN [31], that was developed by ETAS and Robert Bosch GmbH. 
The SynCAN dataset consists of CAN message data for different message IDs 
with various fields such as timestamps, message ID, and individual signal values. 
Additionally, the dataset consists of a training dataset with only normal data and 
a labeled test dataset with multiple attacks (as discussed in Sect. 4.3). The attacks 
in the dataset are modeled from the real-world attacks that are commonly seen in 
automotive systems. It is important to note that we do not use any labeled data 
during the training or validation of our models and learn the normal system behavior 
in an unsupervised manner. The labeled data is used only during the testing phase, 
mainly to study the performance of our proposed LATTE framework. Moreover, 
high-frequency messages in the in-vehicle network pose a significant challenge to 
the anomaly detection system, as they incur high computational overhead. In this 
work, we considered the highest frequency message with a period of 15 ms for all 
of our experiments. 

We implemented all of the machine learning models, including LATTE and 
its variants, and the models from the comparison works using PyTorch 1.5 with 
CUDA support. The 80% of the available normal data is used to train our proposed 
predictor model, and the remaining 20% is used for validating the model. We 
conducted multiple experiments with different model parameters and selected the 
hyperparameters that gave us the best performance results. The model training 
is repeated for 500 epochs with an early stopping mechanism that monitors the 
validation loss after the end of each epoch and stops if there is no improvement 
after 10 (patience) epochs. We used the ADAM optimizer with mean squared error 
(MSE) as the loss function. Additionally, we employed a rolling window approach 
(discussed in Sect. 5.2) with a subsequence length of 32 time steps, a batch size of 
256, and a starting learning rate of 0.0001. We implemented the OCSVM-based 
detector model (Sect. 5.3) using the scikit-learn package. The OCSVM uses a 
radial basis function (RBF) kernel with a kernel coefficient (gamma) equal to the 
reciprocal of the number of features (i.e., the number of signals in the message). 
Moreover, to speedup OCSVM training, we set the kernel cache size to 400 MB 
and enabled the shrinking technique to avoid solving redundant optimizations. All 
the simulations are run on an AMD Ryzen 9 3900X server with an Nvidia GeForce 
RTX 2080Ti GPU. 

The following definitions are used in the context of anomaly detection to compute 
different performance metrics. A true positive is when an actual attack is detected as 
an anomaly by the anomaly detection system, and a true negative is a situation where 
an actual normal message is detected as normal. Additionally, a false positive would 
be a false alarm where a normal message is incorrectly classified as an anomaly, and 
a false negative would occur when an anomalous message is incorrectly classified 
as normal. Based on these definitions, we evaluate our LATTE framework using 
four different metrics: (i) Detection accuracy: a measure of the anomaly detection 
system’s ability to detect anomalies correctly, (ii) False positive rate: i.e., false 
alarm rate, (iii) F1 score: a harmonic mean of precision and recall; and (iv) 
receiver operating characteristic (ROC) curve with area under the curve (AUC): a
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popular measure of classifier performance. We use the F1-score instead of individual 
precision and recall values as it captures the combined effect of both precision and 
recall metrics. In summary, an efficient anomaly detection system will have high 
detection accuracy, F1 score, and ROC-AUC while having a very low false-positive 
rate. 

6.2 Comparison of LATTE Variants 

In this subsection, we present the comparison results of the five variants of LATTE, 
namely, LATTE-ST, LATTE-Sum, LATTE-Avg, LATTE-Max, and LATTE-Diff. All 
the variants of LATTE use the trained predictor model (discussed in Sect. 5.2) to  
make the predictions and use OCSVM as a detector, except in the case of LATTE-
ST, which uses a fixed threshold scheme introduced in [32] to predict the given 
message as normal or anomalous. The main purpose of this experiment is to study 
the effect of different deviation criteria on the OCSVM detection performance. 
The deviations for any given message in LATTE-Diff (�m, t), LATTE-Sum .

(
�sum

m,t

)
, 

LATTE-Avg .
(
�

avg
m,t

)
and LATTE-Max .

(
�max

m,t

)
are computed using the Eqs. (1), (2), 

(3), and (4), respectively. Additionally, we aim to analyze the impact of using a 
non-linear classifier such as OCSVM on the model performance instead of a simple 
static threshold scheme (LATTE-ST). 

Figure 8a–c shows the detection accuracy, false-positive rate, and F1 score 
for the five different variants of LATTE under five different attack scenarios 
discussed in Sect. 4.3. Under the ‘No attack’ case, the model is tested with new 
normal (non-anomalous) data that the model has not seen before. Firstly, from Fig. 
8a–c, it is evident that the OCSVM-based detection models clearly outperform 
the static threshold models (LATTE-ST). This is mainly because of their ability 
to process complex attack patterns and generate non-linear decision boundaries 
that can distinguish better between normal and anomalous data. Moreover, it can 
be seen that LATTE-Diff outperforms all the OCSVM-based models in detection 
accuracy, false-positive rate, and F1 score. The ROC curves and the corresponding 
AUC values in the brackets next to each legend is illustrated in Fig. 8d. Among 
various attacks considered in this study, we show ROC-AUC results for continuous 
attacks, as it is the most challenging attack to detect. This is because, during 
this attack, the attacker constantly tries to fool the anomaly detection system into 
thinking that the signal values in the messages are legitimate. This requires careful 
monitoring and the ability to learn complex patterns to differentiate between normal 
and anomalous samples. On average, across all attacks, LATTE-Diff was able to 
achieve an average of 13.36% improvement in accuracy, 11.34% improvement in 
F1 score, 17.86% improvement in AUC, and 47.9% reduction in false positive 
rate, and up to 42% improvement in accuracy, 32.6% improvement in F1 score, 
29.4% improvement in AUC and 95% decrement in false positive rate, compared 
to the other variants. Therefore, we selected LATTE-Diff as our candidate model
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for subsequent experiments where we present comparisons with state-of-the-art 
anomaly detection systems. Henceforth, we refer to LATTE-Diff as LATTE. 

6.3 Comparison with Prior Works 

We compared our LATTE framework with four comparison works, namely, BWMP 
[30], HAbAD [34], S-HAbAD [34] (a variant of HAbAD), and RepNet [28]. 
The detection accuracy, false-positive rate, and F1 score of our proposed LATTE 
framework and the comparison works under different attack scenarios are illustrated 
in Fig. 9a–c. It can be observed that LATTE outperforms all the prior works in terms 
of detection accuracy, false-positive rate, and F1 score. This is mainly because 
of three factors. Firstly, the stacked LSTM encoder-decoder structure provides 
adequate depth to the model to learn complex time-series patterns. This can be 
seen when comparing HAbAD with S-HAbAD, as the latter differs only in terms 
of stacked LSTM layers in comparison to the former. Secondly, the integrated self-
attention mechanism in LATTE helps in learning very long-term dependencies in 
message sequences. Lastly, the use of powerful OCSVMs as non-linear classifiers 
helps in designing a highly efficient classifier. These factors together resulted in the 
superior performance of LATTE compared to all the comparison works. On average, 
across all attacks, LATTE achieved an average of 18.94% improvement in accuracy, 
19.5% improvement in F1 score, 37% improvement in AUC, and a 79% reduction 
in false positive rate. Moreover, LATTE achieved up to 47.8% improvement in 
accuracy, 37.5% improvement in F1 score, 76% improvement in AUC, and a 95% 
reduction in false positive rate. 

To highlight the effectiveness of our proposed LATTE framework, we further 
compared LATTE with statistical and proximity-based anomaly detection tech-
niques. We selected Bollinger bands, which is a popular statistical technique 
used in the finance domain, as the candidate for a statistical technique to detect 
anomalies in time series data. Bollinger bands generate envelopes with two standard 
deviation levels above and below the moving average and flag the samples that fall 
outside the bands as anomalous. In this work, we considered two different moving 
average-based variants of this approach: (i) simple moving average (SMA) and (ii) 
exponential weighted moving average (EWMA), similar to [42]. We also compared 
LATTE against a popular proximity-based anomaly detection technique called local 
outlier factor (LOF) [43]. The LOF algorithm measures the local deviation of 
each point in the dataset with respect to the neighbors (given by KNN) to detect 
anomalies. Figure 10 illustrates the F1 score results for SMA-based Bollinger 
bands (SMA-BB), EWMA-based Bollinger bands (EWMA-BB), LOF, and LATTE 
under different attack scenarios. From Fig. 10, it is clear that LATTE outperforms 
both statistical and proximity-based anomaly detection techniques under all attack 
scenarios. This is mainly because the complex patterns in CAN message data 
are hard to capture using statistical and proximity-based techniques. On the other 
hand, our proposed LATTE framework uses an LSTM-based predictor model to
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Fig. 8 Comparison of (a) detection accuracy, (b) false-positive rates, (c) F1 score of LATTE 
variants under different attack scenarios, and (d) ROC curve with AUC for continuous attack
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Fig. 9 Comparison of (a) accuracy, (b) false-positive rates, (c) F1 score of  LATTE and the 
comparison works under different attack scenarios, and (c) ROC curve with AUC for continuous 
attack
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Fig. 10 Comparison of F1 score for SMA-BB [42], EWMA-BB [42], LOF [43], and LATTE under 
different attack scenarios 

efficiently learn these complex patterns and is thus able to detect various attacks 
more efficiently. 

6.4 Overhead Analysis 

In this subsection, we quantify the overhead of our proposed LATTE framework, and 
the comparison works using memory footprint, the number of model parameters, 
and the inference time metrics. We implemented each framework on a dual-core 
ARM Cortex- A57 CPU on an NVidia Jetson TX2 board (shown in Fig. 11), which 
has similar specifications to that of a real-world ECU. The inference experiment is 
repeated 10 times to compute the average inference time. Moreover, in this study, 
we consider a total message buffer size of 2.25 KB. This comprises of storage space 
for 32 CAN message payloads (0.25 KB assuming a worst-case max payload of 8 
Bytes) that represent the subsequence length number of past messages, and storage 
space for 16 CAN message frames (2 KB assuming the CAN extended protocol 
and a worst-case max payload of 8 Bytes) that is used by the transceiver. It is 
important to note that we only introduce the 0.25 KB storage as the 2 KB transceiver 
buffer space is already available in the traditional CAN communication controllers.
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Fig. 11 Nvidia Jetson TX2 board 

The 2 KB transceiver buffer space is based on the most commonly seen sizes in 
many real-world automotive ECUs, such as Woodward SECM 112 and dSpace 
MicroAutoBox. We also computed the area overhead of the 0.25 KB buffer using 
the CACTI tool [44] by modeling the buffer as a scratchpad cache using a 32 nm 
technology node. Our additional 0.25 KB buffer resulted in a minimal area overhead 
of around 581.25 μm2. From Table 2, it is evident that our LATTE framework has 
minimal overhead compared to both attention-based prior works (HAbAD and S-
HAbAD) and non-attention-based work (BWMP except RepNet). The high runtime 
and memory overhead in HAbAD and S-HAbAD is associated with using KNNs. 
Since KNNs scan through each training data sample to make a prediction, they 
are slower and consume high memory overhead (due to the requirement of having 
training data available at runtime). Moreover, it needs to be noted that, even though 
RepNet has the lowest memory and runtime overhead, it fails to capture the complex 
attack patterns due to the smaller model size and the lack of ability of vanilla RNNs 
to learn long-term dependencies, leading to poor performance (as shown in Fig. 9). 

In this work, we factor this additional latency into our real-time constraints 
for messages (i.e., modeled a constant time overhead). But since the latency 
overhead (shown in Table 2) is very minimal, we envision that our proposed LATTE 
framework will have a minimal change in the timing constraints when compared 
to the prior works. Moreover, the inference overhead of our LATTE framework
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Table 2 Compute and memory overhead of LATTE, BWMP [30], HAbAD [34], S-HAbAD [34], 
RepNet [28] 

ADS framework Memory footprint (KB) #Model parameters (x103) 
Average inference 
time (μs) 

BWMP [30] 13,147 3435 644.76 
HAbAD [34] 4558 64 685.05 
S-HAbAD [34] 5600 325 976.65 
LATTE 1439 331 193.90 
RepNet [28] 5 0.8 68.75 

(~194 μs) is much smaller compared to the deadline constraints of some of the 
fastest (i.e., most stringent) safety-critical applications, which are around 10 ms. 
Thus, the additional latency due to anomaly detection should not violate any safety-
critical deadlines. In summary, from Fig. 9 and Table 2, we can observe that LATTE 
achieves superior performance compared to all comparison works across diverse 
attack scenarios while maintaining relatively low memory and runtime overhead. 

7 Conclusion 

In this chapter, we proposed a novel anomaly detection framework called LATTE 
that uses stacked LSTMs with a self-attention mechanism to learn the normal system 
behavior by learning to predict the next message instance under normal operating 
conditions. We presented a one class support vector (OCSVM) based detector 
model to detect cyber-attacks by monitoring the message deviations from the 
normal operating behavior. We presented a comprehensive analysis by evaluating 
our proposed model against multiple variants of our model and the best-known prior 
works in this area. Our LATTE framework surpasses all the variants and the best-
known prior works under various attack scenarios while having a relatively low 
memory and runtime overhead. This makes LATTE a promising anomaly detection 
framework for next-generation connected and autonomous vehicles. 
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Deep AI for Anomaly Detection 
in Automotive Cyber-Physical Systems 

Sooryaa Vignesh Thiruloga, Vipin Kumar Kukkala, and Sudeep Pasricha 

1 Introduction 

Vehicles are becoming increasingly autonomous and highly connected to achieve 
improved vehicle safety and fuel efficiency goals. New technologies such as 
vehicle-to-vehicle (V2V), advanced driver assistance systems (ADAS), 5G vehicle-
to-infrastructure (5G V2I), and others have emerged to support this evolution [1]. 
Due to these advancements, the complexity of electronic control units (ECUs) and 
the in-vehicle network that connects them has significantly increased. Thus, today’s 
vehicles represent a massively complex time-critical cyber-physical system (CPS). 
This introduced several new challenges related to reliability [30–33], security [2, 
21, 24, 29, 34], and real-time performance [35–39] of the vehicles. Additionally, the 
increased connectivity of vehicles to various external electronic systems has made 
modern vehicles highly vulnerable to various cyber-attacks [2]. 

Attackers can gain unauthorized access to the in-vehicle network by exploiting 
various access points (known as an attack surface) in a vehicle, such as Bluetooth 
and USB ports, telematics systems, and OBD-II ports. After gaining access to the 
in-vehicle network, an attacker can inject malicious messages in an attempt to gain 
control of the vehicle. Recent automotive attacks have included tampering with 
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speedometer and indicator signals [3], unlocking doors [4], tampering with the 
fuel level indicator [4], etc. These attacks confuse the driver and can be dangerous 
but are not fatal. More sophisticated machine learning-based attacks can result 
in incorrect traffic sign recognition by targeting the vehicle’s camera-connected 
ECU [5]. Other researchers analyzed vulnerabilities in airbag systems and were 
able to remotely deploy airbags in a vehicle [6]. These types of attacks can have 
catastrophic consequences and can be highly fatal. 

Traditional security mechanism such as firewalls can only detect simple attacks 
but fails to detect more complex attacks such as those described in [5, 6]. With 
increasing vehicle complexity, the attack surface is only going to increase, paving 
the way for more complex and novel attacks in the future. As a result, there exists 
an urgent need for a solution that can actively monitor the in-vehicle network and 
detect complex cyber-attacks. Deploying an anomaly detection system is one of the 
many approaches to achieving this goal. An ADS is a hardware or software-based 
system that continuously monitors the in-vehicle network for attacks without human 
intervention. Many state-of-the-art ADS employ machine learning techniques to 
detect cyber-attacks. The ability to collect large amounts of in-vehicle network 
data and ECUs with high computation complexity facilitated the deployment of 
machine learning models in automotive systems. At a very high level, the machine 
learning model in an ADS attempts to learn the normal operating behavior of the 
in-vehicle network during the design and testing. This learned knowledge of the 
normal system behavior is then used at runtime to continuously monitor for any 
anomalous/malicious behavior, allowing the detection of both known and unknown 
attacks. Due to its high attack coverage and ability to detect complex attack patterns, 
we focus on (and make new contributions to) machine learning-based ADS for 
detecting cyberattacks in vehicles. 

In this chapter, we provide an overview of a novel ADS framework called TENET 
[29] that actively monitors the in-vehicle network and observes for any deviation 
from the normal behavior to detect cyber-attacks. TENET attempts to increase the 
detection accuracy, receiver operating characteristic (ROC) curve with area under 
the curve (AUC), Mathews correlation coefficient (MCC) metrics, and minimize 
false negative rate (FNR) with minimal overhead. The key contributions of the 
TENET framework can be summarized as follows: 

• We propose a temporal convolutional neural attention (TCNA) architecture to 
learn very-long term temporal dependencies between messages in the in-vehicle 
network; 

• We introduce a metric called divergence score (DS) to quantify the deviation 
from expected behavior; 

• We present a decision tree-based classifier to detect various cyberattacks at 
runtime using the proposed DS metric; 

• We present a comprehensive analysis of the TENET framework [7] with various 
state-of-the-art ADS frameworks to demonstrate its effectiveness.
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2 Related Work 

Several solutions have been proposed to detect in-vehicle network attacks. Most of 
these solutions can be mainly divided into either signature-based or anomaly-based. 

Signature-based IDS reckon on detecting known and pre-modeled attack signa-
tures. In [7], the authors proposed a language-theory-based model to derive attack 
signatures. However, their proposed approach fails to detect attack packets at the 
starting stages of the attack interval. The authors in [8, 9] proposed a message 
frequency-based technique to detect cyberattacks. In [10], a transition matrix-based 
ADS was proposed to detect attacks on the controller area network (CAN) bus 
in the vehicles. However, their approach fails to detect complex attacks (such as 
replay attacks (discussed in section III-C.1)). The authors in [11, 12] presented an 
entropy-based ADS to detect in-vehicle network attacks. However, entropy-based 
techniques fail to detect small variations in the entropy and minor modifications 
in the CAN message data. The authors in [13] introduced a novel approach that 
monitors the hamming distance between messages to detect cyberattacks. However, 
this approach has a high computational overhead on the ECU. In [14], ECUs were 
fingerprinted using their voltage measurements during message transmission and 
reception. However, this method cannot detect attacks at the application layer as it 
is only applied at the physical layer. In conclusion, signature-based ADS approaches 
can detect vehicle network attacks with high accuracy and a low false-positive rate. 
However, obtaining all possible attack signatures and consistently updating them is 
highly impractical. 

On the other hand, anomaly-based solutions aim to learn the normal system 
behavior and observe any abnormal behavior in the system to detect both known 
and unknown attacks. The authors in [15] used deep neural networks (DNNs) to 
capture low dimensional features of transmitted packets to differentiate between 
normal and attack-injected messages. In [16], the authors used a recurrent neural 
network (RNN) to learn the normal behavior of the network and leveraged that 
information to detect attacks during runtime. The authors in [17–20] have employed 
long short-term memory (LSTM) based ADS to learn the relationship between 
messages traversing the in-vehicle networks. However, these LSTM-based models 
are complex and incur very high ECU overheads. Moreover, the effectiveness of 
these ADSs was not tested on complex attack patterns. In [21], a gated recurrent unit 
(GRU) based autoencoder ADS was proposed to learn the normal system behavior. 
An LSTM-based encoder-decoder ADS with an integrated attention mechanism 
was proposed in [22]. Furthermore, the approach uses k-nearest neighbors (KNN) 
with a kernel density estimator (KDE) to detect anomalies. However, this approach 
incurs a high memory overhead on the ECU. The authors in [23] proposed an 
approach that combined an LSTM with a convolutional neural network (CNN) 
to learn the dependencies between messages in a CAN network. The model was, 
however, trained on a labeled dataset in a supervised manner. In addition, due 
to the large volume of in-vehicle CAN message data, labeling the data is highly 
impractical. In [24], the authors proposed a novel deep neural network architecture
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comprising stacked LSTMs and a self-attention mechanism to learn the normal 
system behavior during the training phase and employed a one-class support vector 
machine (OCSVM) based classifier to identify anomalous messages. 

All of these recent machine learning-inspired works suggest that sequence mod-
els such as LSTMs and GRUs are popular for detecting vehicle attacks. However, 
since the functional complexity of vehicles has grown significantly, there exist 
very long dependencies between messages exchanged among ECUs. The traditional 
sequence models such as GRUs and LSTMs fail to capture them effectively. This is 
mainly because the current time step output of both LSTMs and GRUs is heavily 
influenced by the recent time steps compared to time steps in the distant past, 
making it highly challenging to capture very-long term dependencies. Moreover, 
processing long sequences also exacerbate the computational and memory overhead 
of LSTMs and GRUs. 

In summary, none of the existing ADS provide a comprehensive approach that can 
efficiently learn very-long term dependencies between in-vehicle network messages 
with a low memory overhead and accurately detect a multitude of simple and 
complex attacks on the in-vehicle network. This chapter discusses an efficient ADS 
framework called TENET that was first introduced in [29]. TENET employs a novel 
TCNA network architecture to overcome the shortcomings of state-of-the-art ADS. 
The subsequent section describes the TENET framework in detail, and the detailed 
performance analysis results are presented in section IV. 

3 TENET Framework: Overview 

The TENET [29] framework consists of three key phases: (i) data collection and pre-
processing, (ii) learning, and (iii) evaluation. In the first phase, in-vehicle network 
data is collected from a trusted vehicle and pre-processed. In the learning phase 
(offline), the pre-processed data is utilized for training the Temporal Convolutional 
Neural Attention (TCNA) network in an unsupervised manner to learn the normal 
operating system behavior. The trained TCNA network is then used in the final 
evaluation phase (online) to calculate a divergence score (DS). Lastly, a decision 
tree-based classifier uses this computed DS to detect various cyberattacks. The 
overview of the proposed TENET framework is shown in Fig.1. 

3.1 Data Collection and Preprocessing 

TENET [29] framework’s first phase involves collecting in-vehicle network data 
from a trusted vehicle. It is critical to ensure that the data is collected from a trusted 
vehicle and is malware-free, as any anomalies in the collected data can make the 
design of the ADS obsolete. Moreover, data needs to be collected under various 
vehicle operating states to get more comprehensive coverage of network traffic.
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Fig. 1 Overview of the TENET framework 

Failing to do so could result in the model learning an improper representation of 
the normal operating condition. TENET recommends splicing into the in-vehicle 
network and directly logging the messages using a standard logger such as Vector 
GL 1000 [25]. This facilitates the recording of any message traversing the network. 

After collecting trusted data, it is prepared for pre-processing to facilitate easy 
and efficient training of the machine learning models. A typical vehicle network 
protocol such as CAN, or Flexray, has a unique identifier (ID), and each message 
in the dataset is grouped by this unique ID and processed independently. The 
processed records are arranged in a 2-dimensional table where each row represents 
a single data sample, and each column represents various unique attributes of the 
message. Each message has the following attributes (columns): (i) message ID, (ii) 
a unique timestamp corresponding to the time at which the message was logged, 
(iii) individual signal values in the message (which together comprise the message 
payload), (iv) number of signals in the message, and (v) label of the message (‘0’ for 
no-attack and ‘1’ for attack). Moreover, all signal values are scaled between 0 and 
1 before beginning the model training to minimize the impact of high variance in 
message signal values. The learning phase (shown in the green colored box in Fig. 
1) and evaluation phases (shown in the blue colored box in Fig. 1) of the  TENET
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framework use training and testing data, respectively. Since the model is trained 
using attack-free data, the label values of all samples in the training dataset are 
set to 0. The test data contains a label value of 1 for attack samples and 0 for no-
attack samples. In addition, the original training data is split into training (85%) 
and validation (15%) data. More details about the training procedure and the model 
architecture are discussed in the subsequent subsections of this chapter. 

3.2 Model Learning 

This subsection explains the TENET [29] framework’s novel TCNA architecture 
and its training procedure. The TCNA network within the TENET framework helps 
to learn the normal system behavior of the in-vehicle network in an unsupervised 
manner. The input to the TCNA model is a sequence of signal values in a message 
and uses CNNs to predict the signal values of the next message instance by trying 
to learn the underlying probability distribution of the normal data. 

In [26], a convolution-based time-delay neural network (TDNN) was introduced 
for phoneme recognition, which was an early adaptation of CNNs for sequence 
modeling tasks. Moreover, traditional CNNs require a very deep network of CNN 
layers with large filters to capture very-long term dependencies. This significantly 
increases the number of convolutional operations, resulting in a high computational 
cost. Thus, directly adapting CNNs to sequence modeling tasks in resource-
constrained automotive systems is not a viable solution. However, recent advances 
have enabled the use of CNNs to capture very-long term dependencies using dilated 
causal convolution (DCC) layers [27]. The dilation factor of each DCC layer 
determines the number of input samples skipped by that layer. The receptive field is 
the total number of samples influencing the output at a particular time step. A larger 
dilation factor allows the output to represent a broader range of inputs, which aids 
in the learning of very-long term dependencies. Unlike traditional sequence models 
such as RNNs, LSTMs, and GRUs, CNNs do not have to wait for the previous time 
step output before processing input at the current time step. This enables CNNs to 
process the input sequences in parallel, making them more computationally efficient 
during both training and testing. Due to these promising properties, the TCNA 
network in the TENET framework adapts dilated CNNs for learning dependencies 
between messages in the vehicle. 

The TCNA network consists of three novel TCNA blocks. Each TCNA block 
consists of an attention block and a TCN residual block (TRB), as shown in Fig. 
2a. The first TCNA block’s input is a time series of message data with n signal 
values as features. A partial sequence from the entire time-series dataset (called a 
subsequence) is fed to the model during each training step. The TRB is inspired 
by [27] and employs two DCC layers, two ReLU layers stacked together, and 
two weight normalization layers, as shown in Fig. 2b. This residual architecture 
facilitates efficient backpropagation of gradients and encourages the reuse of learned 
features. TENET enhanced the TRB from [27] by: (i) adding an attention layer 
(discussed later); (ii) not employing dropout layers to avoid thinning the network
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Fig. 2 (a) Overview of the  TENET’s TCNA network architecture and the internal structure of the 
TCNA block, (b) architecture of the TCN residual block (TRB) and different layers inside it, and 
(c) the attention mechanism 

and provide the attention blocks with non-sparse inputs; and (iii) avoiding zero-
padding the input time-series by computing the length of the subsequence using 
(1). 

.R = (k − 1) ∗ 2l (1)

where R is the subsequence length, k is the kernel size, and l is the number of
DCC layers in the networks. TENET performs this operation to mitigate sequence
distortion of zero padding in in-vehicle time series data.
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The first TCNA block in the network does not contain an attention block, and 
the inputs are given directly to the TRB. This is illustrated in Fig. 2a, where {f1, f2, 
. . .  , fm} represent multiple channels of the first TRB block, m is equal to the number 
of input features, {c1, c2, . . . , ck} represent multiple channels of the TRB, and k 
representing the number of TRB input channels. The first DCC layer within the 
TRB processes each feature of the input sequence as a separate channel, as shown  
in Fig. 2a. A 1-D dilated causal convolution operation is performed using a kernel 
of size two, and the number of filters in each DCC layer is three times the input 
features (m). The input and output dimensions are the same other than the first TRB. 
The DCC layer output is weight normalized for fast convergence and to avoid the 
explosion of weight values. A ReLU activation function is applied to the weighted 
outputs, and this process is repeated once more inside the TRB. A convolution layer 
with a filter size of 1 × 1 is added to make the dimensions of the outputs from the 
last ReLU activation and the TRB input consistent. Each DCC layer in the TRB 
learns temporal relationships between messages by applying filters to its inputs and 
updating filter weight values. 

The TCNA block also contains an attention block that helps the DCC layers focus 
on the input sequences’ important aspects when producing outputs [28]. TENET 
computes a scaled dot product attention mechanism and models the attention as a 
mapping of three vectors called key (K), query (Q), and value (V). A weight vector 
is generated by comparing the similarities between the Q and K vectors, and the 
output attention weights are generated by a dot product between the weight vector 
and the V vector. This type of attention mechanism is referred to as the self-attention 
mechanism because it does not use the previous output information when generating 
the attention weights. In the context of the proposed TCNA network, self-attention 
mechanisms help in identifying important feature maps and enhance the quality of 
intermediate inputs received by the DCC layers. This also aids in efficiently learning 
very-long term dependencies between messages in an in-vehicle network. 

The TRB’s output feature maps are fed into the attention block, shown in Fig. 2c. 
To obtain the Q, K, and V vectors, the attention block repeats its inputs. A scalar-
dot product is performed between Q and transpose of key (KT ) to calculate the 
similarities between each Q and K vector. The resulting dot product is scaled by 
a factor of .1/

√
dk and then passed through a softmax layer to calculate attention 

weights as shown below: 

.Attention (Q,K, V ) = sof tmax

(
QKT /√

dk

)
.V (2) 

where the term dk represents the dimension of the K vector. The computed attention 
weights represent the importance of each feature map of the previous DCC layer. 
The attention weights are then scalar multiplied by V to produce the attention 
block’s output. Therefore, the attention block employs a self-attention mechanism 
to improve the quality of feature maps received by the subsequent TRBs. Similarly, 
the input sequence flows through the TCNA network and is fed to a final linear layer 
which generates an n-dimensional output. The n-dimensional output represents the 
predicted signal values of each dimension.
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The TCNA network model is trained using a rolling window approach where 
each window contains signal values from the current subsequence. The proposed 
TCNA network learns the temporal dependencies between messages within a 
subsequence and attempts to predict the signal values of the subsequence that are 
shifted to the right by one time step. TENET uses a mean squared error (MSE) loss 
function to compute the prediction error between the signal values of the last time 
step in the predicted subsequence and the last time step in the input subsequence. 
The error is backpropagated to update the filter weights. This process is repeated 
for each subsequence until the training data is exhausted, which equals one epoch. 
To speed up the training, TENET employs a mini-batch training approach and trains 
the model for multiple epochs. At the end of each epoch, the model is evaluated 
using the unseen validation data. Additionally, TENET employs an early stopping 
mechanism to prevent the model from overfitting. The details related to the model 
hyperparameters are discussed later in section IV-A. 

3.3 Model Testing 

3.3.1 Attack Model 

This subsection details various attack scenarios considered by TENET [29] frame-
work. They assume that the attacker has access to the in-vehicle network and can 
alter signal values and network parameters at any instance of the vehicle operation. 
Based on these assumptions TENET framework attempts to detect the following 
complex and commonly observed attack scenarios in the in-vehicle network: 

1. Plateau attack: This is an attack scenario in which the attacker sets a constant 
value for one or more signals over the attack interval. This attack is difficult to 
detect, especially when the set constant value is close to the true signal value. 

2. Playback attack: In this attack, the attacker uses previously observed sequences 
of signal values and attempts to replay them again at a later time to trick the 
ADS. If the ADS is not trained to understand patterns in the transmitted message 
sequence, it will fail to detect these types of advanced attacks. 

3. Continuous attack: This is a scenario in which the attacker gradually overwrites 
the true signal value. The attacker then eventually will reach the target value 
without being detected by most ADS frameworks. These attacks are difficult to 
detect and require a robust ADS. 

4. Suppress attack: This type of attack involves the attacker attempting to suppress 
a signal value by either disabling the ECU or deactivating the communication 
controller, effectively resulting in no message being transmitted. It is challenging 
to detect short bursts of these attacks as they could be confused for a missing or 
delayed message.
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3.3.2 Evaluation Phase 

In the evaluation phase, the trained TCNA network along with a detection classifier 
is employed to efficiently detect in-vehicle network attacks at runtime. Due to 
the high frequency of messages in the in-vehicle network, there is a need for a 
lightweight detection classifier that can quickly classify messages while maintaining 
high detection accuracy and low overhead. TENET uses a categorical variable 
decision tree-based classifier to detect between normal and attack samples (binary 
classification) due to their speed, precision, and simpler nature. A decision tree 
begins with a single node (root node), which then branches into various outcomes. 
Each of these outcomes results in the formation of additional nodes called branch 
nodes. Each branch node branches off into other possibilities before ending in a leaf 
node, giving the structure a treelike appearance. During training, the decision tree 
algorithm creates the tree structure by determining the set of rules in each branch 
node based on its input. During testing, the decision tree takes the input data and 
traverses the tree structure until it reaches a leaf node. The evaluation phase starts 
by dividing the test data (attacks samples included) into two parts: (i) calibration 
data, and (ii) evaluation data. Only the calibration data is fed to the trained TCNA 
network in the first stage, to generate the predicted sequences. Then for each signal 
in every message, a divergence score (DS) is calculated using (3): 

.DSm
i (t) =

(
Ŝm

i (t) − Sm
i (t + 1)

)
∀ i ∈ [ 1, Nm] ,m ∈ [ 1,M] (3) 

where m denotes the mth message sample and M denotes the total number of
message samples, i denotes the ith signal of themthmessage sample and Nm denotes
the total number of signals in the mth message, t represents the current time step,
.Ŝm

i (t) denotes the ith predicted signal value of the mth message at time step t, and 
.Sm

i (t + 1) denotes the true ith signal value of the mth message sample at time step 
t + 1. 

The DS is higher during an attack because the TCNA model is trained on the no-
attack data and fails to accurately predict the signal values in the event of an attack. 
The sensitiveness of DS to attacks makes it a good candidate for the input to our 
detection classifier. Furthermore, the DS vector is created by staking the signal level 
DS for each message sample. Therefore, the decision tree classifier is trained using 
the DS vector as input to learn the distribution of both no-attack and attack samples. 
To assess the performance of the TENET framework, the unseen evaluation data 
with both attack and no-attack samples is used. 

4 Experimental Setup 

In this section, we discuss different experiments that were conducted to evaluate 
the effectiveness of the TENET [29] framework. Moreover, TENET is compared
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against three state-of-the-art prior works on automotive ADS: RN [16], INDRA 
[21], and HAbAD [22], which collectively cover a wide range of sequence modeling 
architectures for anomaly detection. RN [16] employs vanilla RNNs to increase 
the dimensionality of input signal values and tries to reconstruct the input signal 
at the output by minimizing MSE. The trained RN model scans continuously 
for large reconstruction errors at runtime to detect anomalies over in-vehicle 
networks. HAbAD [22] detects anomalies in real-time embedded systems using 
an LSTM-based autoencoder model with attention. This model tries to reduce the 
MSE reconstruction loss by replicating the input message signal at the output. 
HAbAD combines a kernel density estimator (KDE) and k-nearest neighbors (KNN) 
algorithm and detects anomalies in a supervised fashion. Finally, INDRA [21] 
employs a GRU-based autoencoder that minimizes MSE loss by reconstructing 
input sequences at the output. INDRA uses a pre-computed static threshold to 
flag anomalous messages at runtime. The comparisons of TENET with the above-
mentioned ADS are presented in subsections IV-B and IV-C. 

TENET adopts an open-source CAN message dataset developed by ETAS 
and Robert Bosch GmbH [17] to train their proposed TCNA network, and the 
comparison works. The dataset contains a variety of CAN messages with multiple 
signals that were modeled after real-world vehicular network data. Furthermore, 
the dataset includes a separate training dataset that has attack-free CAN messages 
and a labeled testing dataset with different types of attacks. For both training and 
validation of the model, TENET uses the training dataset from [17] without any 
attack scenarios in an unsupervised manner. The proposed TENET framework and 
all comparison works are tested by modeling various real-world attacks (discussed 
in section III-C.1) using the test dataset in [17]. It is essential to highlight that 
TENET can be easily adapted to other in-vehicle network protocols such as Flexray 
and Ethernet, as it relies only on the message payload information. 

PyTorch 1.8 was used to model and train various machine learning models, 
including TENET and the comparison works. TENET framework uses 85% of data 
for training and the remaining 15% for validation. The TENET framework was 
trained for 200 epochs with an early stopping mechanism that constantly monitors 
the validation loss after each epoch. The training is terminated if no improvement 
in validation loss is observed in the past 10 (patience) epochs. TENET uses MSE to 
compute the prediction error and the ADAM optimizer with a learning rate of 1e-4. 
TENET employs a rolling window-based approach (discussed in section III-B) with 
a batch size of 256 and a subsequence length of 64. The authors used a scikit-learn 
library-based decision tree classifier with the gini criterion, and best splitter to detect 
anomalies based on the divergence score. 

The proposed TENET framework classifies a message as a true positive (TP) only 
if the model detects an actual attack as an anomalous message. A true negative (TN) 
is when a normal message is detected as a no-anomalous message. A false positive 
(FP) occurs when the model misinterprets a normal message as an anomalous 
message. False negative (FN) occurs when the model fails to detect an actual 
anomalous message as an anomaly. Using these definitions, the TENET framework 
is evaluated based on four different performance metrics:
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(i) Detection Accuracy: this metric measures ADS ability to detect an anomaly 
correctly, as defined below: 

.Detection accuracy = T P + T N

T P + FP + T N + FN
(4) 

(ii) Receiver Operating Characteristic (ROC) curve with area under the curve 
(AUC): this metric quantifies the classifier’s performance as the area under 
the curve in a plot between the true positive rate (TPR) and false positive rate 
(FPR): 

.T PR = T P

T P + FN
FPR = FP

FP + T N
(5) 

(iii) False Negative Rate (FNR): this metric measures the probability that a TP will 
be missed by the model (a lower value is better): 

.FNR = FN

FN + T P
(6) 

and (iv) Mathews Correlation Coefficient (MCC): this metric determines an accurate
evaluation of the model performance while working with imbalanced datasets, as
defined below:

.MCC = (T P ∗ T N) − (FP ∗ FN)√
(T P + FP) (T P + FN) (T N + FP) (T N + FN)

(7) 

Another widely used metric in the literature is the F-1 score, which is the
harmonic mean of precision and recall. However, the F-1 score fails to represent
the model’s true performance because both precision and recall do not include the
true negatives in their computation. Unlike the F-1 score metric, the MCC metric
considers all the cells of the confusion matrix, thus providing a much more accurate
evaluation of the frameworks. Hence, TENET replaces the F-1 score with MCC as
a performance evaluation metric.

A. Receptive Field Length Sensitivity Analysis 

In the first experiment, the performance of the proposed TCNA architecture is 
compared with four different receptive field lengths while retaining other hyperpa-
rameters. This analysis is conducted to evaluate whether very long receptive lengths 
can help better understand normal system behavior. All the model variants were 
evaluated based on their performance on two training metrics, (i) average training 
loss and (ii) average validation loss. Lastly, the best model is selected and used for 
further comparisons. The average training loss value is the difference between the 
average loss of predicted and observed behavior of each iteration in the training data. 
The average validation loss, on the other hand, represents the average loss between
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Table 1 TCNA variants with 
different receptive field 
lengths 

Receptive field lengths 
16 32 64 128 

Average training loss 4.1e-4 3e-4 2.5e-4 6.8e-4 
Average validation loss 5.5e-4 4.3e-4 2.9e-4 9.3e-4 

the predicted behavior and the observed behavior of each iteration in the validation 
data. 

Table 1 represents the average training and validation loss of the three variants 
of TCNA architecture of the TENET framework. From the table, it can be observed 
that a receptive length of 64 has the lowest average training and validation loss. 
Therefore, a receptive field length of 64 was selected for the proposed TCNA 
architecture, which is twice the maximum receptive field length presented in the 
comparison works (sequence length of 32 in [22]). This long receptive field length 
enables the TCNA architecture to effectively learn very long-term dependencies 
in the input time series data and allows it to better understand the normal vehicle 
operating behavior. 

B. Prior Work Comparison 

In this subsection, a comparison of TENET [29] framework with the state-of-the-art 
ADS works RN [16], INDRA [21], and HAbAD [22] is presented. The comparison 
results on the metrics discussed in subsection C.1 are as shown in Fig. 3. 

TENET [29] outperforms all comparison works in all four metrics under various 
attack scenarios, as shown in Fig. 3a–d. Table 2 summarizes the average relative 
percentage improvement of TENET over the comparison works for all attack 
scenarios. In comparison to the best performing prior work (INDRA), TENET 
improves detection accuracy by 3.32%, ROC-AUC by 17.25% for playback attacks 
(as it is the most difficult attack to detect), MMC by 19.14%, and FNR by 32.70%. 

In summary, the proposed TENET framework with a customized TCNA network 
outperforms all previous recurrent architectures inclusive and not inclusive of 
attention mechanisms due to its ability to capture very-long term dependencies in 
time-series data. Furthermore, the attention mechanism within the TCNA helps to 
improve the quality of the outputs of the TRB thereby enabling efficient learning of 
very-long term dependencies. Thus, the proposed TCNA network with a decision 
tree classifier presents a promising anomaly detection framework. 

C. Memory Overhead and Latency Analysis 

Lastly, to understand the inference and latency overhead, different IDS frameworks 
are analyzed in this subsection. Table 3 shows the memory footprint, model 
parameters, and inference timings of TENET and other ADS comparison works. 
Since automotive ECUs have limited resources, the ADS models must not interfere 
with the normal operation of safety-critical applications. All the results were 
obtained by deploying the ADS models on an NVIDIA Jetson TX2 with dual-core 
ARM Cortex-A57 CPUs, which have specifications similar to real-world ECUs.
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Fig. 3 Comparison of (a) detection accuracy, (b) ROC-AUC for playback attack, (c) MCC, and 
(d) FNR  for  TENET [29] and other comparison ADS works
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Table 2 Relative % improvement of TENET vs. other ADS 

Prior ADS Works Detection accuracy ROC-AUC MCC FNR 

INDRA [23] 3.32 17.25 19.14 32.70 
HABAD [24] 9.07 26.50 49.26 44.05 
RN [17] 9.48 37.25 64.3 69.47 

Table 3 Memory and latency analysis 

ADS framework Memory footprint (KB) Model parameters Inference time (ms) 

TENET [29] 59.62 6064 250.24 
RN [16] 7.2 1300 412.50 
INDRA [21] 453.8 112900 482.10 
HAbAD [22] 261.63 64484 1370.10 

Except for RN [16], TENET [29] has the second lowest number of model 
parameters and memory footprint of all the comparison works. Even though RN 
has the fewest model parameters and the smallest memory footprint, it fails to 
effectively capture the temporal dependencies between messages, resulting in poor 
performance, as shown in Fig. 3a–d. TENET reduces the memory footprint by 
86.86% and 77.21% respectively, and the number of trainable model parameters 
by 94.62% and 90.59% compared to INDRA and HAbAD. TENET is able to 
attain this higher performance with significantly fewer model parameters due to 
the fewer filters used by each DCC layer in the TCNA network. The attention 
block in TCNA improves the quality of the outputs of each TRB, thus obliviating 
the need for additional filters. Furthermore, compared to all comparison works, 
TENET has the lowest inference time with an average reduction of 56.43%. TENET 
achieves faster inferencing rates, unlike recurrent architectures, because TENET 
employs CNNs to process multiple subsequences in parallel, thereby significantly 
reducing the inference time. As a result, TENET can achieve superior performance 
in automotive platforms across a variety of attack scenarios with minimal memory 
and computational overhead. 

5 Conclusion 

In this chapter, a novel anomaly detection framework called TENET [29] for auto-
motive cyber-physical systems based on Temporal Convolutional Neural Attention 
(TCNA) networks was presented. The TENET framework introduces a metric called 
the divergence score (DS), which measures the deviation of the predicted signal 
value from the true signal value. Moreover, the TENET framework is then compared 
with best-known prior works that employ a variety of sequence model architectures 
for anomaly detection. These promising results indicate a compelling potential for 
using TENET for anomaly detection in emerging automotive platforms.
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Physical Layer Intrusion Detection and 
Localization on CAN Bus 

Pal-Stefan Murvay, Adriana Berdich, and Bogdan Groza 

1 Introduction 

While concerns on vehicle cybersecurity were raised as early as 2004 [32], more 
recent demonstrations regarding security issues and their consequences coming 
from comprehensive security analyses of modern vehicles [2, 17, 22],  led to an  
increased research interest in this area. Many of the identified issues come from the 
use of in-vehicle communication protocols which lack security mechanisms. One 
such protocol is the Controller Area Network (CAN) [10] which is still the most 
widely employed protocol that links Electronic Control Units (ECUs) even after 
more than three decades since its introduction. To address these issues researchers 
have focused on two main lines of work. A consistent body of works look at securing 
CAN communication by introducing cryptographic authentication or related mech-
anisms [8], while, more recently, many works are focusing on designing intrusion 
detection systems (IDS) for CAN. Reactions from the automotive industry sector 
and international organizations are also visible through their efforts in standardising 
various aspects related to vehicle cybersecurity [1, 12, 31]. 

As stated, the development of intrusion detection systems for CAN is a research 
topic that attracted considerable interest in the recent years. While many of the 
existing proposals adopt statistical tests and machine learning mechanisms, the 
various lines of work that focus on this topic generally adopt one of two approaches 
when it comes to sourcing data employed in the detection process. On one hand we 
have systems which use CAN traffic-related data (e.g., frame content, periodicity or 
arrival timing) that can be obtained at the application layer, from the CAN controller. 
Since in-vehicle CAN communication is often based on proprietary protocols which 
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are not made public, intrusion detection systems that fall into this category generally 
attempt to extract meaningful behavioral data from captured CAN traces and use it 
to detect potential misuse [19]. Some works even go further and attempt to reverse 
engineer CAN frames in an attempt to extract information on signals encoded in 
the payload [20]. On the other hand, there are mechanisms that employ physical 
layer characteristics (e.g., voltage levels, propagation delays, signal rise/fall times) 
related to CAN communication. They rely on the well known fact that minute, 
uncontrollable, differences in the production process of electronic circuits introduce 
unique characteristics in their behavior. Therefore, this uniqueness in the signalling 
behavior could be used to identify transmitters. 

In this chapter we focus on the former approach and discuss two approaches 
for intruder detection in CAN networks. The first is based on the use of timing 
characteristics of the CAN bus which influences signal propagation. Since detection 
is only the first step in thwarting potential attacks, we also cover the use of signal 
propagation delays for intruder localization in CAN-based networks. The second 
approach discussed here is based on voltage characteristics of CAN signals and 
makes use of machine learning algorithms to improve node identification accuracy. 

The rest of this chapter is organized as follows. In Sect. 2 we provide some 
background on CAN, voltage based intrusion detection and voltage propagation 
delays. Then in Sect. 3 we discuss localization methods that use signal propagation 
time to localize ECUs on the bus. Section 4 contains experimental results regarding 
ECU identification from physical layer data with the help of machine learning 
algorithms. Finally, Sect. 5 contains the conclusion of this chapter. 

2 Background 

In this section we provide some background on the CAN bus and its physical layer 
signalling. We also discuss some related works that use voltage to detect intrusions 
on the bus. 

2.1 The CAN Protocol 

The CAN protocol was designed by Bosch as a solution for reliable communication 
for in-vehicle networks. Version 2.0 of the CAN specification [27], released in 1999, 
was later standardised as ISO 11898 and describes the data-link [10] and physical 
[11] layers which make up the CAN protocol. The data-link layer is implemented 
by the CAN controller, that can be used as a stand-alone chip or as a module 
integrated in a microcontroller (as suggested in Fig. 1), and is responsible for 
medium access, framing and error handling. The standard CAN frame, depicted 
in Fig. 2, can accommodate a maximum payload of 8 bytes. Larger payloads, of 
up to 64 bytes, can be transmitted using CAN-FD (CAN with Flexible Data-rate)
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Fig. 1 CAN bus implemented with nodes using stand-alone controller chips (a) and controllers 
integrated in the host microcontroller (b) 

Fig. 2 Standard CAN frame format 

a more recent extension of the original CAN protocol [10]. Each frame includes 
an identifier (ID) field which is usually an indicative of the frame content type or 
sender. While specific ID values that can be transmitted by each network node are 
defined at design time, the CAN protocol offers no mechanism for preventing ID 
misuse. 

The standard high-speed CAN physical layer supports bit rates of up to 1 
Mbit/s (500 kbit/s is usually used for in-vehicle communication) while its newer 
embodiment CAN-FD is able to deliver bit rates of up to 8 Mbit/s (the higher bit 
rate is only used for payload transmission). The CAN physical layer is implemented 
by the CAN transceiver which connects to the CAN High and CAN Low lines that 
form a two wire differential bus, as illustrated in Fig. 1. The bus is terminated at 
the ends with 120 . � resistors (matching the characteristic impedance of the bus) 
to suppress signal reflections. The CAN physical layer specification [11] defines 
ranges for the two differential voltage (.Vdiff = VCAN_H − VCAN_L) levels used to  
encode logical information as shown in Fig. 3. The two logical bus states, called 
dominant and recessive, are used to implement a wired-AND signalling behavior. 
That is, a dominant state is set when at least one transceiver is actively driving the 
bus, while the recessive state is obtained when none of the network nodes is driving



402 P.-S. Murvay et al.

Fig. 3 Differential voltage ranges defined for the dominant and recessive states, according to ISO 
11898-2 

the bus. As a result, a logical “0” bit is encoded as a dominant state, while a logical 
“1” represents a recessive state. 

While a CAN frame represents a successful transmission from a single CAN 
node, other nodes are allowed to actively drive the bus during the arbitration and 
acknowledgment fields (indicated in Fig. 2). The arbitration field is dedicated to the 
arbitration mechanism implemented to resolve contention (i.e. the case when two or 
more nodes try to transmit a CAN frame at the same time). During the arbitration 
field, nodes competing over bus access make simultaneous bit by bit transmissions 
and monitor resulting values on the bus. A node stops when it transmits a recessive 
bit and reads back a dominant value. Consequently, transmission priorities can be 
set based on the ID field, with lower values indicating higher priorities. As its name 
suggests, the acknowledgment (ACK) bit is used by receivers to acknowledge the 
successful reception of a CAN frame. Transmitters send a recessive value during 
this bit while all receivers are expected to transmit a dominant value if they were 
successful in correctly decoding the received frame. 

2.2 Voltage-Based Intrusion Detection 

CAN intrusion detection mechanisms based on physical layer voltages rely on 
features that can be extracted from the characteristics of physical signals gen-
erated by CAN nodes. The signalling behavior of CAN nodes display unique 
characteristics determined by minute, uncontrollable, differences in the production 
process of electronic components involved (e.g., transceivers and power supply 
circuitry). Table 1 lists works that use various physical layer features for detecting 
intrusions on CAN. While some use simple threshold comparison or for matching 
new transmission to existing fingerprints, other works use various machine learning 
algorithm to achieve classification. A more recently emerging body of works, which
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Table 1 Comparison of existing proposals for CAN intrusion detection mechanisms based on the 
physical layer 

Paper Year Sampling rate CAN bit rate (max) Methodology 

Murvay et al. [23] 2014 2 GS/s 125 kbps Statistical distributions 

Cho et al. [4] 2017 50 kS/s 500 kbps Machine learning 

Choi et al. [5] 2018 2.5 GS/s 500 kbps Machine learning 

Choi et al. [6] 2018 2.5 GS/s 500 kbps Machine learning 

Kneib et al. [13] 2018 20 MS/s 500 kbps Machine learning 

Foruhandeh et al. [7] 2019 50 MS/s 500 kbpsa Statistical distributions 

Rumez et al. [28] 2019 . ≥2GS/sb Any Statistical distributions 

Kneib et al. [15] 2020 2 MS/s 500 kbps Machine learning 

Murvay et al. [24] 2020 250 MS/s Any Threshold comparison 

Groza et al. [9] 2021 250 MS/s Any Signal slope 
a Extracted from the associated dataset [7] 
b Estimated based on paper details 

is also discussed in the next section, i.e., [24] and [9], uses physical signal to locate 
ECUs on the bus. 

The dominant voltage level was the first among the characteristics used for 
uniquely identifying CAN transmitters and is still the most commonly employed. 
The idea was introduced in [23], which applies basic signal processing tools 
(i.e., mean squared error, convolution and mean-value) to extract unique sender 
characteristics from samples captured at the start of the arbitration field of CAN 
frames. The detection accuracy of this approach is later improved by Choi et al. [5] 
which apply classification algorithms on a set of 17 features extracted from samples 
obtained during the ID field of extended CAN frames (i.e., CAN data frames that 
use a 29 bit ID field instead of the 11 bit found in standard CAN frames). Another 
line of work by Choi et al. [6] brings further improvements by considering not 
only the dominant level voltage for feature extraction but also the rising and falling 
edges generated by transitions between the recessive and dominant state as these can 
contain transients with a potential to reveal additional unique transmitter features. 

The first works on CAN physical layer intrusion detection did not consider 
which of the frame fields are more appropriate for sampling. As explained in the 
previous section, CAN signals generated during the arbitration field can be the 
result of more than one node actively driving the bus which affects the resulting 
dominant voltage levels. Figure 4a illustrates three dominant bits generated by the 
simultaneous transmissions of up to three transceiver circuits all from MC33742 
system basis chips. While the resulting dominant bus value increases with each 
additional transceiver driving the bus (as indicated in Fig. 4b), the value is always 
correctly decoded by receiving transceivers (i.e., CAN Rx pin value) as long as 
the bus voltage levels stay within the specified ranges (Fig. 3). Therefore, even 
under normal CAN bus usage conditions, samples acquired during the arbitration 
field might not be representative for the characteristics of a single node while the 
dominant bit in the ACK field is generated by receiver nodes. Such aspects are
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Fig. 4 Influence of simultaneous transmissions on bus voltage levels: (a) Example of bus voltage 
and received bit values for 1–3 simultaneous CAN transmissions of dominant bits, (b) Effect of the 
number of transceivers actively driving the bus line at the same time on dominant voltage level 

first considered in Viden [4], a first practical implementation of a physical layer 
IDS using a sampling rate of 50 kS/s which is very low in contrast with other 
solutions that require sampling rates in the order of Ms/s or GS/s. In Viden the ACK 
field thresholds are isolated when generating ID-based dominant voltage profiles, 
however, the arbitration field can still be used as a sampling area. 

Scission [13] is the first line of work to carefully consider the frame fields to 
be used for reliable transmitter-related feature extraction. By using samples around 
the rising and falling edges of dominant bits and simple machine learning support, 
Scission is able to achieve better detection accuracy than previous works. Kneib et 
al. improve on their initial approach and propose EASI [15] reducing the sample rate
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requirements to 2 MS/s which should be feasible for analog-to-digital converters 
in common automotive-grade microcontrollers with the use of random interleaved 
sampling. 

A completely different approach and a first step towards location based intrusion 
detection is presented in the work of Rumez et al. [28]. The authors use time domain 
reflectometry (TDR) for measuring the network response to a pulse sent by the IDS. 
The pulse response is an indicative of the network structure (i.e., network nodes and 
their location on the bus) and is compared to prerecorded reference responses to 
determine potential changes. This approach is able to detect when nodes are added 
or removed from the bus and can correlate the response signal with network node 
locations. On the downside, using TDR will not be effective in detecting existing 
network nodes that were compromised. 

2.3 Signal Propagation Delays 

As they propagate along the bus, signals generated by CAN nodes travel through 
a non-ideal medium which introduces propagation delays. Sources for such delays 
can be found in the characteristics of the physical transmission medium as well as in 
local alterations of the transmission medium characteristic behavior caused by the 
nodes connected to the bus. 

A transmission line is characterised by a specific propagation speed which is 
the main responsible for propagation delays. A common way of approximating the 
line delay is by using the distributed model of the transmission line. As illustrated 
in Fig. 5, transmission lines can be modeled as an infinite number of elementary 
line components connected in series. This is the model of a lossy transmission 
line in which each elementary component represents a line segment of infinitely 
small length with its behavior characterised by a series resistance R, a series 
inductance L, a parallel capacitance C and a conductance G, caused by imperfect 
insulation between line conductors. The values of these parameters are defined 
per line unit length and can be used to calculate the complex characteristic line 
propagation constant .γ (ω) = √

(R + jωL)(G + jωC) = α(ω) + jβ(ω). Here  
.α(ω) represents the line attenuation factor and .β(ω) represents the propagation 
coefficient of the transmission line and are both dependent on frequency (.ω = 2πf ). 
In practice, the lossless line model is used more often and it is obtained by 
considering that the conductance G and line resistance R are negligibly small. 
These assumptions can be safely made in the case of CAN lines based on the 

Fig. 5 Generic model of a lossy transmission line
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Fig. 6 Equivalent model of a CAN bus with receiver and transmitter nodes 

fact that G is very small in comparison to the .ωC component, while R is in the 
order of tens of .m�/m (.70m�/m according to ISO 11898-2 [11] or  . 25m�/m

according to SAE J1939 [29]). This simplifies the propagation constant, making 
it purely imaginary .γ (ω) = jω

√
LC which, in this form, only represents the 

propagation coefficient. As a result, the characteristic propagation delay of the line 
can be calculated as .tpd = √

LC (s/m). According to ISO11898-2 [11] the nominal 
value for the propagation delay along a high speed CAN bus transmission medium 
is 5 ns/m (considering a homogeneous transmission medium). This offers a good 
approximation of propagation delay for a section of CAN bus not considering the 
presence of loads. However, for a better approximation of delays the loads along the 
bus must also be considered. 

In most cases, in transmission line models, loads (i.e., bus nodes participating in 
communication) are considered to be uniformly distributed along the transmission 
line. The resistive and capacitive loads are factored into calculations as additional 
distributed components per line unit length. However, when looking at in-vehicle 
networks, and the CAN bus in particular, there is considerable variability in the 
function and manufacturer of nodes sharing the same network which translates into 
the variability of bus interface circuitry. Moreover, bus nodes are not uniformly 
distributed along the line since their physical location is usually restricted to specific 
areas inside the vehicle. 

Each CAN node connected to the bus behaves like a load connected in parallel to 
the bus lines. In addition, sender nodes act as voltage sources during transmission 
of dominant bits. The load represented by each CAN node has a resistive and a 
capacitive component. The resistive component mainly consists of the transceiver 
differential input resistance .Rdiff which is expected to be in the 10–100 k. � interval 
range according to the CAN specification. The capacitive load mainly consists of 
the transceiver internal differential capacitance .Cdiff which is expected to have a 
nominal value of 10pF [11] while the node is in the recessive state but should 
not exceed 50pF (measured with the node disconnected from the bus) [29]. The 
stub and connector used to link the node to the bus can also add to the capacitive 
load but this component is usually negligible. With this in mind, we can define the 
equivalent model of a loaded CAN bus as illustrated in Fig. 6, where . RT are the 
bus termination resistors, each bus line segment connecting nodes is represented as 
a lossless transmission line component and nodes are represented as a parallel RC 
load, with an additional voltage source added as a component of a transmitting node. 

To estimate the propagation delay based on this model, the work presented in [24] 
considers the loads caused by CAN network nodes to be mainly capacitive due to the
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reduced effect of the resistive load on propagation delays. Based on this assumption, 
the propagation delay is estimated as the sum of delays for each bus segment, where 
a bus segment is considered to span the distance between two nodes or between 
a node and the bus end. The differential capacitance of the node included in each 
segment is considered to be distributed along that line segment and factored in the 
calculations along with the characteristic line capacitance. Therefore, the estimated 
propagation delay on a segment of CAN bus can be calculated as 

.tpd =
n∑

i=1

li

√
L(C + Cdiff i / li), (1) 

where L and C are the characteristic line inductance and capacitance, .Cdiff i is the 
differential capacitance of the CAN node included in segment i and . li is the length 
of the ith segment. 

3 Localization Methods Based on Physical Layer Signals 

In this section we discuss two intrusion detection mechanisms based on the 
differential propagation delays of the signals recorded at the physical layer which 
can be used to estimate the location of the transmitter node. 

3.1 Transmitter Identification by Propagation Delays 

Based on the loaded CAN bus model discussed in the previous section it is evident 
that the propagation delays of CAN signals, as viewed from a fixed observation 
point, are directly influenced by the transmitter location on the bus. This suggests 
that the propagation delay of CAN signals could be used to identify transmitters 
and estimate their location on the bus. However, the problem comes down to how 
can these propagation delays be recorded. Using a single, fixed, observation point 
on the bus for measuring propagation delays would require additional information 
regarding the actual transmission time of the message which can only be recorded 
at the transmitter node location. To obtain this information from sender nodes, 
the receiver node, in charge with delay measurements, needs to be synchronized 
with the transmitters and trust the timing information they provide. Moreover, there 
should also be a way to determine if the transmission came from the left or right-
hand side of the bus relative to the receiver location. 

To alleviate these problems, the authors of [24] and [9] proposed a novel intrusion 
detection mechanism based on signal propagation delays that does not require 
knowledge about the message transmission time which also eliminates the need for 
time synchronization between nodes. They achieve this by measuring the differential
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Fig. 7 Concept for recording differential propagation delays on a CAN bus 

Fig. 8 Difference in dominant bit arrival time at CAN bus ends depending on transmitter location 

propagation time, that is, the difference between the time required for a signal to 
reach one end of the bus and the time required for it to reach the other end. This 
requires monitoring CAN signals at the two ends of the CAN bus (considering 
the network is based on a bus topology) and recording signal arrival time at each 
end, as suggested in Fig. 7. The differential propagation time can then be computed 
as .δ = t

Ni

right − t
Ni

lef t , i = 1, n, where .tNi

right and .t
Ni

lef t are the arrival times of the 
signal generated by node . Ni at the right and left end of the bus respectively. This is 
equivalent to measuring the propagation time on the two signal propagation paths 
relative to the transmission point and calculating .δ = tpdright − tpdleft . 

Like propagation delays, the differential propagation time is directly influenced 
by the location of the transmitter node on the bus. The absolute value of . δ increases 
as the transmission node location is farther away from the point which represents 
the bus center of mass with respect to propagation delay. The sign of the differential 
propagation time indicates the bus end closer to the node location (i.e., a negative 
value suggests a transmitter closer to the right bus end while a positive value 
indicates a transmitter closer to the left bus end). 

The relation between differential propagation time and transmitters’ location on 
the bus is illustrated by Fig. 8 which shows dominant bit arrival times recorded on 
the CAN-High line at the two bus ends of a 5 m long transmission line having 10 
nodes distributed unevenly along the CAN bus. As expected the difference in signal
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arrival time is close to zero for transmitter located toward the center of the bus and 
it increases as senders are located closer to either end of the bus. 

3.2 Signal Acquisition 

For intrusion detection based on voltage-related signal characteristics, samples must 
be recorded via a direct connection to the CAN bus physical layer. Since CAN uses 
differential signalling for increased noise immunity, it would be preferable to sample 
both the CAN-High and CAN-Low lines and use the resulting differential signal. 
Existing physical layer CAN IDS proposals use either the differential CAN signal 
for sampling or only one of the two CAN bus lines. 

As discussed in the previous section an intrusion detection mechanism based on 
differential propagation delays requires the ability to sample physical layer signals 
as they are seen at the bus ends. This involves connecting the IDS sampling circuitry 
to the physical bus lines at both of the bus ends. Sampling the differential CAN 
signal would require a two wire connection to each bus end which increases wiring 
complexity. TIDAL-CAN [24] and CAN-SQUARE [9] proved to be efficient in 
extracting the differential propagation delay using a single CAN wire connection 
at each bus end (either CAN-High or CAN-Low). An alternative would be to 
use extra circuitry that connects to the two bus lines and outputs the differential 
signal. For example, PLI-TDC [25], a time-based physical layer intrusion detection 
mechanism, uses samples from the Rx pin of a transceiver connected to the bus for 
time measurements instead of directly sampling the bus lines. This approach would 
only be appropriate for timing based intrusion detection mechanisms since physical 
layer voltage characteristics are not transmitted through the transceiver. 

Many of the more recent voltage-based IDSs use rising and falling edges as a 
main target area for sampling due to the presence of transients that may reveal more 
unique features. The use of rising or falling edges is also required for measuring 
differences in signal arrival times at the bus ends since they provide clear indication 
for the start of a bit. Therefore, the signal areas targeted by sampling should be 
recessive-to-dominant and dominant-to-recessive transitions. Moreover, sampled 
signals must be the result of a single target node actively driving the bus. As 
discussed in previous sections, it is expected to have multiple nodes transmitting 
during the arbitration and acknowledge fields of a CAN frame. Therefore, the CAN 
frame areas targeted for sampling should be the control, data and CRC fields. In 
addition to the physical layer signal, the IDS also needs to capture the actual frame 
content. This is required for extracting information needed to identify the expected 
frame sender which is compared against the actual transmitter as inferred by the 
IDS. 

The datasets used in the intrusion detection mechanisms discussed in this section 
were obtained from experimental models of a CAN bus. A PicoScope device from 
the 5000 series, along with the associated PC application, were used for sample 
acquisition.
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3.3 The TIDAL-CAN Methodology 

TIDAL-CAN [24] introduces the concept of using differential propagation delays 
for intrusion detection and transmitter location estimation. By using the TIDAL-
CAN mechanism it is possible to detect and distinguish between various attack 
strategies, i.e., compromised nodes, replaced nodes and node insertion. Sender 
location estimation is possible with an accuracy of several tens of centimeters, 
depending on the attack strategy employed. The CAN-TIDAL methodology is 
evaluated on an experimental setup comprising a 5m CAN bus with 10 nodes as 
illustrated in Fig. 9 represented by up to 5 different device types. 

Differential delays are measured from the rising/falling edges of the signals 
captured at the ends of the bus. Since the shapes of the rising/falling edges are not 
ideal, a threshold is used to specify the voltage level at which the differential delay . δ

should be measured. A common threshold is established for all transmitters so that 
it assures the best separation accuracy of differential delays from known network 
nodes. The differential delays of known network nodes are prerecorded in a training 
phase and associated with frame IDs which are usually uniquely assigned to specific 
senders. Data recorded in the training phase is then used during normal run-time to 
identify transmitter nodes. Failure to correlate a newly recorded differential delay 
with prerecorded values expected for a specific frame triggers an intrusion alarm. 
This will happen when a compromised node attempts to transmit a frame associated 
with a different node as well as when the network structure is altered by removing 
or inserting a node since this will alter the characteristic propagation delay behavior 
of the network which is reflected in the propagation delays of other networks nodes. 

Sender location estimation is made based on differential delays using simple 
linear interpolation considering two nodes with known locations. While identifying 
transmitter location is straightforward for attacks that do not lead to the alteration 
of the network, attacks involving node replacement or node insertion pose more 
challenges. This is caused by the fact that altering the network structure results in 
changes in the characteristic propagation behavior of signals sent along the bus. 
As a result, differential delays, including those produced by legit nodes, will be 
affected. Therefore, locating transmitters in this case cannot rely on prerecorded 
fingerprints. Node legitimacy must be reassessed at the bus level in order to allow 
sender location estimation and this requires processing multiple transmissions from 
all network nodes. 

Fig. 9 Node positioning along the experimental bus model employed for evaluating TIDAL-CAN 
and CAN-SQUARE
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3.4 The CAN-SQUARE Methodology 

CAN-SQUARE [9] proposes a simple algorithm that improves on the threshold 
based separation of differential delays that is presented in TIDAL-CAN [24]. 
The separation accuracy is in the range of 10 cm which proves good localization 
accuracy while requiring only elementary arithmetic operations, i.e., additions and 
multiplications of the sampled amplitudes. What is notable about the methodology is 
that it proves resilience against replacement and insertion attacks as well as against 
temperature variations in the range of 0–60 . 

◦C. Previous works on physical layer 
identification of in-vehicle ECUs had a hard time with environmental variations 
under which the fingerprint of each ECU drastically changes. Apparently, the 
propagation time of the signal is far less influenced by environmental changes 
and localization is still sufficiently accurate even when the geometry of the cable 
changes as well when the temperature changes. The authors from [9] present 
experiments with the cable heated in enclosed box or cooled down in a fridge using 
four temperature check points 0, 24, 50 and . 60 ◦C. 

How the methodology works is quite easy to explain. Two sampling points 
.vi, vi+w are selected, separated by a window of size w, and using the sampling 
period . δ multiplied by the size of the window w, the slope of the line that leads 
through the two sampling points is extracted, i.e., 

.s[i] = v[i + w] − v[i]
wδ

(2) 

When the slope exceeds a fixed threshold . τ the point is marked as the start time 
of the bit. The start time of the bit is computed both to the left and right side of the 
bus allowing to extract the exact location of the ECU from which the bit originates 
as: 

.π = (λl − λr)δ

5 × 10−9 (3) 

Here . λl and . λr are the recorded indexes of the sample when the angle s reaches 
threshold . τ at the left and right sides of the bus respectively, . δ is the sampling time 
while .5 × 10−9 is a constant representing the default propagation time of the signal 
(representing the nominal propagation speed on a CAN bus which is 5 ns/m). 

The paper presents two algorithms, the forward-square and backward-square 
algorithms, which parse the signal from the left-to-right or right-to-left respectively 
[9]. The backward algorithm gives slightly better results than the forward algorithm. 
As a suggestive depiction for the accuracy, we graphically show localization results 
in Fig. 10 for the case of ECU replacements in the 10 ECU network configuration 
that is also used in CAN-TIDAL [24]. When replacements are done with identical 
ECUs (dashed-dotted line marked with triangles in Fig. 10) the determined distances 
by the BCQ-SQUARE method generally fluctuate under 1 dm precision. Due to 
impedance changes, when replacements are done with distinct ECUs (dotted line
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Fig. 10 Localization with BCW-SQUARE of the 10 EUCs in case of replacements with identical 
ECUs (blue line) and distinct ECUs (red line): (a) complete view, (b) left side detail, (c) right side 
detail
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marked with stars in Fig. 10) the determined distances by the BCQ-SQUARE 
method may deviate by 2–3 dm but the nodes are still easy to locate. Figure 10b 
and c give a detailed view of the distances at left and right sides of the bus. Notably, 
in case of replacements with distinct ECUs, only a single node out of the 10 nodes, 
i.e., ECU I, appears to be further than its real position, the rest of the 9 ECUs come 
close to their original location. The black line marked with filled circles denotes the 
actual physical position of the ECUs. We also note that in case of replacements with 
distinct ECUs, 6 out of the 10 ECUs were replaced with distinct ECUs, which is 
quite an extreme case and not an usual situation for a real in-vehicle network. For 
more results, in case of ECU insertions as well as temperature changes, we refer the 
reader to the original work [9]. 

4 Machine Learning on Physical Layer Signals 

In this section we present concrete experimental results on ECU identification by 
using physical layer data. The results show that using single voltage features, like 
the maximum or minimum voltages, may help for smaller pools of ECUs but are 
insufficient as the pool becomes larger. In this case traditional machine learning 
algorithms give better results but only neural networks seem to separate between 
samples with excellent accuracy. 

4.1 The ECUPrint Dataset 

A recently published work has released in the public domain a comprehensive 
physical layer dataset, ECUPrint [26] that contains data collected from 10 vehicles, 
i.e., nine passenger vehicles and one heavy-duty vehicle compliant to the J1939 
standard. It is also relevant to note that the ECUPrint paper [26] advocates the 
use of physical fingerprints for forensics purposes, i.e., identification of vehicles 
that may be subject to theft or VIN cloning or the illegal replacement/modification 
of in-vehicle ECUs, an application of physical fingerprints which has not been 
previously considered. The authors propose the use of four features: (1) mean 
voltage, (2) maximum voltage, (3) bit time and (4) plateau time, each of them being 
extracted from isolated bits, i.e., a dominant bit between two recessive bits. The 
paper acknowledges that the use of a single feature out of the four leads to great 
overlaps between ECUs and multiple features should be combined. The use of all 
four features results in a sufficiently good identification of the ECUs with only slight 
overlaps. As we will show later, the use of machine learning algorithms allow an 
identification with a very high accuracy, above 99.9%. 

Each car from the dataset has between 3 and 9 ECUs and each ECU uses distinct 
IDs. For each ID several bits are extracted leading to between 20 and 20,187 sample 
files for each ECU in the dataset. One measurement represents 2000 sampling points
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for the nine passenger cars and 2700 sampling points in case of the measurements 
from the heavy-duty vehicle. This is due to the distinct data-rate of the bus from 
the heavy-duty vehicle. In this work we will use only measurements from the nine 
passenger vehicles which contain a total of 51 ECUs. The number of measurements 
is not equal for each ECU, but for each measurement there are exactly 2000 
sampling points which allow us to use the same architecture for the classification 
algorithms. 

4.2 Results with Traditional Classifiers and Neural Networks 

We evaluate the detection performance based on the ECUPrint dataset for 5 machine 
learning algorithms, i.e., Decision Trees (Tree), Linear Discriminant (LD), K-
Nearest Neighbors (KNN), Support Vector Machines (SVM) and a simple neural 
network (NN) available in the Matlab toolset [21]. A few words on these algorithms 
may be in order. Here is a short description based on the Matlab documentation 
[21]: 

• Decision Trees (Tree). Decision tree is a supervised classification algorithm 
which organizes data as a tree to provide fast and easy to visualize classification 
results. 

• Linear Discriminant (LD). Discriminant analysis is a classification algorithm 
based on the Gaussian distribution. The linear discriminant creates linear bound-
aries between classes. 

• K-Nearest Neighbors (KNN). KNN is a commonly used classifier based on 
distances (in our case Euclidean distances) between the training samples and the 
test samples. 

• Support Vector Machines (SVM). Support Vector Machines is used to train 
binary or multiclass models. SVM is a supervised machine learning algorithm 
commonly used to solve distinct classification problems. Matlab offers support 
for 6 types of SVM classifiers: Linear SVM, Cubic SVM, Quadratic SVM, Fine 
Gaussian SVM, Coarse Gaussian SVM and Medium Gaussian SVM. In this work 
we use the Fine Gaussian SVM classifier, which uses a Gaussian kernel function. 

• Neural Network (NN). The Neural Network (NN) that we use is a simple wide 
neural network available in Matlab. It contains an input layer, one fully connected 
layer with 100 neurons, a rectified linear unit (ReLU) a final fully connected 
layer with 51 outputs (corresponding to the 51 ECUs used in our evaluation) and 
a Softmax function. 

To evaluate the performance of the employed classifiers we used the following 
metrics, which derive from the true positives . TP, false negatives . FN, true negatives 
. TN and the false positives . FP rates: 

1. Accuracy which is computed using the .kfoldLoss classification error using k-fold 
cross validation (for our dataset we used fivefold cross validation)
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. Accuracy = 1 − kfoldLoss,

2. False Acceptance Rate (FAR) and False Rejection Rate (FRR) which give a 
better understanding of the success and failure rate in identifying a node and 
are computed as: 

. FAR = FP

TN + FP
, FRR = FN

TP + FN
,

3. The traditionally used Precision, Recall and F1-score computed as 

. Precision = TP

TP + FP
, Recall = TPR = TP

TP + FN
,

. F1 − score = 2 × precision × recall

precision + recall
.

We evaluated the performance of the 5 machine learning algorithms mentioned 
above using various percentages of the dataset for training and testing. We employ 
the implementation of these classifiers provided in Matlab 2021a. The tests were 
performed on a laptop equipped with an Intel Core i7-9850H processor and 32Gb 
RAM. 

To begin with, we show that the use of two voltage features, i.e., two sampling 
points from a single bit, is insufficient when using machine learning classifiers. 
The authors in [26] already argued that four features (the mean voltage, maximum 
voltage, bit time and plateau time) would be required for such separation. By using 
2 voltage features, the maximum and minimum voltage, the KNN classifiers failed 
at least half of the times when identifying a node, leading to an accuracy of only 
48.21%, mean values for FAR, FRR, precision and recall were 1.06%, 57.29%, 
42.71% and 45.75% respectively, when using 80% of the data for training. In 
Fig. 11 we depict the confusion matrix for KNN when 80% of the data is used for 
training and 20% used for testing in the case of using 2 features, i.e., maximum 
and minimum voltage. The true and the predicted class axis represent the ECU 
classes, with the letter indicating a distinct vehicle and the number denoting a 
particular ECU inside a vehicle, e.g., A1 is ECU1 from car A, B2 is ECU2 for car 
B, etc. The correctly identified ECUs which are marked on the main diagonal and 
misidentifications are highlighted outside the main diagonal. Locally, inside a single 
car, the ECUs may be correctly identified but there are clear overlaps between ECUs 
from different vehicles from the pool of 51 ECUs. The KNN classifier gave better 
results when compared to the rest of the classifiers on these two features alone. Still, 
two voltage features are insufficient for separation. 

We now extend the classifiers over all the 2000 sampling points for each bit 
extracted from the ECUPrint dataset [26]. Firstly we split the dataset from each ECU 
randomly in 20% training data and 80% as testing data and then increase the training 
percentages up to 80% in steps of 20%. The bar charts shown in Fig. 12 depict the
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Fig. 11 Confusion matrix for KNN at 80% training on 2 features (max and min value) for the 51 
ECUs 

FAR obtained when using 20% (a) and 80% (b) as training data for each of the 
51 ECUs while applying all 5 machine learning algorithms selected for evaluation. 
When using 20% of the dataset as training data, the Tree and LD classifiers show 
poor performance, with the FAR reaching 1.3% in case of Tree and 1.4% in case 
of LD. The KNN, SVM and NN exhibit better results. For KNN, the FAR is up 
to 0.046% while in case of SVM, the FAR goes up to 0.05%. In the case of NN 
the results are slightly better in terms of FAR with the values falling in the 0–0.01% 
range. When increasing the training data percentage to 80% the FAR values increase 
for two ECUs in the case of the Tree classifier reaching 0.28% for one of them. 
Improvements can be observed for the rest of the classifiers with the FAR going up 
to 0.006% in the case of NN. 

In Fig. 13 we depict the FRR for 20% (a) and 80% (b) of the dataset used as 
training data. The FRR for the Tree and LD classifiers, when using 20% of the 
dataset for training, is far from acceptable with the FRR reaching 100% for several 
ECUs. Results obtained for KNN, SVM and NN look more promising with a FRR 
of up to 39% in the case of KNN, below 20% in the case of SVM (with the exception 
of one node for which we get a FRR of 62%) and below 10% for NN (except for 
one ECU with a FRR of 37.5%). In the case of 80% of the data used for training,
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Fig. 12 FAR for 20% and 80% training for 51 ECUs. (a) FAR for 20% training and 80% testing. 
(b) FAR for 80% training and 20% testing 

the FRR for the Tree classifier reaches 100% for even more ECUs, while in case 
of LD the results show slight improvements. The KNN and SVM algorithms show 
now considerable improvements with FRR values below 12% with the exception of 
a node that exhibits a FRR of 50%. The use of NN proves to be the most reliable 
with FRRs below 1% at 80% training. 

In Fig. 14a we illustrate the confusion matrix obtained when using NN with 20% 
of the data employed for training. Occasionally, the ECUs may be misidentified, at 
this lower training rate, but this is a rare event in general. To complete the image, in 
Fig. 14b we illustrate the confusion matrix for NN when of 80% of the data is used 
for training and the remaining 20% for testing. In this case misidentifications are
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Fig. 13 FRR for 20% and 80% training for 51 ECUs. (a) FRR for 20% training and 80% testing. 
(b) FRR for 80% training and 20% testing 

very rare, for example C2 is rarely misidentified as D1 and D1 is rarely misidentified 
as B2. Since this identification is based on samples from a single bit and multiple 
bits are available in each frame, the misidentification rate will essentially drop to 0 
when multiple bits are used. 

In Table 2 we summarize as numerical values the results obtained for all metrics, 
i.e., minimum, mean and maximum value of FAR, FRR, precision, recall and F1-
score, for the 5 classifiers when using 20%, 40%, 60% and 80% of the dataset 
for training. The value .NaN means division by zero, i.e., for some ECUs the sum 
between true positive and false negative is zero. It can be easily seen that the results
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Fig. 14 Confusion matrix for NN with (a) 20% and (b) 80% training for the 51 ECUs
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do improve when increasing the training percentage, but not as significantly as one 
would expect, which suggests that a small pool of data should be sufficient. Also the 
KNN, SVM and NN are the classifiers which give the best results with NN clearly 
outperforming the rest with an accuracy over 99.9%. 

5 Discussion and Conclusion 

Physical layer based intrusion detection mechanisms show promising results and, 
as suggested by the results above, neural networks seem to perform much better 
compared to traditional machine learning algorithms at such tasks. But there are 
still some challenges that remain to be addressed before such approaches can be 
included in real-life in-vehicle networks. We now discuss some limitations. The 
first challenge comes from the high sampling rate required by most of the proposed 
approaches and the costs involved by integrating the needed HW in a vehicle. The 
ECUPrint dataset [26] contains data collected at a 500Ms/s sampling rate which 
is available on high-end oscilloscopes but not on regular microcontrollers. While 
some works investigate the use of lower sampling rates [4] or cost-effective HW 
solutions [15] such approaches have yet to be validated as real-life implementation 
inside vehicles. 

Another challenge comes from the effect of environmental factors on physical 
layer characteristics. Temperature is one of the factors known to influence the char-
acteristic signalling behavior of electronic circuits. A follow-up paper investigating 
the robustness of the Scission IDS [14] against environmental factors illustrates 
the importance of considering these elements in the design of physical layer based 
CAN IDSs. The authors consider the effect of temperature variations and improve 
their initial proposal to improve detection accuracy in such circumstances. The 
only methodology that proved surprisingly good resilience against environmental 
changes is the localization methodology from CAN-SQUARE [9]. Another IDs 
proposal entitled SIMPLE [7] accounts for both temperature and voltage variations 
and their effects. To compensate for these effects the authors of SIMPLE implement 
a secure update procedure for node fingerprints. And this leads us to the third 
challenge which is updating fingerprints to account for legit variations in physical 
layer signalling behavior while reliably protecting the IDS from malicious attempts 
at compromising the procedure to evade IDS detection. 

It is no doubt that voltage information can be used to separate between ECUs, but 
having in mind the previous challenges, there is still room for further investigations. 
It is also worth noting that other physical features can be used to fingerprint ECUs. 
For example, clock skews which were commonly used to fingerprint computers 
[16] have been also recently used to fingerprint [3] or map ECUs inside a car [18]. 
Unfortunately, clock skews are very easy to clone [30] by adjusting the local clock 
of the controller, a reason for which clock skews do not seem to be as secure as 
voltage fingerprints.
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Spatiotemporal Information Based 
Intrusion Detection Systems for 
In-Vehicle Networks 

Xiangxue Li, Yue Bao, and Xintian Hou 

1 Introduction 

Modern vehicles become more networked and intelligent, which not only brings 
passengers better driving experiences, but also introduces more attack surfaces. 
Folklore attack surfaces include universal serial bus (USB), Bluetooth, Wi-Fi, cellu-
lar network, and other communication interfaces, as well as software vulnerabilities 
of in-vehicle operating systems [1–6]. For these attack surfaces, there exist complete 
penetration testing methods to making practical exploit [7]. For in-vehicle electronic 
control units (ECU)—essential components on CAN (controller area network) bus 
[8] however, there does not exist mature penetration testing methods. 

Crucial information, such as diagnostic, informative, and controlling data, 
is transmitted over CAN bus to implement various vehicle services, such as 
autonomous driving and assisted driving [9–11]. Since communication security is 
not a primary concern at the beginning of CAN design, it is not a surprise that in-
vehicle networks are exposed to numerous security threats [12–14]. For example, an 
arbitrary ECU can hear from any other ECU on the CAN bus without the capability 
of identifying real sender’s identity. This may easily lead to attacks (e.g., packet 
injection and data manipulation) and risk passenger safety. 
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Fig. 1 Attack surface of modern vehicles 

The community has made many attempts to secure in-vehicle networks. One 
research line is to use cryptographic primitives such as Message Authentication 
Code (MAC), and another is on in-vehicle intrusion detection systems (IDS) 
[15–22]. Cryptographic methods provide strong security, yet sacrifice system 
performance (e.g., occupying data fields in CAN packets). In contrast, in-vehicle 
IDSs [12] do not need to change in-vehicle system structure and can be installed 
simply (e.g., at in-vehicle gateway) to detect malicious behavior in real time. Given 
computational power of in-vehicle ECUs, lightweight IDS is preferred. 

Attackers usually determine attack surfaces first when they want to crack a car [2, 
23, 24]. Modern vehicles have many possible components for attackers to conduct 
their attack. These components can be simply divided into two types of external and 
internal as showed in Fig. 1 and might be exploited by the attackers to affect vehicle 
behaviour. For example, by accessing subscriber identity module or eavesdropping 
cellular communication channels, the attackers can track vehicle movement [25]. 
Wi-Fi connection can be built to gain access to in-vehicle network far away (e.g., up 
to 300 yards) or to break Wi-Fi password and install malicious code on infotainment 
unit [26]. Key fob can also be exploited by the attackers [27]. They may first crack 
key fob algorithm with brute force trick and then knockoff the key fob to unlock the 
door. With malformed key fob, they can send requests so that vehicle immobilizer 
would be degenerated into a precarious state. There exist many other attack surfaces 
(e.g., CAN bus, infotainment system, USB port, Bluetooth access, and even tire 
pressure monitor sensor) for the attackers to perform their attacks successfully [2]. 

2 In-Vehicle CAN Network 

Controller area network (CAN) is a de facto standard for in-vehicle communication 
[28]. Important vehicle driving information such as diagnostics, sensors, and control 
data is transmitted via CAN bus for a variety of vehicle driving functions. Two types 
of CAN packets are defined: standard and extended.
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2.1 CAN Packets 

In general, each packet has four key fields: Arbitration ID, Identifier extension 
(IDE), Data length code (DLC), and Data. CAN bus packets also contain two 
segments with insignificant sense: Cyclic Redundancy Check (CRC) and End 
of Frame. Figure 2 shows CAN frame format. In CAN communications, there 
are no addresses and every node (i.e., ECU) connected to CAN bus receives all 
messages sent over the bus. Messages are identified via their identification fields. 
Arbitration ID characterizes device ID intended to communicate, and any device 
can communicate with multiple devices by appending multiple arbitration IDs. If 
two packets are sent out over the bus simultaneously, the one with lower arbitration 
ID would win. For standard CAN bus packets, IDE field is set to zero. DLC field 
specifies data size ranging from 0 to 8 bytes, meaning that maximum data size 
is 8 bytes at most (if less, some system might pad the packet). Extended CAN 
bus packets are similar to standard packages, except that they can be concatenated 
together so that longer IDs will be supported. 

From functionality perspective, CAN packets can be divided into two main types: 
normal and diagnostic. Normal packets carry broadcast message, either command 
or information. Attackers might reveal these messages with specific semantics and 
then inject them into CAN bus with specific frequency to affect targeted automobile 
behavior. Diagnostic packets can put ECUs into diagnostic mode and prevent the 
devices from communicating on CAN bus (Table 1). This is usually feasible when 
the vehicle is not moving (or with low speed). ISO-14229 (Table 2) defines a group 
of diagnostic services used to communicate with vehicles via CAN bus [4]. For 
example, some security access service would be invoked when an ECU needs to 
authenticate some sender (e.g., diagnostic tool) sending sensitive diagnostic actions 
[29]. 
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Table 1 Diagnostic packet 
example 

IDH IDL Len Data 

07 60 08 03 14 FF 00 00 00 00 00 

07 68 08 03 7F 14 00 00 00 00 00 

07 68 08 03 54 FF 00 00 00 00 00
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Table 2 Services defined in ISO-14229 

ID Service name ID Service name 

10 Diagnostic session control 30 I/O control by local ID 

11 ECU reset 31 Routine control 

14 Clear diagnostic information 34 Request download 

19 Read DTC information 35 Request upload 

22 Read data by ID 36 Transfer data 

23 Read memory by address 37 Request transfer exit 

24 Read scaling data by ID 3d Write memory by address 

27 Security access 3e Tester present 

28 Communication control 83 Access timing parameter 

2a Read data by periodic ID 84 Secured data transmission 

2c Dynamically define data ID 85 Control DTC setting 

2e Write data by ID 86 Response on event 

2f I/O control by ID 87 Link control 

Fig. 3 Threat model 

CAN bus network 
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ECU ECUECU 

ECU ECU 
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2.2 Threat Model 

We assume that an attacker can access CAN bus (Fig. 3) and other device interfaces 
connected to it such as Bluetooth, OBD-II,Wi-Fi, physical access, and USB ports. 

There exist several types of attacks. The first one is flooding attack by injecting 
massive forged messages in a short time period to block in-vehicle network 
communication. In Fig. 4a, an attacker can send messages withe the highest priority 
ID 0000 in a short cycle. Then normal messages with ID 02b0 and ID 0316 are 
delayed. 

In fuzzy attack, an attacker randomly sends instructions to cause the vehicle to 
perform unexpected behavior. In order to implement a fuzzy attack, the attacker
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Fig. 4 Attack types. (a) Flooding attack. (b) Fuzzy attack. (c) Impersonation attack 

needs to find specific information about the vehicle and ID that can produce 
unexpected behavior. In Fig. 4b, an attacker injects messages of spoofed random 
CAN ID and DATA value. Unlike the flooding attack, it paralyzes functions of a 
vehicle rather than delaying normal messages via bus occupancy. 

In impersonation attack, an attacker ceases the function of some ECU and then 
inserts an ECU for specific purpose. In Fig. 4c, the inserted ECU is disguised as 
normal one (that stopped working) and can periodically reply to remote frames [13]. 

3 Related Work 

Many attempts have been made in the industry and academia communities to 
provide security solutions on CAN bus. In-vehicle IDS can detect anomaly behavior 
on CAN network without the need of changing in-vehicle network structure. 

Lan et al. [30] propose an anomaly detecting algorithm based on survival 
analysis. Song et al. [31] suggest statistical CAN information time interval in 
anomaly detecting. Although these methods have low computational overhead, they 
can only detect specific attacks and find unfavorable performance for many attack 
modes. Machine-learning-based anomaly detecting can solve this problem. 

Seo et al. [32] propose double discriminators via generative adversarial networks. 
It uses two different data sets to train two discriminators, greatly improving
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Table 3 Some IDS solutions for in-vehicle CAN network 

Key references Detection strategy Method 

Müter et al. [12] Anomaly-based Statistical-based (entropy-based) 

Lan et al. [30] Anomaly-based Survival 

Song et al. [31] Signature-based Frequency-based 

Seo et al. [32] Anomaly-based Generative adversarial networks 

Tariq et al. [33] Anomaly-based Heuristic algorithm and RNN 

Larson et al. [34] Security rules Object dictionary of the CANopen protocol 

Wang et al. [35] Anomaly-based Time series prediction model 

Hu et al. [36] Anomaly-based Support vector machine 

Li et al. [37] Anomaly-based Clock drift 

Xiao et al. [38] Anomaly-based Time series prediction model 

detection accuracy. Tariq et al. [33] propose an IDS combining heuristic algorithm 
and recurrent neural network (RNN). In this method, some features of CAN data 
are first counted to make a preliminary judgment, then RNN is used for the final 
judgment. Larson [34] proposes a CAN attack detecting method by security rules. 
The method is based on the object dictionary of the CANopen protocol; it uses 
protocol-level security rules to detect illegal ECU behavior, and Larson provides 
a set of example security rules. Wang et al. [35] propose a time series prediction 
model that trains different types of instructions in the CAN protocol separately 
before combining them in the final system. Müter et al. [12] detect attacks by 
calculating the entropy of normal traffic and abnormal traffic on the CAN bus. 
Hu et al. [36] use SVM model to detect abnormal state of a vehicle. In [37], Li et al. 
use the clock drift of an ECU to detect abnormal conditions in abnormal vehicles. 
In [38], Xiao et al. propose an early warning using convLSTM to predict time series 
deviations. 

Table 3 compares some existing IDS solutions. In [35], the instruction ID of 
CAN frame is separated, resulting in a loss of part of the information. In [12], 
the entropy-based method can only perform preliminary statistics and detect only 
some attack methods (missing many others). In [36], directly detecting abnormal 
state of a vehicle with SVM requires excessive computational resources, and it 
is difficult to ensure real-time monitoring. For the method in [37], the vehicles 
produced by different manufacturers have different ECU clock drift features and 
it would be indispensable to reanalyze these features for each vehicle brand. 

4 Weighted State Graph from CAN Frames 

Modeling in-vehicle data plays a fundamental role for detecting vehicle anomalies. 
The model should reflect the relationships of different types of data and their 
patterns. Different CAN systems have different bit transfer rates, and the bit transfer 
rate is unique and fixed for a given system. This section introduces a model (built 
offline based on historical data) to identify (online) newly arrived data stream.
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Fig. 5 Model architecture 

Figure 5 shows the model architecture de-coupled into two stages, offline training 
and online detection. The former further includes weighted state graph construction 
and random forest model training, and the latter can be performed in a lightweight 
manner. 

4.1 Constructing Weighted State Graph: Offline 

The state relations of streamed in-vehicle data can be modeled as a weighted state 
graph .G = (V,E). Herein, the state represents the value of message ID and all states 
constitute the vertex set . V. Specifically, we adopt discrete states to quantify status 
(ID values) and employ weighted edges (connections between states) to measure 
the relationship between states. The graph is constructed based on statistics of 
historical data and can be regarded logically as an accurate model that delineates 
the underlying vehicle. Next we narrate three steps in constructing . G. 

(1) States extracting: extract all different message IDs from the vehicle historical 
data as distinct states. Thereby we get the vertex set . V. 

(2) Feature extracting: extract features from historical data, i.e. timestamps, 
message IDs, data segments for each packet. We denote . y = [t , id, data], where 
t represents the timestamp, id the ID value, and data the data field. 

(3) Weight computing: fix a time sliding window (e.g., 100 ms) for data extraction 
and calculation. Within 100 ms, count the time offset between two message IDs, 
the number of IDs, and the probability of occurrence of bit 1 in all data segments 
between the two messages. A message ID may appear multiple times within the 
sliding window. For this, we reckon up distinct or identical message IDs that appear
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Algorithm 2 Constructing weighted state graph 
Require: Attack free sample M = {(t1, id1, data1), (t2, id2, data2),  . . .} where id� and 

data�, � = 1, 2, . . .  are the identifier and data field of the CAN frame at time t�, and  
t1 < t2 <  . . .; 

Ensure: Weighted state graph G = (V,E); 
1: Extract all distinct identifiers ID1, ID2, . . . , IDn from M and set V := 

{ID1, ID2, . . . , IDn}; 
2: Segment M into L sliding windows W1,W2, . . . , WL; 
3: for � from 1 to L do 
4: for i from 1 to n do 
5: for j from i to n do 
6: Call the function STATTRANS(IDi , IDj , W�) (see Algorithm) and get a collection of 

m 2-tuples (pλ, qλ), λ = 1, . . . , m; 
7: for λ from 1 to m do 
8: Calculate time offset T Oλ 

W�
:= tqλ − tpλ ; 

9: Count the number of transited states Nλ 
W�

:= qλ − pλ; 

10: Compute the probability P λ 
W�

that bit 1 occurs in the data fields 
datapλ , datapλ+1, . . . , dataqλ ; 

11: Set (IDi → IDj )
λ 
W�

:= [T Oλ 
W�

,Nλ 
W�

, P λ 
W�

]; 
12: end for 

13: Set (IDi → IDj )W�
:= 

[T O  (i→j)  
W�

,N (i→j)  
W�

,P (i→j)  
W�

] 
m

where T O  (i→j)  
W�

= ∑m 
λ=1 T Oλ 

W�
, 

N (i→j)  
W�

= ∑m 
λ=1 N

λ 
W�

, P (i→j)  
W�

= ∑m 
λ=1 P

λ 
W�

; 
14: end for 
15: end for 
16: end for 
17: Set the vectorized weight wij := [T O(i→j)  ,N(i→j)  ,P (i→j)] 

L
where T O(i→j)  = ∑L

�=1 T O  (i→j)  
W�

, 

N(i→j)  = ∑L
�=1 N (i→j)  

W�
, P (i→j)  = ∑L

�=1 P (i→j)  
W�

, i  = 1, . . . , n, j  = i, . . . , n; 
18: E = {eij |eij := IDi → IDj ∧ |eij | :=  wij , i  = 1, . . . , n, j  = i, . . . , n};% |eij | denotes the 

vectorized weight of the directed edge eij ; 
19: return G. 

next to each other, and then average their features. Take Fig. 6 as an example, 
there are four ID states, and the message sequence is [.ID1, .ID2, .ID3, .ID1, 
.ID2, .ID3, . ID4,  . . . ].  So  we  can  construct a weighted directed graph that has 
the edges .ID1 → ID1, .ID1 → ID2/ID3/ID4, .ID2 → ID2/ID3/ID4, 
.ID3 → ID3/ID4, .ID4 → ID4. As formulated in Eq. (1), the (vectorized) weight 
is determined by three features, time offset (T O), the number of IDs (N ), and the 
probability of occurrence of data bit 1 (P ). Then we get .G = (V,E): . V has four 
states and ten weighted edges constitute . E. 

.(IDi → IDj )
k
W = [T Ok

W ,Nk
W , P k

W ] (1) 

where W represents a sliding window, k represents the interval of the k-th . IDi

and .IDj in a window. If the order (that two distinct IDs emerge in the message 
sequence) is irregular (e.g., Fig. 7), we mainly extract the two ID intervals in the 
dashed block. That is, the .IDB closest to .IDA is always selected in chronological 
order. We address that there does not exist the state explosion problem according
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Algorithm 3 Function STATTRANS(.IDi , .IDj , . W�) 
Require: Two identifiers IDi , IDj , and a sliding window W� = 

{(t�1 , id�1 , data�1 ), (t�2 , id�2 , data�2 ), . . . , (t�ω , id�ω , data�ω )}, t�1 < t�2 <  . . .  <  t�ω ; 
Ensure: A collection � of 2-tuples (pλ, qλ), λ = 1, . . . , m; 
1: � = ∅; 
2: for κ from 1 to ω do 
3: if id�κ = IDi then 
4: Find the first IDj (say idqλ1 

) from {id�κ+1 , . . . , id�ω }; 
5: Find the last IDi (say idpλ1 

) from {id�κ , id�κ+1 , . . . , idqλ1
}; 

6: � = � ∪ {(pλ1 , qλ1 )} 
7: end if 
8: end for 

Fig. 6 weighted state graph 

Fig. 7 two IDs’ sequence 

to the rationale of our trick (which can manipulate any patters of CAN traffic 
effectively). 

Herein, the weighted state graph does not need the directed edge from . IDB

to .IDA (once we obtain the directed edge from .IDA to .IDB , meaning that the 
vectorized weight is already produced). In fact, the frequency at which each ECU 
sends a message is fixed, given a specific CAN system. So as time goes on, the 
connection from .IDA to .IDB suffices to imply the connection from .IDB to .IDA. 
In order to save time and space complexity, we only require one-way connections in 
the graph. 

Algorithm 2 illustrates the concrete steps in constructing . G. Its time complexity 
is related to the number of identifiers n, the number of sliding windows L, and the 
number of edges m, and bounded as .O(n2mL).
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4.2 Segmenting and Learning: Offline 

Random forest (or random decision forest) is an ensemble learning method for 
classification tasks by constructing a multitude of decision trees at training phase 
and outputting the class mode of individual trees. For unbalanced data set, it 
balances the error well, and during the training process, it is possible to detect the 
interaction between features and achieve a simpler implementation [39]. 

Given original dataset, i.e., historical CAN traffic, we segment the traffic into a 
slice of sliding windows. For each sliding window, we squeeze out n features which 
are then bundled together to form a row vector. Suppose that there are m sliding 
windows and we get an .m × n matrix (called it as dataset D as a slight abuse of 
term). We feed D into random forest algorithm and thus accomplish the learning 
process. 

(1) Data preprocessing: given a sliding window, we vectorize the message IDs 
(Fig. 8). We have three types of intrusion samples, namely flooding attack, fuzzy 
attack, and impersonation attack, which are labeled as 0, 1, and 2 respectively. In 
our experiment, we have 46 different message IDs from historical data. Therefore, 
there are 46 features totally (i.e., .n = 46). 

(2) Model training: we use ID3 (Iterative Dichotomiser 3) algorithm (by iterating 
through every unused attribute of the set D and calculating the information gain 
of that attribute) to train random forests. For the features .{x1, x2, . . . , xn}, the  
information gain of D is: .G(D, xi) = H(D) − H(D|xi), where 

.H(D) = −
∑

k

|ck|
D

log2
|ck|
D

(2) 

.H(D|xi) =
l∑

j=1

Dj

D
H(Dj ) (3) 

Herein, .Dj is sample subset of D where the feature . xi takes the j -th value, H (. Dj ) 
is the entropy of . Dj , H (D|. xi) is conditional entropy of D for . xi , . ck is a subset 
of samples belonging to the k-th class in D, l is the number of the feature . xi .We 
use bootstrap sampling. For a given dataset containing m attack samples, we first 
randomly take a sample into the sampling set, and then put the sample back into 

Fig. 8 Data preprocessing of random forest model
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Algorithm 4 Online detection 
1: Read the CAN network message online and store in the cache. Once the traffic reaches the size 

of the sliding window, a weighted state subgraph S is constructed. 
2: Compare S with G (produced in Sect. 4.1) to obtain the intrusion detection result. The coming 

section will present more details. 
3: Update system intrusion detection logs and trigger an alert if an attack is detected. 
4: Pass the alert data into the trained random forest model to further determine which attack type. 

the initial dataset, that is, simple random sampling with a return. In such a way, 
the specified number of samples are repeated to obtain a set of samples that meet 
the requirements. The training parameters of the classifier are detailed below: Max 
depth = 8, Max features = 6, Min samples leaf = 100, and entropy is used as the 
criterion. 

4.3 Segmenting and Detecting: Online 

We aim to perform online intrusion detection on streaming data. Not all message IDs 
appear in the data generated over a period of time, and the resulting weighted state 
graph is a subgraph (of . G generated in Sect. 4.1). Once the stream data is generated, 
we construct a subgraph . S from the data recursively. The concrete construction 
method is similar to that in constructing . G. The weighted edges of . S are connected 
in exactly the same way as . G, but the weights need to be recalculated. 

Given real-time CAN traffic, we recursively performs Algorithm 4 for online 
detection. The detecting is lightweight as only one sliding window is involved. 

4.4 Scoring the Subgraphs for Sliding Windows 

We evaluate driving process for each short period of time. For . S, we compute an 
anomaly score f (. S). 

. f (S) = w1

∑m
i=1(T Oi

1 − T Oi
0)

m
+ w2

∑m
i=1(N

i
1 − Ni

0)

m
+ w3

∑m
i=1(P

i
1 − P i

0)

m
(4) 

Herein, m is the number of edges in the subgraph . S. .T Oi
1, . Ni

1, .P i
1 denote the 

connection value of the stream data (.i = 1, . . . , m), and .T O
j

0 , . N0, . P j

0 represent the 
edge connection value in the graph . G (.j = 1, 2, . . . , |E|). . w1, . w2, and . w3 represent 
the proportion of T O, N , and P , respectively. The score is compared with a pre-
defined threshold . δ. If  f (. S) > . δ, then the subgraph . S is marked as an anomaly. In 
practice, it is suggested to choose the threshold . δ according to the distribution of 
score f (. S). 

We use the stochastic gradient decent (SGD) method to optimize . w1, . w2, . w3. . S
is compared with . G, and the difference is recorded (i.e., [.T O1−T O0, .N1−N0, .P1−
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Fig. 9 The distance between two different IDs over time 

P0 ]). The plurality of sets of stream data form a matrix . X, the normal data is marked 
as 1, and abnormal as . −1. We can use the SGD method to obtain the fractions by 
support vector machine (SVM): . min 1

2 ‖w‖2 s.t. Yi(wT Xi+b) ≥ 1, i = 1, . . . , N.

Herein, . w=[. w, . w2, . w3], and b represents the intercept. . Xi represents difference 
vector (i.e., i-th row vector of . X and of the form [.T O1 − T O0, .N1 −N0, .P1 −P0]). 
N indicates the number of samples. . Yi denotes the classification, the normal data is 
1, and the abnormal data is . −1. 

If no such message ID exists in . G, the graph would be updated automatically. 
There is one more point. For a wide variety of commercial CAN bus systems in 
practice, one can not rule out the possibility that captured at the choke points, the 
CAN traffic might be parameterized differently and thus show polymorphic forms 
in data-driven continuous experimentation. As an example, the beginning of the 
messages sent by the ECUs may not coincide at the choke points of keying in the 
ignition and starting the engine. It is thus expected that the weighted state graph can 
be evolved over time. The feature is known as concept drift in anomaly detection 
for streaming data [40] and exemplified in Fig. 9. Assume that the order of the two 
IDs appears as shown above, and . T1 and . T2 are the fixed intervals of .ID1 and .ID2, 
respectively. However, the alternation between .ID1 and .ID2 is not constant and 
may vary considerably (even regularly or in cycle). In this scenario, for example, 
given two states, .IDi and .IDj , when measured in different times, the vectorized 
weight of the edge (.IDi .→ .IDj ) could be different. As a result, the vectorized 
weight of (.IDi .→ .IDj ) of the newly constructed subgraph . S may not be much 
different from that in . G when an attack occurs. And this may catalyze the unexpected 
consequence that the system cannot function properly (as such change could lower 
the performance of the detector by causing a multitude of false alarms). We address 
this problem by recourse to a unit outsourced to the cloud to maintain and update the 
model. The cloud maintains an array that records the connection number between 
states. It updates the array when each data arrives and then periodically calculates 
the connection weights of the model according to the array. The fractions . w1, . w2, 
. w3 also need to be reformed periodically. 

4.5 Evaluation 

Our data is retrieved from public source [41]. It can be categorized as four types 
(and each contains 2,369,868, 656,579, 591,990, 2,350,827 samples respectively). 
The corresponding three kinds of attack scenarios (flooding attack, fuzzy attack,
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impersonation attack) are illustrated in Fig. 4. Attack free samples (generated by the 
vehicle under normal driving and no attack behavior) are used for training, and the 
remaining for evaluation. For the last three types, the attacks are injected from 250 s. 

4.5.1 Evaluation Metrics 

For anomaly detection problems, evaluation indicators are much involved. Main rea-
son is that the dataset of general anomaly detection is unbalanced, i.e., the number 
of normal data might be much larger than that of abnormal data. Misclassification of 
normal samples into attack samples is beyond the function the system should have 
and might cause huge losses. Further, IDS mainly gears toward anomaly detection. 
In our experiments, we use the detection precision, recall rate and .F1-score to judge 
the effectiveness for the random forest model: 

.

precision = T P

T P + FP
recall = T P

T P + FN

F1 = 2 × precision × recall/(precision + recall)

(5) 

where T P  is true positive, FP  is false positive, and FN  is false negative. 

4.5.2 Experiment Analysis 

We hope that IDS detection accuracy would be as high as possible and false 
positive rate (FPR) as low as possible. An attack block of a time sliding window 
is detected each time. Here, we particularize the sliding window as 50, 100, 150 and 
200 ms respectively. As exhibited in Table 4, the model shows promising results. 
For attack block = 50 ms and the threshold = 93, the detection precision is 0.988 
for each detection, FPR is 0.02, but the recall is relatively low (0.68). For attack 
block = 100 ms and the threshold = 99, the detection precision is 0.993, FPR is 0.02, 
at the same time the recall is 0.975. For time sliding windows of 150 and 200 ms, 
the detection precision and recall reach 100%, FPR is 0 at .δ =114, 109 respectively. 

To better grasp model applicability, we manually scrutinize the detection results. 
Figure 10 illustrates the FPR evaluation of the model under different score threshold 
. δ and different time sliding windows. A long tail effect can be perceived from the 
curve as the FPR shows a trend of sharp decreasing with the increase of . δ. When 
setting a smaller threshold, many false alarms would be raised. When . δ is relatively 
small, the FPRs of time sliding windows of 50 and 100 ms are lower than those of 
150 and 200 ms. The discrimination between normal and abnormal of 50 and 100 ms 
time sliding windows is higher than that of 150 and 200 ms. 

The trend of the FPR curve also shows the distribution characteristic of the 
anomaly score. In practice, a rational suggestion is to set . δ based on statistical 
principles. E.g., let .μ − k*.σ < δ < μ + k*. σ , where . μ is the mean value of
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Table 4 Performance w.r.t. 
sliding window sizes 

W Accuracy FPR recall . δ

50 ms 0.988 0.02 0.68 93 

100 ms 0.993 0.02 0.975 99 

150 ms 1 0.0 1 114 

200 ms 1 0.0 1 109 

Fig. 10 FPR w.r.t. threshold values 

Table 5 Random forest model w.r.t. different sliding window sizes 

Precision Recall 

Attack type 50 ms 100 ms 150 ms 200 ms 50 ms 100 ms 150 ms 200 ms 

Flooding 0.90 0.93 1 1 0.86 0.98 0.99 0.99 

Fuzzy 0.93 0.98 0.99 1 0.95 0.99 0.99 1 

Impersonation 0.94 0.95 1 0.99 0.95 0.96 0.98 1 

anomaly score and . σ is the standard deviation of the score. Usually, one may take 
.k ∈ [0.1, 2]. 

For random forest model, we also define the time sliding window as 50, 100, 
150, and 200 ms to classify the abnormal data blocks. Due to the difference in infor-
mation gain characteristics of different attack flows, random forest classification 
has significant effect. As demonstrated in Table 5, 50 ms time sliding window has 
lower classification precision (.≤0.95); classification effect is improved when time 
sliding window is 100 ms, recall of three attack types are above 0.95; and for 150 
and 200 ms of time sliding windows, almost all attacks are correctly identified. 

Information entropy primarily reflects the changes within the data. We further 
compare the model with an entropy-based detector proposed in [42], which estab-
lishes a fixed time (or number) as a sliding window. Consider fixed time sliding
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Table 6 Comparisons between the model and entropy-based detector [42] 

The model Entropy-based model 

Attack type Precision Recall .F1 Precision Recall . F1

Flooding 0.98 1 0.99 1 1 1 

Fuzzy 0.98 0.98 0.98 0.89 0.74 0.81 

Impersonation 0.98 0.94 0.96 0.93 0.97 0.95 

window. We activate 100 ms as the size of the sliding window. As manifested 
in Table 6, the information entropy method has a detection rate of 100% for 
flooding attack, yet the detection rate is slightly lower for both fuzzy attack and 
impersonation attack. For fuzzy attack, our model exhibits advantageous metrics 
of precision, recall and . F1 value over the entropy-based method. One can also see 
that for impersonation attack, the precision and . F1 value of our model are more 
absorbing than those of the entropy-based method (yet the recall metric has the 
reverse effect). 

5 Spatiotemporal Information Based IDS for In-Vehicle 
Networks 

Next we see an IDS using the Convolutional LSTM Network-ConvLSTM [43]. The 
IDS utilizes comprehensively the information of multiple dimensions (e.g., time 
and space information) in regards to CAN protocol so that intrusion detection can 
be implemented effectively. It can not only practically detect traditional multiple 
attack modes (e.g., injection attack, data manipulation attack, etc.), but also support 
efficient detection of unknown attacks. The detection model is fully data-driven 
and does not require any domain knowledge about CAN protocol. It only needs 
a small number of iterations in the training process. More precisely, it provides 
strong robustness and can perform fast online learning of packet features (even 
in the vehicle’s running state) to implement new protocols for intrusion detection 
(enabling to capture fresh vehicle states) even if the underlying communication 
protocol of the vehicle was updated. The model is based on real attack free data 
and attack data is only used as a criterion for model evaluation. Recall that most 
existing methods need to make judgments based on attack data during the detection 
process, but the used attack data (in experiments) is unlikely to be in correspondence 
with real attack data. 

Figure 11 shows anomaly detection process for in-vehicle network. First, Con-
vLSTM model is trained with attack free dataset (i.e., no attack occurs), then CAN 
data predicted by the ConvLSTM model is used to calculate correlation coefficients 
with real generated data, and finally abnormal attack is detected according to the 
difference range of the correlation coefficients.



440 X. Li et al.

Fig. 11 Anomaly detection process 

5.1 Unknown Attack and Self-evolving Model 

As a vehicle travels under distinct road conditions, CAN data generated is subject 
to real-time changes due to factors such as weather and traffic conditions. Namely, 
CAN bus data exhibits distinct characteristics under different road conditions. For 
example, CAN data of sunny days is different from that of snowy days. If some 
model just learns CAN data that runs normally on sunny days, it is much likely that 
the data (being normal on rainy days) will be regarded as intrusion. Surely we can’t 
collect driving data of a vehicle under all road conditions, so our ConvLSTM model 
should have the ability to be self-evolving in real time as the vehicle travels. On the 
other hand, it is impossible to exhaust and collect CAN data under all attack modes, 
and smart attackers keep inventing different attack modes. To ensure the ability of 
detecting unknown attack, it is necessary to use the past running state of in-vehicle 
network for warning purpose. We thus introduce retraining step to our model. 

Our IDS can adjust the features of attack free data in real time as a vehicle travels. 
This adjustment allows better definition of attack free data to identify attack data. 
We use ConvLSTM model to generate predicted CAN data and real CAN data in 
calculating Pierce correlation coefficient, and identify intrusion data by coefficient 
threshold. At the same time, new ConvLSTM model is trained to adapt to the change 
of the threshold under different road conditions. Once an in-vehicle IDS model is 
fixed, it cannot meet safety requirements of vehicles in a distinct or more complex 
environment. We propose a model by calculating the correlation coefficient of CAN 
data, which can not only meet driving requirements of vehicles in myriad road 
conditions, but also detect unknown attack data. 

Given CAN dataset, our concern is on the arbitration field, control field, data 
field and timestamp. A timestamp is the time elapsed from starting vehicle ignition 
to the generation of the data. All data are normalized after a conversion from 
binary to decimal according to .ynormali = x−min

max − min , where x represents data being 
normalized, min (max) the minimum (maximum, resp.) value of an attribute in the 
dataset. 

5.2 Spatiotemporal Information from CAN Frames 

Long short-term memory (LSTM) units are units of a recurrent neural network 
(RNN) [44]. An RNN composed of LSTM units is often called an LSTM network 
(that could solve long-term memory dependence problems). A common LSTM
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Fig. 12 LSTM model 

unit is composed of a cell, an input gate, an output gate and a forget gate. The 
cell remembers values over arbitrary time intervals and the three gates regulate 
information flow into and out of the cell. LSTM networks are well-suited to 
classifying, processing and making predictions based on time series data, since there 
can be lags of unknown duration between important events in a time series. LSTM 
deals with the exploding and vanishing gradient problems in training traditional 
RNNs. Relative insensitivity to gap length is an advantage of LSTM over RNNs, 
hidden Markov models and other sequence learning methods in a sea of applications. 
Multiple LSTMs can be stacked and temporally concatenated to form more complex 
structures. 

The LSTM model is shown in Fig. 12. One of its main innovation lies in that 
memory cells . ct are added to collect state information. Once new input data arrives, 
the information will be accumulated in the cell if the inputs gate . it is activated. 
At the same time, if the forgotten gate . ft is open, the past information . ct will be 
forgotten. The output gate .OT determines whether the final output . ct is transmitted 
to . ht . Equations (6)–(10) defines detailed functions. 

.it = σ(Wxixt + Whiht−1 + Wcict−1 + bi). (6) 

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf ). (7) 

Ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc). (8) 

ot = σ(Wxoxt + Whoht−1 + Wco ◦ ct + bo). (9) 

Ht = ot ◦ tanh(ct ) (10) 

5.2.1 Convolutional LSTM Network 

Traditional IDS for in-vehicle network based on time series prediction can only 
perform training according to the order in which each ECU generates data packets 
[35] (not according to the sequence of data packets sent by all ECUs to CAN bus).
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Fig. 13 ConvLSTM model 

Thus each ECU has to build a model for its own, and finally all models are combined 
to implement intrusion detection. However, different ID data packets in the CAN 
protocol need to work together, so the training method based on go-it-alone IDs 
might lose too much information. Convolutional LSTM Network (ConvLSTM) [43] 
can take into account of both timing and spatial correlations. 

Traditional LSTM appears incompetent in handling spatiotemporal data (i.e., 
full connections in input-to-state and state-to-state transitions). The Convolutional 
LSTM network (ConvLSTM) is expected to remove the obstacle (Fig. 13) [43]. 
Main difference between the two methods is that all the inputs .χ1, . . . , χt , cell 
outputs .C1, . . . , Ct , .H1, . . . , Ht , and gates . it , . ft ,. ot are 3D tensors (Eqs. (11)–(15)). 
ConvLSTM can predict future data by drawing on current input data and past input 
data. Convolution operations can obtain combined information between multiple 
data packets. 

.it = σ(Wxi ∗ χt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi). (11) 

ft = σ(Wxf ∗ χt + Whf ∗ Ht−1 + Wcf ◦ Ct−1 + bf ). (12) 

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ χt + Whc ∗ Ht−1 + bc). (13) 

ot = σ(Wxo ∗ χt + Who ∗ Ht−1 + Wco ◦ Ct + bo). (14) 

Ht = ot ◦ tanh(Ct ) (15) 

where ‘. ∗’ denotes the convolution operator, and ‘. ◦’ the Hadamard product. 
ConvLSTM can combine data information from multiple packets and further 

perform intrusion detection by convolution operations. The larger the convolution 
kernel is, the more data packets are combined. The coming experiments define the 
convolution kernel size as 3 . × 3. The number of cells at first/second/third layer is set 
as 128/64/1 respectively, and the corresponding dropout (the probability that cells 
in this layer will be activated) is 0.5, 0.5, and 1. 

5.2.2 Robust and Self-evolving IDS for In-Vehicle Network 

We use arbitration field, control field, data field and timestamp of CAN frames. The 
data field is of 8 dimensions, and each of the other fields is 1-dimension. Thus, a data 
packet is 11-dimension. We organize training sample array into a form of (10, 10, 
11): the first array represents 10 time steps, the second represents a combination of 
10 data packets, 11 represents a packet with 11 dimensions. One thousand samples
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Fig. 14 ConvLSTM model training 

are used as training set to produce ConvLSTM model optimized by using cross 
entropy as loss function: .LH (x, x) = −∑n

i=1 xilogxi + (1 − xi)log(1 − xi), 
where x (. x̄) denotes the real (predicted, resp.) data of next time step generated 
by current input sample (ConvLSTM, resp.). To achieve online learning, the model 
only iterates 60 times (Fig. 14) during training, and need not a complete convergence 
point. 

Data prediction is performed using a trained ConvLSTM model. We calculate 
Pearson correlation between the predicted data and the real data: 

.r =
∑n

i=1(Xi − X̄)(Yi − Ȳ )
√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(16) 

where X (and Y ) denotes real (respectively, predicted) data sequence, and . X̄ (and 
. Ȳ ) denotes the average of the real (resp., predicted) data sequence. 

We calculate the correlation coefficients for the first 100 consecutive samples in 
each dataset (Fig. 15). It can be seen that Dos attack dataset periodically appears the 
same data packet, resulting in a simple dataset structure and easy prediction so that 
the correlation coefficient value is the highest. Fuzzy attack has a lower correlation 
coefficient than attack free due to random modification of the values in the data 
packet, which makes the data too confusing and difficult to predict. The correlation 
coefficient values of impersonation attack and attack free dataset are very close, 
because impersonation attack will mimic normal ECU sending packets to the target
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Fig. 15 Distribution of correlation coefficients for the first 100 samples 

of deceiving IDS when launching an attack. The correlation coefficient between 
impersonation attack and attack free dataset is too close, but it can be seen that the 
correlation coefficient of impersonation attack is larger. 

Time series prediction based model will gradually decrease its prediction ability 
over time. Figure 16 shows the correlation coefficient after 2500 sample sequences. 
Comparing Fig. 15 with Fig. 16, one may find that all correlation coefficients of 
four datasets are reduced, but attack free data is slower as ConvLSTM model learns 
potential features of attack free dataset to get the best predictability of the dataset. 
In Fig. 17, attack free correlation coefficient is already the highest. 

Correlation coefficients of Figs. 15, 16, and 17 are used to illustrate when the 
model completes the training and enters into detection stage. Figure 15 shows the 
correlation coefficients of various datasets generated after the new model has just 
been trained. It can be seen that the correlation coefficient of attack free data is 
relatively small. However, after the 2500 CAN data sample sequence (Fig. 16), the 
correlation coefficient of attack free data is relatively stable, and the correlation 
coefficients of other attack data are reduced (in varying degrees). After the 3750 
CAN data sample sequence (Fig. 17), the correlation coefficient of attack free data 
is the largest. At this time, the recognition threshold can be determined, previous 
model is discarded, and the new model can be deployed to undertake the task of 
intrusion detection. This is a key step in our IDS. Once abnormal CAN data passes 
through several data packets, the correlation coefficient will drop rapidly to ensure 
the maximum correlation coefficient of attack free. In this way, abnormal data 
can be identified. If higher detection accuracy is required, the new model will be 
postponed for more time and then enter into detection stage. Nonetheless, this will
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Fig. 17 Distribution of correlation coefficients for 3750th to 3850th samples 

increase computational cost, and users can make trade-offs based on their security 
requirements. 

To detect intrusions, an appropriate threshold of correlation coefficient must be 
found to distinguish attack data with attack free data. However, in a large dataset,
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there exist special points where the correlation coefficient might vary dramatically. 
For this, we calculate an average for every 25 consecutive correlation coefficients, 
and each average is used as a detection point for intrusion detection. This can not 
only avoid the influence of extreme data values on detection accuracy, but also 
reduce the frequency of detection and the amount of calculation. 

5.3 Evaluation 

5.3.1 Threshold Selection for Classification 

To ensure that attack free has the highest correlation coefficient, the packet samples 
in Fig. 15 are already qualified for intrusion detection. First, we calculate the average 
correlation coefficient for each dataset using the first 100 consecutive packets. Then, 
we use an average of two values with the highest average correlation coefficient 
in the four datasets to calculate an average value that is used as the classification 
threshold. 

The model based on time series prediction will gradually decrease the correlation 
coefficient with time, so we will re-determine the threshold every 50 detection 
points. To ensure detection accuracy, the ConvLSTM model needs to be retrained 
after every 500 detection points. Since the model only needs to be iterated 60 times, 
it is practically feasible to train the model during intrusion detection process. 

5.3.2 Experiment 

We take 210,000 packets from the four datasets for IDS performance evaluation. 
The evaluation data of the model is shown in Fig. 18. The precision represents the 
ratio in correctly classifying the dataset, which reaches 0.97 in our model. And the 
recall rate is 0.96, representing the rate at which the attack is detected. F1-score 
reaches 0.96 in our model. 

Next we compare our method with SVM and decision tree model. The training set 
contains 375,000 packets generated before the test set used by ConvLSTM. Attack 
data is constructed from attack free data and the number of the former is three times 
that of the latter. Through dataset analysis, SVM performance is dreadful because 
the number of attack free data is too small, which makes the model learn attack data 
too much and thus lack the capability of identifying attack free data. Increasing the 
amount of attack free data in the training set can improve the performance of the 
SVM. In particular, if we have 1.5 million attack free packets in the training, then 
the detection precision of SVM could be 0.91. It is unlikely to further improve the 
detection precision only by increasing the number of attack free packets (and attack 
packets) but overlooking spatiotemporal information. The decision tree can extract 
excellent attack free data features, but the attack data is generally detectable, not to 
mention the detection of unknown attacks.
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Fig. 18 Model evaluation 

The receiver operating characteristic (ROC) curve can also be used to evaluate 
the performance of our model (Fig. 19). True Positive Rate (TPR) is the ratio of 
finding attack state correctly. False Positive Rate (FPR) indicates the rate at which 
the model misjudges attack state (of attack free data). The area under the ROC curve 
represents the Area Under Curve (AUC) value, and the greater the AUC is, the 
better the performance of the model. The ROC curve serves as an intuitive method 
for comprehensive evaluation models. It can be seen that the models trained by the 
SVM and the decision tree on the small-scale training set can detect attacks little 
or nothing. On the contrary, the ConvLSTM can effectively detect various attack 
modes only by periodically training attack free data for a period of time. 

5.3.3 Comparing the ConvLSTM Model with the LSTM Model 

As the ConvLSTM model improves the LSTM model [45], we will use LSTM as a 
comparative model to evaluate our model performance. 

As shown in Fig. 20, we calculate the correlation coefficients of 500,000 data 
packets for the four datasets using LSTM model. We first train LSTM with 1000 
packets, then use the model to calculate the correlation coefficient of the subsequent
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packets, and print a correlation coefficient for every 500 packets. Although it can 
be seen that the correlation coefficient tends to be declining asymptotically, but 
the correlation coefficient between attack packet and attack free packet is not well 
distinguished, and the correlation coefficient of attack free is not very stable. 

Figure 21 shows the overall correlation coefficient of the four datasets of 
the ConvLSTM model. A correlation coefficient point is printed for every 75 
packets. For the trained ConvLSTM model, we see favorable detection results after 
approximately 2250 data packets, and the correlation coefficient of attack free is 
relatively stable. 

6 Conclusion 

The chapter introduces the applications of machine learning algorithms to in-
vehicle IDS mechanism. In designing these ML-based IDS systems, one can rely 
on the spatiotemporal information in the CAN frames. Different exploit of these 
spatiotemporal information leads to different IDS systems characterized by different 
features. Besides the IDS accuracy, one should pay special attention to the IDS 
computation and storage consumption due to the limited power of in-vehicle ECU. 
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In-Vehicle ECU Identification and 
Intrusion Detection from Electrical 
Signaling 

Xiangxue Li, Yue Bao, and Xintian Hou 

1 Introduction 

Controller area network (CAN) protocol has strong anti-interference ability and 
can effectively suppress electromagnetic interference [1]. It relies on differential 
signals to transmit messages. Differential signals with dominant state (logical 0) and 
recessive state (logical 1) are transmitted through high (CAN-H) and low (CAN-L) 
lines. When the signal represents dominant state, CAN-H voltage is approximately 
3.5 V, and CAN-L voltage is approximately 1.5 V, which results in a dominant 
differential voltage of approximately 2.0 V on CAN bus. For recessive state, both 
CAN-H and CAN-L voltages are approximately 2.5 V, yielding the differential 
voltage . ≈0 V [2]. 

There are growing instances of hacking vehicles due to loose security protection 
of CAN protocol [3–7]. We have seen various IDSs of in-vehicle CAN networks 
for decades [8–13]. These suggestions cannot determine which ECU launches the 
particular attacks. Moreover, a smart attacker might mimic certain characteristics of 
the target ECU to launch an attack [9, 10, 12, 13]. Fortunately, some seminal work 
[1, 14–17] can not only detect malicious frames but identify their sender ECUs. 
The strategy counts on CAN signal unique characteristics, e.g., the hardware and 
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topology information (delineated by the signal’s characteristics so that even if two 
ECUs send identical message, corresponding signals are divergent). 

Signal characteristics are not only affected by vehicle power supply but also 
related to the hardware characteristics of the sending device itself. It is difficult 
for an attacker to imitate some particular device’s signal characteristics. Thus CAN 
signals show special functionality in detecting attack messages and identifying 
sender ECUs. Murvay and Groza [18] pioneered the methodology of studying 
the differences in CAN signals (sent by ECUs), which are significant for ECU 
identification. However, they only used the signals corresponding to the CAN 
frame’s identifier field and did not account for the blended signals caused by the 
collisions between ECUs’ simultaneous messages. The limitation was tackled in 
[15] where 18-bit identifier extension was used as the ECU’s fingerprint. 

One more interesting work-Sample was proposed in [17] with low time com-
plexity and the advantage of robustness and recognition rates. Kneib and Huth [1] 
proposed Scission with in-depth analysis of CAN signals. Scission uses the rising 
and falling edges of CAN signal to design IDS. However, their method could be 
affected by CAN topology easily. Once the number of ECUs or the length of stub 
lines change, the characteristics of rising and falling edges would become different. 

2 System Model and Ringing Effect 

We can further look into the ringing generation mechanism and recognize the fuzzy 
discrepancy between transitions from dominant to recessive state and those from 
recessive to dominant state. Ringing intensity is related to the number of ECUs and 
the stub line length of CAN topology [19–21]. When we fix the number of electronic 
control units, longer stub line results in more intense ringing. The fluctuation of 
ringing intensity would further tweak falling edges’ voltage, which might set off 
false alarms of IDS (i.e., not triggered by real attacks). We will investigate the factors 
that enlarge ringing effect and demonstrate the discrepancy between rising edges 
and falling edges. Our attempt is to design ECU identification scheme and IDS only 
from the characteristics of dominant states and rising edges (D.R for short). 

Figure 1 shows CAN bus topology deployed widely in automotive applications. 
In particular, Fig. 1a presents linear topology and Fig. 1b depicts start-like topology. 
A twisted wire is commonly used for CAN bus, and the twisted wire’s characteristic 

Fig. 1 CAN topology
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impedance is marked as R. For linear topology (as recommended in the standards 
[22, 23]), the longest bus is called main bus. Two terminating resistors are arranged 
at left end and right end, and the resistor resistance is set to R to match the 
bus’s characteristic impedance. In the automotive field, terminating resistors are 
commonly installed in the two farthest CAN nodes (called the terminal CAN nodes) 
to improve productivity. Other nodes are referred to as non-terminal nodes. ECUs 
are connected to the main bus using a twisted wire (i.e., stub lines). Stub line is 
attached to the main bus through a connector (indicated by the black circle in Fig. 1) 
called junction [21]. 

2.1 Threat Models 

We consider two types of in-vehicle attacks: known-ECUs attack manipulates 
existing ECUs, and unknown-ECUs attack inserts extra devices to CAN bus. 

Automotive manufacturers install ECUs during vehicle production. Attackers 
rely on additional interfaces to compromise a known ECU to transmit malicious 
CAN frames. These interfaces include WiFi, Bluetooth, and cellular communication 
modules. Telematics ECU [6, 24] is a prevalent example, installed widely in modern 
vehicles to enable supplementary functions. This kind of ECUs are connected to an 
external network (e.g., a cellular network), providing a target for the attackers. 

Instead of exploiting existing ECU’s vulnerability, an attacker can connect an 
unknown ECU to attack CAN network directly. Alternatively, he may plugin a 
special device to the network via the vehicle’s On-Board Diagnostics (OBD)-II port. 

2.2 Difference Between ECUs Voltage Outputs 

The differences in voltage stabilizing ability of the regulator inside an ECU results in 
different outputs (. VOUT ) [14], even for the same power supply (.VIN ). ECU output 
voltage variations may stem from the differences in ground voltage and capacitors 
(denoted . C1,. C2 and . C3 in Fig. 2). Further, industrial typical 5% error tolerance is 
employed in CAN transceiver resistors, which leads to voltage changes.

2.3 Ringing Effect 

The impedance mismatch occurs at two points over the CAN bus (Fig. 3) [20, 21], 
one at the junction and another at the front of non-terminal ECUs. Non-terminal 
ECU causes positive reflection as its impedance can be up to several tens of k. �, 
significantly larger than the stub line characteristic impedance which is further larger 
than the junction’s impedance, resulting in negative reflection.
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Fig. 2 CAN application 
schematic

Fig. 3 Reflection 

2.3.1 From Dominant to Recessive States 

Let n denote the number of ECUs connected to the junction through stub lines and 
ECU1 a transmitter whose signal voltage would be reduced by . �V to transfer from 
dominant state to recessive state. Since the dominant state’s value is approximately 
2 V, . �V has a negative polarity. In Fig. 3, a total of (n+ 2) lines are connected to the 
junction (i.e., the overall number of connected stub lines and the two main bus lines). 
The signal transmitted from ECU1 to the junction follows (n+ 1) lines in parallel. 
Thus, the stub lines have the same impedance .

ZR

n+1 , where the . ZR’s nominal value is 
120. �. The reflectance (. �d ) and transmittance (. Td ) at the junction are calculated as: 

.�d =
ZR

n+1 − ZR

ZR

n+1 + ZR

= − n

n + 2
, Td = 1 + �d = 2

n + 2
(1) 

Since . �d has a negative polarity, a larger portion of the incident signal is reflected 
as n increases, and its small part is delivered into other ECUs.
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Fig. 4 Ringing for signals 
from dominant to recessive 
states 

Denote .Zdiff as ECU1’s differential input impedance. Now, we have ECU1’s 
front reflectance and transmittance (i.e., . �s and . Ts): 

.�s = Zdiff − ZR

Zdiff + ZR

, Ts = 1 + �s = 2Zdiff

Zdiff + ZR

(2) 

When the signal is at the recessive state, .Zdiff is much larger than . ZR . Conse-
quently, . �s has a positive polarity, and equals approximately one. Thus, ECU1 front 
end reflection direction is the same as the incident signal direction, and the incident 
signal and reflected signal superposition is about twice the original incident signal. 

For a dominant-to-recessive transition, the negative transition signal . �V is trans-
mitted from ECU1 to the junction, undergoing partial transmission and reflection. 
The signals are transmitted to other ECUs through the junction and are partially 
reflected on the other ECUs’ front end without changing the direction. At the 
ECU1’s front, the signal returned from the connection is partially transmitted to 
ECU1. These reflections and transmissions are repeated, resulting in ringing (Fig. 4). 

2.3.2 From Recessive to Dominant States 

In the transitions from recessive state to dominant state, ECU1’s output impedance 
is very low. In the recessive state, the electrical energy is released on the network. 
However, when the signal transfers from recessive to dominant states, ECU1’s 
differential output impedance becomes lower and starts charging the network. ECU1 
generates the signal of 2 V, whose polarity is inverted at the junction and reflected 
onto ECU1. Unlike the dominant-to-recessive transition, the reflection signal is 
partly received at ECU1 due to the low impedance of ECU1. Since there are no 
reflections’ repetitions, we have small ringing at the recessive-to-dominant state 
transition.
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3 Dominant States and Rising Edges for Source 
Identification 

3.1 Signal Measurement and Preprocessing 

In order to measure the differential signal on the CAN bus, we connect two channels 
of an oscilloscope CAN-H and CAN-L, respectively. Each CAN frame’s differential 
signal would be obtained based on the oscilloscope’s differential function. 

Several preprocessing steps are applied to each CAN signal captured by the 
oscilloscope. First, all dominant states are extracted from the signals. We set a 
voltage threshold value as 0.9 V: voltage greater than the threshold marks the start 
of the dominant state. The dominant states are then classified into five sets (denoted 
as . L1, . L2, . L3, . L4, and . L5) based on the number of contained bits. Let . Li represent 
all dominant states containing exactly i bits (see Fig. 5). Note that CAN standard 
specifies that a recessive bit is automatically inserted whenever five consecutive 
dominant bits appear in a CAN signal. Thus, no dominant state can contain more 
than five consecutive dominant bits. By dividing a CAN frame into 5 sets, we have 
the following gains: (a) redundant features can be eliminated (the dominant states 
with the same number of dominant bits in a CAN frame have similar characteristics, 
and these dominant states with similar characteristics are in the same set); and (b) the 
influence of outliers might be eliminated to make the classification more accurate. 

3.2 Feature Extraction 

The sets obtained above are subjected to feature extraction, where the measured 
voltages are discrete values. Feature extraction is essential in ECU identification and 
needs to be time-efficient. Domain transformations should be avoided if possible. To 
reflect the characteristics of these discrete values, Table 1 qualifies the features that 
reflect the characteristics of a group of discrete values from the time domain feature 
quantities (x is time domain representation of data and N its dimension). Some work 
also discussed various features for ECU identification [15].

Fig. 5 A CAN frame is divided into 5 sets 
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Table 1 Features Feature Description 

Maximum . Max = Max(x(i))i=1....N

Minimum . Min = Min(x(i))i=1....N

Mean . μ = 1
N

∑N
i=1 x(i)

Range . R = Max − Min

Average deviation . adv = 1
N

∑N
i=1 |x(i) − μ|

Variance . σ 2 = 1
N

∑N
i=1(x(i) − μ)2

Standard deviation . σ =
√

1
N

∑N
i=1(x(i) − μ)2

Root mean square . rms =
√

1
N

∑N
i=1 x(i)2

Table 2 Selected features 
ordered by ranks 

Order Feature Order Feature 

1 rms(.L40
5 ) 11 max(. L1

1) 

2 adv(.L13
2 ) 12 min (.L26

4 ) 

3 . σ 2 (.L30
4 ) 13 R(.L20

3 ) 

4 rms(.L21
3 ) 14 rms(.L32

4 ) 

5 mean (. L3
1) 15 max(.L25

4 ) 

6 . σ (.L31
4 ) 16 adv(. L5

1) 

7 . σ 2 (.L22
3 ) 17 mean (.L11

2 ) 

8 . σ (.L15
2 ) 18 rms(.L16

2 ) 

9 R(.L28
4 ) 19 max(.L17

3 ) 

10 min(.L18
3 ) 20 . σ (.L39

5 ) 

Dominant states with the same number of dominant bits indicate analogous 
characteristics. Thus, CAN frames are divided into five sets (Sect. 3.1). For the 
unlikely case of empty sets (all characteristics obtain null values), one may replace 
the missing values with statistical properties, e.g., mean or median. For each set, 
eight features (Table 1) are extracted, yielding 40 CAN signal features in total. 

Relief-F [25] can evaluate the features by calculating a score for each one and 
selecting the most important ones. We finally opt for 20 feature subsets for each 
CAN frame (Table 2). The order column represents the sequence number that 
Relief-F sorts in descending order according to the scores of the features, and these 
sequence numbers correspond to the dimension of each feature in the input feature 
set. 

3.3 Training and Testing 

We view ECU identification from a received CAN frame as a classification 
problem and use supervised learning to identify the signals’ sender. The training 
set comprises 200 CAN frames for each ECU. After the training phase, a classifier 
is created that can be used to identify the sender of a CAN frame.
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Algorithm 1 ECU identification and IDS 
1: function TRAINING(S: original CAN signal) 
2: for i=1 to len(S) do 
3: /*Divide the signal Si into ECUI */ 
4: ECUI ← DECODE(Si ) 
5: /*dominant state and rising edge*/ 
6: [L1, L2, . . ., L5] ← PREPROCESSING (Si ∈ S) 
7: Fi ← EXTRACTION(L1, L2, . . ., L5) 
8: TrainingSet(i)←[Fi : ECUI ] 
9: end for 

10: Classifier←GET_TRAINING_ 
ALGORITHM(T rainingSet) 

11: return Classifier 
12: end function 
13: 
14: function TESTING(S: a new CAN signal) 
15: /*Divide the signal S into ECUI */ 
16: ECUI ← DECODE(S) 
17: /*dominant state and rising edge*/ 
18: [L1, L2, . . ., L5] ← PREPROCESSING (S) 
19: F ← EXTRACTION(L1, L2, . . ., L5) 
20: [Result, Probability]← IDENTIFICATION 

(F , classifier) 
21: if Probability < threshold then 
22: return Unknown ECU Adversary 
23: else if Result �= ECUI then 
24: return Known ECU Adversary 
25: else 
26: return Normal 
27: end if 
28: end function 

Table 3 Comparison among voltage-based approaches 

Choi et al. [15] Scission [1] Simple [17] Our system 

Sampling rate 2.5 GS/s 20 MS/s 50 MS/s 50 MS/s 

Identification rate 96.48% 99.85% 99.10% 99.15% 

False positive 3.52% 0% 0.899% 0.85% 

Signal type Differential Differential Differential Differential 

Domain transformations Yes Yes No No 

Unknown ECU No Yes Yes Yes

The training phase results in a classifier, which is then used to predict new frames 
in testing phase. The testing phase includes two tasks. ECU identification tests 
whether the system correctly identifies frames’ source and examines the impact of 
stub lines’ length on the execution ability. Intrusion detection assesses the system’s 
capability of detecting attacks (Sect. 2.1). The system performance on identification 
and intrusion detection will be discussed in Sect. 4. Algorithm 1 describes the 
training and testing processes. Table 3 compares some voltage-based proposals. 
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4 Evaluation 

Four CAN bus prototypes (each containing 3/6/9/13 ECUs) are equipped to simulate 
different CAN networks. All prototypes have the same configuration (except the 
number of ECUs). Take the prototype with 3 ECUs and 1-m stub lines as example. 
We first assemble 3 ECUs, each containing an Arduino UNO board and a CAN 
shield. The shield comprises MCP2515 CAN controller [26] and MCP2551 CAN 
transceiver [27]. Each ECU is connected through a stub line to the main bus of 
length 3 m. Two 120. � resistors are connected to the two ends of the main bus. Use 
an oscilloscope, one of its probes being connected to the CAN-H line of the main 
bus and another to CAN-L. Adjust the sampling rate of the oscilloscope to 20 MS/s. 

The system can also be evaluated on real vehicles, e.g., Nissan Sentra 2016 and 
Subaru Outback 2011 [17]. 

4.1 ECU Identification 

CAN signals are acquired using the digital storage in the oscilloscope PicoScope 
5244D MSO with a sampling rate of 1 GS/s (the oscilloscope captures 1G data 
points from the signal waveform in one second) and a flexible resolution. Set the 
sampling rate as 20 MS/s (higher sampling rate increases data volume and hardware 
costs). 

4.1.1 Classification Algorithms 

To evaluate the influence of classification algorithms on system performance, two 
algorithms are employed: Linear Regression (LR) and Support Vector Machine 
(SVM). For each ECU in the prototype, approximately 200 frames are collected. 
Table 4 demonstrates that the model accuracy on a simple topology (i.e., only 3 
ECUs in the entire network) averages above 99.99% irrespective of the classification 
algorithms. When the topology becomes complicated (e.g., 13 ECUs, Table 5), the 
average SVM and LR accuracies are above 98.25%. When the stub line length 
equals 3 m, the SVM average accuracy is 98.01%, and LR’s is 98.11%. In other 
words, the proposed model accuracy remains high for complex network structures. 

4.1.2 CAN Topology 

We also explore the effect of changes in stub lines’ length on the developed system 
performance. The system identification rate is tested for the stub line’s length = 1, 2, 
or 3 m. Figure 6 just shows the topology for 1-m stub line.



462 X. Li et al.

Fig. 6 Topologies of 1-m stub line and 3/6/9/13 ECUs 

Same feature extraction and classification algorithms are utilized for each topol-
ogy (i.e., 3/6/9/13 ECUs). Tables 4 and 5 show that if the number of ECUs is fixed, 
increasing stub lines’ length has no impact on the system recognition accuracy. 
When using (falling edges and recessive states, F.R for short) and ((dominant 
states and rising edges) and (falling edges and recessive states), D.R.F.R for short) 
respectively, recognition rates decrease with the increasing of stub lines’ length.

4.1.3 CAN Signal States 

A series of comparative experiments are conducted to inspect the influence of CAN 
signal states on the system using F.R only, or D.R.F.R. As discussed above, the 
ringing mainly occurs in dominant-to-recessive states transitions, and the more 
complex the CAN bus topology, the more intense the ringing effect. Table 5 shows 
the results when the system uses D.R, and the average minimum recognition rates 
are 98.25% (for 13 ECUs and one-meter stub-line), 98.21% (for 13 ECUs and two-
meter stub line), and 98.01% (for 13 ECUs and 3-meter stub line). When the system
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Table 4 Recognition rate and recognition rate for 3/6 ECUs 

Signal state (3 ECUs) Signal state (6 ECUs) 

Stub line Algorithm D.R F.R D.R.F.R D.R F.R D.R.F.R 

1-m SVM Min 100 71.05 96 99.31 69.75 95.15 

SVM Avg 100 74.42 97.6 99.97 71.23 95.89 

LR Min 99.99 79.61 96 99.41 70.11 94.63 

LR Avg 99.99 80.66 98.4 99.99 72.36 95.99 

2-m SVM Min 99.35 70.09 96.21 98.89 68.11 94.21 

SVM Avg 99.98 72.32 97.32 99.85 69.87 94.32 

LR Min 99.98 79.61 96.12 99.01 69.11 94.21 

LR Avg 99.99 81.32 97.21 99.49 70.55 95.1 

3-m SVM Min 99.98 72.27 95.41 98.89 67.99 92.01 

SVM Avg 99.99 73.43 96.67 99.25 69.43 92.85 

LR Min 99.99 77.1 96.21 99.31 68.01 92.21 

LR Avg 99.99 78.29 97.32 99.55 70.53 93.32 

Table 5 Recognition rate and recognition rate for 9/13 ECUs 

Signal state (9 ECUs) Signal state (13 ECUs) 

Stub line Algorithm D.R F.R D.R.F.R D.R F.R D.R.F.R 

1-m SVM Min 99.21 58.75 88.51 97.99 59.57 83.98 

SVM Avg 99.51 59.23 89.91 98.45 61.89 84.21 

LR Min 98.89 59.51 89.01 97.76 58.01 83.9 

LR Avg 99.25 60.35 90.11 98.25 62.58 84.11 

2-m SVM Min 98.8 57.35 87.11 97.51 54.25 80.99 

SVM Avg 99.01 58.25 88.26 98.21 56.75 81.21 

LR Min 98.38 57.11 88.11 97.55 54.91 79.21 

LR Avg 98.89 58.55 88.39 98.25 55.35 81.68 

3-m SVM Min 98.59 53.99 86.21 97.35 47.99 75.21 

SVM Avg 98.99 54.43 87.77 98.01 48.43 78.77 

LR Min 98.19 53.01 85.81 97.45 46.01 73.99 

LR Avg 98.71 55.53 86.34 98.11 47.53 77.34

uses F.R, the average minimum recognition rates are 61.89%, 55.35%, and 47.53%, 
respectively. If the system uses D.R.F.R, the average minimum recognition rates are 
84.11%, 81.21%, and 77.34%. This demonstrates that using D.R is not affected by 
ringing and enables a higher recognition rate than other states. 

4.1.4 On Real Vehicles 

We can also check the method on real vehicles, Nissan Sentra 2016 and Subaru 
Outback 2011 and [17]. There will be 11 rounds of CAN signal, collected from 
these two vehicles. Table 6 shows that, for Nissan Sentra, using F.R yields the lowest
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Table 6 Minimum/average 
recognition rate in Nissan 
Sentra and Subaru Outback 

Signal state 

Vehicle Algorithm D.R F.R D.R.F.R 

Nissan Sentra SVM Min 98.85 44.4 96.01 

SVM Avg 99.15 46.42 96.87 

LR Min 98.34 58.61 94.01 

LR Avg 99.08 60.20 95.41 

Subaru Outback SVM Min 98.37 62.05 91.80 

SVM Avg 99.10 63.88 93.05 

LR Min 98.05 77.23 88.52 

LR Avg 99.09 80.13 91.47 

Table 7 IDS for known ECUs (support vector machine and logistic regression) 

Predicted (SVM) Predicted (LR) 

Vehicle True No attack Yes No attack Yes 

Prototype No attack 98.11 1.89 97.98 2.02 

Yes 2.15 97.85 2.59 97.41 

Nissan Sentra No attack 99.12 0.88 99.16 0.84 

Yes 1.89 98.11 1.79 98.21 

Subaru Outback No attack 98.99 1.01 99.01 0.99 

Yes 1.69 98.31 1.75 98.25 

average accuracy of 46.42%. When D.R.F.R is used, the lowest average accuracy is 
95.41%. For the Subaru outback, the lowest average accuracy equals 99.09% for 
D.R, 63.88% when using F.R, and 91.47% when using D.R.F.R. 

4.2 Intrusion Detection 

4.2.1 Known ECUs 

We assume that the system has the knowledge: which identifiers are used, which 
ECUs are allowed to use them. If the ECU selected by the model as source is not 
allowed to send frames with the identifier of the received frame, an attack will be 
assumed. It is not allowed that multiple ECUs use same identifier. 

We consider the most complex topology (i.e., 13 ECUs and 3-m stub lines) as a 
prototypical setup. 11 out of the 13 ECUs are seen as legitimate, and the remaining 
two as attackers. More than 1400 frames are collected, 500 of which are valid, and 
more than 900 counterfeit. Table 7 show the detection rate 97.85%. 

Similar tests are conducted on real data of Nissan Sentra and Subaru Outback. 
The compromised ECUs are simulated on the real vehicles by adding two additional 
ECUs. These ECUs consist of an Arduino board and a CAN shield. Adding 
these ECUs differs from the situation of unknown ECU attack. Namely, unknown 
ECUs’ electrical signals are not trained by the algorithm. In contrast, the two



In-Vehicle ECU Identification and Intrusion Detection from Electrical Signaling 465

0.5 0.6 0.7 0.8 0.9 1 
Threshold 

0.016 

0.018 

0.02 

0.022 

0.024 

0.026 

E
rr

o
r 

R
at

e 

FPR 
FNR 

Fig. 7 FN and FP rates at varying thresholds (Subaru outback) 

additional ECUs are based on the five original ECUs, and the CAN electrical 
signals’ characteristics of the seven ECUs can be extracted and retrained. In the 
Nissan Sentra case, the additional ECUs imitate ECU A and ECU B, and 400 
counterfeit frames are collected for each one. For Subaru Outback, the ECUs are 
used to fake ECU I and ECU J, and generate two sets of 400 counterfeit frames. The 
detection results for Nissan Sentra and Subaru Outback are shown in Table 7. 

4.2.2 Unknown ECUs 

Unknown ECUs’ identification is related to novelty detection, i.e., the identification 
of new or unknown data not used in a machine learning algorithm’s training [28]. 
We use the threshold trick (Fig. 7) and the instances with probabilities lower than 
the threshold are classified into unknown class. 

We set the number of ECUs as 13, and the stub line’s length as 3 m. To 
evaluate whether the system is capable of detecting unknown ECUs, the network 
is configured using 12 ECUs, and the 13th ECU is removed. Then monitor the 
resulting network and collect approximately 500 frames from each ECU for feature 
extraction. Now a new model can be trained (without the knowledge of the 13th 
ECU in the signals). Once the model training completes, ECU #13 is re-inserted to 
the network. Then, 3290 frames are acquired from the network with all 13 ECUs. 
The appropriate threshold is obtained by calculating the false positive (FP) and false 
negative (FN) rates (Fig. 8). The threshold 0.83 yields approximately equal values 
of FP and FN. And the system’s identification rate is 97.89%.

For Nissan Sentra and Subaru Outback, 400 normal frames from each vehicle are 
selected. For Nissan Sentra, ECU M is added with the message ID {1201}, and 200 
corresponding frames are collected. Overall, 600 frames are obtained from Nissan 
Sentra. Again, FN and FP are used to calculate the appropriate threshold (resulting 
in threshold value = 0.8). Figure 9 shows the results. The system achieves 98.54%
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Fig. 9 FN and FP rates at varying thresholds (Nissan Sentra) 

identification rate. Similarly, for Subaru Outback, ECU N sending e messages with 
IDs{537, 538} is inserted. Six hundred frames are collected and utilized to calculate 
the appropriate threshold (i.e., 0.7, see Fig. 7), and the system’s accuracy is 98.15%. 

4.3 Discussions 

4.3.1 Environmental Factors 

The voltage signal is really sensitive to environmental factors, such as temperature 
change. To pursue robustness against environmental factors, we adopt a method of 
threshold-based online model update. When the recognition rate of the model is 
lower than a threshold, the IDS composes an update batch with already classified 
fingerprints from all ECUs and thus does not require additional computing capacity.
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We use the data Nissan sentra (on 02/01/2019 and 02/18/2019 [17]) to evaluate the 
system: select the frames sent by ECU A and ECU B from these two data sets, and 
then perform preprocessing and feature extraction. 

We first see whether robust sender identification can be kept up over the entire 
training data without performing update operations. We extract approximately 2500 
normal frames from the 02/01/2019 data set, the first 200 frames per ECU of the 
set are used for the initial training and the remaining 1000 frames of the data set 
for test, and this leads to the average recognition accuracy 99.31%. Then we select 
1200 frames from the 02/18/2019 data set, and all the frames are classified using the 
already trained classifiers. The classification accuracy is 95.23%. 

Next, we introduce automatic update mechanism to improve the recognition 
rate. The following metrics are used: recognition rate, false positive rate, false 
negative rate, and F-Score. Recognition rate represents the source of how many 
frames the model can correctly identify. False positive rate refers to the case 
that an unknown ECU is incorrectly classified as valid. False negative rate refers 
to the case that an valid ECU is classified as unknown. F-Score represents the 
comprehensive classification ability used to evaluate the model. We update the 
model online according to F-Score. When the F-Score is lower than the threshold 
(0.9, as demonstrated in experiments), the model will be automatically updated: the 
02/01/2019 data is used to train the model and the 02/18/2019 data is used to verify 
the average recognition rate of the updated model. Now we manage the average 
recognition rate 99.12%. 

4.3.2 Sample Rate 

We duplicate the experiments at various sample rates to inspect system effec-
tiveness, especially in a complex network environment (i.e., 13 ECUs and 3-m 
stub lines). Note that at different sample rate one will be at different position of 
sample sizes (which might convey tight relationship with system performance). The 
approach manifests robustness as expected (due to the contribution of rising edges 
and dominant states). Table 8 shows the average identification and false positive 
rates at the sample rates 2. ∼20 MS/s. The experiments allow each ECU to use 1000 
frames. 

Table 8 Performance at 
various sample rates for 
Linear Regression 

Sample rate (MS/s) 2 5 10 15 20 

Identification rate 97.11 97.85 98.11 98.15 98.21 

False positive rate 2.89 2.15 1.89 1.85 1.79
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4.3.3 Limitation and Battery/ECU Aging 

The method can detect compromised ECUs by monitoring CAN bus. An attack 
will be detected once a known ECU professes some message identifier affiliated 
with another normal ECUs. However, if a known ECU abuses its own identifier 
(that is permitted under normal circumstances) to launch some attack, our system 
cannot recognize the attack. We mention that this is an open problem in signaling-
based ECU identification schemes [1, 14–16] and our focus of the work is on the 
connection between signal ringing and ECU identification. 

Generally, the service life of car battery is of 3 . ∼ 5 years and its real usage 
duration is also related to the driver’s driving habits. Therefore, the aging of the 
car’s battery might affect the characteristics of the electrical signal sent by each 
ECU, and one would see different impact level for different position of the ECU in 
the CAN network [29]. On the other hand, ECU has a relatively long service life 
and the aging process is really slow. One may thus not consider the impact of aging 
on electrical signals. 

5 Source Identification on In-Vehicle CAN-FD Networks 

Controller area network with flexible data rate (CAN-FD) is supposed to be the next 
generation of in-vehicle network to dispose of CAN limitations of data payload 
size and bandwidth. The section discusses ECU identification on CAN-FD network 
from bus signaling. If a model shows robustness to source identification, then we 
get convincing evidence on its applicability to forthcoming real vehicles set up by 
CAN-FD network. ECU identification can be easily extended to intrusion detection 
against attacks not only initiated by external devices but also internal devices. 

5.1 CAN-FD 

Robert Bosch GmBH recommends CAN-FD [30] to dispose of CAN limitations of 
data payload size and bandwidth. Besides its compatibility with CAN, CAN-FD has 
the advantages: the maximum length of the data field is 64 bytes; it supports variable 
rates (namely, a frame can use different transmission rates in different stages) and 
the maximum rate can reach 5Mbit/s (the maximum rate of CAN is 1Mbit/s). 

CAN-FD itself does not convey security protection either (similar to CAN) and 
existing attacks on CAN might also be feasible on CAN-FD. Take masquerade 
attack on CAN network [13] as an example. Initiating a masquerade attack and not 
being detected by the system, an adversary needs to stop the transmission of targeted 
ECU and imitate it to inject attack messages. The attack also works on in-vehicle 
CAN-FD network. We should explore ECU identification on in-vehicle CAN-FD 
network.
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Fig. 10 CAN/CAN-FD frames with 11-bit identifier. (a) CAN data frame format. (b) CAN-FD 
data frame format 

Comparing CAN-FD with CAN CAN-FD is defined to be compatible with CAN 
at the physical layer. All CAN-FD controllers can handle a mix of CAN frames 
and CAN-FD frames. One might use CAN-FD controllers in conjunction with CAN 
controllers on in-vehicle network. Thus one might see pure CAN frames or both 
CAN and CAN-FD frames on the bus. 

CAN-FD and CAN differ in the format and the length of the data frame (Fig. 10). 
Compared with CAN frame, CAN-FD adds FDF (Flexible Data Rate Format), BRS 
(Bit Rate Switch) and ESI (Error State Indicator) fields (see Fig. 10b) [30]. Therein, 
FDF indicates whether the sent frame is a CAN frame or a CAN-FD frame and BRS 
stands for bit rate conversion. When the bit is a recessive bit (1), the rate is variable, 
and when the bit is a dominant bit (0), it is transmitted at a constant rate. ESI is an 
error status indicator: when ESI is a recessive bit (1), it means that the sending node 
is in a passive error (otherwise active error) state. A CAN-FD frame is divided into 
different fields (Fig. 10b). For example, we can set the rate of 2Mbit/s for the data 
field and 1Mbit/s for the arbitration field, control field and CRC field. The length of 
the CAN-FD data field is up to 64 bytes, increasing available load. 

The maximum rate of CAN arbitration field and data field is no more than 
1Mbit/s [3]. However, CAN-FD supports variable rates, and the bit rate of its 
arbitration field and data field might be different. The arbitration and the ACK stages 
continue to use CAN2.0 specification (i.e., the highest rate does not exceed 1Mbit/s), 
and the data field can reach 5Mbit/s through hardware setting, or even higher. 

CAN-FD Security For CAN-FD, security experts can pursue stronger security 
tricks via its higher transmission rates and larger loads. In [31], an IDS was proposed
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Fig. 11 Network topology. (a) CAN-FD network. (b) CAN/CAN-FD hybrid. (c) CAN network 

for in-vehicle CAN-FD network based on topology verification. It uses variations of 
network topology to identify intrusions by external intruding devices (XIDs), but 
it cannot detect attacks via the vulnerabilities of existing ECUs. Woo et al. [32] 
proposed a security architecture for in-vehicle CAN-FD according to ISO 26262. 
This method may cause GECU (gate ECU) to generate excessive load as it has 
to encrypt data packets using the targeted ECU’s unique key. To relieve pressure on 
GECU, Agrawal et al. [33] proposed a group-based approach for the communication 
among different ECUs. However, it should manage a large number of keys which 
requires a large amount of computing resources of the ECUs, making it beyond 
instant communication. 

Ringing on CAN-FD Bus For CAN-FD, internal components of an ECU mainly 
include CAN-FD controller, CAN-FD transceiver, and voltage regulator and we 
have the same rationale of the dominant voltages of (CAN-FD)-H and (CAN-FD)-L 
on the bus. As in Sect. 2.3, ringing might exist on CAN-FD bus [19, 34, 35]. 

5.2 System Model 

CAN-FD is designed to transmit large amounts of data at a faster rate and to replace 
CAN in future design. For possible transition mechanism from CAN to CAN-FD, 
we allow a hybrid topology of CAN and CAN-FD, namely, there exist on the 
network ECUs sending purely CAN frames, ECUs sending purely CAN-FD frames, 
and ECUs sending both CAN and CAN-FD frames. In Fig. 11a, the ECUs can send 
both CAN-FD and CAN frames. In Fig. 11b, blue nodes represent the ECUs that 
can send both CAN-FD frames and CAN frames, and yellow nodes only send CAN 
frames. In Fig. 11c, the ECUs only send CAN frames. 

Signal Acquisition and Preprocessing To obtain differential signals from CAN-
FD/CAN bus prototypes, we first link two probes of an oscilloscope to (CAN-FD)-
H/CAN-H and (CAN-FD)-L/CAN-L lines respectively. Then we use the difference 
function in the software of the oscilloscope to calculate the differential signal. As in 
Sect. 3.1 (and Fig. 5), the trick of five sets . L1, . L2, . L3, . L4, and . L5 is used as well 
(Fig. 12).

Feature Extraction Statistical features could be extracted from the preprocessed 
electrical CAN-FD/CAN signals. We use the features in Table 1 as well for each set
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Fig. 12 A CAN-FD/CAN frame is divided into 5 sets

and a total of 40 features for each electrical CAN-FD/CAN signal. Relief-F [25] is  
also used to weight these features and the feature set in Table 2 can thus be obtained. 

Identifying ECUs We use supervised learning, logistic regression (LR) and SVM, 
to identify the source of CAN-FD/CAN signal. The training phase generates 
fingerprints from multiple CAN-FD/CAN frames of each ECU. The resulting 
fingerprints are then used together to train the classifiers. For the testing phase, we 
have two types of tests. The first is to evaluate the trained model (i.e., whether or not 
it can determine the source of newly received frames), and the second is on intrusion 
detection. 

5.3 Source Identification and Intrusion Detection 

5.3.1 Experiment Setup 

The system adapts to different bus prototypes (Fig. 13). Type A (Fig. 13a) contains 
five CAN-FD nodes that can send both CAN-FD and CAN frames. Type B 
(Fig. 13b) contains five CAN-FD nodes (the same as in Type A) and four extra CAN 
nodes that send purely CAN frames. Type C (Fig. 13c) contains five CAN nodes. 
Although the total number of ECUs in real cars might be up to 70 or even larger, in-
vehicle networks are physically divided into several subnets, e.g., power-related or 
comfort-related. As ringing mainly exists between ECUs and junctions, the rationale 
of fingerprinting ECUs in real cars is the same as that in our experiments. CAN 
protocol defines low-speed CAN and high-speed CAN. High-speed CAN connects 
the ECUs related to the important functions of the vehicles. For example, the ECU 
that controls the brakes and the ECU that controls acceleration are both on high-
speed CAN, and the data transmission speed of high-speed CAN is 500kbit/s. Our 
CAN bus prototype takes high-speed CAN network topology.

Each CAN node consists of an Arduino UNO board and a CAN shield from Seed 
Studio. Each CAN shield consists of an MCP2515 controller [26] and an MCP2551 
transceiver [27], and the bit rate is 500kbit/s. For CAN-FD nodes, each one consists 
of a STM32F105 shield and a MCP2517FD controller [36]. MCP2517FD is known 
as compact, cost-effective and efficient CAN-FD controller and uses SPI interface
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Fig. 13 Three prototypes. (a) Type A: CAN-FD nodes, (b) Type B: CAN-FD nodes and CAN 
nodes, (c) : CAN nodes

and MCU (Microcontroller Unit) communication. In the experiments, we set the 
bit rate of MCP2517FD as 1Mbit/s in the arbitration phase, control phase and 
CRC phase, and 2Mbit/s in the data transmission phase. We mention that using 
signal characteristics sampled at high bit rate to identify devices is more difficult 
than at low bit rate. If our method shows effectiveness on the high-speed CAN-
FD (and CAN), it would also function well on the low-speed CAN-FD (and CAN, 
respectively). To maintain the consistency of experimental environments, we require 
that all the stub lines, oscilloscope, and other components used in the experiments 
are the same in all three prototypes (except the nodes of different functions). 

All ECUs are powered by a battery which supplies electric power to each ECU 
via USB ports. Main bus (twisted pair as well) should be longer than any other stub 
line on the network (our configuration sets the length of main bus as the sum of those 
of stub lines). There is a 120 ohm resistor at each of the two ends of main bus. CAN-
FD/CAN signals are measured by the oscilloscope PicoScope 5244D MSO with a 
sampling rate of 25 MS/s and a resolution of 8 bits. Two probes of the oscilloscope 
are connected to (CAN-FD)-H/CAN-H and (CAN-FD)-L/CAN-L respectively. For
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each ECU (CAN-FD or CAN node), we use 200 frames as training set (its size could 
be adjusted according to the performance of the model). 

5.3.2 Sender Identification 

5.3.2.1 Sender Identification on Pure CAN 

For Type C (Fig. 13c), we consider ringing effect. We execute SVM and LR by using 
D.R, F.R, and D.R.F.R. The results are shown in Tables 9, 10, and 11. Each diagonal 
cell represents the accuracy of the two classification algorithms. As expected, D.R 
suffice to fingerprint ECUs. 

5.3.2.2 Using Dominant States and Rising Edges (D.R) 

We then evaluate whether the system can correctly classify ECUs for Type A and 
Type B. Table 12 lists the confusion matrix for 5 ECUs that send CAN-FD frames 
(Type A). The recognition rate of the system is sufficient to correctly recognize 
ECUs, and the error rate is very low. Table 13 lists the confusion matrix of 9 ECUs

Table 9 SVM/LR for Type C and D.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 99.89/99.77 0/0 0/0 0.11/0.23 0/0 

ECU 2 0/0 99.59/99.79 0/0 0.41/0.21 0/0 

ECU 3 0.14/0.46 0/0 99.76/99.54 0/0 0/0 

ECU 4 0/0 0/0 0.2/0.02 99.8/99.98 0/0 

ECU 5 0.2/0.08 0/0 0/0 0/0 99.8/99.92 

Table 10 SVM/LR for Type C and F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 86.52/84.66 0/0 5.23/6.01 8.25/9.33 0/0 

ECU 2 0/0 88.21/87.11 6.47/7.56 0/0 5.32/5.33 

ECU 3 14.34/11.46 0/0 85.66/88.54 0/0 0/0 

ECU 4 0/0 0/0 15.12/14.62 84.88/85.38 0/0 

ECU 5 4.32/5.01 0/0 4.66/3.84 5.17/6.23 85.85/84.92 

Table 11 SVM/LR for Type C, D.R.F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 96.12/95.34 1.81/2.56 0/0 2.07/2.1 0/0 

ECU 2 4.79/5.03 95.21/94.97 0/0 0/0 0/0 

ECU 3 5.44/4.16 0/0 94.56/95.84 0/0 0/0 

ECU 4 0/0 0/0 4.12/5.02 95.88/94.98 0/0 

ECU 5 2.81/2.9 0/0 2.34/2.18 0/0 94.85/94.92 
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Table 12 SVM/LR for Type A and D.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 99.12/99.34 0/0 0/0 0.88/0.66 0/0 

ECU 2 0/0 99.21/99 0/0 0/0 0.79/1 

ECU 3 0.24/0.46 0/0 99.76/99.54 0/0 0/0 

ECU 4 0/0 0/0 0.12/0.02 99.88/99.98 0/0 

ECU 5 0.15/0.08 0/0 0/0 0/0 99.85/99.92

(Type B), of which 5 ECUs send CAN-FD frames, and the remaining 4 ECUs send 
CAN frames. One may see the system can still correctly classify and recognize 
ECUs in hybrid network. 

5.3.2.3 Using Falling Edges and Recessive States (F.R) 

We also consider the recognition rate if F.R are used. As ringing intensity of falling 
edges of signals is higher than that of rising edges, recognition rate would be 
affected when falling edges are used. Table 14 shows the results for Type B and 
Table 15 shows the recognition rates 81.54. ∼86.21% for Type A. We can see really 
low recognition rates.

5.3.2.4 Using (Dominant States and Rising Edges) and (Falling Edges and 
Recessive States) (D.R.F.R) 

We also compare the execution rates when the system uses D.R.F.R. Tables 16 
and 17 show the results of Type A and Type B respectively, both lower than that 
using D.R.

5.3.3 Detecting Known ECUs 

Now we evaluate whether our system can recognize malicious frames sent by an 
attacker using known ECUs. For Type C (Fig. 13c), we assume that ECU 1 is normal 
and an attacker can use other ECUs to send messages with the same identifier as 
ECU 1. We collect a total of 500 frames, of which 300 are used as attack frames and 
the rest as normal. Table 18 shows a detection rate 99.01%. For Type A (Fig. 13a), 
we use the same assumptions and operations as for Type C and achieve a detection 
rate of 98.5% (Table 18). For Type B (Fig. 13b), we regard ECU 7, ECU 8 and ECU 
9 as attackers (capable of sending both CAN and CAN-FD frames). We collect 1000 
frames, of which 600 are used as attack frames and the rest are normal. Table 18 
shows the results with comparable performance to Type A and Type C.
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Table 15 SVM/LR for Type A and F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 84.12/85.34 12/13.14 0/0 3.88/1.52 0/0 

ECU 2 0/0 86.21/85 11.79/12.78 2/2.22 0/0 

ECU 3 5.14/6.46 4.12/4.36 82.76/81.54 3.51/3.96 4.47/3.68 

ECU 4 0/0 15.82/16.62 0/0 84.18/83.38 0/0 

ECU 5 0/0 12.32/12.01 2.93/3.17 0/0 84.75/84.82

Table 16 SVM/LR for Type A, D.R.F.R 

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 

ECU 1 94.32/95.24 3.36/3.14 0/0 0/0 2.32/1.62 

ECU 2 0/0 93.21/94.21 5.78/5.01 0/0 1.01/0.78 

ECU 3 5.14/1.46 0/0 93.76/94.54 1.1/0.45 0/0 

ECU 4 0/0 5.2/6.33 0/0.09 94.8/93.58 0/0 

ECU 5 5.05/5.15 0.2/0.23 0/0 0/0 94.75/94.62

5.3.4 Detecting Unknown ECUs 

We adopt a threshold-based method. For Type A, we first remove ECU 5 and obtain 
about 500 frames from the remaining ECUs to train a model. Then we plug ECU 5 
back to the network and sample a total of 600 frames now. The obtained model is 
used to classify newly collected data and Fig. 14 shows False Positive (FP) and False 
Negative (FN) rates. The recognition rate can be up to 99.36% at threshold = 0.8. For 
Type B, we remove ECU 8, use the remaining ECUs to train a new model, and then 
plug ECU 8 back to the network. We collect now a total of 1000 data which will be 
classified by the obtained model. Figure 15 shows recognition rate 99% at 0.7. Type 
C uses similar method and Fig. 16 shows 99.1% recognition rate at 0.83.

5.4 Discussions 

Sample Rate The experiments could be reproduced at various sample rates, espe-
cially for Type B. At different sample rate one will be at different position of sample 
sizes (which might be closely related to system performance). Table 19 shows the 
average identification and false positive rates at the sample rates 10 . ∼25 MS/s (1000 
frames for each ECU).

Comparable Performance Between Type A and Type C For same topology, one 
may note considerable performance for Type A (CAN-FD) and Type C (CAN) by 
using any signal characteristics (rising edges, dominant states, falling edges, and 
recessive states). In fact, Type C could obtain generally a tiny little better recognition 
rate than Type A. First, CAN-FD supports data size up to 512 bits, drastically larger 
than 64 bits in CAN specification, thus the cumulative effect of ringing for Type 
A might be more powerful than for Type C. Second, CAN-FD provides variable
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Table 18 IDS using Support Vector Machines/Logistic Regression 

Predicted (SVM) Predicted (LR) 

Prototype True No attack Yes No attack Yes 

CAN-FD No attack 99.38 0.62 99.85 0.42 

Yes 1.5 98.5 1.88 98.12 

CAN-FD&CAN No attack 99.01 0.99 99.11 0.89 

Yes 1.18 98.82 1.89 98.11 

CAN No attack 99.58 0.52 99.44 0.56 

Yes 0.99 99.01 0.89 99.11
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Fig. 14 Error rates at varying thresholds (Type A) 
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Fig. 15 Error rates at varying thresholds (Type B)

transmission rate and the experiments specify 2Mbit/s for data field of CAN-FD 
frames and 1Mbit/s for other fields (e.g., arbitration, control and CRC), whereas 
Type C regulates 500kbit/s. Namely, we have the bit width 2000 ns in a CAN frame, 
and 1000 ns in non-data field of and 500 ns in data field of a CAN-FD frame. Now, 
it is more likely for Type A (than Type C) that ringing of recessive states functions
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Fig. 16 Error rates at varying thresholds (Type C)

Table 19 LR Performance at 
various sample rates 

Sample rate (MS/s) 10 15 20 25 

Identification rate 97.11 98.95 99.01 99.15 

False positive rate 2.89 1.05 0.99 0.85

unceasing (even though the bit itself was already completed on the network)1 and 
thus involves the coming dominant states before it attenuates to be unnoticeable. 

Applicability to CAN-FD Network in Real Vehicles The controllers used herein 
conform to ISO11898-1:2015 and support CAN-FD [36]. Possible transition mech-
anism from CAN to CAN-FD (i.e., Type A and Type B) is also considered. The 
results show expressive evidence on the applicability to forthcoming real vehicles 
set up by CAN-FD network. These results could be used as a step forward and 
a guidance on securing the commercialization and batch production of in-vehicle 
CAN-FD network in the near future. 

Environmental Factors In real vehicles, the changes of internal temperature will 
affect the characteristics of electrical signals. A typical example is that the voltage 
output may deviate from 0.012 to 0.026 V [1] when we start the vehicle from a 
cooled turn-off engine to warmed-up. This may also exist for CAN-FD network. 
Howbeit, CAN-FD frames are longer than 512 bits, and the number of dominant 
states contained would be much likely greater than that in CAN frame. We might 
thus expect an acceptable impact of temperature changes on signal characteristics 
(and further on the system).

1 It is reported [34, 37] that for CAN-FD, high-speed data phase and low-speed arbitration phase 
challenge the same ringing surrounds (as ringing does not depend on transmission rate), and ring 
of some recessive bit might not converge until criterion and interfere with the next dominant bit. 
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Battery/ECU Aging Battery aging might affect the characteristics of the electrical 
signals. For now, however, we can not track the impact of battery aging on the 
system by simulating CAN-FD nodes and car battery as there is no CAN-FD vehicle 
for real driving. This interesting topic might be explored in the coming future. On 
the other hand, ECU has a relatively long service life and the aging process is really 
slow. It is thus rational not to consider the impact of ECU aging on electrical signals. 

6 Conclusion 

The chapter introduces in-vehicle ECU identification by using CAN electrical Sig-
naling. This can be viewed as side-channel information exploit on CAN networks. In 
designing the identification algorithms, signal characteristics of different phases in 
the signals has different impacts on the algorithm accuracy. The problem of source 
identification is also important on in-vehicle CAN-FD networks. ECU identification 
algorithms can be trivially extended to in-vehicle IDS systems. 
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Machine Learning for Security Resiliency 
in Connected Vehicle Applications 

Srivalli Boddupalli, Richard Owoputi, Chengwei Duan, 
Tashfique Choudhury, and Sandip Ray 

1 Resiliency Needs and Challenges in CAV Applications 

Automotive systems have evolved over the last two decades from primarily mechan-
ical and electro-mechanical systems into complex cyber-physical systems with a 
wide range of communication and sensory capabilities. In addition to a variety of 
sensors (e.g., Radar, Lidar, etc.), a modern vehicle is equipped with various inter-
faces for Internet connectivity, and vehicular communications (V2X) technology 
(e.g., Digital Short Range Radio) to interact with other vehicles (V2V), components 
of transportation infrastructure (V2I), or other electronic devices connected to the 
Internet (V2IoT). The combination of sophisticated sensors and communication 
enables connected and autonomous vehicle (CAV) applications, i.e., applications 
that exploit cooperative information sharing among vehicles and infrastructures 
for streamlining traffic movement, improving road safety, and efficient infras-
tructure utilization. CAV applications being developed today include platooning 
[5], cooperative dynamic route management [2, 3], intersection management [12], 
etc. With increasing proliferation of connectivity and autonomy of vehicles, the 
trend is towards increasing sophistication of such applications and the consequent 
potential to bring in transformative impact on road safety, passenger comfort, and 
environmental sustainability. 

However, one critical challenge with CAV applications is their vulnerability to 
a spectrum of cyber-attacks. An adversary can easily compromise the sensory and 
communication inputs to disrupt traffic movement, cause catastrophic accidents, and 
bring down the transportation infrastructure. A key problem with these attacks is 
that an adversary no longer needs to actually hack into the hardware or software 
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of the vehicle that is the target of the cyber-attack: sending misleading or even 
malformed V2X messages or sensory data is often sufficient to disrupt the connected 
car ecosystem. 

The focus of this chapter is the problem of real-time resiliency in CAV appli-
cations, against adversaries that target compromising V2X or sensory inputs. We 
refer to these inputs as “perception inputs” or “perception channels”. The impact 
of a successful compromise can be a perturbation of some (subset of) perception 
channels involved in the application, such that the inputs received would be different 
from actual. For instance, in Cooperative Adaptive Cruise Control (CACC), a 
vehicle . E receives the velocity, relative position, and acceleration of its preceding 
vehicle . P; during an attack, the values received by . E would be perceived to be 
different from ground truth. The focus of real-time resiliency is to augment the 
application functionality so that . E can perform safely and efficiently, even during 
attack. 

1.1 Constraints 

Designing real-time resiliency for practical CAV applications is a challenging 
proposition. A viable solution must address the following key issues (among others). 

How Can We Identify a Suitable Threat Model for a Given Application? The 
security requirements vary from one cooperative driving application to the other 
based on the application objectives. Consequently, the relevant adversaries to defend 
against, and the impact of a given attack on the target vehicle also vary from one 
application to the other. For instance, an eavesdropping attack may be considered 
unimportant for cooperative collision detection application. However, for a routing 
service application it may be paramount to protect private navigation data of the 
target vehicles from an unauthorized entity. While it is important to consider a 
realistic threat model that can account for the relevant attack orchestrations, an 
all-powerful adversary with limitless capabilities cannot be defended against by 
any security solution. For instance, consider a CAV application where a vehicle 
computes driving decisions based on the sensory data specifying the states (position, 
velocity, acceleration, etc.) of all the vehicles in the vicinity. If an adversary 
collusively corrupts all the sensory data in a way that all kinematics equations 
remain valid but the values are different from ground truth, then it is impossible 
for the victim vehicle to determine if the values it receives are ground reality 
or corrupted. For instance, an multi-channel adversary could replace the velocity 
of the preceding vehicle with a different value while adjusting the position and 
acceleration accordingly so that the laws of kinematics are satisfied. Such an 
adversary is clearly “all powerful” in the sense that it is impossible to defend against. 
Therefore it becomes essential to strike the right balance between identifying a 
threat model that is practical while also accounting for the most relevant adversaries 
compromising the application objectives.
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How Can We Make Sure that the Resiliency Is Viable? A viable solution should 
address the diverse spectrum of attacks on CAVs, while obeying the safety 
requirements and automotive platform constraints including limited computational 
resources, strict timing requirements, stringent cost and time to market constraints, 
etc. At the same time, it is required that the security solution should be capable of 
handling unknown attack scenarios. 

How Can We Validate the Solution? Testing and validation are crucial in developing 
a security solution for CAV systems. However, real-world testing is not a feasible 
option due to road safety concerns. This may require the use of simulation 
environments for validation instead. Unfortunately, most automotive simulators 
available for the research community are not sophisticated enough to provide a 
flexible simulation environment to validate the solution in realistic attack scenarios. 
The diverse and evolving attack spectrum further complicates the validation process. 

1.2 REDEM: Vision for ML-Based Resiliency 

In recent work [6], we have put forward a generic approach, which we call REDEM 
(for “Real-time Detection and Mitigation”), to address real-time resiliency require-
ments in CAV applications to protect adversaries compromising perception inputs. 
REDEM is not a specific architecture: after all, note from above that a resiliency 
solution must be customized for different CAV applications and different target 
adversaries. Instead, REDEM represents a systematic methodology for architecting, 
tuning, and validating a resiliency solution. At the heart of REDEM is the idea that 
it is possible for a vehicle to detect adversarial actions through a machine learning 
model designed (and tuned) to predict normal behavior pattern when engaged in 
the targeted CAV application. The REDEM infrastructure includes a configurable, 
flexible “architectural skeleton” (described below) to realize this vision, together 
with recipes for (1) configuring the skeleton into an architectural solution for a 
given CAV application against a specific adversary model, and (2) providing a 
comprehensive validation of such architectures. 

1.3 Overview of the Chapter 

In this chapter, we provide the vision of REDEM and its realization in a fundamental 
but representative CAV application, Cooperative Adaptive Cruise Control (CACC). 
Our goal for this chapter is not necessarily to advocate REDEM as an instrument 
for designing CAV resiliency. Furthermore, we eschew rehashing technical results 
about the various REDEM incarnations, except as necessary for the completeness 
of the chapter or to explain the intuition behind a specific design choice; the 
readers interested in a more technical treatment of the REDEM architecture for
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specific CAV applications and their validation are referred to previous publications 
on the subject [7, 9–11]. Instead, in this chapter we endeavor to elucidate the 
thinking behind the many architectural decisions, challenges encountered, and the 
approaches taken to address them. We believe the lessons from REDEM could carry 
over to other applications of ML targeting real-time security resiliency in various 
critical infrastructures, particularly under computational resource limitations. 

The remainder of the chapter is organized as follows. Section 2 introduces the 
high-level design of REDEM and explains the relevance (and requirements) of 
ML-based resiliency for CAV applications. Sections 3 and 4 present a variety of 
challenges involved in making such a solution work, and REDEM’s approach to 
address these challenges. In Sect. 5 we demonstrate the efficacy of REDEM in an  
illustrative, foundational CAV application. We conclude in Sect. 6. 

2 REDEM Basics 

At the level of usage, REDEM can be envisioned as a vehicular service for connected 
vehicles. A vehicle can subscribe to the service as long as it includes a certain 
on-board architecture for ML-based anomaly detection described below. Figure 1 
shows the overall setup of REDEM. We refer to the subscribing vehicle as the ego 
vehicle,“. E”, and all of REDEM analysis is done from the point of view of this 
vehicle. Data from all subscribing vehicles is periodically uploaded to a trusted 
cloud server for progressively refining ML models used by the on-board hardware; . E
periodically updates the on-board system by downloading the latest MLmodels. The 
communication with cloud is performed when . E is connected to Internet through a 

Fig. 1 REDEM-augmented CAV engaging in cooperative autonomous driving with neighbouring 
CAVs
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trusted network, e.g., when stationary at the owner’s residence; on-road connectivity 
with cloud is not necessary. During driving operations, the on-board hardware 
automatically detects anomalies using the trained ML model installed in . E , and 
performs mitigation. 

2.1 Architecture 

The key insight behind REDEM on-board design is that the architecture of most 
CAV applications follow a standard template with two major components: (1) 
Decision Computation Module and (2) Actuation Control Module. Given the sensory 
and V2X inputs pertaining to the application, Decision Computation Module com-
putes the desired actions of the vehicle, and Actuation Control Module generates 
the control commands for the actuators. Correspondingly, REDEM augments this 
template with the following two resiliency components to defend against adversarial 
attacks. 

1. Anomaly Detector is responsible for detecting suspicious communication or 
sensory inputs. 

2. Mitigator is responsible for applying the appropriate alternate action to the 
vehicle in response to a detected anomaly. 

The role of ML in REDEM is in the design of the Anomaly Detector and 
Mitigator components. More precisely, anomaly detection is implemented through 
deployment of an ML-based predictor model that is trained to learn the normal 
behavior of Decision Computation Module. The output of Predictor is compared 
against the (real) output Decision Computation Module. A deviation beyond a pre-
defined threshold is classified as an anomaly. If no anomaly is detected, the output 
of Decision Computation Module is applied to the vehicle; otherwise, Mitigator is 
triggered. 

2.2 Appropriateness of ML-Based Solution 

CAV applications represent a domain where safety requirements are paramount. 
Given that the resiliency solution influences the driving behavior of a vehicle, safety 
requirements obviously extend to the resiliency solution as well. In particular, any 
driving decision generated from an automated source must not increase the risk of 
accident. This applies particularly to any system that performs real-time mitigation 
in response to detected anomalies: road safety should not be compromised by the 
mitigating action irrespective of whether the response is to an input classified as 
anomalous in the context of a real attack or simply due to the imprecision/inaccuracy 
in the detection algorithm. Given the criticality of safety requirement, it is natural 
to ask why one would consider ML-based solutions to address the resiliency
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question in CAV applications. After all, machine learning approaches are inherently 
probabilistic: even the best ML solution would incur errors in some cases. Would 
it not be more appropriate to consider a technology that would provide a more 
deterministic safety guarantee? 

Unfortunately, the answer is “no”. To understand the reason, note that a key 
requirement for resiliency solutions is that they must enable protection against a 
spectrum of attacks. In particular, it is infeasible to have a different solution for each 
individual attack. Aside of the fact that the number of potential attack mechanisms 
already available today is prohibitively large, we can anticipate several more to be 
discovered during the long life time of the vehicle. Since resiliency is a design 
solution, it will be difficult (and sometimes impossible) to patch the design in field 
in response to each new attack discovered after deployment. A corollary is that 
the resiliency solution must be equipped with mechanisms to address the so-called 
zero-day attacks, i.e., attacks not known at design time but subsequently discovered 
when the vehicle is in field. To our knowledge, machine learning is one of the only 
few known technologies that enable potential prediction and analysis of previously 
unknown scenarios, based on the similarity of the new scenario with those the 
model has been trained for. Furthermore, the need for zero-day attack resiliency 
undermines any argument of deterministic (or complete) protection against the 
spectrum of attacks: after all, if an attack is not known at design time one cannot 
directly guarantee that the resiliency solution protects against that attack. 

Nevertheless, it is non-trivial to actually create a practically viable resiliency 
solution using the technology. In Sects. 3 and 4, we consider some of the challenges 
and considerations involved. For each of the challenges discussed, we briefly 
mention the REDEM approach to addressing the challenge. Note that the goal is 
not to specifically advocate the REDEM approach itself but to provide a sense of the 
kind of thinking that one has to carry on to make an ML-based resiliency solution 
viable for a safety-critical multi-agent cyber-physical application domain. 

There has been significant research in developing resiliency solutions for CAVs 
against adversaries compromising the perception systems. In addition to machine 
learning approaches, there has been work on control-theoretic approaches for 
detecting attacks on CAV applications [1, 13, 17]. Control-theoretic solutions enable 
a more deterministic analysis than machine learning. However, these solutions 
indeed suffer from the problem of being point solutions to specific vulnerabilities 
alone. For instance, control-theoretic solutions proposed to defend Cooperative 
Adaptive Cruise Control against Denial-of-Service attacks on V2X communications 
or spoofing attacks on sensor systems are tightly coupled to specific attack 
mechanisms. Consequently, an adversary can easily evade these protections by 
tweaking the attack mechanisms to break the assumptions made in the solution 
design. Correspondingly, while ML-based solutions have been devised before to 
detect anomalies in cooperative connected vehicle applications [4, 14], they did 
not account for real-time resiliency. Rather, these techniques are used to detect a 
compromised execution off-line through post-analysis of the communications or 
sensory inputs provided to the vehicle vis-a-vis ground truth.
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3 Architectural Considerations 

Coming up with a resiliency architecture requires addressing a variety of challenges. 
While ML is the central component of a viable real-time resiliency, it is not the 
only thing. The resiliency solution must define a system that incorporates the ML 
prediction together with other components (e.g., the original application, mitigation, 
anomaly source identification, etc.). In this section, we consider the thought process 
behind coming up with the architecture of this overall system, the exploration 
challenges, and the REDEM approach for addressing them. Implementation, tuning, 
and validation of the ML components in particular will be discussed in Sect. 4. 

3.1 Small Data Problem 

The efficacy of any ML-based system depends upon the availability of high-
quality data. So a critical question task is: how do we get copious high-quality 
data necessary to make the ML-based predictions viable? Note that in traditional 
applications of ML (e.g., recommendation systems) this problem is addressed 
simply by collecting data for a longer duration. Unfortunately, that does not work 
for a domain like cyber-security, since finding one (or a few) security vulnerabilities 
generally triggers a mitigation response (possibly through patching, point fixes, or 
sometimes design overhaul) resulting in the previous vulnerabilities being obsolete 
and possibly making ways for newer attacks and compromises. The lack of data 
represents a vexing problem in security and is known to be a bottleneck in the 
application of ML in cyber-security solutions. 

To address the small data problem in REDEM, our key insight is that while the 
data on security attacks is indeed limited, normal behavior data is in fact plentiful. 
Furthermore, normal behavior data follows the typical characteristic of standard ML 
domains: more data can be obtained by simply collecting data for a longer duration. 
REDEM makes use of this observation by defining the resiliency problem in terms 
of anomaly detection (capturing deviations from normal behavior), rather than as 
classification (categorizing an input into normal or attack classes). The formulation 
as anomaly detection implies that the ML models need to be trained to predict only 
the normal behavior; attack or adversarial data is not necessary. Furthermore, data 
collector in REDEM enables progressive improvement of the ML model through 
continuous real-world data collection. 

However, the small data problem does have repercussions on parameter tuning 
and validation, which must be done before the application is deployed in field. We 
discuss those challenges in Sect. 4.
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3.2 Resource Constraints 

Vehicular systems are resource-constrained in terms of performance and power. 
Although automotive systems can be considered relatively high-performance com-
pared to many other Internet-of-Things devices, operations with high computational 
complexity are infeasible. The situation is exacerbated in the case of resiliency 
solutions because of the need for real-time response: if the response of a resiliency 
solution depends on the result of a computation, viability of the solution relies 
on the feasibility of carrying out the computation within limited computing 
resources under a tight upper bound on time. Indeed, resource constraints preclude 
traditional hardware security mitigations such as high-overhead cryptography-based 
approaches or authentication techniques. Resource limitations affect the choice of 
ML as a resiliency solution as well, given the computational needs of ML. 

Addressing the resource limitation problem in REDEM requires a more careful 
dissection of the source of computational overhead in ML. Roughly, there are two 
sources of computational overhead in ML-based systems. First is the cost of training 
through a substantially large set of examples to ensure sufficient prediction accuracy. 
Second is the cost of inference (or prediction) of an input in field as normal or 
anomalous. The way REDEM architecture ameliorates the training cost is to separate 
the training from in-field inference. Training in REDEM is performed offline in the 
cloud, and no real-time communication is required with the trained model during 
prediction in-field: the trained model is downloaded periodically and deployed 
into the on-board architecture. Optimizing inference cost is more tricky. Inference 
has to be done in real time using in-vehicle electronics: reliance on a cloud-
based infrastructure for this activity would result in a requirement of continuous 
connectivity which may not be viable for various terrains and geographical regions. 
Reduction of inference cost therefore requires reducing the complexity of the ML 
model itself: the more elaborate the model, the more likely that the inference entails 
increasingly sophisticated computation and consequently higher inference cost. On 
the other hand, prediction accuracy does require the ML model to be sufficiently 
elaborate both in terms of the sophistication of the underlying algorithm and in 
the number of features/parameters incorporated in the model. REDEM addresses 
this conundrum by making the trade-off between cost and accuracy explicit and 
providing the user the ability to tune their model to customize for the trade-off 
target for the application. The framework itself is agnostic to the specifics of the 
underlying ML model. Rather, the user chooses a target for prediction accuracy (in 
terms of metrics like precision, recall, and f1-score) and can select the simplest ML 
model that addresses that accuracy need.
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3.3 Multi-Channel Adversary 

In typical CAV applications, more than one perception channel can be compromised. 
For instance, in CACC application, there are three perception channels that corre-
spond to the velocity, position, and acceleration of the preceding vehicle. Generally 
acceleration is communicated through V2X messages and velocity and position 
data computed by the follower vehicle through its on-board sensors. Different 
adversary models would be interesting for different implementations or even a 
specific instance of the application, e.g., it may be appropriate for some CACC 
implementation to consider an adversary to corrupt only acceleration information 
(V2X corruption), or velocity and position information (corruption of sensor data), 
or some combination thereof.1 When an adversary can corrupt multiple channels, 
one crucial requirement for ML-based resiliency is source identification, i.e., deter-
mining which channels are “actually” corrupted. Considering the CACC example 
above, suppose the adversary actually corrupts the acceleration information. From 
the perspective of the following vehicle, however, all that can be perceived is 
that pattern of acceleration values and velocity/position values received from the 
preceding vehicle are mutually inconsistent based on standard kinematics equations. 
Without some contextual information about the environment (e.g., what acceleration 
values are feasible under a specific driving condition), it is not possible to derive 
which ones the acceleration or velocity/position channels correspond to ground 
truth and which ones are anomalous. Furthermore, if we want to enumerate all 
subsets of potentially compromised channels, we will quickly run into combinatorial 
explosion. For instance, consider a platooning scenario consisting of five non-lead 
vehicles following a leader to create a platoon string. Suppose each vehicle receives 
three inputs (e.g., position, velocity, acceleration) from the leader and the vehicle 
immediately preceding it in the platoon. Assuming that at most three of the six 
inputs each non-lead vehicle receives can be corrupted by an adversary, there are 15 
possibly compromised channels in the platoon at any point. Consequently, the total 
number of possible subsets of corrupt channels will be . 215. Clearly, a naive approach 
of systematically examining each subset of channels for possible anomalies would 
be computationally prohibitive. 

REDEM addresses the problem of multi-channel adversaries through a process 
of source identification that exploits selective sensitivity. The key insight is that 
the same anomaly can affect behavior of different functions in different ways. For 
instance, an anomalous value of a preceding vehicle acceleration would not affect a 
machine learning model in the following vehicle that is trained to predict based on 
only the values of the velocity and position of the preceding vehicle. REDEM source 
identification creates a number of ML models with selective sensitivity to different

1 When doing this, care has to be taken so that we are still considering an adversary against whom it 
is possible to have a viable defense, e.g., if the adversary can collusively corrupt all the perception 
channels of the ego vehicle it is easy to see that no resiliency solution is possible. 
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parameters which can then be used cumulatively to narrow down the number of 
adversarial channels. 

3.4 Error Control and Recoverability 

The error control and recovery challenges arise from the imperfections in ML-
based systems. The ideal case for a CAV resiliency is that the resilient system, 
when provided with any input whether benign or malicious, always behaves the 
way that the application is targeted to behave when all inputs receive ground truth, 
i.e., with no adversarial action. However, since ML techniques can only provide 
accuracy with a certain probability, it is important for any ML-based resiliency 
solution to account for the situations when ML would perform misprediction. There 
are two different ways in which the misprediction can impact the application. One 
is the direct way, where the impact would be a risk to safety or efficiency of the 
application. Another, more subtle way is the indirect effect on the vehicle state 
after the attack is completed. Under the latter, consider a platooning application 
where a vehicle computes its acceleration at each instance based on the acceleration, 
velocity, and position of the preceding vehicle. Consider an attack in which the 
position and velocity channels are collusively corrupted, i.e., the values of these 
channels are changed such that the kinematics equations are satisfied. The upshot 
of this attack will be that the victim vehicle would receive values of velocity and 
position that are mutually consistent, but inconsistent with the acceleration values. 
By analysis of the inconsistency alone, the victim vehicle would have no reason to 
deduce a vel-pos attack instead of the acceleration attack. (Indeed, if a vehicle does 
in fact deduce this then it would likely mis-predict the complementary scenario 
where acceleration is the channel being corrupted and vel-pos channels provide 
the ground truth.) A good mitigation would likely be conservative and ensure 
safe operation irrespective of the channels corrupted. Nevertheless, the vehicle’s 
“perception” of its environment would be different depending on whether it 
correctly identifies the source of corruption. Furthermore, if the source identification 
is erroneous, it is possible that a subsequent benign (ground-truth) input would 
then be deduced as malicious. In the platooning example, after having wrongly 
deduced that the acceleration value received is corrupted and the velocity-position 
values are ground truths, the resiliency system would have a perception of the 
preceding vehicle’s state velocity, position, and acceleration which is different from 
reality. Consequently, when it receives benign (ground truth) values of these three 
parameters it might wrongly consider (any subset of) them anomalous. 

From the discussion above, we see that a resiliency solution must have the 
property of recoverability, i.e., the ability to return to a state in which when it 
is provided benign inputs when its perception of the environment is not too far 
from ground truth. We also observe that in particular with multi-channel adversary, 
recoverability may be difficult to ensure.
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REDEM introduces a variety of techniques to reduce inaccuracies for solutions 
abating the errors resulting from the imperfections in ML systems. This includes 
additional rule-based validation steps in each decision-making cycle, which can 
control errors from previous time steps to propagate and accumulate. In addition 
to checks, REDEM “exploits” adversary assumptions to address recoverability 
issues, e.g., the adversaries handled by REDEM are constrained in terms of the 
degree of bias they can introduce during a corruption at different time steps and 
the number of channels that can be corrupted at the same time. This permits 
REDEM solutions to correct mistakes, e.g., the scenario where velocity and position 
are continually corrupted can be precluded by the requirement that an adversary 
during one episode of continuous attack can only select one untrusted channel. 
We put the word “exploits” in quote, since in practice a resiliency solution clearly 
cannot get to choose the adversaries against which to defend; the quality and 
power of the adversary ought to be defined by the characteristics of the application 
and deployment. Nevertheless, as we argued in Sect. 1.1, it is impossible (in 
principle and practice) to develop resiliency against an adversary that is all powerful. 
Consequently, it is fair to constrain the set of adversaries that can be handled by a 
specific resiliency solution. Nevertheless, we must still ensure that the adversary 
is realistic, i.e., it is worth developing a resiliency solution to focus specifically 
on the adversary for a threat model. For each incarnation of REDEM for different 
applications, we define a threat model constraining adversary power and argue why 
it is a realistic adversary. 

4 Design, Implementation, Tuning, and Validation of ML 
Component 

The considerations discussed in the preceding section pertained to the design of the 
overall resiliency system. In this section we delve a bit more into the ML component 
of the system. Some representative questions we need to address here include: (1) 
Which ML architecture should we choose? (2) How should we train it? (3) Where 
do we find valid data to train it? (4) How can we perform validation? We discuss 
some of these issues here, and the methodologies developed in REDEM to address 
them. 

4.1 Architecture Selection and Tuning 

One of the key activities to enable ML application is to identify the appropriate ML 
model for the task and determine its parameters. In case of ML-based resiliency, 
selection and tuning of ML model incurs several interesting challenges. First, the 
complexity of the ML model itself is constrained by the available computation
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resource as discussed in Sect. 3.2. Second, accuracy of different MLmodels depends 
on the specifics of the scenario, e.g., a model may be more accurate under benign 
conditions or a specific type of corruption. Navigating this space of models to 
identify the accurate one for a target application is highly challenging. The small 
data problem discussed in Sect. 3.1 exacerbates the problem: given the very low 
amount of data available, it is difficult for any ML model to learn the features to 
make it generalizable for all target applications, with a real danger of over-fitting. 

To address this problem, a key insight is that the goal of an ML-based resiliency 
is to ideally behave like the naive application (i.e., application with no resiliency 
introduced) when provided data corresponding to the ground reality. In other words, 
the efficiency (and accuracy) of the solution would be determined primarily by the 
prediction accuracy under benign scenario. With that in mind, the following steps 
provide a recipe for selecting the ML architecture. 

1. Identify a set of candidate ML architectures that can be deployed under the 
resource constraints. The constraints preclude overtly complicated ML systems, 
and generally permit only a small set of simple candidate architectures. It is 
generally possible to effectively navigate the space of architectures left through 
quick sampling. 

2. Train the candidate architectures with benign data, discarding ones with unac-
ceptable prediction accuracy under benign conditions. 

3. Among the architectures with acceptable prediction accuracy under benign 
scenarios, select the one with the highest prediction accuracy under malicious 
conditions. 

Obviously, the above steps should be used as a guideline, not a procedure cast 
in stone. For instance, determining the accuracy entails tuning the right set of 
hyperparameters, which in turn requires trade-offs between time, cost, computation 
capability, and many others. 

4.2 Data Preprocessing and Feature Selection 

CAV application anomalies are contextual, i.e., determining whether a specific input 
is anomalous requires understanding of the driving environment. For instance, a 
speed of 70Mph is normal in a rural highway during a clear summer evening but 
perhaps not in a snowy winter morning or during rush hours near a big city. To 
be able to accurately qualify some input as normal or anomalous, the ML system 
ideally must have access to a large quantity of fine-grained data (sampled at high 
frequency), together with sufficient context. Unfortunately, real-world datasets are 
generally incomplete and inadequate. For instance, HighD Dataset [15], which 
provides trajectory data corresponding to real vehicles driving in German highways, 
has individual vehicle trajectory data encompassing approximately 15 s. Data from 
real datasets also include noise and inconsistency, arising from errors in collection 
and measurement from the physical environment. One can augment this with
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synthetic data, collected from a variety of simulators. However, for synthetic data it 
is critical to ensure that data characteristics are consistent with what the application 
is expected to encounter in field. Note that the accuracy of ML can be harmed by 
having irrelevant features and lack of diversity in the data. Insufficient diversity in 
data may lead to overfitting. Poor feature selection may also affect generalizability. 
So, feature selection and feature engineering must be done, and it completely 
depends upon the purpose of the ML model used in the CAV application resiliency. 

Data preprocessing is the idea of preparing the raw data to make it suitable for 
consumption by ML algorithms. This includes several components. Data cleaning 
entails filling in missing values, smoothing or removing noisy data and outliers, and 
resolving inconsistencies. Data integration involves integrating data from multiple 
sources such as databases, data cubes, files, etc. To solve the complexities arising 
due to feature selection, the input features should be selected such that they have 
actual impact on the learning behavior. In such cases redundant features and features 
having no importance for the prediction objective of the ML target in question 
should be ignored while training to boost up the performance. At the same time 
new features can be engineered from existing features in order to get better results. 

REDEM addresses the data preprocessing issues by using “realistic synthetic 
data”. In particular, REDEM uses a  physical simulator platform, RDS1000® [16]. 
This platform can be used to acquire data as follows. The system permits configu-
ration of various different driving environment, and an immersive environment for 
a human to have the experience of driving in the programmed environment. We can 
record the actions of humans as they perform driving, and use that as a proxy for 
what a vehicle does under similar situation. It also includes autonomous driving 
modules that can be used to study reaction of autonomous driving algorithms under 
similar situations. We curated an extensive dataset of vehicular behavior under 24 
different driving conditions by first acquiring the data and then performing cleaning, 
reformatting and validation. This setup can produce fine-grained and real-time data. 
However, it leaves open the issue whether the environments programmed (and 
the vehicular behavior recorded) do in fact correspond to reality. To address this 
question, we show that the real dataset snippets in fact match in pattern with our 
curated dataset. The real dataset only includes short snippets of time as mentioned 
above. Nevertheless, if these snippets match the synthetic data for the corresponding 
environment, we can gain confidence that the synthetic data is indeed realistic. 

Finally, note the apparent dichotomy in the discussion above and the discussion 
in Sect. 3.1. We argued that normal behavior data is in fact plentiful, and it is the 
anomaly data that is limited. The discussion here at cursory glance would appear in 
contradiction to that statement, is that right? 

Actually, it is wrong: there is no contradiction. Normal behavior data is in 
fact plentiful once the application is deployed and can collect such data in field. 
However, when determining the parameter set and performing feature engineering, 
the application is not yet deployed in field, so we have to depend on synthetic data 
or available real-vehicle datasets.
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4.3 Decision Threshold Selection 

Given that ML in CAV resiliency is targeted specifically for anomaly detection, 
an important issue is to determine the anomaly threshold. A high threshold may 
result in reduced detection accuracy, whereas a low threshold may result in more 
false reports in detection. An ideal threshold is one that would provide both safety 
and efficiency under adversarial scenarios while incurring minimal performance 
overhead in benign conditions. A more subtle impact of the choice of the threshold is 
the robustness of the resiliency system to subversion attacks. The idea of subversion 
attacks is for the adversary to create anomalous data that is nevertheless accepted as 
normal by the detector, thereby bypassing any mitigation against the attack. A high 
anomaly threshold can make the CAV application vulnerable to subversion attacks, 
impacting the safety, efficiency, and recoverability of the resiliency solution. 

To address this problem, REDEM includes systematic methodology for identify-
ing and tuning anomaly threshold. REDEM accounts for the fact that the choice 
of threshold also depends on the operating environment and may require re-
configuration as the driving conditions change during the application engagement. 
In REDEM methodology, the threshold is determined by analyzing the distribution 
of test-set error incurred by the ML prediction model under benign conditions as 
well as a finite set of representative attacks. This is achieved in two steps. First, 
the threshold is coarsely tuned to minimize false positives and false negatives 
under benign conditions determining a ball-park range. Subsequently, a series 
of special subversion attacks are orchestrated to fine-tune the threshold that can 
balance the trade-off between the conflicting design goals of minimizing inference 
cost, achieving required detection accuracy, and minimizing overhead due to false-
positives/false-negatives. While achieving the ideal outcome for all the design goals 
simultaneously is impractical, REDEM identifies the tolerable imperfections that 
can still ensure overall resiliency (guaranteed safety and optimal efficiency at all 
times) for CAVs. The threshold selection then accounts for the re-defined practical 
design goals carefully allowing for a small amount of inference cost, false-positives, 
and false-negatives, while achieving the required detection accuracy. 

4.4 Validation 

Validation is crucial for a CAV resiliency system, since it targets highly safety-
critical applications. However, the unique nature of ML-based resiliency makes it 
highly challenging to achieve effective validation. Obviously, validation is a broad 
topic with many different facets. Here we provide a very quick summary of the 
challenges involved, and our approach to address these challenges. The reader 
interested in a fuller discussion of validation in REDEM is referred to our companion 
publication [9] that provides an exclusive treatment of the subject.
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Roughly, validation of ML-based prediction involves addressing three critical 
problems as described below. 

1. Inadequacy of data. The challenge with data for validation is similar to that for 
parameter estimation and tuning discussed in Sect. 4.2: before the application is 
deployed, how can we obtain copious amount of realistic data to validate an ML 
system? 

2. Validation against zero-day attacks. This issue arises from the fact that it is 
inadequate for a resiliency solution to only provide protection against a specific 
set of known attacks. New attacks not considered during resiliency design can 
become feasible during the life-time of the application after technology (and 
hence sophistication of attack) advances in ways not necessarily anticipated at 
deployment. This results in a conundrum for security validation: how can we 
ensure that the resiliency system is indeed effective, not only against known 
attacks but against a spectrum of attacks that are unknown at deployment time? 

3. Validation challenges for an inherently probabilistic system. This challenge 
is the verification counterpart of the design challenge we discussed in Sect. 3.4. 
Since no ML system is accurate in .100% of cases, we must be able to verify that, 
either (1) no matter what attack is instigated, the victim vehicle’s perception is 
always within tolerable limits of reality; or (2) if the perception of the victim 
vehicle deviates significantly from reality then its response still ensures safe and 
efficient operation, and after the attack is over it eventually returns to a state in 
which benign inputs are treated as benign. 

REDEM addresses the first two problems discussed above through new validation 
techniques. The third problem (probabilistic system challenge) is relegated to 
design (and validation) of resiliency solutions with the property of recoverability 
as discussed in Sect. 3.4. We address the problem of data for validation in the same 
way we did for model training, e.g., by creation of realistic synthetic data from 
a physical simulator. The uniqueness of REDEM validation is in how it addresses 
the second problem, i.e., validating resiliency against unknown adversary. The key 
insight is that it is possible to develop a resiliency system that accounts for attacks 
based on its manifestation features, stealth, and impact rather than detailed attack 
mechanism. Furthermore, it is possible to comprehensively classify the spectrum of 
attacks in this manner simply from the threat model. For instance, consider a CACC 
application where a vehicle follows its preceding vehicle by maintaining a specific 
time headway. If the adversary is confined to V2V communications, the only choices 
for the adversary are to (1) mutate an existing message, (2) fabricate a new message, 
and (3) prevent the delivery of a message. Going through this argument enables 
us to create a taxonomy of V2X attacks. Note that if our validation covers attack 
space defined by the taxonomy then the above argument suggests that we indeed 
comprehensively cover the space of all attacks defined by the threat model, including 
unknown attacks. REDEM additionally includes an automated evaluation framework 
for systematically generating attacks from the adversary taxonomy [8].
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5 REDEM Case Study: Resilient Cooperative Adaptive 
Cruise Control 

We have instantiated REDEM to incorporate resiliency on platooning applications 
[6, 7, 10]. Here we quickly summarize the instantiation of REDEM architecture on 
Cooperative Adaptive Cruise Control (CACC).We also present a summary of results 
showing the overall efficacy of the REDEM resiliency for CACC. 

5.1 CACC Overview 

In CACC, the following vehicle autonomously adapts its velocity in accordance to 
the acceleration of the vehicle in front (received through V2V communication), as 
well as the relative velocity and inter-vehicle gap (obtained from the ranging sensor 
readings). CACC enables improved road safety and efficiency (e.g., a much smaller 
headway) compared to its non-cooperative counterpart, Adaptive Cruise Control 
(ACC). Figure 2a depicts vehicles engaged in CACC. Figure 2b demonstrates the 
high-level functionality of a CACC decision computation module that implements 
constant time headway policy. Following vehicle receives the preceding vehicle’s 
instantaneous acceleration as a V2V message. It utilizes this information in addition 
to the on-board ranging sensor readings providing the relative position and velocity 
of the preceding vehicle. Consequently, the following vehicle efficiently adapts its 
velocity in accordance with the acceleration of the preceding vehicle achieving 
improved efficiency and safety. CACC forms the basis for several connected car 
applications such as multi-vehicle platooning, cooperative on-ramp merging, etc. 

A vehicle engaging in CACC can be exploited by an adversary that is capable 
of manipulating the V2V communication or a malicious preceding vehicle that 
shares false information. For instance, a malicious preceding vehicle can report 
a fake acceleration value that is greater than its true value. This can mislead the 
vehicle to accelerate at a higher value than desired that can lead to an increased 
risk of a collision. Similarly, a Man-In-The-Middle (MITM) adversary can mutate 
the messages from the preceding vehicle by adding a negative bias. The vehicle 
receives false acceleration value and fails to maintain the optimal space gap. This 
leads to loss in efficiency or can cause string instability in the traffic.

V2V(Acc) 

Ranging Ranging 

PrecedingEgo 

Collision 
Avoidance 

Mode 
Gap is smaller than gsafe 

gsafe: min safe gap 

Gap is larger than gsafe 
Gap 

Control 
Mode 

a  b

Fig. 2 (a) Two vehicles engaged in CACC; (b) Modes of operation of a conventional CACC 
decision computation module 
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5.2 Evaluation of REDEM Resiliency on CACC 

We extended CACCwith REDEM architecture to generate a resilient CACC solution 
which we call RACCON (for “Resilient Cooperative Adaptive Cruise Control). Our 
evaluation of RACCON also represents one of the most comprehensive resiliency 
evaluations performed on a connected vehicle application up to date. As pointed 
out in Sects. 3 and 4, this means consideration of a number of different factors. In 
summary, the evaluation of RACCON included the following components. 

1. Data Validation: We validated that the vehicular driving patterns reflected in our 
simulation data conform to real-world patterns from a public dataset. 

2. Identification of Appropriate ML Model: We developed a systematic evalua-
tion methodology for identifying and tuning the optimal ML architecture. 

3. Attack Impact Analysis: The viability of attack orchestration framework for 
RACCON evaluation depends on the quality of the orchestrated attacks them-
selves. We developed a methodology to analyze attacks, in terms of stealth and 
impact. 

4. Anomaly Detection Threshold: A key factor in the effectiveness of RACCON 

is the identification of anomaly threshold, i.e., the extent of deviation from 
normal behavior pattern that would be classified as a potential threat. Selecting 
an appropriate threshold involves balancing the trade-off between maximizing 
attack detection accuracy and minimizing false alarms. We present a series of 
experiments to compute the optimal threshold, achieving the balance between 
maximizing attack detection accuracy and minimizing false alarms. 

5. V2V Attack Resiliency: The central component of our evaluation shows the 
robustness of RACCON against various V2V attacks. 

6. Resiliency Against Detector Subversion: We designed a set of experiments 
to address evaluating the robustness of RACCON against detector subversion, 
and tune anomaly threshold accounting for the trade-off between robustness to 
subversion and minimizing false alarms. 

Here we show some representative plots from our experiments to give a flavor 
of the evaluation and the extent and quality of REDEM resiliency for CACC. 
Figure 3 shows a representative plot for the scenario . 〈highway, windy, day. 〉, for  
discrete, cluster, and continuous attacks. The frequency of the malicious activity 
and the magnitude of deviation between the false V2V message received and the 
ground truth, determine the stealth of the attack. The detection system is capable of 
capturing attacks of varying stealth as can be seen from the figure. Figures 4, 5, 
and 6 show the conclusions from our experiments on Mitigator efficacy under 
collision-causing, efficiency-degrading, and delivery prevention attacks. Under each 
category, different types of attacks for discrete, cluster, and continuous adversaries 
are simulated. Mitigation guarantees safety while keeping the efficiency optimal. 
This is reflected in the time headway values achieved by the mitigation that closely 
resemble the ideal values.
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6 Conclusion 

We have considered the problem of introducing resiliency in CAV applications 
against attacks on perception inputs. With increasing proliferation of connectivity 
and autonomy in vehicles, perception inputs can create a large and highly vulnerable 
attack surface that can be easily exploited with catastrophic consequences. We 
discussed the promise and challenges in adopting ML-based solutions to achieve 
resiliency in this domain. We also discussed one effective framework, REDEM, to 
achieve this resiliency, and explained REDEM’s approach to address the various 
challenges in system design, architecture, and validation. The efficacy of REDEM 
was demonstrated in Cooperative Adaptive Cruise Control application. 

REDEM is very much a work in progress, and is under active development. What 
we presented is representative of our thinking at the time of this writing, but the 
thinking will inevitably evolve as we extend REDEM for newer applications. Indeed, 
it is important to try REDEM on applications of diverse flavors to identify weakness 
in the current line of thinking and determining how to expand the methodology 
to incorporate new challenges. Some critical applications that can provide such
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communication

challenges include Distributed Cooperative Collision Detection, Cooperative Route 
Management, etc. These applications are different from the current platooning appli-
cations in that they involve communication of perceived environment in addition 
to the state of the communicating vehicle. We will explore security challenges in 
perception of such scenarios and investigate the applicability of REDEM. 
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Object Detection in Autonomous 
Cyber-Physical Vehicle Platforms: Status 
and Open Challenges 

Abhishek Balasubramaniam and Sudeep Pasricha 

1 Introduction 

Autonomous vehicles (AVs) have received immense attention in recent years, in 
large part due to their potential to improve driving comfort and reduce injuries from 
vehicle crashes. It has been reported that more than 36,000 people died in 2019 
due to fatal accidents on U.S. roadways [1]. AVs can eliminate human error and 
distracted driving that is responsible for 94% of these accidents [2]. By using sensors 
such as cameras, lidars, and radars to perceive their surroundings, AVs can detect 
objects in their vicinity and make real-time decisions to avoid collisions and ensure 
safe driving behavior. 

AVs are generally categorized into six levels by the SAE J3016 standard [3] 
based on their extent of supported automation (see Table 1). While level 0–2 
vehicles provide increasingly sophisticated support for steering and acceleration, 
they heavily rely on the human driver to make decisions. Level 3 vehicles are 
equipped with Advanced Driver Assistance Systems (ADAS) to operate the vehicle 
in various conditions, but human intervention may be requested to safely steer, 
brake, or accelerate as needed. Level 4 vehicles are capable of full self-driving mode 
in specific conditions but will not operate if these conditions are not met. Level 5 
vehicles can drive without human interaction under all conditions.

Automotive manufactures have been experimenting with AVs since the 1920s. 
The first modern AV was designed as part of CMU NavLab’s autonomous land 
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Table 1 SAE J3016 levels of automation 

SAE level Name Driving environment monitor 

0 No automation Human driver 
1 Driver assistance 
2 Partial driving automation 
3 Conditional driving automation ADAS system 
4 High driving automation 
5 Full driving automation

vehicle project in 1984 with level 1 autonomy that was able to steer the vehicle 
while the acceleration was controlled by a human driver [4]. This was followed by 
an AV designed by Mercedes-Benz in 1987 with level 2 autonomy that was able to 
control steering and acceleration with limited human supervision [5]. Subsequently, 
most major auto manufacturers such as General Motors, Bosch, Nissan, and Audi 
started to work on AVs.  

Tesla was the first company to commercialize AVs with their Autopilot system 
in 2014 that offered level 2 autonomy [6]. Tesla AVs were able to travel from New 
York to San Francisco in 2015 by covering 99% of the distance autonomously. In 
2017, Volvo launched their Drive Me feature with level 2 autonomy, with their 
vehicles traveling autonomously around the city of Gothenburg in Sweden under 
specific weather conditions [7]. Waymo has been testing its AVs since 2009 and has 
completed 200 million miles of AV testing. They also launched their driverless taxi 
service with level 4 autonomy in 2018 in the metro Phoenix area in USA with 1000– 
2000 riders per week, among which 5–10% of the rides were fully autonomous 
without any drivers [8]. Cruise Automation started testing a fleet of 30 vehicles in 
San Francisco with level 4 autonomy in 2017, launched their self-driving Robotaxi 
service in 2021 [9]. Even though Waymo and Cruise support level 5 autonomy, their 
AVs are classified as level 4 because there is still no guarantee that they can operate 
safely in all weather and environmental conditions. 

AVs rely heavily on sensors such as cameras, lidars, and radars for autonomous 
navigation and decision making. For example, Tesla AVs rely on camera data with 
six forward facing cameras and ultrasonic sensors. In contrast, Cruise AVs use a 
sensor cluster that consists of a radar in the front while camera and lidar sensors 
are mounted on the top of the AV to provide a 360-degree view of the vehicle 
surroundings [9]. One of the main tasks involved in achieving robust environmental 
perception in AVs is to detect objects in the AV vicinity using software-based object 
detection algorithms. Object detection is a computer vision task that is critical for 
recognizing and localizing objects such as pedestrians, traffic lights/signs, other 
vehicles, and barriers in the AV vicinity. It is the foundation for high-level tasks 
during AV operation, such as object tracking, event detection, motion control, and 
path planning. 

The modern evolution of object detectors began 20 years ago with the Viola 
Jones detector [10] used for human face detection in real-time. A few years 
later, Histogram of Oriented Gradient (HOG) [11] detectors became popular for 
pedestrian detection. HOG detectors were then extended to Deformable Part-based
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Models (DPMs), which were the first models to focus on multiple object detection 
[12]. With growing interest in deep neural networks around 2014, the Regions 
with Convolutional Neural Network (R-CNN) deep neural network model led 
to a breakthrough for multiple object detection, with a 95.84% improvement in 
Mean Average Precision (mAP) over the state-of-the-art. This development helped 
redefine the efficiency of object detectors and made them attractive for entirely new 
application domains, such as for AVs. Since 2014, the evolution in deep neural 
networks and advances in GPU technology have paved the way for faster and 
more efficient object detection on real-time images and videos [10]. AVs today rely 
heavily on these improved object detectors for perception, pathfinding, and other 
decision making. 

This chapter discusses contemporary deep learning-based object detectors, their 
usage, optimization, and limitations for AVs. We also discuss open challenges and 
future directions. 

2 Overview of Object Detectors 

Object detection consists of two sub-tasks: localization, which involves determining 
the location of an object in an image (or video frame), and classification, which 
involves assigning a class (e.g., ‘pedestrian’, ‘vehicle’, ‘traffic light’) to that object. 
Figure 1 illustrates a taxonomy of state-of-the-art deep learning-based object 
detectors. We discuss the taxonomy of these object detectors in this section. 

2.1 Two-Stage vs Single Stage Object Detectors 

Two-stage deep learning based object detectors involve a two-stage process con-
sisting of (1) region proposals and (2) object classification. In the region proposal 
stage, the object detector proposes several Regions of Interest (ROIs) in an input 
image that have a high likelihood of containing objects of interest. In the second 
stage, the most promising ROIs are selected (with other ROIs being discarded)

Fig. 1 Taxonomy of object detectors 
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Fig. 2 Two-stage vs Single stage detector network diagram

and objects within them are classified [13]. Popular two-stage detectors include R-
CNN, Fast R-CNN, and Faster R-CNN. In contrast, single-stage object detectors 
use a single feed-forward neural network that creates bounding boxes and classifies 
objects in the same stage. These detectors are faster than two-stage detectors but 
are also typically less accurate. Popular single-stage detectors include YOLO, SSD, 
EfficientNet, and RetinaNet. 

Figure 2 illustrates the difference between the two types of object detectors. Both 
types of object detectors are typically evaluated using the mAP and Intersection 
over Union (IoU) accuracy metrics. mAP is the mean of the ratio of precision to 
recall for individual object classes, with a higher value indicating a more accurate 
object detector. IoU measures the overlap between the predicted bounding box and 
the ground truth bounding box. Formally, IoU is the ratio of the area of overlap 
between the (bounding and ground truth) boxes and the area of union between the 
boxes. Figure 3 illustrates the IoU of an object detector prediction and the ground 
truth. Figure 3a shows a highly accurate IoU and 3b shows a less accurate IoU. 

R-CNN was one of the first deep learning-based object detectors and used 
an efficient selective search algorithm for ROI proposals as part of a two-stage 
detection [13]. Fast R-CNN solved some of the problems in the R-CNN model, such 
as low inference speed and accuracy. In the Fast R-CNN model, the input image is 
fed to a Convolutional Neural Network (CNN), generating a feature map and ROI 
projection. These ROIs are then mapped to the feature map for prediction using ROI 
pooling. Unlike R-CNN, instead of feeding the ROI as input to the CNN layers, Fast 
R-CNN uses the entire image directly to process the feature maps to detect objects 
[14]. Faster R-CNN used a similar approach to Fast R-CNN, but instead of using a
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Fig. 3 Example of an IOU; green box: ground truth; red box: prediction

selective search algorithm for the ROI proposal, it employed a separate network that 
fed the ROI to the ROI pooling layer and the feature map, which were then reshaped 
and used for prediction [15]. 

Single-stage object detectors such as YOLO (You only look once) are faster 
than two-stage detectors as they can predict objects on an input with a single pass. 
The first YOLO variant, YOLOv1, learned generalizable representations of objects 
to detect them faster [16]. In 2016, YOLOv2 improved upon YOLOv1 by adding 
batch normalization, a high-resolution classifier, and use of anchor boxes to create 
bounding boxes instead of using a fully connected layer like YOLOv1 [17]. In 2018, 
YOLOv3 was proposed with a 53 layered backbone-based network that used an 
independent logistic classifier and binary cross-entropy loss to predict overlapping 
bounding boxes and smaller objects [18]. Single-Shot Detector (SSD) models were 
proposed as a better option to run inference on videos and real-time applications 
as they share features between the classification and localization task on the whole 
image, unlike YOLO models that generate feature maps by creating grids within an 
image. While the YOLO models are faster than SSD, they trail behind SSD models 
in accuracy [19]. Even though YOLO and SSD models provide good inference 
speed, they have a class imbalance problem when detecting small objects. This 
issue was addressed in the RetinaNet detector that used a focal loss function during 
training and a separate network for classification and bounding box regression [20]. 

In 2020, YOLOv4 introduced two important techniques: ‘bag of freebies’ which 
involves improved methods for data augmentation and regularization during training 
and ‘bag of specials’ which is a post processing module that allows for better mAP 
and faster inference [21]. YOLOv5, which was also introduced in 2020, proposed 
further data augmentation and loss calculation improvements. It also used auto-
learning bounding box anchors to adapt to a given dataset [22]. Another variant 
called YOLOR (You Only Learn One Representation) was proposed in 2021 and 
used a unified network that encoded implicit and explicit knowledge to predict the 
output. YOLOR can perform multitask learning such as object detection, muti-label 
image classification, and feature embedding using a single model [23]. The YOLOX
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Table 2 2D and 3D object detector models and their performance 

Name Year Type Dataset mAP Inference rate (fps) 

R-CNN [13] 2014 2D Pascal VOC 66% 0.02 
Fast R-CNN [14] 2015 Pascal VOC 68.8% 0.5 
Faster R-CNN [15] 2016 COCO 78.9% 7 
YOLOv1 [16] 2016 Pascal VOC 63.4% 45 
YOLOv2 [17] 2016 Pascal VOC 78.6% 67 
SSD [19] 2016 Pascal VOC 74.3% 59 
RetinaNet [20] 2018 COCO 61.1% 90 
YOLOv3 [18] 2018 COCO 44.3% 95.2 
YOLOv4 [21] 2020 COCO 65.7% 62 
YOLOv5 [22] 2021 COCO 56.4% 140 
YOLOR [23] 2021 COCO 74.3% 30 
YOLOX [24] 2021 COCO 51.2% 57.8 
Complex-YOLO [27] 2018 3D KITTI 64.00% 50.4 
Complexer-YOLO [28] 2019 KITTI 49.44% 100 
Wen et al. [29] 2021 KITTI 73.76% 17.8 
RAANet [30] 2021 NuScenes 62.0% – 

model, also proposed in 2021, uses an anchor-free, decoupled head technique 
that allows the network to process classification and regression using separate 
networks. Unlike the YOLOv4 and YOLOv5 models, YOLOX has reduced number 
of parameters and increased inference speed [24]. The performance of each model 
in terms of mAP and inference speed is summarized in Table 2. 

2.2 2D vs 3D Object Detectors 

2D object detectors typically use 2D image data for detection, but recent work has 
also proposed a sensor-fusion based 2D object detection approach that combines 
data from a camera and radar [25]. 2D object detectors provide bounding boxes 
with four Degrees of Freedom (DOF). Figure 4 shows the most common approach 
for encoding bounding boxes 4a: [x, y, height, width] and 4b: [xmin, ymin, xmax, 
ymax] [26]. Unfortunately, 2D object detection can only provide the position of the 
object on a 2D plane but does not provide information about the depth of the object. 
Depth of the object is important to predict the shape, size, and position of the object 
to enable improved performance in various self-driving tasks such as path planning, 
collision avoidance, etc.

Figure 5 shows the difference between a 2D and 3D object detector output on 
real images. 3D object detectors use data from a camera, lidar, or radar to detect 
objects and generator 3D bounding boxes. These detectors provide bounding boxes 
with (x, y, z) and (height, width, length) along with yaw information [26]. These 
object detectors use several approaches, such as point clouds and frustum pointnets,
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Fig. 4 Commonly used bounding box encoding methods

Fig. 5 Object detection modalities: (a) 2D vs. (b) 3D  

for predicting objects in real-time. Point cloud networks can directly use 3D data, 
but the complexity and cost of computing are very high, so some networks use 2D to 
3D lifting while compensating for the loss of information. Pointnets are used along 
with RGB images, where 2D bounding boxes are obtained using RGB images. Then 
these boxes are used as ROIs for 3D object detection which reduces the search effort 
[26]. Monocular image-based methods have also been proposed that use an RGB 
image to predict objects on the 2D plane and then perform 2D to 3D lifting to create 
3D object detection results. 

Recent years have seen growing interest in 3D object detection with deep 
learning. Complex-YOLO, an extension of YOLOv2, used a Euler Region Proposal 
Network (E-RPN), based on an RGB Birds-Eye-View (BEV) map from point cloud 
data to get 3D proposals. The network exploits the YOLOv2 network followed by 
E-RPN to get the 3D proposal [27]. Later in 2019, Complexer-YOLO achieved 
semantic segmentation and 3D object detection using Random Finite Set (RFS) [28]. 
The more recent work on 3D object detection by Wen et al. [29] in 2021 proposed a 
lightweight 3D object detection model that consists of three submodules: (1) point 
transform module, which extracts point features from the RGB image based on the 
raw point cloud, (2) voxelization, which divides the features into equally spaced 
voxel grids and then generates a many-to-one mapping between the voxel grids and 
the 3D point clouds, and (3) point-wise fusion module, which fuses the features 
using two fully connected layers. The output of the point-wise fusion module is
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encoded and used as input for the model. Another 3D detector proposed in 2021 
called RAANet used only lidar data to achieve 3D object detection [30]. It used 
the BEV lidar data as input for a region proposal network which was then used to 
create shared features. These shared features were used as the input for an anchor 
free network to detect 3D objects. The performance of these models is summarized 
in Table 2. 

3 Deploying Object Detectors in AVs 

Deploying deep learning-based object detector models in AVs has its own chal-
lenges, mainly due to the resource-constrained nature of the onboard embedded 
computers used in vehicles. These computing platforms have limited memory 
availability and reduced processing capabilities due to stringent power caps, and 
high susceptibility to faults due to thermal hotspots and gradients, especially during 
operation in the extreme conditions found in vehicles. As the complexity of the 
object detector model increases, the memory and computational requirements, and 
energy overheads also increase. In this section, we discuss techniques to improve 
object detector model deployment efficiency. The performance of some of the latest 
works on this topic is summarized in Table 3.

3.1 Pruning 

Pruning a neural network model is a widely used method for reducing the model’s 
memory footprint and computational complexity. Pruning was first used in the 1990s 
to reduce neural network sizes for deploying them on embedded platforms [31]. 
Pruning involves removing redundant weights and creating sparsity in the model 
by training the model with various regularization techniques (L1, L2, unstructured, 
and structured regularization). Sparse models are easier to compress, and the zero 
weights created during pruning can be skipped during inference, reducing inference 
time, and increasing efficiency. While most pruning approaches target deep learning 
models for the simpler image classification problem, relatively fewer works have 
attempted to prune the more complex object detector models. Wang et al. [32] 
proposed using a channel pruning strategy on SSD models in which they start by 
creating a sparse normalization and then prune the channels with a small scaling 
factor followed by fine-tuning the network. Zhao et al. [33] propose a compiler 
aware neural pruning search on YOLOv4 which uses an automatic neural pruning 
search algorithm that uses a controller and evaluator. The controller is used to 
select the search space, pre-layer pruning schemes, and prune the model whereas 
the evaluator evaluates the model accuracy after every pruning step.
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3.2 Quantization 

Quantization is the process of approximating a continuous signal by a set of 
discrete symbols or integer values. The discrete set is selected as per the type of 
quantization such as integer, floating-point, and fixed-point quantization. Quantizing 
deep learning-based object detector models involves converting the baseline 32-bit 
parameters (weights, activations, biases) to fewer (e.g., 16 or 8) bits, to achieve 
lower memory footprint, without significantly reducing model accuracy. Fan et al. 
[34] proposed an 8-bit integer quantization of all the bias, batch normalization, 
and activation parameters on SSDLite-MobileNetV2. LCDet [35] proposed a fully 
quantized 8-bit model in which parameters of each layer of a YOLOv2 object 
detector were quantized to 8-bit fixed point values. To achieve this, they first stored 
the minimum and maximum value at each layer and then used relative valued to 
linearly distribute the closest integer value to all the reduced bitwidth weights. 

3.3 Knowledge Distillation 

Knowledge Distillation involves transferring learned knowledge from a larger 
model to a smaller, more compact model. A teacher model is first trained for 
object detection, followed by a smaller student model being trained to emulate the 
prediction behavior of the teacher model. The goal is to make the student model 
learn important features to arrive at the predictions that are very close to that of the 
original model. The resulting student model reduces the computational power and 
memory footprint compared to the original teacher model. Kang et al. [36] proposed 
an instance-conditional knowledge decoding module to retrieve knowledge from 
the teacher network (RetinaNet with a ResNet-101 classifier model as backbone) 
via query-based attention. They also used a subtask that optimized the decoding 
module and feature maps to update the student network (RetinaNet with a simpler 
ResNet-50 model as backbone). Chen et al. [37] proposed a three-step knowledge 
distillation process on R-CNN with a Resnet-50 model as backbone. The first step 
used a feature pyramid distillation process to extract the output features that can 
mimic the teacher network features. They then used these features to remove the 
output proposal to perform Regional Distillation (RD), enabling the student (RCNN 
with a much simpler ResNet-18 model as backbone) to focus on the positive regions. 
Lastly, Logit Distillation (LD) on the output was used to mimic the final output of 
the teacher network.
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4 Open Challenges and Opportunities 

While there has been significant work on effective object detection for AVs, there 
are significant outstanding challenges that remain to be solved. Here we discuss 
some of the key challenges and opportunities for future research in the field. 

Neural Architecture Search (NAS) In recent years, NAS based efforts have gained 
much attention to automatically determine the best backbone architecture for a 
given object detection task. Recent works such as NAS-FCOS [38], MobileDets 
[39], and AutoDets [40] have shown promising results on image classification tasks. 
Using automated NAS methods can help identify better anchors boxes and backbone 
networks to improve object detector performance. The one drawback of these efforts 
is that they take significantly longer to discover the final architecture. More research 
is needed to devise efficient NAS approaches targeting object detectors. 

Real-Time Processing Object detectors deployed in AV’s use video inputs from 
AV cameras, but the object detectors are typically trained to detect objects on image 
datasets. Detecting an object on every frame in a video can increase latency of the 
detection task. Correlations between consecutive frames can help identify the frames 
that can be used for detecting new objects (while discarding others) and reduce 
the latency of the model. Creating models that can correlate spatial and temporal 
relationships between consecutive frames is an open problem. Recent work on real-
time object detection [41, 42], has begun to address this problem, but much more 
work is needed. 

Sensor Fusion Sensor fusion is one of the most widely used methods for increasing 
accuracy of 2D and 3D object detection. Many efforts fuse lidar and RGB images to 
perform object detection for autonomous driving. But there are very few works that 
consider fusion data from ultrasonic sensors, radar, or V2X communication. The 
fusion of data from more diverse sensors is vital to increasing the reliability of the 
perception system in AVs. Fusing additional sensor data can also increase stability 
and ensure that the perception system does not fail when one of the sensors fails 
due to environmental conditions. Recent efforts [43, 44] are beginning to design 
object detectors that work with data from various sensors, which is a step in the 
right direction for reliable perception in AVs. 

Time Series Information Most conventional object detection models rely on a CNN-
based network for object detection that does not consider time series information. 
Only a few works, such as [45, 46], consider multi-frame perception that uses data 
from the previous and current time instances. Correlating time series information 
about vehicle dynamics can increase the reliability of the model. Some works such 
as Sauer et al. [47] and Chen et al. [48] have used time-series data such as steering 
angle, vehicle velocity, etc. with object detector output to create a closed loop 
autonomous driving system. Research on combining these efforts with time-series 
object detector outputs can enable us to make direct driving decisions from these 
multi-modal models for safer and more reliable driving.
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Semi-supervised Object Detection Supervised machine learning methods which are 
used in all object detectors today require an annotated dataset to train the detector 
models. The major challenge in supervised object detection is to annotate data for 
different scenarios such as, but not limited to, weather conditions, terrain, variable 
traffic, and location, which is a time-consuming task to ensure improved safety and 
adaptability of these models in real-world AV driving scenarios. Due to the evolving 
changes in driving environments, the use of semi-supervised learning for object 
detection can reduce training time of these models. Some recent efforts, e.g., [49– 
51] advocate for performing object detection using semi-supervised transformer 
models. Due to the high accuracy of transformer-based models, they can yield better 
performance when detecting object for autonomous driving tasks. Even though 
transformer-based models yield higher accuracy, deploying them on embedded 
onboard computers is still a challenge due to their large memory footprint, which 
requires further investigation. 

Open Datasets Object detector model performance can vary due to changing 
lighting, weather, and other environmental conditions. Data from different weather 
conditions during training can help fit all the environmental needs to address this 
problem. Adding new data to accommodate these weather conditions changes when 
training and testing these models can help overcome this issue. The Waymo open 
dataset [52] has a wide variety of data that focus on different lighting and weather 
conditions to overcome this issue. More such open datasets are needed to train 
reliable object detectors for AVs to ensure robust performance in a variety of 
environmental conditions. 

Resource Constraints Most object detectors have high computational and power 
overheads when deployed on real hardware platforms. To address this chal-
lenge, prior efforts have adapted pruning, quantization, and knowledge distillation 
techniques (see Sect. 3) to reduce model footprint and decrease the model’s com-
putational needs. New approaches for hardware-friendly pruning and quantization, 
such as recent efforts [53, 54], can be very useful. Techniques to reduce matrix 
multiplication operations, such as [55–57] can also speed up object detector execu-
tion time. Hardware and software co-design, by combining pruning, quantization, 
knowledge distillation etc. along with hardware optimization such as parallel factors 
adjustment, resource allocation etc. also represents an approach to improve object 
detector efficiency. Results from recent work [58–60] have been promising, but 
much more research is needed on these topics. 

5 Conclusion 

In this chapter, we discussed the landscape of various object detectors being 
considered and deployed in emerging AVs, the challenges involved in using these 
object detectors in AVs, and how the object detectors can be optimized for lower 
computational complexity and faster inference during real-time perception. We also
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presented a multitude of open challenges and opportunities to advance the state-
of-the-art with object detection for AVs. As AVs are clearly the transportation 
industry’s future, research to overcome these challenges will be crucial to creating 
a safe and reliable transportation model. 
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Scene-Graph Embedding for Robust 
Autonomous Vehicle Perception 

Shih-Yuan Yu, Arnav Vaibhav Malawade, and Mohammad Abdullah 
Al Faruque 

1 Introduction 

Automotive CPS, also called Autonomous Vehicles (AV), aims to revolutionize 
personal mobility, logistics, and road safety [17]. However, accidents involving per-
ception errors in modern self-driving cars are still a regular occurrence, highlighting 
that the development of safe and robust AVs remains a difficult challenge [26–28]. 
What is worse is that these perception errors often seem completely irrational from 
our perspective. In one crash, a self-driving car failed to perceive a semi-truck 
that was utterly obstructing the highway [28]. Another crash involved a vehicle 
steering directly into the freeway divider in broad daylight [27]. These events cast 
serious doubt on the ability of current AV perception systems to understand the 
state of the road. According to a statistic [24], perception and prediction errors were 
the primary factors in over 40% of driver-related crashes between conventional 
vehicles. In complex urban environments, navigation is particularly challenging 
because the scenarios are highly variable and involve pedestrians and bicyclists, 
heavy traffic, blind driveways, blocked roadways, etc. [23, 30, 46]. Within this 
context, the effectiveness of understanding the driving scenes becomes particularly 
crucial, leading researchers and industry leaders to race to address these problems 
via more advanced AV perception systems. 

One might ask, how are humans able to perceive the state of the road effectively 
without succumbing to the common mistakes of AV perception systems? Recent 
research suggests that humans rely on cognitive mechanisms to identify the structure 
of a scene and reason about inter-object relations when performing complex tasks 
such as identifying risk during driving [5]. However, existing AV perception 
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architectures use road geometry information and vehicle trajectory models for esti-
mating the state of the road scene (model-based methods) [29, 37]. More recently, 
architectures using deep learning techniques that leverage Convolutional Neural 
Networks (CNNs), Long-Short Term Memory Networks (LSTMs), or Multi-Layer 
Perceptrons (MLPs) [6, 19, 20, 38, 41, 47] have proven effective at capturing features 
essential for modeling subjective risk in both spatial and temporal domains [47]. 
However, these approaches cannot obtain a high-level, human-like understanding 
of complex road scenarios due to their inability to explicitly capture inter-object 
relationships or the overall structure of the road scene. Failing to capture these 
relationships can result in poor perception performance in complex scenarios. 
Overall, designing a robust perception system for automotive CPSs using data-
driven approaches poses the following challenges: 

1. Designing a reliable method that can handle a wide range of complex and 
unpredictable traffic scenarios, 

2. Building a model that is transferable from the simulation setting to the real-world 
setting because the real-world datasets for supervised training are limited, 

3. Building a model that can provide explainable decisions. 

Take risk assessment tasks as an example. To overcome the first challenge, 
deep learning-based methods must be trained on large datasets covering a wide 
range of “corner cases” (especially risky driving scenarios), which are expensive 
and time-consuming to generate [9]. In this case, many researchers resort to using 
synthesized datasets containing many examples of these corner cases to address 
this issue. However, as mentioned in the second challenge, for these to be valuable, 
a model must be able to transfer the knowledge gained from simulated training 
data to real-world situations. A standard method for measuring a model’s ability 
to generalize is transferability, where a model’s accuracy on a dataset different 
from the training dataset is evaluated. Suppose a model can effectively transfer 
the knowledge gained from a simulated training set to a real-world testing set. In 
that case, it will likely perform better in unseen real-world scenarios. Even if these 
existing methods can transfer knowledge well, the predictions of such methods lack 
explainability, which is crucial for establishing trust between ADSs and human 
drivers [1, 2, 4]. In the third research challenge, Explainability refers to the ability of 
a model to effectively communicate the factors that influenced its decision-making 
process for a given input, particularly those that might lead the model to make 
incorrect decisions [1, 13]. Suppose a model can give attention to the aspects or 
entities in a traffic scene that make the scenario risky or non-risky. In that case, it 
can improve its decision, and its decisions become more explainable [39].
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2 Scene-Graph Representation of Road Scenes 

2.1 ADS Design Philosophies and Intermediate Representation 

Many design philosophies for ADS have been proposed over the years, such as 
the modular design and the end-to-end design. Most modular design approaches 
comprise a pipeline of separate components from the sensory inputs to the actuator 
outputs. In contrast, end-to-end approaches generate output directly from their 
sensory inputs [6, 31]. One advantage of a modular design approach is the division 
of a task into an easier-to-solve set of sub-tasks that have been addressed in other 
fields such as robotics [14], computer vision [12, 19, 20] and vehicle dynamics [32]. 
As a result, prior knowledge from these fields can be leveraged when designing 
the components corresponding to the sub-tasks. However, one disadvantage of 
such an approach is the complexity of the whole pipeline [46]. End-to-end design 
approaches can achieve good performance with a smaller network size because 
they perform feature extraction from sensor inputs implicitly through the network’s 
hidden layers [6, 18]. However, the authors in [8] point out that the needed level 
of supervision is too weak for the end-to-end model to learn critical controlling 
information (e.g., from image to steering angle), so it can fail to handle complicated 
driving maneuvers. 

Recently, few methodologies have leveraged the benefits of an intermediate 
representation (IR). DeepDriving [8], called the direct perception, was one of the 
first approaches to use an IR methodology. In their methodology, a set of affordance 
indicators, such as the distance to lane markings and cars in the current and adjacent 
lanes, are extracted from an image and serve as an IR for generating the final control 
output. The authors of [8] prove that the use of this IR is effective for simple 
driving tasks such as lane following and for generalizing the learned knowledge 
from simulation to real-world environments, thus improving transferability. Authors 
in [3] use a collection of filtered images, each representing a piece of distinct 
information, as the IR. They state that the IR used in their methodology allows the 
training to be conducted on real or simulated data, facilitating testing and validation 
in simulations before testing on a real car. Moreover, they show that it is easier 
to synthesize perturbations to the driving trajectory at the mid-level representations 
than at the level of raw sensors, enabling them to produce non-expert behaviors such 
as off-road driving and collisions. As such, the capability to capture and identify 
the complex relationships between road objects is critical in designing an effective 
human-like perception system for automotive CPS. 

2.2 Graph-Based Driving Scene Understanding 

In literature, several groups have adopted a variant of Knowledge Graphs known 
as scene-graphs to model the road state and the relationships between objects [16,
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Fig. 1 How camera data can be used to construct a road scene-graph representation 

21, 22, 25, 45]. A scene-graph representation encodes rich semantic information of 
an image or observed scene, essentially bringing an abstraction of objects and their 
complex relationships as illustrated in Fig. 1. While each of these related works 
proposes a different form of scene-graph representation, all demonstrate significant 
performance improvements over conventional perception methods. In [16], the 
authors propose a 3D-aware egocentric spatio-temporal interaction framework that 
uses both an Ego-Thing graph and an Ego-Stuff graph, which together encode 
how the ego vehicle interacts with both moving and stationary objects in a scene, 
respectively. In [25], the authors propose a pipeline using a multi-relational graph 
convolutional network (MR-GCN) for classifying the driving behaviors of traffic 
participants. The MR-GCN combines spatial and temporal information, including 
relational information between moving objects and landmark objects. Our prior 
work has demonstrated that the use of spatio-temporal scene-graph embeddings 
improves performance at subjective risk assessment and collision prediction versus 
state-of-the-art methods [21, 22, 45]. In addition, our method can better transfer 
knowledge and is more explainable. 

2.3 Scene-Graph Extraction from Driving Scenes 

In literature, several approaches have been proposed for extracting scene-graphs 
from images by detecting the objects in a scene and then identifying their visual 
relationships [42, 44]. However, these works focus on extracting scene-graphs for 
single general images for tasks like automated image captioning instead of modeling
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these graphs to maximize performance over a temporally-correlated sequence of 
images as are typically used for autonomous driving. Thus, we adopted a partially 
rule-based process to extract objects and their attributes from images. Object 
attributes and bounding boxes are extracted directly from images using state-of-
the-art image processing techniques. As Fig. 1 shows, we first convert each image 
. It into a collection of objects . Ot using Faster RCNN [34], a state of the art object 
detection algorithm in the Detectron2 [40] computer vision library. Next, we use 
OpenCV’s perspective transformation library to generate a top-down perspective of 
the image, commonly known as a “birds-eye view” projection [7]. This projection 
lets us approximate each object’s location relative to the road markings and the ego 
vehicle. Next, for each detected object in . Ot , we use its estimated location and class 
type (cars, motorcycles, pedestrians, lanes, etc.) to compute the attributes required 
in building the scene-graph. 

After collecting the list of objects in each image and their attributes, we can 
begin constructing the corresponding scene-graphs. For each image . It , we denote 
the corresponding scene-graph by .Gt = {Ot,At } and model it as a directed multi-
graph where multiple types of edges connect nodes. The nodes of a scene-graph, 
denoted as . Ot , represent the objects in a scene such as lanes, roads, traffic signs, 
vehicles, pedestrians, etc. The edges of . Gt are represented by the adjacency matrix 
. At , where each value in . At represents the type of the corresponding edge in . Gt . 
The edges between two nodes represent the different kinds of relations between 
them (e.g., near, Front_Left, isIn, etc.). For assessing the risk of driving behaviors, 
we consider both distance and directional relations between traffic participants 
useful. We assume that one object’s local proximity and positional information will 
influence the other’s motion only if they are within a certain distance. Therefore, 
in this work, we extract only the location information for each object and adopt 
a simple rule to determine the relations between the objects using their attributes 
(e.g., relative location to the ego car), as shown in Fig. 1. For distance relations, 
we assume two objects are related by one of the relations .r ∈ {Near_Collision 
(4 ft.), Super_Near (7 ft.), Very_Near (10 ft.), Near (16 ft.), Visible (25 ft.)} if 
the objects are physically separated by a distance that is within that relation’s 
threshold. In the case of the directional relations, we assume two objects are related 
by the relation .r ∈ {Front_Left, Left_Front, Left_Rear, Rear_Left, Rear_Right, 
Right_Rear, Right_Front, Front_Right} based on their relative positions if they are 
within the Near threshold distance from one another. 

In addition to directional and distance relations, we also implement the isIn 
relation that connects vehicles with their respective lanes. Specifically, we use 
each vehicle’s horizontal displacement relative to the ego vehicle to assign cars to 
either the Left Lane, Middle Lane, or  Right Lane based on known lane width. Our 
abstraction only includes these three-lane areas, and, as such, we map vehicles in all 
left lanes to the same Left Lane node and all vehicles in right lanes to the Right Lane 
node. If a vehicle overlaps two lanes (i.e., during a lane change), we assign it an isIn 
relation to both lanes. Figure 1 illustrates an example of resultant scene-graph.
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3 Spatio-Temporal Scene-Graph Embedding Approach for 
Robust Automotive CPS Perception 

To tackle the research challenges, we propose a scene-graph augmented data-driven 
approach for assessing the subjective risk of driving maneuvers, where the scene-
graphs serve as intermediate representations (IR) as shown in Fig. 1. The key  
advantage of using scene-graph as IR is that they allow us to model the relationships 
between the participants in a traffic scene, thus potentially improving the model’s 
understanding of a scene. Our proposed architecture consists of three major 
components: (1) a pipeline to convert the images of a driving clip to a sequence 
of scene-graphs, (2) a Multi-Relational Graph Convolution Network (MR-GCN) to 
convert each of the scene-graphs to an embedding (a vectorized representation), and 
(3) an LSTM for temporally modeling the sequence of embeddings of the respective 
scene-graphs. Our model also contains multiple attention layers: (1) a node attention 
layer before the embedding of a scene-graph is computed, and (2) an attention 
layer on top of the LSTM, both of which can further improve its performance and 
explainability. 

3.1 Problem Formulation 

For training the model, we formulate the problem of subjective risk assessment as 
a supervised scene-graph sequence classification problem. Our approach makes the 
same assumption used in [47] that the set of driving sequences can be partitioned 
into two jointly exhaustive and mutually exclusive subsets: risky and safe. We 
denote the sequence of images of length T by .I = {I1, I2, I3, . . . , IT }. We assume 
the existence of a spatio-temporal function f that outputs whether a sequence of 
driving actions x is safe or risky via a risk label y, as given in Eq. (1). 

.y = f (I) = f ({I1, I2, I3, . . . , IT −1, IT }), (1) 

where 

.y =
{

(1, 0), if the driving sequence is safe
(0, 1), if the driving sequence is risky.

(2) 

The goal of our approach is to propose a suitable model for approximating the 
function f . Here, the first step is the extraction of the scene-graph . Gt from each 
image . It of the video clip . I. This step is achieved by a series of processes that 
we collectively call the Scene-Graph Extraction Pipeline (described in Sect. 2.3). 
In the second step, these scene-graphs are passed through graph convolution layers 
and an attention-based graph pooling layer. The graph-level embeddings of each 
scene-graph, . hGt , are then calculated using a graph readout operation. Next, these
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Fig. 2 An illustration of spatio-temporal scene-graph embedding approach 

scene-graph embeddings are passed sequentially to LSTM cells to acquire the 
spatio-temporal representation, denoted as . Z, of each scene-graph sequence. Lastly, 
we use a Multi-Layer Perceptron (MLP) layer with a Softmax activation function to 
acquire the final inference, denoted as . ŷ, of the risk for each driving sequence . I. 

To sum up, the model of our approach consists of three major components: 
a spatial model, a temporal model, and a risk inference component. The spatial 
model outputs the embedding .hGt for each scene-graph . Gt . The temporal model 
processes the sequence of scene-graph embeddings .hI = {hG1, hG2 , . . . , hGT

} and 
produces the spatio-temporal embedding . Z. The risk inference component outputs 
each driving clip’s final risk assessment, denoted as . ŷ, by processing the Spatio-
temporal embedding . Z. The overall network architecture is shown in Fig. 2. We  
discuss each of these components in detail below. 

3.2 Spatial Modeling 

The spatial model we propose uses MR-GCN layers to compute the embedding for 
a scene-graph. The use of MR-GCN allows us to capture multiple types of relations 
on each scene-graph .Gt = {Ot,At }. In the  Message Propagation phase, a collection 
of node embeddings and their adjacency information serve as the inputs to the 
MR-GCN layer. Specifically, the l-th MR-GCN layer updates the node embedding, 
denoted as . h(l)

v , for each node v as follows:
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.h(l)
v = �0 · h(l−1)

v +
∑
r∈At

∑
u∈Nr (v)

1

|Nr (v)|�r · h(l−1)
u , (3) 

where .Nr(v) denotes the set of neighbor indices of node v with the relation .r ∈ At . 
.�r is a trainable relation-specific transformation for relation r in MR-GCN layer. 
Since the information in .(l − 1)-th layer can directly influence the representation 
of the node at l-th layer, MR-GCN uses another trainable transformation .�0 to 
account for the self-connection of each node using a special relation [35]. Here, 
we initialize each node embedding .h(0)

v , .∀v ∈ Ot , by directly converting the node’s 
type information to its corresponding one-hot vector. 

Typically, the node embedding becomes more refined and global as the number of 
graph convolutional layers, L, increases. However, the authors in [43] also suggest 
that the features generated in earlier iterations might generalize the learning better. 
Therefore, we consider the node embeddings generated from all the MR-GCN 
layers. To be more specific, we calculate the embedding of node v at the final 
layer, denoted as . HL

v , by concatenating the features generated from all the MR-GCN 
layers, as follows, 

.HL
v = CONCAT({h(l)

v }|l = 0, 1, . . . , L). (4) 

We denote the collection of node embeddings of scene-graph .Gt after passing 
through L layers of MR-GCN as .Xprop

t (L can be 1, 2 or 3). 
The node embedding .Xprop

t is further processed with an attention-based graph 
pooling layer. As stated in [13], such an attention-based pooling layer can improve 
the explainability of predictions and is typically considered a part of a unified 
computational block of a graph neural network (GNN) pipeline. In this layer, nodes 
are pooled according to the scores predicted from either a trainable simple linear 
projection [10] or a separate trainable GNN layer [15]. We denote the graph pooling 
layer that uses the SCORE function in [10] as  TopkPool and the one that uses 
the SCORE function in [15] as  SAGPool. The calculation of the overall process 
is presented as follows: 

.α = SCORE(Xprop
t ,At), (5) 

.P = topk(α), (6) 

where . α stands for the coefficients predicted by the graph pooling layer for nodes 
in . Gt and . P represents the indices of the pooled nodes, which are selected from 
the top k of the nodes ranked according to . α. The number k of the nodes to be 
pooled is calculated by a pre-defined pooling ratio, pr , and using .k = pr × |Ot |, 
where we consider only a constant fraction pr of the embeddings of the nodes of 
a scene-graph to be relevant (i.e., 0.25, 0.5, 0.75). We denote the node embeddings 
and edge adjacency information after pooling by .Xpool

t and .Apool
t and are calculated 

as follows:
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.Xpool
t = (Xprop

t � tanh(α))P, (7) 

.Apool
t = Aprop

t (P,P)
. (8) 

where . � represents an element-wise multiplication, .()P refers to the operation that 
extracts a subset of nodes based on P , and .()(P,P) refers to the formation of the 
adjacency matrix between the nodes in this subset. 

Finally, our model aggregates the node embeddings of the graph pooling layer, 
.Xpool

t , using a graph READOUT operation, to produce the final graph-level 
embedding .hGt for each scene-graph . Gt as given by 

.hGt = READOUT(Xpool
t ), (9) 

where the READOUT operation can be either summation, averaging, or selecting 
the maximum of each feature dimension, over all the node embeddings, known 
as sum-pooling, mean-pooling, or  max-pooling, respectively. The process until this 
point is repeated across all images in . I to produce the sequence of embedding, . hI . 

3.3 Temporal Modeling 

The temporal model we propose uses an LSTM for converting the sequence of 
scene-graph embeddings . hI to the combined spatio-temporal embedding . Z. For  
each timestamp t , the LSTM updates the hidden state . pt and cell state . ct as follows, 

.pt , ct = LSTM(hGt , ct−1), (10) 

where .hGt is the final scene-graph embedding from timestamp t . After the LSTM 
processes all the scene-graph embeddings, a temporal readout operation is applied 
to the resultant output sequence to compute the final Spatio-temporal embedding Z 
given by 

.Z = TEMPORAL_READOUT(p1, p2, . . . , pT ) (11) 

where the .TEMPORAL_READOUT operation could be extracting only the last 
hidden state . pT (LSTM-last), or be a temporal attention layer (LSTM-attn). 

In [2], adding an attention layer b to the encoder-decoder based LSTM architec-
ture is shown to achieve better performance in Neural Machine Translation (NMT) 
tasks. For the same reason, we include LSTM-attn in our architecture. LSTM-attn 
calculates a context vector q using the hidden state sequence . {p1, p2, . . . , pT }
returned from the LSTM encoder layer as given by
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.q =
T∑

t=1

βtpt (12) 

where the probability . βt reflects the importance of . pt in generating q. The  
probability . βt is computed by a Softmax output of an energy function vector e, 
whose component . et is the energy corresponding to . pt . Thus, the probability . βt is 
formally given by 

.βt = exp(et )∑T
k=1 exp(ek)

, (13) 

where the energy . et associated with . pt is given by .et = b(s0, pt ). The temporal 
attention layer b scores the importance of the hidden state . pt to the final output, 
which in our case is the risk assessment. The variable . s0 in the temporal attention 
layer b is computed from the last hidden representation . pT . The final Spatio-
temporal embedding for a video clip, Z, is computed by feeding the context vector 
q to another LSTM decoder layer. 

3.4 Risk Inference 

The last piece of our model is the risk inference component that computes the risk 
assessment prediction . Ŷ using the spatio-temporal embedding . Z. This component 
is composed of a MLP layer followed by a Softmax activation function. Thus, the 
prediction . Ŷ is given by 

.Ŷ = Sof tmax(MLP(Z)) (14) 

During training, the loss for the prediction is calculated as follows, 

.CrossEntropyLoss(Y, Ŷ ) (15) 

For training our model, we use a mini-batch gradient descent algorithm that updates 
its parameters by training on a batch of scene-graph sequences. To account for label 
imbalance, we apply class weighting when calculating loss. Besides, several dropout 
layers are inserted into the network to reduce overfitting. 

4 Experimental Results 

To illustrate the benefits of our scene-graph augmented approach, we present exper-
imental results for assessing the risk of several common driving tasks, including
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lane changes, turns, and merges into (merging) and out of (branching) the traffic 
flow. We also evaluate a state-of-the-art SMT+CNN+LSTM based risk assessment 
model [47] on these tasks to serve as the baseline. We evaluate several different 
aspects of performance, including risk assessment accuracy, capability to transfer 
knowledge from synthetic data to real-world data, and explainability. Next, let us 
discuss the experimental setup. 

4.1 Experimental Setup 

We prepare two types of datasets for the experiments (1) synthesized datasets and 
(2) real-world driving datasets. To create the synthesized datasets, we collected 
data from various driving conditions simulated in the CARLA driving simulator.1 

We generated the real-world dataset by extracting various driving actions from 
the Honda Driving Dataset (HDD) [33]. We generated a wide range of simulated 
lane changes using the various presets in CARLA that allowed us to specify the 
number of cars, pedestrians, weather and lighting conditions, driver behavior, etc. 
The lane changes that resulted in collisions, near collisions, or otherwise dangerous 
conditions are considered our risky samples, while the safe lane changes are labeled 
as safe. Common factors that can affect the risk of a driving action include the 
distance to other cars and the side curbs, the speed relative to other vehicles, the 
sizes of adjacent vehicles, the presence of bikers or pedestrians, and the traffic light 
status. 

We generated two synthesized datasets: a 271-syn dataset and a 1043-syn dataset, 
containing 271 and 1043 lane-changing clips, respectively. In addition, we sub-
sampled the 271-syn and 1043-syn datasets further to create two balanced datasets 
that have a 1:1 distribution of risky to safe lane changes: 96-syn and 306-syn. Our  
synthesized driving datasets are available online in both raw image and scene-
graph format [11]. For real driving datasets, we processed the HDD dataset to 
create a dataset called 1361-honda composed of 571 lane changing, 350 turning, 
297 branching, and 149 merging video clips. For evaluating the capability of the 
model to transfer knowledge after training on the synthesized lane change datasets, 
we subsampled 1361-honda to create a lane-changing dataset that contains 571 real-
world lane changing clips, called 571-honda. The final score of a model on a dataset 
is computed by averaging over the testing set scores for ten different train-test splits, 
where 30% of the dataset is reserved as the testing set. 

In our experiments, we trained each model for 500 epochs. From our experimen-
tation, we found that the best configuration of our model consisted of two MR-GCN 
layers with 64 hidden units, a SAGPool pooling layer with a ratio of 0.5, sum-
pooling for graph readout operation, and LSTM-attn for temporal modeling.

1 https://github.com/carla-simulator/carla. 

https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
https://github.com/carla-simulator/carla
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4.2 Experiments on Risk Assessment 

We evaluate each model’s performance on each dataset by measuring its classifi-
cation accuracy and the Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC). The classification accuracy is the ratio of the number of 
correct predictions on the test set of a dataset to the total number of samples in 
the testing set. AUC, sometimes referred to as a balanced accuracy measure [36], 
quantifies the likelihood that a binary classifier ranks a positive sample more highly 
than a random negative sample. This metric is especially useful for imbalanced 
datasets (i.e. 271-syn, 1043-syn, 571-honda). 

Figure 3 shows the comparison between our model’s performance and the 
baseline [47] for the synthetic datasets. The results show that our approach performs 
best across all datasets.

The results also show that the performance difference between our approach and 
the baseline increased when the training datasets were smaller. This result indicates 
that our approach can learn an accurate model even from a smaller dataset, likely 
resulting from its use of a scene-graph based IR. We also found that our approach 
performs better than the baseline on balanced datasets, meaning that our approach is 
better at discriminating between the two classes in general. For context, the datasets 
271-syn and 306-syn contain roughly the same number of clips but differ in the 
distribution of safe to risky lane changes (2.30:1 for 271-syn vs. 1:1 for 306-syn). 

Although these results are impressive, we must ask, how much does each 
component in the model contribute to the overall performance? One easy way to 
answer this question is with an ablation study, where we measure the performance 
of our model after adding each modeling component one at a time, as is shown 
in Table 1. From Table 1 we find that the simplest of the models, with no MR-
GCN layer (replaced with an MLP layer) and a simple average of the embeddings 
in . hI for the temporal model (denoted as mean in Table 1), achieves a relatively 
low classification accuracy of 75%. Starting from this base model, we find that 
replacing mean with an LSTM layer for temporal modeling yields a 10.5% increase 
in performance. Next, we try adding a single MR-GCN layer with 64 hidden units 
and sum-pooling to the base model, resulting in a 14.8% performance gain. The 
performance gain achieved by including the MR-GCN layer alone demonstrates 
the effectiveness of explicitly modeling the relations between objects. Now, we try 
the single MR-GCN layer with sum-pooling and the LSTM model together, which 
yields the maximum performance gain of 18.1% over the simplest model. This result 
clearly illustrates that our model’s spatial and temporal components are both crucial 
for maximizing performance.
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Fig. 3 Accuracy and AUC comparison between our approaches (Real Image and CARLA GT) 
and [47] on different datasets. Our approach outperforms the baseline across datasets
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Table 1 The results of the CARLA GT approach on 1043-syn dataset with various spatial and 
temporal modeling settings. In these experiments, we used MR-GCN layers with 64 hidden 
units and sum-pooling as the graph readout operation. The bolded numbers indicate the highest 
performing configuration in terms of Average Accuracy (Avr. Acc.) and Average AUC Score (Avr. 
AUC) for the grouping indicated by the leftmost column 

Spatial modeling Temporal modeling Avr. Acc. Avr. AUC 

Ablation study No MR-GCN mean 0.762 0.823 

No MR-GCN LSTM-last 0.867 0.929 

1 MR-GCN mean 0.910 0.960 

1 MR-GCN LSTM-last 0.943 0.977 
Temporal attention No MR-GCN LSTM-last 0.867 0.929 

No MR-GCN LSTM-attn 0.868 0.928 

1 MR-GCN LSTM-last 0.943 0.977 

1 MR-GCN LSTM-attn 0.950 0.977 
Spatial attention 1 MR-GCN mean 0.910 0.960 

1 MR-GCN, TopkPool mean 0.886 0.930 

1 MR-GCN, SAGPool mean 0.937 0.968 

4.3 Evaluation of Attention Mechanisms on Risk Assessment 

Next, we evaluate the various attention components of our proposed model. To 
evaluate the benefit of attention over the spatial domain, we tested our model with 
three different graph attention methods: no attention, SAGPool, and TopkPool. To  
evaluate the impact of attention on the temporal domain, we tested our model with 
the following temporal models: mean, LSTM-last, and LSTM-attn. The results of 
this analysis are also shown in Table 1. 

For evaluating the benefits of graph attention, we start with an attention-free 
model: one MR-GCN layer with sum-pooling + mean. In comparison, the model 
that uses SAGPool for attention on the graph shows a 2.7% performance gain over 
the attention-free model because using attention over both nodes and relations 
allows SAGPool to better filter out irrelevant nodes from each scene-graph. We  
found that the model using TopkPool as the graph-attention layer became relatively 
unstable, resulting in a 2.4% performance drop compared to the attention-free 
model. This drop is likely because TopkPool ignores the relations between nodes 
when calculating . α. 

For evaluating the impact of attention on the temporal model, we assessed the 
effects of adding a temporal attention layer to the following two models: (1) with 
no MR-GCN layers and no temporal attention and (2) with one MR-GCN layer 
and no temporal attention. Our model with no MR-GCN and no temporal attention 
performed nearly the same as our model with no MR-GCN and LSTM-attn. We  
also find that adding LSTM-attn to the model with one MR-GCN layer increases its 
performance by 0.7% over the same model with no temporal attention. These results 
demonstrate that the inclusion of temporal attention improves performance, though 
only marginally compared to the benefits of spatial attention. This might be because
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Fig. 4 The visualization of attention weights in both spatial (. α) and temporal (. β) domains using 
a risky lane changing clip as an example. We used a gradient color from light yellow to red to 
visualize each node’s projection score indicating its relative importance. The white to red bar chart 
visualizes the temporal attention scores of each frame 

LSTM-last learns a good enough temporal model that LSTM-attn can only slightly 
improve on it. 

Figure 4 demonstrates how we can use the attention weights of our model to 
pinpoint the critical factors related to driving risk in both temporal and spatial 
domains, thus enabling it to explain its decisions. As described previously in Eq. (7), 
the node attention weights . α are used by our graph pooling layer to filter out the 
objects in a scene-graph that are less relevant to the overall risk of the scene. 
Meanwhile, the temporal attention weights, . β, allow the LSTM encoder to score 
each intermediate hidden state (. pt ) and retain only the most useful information in Z 
for the final risk assessment. We demonstrate our model’s capability to explain its 
decisions better using the visualization of both spatial and temporal attention shown 
in Fig. 4. The figure shows a clearly increasing trend of temporal attention scores 
.β1, β2, . . . βT as the lane-changing scenario becomes riskier over time. Intuitively, 
the frames with higher attention scores are weighted more heavily when calculating 
Z and thus contribute more to the final risk assessment decision. In this risky lane 
changing example, the temporal attention scores progressively increase between 
frames 19 and 32 during the lane change; and the highest frame attention weights
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appear in frames 33 and 34, which are the frames immediately before the collision 
occurs. Figure 4 also shows the projection scores for the node attention layer, where 
a higher score for a node indicates that it contributes more to the final decision of risk 
assessment. As shown in this example, as the ego car approaches the yellow vehicle, 
the node attention weights for the ego car and the yellow vehicle are increased 
proportionally to the scene’s overall risk. In the first few frames, the risk of collision 
is low; thus, the node attention weights are low; however, in the last few frames, 
a collision between these two vehicles is imminent; thus, the attention weights for 
the two cars are much higher than for any other nodes in the graph. This example 
clearly shows how graph representations and models, when used with attention, can 
effectively explain their decision-making process. This capability can be valuable 
for debugging edge cases at design time, thus reducing the chances of ADS making 
unexpected, erroneous decisions in real-world scenarios and improving human trust 
in the system. 

4.4 Transferability from Virtual To Real Driving 

This section demonstrates our approach’s capability to effectively transfer the 
knowledge learned from a simulated dataset to a real-world dataset. As mentioned 
previously, this capability is vital since little real-world data exists for rare scenarios. 
Models must primarily rely on simulation data to improve driving safety in the real 
world. To demonstrate this capability, we use the model weights and parameters 
learned from training on the 271-syn dataset or the 1043-syn dataset directly 
for testing on the real-world driving dataset: 571-honda. We also compare the 
transferability of our model with that of the baseline method [47]. The results are 
shown in Fig. 5.

As expected, the performance of both our approach and the baseline degrades 
when tested on 571-honda dataset. However, as Fig. 5 shows, the accuracy of our 
approach only drops by 6.7% and 3.5% when the model is trained on 271-syn and 
1043-syn, respectively, while the baseline’s performance drops drastically by a much 
higher 21.3% and 14.9%, respectively. The results show that our proposed model 
can transfer knowledge more effectively than the baseline. 

4.5 Risk Assessment By Action Type 

This section shows results from evaluating our model’s performance on other 
kinds of driving scenarios available in the HDD besides lane changes: turning, 
branching, merging, etc. The results for training and evaluating our model on the 
1361-honda dataset are shown in Table 2. From Table 2, we can see that our graph-
based approach significantly outperforms [47] in both overall accuracy (0.86 v.s. 
0.58) and overall AUC (0.91 v.s. 0.61), indicating that our approach can better
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Fig. 5 Transferability comparison between our real image model and the baseline [47]. In this 
experiment, we trained each model on both 271-syn dataset and 1043-syn dataset. Then we tested 
the accuracy of each model on both original dataset and 571-honda dataset

Table 2 Breakdown of risk 
assessment performance by 
driver action types (Lane 
Changing, Merging, 
Branching, and Turning) 
evaluated on 1361-Honda 
dataset. The bolded numbers 
indicate the highest score 
between Ours and the 
baseline [47] on each of the 
categories of driver actions 
(rows) 

Metric Action type Ours [47] 

Accuracy Overall 0.8655 0.5844 

Lane changing 0.8710 0.5714 

Merging 0.8462 0.5854 

Branching 0.9101 0.5556 

Turning 0.8211 0.6218 

AUC Overall 0.9124 0.6078 

Lane changing 0.9105 0.5877 

Merging 0.9395 0.6526 

Branching 0.9462 0.5807 

Turning 0.8645 0.6400 

assess risk across diverse driving scenarios and driving action types. In Table 2 
we also show the performance for each action type. The results show that our 
approach also outperforms [47] on each class of driving action. Our approach 
slightly under-performs on turning scenarios compared to its performance on other 
action types. This discrepancy is likely because turning scenarios are intrinsically 
more complicated than straight-road driving scenarios (lane change, branch, merge). 
Another reason could be that the heading of vehicles is a more significant factor 
in complicated scenarios, while the scene-graph used in our work contains only 
distance and directional relations.
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5 Conclusion 

In this chapter, we discovered how the expressive power of graph representations 
of data could be leveraged to significantly improve the perception performance of 
automotive CPS. There were clear improvements across experiments and datasets, 
with our graph-based approach outperforming conventional CNN-based methods 
in terms of accuracy, explainability, and transferability. All of these benefits can 
be attributed to the explicit modeling of inter-object relationships via the graph’s 
topology, thus improving the model’s ability to semantically understand each scene. 
Although the approach presented here was effective at modeling risk, several other 
problems in the AV domain remain unsolved, including motion prediction, object 
detection, and control. When adapted to fit these problems, graph-based methods 
could potentially provide the same benefits over existing methods. 
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Sensing Optimization in Automotive 
Platforms 

Joydeep Dey and Sudeep Pasricha 

1 Introduction 

The increasing maturity of Advanced Driver Assistance Systems (ADAS) [30] is  
enabling the introduction of vehicles with greater levels of autonomy. The degree to 
which ADAS can effectively reduce human intervention during driving is classified 
by SAE according to the J3016 standard [1], into five levels of autonomy. 

Level 0 characterizes vehicles that have no assistive features. Level 1 autonomy 
encompasses vehicles that have the ability to share control between the driver and 
the vehicle. Adaptive cruise control and park assist are examples of features that 
can assist the driver in this level. Level 2 autonomy vehicles have the capability 
to perform all acceleration, steering, and braking tasks that require longitudinal 
and lateral control. Examples of features supported in this level include forward 
collision warning and blind spot warning, in addition to features from level 1. Level 
3 autonomy vehicles can assess the risk of a situation and additionally perform 
path planning. At Level 4 autonomy, no driver intervention is required in most 
cases, unless requested, in contrast to level 3. Level 5 autonomy requires no human 
intervention or safety driver in the vehicle, unlike in level 4. Most vehicles today are 
beginning to support level 2 autonomy. 

The higher autonomy levels require support for increasingly sophisticated 
ADAS features such as Lane Keep Assist (LKA) and Forward Collision Warning 
(FCW), which in turn defines requirements for sensing capabilities and perception 
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Table 1 ADAS sensor trade 
offs 

Characteristics Camera LiDAR Radar 

Perception reliability Medium High Medium 
Spatial resolution High High Low 
Noise susceptibility High Low Low 
Velocity detection Low Low High 
Weather durability Low Low High 

performance of the vehicle. This increased demand for vehicle autonomy resulted 
in various challenges related to reliability [31–34], security [35–39], and real-time 
perception [40–44] of the vehicle. In this chapter, we focus on real-time perception, 
specifically, challenges associated with sensor configuration for achieving vehicle 
autonomy goals. Table 3 summarizes the trade-offs between popular sensors used to 
support ADAS features and their relative performance. Using a camera as a vision 
sensor is a widely used approach to perform the classification and detection of 
objects on the road. However, cameras have high susceptibility to noise and are 
not reliable in extreme weather or lighting conditions [2]. A radar sensor is also 
capable of object detection and is particularly suited for accurate velocity detection 
of neighboring vehicles even under harsh weather and poor visibility conditions. 
Long-range radars (typically at 77GHz) used to support ADAS features such as 
adaptive cruise control (ACC) and automatic emergency braking (AEB) have a 
shorter azimuth than mid or short-range radars (typically at 24GHz), to prioritize 
monitoring vehicle velocity and approaching distance. However, long range radars 
can also detect more number of objects than short or mid-range radars. A drawback 
of the radar is their high false positive rate when detecting objects, and an upper 
bound on the number of objects that can be detected at the same time, e.g., the 
Bosch midrange radar with a maximum range of 160 meters can only detect up to 
32 objects simultaneously [3]. A LiDAR sensor uses invisible laser light to measure 
the distance to objects in a similar way to radars. It can create an incredibly detailed 
3D view (point cloud) of the environment around the vehicle. However, LiDAR 
data processing is computationally very expensive and relies on moving parts which 
can make it more vulnerable to damage. Ultrasonic sensors listed in Table 3 use 
the principle of ‘time of flight’ to measure distance from targets by computing the 
travel time of the ultrasonic echo from a neighboring vehicle or obstacle [4]. Usage 
of ultrasonic sensors for ADAS feature implementation are not uncommon, however 
they require accurate modelling for their use case, since their performance is highly 
dependent on the physical properties (shape, surface material) of the target being 
tracked [5] (Table 1). 

Most level 2 and higher autonomy vehicles today rely on a combination of 
sensors, to overcome their individual drawbacks (see Table 3). For example, Waymo 
(a subsidiary of Alphabet Inc., originally started as a project by Google in 2009) 
combines 3 different types of LiDAR sensors, 5 radar sensors, and 8 cameras. 
Tesla’s vehicles avoid LiDARs due to their high costs and instead their Autopilot 
uses 8 surround cameras, 12 ultrasonic sensors (primarily for short-range self-
parking support), and 1 forward-facing radar. Each of the cameras has a maximum
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visibility range of up to 250 meters, so this configuration ensures a 360-degree 
coverage up to 250 meters around the vehicle. 

An important challenge facing emerging vehicles is to determine a sensor config-
uration that can be responsible for environment perception as per the SAE autonomy 
level supported by the vehicle. An optimal sensor configuration should consist of 
carefully selected location and orientation of each sensor in a heterogeneous suite 
of sensors, to maximize coverage from the combined field of view obtained from 
the sensors, and also maintain a high object detection rate. Today there are no 
generalized rules for the synthesis of sensor configurations, as the location and 
orientation of sensors depends heavily on the target features and use cases to be 
supported in the vehicle. 

In this chapter, we propose a novel framework called VESPA (VEhicle Sensor 
Placement and orientation for Autonomy) (first introduced in [43]), to optimize 
heterogeneous sensor synthesis. More precisely, for a given set of heterogeneous 
sensors and ADAS features to be supported, VESPA performs intelligent algorithmic 
design space exploration to determine the optimal placement and orientation for 
each sensor on the vehicle, to support the required ADAS features for SAE level 2 
autonomy systems. The VESPA framework can be easily utilized to generate optimal 
sensor configurations across different vehicle types. Our experimental results 
indicate that the proposed framework is able to optimize perception performance 
across multiple ADAS features for the 2019 Chevrolet Blazer and 2016 Chevrolet 
Camaro vehicles. 

2 Related Work 

State-of-the-art SAE level 2 autonomy systems require the selection and placement 
of sensors based on the assistive target features required to be supported, e.g., 
forward collision warning (FCW) and lane keep assist (LKA). While several 
prior works evaluate the performance of a specific sensor configuration and its 
deployment, very fewworks have explored the problem of generating optimal sensor 
configurations for vehicles. 

An optimal sensor placement approach was proposed in [6] for a blind spot 
detection and warning system. The work recognizes the inability of the camera to 
perform in non-ideal lighting conditions and selects an ultrasonic sensor to measure 
distance of vehicles trailing in the vehicle’s blind spot. The time response of the 
system with the position of the sensor above the rear tire is analyzed for two 
scenarios: when the vehicle is at rest and when it is moving at a constant velocity. 
The sensor selection identifies price as a constraint and optimizes the price of the 
total sensor setup through usage of an ultrasonic sensor instead of a more expensive 
camera sensor. The work in [7] focuses on generating a LiDAR configuration 
from a set of LiDARs with the goal of reducing occurrences of dead zones and 
improving point cloud resolution. A LiDAR occupancy grid is constructed for a 
homogenous set of LiDARs and the configuration is generated using a genetic 
algorithm. An approach for optimal positioning and calibration of a three LiDAR



548 J. Dey and S. Pasricha

system is proposed in [8] that uses a neural network to qualify the effectiveness of 
different sensor location and orientations. Unlike these prior works that focus on 
generating configurations for a homogenous set of sensors, our work in this chapter 
presents a novel sensor placement and orientation optimization framework for a 
heterogeneous set of sensors. Moreover, our framework is also shown to be capable 
of easily adapting to different vehicle types. 

3 Background 

3.1 ADAS Features for Level 2 Autonomy 

We target four ADAS features in this chapter that need to be supported by a 
deployed sensor configuration on a vehicle (henceforth referred to as an ego 
vehicle). A sensor configuration consists of the location and orientation of each 
sensor within a heterogeneous set of sensors. Our VESPA framework optimizes the 
sensor configuration to support four features: adaptive cruise control (ACC), lane 
keep assist (LKA) forward collision warning (FCW), and blind spot warning (BW). 
Each of the features discussed above, require varying degrees of sensing and control 
along longitudinal (i.e., within the same lane as the ego vehicle) and lateral (i.e., 
along neighboring lanes) regions. 

SAE J3016 defines ACC and LKA individually as level 1 features, as they only 
perform the dynamic driving task in either the latitudinal or longitudinal direction of 
the vehicle. FCW and BW are defined in SAE J3016 as level 0 active safety systems, 
as they only enhance the performance of the driver without performing any portion 
of the dynamic driving task. However, when all four features are combined, the 
system can be described as a level 2 autonomy system. Many new vehicles being 
released today support level 2 autonomy. For instance, Volvo announced that its 
upcoming Level 2+ vehicles will use surround sensors for 360-degree perception, 
as well as deep neural networks running in parallel for robust object detection [9]. 
It is not only relevant, but also important to optimize sensor placement for ADAS 
systems as more and more vehicles with these features become available. Figure 1 
shows an overview of the four features we focus on for level 2 autonomy, which are 
discussed next. 

Adaptive cruise control (ACC) was first introduced in the Mercedes-Benz S-
Class sedan in 1999, with the goal of increased driver comfort. ACC causes the ego 
vehicle to follow a lead vehicle at a specified distance (Fig. 1) without exceeding 
the speed limit specified by the operator upon activation of the feature [10]. If the 
lead vehicle slows down, then it is the responsibility of ACC to slow down the ego 
vehicle to maintain the specified distance. Although implementations differ, all ACC 
systems take over longitudinal control from the driver (Fig. 1). The challenge in 
ACC is to maintain an accurate track of the lead vehicle with a forward facing sensor 
and using longitudinal control to maintain the specified distance while maintaining 
driver comfort (e.g., avoiding sudden velocity changes).
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: Ego vehicle 

: Non-ego vehicle 

: Blind spot 

Minimum longitudinal 
separation for ACC, FCW 

Minimum lateral 
separation for LKA 

Lead vehicle 

BW feature senses non-ego vehicle approaching 
from blind spot region and notifies driver 

Fig. 1 Visualization of common scenarios in ACC, FCW, LKA, and BW 

Lane keep assist (LKA) is an evolution of lane departure warning systems. It 
involves a forward-facing sensor (often a camera) to identify where the lane lines 
exist in front of the ego vehicle. Once the lane lines have been detected (e.g., using 
Canny edge detection and Hough transforms on forward-facing images), LKA can 
then determine if the ego vehicle lies between those lines (Fig. 1). If the ego vehicle 
appears to be drifting toward a position where it will cross lane line boundaries, 
LKA engages steering torque to steer the vehicle in the opposite direction of the 
lane line until it no longer has the trajectory to cross that lane. LKA systems have 
been known to over-compensate, creating a “ping-pong” effect where the vehicle 
oscillates back and forth between the lane lines [11]. The main challenges in LKA 
are to reduce this ping-pong effect and the accurate detection of lane lines on 
obscured (e.g., dirt covered) roads. 

Forward collision warning (FCW) uses information gathered via various forward 
facing sensors to determine whether the ego vehicle is going to collide with an 
object in front of it (Fig. 1). As objects approach the boundary where the vehicle 
can no longer come to a stop, an audio-visual warning notifies drivers instructing 
them to apply the brakes. As this is a safety-critical system, it is important that FCW 
avoids false positives as well as false negatives to improve driver comfort, safety, and 
reduce rear end accidents [12]. For this to be achieved, it is a necessary prerequisite 
that the sensors used by the FCW system be placed where they have an accurate 
view of the vehicle in front of them. The United States National Transportation 
Safety Board has recommended that FCW be included in all new vehicles [13]. 

Lastly, blind spot warning (BW) uses sensors mounted on the sides of the ego 
vehicle to determine whether there is a vehicle towards the rear on either side of 
the ego vehicle in a location the driver cannot see with their side mirrors [14] (Fig. 
1). This area is typically referred to as the “blind spot” and must be verified as
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clear of any vehicles before the driver can attempt to make a lane change. Without 
BW, the driver must turn their head to make that verification on their own. With 
BW, the driver can maintain their concentration on the road ahead. As BW requires 
information about a specific area near the rear of the vehicle, it is a challenge to 
find an optimal sensor placement that maximizes the view of the blind spot. If the 
sensor is too far forward, it will miss the blind spots entirely, causing a vehicle 
accident when the driver makes a lane change. If the sensor is too far back, it will 
end up capturing information for areas around the ego vehicle that are not in the 
blind spot, decreasing the sensor’s effectiveness at viewing the presence of vehicles 
surrounding the blind spot. 

3.2 Feature Performance Metrics 

To quantify the performance of a sensor configuration on a vehicle being evaluated 
over drive cycle test cases (i.e., across various driving scenarios; see Section V), we 
define eight metrics (m1–m8) that are characteristic of the configuration’s ability 
to track and detect non-ego vehicles across various road geometries and traffic 
scenarios. The eight metrics are defined as follows: 

.Longitudinal Position Error (m1) =
∑

(y − ygroundtruth)

Number of non ego vehicle
(1) 

.Lateral Position Error (m2) =
∑

(x − xgroundtruth)

Number of non ego vehicle
(2) 

. Object Occlusion Rate (m3) = Number of non ego vehicle undetected

T otal number of passing non ego vehicles

(3) 

. Velocity Uncertainty (m4) = Number of invalid detected non ego vehicle velocities

T otal number of non ego velocities

(4) 

.Rate of late detection (m5) = Number of late non ego vehicle detection

T otal number of non ego vehicles
(5) 

. False positive lane detecion rate (m6) = Number of false positive lane detections

T otal number of lane detections

(6)
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. False negative lane detecion rate (m7) = Number of false negative lane detections

T otal number of lane detections

(7) 

. False positive object detecion rate (m8) = Number of false positive non ego vehicle detections

Total number of non ego vehicle detections
(8) 

The longitudinal position error (m1) and lateral position error (m2) are computed 
as the deviation of the positional data detected by the sensor configuration from the 
ground truth of non-ego vehicle positions along the y and x axes respectively. The 
lateral position error is relevant for LKA, while longitudinal position error is most 
relevant for ACC and FCW. The object occlusion rate (m3) measures the percentage 
of passing non-ego vehicles that go undetected in the vicinity of the ego vehicle. The 
minimization of this metric optimizes BW capabilities of a sensor configuration. 
The velocity uncertainty (m4) is the fraction of times that the velocity of a non-ego 
vehicle is measured incorrectly, which matters for ACC and FCW. The rate of late 
detection metric (m5) is computed as a fraction of the number of ‘late’ non ego 
vehicle detections made by the total number of non-ego vehicles, which matters 
for BW. A detection is classified as late if it is made after the non-ego vehicle 
crosses the minimum safe longitudinal or lateral distance defined by Intel RSS 
(Responsibility Sensitive Safety) models on NHTSA for pre-crash scenarios [15]. 
When a lane marker is detected but there exists no ground truth lane in simulation it 
is classified as a false positive lane detection, conversely, if a ground truth lane exists 
in simulation but is not detected, it is classified as a false negative lane detection 
[16]. Metrics 6 and 7 (m6 and m7) characterize the perception system’s ability to 
make a correct case for lane keep assist by taking into account the false positive and 
false negative lane detection rate. False positive object detection rate (m8) measures 
the fraction of total vehicle detections which were classified as non-ego vehicle 
detections but did not actually exist in ground truth in the test cases. 

4 VESPA Framework 

The following section describes the proposed VESPA framework in detail. 

4.1 Overview 

Figure 2 shows an overview of our proposed VESPA framework. The physical 
dimensions of the vehicle model and the number and type of sensors to be 
considered are inputs to the framework. A design space exploration algorithm is
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Fig. 2 Overview of VESPA framework 

used to generate a sensor configuration which is subsequently evaluated based on 
a cumulative score from the performance metrics presented in the previous section. 
We evaluate three design space exploration algorithms: simulated annealing with 
greedy randomized adaptive search (SA + GRASP), genetic algorithm (GA), and 
particle swarm optimization (PSO). The process of sensor configuration generation 
and evaluation continues until an algorithm-specific stopping criteria is met, at 
which point the best configuration is output. The following subsections describe 
our framework in more detail. 

4.2 Inputs 

Each of the design space exploration algorithms generates sensor configurations that 
consider feature to field of view (FOV) zone correlations around the ego vehicle. 
Figure 3a shows the FOV zones around the ego-vehicle. These zones of interest are 
defined as the most important perception areas in the environment for a particular 
feature. Figure 3b shows the regions on the vehicle on which sensors can be mounted 
(in blue). Regions F and G (in yellow) are exempt from sensor placement due to the 
mechanical instability of placing sensors on the door of a vehicle. 

The correlation between features, zones, regions, and performance metrics shown 
in Fig. 3 is summarized in Table 4. For example, in Fig. 3a, for ACC, the zones of 
interests are 6, and 7, and the corresponding regions for possible sensor placement 
are A and C. For exploration of possible locations within a region, a fixed step 
size of 5 cm in two dimensions across the surface of the vehicle is considered, 
which generates a 2D grid of possible positions in each zone shown in Fig. 3b, 
c. The orientation exploration of each sensor involves rotation at a fixed step size
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Fig. 3 (a) Field of view (FOV) zones; (b) sensor placement regions; (c) design space breakdown 

Table 2 Feature, region, 
zone and performance metric 
relationship 

Feature Region Zone Associated metrics 

BW B.H.I 1, 2,3,10 (m3, m5, m8) 
LKA E, I 3,4,5 (m2, m3, m6, m7) 

D, H 8, 9, 10 
ACC, FCW A, B,C 6, 7, 11 (m1, m4, m8) 

of 1 degree between an upper and lower bounding limit for roll, pitch and yaw 
respectively, at each of these possible positions within the 2D grid. 

The orientation exploration limits were chosen with caution to the caveat that 
long range radars with extreme orientations increase the number of recorded 
false positives. The combined position and orientation exploration generates an 
intractably large design space as discussed next (Table 2). 

4.3 Design Space Exploration 

All of the metrics (m1 – m8) defined in 2.3.2 represent good performance at 
lower values. We create a cost function that combines these metrics and frame our 
sensor placement and optimization problem as a minimization problem. The most 
important metrics are identified and grouped for each feature, as shown in Table 
4, and are used to model the cost function as a weighted sum of these five metrics, 
where the weights are chosen on the basis of their total cardinality across all feature. 
By searching through the design space of sensor configurations for a minimum cost 
function value, a sensor configuration can thus be generated where the metrics are 
cumulatively minimized. 

The design space considered in this chapter uses 4 radars and 4 cameras that can 
be placed in any zone. With a fixed step size of 5 cm in each dimensions and 1 degree
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rotation in orientation, the number of ways 8 sensors can be placed in all unique 
locations and orientations is 2.56e+23C8 for the 2019 Blazer and 6.4e+22C8 for 
the 2016 Camaro. As this design space is so large that it cannot be exhaustively 
traversed in a practical amount of time, we explore the use of intelligent design 
space search algorithms that support hill climbing to escape local minima. The three 
algorithms implemented as part of VESPA are discussed next. 

4.3.1 SA + Greedy Random Adaptive Search Procedure (SA + Grasp) 

Simulated annealing (SA) is a search algorithm that is useful in finding the 
global optima when the design space has multiple local optima [17]. The process 
is analogous to the way metals cool and anneal [18]. Typically, SA picks the 
best solution at each iteration, but can also pick the worst solution based on a 
temperature-dependent probability, which can allow it to climb out of local minima 
to arrive at global minima [19]. But SA suffers from the drawback of behaving like 
a greedy algorithm at lower temperatures as it tends to accepts only those solution 
configurations very close in cost function value to the previous solution, so it can 
get stuck in local minima in more complex design spaces [20]. The GRASP (Greedy 
Randomized Adaptive Search Procedure) algorithm is another search algorithm that 
is used in many exploration problems [21], but it does not always generate optimal 
solutions during the greedy construction phase and can get stuck in local optima 
easily. The SA + GRASP algorithm eliminates the inherent drawbacks of each 
algorithm. Specifically, the greedy randomized construction phase of the algorithm 
is used to create disturbances in the existing list of best sensor configurations in 
our problem, to generate better solutions. A new solution is generated in each 
iteration by selecting the better solution between the greedy solution from the greedy 
randomized construction phase and the configuration found from the local search. 
We decreased the SA temperature variable from Tmax = 10,000 to Tmin = 0 at the  
rate of 4 degrees per iteration. The search repeats by decreasing SA temperature till 
an optimal solution is found or a stopping criterion is achieved. 

4.3.2 Genetic Algorithm (GA) 

The GA is an evolutionary algorithm that can solve optimization problems by 
mimicking the process of natural selection [22]. It repeatedly selects a population 
of candidate solutions and then improves the solutions by modifying them. GA has 
the ability to optimize problems where the design space is discontinuous and also if 
the cost function is non differentiable [23]. The GA is adapted for our design space 
such that a chromosome is defined by the combined location and orientation of each 
sensor’s configuration (consisting of six parameters: x, y, z, roll, pitch, and yaw). 
For a given set of N sensors, the number of parameters stored in each chromosomes 
is thus ‘6 N’. Next, in the selection stage, the cost function values are computed 
for 100 configurations at a time, and a roulette wheel selection method is used to
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select which set of chromosomes will be involved in the crossover step based on 
their cost function probability value, computed as a fraction of the cumulative cost 
function sum of all chromosomes considered in the selection. In the crossover stage, 
the crossover parameter is set to 0.5, which allows 50 out of the 100 chromosomes 
to produce offspring. The mutation parameter is set to 0.2 such that in the mutation 
stage, the mutation rate is set to 10, which is the number of new genes allowed for 
mutation in each iteration. 

4.3.3 Particle Swarm Optimization (PSO) 

PSO considers a group of particles where each particle has a position and velocity 
and is a solution to the optimization problem [24]. In our problem each sensor 
configuration in the design space is represented as a particle having a defined 
position and velocity. With a random start, the cost function in (5) evaluates the 
quality of the solution of a particle. The particle’s velocity and position values are 
updated recursively using a linear update [24]. Each particle stores a trace of its best 
position within the group and globally as well. The history of the cost function 
values for this trace can explain the effectiveness of changing the position of a 
particular sensor from the set of heterogeneous sensors [25]. Unlike GA, PSO does 
not have any evolution operators like crossovers or mutation [26]. PSO also does 
not require any binary encoding of solution configurations like in GA [27]. The 
total number of particles considered were 50, and the importance of personal best 
and importance of neighborhood best parameters were both empirically selected to 
be 2. 

5 Experiments 

The following section describes the experimental setup and results involving the 
VESPA framework. 

5.1 Experimental Setup 

To evaluate our VESPA framework, we consider a scenario with a maximum of 8 
sensors: 4 radars and 4 camera vision sensors. Many recent contributions such as 
the work presented in [28, 29] combine radar and camera modalities for ADAS 
applications. We did not include LiDARs in this heterogeneous set of sensors due to 
their relatively poor performance in adverse weather conditions as shown in Table 3. 
For the given set of test cases, it was observed that if less than 4 sensors were used, 
the ability of the perception system to make an accurate prediction was relatively 
poor. Conversely, on increasing the number of radars and cameras to more than
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Table 3 VESPA generated solution vs baseline configuration 

VESPA Camaro Baseline Camaro VESPA Blazer Baseline Blazer 

Cost function 0.9971 2.1367 1.2841 2.4630 
Longitudinal 
position error 

0.0523 0.1427 0.0845 0.2419 

Lateral position 
error 

0.1810 0.2566 0.0958 0.2204 

Object occlusion 
rate 

0.1331 0.2351 0.2062 0.3158 

Velocity uncertainty 0.0823 0.1851 0.0474 0.2056 
Rate of late 
detection 

0.1158 0.2123 0.1578 0.2315 

False positive lane 
detection rate 

0.0142 0.1335 0.0221 0.1571 

False negative lane  
detection rate 

0.0214 0.0236 0.0393 0.0412 

False positive 
object detection rate 

0.0431 0.1283 0.0976 0.0954 

Fig. 4 2019 Chevrolet Blazer (Left) and 2016 Chevrolet Camaro (Right) 

4 each, there was minimal improvement in cost function score. Hence to keep 
implementation cost low while still achieving good accuracy, we decided to use 
these 8 sensors. Please note that these modalities and number of sensors have been 
used to show a proof of concept for our VESPA framework, which can be extended 
to scenarios with different modalities and numbers of sensors. We considered two 
vehicles for evaluation: a 2019 Chevrolet Blazer and a 2016 Chevrolet Camaro. 
Figure 4 shows the dimensions for the vehicles. Figure 5 shows images of the sensor 
placements on both car models in our workspace. 

Each configuration generated by the SA+GRASP, GA, and PSO algorithms was 
optimized on 40 test cases designed (10 test cases each for evaluating performance 
with ACC, FCW, LKA, and BW) using the Automated Driving Toolbox in Matlab. 
Half (20) of these test cases for each feature are used during the optimization phase 
and the remaining (20) test cases are used during the evaluation phase.
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Fig. 5 Sensors mounted in workspace on both car models 

Finally, the optimized configurations were evaluated on a different set of evalu-
ation test cases. Each of the test cases was characterized by unique road geometry, 
variations in road elevation, curvature, banking, and different traffic densities. In 
some test cases, the number of lanes were varied to make the framework optimize 
the sensor configuration for challenging and realistic driving scenarios. 

A Kalman filter sensor fusion algorithm was used to combine readings from 
sensors in a sensor configuration being evaluated, to make predictions. The longi-
tudinal and lateral ground truth were defined for non-ego vehicles and the position 
error was calculated from the fused sensor measurements. The deviation of sensor 
measurements from ground-truth was used to calculate the values of metrics m1– 
m8, and hence the cost function over all test cases. Lastly, we set the stopping 
criterion for all three algorithms as the case when the cost function does not show a 
greater than 5% change over 200 iterations. 

5.2 Experimental Results 

In our first experiment we were interested in evaluating the efficacy of different 
optimization algorithms (SA + GRASP, GA, and PSO) in finding optimal sensor 
configurations as well as exploring the consistency of the quality of solution 
returned by each. The cost function values for the best solution found by each 
algorithm for the 2016 Camaro and 2019 Blazer are shown in Fig. 6 As shown 
in Fig. 6, GA returned the solution configuration with the lowest cost function score 
of 0.7648 for the Camaro and 0.9252 for the Blazer. GA was able to better traverse 
the complex design space for our problem to arrive at the global minima compared 
to the SA + GRASP and PSO algorithms. 

Next, we compared the solution generated by VESPA (utilizing the GA algorithm 
which gives the best results) with a baseline sensor configuration selected manually, 
based on best practices by a vehicle design expert in our team. This baseline 
configuration involved coupling a radar and camera in zones A, B, E and H each 
such that every mutually perpendicular direction in the 2D plane of the ego vehicle 
was covered using a radar and camera combined. All 8 sensors were fixed in the 
orientation angle, which matched the orientation of surface normal vector of the
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Fig. 6 Cost function values 
for the best solution found by 
the SA + GRASP, GA, and 
PSO algorithms on the 
Camaro and Blazer vehicles 
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respective zone in which they were placed. The selected baseline configuration 
maximizes coverage by considering feature to zone correlation. This is ensured by 
placing at least one sensor in each region such that all zones dedicated to each of 
the 4 selected features is covered in the field of view of that particular sensor. 

Table 3 shows the results of the comparison between the VESPA generated 
solution and the baseline configuration for the 2016 Camaro and 2019 Blazer. The 
final cost function score was higher for the baseline approach, showing that VESPA 
generated a significantly better (lower cost) solution for both vehicles. 

Table 4 summarizes the specific locations and orientations of the eight sensors 
on the two vehicles, generated by VESPA. The location and orientation information 
of each sensor in Table 6 is measured with respect to a global co-ordinate frame for 
the car model, whose origin is at the geometric center of the vehicle. An interesting 
observation from the table is that the sensors in the Blazer’s configuration favor 
higher Z values than the Camaro, since the Blazer is 0.3 m taller than the Camaro. 

Figure 7 visualizes sensor coverage in a bird’s eye plot between the best 
configuration generated by VESPA in Fig. 7a and the baseline configuration in 
Fig. 7b for the Camaro (results for Blazer are omitted for brevity). The baseline 
configuration was optimized with a conventional approach towards improving 
sensor coverage, with a secondary focus on sensor reliability. 

In contrast, the solution generated by VESPA took into account the unique 
strengths and weaknesses of each sensor to obtain a configuration having sig-
nificantly better performance for the features supported, despite having lower 
overlap between field of view of different sensors than the baseline solution Fig. 
7 and also uses lesser number of sensors. The superiority of the VESPA solution 
configuration, despite using lesser number of sensors, can be accounted for by the 
optimized placement of camera 1, radar 2 and radar 3 in zones A and C maximizing 
performance of ACC and FCW. Further, in physical testing it was observed that
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Fig. 7 Coverage for (a): VESPA Camaro solution (b) Baseline Camaro 
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Fig. 8 Performance on real drive cycle in Colorado for best solution generated by VESPA and the 
baseline configuration for the 2019 Blazer 

using a radar coupled with camera in zone B for LKA reduces the number of false 
positives during detections. In Fig. 7a, radars 3, 4 and cameras 2, 3 placed in zones D 
and E respectively were sufficient for improving performance of ACC and FCW by 
reducing the number of false positive object detections. The combined optimization 
of orientation and location with VESPA resulted in a sensor configuration that 
maximized performance for each feature. 

Our last experiment involved testing the best sensor configuration from our 
VESPA framework and the baseline configuration for the 2019 Blazer on data from a 
real world drive cycle over 1 h in Colorado. We focus only on assessing performance 
for the ACC and FCW features. Figure 8 shows an image from the real drive cycle
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with data collected by the vehicle from the radar and camera sensors on it. The figure 
also shows a plot of the object occlusion rate (OOR). The OOR for the baseline 
configuration was 19.64% (it did not detect 11 out of 56 non ego vehicles), while 
the VESPA generated best solution had an OOR of 7.14% (it failed to detect only 
4 out of 56 non ego vehicles). The results show the effectiveness of our proposed 
VESPA framework in generating higher quality sensor configurations. 

6 Conclusions 

In this chapter, we propose an automated framework called VESPA that is capable of 
generating sensor placement and orientation in modern semi-autonomous vehicles. 
VESPA has the ability to optimize locations and orientations for a set of heteroge-
neous sensors on a given target vehicle. The framework can be tuned to improve 
perception on a desired collection of test cases. VESPA is also scalable across 
different vehicle models as shown in our analysis on the Chevrolet Camaro and 
Blazer vehicles. Further, despite the sensor locations in the baseline configuration 
of Fig. 7b being the most intuitive, the best configuration is the one generated by 
VESPA, showing that even people skilled in the art of sensor placement may find 
it challenging to synthesize a significantly better placement than that generated by 
VESPA. We also validated VESPA with real drive cycle data to show its effectiveness 
for real-world scenarios. 
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Unsupervised Random Forest Learning 
for Traffic Scenario Categorization 

Friedrich Kruber, Jonas Wurst, Michael Botsch, and Samarjit Chakraborty 

1 Introduction 

Looking at traffic scenarios microscopically, there is an infinite number of scenarios. 
A somewhat higher visual range shows that they nevertheless follow certain 
patterns and can be assigned to categories with a high degree of similarity. Testing 
representatives from each category ensures a broad scope, while minimizing the 
effort in the validation process. In order to perform a relevance evaluation, one has 
to memorize and structure traffic scenarios. Therefore, the vast amount of sensor 
data needs to be shrinked. This can be achieved by representing a traffic situation 
with a set of relevant features. These features can then be used in machine learning 
algorithms for analysis purposes. 

A training dataset of recorded traffic scenarios is usually manually labeled in 
order to run supervised classification algorithms. In contrast to that, unsupervised 
learning yields to identify patterns in datasets, where the availability of labels for 
training machine learning models is absent. The main focus here is the introduction 
of an unsupervised learning procedure for the categorization of traffic scenarios, 
only given the input from arbitrary data sources. 

The chapter is organized as follows. After the methodological introduction into 
Decision Trees and Random Forests in Sects. 2 and 3, the method is extended 
for its usage in the field of unsupervised learning in Sect. 4. Its application for 
the unsupervised clustering of real world traffic scenarios is discussed in Sect. 5. 
Finally, the versatility of Random Forests is demonstrated by another method, which 
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integrates a Random Forest into a Deep Learning architecture to tackle the problem 
of Open-Set recognition for traffic scenarios. 

Before moving to the next section about Decision Trees, some notations will be 
introduced. A dataset . D consists of M datapoints .xm ∈ R

N , referred to as feature 
vectors. Supervised learning requires a training dataset containing a target vector . ym

for each feature vector . xm. Assuming that the possible output is a scalar it yields 

.Ds = {
(x1, y1) , . . . ,

(
xMs , yMs

)}
. (1) 

Contrary to that, in unsupervised learning the dataset does not provide any informa-
tion about the objective values. Therefore, those datasets are defined as

.Du = {
x1, . . . , xMu

}
. (2) 

The feature vector . x as well as the target y are not deterministic. Therefore, the 
feature vector . x is a realization of the random variable . x and y a realization of the 
random variable . y . 

Supervised machine learning aims to find a function f based on . Ds, which 
performs the mapping from the input variable . x to the target . y . Depending on the 
target value characteristics, supervised learning can be in the form of classification 
or regression. If  . y is of categorical type, the function is called classification. With 
.x ∈ R

N , the classification is defined as 

.f : RN → {c1, . . . , cK },x �→ ŷ , (3) 

where .ŷ ∈ {c1, . . . , cK } is the categorical predicted output. If the output is 
continuous, i.e. .ŷ ∈ R, the function is called regression: 

.f : RN → R, x �→ ŷ . (4) 

The aim of all supervised learning methods is to find a function f , which gains 
the highest performance. Therefore, the performance measurement called risk 

.R (f ) = Ex,y {L (y , f (x))}
︸ ︷︷ ︸

expectation ofL

=
∫

RN

K∑

k=1

L (ck, f (x)) p (x = x, y = ck)︸ ︷︷ ︸
joint probability density function

dx (5) 

.R(f ) = Ex,yL(y , f (x)) =
∫

RN

∫

R

L(y, f (x)) p(x = x, y = y) dydx, (6) 

for classification and regression is introduced. . L denotes the loss and . E the 
expectation. The goal is to find a function . fB, which gains the highest performance 
by minimizing .R(f )
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.fB = argmin
f

{R (f )}, (7) 

where . fB is known as the Bayes classifier or Bayes regression function. The density 
functions are usually unknown. Instead, risk can be estimated through the empirical 
risk by employing the dataset . Ds, 

.Remp (f,Ds) = 1

Ms

Ms∑

m=1

L (ym, f (xm)) . (8) 

Various approaches try to minimize the empirical risk in order to find a good 
mapping f . The approaches differ in their architecture and hence the realized 
function. In the following, we focus on the proven-in-use ensemble method termed 
Random Forests, which is constructed from a set of Classification and Regression 
trees. 

2 Classification and Regression Trees 

Classification and Regression Trees (CART) have several benefical properties for 
real world applications. They can model relations between an input . x and the output 
. y independent of the number of features or dataset size. The input variables can 
be either categorial or ordered, and even both types may be apparent in the feature 
set. Probably the most important aspect to favor decision trees over many other 
methods, is the interpretability. All decisions and interactions among features can 
be interpreted by humans, and thus provide the white-box character of CARTs. 

The CART algorithm, introduced in [8], is a specific form of binary decision 
trees. As depicted in Fig. 1 and explained in detail in what follows, a binary tree 
can be thought of a multi decision process, as well as a directed graph. In an 
algorithmic view, binary trees consist of many if/else queries. The intuition behind 
trees is simple, yet understanding the underlying principles is mandatory since they 
build the basis for the more sophisticated Random Forest algorithms. 

Fig. 1 Example of a binary 
classification tree
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Before diving into the methodology, a set of definitions considering a binary 
tree is established first. A binary tree . T is constructed with nodes . t, which are 
connected by edges. The top node is designated as the root, such that all edges 
are directed downwards from the root. Two nodes are connected by a single edge. 
The information flows from the parent node to the child node. In a binary tree, 
intermediate nodes have exactly two children, but only one parent node. If a node 
does not possess children, it is termed as terminal node, or  leaf. 

Starting from the input space .X ∈ R
N , at each if/else decision stage the input is 

split into two disjoint subspaces . Xi and . Xj of .RN for which .p(x ∈ t) > 0. These 
subspaces are represented by the two children nodes. When propagating through all 
stages of a tree, each datapoint . xm is assigned to a constant prediction . ̂y within that 
subspace. This subspace is corresponding to the terminal node in the tree. 

2.1 Computing the Optimal Split 

The aim of growing a tree is to minimize the risk according to Eq. (5) and Eq. (6) 
for classification or regression problems, respectively. This is achieved by finding 
the best splits and will be derived in the following. 

We define . T̃ as the subspace of . X representing all terminal nodes of a tree. The 
function, which assigns each input . x to a terminal node .t ∈ T̃ can be formalized as 

.ρ : X→ T̃,x �→ t. (9) 

Given an assignment function .υ(t) ∈ {c1, . . . , cK } for classification, or . υ(t) ∈ R

for regression, a mapping f corresponds to . T̃ so that .f (x) = υ(t) for all inputs 
.x ∈ t, then 

.f (x) = υ (ρ(x)) . (10) 

Based on the previous equations, one obtains the risk of the mapping realized as

.R(f ) =
∫

X

Ey |x {L (y , f (x))} p (x = x) dx. (11) 

=
∑

t∈T̃

Ey |x∈t {L (y , υ (t))} p (x ∈ t) . (12) 

The global error in Eq. (11) is equal to sum of the local errors within all terminal 
nodes, Eq. (12). Hence, the risk can be minimized locally with 

.rmin(t) = min
υ

{
Ey |x∈t {L (y , υ (t))}} , (13) 

leading to the overall minimum prediction risk for . T̃ of .R
N
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.Rmin(T̃) =
∑

T̃

rmin(t)p(x ∈ t). (14) 

The local minimum risk for regression in a node .t ∈ T̃ is 

.rmin(t) = σ̂ 2
T̃
. (15) 

For classification, the minimum local risk is obtained with the class of highest
posterior probability

.rmin(t) = min
cl

{
K∑

k=1

(1 − δ(ck, cl))p(y = ck|x ∈ t)
}

. (16) 

= 1 − max
ck

{p(y = ck|x ∈ t)} , (17) 

where .δ(·, ·) is one if both arguments are equal, otherwise zero. Typically, classi-
fication is realized through a class probability estimation, which leads to the local 
risk in a node .t ∈ T̃ as 

.rmin(t) =
K∑

k=1

p(y = ck|x ∈ t)(1 − p(y = ck|x ∈ t)). (18) 

When growing a tree, the aim is to reduce the local risk as best as possible with an 
optimal split . sopt in order to divide a node .t ∈ T̃ into a left . tL and right . tR childnode. 

We define this as a new fraction of . T̃′ of . RN . A split reduces the risk with 

.�R(s, t) = Rmin(T̃) − Rmin(T̃
′). (19) 

= p(x ∈ t)(rmin(t) − p(x ∈ tL|x ∈ t)rmin(tL) − p(x ∈ tR|x ∈ t)rmin(tR)),
(20) 

and the relative risk reduction is

.�r(s|t) = Rmin(T̃) − Rmin(T̃
′)

p(x ∈ t) . (21) 

= rmin(t) − p(x ∈ tL|x ∈ t)rmin(tL) − p(x ∈ tR|x ∈ t)rmin(tR). (22) 

Now, the best split . sopt for a node . t is achieved by maximizing . �r(s|t)

.sopt(t) = argmax
s̃

{
�r(s̃|t)} . (23)
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In practice the required probability density functions are not known. Therefore, in 
the following we consider how to perform a split with a given dataset . Ds. 

2.2 Growing a Tree 

Since the probability function .p(x ∈ t) is unknown, it has to be approximated with 
a training dataset . Ds containing M datapoints. We define a set . M(t) = {m ∈ M :
xm ∈ t}, which contains all datapoints of . Ds in the node . t. The empirical estimate . ̂p
can then be computed with 

.p̂(x ∈ t) = |M(t)|
M

= M(t)

M
, (24) 

with the assumption that .p̂(x ∈ t) > 0 for all .t ∈ T̃. Now, we can reformulate Eq. 
(13) and Eq. (14) 

.r̂min(t) = min
υ

∑
M(t)L(ym, υ(ρ(xm)))

M(t)
, and (25) 

.R̂min(f ) =
∑

T̃

r̂min(t)p̂(x ∈ t). (26) 

For regression we set .υ = μ̂(t), so that .r̂min(t) = σ̂ 2
T̃
(t), with . μ and . σ 2 denoting the 

expectation and variance. 
For classification the estimate for .p(y = ck|x ∈ t), k = 1, . . . , K has to be 

calculated to compute .r̂min(t). We define another set . Mk(t) = {m ∈ M : xm ∈
t and ym = ck} for all datapoints in the node . t belong to a class . ck , so that the 
empirical probability estimation is 

.p̂(y = ck|x ∈ t) = Mk(t)

M(t)
. (27) 

Hence, Eq. (18) turns into 

.r̂min(t) =
K∑

k=1

p̂(y = ck|x ∈ t)(1 − p̂(y = ck|x ∈ t)). (28) 

=
K∑

k=1

K∑

k’ = 1
k′ �=k

p̂(y = ck|x ∈ t)p̂(y = ck′ |x ∈ t), (29)
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and Eq. (17) turns into 

.r̂min(t) = min
cl

{
∑

k

(1 − δ(ck, cl))p̂(y = ck|x ∈ t)
}

. (30) 

= 1 − max
ck

{
p̂(y = ck|x ∈ t)} . (31) 

In order to compute the best split, we need to formulate the empirical relative risk
reduction, which is

.�r̂(s|t) = r̂min(t) − p̂(x ∈ tL|x ∈ t)r̂min(tL) − p̂(x ∈ tR|x ∈ t)r̂min(tR), (32) 

where

.p̂(x ∈ tL|x ∈ t) = p̂(x ∈ tL)

p̂(x ∈ t) = M(tL)

M(t)
, (33) 

and

.p̂(x ∈ tR|x ∈ t) = p̂(x ∈ tR)

p̂(x ∈ t) = M(tR)

M(t)
. (34) 

Now, that all parts for .�r̂(s|t) are defined, the optimal empirical split at a node . t

can be computed with 

.ŝopt(t) = argmax
s̃

{
�r̂(s̃|t)} . (35) 

Note, that the border of the partition of . t is a hyperplane perpendicular to one of the 
axes of . xn. The evaluation to set the threshold for the split along a feature n can be 
conducted with a brute-force approach. If all datapoints in . t are distinct with respect 
to feature n, .M(t) − 1 splits for the n-th feature have to be evaluated in order to find 
the optimal split. 

Equation. (29) computes the relative risk reduction .r̂min(t) for classification, 
known as the Gini impurity . i(t). The purity gain due to a split can be formulated 
as 

.�i(s, t) = i(t) − M(tL)

M(t)
i(tL) − M(tR)

M(t)
i(tR), (36) 

such that the optimization task turns into

.ŝopt(t) = argmax
s̃

{
�i(s̃, t)

}
. (37)
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Growing a tree until the impurity in terminal nodes becomes .i(t) = 0, so that 
all datapoints belong to a single class, is likely to cause overfitting on the training 
dataset. On contrary, if the growing process is abrupted too early, the subspaces 
might not be defined well enough to separate the classes properly. In practice, a 
tree is first fully grown and then pruned. The goal is to prune those nodes, which 
only have a minor effect on the estimated risk. Several heuristics can be applied as 
pruning criterias. For example, one can define a minimum number of .M(t) samples 
per terminal node. Another criterion is to define a maximum tree depth to reduce 
complexity. Lastly, a threshold for the minimum purity gain, provided by a split, 
can be defined as pruning criterion. Tuning these parameters appropriately is task-
specific and should be monitored with a validation dataset. 

After pruning, assigning a class to a terminal node is achieved by choosing the 
class with the highest estimated probability .p̂(y = ck|x ∈ t). 

3 Ensemble Learning with Random Forests 

A Random Forest is a randomized ensemble learning method, which uses a set of 
binary trees as base learners. Before addressing Random Forests, we will first take 
a brief look at the concepts of ensemble learning. 

3.1 Ensemble Learning 

Ensemble Learning methods use several base learning models and combine the 
predictions of each individual learner with the aim to improve the final prediction. 
In case of the Random Forest algorithm, each tree is grown independently of the 
other trees forming the ensemble. The final prediction of the ensemble method is 
computed as an average or majority vote of all independently constructed predictors. 

The advantage of ensemble methods will be illustrated with a simple example 
based on the principle of collective wisdom. For our example, we assume two 
possible outputs, where one of the two is the correct answer. All voters predict 
independently of each other with the same error rate . ε. Each voter is considered 
to be competent, i. e. the probability of a false prediction is .p(ε) < 0.5 [14]. Under 
these assumptions, the error limit is going towards zero for an infinite number of 
voters B 

. lim
B→inf

ε(B) = 0. (38) 

Given these restrictions, a voter can be interpreted as a Bernoulli variable with
.μ = ε and .σ = ε(1 − ε). The error rate for majority voting can then be calculated 
using the binominal distribution
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.ε(B) =
B∑

b=b

(
B

b

)
εb(1 − ε)B−b with b =

⌊
B

2

⌋
+ 1. (39) 

In our example we assume .B = 50 predictors and an individual error rate of 
.ε = 0.35 for all predictors. The ensemble error rate for this majority vote is then 

.εens =
50∑

b=26

(
50

b

)
εb(1 − ε)50−b = 0.01 < ε. (40) 

Although in practice the predictor models are not completely independent, alone
due to the shared training dataset, this examples illustrates the benefits of ensemble
methods. Generally, the predictive error is composed of the bias and variance
components. The key behind the success of ensemble methods is related to the
reduction of the variance component. Ensembles work effectively as long as the bias
and correlation of the base learners is low. CARTs, for example, have a small bias
but large variance. A set of CARTs reduce variance, and by inducing randomization
techniques, the correlation between all base learners can be reduced as described in
the next section. Interested readers are referred to [11] for a detailed explanation of 
the bias-variance decomposition. 

Following [10], three fundamental reasons explain why ensembles perform 
well. The first reason is statistical. A learning algorithm tries to identify the best 
hypothesis in space. When the amount of training data available is too small, the 
algorithm can find many different hypotheses of similar accuracy. By averaging 
the hypotheses one can find a good approximation for f by avoid the risk of 
choosing a wrong hypothesis. The second reason is computational. Finding a split to 
grow decision trees is conducted in a brute-force manner. Running the local search 
from many different starting points often provides a better approximation to the 
true unknown function. The third reason is representational. Given a finite training 
dataset, none of the candidate models is able to find the true function. Due to the 
limited dataset, will explore only a finite set of hypotheses and stop searching when 
the hypothesis fits the training data. By combining several learners to an ensemble, 
it can be possible to expand the space of representable functions. 

Figure 2 illustrates the potential performance gain of ensemble methods. The 
spiral training dataset .Dt,0 consists of .Mt,0 = 20,000 and the test dataset of 
.Mv = 500 datapoints. Additional noise is added to the test dataset to increase 
the difficulty of the two-class classification task. The first two columns depict the 
training and test dataset, respectively. The two plots on the right-hand side depict the 
classification performance of a CART (.B = 1) and a Random Forest constructed 
with .B = 10 tree models. In the first row, the classification performance for both 
methods is comparable due to the relatively large dataset for the problem to be 
solved. The ensemble reduces the error rate . ε by 1%. In the second and third row, 
the number of training datapoints is being reduced to .Mt,1 = 2000 and .Mt,2 = 200, 
where .Dt,2 ⊂ Dt,1 ⊂ Dt,0. With a decreasing training dataset size, the gap
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Fig. 2 Classification example on a spiral dataset. The error prediction gap between a single CART 
model with .B = 1 and an ensemble method with .B = 10 learners increases considerably, when 
the size of the training dataset is a limiting factor for the task to be solved 

between a single CART and the ensemble method increases to 3.9% for .Mt,1, and 
a considerable gain of 12% for .Mt,2. The number of samples required for a good 
classification performance certainly depends on the difficulty of the problem to be 
solved. In practice, however, the dataset is often a limiting factor, making ensemble 
methods appealing. 

3.2 Random Forests 

The Random Forest algorithm [6] constructs a set of several individual CART as 
base learners, where each tree is grown independently. After growing the trees, the 
final ensemble prediction is made by taking the average over the predictions of 
all trees for regression problems, or by majority vote for classification. Since the 
Random Forest is composed of CARTs, it inherits the advantages of CARTs, such 
as the robustness to outliers and noise. The Random Forest is able to handle ordered 
and categorial variables. It is able to perform a prediction, even when some entries 
in the input data are missing. Interpretability, though, is not inherited due to the 
averaging approach for its prediction. 

Let a Random Forest be the collection of B trees, where a tree is expressed 
by .{Tb(x, θb)}. . θb is an independent identically distributed random vector. In
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order to obtain a low variance, the trees should be as uncorrelated as possible. 
Therefore, the learning procedure is perturbed by two elements forming the vector 
. θb, which largely define the characteristics of the Random Forest algorithm. The 
first element is bagging [5], a bootstrap aggregating technique. This means that B 
new bootstrapped datasets .Ds,b, b = 1, . . . , B are randomly drawn by sampling . MS
datapoints with replacement from . Ds. On average, around 37% of the datapoints in 
. Ds are omitted in each bootstrapped set . Ds,b

. lim
MS→inf

(
1 − 1

MS

)MS

= 1

e
≈ 0.368. (41) 

Bagging constructs individual trees by learning with a different dataset .Ds,b. The  
second element defines a rule, how the process of splitting a node is conducted. 
Instead of searching the best split over all N features, only a subset of .NRF features 
is randomly chosen at each node, where .NRF < N holds. A common choice is 

.NRF =
⌈√

N
⌉
. Limitating the list of candidates with accelerates the learning 

procedure as well. 
Applying both strategies, bagging and the random subset of features for splitting 

a node, generate individual base learners and make the Random Forest algorithm 
likely to benefit from the averaging process. As shown in [6], a Random Forest 
does not overfit. Therefore, increasing the number of base learners decreases 
the generalization error, which converges to a limiting value. Another beneficial 
property of Random Forests and bagging in particular is, that the construction of 
the base learners is performed with bootstrap samples. The omitted samples of . Ds
enable an unbiased estimate of the generalization error during the building process. 
This is denoted as out-of-bag estimates (oob). 

3.2.1 Out-of-Bag Estimates 

Bagging allows an unbiased estimate of the generalization error while constructing 
the ensemble of trees. It comes for free and it can replace an additional validation 
dataset. As shown in Eq. (41), approximately 37% of all datapoints in . Ds are not part 
of the bootstrap set .Ds,b. We denote the trees, which did not use a certain datapoint 
.{xm, ym}, as the  set  . Bm. Furthermore, we define the out-of-bag class probability 
estimator as 

.f oob(xm, θ) = 1

|Bm|
∑

b∈Bm

f b(xm, θb), (42) 

with .f b(xm, θb) = [
p̂(y = c1|x ∈ tTb

), . . . , y = cK |x ∈ tTb
)
]T the vector of all K 

class probability estimates of the b-th tree. Hence, .f oob(xm, θ) contains the average 
class probability over all trees. The majority voting is realized by selecting the class 
with the highest probability in .f oob(xm, θ) as .foob(xm). Then, the oob estimate for
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the empirical prediction risk is the averaged sum of errors 

.R̂oob(f ) = 1

M

M∑

m=1

δ(foob(xm), ym). (43) 

The oob estimate has two attractive properties. First, it is equivalent to a test
dataset [5]. Second, in contrast to the cross-validation technique, the oob estimate is 
unbiased, if the number of trees in the Random Forest is large enough. 

3.2.2 Proximity Measure 

The Random Forest algorithm allows to determine the similarity between two 
datapoints. Unlike other proximity measures such as the Euclidean, Manhattan 
or Mahalanobis distance, the Random Forest proximity follows a data-adaptive 
principle, since the trees are grown according to the training dataset. In order to 
evaluate the similarity between two datapoints . xi and . xj , one observes if both 
datapoints end in the same terminal node of a tree. In this case, the similarity value 
is increased by one. This process is repeated over all trees and the final similarity 
measure is the average similarity over all trees 

.prox(xi , xj ) = 1

B

B∑

b=1

δ(tTb
(xi ), tTb

(xj )), (44) 

with .tTb
(xi ) denoting the leaf of the b-th CART in which  . xi terminates. Following 

the idea of proximity, the next Section demonstrates how the Random Forest 
algorithm can be adapted in order to establish an unsupervised learning method. 

4 Random Forests for Unsupervised Learning 

In the unsupervised learning method [15], which is described in what follows, the 
training data . Du consists of a set of input vectors . xm without any corresponding 
target values. Furthermore, no assumptions are made about the number of clusters 
potentially present. The goal is to discover groups of similar examples within the 
data, which is called clustering. Intuitively, a cluster represents a group of datapoints 
whose distances are small compared with the distances to points outside of the 
cluster [4]. Hence, clustering aims to partition the dataset by finding K clusters 
.{C1, . . . , CK } of unlabeled datapoints. 

A general approach for the clustering process is depicted in Fig. 3. The dataset is 
often first subjected to pre-processing. An essential part of this pre-processing is the 
extraction of relevant features of . xm. In the next step, all datapoints .

{
x1, . . . , xMu

}
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Fig. 3 A general approach for clustering an unlabeled dataset 

of . Du are being compared with a similarity measure. This relation is described in 
terms of the proximity, which can be defined through the similarity or dissimilarity. 
The proximity measure strongly influences how the data is going to be clustered. 
Since the proximity between all datapoints of the dataset . Du has to be specified, the 
proximity is a .Mu × Mu symmetric matrix .P = (Pij ). The higher the value of . Pij , 
the more similar the datapoints . xi and . xj are. The diagonal elements . Pii always 
have to be one. After performing the similarity comparison between all datapoints, 
the matrix . P is fed into a clustering algorithm, with the aim to partition the dataset 
into homogeneous groups and to identify patterns. Finally, the clustering results 
have to be validated and interpreted. 

Given the general overview of a clustering procedure, in the following we 
introduce an unsupervised learning approach based on Random Forests and focus 
on defining a similarity measure and the choice of the clustering algorithm. A big 
advantage over many other clustering techniques is, that the proposed method does 
not require a pre-defined number of clusters. 

4.1 Similarity Measure Based on Random Forests 

In order to perform unsupervised learning with Random Forests, first a similarity 
measure is proposed. Therefore, the procedure of growing the trees has to be 
adapted. In a first step we define a classification task with two classes, A and 
S, where all datapoints .xm of .Du are labeled with A. The tricky part arises 
with the construction of the second class S. We define S as a synthetic dataset 
.S = {z1, . . . , zK} , z ∈ X based on some distribution, such that the synthetic dataset 
can be considered as noise. Given A and S, the Random Forest is trained just as 
a normal classification task, described in the previous Sections. The aim here is to 
distinguish between the given dataset . Du and the generated noise dataset . S. The  
underlying mechanism is that, if there is a structure in the data in . Du the Random 
Forest has to fit its leaves to it in order to achieve a low error. Figure 4 illustrates 
the mechanism of distinguishing between A and S, which leads to the separation 
of . Du. Once the Random Forest is trained, two datapoints . xi and . xj at a time 
are run through all trees to determine the similarity . Pij , similarly as described in 
Sect. 3.2.2. But, instead of evaluating the proximity solely on leaves, the proposed 
similarity measure takes into account the full paths of the datapoints through the 
trees instead. Thereby the complete information provided by the Random Forest is 
captured, which makes the process robust. The principle behind this path proximity
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Fig. 4 Assuming a separable 
structure in the dataset . Du, 
the separation between class 
A and class S will implicitly 
learn the underlying structure 
of . Du

is detailed in Sect. 4.1.2. Before describing the path proximity, we will first examine 
what needs to be considered when constructing the noise dataset . S. 

4.1.1 Constructing the Noise Dataset 

In [7] the construction of . S is realized by “independent sampling from the 
one-dimensional marginal distributions of the original data” . Du, as depicted in 
Fig. 4. Another construction principle is explained in [21], where . S is build by 
sampling randomly from an assumed uniform distribution within the Q-dimensional 
hypercube defined by the minimum and maximum values of . Du. Independent of 
the way how the synthetic data is generated, the appearing task is to distinguish 
between noise and the actual data. One main drawback of the proposed noise 
generation methods occur with high dimensional input spaces. In order to force 
the Random Forest to fit properly to the inherent structure, the noise distribution 
has to be very dense. If there is no more noise data left to perform the dividing 
task, the resulting leaves become large. Due to the curse of dimensionality [4], for 
high dimensional input spaces this leads to a huge amount of necessary synthetic 
datapoints and accordingly to a highly unbalanced ratio between A and S. Even  
though the sampling from marginal distributions addresses this issue by sampling 
mainly in the regions of interest, the results in high dimensional spaces might not 
be satisfactory. 

A solution to this problem is to not explicitly generate the noise, but to estimate 
the required number of noise datapoints in each split. The number of noise points 
in a node of the tree is chosen to be equal to the number of datapoints from . Du in 
that node. When growing the trees, a randomly chosen distribution from a set of 
predefined distributions is used in order to construct the noise dataset at each split. 

We re-formulate the estimated Gini impurity for the node . t in an arbitrary tree as
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.rg(t) =
2∑

c=1

Mc(t)

M(t)

(
1 − Mc(t)

M(t)

)
, (45) 

where .Mc(t) the number of datapoints in node . t, which belong to class c. The gini 
gain resulting by splitting . t into the child nodes . tL (left) and . tR (right) is then 

.�i(t, tL, tR) = rg(t) − M(tL)

M(t)
rg(tL) − M(tR)

M(t)
rg(tR). (46) 

The optimal split is given if .�i(t, tL, tR) is maximal. Hence, the number of 
datapoints of each class in each node (. t, . tL and . tR) is required. The number of 
original datapoints .MDu,b

(
tj,b

)
of the bagged dataset .Du,b belonging to the b-th 

tree in the j -th node .tj,b of this tree, as well as in the possible child nodes can 
simply be counted. The number of noise datapoints in the same node needs to be 
estimated for a given split value . τñ. Let  . zñ be the standardized value of . τñ (see Eq. 
(49)). Then, the number of noise datapoints for the left and right child nodes of a 
node . tj,b is calculated as 

.MS,lj,b (zñ) = MDu,b

(
tj,b

)
P (zñ ≤ zñ) and. (47) 

MS,rj,b (zñ) = MDu,b

(
tj,b

) − MS,lj,b (zñ) , (48) 

where . ̃n stands for the .ñ-th dimension of the vector whose features are chosen 
randomly in each node when constructing the trees. The values .MS,lj,b and . MS,rj,b
denote the number of corresponding noise points in the left and right child note 
of . tj,b, given that the split . τñ is chosen, since . zñ is the standardized value of . τñ. 
.P (zñ ≤ zñ) is the value of the cumulative density function (cdf) at the standardized 
threshold . zñ. The standardized threshold . zñ in the .ñ-th dimension is determined with 

.zñ = τñ − μñ

σñ

, . (49) 

μñ = max
{
Xtj,b

}
ñ

+ min
{
Xtj,b

}
ñ

2
, . (50) 

σñ = max
{
Xtj,b

}
ñ

− min
{
Xtj,b

}
ñ

6
, (51) 

where .max
{
Xtj,b

}
ñ
and .min

{
Xtj,b

}
ñ
yield the maximum or minimum value of the 

subspace .Xtj,b in the dimension specified by . ̃n. The interval of a node covers .±3 σñ. 
Next, we define a set of distributions. The first distribution used is the uniform 

distribution, where its cdf is given by 

.Pu (zñ ≤ zñ) = 1

6
zñ + 1

2
. (52)
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The standard normal distribution is the second used distribution and is approximated 
through [22] 

.Pn (zñ ≤ zñ) = 1

1 + e−√
π

(
β1z

5
ñ
+β2z

3
ñ
+β3zñ

) , (53) 

where .β1 = −0.0004406, .β2 = 0.04181198 and .β3 = 0.9 holds. Third, a bimodal 
distribution is used, which is build as the sum of two shifted standard normal 
distributions . Pn with 

.Pb (zñ ≤ zñ) = Pn (zñ−3 ≤ zñ−3) + Pn (zñ+3 ≤ zñ+3) . (54) 

The randomly selected noise distributions at each split relax the dependency of the
proximity measure to one specific distribution. Obviously, the set of three proposed
distributions can also be extended with or replaced by other distributions.

Up to this point, we know how to grow the forest and how to compute the noise 
data to solve the classification task. The last missing element to obtain the data 
adaptive similarity measure is to describe the proposed path proximity. 

4.1.2 Path Proximity 

The proposed proximity measure takes into account the full paths of the datapoints 
through the trees instead of just using the terminal nodes. 

Let a Random Forest consist of B trees . T, where the b-th tree . Tb is constructed 
based on the bagged dataset .Du,b. Then a tree . Tb consists of . Nb nodes . tn,b. A path 
of a datapoint through a tree can be defined by a set including all nodes the datapoint 
passed. This leads to the path formulation 

.Ti,b =
{
t1,b, tni2 ,b, . . . , tNi,b

}
, (55) 

where the index i represents the i-th datapoint . xi . The node . t1,b is the root node of 
the b-th tree . Tb and hence the first node on the path of the i-th datapoint. The node 
.tni2 ,b is the second node on the path, where .ni2,b represents the node number n the 
datapoint has passed. The last node on the path of the i-th datapoint in the b-th tree 
is .tNi,b. 

In order to compare the paths of two datapoints through the b-th tree, the 
corresponding sets .Ti,b and .Tj,b need to be compared. The Jaccard Index [13] 

.Pij (b) = |Ti,b ∩ Tj,b|
|Ti,b ∪ Tj,b| . (56) 

= |Ti,b ∩ Tj,b|
|Ti,b| + |Tj,b| − |Ti,b ∩ Tj,b| (57)
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Fig. 5 Path proximity 
example 1 

2 3 

4 

6 7 

5mutual path
-th path
-th path 

is used for this purpose. It holds that .Pij (b) ∈ (0, 1], since at least the root node is 
present in both sets. This way, a similarity measure, given the two datapoints . xi and 
. xj , based on the b-th tree is defined. In Fig. 5 an example tree with two arbitrary 
paths is shown. The mutual path of both datapoints is colored in blue, and the single 
paths are depicted in green and red. Interpreting Eq. (57) based on Fig. 5 leads to 
.|Ti,b ∩ Tj,b| being the length of the mutual path and .|Ti,b| being the length of the 
i-th path (i-th datapoint) starting from the root node, .|Tj,b| respectively. For the 
depicted example, the corresponding Jaccard index would be . 2/5. In other words, 
the i-th and j -th datapoints have a similarity of . 0.4. A value of 1 indicates, that both 
datapoints are identical or very similar according to the given tree. 

By averaging over all B values .Pij (b) in a forest, we obtain the path proximity 

.Pij = 1

B

B∑

b=1

|Ti,b ∩ Tj,b|
|Ti,b| + |Tj,b| − |Ti,b ∩ Tj,b| . (58) 

If two datapoints have the same paths in all trees the proximity will be one. Contrary,
if they only share the root nodes, the proximity will be very small tending towards
zero. The path proximity enables one to cover more than just the leaf information
of the forest within one scalar value. Extracting the Random Forest based path
proximity for a given dataset we obtain a data adaptive similarity measure.

With the proximities between all datapoints structured in the similarty matrix 
. P , we can advance to the next step according to Fig. 3 by applying a clustering 
algorithm, which has the task to group similar datapoints given . P . Clustering 
algorithms can be categorized into several types and various algorithms, in the 
following we briefly discuss the hierarchical clustering method applied for the 
proposed unsupervised learning technique with Random Forests. 

4.2 Hierarchical Clustering 

Hierarchical clustering methods can be distinguished between agglomerative or 
divisive. Due to the computation complexity, divisive methods are not commonly
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used in practice [23]. At the beginning of the clustering process, agglomerative 
algorithms consider each datapoint as a single cluster, so that the number of 
datapoints equals the number of clusters. Then, in each iteration a pair of clusters 
is successively merged until one single cluster remains. This hierarchy can be 
visualized with a dendrogram. The methods differ in how the dissimilarity from 
a merged cluster to all the remaining is computed, the so-called linkage function. 
Among several other functions [17], two commonly used linkage functions are the 
single and average linkage. 

For single linkage, the minimum dissimilarity between all the elements of both 
clusters is used as dissimilarity of the clusters 

.dkl = min
i∈Ck
j∈Cl

{
dij

}
, (59) 

where . dkl denotes the dissimilarity between two arbitrary clusters . Ck and . Cl . 
For average linkage, dissimilarity is determined through the average of all 

dissimilarities between the points of the two clusters 

.dkl = 1

|Ck||Cl |
∑

i∈Ck

∑

j∈Cl

dij , (60) 

where .|Ck| denotes the number of objects in cluster . Ck , and .|Ck| the number in . Ck . 
The agglomerative hierarchical clustering results in a hierarchy, the hierarchy can 

be visualized as dendrogram. When using the order of the leaves in the dendrogram, 
permutations on . P can be performed, such that a reordered proximity matrix (. P o), is 
obtained. The matrix . P o represents the clusters in the data and provides a graphical 
interpretation of the data inherent structure. 

4.3 Cluster Analysis and Visualization 

Cluster analysis can be performed with a visualization as depicted in Fig. 6. On the  
right-hand side, the two-dimensional toy dataset, consisting of four clusters with 
different shapes and densities, is depicted. The proximity matrices are represented 
as squared images (a)–(d), where dark pixels represent zero entries (.Pij = 0) and 
bright pixels with higher similarity. The bright squares along the diagonal represent 
the four clusters. Squares, which are not aligned the diagonal represent the inter-
cluster similarity. It should be noted, that these matrices represent the similarities 
before applying hierarchichal clustering. The main purpose of Fig. 6 is to show the 
beneficial effects of the path proximity and ensemble noise. 

For example, the compact cluster no. 4 reveals a brighter square on the similarity 
matrix at the bottom right side along the diagonal axis compared to the widely 
spread cluster no. 2. That is, because the datapoints within cluster no. 4 share a
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Fig. 6 Comparison of uniformly distributed noise versus ensemble noise, as well as path 
proximity versus terminal node (TN) for computing the similarity. The right hand-side depicts 
the two-dimensional toy dataset, consisting of four clusters with different shapes and densities. (a) 
Uniform, TN. (b) Uniform, Path. (c) Ensemple, TN. (d) Ensemple, Path 

higher similarity in along both axes compared to cluster no. 2. Additionally, the 
inter-cluster similarity between both clusters, depicted with ’2/4’, is low, since the 
datapoints of the two clusters show almost no overlap along the axes. 

In addition, the four subfigures (a)–(d) depict the effects of the noise ensemble 
compared to a single uniform distribution, as well as extracting the similarity out of 
the datapoints’ paths through the trees instead of only taking the terminal nodes 
(TN) into account. The similarity of the four clusters can best be identified in 
subfigure (d), where the ensemble noise and especially the path proximity support 
an improved similarity measure. 

5 Applications 

Possible applications of Random Forests in the automotive domain are manifold. 
In the following, two methods for categorizing traffic scenarios are presented. The 
first case applies the unsupervised learning method from the previous section for 
the identification of similar traffic scenarios. The second case demonstrates how 
Random Forests can be integrated into Deep Learning architectures to tackle the 
problem of Open-Set recognition for traffic scenarios.
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5.1 Traffic Scenario Clustering 

Traffic scenario categorization is an important component for downstream tasks 
like trajectory planning, emergency braking and other functions for autonomous 
driving. Road traffic does not evolve completely random, since it’s framed by the 
infrastructure, traffic rules, etc. [12], so that traffic scenarios do follow certain 
patterns, and can be categorized according to the set of features selected. In this 
section the unsupervised method, as presented in the previous section, is applied to 
real world traffic scenarios to identify such patterns. Figure 7 depicts the overview 
of the complete framework, starting from data generation and feature extraction, up 
to the cluster identification and validation. 

First, a set of vehicle trajectories from a public roundabout is extracted with drone 
imagery by applying the method published in [16, 19]. A second trajectory dataset 
is recorded on a vehicle test track in order to create scenarios with critical driving 
maneuvers. The criticality is achieved via strong braking and cut-in maneuvers with 
small gaps between the vehicles, which are not commonly seen in public traffic. 
Since the two datasets are recorded at different places, a coordinate transformation 
is applied as well, so that both can be overlayed on a road map. All scenarios involve 
at least two vehicles and the timespan is set to 5 s. In total 110 critical scenarios are 
generated, the same quantity of scenarios of the public road is randomly selected. 
The extracted trajectories are then geo-referenced and coupled with a road map, 
which allows one to generate road-adaptive features. Especially for road sections 
with curvatures and crossings, one has to align the paths driven by vehicles in 
accordance to the road layout, in order to compute features such as time gaps. The 
aim of this demonstration is to identify several scenario categories and especially to 
distinguish between critical and non-critical scenarios. 

Given the trajectories and the road information, a set of four features 

.x = [v̄, vx, ax, �] (61) 

is extracted from the two datasets. All features relate to the ego vehicle within that
5 s scenario length. . ̄v denotes the average speed, . vx and . ax denote the minimum 

Feature 
Extraction 

Clustering 

Similarity 
Computation 

Hierachial 
Clustering 

o 

Fig. 7 Traffic scenario clustering: from data generation up to cluster visualization
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Fig. 8 Proximity matrix: The 
scenarios are coarsely divided 
into five clusters A to E. 
Below, the normalized values 
for all variables are depicted, 
where bright coloring 
indicates high values 

longitudinal velocity and acceleration. . � denotes the minimum time-headway 
between the ego and a target vehicle in a crossing scenario, assuming constant 
velocity, similarly as with the typical time-headway estimation for car-following 
scenarios. For demonstration purposes the number of features is limited to four, 
which should separate the critical from the non-critical ones. In general, the choice 
and number of features has to be aligned according to the application. 

As depicted in Fig. 8, five clusters, A to E, are selected. One can recognize 
smaller clusters within these clusters and differentiate them more fine-grained 
accordingly. Instead of visually selecting the clusters, one could also use the elbow 
method instead. The clustering result can be physically validated by illustrating the 
feature values below the proximity matrix, as depicted in Fig. 8. For each cluster 
one typical scenario is depicted in Fig. 9. The left column in Fig. 9 shows the paths 
of the vehicles, the two right hand-side columns depict the start and the end of the 
scenario. 

Cluster A and B represent critical crossing scenarios with two vehicles, one 
gray and one black vehicle. In both cases, the merging vehicle (gray) approaches 
the roundabout without considering the second vehicle (black). In cluster A, both 
vehicles are able to brake just before a potential collision. Whereas in cluster B, the 
merging vehicle continues its drive and violates the right-of-way, hence the black 
vehicle has to perform a braking. Similarly to B, in cluster D the merging vehicle 
violates the right-of-way, thus forcing a third vehicle (green) to react and brake. 

Cluster C and E contain most of the casual driving scenarios, which were filmed 
on the public road. Since a few scenarios are randomly selected from a large dataset,
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Fig. 9 Typical scenarios from each cluster: Cluster A,B and D represent critical scenarios, cluster 
C and E casual driving on a public road
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these scenarios are correspondingly diverse. The selection and number of features 
only allows a rough separation. This can be confirmed with the proximity matrix 
in Fig. 8, where especially for cluster C several smaller clusters can be detected. 
Cluster C and E contain casual driving scenarios, such as car-following and leaving 
the roundabout, see the white car depicted in the example for cluster C. The example 
in cluster E depicts the gray colored ego vehicle approaching the roundabout behind 
another vehicle and entering the roundabout, while other cars are leaving the scene 
above. 

After the cluster validation, these five groups can be defined as classes. If further 
data is collected during operation, the new scenarios can be assigned to already 
known classes. However, one must expect to find novel scenario types. The next 
section shows how the Random Forest, embedded in a deep learning architecture, 
can help to deal with new scenarios that cannot be assigned to any of the known 
classes. 

5.2 Open Set Recognition for Traffic Scenarios 

Typically, learning models proposed in the literatures [9, 18] work under the closed-
world assumption, which means that the model will classify all the inputs only to 
one of the K classes used in the training. This is an issue in the real-world, as there 
are possibilities to encounter new scenario classes when the vehicle is driving on-
road. The models trained with closed-world assumptions will fail in the cases where 
they encounter new classes as the models classify the inputs to only one of the K 
trained classes. This is a challenging and important problem to be addressed and 
leads to a new paradigm called Open-Set Recognition (OSR) [20]. 

An OSR model trained on K classes should be able to classify a given input to 
one of the K classes - or as an unknown. According to [2, 3], simply thresholding a 
closed-world model with a user defined threshold might not be satisfactory and the 
performance of such models deteriorates in an open-world case. 

OSR models are either distance based, reconstruction based or extreme value 
based. In [1], a method based on a combination of Convolutional Neural Networks 
(CNN) and a Random Forest is proposed. An overview of the architecture is shown 
in Fig. 10. The scenarios are represented as a sequence of occupancy grids, with each 
occupancy grid representing the occupancy of objects and infrastructure in the scene 
at a time stamp. These grids are fed into the CNN to extract the features. Finally, 
the classification is done by the Random Forest algorithm combined with extreme 
value distributions. During the training phase, firstly a CNN is trained on a set of K 
labelled classes. As a second step, the fully connected layer of the CNN is removed 
and the flattened output is used as input for a Random Forest algorithm. The Random 
Forest is trained on a set of extracted features from the CNN for a given training set. 
In this second phase, the trained Random Forest and the CNN classify an input based 
on the majority voting scheme by the Random Forest algorithm. In the third step the 
class-specific vote patterns are modelled using Extreme Value Theory (EVT) based
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Fig. 10 Open-Set Recognition architecture: CNN for feature extraction, Random Forest and EVT 
based voting patterns for classification, Figure adapted from [1] 

distributions. Class-specific vote patterns collected for the training dataset provide 
comprehensive information about the uncertainty of the classifier for each class. 
In the inference or the test phase, the class-specific EVT distributions are used to 
estimate the probability that a sample belongs to a class . ck or an unknown class 
based on the number of trees in the Random Forest voting for each class. 

The method was tested on real world datasets. The ensemble nature of the 
Random Forest algorithm when combined with EVT distributions is shown to 
provide a much more robust OSR accuracy when compared to using other OSR 
methods and using standard scores like Softmax or majority voting. 

6 Conclusion 

This chapter proposes an unsupervised learning method in order to categorize traffic 
scenarios. The knowledge about traffic scenario categories is an important aspect for 
an efficient validation process for automated driving functions. Hence, the scenario 
categorization has the potential to accelerate the validation process by selecting 
representatives of each cluster and thereby reducing redundancies by avoiding to 
test very similar scenarios. 

The proposed method is based on Random Forests and performs the pattern 
recognition only given the input data, i. e., where the availability of labels for 
training is absent. The goal is to discover groups of similar examples within the 
data. To achieve this, one has to memorize, compress and structure the data. This 
can be done by representing a traffic situation with a set of relevant features. These 
features can then be used to train the proposed method. 

The core of the presented method lies in the data-adaptive similarity measure, 
so that data points can be compared in order to decide, whether they are similar
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and belong to the same cluster. The underlying mechanism is that, if a separable 
structure in the dataset is existent, the separation between the actual data and 
the second, synthetic data, will implicitly learn the underlying structure of the 
unlabeled dataset. Once the Random Forest is trained, two data points at a time 
are run through all trees to determine the similarity between both. The similarities 
between all traffic scenarios can be written in a similarity matrix. By applying 
hierarchical clustering techniques on that matrix, clusters of traffic scenarios with 
similar characteristics emerge, while being separated from those with low similarity. 
The chapter concludes with an exemplified application. It is shown how scenarios, 
represented by vehicle trajectories, can be categorized according to the vehicle 
dynamics, as well as the interaction between the traffic participants. 

References 

1. Balasubramanian, L., Kruber, F., Botsch, M., Deng, K.: Open-set recognition based on the 
combination of deep learning and ensemble method for detecting unknown traffic scenarios. 
In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 674–681. IEEE (2021) 

2. Bendale, A., Boult, T.E.: Towards open world recognition (2014). CoRR abs/1412.5687. 
https://doi.org/10.1109/cvpr.2015.7298799. http://arxiv.org/abs/1412.5687 

3. Bendale, A., Boult, T.E.: Towards open set deep networks (2015). CoRR abs/1511.06233. 
https://doi.org/10.1109/cvpr.2016.173. http://arxiv.org/abs/1511.06233 

4. Bishop, C.M.: Pattern Recognition and Machine Learning, vol. 4 (2006). https://doi.org/10. 
1117/1.2819119 

5. Breiman, L.: Out-of-bag estimation, Technical report, Statistics Department, University of 
California Berkeley, Berkeley CA 94708 (1996) 

6. Breiman, L.: Random forests. Mach. Learn. 45(1) (2001) 
7. Breiman, L.: Using random forests v3.0. Technical Report (2002) 
8. Breiman, L., Friedman, J., Olshen, R., Stone, C.J.: Classification and Regression Trees. 

Chapman and Hall/CRC (1984) 
9. Cara, I., Gelder, E.D.: Classification for safety-critical car-cyclist scenarios using machine 

learning. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 
pp. 1995–2000 (2015). https://doi.org/10.1109/ITSC.2015.323 

10. Dietterich, T.G.: Ensemble methods in machine learning. In: Multiple Classifier Systems, 
LBCS-1857, pp. 1–15. Springer, Berlin (2000) 

11. Domingos, P.: A unified bias-variance decomposition. In: Proceedings of 17th International 
Conference on Machine Learning, pp. 231–238. Morgan Kaufmann Stanford (2000) 

12. Gindele, T., Brechtel, S., Dillmann, R.: Learning context sensitive behavior models from 
observations for predicting traffic situations. In: 16th International IEEE Conference on 
Intelligent Transportation Systems (ITSC 2013), pp. 1764–1771 (2013). https://doi.org/10. 
1109/ITSC.2013.6728484 

13. Jaccard, P.: The distribution of the flora in the alpine zone.1. New Phytol. 11(2) (1912) 
14. Jain, B.: Condorcet’s jury theorem for consensus clustering. In: Trollmann, F., Turhan, A.Y. 

(eds.) KI 2018: Advances in Artificial Intelligence. Springer International Publishing, New 
York (2018) 

15. Kruber, F., Wurst, J., Morales, E.S., Chakraborty, S., Botsch, M.: Unsupervised and supervised 
learning with the random forest algorithm for traffic scenario clustering and classification. In: 
2019 IEEE Intelligent Vehicles Symposium (IV), pp. 2463–2470 (2019). https://doi.org/10. 
1109/IVS.2019.8813994

https://doi.org/10.1109/cvpr.2015.7298799
https://doi.org/10.1109/cvpr.2015.7298799
https://doi.org/10.1109/cvpr.2015.7298799
https://doi.org/10.1109/cvpr.2015.7298799
https://doi.org/10.1109/cvpr.2015.7298799
https://doi.org/10.1109/cvpr.2015.7298799
https://doi.org/10.1109/cvpr.2015.7298799
https://doi.org/10.1109/cvpr.2015.7298799
http://arxiv.org/abs/1412.5687
http://arxiv.org/abs/1412.5687
http://arxiv.org/abs/1412.5687
http://arxiv.org/abs/1412.5687
http://arxiv.org/abs/1412.5687
http://arxiv.org/abs/1412.5687
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/cvpr.2016.173
http://arxiv.org/abs/1511.06233
http://arxiv.org/abs/1511.06233
http://arxiv.org/abs/1511.06233
http://arxiv.org/abs/1511.06233
http://arxiv.org/abs/1511.06233
http://arxiv.org/abs/1511.06233
https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2015.323
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/ITSC.2013.6728484
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.1109/IVS.2019.8813994
https://doi.org/10.1109/IVS.2019.8813994


590 F. Kruber et al.

16. Kruber, F., Sánchez Morales, E., Chakraborty, S., Botsch, M.: Vehicle position estimation with 
aerial imagery from unmanned aerial vehicles. In: IEEE Intelligent Vehicles Symposium (IV) 
(2020) 

17. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. WIREs Data 
Mining and Knowledge Discovery, pp. 86–97 (2012). https://doi.org/10.1002/widm.53 

18. Reichel, M., Botsch, M., Rauschecker, R., Siedersberger, K.H., Maurer, M.: Situation aspect 
modelling and classification using the scenario based random forest algorithm for convoy 
merging situations. In: 13th International IEEE Conference on Intelligent Transportation 
Systems, pp. 360–366 (2010) 

19. Sánchez Morales, E., Kruber, F., Botsch, M., Huber, B., García Higuera, A.: Accuracy 
characterization of the vehicle state estimation from aerial imagery. In: IEEE Intelligent 
Vehicles Symposium (IV) (2020) 

20. Scheirer, W.J., Jain, L.P., Boult, T.E.: Probability models for open set recognition. IEEE Trans. 
Pattern Anal. Mach. Intell. 36(11), 2317–2324 (2014). https://doi.org/10.1109/TPAMI.2014. 
2321392 

21. Shi, T., Horvath, S.: Unsupervised learning with random forest predictors. J. Comput. Graph. 
Stat. 15(1) (2006). https://doi.org/10.1198/106186006X94072 

22. Waissi, G.R., Rossin, D.F.: A sigmoid approximation of the standard normal integral. Appl. 
Math. Comput. 77(1) (1996) 

23. Xu, R., WunschII, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3) (2005)

https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1109/TPAMI.2014.2321392
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1198/106186006X94072
https://doi.org/10.1198/106186006X94072


Development of Computer Vision Models 
for Drivable Region Detection in Snow 
Occluded Lane Lines 

Parth Kadav, Sachin Sharma, Farhang Motallebi Araghi, 
and Zachary D. Asher 

1 Introduction 

Advanced Driver Assistance Systems (ADAS) have the ability to prevent or reduce 
around 40% of all passenger vehicle incidents [1]. Some examples of ADAS 
include forward collision warning (FCW), automatic emergency braking (AEB), 
lane departure warning (LDW), lane-keeping assistance (LKA), and blind-spot 
warning assistance, among others. Since human error is the leading cause of road 
accidents [2], ADAS was designed to automate and improve aspects of the driving 
experience in order to increase road safety and safe driving habits. Lane-keeping 
systems detect reflective lane markers in front the vehicle and warn the driver via 
various audible, tactile, and/or visual cues if the vehicle deviates from its lane and no 
turn signals or steering movements are detected [3]. LDW/LKA systems can reduce 
head-on and single-vehicle collisions by 53% on highways with higher speed limits 
(45–75mph) with visible lane markings, according to a study of 1853 driver injury 
crashes [4, 5]. 11%–23% of drift-out-of-lane events and 13%–22% of critically 
to fatally injured drivers could have been prevented if the technology had been 
implemented at lower operating speeds (5–20mph), according to [6]. FCW and 
AEB alone significantly halve front-to-rear crashes [7]. By 2023, it is anticipated 
that the market for ADAS would be worth more than $30 billion [8] and that ADAS 
will not be limited to safety but will also enable improvements in vehicle efficiency 
[9–14]. 
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Despite the success of ADAS technology, there remains a glaring issue: 
adverse weather. In the United States, weather-related crashes accounted for 
21% (1,235,145) of all recorded crashes, 16% (5376) of crash fatalities, and 19% 
(418,005) of crash injuries between 2007 and 2016 [15]. Fundamentally, adverse 
weather conditions can hinder situational awareness and vehicular maneuverability 
in a variety of ways, depending on the type of adverse weather [15]. It is critical 
to recognize how various weather conditions can affect the ground transportation 
infrastructure. A current research problem is to develop strategies for operating 
ADAS in bad weather. Because there are significant safety implications, the first 
research gap is to recognize and classify road lanes during inclement weather in 
order to aid in the location of both the ego vehicle and other vehicles [16]. The 
difficulty is that inclement weather, such as heavy rain, snow, or fog, reduces 
the maximum range and signal quality of ADAS sensors, such as cameras, as it 
obscures the lane markings [16]. This issue has been illustrated with cameras and 
lidars in particular [17]. According to [4], LDW/LKA could further reduce head-on 
and single-vehicle collisions on roads with operating speeds of 45–75mph by 53% 
only if the roads had visible road markings and “the road surface was not coated 
by ice or snow.” The performance of new sensor technologies is improving, but not 
enough to address the issue of reliable ADAS operation in inclement weather [9]. 
To address this research gap, this study concentrates on the snow covered roads to 
keep the research scope reasonable. 

There are only a few significant studies that address the issue of reliable ADAS 
operation in snowy conditions. The first study created a customized snowy weather 
dataset and determined the driveable region using semantic segmentation [18]. 
When assessed on a non-snow dataset, the model’s mean Intersection over Union 
(mIoU) was 80%; when trained on a snowy dataset, mIoU fell to 19%. When 
both models were combined, mIoU was 83.3%. The model must be improved 
and strengthened because it analyzes the entire road rather than just the Region 
of Interest (ROI), which can be computationally costly. The second study used a 
CNN model with a predefined architecture and sensor fusion between the camera, 
lidar, and radar [19]. A dataset test showed an increase in driveable region detection 
(81.35%) and non-driveable region detection (93.85%) after combining data from 
several sensors. This is an improvement, but it has downsides, the most notable 
of which is that the method necessitates the use of more sensors, raising the cost 
and computational power required. Additionally, like the first study, this technique 
examines the full driveable zone rather than just a ROI [19]. In a third study, “You 
Only Look Once” (YOLO) was combined with a CNN and Federated Learning 
(FL) architecture to increase detection in inclement weather [20]. The Canadian 
Adverse Driving Conditions (CADC) dataset was used to evaluate this method. The 
average test accuracy of the model used in their study was 82.4%–88.1% . This 
model is based on the FL technique, which utilizes an edge server. The edge server 
transmits the initial parameters to the AVs after training a global YOLO CNN model 
on a publically available dataset. Following that, the AVs utilize these parameters to 
locally train the model on their own data. Once the local models are trained on each 
vehicle, they are sent back to the edge server. The training time of the FL approach
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is influenced by the number of AVs collecting data, the connection between the edge 
server and each vehicle, and the processing power of each vehicle. In addition, the 
vehicle has been fitted with eight cameras, resulting in an increase in price [20]. All 
of the above mentioned research provides strategies for enhancing the identification 
of objects and regions in the full driveable environment, but not necessarily the lane 
information. These studies are computationally and monetarily expensive and rely 
on several sensors. None of these studies offer precise, implementable driveable 
region detection for snow-covered roads using a single camera sensor in ADAS 
systems. Furthermore, custom data acquisition and labeling methods on a custom 
dataset are not included in these studies. A study addressing these difficulties and 
discussing unique CNN architectures to improve drivable region prediction with 
limited data is required. 

We devised a computationally efficient, cost-effective, and high-accuracy tech-
nique for extracting driveable region information from a single camera, a ubiquitous 
vehicle sensor, to address the adverse weather research gap for ADAS [17, 18]. 
Deep Learning (DL) approaches such as Convolutional Neural Network (CNN) have 
been established as the dominant paradigm in modern computer vision algorithms 
and applications, as well as in segmentation research. CNNs are a robust method 
of obtaining semantic segmentation, but are generally computationally intensive 
when compared to classical ML models. Classic ML models are faster at real-time 
compute speeds, but they require feature engineering and pre-processing, and they 
do not serve as an end-to-end solution for identifying the drivable region in snow-
covered lane lines, which we know from previous work [21]. To solve this problem, 
we will investigate DL techniques that need little or no feature engineering. For 
semantic segmentation, both supervised classical ML models and custom CNN 
models were created. Then, these methods for detecting tire marks in snow were 
compared. To broaden the scope of the research, we will build five different CNN 
architectures for determining the drivable region in snow-occluded lane lines using 
a single camera sensor. 

2 Methodology 

In this section, we will first discuss the methods we used to collect and prepare the 
data. The data that has been processed is then used to develop the classical ML 
models and the Deep Neural Network models 

2.1 Drive Cycles 

Figure 1 shows the route we chose which consisted of two-lane arterial roads in 
Kalamazoo that met our criteria for road characteristics. This drive cycle included 
of roads that are rarely cleaned following winter and are maintained at a much lower
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Fig. 1 Drive cycle for data collection in Kalamazoo, MI, USA which drives from the Western 
Michigan University’s college of engineering and applied sciences to Kalamazoo Valley Commu-
nity College which totals a distance of 5.56 miles along residential roads with speed limits of 
35mph 

rate than freeways and other multi-lane routes. We gathered the data during the 
winter of 2020. The lanes were obscured by snow and featured distinct tire track 
patterns, with tire tracks visible to expose the tarmac beneath . The road portion was 
chosen for its low traffic volume, two-lane configuration, and clearly visible lane 
markings during non-snowy conditions. 

2.2 Equipment and Instrumentation 

2.2.1 Camera Sensor 

The forward-facing ZED 2 RGB camera from Steroelabs was chosen for use in 
this study and is shown in Fig. 2a. The ZED 2 RGB camera was chosen firstly 
because it is a widely available commercial computer vision system. The ZED 2 
also features a 120-degree wide-angle lens for collecting images and videos. These 
camera parameters are beneficial as we have a lot of information to work with, 
and the wide angle capability of this camera allows us to have a lot of spatial 
information. The camera was set to capture video at 29 frames per second at a 
resolution of 1280 . × 720 pixels. This resolution was chosen because it was a fair 
compromise between image quality and image size. The ZED 2 was connected to 
the vehicle’s onboard computer, and data was collected. The dataset was created by
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Fig. 2 (a) The ZED 2 camera sensor [22] and  (b) The instrumented WMU EEAV lab research 
vehicles platform 

segmenting and extracting frames from the recorded videos of the drive cycle. The 
frames from the videos show the tire tracks and features on which the model must 
be trained. 

2.2.2 Vehicle Type 

The Energy Efficient and Autonomous Vehicles (EEAV) research vehicle platform, 
shown in Fig. 2b, was used to collect data. This platform is a 2019 Kia Niro and 
includes a forward-facing RGB camera, Polysync Drivekit, Neousys in-vehicle 
computer, vehicle Controller Area Network (CAN) bus interface and a Mobileye 
camera. 

2.3 Data Pipeline 

2.3.1 Data Preparation 

Nearly 15,000 RGB images were acquired; however, when the images were 
resampled from 30 to 5 Hz, the quantity was reduced. Resampling is carried out to 
reduce the amount of frames for labeling, which is followed by more quality control 
assessments (i.e., eliminating over-exposed, occluded, or poor resolution images). 
This resulted in a final dataset of 1500 frames. The images were separated into 
three batches, each with 500 images. This was done to make the next step easier, as 
splitting the images into batches and obtaining labels for each batch will allow for 
easier error correction during the labeling process.
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Fig. 3 A raw image annotated with CVAT’s interface and the corresponding ground truth label, 
CVAT offers multiple options such as polygons, poly lines and points to create the labeled masks 

2.3.2 Image Ground Truth Labeling 

The frames were then labeled in batches. The tire tracks on each frame were 
manually annotated using the Computer Vision Annotation Tool (CVAT), an open-
source web tool. Each batch’s labeled dataset was exported with their matching 
raw images in the CVAT for images 1.1 format. The raw images and an Extensive 
Markup Language (XML) file including the attributes for the labels, such as the 
position of the tire-track with their corresponding pixel location on the image, image 
file name, and assigned tags, were included in each exported dataset (tire-track, road, 
road-edge boundary). The exported labels were then used for post-processing and 
inputs to model training. Figure 3 shows a camera image with a CVAT toolbar and 
its corresponding ground truth label after CVAT annotation. 

2.3.3 Data Conditioning 

To build ML models, we must first preprocess the data and then extract features. 
Feature extraction is the process of transforming raw data into numerical features 
that the model can process while retaining original data information. This is done 
because it generates better results than applying machine learning straight to the raw 
dataset [23, 24]. Deep Neural Networks can carry out some basic feature engineering 
on their own as it is hard-coded into their architecture so in some cases they do not 
require any feature engineering at all [25]. 

To improve feature detection and reduce computational load, images were 
masked with a Region of Interest (ROI) that only included the road surface. As 
described in [17, 18], this is a reasonable approach because there are many methods 
that can detect road surface regions with high precision. We built similar road



Computer Vision Models for Detecting Drivable Regions in Snow-Covered Lanes 597

Raw Image Road ROI Masked ROI 

1) No.of pixels = 256*256 = 65536 px 2) ~ 95.3% reduction in pixels 3) Masked ROI + RGB image 

Fig. 4 Creating the static ROI and masking the ROI onto the raw image. The raw image includes 
.65,536 pixels after resizing to .256 × 256, creating a static ROI which only focuses on the road 
removes .95.3% pixels. Finally, the raw image is masked with the road ROI to give the masked 
ROI 

surface detection methods using a static ROI which works well for our chosen drive 
cycle. Figure 4 shows how to extract the ROI masked pictures. 

The Road ROI is 3099 pixels in size, accounting for less than 5% of the total 
pixels in the raw image. Following that, the ROI mask was fused with the raw 
image to acquire all of the pixels contained within the ROI. This will serve as the 
model’s input. Similar to our previous study, the different features recovered from 
the masked images include the red, green, blue, grayscale, and pixel X, Y values 
[21]. Figure 5 shows the overall process for data preparation for ML model training.

The feature vectors in Table 1 are organized into sets and selected as final inputs 
to the model. The results will indicate which features contribute the most to the 
model and perform the best. The dataset was split 55%–45% for training and testing. 
Input array .X = ((m × p), n) was used to train the complete model where m is the 
number of images, p is the number of pixels in each image’s ROI (3099 pixels for 
.256 × 256 images), and n is the number of feature vectors in the array.

2.4 Classical Machine Learning Models 

2.4.1 Model Description 

We used 6 different machine learning techniques to train the models. The first 
technique used is Decision Trees or Dtrees, which is a type of supervised machine 
learning technique that makes decisions and splits the dataset until all points/sets 
are isolated using a set of rules. The data is structured in a tree-like manner, with 
each dividing node representing a decision. When Dtrees is applied to our problem, 
it applies the rules and makes decisions based on these rules to classify pixels to 
be tire tracks or not tire tracks. The second technique used was Random Forest. 
Random forest is nothing but a number of decision trees on various subsets of 
the same dataset. It takes into consideration the average to improve the prediction 
accuracy of the dataset. The third technique used was the K-Nearest Neighbors 
(KNN). KNN, is based on the assumption that similar data points/classes occur



598 P. Kadav et al.

Raw Images Labels - Tire Tracks 

Step 7 - Image preprocessing 
Step 8 - Feature Extraction 

Feature Array - X 

n = no. of feature vectors in the feature 
vector. 

Label Vector - y 

shape: (m x p)xl dimensional 
binary vector array: 

0 = not tire track 
1 = tire track 

ML Model Training 

shape : (m x p)xn dimensional 

Fig. 5 This figure summarizes the image preprocessing and feature extraction from raw images . 
The feature array X, which contains the raw images as well as the number of feature vectors, and 
the label vector y, which contains a binary array with each value representing either a tire track 
or not a tire track, are the two inputs to the model training. This is known as the data preparation 
pipeline, and it will be used in the model training section

Table 1 Feature set properties 

Feature set Included feature vector 
Train array shape (m . =
1200) 

Test array shape (m . =
300) 

0 Gray (3,718,800, 1) (929,700, 1) 

1 Gray X loc, Y loc (3,718,800, 1) (929,700, 1) 

2 Red, Green, Blue (3,718,800, 3) (929,700, 3) 

3 Red, Green, Blue, X 
loc, Y loc 

(3,718,800, 5) (929,700, 5)
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in close proximity. Classes with comparable properties are close to one another, 
which is the assumption by KNN. The user specifies the K value, where K is 
the desired number of nearest neighbors. We also used other techniques such as 
linear regression classifier, logistic regression classifier and naive bayes classifier. 
Both logistic regression and naive bayes are probabilistic classifiers, which means 
they calculate probabilities of each element in the dataset whereas linear regression 
predicts continuous values for the elements. These models were chosen for their 
characteristics and capabilities in commuting binary classification [26–28]. Other 
models such as support vector machines do not perform well with large datasets so 
they were not included. 

2.4.2 Model Training 

We trained a variety of machine learning models by using our input features which 
were defined in the data pipeline section and their associated labels. The image pre-
processing and feature extraction block extracted the input feature array X and label 
vector y, which were then used as inputs to the machine learning model. Six distinct 
models, discussed in the classical ML model section were tested with each feature 
set (refer to Sect. 2.3.3) in order to discover the feature set/model combination that 
resulted in the best performance metrics. 

In total we have 24 different classical ML models that can be tested. The models 
were trained on a desktop machine with 16 GB of RAM, an Intel i7 processor, and an 
Nvidia GeForce GTX 1060 graphics on Ubuntu 20.04 LTS as the operating system. 

2.5 Deep Neural Network Models 

A wide range of tasks, including image recognition, natural language processing, 
and speech recognition, have been proven to be significantly improved by deep 
learning approaches. When compared to classical machine learning methods, deep 
networks scale effectively with data, do not necessitate feature engineering, are 
adaptable and transferable, and perform better on larger datasets with unbalanced 
classes [29]. 

CNNs are a sort of deep neural network whose architecture is designed to do 
feature extraction automatically, obviating the need for this step [30]. CNNs produce 
feature maps by performing convolutions to the input layers, which are subsequently 
passed to the next layer. CNNs, unlike classical machine learning approaches, 
can extract relevant features from raw data, removing the need for manual image 
processing [31, 32]. As previously indicated, our ML models were not an end-to-
end pipeline for tire track detection as they required feature engineering. In this 
study we look at using CNN’s to simplify the process and enhance overall accuracy. 

Figure 6 shows a basic convolutional neural network architecture with one 
convolutional layer and one max-pooling layer; we will discuss more about this



600 P. Kadav et al.

Fully connected (Dense) 
Layer 

(5 x 5) Kernel 
padding = ‘valid’ (2 x 2) 

With Activation Function 
Fully connected 

Flattened 
output 

n3 units 
n3 = number of 

classes 
(if classification) 

INPUT 
(28 x 28 x 1) 

n1 filters/feature maps 
(24 x 24 x n1) 

n1 filters/feature maps 
(12 x 12 x n1) 

n2 units 

Convolution 1 
Max-Pooling 

Fig. 6 An example of a simple Convolutional Neural Network. The input image goes through a 
convolutional layer which has a specified kernel, the convolutional operation makes a feature map 
which includes important feature information from the input image. The Max-Pooling operation 
reduces the dimensions (halves the dimensions in this case) of the feature map. The feature maps 
are then flattened and passed through a fully connected layer with the output neurons equalling the 
number of classes/desired outputs 

in the coming sections. We only focus on CNNs in context of the images to keep the 
discussion simpler. 

Before we examine the various CNN architectures, we should examine the 
various types of model blocks; to simplify things, we will examine model blocks 
that can be combined to form various models. The convolutional block consists 
of a convolutional layer and a pooling layer to perform feature extraction. The 
convolution operation with a given filter size or a kernel size slides over the input 
data to perform an element-wise multiplication which is essentially matrix multi-
plication over the 2-dimensional data, the results inside the kernel are summed up 
into a single output. The pooling layer down-samples the dimensions of the feature 
maps, which are the outputs from the convolutional layers. The fully connected 
block performs classification tasks based on input from previous operations [33]. 
Recurrent, residual, and attention operations, explained in the next section will be 
added to the convolutional block to make different model architectures. 

2.6 Model Architectures 

We have examined the fundamentals of a deep neural network in the context of 
images, which in our case is a convolutional neural network (CNN), as well as 
the numerous operations that a CNN is capable of performing. In the following 
subsections, a standard U-Net architecture, different convolutional model blocks 
such as Recurrent, Residual, and Attention, and the concept of Backbones will be 
discussed.
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Outputs 

Conv. + Activation 

Conv. + Activation 

Conv. + Activation 

Conv. + Activation 

Conv. + Activation 
Conv. + Activation 

Inputs 

Outputs 

a b  c  

Inputs 

Outputs 

+ 

Inputs 

Standard convolutional 
block 

Recurrent 
convolutional block 

Residual convolutional 
block 

 

Fig. 7 (a) Standard convolutional block, (b) Recurrent convolutional block, and (c) Residual 
convolutional block

1. Standard U-Net 
2. Recurrent U-Net (Rec U-Net) 
3. Attention U-Net (Att U-Net) 
4. Residual Attention U-Net (Res-Att U-Net) 
5. Backbone U-Net 

2.6.1 Standard U-Net 

Figure 7a shows a standard convolutional block. The two red blocks are the 
convolutional layers with the respective activation function such as ‘ReLu’ or 
‘Sigmoid’. The inputs to these layers are tensors of shape .(w × h × c) where . w =
width of the image, h = height of the image , c = number of channels . 
The convolutional layers learn local patterns, which are patterns observed in 
the input windows. These windows are also known as kernels, and the patterns 
learned by these convolutions are transitionally invariant, which means that if the 
convolution learns one pattern somewhere, it may apply that knowledge in another 
place. This is why convolution layers outperform dense layers at recognizing image 
features. Figure 8 shows a sample code for a simple convolutional operation. 

Now that we have introduced the concept of a standard convolutional block, 
we can look at the model architecture. The standard convolutional neural network 
provides an output based on the number of neurons in the output layer, if we want 
a binary output such as 0,1 or Cat and Dog, the output layer will only have one 
neuron which states that the output can only be either one of the classes. In our 
case, to have an end-to-end solution of obtaining tire tracks as the output image 
from the raw image input, we have to upsample/upscale the layers to have the 
same shape as the input layer and preserve the spatial information at the same 
time. To accomplish this, we look at a U-Net architecture. The U-Net architecture
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Layer (type) 

>> model.summary() 

Output Shape Param# Connected to 

lambda (Lambda) 

conv2d (Conv2D) 

dropout (Dropout) 

conv2d_1 (Conv2D) 

(None, 256, 256, 3) 

================================================================ 

(None, 256, 256, 3) 

(None, 256, 256, 32) 

(None, 256, 256, 32) 

(None, 256, 256, 32) 

[] 
[‘input_1[0][0]’] 

[‘lambda[0][0]’] 

[‘conv2d[0][0]’] 

[‘dropout[0][0]’] 

0 

0 

0 

896 

9248 

input_1 (InputLayer) 

Fig. 8 Standard keras model summary for a standard convolutional block in a U-Net architecture
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Fig. 9 Standard U-Net architecture from [35] modified to support the discussion 

has been shown to perform exceptionally well in computer vision segmentation 
[34]. CNN’s fundamental assumption is to learn the feature mapping of an image 
and then utilize that knowledge to construct more sophisticated feature maps. This 
technique is effective for classification problems since it converts the image to a 
vector, which is subsequently classified. However, image segmentation requires not 
only the transformation of a feature map to a vector but also the reconstruction of 
an image from the vector. Figure 9 shows the standard U-Net architecture. The red 
box shows the encoder path and the blue box shows the decoder path. 

A standard convolutional block can either serve as an encoder or a decoder. The 
encoder path makes the input array smaller (also known as downsampling) with
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every max-pooling operation and doubles the feature maps. Conversely, the decoder 
path scales the input back to its original shape with every up-convolution operation. 

While converting an image to a vector, the U-Net architecture learns the image’s 
feature maps, which are then utilized to convert it back to an image. The contracting 
path or the encoder path is on the left side of the U-Net architecture, while the 
expansive path or the decoder path is on the right. After each downsampling block, 
the number of feature channels/filters doubles in order to learn more intricate 
structures from the previous layer’s output, while the image size reduces. This path 
is filled with numerous contraction blocks. Each block accepts the input and applies 
it to a .3×3 convolutional layer (where .n×n is also known as the kernel, n can be any 
number, usually it is common to see .n = 3 or 5) and with an activation function and 
padding (usually rectified linear unit or ‘ReLU’). A .2× 2 max-pooling layer is used 
for downsampling. We begin with 32 feature channels and increase them by a factor 
of two with each contraction block until we reach 512 feature channels, at which 
point we reach the expansive path. Each block in the expansive path (shown on the 
right) is composed of two .3× 3 convolution layers and one .2× 2 upsampling or up-
convolution layer with an activation function and padding. The input is concatenated 
by appending the feature maps of the matching encoder block to the corresponding 
decoder block as represented by the gray arrow connecting the two layers. Each 
block in the expansive path reduces the number of feature channels by half. In the 
final layer, a .1 × 1 convolution layer is applied, with the number of feature maps 
corresponding to the number of needed classes/segments. Additionally, we add a 
dropout layer between each convolution layer in the encoder and decoder blocks to 
combat overfitting. Note the number of feature channels and input size shown in the 
figure are not the same for every model. Depending on the requirements such as the 
input shape, the kernel size, feature channels, the parameters can be modified in the 
architecture. 

These general concepts of how a convolutional layer works and how it’s used 
in a neural network architecture like a U-Net to achieve image segmentation are 
important for development of the Recurrent and Residual Deep Neural Networks 
discussed next. We will now discuss the various convolutional blocks and operations 
that will result in different model architectures. 

2.6.2 Recurrent U-Net 

Figure 7b. shows an example of a recurrent convolutional block; the recurrent net-
work can store information over time by using the feedback connection represented 
by the arrows on the convolution layer. Even though the input is constant, the 
network in a recurrent convolutional layer can evolve over time. We can specify the 
number of iterations that the recurrent block must undergo. We simply substitute the 
standard convolution blocks with recurrent convolutional blocks in the encoder and 
the decoder path. 

Figure 10 shows a sample code for a recurrent convolutional operation. If we 
combine the recurrent convolutional block with a standard U-Net we get a recurrent
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>> model.summary() 

Layer (type) 
================================================================ 

Output Shape Param # Connected to 

[‘input_1[0][0]’] 

[] 

[‘conv2d[0][0]’] 

[‘conv2d_1[0][0]’] 

input_1 (InputLayer) 

conv2d (Conv2D) 

conv2d_1 (Conv2D) 

dropout (Dropout) 
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conv2d_2 (Conv2D) 

[(None, 256, 256, 3)] 0 
(None, 256, 256, 32) 128 

(None, 256, 256, 32) 9248 

(None, 256, 256, 32) 0 

(None, 256, 256, 32) 0 [‘dropout[0][0]’, 

‘conv2d[0][0]’] 

(None, 256, 256, 32) 

(None, 256, 256, 32) 

9248 [‘add[0][0]’] 

[‘conv2d_2[0][0]’,0 

conv2d_3 (Conv2D) 
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max_pooling2d 

(MaxPooling2D) 

(None, 256, 256, 32) 
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9248 

0 

‘conv2d[0][0]’, 

‘conv2d_3[0][0]’, 

‘conv2d[0][0]’] 

[‘add_1[0][0]’] 

[‘add_1[1][0]’] 

Fig. 10 Model summary of a recurrent convolutional operation 

convolutional U-Net (RCU-Net) which is shown in Fig. 11. In Fig. 11 we can see 
that the recurrent convolutional layers replace the standard convolutional layers to 
make the RCU-Net.

The recurrent convolutional layers will look at the same features throughout 
the provided recurrency number, in our instance the layers will look at the same 
characteristics of pixels having a tire track multiple times, which will help the model 
reinforce when its learning process is taking place. 

2.6.3 Attention U-Net (Att U-Net) 

In image segmentation training, attention is used to highlight only relevant activa-
tions. This saves processing resources and improves the network’s generalization 
power. Basically, the network may “focus” on selected areas of the image. We use 
Soft attention. Soft attention weighs different parts of the image. High relevance 
areas are given to areas of higher weight, whereas low relevance areas are given 
a lower weight. As the model learns, higher weighted regions get more attention 
[36, 37]. 

Figure 12 shows the overall layout of an attention gate along with the gating 
signal (g) and skip connection (x) Two inputs are required for the attention gate: 
x and g, g is the gating signal that originates at the network’s sub-layer. Since 
g originates from a deeper layer of the network, it contains a more complete
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Fig. 11 Recurrent U-Net architecture obtained from modifying the standard U-Net by replacing 
the standard convolutional blocks with recurrent convolutional blocks, original figure modified 
from [35]
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Fig. 12 (a) Attention gate, obtained from [37] and  (b) Attention gate with two inputs x and g 
having different input dimensions 

representation of features.While x originates in the early levels (concatenation 
of encoder blocks), and so contains more spatial information. Consider the first
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attention gate, which is at the topmost part of the decoder block (output layer). Input 
x is the encoder block’s output, which is .64×64×64 (height ×width×f ilters). 
The output from the preceding layers (decoder block) is input g, which has 
dimensions of .128 × 128 × 128 (height × width × f ilters). To make  x have the 
same dimensions and feature numbers as g, we pass it through a convolutional layer 
with a stride of .(2, 2) and a filter count of 128, halving the dimensionalities while 
maintaining the same filter count for both x and g. We can perform the operations 
on both inputs because they have the same dimensions. The addition operation 
adds aligned weights and makes them larger. Upsampling is used to restore the 
dimensions to their original values .(128×128 in this case). Finally, the output of the 
upsample is multiplied by the input x to perform the attention operation. Figure 12 
summarizes the operation performed by the attention gate. 

If we combine the attention operation with a standard U-Net we get an Attention 
U-Net which is shown in Fig. 13. Since we are using soft attention, the key 
activations would be the contrasting regions between tire tracks and the snowy road 
surface. 
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Fig. 13 Attention U-Net architecture obtained from modifying the standard U-Net by adding 
attention gates and skip connections to each convolutional block in the decoder path, original figure 
modified from [35]
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Fig. 14 (a) Traditional network with a single input which goes through the weight layers and 
specified activation functions such as ‘ReLu’ and (b) Network with residual function which uses 
the idea of skip connections to learn from inputs provided by previous layers 

2.6.4 Residual Operation 

Having more convolutional layers and making the model deeper hurts the general-
ization ability of the network which causes overfitting. To address this issue we use 
the residual operation which is shown in Fig. 7c. The residual network addresses 
this issue by introducing the concept of skip connections [38]. The skip connections 
address the vanishing gradient problem. One group of researchers [39] discusses 
this problem and how Residual-Net reduces the risk of overfitting and smoothens 
the loss surfaces [39]. Figure 14a shows the traditional feedforward network, where 
the block is trying to learn .f (x), so learning true output .f (x), whereas the residual 
block in Fig. 14b is trying to learn the residual .R(x) = f (x) − x. The x which 
is being added to the residual from the input is also known as the identity. So 
essentially, in networks with residual blocks, each layer feeds into the next layer 
and directly into the layers about 2–3 hops away. Inputs can forward propagate 
faster through residual (shortcuts) across layers. 

2.6.5 Residual + Attention U-Net (Res-Att U-Net) 

Additionally, it is possible to combine two distinct blocks, such as a residual 
convolutional block with an attention operation. This generates a Residual Attention
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Fig. 15 We can combine two operations such as attention and residual. This results in the Residual 
Attention block or Res-Att. block. This block can only be used on the decoder path as it needs the 
spatial information from the previously concatenated layers by the use of skip connections 

Convolutional Neural Network, or ResAtt-U-Net. Figure 15 illustrates the com-
bination of the attention block and the residual convolutional block. The residual 
convolutional blocks can be substituted for the standard convolutional blocks on 
both the encoder and decoder ends of the model, whereas the attention operation can 
only be applied to the decoder path/blocks. And hence, the encoder path contains the 
residual convolutional blocks and the decoder path contains the Residual + Attention 
convolutional blocks. 

Figure 16 shows the architecture for the ResAtt U-Net. Combining attention 
gates with residual convolutional blocks could increase the model’s ability to 
detect features and reduce overfitting. This should improve the model’s ability to 
generalize image feature recognition, in our instance tire track detection, with little 
overfitting.

2.6.6 Backbone U-Net 

Another way of making model architectures is by using backbones. Backbones are 
pre-made architectures that can be used to replace the encoder path of our U-Net. 
A few of them are VGG, ResNet, and Inception [40]. These backbones are trained 
on datasets for example ImageNet [41] and we can benefit from transfer learning by 
using the pre-trained weights. 

We used the segmentation models library that contains various Python libraries 
with Neural Networks for Image segmentation tasks[40]. This library consists 
of 4 model architectures for binary and multi-class image segmentation. Each 
architecture has 25 available backbones. All backbones have pre-trained weights 
for faster and better convergence. We used the resnet34 as our model architecture
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Fig. 16 Residual attention U-Net or Res-Att U-Net architecture obtained from adding residual 
blocks to the encoder path and Res-Att. blocks to the decoder path mentioned in Fig. 15, original 
figure modified from [35]

>> BACKBONE = ’ r e s n e t 3 4 ’ 
>> model = sm . Unet (BACKBONE, 

c l a s s e s  =1 ,  
a c t i v a t i o n  = ’ s igmoid  ’  ,  
e n c od e r _we i gh t s  = ’ imagene t  ’ )  

Listing 1 Model backbone and encoder weights used from segmentation models library 

and ImageNet as encoder weight. ResNet34 is a 34-layer residual network [38, 41]. 
ImageNet is a large dataset containing over 1000 classes, 1.28million training 
images, and 50 thousand validation images. The encoder weights which are set 
to ImageNet are the pre-trained weights from the same network, which will make 
training faster. Listing 1 shows the model backbone and encoder weights used from 
the segmentation models library. 

2.7 Model Training 

The inputs to the model are an image with (width x height x channels). As we are 
using the raw RGB image (feature set 2, refer to data pipeline section) which has 
been resized to the desired size for training. In our case, the inputs are of shape (256
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>>  impo r t  t e n s o r f l ow  a s  t  f  
f rom  t e n s o r f l ow  impo r t  k e r a s  

>> model  =  t  f  .  k e r a s  .  Model  (  i n p u t s  =[  i n p u t s  ]  ,  o u t p u t s  =[  o u t p u t s  ] )  
>>  model  .  c ompi l e  (  o p t im i z e r  =  ’ adam  ’  ,  
l o s s  =  ’  b i n a r y _ c r o s s e n t r o p y  ’  ,  
m e t r i c s  =  [ IoU  ,  t  f  .  k e r a s  .  m e t r i c s  .  Accuracy  ( )  ,  

t  f  .  k e r a s  .  m e t r i c s  .  R e c a l l  ( )  ,  
t  f  .  k e r a s  .  m e t r i c s  .  P r e c i s i o n  (  )  ]  )  

Listing 2 Lines of code used for compilation of CNN models 

. × 256 . × 3). Unlike the classical machine learning models, no feature engineering 
is used to train the CNN models, we can directly feed in the raw RGB image as the 
input to the model. We resize the images to make the training process faster and is 
a standard practice while training CNNs. We split the dataset into 1200 images for 
training and 300 images for testing. We compiled the 5 CNN models with the same 
optimizer, loss function and metrics. We set the optimizer to ‘adam’ and the loss 
function as ‘binary cross entropy’, both have been applied successfully to similar 
semantic segmentation tasks [42–44]. Listing 2 shows the line to compile the CNN 
models. 

We can evaluate both the classical ML models and the different CNN models 
using different metrics. These metrics should serve as good evaluations to test the 
output of the predicted model .ypred with the ground truth. Intersection over union 
(IoU), pixel prediction accuracy, precision, recall, F1 score, and frame per second 
(FPS) were the evaluation metrics. These measures were evaluated based on the 
ability to make conclusive inferences from the performance of the model [26]. 
Below are the equations explaining these metrics and the four corners of a confusion 
matrix, which determine the true positives, true negatives, false positives, and false 
negatives, respectively. We only predict tire tracks, hence it’s a binary classification 
task, hence classes . = 1 

1. True Positive (TP): no. of pixels which were a tire track and correctly identified 
as a tire track 

2. False Positive (FP): no. of pixels which were not a tire track but identified as a 
tire track 

3. True Negative (TN): no. of pixels which were not a tire tracks and identified as 
not a tire track 

4. False Negative (FN): no. of pixels which were a tire track but identified as not a 
tire track 

.Accuracy = total correct predictions

all predictions
= T P + TN

T P + TN + FP + FN
(1) 

.IoU(Intersection over Union) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (2)
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.mIoU = 1

n
×

n∑

n=1

intersection

union
= 1

n
×

n∑

n=1

× T Pi

T Pi + FPi + FNi

(3) 

where n is the number of classes 

.Precision = T P

T P + FP
(4) 

.Recall = T P

T P + FN
(5) 

.F/F1 Score = 2 × precision × recall

precision + recall
(6) 

The accuracy Eq. 1 is the proportion of total accurate predictions made by our 
model over all the predictions. But accuracy alone does not tell the whole story 
when working with a dataset with an imbalance class distribution [45]. Accuracy 
is calculated over all classes. In our sample, there is a significant imbalance 
between the tire tracks and not tire tracks (background), therefore accuracy is not 
an appropriate evaluation metric. In terms of pixel-wise accuracy, this implies that 
the inaccuracy of minority classes is dominated by the accuracy of majority classes. 
IoU, also known as the Jaccard Index or the Jaccard coefficient, is significantly 
more indicative of success for segmentation tasks, particularly when input data is 
sparse and there is a high class imbalance. When training labels consist of 80 to 
90% background and a small number of positive labels, a basic metric such as 
accuracy can acquire a high score by being dominated by the larger class. This naive 
problem will never arise with IoU, since IoU is unconcerned about true negatives, 
even with incredibly limited data. IoU calculates the overlapping region for the true 
and predicted labels by comparing the similarity of finite sample sets A, B as the 
IoU [46]. According to Eq. 7, T represents the true label image and P represents 
the output prediction. This is used as a measure, giving us a more precise means 
of quantifying IoU in the segmentation region of our model. The mIoU or mean 
intersection over union is nothing but the IoU computed over each class. We would 
only be looking at IoU because we only have one class. 

.Jaccard Index (IoU) = |T ∩ P | (Area of Overlap)

|T ∪ P | (Area of Union)
(7) 

Listing 3 shows the implementation of IoU as a metric in the model and then used 
to compile the model. 

2.8 Results 

In this section, we will set forth the results, beginning with the metrics for the 
different ML models and their feature sets, and then moving on to the metrics for
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>>  from  t e n s o r f l ow  impo r t  k e r a s  
>>  d e f  IoU (  y _ t r u e  ,  y_p red  )  :  

y _ t r u e _ f  =  k e r a s  .  backend  .  f  l  a  t  t  e  n  (  y _ t r u e  )  
Y_pred_f  =  k e r a s  .  backend  .  f  l  a  t  t  e  n  (  y_pred  )  
i n t e r  =  k e r a s  .  backend  .  sum (  y _ t r u e _ f  ∗ y_p r ed_ f  )  
r e t u r n  (  i n t e r  +  1  .  0  )  /  (  k e r a s  .  backend  .  sum (  y _ t r u e _ f  )  +  

k e r a s  .  backend  .  sum (  y _p r ed_ f  )  − i n t e r  +  1 . 0 )  
Listing 3 Jaccard coefficient/ Intersection over Union (IoU) as a metric 

the CNN models. As described in the previous section, IoU is the relevant metric 
since, unlike accuracy, it provides better and complete information about the model. 

2.8.1 Classical Machine Learning Models 

We obtained the metrics for the 24 different model combinations, which included 
the 6 different ML models with 4 feature sets each. We are mainly interested in 
IoU scores for each model. We used the standard scaling method to plot the IoU of 
each model and feature set as shown in Fig. 17, where . Standard scale value =
.(IoUx − IoUmean)/IoUstd.dev . The random forest model performed the best using 
feature set 1 containing grayscale pixel values and pixel X,Y locations as the feature 
set input. All models that use pixel locations outperform those that do not. In 
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Fig. 17 Standard scaled IoU for all the classical ML models, standard scaling centers all the values 
around the mean with a unit standard deviation. The model/feature set combinations with positive 
values are good performing models, where Random forest with feature set 1 obtains the highest 
IoU score. This technique allows us to rule out models that perform poorly
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addition, the image demonstrates that grayscale pixels provide a higher IoU than 
RGB pixels, as the three highest-performing models are all grayscale. Random 
forest seems to be the most effective method for every feature set. This is another 
indicator that feature engineering improves the performance of our machine learning 
models. 

2.8.1.1 Performance Comparison Between Classical ML Models 

Figure 18 shows the metrics for the best performing classical ML models. KNN with 
feature set 1 obtained an IoU score of 83.2%, Accuracy of 90% and an F1 score of 
91.0%. Naive Bayes with feature set 0 obtained an IoU score of 74.1%, Accuracy 
of 82% and an F1 score of 85.1%. Random Forest with feature set 1 attained the 
highest IoU score at 83.4% with an Accuracy of 90% and F1 score of 91%. From 
an initial analysis this might indicate that Random forest with feature set 1 is the 
best performing model/feature-set combination. Decision trees with feature set 1 
follows Random forest with an IoU score of 83.2%. Regression based classifiers 
such as linear regression classifier and logistic regression classifier achieved the 
same scores and performed well on feature set 3. Both of these models needed more 
feature information than the other models. 

Random Forest with feature set 1 performed best in terms of key metrics like 
IoU, Accuracy, and F1 score, followed by Decision trees with feature set 1. As 
described in section 2.8, the IoU score provides a more comprehensive assessment

Fig. 18 Classical ML model metrics for the best performing models, where models with high IoU 
score, Accuracy and F1 score are of interest 
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of a model’s performance. A high training IoU score indicates that there is a greater 
overlap between the predicted and ground-truth tire track pixels. Since accuracy is 
calculated across all classes, it does not account for the imbalance between classes 
and is not the metric of interest. By computing their harmonic mean, the F1 score 
accounts for both precision and recall. When other metrics are taken into account, 
random forest, decision trees, and KNN achieve a high F1 score. 

2.8.1.2 Real Time Compute Speed Comparison 

We may state that models like Random forest, Decision trees, and KNN, along with 
their provided feature sets, are suitable for our application based on the previous 
metrics, however real-time computation is important as well since the inability to 
provide outputs in time removes the approach from realistic implementation. In 
our case, we can use the relationship between compute speeds and feature sets to 
determine the best model/feature-set combination. The model with the greatest IoU 
score performed poorly in real-time computation at 11.3 FPS, whereas Decision 
Trees, which achieved an IoU of 83.2%, just 0.2% below the best model, performed 
at 1084 FPS. KNN, which performed well on key metrics, struggled in real-time 
compute performance. Based on the metrics and real-time compute speed, we can 
say that Decision trees with feature set 1 is a good fit for our application. The real 
time compute speeds for all the models is shown in Fig. 19. 
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Fig. 19 Real time compute speeds in FPS for the best model/feature set combination. Low 
computational cost algorithms have a high FPS and high computational cost algorithms have a 
low FPS. More efficient models might yield faster a FPS score
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Fig. 20 Qualitative prediction from our classical ML model. This was produced by overlaying the 
predictions from the Decision trees with feature set 1 onto the raw image 

In addition to quantitative analysis, we must also consider qualitative analysis 
for the models. Performing both of these procedures will ensure a thorough review 
of the models and aid in selecting the most appropriate model for our application. 
Figure 20 displays a qualitative model output. The anticipated array of tire track 
pixels within the ROI was then overlaid on the raw image. This was derived from 
Decision trees with feature set 1, our most effective ML model. 

2.8.2 Convolutional Neural Network Models 

The CNN model’s output is shown in Fig. 19; all of the models will produce 
an image that reflects the segmentation mask for the predicted tire track. Unlike 
the classical ML models, where the output is a flattened array of points which 
include the prediction values for each pixel in the ROI, the CNN models output 
a segmentation mask of the predicted tire track. Semantic segmentation means that 
each pixel is assigned a label based on the prediction. The output from the CNN 
models gives out a segmentation mask which is of the same image as the input to the 
model which tells us where the tire tracks lie given a new image. These prediction 
masks can be used to obtain pixel values in terms of labels for the image. By 
changing the input dimensions of the image, we can obtain a predicted segmentation 
mask with the same input dimensions. Figure 21a shows the raw image which is the 
input to the model obtained from the test set, this image was resized to the shape of 
.256 × 256 to make the prediction faster. Figure 21b shows the ground truth label
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Fig. 21 (a) Raw image, (b) Ground truth label and (c) Predicted tire track. The CNN prediction is 
the image of the segmentation mask with the same size as that of the input image 

Fig. 22 CNN model metrics for the best performing models, where models with high IoU score, 
Accuracy and F1 score are of interest

that was annotated using CVAT and Figure 21c shows the output from the standard 
CNN U-Net model. The prediction resembles the ground truth label. 

2.8.2.1 Performance Comparison Between CNN Models 

The metrics for each CNN model are displayed in Fig. 22. All of the CNN models 
use feature set, as mentioned previously, CNN models do not require feature 
engineering, the input to the models is the raw image, which is feature set 2. The 
Standard U-Net model obtains an IoU score of 88%, Accuracy of 89%, and F1 
score of 95%. The Recurrent U-Net model achieved an IoU score of 89%, Accuracy 
of 89% and F1 score of 95%. The Residual Attention U-Net and the Attention U-
Net both performed poorly in terms of IoU and Accuracy. The Backbone U-Net 
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attained the highest IoU, Accuracy and F1 score among all the other models. This 
might indicate that the Backbone U-Net model is the best performing CNN model. 
However, real time compute speeds also need to be considered as part of a qualitative 
analysis. 

2.8.2.2 Real Time Compute Speed Comparison 

Figure 23 shows the real time compute speed of the five different CNN models. The 
Recurrent U-Net model achieved the fastest real-time compute speeds, followed by 
the U-Net. Backbone U-Net, which had the best IoU score, had the slowest compute 
speed of 25 FPS. A qualitative investigation is required to determine which model 
produces good results. 

The outputs from all of the CNN models on new images are shown in Fig. 24, 
along with the IoU score earned on each of the models during training. On the 
training set, all of the models perform well, but when tested on new images, the 
results in Fig. 24 demonstrate which model produces good results. Model 1 and 2 
perform well and output diverse tire tracks as their predictions complement their 
IoU scores. Models 3 and 4 have poor performance. Model 5, which has the highest 
IoU, performs well, but it has a tendency to overfit the tire tracks by merging the 
space between them and does not distinguish between the left and right tracks like 
models 1 and 2. This could also explain why Model 5 has the highest IoU score and 
shows evidence of overfitting. Looking at the real time compute speeds, both Model 
1 and 2 perform better then model 5. Based on the metrics and real time compute
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Fig. 24 Qualitative analysis of the outputs from the 5 CNN models. A high IoU score means the 
model performs better, which is true in case of models 1 and 2, their outputs show distinct tire 
tracks. The highest IoU which is attained by model 5 shows signs of over fitting as the left and the 
right tracks have merged into one solid body. Models 3 and 4 with low IoU scores show poor tire 
tracks 
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Fig. 25 Best classical ML model and best CNN model metrics comparison. The FPS values 
have been normalized between 0 and 1. The CNN model performs much better in terms of IoU, 
Accuracy and F1 score without using any kind of feature engineering. The classical ML models 
outperform the CNN model in real time compute speeds (FPS)

speeds shown in Fig. 22 and Fig. 23, and a qualitative analysis shown in Fig. 24, we  
can conclude that Recurrent U-Net is a good fit for our application. 

2.8.3 Best ML Models vs Best CNN Model 

When comparing the best model from the classical ML model section, Decision 
Trees with feature set 1, to CNN models that use feature set 2, we should also 
compare Decision Trees with feature set 2, which is the raw RGB image as input. 
We compare these to the Recurrent U-Net, which is the best performing CNNmodel. 
We look at all the key metrics and normalized real time compute values.
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Fig. 26 The overall process of using this system to obtain the drivable region. By implementing 
a few CV transformations, we can extract the drivable region from tire tracks, this can be further 
expanded to get lane line information 

Figure 25 shows that the CNN performs much better at metrics such as IoU, 
Accuracy, Recall, Precision, and F1 score. To perform a fairer comparison, Decision 
Trees with feature set 2 and the Recurrent U-Net with feature set 2 should be 
compared, as both have the same feature sets. Recurrent U-Net outperforms the 
Decision Trees in all of the key metrics except for real time compute speeds.

2.9 Drivable Region Extraction from Tire Tracks 

Once the tire tracks are identified, the drivable region can be extracted using 
standard computer vision transformations. Figure 26 illustrates an example of 
overlaying the predicted tire tracks on the raw image to generate the drivable region. 
Likewise, we can extract the lane lines. Our results show that using tire tracks, we 
have an alternate method in obtaining the drivable region unlike the predictions from 
the leading CV provider. 

Figure 27 depicts the three cases: (a) Detections from the leading CV provider 
without lane line occlusion. (b) Detections from the leading CV provider with snow 
occlusion on lane lines and (c) Detections from our algorithm to extract the drivable 
lane (Fig. 26). In Fig. 27a, the leading CV provider is able to detect the lane lines, 
which are indicated by the two green lines that show the left lane line and right lane 
line while the third red line indicates the road boundary. In Fig. 27b both the left and 
right lane lines appear red, indicating that the system lacks confidence in detecting 
the lane lines. Figure 27c shows the drivable lane detection from our model.
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Fig. 27 We looked at a road section from our drive cycle, where we collected camera data and 
detections from a leading CV provider in two conditions (1) clear weather with no lane line 
occlusion and (2) snowy weather with lane line occlusion. In (a) we can see that the leading CV 
provider system is able to detect lane lines with full confidence. In (b) the system is misidentifying 
lane lines and has poor confidence in detecting the drivable region whereas in (c) our algorithm is 
able to detect the drivable region using the predictions and transformations 

3 Conclusion 

This study investigates the research gap in driveable region detection for snow-
covered roads with a single camera sensor that can be incorporated in current 
ADAS systems. We proposed a new method for identifying the drivable region in 
snowy road conditions when lane lines are occluded by focusing on tire tracks and 
extracting the drivable region with that information. Data was first acquired using 
our instrumented vehicle, and then processed by extracting frames from videos, 
segmenting them into batches, and labeling them with CVAT. That data was then 
utilized to build a CV model. We explored both classical ML approaches and Deep 
Neural Networks, specifically CNN, for detecting the driveable region based on tire 
tracks. We developed 5 different neural network architectures and compared their 
performance to that of classical machine learning methods. We evaluated the U-Net 
based CNN models for IoU, Accuracy, Recall, F1 score, and FPS using only the
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raw image with no image pre-processing or feature extraction. The Recurrent U-
Net model had an IoU score of 89%, followed by the U-Net model which achieved 
88%. The best performing ML model was Random Forest with feature set 1 with 
an IoU of 83.4%, however when we looked at the FPS, we chose Decision Trees 
with feature set 1 that had an IoU of 83.2%. We also examined F1 score, Accuracy, 
Recall, and Precision. The classical ML models performed much better in terms 
of real-time computational speeds (FPS) but at the expense of considerable pre-
and post-processing processing effort as well as extensive feature engineering. The 
CNN models provide an end-to-end solution for detecting drivable regions in snowy 
road surfaces by feeding in the raw image and predicting tire tracks without any 
feature engineering at the cost of slower real time compute speeds. The classical 
ML models do not handle variation and noise as well as the CNN models do. The 
CNN models offer a more mature solution to identify tire tracks in regions of snow-
occluded lane lines. This study demonstrates that it is possible to detect drivable 
regions for specific scenarios of lane line occlusion due to snow using a single 
camera and existing technology. By enhancing image processing and tuning the 
CNN hyper-parameters, the results can be further improved. Additionally, having 
more data would significantly improve the CNN models and offer a more flexible 
model. Running the CNN models on a powerful computing machine would also 
result in faster compute speeds and allow data scalability. Future work to expand this 
study includes addressing other circumstances such as traffic lights, intersections, 
road curvature, turns, lane changes, active snowfall, and various lighting conditions. 
Overall, the problem of automated driving in adverse weather needs to be addressed 
in order to reduce the fatalities and economic costs that occur annually. 
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Machine Learning Based Perception 
Architecture Design for 
Semi-autonomous Vehicles 

Joydeep Dey and Sudeep Pasricha 

1 Introduction 

In 2021, it was reported that an estimated 31,730 people died in motor vehicle 
traffic crashed in the United States, representing an estimated increase of about 12 
percent compared to 2020 [1]. By eliminating the possibility of human driving errors 
through automation, advanced driver assistance systems (ADAS) are becoming a 
critical component in modern vehicles, to help save lives, improve fuel efficiency, 
and enhance driving comfort. ADAS systems typically involve a 4-stage pipeline 
involving sequential execution of functions related to perception, decision, control, 
and actuation. An incorrect understanding of the environment by the perception 
system can make the entire system prone to erroneous decision making, which can 
result in accidents due to imprecise real-time control and actuation. This motivates 
the need for a reliable perception architecture that can mitigate errors at the source 
of the pipeline and improve safety in emerging semi-autonomous vehicles. 

The standard SAE-J3016 effectively classifies the capabilities of a perception 
architecture supported by a vehicle according to their targeted level of autonomy. 
In general, an optimal vehicle perception architecture should consist of carefully 
defined location and orientation of each sensor selected from a heterogeneous 
suite of sensors (e.g., cameras, radars) to maximize environmental coverage in the 
combined field of view obtained from the sensors. In addition to ensuring accurate 
sensing via appropriate sensor placement, a high object detection rate and low false 
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Fig. 1 Breakdown of perception architecture design space

positive detection rate needs to be maintained using efficient deep learning-based 
object detection and sensor fusion techniques. 

State-of-the-art deep learning based object detection models are built with 
different network architectures, uncertainty modeling approaches, and test datasets 
over a wide range of evaluation metrics [2]. Object detectors that are capable of real 
time perception are resource-constrained by latency requirements, onboard memory 
capacity and computationally complexity. Optimizations performed to meet any one 
of these constraints often results in a trade-off with the performance of others [3]. As 
a result, comparison and selection from among the best set of deep learning based 
object detectors for perception applications remains a challenge. 

In real-world driving scenarios, the position of obstacles and traffic are highly 
dynamic, so after detection of an object, tracking is necessary to predict its 
new position. Due to noise from various sources there is an inherent uncertainty 
associated with the measured position and velocity. This uncertainty is minimized 
by using sensor fusion algorithms [4]. An important challenge with sensor fusion 
algorithms is that the complexity of tracking objects increases as the objects get 
closer, due to a much lower margin for error (uncertainty) in the vicinity of the 
vehicle. 

As summarized in Fig. 1, the design space of a vehicular perception architecture 
involves determining appropriate sensor selection and placement, object detection 
algorithms, and sensor fusion techniques. The possible configurations for each 
of these decisions is non-trivial and can easily lead to a combinatorial explosion 
of the design space, making exhaustive exploration impractical. Conversely, an 
optimization of each of these decisions individually before composing a final 
solution can lead to solutions that are sub-optimal and perform poorly in real 
environments. Perception architecture design depends heavily on the target features 
and use cases to be supported in the vehicle, making the already massive design 
space addressing the problem even larger and harder to traverse. Consequently, 
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today there are no generalized rules for the synthesis of perception architectures 
for vehicles. 

In this chapter, we describe a framework called PASTA (Perception Architecture 
Search Technique for ADAS), first introduced in [37], to perform perception archi-
tecture synthesis for emerging semi-autonomous vehicles. Our experimental results 
indicate that the proposed framework is able to optimize perception performance 
across multiple ADAS metrics, for different vehicle types. 

The main contributions in this chapter include: 

• A global co-optimization framework capable of synthesizing robust vehicle-
specific perception architecture solutions that include heterogeneous sensor 
placement, deep learning based object detector design, and sensor fusion algo-
rithm selection; 

• An exploration of various design space search algorithms tuned for the vehicle 
perception architecture search problem; 

• A fast and efficient method for co-exploration of the deep learning object detec-
tor hyperparameters, through adaptive and iterative environment- and vehicle-
specific transfer learning; 

• A comparative analysis of the framework efficiency across different vehicle 
models (Audi TT, BMW Minicooper). 

2 Related Work 

State-of-the-art semi-autonomous vehicles require robust perception of their envi-
ronment, for which the choice of sensor placement, object detection algorithms, 
and sensor fusion techniques are the most important decisions. These decisions 
are carefully curated to support ADAS features (e.g., blindspot warning, lane keep 
assist) that characterize the autonomy level to be supported by a vehicle under 
design. 

Many prior works have explored vehicle perception system design with different 
combinations of sensor types to overcome limitations that plague individual sensor 
types. The work in [5] used a single camera-radar pair for perception of headway 
distance using a Continental radar mounted on the geometric center of the front 
bumper and a Nextbase 512G monocular camera behind the windscreen. Vehicle 
detection was performed on the collected camera frames, by sorting potential 
candidates in a fixed trapezoidal region of interest in the horizontal plane. In 
[5] a camera-radar fusion based perception architecture was proposed for target 
acquisition with the well-known SSD (Single Shot Detection) object detector on 
consecutive camera frames. This allowed their perception system to differentiate 
vehicles from pedestrians in real time. The detection accuracy was optimized with 
the use of a Kalman filter and Bayesian estimation, which reduced computational 
complexity compared to [5]. In [6] a single neural network was used for fusion of 
all camera and radar detections. The proposed neural fusion model (CRF-Net) used 
an optimized training strategy similar to the ‘Dropout’ technique, where all input
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neurons for the camera data are simultaneously deactivated in random training steps, 
forcing the network to rely more on the radar data. The training focus towards radar 
overcame the bias introduced by starting with pre-trained weights from the feature 
extractor that was trained from the camera data. The work in [7] optimized merging 
camera detection with LiDAR processing. An efficient clustering technique inspired 
by the DBSCAN algorithm allowed for a better exploitation of features from the 
raw LiDAR point cloud. A fusion scheme was then used to sequentially merge the 
2D detections made by a YOLOv3 object detector using cylindrical projection with 
the detections made from clustered LiDAR point cloud data. In [8], an approach to 
fuse LiDAR and stereo camera data was proposed, with a post-processing method 
for accurate depth estimation based on a patch-wise depth correction approach. 
In contrast to the cylindrical projection of 2D detections in [7],  the work in [8] 
uses a projection of 3D LiDAR points into the camera image frame instead, which 
upsamples the projection image, creating a more dense depth map. 

All of the prior works discussed above optimize vehicle perception performance 
for rigid combinations of sensors and object detectors, without any design space 
exploration. Only a few prior works have (partially) explored the design space 
of sensors and object detectors for vehicle perception. An approach for optimal 
positioning and calibration of a three LiDAR system was proposed in [9]. The 
approach used a neural network to learn and qualify the effectiveness of different 
LiDAR location and orientations. The work in [10] proposed a sensor selection 
and exploration approach based on factor graphs during multi-sensor fusion. The 
work in [11] heuristically explored a subset of backbone networks in the Faster R-
CNN object detector for perception systems in vehicles. The work in [12] presented 
a framework that used a genetic algorithm to optimize sensor orientations and 
placements in vehicles. 

The optimized perception techniques discussed in [5–12] provide highly accurate 
detections which enable design of efficient energy management strategies for 
ADAS. The work in [13] derives a prediction mechanism for optimal energy 
management for ADAS using a nonlinear autoregressive artificial neural network 
(NARX). Multiple sources are used as input to the neural network such as data from 
drive cycle information, current vehicle state, global positioning system, travel time 
data and detected obstacles. In addition, dynamic programming is used to derive an 
optimal energy management control strategy which shows significant fuel economy 
improvements compared to highly accurate predictive baseline models. The work 
in [14] proposes a predictive optimal energy management strategy that leverages 
sensor data aggregation and dynamic programming to achieve vehicle fuel economy 
improvement for ADAS compared to existing vehicle control strategies. The work 
discussed in [13, 14] leverage existing ADAS technology in modern vehicles to 
realize prediction based optimal energy management, which enables fuel economy 
improvements for ADAS with minor modifications. 

Unlike prior works that fine-tune specific perception architectures, e.g., [5–8], 
or explore the sensing and object detector configurations separately, e.g [9–12]., 
this chapter proposes a holistic framework that jointly co-optimizes heterogeneous
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sensor placement, object detection algorithms, and sensor fusion techniques. To the 
best of our knowledge, this is the first effort that performs co-optimization across 
such a comprehensive decision space to optimize ADAS perception, with the ability 
to be tuned and deployed across multiple vehicle types. 

3 Background 

3.1 ADAS Level 2 Autonomy Features 

In this chapter, our exploration of perception architectures on a vehicle, henceforth 
referred to as an ego vehicle, targets four ADAS features that have varying degrees of 
longitudinal (i.e., in the same lane as the ego vehicle) and lateral (i.e., in neighboring 
lanes to the ego vehicle lane) sensing requirements. The SAE-J3016 standard [15] 
defines adaptive cruise control (ACC) and lane keep assist (LKA) individually 
as level 1 features, as they only perform the dynamic driving task in either the 
latitudinal or longitudinal direction of the vehicle. Forward collision warning (FCW) 
and blindspot warning (BW) are defined in SAE-J3016 as level 0 active safety 
systems, as they only enhance the performance of the driver without performing any 
portion of the dynamic driving task. However, when all four features are combined, 
the system can be described as a level 2 autonomy system. Figure 2 shows an 
overview of the four features we focus on for level 2 autonomy, which are discussed 
next. 

While modern ACC systems differ in their implementation and perception 
architectures, they take perform longitudinal control operations instead of the 
driver. The challenge in ACC is to maintain an accurate track of the lead vehicle 
(immediately ahead of the ego vehicle in the same lane) with a forward facing 
sensor and using longitudinal control to maintain the specified distance while 
maintaining driver comfort (e.g., avoiding sudden velocity changes). LKA (lane 
keep assist) systems determine whether the ego vehicle is drifting towards any lane 
boundaries and are an evolution of lane departure warning systems. LKA systems 
have been known to over-compensate, creating a “ping-pong” effect where the 
vehicle oscillates back and forth between the lane lines [16]. The main challenges in 
LKA are to reduce this ping-pong effect and the accurate detection of lane lines on 
obscured (e.g., snow covered) roads. FCW (forward collision warning) systems are 
used for real-time prediction of collisions with a lead vehicle. A critical requirement 
for FCW systems is that they avoid false positives and false negatives to improve 
driver comfort, safety and reduce rear end accidents [17]. Lastly, BW (blindspot 
warning) systems use lateral sensor data to determine whether there is a vehicle 
towards the rear on either side of the ego vehicle (Fig. 2) in a location the driver 
cannot see with their side mirrors. A perception architecture designed to support 
Level 2 autonomy in a vehicle should support all four of these critical features.
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Fig. 2 Visualization of common scenarios in ACC, FCW, LKA, and BW 

3.2 Sensor Placement and Orientation 

In order to capture data most relevant to each feature, a strategic sensor placement 
strategy must be used on the ego vehicle such that the chosen position and 
orientation of selected sensors maximize coverage (of the vehicle environment). 
Figure 2 visualizes an example of field of view coverage (in blue) corresponding 
to three unique placements of camera sensors on the body of the ego vehicle (in 
yellow, lower images) to meet coverage goals. For the ACC and FCW features, 
the ego vehicle is responsible for slowing down to maintain a minimum separation 
between the ego and lead vehicle. The camera must be positioned somewhere on the 
front bumper to measure minimum longitudinal separation accurately while keeping
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the lead vehicle in the desired field of view. For LKA, there is a need to maintain a 
safe minimum lateral distance between non-ego vehicles in neighboring lanes. Here 
a front camera is needed to extract lane line information, while side cameras are 
required for tracking this minimum lateral separation. As BW requires information 
about a specific area near the rear of the vehicle, it is a challenge to find an optimal 
sensor placement that maximizes the view of the blind spot. If the sensor is too 
far forward or too far back, it will miss key portions of the blind spots. Beyond 
placement, the orientation of sensors can also significantly impact coverage for all 
features [17]. Thus sensor placement and orientation remains a challenging problem. 

3.3 Object Detection for Vehicle Environment Perception 

The two broad goals associated with deep learning based object detection are: 
determining spatial information (relative position of an object in the image) via 
localization followed by identifying which category that object instance belongs to 
via classification [18]. As an example, Fig. 3 shows object detection of multiple car 
instances (using the YOLOv3 deep learning based object detector [19]) by creating 
a bounding box around the ‘car’ object instances and predicting the object class 
as ‘car’. The pipeline of traditional object detection models can be divided into 
informative region selection, feature extraction, and classification [20]. Depending 
on which subset of these steps are used to process an input image frame, object 
detectors are classified as single-stage or two-stage. 

Modern single-stage detectors are typically composed of a feed-forward fully 
convolutional network that outputs object classification probabilities and box offsets 
(w.r.t. pre-defined anchor/bounding boxes) at each spatial position. The YOLO 
family of object detectors is a popular example of single-stage detectors [17]. SSD 
(single shot detection) is another example, based on the VGG-16 backbone [21]. 
An advantageous property of single-stage detectors is their very high detection 
throughput (e.g., ~40 frames per second with YOLO) that makes them suitable for 
real time scenarios. Two-stage detectors divide the detection process into separate 
region proposal and classification stages. The first stage involves identification of

Fig. 3 Example of vehicle (object) detection with YOLOv3 
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several regions in an image that have a high probability to contain an object using a 
region proposal network (RPN). In the second stage, proposals of identified regions 
are fed into convolutional networks for classification. Region-based CNN (R-CNN) 
is an example of a two-stage detector [22]. R-CNN divides an input image into 2000 
regions generated through a selective search algorithm, after which the selected 
regions are fed to a CNN for feature extraction followed by a Support Vector 
Machine (SVM) for classification. Fast R-CNN [23] and subsequently Faster R-
CNN [24] improved the speed of training as well as detection accuracy compared to 
R-CNN by streamlining the stages. 

Two-stage detectors have high localization and object recognition accuracy, 
whereas one-stage detectors achieve higher inference speed [25]. In this chapter, we 
considered both types of object detectors to exploit the latency/accuracy tradeoffs 
during perception architecture synthesis. 

3.4 Sensor Fusion 

Perception architectures that use multiple sensors in their sensing framework often 
must deal with errors due to imprecise measurements from one or more of the 
sensors. Conversely, errors can also arise when only a single sensor is used due 
to measurement uncertainties from insufficient spatial (occlusion) or temporal 
(delayed sensor response time) coverage of the environment. The Kalman filter 
is one of the most widely used sensor fusion state estimation algorithms that 
enables error-resilient tracking of targets [26]. The Kalman filter family is a set of 
recursive mathematical equations that provides an efficient computational solution 
of the least-squares method for estimation. The filters in this family have the 
ability to obtain optimal statistical estimations when the system state is described 
as a linear model and the error can be modeled as Gaussian noise. If the system 
state is represented as a nonlinear dynamic model as opposed to a linear model, 
a modified version of the Kalman filter known as the Extended Kalman Filter 
(EKF) can be used, which provides an optimal approach for implementing nonlinear 
recursive filters [27]. However, for real time ADAS operations the computation of 
the Jacobian (matrix describing the system state) in EKF can be computationally 
expensive and contribute to measurement latency. Further, any attempts to reduce 
the cost through techniques like linearization makes the performance unstable [28]. 
The unscented Kalman filter (UKF) is another alternative that has the desirable 
property of being more amenable to parallel implementation [29]. In our design 
space exploration of perception architecture, we explore the family of Kalman filters 
as candidates for sensor fusion.
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4 PASTA Architecture 

4.1 Overview 

Figure 4 presents a high-level overview of our proposed PASTA framework. The 
heterogeneous sensors, object detection model library, sensor fusion algorithm 
library, and physical dimensions of the vehicle model are inputs to the frame-
work. An algorithmic design space exploration is used to generate a perception 
architecture solution which is subsequently evaluated based on a cumulative score 
from performance metrics relevant to the ADAS autonomy level being targeted. 
As part of the framework, we evaluate the search efficacy of three design space 
search exploration algorithms: genetic algorithm (GA), differential evolution (DE), 
and the firefly algorthm (FA). The process of perception architecture generation 
and evaluation iterates until an algorithm-specific stopping criteria is met, at which 
point the best design points are output. The following subsections describe each 
component of our framework in detail. 

4.2 Problem Formulation and Metrics 

In our framework, for a given vehicle, a design point is defined as a perception 
architecture that is a combination of three components: a sensor configuration which 
involves the fixed deployment position and orientation of each sensor selected for 
the vehicle, an object detector algorithm, and a sensor fusion algorithm. The goal is 
to find an optimal design point for the given vehicle that minimizes the cumulative

Fig. 4 An overview of the proposed PASTA framework 
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error across eight metrics that are characteristic of the ability to track and detect 
non-ego vehicles across road geometries and traffic scenarios. 

The eight selected metrics are related to our goal of supporting level 2 autonomy 
with the perception architecture. In the descriptions of the metrics below, the ground 
truth refers to the actual position of the non-ego vehicles (traffic in the environment 
of the ego vehicle). The metrics can be summarized as: (1) longitudinal position 
error and (2) lateral position error: deviation of the detected positional data from 
the ground truth of non-ego vehicle positions along the y and x axes, respectively; 
(3) object occlusion rate: the fraction of passing non-ego vehicles that go undetected 
in the vicinity of the ego vehicle; (4) velocity uncertainty: the fraction of times that 
the velocity of a non-ego vehicle is measured incorrectly; (5) rate of late detection: 
the fraction of the number of ‘late’ non-ego vehicle detections made over the total 
number of non-ego vehicles. Late detection is one that occurs after a non-ego vehicle 
crosses the minimum safe longitudinal or lateral distance, as defined by Intel RSS 
safety models for pre-crash scenarios GA is a popular evolutionary algorithm that 
can solve optimization problems by mimicking the process of natural selection 
[30].2. This metric directly factors in the trade-off between latency and accuracy 
for object detector and fusion algorithms; (6) false positive lane detection rate: the 
fraction of instances when a lane marker is detected but there exists no ground truth 
lane; (7) false negative lane detection rate: the fraction of instances when a ground 
truth lane exists but is not detected; and (8) false positive object detection rate: 
the fraction of total vehicle detections which were classified as non-ego vehicle 
detections but did not actually exist. 

4.3 Design Space Encoder/Decoder 

The design space encoder receives a set of random initial design points as input 
which are expressed as a vector. This encoded format is best suited for various 
kinds of rearrangement and splitting operations during design space exploration. 
The encoder adapts the initial selection of inputs for our design space such that a 
design point is defined by the location and orientation of each sensor’s configuration 
(consisting of six parameters: x, y, z, roll, pitch, and yaw), together with the object 
detector and fusion algorithm. The design space decoder converts the solutions into 
the same format as the input so that the output perception architecture solution(s) 
found can be visualized with respect to the real-world co-ordinate system. 

4.4 Design Space Exploration 

The goal of a design space exploration algorithm in our framework is to generate 
perception architectures (design points) which are aware of feature to field of view 
(FOV) zone correlations around an ego vehicle. Figure 5a shows the 10 primary
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Fig. 5 (a) Field of view (FOV) zones; (b) sensor placement regions; (c) feature, region, and zone 
relationship 

FOV zones around the ego-vehicle. These zones of interest are defined as the 
most important perception areas in the environment for a particular ADAS feature. 
Figure 5b shows the regions on the vehicle on which sensors can be mounted (in 
blue). Regions F and G (in yellow) are exempt from sensor placement due to the 
mechanical instability of placing sensors on the door of a vehicle. The correlation 
between ADAS features, zones, and regions, is shown in Fig. 5c. For exploration 
of possible locations within a region, a fixed step size of 2 cm in two dimensions 
across the surface of the vehicle is considered, which generates a 2D grid of 
possible positions in each zone shown in Fig. 5b. The orientation exploration of 
each sensor involves rotation at a fixed step size of 1 degree between an upper 
and lower bounding limit for roll, pitch, and yaw respectively, at each of these 
possible positions within the 2D grid. The orientation exploration limits were chosen 
with caution with the caveat that some sensors, such as long range radars, have an 
elevated number of recorded false positives with extreme orientations. 

To get a sense of the design space, consider four sensors (e.g., two cameras and 
two radars). Just the determination of the optimal placement and orientation of 
these sensors involves exploring 1.24e+26C4 and 7.34e+25C4 configurations for the 
Audi-TT and BMW-Minicooper vehicles, respectively. Coupled with the choice 
of different object detectors and sensor fusion algorithms, the resulting massive 
design space cannot be exhaustively traversed in a practical amount of time, 
necessitating the use of intelligent design space search algorithms that support hill 
climbing to escape local minima. In our framework, we explored three evolutionary 
algorithms: (1) Genetic Algorithm (GA), (2)  Differential Evolution (DE), and 
the (3) Firefly Algorithm (FA). As shown in Fig. 4, each algorithm generates a 
solution set of size ‘P’ at every iteration until the termination criteria is met. The 
algorithms simultaneously co-optimize sensor configuration, object detection, and 
sensor fusion, and proceed to explore new regions of the design space when the 
termination (perception) criteria is not met. We briefly describe the three algorithms 
below.
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4.4.1 Genetic Algorithm (GA) 

GA is a popular evolutionary algorithm that can solve optimization problems by 
mimicking the process of natural selection [30]. Initially, the GA randomly selects 
a solution set of fixed size referred to as the population and then improves the 
quality of the candidate solutions in each iteration by modifying them using various 
GA operations. GA has the ability to optimize problems where the design space 
is discontinuous and also if the cost function is non differentiable. In our GA 
implementation, in the selection stage, the cost function values are computed for 
50 design points at a time, and a roulette wheel selection method is used to select 
which set of chromosomes will be involved in the crossover step based on their 
cost function probability value (fraction of the cumulative cost function sum of 
all chromosomes considered in the selection). In the crossover stage, the crossover 
parameter is set to 0.5, allowing half of the 50 chromosomes to produce offspring. 
The mutation parameter is set to 0.2 which determines the new genes allowed for 
mutation in each iteration. 

4.4.2 Differential Evolution (DE) 

Differential Evolution (DE) [31] is another stochastic population-based evolutionary 
algorithm that takes a unique approach to mutation and recombination. An initial 
solution population of fixed size is selected randomly, and each solution undergoes 
mutation and then recombination operations. DE generates new parameter vectors 
by adding the weighted difference between two population vectors to a third 
vector to achieve difference vector-based mutation. Next, crossover is performed, 
where the mutated vector’s parameters are mixed with the parameters of another 
predetermined vector, the target vector, to yield a trial vector. If the trial vector 
yields a lower cost function value than the target vector, the trial vector replaces the 
target vector in the next generation. To ensure that better solutions are selected only 
after generation of all trial vectors at every iteration, greedy selection is performed 
between the target vector and trial vector. Unlike GA where parents are selected 
based on fitness, every solution in DE takes turns to be one of the parents [30]. In 
our DE implementation, we set initial population size to 50 and use a crossover 
probability of 0.8 to select candidates participating in crossover. 

4.4.3 Firefly Algorithm (FA) 

FA is a swarm-based metaheuristic [32] that has shown superior performance 
compared to GA for certain problems [33]. In FA, a solution is referred to as a firefly. 
The algorithm mimics how fireflies interact using flashing lights (bioluminescence). 
The algorithm assumes that the attractiveness of a firefly is directly proportional to 
its brightness which depends on the fitness function value. Further, a given firefly 
can be attracted by any other firefly in the design space irrespective of the gender of
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both. Initially, a random solution set is generated and the fitness (brightness) of each 
candidate solution is measured. In the design space, a firefly is attracted to another 
with higher brightness (more fit solution), with brightness decreasing exponentially 
over distance. FA is significantly different from DE and GA, as both exploration 
of new solutions and exploitation of existing solutions to find better solutions is 
achieved using a single position update step. 

4.5 Performance Evaluation 

Each iteration of the design space exploration involves performance evaluation of 
the generated solution set where each design point undergoes multiple drive cycles. 
A drive cycle here refers to a virtual simulation involving an ego-vehicle (with 
a perception architecture under evaluation) following a fixed set of waypoint co-
ordinates, while performing object detection and sensor fusion on the environment 
and other non-ego vehicles. A total of 20 different drive cycles were considered, 
with 5 drive cycles customized for each ADAS feature. As an example, drive cycles 
for ACC and FCW involve an ego vehicle following different lead vehicles at 
different distances, velocities, weather conditions, and traffic profiles. The fitness 
of the perception architectures generated by the framework are computed using the 
cumulative metric scores (Sect. 4.2) across the drive cycles. 

5 Experiments 

5.1 Experimental Setup 

To evaluate the efficacy of the PASTA framework we performed experiments in 
the open-source simulator CARLA (Car Learning to Act) implemented as a layer 
on Unreal Engine 4 (UE4) [34]. The UE4 engine provides state-of-the-art physics 
rendering for highly realistic driving scenarios. We leveraged this tool to design 
a variety of drive cycles that are roughly 5 min long and contain scenarios that 
commonly arise in real driving environments, including adverse weather conditions 
(rain, fog) and a few overtly aggressive/conservative driving styles observed with 
vehicles. To ensure generalizability, we consider a separate set of test drive cycles to 
evaluate solution quality, which are different from the optimization drive cycles used 
iteratively by the framework to generate optimized perception architecture solutions. 

We target generating perception architectures to meet level 2 autonomy goals 
for two vehicle models: Audi-TT and BMW-Minicooper (Fig. 6). A maximum of 4 
mid-range radars and 4 RGB cameras are considered in the design space, where
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Fig. 6 BMW Minicooper (top) and Audi TT (bottom) 

each sensor can be placed in any zone (Fig. 5a, b). Using a greater number of 
these sensors led to negligible improvements for the level 2 autonomy goal. The 
RGB cameras possess 90◦ field of view, 200 fps shutter speed, and image resolution 
of 800 × 600 pixels. The mid-range radars selected generate a maximum of 1500 
measurements per second with a horizontal and vertical field of view of 30◦ and a 
maximum detection distance of 100 m. We considered 5 different object detectors 
(YOLOv3, SSD, R-CNN, Fast R-CNN, and Faster R-CNN) and 3 sensor fusion 
algorithms (Kalman filter, Extended Kalman filter, and Unscented Kalman filter). 
For the design space exploration algorithms, the cost function was a weighted sum 
across the eight metrics discussed in Sect. 4.2, with the weight factor for each metric 
chosen on the basis of their total feature-wise cardinality across all zones shown in 
Fig. 5c. During design space exploration, if the change in average cost function 
value was <5% over 250 iterations, the search was terminated. All algorithmic 
exploration was performed on an AMD Ryzen 7 3800X 8-Core CPU desktop with 
an NVIDIA GeForce RTX 2080 Ti GPU.
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Table 1 Object detector latency and accuracy comparison 

Object detector Latency GPU (ms) Latency CPU (ms) mAP(%) 

R-CNN 48956.18 66090.83 73.86 
Fast R-CNN 1834.71 2365.86 76.81 
Faster R-CNN 176.99 286.72 79.63 
SSD 53.25 70.32 70.58 
YOLOv3 24.03 32.92 71.86 

5.2 Experimental Results 

In the first experiment, we explored the inference latency and accuracy in terms of 
mean average precision (mAP) for the five different object detectors considered in 
this chapter. Table 1 summarizes the inference latency on a CPU and GPU, as well 
as the accuracy in mAP for the object detectors on images from our analyzed drive 
cycles, with all detectors trained on the MS-COCO dataset. It can be observed that 
the two-stage detectors (R-CNN, Fast R-CNN, and Faster R-CNN have a higher 
accuracy than the single stage detectors (SSD, YOLOv3). However, the inference 
time for the two-stage detector is significantly higher than for the single stage 
detectors. For real-time object detection in vehicles, it is crucial to be able to detect 
objects with low latency, typically less than 100 ms [35]. As a result, single stage 
detectors are preferable, with YOLOv3 achieving slightly better accuracy and lower 
inference time than SSD. However, in some scenarios, delayed detection can still be 
better than not detecting or wrongly detecting an object (e.g., slightly late blindspot 
warning is still better than receiving no warning) in which case the slower but 
more accurate two-stage detectors may still be preferable. Our PASTA framework is 
aware of this inherent trade-off and factors in the detection accuracy and rate of late 
detection in performance evaluation metrics (Sect. 4.2) to explore both single-stage 
and two-stage detectors. Also, detectors with a higher mAP value sometimes did not 
detect objects that other detectors with a lower mAP were able to; thus, we consider 
all five detectors in our exploration. 

Next, we explored the importance of global co-optimization for our problem. 
We select the genetic algorithm (GA) variant of our framework to explore the 
entire design space (GA-PASTA) and compared it against five other frameworks. 
Frameworks GA-PO and GA-OP use the GA but perform a local (sequential) search 
for sensor design. In GA-PO, sensor position is explored before orientation, while in 
GA-OP the orientation for fixed sensor locations (based on industry best practices) is 
explored before adjusting sensor positions. For both frameworks, the object detector 
used was fixed to YOLOv3 due to its sub-100 ms inference latency and reasonable 
accuracy, while the extended Kalman filter (EKF) was used for sensor fusion due to 
its ability to efficiently track targets following linear or non-linear trajectories. The 
framework GA-VESPA is from prior work [12] and uses GA for exploration across 
sensor positions and orientations simultaneously, with the YOLOv3 object detector 
and EKF fusion algorithm. Frameworks GA-POD and GA-POF use GA for a more



640 J. Dey and S. Pasricha

comprehensive exploration of the design space. GA-POD simultaneously explores 
the sensor positioning, orientation, and object detectors, with a fixed EKF fusion 
algorithm. GA-POF simultaneously explores the sensor positioning, orientation, and 
sensor fusion algorithm, with a fixed YOLOv3 fusion algorithm. 

Figure 7a depicts the average cost of solution populations (lower is better) for 
the BMW-Minicooper across the different frameworks plotted against the number 
of iterations, with each exploration lasting between 80–100 h. It can be observed 
that GA-PO performs better than GA-OP, which confirms the intuitive importance 
of exploring sensor positioning before adjusting sensor orientations. GA-VESPA 
outperforms both GA-PO and GA-OP, highlighting the benefit of co-exploration 
of sensor position and orientation over a local sequential search approach used in 
GA-PO and GA-OP. GA-POD and GA-POF in turn outperform these frameworks, 
indicating that decisions related to object detection and sensor fusion can have 
a notable impact on perception quality. GA-POD terminates with its solution set 
having a lower average cost than GA-POF, which indicates that co-exploration of 
object detection and sensor placement/orientation is slightly more effective than 
co-exploration of sensor fusion and sensor placement/orientation. Our proposed 
GA-PASTA framework achieves the lowest average cost solution, highlighting the 
tremendous benefit that can be achieved from co-exploring sensor position/orien-
tation, object detection, and sensor fusion algorithms. Figure 7b summarizes the 
objective function cost of the best solution found by each framework, which aligns 
with the population-level observations from Fig. 7a.

The comparative analysis for the BMW-Minicooper was repeated three times 
with different initializations for all six frameworks, and the results for the other two 
runs show a consistent trend with the one shown in Fig. 7. Note also that the relative 
trend across frameworks observed for the Audi-TT is similar to that observed for 
the BMW-Minicooper, and thus the results for the Audi TT are omitted for brevity. 

In the next experiment, we explored the efficacy of different design space 
exploration algorithms (GA, DE, and FA; see Sect. 4.4) to determine which 
algorithm can provide optimal perception architecture solutions across varying 
vehicle models. Figure 8 shows the results for the three variants of the PASTA 
framework, for the Audi-TT and BMW-Minicooper vehicles. The best solution 
was selected across three runs of each algorithmic variant (variations for the best 
solution across runs are highlighted with confidence intervals, with bars indicating 
the median). It can be seen that for both considered vehicle models the FA algorithm 
outperforms the DE and GA algorithms. For Audi-TT, the best solution found by 
FA improves upon the best solution found with DE and GA by 18.34% and 14.84%, 
respectively. For the BMW-Minicooper the best solution found by FA outperforms 
the best solution found by DE and GA by 3.16% and 13.08%, respectively. Figure 
9a depicts the specific sensor placement locations for each vehicle type, with a 
visualization of sensor coverage for the best solutions found by each algorithm 
shown in Fig. 9b.

Finally, in our quest to further improve perception architecture synthesis in 
PASTA, we focused on a more nuanced exploration of the object detector design 
space. We selected the FA search algorithm due to its superior performance over
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Fig. 7 (a) Comparison of perception architecture exploration frameworks; (b) Cost of best  
solution from each framework

GA and DE, and modified FA-PASTA to integrate a neural architecture search 
(NAS) for the YOLOv3 object detector, with the aim of further improving YOLOv3 
accuracy across drive cycles while maintaining its low detection latency. Our 
NAS for YOLOv3 involved transfer learning to retrain network layers with a 
dataset consisting of 6000 images obtained from the KITTI dataset, using the open 
source tool CADET [36]. The NAS hyperparameters that were explored involved
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Fig. 8 Comparison of three variants of PASTA framework with genetic algorithm (GA), differen-
tial evolution (DE), and Firefly algorithm (FA) 

Fig. 9 (a) Sensor placement for best solution found with FA algorithm (top yellow vehicle: BMW-
Minicooper, bottom red vehicle: Audi-TT) (top); (b) Sensor coverage for best solutions found by 
GA, DE, and FA search algorithms (bottom)

the number of layers to unfreeze and retrain (from a total of 53 layers in the 
Darknet-53 backbone used in YOLOv3; Fig. 10a), along with the optimizer learning 
rate, momentum, and decay. The updated variant of our framework, FA-NAS-
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Fig. 10 (a) YOLOv3 object detector architecture with Darknet-53 backbone network that was 
fine-tuned using neural architecture search (NAS); (b) results of integrating object detector NAS 
with PASTA 

PASTA, considered these YOLOv3 hyperparameters along with the sensor positions 
and orientations, and sensor fusion algorithms, during iterative evolution of the 
population of candidate solutions in the FA algorithm.
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Figure 10b shows the results of this analysis for the two vehicles considered. 
FA-PASTA is the best performing variant of our framework (from Fig. 8), while 
FA-NAS-PASTA is the modified variant that integrates NAS for YOLOv3. It 
can be observed that fine tuning the YOLOv3 object detector during search 
space exploration in FA-NAS-PASTA leads to notable improvements in the best 
perception architecture solution, with up to 14.43% and 21.13% improvement in 
performance for the Audi-TT and BMW-Minicooper, compared to PASTA-FA. 

6 Conclusions 

In this chapter, we propose an automated framework called PASTA that is capable of 
generating perception architecture designs for modern 
semi-autonomous vehicles. PASTA has the ability to simultaneously co-optimize 
locations and orientations for sensors, optimize object detectors, and select sensor 
fusion algorithms for a given target vehicle. Our experimental analysis showed how 
PASTA can synthesize optimized perception architecture solutions for the Audi 
TT and BMW Minicooper vehicles, while outperforming multiple semi-global 
exploration techniques. Integrating neural architecture search for the object detector 
in PASTA shows further promising improvements in solution quality. Our future 
work will explore how to integrate PASTA with machine learning based techniques 
for anomaly detection [38–43] and robust vehicle network scheduling [42–44] in  
semi-autonomous vehicles. 
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1 Concept 

The transportation sector has grown to become the leading contributor to greenhouse 
gas emissions, accounting for 36% of U.S. carbon emissions in 2021 [33]. Myriad 
emissions-reduction targets at all levels of government and industry are set to take 
effect in the coming decades and will require rapid reductions in transportation 
emissions, and therefore, to transportation fuel consumption. The emissions of 
vehicles powered by combustion can be reduced in the near term by improving 
their fuel efficiency, which is typically measured as Fuel Economy (FE). Common 
examples of technologies used to increase FE include engine sizing, advanced 
engine control, friction/mass/drag reduction, and powertrain electrification [13]. 
We focus on a category of controls-based FE improvement technologies, Optimal 
Energy Management Strategy (Optimal EMS), which can theoretically enable FE 
improvements of up to 30% for Hybrid Electric Vehicles (HEV) under conditions 
of ideal prediction and actuation [5]. 

An Optimal EMS is the application of optimal control to vehicle powertrain 
operation with the objective of minimizing fuel consumption (equivalently, maxi-
mizing FE). Computation of an Optimal EMS leverages predictions of future states 
of the vehicle, which are made based on information that may be, for example, 
gathered by sensors on the vehicle, obtained via communications with other vehicles 
and infrastructure, or learned based on historical driving data. The Optimal EMS 
technique was first published by Lin et al. [19], who derived the globally optimal 
control using Dynamic Programming (DP) for a hybrid electric truck. Since then, 
researchers have investigated stochastically robust strategies [20, 22, 24, 35, 36] as  
well as fast computation strategies [10, 11, 16, 23, 25] with the goal of progressing 
this technology toward commercial implementation. The technology has still not 
been realized commercially using such strategies, due in part to the computational 
cost of making predictions and calculating optimal control strategies in real 
time. 

We conceive and test a novel method to realize Optimal EMS implementation. 
Instead of using a real-time computed non-globally-optimal EMS such as stochastic 
dynamic programming, equivalent consumption minimization strategy (ECMS), or
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a heuristic method, we use DP to compute globally optimal EMS in advance. 
In effect, this enables exchanging infeasible processing power requirements for 
potentially feasible memory requirements, improving the feasibility of commercial 
implementation. Furthermore, we target the strategy to one category of driving 
events, those in which the vehicle is accelerating from one speed (often zero) to 
another, or Acceleration Event (AE). We choose to target AE because they can be 
simpler to predict than general driving, and because they account for a high fraction 
of fuel consumption relative to their time durations. Thus, we refer to this strategy 
as Predictive Acceleration Event (PAE) control. 

In this chapter, we summarize several years of research defining and testing the 
PAE method, which have resulted in a series of publications, theses, and patents 
[1, 4, 5, 7, 21, 26, 27, 31, 32]. The current section includes a brief summary of the 
simulation investigations that established the feasibility and potential of the PAE 
strategy. Details of the process for implementing the PAE strategy in a physical 
vehicle are described in Sect. 2, and results from physical testing are presented in 
Sect. 3. 

1.1 Optimal EMS Mechanism 

HEV achieve higher FE than conventional internal-combustion-engine-only vehi-
cles in part because they enable the Internal Combustion Engine (ICE) to operate at 
high efficiency more of the time. This can be conveniently visualized using a Brake 
Specific Fuel Consumption (BSFC) map, which illustrates the ICE fuel consumption 
efficiency as a function of engine rotation speed and supplied torque (Fig. 1). HEV 
leverage their multiple degrees of freedom for power sourcing—power can be 
supplied by the ICE or the Electric Motor (EM)—to adjust the BSFC “operating 
points” in ways that pure ICE vehicles cannot. With a given power request, the only 
means available to ICE vehicles for adjusting torque and/or speed of the engine is 
to change the gear ratio of the transmission. In contrast, HEV enable much more 
flexibility because the EM can supply the difference, positive or negative, between 
the power supplied by the ICE and the requested propulsion power. For example, 
when operating at low powers/speeds, an HEV can avoid operating the engine at low 
efficiency either by using the EM to supply all the power, or by running the engine 
at high power and efficiency to supply propulsion power in addition to regeneration 
power through the EM.

Optimal EMS leverage predictions to further this FE improvement approach. In 
addition to modifying the BSFC operating points during each instant, an Optimal 
EMS aims to modify BSFC operating points over time. For the PAE strategy, the 
time horizon is on the order of tens of seconds (the duration of an AE). If the 
speed trajectory of the AE is known in advance, it is possible to use an optimization 
method such as DP to obtain a time series of BSFC operating points that supply the 
power needed to complete the AE while globally minimizing fuel consumption.
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Fig. 1 BSFC map characterizes the fuel efficiency of an internal combustion engine (grams of fuel 
per kWh supplied) as a function of speed and torque

Table 1 Significant 
parameters defining the 2010 
Toyota prius model 

m 1380 kg .Afront 2.6005 m. 2

.PICE,max 73 kW .Crr 0.008 

.mfuel .f (TICE, ωICE)[17] .rf d 3.27 

.ωtrac,max 10,000 rpm .rwheel 0.317 m 

.ωgen,max 13,500 rpm .Cd 0.250 

.Qbatt,0 6.5 Ah .Voc 201.6 V 

.Nsun 30 .Nring 78 

.Rint 0.373 .�

1.2 Model Details 

The Toyota Prius has consistently achieved the highest FE in its class [34], so 
it is an ideal vehicle to model for investigations of new HEV FE improvement 
techniques. The 2010 model was chosen for its commercial prevalence and publicly 
available parameter information. A model of the 2010 Toyota Prius, derived using 
the Autonomie modeling software, has been shown to correlate closely with real-
world performance [18]. The referenced model is not publicly available, so a model 
was developed and validated by modifying a 2004 Toyota Prius model included 
with Autonomie with 2010 Prius parameters. Table 1 is a list of key parameters 
defining the model, where .m = vehicle mass; .PICE,max = maximum engine power; 
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.mfuel is the fuel consumption model; .TICE = engine torque; .ωICE = engine speed; 

.ωtrac,max is the maximum traction motor speed; .ωgen,max is the maximum generator 
motor speed; .Qbatt,0 is the initial battery capacity; .Nsun and .Nring are the number of 
teeth on the sun and ring gears in the planetary gearset; .Rint is the battery’s internal 
resistance; .Afront is the frontal area of the vehicle; .Crr = coefficient of rolling 
resistance; .rfd = final drive ratio; .rwheel = wheel radius; .Cd = drag coefficient; 
and .Voc = open circuit battery potential. 

The Autonomie software produces high fidelity models that are useful for 
realistic modeling of a variety of vehicle signals, including power split control 
in a HEV, but are computationally expensive in simulation. Even if disregarding 
concerns about long computation times, it would be infeasible to use the Autonomie 
model with DP to derive the Optimal EMS, because states in Autonomie are 
dependent on preceding states, which is incompatible with the DP formulation 
(described in Sect. 1.2.2). Instead, the Autonomie model was used only to simulate 
the Baseline EMS engine control strategy, which was used as an input to a lower 
fidelity “power split” vehicle model for the remaining vehicle signal calculations. 
Details on the original development of the power split model are in a previous 
publication from the author’s lab group [4] and reproduced briefly here. 

The power split model is based on equations describing vehicle dynamics, a 
modeling approach that is well-defined in the literature [2, 12, 17, 28]. The power 
required to propel the vehicle at velocity v must be provided as a sum of engine 
power and electric propulsion system power: 

.Pprop = Fpropv = Pelec + PICE (1) 

.PICE is an input to the power split model, so the equation is rearranged to solve 
for .Pelec: 

.Pelec = Fpropv − PICE (2) 

.Fprop effects vehicle acceleration and counteracts the forces opposing vehicle 
motion: 

.Fprop = mv̇ + Crrmg + 1

2
Cdρairv

2Afront (3) 

where . ̇v is the acceleration of the vehicle, calculated using a numerical derivative; g 
is acceleration due to gravity .

(
9.81 m

sec2

)
; and .ρair is the density of air .

(
1.1985 kg

m3

)
. 

For this research, grade angle is assumed to be zero. 
.Pelec is served by the battery, with an efficiency penalty modeled as a function of 

torque and speed of the generator and traction motors: 

.ηelec = f (ωgen, Tgen, ωtrac, Ttrac) (4)
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as defined by efficiency maps supplied with the Autonomie model. .ηelec is enforced 
such that energy is always lost due to inefficiencies in the electric system, whether 
charging or discharging: 

.Pbatt = ηelecPelec if Pelec ≤ 0. (5) 

Pbatt = 1

ηelec
Pelec if Pelec > 0 (6) 

where positive values of .Pbatt represent discharging. At timestep i, battery State of 
Charge (SOC) is calculated for the next timestep .i +1 using the following equation: 

.SOCi+1 = SOCi − Voc − √
V 2

oc − 4PbattRint

2RintQbatt,o
�t (7) 

To enable fast computation when solving the DP formulation, fuel consumption 
is modeled using a cubic response surface [15] representation of a publicly available 
BSFC map for the Generation III Prius [17]: 

. BSFC
( g

kWh

)
= A1 + A2ωICE + A3TICE + A4ωICETICE + A5ω

2
ICE+

A6T
2

ICE + A7ωICET 2
ICE + A8ω

2
ICETICE + A9T

3
ICE (8) 

where all A values are fitted constants. This BSFC surface has an ideal operating 
line [14] that represents the instantaneous optimal FE operating point (in terms of 
torque and speed) as a function of engine power. The fuel consumption during a 
timestep . �t is thus 

.mfuel (grams) =
(

BSFC × 1 h

3 s

)
PICE�t (9) 

where .PICE is in kW and . �t is in seconds. 
The angular speeds of powertrain components are constrained by a planetary 

gearset: 

.ωICE = ωgen
ρ

1 + ρ
+ ωring

1

1 + ρ
(10) 

where .ρ = Nsun
Nring

. Speeds are also constrained by limits on the electric motors, given 
in Table 1. The ring gear speed is linearly related to vehicle speed: 

.ωring = rfd

rwheel
v (11)
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The model’s powertrain is controlled by one of two different control strategies: a 
Baseline EMS, meant to simulate stock vehicle performance, and an Optimal EMS, 
derived via DP to optimize FE over a predicted driving schedule. 

1.2.1 Baseline EMS 

The Autonomie model is simulated over a drive cycle .v(t), defining the Baseline 
EMS .PICE(t), which also implicitly defines .Pelec(t) via Eq. (2) . The power split
model is used to calculate the remaining outputs, including .mfuel, SOC, and FE. 
This is illustrated in Fig. 2a. 

To validate the Baseline EMS, the process in Fig. 2a was applied to three standard 
Environmental Protection Agency (EPA) FE test schedules and the FE results, 
corrected for change in SOC using a method standardized by Society of Automotive 
Engineers [30], were compared with experimental results for the 2010 Toyota Prius 
measured by Argonne National Laboratory [3] (Table 2). Additional validation steps 
included by comparing fuel consumption, SOC, and engine speed traces to actual 
data. These validations are documented in [31].

Fig. 2 FE simulation method for (a) Baseline EMS and (b) Optimal EMS (exact schedule 
prediction) 



656 S. White et al.

Table 2 FE results demonstrating validation of Baseline EMS model for FE investigations 

EPA drive cycle Simulated FE Measured FE % Difference 

UDDS 76.4 mpg 75.6 mpg . +1.1% 

US06 45.0 mpg 45.3 mpg . −0.6% 

HWFET 69.1 mpg 69.9 mpg . −1.1% 

1.2.2 Optimal EMS 

The Optimal EMS is derived using deterministic DP, which uses backwards 
recursion to avoid solutions that are not optimal as defined by the Bellman Principle 
of Optimality [8, 9]. The DP scheme used for this study was detailed and validated 
in a previous publication [4] and will be described only briefly in this section. 

In general, DP is used to compute optimal control as a function of system state by 
minimizing a cost function, subject to system constraints. For this study, the optimal 
control variable is engine power .PICE, which also implicitly defines .Pelec via Eq. (2) ;
the state variable is battery SOC; and the cost function is fuel consumption .mfuel. 
For the purposes of the DP scheme, vehicle velocity trace .v(t) is an exogenous input 
upon which the state variable, SOC, partially depends. The state and cost are given 
by the following equations: 

.SOC(k + 1) = SOC(k) + f (SOC, PICE, v, k)�t (12) 

.Cost =
N−1∑
k=0

mfuel + W
(
SOCf − SOC(N)

)2 (13) 

where W is a penalty weight arbitrarily set at 10,000, k is the timestep index, N is the
number of timesteps, and . �t is the size of a timestep. Equation (12) incorporates
Eqs. (3) –(7) and (10) –(11), and Eq. (13) incorporates Eqs. (8) –(9) . The allowable
state and control spaces are

.40 % ≤ SOC(k) ≤ 80 % (k = 0, . . . N) . (14) 

0 kW ≤ PICE(k) ≤ 73 kW (k = 0, . . . N − 1) (15) 

To summarize, the DP scheme is used to calculate engine power (discretization 
.�PICE = 0.1 kW) for every feasible battery SOC (discretization .�SOC = 0.02%) 
for every timestep in a drive cycle (discretization .�t = 0.4 s) to minimize fuel 
consumption for a velocity trace .v(t) and desired .SOCf . In future studies, other 
measurements (e.g. battery temperature) and cost variables (e.g. battery life impacts) 
may also merit inclusion but were not included in this research. 

The output of DP for a velocity trace can be visualized as a two-dimensional 
matrix of engine power, where row indices represent values of SOC and column 
indices represent timesteps (see Fig. 3a). For any initial SOC (.SOCi), the DP matrix
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Fig. 3 (a) Illustration of matrix generated by dynamic programming algorithm; (b) Illustration of 
matrix with conversion of time index to velocity index 

can be used as a lookup table to generate the optimal control solution . PICE(t)

achieving the driving schedule .v(t) that results in a desired .SOCf . 

1.3 Pre-Computing Optimal EMS for Approximate AE 
Prediction 

Because the matrix generated via DP is a discrete array of optimal . PICE(k, SOC)

for timesteps .k = 0...N , it can be used as a lookup table for a different drive cycle 
with the same number of timesteps. This can yield a near-optimal solution if the new 
drive cycle is similar to the one to which DP was applied. However, the constraint 
of identical durations makes this method challenging to apply in practice. 

If optimal control is only applied to AE, there is a way around the constraint of 
equal duration. AE are monotonically increasing segments of .v(t), so they can be 
indexed using velocity. This enables the DP matrix to be converted from a mapping 
with respect to time and SOC (.PICE(k, SOC)) to a mapping with respect to velocity 
and SOC (.PICE(vk, SOC)), as shown in Fig. 3. With this conversion, it is possible 
to derive a DP matrix for one AE (the “expected AE”) and apply it to any other AE 
(“actual AE”) with the same velocity range as the expected AE, regardless of any 
difference in duration. Whereas drivers are not necessarily constrained to repeat AE 
with equal time durations, accelerator pedal traces, or other attributes, traffic laws 
encourage repetition of AE with equal velocity ranges (for example, 0–25 mph AE 
on neighborhood streets). Thus, a single DP matrix can serve as a lookup table for 
improved control of any AE with a similar velocity range to the AE for which it is 
computed.



658 S. White et al.

In our simulations, a global upper limit to FE during a full drive cycle (containing 
one or more AE) is achieved by applying DP to compute optimal control for the full 
velocity profile of a drive cycle, a scenario we refer to as “optimal cycle control.” 
When a DP matrix is computed for an AE and applied to control that same AE, 
we refer to this implementation as “optimal AE control.” (By assuming knowledge 
of an exact velocity profile, these control scenarios simulate situations in which an 
AE or a full drive cycle is predicted exactly and DP is applied in real time. Due 
to sensing, predicting, and computing limitations, we assume these scenarios to be 
infeasible in practice.) When, instead, a DP matrix is computed for a category of 
AE (defined by its starting and ending speeds) and applied to another member of 
that category, this simulates a disturbance to the control loop. Thus, we refer to it as 
“disturbed AE control.” 

1.4 Drive Cycle Simulations 

A variety of driving schedules, or drive cycles, were simulated to investigate the 
feasibility of the PAE strategy in real driving contexts. Because city driving is 
typically characterized by many low-speed AE, the  PAE strategy demonstrates 
highest FE improvement potential when applied to city driving cycles. In this 
section, we present simulation results for a standard EPA city cycle, the New York 
City Cycle (NYCC). These simulations demonstrate that FE improvement potential 
is high for both Optimal Cycle and Optimal AE control, and Disturbed AE FE is 
nearly as high as Optimal AE FE. Most likely as a result of the low-aggression 
driving common to these cycles, effective fuel consumption reduction is achieved 
in the vast majority of AE, leading to high FE gains. The simulated FE results are 
plotted in Fig. 4 and selected simulation outputs are plotted in Fig. 5.

The Disturbed Optimal EMS achieves a significant portion (77%) of the FE 
improvement achieved by Optimal AE control and 35% of the FE improvement 
achieved by Optimal Cycle control. With the exception of some instances of high 
engine power for SOC correction, the Disturbed engine power trace appears to 
follow the Optimal AE engine power trace closely, indicating that the categorization 
scheme sufficiently limits prediction error to provide a close match between the 
Expected and Actual Optimal EMS. 

The FE results for all seven drive cycles simulated, sorted in order of increasing 
Disturbed AE FE improvement, are given in Fig. 6. The cycle for which Disturbed 
AE control is least successful is US06, the aggressive cycle; the next three are the 
highway cycles; and the cycles with the best Disturbed AE performance are the city 
cycles. This is one indication that Disturbed AE control is most successful in city 
driving and less successful with increasing aggressiveness.
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Fig. 4 FE results for NYCC cycle. (a) NYCC cycle FE results. (b) NYCC cycle FE improvement 
results

2 Implementation 

In order to physically validate the effectiveness of PAE control, a Parallel-3 (P3) 
HEV was developed from a stock 2018 Toyota Tacoma [1, 21]. In a P3 HEV, 
the EM is located in between the transmission and the differential. This vehicle 
configuration was chosen for a number of reasons. The first was the relative ease of 
manufacturing in comparison to the other types of hybrid configurations. This type 
of powertrain was also comparatively easier to implement a supervisory controller 
in. The P3 configuration allowed the main structure of the vehicle to remain 
relatively unchanged. 

This modification added an electric motor between the transmission and the dif-
ferential as well as the necessary components to support the electrified powertrain.
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Fig. 5 Simulation outputs for the NYCC cycle

This included the Inverter, Battery, Battery Management System (BMS), Hybrid 
Supervisory Controller (HSC), Toyota Gateway, On-Board Charger (OBC), and the 
needed 12 volt powered components to control and provide thermal regulation of 
the components. 

Central to this project was the desire to implement PAE control in a manner 
which fit industry norms. For this reason, in addition to the P3 conversion, the group 
elected to accomplish PAE control by leveraging the vehicle’s existing distributed 
computing network and adding minimal computing load to the vehicle. For this 
reason, the group elected to control the vehicle using only one additional controller, 
the HSC. The  HSC operated as an Input-Processing-Output (IPO) model where it 
converted input signals to output signals to control the vehicle’s behavior. A 112 
pin Woodward Motohawk (ECM-5644-112 SECM-112) was used as the hardware 
for the HSC. This controller is a typical firmware based automotive controller 
which might be used on a commercial vehicle. Matlab’s Simulink software was 
the development environment for this program allowing for the use of Woodward’s 
Motohawk rapid controller development software. This software was used to build 
the HSC code that was compatible with the Motohawk hardware. It also allowed for 
values within the controller to be viewed and calibrated in real time, on the vehicle.
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Fig. 6 FE results for all seven cycles. (a) FE for all cycles for all control strategies. (b) 
Improvement over baseline for each control strategy
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The selected architecture imposed a series of limitations. When developing the 
HSC, the following constraints were observed and worked around:

• The HSC’s storage capacity was too small to contain a full Optimal Control 
Matrix (OCM).

• The signals from the Toyota Gateway were the only values that could be used 
from the base vehicle.

• The BMS was an unreliable source of information, especially with producing 
SOC values.

• The driver could not consistently reproduce exact AEs under manual control 
using the accelerator pedal input.

• The HSC had no signal to differentiate between the vehicle’s accessory mode and 
a fully on mode.

• The engine could not be controlled directly by torque requests.
• The Brake Pedal Position Sensor (BPPS) did not output non-binary values. 

Figure 7 shows a simplified structure of the HSC and the flow of signals through 
the controller. It shows the signals that occurred when the vehicle was turned on 
and off as well as the signals that occurred continuously while the HSC was on. 
This flowchart illustrates the basic outline of the HSC code. It begins with the 
input signals and ends with the output signals. The flowchart shows the connection 
between power mode, vehicle state, pedal logic, torque split, ICE control, inverter 
and EM control, battery control, and SOC calculations. 

With this architecture in mind, a baseline and PAE control were developed. 

Key 

I/O Signals 

Main Code Block 

Continuous Signal 

Vehicle On/Off Signal 

Pedal Logic Torque Split 

ICE Control 

Inverter and EM 
Control 

Input Signals Output Signals 

Power 
Mode 

Vehicle 
State 

Battery Control 

SOC Calculations 

Fig. 7 Simplified controller flowchart
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2.1 Baseline Torque Split Control 

A load following torque split strategy was chosen to act as the Baseline Torque 
Split Method. The load following method calculated the ICE torque first, compared 
that torque value to the driver’s requested torque, and filled in the difference with 
EM torque. This method worked in all driving scenarios, and was calculated on the 
vehicle. No calculations needed to happen before the vehicle was driven. However, 
this strategy did not provide an optimal torque split for the AE. The flowchart for 
the Baseline strategy can be found in Fig. 8. 

This strategy was composed of two main components: ICE calculations and EM 
calculations. The ICE calculations started with the minimum of the driver requested 
torque and maximum allowable torque for the given engine speed being selected for 
the ICE torque output. The ICE torque output was then subtracted from the driver 
requested torque to obtain the EM torque request value. 

Since this was a P3 HEV, and the ICE and EM were located on opposite sides of 
the transmission, the EM torque request value must be multiplied by the vehicle gear 
ratio to obtain the post-transmission EM torque request value. The post-transmission 
value and maximum allowable EM torque are then compared, with the smaller value 
selected to be the EM torque output. 

2.2 PAE Torque Split Control 

Two PAE methods were used to calculate torque split values: on-vehicle torque 
computation through an optimal torque split matrix and pre-computed torque traces. 
The optimal torque split matrix, used for the on-vehicle torque split computations,
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was obtained from the PAE model, as discussed in Sect. 1.3. The pre-computed 
torque traces were also obtained as an output from this model. 

agraphOCM Torque Computation This torque split method required the AEs to 
be pre-computed to generate an OCM of torque split output values. This OCM was 
then added to the controller, so that the engine torque could be determined from 
the SOC and vehicle speed while performing an AE. Figure 9 shows the simplified 
flowchart of this method. 

In this figure, it can be seen that the OCM requires three inputs: vehicle velocity, 
transmission gear, and the SOC of the High Voltage (HV) battery. This matrix then 
output the ICE torque which, when subtracted from the driver requested torque, 
produces the pre-transmission EM torque value. This value then was multiplied by 
the transmission gear to convert to a post-transmission EM torque value. 

agraphPre-Computed Torque Trace The Pre-Computed Torque Trace involved 
generating the ICE and EM PAE torque traces in advance and using the traces to 
control the torque instead of the driver’s Accelerator Pedal Position (APP) input. 
Figure 10 shows the flowchart for this PAE method. 

As seen in the figure, the current time was input into lookup tables that contained 
ICE and EM torque traces which converted the time value to a torque output. After 
each AE, the driver reset the current time value back to zero via a manual switch, 
located on the vehicle’s dashboard. A second dash switch was used to trigger the 
block that contains the torque trace logic.
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3 Results 

3.1 PAE Strategy Results 

The bulk of the Baseline and PAE comparison testing was completed at the 
Christman Airfield, a 4000 foot long runway that was used as a Colorado State 
University (CSU) testing facility. This airfield was used for closed-course, straight-
line testing. It runs in a north-south line, and every test that was completed with this 
vehicle was in the north direction. This reduced the effects of the slight slope of the 
runway. 

The PAE control strategy was tested using the OCM method and the torque 
trace strategy. The OCM method, reduced in size and scope due to HSC memory 
limitations, was discovered to output torque split values that didn’t prioritize 
recharging the battery to the starting SOC. Instead, it would command large, positive 
torque outputs from the EM. 

Figure 11 shows one of the tests completed with the OCM generating the torque 
split between the EM and ICE for the AE. As seen in the figure, the EM torque 
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Fig. 11 Results of PAE using OCM method. (a) Torque output. (b) Vehicle speed trace. (c) SOC  
trace
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Fig. 12 Vehicle speed trace 
used to generate 
pre-computed ICE and EM 
torque for baseline and PAE 
method 
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Table 3 PAE testing results Mean baseline FE Mean PAE FE % Improvement 

11.820 16.455 0.282 

Table 4 PAE testing results statistics 

Number of runs St.D. of baseline FE St.D. of PAE FE Significance (p-value) 

5 0.233 0.5267 6.0e-9 

was applied at a much larger amount than the ICE torque. If the OCM was working 
correctly here, the EM torque output would have been negative during the AE to 
increase the SOC to ensure that the SOC at the beginning and end of the AE were 
equal. Ultimately, DP based control is subject to discretization and below a certain 
point, the control will no longer function optimally. The memory limitations on the 
controller were sufficient to make the matrix method infeasible. 

In torque trace method, ICE and EM torque were pre-calculated using the speed 
trace from Fig. 12. For Baseline, APP signal that would result in the speed trace 
in Fig. 12 was generated and used as an input to control the vehicle behavior in 
test. For PAE, ICE and EM torque that would result Fig. 12 was generated and used 
as an input instead. In contrast, the torque trace method generated more favorable 
results as the vehicle was to perform as expected when pre-computed torque traces 
were fed into the HSC. for this reason the torque trace method was selected for data 
collection. 

3.2 PAE vs Baseline Results 

PAE control was tested for an AE of 0–30 kph. Results for these events are shown 
in Tables 3 and 4. 

From the tests, it was found that the torque trace PAE method improved the FE 
by an average of 28.17%. To get to this number, the amount of energy used for the 
time that it took to complete the AE was converted into a gallon equivalent amount. 
This was then combined with the fuel usage of the ICE and was used to divide the
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Fig. 13 Engine speed vs engine torque under PAE method. Red dots represent engine behavior 
during PAE operation. (a) PAE AE 1. (b) PAE AE 2 
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Fig. 14 Engine speed vs engine torque under baseline method. Red dots represent engine behavior 
during Baseline operation. (a) Baseline AE 1. (b) Baseline AE 2 

distance driven to obtain the Miles Per Gallon (MPG) value. This value could then 
be used for comparison. For two PAE AEs and two Baseline AEs, the engine torque 
was plotted against the engine speed on the BSFC map developed previously. This 
can be seen in Figs. 13 and 14. 

The PAE controlled AE shown in Fig. 13a spent 42.9% of the event in the darkest 
blue, or most fuel efficient zone. Figure 13b shows the next  PAE AE which spent 
43.7% of the time in that state. Figure 14a’s AE, which used Baseline control, spent 
29.6% of the event in the dark blue zone. The Baseline controlled AE in Fig. 14b 
spent 29.1% in the fuel efficient zone. Using this information with the BSFC plots, 
it can be seen that the AEs using PAE control spend more time with the ICE in the 
darkest blue, or most fuel efficient, section of the map than the Baseline AEs. The  
PAE control method was commanding the ICE into the more fuel efficient states 
during the AE allowing the vehicle to improve the FE by an average of 28.17%.
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4 Conclusion 

As outlined in Sect. 1, much research has been conducted into the theoretical use 
of optimal control for torque split in HEVs. Nearly every study of predictive 
powertrain control to date has used complicated and computationally expensive 
ways to optimize the operation of the powertrain [6, 29]. These studies include 
methods like DP, machine learning, and model predictive control to determine the 
optimal control for the vehicle. 

In this study, a map-based control method, based on offline learning was used 
to realize a pseudo-optimal control that was robust to disturbances and realized 
measurable fuel economy gain. The control system was able to use the pre-computed 
PAE values as a lookup table to determine the optimal torque output for the ICE 
and EM. This meant that by pre-computing the PAE map, the PAE control could 
occur on the Motohawk control hardware with the rest of the supervisory control 
algorithm. 

Testing this vehicle marked the first time in literature that a test vehicle was able 
to demonstrate the FE benefits of predictive control algorithms [6]. The previous 
literature has calculated, modeled, and simulated predictive control hypothesizing 
the fuel economy benefits while this paper demonstrated the actual improvements 
in FE for a PAE control when compared to a baseline control. 

This real-world validation is significant as, despite research efforts, currently, 
all of the HEVs on the road currently use instantaneously optimized control to be 
able to control the powertrain of the vehicle [6]. PAE is an implementable way of 
improving the FE of HEVs, using information from the predicted vehicle trajectory. 
This research demonstrated that these strategies were feasible and could improve 
the FE of HEVs. 
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Learning-Based Social Coordination to 
Improve Safety and Robustness of 
Cooperative Autonomous Vehicles in 
Mixed Traffic 

Rodolfo Valiente, Behrad Toghi, Mahdi Razzaghpour, Ramtin Pedarsani, 
and Yaser P. Fallah 

1 Introduction 

Autonomous vehicles (AVs) have been an attractive research area for decades, as 
it offers the potential to generate more efficient and safer road networks [1]. The 
adoption of AVs will not become a reality until they can co-exist with humans, as 
part of a complex social system. In order to maximize the potential of AVs and 
optimize for safety and traffic efficiency of all the vehicles on the road, AVs have to 
coordinate and influence the other agents [1–3]. 

We recognize the importance of social interaction and behavior in safety and 
reliability and identify two important research directions. First, AVs must be social 
actors and behave predictably and safely. Driver behavior is shaped by habits and 
expectations in the traffic environment. The vehicle’s interaction will be influenced 
by the way AV decisions are perceived. Therefore, the ability of AVs to drive 
in a socially obedient manner is critical for the safety of passengers and other 
vehicles because predictable behavior allows humans to comprehend and respond 
appropriately to the AV’s actions. Second, AVs must be social-aware and learn 
to identify social cues of egoism or altruism, understand the behavior of human 
drivers and learn how to interact and coordinate with all agents in a mixed traffic 
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Fig. 1 (a) Interaction of AV-HV to benefit a HV: Altruistic agents create alliances and direct 
the behavior of HVs to improve traffic flow and prevent dangerous circumstances. AV1 and AV2 
can create a formation to guide HV2 and provide a route for HV1, allowing the HV to change 
lanes and navigate to the exit ramp. (b) Interaction of AV-AV to benefit a HV: The goal of HV1 
is to integrate onto the highway. Egoistic AVs disregard the merging vehicle and do not make 
room for it, possibly resulting in dangerous situations, however, if they exhibit sympathy for the 
merging HV, they can compromise on their own interest to create a safe path for HV1 to merge 
into the highway. (c) Interaction of AV-AV to benefit another AV: The goal of AV1 is to exit the 
highway. If AV2 acts selfishly, AV1 may miss the exit and be unable to complete its task. However, 
if AV2 and AV3 consider AV1’s mission and act altruistically, they can free up space in the platoon 
by AV2 decelerating and AV3 accelerating, allowing AV1 to safely take the exit 

environment, adapting and influencing the HVs behaviors to optimize for a social 
utility that improves traffic flow and safety. 

In this chapter, we focus on social awareness challenges and seek a solution 
that can ensure the safety and robustness of AVs in the presence of human drivers 
with heterogeneous behavioral traits. Vehicle-to-vehicle (V2V) communication 
allows connected and autonomous vehicles (CAVs) to interact directly with their 
neighbors [4, 5]. By using V2V communication CAVs can create an extended 
perception that facilitates explicit cooperation among vehicles to overcome the 
limits of a non-cooperative agent [6–8]. While planning in a fully AV scenario is 
relatively easy to achieve, coordination in the presence of HVs is a significantly 
more challenging task, as the AVs not only need to react to road objects but also 
need to consider the behaviors of HVs [9–11]. 

In contrast to the individual non-cooperative approaches, we investigate the 
mixed-autonomy decision-making challenge from a multi-agent and social per-
spective. Rewarding AVs for adopting an altruistic behavior and taking into 
consideration the interests of other vehicles allows them to see the broad picture 
and find solutions that maximize the utility of the group. In addition to the potential 
benefits of altruistic decision-making in terms of safety and efficiency, altruism 
results in more societally advantageous outcomes [2]. Figure 1a demonstrates how 
a group of AVs can guide HV to increase safety and efficiency, while Fig. 1b and c 
show how AVs can collaborate to accomplish a social objective that benefits another 
HV or AV. 

Currently, AVs lack an understanding of human behavior and frequently act 
extremely cautiously to avoid collisions. This conservative behavior not only leaves 
AVs unprotected from aggressive HVs, but also results in unexpected reactions that 
confuse HVs, creating bottlenecks in traffic flow and causing accidents. It’s critical
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to distinguish between a human driver’s individual traits, such as aggressiveness, 
conservativeness, and risk tolerance, and their social preferences, such as egoism 
and altruism. Even though the two categories are related, they have distinctive 
natures and so behave differently in mixed traffic. An aggressive driver, for example, 
is not inherently egoistic or selfish, but their aggression may hinder their ability to 
collaborate with other drivers and participate in a socially desirable coexistence with 
AVs [3, 12, 13]. In the field of behavior planning for AVs in mixed-autonomy traffic, 
we identify two fundamental problems. First, human drivers differ considerably 
in their individual traits and social preferences, making AV behavior planning 
exceedingly difficult because it is difficult for the AV to foresee the type of behavior 
it would encounter when dealing with a human driver. Furthermore, relying on 
a real-time inference of HV behaviors is not always feasible because vehicle 
interactions can be brief, such as when two vehicles meet at an intersection. Second, 
driving requires complex interactions of agents in a partially observable and non-
stationary environment, as HVs do not follow a fixed policy and modify their 
policies in real-time in response to the actions of other vehicles. 

The integration of AVs into the real world requires them to address those 
challenges. Due to the differences in maneuverability and reaction time between 
AVs and HVs, a road shared by both becomes a competitive situation. In contrast 
with the full-autonomy case, here the coordination between HVs and AVs is not 
as straightforward since AVs do not have an explicit means of harmonizing with 
humans and are therefore required to locally account for the other HVs and AVs 
in their proximity. This dilemma intensifies if AVs act egoistically and optimize 
solely for their local utility. As an illustration, Figs. 2 and 3 demonstrate a highway 
exiting and merging scenario in mixed traffic. We consider a general setup where 
AVs and HVs with different behaviors coexist. Vehicles need to efficiently merge 
onto the lane or exit the highway without collisions. In an ideal cooperative 
environment, AVs should proactively decelerate or accelerate to provide sufficient 
room for vehicles to safely exit/merge and prevent hazardous situations, while also 
being resilient to various situations and behaviors and assuring safety in decision-
making [14]. For instance, in Fig. 2 (merging scenario) if AVs act egotistically, 
the merging vehicle must rely on the HV to slow down to allow it to merge. 
However, due to the unpredictability of HVs, relying solely on HVs might result in 
suboptimal or even dangerous circumstances. Therefore, if all AVs act egotistically, 
the merging vehicle would either be unable to join the highway or it will wait for 
an HV and risk cutting into the highway without knowing whether the HV will 
slow down. Nevertheless, if AVs act altruistically, they can coordinate to guide the 
traffic on the highway to allow for a seamless and safe merging. In particularly 
challenging driving scenarios, such altruistic AVs can achieve societally beneficial 
results without relying on or making assumptions about HVs behaviors.

To address these challenges, existing literature either depend on models of human 
behavior generated from pre-recorded driving datasets [15, 16] or define social 
utilities that can impose cooperative behavior among AVs and HVs [17]. Other 
works focus on rule-based methods that use heuristics and hand-coded rules to guide 
the AVs [18] or probabilistic driver modeling [19] learned from human driving data.
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Fig. 2 For a seamless and safe highway merging, all AVs must coordinate and account for the 
utility of HVs. (top) Egoistic AVs optimize only for their own utility, (bottom) Altruistic AVs 
consider also the HV’s utility

While this is feasible for simple situations, these methods become impractical in 
complex scenarios. Additionally, the human driver models learned in the absence 
of AVs, are not necessarily valid when humans confront AVs. This limits the 
application of the generated solutions, as they are frequently limited to the human 
behaviors with which AVs interacted during training. To account for this, several 
works in the literature adopt an excessively cautious approach when interacting with 
humans [20]. This strategy not only leaves the AVs vulnerable to other aggressive 
drivers, particularly in competitive situations, but it also causes traffic congestion 
and significant safety risks [1, 2]. 

On the other hand, data-driven methods such as reinforcement learning (RL) have 
received increased attention [21] as RL-based methods can learn decision-making 
and driving behaviors that are hard for traditional rule-based designs. However, the 
majority of the RL approaches are designed for a single AV, or try to handle the 
interaction between AVs and HVs either by predicting human behavior or by relying 
on the fact that humans are willing to collaborate or can be influenced to do so [15, 
22], which could compromise safety or lead to sub-optimal performance. Recent 
works consider social interactions of AVs and train altruistic AVs that learn from 
experience and influence HVs to optimize a social utility function that benefits all 
vehicles on the road [10, 23].
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Fig. 3 Highway exiting and merging scenarios with AVs (green) and aggressive HVs (red) sharing 
the road. Altruistic AVs must learn to cooperate to exit/merge successfully and safely while being 
adaptable to a variety of scenarios and HV behaviors

In contrast, we consider a data-driven multi-agent reinforcement learning 
(MARL) approach and let the autonomous agents implicitly learn the decision-
making process of human drivers only from experience, while optimizing for a 
social utility. By incorporating a cooperative reward structure into our MARL 
framework, we can train AVs that coordinate with each other, sympathize with 
HVs, and, as a result, demonstrate enhanced performance in competitive driving 
scenarios, such as highway exiting and merging. Despite not having access to 
an explicit model of the human drivers, the trained autonomous agents learn to 
implicitly model the environment dynamics, including the behavior of human 
drivers, which enables them to interact with HVs and guide their behavior. 

This research aims to create a safe and robust training regimen that allows AVs to 
collaborate and influence the behavior of human drivers to achieve socially desirable 
outcomes, regardless of HV individual traits and social preferences. We based our 
work on the following insights. First, we rely on a decentralized reinforcement 
learning architecture that optimizes for a social utility that learns from experience 
and exposes the learning agents to a wide range of driving. As a result, the agents 
become more resistant to human driver behavior and can handle cooperative-
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Fig. 4 An overview of our approach to leverage social awareness and coordination to improve the 
safety and reliability of CAVs. Our social-aware AVs learn from scratch not only to drive but also 
to understand the behavior of HVs and coordinate with them, they learn to adapt and influence 
HVs in a robust and safe manner 

competitive behaviors regardless of HV’s hostility or social preference. Second, a 
safety prioritizer is presented to minimize high-risk actions that could jeopardize 
driving safety. The safety prioritizer constrains the policy of cooperative AVs to 
ensure the safety of their behavior via masking the Q-states that lead to high-risk 
outcomes. Figure 4 shows an overview of our process. 

Our main contributions are summarized as follows: 

• We formulate the mixed-autonomy problem as a decentralized MARL problem 
and present an approach to training altruistic agents which utilizes a decentralized 
reward mechanism for achieving socially advantageous behaviors and takes 
advantage of a 3D convolutional deep reinforcement learning architecture to 
capture the temporal information in driving data. 

• A training algorithm is proposed to make AVs robust to different drivers’ behav-
ior and situations while producing socially desirable outcomes. We investigate 
the effect of HVs behaviors on our altruistic AVs agents and especially conclude 
that the higher the traffic aggressiveness, the higher the importance of social 
coordination. 

• We investigate the scenarios in which altruistic AVs can learn cooperative 
policies that are robust to diverse traffic scenarios and HV behaviors without 
compromising efficiency and safety, and present the results on transfer learning 
and domain adaptation in mixed-autonomy traffic. 

The purpose of this chapter is to study the challenges of robust and safe AVs in 
mixed-autonomy traffic, especially in intrinsically competitive driving scenarios like 
those shown in Fig. 2, in which coordination is essential for safety and efficiency. 
The intention is to utilize the autonomous driving challenge as a case study to 
examine the use of social theories from psychology literature in the MARL domain. 
To apply these theories to real-world roads, more study is required. Nonetheless, the 
research on altruistic AVs that are robust, safe, and capable of learning to influence 
HVs in desirable ways, without the limitations of current solutions are promising.
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2 Related Work 

2.1 Multi-Agent Reinforcement Learning 

The intrinsic non-stationarity of the environment is a key problem for MARL. To 
address those limitations a MARL derivation of importance sampling is proposed 
and used to remove the outdated samples from the replay buffer [24]. In [25] is  
presented another solution to address this issue by including latent representations 
of partner strategies allowing partner modeling and more scalable MARL. 

To mitigate the problem of credit assignment in multi-agent systems, [26] 
proposed the counterfactual multi-agent (COMA) algorithm, which employs a 
centralized critic and decentralized actors. In [27] is proposed a deep RL algorithm 
with full environment observability and a centralized controller to govern the 
joint-actions of all the agents. Other current research on mixed-autonomy focuses 
on addressing cooperative and competitive challenges by assuming the nature of 
interactions between autonomous agents [28]. In [29] a variation of an actor-critic 
approach with a centralized q-function is proposed. The algorithm has access to 
local observations and the actions of all agents. In our work, in contrast, we consider 
a decentralized controller with partial observability, and train altruistic agents that 
optimize for a social utility. 

2.2 Driver Behavior and Social Coordination 

Existing works on driver behavior and social navigation approach agents coor-
dination by either modeling driver behaviors [19, 30, 31] or simplifying and 
making assumptions about the nature of agent interactions [28, 32]. In [33] is  
presented a maneuver-based dataset and a model for classifying driving maneuvers 
is proposed. Other works on driver behavior modeling consider graph theory [34], 
data mining [35], driver attributes [36] or game theory [2]. In [31] is proposed a 
method for modeling and forecasting human behavior in circumstances that involve 
multi-human interactions in highly multi-modal situations. 

Current research in social navigation has demonstrated the importance of AVs as 
social actors and the advantages of coordination between AVs and HVs [37]. Human 
driving patterns are learned from demonstration using inverse RL in [38] and [22]. 
Similarly, in [39] is presented a centralized game-theory model for cooperative 
inverse RL. The authors in [40] and [41] proposed a shared reward function 
to enable cooperative trajectory planning for robots and humans. Sadigh et al. 
presents a strategy based on imitation learning to learn a reward function for human 
drivers, demonstrating how AVs can influence human actors [15]. The importance 
of coordination and the advantage of using AVs to guide the traffic has been also 
investigated at the traffic level. Wu et al. [42] analyzes the capability of AVs to 
stabilize a system of HVs and presents the conditions in which when concurrently
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enforcing safety constraints on the AVs while stabilizing traffic improves traffic 
performance. Similar works have highlighted the potential of influencing HVs and 
how AVs can be used to stabilize and guide the traffic flow [42, 43]. Recent works 
focus on optimizing traffic networks in mixed autonomy to reduce traffic congestion 
and improve safety. In [44] is presented a model of vehicle flow and a model of how 
AV makes decisions among routes with various prices and latencies. The planner 
optimizes for a social objective and shows improvement in traffic efficiency. The 
vehicle routing problem is studied in [45] that proposed an innovative learning-
augmented local search system to mitigate the problem by using a Transformer 
architecture. Cameron et al. explores how humans can supervise agents in order 
to attain an acceptable degree of safety [46]. In contrast to previous works, we do 
not rely on human cooperation and our AVs learn cooperative behaviors directly 
from experience, our focus is on the emerging altruistic behavior that allows agents 
to coordinate and optimize for a social utility. 

2.3 Safe and Robust Driving 

Safety is critical for AVs [47], and it is especially important for AVs that have 
been trained via RL. We must prioritize safety; because coordination is frequently 
associated with risk. In cooperative driving, there are often safe actions that have 
low rewards and riskier actions with higher rewards [48]; however, the risky action 
increases the likelihood of crashes when cooperation fails. Especially, AVs utilizing 
trained RL algorithms, may not always operate safely since the trained models 
may pick dangerous actions [20]. Several attempts in this direction use pure reward 
shaping to avoid collisions. While this is a frequent technique in RL, safety is not 
implicitly emphasized, and AVs implementing such RL methods may not behave 
properly in some cases due to function approximation. 

To overcome this problem, the concept of safe RL is proposed in [20], which 
aims to increase safety in unobserved driving conditions when the RL algorithm 
performs dangerously. Wang et al. [49] proposes a rule-based decision-making 
system that evaluates the controller’s decisions and substitutes collision-causing 
actions. A short-horizon safety supervisor is included in Nageshrao et al. [50] to  
replace unsafe actions with safer ones. A Q-masking strategy is presented in [51] to  
prevent collisions by deleting actions that might lead to a crash. Chen et al. proposes 
a novel priority-based safety supervisor that reduces collisions considerably [52]. 

We leverage these approaches in this work using a decentralized reward function, 
local actions, and assuming partial observability, to increase the altruistic agents’ 
safety while also being adaptable to varied driver behaviors and circumstances. 
As shown in Fig. 2, we analyze a particular situation in which AVs and HVs with 
various characteristics coexist. The picture depicts two frequent traffic situations 
in which vehicles must either merge into a lane effectively or depart the highway 
without colliding with other vehicles. In an ideal cooperative context, vehicles 
should proactively decelerate or accelerate to provide enough room for vehicles
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to safely exit/merge and prevent stalemate situations, while also being resilient to 
various conditions and behaviors and assuring safety in decision-making. 

3 Preliminaries and Formalism 

We study safety and robustness in the maneuver-level decision-making problem for 
AVs to see what kinds of behaviors might lead to socially desirable results. We’re 
interested in the question of how AVs can be trained from scratch to drive safely 
and reliably, while also taking into account the social aspects of their mission, i.e., 
optimizing for a social utility that takes into account the interests of other vehicles 
in the vicinity. Social awareness and coordination are essential to improve safety 
and reliability on the roads. In this work, we explore that insight. Thus, we continue 
this section by providing a quantitative description of an agent’s level of altruism 
and formally defined our problem. 

It is possible to define the MARL problem as a centralized or decentralized 
problem. It’s simple to create a centralized controller that provides a central joint 
reward and joint action. However, in the real world, such assumptions are unfeasible. 
In this chapter, we focus on a decentralized controller with partial observability and 
formulate the problem as a partially observable stochastic game (POSG) defined by 
.〈I,S, P , γ, {Ai}i∈{1,...,N}, {Oi}i∈{1,...,N}, {Ri}i∈{1,...,N}〉 where 
• . I: a finite set of agents .N ≥ 2. 
• . S : a set of possible states that contains all configurations that N AVs can take 

(probably infinite). 
• P : a state transition probability function from state .s ∈ S to state .s′ ∈ S, . P(S =

s′|S = s, A = a). 
• . γ : a discount factor, .γ ∈ [0, 1]. 
• . Ai : a set of possible actions for agent i. 
• . Oi : a set of observations for agent i. 
• . Ri : a reward function for the ith agent, .Ri(s, a). 

At a given time t the agent senses the environment and receives a local 
observation .oi : S → Oi , based on the observation . oi and its stochastic policy 
.πi : Oi × Ai → [0, 1], the agent takes an action within the action-space .ai ∈ Ai . 
Consequently, the agent transits to the next state . s′ which is determined based on 
the state transition probability function .P(s′|s, a) : S × A1 × ... × AN → S and 
receives a decentralized reward .ri : S × Ai → R. The goal of each agent i is to 
optimally solve the POSG by deriving a probability distribution over actions in . A at 
a given state, that maximizes its cumulative discounted sum of future rewards over 
an infinite time horizon and find the corresponding optimal policy .π∗ : S → A. 

An optimal policy maximizes the action-value function, i.e., 

.π∗(s) = argmax
a

Q∗(s, a) (1)
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where, 

.Qπ(s, a) := Eπ [
∞∑

k=0

γ kRk(s, a)|s0 = s, a0 = a]. (2) 

The optimal action-value function is determined by solving the Bellman equa-
tion, 

.Q∗(s, a) = E

[
R(s, a) + γ max

a′ Q∗(s′, a′)|s0 = s, a0 = a

]
(3) 

3.1 Double Deep Q-Network 

Deep Q-network (DQN) has been widely used in RL problems. DQN uses a deep 
neural network (NN) with weights . w as the function approximator to estimate 
the state-action value function, i.e., .Q̃(.;w) ∼= Q(.). DDQN improves DQN 
by decomposing the max operation in the target into action selection and action 
evaluation, mitigating the over-estimation problem. The idea is to periodically 
sample data from a buffer and compute an estimate of the Bellman error or loss 
function, written as 

.L(w) = Es,a,r,s′∼RM[(T arget − Q̃(s, a;w))2] (4) 

.T arget = R(s, a) + γ Q̃(s′, argmax
a′

Q̃(s′, a′;w); ŵ)) (5) 

The DDQN algorithm then performs mini-batch gradient descent steps as . wi+1 =
wi − αi∇̂wL(w), on the  loss  . L to learn the approximation of the value function 
(.Q̃(.)). The . ∇̂w operator denotes an estimate of the gradient at . wk , . w are the weights 
of the online network and . ŵ are the weights of the target network which are updated 
at a lower frequency (.T argetupdate) to stabilize training. The experience replay 
buffer (RM) is used to generate training samples .(s, a, r, s′), which are randomly 
drawn to protect from correlated observations and non-stationary data distribution. 

3.2 Driving Scenarios 

Our objective is to investigate driving scenarios in which the lack of AV coordination 
hinders safety and efficiency. We also study adaptability among scenarios and driver 
behaviors. For this, we design a set of scenarios . Fwith highway exiting and merging 
ramps as the main scenarios, as shown in Fig. 2, where a mission vehicle (in our



Learning-Based Social Coordination to Improve Safety and Robustness of. . . 681

case an exiting/merging vehicle) attempts to accomplish its task in a mixed-traffic 
environment. 

The exiting and merging scenarios are designed in such a way that coordination 
is necessary for safety. AVs must coordinate, and neither can achieve a safe and 
smooth traffic flow on its own, i.e., exiting/merging will not be feasible without 
the coordination of the other AVs. To facilitate safe exiting/merging while also 
responding to varied traffic scenarios, altruistic AVs must learn to account for 
the interests of all vehicles, coordinate, make compromises, and influence human 
behavior. In Fig. 2, for example, the AV1 has to compromise its own utility 
and reduce speed to guide the traffic of aggressive HVs, creating space for the 
exiting/merging vehicle, while the other AVs have to increase speed to create room 
for the mission vehicle. The exiting and merging scenarios are defined as . fe, fm ∈ F
correspondingly. We particularly chose those scenarios as a case of study because 
of their intrinsic similarity and the need for coordination, as the exiting/merging 
vehicle’s utility contrast with that of the HV highway vehicles. 

3.3 Social Value Orientation for AVs 

In this section, we introduce Social Value Orientation (SVO) to formally investigate 
the social conflicts between humans and agents in diverse environments. It is critical 
to quantify an individual’s social preference to understand whether they would 
cooperate or not in a particular scenario, such as opening a gap in our highway 
merging example. For that purpose, SVO is a commonly used concept in the social 
psychology literature that has lately been applied in robotics research [2]. In our 
context, SVO defines the degree of an agent’s egoism or altruism toward others. 
Based on the value placed on the utility of others, an HV or an AV’s behavior can 
range from egoistic to completely altruistic. We rely on AVs to guide traffic toward 
more socially advantageous outcomes since the SVO of HV is unknown. In formal 
terms, an AV’s SVO angle . φ determines how the AV balances its own reward against 
that of others [10, 17, 53]. In terms of rewards, an AV’s total reward . Ri is defined 
as: 

.Ri = ri cosφi + r−
i sinφi (6) 

where . ri is the agent’s individual utility, . r
−
i is the total utility of other agents from 

the perspective of the ith agent which in general is a function .f (.) of their individual 
utilities, 

.r−
i = f (rj ), where j �= i (7) 

The SVO angle can varied from .φ = 0 (entirely selfish) to .φ = π/2 (entirely 
altruistic). Nonetheless, none of the limits are optimal, and a point in the middle, 
known as the optimal SVO angle . φ∗ gives the most socially favorable outcome.
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Fig. 5 The SVO angle . φ quantifies the level of altruism of an agent. In the figure the diameter of 
the circles, represents the size of the human population that holds the associated SVO [55] 

SVO allows us to understand the behaviors that make possible the socially desirable 
outcomes in Fig. 2. 

Autonomous agents must be aware of human drivers’ social preferences as well 
as their desire to collaborate. Humans, on the other hand, are known to be diverse in 
SVO, and so their preferences are uncertain [54]. Figure 5 depicts a range of altruism 
across individuals with varying SVO. As a result of the wide range of altruistic 
behavior seen in humans, is not safe to rely on humans to guide the traffic, instead, 
we should rely on AV to guide the traffic toward more socially advantageous goals. 
Therefore, our objective is that the AVs learn to create alliances and influence HV 
behavior to improve the global utility of the group. 

3.4 Autonomous Vehicles as Social Actors 

AVs in a mixed environment will be social actors in the traffic road that will react to 
HVs and influence and adapt to their behaviors. The traffic environment is rich with 
habits and expectations, that determine driver behaviors. The vehicle’s interaction 
will be influenced by the way AV decisions are perceived [2, 56]. For instance, 
some human drivers may be grateful if the AV stops for them but frustrated if it 
does not perform as expected. Also, they might behave aggressively if they’re stuck 
behind an overly cautious AV, which reduces speed constantly. Another example is 
the case that when crossing a street while a vehicle is waiting, pedestrians move 
faster (a gesture of respect for the driver). On the other hand, will pedestrians 
speed up for an AV, or will they behave differently? If an AV is understood as a 
social actor, the HVs will learn the individual and social traits of AVs and behave 
accordingly in mutual interactions. This would fit with current preconceptions that
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make assumptions about drivers based on the brand and type of vehicle they drive. 
Current AVs’ driving is as conservative as possible to ensure safety. They will slow 
down in front of a crossing because they believe the other vehicle will want to go 
first, even though this is against the law. They wait for pedestrians when in doubt. It’s 
not difficult to see how other agents and HVs could take advantage of and exploit 
these over-conservative behaviors. As AVs are going to be social actors in mixed 
autonomy traffic, the safety and reliability of AVs will be coupled with their social 
awareness and their ability to engage in complex social interactions. We consider 
risk awareness and social behavior as fundamental traits for decision-making. 

Failure to identify social cues of selfishness or collaboration by an AV has 
ramifications for the general flow of the traffic network, as well as the safety 
of traffic participants. Current AVs ignore social signs and driver personality in 
favor of explicit communication or driver modeling. Because these methods can’t 
handle complicated interactions, they tend to be conservative, restricting autonomy 
solutions to simple road interactions [2, 56]. The ability of AVs to drive in a socially 
obedient manner is critical for the safety of passengers and other vehicles because 
predictable behavior allows humans to comprehend and respond appropriately to 
the AV’s actions. 

3.5 Driving Behaviors 

The problem of simulating varied behaviors may be defined as determining the 
appropriate range of parameters to produce heterogeneous behaviors within the 
simulator. Some works in social traffic psychology show that driving behavior falls 
between conservative and aggressive. Nevertheless, the specific definition is still 
under discussion and fluctuates across works [3]. The phrase “aggressive driving” 
refers to a wide range of unsafe driving practices, including running red lights 
and speeding. The root of aggressive driving has a variety of factors that aren’t 
necessarily clear. Some are caused by hazardous road conditions, while others are 
caused by personal characteristics or mental states. Moreover, there is a correlation 
between aggressiveness and egoism, as egoistic drivers are less likely to yield and 
have a tendency to over-speeding and engage in unsafe actions. While there is a 
correlation between these concepts [12, 13], we distinguish aggressiveness from 
egoism in this study by describing individual traits and social preferences. 

In this work, we discriminate between individual traits and social preferences 
because they result in different behaviors. We define altruism and egoism as social 
preferences; in that sense, an egoistic driver is a selfish driver who accounts for 
his personal utility irrespective of his aggression. We define conservatism and 
aggressiveness as individual traits, and we describe an aggressive driver as someone 
whose actions result in aggressive behavior. Individual traits such as aggressiveness 
are characterized by the outcomes of their actions, but social preferences such as 
egoism are distinguished by their social objectives and purposes. In this direction, 
an egoistic driver is a self-centered driver who lacks social motive, a driver who
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believes he controls the road and disregards the other drivers. Egoist drivers 
frequently engage in violent actions, and while ego defensiveness is not the primary 
source of aggression, it is a major contributor to aggressive driving [12, 13]. Despite 
their similarities, the two groups have different origins and result in different behav-
iors. A driver, for example, could be egoistic and conservative. We may envision a 
driver who drives cautiously to protect himself (selfish motivation/preference) and, 
as a result, is conservative in his behavior (outcome of his actions). 

Properly, we described social preferences (altruism or egoism) by the AV’s 
SVO angular phase . φ; and individual traits (conservativeness and aggressiveness) 
by the HV driver model parameters (. P) as described in Sect. 5.5. Based on the 
values of these parameters, a driver will behave conservative or aggressive. In the 
simulations, the AVs have no access to HVs’ SVO, we consider the SVO of HVs to 
be undetermined as they cannot communicate that directly. Finally, we define a set 
of behaviors . B, i.e, aggressive, moderate and conservative, .ba, bm, bc ∈ B based on 
the parameters (. P) obtained in Sect. 5.5. 

4 Problem Formulation 

We investigate the safety and robustness of the scenarios described in Fig. 2, an  
exiting/merging vehicle, which can be either HV or AV. This configuration contains 
a group of AVs that hold the same SVO, as well as a group of HVs which are 
heterogeneous in their SVO, making it unclear whether they are allies or opponents. 
Formally, the road is shared by a set of HVs .hk ∈ H, with an undetermined 
SVO . φk and heterogeneous behaviors .bk ∈ B; a set of AVs  .ii ∈ I, that are 
connected together using V2V communication, controlled by a decentralized policy 
and sharing the same SVO, and a mission vehicle, .M ∈ I ∪ H that is aiming to 
accomplish its mission (highway exiting/merging) and it can be either AV or HV. 
We focus on the multi-agent maneuver-level decision-making problem for AVs in 
mixed-autonomy environments and study the following problems: how AVs can 
learn in a mixed-autonomy environment optimal cooperative policies .π∗(s) that are 
robust to different scenarios .f ∈ F and behaviors .b ∈ B while ensuring safety on 
the decision-making, and how sensitive is the performance of the altruistic AVs to 
the HVs’ behaviors. 

As AVs are connected, we assume that they receive an accurate local observation 
of the environment .õi ∈ Õi , sensing all the vehicles within their perception range, 
i.e, a subgroup of HVs .H̃ ⊂ H and a subgroup of AVs .̃I ⊂ I. Nevertheless, AVs 
are unable to share their actions or rewards, and they take individual actions from 
a set of high-level actions .ai ∈ Ai (|Ai | = 5). The goal of this work is to train 
social-aware AVs that learn how to drive in a mixed-autonomy scenario in a robust, 
efficient, and safe manner. We are interested in how to obtain a utility function that 
enables AVs to handle competitive driving scenarios (such as those in Fig. 2) and 
leads them into socially-desirable decisions that improve traffic efficiency, safety, 
and robustness.
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5 Safe and Robust Social Driving 

In this section, we present the safe and robust MARL approach. Our approach uses 
a general decentralized reward function that optimizes for social utility and induces 
altruism in the AVs; the general reward function accounts for any anticipated 
vehicle’s mission, allowing it to be applied to a variety of environments; and 
collisions are reduced by the safety prioritizer. What we define as “driving” is the 
outcome of decades of human learning from experience. Consequently, we take the 
same approach and train AVs that learn from experience and define the optimization 
problem as the eventual desirable social outcome with adaptability, expecting AVs 
to learn how to drive safely during the process. We carefully design a decentralized 
general reward function, a suitable architecture, and a safety prioritizer to promote 
the desired safe altruistic behavior in AVs’ decision-making process. The overview 
of our approach as presented in Figs. 4 and 2 helps us to create intuition on these 
points, by introducing driving scenarios in which altruistic AVs lead to socially 
advantageous results while adapting to different traffic scenarios. 

Action Space The goal of this research is to look at inter-agent and agent-human 
interactions, as well as behavioral elements of mixed-autonomy driving. Thus, we 
choose a more abstract level and define the action-space as a set of discrete meta-
actions .ai ∈ Ai . In particular, we select a set of five high-level actions . ai as, 

.ai ∈ Ai =

⎡

⎢⎢⎢⎢⎢⎣

LaneLeft
Idle

LaneRight
Accelerate
Decelerate

⎤

⎥⎥⎥⎥⎥⎦
(8) 

These meta-actions are then converted into trajectories and low-level control signals, 
which ultimately control the vehicle’s movement. 

Observation Space We use a multi-channel VelocityMap observation (. oi) that 
embeds the relative speed of the vehicle with respect to the ego vehicle in pixel 
values [17]. We represent the information in multiple semantic channels that embed: 
(1) an attention map to highlight the position of the ego vehicle, (2) the HVs, (3) 
the AVs, (4) the mission vehicle, and (5) the road layout. Figure 6 illustrates an 
example of this multi-channel representation. In order to map the relative speed 
of the vehicles into pixels, we use a clipped logarithmic function, which improves 
dynamic range and yields better results than a linear map, i.e.,

.Zj = 1 − β log(α|v(l)
j |)1(|v(l)

j | − v0) (9) 

where . Zj is the pixel value of the j th vehicle in the state representation, . v(l)

is its relative Frenet longitudinal speed from the kth vehicle’s point-of-view, i.e.,
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Fig. 6 Multi-channel VelocityMap state representation embeds the speed of the vehicle in pixel 
values

.l̇j − l̇k , . v0 is speed threshold, . α and . β are dimensionless coefficients, and . 1(.)

is the Heaviside step function. Such non-linear mapping gives more importance 
to neighboring vehicles with smaller .|v(l)| and almost disregards the ones that 
are moving either much faster or much slower than the ego vehicle. As temporal 
information is necessary for safe decision-making, we use a history of successive 
VelocityMaps observations to create the input state to the Q-network. 

5.1 Distinguishing Sympathy from Cooperation 

In our mixed-autonomy problem, we divide inter-agent relations into interac-
tions between autonomous agents (AV-AV interactions) and interactions between 
autonomous agents and human drivers (HV-AV interactions). By decoupling the 
two, we can analyze the interactions between human drivers with unclear SVO and 
our autonomous agents in a methodical way. In that sense, we define sympathy as 
the autonomous agent’s altruism toward a human, and cooperation as the altruistic 
behavior among autonomous agents. The fact that the components of altruism 
differ in nature is our reasoning for separating them. Sympathy, for example, may 
not be reciprocated since agents differ in their SVO, whereas cooperation among 
autonomous entities is fundamentally homogeneous if they share the same SVO. 
Following this concept, we can rewrite the AV reward in Eq. (6) as, 

.

Ri = ri cosφi + (sin θiR
AV
i + cos θiR

HV
i ) sinφi

= ri cosφi︸ ︷︷ ︸
egoistic term

+

sin θi sinφiR
AV
i︸ ︷︷ ︸

cooperation term

+ cos θi sinφiR
HV
i︸ ︷︷ ︸

sympathy term

(10)
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where . θ is the sympathy angular phase determining the cooperation-to-sympathy 
ratio. Parameters .RAV

i and .RHV
i denote the total utility of other AVs and HVs, 

respectively, as perceived from the ith agent’s perspective. We expand on this topic 
in Sect. 5.2 where we introduce the distributed reward structure. 

5.2 Decentralized Social Reward 

The AVs are trained using the partial local observations and the decentralized reward 
function, and we anticipate them to learn how to drive in a variety of settings 
while taking into consideration the individual diver’s missions. As a result, we 
create a well-engineered general reward function that considers social utility, traffic 
metrics, and individual diver’s missions. Following the definition of sympathy and 
cooperation in equation (10) we decompose the decentralized reward received by 
agent .Ii ∈ I as, 

.

Ri(s, a) = Rego + Rsocial

Rego = cosφiri(s, a)

Rsocial = Rcoop + Rsymp

Rcoop = sin θi sinφi

[ ∑

j

rAVi,j (s, a) +
∑

j

rM
i,j (s, a)

]

Rsymp = cos θi sinφi

[ ∑

k

rHVi,k (s, a) +
∑

k

rM
i,k(s, a)

]

(11) 

in which .Rego, .Rsocial represents the egoistic and social reward, .i ∈ I, .j ∈ (Ĩ\{Ii}), 
.k ∈ H̃. The  term  . ri represents the ego vehicle’s reward obtained from traffic 
metrics and the angle . φ allows to adjust the level of egoism or altruism. .Rcoop is 
the cooperation term (the altruistic behavior among AVs, i.e, AV’s altruism toward 
others AVs) and .Rsymp is the sympathy term (AV’s altruism toward HVs). The 
sympathy reward term, .rHVi,k considers the individual reward of the HVs, while the 

cooperation reward term, .rAVi,j considers the individual reward of the other AVs, and 
are defined as 

.rHVi,k = Wk

dλ
i,k

∑

m

ωmxm rAVi,j = Wj

dλ
i,j

∑

m

ωmxm (12) 

in which .di,k/di,j represents the distance between the agent and the corresponding 
HV/AV, . λ is a dimensionless coefficient, .Wk is a weight value for individual 
vehicle’s importance, m is the set of traffic metrics that have been considered in 
the vehicle’s utilities (speed, crashes, etc.), in which . xm is the m metric normalized
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value and .wm is the weight associated to that metric. The term . rM accounts for 
the reward of the vehicle’s mission. A mission is defined as any desired specific 
outcome for a particular vehicle, as merging, exiting, etc. 

.rMi,j =
{

wj

(di,j )μ
, ifg(j)

0, o.w.
rMi,k =

{
wk

(di,k)
μ , ifg(k)

0, o.w.
(13) 

The function .g(v) is an independent function to evaluate the mission; . g(v)

returns true if the vehicle v has a mission defined and the mission has been 
accomplished in the recent time window. . μ is a dimensionless coefficient, . wj/wk

are weights for an individual vehicle’s mission (importance of the mission). This 
allows defining a general reward independent of the driving scenario and mission 
goals for different vehicles. In the experiments, a HV can be assigned a merging 
mission or a highway exiting mission, as referred to in Fig. 2. 

5.3 Deep MARL Architecture for Social Driving 

As shown in Fig. 8, we leverage a 3D Convolutional Neural Network (CNN) 
with a safety prioritizer for our MARL architecture. To account for the temporal 
information, the 3D CNN operates as a feature extractor and leverages a history 
of VelocityMap observations. The network receives a stack of 10 VelocityMap 
observations, i.e., a .10× (4× 512× 64) tensor that captures the latest 10 time-steps 
episodes. To mitigate the non-stationarity issue in MARL, agents are trained in a 
semi-sequential manner, as illustrated in Fig. 7. The agents are trained independently 
for .Niterations iterations while freezing the policies of the remaining AVs, . w−. 
Subsequently, the other agents’ policies are updated with the new policy, . w+.

To improve safety we train our agents using a safety prioritizer that, in the 
cases where the action selected by the agent policy is unsafe, selects a safe action 
and stores the unsafe action (. at ) and the related state in the RM with a suitable 
penalty on the reward (.runsaf e) for the unsafe state-action pair. The safety prioritizer 
reduces episode resets due to imminent collisions improving sample efficiency. The 
unsafe state-action pairs are not removed so the agent can also learn from unsafe 
experiences. The experience .(ψ(st ), at , runsaf e,∅) is stored in  RM with a terminal 
next state . ∅, the target for this unsafe pair .(st , at ) is .T arget (st , at )

DDQN = runsaf e. 
The details of the safety prioritizer are given in the next Sect. 5.4. 

The proposed deep MARL architecture is described in Algorithm 1. As part of  
the implementation, we start the learning process after the replay buffer has been 
filled with a sufficient number of sample simulations. Furthermore, we update the 
experience replay buffer to adjust for the extremely skewed training data [17]. 
Balancing skewed data is a frequent practice in machine learning, and it was 
effective in our MARL problem.
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Fig. 7 The multi-agent training and policy dissemination process

5.4 Safety Prioritizer 

We include a safety prioritizer to the MARL algorithm that penalizes and reduce 
imminent crashes. This helps the agent to increase sample efficiency during training 
and avoid collisions when in deployment. If the agent comes into an unexpected 
situation and decides to perform a risky action, that action will be prevented. The 
safety prioritizer enhances simulation results and is crucial in real-world scenarios. 
The safety prioritizer included Algorithms 2 and 3. 

Algorithm 2 During action selection of the agent . Ii , once an action . at is chosen, the 
safety prioritizer checks if the action is safe by computing a safety score for . Nsteps

of planning. We utilize the time-to-collision (t tc) as a safety score. If . saf etyscore <

saf eth the action is unsafe and we need to select a safe action. The selection of a 
safe action is presented in Algorithm 3. 

Algorithm 3 The safe action selection is different in training and testing. During 
training, to encourage exploration, we remove the unsafe actions and keep the 
random action selection following the current exploration policy on the remaining 
actions. During testing, we follow the greedy policy in the subset of safe actions 
.at = maxa′∈Ãsaf e

Q(ψ(st ), a
′;w). It should be noted that the algorithm does not 

choose the safest of all possible actions, as that action may lead to particularly 
conservative behaviors that can compromise traffic efficiency; we instead remove 
the imminent unsafe actions and follow the priority given by the learned altruistic 
policy. If it happens that all possible actions are unsafe, we return the action . at ∈ A
with the highest safety score. In that way during training the constrained exploration 
will keep the agent from taking unsafe actions which will lead to efficient sampling
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Algorithm 1 Safety Prioritized Multi-agent DDQN 
Initialize experience replay buffer RM . 
Initialize Q̃(.;w−) with random weights w− = wini 
Initialize target network Q̃(.; ŵ) with weights ŵ = w− 

Pre-store experience of first’s 50 episodes in RM 
for e = 50 to Nepisode do 

Initialize s1 = {õ1} and compute ψ1 = ψ(s1) 
for t = 1 to T  do 

for Ii in I do 
Freeze w− for all Ij , j �= i 
for m = 1 to  Niterations do 

With probability ε select a random action at , 
otherwise select at = maxa′∈A Q(ψ(st ), a′;w+) 
if at is unsafe (Algorithm 2) then 

Store (ψt , at , runsaf e,∅) in  RM 
at = Compute a safe action (Algorithm 3 ) 

end if 
Execute safe action at , and observe rt , õt 
Set st+1 = {st , õt+1} and ψt+1 = ψ(st+1) 
Store experience (ψt , at , rt , ψt+1) in RM 
Sample a mini-batch of size M from RM 
Compute L(w+) 
Performs gradient descent 
w+ 

k+1 ← w+ 
k − α ∇̂wL(w+) 

end for 
w− = w+ for all Ii ∈ I 

end for 
Every T argetupdate reset ŵ ← w− 

end for 
end for 

Algorithm 2 Safety score 
Simulate Ii taking the action at 
for v in (Ĩ ∪ Ṽ) \ {Ii} do 

Compute safety score of Ii , v for Nsteps planning 
if saf escore < saf  eth  then 

Return unsafe 
end if 

end for 
Return safe 

and more stable learning; and during testing, the decision-making is based on the 
prosocial learned policy with minimum intervention from the safety prioritizer, 
achieving higher traveled distance while avoiding collisions (Fig. 8).
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Algorithm 3 Safe action 
Initialize Ã = A 
while Ã is not empty do 

if during training then 
Select at following the exploration policy on set Ã 

else if during test then 
Selectat = maxa′∈Ãsaf e 

Q(ψ(st ), a′;w) 
end if 
if at is safe (Algorithm 2) then 

Return at 
end if 

end while 
Return at with highest safe score inA 

Fig. 8 Deep MARL architecture with the safety prioritizer 

5.5 Modeling Driver Behaviors 

We model the longitudinal movements of HVs using the Intelligent Driver Model 
(IDM) [57], while the lateral actions of HVs are based on the MOBIL model [58]. 
The MOBIL model considers two main criteria, 

The safety criterion ensures that after the lane change, the deceleration of the 
new follower . an in the target lane does not exceed a safe limit, i.e, .an > −bsafe. 

The incentive criterion determines the advantage of HV after the lane change, 
quantified by the total acceleration gain, given by 

.a′
ego − aego + sinφego

(
(a′

n − an) + (a′
o − ao)

)
> �ath (14) 

where . ao, . an and .aego represent the acceleration of the original follower in the 
current lane, the new follower in the target lane and the ego HV, correspondingly, 
and . a′

o, . a
′
n, and .a

′
ego are the equivalent accelerations considering that the ego HV 

has changed the lane, .sinφego is the politeness factor. Finally, the lane change is 
performed if the safety and incentive criteria are mutually satisfied.
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The IDM Model determines the longitudinal acceleration of a HV . v̇k as follows, 

.v̇k = amax

[
1 −

(vk

v0k

)δ −
(d∗(vk,�vk)

dk

)2]
(15) 

in which . vk , . dk , . δ, .�vk , . vk
0 denote the speed, the actual gap, the acceleration 

exponent, the approach rate, and the desired speed of the kth HV, respectively. 
The desired minimum gap of the kth HV is given by, 

.d∗(vk,�vk) = d0
k + vkT

0
k + vk�vk

(2
√
amax.ades)

(16) 

where . T 0
k , . d

0
k , .amax, and .ades are the safe time gap, the minimum distance, the 

comfortable maximum acceleration, and deceleration, correspondingly. 
The typical parameters for the MOBIL model are .sinφego = 0.5, . �ath = 0.1m

s2

and .bsafe = 4m
s2
. Table 1 shows typically used parameters of the IDM model [57]. 

Heterogeneous Driver Behaviors Although those parameters are typically used 
for IDM and MOBIL models, they simulate just one behavior. In order to generate 
diverse behaviors . B, we frame the task of simulating diverse behaviors as the 
problem of obtaining the appropriate range of parameters (. P) that can generate those 
behaviors. To achieve that, we leverage a behavior classifier and iteratively simulate 
the parameters and classify the behaviors, mapping parameters to behaviors. To 
classify the behaviors we represent traffic using a traffic-graph at each time step 
t , . Gt , with a set of edges .E(t) and a set of vertices .V(t) as functions of time, 
i.e, the positions of vehicles (.H̃ ∪ Ĩ) represent the vertices. The adjacency matrix 
. At is given by .A(k,m) = d(vk, vm), k �= m , in which .d(vk, vm) is the shortest 
travel distance between vertices k to m. Then we use centrality functions [34] to  
classify the behavior (level of aggressiveness) resulting from . P, and then use those 
simulation parameters . P to model behaviors within the simulator with varying levels 
of aggressiveness. The centrality functions are defined as, 

Closeness Centrality the discrete closeness centrality of the . kth vehicle at time t 
is defined as, 

.Ck
C[t] = N − 1∑

vm∈V(t)\{vk} dt (vk, vm)
, (17) 

Table 1 Common used parameters for the IDM model 

Parameter .v0 .T 0 .amax .ades .δ . d0

Value 30m/s 1.5 s 1m/s.2 1.5m/s.2 4 2m
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The more central the vehicle is located, the higher .Ck
C[t] and the closer it is to all 

other vehicles. 

Degree Centrality the discrete degree centrality of the .kth vehicle at time t is 
defined as, 

.
Ck

D[t] = ∣∣{vm ∈ Nk(t)}
∣∣ + Ck

D[t − 1]
such that (vk, vm) �∈ E(τ ), τ = 0, . . . , t − 1

(18) 

in which .Nk(t) = {vm ∈ V(t), At (k,m) �= 0, νm ≤ νk} represents the set of 
vehicles in the proximity of the . kth vehicle, given that .νm ≤ νk; and .νm, νk denote 
the velocities of the .mth and . kth vehicles, .At(k,m) is the adjacency matrix. The 
more new vehicles seen by vehicle k that meet this condition, the higher .Ck

D[t]. 
With the centrality functions, we can measure the Style Likelihood Estimate 

(SLE) for different driver styles [34]. We consider two SLE measures. The SLE of 
overtaking and sudden lane changes (.SLEl) and the SLE of overspeeding (.SLEo). 
The .SLEl and .SLEo can be computed by measuring the first derivative of the 
centrality functions as, 

.SLEl (t) =
∣∣∣∣
∂CC(t)

∂t

∣∣∣∣ SLEo(t) =
∣∣∣∣
∂CD(t)

∂t

∣∣∣∣ (19) 

The maximum likelihood .SLEmax is calculated as .SLEmax = maxt∈�t SLE(t). 
Using those functions, we can approximately quantify and classify driver 

behaviors in our simulation. The intuition behind that is that an aggressive driver 
may frequently overspeed or perform sudden lane changes; while overspeeding the 
.CD(t) monotonically increases (higher .SLEo(t)) and during sudden lane changes 
the slope and the extrema of .CC(t) changes values. Thus higher values of . SLEmax
are related to increased levels of aggressiveness. Conversely, conservative drivers 
are not inclined toward those aggressive maneuvers, and the degree of centrality 
will be relatively flat, thus .SLEo(t) ≈ 0 for conservative drivers. 

We use these metrics as approximations of the driver’s level of aggressiveness. 
In order to compute the suitable values for our simulation, we iteratively simulate 
the parameters from IDM and MOBIL models, and for each set of parameters, we 
quantify the resulting behavior in the simulation (using those metrics). A mapping 
of the parameters . P to behaviors (quantified in the simulation for those parameters). 
The estimated simulation parameters that simulate conservative, moderate and 
aggressive behavior in our scenarios are presented in Table 2.

The desired velocity . v0 is set to .30m/s and the acceleration exponent .δ = 4.
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Table 2 Estimated simulation parameters for conservative, moderate, and aggressive behaviors 

Model Parameter Aggressive Moderate Conservative 

MOBIL .sinφe 0 0.3 1 

.�ath 0 .m/s2 0.1 .m/s2 0.4 . m/s2

.bsafe 12.0 .m/s2 6.0 .m/s2 2.0 . m/s2

IDM .T 0 0.5 s 1 s 3 s  

.d0 1m 2m 6.0m 

.accmax 7.0 .m/s2 3.0 .m/s2 1.0 . m/s2

.accdes 12.0 .m/s2 7.0 .m/s2 2.0 .m/s2

Table 3 Computation time for each agent 

Computing platform Online forward pass time 

NVIDIA Tesla V100 GPU 3.7ms 

OnLogic Karbo 700 x2 65.2ms 

NVIDIA Jetson AGX Xavier GPU 32.9ms 

NVIDIA Jetson TX2 GPU 112.5ms

5.6 Implementation and Computational Details 

We customize the OpenAI Gym environment in [59] to suit our particular driving 
situation and MARL problem. We design a merging ramp and exiting highway 
scenario for our simulation running in python and used Pytorch for the implemen-
tation of our safety prioritized MARL DDQN algorithm. Our implementation on 
average uses 3.1GB of memory for 4 agents and 18 HVs using a GPU NVIDIA 
Tesla V100. The training process is repeated several times to ensure convergence of 
the experiments to a similar policy. The network is trained for . Nepisodes = 10,000
taking on average 8 h. While each round of .10, 000 training episodes in the Tesla 
V100 GPU takes around 8 h, a full forward pass during deployment for 4 simulated 
agents takes 15ms (approximately 4ms per agent). 

In a real AV platform, each agent will receive a local observation of the 
environment that will be used by our algorithm to compute the safe optimal action 
based on the trained Q-network. The decision-making will take place on each AV’s 
onboard computer; therefore, to verify the feasibility of the real-time operation 
of our decentralized algorithm we tested a forward pass of the Q-network during 
deployment in multiple hardware platforms. The results for the different platforms 
are presented in Table 3, for instance, an online forward pass of the network in the 
deployment phase using commodity GPU hardware, i.e, an NVIDIA Jetson AGX 
platform will be around 32.9ms for each agent. We utilize 3200 GPU hours for 
all our simulation experiments. Table 4 lists our simulation and training hyper-
parameters. 
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Table 4 List of 
hyper-parameters 

Parameter Value Parameter Value 

.Nepisode 10,000 . ε decay Linear 

RM buffer size 8000 Initial exploration .ε0 1.0 

Batch size 32 Final exploration 0.05 

Learning rate .α0 0.0005 Optimizer ADAM 

.T argetupdate 300 Discount factor .γ 0.95 

.|H| 18 .|I| 4 

6 Experiments and Results 

6.1 Manipulated Variables 

We study how the .saf eth, the  level of aggressiveness, the  traffic scenarios (. fj ) and 
the HVs’ behaviors (. bk) impact the performance of AVs. We consider the case in 
which the mission vehicle (exiting/merging) in Fig. 2 is human-driven, .M ∈ H, and 
define the following terms: 

• .AVS . Social AV (.φi = φ∗) that act altruistically in the presence of diverse HVs 
behaviors .b ∈ B. 

• .AVE . Egoistic AV (.φi = 0) that act egoistically in the presence of diverse HVs 
behaviors .b ∈ B. 

with . φ∗ to be the optimal SVO angle tuned to reach the optimal level of altruism as 
in [17]. 

6.2 Performance Metrics 

The performance of our system is measured based on safety, efficiency, altruistic 
performance gain (PG), and adaptation error .Aerror. To measure safety, we compute 
the percentage of episodes that encountered a crash (.C(%)). For efficiency, the 
average traveled distance (.DT (m)) of the vehicles and the number of missions 
accomplished by the mission vehicle is used. The altruistic performance gain is 
measured by computing the difference in the safety/efficiency performance of . AVE

and .AVS , as  

.PGsaf ety(%) = (AVE)C(%) − (AVS)C(%)

NEpisodes

(20) 

.PGeff iciency(%) = (AVS)DT (m) − (AVE)DT (m)

(AVE)DT (m)

(21)
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Finally, the adaptation error is a weighted sum function of the safety (.C(%)) and 
efficiency (.DT (m)) performance of the .AVS when trained and tested in different 
scenarios/behaviors. Defined as 

.Aerror (%) = ws × (C(%)) + we × 100(1 − DT

DTmax

) (22) 

such that an adaptation between different situations that result in .0% crash and 
.DT = DTmax will have .Aerror = 0%. 

6.3 Hypotheses 

In this section we examine the following hypotheses 

• H1. In a mixed-autonomy scenario, the higher the level of aggressiveness, the 
bigger the impact of cooperation. We expect a higher performance gain (PG) 
when altruistic AVs face more aggressive environments. 

• H2. Altruistic AVs agents using the decentralized framework can adapt to 
different driver behaviors and traffic scenarios without compromising the overall 
traffic metrics. However, the higher the similarity of testing scenarios to the ones 
seen during training (.(ftest , btest ) ≈ (ftrain, btrain)), the lowest adaption error 
(.Aerror). 

• H3. We anticipate an improvement in both safety and efficiency with the addition 
of the safety prioritizer. In the absence of a safety prioritizer (.saf eth = 0) we  
expect that AVs will cause more crashes. 

6.4 Analysis and Results 

Based on the hypotheses, we explore their correctness through the experiments in 
this section. 

6.4.1 Sensitivity Analyses 

To study the hypothesis H1 we investigate the effect of HV behaviors on the 
altruistic AV agents. We focus on scenarios with a HV mission vehicle, with safe 
AVs that act altruistically (.AVS) or  egoistic (.AVE), in environments with increasing 
levels of HVs aggressiveness. Figure 9 illustrates the altruistic performance gain 
for increasing levels of HVs’ aggressiveness for 2 AVs (left) and 4 AVs (right). 
It demonstrates that the more aggressive the HVs are, the higher the impact of 
cooperation and thus confirms the H1. This is also observed in Fig. 10 where the 
level of aggressiveness is decomposed into lateral and longitudinal aggressiveness.
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Fig. 9 Sensitivity analyses measured by altruistic performance gains (PGs) of AVs show that the 
more aggressive the HVs are, the more the impact/gain of cooperation 

Fig. 10 Both lateral and longitudinal sensitivity analyses indicate an increase in altruistic perfor-
mance gain (PG) 

Lateral and longitudinal aggressiveness is varied by changing the MOBIL and 
IDM parameters (Table 2) from aggressive to conservative. Figure 10 shows that 
the altruistic gain increases in both directions, but is more pronounced in the 
longitudinal direction. That is probably due to the simulated scenarios having more 
longitudinal maneuvers. 

6.4.2 Domain Adaptation 

Following the sensitivity analysis, we investigate the domain adaptation of the AVs 
to validate the H2. Figures 11, 12 and 13 show how the altruistic AVs learn to 
adapt to different scenarios and behaviors by different performance metrics, i.e, 
crashed (a), distance traveled (b) and adaptation error (c). For the experiments, . AVS

are trained in different scenarios .fi ∈ F in the presence of HVs with different 
behaviors .bk ∈ B and tested in other scenarios .fj ∈ F and behaviors .bl ∈ B. In our 
experiments, we consider two case study scenarios .fe, fm ∈ F (exiting/merging)
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Fig. 11 The domain adaptation matrix with crash percentage (.C(%)) between different traffic 
scenarios and behaviors. The lower .C(%) the most suitable the adaptability in terms of safety 
(measured by .C(%)) between those domains. .AVS are trained (rows of the matrix) in different 
scenarios .fi ∈ F in the presence of HVs with different behaviors .bk ∈ B and tested (columns of 
the matrix) in other scenarios .fj ∈ F and behaviors .bl ∈ B. Each pair (.fi, bk) is a combination of 
scenario and behavior

in environments with three different HVs behaviors .ba, bm, bc ∈ B (aggressive, 
moderate, conservative) see Table 2; and a mixed behavior environment, in which 
HVs are created randomly and their behaviors are selected based on a uniform 
distribution over the behaviors in . B, given equal probability to the defined behaviors. 
In total, we have eight combinations of scenarios and behaviors, namely: (.fm, bmix), 
(.fm, ba), (.fm, bm), (.fm, bc), (.fe, bmix), (.fe, ba), (.fe, bm), (.fe, bc). 

The results are presented in Fig. 13 as an adaptation matrix, showing the . Aerror
for different domains, the .Aerror is in percentage (. %) and color-map in logarithmic 
scale to increase the perceived dynamic range for visualization. In our analyses, 
the weights used for .Aerror(%) are .ws = 2

3 and .we = 1
3 , which weighs the safety 

performance higher. .DTmax is computed based on the maximum distance for each 
situation. Additionally, Figs. 11 and 12 illustrate how the AVs adapt in terms of 
safety (measured by .C(%)) and efficiency (measured by .DT (m)), separately. 

The matrix shows the best performances in its diagonal; where agents are trained 
and tested in the same environment ((.fi, bk); (.fj , bl) with .i = j and .k = l); due 
to the fact that agents experience similar situations during testing as they do during
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Fig. 12 The domain adaptation matrix with distance traveled (.DT (m)). Illustrating how the AVs 
adapt to other situations in terms of efficiency (measured by .DT (m))

training. The vehicles trained in the merging environment can perform the exiting 
mission for different behaviors, and vice-versa. Interestingly, the performance of 
AVs trained in a conservative environment (. bc) is poor when tested in an aggressive 
environment (. ba). We believe that the reason is that in conservative environments, 
the HVs yield the mission vehicle, and the AVs learn to rely on HVs to guide the 
traffic. This learned policy is valid in a conservative environment where one can 
expect the HVs to always create a safe space for the mission vehicle. However, the 
same is not valid in more aggressive environments, in which AVs have to guide the 
traffic to avoid dangerous situations. As a result, the performance of vehicles trained 
in a conservative environment and tested in an aggressive one is the worse. 

On the other hand, an adequate performance adaptation (lower .Aerror) is obtained 
when agents are trained in the presence of all moderate HVs (. bm) or a mixed  
behavior environment (.bmix), in which AVs face situations where the HVs yield, 
but also situations that require learning how to guide the traffic to optimize for the 
social utility. The results from the domain adaptation matrix indicate that a moderate 
or mixed environment is the most suitable for training robust AVs and show the 
adaptability of AVs to different situations, thereby confirming the H2 hypothesis. 

It can be concluded that the adaptation between the environments is not recipro-
cal and environment and situations selection should be considered during training,
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Fig. 13 The domain adaptation matrix with adaptation error (.Aerror) between different traffic 
scenarios and behaviors. The lower .Aerror the most suitable the adaptability between those domains

based on the application needs and target situations. The Domain adaptation matrix 
identifies the settings in which altruistic AVs can best learn cooperative policies that 
are robust to different traffic scenarios and human behaviors. 

6.4.3 Transfer Learning 

Through domain adaptation and transfer learning, we promote generalization while 
learning harder tasks efficiently from trained models and accelerate the learning 
process. We study how the policies learned during merging can be transferred to the 
exiting environment. For that, we train AVs agents from scratch for the mission/task 
of merging .AVmerging (T1), train AVs agents to drive on a highway, and then use that 
model as the starting point to learn the merging task .AVdrive−to−merging (T2), train 
AVs agents for the exiting task and then use that model as the starting point to learn 
the merging task .AVexiting−to−merging (T3); and apply the same procedure for the 
exiting task, learning to exit from scratch .AVexiting (T4), after learned how to drive 
.AVdrive−to−exiting (T5) and after learned how to merge .AVmerging−to−exiting (T6). The 
results of the experiments are presented in Fig. 14 and show that our transfer learning
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Fig. 14 The figure demonstrates how policies learned from merging can be transferred to the 
exiting environment to speed up the learning process while archiving similar performance to 
learning the task from scratch 

approach speeds up the learning process while archiving similar performance as 
when learning the task from scratch. 

6.4.4 Safety 

Finally, we compared state of the art architectures related to our approach [10, 17, 
23, 60] in terms of safety and efficiency to validate H3. We trained the different 
architectures in the same situations and examined their performance under different 
levels of HVs behaviors. As noted in Table 5 our safe altruistic agents consistently 
outperformed the other approaches (in bold is highlighted the best performance for 
each column), and the results are more notable when the level of aggressiveness is 
higher. We conclude that when using the safety prioritizer, immediate collisions are 
avoided reducing the overall number of crashes in the episodes. Our agents can learn 
from scratch not only how to drive, but also to understand the behavior of HVs and 
coordinate with them.

6.4.5 Importance of Social Coordination 

We demonstrate that social awareness and coordination are essential to improve 
safety and reliability on the roads. Particularly in our sensitivity analyses (Fig. 9) 
we have shown that altruistic agents have a significant performance gain when 
compared to egoistic agents and the gain is more notable as the road becomes more 
aggressive. Additionally, to show that the performance gain vs. driver behaviors is 
not just because of a single altruistic agent but as a consequence of coordination 
among agents, we complement our results and conducted an experiment with the 
difference that only .AV1 is altruistic and the others are egoistic AVs, we label this
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Table 5 A comparison of the performance of related architectures. Our safe altruistic AVs 
outperform the other solutions, and performance improvements become more noticeable as the 
level of aggressiveness increases 

Aggressive HVs Moderate HVs Conservative HVs 

Approaches C (%)  MF (%) DT (m) C (%)  MF (%) DT (m) C (%)  MF (%) DT (m) 

Conv2D+DQN 
[60] 

31.2 28.9 316 25.4 20.3 302 14.0 7.9 274 

Toghi et al. 
[17] 

21.3 16.4 339 12.7 10.1 333 1.6 0.6 269 

Conv3D+A2C 
[23] 

14.8 12.6 341 9.4 8.8 328 1.1 0.1 267 

Conv3D+DQN 
[10] 

3.1 2.8 359 2.6 2.4 341 0.3 0 284 

Ours 0.2 0.1 397 0.1 0.1 354 0 0 281

C Crashed, MF Mission Failed, DT Distance Traveled

Table 6 Importance of Social Coordination: AVs require to coordinate to enable a safe and 
seamless merging/exiting and none of them can achieve this goal if the others do not cooperate 

Aggressive HVs .C(%) Moderate HVs .C(%) Conservative HVs . C(%)

Multi-agent 
altruistic (MAA) 

. 0.2% . 0.1% . 0%

Single altruistic 
agent (SAA) 

.24.1% .17.4% . 2.3%

scenario as single altruistic agent SAA. Table 6 demonstrates the necessity of multi-
agent coordination and the fact that a single altruistic AV, i.e., the Guide AV, is not 
able to achieve the mission of safe and seamless merging without help from the 
other AVs. Our results show that a non-cooperative SAA is not enough to guide the 
traffic and successful completion of the missions, as coordination is not guaranteed 
in a single-agent setting. All the AVs have to coordinate collectively to allow safe 
and efficient traffic, and this is unfeasible if the others do not collaborate. Table 6 
complements our results in Fig. 9 and support the hypothesis H1. 

6.5 Qualitative Analyses 

We show a qualitative analysis of our altruistic AVs in the exit and merging 
scenarios. Figure 15 provides further intuition about the policies learned by altruistic 
AVs (green) in different situations, Figs. 15 and 16 show a set of snapshots for 
different policies learned in an exit/merging environment in the presence of HVs 
(blue) with different behaviors. In the presence of aggressive HVs, the guide AV has 
to slow down and guide the HVs in the platoon to allow a safe merging/exit of the 
mission vehicle; in this case, by slowing down the AV learn to compromise on their 
own utility for a more desirable social outcome. In the presence of moderate HVs
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Fig. 15 Mission vehicle exiting the road under different HV behaviors (from left to right: 
aggressive, moderate and conservative HVs). AVs are shown in green and HVs are shown in blue 

Fig. 16 Mission vehicle merging into the highway under different HV behaviors (from left to 
right: aggressive, moderate, and conservative HVs). AVs are shown in green and HVs are shown 
in blue. The diameter of the circles on the trajectory plot (first-row plot) shows the vehicles’ speed 

behaviors, the guide AV slows down (slowing down the vehicles in the platooning) 
to open a safe space for the mission vehicle and then quickly accelerates, the space 
created by the quick AV intervention is safe enough to allow the mission vehicle to 
exit/merge the road; in this case, the AV compromise in their own utility but does 
not need to compromise as much as in the aggressive traffic scenario, it learns to 
take sequences of actions to not only enable the mission vehicle to merge (by quick 
decelerating), but also manages to make the minimum compromise on its individual 
utility. Finally, in the conservative environment, the HVs are cautious enough to 
allow the mission vehicle to exit/merge safely, so the AVs learn to accelerate in 
those scenarios as the mission vehicle has enough space to merge, optimizing for
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their own utility (higher speed and longer distance travel), while also considering 
other vehicles utilities and safety; in this case the AV doe not need to compromise 
their own utility, it learns that HV will allow the exiting/merging so AVs does not 
need to guide the traffic. It is important to notice that the policies are learned by 
AVs from experience to optimize the social utility, AVs learn to adapt to different 
scenarios and behaviors. Is interesting to observe that our AVs develop some form of 
social awareness and learn the HVs’ behaviors from experience, acting accordingly 
to optimize traffic efficiency while prioritizing safety. 

7 Concluding Remarks 

AVs need to learn to co-exist with HVs vehicles as deploying egoistic AVs that 
solely account for their individual interests on the road leads to sub-optimal and 
non-desirable social outcomes. Social awareness and coordination are essential to 
improve safety and reliability on the roads. We demonstrate how altruistic AVs 
learn the decision-making process from experience, considering the interests of 
all vehicles while prioritizing safety and optimizing a general decentralized social 
utility function. We expose the settings for our MARL problem in which transfer 
learning and domain adaptation are more feasible, and conducted a sensitivity 
analysis under different HVs’ behaviors. Our experiments reveal that altruistic AVs 
learn to leverage social coordination to improve safety and reliability. Our social-
aware AVs are robust to heterogeneous driver behaviors and can form alliances and 
affect the behavior of HVs to create socially-desirable outcomes that benefit the 
group of the vehicles. 

Future Work Although we explored various elements of social navigation in a 
variety of settings and the presence of diverse HV behaviors, the HV models 
used are not from real human driver data, and the traffic scenarios are limited to 
merging and exiting. However, we believe that by leveraging and learning from 
actual human data and traffic circumstances, our approach might be beneficial in 
practical traffic conditions. For this strategy to be used in real-world circumstances, 
more attention to safety is necessary. We intend to investigate more sophisticated 
architectures and state representations in future work, as well as develop a more 
realistic simulation environment that incorporates data from real-world traffic and 
can handle more complex interactions between HVs and AVs, as well as diverse 
traffic agents like bicycles and pedestrians. Despite the drawbacks, we are excited 
to see safe and reliable social-aware AVs on the road that learns from experience. 
Beyond driving, we expect these principles to be applied to general multi-agent 
human-robot interactions in which agents influence humans and collaborate safely 
for a socially beneficial result.
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20. Li, Z., Kalabić, U., Chu, T.: Safe reinforcement learning: Learning with supervision using a 
constraint-admissible set. In: 2018 Annual American Control Conference (ACC), pp. 6390– 
6395. IEEE (2018)

https://arxiv.org/pdf/2208.05540.pdf
https://arxiv.org/pdf/2208.05540.pdf
https://arxiv.org/pdf/2208.05540.pdf
https://arxiv.org/pdf/2208.05540.pdf
https://arxiv.org/pdf/2208.05540.pdf
https://arxiv.org/pdf/2208.05540.pdf
https://arxiv.org/pdf/2208.05540.pdf


706 R. Valiente et al.

21. Lin, Y., McPhee, J., Azad, N.L.: Anti-jerk on-ramp merging using deep reinforcement learning. 
In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 7–14. IEEE (2020) 

22. Sadigh, D., Landolfi, N., Sastry S.S., Seshia S.A., Dragan A.D.: Planning for cars that coor-
dinate with people: leveraging effects on human actions for planning and active information 
gathering over human internal state. Auton. Robot. 42(7), 1405–1426 (2018) 

23. Toghi, B., Valiente, R., Sadigh, D., Pedarsani, R., Fallah, Y.P.: Altruistic maneuver planning for 
cooperative autonomous vehicles using multi-agent advantage actor-critic. In: Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 
(2021) 

24. Foerster J.N., Chen R.Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., Mordatch, I.: Learning 
with opponent-learning awareness. Preprint (2017). arXiv:1709.04326 

25. Xie, A., Losey, D., Tolsma, R., Finn, C., Sadigh, D.: Learning latent representations to influence 
multi-agent interaction. In: Proceedings of the 4th Conference on Robot Learning (CoRL) 
(2020) 

26. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent 
policy gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 
no. 1 (2018) 

27. Egorov, M.: Multi-agent deep reinforcement learning. CS231n: Convolutional Neural Net-
works for Visual Recognition, pp. 1–8 (2016) 

28. Omidshafiei, S., Pazis, J., Amato, C., How J.P., Vian, J.: Deep decentralized multi-task 
multi-agent reinforcement learning under partial observability. In: International Conference 
on Machine Learning, pp. 2681–2690. PMLR (2017) 

29. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for 
mixed cooperative-competitive environments. Preprint (2017). arXiv:1706.02275 

30. Brown, K., Driggs-Campbell, K., Kochenderfer, M.J.: A taxonomy and review of algorithms 
for modeling and predicting human driver behavior. arxiv e-prints, article. Preprint (2020). 
arXiv:2006.08832 

31. Ivanovic, B., Schmerling, E., Leung, K., Pavone, M.: Generative modeling of multimodal 
multi-human behavior. In: RSJ International Conference on Intelligent Robots and Systems, 
pp. 3088–3095. IEEE (2018) 

32. Lauer, M., Riedmiller, M.: An algorithm for distributed reinforcement learning in cooperative 
multi-agent systems. In: In Proceedings of the Seventeenth International Conference on 
Machine Learning. Citeseer (2000) 

33. Toghi, B., Grover, D., Razzaghpour, M., Jain, R., Valiente, R., Zaman, M., Shah, G., Fallah, 
Y.P.: A maneuver-based urban driving dataset and model for cooperative vehicle applications. 
In: 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS), pp. 1–6. IEEE 
(2020). https://ieeexplore.ieee.org/document/9334665 

34. Chandra, R., Bhattacharya, U., Mittal, T., Bera, A., Manocha, D.: Cmetric: A driving behavior 
measure using centrality functions. In: 2020 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS), pp. 2035–2042. IEEE (2020) 

35. Constantinescu, Z., Marinoiu, C., Vladoiu, M.: Driving style analysis using data mining 
techniques. Int. J. Comput. Commun. Control 5(5), 654–663 (2010) 

36. Beck K.H., Ali, B., Daughters, S.B.: Distress tolerance as a predictor of risky and aggressive 
driving. Traffic Inj. Prev. 15(4), 349–354 (20140 

37. Pokle, A., Martín-Martín, R., Goebel, P., Chow, V., Ewald, H.M., Yang, J., Wang, Z., 
Sadeghian, A., Sadigh, D., Savarese, S., et al.: Deep local trajectory replanning and control 
for robot navigation. In: 2019 International Conference on Robotics and Automation (ICRA), 
pp. 5815–5822. IEEE (2019) 

38. Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehicles from 
demonstration. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 
pp. 2641–2646. IEEE (2015) 

39. Hadfield-Menell, D., Russell S.J., Abbeel, P., Dragan, A.: Cooperative inverse reinforcement 
learning. Adv. Neural Inf. Proces. Syst. 29, 3909–3917 (2016)

https://ieeexplore.ieee.org/document/9334665
https://ieeexplore.ieee.org/document/9334665
https://ieeexplore.ieee.org/document/9334665
https://ieeexplore.ieee.org/document/9334665
https://ieeexplore.ieee.org/document/9334665
https://ieeexplore.ieee.org/document/9334665


Learning-Based Social Coordination to Improve Safety and Robustness of. . . 707

40. Trautman, P., Krause, A.: Unfreezing the robot: navigation in dense, interacting crowds. In: 
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 797–803. 
IEEE (2010) 

41. Nikolaidis, S., Ramakrishnan, R., Gu, K., Shah, J.: Efficient model learning from joint-action 
demonstrations for human-robot collaborative tasks. In: 2015 10th ACM/IEEE International 
Conference on Human-Robot Interaction (HRI), pp. 189–196. IEEE (2015) 

42. Wu, C., Bayen A.M., Mehta, A.: Stabilizing traffic with autonomous vehicles. In: 2018 IEEE 
International Conference on Robotics and Automation (ICRA), pp. 6012–6018. IEEE (2018) 

43. Lazar, D.A., Bıyık, E., Sadigh, D., Pedarsani, R.: Learning how to dynamically route 
autonomous vehicles on shared roads. Preprint (2019). arXiv:1909.03664 

44. Bıyık, E., Lazar, D.A., Pedarsani, R., Sadigh, D.: Incentivizing efficient equilibria in traffic 
networks with mixed autonomy. IEEE Trans. Control Netw. Syst. 8(4), 1717–1729 (2021) 

45. Li, S., Yan, Z., Wu, C.: Learning to delegate for large-scale vehicle routing. Adv. Neural Inf. 
Process. Syst. 34 (2021) 

46. Hickert, C., Li, S., Wu, C.: Cooperation for scalable supervision of autonomy in mixed traffic, 
pp. arXiv–2112. e-prints (2021) 

47. Razzaghpour, M., Mosharafian, S., Raftari, A., Mohammadpour Velni, J., and Fallah, Y.P.: 
Impact of information flow topology on safety of tightly-coupled connected and automated 
vehicle platoons utilizing stochastic control. In: ECC (2022) 

48. Wang W.Z., Beliaev, M., Biyik, E., Lazar D.A., Pedarsani, R., Sadigh, D.: Emergent prosocial-
ity in multi-agent games through gifting. In 30th International Joint Conference on Artificial 
Intelligence (IJCAI) (2021) 

49. Wang, J., Zhang, Q., Zhao, D., Chen, Y.: Lane change decision-making through deep 
reinforcement learning with rule-based constraints. In: 2019 International Joint Conference 
on Neural Networks (IJCNN), pp. 1–6. IEEE (2019) 

50. Nageshrao, S., Tseng H.E., Filev, D.: Autonomous highway driving using deep reinforcement 
learning. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 
pp. 2326–2331. IEEE (2019) 

51. Mohammadhasani, A., Mehrivash, H., Lynch, A., Shu, Z.: Reinforcement learning based safe 
decision making for highway autonomous driving. Preprint (2021). arXiv:2105.06517 

52. Chen, D., Li, Z., Wang, Y., Jiang, L., Wang, Y.: Deep multi-agent reinforcement learning for 
highway on-ramp merging in mixed traffic. Preprint (2021). arXiv:2105.05701 

53. Le, V.-A., Malikopoulos, A.A.: A cooperative optimal control framework for connected 
and automated vehicles in mixed traffic using social value orientation. Preprint (2022). 
arXiv:2203.17106 

54. Murphy, R.O., Ackermann, K.A.: Social preferences, positive expectations, and trust based 
cooperation. J. Math. Psychol. 67, 45–50 (2015). 

55. Garapin, A., Muller, L., Rahali, B.: Does trust mean giving and not risking? Experimental 
evidence from the trust game. Rev. Econ. Polit. 125(5), 701–716 (2015) 

56. Müller, L., Risto, M., Emmenegger, C.: The social behavior of autonomous vehicles. In: 
Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous 
Computing: Adjunct, Ser. UbiComp ’16, pp. 686–689. Association for Computing Machinery, 
New York (2016) [Online]. Available: https://doi.org/10.1145/2968219.2968561 

57. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and 
microscopic simulations. Phys. Rev. E 62(2), 1805 (2000) 

58. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model mobil for car-following 
models. Transp. Res. Rec. 1999(1), 86–94 (2007) 

59. Leurent, E., Blanco, Y., Efimov, D., Maillard, O.-A.: Approximate robust control of uncertain 
dynamical systems. Preprint (2019). arXiv:1903.00220 

60. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: 
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016)

https://doi.org/10.1145/2968219.2968561
https://doi.org/10.1145/2968219.2968561
https://doi.org/10.1145/2968219.2968561
https://doi.org/10.1145/2968219.2968561
https://doi.org/10.1145/2968219.2968561
https://doi.org/10.1145/2968219.2968561
https://doi.org/10.1145/2968219.2968561


Evaluation of Autonomous Vehicle 
Control Strategies Using Resilience 
Engineering 

Johan Fanas Rojas, Thomas Bradley, and Zachary D. Asher 

1 Introduction 

An autonomous vehicle (AV) is a system that can navigate through various driving 
scenarios and make judgments without the need for human intervention [1]. 
This technology is important because it can minimize traffic fatalities, potentially 
decrease traffic congestion, and offer transportation for the elderly and persons with 
disabilities [2–5]. Nonetheless, before these benefits can be realized, significant 
advancements in numerous facets of vehicle autonomy are needed including vehicle 
design, control, perception, planning, coordination, and human interaction [6]. 

Artificial Intelligence (AI) is a prerequisite to the development of AVs ability to 
learn how to perform tasks and improve itself based on collected data [7, 8]. AI has 
been used to perform computationally costly AV perception tasks such as object 
detection, Lidar processing, sensor fusion, and more [9–12]. Other applications 
of AI for AVs is the development of end-to-end networks to perform perception, 
planning and control in a single network instead of developing each subsystem 
separately which can be very beneficial in terms of engineering time [13]. The 
current drawbacks of AI are that it requires a large amount of data for training and 
that if the model does not perform as expected, determining the reason for the defect 
is difficult due to the model’s complexity. Despite the potential of AI technology, 
there are still safety concerns and accidents have occurred in recent years [14]. 
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Methods to predict potential accidents from the use of AI are largely nonexistent 
[15]. 

Development and evaluation of safe AVs is a challenging task. In general it 
is easy to argue that AV technology should be immediately implemented since at 
least 90% of current car accidents are attributable to human mistakes [16, 17]. It is 
anticipated that by eliminating people from vehicle control, hundreds of lives will be 
saved annually. Even while this technology has the potential to significantly improve 
ground transportation, society’s acceptability may decrease as a result of the 
inherent dangers of autonomous cars [18]. Due to liability concerns in recent years, 
current research focuses on making AVs safer but it can be challenging to accurately 
measure an improvement in safety [19]. Numerous studies have been conducted to 
increase the safety of AVs when making decisions and to better estimate the risk 
associated with various maneuvers. However, there is no performance measurement 
for the overall autonomous system. Currently, the system’s “safety” is measured 
by the death rate per mile driven. This measure is reactive since it analyzes the 
performance of the autonomous system after the event has transpired. The system 
may have failed during operation without causing an accident or disengagement 
which is not captured in the safety evaluation. In systems engineering, an accident 
is a series of events that result in an accident where each of those events must be 
understood and tracked [20]. Consequently, the system may have failed or exceeded 
the safety limits in a certain subsystem, yet current metrics establish that no accident 
occurred. This is an issue because, as automation technology becomes increasingly 
accessible to the public, fundamentally unsafe systems will only be exposed as such 
only when potentially fatal accidents accumulate on public roads. Consequently, this 
statistic cannot be utilized to evaluate the performance of an autonomous system. 

Fortunately, methodology to assess the safety of complex systems has already 
been developed by systems engineering researchers. One technique that is applica-
ble to AVs is Resilience engineering (RE) which is a subfield of systems engineering 
associated with safety management. Due to its potential to overcome constraints of 
conventional safety management systems, RE can enhance the operation and devel-
opment of AVs [20]. RE offers methods for enhancing the operational resilience of 
complex systems. Resilience, from a systemic perspective, is the inherent ability of 
a system to modify its functioning prior to, during, or after changes and disturbances 
to the system, while maintaining needed operations under both anticipated and 
unanticipated conditions. The RE community sees AVs as a means of practical 
implementation, but the few extant studies are narrow in scope; they simulate AV 
effects on traffic rather than the functioning of the AV system [21, 22]. This is due 
to the fact that the engineering necessary to produce all driving features of an AV 
is extremely interdisciplinary, specialized, and a new skill set within the academic 
community [23]. RE examines the capacity of a system to continue functioning 
despite shocks, hence defining resilience. Unlike conventional safety management 
procedures, which simply investigate the source of the failure and its relationship 
with the other systems, a new approach is needed which examines the entire AV 
system. In contrast, conventional AV safety metrics are inherently reactive while 
RE can be regarded as a proactive safety methodology.
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RE provides unique performance assessment methods and procedures for 
improvement, but it has not been utilized at the basic level of AV engineering 
despite the benefits that have been identified [20, 21]. Significant effort is necessary 
to understand and use resilience measurements, as well as to adapt the existing 
concepts for achieving resilience, to this complex application. Current research on 
AV operation focuses on safety through either a rigorous understanding of end-
to-end neural network architecture and error outputs [24, 25] or a reintegration of 
subsystems and conventional control theory [26, 27]. Current research in this area is 
possible to demonstrate general autonomous control, but robust operation for safety 
reliability and safety certification is not yet unattainable [28, 29]. 

RE can also be applied to individual aspects of an AV such as various types 
of controllers. The development of robust lateral controllers and end-to-end Deep 
Learning (DL) is crucial to perform robust operation for safety reliability [30]. 
However, there is a gap between the evaluation metrics used for the design and 
development of these controllers since current metrics do not provide information 
on system performance. California’s Department of Motor Vehicles (DMV) 2021s 
disengagement reports published that on several occasions the AV suffered from 
disengagement because it deviated from the reference path or did not perform 
properly the functions for which it was designed, which created a threat to the 
passenger [31]. This indicates the lack of robust metrics for the design and validation 
of these controllers for ADAS/Autonomous applications during deployment. 

Overall this review shows that there is a significant research gap in the develop-
ment of a proactive safety metric for AV system and component development such 
as vehicle controllers. RE theory provides these needed proactive evaluation metrics 
that can be used to assess the operational resilience of various AV controllers. 
There are studies in the literature describing resilience evaluation approaches for 
general engineering systems [32, 33], however evaluation applications for AVs are 
limited [34]. Currently, there is no overlap between systems engineering and AV 
engineering skill sets, resulting in AV RE studies that do not include perception or 
planning subsystem specifics [25, 35]. We are unaware of any existing RE evaluation 
of unmanned AVs that employs subsystem-level and algorithm-level examination of 
the technical engineering information that comprises these complex systems. 

This chapter addresses this research gap by providing RE metrics as proactive 
safety metrics to evaluate the performance of a pure pursuit controller (PPC) and 
a Deep Learning controller (DLC) and comparing it versus traditional reactive 
metrics. In previous work, we applied RE metrics to evaluate a PPC using the 
resilience assessment grid (RAG) and measuring the resistance and recovery of 
the system [36]. This work extends upon the aforementioned study in order to 
provide some insight on DL methods used today for autonomous driving. In general 
it is widely regarded that end-to-end AV controllers do not perform as well as 
traditional controllers but quantitative proof is lacking [37]. A PPC and a DLC 
were developed in the CARLA simulator to perform path tracking and measure 
the resistance and recovery of the system. RAG was also used to show how these 
properties change as the speed increases. The resilience metrics were applied to 
each lateral controller and compared against traditional evaluation metrics such as
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average cross-track error, average heading error, and control effort. Overall this 
research demonstrates how to develop and implement proactive safety metrics for 
AV component performance evaluation which is the first step towards full AV safety 
evaluation. 

2 Methodology 

To evaluate the system’s responsiveness, a PPC and a DLC were developed and 
tested at various speeds in the CARLA AV simulator. The following subsections 
detail the implementation of the PPC, the DLC, and a brief introduction of the 
AV simulator and its features. Then, an overview of RE and operational resilience 
performance of the AV controllers are presented. Lastly, we define the performance 
evaluation metrics used in this study. 

2.1 Simulation Environment 

CARLA is an open source simulator designed to train, validate, and test AV 
system algorithms [38]. This simulator provides the user with the ability to 
simulate environmental conditions (rainy, cloudy, sunny) and driving scenarios to 
test AV systems. Figure 1 shows an example of the CARLA simulator in different 

Fig. 1 Example of a Tesla Model 3 vehicle performing path tracking in the CARLA simulator
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environmental conditions. With this AV simulator you can test different algorithms 
of a subsystem. For example, you can evaluate the performance of computer vision 
in various environmental conditions, Lidar object detection, planning algorithms 
like A*, lateral controllers like Model Predictive Control (MPC) and more [39–41]. 
It can also be used to train neural networks and test them before deploying them to 
the real world [42, 43]. The use of simulated data greatly reduces the collection and 
labeling process for testing neural networks. 

To interact with the simulator, the Robot Operating System (ROS) is used. ROS is 
a framework that provides a communication interface to create a level of abstraction 
for the user. So the CARLA simulator has a ROS bridge that allows the user to 
communicate with it and obtain a middleware suite that operates similar to a real-
world vehicle equipped with AV sensors [44, 45]. 

2.2 Development of Autonomous Driving Controllers 

2.2.1 Pure Pursuit Controller 

A PPC is a lateral vehicle controller that geometrically determines the steering angle 
of the kinematic bicycle model to follow a prescribed reference path [46]. This 
controller was implemented in our previous foundational work applying RE to AVs 
and we are seeking to continue to utilize this strategy as a comparison case [36]. This 
previous study describes how the kinematic vehicle model has the origin on the rear 
axle and possesses a look ahead a distance (Ld) to determine the necessary steering 
angle to minimize the heading error between the vehicle and the path. This model 
assumes a fixed look ahead distance used; however, some derivations of this method 
have incorporated a dynamic look ahead distance that varies with speed. This allows 
the controller to adjust during cornering to have a better track performance. 

2.2.2 Deep Learning Controller 

A DLC was developed to perform path tracking using the front camera (raw image 
from the simulated camera can be seen in Fig. 2a) of the vehicle and the cross-track 
error of the vehicle with respect to the reference path. To perform path tracking using 

Fig. 2 Raw image (a), Projected reference path to raw image (b), Raw image with drivable region 
(c), Masked image with drivable area (d)
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a front camera, at each iteration we took the 30 waypoints ahead of the vehicle and 
created two parallel lines 2 m left/right from the reference path to create a drivable 
region. The right and left lines were then closed to create a drivable region. This 
drivable region was then projected from world coordinates to image coordinates 
using [47] (see Fig.  2b, c). 

A masked image is obtained by creating an image with zeros (which in RGB 
channels means black) with the same dimensions as the original image and using 
the OpenCV function fillPolly to obtain a drivable region. The fillPoly function fills 
a contour with the specified color (in this case white) to the inputted image. Figure 
2d shows the masked image with the drivable region. 

This DL method applied to path tracking assumes that the waypoints are always 
in front of the vehicle; therefore, since we are only using one camera and the 
reference path isn’t necessarily between two lanes, a large deviation from the path 
will cause the model to have a bad performance. An approach to correct this 
is to also use the cross-track error as a feature to the model since it possesses 
information of the deviation from the reference path. End-to-end DL models have 
been developed to predict the steering angle given the raw images from 3 frontal 
cameras [13, 48–50]. The purpose of these methods is to perform lane keeping by 
predicting the steering angle given the raw image. Others have used DL to perform 
behavioral cloning for lateral motion control [51, 52]. Our approach uses a drivable 
region and a cross-track error as features to perform path tracking. 

2.2.2.1 Data Collection and Preprocessing 

To collect the training data, the images of the front camera, the steering angle and 
the cross-track error were collected while performing path tracking using the PPC 
in the CARLA simulator. A total of 6077 samples were collected for training. When 
analyzing the recorded data, we noticed there is a bias towards small steering angles 
in the data due to many straight segments in the reference path. We observed that 
4567 of the 6077 samples had small steering angles. Hence, the model will achieve 
a bad performance when cornering. Figure 3a shows the distribution of the samples 
of the dataset. 

Fig. 3 Dataset with bias towards steering angles equal to zero (a), augmented dataset after 
removing bias towards small steering angles (b)
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To correct this, the data was augmented to obtain a more balanced dataset. To 
augment the data and remove the bias, the data corresponding to the steering angles 
with low occurrence were repeated X/Y amount of times. Where X is the number 
of samples for the steering angles equal to zero and Y is the number of samples of 
each of the other steering angles, respectively. In other words the steering angles 
corresponding to 0.1 were repeated 4567/847 times. Where 4587 is the number of 
samples where the steering angle was equal to zero and 867 is the number of samples 
equal where the steering angle was 0.1 before the augmentation. Figure 3b shows 
the distribution of the number of samples of the augmented dataset. 

To minimize the memory usage the images were resized from 800 × 600 to 
32 × 32. Also, since the reference path possesses many left turns, the images 
were flipped with respect to the vertical axis and the steering angle was negated 
to account also for right turns. Which augmented even more the samples of the 
dataset. Obtaining a total of 66,308 training samples. The dataset was split to 80% 
for training and 20% for validation. Overall this approach is consistent with other 
end-to-end implementations of AV control used in research and development [13]. 

2.2.2.2 Model Development 

A multi input and mixed data regression model was built using the Keras library in 
Python. The architecture consists of a Convolutional Neural Network (CNN) branch 
and a feedforward neural network (FNN) branch. The CNN branch uses the mask 
image as an input with the drivable region. The FNN branch uses the cross-track 
error of the vehicle from the reference path as the input. In the CNN branch, the 
masked image was fed through a 16, 32 and 64 convolutional layer. After each 
convolutional layer we perform max pooling with a 2 × 2 pool size and a 50% 
dropout to avoid overfitting. Each convolutional layer possesses a 3 × 3 kernel using 
valid padding. Then a flattening layer was applied followed by a dense layer. In the 
FNN branch the cross-track error was fed to a dense layer. The output of the dense 
layers from both branches were concatenated and then fed to another dense layer. 
This model uses mean squared error as its loss layer and the Adam optimized and 
root mean squared error as its metric. The output of this model is the predicted 
steering angle required to stay in the drivable region and minimize the cross-track 
error. Figure 4 shows the overall architecture. 

The model was trained for 8 epochs using a batch size of 128. This model was 
trained on a Lenovo computer with 16GB of RAM, an Intel Xeon W-2123 processor, 
an Nvidia GeForce GTX 2070 graphics card, and Ubuntu 20.04 as the operating 
system. The respective CUDA drivers were properly installed to maximize the utility 
of the graphics card for the training phase. With these specifications, the DL model 
was trained in approximately 36 s and saved to later integrate it with the CARLA 
simulator.
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Fig. 4 DL architecture 

2.3 Resilience Engineering Applied to AVs 

2.3.1 Resilience Engineering Overview 

RE is a safety management concept that focuses on socio-technical complexity 
[53]. An overview of the concepts and the foundation of RE were described in our 
previous study and will be used as a continuation to expand this study [36]. RE 
defines resilience as the ability of the system to achieve resilient performance rather 
than a property that a system possesses. This marks a difference between traditional 
safety management strategies (considered as Safety I concepts) and RE, since RE 
focuses on studying how the system works when it succeeds instead of studying why 
it fails (considered as Safety II concepts). Key RE concepts defined in our previous 
study are the ability of a system to learn, monitor, anticipate and respond. These are 
abilities that a resilient system must possess and improve system safety by taking a 
proactive approach. 

2.3.2 Operational Resilience Performance on AVs 

An AV is a complex system that is exposed to a dynamic environment and performs 
functions like sensing, planning and controls. There are studies on techniques to 
improve safety on AVs [54–56]. However, RE states that the resilient performance 
of a system is more concerned with how well the system performs, not so much how 
safe it maintains [57]. To improve the operational performance of a system, it is nec-
essary to study how the system works and design operating rules so that the system 
is capable of continuing operation when it encounters threats or opportunities. This 
marks a difference between this new methodology and traditional methodologies. 
Since traditional methodologies study the system reactively. That is, they study how 
the system failed and then create operating rules so that it does not occur again. 
However, in very complex systems that are tightly coupled, they create nonlinear
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iterations [58]. In other words, creating more constraints on a complex system 
without studying how the system works will trigger more unexpected failures. 

An AV requires a systematic study from the point of view of systems engineering 
to observe how the system works, the challenges of the system in certain conditions 
and thus develop a system with resilient performance. RE has several techniques to 
carry this out but it has not been applied due to the complexity of the system and 
the interdisciplinary expertise this methodology requires [57, 59, 60]. Nowadays, 
AVs possess a low operational resilience because when encountering unexpected 
scenarios, the system is unable to determine the correct decision or fails to 
sense features such as obstacles, curbs, lane exits, etc. California’s DMV reported 
2676 disengagements for AVs in 2021 due to operational failures and dangerous 
passenger decisions [31]. While the number of collisions reported between 2014 
and 2021 [61] can be seen in Fig. 5. 

Although these collisions do not mean that the cause of the accident was because 
of the AV, the system was unable to react to these circumstances. There is an 
increasing trend in Fig. 5, which means that current safety management strategies 
lack the techniques to improve the performance of the system. To drastically reduce 
the number of AV collisions as the technology becomes publicly available, a system 
capable of continuing its operation despite adversity and achieving operational 
resilience is required. RE has the potential to improve the operational resilience 
of AVs since this methodology focuses on coping with complex systems and how 
they succeed in this environment. Methods such as Functional Resonance Analysis 
Method (FRAM), RAG and others, can be used to recognize the limitations of the 
system in variable operations and their implications [62, 63]. 

Fig. 5 California’s DMV Collision Reports from 2014 to 2021 as well as a linear projection to 
2030
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2.4 Performance Evaluation Metrics 

In this section, the traditional and resilience metrics will be presented. Also, a 
standard scaling technique will be introduced to provide some statistical information 
between the simulation results among all controllers. 

2.4.1 Traditional Metrics 

Evaluation methods for lateral controllers for AVs are used to measure how 
accurately the vehicle traveled the reference trajectory. So the typical metrics to 
evaluate lateral controllers when performing path tracking are average cross-track 
error, average heading error and control effort [64]. These metrics tell us the 
deviations of the vehicle with respect to the reference trajectory and the orientation 
of the vehicle in comparison to the reference yaw angle. We also introduce cross-
track accumulation and heading error across the entire trajectory. These metrics will 
be described later. 

The cross-track error is the lateral deviation of the vehicle with respect to the 
reference path. This tells us how much the vehicle deviated from the trajectory. The 
cross-track error can be determined by the following equation, 

.εerror =
∫ T

0
εd(t)· dt (1) 

Where εd is the cross-track error and εerror is the sum of all the cross-track error
throughout the whole path. The heading error is the difference between the vehicle
heading and the reference heading. This tells us if the vehicle was headed in the
same direction as the reference trajectory. The heading error can be determined by
the following equation,

.ψerror =
∫ T

0

(
ψego(t) − ψref (t)

) · dt (2) 

Where ψego is the yaw angle of the vehicle, ψref is the reference yaw of the path and
ψerror is the heading error. These two metrics give us the error accumulation over
the entire trajectory. However, the average of these errors is commonly used and is
represented by the Eqs. 1 and 2 divided by the number of samples. In other words, 

.εavg = 1

T

∫ T

0
εd(t)· dt (3) 

.ψavg = 1

T

∫ T

0

(
ψego(t) − ψref (t)

) · dt (4)
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Where N is the number of samples, εavg is the average cross-track error and ψavg 
is the average heading error. The control effort is the amount of energy required by 
the lateral controller to minimize the error with respect to the reference trajectory. 
A higher control effort indicates that the controller has performed poorly and is 
unstable. The control effort is computed using the following equation, 

.e = 1

T

∫ T

0
|δ(t)| · dt (5) 

Where δ is the steering angle and e is the control effort.

2.4.2 Resilience Metrics 

The measurement of RE metrics, such as “resistance” and “recovery,” is enabled by 
exposing the AV system to a variety of driving environments and driving scenarios. 
Due to the low percentage of vehicle accidents and fatalities relative to the amount 
of kilometers driven, these measures cannot be relied solely on crash/accident 
situations. Instead, “resistance” will be computed as the divergence from the best 
trajectory, and “recovery” will be computed as the return time to the optimal 
trajectory. 

The method of quantifying operational resilience based on robustness, speed, 
redundancy, and resourcefulness is referred to as the resilience triangle [32]. The 
resilience triangle describes how an incident affects the functionality of a system 
and the system’s ability to respond after the event has occurred. Figure 6 depicts 
the resilience triangle and compares a system with low resilience performance 

Fig. 6 Resilience triangle which shows the operation of a system with high resilience, low 
resilience and subjected to failure



720 J. F. Rojas et al.

to one with high resilience performance. Deviation is the magnitude (positive or 
negative) from the system’s nominal condition. Recovery is the rate at which a 
system recovers to its normal state after an event has happened. This study applies 
resistance (robustness) and recovery (rapidity) as resilience indicators to AVs. 

These are meaningful and significant real-world measurements since deviations 
are the situations that cause accidents, even though they do not always result in 
accidents. A failure recovery is conceivable if it is assessed that the AV system 
response resulted in collision with another object or deviance from the driveable 
path. A system with resilient performance can respond to an event to avoid 
significant repercussions and recover from accidents when they occur. The RAG, 
which measures the system’s performance across the four abilities or pillars of 
RE, is another essential RE statistic. However, for the sake of this study, we will 
concentrate on the system’s responsiveness in order to demonstrate the concept and 
execution of this statistic. 

The resistance measures the system’s susceptibility to external shocks, whereas 
the recovery measures the system’s response speed. The system’s resistance is its 
capacity to prevent any departure from the nominal condition, and its recovery is 
the amount of time it takes to return to the nominal condition. 

To extend the definition of resistance to the sphere of AVs, resistance is defined 
here as the inverse of the cross-track error data point variance. The variance is 
defined as the average of the squared deviations from the mean. If the lateral 
controller is functioning properly, its mean should be close to zero; consequently, 
the variance of the cross-track error during the whole simulation should indicate 
the average amount by which each point deviates from the mean. Therefore, when 
resistance increases, deviations from the nominal state decrease. Using the following 
equation, we can calculate the controller’s resistance, 

.Resistance = 1

Θ
(6) 

Where ϑ can be defined as,

.Θ =
∑N

i=1 (xi − ε)2

N
(7) 

θ gives us the squared error of all x values with respect to the nominal condition ε.
The system’s recovery is the time it takes to return to its normal state after a 

disturbance. We regard the disturbance to be the road’s curvature and the cross-track 
error to be the divergence from the ideal state. We set a 5 cm (0.05 m) threshold since 
the cross-track error (deviation) can be incredibly small and never equal zero. If the 
system exceeds this threshold, we take the initial time (tevent). Similarly, after the 
system returns to its nominal condition (within the threshold −0.05 m≤ x≤ 0.05 m) 
we take the time post-event (tpost-nominal). This tendency is depicted graphically in 
Fig. 6. Where the return time is calculated by getting the time interval �t between 
point A and point C by
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Fig. 7 An example of a traditional resilience assessment grid model which shows the evaluation 
of the ability to learn of a system [63] 

.RT = tpost−nominal − tevent (8) 

Another approach of evaluating RE is the resilience assessment grid. The RAG is
a technique used to evaluate a system’s performance on the four capabilities that
a resilient system should possess [63]. RAG accomplishes this by asking a series 
of questions to determine the system’s performance in a given ability. These four 
competencies are: 

• Ability to respond: A system must be able to recognize when a change has 
occurred and respond to it effectively. 

• Ability to monitor: A system should be able to monitor its own performance 
and detect external changes that could present an opportunity or a threat. 

• Ability to learn: This ability provides the system with the means to learn from 
accidents and other occurrences that could have disturbed the system. 

• Ability to anticipate: This skill is intended to predict possible risks and 
opportunities for the system. 

Each skill is evaluated using a specific set of questions pertaining to the activities 
it should execute. For instance, if a system is capable of responding, it should do 
so in a timely and efficient manner. Therefore, some of the specific concerns could 
include speed, duration, and whether or not all occurrences were addressed, etc. 
Using a Likert-type scale or similar custom scale, each specific concern pertaining 
to the proper capacity is ranked. This study proposes a 1–10 scale since it provides 
a measurable evaluation. A radar chart is created with the issue’s specifics and its 
rating. RAG is conducted numerous times to observe how the system’s capabilities 
evolve after a predetermined amount of time. Figure 7 depicts an example of a 
system’s ability to learn as measured by RAG. Both radar charts are very similar 
which means in four months, the performance of the system didn’t change in the 
four capabilities.
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Before measuring the capability of a system using RAG, the relevant variables 
must be defined. The relevant variables for measuring the system’s responsiveness 
are deviations from nominal circumstances (cross-track error), recovery, and control 
effort. Additionally, the system’s resistance was determined, but it was not presented 
using RAG. The factors of interest were utilized to generate the RAG radar 
chart. Typically, RAG is run multiple times under the same settings to assess the 
progression of a system’s capabilities. However, we do not anticipate a substantial 
impact in response time for this application. We alter the speed in order to examine 
how the ability to respond changes as the pace increases. Due to the radius of 
curvature of the curves, we maintained a speed below 8 m/s for this study. 

To establish a measurement standard between the three variables of interest, we 
devised a 1–10 scale. The scale determines the task’s performance, with 1 indicating 
a low performance and 10 a high one. The scale was determined using a RAG score 
generated using the following formula, 

.RAG score = 10·
(
1 − zμ(x)

zmax(x)

)
(9) 

Where z(x) is the z-score of all the data points and it is computed by the following
equation

.z(x) = xi − μ

σ
(10) 

Where σ represents standard deviation, μ represents the mean, and x represents
the observed value. The z-score indicates how many standard deviations the value x
deviates from the data mean. However, as the average does not indicate the system’s
performance in many instances, we use ε as our nominal condition. A system with
poor performance, an average error of 1, and minor deviations from the mean, for
instance, can earn a low z-score and, thus, a high RAG score. However, we aim
to eliminate the error. Therefore, the average does not indicate if the system fits
our requirements. Therefore, we use ε as the nominal condition to determine the
data’s z-score. In addition, since it is irrelevant whether the observation point is to
the right or left of the nominal condition, the absolute value of the numerator is
obtained. Similarly, the standard deviation of the data indicates the proximity of
the x value to the mean. However, as we have already shown, the average does not
necessarily indicate the performance of our system. Instead, we are interested in
the divergence of each x value from the nominal condition. Therefore, we calculate
the pseudo standard deviation of each x value from the nominal condition using
the square root of Θ . However, the z-score will be greater when the dispersion is
modest. Consequently, the square root of .

√
Θ is shifted to the numerator because 

the system obtains a greater RAG score when it achieves a smaller z-score. Hence, 
dividing by the pseudo standard deviation (ϑ) will produce a higher z-score and, 
ultimately, a lower RAG score. Therefore, Eq. 10 becomes
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.z(x) = |xi − ε| ·√Θ (11) 

In Eq. 9, the average z-score (zμ) of each test was divided by the highest z-score 
(zmax) across all tests. This is because, if we use the zmax of each test and the data 
has a small standard deviation, we will obtain a reasonably high z-score for each 
deviation. Alternatively, if we consider the zmax of all tests, the ratio zμ/zmax will 
reveal the relationship between the average z-score of a test and the test with the 
highest z-score. If the z-score is very low, it indicates that the condition is closer to 
the mean. This ratio will yield a number between 0 and 1, thus by subtracting one 
and multiplying by ten, we can calculate the RAG score for the variable of interest. 

2.4.3 Standardization 

To evaluate the controllers developed in Sect. 2.2, we will use traditional metrics and 
RE metrics. To provide a standard among all the parameters to be measured, we use 
a standard scaling technique (also called standardization). This scaling technique 
centers all values around the mean with a unit standard deviation. For example, the 
standard scaling technique was used to standardize each output the control effort of 
all the controllers for a given test. The equation for this standardization is as follows, 

.S = xi − μ

σ
(12) 

Where S is the standardized parameter, x are the outputs of each metrics of all
controllers, μ is the mean and σ is the standard deviation.

3 Results 

To do path tracking, we first gathered waypoints by subscribing to the odometry 
topic and manually driving the vehicle in the CARLA simulator’s Town03 envi-
ronment. The simulated vehicle was set to spawn in the starting position, and 
the Ackermann control package was utilized to provide the vehicle steering angle 
commands. At 5, 6, 7, and 8 meters per second, the PPC was employed to navigate 
the reference path. For clarity, we shall refer to them as Test No. 1, Test No. 2, 
Test No. 3, and Test No. 4, accordingly. The data for the DL model described in 
Sect. 2.2.2 was acquired by navigating the reference path at 5 m/s using the PPC. 
The preprocessed data was utilized to train the DL models. During runtime, the 
vehicle’s position, cross-track error, heading error, and steering angle were captured 
for offline evaluation of both controllers. Figure 8 illustrates the reference path 
utilized in our investigation.
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Fig. 8 Reference path for the path tracking algorithm used in this study generated in the Town03 
of the CARLA Simulator 

With the collected training data, the DL model was trained for 8 epochs. The 
training and validation loss were plotted to see the performance of our model. The 
model was trained for a few epochs to avoid overfitting since we used a large 
batch size. As we can see in Fig. 9, the training and validation loss gradually 
decreases which means that the model does not overfit the data. The training loss 
usually means how well the model is fitting the training data and the validation loss 
determines how well the model fits new data. 

The PPC and DLC were developed and evaluated on the CARLA simulator at 
different speeds in order to assess their performance with traditional and resilience 
metrics as the speed increases. 

The results of the traditional metrics were standardized using a standard scaling 
technique to provide more clarity between both controllers. As was mentioned in 
Sect. 2.4, the controller with the lowest value in each metric indicates that it obtained 
a better track performance. In other words, the controller with less deviations and 
control effort. The simulation results using the traditional metrics indicate that the 
PPC outperforms the DLC. From Fig. 10, we can see the PPC obtained a lower 
standard value than the DLC in all tests except in the control effort in Test No. 4. Test 
No. 4 of the PPC obtained the lowest standard value of −1.10, −0.99, −1.11 and 
−1.01 for the cross-track error, heading error, average cross-track error and average 
heading error, respectively. Test No. 4 of the DLC obtained a slightly lower value 
than the PPC for the control effort (which means a smoother response). Figure 10
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Fig. 9 Loss curves vs epochs of DL model. A gradually decaying training and validation loss 
means the model does well fitting the training data and fitting new data 

Fig. 10 Comparison of PPC and DLC using traditional metrics where a lower score indicates best 
performance according to these metrics 

shows that as the speed increases, better track performance is achieved. Hence, the 
test with the highest speed in both controllers has better performance. This gives 
quantitative evidence that non AI-based controllers such as PPCs perform better
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Fig. 11 Cross-track error of the PPC (a), Cross-track error of the DLC (b) 

than DLCs which is likely the analysis that other researchers have conducted causing 
them to question AI-based control. 

However, if we look at Fig. 11 we see in both controllers that the cross-track 
error increases as the speed increases. This contradicts our previous findings. This 
is because the metrics used are time dependent and when the same controller is 
compared at different speeds on the same trajectory, there is a discrepancy between 
the evaluation metrics and the operational performance of the system. 

Similarly we can compare the heading error of both controllers throughout the 
whole trajectory. The PPC obtained less heading error than the DLC. This is to be 
expected since as we saw earlier, the DLC obtained more deviations than the PPC. 
Therefore, the heading error must also follow the same pattern. Figure 12 shows the 
error heading for both controllers for each test. 

These metrics do not tell us about the operational performance of the system 
to respond to external disturbances. Additionally, the results of these tests are time 
dependent and cannot be used as an evaluation method to measure the operational 
performance of a system under the same trajectory at different speeds. For example, 
if the speed is increased while maintaining the same reference path, the vehicle will 
finish faster and therefore, the evaluation data possesses fewer samples. Therefore,



Evaluation of Autonomous Vehicle Control Strategies Using Resilience Engineering 727

Fig. 12 Heading error of the PPC (a), Heading error of the DLC (b) 

the sum of error will be lower at higher speed. For this reason, using the traditional 
metrics, the test with higher speed obtained better performance in all categories. 
Therefore, new evaluation metrics that are independent of time are needed that 
provides the user with another quantification of the operational performance of the 
system. Resistance and recovery are resilience metrics that indicate the system’s 
ability to sustain in the face of a disturbance and how quickly it recovers after an 
incident. On the other hand, with the RAG score we evaluate the ability of the system 
to respond to disturbances as the speed increases. The RAG score provides us with 
a metric independent of the time. 

Simulation results using the resilience metrics indicate that the PPC outperforms 
the DLC. However, unlike traditional metrics, we now see that the test with the 
highest speed performs the worst on most variables of interest. The simulation 
results were standardized using the same standard scaling technique described 
previously. However, since a RAG score of 10 means better performance and vice 
versa, now a higher standard value means better performance. As we can see in Fig. 
13, the PPC obtained a higher performance in Test No. 2 among all tests. While 
the DLC obtained a higher performance in Test No. 1. This may be because the 
data collected for development of the DLC was at a speed of 5 m/s. As we saw in
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Fig. 13 Comparison of PPC and DLC using resilience metrics where a higher score is regarded as 
a better performance 

Fig. 11, as the speed increases, the PPC has more deviations. Therefore, if the DLC 
was only trained with the controller that has the fewest deviations, then it will not 
perform well at other speeds. Comparing both controllers, we see that the PPC has 
higher RAG score than the DLC in all tests. It is likely that the PPC outperformed the 
DLC due to the training data and the features used for the DL model. The DL model 
was trained using the masked image with the drivable region and the cross-track 
error; however, feature engineering was not performed to see which parameters are 
more correlated for this path tracking problem. It is important to emphasize that in 
recovery, the PPC obtained a higher RAG score in test No. 4. This may be due to 
the nominal condition used for the RAG analysis. Overall we can see that evaluation 
using RE metrics provides direct insights into the system that match the logical 
development of the system. RE evaluation shows that AI-based control strategies 
may be more feasible that researchers realize and that the results shown here could 
be improved with more development of the AI-based controller. 

It is important to note that the results presented using the RAG score depend on 
the nominal condition chosen for the study. For this study, zero was chosen as the 
nominal condition for cross-track error and control effort. For the return time, 1.5 s 
was used as the nominal condition. The nominal condition for cross-track error and 
control effort was chosen as zero since we want the controller with the least control 
effort and cross-track error. The nominal condition for the return time was chosen 
as 1.5 s because the data was observed to oscillate within this range. However, if we 
carry out a sensitivity study, we can observe that the RAG score varies depending
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on the nominal condition chosen by the user. This parameter must be chosen by the 
user depending on the requirements for the controller. 

In this study, the REmetrics were used to evaluate the system’s ability to respond. 
Given the definition of the system’s ability to respond in Sect. 2.4, the ability to 
respond can be considered reactive since the system responds effectively after a 
change has occurred. However, that does not mean that RE metrics are reactive. The 
other abilities are considered proactive since they are capable of monitoring the state 
of the system, learning from past failures, anticipating future threats, and responding 
to these threats. However, this study serves as a path to demonstrate the potential that 
RE has to improve the operational performance of AVs. If this methodology is to be 
applied to assess the resilient performance of the overall system, all abilities must 
be considered. Nevertheless, it requires an interdisciplinary group with a level of 
expertise in systems engineering to perform a system level analysis and study how 
the system operates when it succeeds and develop metrics around its operational 
domain. 

4 Conclusion 

This chapter presented the overall methodology of RE and the potential it has to 
improve the operational performance of AVs. A PPC and DLC were developed to 
evaluate its performance using traditional and resilience metrics. The RE metrics 
used indicate how the system responds to disturbances and provides us with more 
information than traditional metrics since they are not time dependent. The resis-
tance, recovery, and the RAG score were used to assess each lateral controller as the 
speed increases. Simulation results for both controllers using the traditional metrics 
show that the test with highest speed obtained a better performance. However, these 
results are time dependent and cannot be used to evaluate a controller on the same 
reference path while varying the speed. This is because if the vehicle travels faster, 
less samples will be collected and therefore less error accumulation. However, the 
resilience metrics are time independent. Therefore, we were able to conclude that 
Test No. 2 obtained a better performance for the chosen reference trajectory. Results 
may vary depending on the reference trajectory and the nominal conditions chosen 
for each variable of interest. It is important to mention that the PPC outperformed 
the DLC in all tests. This may be due to the training data collected and the features 
used to train the model, since feature engineering was not performed to see which 
features are more correlated to steering angle. 

In this study the proposed resilience metrics provided genuine insights about 
future operational performance of a traditional lateral controller as well as a DL 
based lateral controller. However, resilience metrics can also be applied to evaluate 
an entire subsystem or specific aspects of an AV which can be challenging when new 
cutting-edge AI techniques are employed. Resilience is not an attribute of a system, 
rather it is the capacity that the system has in the operational domain. This means 
that this methodology can also be extended to evaluate the operational performance
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of the entire AV system. AVs are sophisticated systems that are subjected to a 
constantly changing environment and a high level of risk. For years, the rate of 
fatalities versus the amount of miles traveled has been used to assess these systems. 
This metric is considered as reactive since it tells you how the system performs 
after being deployed. Furthermore, the data from California’s DMV collision reports 
tells us that underperforming or unsafe systems will come to light as they become 
publicly available. To assess the resilient performance of AVs under certain driving 
scenarios, a proactive evaluation metric is required. Additionally, RE demonstrated 
a clear and actionable path to improve performance and thus minimize crashes if 
this system were to go into commercial production. Future work in this area could 
focus on extending this study to a fusion sensor algorithm using traditional methods 
such as Kalman Filters and DL as well as full AV system evaluations. 
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Safety-Assured Design and Adaptation of 
Connected and Autonomous Vehicles 

Xin Chen, Jiameng Fan, Chao Huang, Ruochen Jiao, Wenchao Li, 
Xiangguo Liu, Yixuan Wang, Zhilu Wang, Weichao Zhou, and Qi Zhu 

1 Introduction 

Connected and autonomous vehicles (CAVs) have the potential to transform the way 
we travel. They hold promise for increased mobility, reduced traffic congestion and 
better fuel efficiency with automated control, as well as the creation of a cooper-
ative network that includes cars, traffic lights and other roadside infrastructures. 
Autonomous vehicles (AVs) typically employ a wide array of sensors to gather 
information about the road environment, and then use sophisticated techniques 
to fuse and process this data to come to a navigation decision in real time in 
an automated fashion. Many of the underlying components in an AV, such as 
perception, planning and control make use of deep learning or deep neural networks 
(DNNs) due to their superior performance. Moreover, greater benefits on safety and 
fuel economy can be achieved by enabling vehicles to exchange information with 
one another. In a connected vehicle (CV) system, vehicles are expected to exchange 
V2X (vehicle-to-everything) messages with surrounding vehicles and roadside units 
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(RSUs) for extended perception range, to learn about traffic status down the road, 
and to coordinate their planning and control decisions. Realizing these potentials 
of CAVs, however, require tackling the immense challenge of assuring their safety 
in uncontrolled, public road environments. Numerous recent accidents involving 
autonomous vehicles are reflective of the safety concerns that loom large in the 
rapid advancement of CAV technologies [38, 62, 65, 66, 78]. The U.S. Department 
of Transportation (USDOT) launched the Automated Vehicle Transparency and 
Engagement for Safe Testing (AV TEST) Initiative in June 2020 to improve the 
safety in the development and testing of automated driving systems [51]. The 
USDOT has also started deploying test sites for connected vehicle applications in 
Florida, New York, and Wyoming [70]. 

This book chapter will survey recent advances in designing and operating CAVs 
with safety assurance. Instead of reviewing existing safety standards and industry 
practices, it aims to bring into focus new methodologies and techniques that have 
the potential to reshape how we approach the problem of safety assurance of CAVs, 
paying special attention to two categories of problems—(1) safety verification of 
CAVs that employ neural network-based components and (2) system adaptation 
and design with safety guarantees. The chapter will end with a discussion of 
outstanding technical challenges, broader applications of the surveyed techniques, 
and the authors’ outlook on this important topic of safety assurance of CAVs. 

2 Safety Verification of Neural Network-Based Components 
in CAVs 

In CAVs, neural network-based components have been widely used for sensing, 
perception and prediction, and increasingly being tried for planning and control 
as well. It is thus critical to conduct safety verification of these neural network-
based components for ensuring overall system safety. In particular, this includes 
conducting robustness of individual neural networks, in particular those used for 
sensing, perception and prediction, and performing safety verification of a neural 
network controlled/planned system. 

2.1 Robustness Analysis of Deep Neural Networks 

Local Robustness Analysis of Neural Networks Robustness is one of the key 
metrics to measure how stable a neural network’s outputs are under random noises, 
external perturbation, or adversarial attacks to its inputs. Recent studies have in 
particular highlighted the lack of robustness against adversarial perturbations for 
neural networks [21, 67]. These adversarial perturbations construct a local input 
region around each inputs. A neural network is verified to be robust if the neural
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network outputs are guaranteed to be correct for each local input region, i.e., 
verification of the local robustness. 

Measurement of robustness can take the form of upper and lower bounds on 
certain key input and output parameters. For individual deep learning components, 
the robustness analysis problem can often be reduced to output range analysis of 
the neural networks. State-of-the-art methods for output range analysis mainly fall 
into two categories: constraint programming (CP) [14, 36] and abstract interpreta-
tion [63, 71]. CP-based methods can perform exact analysis of the neural networks. 
However, the scale of deep neural networks limits the usage of these methods 
because they require encoding an entire network into a large nonlinear programming 
problem (or an SMT problem) and then solving it. The main drawback with abstract 
interpretation, on the other hand, is that it is difficult to propagate the dependencies 
for nonlinear operations across layers [48]. While such methods can scale with the 
network’s size, the performance degrades as the network becomes deeper. 

In [29], we propose a layer-wise refinement method, LayR to compute a 
guaranteed and overapproximated range for the output of the neural network for 
a adversarially perturbed input region. By checking the overapproximated range, 
we can verify whether the neural network is robust against all possible adversarial 
perturbations within the input region. LayR bridges abstract interpretation with 
mixed integer linear programming (MILP) and iteratively improves approximation 
precision by systematically increasing the number of integer variables, as shown in 
Fig. 1. 

Global Robustness Analysis of Neural Networks Most of the efforts in the 
literature focus on verifying/certifying the local robustness, which characterizes the 
robustness property for a small region of network input space. However, there are

Fig. 1 Divide-and-slide structure of LayR: . Ω defines the number of slack integer variables of 
all the layers. In the refining process, . Ω is monotonically increased to improve the output range 
estimation, until the iteration bound is reached 
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Fig. 2 Interleaving twin-network encoding (ITNE) for neural network global robustness certifi-
cation. The hidden layer neurons are connected between the two copies of the neural network by 
distance variables Δy (i) j and Δx (i) j

a lot of scenarios that need the robustness property over the entire network input 
domain, especially for cases that the network input samples cannot be obtained in 
advance. For instance, for image processing neural networks (like the perception 
modules in CAVs), the exact input samples during runtime are not always known at 
design time. In those cases, the global robustness property of the network should be 
considered, which can bound the worst-case output variation under perturbation for 
all possible network inputs. Directly conducting local robustness verification for all 
possible regions in the entire input domain by leveraging the divide-and-conquer 
techniques is not practical, especially for networks with high-dimension inputs, 
such as image inputs, as the complexity of divide-and-conquer is exponential to the 
input dimension. In [77], we developed an efficient global robustness certification 
algorithm that encoding two copies of the neural network side-by-side, as shown in 
Fig. 2. One network copy encodes the inference of a normal input while the other 
one encodes the inference of the disturbed input. Such encoding is formulated as 
an optimization problem that maximizes the output variation for all possible inputs 
and perturbations. The differences of hidden neurons between two networks are 
considered during the relaxation of the optimization problem to efficiently derive a 
tight over-approximation of the neural network output variation bound. Such over-
approximated global robustness can be leveraged to enable the formal verification 
of the perception neural networks in CAV systems. 
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2.2 Safety Verification of Neural-Network Controlled Systems 

An important class of CAVs can be described by a physical process such as the 
change of the velocities or distances of vehicles regulated by a learning-enabled 
controller which can be a neural network. We call such systems neural-network 
controlled systems. A Neural-Network Controlled System (NNCS) is a special 
sampled-data system which consists of a continuous-time physical process (plant) 
defined by an ordinary differential equation (ODE) and a feed-forward neural net-
work (FNN) controller which works at discrete time moments. Figure 3 illustrates 
an execution of an NNCS. The physical process is defined by an ODE . ẋ = f (x, u)

wherein x is the state variable and u is the control input. The FNN controller 
samples the system state every . δc time and updates the control input value. Such a 
system is often safety-critical and it is significant formally verified the safety before 
implementation. 

The safety verification problem asks whether a system can be in an unsafe 
situation or not. For example, it is crucial to know whether the distance between 
any of two connected vehicles could be too close at a near future time. Many safety 
verification problems can be reduced to reachability problems, that is, determining 
whether the given state can be reached by the system. Unfortunately, the reachability 
problem is not decidable even for linear hybrid systems [2, 24]. Hence, most of 
the existing reachability analysis techniques for hybrid dynamical systems seek to 
compute an overapproximation of the reachable set. If this overapproximation set 
does not contain any unsafe state, then the system is safe. Otherwise the safety is 
unknown, and either the reachable set overapproximation should be refined or an 
unsafe execution should be found. 

NNCSs are particular hybrid dynamical systems such that only the dynamics 
is updated by the controller, while the system executions are still continuous. 
Therefore, regardless of the noises or uncertainties between the plant and the 
controller, an NNCS shows deterministic behavior from an initial state. In other 
words, a system execution, i.e., the reachable state and control input used at any 
time, is uniquely determined by the initial state, and we call the function that maps

Fig. 3 State evolution of a neural-network controlled system 
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the initial state to its reachable state at a time flowmap which is essentially the 
solution of the piecewise ODE in Fig. 3. Hence, the reachability analysis task on 
an NNCS becomes computing the range of the flowmap w.r.t a given set of initial 
states. 

The overapproximate reachability computation for NNCSs is at least as hard 
as that on general nonlinear sampled-data systems, and the main challenge is to 
accurately approximate the flowmap function which is a composition of a series of 
alternative neural network mappings and ODE evolution, and it often does not have 
a closed-form expression. Set propagation [9] is a popular scheme for computing 
time-bounded reachable sets under such dynamics. From a given initial state set, 
a set-propagation approach iteratively computes the reachable sets in small and 
consecutive time intervals the union of which is a cover of the time horizon. The 
reachable set segment which is also known as flowpipe computed in each iteration 
is propagated to the next time interval. For an NNCS, such an algorithm alternatively 
computes the flowpipes for the ODE and the output range of the controller until the 
upper bound of the time horizon is reached. A set-propagation approach for NNCS 
is often developed in the following two ways. 

Pure Range Overapproximation A range overapproximation approach can be 
directly built by combining a neural network output range analysis method [15, 
25, 36, 63, 69, 71, 73] and a reachability computation tool for ODEs [1, 8, 50]. It 
alternatively computes the reachable sets of the two components and propagates the 
result to the future time. Such a method mainly focuses on the range overapproxi-
mation and often cannot track the state dependency in a flowmap, therefore hard to 
control the accumulation of overapproximation error on highly nonlinear dynamics. 

Functional Overapproximation A functional overapproximation approach seeks 
to compute an overapproximation for the flowmap function instead of only its 
range. Most of the existing methods [16, 19, 20, 26, 31–34] in this category 
uses Taylor Models (TM) [47] as the functional overapproximations. Unlike range 
overapproximations, a functional overapproximation is obtained by composing the 
functional overapproximations for the sub-components in a system, and it often 
requires more computational effort than computing a range overapproximation. 
However, functional overapproximations are able to keep the state dependency 
in flowmaps and effectively limit the accumulation of overapproximation error 
in reachability computation. Figure 4 illustrates an functional overapproximation 
represented by a TM for the output range of an FNN controller at the time .t = kδ. 
The actual flowmap that transforms an initial state . x0 to the control input . uk =
κ ◦ Φ(x0, kδ) used at .t = kδ is overapproximated by a TM .p(x0) + I wherein p is 
a polynomial and I is an interval remainder.

We briefly introduce the techniques we developed for computing functional 
overapproximations for the reachable sets of NNCSs. 

ReachNN In [26], we present the ReachNN technique to compute reachable set 
overapproximations for NNCSs. The main contribution is an approach to obtain a 
TM-like overapproximation for the end-to-end relation of a neural network whose
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Fig. 4 Functional overapproximation of the control input range

activation functions are assumed to be all continuous. By Weierstrass approximation 
theorem [52] such a neural network over a compact input set can be uniformly 
approximated as closely as desired by a polynomial. The main method first 
computes a Bernstein interpolation for the input-output mapping of the neural 
network, and then a conservative interval remainder for it can be evaluated based on 
the adaptively selected samples from the input set, and an estimation of the Lipschitz 
constant of the neural network. We show that this method can be integrated with the 
reachability tool Flow* [8] which computes TM flowpipes for ODEs, and generate 
TM reachable sets which approximately keep the state dependency for NNCSs. 

ReachNN* ReachNN* [20] leverages GPU-based parallel computing to compute 
the sampling-based error bound estimation in ReachNN. To further improve the 
runtime and error bound estimation, ReachNN* also features optional controller 
re-synthesis via a technique called verification-aware knowledge distillation [19] 
to reduce the Lipschitz constant of the neural network controller. ReachNN* 
demonstrated . 7× to .422× efficiency improvement over ReachNN across a set of 
benchmarks. 

The Polynomial Arithmetic (POLAR) Framework POLAR [31] is introduced 
for computing TM functional overapproximations for neural network outputs using 
layer-by-layer propagation. It is an extension of the standard TM arithmetic by 
introducing (A) Bernstein approximations for the activation functions in neural 
networks and (B) the symbolic representation of TM remainders in the layer-by-
layer propagation framework for computing the output range of a neural network. 
It can be seamlessly integrated with the reachability tool Flow* to compute TM 
flowpipes for NNCSs. POLAR has the following main differences from ReachNN: 
(1) POLAR only uses Bernstein polynomials in approximating activating functions 
which are always univariate, but ReachNN needs to compute a multivariate Bern-
stein polynomial when the neural network has multiple inputs. It is much more 
time costly to compute multivariate Bernstein polynomials than the univariate ones. 
(2) POLAR uses layer-by-layer propagation framework to compute TM outputs for 
neural networks, however ReachNN performs an end-to-end overapproximation.
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3 System Adaptation and Design with Safety Assurance 

For safety-critical systems like CAVs, ensuring safety is a central focus during both 
the design stage and the runtime operation of them. It is a very challenging task, 
given the rapid increase of system functional complexity in terms of both scale 
and features, the usage of advanced architectural components such as multicore 
CPUs and GPUs, the stringent and contradicting requirements on various objectives 
such as performance, cost, fault tolerance, and reliability, the adoption of emerging 
machine learning components, particularly those based on deep neural networks, 
and the close interaction with a dynamic surrounding environment [60, 86]. In this 
section below, we will discuss these challenges in CAV design and adaptation, and 
introduce some of the proposed approaches to them, including those that leverage 
the methods from Sect. 2 as the underlying safety verification tools. 

3.1 Safety-Assured Runtime Adaptation 

The dynamic and uncertain environment of CAVs could put changing requirements 
on their objectives. For instance, a vehicle may need to enhance its planning, nav-
igation and control performance in difficult-to-navigate terrains via more frequent 
sampling and processing [11–13] (especially for level 5 autonomy), to strengthen 
its security protection in an adversarial environment by adding monitoring tasks or 
authentication methods [40, 49], to improve its soft error tolerance in radioactive 
surroundings through task re-execution [41, 81], or to mitigate the impact under 
severe communication disturbance by running more computation locally. It is thus 
critical for those systems to be able to adapt to the dynamic environment and 
operation context. 

Two major challenges in enabling runtime adaptation are to ensure that during 
and after the adaptation process, (1) functional safety is guaranteed, and (2) resource 
and timing constraints are met. To address the first requirement, we may leverage 
various verification/validation techniques, including those introduced in Sect. 2. To  
ensure both requirements, however, it is important to develop holistic approaches 
that span across functional, software, and hardware layers. Next, we will introduce 
our recent works in this area, along with some of the related works. 

Opportunistic Intermittent Control with Safety Guarantees For safety-critical 
autonomous systems such as robots and automated vehicles, control schemes are 
often designed conservatively so that system safety can be maintained in a wide 
variety of situations [10, 43, 56]. During the operation of these systems, however, 
such schemes can be overly conservative and result in unnecessary resource and/or 
energy consumption. In [27, 28, 40, 41], we make the observation that certain control 
steps, even if they are skipped, do not impact either the performance or safety of 
the overall system. Armed with this observation, we propose an online scheme 
that opportunistically skips control computation and the corresponding actuation
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steps by learning specific characteristics of the system’s operating environment. We 
further show that safety could be maintained with this more efficient control scheme. 

Specifically, to address the safety, we first compute a strengthened safe set 
based on the notion of robust control invariant and backward reachable set of 
the underlying safe controller. Intuitively, the strengthened safety set represents the 
states at which the system can accept any control input at the current step and be 
able to stay within safe states, with the underlying safe controller applying input 
from the next step on. We then develop a monitor to check whether the system is 
within such strengthened safe set at each control step. Whenever it is found that the 
system state is out of the strengthened safe set, the monitor will require the system 
to apply the underlying safe controller for guaranteeing system safety. To efficiently 
leverage the characteristics of specific operation context and environment, we 
develop two approaches to leverage the characteristics of operation context and 
environment when the system is within the strengthened safe set, depending on the 
type of the underlying safe controller and whether the characteristics are known 
explicitly. In the simpler case where the safe controller has an analytic expression 
and the characteristics can be explicitly captured, we use a model-based approach 
to decide the skipping choices by solving a mixed integer programming (MIP) 
program. Otherwise, we use a deep reinforcement learning (DRL) approach to 
learn the mapping from the current state and the historical characteristics to the 
skipping choices, which implicitly reflects the impact of specific operation context 
and environment. Our approach is applied to a vehicle adaptive cruise control 
(ACC) example and shown to provide significant savings in actuation energy and 
computation load. 

Switching Among Multiple Controllers with Safety Guarantees The work 
in [30] is our first attempt towards the safety adaptation and design for learning-
enable systems, allowing a safe, efficient and intelligent switch between different 
system modes. Motivated by this work, we start considering a more general 
case, where switching among multiple existing controllers, including possibly both 
model-based ones and neural network-based ones, can be conducted to address 
system adaptation needs. This is show in Fig. 5. Note that the case where a control 
step is skipped can be viewed as a special case of switching to a trivial controller.

For safety-critical systems such as CAVs, the key to enable such switching 
among multiple controllers is to formally ensure safety. In [72], we extend the 
work from [30] to achieve energy-efficient control adaptation with safety guarantees 
by switching among multiple controllers (including neural network based ones) 
via control invariant set computation and reinforcement learning. Once a system 
starts from a control invariant set, it will never leave the set and therefore the 
safety can be guaranteed. However, it is a hard problem to compute the control 
invariant set for neural network controlled systems. To solve this problem, we first 
partition the system space into multiple regions, and on each small local region, we 
overly approximate the neural network controller by Bernstein polynomials with 
bounded error. After this transformation, we obtain a hybrid system with polynomial 
dynamics and compute the invariant set by solving a semi-definite programming
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Fig. 5 Adaptation through switching among multiple controllers, which could include both 
model-based ones and neural network-based ones

Fig. 6 An example illustrating the energy-efficient switching control with safety guarantees 
in [72]. We compute the control invariant sets . X1

I and . X2
I for controllers . κ1 and . κ2, respectively, 

and efficiently switch between them based on DRL when the system state is within the intersection 
of the two invariant sets. For example, in the figure, a control switching happens when the system 
is at .x(2), where both controllers can be safely chosen, and DRL picks . κ2 for energy efficiency 

(SDP) problem. The union of all the invariant sets define the safe adaptation space, 
where we apply deep reinforcement learning (DRL) to learn an energy-efficient 
strategy. Figure 6 shows an example illustrating our framework. In two case studies, 
including an ACC example, our framework with invariant set and DRL achieves the 
best safety-energy consumption efforts when compared to baseline methods. 

Cross-Layer Adaptation with Safety-Assured Job Skipping 
For many practical systems such as CAVs, the ability to adapt to dynamic 
requirements is often limited by the tight resource constraints. Moreover, most 
safety-critical systems employ rigid timing requirements, such as periodic execution 
and hard deadlines, to guarantee the functionality under worst-case analysis, which 
further restricts the system adaptation ability. In these cases, it is important to 
address adaptation with cross-layer approaches.
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In the literature, there are a number of methods that adapt task execution with 
cross-layer consideration. For instance, in [61], the simplex control architecture 
is proposed, where multiple controllers are being switched at runtime based on 
the system state and a safety controller keeps the system safe. In [11], an online 
adaptation approach is proposed for hard real-time systems to temporarily increase 
control sampling frequency under disturbances while maintaining schedulability. 
In [5–7], feedback schedulers assign new sampling periods to control tasks during 
runtime to optimize the control performance under earilest deadline first (EDF) 
scheduling. In [57], an approach is proposed to adaptively minimize tasks’ usage of 
high quality-of-service resources while meeting control performance requirements. 

In [75], different from the previous adaptation approaches that are based on 
traditional hard timing constraints, we propose an approach that explores proactive 
task job skippings based on the dynamic system state for state-aware tasks and static 
weakly-hard constraints for other state-unaware tasks. Note that with weakly-hard 
constraints [4, 55], occasional deadline misses are allowed in a bounded manner. 
Such paradigm provides more flexibility on the system design than traditional hard 
real-time constraints, while still allows the possibility of formally guaranteeing 
functional correctness that soft deadlines cannot provide, using formal analysis 
techniques such as those in [27, 28]. 

More specifically, we propose a cross-layer runtime adaptation framework in [75] 
that allows proactive skipping of task executions and re-allocate resources to the 
tasks that need performance improvement, as shown in Fig. 7. The system safety 
is guaranteed under the execution skipping, while the runtime task status is taken 
into account to maximize the freedom of resource re-allocation. This adaptation 
framework also involves an efficient runtime scheduler to ensure the timing 
property during the resource re-allocation. Based on the resource re-allocation, 
this adaptation framework achieves the dynamic adaptation goals in the best-effort 
manner. Case study on a robot car example demonstrates the effectiveness of this 
approach in meeting adaptation needs with safety assurance.

Runtime Safety-Guided Policy Repair For learning-based control systems, run-
time safety assurance is particularly crucial and yet challenging. A common 
approach to providing such kind of assurance is to pair a learning-based controller 
with a safety controller at runtime. The learning-based controller is usually the 
primary controller. It learns control policy to attain high performance for the task 
through data-driven methods. However, it does not provide any safety guarantee 
especially in scenarios unseen during the training stage. The safety controller 
is tasked with predicting impending safety violation and taking over control 
when it deems necessary. It is often designed based on conservative models, has 
inferior performance compared with its learning-based counterpart, and may require 
significant computation resources if implemented online. 

In order to mitigate the performance loss resulted from the undesirable alter-
nations from the learning-based controller the safety controller while preserving 
safety, we propose to repair the learning-based controller’s control policy by lever-
aging the interventions carried out by the safety controller in [85]. A naive repair
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Runtime Adapter 

Adaptation goal 
Configuration space 

exploration 

Safety verification 

Schedulability analysis 

Backup configuration

� Safe
� Schedulable 
× Adaptation goal achieved 

Adapted configuration

� Safe
� Schedulable
� Adaptation goal achieved 

Feasible 
config. 

No feasible 
config. 

System 

Real-time states 

Job skipping 

Job skipping, 
Task priorities 

Fig. 7 An overview of the cross-layer runtime adaptation framework proposed in [72]. The 
system initially runs under a backup configuration that guarantees schedulability and safety. 
During runtime, an adaptation goal can be given by an external party. The adapter explores the 
configuration space to search for a feasible solution that achieves the adaptation goal, while 
ensuring schedulability and safety. If a solution is found, the system will run at this new 
configuration; otherwise, it will stay at the backup configuration

scheme is to have the learning-based controller learn from the safe control inputs 
generated by the safety controller until the policy no longer perform unsafe behavior. 
However, re-training the policy may undermine the policy’s performance for the 
task. To address this, we introduce minimally deviating policy repair via trajectory 
synthesis. Basically, we synthesize safe trajectories such that by learning from those 
trajectories, the policy is safe and its parameters are minimally changed, as shown 
in Fig. 8. This policy repair scheme require naive policy repair as a precondition 
so that a safe policy is present. Then we formulate an optimization problem where 
the objective is to perturb the parameters of the safe policy to regress towards those 
of the original unsafe policy while the constraint is that the perturbation should 
not result in the policy generating unsafe trajectories. We use local linearization 
to transform this optimization problem into a trajectory optimization problem. The 
motivation is that, after applying the optimal perturbation to the policy parameters, 
the policy should be able to generate the trajectories solved from the trajectory 
optimization problem. This work can be viewed as data augmentation strategy where 
the data is optimized specifically for the learning model.

End-to-End Uncertainty-Based Adaptation for Mitigating Adversarial Attacks 
to CAVs Performing runtime adaptation for CAVs may significantly improve 
system safety, robustness and security in practice. For instance, in [35], we present 
an approach for runtime detection and mitigation of adversarial attacks. CAVs have 
been shown to be susceptible to adversarial attacks, where small perturbations in 
the input may cause significant errors in the perception results and lead to system 
failure. For instance, [84] designs a malicious billboard to attack end-to-end deep 
learning-based driving models. [59] generates a dirty road patch with carefully-
designed adversarial patterns, which can appear as normal dirty patterns for human 
drivers while leading to significant perception errors and causing vehicles to deviate
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Fig. 8 The combination of a learning-based controller and a safety controller provides runtime 
safety assurance. Given the state . xt , the safety controller filters the control input . ût generated by 
the learning-based control policy . π , and produces a safe control input . ut to the plant. The data 
.(xt , ut ) is collected at runtime to repair the policy .π

Fig. 9 An end-to-end detection and mitigation framework for adversarial attacks to CAVs [35]. In 
the perception module, the original neural network is to predict lane lines with confidence value 
and the data uncertainty while the other neural network is used to estimate the model uncertainty 
by Monte-Carlo dropout. The state cache will store recent predictions and then the planner will 
select one based on confidence values. The planner will calculate the center line in a safe region 
by considering both uncertainties and lane predictions. Finally, the controller will optimize the 
low-level control by an uncertainty-aware MPC

from their lanes within as short as 1 s. On the defense side, most previous works 
focus on detecting anomaly in the input data [39, 44] or making the perception 
neural networks themselves more robust against input perturbation [46]. 

In [35], instead of addressing adversarial attacks only on perception module, we 
develop an uncertainty-based end-to-end approach that detects and mitigates adver-
sarial attacks throughout perception, planning, and control modules. In particular, 
we measure the confidence and uncertainty of perception modules, and conduct 
robust adaptation in the following modules accordingly based on the uncertainty 
analysis, as shown in Fig. 9. We apply the framework to the commercial automated 
lane centering system in OpenPilot and demonstrate that the impact of attacks can 
be reduced by up to 90%. 
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3.2 Safety-Driven Learning and System Design 

Besides runtime adaptation, another critical aspect for CAV safety is to design 
and learn neural network-based components that can ensure system safety (i.e., 
not entering unsafe states) and robustness (i.e., being safe under disturbances from 
random noises or malicious attacks). Next, we will first introduce works that 
improve the robustness of neural networks, and then introduce techniques that try to 
learn safe neural network-based controllers from multiple experts, with verification 
in the loop, and based on physical information, respectively. 

Learning Provably Robust Neural Networks Most of the current verification 
techniques for learning-enabled systems focus on analyzing trained systems, e.g., 
whether a trained neural network satisfies some specification. It is more desirable 
to have these systems “correct-by-construction”. In fact, the same power of modern 
compute and data that has been fueling data-driven learning can be leveraged to 
scale up verification and enable provably-correct training of neural networks. We 
give such an example below. 

For adversarial robustness problems in neural networks [3, 23, 45, 79, 83], given 
a model . fθ , loss function . L, and training data distribution . X , the training algorithm 
aims to minimize the loss whereas the adversary aims to maximize the loss within a 
neighborhood .S(x, ε) of each input data . x as follows: 

.min
θ

E(x,y)∈X
[

max
x′∈S(x,ε)

L(fθ (x
′), y)

]
(1) 

In general, the inner maximization is intractable. Most existing techniques focus 
on finding an approximate solution. There are two main approaches to approximate 
the inner loss (henceforth referred to as robust loss). One direction is to generate 
adversarial examples to compute a lower bound of robust loss. The other is to 
compute an upper bound of robust loss by over-approximating the model outputs. 

Verification techniques [17, 36, 53, 54, 58] for neural networks can be used 
to compute a certified upper bound of robust loss (henceforth referred to as 
abstract loss). Given a neural network, a simple way to obtain this upper bound 
is to propagate value bounds across the network, also known as interval bound 
propagation (IBP) [23, 48]. Techniques such as CROWN [82], DeepZ [63], MIP [68] 
and RefineZono [64], can compute more precise bounds, but also incur much 
higher computational costs. Building upon these upper bound verification tech-
niques, approaches such as DIFFAI [48] construct a differentiable abstract loss 
corresponding to the upper bound estimation and incorporate this loss function 
during training. However, [23] and [83] observe that a tighter approximation of 
the upper bound does not necessarily lead to a network with low robust loss. 
They show that IBP-based methods can produce networks with state-of-the-art 
certified robustness. More recently, COLT [3] proposed to combine adversarial 
training and zonotope propagation. Zonotopes are a collection of affine forms of 
the input variables and intermediate vector outputs in the neural network. The
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idea is to train the network with the so-called latent adversarial examples which 
are adversarial examples that lie inside these zonotopes. AdvIBP [18] proposed 
a principled framework for combining adversarial loss and abstract loss. Fan and 
Li [18] argues that minimizing adversarial loss and minimizing abstract loss can 
be viewed as bounding the true robust loss from two ends. From an optimization 
perspective, this amounts to an optimization problem with two objectives and can be 
solved using gradient descent methods if both objectives are semi-smooth. Inspired 
by the work on moment estimates [37], AdvIBP proposed a novel joint training 
scheme to compute the weights adaptively and minimize the joint objective with 
unbiased gradient estimates. For efficient training, AdvIBP uses FGSM and random 
initialization for computing the adversarial loss and IBP for computing the abstract 
loss. We summarize and compare the key features in Table 1.

Learning Neural Network Controllers from Multiple Experts In Sect. 3.1, we  
present an approach for switching among multiple controllers, including both 
model-based and neural network-based, with safety assurance [72]. After observing 
the benefit of such switching control, we then further propose a framework to 
automatically learn a better neural network-based controller from those multiple 
existing ones, by learning a system-level ensemble strategy and robust distillation 
via adversarial examples [74], as shown in Fig. 10. Specifically, we ensemble the 
multiple controllers by learning a linear combination weight for each expert through 
reinforcement learning optimization to enhance the control safety and efficiency. To 
achieve better verifiability based on the observation that smaller Lipschitz constant 
of the neural network leads to stronger robustness, we conduct teacher-student 
knowledge distillation with a novel probabilistic adversarial training to obtain the 
final controller. The final learned controller shows better control robustness when 
facing measurement noise and adversarial attacks, higher control energy efficiency, 
and better verifiability in terms of reachable set and invariant set computation.

Verification-in-the-Loop Control Learning with Safety Guarantees Tradition-
ally, control synthesis/learning for a safety-critical system often follows the design-
then-verify open-loop process, which could result in many iterations between design 
and verification, and may still fail to provide any safety guarantees. In [76], 
we instead propose a closed-loop process for control learning by integrating 
the verification results into the design module via propagating the feedback as 
an approximated gradient, i.e., a design-while-verify process. In particular, the 
verification results refer to the computed reachable set in this work. We establish 
two distance metrics, including the geometric distance and the Wasserstein distance, 
to measure how far the computed reachable set of the current controller is from the 
goal region and the unsafe region. We then add perturbations to the controller and 
approximate the gradient for it by a difference method for update until the final 
reach-avoid property is met. 

Physics-Aware Safety-Assured Design of Hierarchical Neural Network Planner 
for CAVs In designing CAVs in practice, it is critical to consider the safety
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Fig. 10 Overview of the 
Cocktail framework to learn a 
better neural network 
controller from multiple 
existing control experts via 
system-level ensemble from 
reinforcement learning and 
robust distillation with 
probabilistic adversarial 
training
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of the learning-based components. For instance, many recent neural network-
based planners demonstrate significant performance improvement and accident 
rate reduction in average over traditional model-based methods. Some of those 
learn a single neural network for planning via reinforcement learning, imitation 
learning, supervised learning, etc., while others employ a hierarchical planner 
design, which usually consists of low-level planners for different modes and a high-
level planner that is responsible for selecting the mode. However, even though safety 
improvement is often considered and demonstrated empirically through experiments 
in those works, formal system safety verification remains a challenging problem. 

In [42], we propose a hierarchical neural network based planner that analyzes 
the underlying physical scenarios of the system and learns a system-level behavior 
planning scheme with multiple scenario-specific motion-planning strategies, as 
shown in Fig. 11. We develop an efficient verification method that incorporates 
overapproximation of the system state reachable set and novel partition and union 
techniques for formally ensuring system safety under our physics-aware planner. 
With theoretical analysis, we show that considering the different physical scenarios 
and building a hierarchical planner based on such analysis may improve system 
safety and verifiability. We also empirically demonstrate the effectiveness of 
our approach and its advantage over other baselines in practical case studies of 
unprotected left turn and highway merging, two common challenging safety-critical 
tasks in autonomous driving.

4 Conclusion and Future Directions 

Safety is a critical challenge to the widespread adoption of CAVs. In this book 
chapter, we have outlined some specific technical problems and proposed solutions 
for verifying and improving the safety of CAVs, especially aiming at those 
challenges brought by the increasing usage of learning-based components. The road
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Behavior Planner 
(NN-based) 

Motion Planner 1, 
Scenario 1 
(NN-based) 

Motion Planner 2, 
Scenario 2 
(NN-based) 

Motion Planner 3, 
Scenario 3 
(NN-based) 

Control Input 
Range Aggregation 

Plant 

the true behavior 
selected by BP 

overapproximated 
behavior set 

planner of any 
behavior in the set 

planner not selected 
by overapproximation 

Fig. 11 Design of a hierarchical neural network-based planner that consists of one behavior 
planner . μ and N motion planners .{κ1, κ2, . . . , κN } [42]. In the figure, we have .N = 3 for 
example. The behavior planner decides the most appropriate behavior given the system state x, 
and then the corresponding motion planner is enabled to control the system. To compute an 
overapproximation of the reachable set of the system under such hierarchical planner, we first 
compute an overapproximated behavior set, which is illustrated by the grey rectangle in the 
figure. Then for each behavior in the overapproximated behavior set, the corresponding motion 
planner’s output range can be aggregated as the possible control input range, thus computing an 
overapproximation of the system state reachable set under all possible behaviors

to safe autonomy, however, still requires clearing major roadblocks in perception, 
control, and connectivity, and we discuss some of those below. 

On the verification side, developing more efficient and rigorous techniques 
especially for CAVs with neural network-based perception modules will be a 
primary focus. The high dimensionality of the problem may necessitate sacrificing 
deterministic guarantees and adopting statistical or probabilistic analysis. In par-
ticular, for probabilistic safety verification of neural network-controlled systems, 
existing statistic model checking approach often requires a large number of system 
simulations and costs a lot of time. This may be relieved by approximately tracking 
the propagation of the probabilistic distributions of reachable states. Another 
possible direction is to perform property-directed reachability analysis for neural 
network-controlled systems. Existing reachability algorithms explore all state space 
that is possible to reach, and it is often unnecessary to do so when a safety 
property is simply defined by very few constraints. A property-directed reachability 
technique may exclude the state space that is not relevant to the safety condition 
and reduce a great amount of time in computing the reachable sets. For connected 
vehicles, abstract modeling of inter-vehicle information exchange and interactions
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and compositional analysis will be the key to leapfrogging the complexity challenge 
of verifying the safety of large-scale multi-agent systems. 

On design and adaptation of CAVs, we believe that the key is to develop more 
end-to-end approaches that can address CAV safety across sensing, perception, 
planning and control stages, and more cross-layer approaches that can consider 
functional safety, software and hardware execution correctness, and even inter-
vehicle communication reliability in a holistic manner. For instance, effectively 
addressing adversarial attacks to neural network-based perception modules will 
require quantitative analysis of their impact on downstream planning/control mod-
ules and ultimately on system-level safety, and will need end-to-end mitigation 
strategies that are developed based on such analysis. Runtime adaptation to mitigate 
component failures will need techniques to assess the impact of those failures across 
system layers, explore adaptation solutions that address the bottlenecks, and ensure 
the changed configurations meet various constraints across functional, software and 
hardware layers. 
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Identifying and Assessing Research Gaps 
for Energy Efficient Control of Electrified 
Autonomous Vehicle Eco-Driving 

Farhang Motallebi Araghi, Aaron Rabinwoitz, Chon Chia Ang, 
Sachin Sharma, Parth Kadav, Richard T. Meyer, Thomas Bradley, 
and Zachary D. Asher 

1 Introduction 

Transportation’s reliance on nonrenewable hydrocarbon fuels creates serious con-
cerns about energy supply, cost, and environmental safety. In the pursuit for green, 
sustainable transportation systems, consideration of vehicle energy consumption 
is crucial [1]. Efficient alternative energy vehicles and advanced vehicle control 
technologies are two areas of research that might provide solutions to the need 
for increasing Fuel Economy (FE) and complying with current and upcoming 
environmental regulations [2, 3]. 

The need for energy efficient vehicles has facilitated the development of new 
vehicle technologies such as Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid 
Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs) [4]. Compared to 
vehicles powered with only an Internal Combustion Engine (ICE), HEVs provide 
significantly improved fuel efficiency [4]. The reason is due to their ability to recover 
braking energy and the fact that an extra powertrain degree of freedom is available to 
more cost-effectively meet the driver-required power. PHEVs exhibits even longer 
range and even further reduced need for hydrocarbon fuels [5]. This is owed to 
their enhanced battery capacity and their ability to be charged from wall power. 
BEVs are projected to further improve automotive transportation sustainability with 
a commercially viable and a readily accessible product [6]. 
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The other major development facilitated by the need for energy efficient vehicles 
is advanced vehicle control technologies which is the focus of this research. 
Collectively these advanced control strategies are typically referred to as energy 
management strategies. These technologies are also becoming more implementable 
thanks to developments in AVs such as advanced perception subsystems, planning 
subsystems, and more. As AV technology continues to evolve commercially, it is 
crucial to ensure synergistic development with energy efficient controls to ensure 
transportation sustainability as well. 

Further details regarding energy efficient vehicles and energy efficient control 
technologies are presented in the following subsections. 

1.1 The Evolution of BEVs: The Modern Era 

Since 2000, BEVs have experienced a substantial amount of progress and significant 
commercial milestones [7]. The first Tesla Roadster shipped in 2008 and it was 
the first highway-legal BEV to employ a lithium-ion battery and drive more than 
200 miles on a single charge [8]. The Mitsubishi i-MiEV, which went into serial 
production in 2009, was the first modern highway-legal BEV [9]. The first Nissan 
Leaf was delivered to customers in 2010. Until 2011, Mitsubishi’s i-MiEV had 
been the world’s most popular BEV where between 2008–2012, 2450 were sold 
in 30 countries [10]. In 2016, more than one million BEVs were sold throughout 
the world. Tesla introduced the Model 3 in 2017 and not long after, sales of BEVs 
surpassed the one million mark for the first time and annual worldwide market share 
surpassed 1%. Annual worldwide sales surpassed two million units for the first time 
in 2018. The Tesla Model 3 was the first BEV to sell more over 100,000 units in a 
single year, a milestone it achieved in 2015. BEVs accounted for one out of every 
two new vehicles registered in Norway in 2019. The Tesla Model 3 overtook the 
Nissan Leaf as the best-selling BEV in history by 2020. More than 500,000 Tesla 
Model 3 s have been sold worldwide since its launch in 2013. Tesla became the first 
automaker to build more than one million BEVs. In Norway, 10% of the vehicles 
on the road are BEVs. Additionally, in 2020, the worldwide sales of the Nissan 
Leaf achieved the milestone of 500,000 units and global BEV sales crossed the ten 
million unit mark for the first time. The Tesla Model 3’s worldwide sales surpassed 
one million units in 2021 and BEVs come in 27 distinct configurations, with 11 
different manufacturers producing them. Table 1 shows the top five BEVs with the 
greatest ranges in 2020 model year [11]. The literature on BEVs is quite extensive, 
and it is constantly and fast evolving. BEVs were formerly seen to be a niche sector 
with an uncertain future, but that has since changed [12, 13]. The takeaway here 
is that BEVs are a commercially mature and desirable technology that has the 
potential to establish sustainable transportation [14, 15]. As we focus on a real-
world implementation of energy efficient control technologies, the applicability to
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Table 1 Model year 2020 BEV examples 

Make and model Vehicle type 

Electric 
motor/battery-
pack 

City 
(mile/gge) Electric range (miles) 

Tesla model 3 
long range 

Sedan/wagon 211 KW/ 230 Ah 136 373 

Chevrolet bolt 
BEV 

Sedan/wagon 150 KW/ 188 Ah 127 259 

Hyundai Kona 
electric 

SUV 150 KW/ 180 Ah 132 258 

Kia soul Sedan/wagon 201 KW/ 180 Ah 127 243 
Jaguar I-PACE SUV 201 KW/ 223 Ah 80 234 

BEVs must be a top consideration as they are growing and are an important part of 
the transportation sector. 

Identifying and Assessing Research Gaps for Energy Efficient Control of 
Electrified Autonomous Vehicle Eco-driving. 

As a vehicle, a BEV is quiet, simple to drive, and free of gasoline expenditures 
when compared to conventional vehicles [16]. Additionally, as a form of urban 
transportation, it has many benefits. It does not produce any emissions along urban 
corridors (reducing urban air pollution due to transportation), it easily handles 
frequent start-stop driving, it gives full torque from a stop, and eliminates the need 
for gas station stops provided that charging is available at in public or at home [17]. 
Additionally, the utility industry is evolving, with renewable energy sources gaining 
traction and the “smart grid” which is the next generation of the electricity grid, 
is now in the process of being built. BEVs are seen as a key component of this 
new power system, which includes renewable energy sources and high-tech grid 
technologies [18, 19]. All of this has resulted in increased interest and growth in 
this method of transportation. 

As a system, BEVs can be modeled as a combination of several subsystems. 
Each of these subsystems interacts with the others to make the BEV function, 
and a variety of technologies may be used to run them. Figure 1 depicts major 
subsystem components and their contribution to the overall system. Some of these 
components must communicate significantly with others, while others have little or 
no interaction. Regardless of the situation, the operation of a BEV is dependent on 
such interaction of all these subsystems [20]. These subsystems are important to 
understand and utilize to develop energy efficient control strategies.
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Fig. 1 A general systems-level viewpoint of BEV. (Adapted from Ref. [21]) 

1.2 Energy Management and Energy Efficient Strategies for 
Electrified Vehicles 

Energy management strategies (EMS) in HEVs and PHEVs control the power/-
torque split selection between the combustion engine and the electric motor, in 
which the amount of power/torque provided by each power source is combined to 
satisfy driver demand while reducing the amount of non-renewable fuel use and 
increasing powertrain utilization efficiency [22, 23]. Energy efficiency strategies 
seek to directly decrease the energy required to drive from one point to another 
by either modifying the second-by-second vehicle velocity or by choosing an 
alternative route. 

This is particularly important for BEVs since energy efficiency strategies result 
in a direct increase in range thus enabling higher utility [24]. Overall, it has been 
shown that intelligent energy management and energy-efficient use of electrified 
vehicles increase vehicle FE and reduce global energy consumption, greenhouse 
gas emissions, and air pollution emissions. 

Generally there are three types of vehicle control that reduce fuel consumption 
for a drive cycle with a fixed starting point and a fixed ending point: (1) powertrain 
EMS (P-EMS), (2) Eco-Routing (ER), and (3) Eco-driving (ED) [25, 26]. P-EMS 
decreases fuel consumption by increasing the efficiency of the vehicle powertrain 
operation without modification of the drive cycle [27]. However, ED and ER 
decrease fuel consumption by decreasing the energy output of the vehicle through 
modification of the drive cycle and route [28, 29]. 

1.2.1 Powertrain EMS (P-EMS) 

As previously mentioned, electrified vehicles will benefit greatly from the devel-
opment of P-EMSs. To meet driving demands, the primary goal of a P-EMS is
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to distribute the power request into multiple propulsion sources (specifically for 
HEVs and PHEVs) [30, 31]. If we take into account battery performance (i.e. the 
current rate and lifespan) and tailpipe emissions levels, an efficient P-EMS can 
improve fuel efficiency. However, it is challenging to devise P-EMSs due to the 
uncertainty of future driving conditions [32–35]. Furthermore, the P-EMS should 
have a sufficiently simple and fast real-time controller with a desired computational 
speed for the implementation of a global optimization algorithm. The performance 
of P-EMSs strongly depends on future vehicle velocity and power request which 
is influenced by external factors (e.g., traffic information and surrounding vehicles) 
[36]. Research groups all over the world have proposed various solutions which are 
briefly summarized: 

1. Rule-based P-EMS: Here a P-EMS is implemented with either deterministic rules 
or with fuzzy rules. 

(a) Deterministic: The first application of deterministic rule-based techniques to 
the energy management of HEVs was in [37]. In place of the original electric 
assistance technique, Banvait et al. [38] described a charge depletion–charge 
sustaining (CD–CS) strategy. Following the cooperative control approach for 
the auxiliary power unit, the speed-switching power is compelled to acquire 
a proper curve together with the ideal brake specific fuel consumption [39, 
40]. 

(b) Fuzzy Logic: Fuzzy logic belongs to intelligent control strategies, but it 
dispenses with precise mathematical models of controlled systems. However, 
it contains self-learning capability, high flexibility, and resilience, and is thus 
commonly used to solve complicated nonlinear issues [41–43]. Denis et al. 
[44] developed a Sugeno-type fuzzy logic controller by using the moving 
average of the previous speed and the present global discharge rate as inputs 
in order to take use of the trip data. Li et al. has presented an adaptive-
equivalent consumption reduction technique that combines a fuzzy inference 
system to increase self-adaptation [45]. 

2. Optimization-based P-EMS: In most cases, an optimization-based P-EMS is 
generated by formulating an optimal control problem. An Optimization-based 
P-EMS delivers FE improvements by explicitly or implicitly simulating vehicle 
operation and managing the vehicle powertrain components to reduce fuel 
consumption. An optimization- based P-EMS can accomplish FE improvements 
for conventional cars with ICE and BEVs, but the highest FE benefits are 
gained from vehicles with additional powertrain operating degrees of freedom 
such as HEVs and PHEVs [26, 46, 47]. The actual FE improvement from an 
Optimization-based P-EMS is significantly dependent on the chosen driving 
cycle and propulsion systems [48]. One of the first optimization-based P-EMS 
studies, for example, showed a 28% FE increase in a HEV by optimizing gear 
changing and battery charging/ discharging [49]. 

(a) Globally Optimal P-EMS: Dynamic programming (DP) [48, 50], Pontrya-
gin’s minimum principle (PMP) [51–53], Stochastic Dynamic Programming
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(SDP) [54–57], Genetic Algorithm (GA) [58, 59], and Particle Swarm 
Optimization (PSO) [60, 61] are among the key optimization techniques. 

(b) Real-time Optimal P-EMS: Real-time optimization-based P-EMS is primar-
ily composed of equivalent consumption-minimization strategies (ECMSs) 
and its variations such as adaptive ECMS [30, 62–64]. But predictive rules-
based strategies can also be implemented in real time and DP methods can 
be implemented in real time through the use of a look-up table [65]. 

(c) Prediction-based Optimal P-EMS: The goal of a Prediction-based Optimal 
P-EMS is to discover the best control strategy for minimizing fuel consump-
tion within the time frame when prediction data exists [3, 35, 66–70]. 

1.2.2 Eco-Routing (ER) 

Classical vehicle routing algorithms seek the quickest or shortest routes [71, 72], 
while ER algorithms seek routes with the lowest energy consumption costs. When 
given a starting point and a destination, ER generates a route that minimizes the 
amount of energy required to complete the journey. Routing is often performed 
on a graph where intersections represent different junctions, connected by edges 
roads, and costs indicate the estimated energy required to go between two junctions 
that the road links. The route with the lowest overall energy for the journey may 
then be found using minimal path routing. The complicated time-variant functions 
that explain the expenses are often derived by researchers. For example, Dijkstra’s 
routing method is a popular option among academics [73]. Users’ route preferences, 
such as favoring highways or avoiding toll roads, might be considered while 
planning a path. Furthermore, it may utilize the number of passengers as an input to 
determine if the car is eligible to use high-occupancy vehicle lanes. Similar to other 
shortest route routing applications, a green routing service needs a server to handle 
diverse routing requests. However, operating and managing a routing server is costly 
and needs precise and thorough real-world traffic and network data which is difficult 
to access and analyze [74–77]. It should be noted that the ER navigation system may 
produce up to three routes for each journey depending on multiple minimization 
criteria, such as distance, travel time, and energy usage. For conventional ICE 
vehicles, there are currently various ER algorithms capable of generating energy-
optimal routes based on historical and real-time traffic data [78–80], but there has 
been minimal study on PHEVs to date [81]. As shown in [82], the performance of 
ER algorithms is very sensitive to the energy model used to estimate the energy 
cost on each network connection. The most difficult component of solving the 
ER algorithm for PHEVs is locating an energy model capable of calculating both 
the electrical energy consumption and the gasoline consumption. Jurik et al. [83] 
addressed the ER challenge for HEVs using longitudinal dynamics. The eco-route 
for PHEVs was investigated using a charge-depleting first approach in [84, 85]. To 
address the ER of HEVs, De Nunzio et al. [86] recently developed a semi-analytical 
solution to the powertrain energy management based on Pontryagin’s minimal 
principle. Houshmand et al. [87] conceived a combined routing and powertrain
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control algorithm that simultaneously identifies the energy-optimal route and the 
ideal energy management approach in terms of battery state of charge and fuel 
consumption. In [87], however, the option to recharge the battery on some portions 
of the trip was omitted, and either charge-sustaining or discharge-only operation 
was permitted. 

1.2.3 Eco-Driving (ED) 

ED decreases fuel consumption for all vehicle types by applying fuel-efficient 
driving behaviors along a predetermined route, which may affect travel duration 
[88]. Due to this increase in travel time, it is difficult to persuade drivers to adopt 
ED practices [89]. If the driving conditions along the route can be anticipated, ED 
may be treated as an optimum control question if the driver input is eliminated or 
disregarded. Current practical use of ED is realized through a set of heuristic goals, 
such as eliminating stops, traveling at a fuel-efficient speed (generally, this could 
be a higher or lower overall speed), and reducing acceleration and deceleration 
magnitudes, which can achieve FE improvements of approximately 10% for modern 
vehicles and 30% for fully AVs [90]. FE improvements realized through ED are the 
focus of this literature review because the energy savings is sufficiently large, and 
because ED can be directly implemented through AV technology. 

Historically, ED implementation research has focused on the FE impact of 
a single intelligent vehicle technology, such as camera systems, radar systems, 
LiDAR, Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), or Vehicle 
to Everything (V2X). As an example of a typical ED study, researchers used 
projections of the traffic light Signal Phase and Timing (SPaT), a sort of V2I, 
to influence driving behavior and shown a FE improvement of 12–14% [91]. ED 
is difficult to adopt in reality since most drivers dislike giving up control [92]. 
Many studies of ED for AVs conclude that vehicle perception, sensor fusion, and 
planning must all be achieved for successful implementation. On the other hand, 
a comprehensive grasp of how each of these components should fit together at the 
system level is not as clearly defined. 

1.2.4 Summary 

To summarize, FE improvements realized using a fixed drive cycle are realized 
through a P-EMS which is a very active area of research but is most effective 
for HEVs and PHEVs [34, 93]. FE improvements from modifying the route is 
realized through ER which is highly applicable to BEVs but is a relatively mature 
technology. If FE is improved by modifying the drive cycle but keeping the route 
the same, then the technique is considered ED which is highly applicable to BEVs 
and has tremendous potential for further improvements once AV technology is also 
included [90].
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1.3 Automated Cyber-Physical Vehicles 

In addition to improvements in powertrain technology, embedded and cyber-
physical systems have had a profound effect on the modern world [92, 94]. 
Embedded computer systems have been integrated with a variety of technological 
artifacts, such as the power grid, medical devices, automotive and transportation 
systems, and industrial control and production lines [95–97]. Modern engineering 
topics are often multidisciplinary and require significant interdisciplinary problem-
solving capabilities. AVs are a kind of vehicular cyber-physical system that has 
experienced tremendous recent innovation and has garnered considerable interest 
from both industry and academia [98–100]. The strategy for establishing AVs as 
the primary mode of transportation on the road may have several advantages such 
as improvements of safety on the roads (e.g., collision avoidance); better mobility 
for young, elderly, and disabled; and individual improvements of energy efficiency 
[101]. But at the same time AV technology may increase travel demand and overall 
mileage due to new user groups, the reduced cost of driver’s time, and potential 
for mode switching (walk, low speed shuttles, transit, regional air, etc.) [102–104]. 
While the full impact of AV technology remains unknown, it is certain that AV 
technology will begin to experience commercial adoption in the near future [105]. 

According to the projections shown in Table 2, in 2050, the reference case (all 
fleet vehicles will be Autonomous ICE) will have the lowest transportation energy 
consumption. At first glance, this may appear counter-intuitive; how could AVs with 
ICE consume less than BEVs? The reason for this according to Energy Information 
Administration (EAI) independent statistics and analysis projections data is that 
more people would prefer to use fleet services rather than their personal vehicles. 
Case 2, which assumes that all Autonomous Light-duty Vehicles (LDVs) will be 
BEVs. Another assumption is that AVs will enter both household and fleets, which 
means that more people will have access to AVs, making transportation easier for 
people who own vehicles. This, in turn, would have an impact on reliance on public 
transportation. As a result, an additional research focus is warranted to improve 
energy efficiency of Autonomous BEVs. In the next subsection, a derivation of the 
research gap for this type of technology based on its systematic readiness level is 
given.

Based on the uncertainty of the field there are four new contributions to the 
field in this article on the topic of ED in autonomous electrified vehicles (BEV 
and P/HEV), which builds on previous concepts and literature: 

1. A holistic and systems-level understanding of the subsystems and integrations 
needed to implement ED in AVs allowing for comparison between all studies in 
the field. 

2. Application of technology, integration, and system readiness analysis to ED 
realization in AVs. 

3. A definition of the research gaps existing between the current state of the art and 
realization of ED usage in AVs. 

4. A review of initial studies that have started to explore the identified research gaps.
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Table 2 Reference and AV case description 

Case name Assumptions Description 

Reference AVs enter fleet light-duty 
vehicles 

1% of new light-duty passenger 
vehicles sales by 2050 and 100% are 
fleet sales 

AVs are used more intensively Driven 65,000 miles per year and 
scrapped more quickly 

Autonomous LDV fuel type 100% conventional gasoline ICE 
Autonomous LDVs affect 
mass transit modes 

Decreases use of transit bus by 12%, 
transit rail % by 2050 

Autonomous BEV AVs enter household and fleet 
LDVs 

16% are new fleet sales and 84% are 
new household sales by 2050 

AVs are used more intensively Driven 65,000 miles per year and 
scrapped more quickly (fleet) 
and + 10% more annual vehicle miles 
(household) 

Autonomous LDV fuel type Increasing share of BEVs with 96% of 
fleet and 82% household by 2050 

Autonomous LDVs affect 
mass transit modes 

Decreases use of transit bus by 17% by 
2033, transit rail 35% by 2050 use of 
commuter rail 48% by 2050 

Autonomous HEV AVs enter household and fleet 
LDVs 

16% are new fleet sales and 84% are 
new household sales by 2050 

AVs are used more intensively Driven 65,000 miles per year and 
scrapped more quickly (fleet) 
and + 10% more annual vehicle miles 
(household) 

Autonomous LDV fuel type Increasing share of HEVs with 96% of 
fleet and 71% household by 2050 

Autonomous LDVs affect 
mass transit modes 

Decreases use of transit bus by 17% by 
2033, transit rail 35% by 2050 use of 
commuter rail 48% by 2050 

Adopted from Ref. [102]

2 Research Gap Derivation 

One of the most important aspects of scientific advancement is the systematic 
identification and review of existing research gaps [106]. In order to identify 
research gaps, a systematic approach is applied to understand components of a 
general electric AV with ED implementation and the logical flow of operation. In 
this section, overall system architecture is introduced, and a holistic evaluation of 
system maturity based on the Department of Defense (DoD) approach is conducted.
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Fig. 2 A proposed systems-level viewpoint of ED implementation for an AV 

2.1 AED System Architecture 

A systems-level perspective of ED implementation for autonomous BEVs, rep-
resented in Fig. 2, is recommended to clarify communication between academic 
researchers, automotive sector manufacturers and suppliers, government officials, 
and other organizations. 

The systems-level viewpoint is composed of four subsystems: a suite of sensors, 
a vehicle perception subsystem, a vehicle planning subsystem, and a vehicle plant 
subsystem which include a vehicle running controller. It is the goal of this systems-
level perspective to remain closely aligned with the widely acknowledged systems-
level perspective on autonomous BEV operation that use energy management 
strategies. This system receives input from a set of sensors that detect environmental 
information and also can be used to localize, therefore defining the vehicle’s 
surroundings. An AV learns about its surroundings in two phases. The first step 
is to look down the road ahead to see if anything has changed, such as traffic lights 
and signs, a pedestrian crossing, or a barrier. The second phase is concerned with 
the perception of surrounding traffic. Camera, LiDAR, Radar, V2V and V2I, Inertial 
Measurement Unit (IMU), GPS and Inertial Navigation System (INS), and map and 
traffic information are the most typical sensors and data that comprise the sense and 
perception subsystems of AVs [107]. The real-time planning subsystem employs 
inputs from the perception subsystem to develop and solve both the long-range 
(such as Global ER and Global ED) and short- term planning strategies (such as 
maneuver planning and trajectory planning). It is worth noting that these subsystems 
also depend on the driving context, and their boundaries are quite blurred [108]. 
The real-time control subsystem tracks the longitudinal and lateral trajectories, 
and interfaces with the vehicle actuators. A control architecture is interfaced to 
the vehicle powertrain (e.g. controlling propulsion torque, braking torque and gear 
shifting) and to its steering system. The real-time planning subsystem require 
feedback from the vehicle, its position relative to the surrounding environment, and
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Table 3 Technology readiness levels definition 

Technology readiness level (TRL) and definition 

9 Actual System Proven Through Successful Mission Operations 
8 Actual system completed and qualified through test and demonstration 
7 System prototype demonstration in relevant environment 
6 System/subsystem model or prototype demonstration in relevant environment 
5 Component and/or breadboard validation in relevant environment 
4 Component and/or breadboard validation in laboratory environment 
3 Analytical and experimental critical function and/or characteristic proof-of-concept 
2 Technology concept and/or application formulated 
1 Basic principles observed and reported 

predictions of moving obstacles [109], and finally, the powertrain operation from 
the running controller is actuated in the vehicle plant. 

2.2 Holistic Evaluation of System Maturity 

The National Aeronautics and Space Administration (NASA) developed a seven-
level Technology Readiness Level (TRL) rating (shown in Table 3) in the 1980s to 
quantify the risk associated with technology development [110]. NASA now use this 
measure to assess the maturity of a specific technology and to compare the maturity 
of several technologies. Given its practical value, the DoD adopted a TRL model 
in 1999. While TRL is used similarly by NASA and the DoD, the understanding 
of TRL varies. For example, NASA requires TRL 6 technologies before a mission 
can be responsible for them [111], and the DoD requires TRL 7 technologies before 
they can be included in a weapons system program [112]. 

Further, the concept of a System Readiness Levels (SRL) was previously 
introduced by systems engineering researchers to address the problems applicable 
at the operating system level. This approach leverages the traditional TRL scale 
while also including the concept of Integration Readiness Levels (IRL) to produce 
an SRL index dynamically [112]. The definition of TRL, IRL and SRL and their 
corresponding levels are tabulated in Tables 3, 5 and 7 respectively. 

2.2.1 Technology Readiness Levels (TRLs) 

Table 4 provides a summary of the TRL for each of the subsystems shown in Fig. 
2, as determined by the authors. These subsystems consist of (1) Sensors and (2) 
Vehicle Perception for Worldview Creation (3) vehicle planning and (4) application 
of a physical vehicle plant. These technologies are tabulated in the first column of 
Table 4. The perception subsystem takes in sensor and other pertinent inputs, defines 
the vehicle’s environment, and computes future vehicle operation as an output. The
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Table 4 TRL analysis of the individual technologies involved in ED in AVs implementation 

Technology and TRL 
Technology 
description TRL definition TRL justification 

Sensors subsystem 
TRL:9 

Detect environmental 
information 

“Actual system 
proven through 
successful mission 
operations” 

Cameras, radar, and 
even lidar have many 
commercial products 

Perception subsystem 
TRL:6 

Receives 
sensor/signal data 
and fuse data 

“System/subsystem 
model or prototype 
demonstration in 
relevant 
environment” 

Mobileye exists but 
it doesn’t provide all 
of the functionality 
in our diagram, does 
not work in bad 
weather, etc. plus 
sensor fusion is not 
well developed. 

Planning subsystem 
TRL:7 

Solves several 
planning problems 
(maneuver planning, 
path planning, and 
trajectory planning) 

“System prototype 
demonstration in 
relevant 
environment” 

ER is mature. 
Derivation of ED is 
mature. 

Vehicle plant 
subsystem TRL:9 

Receives driver 
requests and 
component statuses 
and actuates vehicle 
operation 

“Actual system 
proven through 
successful mission 
operations” 

Vehicles by 
themselves are 
completely mature 

vehicle perception is sent into the planning subsystem, which then computes the best 
control. The planning subsystem is simply responsible for computing the optimum 
control and issuing a control request; it is not responsible for attaining the goal. 

2.2.2 Integration Readiness Levels (IRLs) 

Table 6 summarizes the IRL for the three alternative integration sites in Fig. 2 as 
viewed by the authors. Table 6’s column 1 contains descriptions of each integration 
scope. While the TRL is used to assess individual subsystems, the IRL assesses the 
readiness of each subsystem to integrate with others [112]. A more comprehensive 
assessment of each subsystem’s integration is required than that of the individual 
subsystem, which normally consists of a basic input/output architecture. If the 
vehicle operating controller and the vehicle plant are viewed as one high IRL 
subsystem, there are three theoretically distinct integration points: (1), (2), and (3) 
and execution. Due to the little quantity of research that employs these integration 
scopes, each of these integration points was determined to have a poor technical 
maturity.
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Table 5 Integration readiness levels definition 

IRL Definition 

7 The integration of technologies has been verified and validated with sufficient detail to 
be actionable 

6 The integrating technologies can accept, translate, and structure information for its 
intended application 

5 There is sufficient control between technologies necessary to establish, manage, and 
terminate the integration 

4 There is sufficient detail in the quality and assurance of the integration between 
technologies 

3 There is compatibility (i.e. common language) between technologies to orderly and 
efficiently integrate and interact 

2 There is some level of specificity to characterize the interaction (i.e. ability to influence) 
between technologies through their interface 

1 An interface (i.e. physical connection) between technologies has been identified with 
sufficient detail to allow characterization of the relationship

Table 6 The IRL analysis demonstrates that the technology integrations involved in ED in AVs 
implementation require significant research 

Integration and IRL 
Integration 
description IRL definition IRL justification 

Perception and 
planning integration: 
IRL 3 

Detect environmental 
information 

“There is 
compatibility (i.e. 
common language) 
between technologies 
to orderly and 
efficiently integrate 
and interact.” 

In some cases, the 
interface between 
vehicles and SPaT is 
converted to ED 
derivation 
constraints. Sensor 
fusion specifically 
has no commonality 
for ED 

Planning when 
subjected to faulty 
inputs: IRL 2 

Receives 
sensor/signal data 
and fuse data 

“There is some level 
of specificity to 
characterize the 
interaction (i.e. 
ability to influence) 
between technologies 
through their 
interface.” 

Very limited 
literature 

Planning and use of a 
vehicle plant: IRL 3 

Solves several 
planning problems 
(maneuver planning, 
path planning, and 
trajectory planning) 

“There is 
compatibility (i.e. 
common language) 
between technologies 
to orderly and 
efficiently integrate 
and interact.” 

Some researchers are 
starting to implement 
ED on a physical 
vehicle but progress 
is slow and there is a 
lot of work to be  
done
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Table 7 System readiness levels definition 

SRL Name Definition 

5 Operations and 
support 

Execute a support program that meets operational support 
performance requirements and sustains the system in the most 
cost-effective manner over its total life cycle 

4 Production and 
development 

Achieve operational capability that satisfies mission needs 

3 System development 
and demonstration 

Develop a system or increment of capability; reduce 
integration and manufacturing risk; ensure operational 
supportability; reduce logistics footprint; implement human 
systems integration; design for producibility; ensure 
affordability and protection of critical program information; 
and demonstrate system integration, interoperability, safety, 
and utility 

2 Technology 
development 

Reduce technology risks and determine appropriate sets of 
technologies to integrate into a full system 

1 Concept refinement Refine initial concept. Develop system/technology 
development strategy 

Table 8 The SRL analysis demonstrates that the technology integrations involved in ED in AVs 
implementation require significant research 

System and SRL System description SRL definition SRL justification 

Optimal ED 
implementation: 
SRL 1 

Perception and 
planning subjected to 
errors and 
implemented in a 
vehicle plant 

“Refine initial 
concept. Develop 
system/technology 
development 
strategy.” 

The sets of 
technologies are not 
defined and risks 
basically unknown, 
so this does not meet 
SRL 2 

2.2.3 System Readiness Levels (SRLs) 

The SRL analysis is the more appropriate method of assessment for the overall 
system of AED implementation, where the TRL analysis has been performed to 
individual subsystems and the IRL analysis has been used to subsystem integration. 
Table 5 shows that, despite the relatively high TRLs of each subsystem, the low IRLs 
result in a low total SRL. According to the SRL study, if the IRLs are improved, 
the total SRL will be improved, and optimal ED for AVs will be applicable to 
commercial production (Table 8).

2.2.4 Research Gap Analysis Summary 

The SRL analysis has clearly indicated three research gaps that are inhibiting the 
implementation of AED, all of which are caused by subsystem integration. These 
gaps show that research should focus on advancing the following integrations:
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1. Performance of integrated sensors and perception subsystems: The effect of 
Real-world AV perception on identifying the parameters associated with an ED 
problem. 

2. Planning subsystem and noisy inputs: Effect of sparse or missing sensor data on 
global derivation of AED. 

3. Planning and use of a vehicle plant: Performance of a planning subsystem 
integrated with a physical vehicle plant 

3 Literature Review 

There are a few important studies that have already begun to address these 
identified research gaps. While there are hundreds of articles that include ED, these 
integration-based research gaps must be addressed before an ED application of 
AVs can be commercialized. Each integration research requirement is addressed 
in the following subsections. Each subsection describes the scope of the research 
gap and critical studies that are beginning to bridge this research gap are identified 
and summarized. Studies that lack adequate integration to match the scope of the 
research gap are excluded. 

3.1 Research Gap 1: Real-World AV Perception 
with Application to the AED Problem 

The first research gap focuses on real-world AV perception using data from any 
real-world AV sensors to determine parameters for an ED problem; the scope 
is illustrated in Fig. 3. Many published ED studies exist that artificially create 
constraints for a mathematical optimization problem, but real world constraints 
derived from real world sensors are needed.

Researchers from University of Utah and San Diego State University proposed 
an ED algorithm for CAVs to improve fuel and operational efficiency of vehicles 
on the freeways [113]. The proposed algorithm optimizes CAV trajectories with 
three main objectives - travel time minimization, fuel time minimization, and traffic 
safety improvement. The first stage of two-state control logic proposed, provides 
optimal CAV trajectories that can simultaneously minimize freeway travel time and 
fuel consumption with traffic sensor data and trajectory information as inputs. The 
second stage of the control logic is focused on ensuring operational safety of CAVs 
by real time adaptive actions to adjust speeds in response to local driving conditions. 

To achieve improved mobility and energy efficiency in mixed traffic conditions, 
researchers from University of California at Riverside proposed a combination 
of vision-perceptive technologies and V2I communications [114]. With a neural 
network extracting vision and V2I information; and a deep Reinforcement Learning
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Fig. 3 The integration scope defined in research gap 1: Real-world AV perception with application 
to the AED problem

(RL) based policy network generates both longitudinal and lateral ED actions with 
a rule-based driving manager working to regulate the collaboration between rule-
based policies and RL policies. 

Fleming et al. [115] from Loughborough University outlined a system that 
uses real-time data from Global Positioning System (GPS) and automotive radar 
to predictably optimize a vehicle’s speed profile and train a driver toward fuel-
saving and CO2-reducing behavior. Driving data was generated using STISIM Drive 
simulation software and validated on an instrumented vehicle equipped with radar 
and GPS sensor. 

Table 9 summarizes the work in research gap 1. These papers are greatly 
advancing the commercial implementation of ED in AVs because real world sensors 
are being used to derive ED constraints. More research is needed in this area 
especially considering the possibility to utilize traditional AV sensors such as 
cameras, radar, and lidar.

3.2 Research Gap 2: Sparse or Missing Sensor Data on Global 
Derivation of AED 

The second research gap focuses on the effect of sparse, missing, or incorrect sensor 
data which informs the ED problem’s constraints. Figure 4 shows the integration 
scope associated with this research gap. This gap can include the failure of sensors 
and infrastructure signals in providing the necessary information for AVs to perform 
ED as well as studies investigating how an AV can execute an ED function without 
all necessary information being available to it. Despite this being a common 
occurrence in real-world applications, there are not many ED papers that address 
this issue.
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Table 9 Summary of existing research that includes the integration scope of Real-world AV 
perception with application to the AED problem, thus addressing research gap 1 

Research Group Sensors/signals 
Data collection 
technique 

Planning 
techniques Vehicle plant 

University of 
Utah and San 
Diego State 
University [113] 

V2V and V2I Macroscopic 
traffic flow 
model by 
dividing vehicles 
into different 
classes 

Travel time 
minimization, 
fuel 
consumption 

Custom 
mathematical 
model 

University of 
California at 
Riverside [114] 

Front camera, 
radar, on-board 
diagnostics 
(OBD) and 
V2V-based SPaT 
(signal phase 
and timing) 
information 

Intelligent driver 
model (IDM) for 
traffic 
environment 

Hybrid 
reinforcement 
learning (HRL) 

Unity-based 
simulator 

Loughborough 
University and 
University of 
Southampton 
[115] 

GPS-based 
localization and 
long-range radar 

STIMSIM drive 
simulation 
software which 
simulated 21 km 
route around 
Southampton, 
UK 

Fuel 
consumption 
and driver 
preference, and 
predictive 
optimization of 
vehicle speed 

2004 fiat Stilo

Fig. 4 The integration scope defined in research gap 2: Sparse or missing sensor data on global 
derivation of AED 

On the vehicle side, researchers in University of California Berkeley have 
developed a stochastic approach with DP optimization to address scenarios in which 
limited SPaT data is available for AED vehicles [116]. Additionally, a two-layer 
receding horizon control framework has been proposed to address vehicle speed in 
scenarios where limited SPaT data is available with the control framework putting 
emphasis on safety control over velocity planning [117].
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Table 10 Summary of existing research that includes the integration scope of sparse or missing 
sensor data on global derivation of AED problem, thus addressing research gap 2 

Research Group Sensors/signals 
Perception 
model 

Planning 
techniques 

Faulty/Noisy 
data 

University of 
California, 
Berkeley [116] 

DSRC, camera, 
radar, LIDAR, 
GPS/INS 

V2V/I 
perception and 
localization 

Stochastic 
approach with 
DP optimization 

Limited SPaT 

VEDECOM 
[119] 

Camera, LIDAR Roadside 
infrastructure 
(RSI) central 
perception unit 

None. This 
paper is more 
focused on 
external parties 
providing data 
for incoming AV 

Object distance 
registered by 
camera and 
synchronization 
time for message 
transmission 

University of 
California, 
Berkeley [117] 

SPaT ED and adaptive 
cruise control 
model 

Two-layer 
receding horizon 
control 
framework 
(velocity 
planning and 
safety control) 

Limited SPaT 

SZTAKI [118] Vehicle 
reference speed 
and following 
distance 

Vehicle 
reference speed 
and following 
distance 

Three layer 
control 
framework with 
driver safety 
having priority 
over vehicle 
cruise speed 

Vehicle speed 
and acceleration

SZTAKI also proposed a similar framework to prioritize drive safety over vehicle 
cruise velocity but with a three layer control framework as opposed to University of 
California’s two-layer control framework [118]. 

On the infrastructure side, VEDECOM proposed a Roadside Infrastructure (RSI) 
system that provides environmental information for incoming AV at intersections 
through the use of camera and lidar [119]. From VEDECOM’s research considera-
tion needs to be given for the height positioning and environment of RSI sensors as 
such factors can affect the robustness of information provided by RSI. 

In reviewing the sources related to research gap 2, summarized in Table 10, few  
sources were available in directly addressing how AVs would perform autonomous 
driving features in faulty sensor and external infrastructure scenarios. While there 
are sources outlining the benefits and disadvantage of various sensors used in AV 
perception, such sources lack sufficient coverage on appropriate protocols in events 
where limited sensor and signal data are available [120, 121]. This suggests future 
research into research gap could focus on development of such protocols. 
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Fig. 5 The integration scope defined in research gap 3: Performance of a planning subsystem 
equipped with AED integrated with a physical vehicle plant 

3.3 Research Gap 3: Performance of a Planning Subsystem 
Equipped with AED Integrated with a Physical Vehicle 
Plant 

Research outlining the work done on physical AED implementation can be broken 
down into four distinct sections namely: 

(i) what Drive Cycle was used to test AED control algorithm, (ii) what planning 
model was used to enable AV to generate a solution, (iii) what type of vehicle plant 
is used to validate performance of control algorithm and (iv) what physical vehicle 
is used to evaluate control algorithm in real time. Figure 5 provides the context of 
the research gap scope within the AV architecture. 

Using a Rollout Algorithm (approximation of DP algorithm) with a multi-layer 
hierarchical Model Predictive Control (MPC) framework, researchers at Ohio State 
University evaluated the performance of AED through simulations and physical 
vehicle implementation [122]. Physical vehicle testing shows the vehicle consumed 
22% less fuel compared to baseline scenario with 2.9% savings in trip time while 
maintaining State of Charge (SOC) at 50%. Results of physical testing were in line 
with findings from simulation. 

University of Wisconsin-Madison developed a control system called Eco-Drive, 
used to optimize fuel efficiency for purely gasoline vehicles. Eco-Drive uses data 
available from ODB II port of gasoline vehicles to calculate an optimal vehicle 
speed to maximize fuel efficiency and implementation was done by automating 
accelerator pedal position via outputs from Eco-Drive [123]. Testing of Eco-Drive 
under 100 miles of driven road outline a fuel efficiency improvement of 10–40% 
depending on urban environments. 

Leveraging NREL’s Transportation Secure Data Center (TSDC) dataset, a joint 
effort between General Motors LLC, Carnegie Mellon University, and NREL 
was carried out to develop an AED vehicle that uses InfoRich Eco-Autonomous
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Driving (iREAD) to generates optimal travel trajectories [124]. Evaluating iREAD’s 
performance in large-scale, in-depth simulations along with physical evaluations in 
Vehicle-In-Loop, the research found fuel savings of 10–20% depending on road 
conditions. Although plans were made to test iREAD in road testing, such testing 
was not done by the time of publication. 

On a similar note, Argonne National Labs (ANL) developed a set up to automate 
evaluation of ED algorithm in a Vehicle-In-Loop (VIL) setting for BEV and ICE 
vehicles [125]. Testing has shown ANL was successfully in creating a functional 
and repeatable VIL system with VIL test out-ling a 22% and 16% energy savings 
for BEV when driven in lead and following position respectively. 

For heavy/medium duty trucks, Southwest Research Institute evaluated the 
performance of SwRI’s ED control algorithm in class 8 trucks in accordance with 
J1321 test procedures [126]. Physical testing of class 8 trucks found SwRI’s control 
algorithm resulted in 7% decrease in fuel consumption and 6% decrease in trip time. 

Applying AED in a fleet-based setting, University of California and University 
of Cincinnati deployed a CAV fleet to evaluate the performance of AED in real 
time [127, 128]. Evaluating AED performance over 7 road segments and driven 
over 47 miles, University of Cincinnati’s Relaxed Pontryagin’s Minimum Principle 
(RPMP) based AED algorithm yielded fuel savings of 3.3 to 21.2% with variation 
depending on hill length and slope grade. Testing their control algorithm over 8 
signalized intersections of Southern California, results of University of California’s 
control algorithm outline a fueling savings of 30.98% for CAV fleet AED in 
exchange for an 8.51% increase in trip time compared to baseline. 

Researchers at Colorado State University also applied predictive acceleration 
events control to the actual vehicle using customized 2019 Toyota Tacoma parallel-3 
(P3) HEV. Their methodology combats long run time issues dynamic programming 
has for physical implementation by pre-computing the optimal solution for accel-
eration events. According to the findings of track-based testing using predictive 
acceleration event control in the real world 7% improvement in FE can be achieved. 
According to the author, this is the first time this sort of testing has ever been 
conducted on a real-world vehicle. 

The parameters of interest are summarized in Table 11. In researching physical 
implementation of AED, we found that a majority of physical ED research was done 
on gasoline vehicles. This indicates that ED for physical BEV or Hybrids may be a 
potential avenue for future research.

4 Conclusions 

This literature review provides an overview of automotive energy efficient control 
strategies and discusses that AED for BEVs should be a focus of future research 
efforts. A systems-level diagram of AED is proposed and an expansion of NASA’s 
TRL analysis (SRL analysis) is performed which identifies three existing research 
gaps: real-world AV perception with application to the AED problem, sparse or
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Table 11 Summary of existing research that includes the integration scope of Performance of a 
planning subsystem equipped with AED integrated with a physical vehicle plant, thus addressing 
research gap 3 

Research group Drive cycle Planning model Vehicle plant 
Vehicle 
realization type 

Ohio State 
University [122] 

Custom route, 
Columbus, Ohio 

Rollout 
algorithm 
(approximate 
DP) and model 
predictive 
control 

P0 mild-HEV, 
2016 VW Passat 
retrofitted with 
48 V mild 
hybrid system 

Actual vehicle 

University of 
Wisconsin 
Madison [123] 

Custom mid-size 
US city drive 
data 

Eco-drive (DP) Gasoline vehicle 
plant 

Actual vehicle 

National 
Renewable 
Energy lab 
oratory [124] 

NREL’s 
Transportation 
Secure Data 
Center (TSDC) 
drive cycle data 

InfoRich Eco-
Autonomous 
Driving 
(iREAD) 

Cadilac CT6 
(BEV) 

GM internal 
model 

Argonne 
National Labs 
[125] 

Multiple custom 
drive cycle of 
varying speed 
limit and 
HWFET 

Analytical 
closed form 
solutions 

Chevrolet bolt 
(BEV) 

Actual vehicle 

Southwest 
Research 
Institute (SwRI) 
[126] 

Modified NREL 
port drayage 
cycles 

Control 
algorithm with 
objective of 
minimizing jerk 
and acceleration 
events 

2017 Volvo 
VNL64T300 

Actual vehicle 

University of 
Cincinnati [127] 

Rolling 
segments in 
Virginia and 
Maryland 

Relaxed 
Pontryagin’s 
minimum 
principle 
(RPMP) 

2013 ICE 
Cadillac SRX 

Actual vehicle 

University of 
California, 
Berkeley [128] 

Custom Route 
Model built 
using July 2019 
Sensys Network 
data 

ECO-ACC (Eco 
driving 
controller-
adaptive cruise 
controller) 

Unknown, 
PHEV is only 
stated to have 
8.89kWh battery 
capacity 

Actual vehicle 

University of 
California, 
Riverside [129] 

NA NA 2015 Volvo 
VNL 

Actual vehicle 

University of 
Michigan [130] 

Custom route, 
Ann Arbor, MI 

Prediction of 
queuing profile 
using 
shock-wave 
profile model 
[131] 

2017 Toyota 
Prius four 
Turing HEV 

Actual vehicle 

Colorado State 
University [132] 

Custom route, 
Fort Collins, co 

Predictive 
acceleration 
event model 

2019 Toyota 
Tacoma 

Actual vehicle
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missing sensor data on global derivation of AED, and performance of a planning 
subsystem equipped with AED integrated with a physical vehicle plant. In other 
words, there are gaps in knowledge concerning 

1. An understanding of critical sensors and signals for perception and sensor fusion 
that enable effective FE vehicle control through AED. 

2. An in-depth comprehension of the sorts of fault or missing data from perception 
that might impact effective FE vehicle control. 

3. The operational and real-world problems of effective AED control implementa-
tion. 

Investigation of the AED literature revealed that, despite the availability of hundreds 
of papers addressing the idea of ED, there are few papers that provide insights 
into the AED research gaps which are currently slowing commercial realization. 
A summary of relevant papers that are beginning to address these gaps are provided 
and a summary of missing knowledge is given. 

The overall conclusion of this research is that focused studies addressing AED 
research gaps are needed before AV technology and its associated infrastructure is 
rolled out and fully commercialized. ED considerations need to be a part of AV 
RD efforts to ensure that transportation sustainability is improved at the same rate 
as transportation safety. There are many inconclusive studies about the effect of 
widespread AV adoption on transportation energy use but some of these worst case 
scenarios could be alleviated with ED implementation. Focused studies are needed 
that utilize real-world AV sensors, that investigate the effects of sensor errors, and 
that include real world BEV implementation. 
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