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Chapter 25
Statins: Beneficial Effects in Treatment 
of COVID-19

Naser-Aldin Lashgari, Nazanin Momeni Roudsari, Hedieh Shamsnia, 
Maryam Shayan, Saeideh Momtaz, Amir Hossein Abdolghaffari, 
Maryam Matbou Riahi, Tannaz Jamialahmadi, Paul C. Guest, Željko Reiner, 
and Amirhossein Sahebkar

Abstract  The recent viral disease COVID-19 has attracted much attention. The 
disease is caused by SARS-CoV-19 virus which has different variants and muta-
tions. The mortality rate of SARS-CoV-19 is high and efforts to establish proper 
therapeutic solutions are still ongoing. Inflammation plays a substantial part in the 
pathogenesis of this disease causing mainly lung tissue destruction and eventually 
death. Therefore, anti-inflammatory drugs or treatments that can inhibit inflamma-
tion are important options. Various inflammatory pathways such as nuclear factor 
Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like 
receptor family protein 3 (NLRP), toll-like receptors (TLRs), mitogen-activated 
protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways 
and mediators, such as interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), 
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and interferon-γ (INF-γ), cause cell apoptosis, reduce respiratory capacity and oxy-
gen supply, eventually inducing respiratory system failure and death. Statins are 
well known for controlling hypercholesterolemia and may serve to treat COVID-19 
due to their pleiotropic effects among which are anti-inflammatory in nature. In this 
chapter, the anti-inflammatory effects of statins and their possible beneficial effects 
in COVID-19 treatment are discussed. Data were collected from experimental and 
clinical studies in English (1998–October 2022) from Google Scholar, PubMed, 
Scopus, and the Cochrane Library.
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1 � Introduction

The global outburst of infection with severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), a strain of coronavirus that causes COVID-19 (coronavirus dis-
ease 2019), began in China. Global high mortality, constant mutations, lack of 
knowledge about the nature of the virus, and uncertain treatment options made the 
disease a worldwide concern. SARS-CoV-2 acts via angiotensin-converting enzyme 
2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) expressing epithelial 
cell receptors leading to extensive synthesis and release of inflammatory agents 
inducing immune cells and acute respiratory distress syndrome (ARDS) (Fig. 25.1) 
[1]. The increased rate of mortality in COVID-19 patients is attributed to immune 
dysregulation resulting in a cytokine storm. This results from over-activation of 
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Fig. 25.1  COVID-19 inflammatory signaling pathway; statins could block the inflammatory pro-
cess caused by COVID-19 infection and might have therapeutic effects

complex inflammatory networks interconnecting different cells, signaling path-
ways, and cytokines [2]. Activation of nuclear factor kappa light chain enhancer of 
activated B cells (NF-κB), signal transducer and activator of transcription 3 (STAT3), 
Janus kinase (JAK), protein kinase B (AKT), mammalian target of rapamycin 
(mTOR) signaling pathways causes elevated levels of pro-inflammatory cytokines 
such as interleukin (IL)-1, IL-6, IL-18, IL-33, IL-37, IL-1β, tumor necrosis factor-
alpha (TNF-α), and interferon-gamma (INF-γ) in COVID-19 patients, while anti-
inflammatory cytokines i.e. IL-10 are downregulated by NF-κB [3, 4]. These 
mediators cause deleterious effects on respiratory, cardiovascular, and digestive sys-
tem. For COVID-19 prevention and treatment vaccines, immune-based treatments 
and drugs are used.

For instance, remdesivir, an anti-viral drug, is prescribed for COVID-19 patients 
with respiratory symptoms leading to a faster recovery. Hydroxychloroquine was 
found to prevent viral replication in SARS-CoV and was used in Middle East respi-
ratory syndrome coronavirus (MERS-CoV) patients a decade ago [5]. Lopinavir/
ritonavir was used as an anti-viral agent, and corticosteroids, such as dexametha-
sone, methylprednisolone, are recommended for their anti-inflammatory properties. 
Tocilizumab is used in patients with ARDS, and it reduces elevated levels of IL-6. 
Besides chemical medicines, herbal medicines such as curcumin and quercetin are 
also used as a complementary treatment to decrease COVID-19 symptoms by sup-
pressing inflammatory signaling pathways and mediators [6].

Statins have been used for more than three decades as drugs of choice in prevent-
ing cardiovascular disease, both in terms of efficiently decreasing plasma low-
density lipoproteins cholesterol (LDL-C) and due to their cost-effectiveness. 
Besides their LDL-C lowering effects, statins have different pleiotropic properties, 
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such as their anti-inflammatory and immunomodulatory effects, which are benefi-
cial in managing inflammatory conditions [7–17]. Statins are either fungal deriva-
tives (e.g., lovastatin, mevastatin, pravastatin, pitavastatin, and simvastatin) or they 
are synthetic drugs (e.g., atorvastatin, fluvastatin, and rosuvastatin) [7]. Here, we 
present a detailed review of the possible use of statins in treating COVID-19 patients. 
The relevant anti-inflammatory properties of these drugs are discussed in detail.

2 � Search Methods

Data were collected from experimental and clinical studies published in English 
between 1998 and October 2022, from Google Scholar, PubMed, Scopus, and the 
Cochrane library. Search terms were as follows “SARS-CoV-19” or “COVID-19” 
and “Statins” and “Cytokine storm” or “Inflammation” and “Novel therapeutic 
approach.”

3 � SARS-CoV-2 and COVID-19

3.1 � Biology

Coronaviruses are an extremely diverse group of ribonucleic acid (RNA) viruses 
which cause diseases in mammalian and avian species. They are composed of a 
positive-sense, single-stranded RNA (+ssRNA) genome varying from 26.4 to 31.7 
kilobases. The genome has a 5′ methylated cap and a 3′ polyadenylated tail [18]. 
The large genome enables this family of viruses to adapt and modify achieving bet-
ter virulence [19]. Coronaviruses such as SARS-CoV, MERS-CoV, and SARS-
CoV-2 can cause several life-threatening infections [20]. SARS-CoV-2 is the 
coronavirus strain which has caused the ongoing COVID-19 pandemic.

3.2 � Structure

Coronavirus virions consist of the RNA genome, helical nucleocapsid, and the viral 
membrane containing spike protein, membrane protein, and envelope protein [21]. 
All coronaviruses share a similar structure. The first two-thirds of the genome are 
open reading frames (ORFs) 1a and 1b encoding 16 nonstructural proteins [18]. The 
structural proteins, such as spike (S), envelope (E), membrane (M), and nucleocap-
sid (N), are encoded by the later reading frames [22]. Coronaviruses differ in the 
number and function of accessory proteins. The reading frames between the non-
structural and structural proteins encode the accessory proteins.
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The S protein controls the virus activity and virulence and different accessory 
proteins that attack the host immune functions [23, 24]. The S protein is composed 
of S1 and S2 subunits. The S1 subunit has a receptor-binding domain (RBD) that 
binds with the receptor-binding motif (RBM) to the host surface. S2 subunit medi-
ates receptor attachment and the host membrane fusion [25, 26]. The primary host 
receptor for SARS-CoV and SARS-CoV-2 is angiotensin-converting enzyme 2 
(ACE2), while for MERS-CoV this is dipeptidyl peptidase 4 (DPP4) [27–30].

Coronaviruses are large with an average diameter of 80–120 nm and molecular 
mass of 40,000 kDa. They are roughly spherical and relatively pleiomorphic viruses 
with surface spikes [31]. Their RNA genome is situated in the center of the virus 
and protected by the N and M proteins and lipid bilayer envelope [32, 33]. The S 
protein is crucial for interaction with the host cell. In addition to S protein, the viral 
surface also has hemagglutinin-esterase dimer (HE), which is not necessary for rep-
lication but is important for viral entry [34, 35]. The E protein is a minor structural 
protein and is different in different coronaviruses [36]. The M protein is the primary 
structural protein and shapes the envelope [37]. The N protein is tied to the RNA 
and enables the virus to take over the host cells [38, 39]. The genome of coronavi-
ruses contains various ORFs. The gene order in all members is 5′-leader-UTR-
replicase (ORF1ab)-S-E-M-N-3′UTR-poly (A) tail [40]. Their genomes seem to 
have a bias against cytosine (C) and guanine (G) nucleotides, with the highest com-
position of uracil (U) and adenosine (A) [41]. In addition to these components, 16 
nonstructural proteins (NSP1 to NSP16) differ between different groups of corona-
viruses [18]. These NSPs have important roles in assembling the replication–tran-
scription complex, RNA polymerization, RNA proofreading, mRNA capping, 
allosteric activation, and repression of the host immune system [42, 43].

To enter the cells, the S protein anchors the virus to ACE2 receptors which are 
expressed on surface. Transmembrane protease serine 2 (TMPRSS2) and lysosomal 
proteases also have a significant role in enabling SARS-CoV-2 entry into the cells 
[44]. After entering into the cytoplasm, the virus induces spatial alteration in the 
endosome resulting in its uncoating. Finally, the viral genome is released within the 
cytoplasm and the RTC initiates [45]. A unique characteristic of SARS-CoV-2 
among the coronaviruses is the integration of furin-mediated cleavage of the S pro-
tein at the polybasic site that amplifies its virulence. It has been proposed that this 
site in SARS-CoV-2 S protein is necessary to enable the virus to infect humans as 
well as animals [46].

3.3 � Variants

Coronaviruses are members of sub-family of Orthocoronavirinae in the family 
Coronaviridae order Nidovirales and realm Riboviria [47, 48]. Based on the latest 
International Committee of Taxonomy of Viruses (ICTV) classification, coronavi-
ruses are sorted into four genera: Alphacoronavirus, Betacoronavirus, 
Gammacoronavirus, and Deltacoronavirus. However, the number of species is large 
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and many coronaviruses are unspecified [47, 49]. The Alphacoronavirus and 
Betacoronavirus infect only mammalian species, while Gammacoronavirus and 
Deltacoronavirus infect mammalian and avian species. Coronavirus infection 
mostly causes respiratory, gastrointestinal, and neurologic disorders [50, 51]. 
Several variants of concern have been recognized so far [52, 53]. These include: (1) 
the Alpha (B.1.1.7) variant which was first detected in the United Kingdom in 
September 2020; (2) Beta (B.1.351) which appeared originally in South Africa in 
May 2020; (3) Gamma (P.1, B.1.1.28.1) which arose in Brazil in November 2020; 
(4) Delta (B.1.617.2) which appeared as multiple forms in India in October 2020; 
and (5) the highly infectious Omicron (B.1.1.529) which arose in Botswana and 
South Africa in November 2021 and has since given rise to multiple sub-variants 
(BA.1–BA.5).

4 � Pathogenesis of COVID-19: The Role of Inflammation

COVID-19 has often severe respiratory and gastrointestinal manifestations. In addi-
tion, extensive hyperinflammatory responses and inflammatory cytokine release 
have been reported in different organs. COVID-19 disease activates several inflam-
matory pathways, leading to immune system imbalance and impairment in the 
renin-angiotensin system (RAS), thus reducing expression of ACE2 and induction 
of the “cytokine storm.” Extensive cytokine (i.e., TNF-α, IL-1β, IL-2R, IL-6, IFN)-γ 
and chemokine (i.e., C-motif chemokine ligands; CCL-2, CCL-3, CCL-10) release 
exacerbates the systemic inflammation and worsens patient prognoses. Also, ACE2 
downregulation stimulates angiotensin II receptor1 (AT1R), leading to more severe 
disease [44, 54]. Molecular analyses have demonstrated the involvement of multiple 
signaling pathways in this inflammatory response, including IL-6-Janus kinase 
(JAK)-signal transducer and activator of transcription (STAT) pathway, TNF-α-
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, 
and toll-like receptor (TLR)-myeloid differentiation primary response 88 (MYD88)-
NF-кB pathway. TNF-α is one of the main pro-inflammatory cytokines that plays a 
significant role in initiating and propagating the inflammatory signaling transduc-
tion. TNF-α activates IL-6 and contributes to activation of the JAK-STAT kinase 
pathway. TNF-α also stimulates NF-κB signaling. Simultaneously, toll-like recep-
tors (TLRs) and IFN-γ also actively participate in stimulating the inflammatory 
response. TLRs trigger myeloid differentiation primary response 88 (MYD88) 
overexpression and activates NF-κB. Furthermore, IFN-γ stimulates JAK-STAT sig-
naling [55, 56]. Activation of these inflammatory pathways can cause acute lung 
injury, ARDS, thrombosis, organ failure, and an increased morbidity and mortality 
[55, 57]. Therefore, as mentioned earlier, treatment with medications which have 
anti-inflammatory effects which suppress these signaling pathways can result in 
favorable outcomes of COVID-19 and/or decrease mortality.
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5 � Statins

Statins are potent inhibitors of cholesterol synthesis and the use of these compounds 
has revolutionized the treatment of hypercholesterolemia [58]. Cholesterol is syn-
thesized from acetyl coenzyme A, in a mechanism that occurs over 30-steps in 
which the rate-limiting step is modulated by 3-hydroxy-3-methylglutaryl coenzyme 
A (HMG-CoA) reductase. This enzyme transforms HMG into mevalonate [59] and 
statins are competitive, reversible inhibitors of HMG-CoA reductase in the meval-
onate pathway [60]. This inhibition results in the lowering of plasma LDL-C con-
centrations, which is a beneficial effect [61]. The statins family includes atorvastatin, 
fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin. 
Regarding the origin, simvastatin, lovastatin, and pravastatin are extracted during 
fungal fermentation, while atorvastatin, fluvastatin, and cerivastatin are chemically 
synthesized. Lovastatin is produced from Aspergillus terreus strains, and simvas-
tatin is a semisynthetic derivative of lovastatin [62]. Rosuvastatin has been synthe-
sized more recently and is more potent than the older statins.

Pravastatin and rosuvastatin are less lipophilic and more hydrophilic in compari-
son with the other members of the statin family, while atorvastatin, fluvastatin, lov-
astatin, and simvastatin are more lipophilic. This property is important since 
lipophilic drugs have greater ability to diffuse into cell membranes, including those 
of hepatic cells, and water solubility is important for diminishing cytochrome P450 
enzyme metabolism. Bioavailability is also an important pharmacological variable. 
Fluvastatin has a 24% bioavailability, while that of rosuvastatin is 20%, pravastatin 
17%, atorvastatin 14%, and simvastatin less than 5% [63]. Regarding elimination 
half-life, rosuvastatin with 20 h, and atorvastatin with 14 h have a highly prolonged 
profiles. The elimination half-life of simvastatin, pravastatin, and fluvastatin are 
1–2 h. The plasma half-life indicates their first-pass metabolism [64]. Lovastatin, 
simvastatin, and atorvastatin are metabolized by cytochrome P 450 3A4, while flu-
vastatin metabolism depends upon CYP2C9. Pravastatin is not significantly metab-
olized by the CYP family of enzymes [65]. Statins have many pleiotropic effects 
including modulation of anti-inflammatory responses (Fig. 25.1) [66] and antioxi-
dant pathways [67, 68]. Therefore, statins have additional benefits besides their 
effects on serum lipoproteins [69].

Statins also change the function of platelets thereby significantly affecting ath-
erosclerosis and thrombosis [70]. Vascular endothelial function is enhanced mostly 
by the increase of nitric oxide (NO) [71]. Statins can also play a crucial neuropro-
tective role in neurodegenerative disorders including Parkinson’s disease, 
Alzheimer’s disease, multiple sclerosis, and ischemic stroke, due to their anti-
inflammatory, anti-oxidative, and anti-excitotoxic properties [72]. The most known 
adverse effects of statins concern those regarding muscle and liver tissue [73]. 
Muscle pain, fatigue and weakness, as well as rare rhabdomyolysis, are most com-
mon side effects related to statins, particularly if they are applied in high doses [74]. 
For example, myopathy can occur in 1–2000 patients and abnormalities in liver are 
seen in 1–2% of patients per year. However, these effects are mostly reversible and 
cease when the drug is reduced or stopped [75].

25  Statins in COVID-19
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5.1 � Anti-Inflammatory Effects of Statins

Experimental and clinical trials have showed that statins provide cardiovascular 
benefits beyond their lipid-lowering effects. These effects include (1) improvement 
of endothelial function; (2) modulation of inflammation and oxidative stress; (3) 
increasing plaque stability; and (4) inhibition of the thrombogenesis response [76–
80]. These properties of statins are caused by intracellular isoprenoid inhibition and 
modulation of the reductive-oxidative (REDOX) state and nitric oxide pathway that 
eventually drive reduced levels of C-reactive protein (CRP) and pro-inflammatory 
cytokines (Fig. 25.1) [81, 82]. Moreover, statins can intensify ACE2 expression and 
suppress the TLR-MYD88-NF-кB pathway [83]. On the other hand, statin discon-
tinuation in patients with coronary heart disease can cause adverse cardiovascular 
events, even without changes of lipid levels [84, 85]. Because of their anti-viral, 
immunomodulatory, anti-thrombotic, and anti-inflammatory effects, statins may 
have beneficial roles as adjuvant therapy in COVID-19. MYD88 is one of the host 
genes stimulated by SARS-CoV-2 infection. Stimulation of MYD88 triggers the 
NF-кB signaling transduction, reduces IFNs, and amplifies inflammation. Moreover, 
oxidized LDLs bind to TLR receptors and initiate inflammation via the TLR-
MYD88-NF-кB pathway, eventually increasing inflammatory cytokine levels [86, 
87]. Statins may exert their protective effects by maintaining the regular activity of 
the MYD88 pathway and its subsequent downstream products. This effect might be 
beneficial against COVID-19 by suppressing the beginning of the inflammatory cas-
cade and subsequent release of inflammatory cytokines [88–91].

Administration of lovastatin (20 and 40 mg/day) in 284 intensive care unit (ICU) 
patients significantly decreased IL-6, IL-8, and CRP levels. The results of this study 
also showed that the hospitalization duration was reduced in patients who received 
lovastatin in comparison with control patients [92]. However, studies which evalu-
ated the effect of pravastatin in COVID-19 patients did not find any significant 
improvements in prognosis. Although decreased mortality rates in patients who 
received simvastatin and atorvastatin were reported, patients who were treated with 
pravastatin and rosuvastatin did not show such an improvement [93].

The potential therapeutic effects of fluvastatin against SARS-CoV-2 infection 
have been studied in vitro and ex vivo. Fluvastatin at a concentration of 5 μM sig-
nificantly reduced viral proteins, viral replication, and viral protein translation in 
human lung cells. The outcomes also suggested a slight inhibitory activity of lovas-
tatin, pravastatin, and rosuvastatin in infected human lung cells but this effect was 
not as potent as that caused by fluvastatin [94]. A retrospective study of 87 
COVID-19 patients admitted to ICU showed that atorvastatin treatment caused 
slower progression of the disease and a slower progression to death but, given the 
observational nature of this study, these results should be interpreted with caution 
[95]. Another retrospective cohort study which enrolled 421 confirmed cases of 
hospitalized COVID-19 patients showed that treatment with atorvastatin was asso-
ciated with reduced mortality and lower endotracheal intubation rates [96]. A 
double-blind, randomized clinical trial also showed that adjunct therapy with 
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atorvastatin was more effective in hospitalized COVID-19 patients compared to the 
standard antiviral (lopinavir/ritonavir) treatment alone [97]. In contrast, a similar 
randomized control trial that compared the effect of atorvastatin (20 mg/day) versus 
placebo in 605 patients failed to confirm any significant beneficial effects of atorv-
astatin therapy [98], and another randomized clinical trial reported that addition of 
atorvastatin (20 mg/day) to the standard treatment (hydroxychloroquine + lopinavir/
ritonavir) was associated with adverse outcomes in hospitalized COVID-19 patients 
[99]. This discrepancy in clinical trial results may be due to variations in the stan-
dard treatment of COVID-19, duration of treatment, or even the clinical stage of the 
disease. Another explanation might be that the effects of statins may be restricted to 
the early phases of inflammatory responses in COVID-19 [98]. Finally, an in silico 
molecular docking study which evaluated the interactions between statins (lovas-
tatin, fluvastatin, pravastatin, atorvastatin, simvastatin, rosuvastatin, and pitavas-
tatin) and the SARS-CoV-2 main protease (Mpro) suggested that statins may act as 
inhibitors of this enzyme. However, additional confirmations from experimental 
studies are needed concerning this issue [100].

6 � Statins in COVID-19: New Possibility 
for COVID-19 Treatment

Several pieces of evidence support the anti-inflammatory effect of statins (Fig. 25.1) 
[101]. It is also known that statins have anti-viral [102], anti-inflammatory, and 
antithrombotic characteristics, suggesting their potential use as complementary 
drugs in COVID-19 therapeutics [90, 91, 103, 104]. Furthermore, statins have 
effects on reducing viral transmission by effects on cellular membranes [105].

6.1 � Clinical Evidence

Retrospective cohort study, including patients who were hospitalized with con-
firmed diagnosis of severe COVID-19. Baseline characteristics and related clinical 
data of patients were recorded. Clinical outcomes consist of in-hospital mortality, 
need for invasive mechanical ventilation, and hospital length of stay. COX regres-
sion analysis models were used to assess the association of independent factors to 
outcomes. Atorvastatin was administered for 421 of 991 patients. The mean age was 
61.640 ± 17.003 years. Older age, higher prevalence of hypertension, and coronary 
artery disease reported in patients who received atorvastatin. These patients have 
shorter hospital length of stay (P = .001). Based on COX proportional hazard model, 
in-hospital use of atorvastatin was associated with decrease in mortality (HR = 0.679, 
P = .005) and lower need for invasive mechanical ventilation (HR = 0.602, P = .014). 
Atorvastatin add-on therapy in patient with severe COVID-19 was associated with 
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lower in-hospital mortality and reduced the risk of need for invasive mechanical 
ventilation which supports to continue the prescription of the medication 
(Table 25.1) [96].

Atorvastatin is one of the most commonly used statins in treatment of hypercho-
lesterolemia. Many studies have confirmed its pleiotropic effect on inflammation. A 
double-blind, parallel group, randomized clinical trial by Davoodi et al. analyzing 
the outcomes of atorvastatin treatment on COVID-19 patients. Forty patients were 
included in the study, and they were divided into two groups. Half of the patients 
received lopinavir/ritonavir (400/100 mg twice daily) and were the control group 
while the rest were treated with lopinavir/ritonavir (400/100 mg twice daily) + ator-
vastatin (40 mg daily) for 5 days. The hospitalization rate was shorter in the group 
treated additionally with atorvastatin (9.75 ± 2.29 vs. 7.95 ± 2.04 days; p = 0.012) 
and invasive mechanical ventilation was mandatory only for one patient in the lopi-
navir/ritonavir group. In addition, the CRP level was decreased, and O2 saturation 
(O2sat) increased significantly on the sixth day in comparison with the first day in 
the atorvastatin group. In the control group, the O2 sat was not changed while CRP 
was increased (Table 25.1) [97].

Another study carried out by Karampoor et al. analyzed the anti-inflammatory 
effect of lovastatin on COVID-19 patients. The case control study included 284 ICU 
patients who were randomized into three different groups: (1) 92 patients received 
no lovastatin; (2) 99 patients were treated with 20 mg lovastatin per day; and (3) 93 
patients received 40 mg lovastatin per day for 1 week. The results showed that CRP, 
IL-6, and IL-8 biomarkers were decreased in patients who received lovastatin in 
comparison with the control group and the decrease of IL-6 and IL-8 was dose-
dependent. Also, IL-6 showed a greater decrease in the group who received 40 mg/
day lovastatin than in those who received 20 mg/day. Moreover, IL-8 was higher in 
the control group than in the two intervention groups (p < 0.05). Finally, duration of 
hospitalization was significantly shorter in lovastatin-treated patients (p < 0.05) and 
the mortality rate was reduced although this effect was not significant (Table 25.1) [92].

Other studies have reported minimal or no effects of statin treatment on 
COVID-19 outcomes. A randomized controlled trial was done to evaluate the effect 
of atorvastatin on COVID-19 patients. Out of 587 patients suffering from COVID-19, 
290 were assigned to be treated with atorvastatin, and 297 received placebo. 
Atorvastatin was administered orally (20 mg) or by a naso- or oro-gastric route to 
those patients who were mechanically ventilated and unable to take the drug orally. 
The study lasted for 30 days from randomization until the primary efficacy outcome 
was observed (a composite of venous or arterial thrombosis, treatment with extra-
corporeal membrane oxygenation, or all-cause mortality within 30 days from ran-
domization). The primary outcome occurred in 33% patients assigned to atorvastatin 
and 36% assigned to placebo after 30 days follow-up (odds ratio 0.84, 95% confi-
dence interval 0.58–1.21, p = 0.35). The median duration of ICU hospitalization 
was 5 days (interquartile range 3–9 days) in the atorvastatin group and 5 days (2–10) 
in the control group. No significant difference was found between the two groups 
concerning atrial fibrillation, venous thromboembolism, and arterial thrombosis. 
Liver enzyme levels were increased in five atorvastatin-treated patients and in six 
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placebo-treated patients (odds ratio 0.85, 95% confidence interval 0.25–2.81; 
p = 0.79) while venous thromboembolism occurred in six patients in the atorvastatin 
group and nine in the placebo group (odds ratio 0.71, 95% confidence interval 
0.24–2.06) but myopathy was not clinically diagnosed in either group and the treat-
ment was safe (Table 25.1) [106].

The effect of rosuvastatin plus colchicine, emtricitabine/tenofovir, and combina-
tions of these were evaluated in 633 COVID-19 patients in a randomized, open 
parallel group multi-center-controlled trial. The patients received either: (1) usual 
care (n = 162; control group); (2) emtricitabine + tenofovir + colchicine + rosuvas-
tatin (n = 163); (3) colchicine + rosuvastatin (n = 161); or (4) emtricitabine + teno-
fovir (n = 163). The results showed that need for invasive mechanical ventilation 
and 28-day mortality was significantly lower in the emtricitabine + tenofovir + col-
chicine + rosuvastatin group than in the standard care group. The results supported 
the idea that combination therapy with anti-viral and anti-inflammatory drugs can 
be useful in decreasing the damage in COVID-19 disease and over-activation of the 
innate immune system (Table 25.1) [107].

It should be stressed again that statin use can have adverse effects on muscle tis-
sues and cause elevations in the levels of creatine kinase, liver enzymes, and serum 
glucose levels, all of which may already be elevated in severe COVID-19 disease. 
Some authors have also raised concerns as to whether statins might interfere with 
response to COVID-19 vaccines, although there has been no evidence shown thus 
far to confirm this. Also, concomitant administration of statins and some antiviral 
therapeutics might exacerbate the risk of adverse effects of statins because most 
statins are metabolized mainly through CYP3A4, and this CYP enzyme is potently 
inhibited by the antiviral drug Paxlovid [108–111].

6.2 � In Vivo/In Vitro Evidence

An in vivo study testing the effects of statin administration were performed on K18-
hACE2-transgenic mice infected with either a medium (mock) control or a 105 tis-
sue culture infective dose of SARS-CoV-2 gamma strain [112]. In the mice that 
received 20 mg/kg of simvastatin as pre-treatment and throughout the study, the 
functional capillary density was higher and adhesion of leukocytes to inflamed 
endothelium lower than in control mice. In addition, there was a lower number of 
viral genome copies in the lungs, and less edema, tissue hemorrhage, inflammation, 
and oxidation in the simvastatin-treated compared to the control animals. In addi-
tion, both pre-treatment and post-treatment with 10 μM of simvastatin prevented 
monocyte death induced by SARS-CoV-2 infection. However, this effect was 
greater in the pre- compared to the post-protocol suggesting that the simvastatin 
treatment may be more effective if administered in the early stages of viral infec-
tion. At the molecular biomarker level, intracellular adhesion molecule-1 (ICAM-1) 
and integrin alpha M mRNA levels were decreased, and there were lower levels of 
inflammatory biomarkers such as TNF-α, IL-6, monocyte chemoattractant protein 1 
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Table 25.2  In vivo studies of statins in COVID-19

Study 
design

Intervention Number of patients Treatment 
duration Results Ref.Case Control Case Control

In vivo 
study on 
K18-
hACE2-
transgenic 
mouse 
model

Simvastatin Vehicle 10 
(simvastatin 
+ 
SARS-
CoV-2)

8 
(vehicle+SARS-
CoV-2)
5 (mock)

11 days Simvastatin 
reduced 
viral 
replication, 
lung 
damage, and 
mortality
MPO and 
IL-6 ↓

[112]

(MCP1), IFN-α, chemokine (C-C motif) ligand 5 CCL5, and chemokine (C-X-C 
motif) ligand 1 (Table 25.2).

In an in vitro study on human lung microvascular endothelial cells, Qian et al. 
showed that administration of the SARS-CoV-2 N protein led to activation of the 
NF-kB and MAPK signaling pathways, with increased expression of cellular adhe-
sion and inflammatory molecules [113]. They also found that simvastatin treatment 
blocked this endothelial activation in a dose-dependent manner, suggesting that this 
compound might help to ameliorate SARS-CoV-2-induced vasculopathy and coag-
ulopathy in COVID-19 patients (Table 25.3).

Zapatero-Belinchón et al. performed an in vitro study to investigate the effect of 
statin pre-treatment on lung cells infected with the human coronaviruses, CoV-229E 
and SARS-CoV-2 [94] (Table 25.3). The statin pre-treatment with 5 mM fluvastatin 
led to a dose-dependent reduction in the susceptibility of these cells to coronavirus 
infection. The researchers followed this up by testing the effects of pre-treatment 
with either 10 or 50 mM fluvastatin on SARS-CoV-2 infected human primary bron-
chial epithelial cells. This showed that the 10 mM fluvastatin dose decreased viral 
release moderately and the 50 mM dosage decreased viral release in samples from 
all donors. In addition, label-free mass spectrometry proteomic profiling showed 
that the 35 proteins were significantly decreased by the fluvastatin treatment. Many 
of these proteins were associated with RNA degradation, protein translation, and 
viral replication processes (Table 25.3).

7 � Conclusions and Future Perspectives

COVID-19 is a worldwide pandemic causing often mild symptoms including 
fatigue, dry cough, dyspnea, myalgia, chills, and fever but also severe symptoms 
that can cause organ failure. COVID-19 can affect several organs, including the 
respiratory, digestive, and central nervous system. Inflammation plays a pivotal role 
in COVID-19 and therefore anti-inflammatory medications might suppress the 
harmful effects of the virus on organs and tissues. Statins are currently the most 
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Table 25.3  In vitro studies of statins in COVID-19

Study 
design

Intervention Number of patients Treatment 
duration Results Ref.Case Control Case Control

In vitro 
study on 
human 
lung cells

Statins, 
particularly 
fluvastatin

DMSO – – 24 h Fluvastatin induced 
unique proteins and 
inhibited some 
proteins in infected 
cells
SARS-CoV-2 
infection in cultured 
cells↓

[94]

In vitro 
study

Simvastatin – 2 x 
104cell/
well

– 24 h SARS-CoV-2-
induced pro-
inflammatory 
response in human 
neutrophils ↓
TNF, CXCL-8/IL-8, 
IL-6, and IFN-a in 
SARS-CoV-2 
infected 
monocytes↓
Both pre- and 
post-treatment with 
10 μM simvastatin 
hindered monocyte 
death in SARS-
CoV-2-2 infected 
cells
Pretreatment with 
simvastatin impede 
IL-6, CXCL8/IL-8 
and TNF by 
SARS-CoV-2-
infected Calu-3 
cells, reduced viral 
entry in Calu-3 cells 
in a dose-dependent 
manner, diminished 
SARS-CoV-2-
induced cell death
Virus entry and 
adsorption 
inhibited, ACE2 
expression 
promoted by 
simvastatin, virus 
binding and entry 
was lower

[112]

(continued)
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often prescribed and effective LDL-cholesterol lowering drugs that are used to pre-
vent atherosclerotic cardiovascular disease. Statins decrease total and LDL-
cholesterol, they slightly reduce triglycerides and slightly increase HDL-cholesterol, 
therefore decreasing the risk of adverse cardiovascular events. In addition to their 
effects on cholesterol metabolism, statins reduce the circulating isoprenoid and 
inactivation of signaling proteins. Statins also have anti-inflammatory, antioxidant, 
antiproliferative, and immunomodulatory effects. Statins can also stabilize athero-
sclerotic plaques and prevent platelet aggregation on the plaques. Because of their 
proven anti-inflammatory effects statins, this review focused on their potential use 
as an adjuvant therapy in the treatment of COVID-19. Statins are safe drugs without 
many adverse effects but their musculoskeletal adverse effects should be taken into 
consideration.
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