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Chapter 8
Assessing Biomarkers in Viral Infection

Elizabeth S. Mayne, Jaya A. George, and Susan Louw

Abstract  Current biomarkers to assess the risk of complications of both acute and 
chronic viral infection are suboptimal. Prevalent viral infections like human immu-
nodeficiency virus (HIV), hepatitis B and C virus, herpes viruses, and, more recently, 
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) may be associated 
with significant sequelae including the risk of cardiovascular disease, other end-
organ diseases, and malignancies. This review considers some biomarkers which 
have been investigated in diagnosis and prognosis of key viral infections including 
inflammatory cytokines, markers of endothelial dysfunction and activation and 
coagulation, and the role that more conventional diagnostic markers, such as 
C-reactive protein and procalcitonin, can play in predicting these secondary compli-
cations, as markers of severity and to distinguish viral and bacterial infection. 
Although many of these are still only available in the research setting, these markers 
show promise for incorporation in diagnostic algorithms which may assist to predict 
adverse outcomes and to guide therapy.
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1 � Introduction

Chronic viral infections are associated with immune system activation and inflam-
mation which may be responsible for a number of non-infectious disease complica-
tions. These can include the development of autoimmune manifestations including 
cytopenias, malignancy, and cardiovascular disease (CVD) [1, 2]. Recently, there 
has been increasing interest in predicting adverse outcomes from these infections 
resulting in the identification of biomarkers which may indicate the development of 
chronicity and assist with treatment decisions. With the most recent severe acute 
respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic, infection in some 
patients was prolonged resulting in the development of syndromes including long-
COVID-19 (also known as post-COVID-19) and multisystem inflammatory disor-
der of childhood (MISC-C) [3, 4]. Inflammatory markers including interleukin-6 
(IL-6), and more conventional markers like C-reactive protein (CRP) and procalci-
tonin (PCT) [5, 6], were offered as a component of the laboratory management of 
these patients although the interpretation of the results was not always straightfor-
ward. CRP and PCT are used routinely in severely ill patients, but a number of other 
inflammatory biomarkers, including endothelial markers and other cytokines, are 
not offered routinely. In some cases, inflammatory biomarkers have not been fully 
evaluated as prognostic markers although they are available as routine tests. 
D-dimers (or additional fibrin-degradation products) are a measure of fibrinolysis 
and are increased with bleeding and clotting [7], but this test has more recently been 
utilized to assess prognosis in patients with SARS-CoV-2 infections, independently 
of overt underlying coagulopathy or thrombosis [8]. The timing of sample collec-
tion, assay type, and the number of repeat analyses are poorly standardized, and this 
may reduce the utility of these markers in the clinical setting [6, 9]. Diagnostic and 
management guidelines have been issued by scientific bodies although these do not 
fully cover all clinical scenarios [10–12].

This review will focus on some chronic viral test cases including human immu-
nodeficiency virus (HIV) infection, hepatitis B and C virus (HBV and HCV) infec-
tion, selected human herpes viruses, Kaposi-sarcoma herpesvirus (KSHV), and 
Epstein-Barr virus (EBV), as well as SARS-CoV-2.

2 � Inflammatory Cytokines in Viral Infections

Cytokines are small protein molecules which are released by both immune effector 
cells and non-immune cells and which act to regulate immune function [13, 14]. A 
comprehensive discussion of all cytokines is outside the scope of this review, but 
recently, 3 cytokines, interleukin-6 (IL-6), IL-1, and tumor necrosis factor alpha 
(TNF-α) have been an area of focus in viral disease. These pleiotropic cytokines are 
the chief regulators of multiple inflammatory pathways [13, 15–17].

IL-6, TNF-α, and IL-1α are secreted by multiple cells including non-immune 
cells like epithelial and endothelial cells and some leukocytes [15, 18, 19]. IL-1β 
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production is more restricted to leukocytes (primarily myeloid cells) [15]. Production 
of these cytokines is upregulated in response to innate immune system activation 
through the binding of pathogen-associated molecular patterns (PAMPs) to highly 
conserved pattern-recognition receptors (PRRs) [13]. An important mediator of 
secretion of IL-1β specifically is the inflammasome, a complex of proteins contain-
ing PRRs, which recognize specific microbial patterns including the nucleotide 
oligomerization domain, leucine-rich repeat receptors (NLRs). The nitrogen perme-
ase regulator-like 3 (NLRP3) inflammasome activates caspase 1 which cleaves pro-
IL1 into active components, IL-18 and IL-1β [20, 21]. TNF-α production is 
upregulated in response to IL-1β and toll-like receptor (TLR) activation through 
upregulation of TNF-α gene transcription. TNF-α is converted to a soluble form by 
the metalloproteinase TNF-α converting enzyme (TACE) [15]. Levels of IL-6, the 
principal member of the IL-6 family of cytokines, are low in healthy individuals but 
rise rapidly with inflammation [17]. IL-6 gene transcription is upregulated by 
nuclear factor kappa B (NFκB), nuclear factor IL-6 (NF-IL-6), and activation pro-
tein-1 among other pro-inflammatory signaling pathways, typically in response to 
PAMPs or danger-associated molecular patterns (DAMPs) [18]. Further secretion is 
stimulated by the action of the IL-6 amplifier which also positively influences secre-
tion of other pro-inflammatory cytokines [18]. Elevated cytokine levels in chronic 
viral infections are attributed to a number of stimuli. In HIV infection, chronic acti-
vation has been linked to ongoing low-grade viral replication, presence of opportu-
nistic infections, and microbial translocation [22]. Both EBV and KSHV promote 
inflammatory gene transcription, and KSHV produces viral cytokine homologs 
including viral IL-6 [23].

IL-1β, TNF-α, and IL-6 are crucial to pro-inflammatory responses [15, 18, 19]. 
All three are associated with monocyte and neutrophil recruitment and activation, 
dendritic cell maturation, increased endothelial permeability, fever, and pain. In 
response to these cytokines, there is release of acute phase proteins and hepcidin 
from the liver [24]. IL-1β, IL-6, and TNF-α (sometimes also classed as sT-helper 1 
cytokines) promote a pro-inflammatory T-cell response and inhibit regulatory T-cell 
differentiation [25]. IL-6 specifically stimulates Th17 T-cell differentiation, in con-
jugation with transforming growth factor beta (TGF-β). It also has a non-redundant 
function in plasma cell differentiation and antibody secretion. IL-6 hypersecretion 
is also associated with increased platelet production and bone remodeling [17]. 
IL-1β favors Th17 differentiation in response to increased IL-6 levels by suppress-
ing suppressor of cytokine signaling 3 (SOCS3) [15]. The IL-1 receptors are com-
mon entry sites for microorganisms, and expression and activity are therefore tightly 
regulated by mechanisms involving decoy receptors and proteolytic degradation 
[15]. As pro-inflammatory cytokines, IL-1β, TNF-α, and IL-6 promote an important 
antiviral and antibacterial response. However, under chronic infection and inflam-
mation conditions, cytokine levels remain elevated, and this can become pathogenic 
[13, 16]. Therefore, these cytokines can have both beneficial and detrimental effects 
in viral infections [5, 6, 13, 26–61] (Table 8.1).
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Table 8.1  Secretion and effects of inflammatory cytokines in selected viral infections

Interleukin 1β (IL-1 β) Interleukin-6 (IL-6)
Tumor necrosis 
factor-α (TNF- α)

Hepatitis B (HB) 
virus [13, 26–29]

Downregulation of 
secretion by HBe 
Antigen(Ag) and 
upregulation by HBcAg; 
increased levels 
associated with viral 
replication and disease 
complications including 
cirrhosis and HCC

Elevated levels inhibit 
viral entry and 
transcription; ongoing 
hypersecretion predicts 
mortality in acute on 
chronic liver failure and 
contributes to 
development of HCC 
through activation of 
the STAT3 pathway

Inhibition is associated 
with HBV reactivation; 
increased production 
also associated with 
liver fibrosis, 
hepatocyte apoptosis 
and pyroptosis

Human 
immunodeficiency 
virus (HIV) 
[30–32]

Augmentation of 
NLRP3 and IL-1B gene 
expression culminating 
in activation of the 
inflammasome in 
dendritic and related 
monocyte lineage cells 
with IL-1β 
hypersecretion

Elevated levels 
associated with lower 
CD4+ T-cell count and 
higher HIV viral load; 
strongly predictive of 
all-cause mortality and 
specifically HIV-
associated CVD and 
non-AIDS defining 
malignancies

Increased secretion 
primarily by 
macrophages through 
action of viral proteins 
nef, tat and gp120; 
causes bystander 
immune cell apoptosis; 
elevated levels 
associated with 
increased mortality and 
disease progression

Hepatitis C (HC) 
virus [28, 33]

Upregulated in response 
to hypoxia during 
chronic inflammation; 
activates production of 
membrane 
metalloproteinase 9 with 
subsequent fibrosis; also 
linked to HCC and 
stimulation of an 
epithelial-mesenchymal 
transition

IL-6 polymorphisms 
linked to poorer 
outcomes with chronic 
HCV infection; may 
stimulate tumorigenesis 
through action on 
JAK-STAT pathway

Inhibition not 
conclusively linked to 
reactivation; putative 
role in hepatic fibrosis 
and hepatocyte 
pyroptosis

Epstein-Barr Virus 
(EBV) [32, 34–41]

Upregulated in response 
to viral proteins 
including LMP-1 
although other viral 
proteins may inhibit 
secretion of IL-1 and 
downregulate its cognate 
receptors; increases are 
associated with 
pyroptosis but also with 
increased development 
of nasopharyngeal 
carcinoma and 
angiopathy in chronic 
infection; associated 
with development of 
chronic EBV disease 
and with HLH

Elevation predicts 
mortality in primary 
effusion lymphoma; 
biomarker for 
development of HL; 
independently 
associated with 
mortality in HL; Viral 
IL-6 associated with 
B-cell immortalization 
and hyperproliferation; 
prognostic marker and 
possible therapeutic 
target in EBV-
associated HLH

High levels associated 
with elevation of early 
lytic proteins, 
including LMP-1, 
resulting in B-cell 
proliferation; elevated 
levels independently 
associated with EBV 
associated chronic 
fatigue syndrome and 
HLH

(continued)
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Table 8.1  (continued)

Interleukin 1β (IL-1 β) Interleukin-6 (IL-6)
Tumor necrosis 
factor-α (TNF- α)

Kaposi-sarcoma 
herpesvirus 
(KSHV) [42–46]

IL-1α and/or IL1-β 
increased in response to 
vOX2 glycoprotein b and 
other viral proteins; 
stimulates angiogenesis 
and abnormal cell 
proliferation and 
upregulates PD-1L to 
effect tumor cell escape; 
increased levels 
associated with 
tumorigenesis in KS, 
primary effusion 
lymphoma and 
multicentric Castleman’s 
disease

Increased levels 
predictive of 
development of 
KSHV-associated 
malignancies including 
primary effusion 
lymphoma, KS and 
multicentric 
Castleman’s disease; 
upregulates growth 
factors including 
Vascular Endothelial 
Growth Factor; high 
levels associated with 
KSHV-associated 
cytokine syndrome

Upregulated levels in 
response to KSHV 
glycoprotein b 
although other factors 
may inhibit secretion; 
elevated levels 
associated with viral 
reactivation, KS and 
B-cell 
lymphomagenesis; 
elevated levels may 
also be associated with 
decreased viral load

SARS-CoV-2 [5, 
6, 47–61]

Levels of IL-1β, IL-6 and TNF-α are all raised in SARS-CoV-2 disease 
and have been predictive of severity, mortality and disease complications 
including neurological disease, severe viral pneumonia and development 
of lung fibrosis, multisystem inflammatory disorder of children, SARS-
CoV-2 associated HSH and long COVID-19 syndrome; SARS-CoV2 
cytokine release syndrome has been targeted with immunotherapies

HCC hepatocellular carcinoma (HCC); STAT3 signal transducer and activator of transcription 3; 
NLPR3 nitrogen permease regulator-like 3; CVD cardiovascular disease; nef negative factor; tat 
transactivator of transcription; GP glycoprotein; JAK-STAT Janus kinase-signal transducer and 
activator of transcription; LMP-1 latent membrane protein 1; HLH hemophagocytic 
lymphohistiocytosis; PD-L1 programmed cell death Ligand-1; KS Kaposi sarcoma

3 � Coagulation as a Biomarker of Viral Infection

Coagulation is a component of an innate immune response, and a procoagulant state 
is a feature of dysregulated inflammation [62]. Cardiovascular events including 
venous thromboembolic disease, myocardial infarction, cerebrovascular accidents, 
and thrombotic microangiopathies are a cause of virus-related morbidity and mor-
tality [62]. Biomarkers may assess endothelial cell activation or clot formation or 
breakdown [7, 63]. Classically, disseminated intravascular coagulation (DIC) is a 
complication of severe sepsis and has been associated both with primary viral infec-
tion as a trigger and also with secondary conditions specifically cancer and bacterial 
or viral superinfection [64].

Both humoral and cellular effectors of coagulation have prognostic value in 
severe viral disease [14, 65, 66]. Thrombocytopenia is a key feature of ongoing 
microvascular thrombosis and chronic inflammation which can result in dysmega-
karyopoiesis [67]. In addition, immune-mediated platelet destruction is associated 
with multiple viral diseases including hepatitis C [33], HIV [68], SARS-CoV-2 
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[69], and the herpes viruses [70]. On the other hand, platelet sequestration is associ-
ated with hypersplenism, which may complicate liver disease or may be a direct 
result of infection [71]. Increased platelet numbers may also be present specifically 
in response to elevated IL-6 [18]. Platelet activation is increased by multiple inflam-
matory mediators including the lipid mediators of inflammation contributing to 
pathological thrombosis [65].

Leukocytes can also contribute to infection-related thrombosis by interacting 
with both platelets and the endothelial surface. In HIV, there is upregulation of leu-
kocyte expression of tissue factor which can activate factor VII stimulating the 
coagulation cascade [72]. Both platelets and monocytes upregulate expression of 
adhesion markers like P-selectin and its cognate ligand, P-selectin glycoprotein 
ligand [73]. Measurement of these markers, by immunophenotyping, can be an 
important adjunct in assessing risk and has been shown to correlate with CVD 
development and with other markers of viral severity [62]. Neutrophils, under 
inflammatory conditions, release neutrophil extravasation traps which also contrib-
ute to immunothrombosis by activating platelets and physically blocking the vascu-
lar lumen [74].

Chronic inflammation activates endothelial cells to a procoagulant and pro-
inflammatory phenotype [62]. Endothelial dysfunction, a state of dysregulated con-
tractility and endothelial cell activation, contributes to the development of 
CVD. Surrogate markers of endothelial dysfunction include the release of endothe-
lial cell adhesion markers like intercellular adhesion molecule-1 (ICAM-1) and vas-
cular cell adhesion molecule-1 (VCAM-1) and the procoagulant factors, factor VIII, 
and von Willebrand factor [62]. These factors can be pathogenic in thrombosis and 
have predictive value in critically ill patients.

Independent from CVD risk, coagulation system activation can predict severity 
in other complications of viral infection. For example, increased levels of ICAM-1 
were found to be predictive of development of hepatocellular carcinoma (HCC) in 
chronic HBV and HCV infection [27], as well as decompensating cirrhosis [75]. 
Elevated levels of D-dimers are a strong predictor of mortality in HIV and specifi-
cally for CVD-related complications [76–78], and more recently, D-dimers have 
been used to prognosticate in severe SARS-CoV-2 infection [79]. Importantly, 
D-dimers show high negative predictive value in patients with suspected venous 
thromboembolic disease, and longitudinal measurement may indicate treatment 
adherence and clinical improvement [7].

4 � Traditional Biomarkers of Severe Viral Disease

It can be difficult to distinguish bacterial from viral infections especially in the 
lower respiratory tract. Untreated bacterial infections can result in serious complica-
tions, while the use of antibiotics in inflammation or viral infections leads to the 
development of antibiotic resistance, increased costs, and possible unwanted side 
effects [80]. The most accurate way to diagnose these infections is by culture in the 
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case of bacterial infections, or serology for antibodies or antigens, or molecular 
tests. Culture results and ancillary test results are generally not available immedi-
ately, and there is a need for alternative approaches. Both CRP and PCT concentra-
tions have been used to initiate and monitor the antibiotic use for lower respiratory 
tract infections [81].

These biomarkers also are elevated in people with inflammation resulting from 
causes other than infections such as trauma, autoimmune diseases, and metabolic 
disease [82]. Early studies during the COVID-19 pandemic suggested that these 
may be used as markers of disease severity.

4.1 � CRP

CRP is an acute inflammatory protein discovered in 1930 by Tillet and Francis, 
while investigating the effects of sera of patients with pneumococcal pneumonia 
[83]. CRP binds to polysaccharides on microorganisms and activates C1q of the 
classical complement pathway [84]. CRP is synthesized primarily in hepatocytes, 
but is also produced in adipocytes, endothelial cells, lymphocytes, macrophages, 
and smooth muscle cells [85–87]. CRP is found in two forms: a pentameric form 
which can then dissociate to form monomers. These two forms of CRP play distinct 
roles in the inflammatory process [88]. Monomeric CRP is involved in the innate 
immune system by activation of the complement cascade and stimulation of both 
angiogenesis and thrombosis, whereas pentameric CRP is mostly released to the 
circulation after an inflammatory stimulus and recognizes phosphocholine on bacte-
rial cells and damaged host cells [89].

CRP triggers C1q activation in the complement pathway leading to the opsoniza-
tion of pathogens. It can also stimulate cell-mediated pathways via complement 
activation and by binding Fc receptors of IgG [90]. CRP increases within 4–6 h, in 
response to injury, infection, and inflammation, and peaks at about 36 h. In general 
inflammation, CRP levels can rise beyond 10 mg/L [89]. Lower concentrations of 
CRP, in the range of 0.01 to <10 mg/L (high sensitivity CRP or hsCRP), are associ-
ated with low grades of systemic inflammation. Low grade systemic inflammation 
is associated with elevated hsCRP levels, and use of this biomarker to detect athero-
sclerotic vascular disease has been intensely investigated through observational 
studies and clinical trials over the past two decades. On the basis of evidence that 
has accrued, hsCRP measurement has been integrated into the Reynolds risk scor-
ing system to predict cardiovascular risk [91]. It is used at concentrations of 
<1 mg/L, 1–3 mg/L, and >3 mg/L to classify individuals as low, intermediate, or 
high risk for CVD, respectively [24].

Sequential CRP levels are a sensitive and specific biomarker to improve the dif-
ferential diagnosis between acute bacterial and viral infections, although this may 
be less accurate in severe viral disease cases and with prolonged inflammation [92]. 
CRP is raised in patients with severe SARS-CoV-2 [93, 94] and can predict mortal-
ity [49, 95] especially in patients aged 60 years and older [96]. CRP levels show a 
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downward trend in survivors and tend to increase prior to death in non-survivors 
[97]. CRP kinetics in SARS-CoV-2-infected patients admitted to intensive care 
units were similar to those seen in bacterial sepsis with an initial rise followed by a 
decline during recovery, although levels are typically higher in patients with bacte-
rial sepsis compared to patients with severe COVID-19 disease [98]. Mortality in 
patients with SARS-CoV-2 is higher in patients with comorbidities such as type II 
diabetes mellitus and preexisting CVD [99]. SARS-CoV-2 infection itself can cause 
cardiovascular damage and impaired glucose control. While biomarkers such as 
high sensitivity Troponin and pro brain natriuretic peptide (proBNP) are better 
markers of CVD, CRP is also elevated signifying the underlying inflammatory pro-
cess [100]. CRP measurement can be an important ancillary test in these patients as 
it may directly damage cardiac tissue by activating complement, reducing nitric 
oxide (NO) release and CRP-mediated inhibition of angiogenesis, and stimulating 
endothelial cell apoptosis [101].

Elevated CRP levels have been associated with poorer outcomes in other viral 
infections such as SARS-related pneumonia, Middle East respiratory syndrome 
(MERS) infection, and H7N9 influenza. High levels of CRP were consistently seen 
with severe disease outcomes in H1N1 influenza patients [102–105]. Elevated CRP 
is also predictive of mortality in HIV particularly from CVD, and the levels of this 
biomarker are further elevated in patients with co-infection with other viruses like 
HCV [106]. The IL-6 expressed by KSHV also stimulates CRP secretion, and high 
CRP levels are a feature of a cytokine storm in a number of different viral diseases 
[14]. Taken together, these findings indicate that CRP is elevated in several viral 
infections and, therefore, cannot be used to differentiate between them.

4.2 � PCT

PCT is a glycoprotein precursor of calcitonin released by the thyroid parafollicu-
lar cells. In healthy subjects, calcitonin is released, but in the presence of an 
inflammatory stimulus, particularly bacterial endotoxin or pro-inflammatory 
cytokines, there is increased calcitonin gene expression, and PCT mRNA is syn-
thesized. This leads to release of PCT from all parenchymal tissues. PCT is a 
useful biomarker to differentiate between bacterial and viral infections as a con-
centration ≥0.5 μg/L is suggestive of a possible bacterial infection [107]. PCT 
may be used in the early diagnosis of bacterial pneumonias and to guide initiation 
of antibiotic therapy [108].

Although relatively specific for bacterial infections, serum PCT levels also cor-
relate with disease severity and thus cannot reliably distinguish between bacterial 
and nonbacterial infections in the setting of critical illness, particularly in cases of 
severe influenza and SARS-CoV-2 infection [6, 52]. However, the value of PCT as 
a prognostic marker in SARS-CoV-2 is unclear. Meta-analyses have shown that 
those patients with severe disease had higher PCT levels compared to those with 
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non-severe disease [6, 109], although this was inconsistent with some studies failing 
to find a significant difference [51]. The reasons for these discrepancies may be 
attributed to variable cut-offs, patient ages, or other factors impacting PCT release. 
PCT release is inhibited by interferon (INF)-γ, for example, and levels of this cyto-
kine may differ in different patient populations or with different administered thera-
pies. Since INF-γ is a key antiviral cytokine, this could explain the differences in 
PCT level in viral and bacterial infection [110]. However, all three pro-inflammatory 
cytokines (IL-1β, IL-6, and TNF-α) stimulate parenchymal PCT production. PCT 
levels are typically normal in uncomplicated viral infections [111] but may rise with 
severe complications including, for example, the development of hemophagocytic 
lymphohistiocytosis (HLH) [9] or the development of secondary bacterial infection 
in patients with severe viral disease including H1N1 influenza [112]. In general, 
however, PCT appears to be a more specific marker of bacterial sepsis than CRP, 
albeit with some limitations. This has prompted a search for more specific markers 
or combinations of markers that can be used reliably to differentiate bacterial and 
viral infections.

One potential biomarker for distinguishing between bacterial and viral infections 
is myxovirus resistance protein A (MxA), an IFN-inducible protein with antiviral 
activity. MxA has been investigated for use as a biomarker because of its rapid 
induction in acute, symptomatic viral infections and low levels in bacterial infec-
tions and in healthy individuals [113–115]. Clinical studies, mostly involving chil-
dren, suggest that MxA is selectively increased in viral infections and have the 
potential to rapidly distinguish viral and bacterial disease [116, 117]. It has been 
used in the emergency department setting to distinguish SARS-CoV-2 from bacte-
rial and non-infectious causes of respiratory disease [118].

5 � Conclusions and Future Perspectives

Viral infections cause significant morbidity and mortality. Host- and virus-spe-
cific factors can determine patient outcomes in both acute and chronic infection 
although these outcomes cannot always be predicted in clinical settings with the 
current biomarkers available, as demonstrated during the COVID-19 pandemic. In 
this review, we considered some of the biomarkers that are used in the clinical 
setting and in research to monitor viral infections. These biomarkers may predict 
the development of end-organ diseases including CVD and malignancies and con-
tribute to acute viral immune escape or control, or they may indicate severe com-
plications including HLH and cytokine release syndromes. Combinations of these 
markers can also help to distinguish between bacterial and viral infection which is 
critical for effective antimicrobial stewardship. Into the future, standardization of 
biomarker panels, validation of new markers, and appropriate age-specific, dis-
ease-specific reference ranges will assist to make these biomarkers more clini-
cally relevant.
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