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Abstract

The timing and duration of ore-forming pro-
cesses are amongst the key parameters required
in the study of mineral systems. After more
than a century of technical developments,
innovations and investigation, the U-Pb sys-
tem arguably is the most mature radioisotopic
system in our possession to conduct absolute
dating of a wide range of minerals across
geological environments and metallogenic
processes. Here, we review the basics of
U-Pb geochronology, the key historic devel-
opments of the method, and the most com-
monly used analytical techniques (including
data reduction, Pb-correction, uncertainty
propagation and data presentation) and miner-
als while pointing out their respective advan-
tages, weaknesses and potential pitfalls. We
also highlight critical aspects that need to be
considered when interpreting a date into the age
of a geological process (including field and
petrographic constraints, open-system behav-
ior, handling and interpretation of uncertain-
ties). While U-Pb geochronology is strongly

biased toward zircon dating, we strive to
highlight the great diversity of minerals amen-
able to U-Pb dating (more than 16 mineral
species) in the context of mineral systems, and
the variety of geological events they can
potentially date (magmatism, hydrothermal
activity, ore-formation, cooling, etc.). Finally,
through two case studies we show (1) how
multi-mineral geochronological studies have
been used to bracket and decipher the age of
multiple geological events associated with the
world-class Witwatersrand gold province, and
(2) how rather than the absolute age, the
duration and rate of the mineralizing event at
porphyry copper deposits opens new avenues
to understand ore-forming processes and the
main controls on the size of such deposits. The
improving precision, accuracy and spatial
resolution of analyses in tandem with
high-quality field and petrographic observa-
tions, numerical modelling and geochemical
data, will continue to challenge paradigms of
ore-forming processes and contribute signifi-
cant breakthroughs in ore deposit research and
potentially to the development of new explo-
ration tools.
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1 Introduction
The knowledge of the timing and duration of ore-
forming processes are perhaps one of the most

desirable pieces of information that geologists
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require to draw a complete picture of the deposit
and to put its genesis into a coherent regional or
even global geological framework. In many
cases, it represents an essential parameter for
establishing detailed genetic models, and can
critically impact on exploration strategies. This
necessarily requires a reliable, precise and accu-
rate geochronometer.

In the past two decades, U-Pb dating has seen
a remarkable success across the Earth Sciences to
become the most commonly used absolute iso-
topic geochronometer. This great success results
from considerable improvements in the analytical
techniques and in advances of our understanding
of the U-Pb system in the geological environ-
ment. The paramount advantage of U-Pb dating
relies on the coexistence of two chemically
identical but isotopically distinct radioisotopes of
U (***U and ?*°U), both of which have their very
own decay chain and decay rates. Furthermore,
their half-lives are particularly suitable for geo-
logically relevant ages. This allows the determi-
nation of two independent dates of which
equivalence (concordance) can usually be taken
as a sign of the meaningfulness of the date, while
discordant dates can be either geologically irrel-
evant or may be extrapolated to a meaningful
date if the cause(s) of this discordance can be
identified.

The recent success of U-Pb geochronology is
the result of numerous stepwise improvements
over the last decades (see detailed history in
Davis et al. 2003; Corfu 2013; Mattinson 2013),
but has experienced a boost due to coordinated
community efforts (EARTHTIME for isotope
dilution analysis: http://www.earth-time.org;
PLASMAGE for laser ablation analysis: http:/
www.plasmage.org).

Geochronology was born out of the U-Pb
system. Radioactivity was discovered at the
dawn of the nineteenth century by H Becquerel,
M and P Curie in their work with various ura-
nium compounds (U-salts, U-metal, pitchblende)
(Becquerel 1896a, b; Curie et al. 1898; Curie and
Skolodowska Curie 1898; Skolodowska Curie
1898). Soon after, E Rutherford first suggested
that the Pb/U ratio of geological materials could
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be used to date them (Rutherford 1906). The next
year, B Boltwood applied this method to 43
uranium ore samples and obtained the first
absolute total-U and total-Pb ages ranging from
410 to 2200 Ma (Boltwood 1907). This revolu-
tion conclusively supported the suggestion made
by Charles Darwin half a century prior, that the
earth was several hundred million years old, and
was about to provide absolute age calibrations
for the geological timescale of A Holmes (1911,
1913). However, it was not until the turn of 1930
that the existence of two radioactive U isotopes
and their respective Pb daughter isotopes was
recognized in U ores (Rutherford 1929; Aston
1929; von Grosse 1932), paving the way for
modern U-Pb geochronology. Ever since,
improvements in mass spectrometry, laboratory
procedures and advances in nuclear physics have
permitted the analysis of increasingly smaller
quantities of U and Pb with improved precision
and accuracy. This in turn, enabled a switch from
the analysis of U ore minerals, to low-U bearing
minerals such as zircon, titanite and apatite in the
second half of the last century (Larsen et al.
1952; Tilton et al. 1955, 1957; Webber et al.
1956). However, dating still involved multigrain
mineral fractions which typically show discor-
dance between 2°°Pb/2*®U and 2Y"Pb/**°U dates,
and render their interpretation subjected to
debate, assumption and uncertainty. The 1970s to
1980s period arguably marks the turning point of
U-Pb geochronology. At that time, the devel-
opment of low blank single grain zircon dating
(Mattinson 1972; Krogh 1973; Krogh and Davis
1975; Lancelot et al. 1976; Michard-Vitrac et al.
1977; Parrish 1987), air-abrasion techniques
(Krogh 1982) and in-situ ion probe dating
(Hinthorne et al. 1979; Hinton and Long 1979;
Froude et al. 1983) concurred to routinely pro-
duce concordant U-Pb ages and triggered an
expansion in the range of application of U-Pb
dating across various minerals, geological ter-
rains and planetary materials. The 1990s saw the
advent of the chemical abrasion technique
(Mattinson 1994) and of laser-ablation induc-
tively coupled plasma mass spectrometry (Fryer
et al. 1993; Horn et al. 2000) that are now
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common practices in many laboratories around
the world. This is the time when U-Pb dating
was embraced by the Earth Sciences community,
and became an essential tool of geological
mapping and mineral exploration. Perhaps as a
sign of a mature discipline, the last decade has
seen U-Pb practitioners around the world col-
laborating in a community driven effort to push
precision, accuracy and inter-laboratory repro-
ducibility of dates toward unprecedented limits,
the EARTHTIME initiative (http://www.earth-
time.org).

This century of development of U-Pb dating
has left us with a powerful tool for ore deposit
studies. While zircon is arguably the most com-
monly used and understood mineral due to its
robustness and minimal amount of Pb it can
incorporate in its lattice during crystallization
(so-called “common” Pb), a number of other U-
bearing minerals are amenable to U-Pb dating
(e.g., titanite, apatite, monazite, xenotime, rutile,
baddeleyite, perovskite, columbo-tantalite, cas-
siterite, allanite, calcite, etc.). While most min-
erals can date their crystallization, a handful of
them (e.g., apatite, rutile, titanite) actually date
their arrival below their respective closure tem-
perature for the U-Pb system. This diversity of
minerals allows a variety of ore deposit types and
related  geological  processes  (magmatic,
hydrothermal, metamorphic, sedimentary and
supergene) to be dated. As we write, U-Pb dates
have been published on almost the full spectrum
of deposit types and an increasing number of
minerals are being tested and improved for U-Pb
geochronology. However, the systematics of the
U-Pb system are only really well-known in zir-
con and possibly monazite, followed by titanite,
apatite, rutile, baddeleyite, and xenotime.

Geochronology can illuminate the apparent
geological chaos at some deposits or districts, as
well as support, refute or generate hypotheses for
ore-forming processes. Nevertheless, only in rare
cases does the dated mineral directly date the ore
itself (e.g., columbo-tantalite, cassiterite, urani-
nite). As examples, zircon from a porphyry stock
dates magma intrusion and not the cross-cutting
copper mineralization, titanite in a skarn dates

the high temperature metasomatism and not the
deposition of the polymetallic ore at lower tem-
perature. Some minerals may date magmatic
crystallization (e.g., zircon, baddeleyite), or
metamorphic reactions (e.g., monazite, titanite)
and some may date their precipitation from
hydrothermal fluids (e.g., monazite, xenotime,
calcite, uraninite). In fact, the meaning of any
date remains deeply anchored into proper field
observations and sample characterization. Some
minerals and dating methods (e.g., fission tracks
in apatite and zircon, “’Ar/*’Ar in micas and K-
feldspar, etc.) can also record low-temperature
events that that post-date ore formation, allowing
a fuller understanding of the coupled tempera-
ture—time evolution of mineral systems.

While U-Pb geochronology has been exten-
sively used to determine the age of geological
events, it remains to current and future genera-
tions of scientists to give increasingly more
added value to increasingly more precise and
accurate dates, feeding quantitative and numer-
ical models or ore-forming processes. For
example, when combined with numerical mod-
els, the duration of magmatic-hydrothermal
events or the probability density distribution of
a population of dates may be interpreted in terms
magmatic-hydrothermal flux and volume (Car-
icchi et al. 2014; Chelle-Michou et al. 2017).
This will be a critical step if we want to uncover
the processes at play during ore formation, and
provide mineral exploration professionals with
innovative and efficient tools that may help
locating a distant or deeply buried deposit, or
that could provide early information on the
potential size of the explored deposit (e.g.,
Chelle-Michou et al. 2017).

This chapter reviews the basics of the U-Pb
geochronology and the most commonly used
dating techniques and minerals while pointing
out their respective advantages, weaknesses and
potential pitfalls. Through a series of case
studies, we illustrate the various usages of U-Pb
dating for the study of mineral deposits.
Admittedly, U-Pb geochronology is a field that
is strongly biased toward the use of zircon and
this chapter is not an exception. Nevertheless,
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we will also shed light on U-Pb dating applied
to less commonly encountered and dated
minerals.

2 Basics of U-Pb Geochronology

2.1 The U-Pb System
On first approximation, both naturally occurring
long-lived parent uranium isotopes (***U and
23U) decay to stable lead isotopes (*°Pb and
207pb, respectively) at distinct rates, and thus
have different half-lives and decay constants
(Aa3g and A,3s). Details of the U decay to Pb are
actually more complex and involve a long chain
of alpha or beta decays with the production of a
number of intermediate daughter isotopes
(Fig. 1a). This allows the formulation of two
generalized age equations:
2387y
(s) = (wew), (o

206Pb
204pp

206py,
204pp,
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204Pp
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where **Pb is the only non-radiogenic isotope of
Pb and the subscript O indicate the initial isotopic
composition of lead at the time (t) when the
system closed. In cases where the proportion of
initial to radiogenic Pb is negligible, which is
common for zircon, monazite, and xenotime,
Egs. (1) and (2) can be simplified:

( > — eﬂ»zast -1,
( > — st _ 1,

where the superscript * indicate the amount of
radiogenic Pb that has formed since the system
closed. If the system has remained closed since
the mineral crystallized, the 206pp,238317  and
207pp/33U dates should be identical. Dividing
Egs. (1) and (2) yield a third age equation:

206 Pb*
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207 Pb*

235y (4)

A Neutron number (N)
125 130 135 140 i ) 145
™y Blu
: 246 ka 4.5 Ga
Y —> ®Ph + Ba + 6f + 51.7 MeV 21pg
A, =1.55125 £ 0.00166 - 10" a"' (20) _1.2min
=1 *Th|
g _ 2‘ =
_Mass number “Ra B
o Beta decay, / 16k
o nepp
3 15s ¥
£ Alpha decay”
2 ‘Half-life mpn Parent
= :3 8 day I
8. .
° 1 Intermediate
£ &) | ! | daughter1 | J
‘mpa / 1 | . 1
pulidy -~ | Intermediate ]
e | | daughter 2 T {sorope
. = | — 1 in excess
% ] | Stabl ! i
27 min) . dauagh?ar i~ Stable daughter in
Wy i axcess —»= too old
4.2 min o att ., att, att att,
=1 “Hg 4 Decay chain in Decay chain in
bect 8.3 min P secular equilibrium disequilibrium

Fig. 1 a Decay chains of ***U and *°U with the
approximate half-live indicated for each radionuclide.
b Cartoon illustrating the difference between a decay

chain in secular equilibrium and one in disequilibrium.
tinisial and ta refer to the time immediately after and some
time after mineral crystallization, respectively
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This equation has the advantage that the deter-
mination of the age does not require measure-
ment of the U isotopes because the present-day
Z38U/*U ratio is mostly constant in U-bearing
accessory minerals and equal to 137.818 £ 0.045
(20; Hiess et al. 2012). However, in practice,
207pb/2%°Ph dates are relevant only for ages older
than ca. 1 Ga (see below). The constancy of this
ratio and the low abundance of **°U further allow
the measurement of the U to be neglected,
which is common practice in many laboratories.

Decay constants for >**U and **°U are by far
the most precisely determined ones among those
used in geochronology. Recommended values
are those determined by Jaffey et al. (1971) and
are hasg = 1.55125 &+ 0.00166-107'° a™! and
M3s = 9.8485 + 0.0135-107"° a ! (20)
(Schoene 2014). However, these constants have
been suggested to be slightly inaccurate
(Schoene et al. 2006; Hiess et al. 2012), but
always within their reported 2¢ uncertainties.
More accurate values may be available in the
future providing further counting experiments are
done.

2.2 Data Presentation

The trinity of age equations presented above
(Egs. 3-5) has promoted the emergence of U-Pb
specific plots, the concordia diagrams, that pro-
vide a convenient and elegant representation of
the data. By far, the most common visual repre-
sentations of U-Pb data use either the Wetherill
concordia plot (Fig. 2a; Wetherill 1956) or the
Tera-Wasserburg concordia plot (Fig. 2b; Tera
and Wasserburg 1972a, b). These concordia
diagrams are bivariate plots where each axis
corresponds to one of the three isotopic ratios
used in eqs. 3-5 or their inverse (i.e., 206pp,238,

>8U/%Pb, *7Pb/"U and **’Pb/**°Pb). On
each diagram, the curve represents the line where
both isotopic ratios (in abscissa and ordinate)
correspond to the same dates, it is the so-called
concordia curve. The curvature of the concordia
simply reflects the contrasted decay rates of ***U
and ?°U. If the U-Pb system has remained
closed since the crystallization of the mineral and
no common Pb is present, the three dates will be
the same and plot on the Concordia line, meaning
they are be concordant.

For both diagrams (Fig. 2a, b), each analysis
is represented by an ellipse where the center is
the measured isotopic ratios and the size of the
ellipse depicts the analytical uncertainties at a
given level of confidence (usually 2c). Addi-
tionally, uncertainties of isotopic ratios plotted
on both axis of the concordia diagram are not
fully independent from each other and often
correlated (e.g., York 1968; Ludwig 1980). This
is either due to the use of the *°°Pb measurement
on both ratios of the Tera-Wasserburg plot or to
the use of ***U to calculate ***U for the Wetherill
diagram. Thus, the orientation of the uncertainty
ellipse reflects the correlation (or covariance) of
the errors.

For data that are concordant, it is also con-
venient to use only the most precise of the three
isotopic dates (usually the 2°°Pb/***U or
207pb/**°Pb date) and plot them as ranked bars of
which the center represents the date and the
length reflect the associated uncertainty (Fig. 2c).
For a population of dates, the same information
can also be presented as a probability density
function (Fig. 2c¢) or a kernel density estimate.
The latter is particularly suitable for detrital
studies (e.g., Vermeesch 2012).

Because the production of these specific dia-
grams can be quite labor intensive and calcula-
tions in geochronology involve advanced
statistical methods, it is recommended to use
available software packages dedicated to isotopic
geochronology. The most popular and versatile
package is the Isoplot Microsoft Excel VBA add-
in of K Ludwig (Ludwig 2012) that has served
isotope geochronologists for nearly two decades.
However, Isoplot is no longer being updated for
later versions of Microsoft Excel (last versions
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Fig. 2 Classical plots used to present U-Pb geochrono-
logical data. a Wetherill concordia plot with one concor-
dant and one discordant analysis shown as example,
b Tera-Wasserburg concordia plot with the same analyses,
¢ ranked isotopic date plot for synthetic concordant data
together with the corresponding probability density curve.

working on Excel 2010 on PC and Excel 2004 on
Mac). This was the incentive for the development
of the multiplatform replacement geochronolog-
ical application IsoplotR. IsoplotR is a package
developed for the R statistical computing and
graphics software environment by P. Vermeesch
(University College London, UK) and can be
used through the command line in R or as an
online RStudio Shiny applet at http://isoplotr.
london-geochron.com (Vermeesch 2018).

2.3 Causes of Discordance

Since the beginning of isotopic dating, discor-
dance has been the main concern of U-Pb
geochronologists. Ultimately, understanding the
causes of discordance and trying to eliminate it
has been the most powerful driving force to
advance U-Pb dating during the second half of
the twentieth century (Corfu 2013). It is now
established that discordance can have a number
of origins including: mixing of various age
domains, Pb-loss during physical and chemical
changes in the crystal lattice (partially opened
system), initial intermediate daughter isotopic
disequilibrium, incorrect or no correction for
non-radiogenic Pb, or a combination of these

Note that the while the y-axis is valid for both the data
bars and the density curve, the x-axis labelled “relative
probability” is only relevant for the probability density
curve. Single spot/grain dates are ranked only to facilitate
the reading of the figure

(Fig. 3). Nevertheless, one should keep in mind
that the recognition of some dates as being dis-
cordant is intimately tied to the uncertainty of the
data. Indeed, low-precision data might appear
perfectly concordant, while high-precision ones
would actually reveal otherwise (e.g., Moser
et al. 2009). This means that any method is blind
to discordance at a degree that is inferior to the
best age resolution of that method. Below we
present the classical causes of discordance and
the most appropriate ways to avoid, mitigate or
value them.

2.3.1 Mixing Multiple Age Domains

A number of minerals (e.g., zircon, monazite,
xenotime) often record multiple growth events.
The recognition of different growth zones is
crucial for the analysis and interpretation of any
dating result. Imagery using transmitted and
reflected light together with cathodolumines-
cence (CL) and back-scattered electron
(BSE) microscopy greatly aids in this process but
is not always definitive. These images can reveal
that a mineral grain can be made up of a
sequence of growth zones starting in the center,
and mantled by sequential zones towards the rim,
all of which can have distinct U-Pb ages. Bulk
(whole grain) dating of such multi-domain
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Fig. 3 Main causes of discordance plotted on a Wetherill
concordia diagram and b on a Tera-Wasserburg concordia
diagram. Discordance of the red ellipses group is caused
by either mixing of two age domains (one at
2704 + 9 Ma and one at 743 & 4 Ma) or by Pb-loss of

mineral grains could result in discordant dates, if
the age differences are sufficiently large. A simi-
lar effect can arise from dating multigrain mineral
fractions if they include grains with different
isotopic ages. In the case of a simple two com-
ponent mixture of two different age domains,
several analyses could plot along a linear array (a
so-called discordia line) in concordia diagrams,
of which the lower and upper intercept dates
would correspond to the respective ages of the
two components (red ellipses on Fig. 3). How-
ever, multicomponent mixtures may show more
scattered distribution or even plot along artificial,
and often poorly correlated discordia arrays of
which the upper and lower intercept dates have
no geological significance, therefore inhibiting
meaningful interpretation of the data.

In order to avoid problems arising from mix-
ing several age domains, imagery of the minerals
has become a necessary prerequisite to any dat-
ing (either in-situ or whole grain) in order to
accurately place the spot of the analysis (for in-
situ dating) or to select only those grains (or
grain fragment) that have one age domain (for

B
Q-za?pb,eospb)g =0.859 +0.035
P! 2 [
w | - £ 1h
o S "
[/
kK i ] w
Wi 1| o
VH 8
& (=1
D— A (=]
g -4
2 ). =
% 4000 N :
g_ g e b 7.8
3000 &
S 220N Yy 14218 M
20 743saMa /
1000 :

0 10 20 30 40 50 60
2s8)/200Phy

2704 £ 9 Ma minerals at 743 £ 4 Ma. Discordance of
the yellow ellipses group is caused by the presence of
common lead in minerals crystallized at 142 £+ 13 Ma
(Pb. uncorrected data). Insets shows the possible vectors
of discordance

whole grain dating). However, small cores or
domains with distinct ages can still go unrecog-
nized if they are present below the imaged sur-
face or have a similar chemistry to the
surrounding zones. This effect may be monitored
on the time-resolved signal for in-situ measure-
ments (changing isotopic ratio) but would hinder
the interpretation of whole grain dates.

2.3.2 Open System Behavior

It has long been recognized that the crystallo-
graphic lattice of minerals can, under certain
conditions, behave as an open system with
respect to the U-Pb system (e.g., Holmes 1954;
Tilton 1960) through the partial or complete loss
of radiogenic Pb. Radiogenic intermediate
daughter products of the U decay chains expe-
rience a recoil during ejection of the highly
energetic alpha particle. The final radiogenic Pb*
™ is thus situated in a decay-damaged area with
enhanced fast pathway diffusion characteristics
and could tend to leave this site when appropriate
conditions are met. Mechanisms of Pb-loss have
been studied extensively, but no simple process
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can be universally put forward to explain it.
Leaching of metamict (radiation-damaged) crys-
tal domains, metamorphic recrystallization,
crystal plastic deformation and thermally acti-
vated volume diffusion are the most commonly
advocated causes of Pb-loss, in decreasing order
of importance (see Corfu 2013; Schoene 2014
and references therein). At the sample scale, all
these processes will result in discordance of the
206pp/238U and 2Y’Pb/**5U dates if the age dif-
ference is large enough. By calculating by a
linear regression through a series of discordant
analyses, upper and lower intercepts ages can be
reconstructed, corresponding to the age of crys-
tallization of the mineral and to the age of the Pb-
loss event, respectively (Fig. 3). Multiple Pb-loss
events are notoriously difficult to unravel and
may present as excess data scatter or even spu-
rious discordia lines. Furthermore, highly
metamict crystal domains may also experience U
loss or U gain that would result in inversely (i.e.,
above the Wetherill concordia) or normally dis-
cordant data, respectively. In such cases, no age
interpretation can be made. Complete recrystal-
lization of a grain may lead to complete loss of
all accumulated radiogenic Pb and reset the age
to zero. The extremely low diffusion constants
for Pb and U in zircon (Cherniak et al. 1997,
Cherniak and Watson 2001, 2003) means that
volume diffusion is a very inefficient process to
remove radiogenic Pb from an undisturbed zir-
con lattice. It is for this reason that cases of U-Pb
system survival have been reported in granulite
facies rocks (e.g., Mdller et al. 2003; Kelly and
Harley 2005; Brandt et al. 2011; Kroner et al.
2015).

Open-system-related discordance is caused by
several distinct processes that cause fast diffusion
pathways in the zircon lattice, and such discor-
dant data may be difficult to interpret. Features
like multiple growth zones, overgrowth rims,
dissolution-reprecipitation textures, or metamor-
phic recrystallization can be recognized in BSE
or CL images (Geisler et al. 2007). Furthermore,
recrystallized domains have distinct trace ele-
ment compositions that can be identified by in-
situ chemical analysis (Geisler et al. 2007). Pb-
loss through fluid leaching of metamict domains
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can result in the deposition of minute amounts of
‘exotic’ elements that normally would not be
able to enter the mineral structure (e.g., Fe or Al
in zircon; Geisler et al. 2007). Additionally, the
degree of metamictization, crystal ordering and
ductile crystal reorientation can be evaluated
with Raman spectroscopy, electron backscatter
diffraction (EBSD), and transmission electron
microscopy (TEM), respectively. Finally, for the
specific case of zircon, the chemical abrasion
technique (Mattinson 2005) has proven to be a
powerful method for removing zircon domains
that have suffered Pb-loss due to fission tracks,
metamictization or other fast diffusion pathways.

2.3.3 Common Pb

Common Pb is a generic name for the fraction of
Pb that is not radiogenic in origin and results
from a mixture of initial Pb (i.e., Pb incorporated
during mineral crystallization) and/or Pb con-
tamination (both in nature and in the lab). The
measurement of “**Pb (the only non-radiogenic
Pb isotope) undoubtedly pinpoints the presence
of common Pb. However, 2**Pb measurement
can be very challenging for low concentrations of
common Pb, or may be prone to isobaric inter-
ference with ***Hg, inherent to the LA-ICPMS
technique (see analytical methods). On a Tera-
Wasserburg plot, analyses containing common
Pb typically display a linear array of discordant
ellipses defining an upper intercept date older
than 4.5 Ma which points to the 2*’Pb/*°Pb
common Pb composition on the ordinate axis,
and a lower intercept providing the age of the
mineral (2D isochron; Fig. 3b). If 2**Pb/**°Pb
can be measured, it can be plotted on a third axis
and the data regressed to estimate the common
Pb composition, the age of the mineral and to
evaluate the relative contributions of common Pb
and Pb-loss on the cause of discordance (3D
isochron; Wendt 1984; Ludwig 1998). This
approach has been shown to provide better pre-
cision for the common Pb composition than the
2D isochron method (Amelin and Zaitsev 2002;
Schoene and Bowring 2006). Another Pb-
correction practice in LA-ICPMS and SIMS
analysis consists of deducing the common Pb
correction from measurement of 2°Pb (stable
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decay product of **Th) and by assuming con-
cordance of the U and Th systems. However,
these correction methods may result in overcor-
rection of some data that are discordant for rea-
sons other than common Pb only. When possible,
it is therefore ideal to apply a more robust cor-
rection based on the direct measurement of the
sample ***Pb. The Pb isotopic composition from
laboratory contamination (“blank™) is also an
important consideration in high-precision U-Pb
geochronology using isotope-dilution TIMS, and
is obtained through repeated measurement of
blank aliquots.

The isotopic composition of initial Pb incor-
porated during the crystallization of a mineral is
best obtained from measurements of cogenetic
low-U minerals such as feldspars, galena or
magnetite. Alternatively, initial Pb compositions
for a known age may be estimated from bulk
Earth evolution models (Stacey and Kramers
1975). However, this last approach is less reli-
able compared to the measurement of a cogenetic
low-U mineral (Schmitz and Bowring 2001;
Schoene and Bowring 2006). Finally, for the
specific case of zircon where the presence of
common Pb is essentially limited to inclusions,
fractures and metamict domains (see Sect. 6.1),
the chemical abrasion technique (Mattinson
2005) has proven to be a powerful method for
removing initial Pb from the crystal, leaving only
the need for a laboratory blank correction.
2.3.4 Intermediate Daughter
Disequilibrium (>*°Th
and **'Pa)

The age equations presented above (Egs. 1-5)
are valid under the assumption that the decay
chains are in secular equilibrium, that is, one
atom of Pb is created for every decay of one atom
of U (Fig. 1b). However, elemental fractionation
during mineral crystallization or partial melting
would likely disrupt a previously established
secular equilibrium (Fig. 1b). This effect should
ideally be accounted for in geochronology.
Nevertheless, most intermediate decay products
of the U series have half-lives of many orders of
magnitude smaller (microseconds to years) than
the half-lives of U (Ga; Fig. 1a) and potential

disequilibrium would have negligible effect on
the U-Pb dates even at the best of current ana-
lytical capabilities (i.e., 0.5%o0 uncertainty on the
date). However, intermediate daughters **°Th
(238U decay chain) and ) (235U decay chain)
have half-lives that are long enough (75.6 ka and
32.8 ka, respectively; Fig. 1a; Robert et al. 1969;
Schérer 1984; Parrish 1990; Cheng et al. 2013) to
critically impact on the accuracy of the calculated
date if disequilibrium is not accounted for
(Schérer 1984; Parrish 1990; Anczkiewicz et al.
2001; Amelin and Zaitsev 2002; Schmitt 2007).
For example, during monazite crystallization, Th
(of which #*°Th) is preferentially incorporated
into the crystal lattice compared to U, thus
resulting in excess “°°Pb (e.g., Fig. 1b) and in
erroneously old 2°°Pb/**®U dates if the excess
230Th is not accounted for (Figs. 3, 4a). In turn,
the Th-uncorrected 2°’Pb/**°Pb date for the same
crystal would be too young (Fig. 4b). Con-
versely, zircon preferentially incorporates U over
Th, rendering ***Th-uncorrected 2*°Pb/***U
dates typically too young (Fig. 4a). Similarly, the
207pb/23U isotopic system is potentially affected
by **'Pa excess as has been reported for zircon
(e.g., Anczkiewicz et al. 2001).

The magnitude of the correction that needs to
be applied to correct the isotopic dates for initial
#3OTh and **'Pa disequilibrium depends on the
distribution coefficient of Th/U and Pa/U
between the dated mineral and the liquid from
which it crystallized (a melt or an aqueous fluid),
respectively (Schirer 1984). For the **’Pb/**°Pb
date, it also depends on the age of the mineral
(Parrish 1990). Figure 4 shows the effect of ini-
tial >**Th and ?*'Pa disequilibrium has on the
2%pp/>8U, 27Pb/*%Pb and **"Pb/*°U dates. It
shows that for low mineral/liquid distribution
coefficients (Dt/Dy < 1) date offsets converge
to a minimum of — 109 ka and — 47 ka for the
200ph/238U and 2Y’Pb/*°U dates, respectively.
However, if the distribution coefficients are high
(> 1), excess 2°°Pb/***U and 2*’Pb/>*°U dates up
to few Ma can be expected. Conversely, Th/U
distribution  coefficient < 1  causes excess
27pp/2%°Pb dates of few ka to ca. 0.5 Ma
(depending on the age of the mineral), and

distribution coefficient > 1 causes a deficit
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Fig. 4 Excess in

a 2%pPb/>*¥U and

b 2°7Pb/**°Pb dates due to
initial *°Th disequilibrium,
and ¢ excess in 2’Pb/?*°U
date due to initial >>'Pa
disequilibrium as a function
of Th/U and Pa/U
mineral/liquid distribution
coefficients, respectively
(modified after Scharer 1984;
Parrish 1990). Typical ranges
of mineral/melt distribution
coefficients for commonly
dated minerals are shown for
reference
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in 2°’Pb/?%Pb dates up to few Ma for Precam-
brian samples (Fig. 4b).

In practice, the Th/U ratio of the mineral is
measured as **Th/**®U or estimated from the
measured amount of its stable daughter isotope
208ph by assuming concordance of the U-Pb and
Th-Pb dates. For minerals crystallized from a
melt, available Th/U mineral-melt distribution
coefficients (Fig. 4a) can then be used to recon-
struct the Th/U of the melt needed for the Th-
disequilibrium correction (e.g., adopting the
values from Tiepolo et al. 2002; Klemme and
Meyer 2003; Prowatke and Klemme 2005, 2006;
Klemme et al. 2005; Rubatto and Hermann 2007;
Stepanov et al. 2012; Beyer et al. 2013;
Chakhmouradian et al. 2013; Stelten et al. 2015).
Alternatively, direct measurement of melt inclu-
sions hosted in the dated mineral, of glass or of
whole rock Th/U ratio are also commonly used.
Choosing the most appropriate estimate of the
melt Th/U ratio at the time of mineral crystal-
lization (using partition coefficient or direct
measurement on whole rock or melt inclusions)
should be done at the light of all possible infor-
mation concerning the crystallization conditions
of the dated mineral (e.g., temperature, crys-
tallinity, co-crystallizing Th-bearing mineral
phases, etc.; see examples in Wotzlaw et al.
2014, 2015).

In essence, 230Th- and 2*'Pa-corrections are
based on the assumption that the dated mineral
crystallized from a liquid in secular equilibrium
with respect to the U-series. While this might be
an acceptable assumption for some magmatic
systems (at least for 2380 and **°Th) (Condomines
et al. 2003), it should not be regarded as a rule,
especially for hydrothermal systems in which Th
and U have distinct solubilities (Porcelli and
Swarzenski 2003; Drake et al. 2009; Ludwig et al.
2011). Indeed, the contrasted partitioning behav-
ior of U and Th into a hydrothermal fluid causes
isotopic disequilibrium in the fluid (***Th excess
or deficit). In cases where the existence of this
fluid is very short (e.g., for magmatic-
hydrothermal systems) no time is given for
radiogenic ingrowth in the fluid which would
remain out of secular equilibrium. Finally, the

fractionation of U and Th promoted by the crys-
tallization of U- and Th-bearing hydrothermal
minerals may further enhance isotopic disequi-
librium. In such cases, the Th-correction (or Pa)
should aim at determining the Th/U ratio of the
last medium where the decay chain was in secular
equilibrium before the crystallization of the min-
eral. This equates to determining the bulk source
(in secular equilibrium) to sink (dated mineral)
distribution coefficient of Th/U, regardless of the
intermediate process(es), assuming short transport
timescales and a unique source of U and Th. For
example, Chelle-Michou et al. (2015) used the
Th/U ratio of the porphyries (same as for mag-
matic zircons; Chelle-Michou et al. 2014) to cor-
rect the dates obtained on hydrothermal titanite
from the Coroccohuayco skarn deposit. In this
case, the U-series elements (mainly U and Th)
were likely sourced from the magma which was
assumed to be in secular equilibrium and trans-
ported to the site of deposition by a magmatic fluid
in a short period of time.

24 A Note on Th-Pb Geochronology

Although less commonly used than U-Pb
geochronology, Th—Pb dating may, in some cases,
be advantageous and complementary to U-Pb
dating. Due to comparable ionic radii of U and Th
and similar valence (tetravalent except for oxi-
dized systems where U in mostly hexavalent),
most minerals hosting U into their structure will
also incorporate Th (if it is available in the sys-
tem), and vice versa. The single long-lived isotope
of Th, ***Th, decays to **Pb through a chain of
alpha and beta decays. The Th—Pb decay offers the
possibility of a third independent geochronometer
embedded within the mineral allowing for a fur-
ther assessment of the robustness and meaning-
fulness of the obtained date. In addition, the
nearby masses of *°U, ***U and ***Th on one
side, and of ***Pb, *?°Pb, **’Pb, and ***Pb on the
other side, allows for simultaneous measurement
of U-Th-Pb isotopes from the same volume of
analyte (ablated volume or dissolved grain). The
generalized age equation writes as follow:
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208Pb _ 208Pb N 232Th (82232[ B l)
2()4Pb 204Pb 0 204Pb )
(6)

where L3, is the **Th decay constant. If com-
mon Pb is negligible Eq. (6) can be simplified to:

208Pb* ;
<232Th) =™ — 1. (7)

The ***Th decay constant is much smaller to that
of U (half-life of 14 Ga) and is commonly
considered to be 4.947 £ 0.042-107'! a™! 20;
Holden 1990). Despite a good accuracy of the
232Th decay constant as suggested by the common
concordance of Th-Pb and U-Pb dates (e.g.,
Paquette and Tiepolo 2007; Li et al. 2010; Huston
et al. 2016), its precision is an order of magnitude
lower than those of *®U and ***U. This can rep-
resent the main source of systematic uncertainty
on Th-Pb dates and the main limitation of this
system when working below the percent precision
level. However, unlike uranium, intermediate
daughter isotopes of the >**Th decay chain have
short half-lives such that any isotopic disequilib-
rium formed during mineral crystallization will
fade within few decades only. Therefore, the *>*Th
decay chain can be considered to have remained in
secular equilibrium on geological timescale. It
results that on cases where U-Pb dates require a
large initial >**Th-disequilibrium correction and
parameters required for this correction are difficult
to estimate (e.g., hydrothermal minerals), Th-Pb
dates may be much more accurate than U-Pb ones
(but often of lower precision).

Due to the very long half-live of **Th, the
optimal use of Th—Pb geochronology (highest
analytical precision) is achieved for old sample
and/or minerals with high Th concentrations so
that large amount of 2**Pb have been accumulated.
In the case of Th-rich minerals (e.g., monazite and
perovskite, and, to a lesser extent, xenotime, apa-
tite, titanite and allanite), thorogenic 208py, (.e.,
298ph*) would typically be so abundant than
common Pb correction may not introduce signifi-
cant uncertainties into the computed 2**Pb*/***Th
ratio or may even be neglected.
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208pp/232Th dates are most commonly pre-
sented in rank-order plots such as Fig. 2c, the
center of each bar representing the date and the
length reflecting the associated uncertainty. To
evaluate the concordance of the Th—Pb and U-Pb
systems, concordia diagrams (*°*Pb*/***Th vs.
206pp/238 or 2Y7Pb*/>3°U) offer a convenient

graphical representation of the data.

3 Analytical Methods (Including
Data Reduction, Pb-Correction,
Uncertainty Propagation
and Data Presentation)

Currently, three methods are commonly used to
measure isotopic ratios necessary for U-Pb
geochronology: (1) laser ablation-inductively
coupled plasma mass spectrometry (LA-
ICPMS); (2) secondary ion mass spectrometry
(SIMS); and (3) isotope dilution-thermal ioniza-
tion mass spectrometry (ID-TIMS). Each of these
methods have particular strengths and weak-
nesses (see summary in Table 1). In most cases,
U-Pb geochronology involves the separation of
the mineral of interest through gravimetric and
magnetic techniques (e.g., heavy liquids, Wilfley
shaking table, Frantz magnetic separator) and the
selection of individual grains (picking) under
binocular microscope. However, in-situ dating
with LA-ICPMS and SIMS can also be done
directly on polished thin section, thus preserving
the petrographic context of the dated mineral,
which may be key for the interpretation of the
data in some cases.

The main difference between these three
techniques resides in the way the dated material
is prepared, ionized and introduced into the mass
spectrometer. Below, we present an overview of
the main aspects of the state-of-the-art proce-
dures for these methods, while highlighting their
respective advantages and disadvantages and the
handling of uncertainties. For more details on the
technical aspects of mass spectrometry, the
interested reader is referred to a number of good
textbooks and papers (e.g., Ireland and Williams
2003; Parrish and Noble 2003; Gehrels et al.
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Table 1 Comparison of the three analytical techniques used for U-Pb dating

Spatial
resolution

Standardization

Sample
preparation

Time required
for sample
preparation

Time required
for one analysis
(sample or
standard)

Analytical
precision
(reference for
typical zircon:
see Fig. 5)

Accuracy

Preferred
geologic
application

Limitations

2008; Arevalo et al. 2010; Arevalo 2014; Carlson
2014; Ireland 2014; Schoene 2014; Schaltegger

et al. 2015).

LA-ICPMS

Spot diameter typically of
10-50 pum, depth of 15—
40 pm

External with a known
reference material and
accuracy controlled with
a secondary standard

Mineral separate mount
or thin section, Imagery
(CL, BSE, ...)

Few days for mineral
separation, sample mount
preparation and imagery

2-3 min

2-5% on single spot date
and ~0.2-2% on
weighted mean date

~1-5%

Large scale survey,
detrital geochronology,
in-situ dating, minerals
with inherited cores

Imprecise common Pb
correction, matrix
matched standard
material

3.1 Laser Ablation-Inductively
Coupled Plasma Mass
Spectrometry (LA-ICPMS)

LA-ICPMS is an efficient U-Pb dating technique
that allows high spatial resolution and high

SIMS

Spot diameter typically of 10—
15 pm, depth of 1-2 pm

External with a known
reference material and
accuracy controlled with a
secondary standard

Mineral separate mount or
thin section, Imagery (CL,
BSE, ...)

Few days for mineral
separation, sample mount
preparation and imagery

15-30 min

1-5% on single spot date
and ~0.1-1% on weighted
mean date

~1-5%

In-situ dating, complexely
zoned minerals

Matrix matched standard
material required for
206pp 2381 and 207Pb/235U
dates, but not required for
207pp/2%Ph dates

CA-ID-TIMS

Whole mineral grain or grain
fragment. Mixing of age
domains is hard to avoid

Internal with tracer solution
(preferably double Pb—
double U isotope tracer)

Mineral separation, imagery,
chemical abrasion (for zircon
only) and washing, digestion,
column chemistry

Few days for mineral
separation and imagery; 1 day
for chemical abrasion of
zircon; > 3 days for acid
digestion; 1 day for chemical
separation of Pb and U

34h

0.1-0.05% on single grain
%Pb/>**U date and ~0.02%
on weighted mean date

0.03-0.3%; fully traceable to
SI units

Used when highest temporal
resolution or highest accuracy
are necessary

Only very limited spatial
resolution (microsampling)

sample throughput. Analysis is done directly
from a thin section or from polished grains

mounted in epoxy resin that have been imaged
by transmitted and reflected light, CL and/or BSE
techniques prior to analysis. Typical analytical
uncertainties for zircon dates are on the order of
3-5% for single spot and of 0.2-2% for the
weighted mean dates (Fig. 5). However, accu-
racy may not be better than 3% (Klotzli et al.

2009; Kosler et al. 2013), which should be con-
sidered when comparing LA-ICPMS U-Pb dates
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Fig. 5 Typical analytical
uncertainties for zircon

200p}, 2381 207pp 2355
207pb/2%Pb single spot/grain
dates for modern a LA-
ICPMS, SIMS and, b CA-ID-
TIMS dating techniques.
Weighted mean dates refers to
the weighted mean of a set of
statistically equivalent single
spot/grain dates based the
most precise isotopic ratio
(typically 2°°Pb/**3U for dates
younger than ca. 1 Ga and
207pp/2%Pp for dates older
than 1 Ga)
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from different studies or with dates from other
isotopic systems.

The LA-ICPMS setup consists of a laser of
short wavelength in the UV range (typically
193 nm), an ablation cell and an ICPMS instru-
ment. The sample is placed into the ablation cell
along with several standards. During ablation,
repeated laser pulses are focused on the surface
of the dated mineral. The resulting ablated
aerosol is subsequently transported by a carrier
gas (usually He + Ar = N,) toward the Ar-
sourced plasma torch at the entry of the mass
spectrometer where it is ionized and transferred
into the ion optics of the mass spectrometer. LA-
ICPMS U-Pb dating is mostly carried out on
single-collector sector-field ICP-MS instruments
that offer sequential measurement of individual
Pb and U isotopes in a mixed ion-counting —
Faraday cup mode.

The spot used for LA-ICPMS
geochronology mainly depends on target size
and the U concentration of the dated mineral. As
a reference, 25-35 pum spots are commonly used
for zircon and can be as low as 5 pm for mon-
azite (Paquette and Tiepolo 2007). Crater depth
for a 30-60 s analysis is on the order of 15—
40 pm depending on the fluence of the laser and
on the ablated material. However, laser-induced
U-Pb fractionation increases with crater depth
during ablation, which negatively impacts on the
analytical uncertainty of the measured Pb/U
ratio. Ultimately, this is an important limiting
factor for precision and accuracy in LA-ICPMS
geochronology (Kosler et al. 2005; Allen and
Campbell 2012). The technique requires a laser
setup that yields reproducible ablation with small
particles (subsequently more efficiently ionized
in the plasma torch) and that limits crater depth
to no more than the spot diameter by minimizing
the laser fluence (e.g., Glinther et al. 1997; Horn
et al. 2000; Guillong et al. 2003).

Another important limitation of LA-ICPMS
U-Pb dating is the imprecise common Pb cor-
rection due to the difficulty of precisely measur-
ing common **Pb caused by an isobaric
interference with 2**Hg (traces of Hg are con-
tained in the Ar gas). Common Pb correction
protocols using **Pb may be employed and are

size

preferred over simple rejection of discordant
analyses. It results that age interpretation of
minerals with elevated common Pb contents (e.g.,
titanite, rutile) may be hampered by large age
uncertainties due, in part, to the large uncertain-
ties associated with the common Pb-correction.

LA-ICPMS and SIMS (see below) U-Pb
dating are comparative techniques that require
analysis of a reference material, which is as close
as possible to the chemical composition and the
structural state of the unknown (sample). It is
analyzed under identical ablation conditions to
the sample to determine the machine fractiona-
tion factor of any measured element concentra-
tion; this fractionation factor is then applied to
the element ratios and concentrations of the
unknowns. A series of analyses unknown (~ 10)
is typically bracketed by analyses of a reference
material (~2-4) to correct for elemental frac-
tionation and monitor for machine drift. In
addition, at least one secondary standard should
be repeatedly analyzed during the same session
in order to demonstrate the accuracy of the
fractionation correction. This enables an estimate
of the long-term excess variance of the laboratory
that is required in the uncertainty propagation
protocol (see below). A list of commonly used
reference materials and their reference values is
provided in Horstwood et al. (2016). Standards
for LA-ICPMS and SIMS U-Pb dating should be
homogenous in age, trace element composition,
and have comparable trace element concentration
and structural state (matrix match) as the
unknowns (Kosler et al. 2005). Failure to match
the matrix of the unknown results in different
ablation behavior (rate, stability, fractionation)
and ultimately compromises the accuracy of the
date (Kl1otzli et al. 2009). Therefore, a mineral of
unknown age should be standardized using a
reference material from the same mineral. Fur-
thermore, different degrees of metamictization
also impact on the matrix match between stan-
dards and unknowns and can be an important
source of inaccuracy for zircon dates (as much as
5% inaccurate; Allen and Campbell 2012;
Marillo-Sialer et al. 2014) and possibly for other
minerals as well (e.g., titanite, allanite, columbo-
tantalite).
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Interlaboratory comparisons for LA-ICPMS
and SIMS U-Pb dating have highlighted dis-
crepancies of U-Pb ages for a series of standards
measurements which is sometimes outside of the
reported 2c uncertainties (KoSler et al. 2013).
This is thought to reflect different data reduction
strategies in different laboratories (e.g., Fisher
et al. 2010) and uncertainty propagation proto-
cols, that are not always thoroughly documented.
This has triggered a community driven effort to
establish standard data reduction workflow,
uncertainty propagation protocols, and data
reporting templates (Horstwood et al. 2016) that
should be embraced by the LA-ICPMS commu-
nity. New community-derived standards for LA-
ICPMS dating suggest the use of the x/A/z/w
notation for uncertainty reporting where: x refers
to the analytical (or random) uncertainty, y in-
cludes the variability of standards measured in
the same lab, z includes the systematic uncer-
tainty of the primary standard isotopic composi-
tion (and of the common Pb correction if
appropriate), and w includes the decay constant
uncertainty (Horstwood et al. 2016; McLean
et al. 2016). Comparing LA-ICPMS U-Pb data
with data from other LA-ICPMS, SIMS or ID-
TIMS laboratories should be done at the
z uncertainty level, while comparison with
geochronological data from other isotopic sys-
tems have to include decay constant uncertainties
(Chiaradia et al. 2013). Raw data processing,
visualization and uncertainty propagation proto-
cols for LA-ICPMS U-Pb dating have been
implemented in the freely available ET_Redux
software (McLean et al. 2016) and allow more
robust interlaboratory data comparison and col-
laborative science.

3.2 Secondary lon Mass
Spectrometry (SIMS)

Compared to LA-ICPMS, SIMS U-Pb analysis
has greater spatial resolution and sensitivity,
allowing for the analysis of microscopic rims or
domains in zircon, monazite, xenotime or other
minerals. SIMS analysis involves the ablation of
sample with a high-energy O™ or O; ion beam
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within a high vacuum chamber. A small fraction
of the ablated material forms atomic ions or
molecular ionic compounds that are subsequently
accelerated into a mass spectrometer. Typi-
cal SIMS craters are 10-15 pm in diameter and
1-2 pm deep, therefore this technique has higher
spatial resolution and is by far less destructive
than LA-ICPMS and permit subsequent isotopic
analysis (e.g., O, Hf-Lu) to be done on the same
spot (slight repolishing would be required before
SIMS analysis). Analysis is done directly from a
thin section, polished grains mounted in epoxy
resin, or from entire grains pressed into indium
when analyzing U and Pb isotopes along a profile
from the surface to the interior of a grain (depth
profiling). The accuracy of the obtained result
depends on extrinsic factors such as the position
of standard and unknowns in the mount and the
quality of the polishing. SIMS analysis of zircon
typically yields U-Pb dates of 0.1-1% precision
and accuracy (Fig. 5); it is the preferred method
when analyzing complex minerals (e.g., thin
metamorphic rims), very small grains (e.g.,
xenotime outgrowths on zircon; McNaughton
et al. 1999) or valuable material.

Pb isotopic fractionation in SIMS is subordi-
nate when compared to LA-ICPMS techniques.
Therefore, 2°’Pb/?°°Pb dates can be calculated
directly from counting statistics. In contrast,
there is a significant difference in the relative
sensitivity factors for Pb* and U™ ions during
SIMS analysis. The fractionation of the
200ph*/238U* ratios is highly correlated with
simultaneous changes in the >*U0*/***U" ratios
which forms the basis of a functional relationship
that enables the calibration of the 2°°Pb/***U
dates. Although the 2°°Pb*/**®U* versus
Z4UO*/ABU* calibration is the most widely
used, other combinations of 228U, 2*UO" and
2°U0, have proved successful. As in the case of
LA-ICPMS, the SIMS ***Pb/***U calibration is
carried out with reference to a matrix matched
reference material (e.g., Black et al. 2004). This
is quite straightforward for zircon and badde-
leyite (ZrO,), but more difficult for chemically
and structurally more complex minerals (e.g.,
phosphates, complex silicates, oxides). In the
latter cases, matrix correction procedures using a
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suite of reference materials accounting for the
effect of highly variable amount of trace elements
have been developed (e.g., Fletcher et al. 2004,
2010). Calibration biases are also introduced
through different crystal orientation (Wingate
and Compston 2000) or different degrees of
structural damage from radioactive decay (White
and Ireland 2012). It is highly recommended to
analyze a reference zircon as unknown again to
control the accuracy of the technique (validation
or secondary standard; Schaltegger et al. 2015).

The common Pb correction is carried out via
measurement of 204Pb, 207ph or 2%%Pb masses.
The main challenge of SIMS analysis is the
resolution of molecular interferences on the
masses of interest (Ireland and Williams 2003),
which requires careful consideration when ana-
lyzing phosphates or oxides.

No standard data treatment protocol exists for
SIMS dates. In fact, the two types of equipment
(SHRIMP from Australian Scientific Instruments
and IMS 1280/90 from CAMECA) provide very
differently structured data that require different
data treatment software.

3.3 Isotope Dilution-Thermal
lonization Mass

Spectrometry (ID-TIMS)

The U-Pb method that offers the highest preci-
sion and accuracy is Chemical Abrasion, Isotope
Dilution, Thermal Ionization Mass Spectrometry
(CA-ID-TIMS; Table 1, Fig. 5). This method
involves the dissolution and analysis of entire
zircon grains and other accessory minerals, and,
hence, disregards any protracted growth history
recorded in this grain. Zircon imaging prior to
dating can be taken to increase the chances of
analyzing a single-aged grain or grain popula-
tion. The ID-TIMS community is organized as a
part of the EARTHTIME consortium (Bowring
et al. 2005), which is working together to
improve precision and accuracy of U-Pb dating.

It is now standard to pre-treat zircons with the
“chemical abrasion” procedure of Mattinson
(2005). This process involves heating the zircon

at 900 °C for 48 h, followed by partial dissolu-
tion in HF + HNO;5 at 180-210 °C for 12 to
18 h (Widmann et al. 2019). The heating re-
establishes the zircon crystalline structure by
annealing any radiation-related structural damage
in slightly affected domains. The partial disso-
lution procedure then only removes domains
with more severe structural damage and leaves a
proportion of the original grain behind. The
surviving zircon fragment is then considered to
be perfectly crystalline and is used for isotope
ratio analysis. Chemically abraded zircon grains
are recognized to be more concordant and pro-
vide more reproducible U-Pb results. This
treatment is not currently applied for SIMS or
LA-ICPMS analysis techniques, but initial
experiments have yielded positive results (Kryza
et al. 2012; Crowley et al. 2014; von Quadt et al.
2014). The procedure has been tested on other
accessory phases including baddeleyite (Rioux
et al. 2010), but without clear evidence of
improving concordance.

The dissolved grains are mixed with a
(*°2Pb-)?*Pb->33U->**U tracer solution (e. g., as
provided by EARTHTIME; ET535 and ET2535;
Condon et al. 2015; McLean et al. 2015), and the
Pb and U isotopes isolated from other trace ele-
ments through chromatography. Isotopic com-
positions are most commonly measured as Pb*
and UO,” on a thermal ionization mass spec-
trometer from the same filament either by ion
counting methods (using a secondary electron
multiplier or a Daly-based photomultiplier
device), or by a combination of ion counters and
high-sensitivity, high-resistance Faraday collec-
tors. Uranium may also be measured separately as
U* by solution MC-ICP-MS utilizing a mixed ion
counting—Faraday measurement setup, or as u*
on a double or triple filament assembly in a TIMS.

An important part of high-precision, high-
accuracy U-Pb geochronology is the correct
treatment of all sources of uncertainty and their
correct propagation into the final age. The ID-
TIMS community has been adopting the x//z
notation for uncertainty reporting (e.g.,
35.639 £ 0.011/0.014/0.041 Ma) where: x is the
random uncertainty (or analytical; including
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counting statistics, common Pb and Th-
disequilibrium corrections), y includes the sys-
tematic uncertainty from tracer calibration and,
z includes the decay constant uncertainty
(Schoene et al. 2006; Schoene and Bowring
2006; McLean et al. 2011). Comparison of ID-
TIMS U-Pb data with U-Pb data from SIMS or
LA-ICPMS techniques should consider the
y uncertainty level, while comparison with data
from other isotopic systems (e.g., Re-Os,
“OAr/*°Ar) should include both decay constant
and systematic uncertainties (z level). Final age
precision is mainly defined by the ratio of
radiogenic to common Pb (Pb*/Pb,), which is, in
the case of zircon, a function mainly of proce-
dural Pb blank. Total blank levels of < 0.5 pg of
Pb are currently state-of-the-art.

The EARTHTIME community has generally
accepted and adopted a software package con-
sisting of Tripoli raw data statistics and U-—
Pb_Redux data treatment and visualization
(Bowring et al. 2011; McLean et al. 2011).

4 Guidelines for Interpreting U-Pb
Dates

4,1 Date and Age

Isotopic dating makes a distinction between a
date and an age. The term ‘date’ refers to a
number in time unit (usually Ga, Ma or ka) cal-
culated from an age equation (Eqs. 1-5). The
term ‘apparent age’ is sometimes used as a syn-
onym for ‘date’. A ‘date’ becomes an ‘age’ as
soon as in can be interpreted in terms of a geo-
logical process (Schoene 2014). Both terms may
be appropriate for single grain/spot or weighted
mean data and may be accurate or inaccurate.
This semantic distinction reflects the clear dis-
tinction that should be made between data and
their interpretation, which is at the core of sci-
entific rigor and integrity.

As discussed in the preceding sections, the
interpretation of U-Pb dates is not straightfor-
ward, even for concordant data. It requires a
close and quantitative control of the way how an
analytical result has been produced, including the

C. Chelle-Michou and U. Schaltegger

knowledge of sources of error and their correct
propagation into the final result (metrology), a
good characterization of the sample material, and
finally a good knowledge of the geological con-
text. The lack of considering these aspects may
very well lead to over-interpretations and erro-
neous conclusions.

4.2 Geochronology Versus
Thermochronology

All minerals used for U-Pb dating can be theo-
retically subjected to some degree of thermally
activated volume diffusion of U and Pb. The
measured date reflects the time elapsed since clo-
sure of the isotopic system. While geochronology
corresponds to dating of a mineral that has crys-
tallized, rapidly cooled or remained below it clo-
sure temperature, thermochronology deals with
minerals that have crystallized and/or spent some
time above their respective closure temperatures,
or in the partial retention temperature window of
their daughter nuclide. As discussed above (causes
of discordance) partial resetting of the U-Pb sys-
tem by diffusion is a possible source of discor-
dance. While the effect of post crystallization
diffusion can usually be neglected for zircon,
monazite and most other minerals due to their high
closure temperature for Pb (> 700 Cherniak and
Watson 2001, 2003; Cherniak et al. 2004); Fig. 6),
Pb diffusion in minerals such as titanite, rutile and
apatite is more likely to occur and should carefully
be evaluated before interpreting U-Pb dates as
they might record the age of closure rather the age
of crystallization. Ultimately, thermochronologi-
cal U-Pb data on these minerals may be used to
constrain the high-temperature (> 350 °C) ther-
mal history of the studied geological object
(Schoene and Bowring 2007; Kooijman et al.
2010; Blackburn et al. 2011; Cochrane et al.
2014). Nevertheless, it appears that most minerals
used for U-Pb dating can be wused as
geochronometers, of which partial resetting of the
U-Pb system is often controlled by the stability of
the mineral phase itself or Pb-loss along fast dif-
fusion pathways (cracks, metamict domains),
rather by volume diffusion (Fig. 6).
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Fig. 6 Typical range of closure temperature for minerals
used for U-Pb dating. Dark grey bars indicate robust
closure estimates while light grey bars indicate approx-
imate estimates. Modified from Chiaradia et al. (2014),

4.3 Precision and Weighted Mean

The weighted mean age is the most common rep-
resentation of the age of a relatively short-lived
geological event recorded at the scale of the sam-
ple (e.g., magma emplacement, hydrothermal fluid
circulation) and is usually interpreted as the best
age estimate. Weighted mean calculations are
applied to a set of individual analyses in order to
reduce the uncertainty of the population. It
implicitly assumes that the data correspond to
repeated analyses (samples) of the exact same
value and that the uncertainties are only due to
analytical scatter. In this case, the mean square of
the weighted deviates (MSWD or reduced chi-
squared) of a data population to the weighted mean
should be around to 1. In turn, MSWD >> 1
would suggest excess scatter of the data given their
respective uncertainties (i.e., they are unlikely to
represent a single population), and values << 1
suggest that the reported uncertainties are larger
than what would be expected from a single pop-
ulation. In detail, acceptable MSWD values actu-
ally depend on the number of points pooled
together (Wendt and Carl 1991; Spencer et al.
2016). For example, values between 0.5 and 1.5
are acceptable for a population of 30 points (at 2G).

However, the accuracy of weighted mean ages
has been repeatedly questioned (Chiaradia et al.
2013, 2014; Schoene 2014). Indeed, the advent

with additional data for apatite (Cochrane et al. 2014),
rutile (Vry and Baker 2006), baddeleyite (Heaman and
LeCheminant 2001), garnet (Mezger et al. 1989), xeno-
time and allanite (Dahl 1997)

of high precision dating techniques (CA-ID-
TIMS) has highlighted that data that might look
statistically equivalent at the level of their
uncertainties, can actually hide a spread of data
that can only become apparent with more precise
dating methods. An illustration of this is pro-
vided in Fig. 7 which shows LA-ICPMS and
CA-ID-TIMS 2°Pb/***U zircon dates from a
porphyry intrusion from the Coroccohuayco
porphyry-skarn deposit, Peru (Chelle-Michou
et al. 2014). It is noteworthy that those grains
analyzed by CA-ID-TIMS have previously been
analyzed with LA-ICPMS (with 1 to 3 spots
each) before being removed from the epoxy
mount for further processing. Data points are
plotted at the level of their analytical uncertain-
ties and weighted mean dates include additional
dispersion and standard/tracer calibration uncer-
tainties (see caption of Fig. 7 for more details) so
that they can be compared at their right level of
uncertainties (i.e., neglecting only decay constant
uncertainties). Both the LA-ICPMS
(36.05 £ 0.25 Ma, n =30, MSWD = 1.3) and
CA-ID-TIMS  (35.639 £ 0.014 Ma, n=7,
MSWD = 1.8) weighted means yield acceptable
MSWDs (in agreement with their respective
number of data points), thus suggesting they
could correspond to statistically equivalent data
populations, respectively. Independently from
each other, these weighted dates would be
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LA-ICPMS
36.05 = 0.25 Ma
n=30, MSWD = 1.3
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20pp/28Y date (Ma)
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Tr-l-‘-‘-l:

34
1

CA-ID-TIMS
35.639 £ 0.014 Ma
n=7, MSWD =18

o |
(sp]

zircon grain extracted from
= epoxy mount and subsequently
dated by CA-ID-TIMS

Fig. 7 Ranked LA-ICPMS and CA-ID-TIMS **Pb/***U
zircon dates and weighted means for the hornblende-
biotite porphyry (sample 10CC51) from the Eocene
Coroccohuayco porphyry-skarn deposit, Peru. Data from
Chelle-Michou et al. (2014). Single spot/grain analyses
are plotted at the level of their analytical uncertainties
(20) and weighted mean dates include the analytical
uncertainties and: (i) an additional excess variance

interpreted as the age of the porphyry intrusion at
the Coroccohuayco deposit. However, Fig. 7
highlights that these ages do not overlap within
uncertainties (At = 0.41 & 0.25 Ma), therefore
indicating that at least one of them is inaccurate.
In this case, the more precise single grain CA-ID-
TIMS ages highlight more than 1 Ma of zircon
crystallization in deep-seated crystal mushed (or
proto-plutons) before their incorporation into
felsic melts, ascent and emplacement of the
porphyry intrusion at an upper crustal level
(Chelle-Michou et al. 2014). These older zircon
crystallization events cannot be resolved at the
uncertainty level of LA-ICPMS dating for which
data points pool together that are actually not part
of the same population and therefore include data
older than the emplacement age, resulting in a
weighted mean age that is too old. While it is
common practice in zircon CA-ID-TIMS dating
to take the youngest point as best representative

obtained from repeated measurement of the secondary
standard (91,500) and the systematic uncertainty in the
standard mineral isotopic composition, for LA-ICPMS
data; (ii) the systematic uncertainty related to the compo-
sition of the isotopic tracer, for CA-ID-TIMS data. Data
bars in black are included in the calculation of the
weighed mean date. Multiple LA-ICPMS dates from the
same zircon grain are connected with thin lines

of the age of magma emplacement or eruption,
this practice is not appropriate for in-situ or CA-
free ID-TIMS dating techniques where the
weighted mean date of the youngest cluster
having an acceptable MSWD remains the best
option, although it might sometimes be slightly
inaccurate.

This example highlights the limitations of the
weighted mean approach to complex and pro-
tracted natural processes. The statistical
improvement in precision may be done at the
cost the accuracy of the dated process. The cal-
culated weighted mean date can be either too old
(e.g., if grains crystallized from an earlier pulse
of magma are included), too young (e.g., if
several grains have suffered similar amounts of
unrecognized Pb-loss) or just right by coinci-
dence. In fact, the time resolution of
geochronology is ultimately limited by the pre-
cision of single data points, rather than by the
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number of data that are pooled together to sta-
tistically reduce the age uncertainty.

4.4 Accuracy of Legacy U-Pb Data
and Misinterpretation

Cases where the same rock has been dated sev-
eral times using the same isotopic system and the
same mineral are rare but necessary examples to
put some perspective of the accuracy of legacy
U-Pb data. Ore-related porphyry intrusions at the
Miocene Bajo de la Alumbrera porphyry copper
deposit have received much attention over the
past decade. These rocks have been repeatedly
dated by U-Pb zircon geochronology using dif-
ferent analytical methods (LA-ICPMS and CA-
ID-TIMS) at different times (Harris et al. 2004,
2008; von Quadt et al. 2011; Buret et al. 2016).
The early LA-ICPMS zircon dating survey of
Harris et al. (2004, 2008) concluded that the
deposit formed on a million-year time scale.
However, subsequent high precision CA-ID-
TIMS studies have decreased this duration by
almost two orders of magnitude, to a maximum
duration of 29 ka (Buret et al. 2016).

Available data for three porphyries are com-
piled Fig. 8 with their respective weighted
means. Single LA-ICPMS date broadly range
from 8.5 to 6.5 Ma while those obtained by CA-
ID-TIMS are significantly less scattered between
8.2 and 7.1 Ma. Weighted mean dates can show
as much as ~1 Ma of age difference for the
same porphyry between LA-IPCMS and CA-ID-
TIMS which is far outside the reported analytical
uncertainties (see P2 porphyry on Fig. 8). The
same is true for high-precision CA-ID-TIMS
data, which show differences up to ~0.1 Ma in
excess of the analytical uncertainty. Furthermore,
these discrepancies persist even when systematic
uncertainties are taken into account (i.e., 3%
reproducibility for LA-ICPMS, calibration of the
primary standard or of the tracer solution). Sim-
ilar age discrepancies up to ~0.8 Ma between
LA-ICPMS and SIMS U-Pb zircon weighed
mean ages have been noted by Ballard et al.
(2001) on porphyries from the FEocene
Chuquicamata Cu deposit, Chile.

It would be presumptuous to name the causes
of these discrepancies without having the entire
set of original technical and analytical data at our
disposal. Nevertheless, we can make some con-
jectures. Potential causes may be: (1) that dif-
ferent populations of zircons grains or domains
(within a single grain) where hand-picked and
dated; (2) the use of inappropriate data reduction,
common Pb correction, initial Th-correction and
error propagation protocols; (3) a distinct differ-
ence in ablation rate between sample and stan-
dard zircon resulted in inaccurate correction for
fractionation (for LA-ICPMS data); (4) inaccu-
rate isotopic tracer calibration (for ID-TIMS
data); and/or (5) unidentified concordia parallel
Pb-loss (for the LA-ICPMS data).

In the case of Bajo de la Alumbrera, the most
recent data by Buret et al. (2016) are deemed to
be the most accurate (in addition of being the
most precise) and tightly constrain the age of
porphyry emplacement and zircon crystallization.
This example illustrates the difficulty of dealing
with legacy U-Pb data which might or might not
be accurate. Obviously, there are published ages
that are inaccurate, but they would remain
unnoticed until new dating is done with state-of-
the-art techniques. In particular, reporting of x/y/z
(for ID-TIMS) and xA/zw (for LA-ICPMS)
uncertainties and comparison of disparate U-Pb
dates at the level of their y uncertainty should be
systematic. Again, these potential biases should
be carefully accounted for when interpreting
short time differences on the order of the ana-
lytical uncertainty of single dates. This also
highlight the need for thorough reporting of
analytical and data handling procedures, or even,
using common analytical procedures and data
reduction platforms (Kosler et al. 2013).

5 What Mineral Can We Date
with the U-Pb System and What
Does It Date?

As of today, a great number of minerals have
been used for U-Pb dating, many of which in the
context of mineral deposits. A non-exhaustive
list of these minerals is provided in Table 2
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n=34, MSWD=1.6 n=27, MSWD=1.2 7.0963 = 0.0085 Ma =3 MSWD=0.99
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CA-ID-TIMS 7.1022 £ 0.0075 Ma n=28, MSWD=1.5 7.1102 £ 0.0093 Ma
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@ (von Quadt et al., 2011) (8.02+0.14 Ma

7.140 = 0.052 Ma
n=3, MSWD=3.9
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Fig. 8 Compilation of 2°°Pb/**®U Th-corrected dates
acquired with different methods for three porphyry
intrusions at the Bajo de la Alumbrera porphyry copper
deposit, Argentina. Data are from Harris et al. (2004),
Harris et al. (2008), von Quadt et al. (2011), and Buret
et al. (2016). The horizontal grey bands represent the
weighted mean dates recalculated by us and include

which presents their main characteristics and
usefulness for dating ore deposits. It is note-
worthy that this table only presents a selection of
some useful minerals, but others might also be
amenable to U-Pb dating. Furthermore, ongoing
and future developments will likely improve our
understanding of the U-Pb system in these and
new mineral species while allowing better pre-
cision, accuracy and interpretation of the dates.
Ideal minerals for U-Pb dating should nec-
essarily contain traces of U, and as little common
(initial) Pb as possible. They should also have a
low diffusivity for Pb so as to accurately record
the radiogenic Pb ingrowth. Many minerals used
for U-Pb dating are accessory minerals (zircon,
baddeleyite, titanite, monazite, xenotime) but a
handful of them are major rock forming minerals
(calcite, garnet) or even ore minerals (cassiterite,
columbo-tantalite, uraninite, wolframite) (see
Table 2). This exceptional mineralogical diver-
sity allows most types of ore deposit and ore
forming processes to be dated directly or

analytical uncertainties based on U-Pb dates from tables
provided in the aforementioned publications. 'weighted
mean date reported in Harris et al. (2004). weighted
mean date reported in Harris et al. (2008). 3tracer used in
von Quadt et al. (2011) (written communication to the
authors). All uncertainties are given at 2o (95%
confidence)

indirectly with the U-Pb method. However, in
detail, all minerals do not provide equally pre-
cise, accurate and/or meaningful dates. In
Table 2, we have classified the minerals in three
categories depending on the average quality of
the date that they can provide. Nevertheless, we
stress that this classification should only be taken
as a ‘rule of thumb’ and that each case would be
different. For example, zircon might give very
imprecise and discordant dates while xenotime
from the same sample would return more precise
and concordant dates (e.g., Cabral and Zeh
2015).

5.1 Low Common Pb, High U
and Structurally Robust

Minerals

The most dated mineral is arguably zircon. This
is mainly due to its virtual ubiquity in the geo-
logical environment, its chemical and mechanical
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resistance in a range of extreme geological pro-
cesses from the surface to the deep Earth crust
and to the low diffusivity of U and Pb in its
crystal lattice (Cherniak et al. 1997; Cherniak
and Watson 2001, 2003; Harley and Kelly 2007).
Importantly, zircon may contain tens to thou-
sands of ppm of U (Hoskin and Schaltegger
2003) while essentially excluding initial Pb upon
crystallization (Watson et al. 1997). This is
mainly due to the large charge and ionic radius
differences between Pb** (1.26 A) and Zr**
(0.84 A) in eight-fold coordination in zircon. In
fact, common Pb in zircon is often limited to
small inclusions and to structurally damaged
parts of the crystal which are readily removed
with a chemical abrasion procedure while pre-
serving the crystalline portion of the mineral
(Mattinson 2005). The quality and ubiquity of
this mineral has triggered most of the technical
development of U-Pb geochronology including a
wealth of international reference materials used
for in-situ dating methods in all laboratories
around the world.

Nevertheless, other minerals such as badde-
leyite, columbite group minerals (columbo-
tantalite), and rare earth element (REE)-phos-
phates (monazite and xenotime) present U
enrichment and common Pb exclusion properties
comparable to zircon. Despite their occurrence in
the geological environment being more restricted
than that of zircon, published data often show the
same level of precision as for zircon, according
to the analytical method used. Chemical abrasion
techniques have been tested on these minerals
but show contrasting behavior. In the case of
monazite and baddeleyite, chemical abrasion has
not shown any significant improvement in term
of precision, reproducibility and concordance
(Rioux et al. 2010; Peterman et al. 2012). This
might be due to the fact that monazite and bad-
deleyite do not suffer metamictization (Seydoux-
Guillaume et al. 2002, 2004; Trachenko, 2004).
However, baddeleyite is suggested to become
tetragonal at high ion radiation doses, a phase
change that may facilitate radiogenic Pb mobility

C. Chelle-Michou and U. Schaltegger

(Schaltegger and Davies 2017). Additionally,
chemical abrasion has been successfully applied
to columbo-tantalite minerals and improved the
concordance of the data (Romer and Wright
1992). It is thought to remove small inclusions of
Pb bearing minerals such as uraninite or sec-
ondary Nb- and Ta-bearing minerals (Romer
et al. 1996).

5.2 Moderate Common Pb, Low U
and Structurally Robust
Minerals

Titanite, rutile and allanite represent very inter-
esting properties for U-Pb dating. These acces-
sory mineral species usually have low to
moderate amounts of common Pb while being
sufficiently enriched in U to allow precise dating
in most cases. Analytical protocols and matrix-
matched standards for in-situ dating have been
developed and allow some labs to routinely date
these mineral (Storey et al. 2006, 2007; Alei-
nikoff et al. 2007; Gregory et al. 2007; Luvizotto
et al. 2009; Zack et al. 2011; Darling et al. 2012;
Schmitt and Zack 2012; Smye et al. 2014). The
use of titanite and especially rutile as
geochronometers might be limited by their rela-
tively lower closure temperature of the U-Pb
system compared to zircon. Hydrothermal titanite
(e.g., in skarn deposits) would crystallize near or
just below its closure temperature allowing its
use as a geochronometer (Chiaradia et al. 2008;
Chelle-Michou et al. 2015), and helping to pin-
point antecrystic zircon growth (i.e., crystallized
in earlier magma pulses and incorporated in a
later pulse; Miller et al. 2007) in the skarn-
forming magmatic intrusion. Rutile is involved in
high temperature metamorphic reactions and can
produce new zircon upon recrystallization at
lower temperature and expulsion of Zr (e.g., Pape
et al. 2016). Allanite may have exceedingly high
Th/U ratios requiring a very careful approach for
accurately correcting and interpreting initial
#39Th disequilibrium (Oberli et al. 2004).
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5.3 Common Pb-Rich, Low U,
Structurally
and/or Chemically Weak
Minerals

A wealth of other minerals can be used for U-Pb
geochronology but tend (most of the time) to
produce lower quality data than the minerals
described above. This is mainly due to the high
ratio of common to radiogenic lead in these
mineral (>> 1 ppm) together with low U con-
centrations (< 10 ppm). This results in the cho-
sen common Pb correction having a critical
impact on the accuracy and precision of the
dates. The best dates are usually obtained with
the 3D isochron method or 238U/206Pb intercept
ages of mixing lines (so-called “isochrons™) in a
Tera-Wasserburg concordia space from LA-ICP-
MS dating (Schoene and Bowring 2006) and
potential accompanied with the measurement of a
cogenetic common Pb-rich phase (such as the
magnetite-apatite geochronometer; Gelcich et al.
2005).

Furthermore, some species such as brannerite,
calcite, uraninite, and, to a lesser extent, per-
ovskite and wolframite are prone to resetting of
the U-Pb system (Pb-loss), or even U mobility in
the presence of hydrothermal fluids that may also
promote dissolution/recrystallization of the min-
eral (e.g., Zartman and Smith 2009; Rasbury and
Cole 2009; Ono and Fayek 2011; Bergen and
Fayek 2012; Donnelly et al. 2012; Decree et al.
2014; Harlaux et al. 2017). This often results in
markedly normally or inversely discordant com-
mon Pb-corrected data. Recent, advances in cal-
cite U-Pb dating by LA-ICPMS and ID-TIMS
make it possible to routinely achieve uncertain-
ties on the order of 2-5% despite the high
amount of common Pb (Li et al. 2014; Coogan
et al. 2016; Roberts and Walker 2016; Burisch
et al. 2017). Due to the ubiquity of calcite in
vein, cement or replacement phase in mineral
deposits, calcite U-Pb dating is expected to open
to new opportunities for ore deposit research and
to address the timing of crustal fluid flow through
direct dating. Yet, the main difficulty of calcite
dating is to correctly interpret the event being
dated, or if unsure, allow for all reasonable

possibilities (e.g., see the case of the Hamersley
spherule beds, Australia; Woodhead et al. 1998;
Rasmussen et al. 2005).

5.4 Choosing the Best Mineral
for U-Pb Dating

The choice of the mineral targeted for U(-Th)-Pb
dating should be dictated by the particular event
or process of interest, cross-cutting and parage-
netic information, and geochemical and/or struc-
tural data. Dating without consideration of the
geological/petrographic context of the mineral
will very likely lead to erroneous interpretation.
One such example is the case of post-
mineralization rhyodacite porphyry at the Corro-
cohuayco deposit, Peru. There, most zircon grains
(11/13) from this post-mineralization porphyry
were dated ~0.5 Ma older that the syn-
mineralization porphyries it crosscuts (Chelle-
Michou et al. 2014). This unambiguous field
relationship shows that it could only be inter-
preted in the context of proto-pluton remelting,
rather than as the age of magma emplacement.

Magmatism is arguably the most easily dated
geological process. In the vast majority of cases
zircon would be the mineral of choice. Even rel-
atively mafic rocks can host zircon in the most
differentiated ‘melt pockets’ (e.g. the Bushveld
complex, South Africa; Zeh et al. 2015). In the
cases where zircon is absent from the magmatic
rock, usually in ultramafic, mafic or alkaline rocks,
baddeleyite or perovskite present good alterna-
tives. Finally, crust-derived granitoids often host
zircon grains that are dominantly inherited from
their source and minimally reflect new growth
from the granitic liquid (e.g., Clemens 2003). In
such cases, dating of monazite may be preferred.
The main goal of dating these magmatic minerals
is to constrain the age of magma emplacement in
the crust or of volcanic eruption.

The increasing precision of zircon dates
achievable with the CA-ID-TIMS method sheds
new light on the long-lived history of magmatic
systems. At the sample scale, more than 0.1 Ma
of protracted zircon crystallization has been
documented at a number of silicic systems, some
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of which are associated with porphyry copper
mineralization (Schiitte et al. 2010; Wotzlaw
et al. 2013; Chelle-Michou et al. 2014; Barboni
et al. 2015; Buret et al. 2017). When combined
with complimentary geochemical data, zircon
crystallization ages can provide valuable insights
into the specific petrological processes responsi-
ble the transition from barren to ore-producing
intrusions (Chelle-Michou et al. 2014; Tapster
et al. 2016; Buret et al. 2016).

Despite its common usage in ore deposit
research, the dating of magma intrusion only
rarely dates the mineralization itself. In fact, this
is only restricted to places where the ore minerals
have crystallized under magmatic conditions such
as the magmatic Ni—Cu-Cr(£Au £ PGE)
deposits and possibly some magmatic REE
deposits as well. If appropriate crosscutting rela-
tionship with the mineralization can be observed,
dating magmatic intrusions can elegantly bracket
the timing of ore deposition (e.g., von Quadt et al.
2011). In the case of porphyry, greisen, or vol-
canogenic massive sulfide (VMS) deposits the
age of the ore-related intrusion or of the associ-
ated volcanics may often provide a good, if not
excellent, approximation for age of the mineral-
ization. Yet, this approach requires much caution
as even in classical magmatic-hydrothermal
deposits such as W—Sn granite deposits or por-
phyry Cu deposits, the mineralization can have
been sourced by a hidden intrusion at depth while
being hosted in a previously emplaced one (e.g.,
Schaltegger et al. 2005). However, for deposits
where the relationship between ore formation and
a particular magma intrusion is ambiguous (e.g.,
iron oxide copper—gold (IOCG) deposits, oro-
genic Au deposit, epithermal deposits, distal
skarns) or even totally absent (e.g., Mississippi
Valley-type (MVT) deposits) it is much more
advantageous to determine directly the timing of
hydrothermal fluid circulation and/or of ore
deposition. The list of ore minerals suitable for
U-Pb dating include cassiterite (for Sn deposits),
wolframite (for W deposits) columbo-tantalite (in
some rare-metal granite, greisen and pegmatite
deposits), rutile (for Ti deposits), and minerals
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associated with U deposits (e.g., uraninite, bran-
nerite). This restricts the types of ore that can
dated with the U-Pb method. Alternatively, sev-
eral gangue mineral species can be used to date
hydrothermal fluid circulation, metasomatism and
metamorphism. Their relevance for the genesis or
reworking of the studied ore deposit is funda-
mentally linked to their position in the parage-
netic sequence with respect to the ore minerals.
REE-phosphates such as monazite and xenotime
are common in a wide variety of hydrothermal
systems ranging from granite-related rare metal
deposits to MVT deposits (Table 2) and, if
available, would be the ideal minerals to date
hydrothermal  processes. In few cases,
hydrothermal zircons at skarn (Niiranen et al.
2007; Wan et al. 2012; Deng et al. 2015¢), IOCG
(Valley et al. 2009), orogenic Au (Kerrich and
Kyser 1994; Pelleter et al. 2007), and
alkaline/carbonatite magmatism related rare-
metal deposits (Yang et al. 2013; Campbell
et al. 2014) have been reported and can date
hydrothermal activity and metasomatism. How-
ever, in the absence of these hydrothermal min-
erals (which is not uncommon), other minerals
listed in Table 2 with non-negligible amounts of
common Pb can be called on. Titanite or allanite
can provide excellent dates for skarn (Chiaradia
et al. 2008; Deng et al. 2014, 2015b; Chelle-
Michou et al. 2015) and IOCG deposits (Skirrow
et al. 2007; Smith et al. 2009; De Haller et al.
2011). Ore-stage calcite or apatite may sometimes
represent the only minerals suitable for U-Pb
dating at MVT deposits (Grandia et al. 2000) or
some REE-P deposits (Huston et al. 2016). The
ability of apatite to keep record of Cl, F, OH and
SO~ of the hydrothermal fluid (or magma) from
which it crystallizes (Webster and Piccoli 2015;
Harlov 2015) coupled with the possibility to date
it with the U-Pb method (Chew and Spikings
2015) opens interesting opportunities to refine ore
forming models. Finally, U-Pb minerals such as
rutile, apatite and/or titanite can provide invalu-
able thermochronological information on the
thermal evolution of the studied ore deposit dur-
ing and after its genesis.
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6 Case Studies of Applications
of U-Pb Dating to Mineral
Deposits

In the following section, we present two case
studies that make very distinct use of U-Pb
geochronology. The first one focuses on the
Witwatersrand gold deposits, South Africa, and
illustrates how geochronology based on several
mineral species can be used to bracket the age of
multiple geological events over long timescales
(> 10 Ma). The second one discusses how rather
than the absolute age, the duration of the min-
eralizing event at porphyry copper deposits can
help understand the ore-forming processes and
the main controls on the size (metal content) of
the deposits. These two examples embody dif-
ferent timescales of reasoning, different preci-
sion, accuracy and spatial  resolution
requirements, and different wuses of the
geochronological data.

6.1 Input of Multi-mineral U-Pb
Dating for Understanding
Gold Deposition

and Remobilization

in the Witwatersrand Basin,

South Africa

About 32% of all gold ever mined and about the
same proportion of known gold resources comes
from deposits hosted in the Witwatersrand Basin,
South Africa (Frimmel and Hennigh 2015), a
Mesoarchean detrital sedimentary basin depos-
ited on the Kaapvaal Craton (Fig. 9). The genesis
of this enormous accumulation of gold in the
crust has triggered one of the “greatest debate in
the history of economic geology” (see summary
in Muntean et al. 2005). Proposed models for the
deposition of gold range from a modified pale-
oplacer to a purely hydrothermal origin. These
disparate views arises from contradicting obser-
vations that are selectively put forward to favor
either model (Frimmel et al. 2005; Law and
Phillips 2005; Muntean et al. 2005). In fact,
probably none of these end-member models can

account for all the geological, chemical and
isotopic observations. The most recent models
rather consider the very peculiar conditions that
prevailed in the Mesoarchean atmosphere,
hydrosphere and biosphere (Frimmel and Hen-
nigh 2015; Heinrich 2015). At this time, redox
reations mediated by microbial life could have
triggered the synsedimentary precipitation of the
large quantities of gold dissolved in acidic and
reduced meteoric and shallow sea waters.

U-Pb geochronology has been instrumental in
the understanding of the formation Witwater-
srand goldfields. It first played an essential role in
calibrating the depositional age of the sediments
(Fig. 9). One of the most significant contribution
comes from Armstrong et al. (1991) who dated
zircons from volcanic rocks distributed along the
sedimentary pile of the basin. They constrained
the deposition of the Witwatersrand Supergroup
to within a timeframe of ca. 360 Ma from 3074
to 2714 Ma. Subsequent studies have focused on
detrital zircon and xenotime from the main for-
mations present along the stratigraphic column
and intimately associated with the gold-bearing
reefs (England et al. 2001; Kositcin and Krapez
2004; Koglin et al. 2010). These have confirmed
the previous depositional ages but provide addi-
tional insight in the source of the detritus that
filled the basin, as well as secular changes in the
catchment area of the basin over time. Results
show that the source area of detritus has an
increasing age-range of rocks undergoing erosion
over time. Apart from the lowermost part of the
Witwatersrand Supergroup (Orange Formation,
West Rand Group) which has dates clustering
around 3.21 Ga, zircon dates from the West
Rand Group cluster around 3.06 Ga, with only
few older and younger dates (Fig. 9). Further-
more, zircon dates from the Central Rand Group
shows additional peaks at 2.96-2.92 Ga and
3.44-3.43 Ga with several intervening dates in
between these main peaks. Dates of detrital
xenotime are mostly within the 3.1-2.9 Ga range
but also extend as low as 2.8 Ga (Fig. 9). Koglin
et al. (2010) and Ruiz et al. (2006) further link
the gold-rich sediments to the presence of the
3.06 Ga zircon age peak. When compared with
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Fig. 9 Compilation of available U-Pb data from the
Witwatersrand basin plotted against the stratigraphic
position of the sample. Stratigraphic column of the
Archean to early Proterozoic succession in South Africa
from Muntean et al. (2005). Data from the Witwatersrand
basin are from Armstrong et al. (1991), England et al.
(2001), Kositcin et al. (2003) Kositcin and Krapez (2004),
Rasmussen et al. (2007a) and Koglin et al. (2010). Ages

outcropping Archean terrains of the Kaapvaal
Craton, these zircons could have originated from
the greenstone belts west of the Witwatersrand
basin (Madibe and Kraaipan), rocks in the
immediate proximity of the basin (e.g., Johan-
nesburg and Vrefefort Dome) or from equivalent
units located northwest of the basin that might be
present below the post-Witwatersrand cover
(Koglin et al. 2010). More distal candidates such
as the Murchison and the Barberton greenstone

of the intrusion of the Bushveld Complex and of the
Vredefort impact are from Zeh et al. (2015) and Moser
(1997),  respectively.  Kernel density  estimates
(KDE) where obtained using DensityPlotter (Vermeesch
2012). Selected data are 95-105% concordant and data
points are plotted at the 2¢ uncertainty level. Inset map of
the Kaapvaal craton is modified from Poujol (2007)

belts have also been proposed (Ruiz et al. 2006;
Koglin et al. 2010). This interpretation is also
compatible with paleocurrent directions and iso-
topic data (Koglin et al. 2010).

A paleoplacer model requires that all of the
gold deposited in the basin originated from the
same eroding massifs that sourced the sediments.
However, such gigantic quantities of gold are
two orders of magnitude in excess of all the gold
ever mined and discovered in the potential
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outcropping massifs that sourced the zircons.
This observation has been a major argument
against any sort of paleoplacer model (e.g.,
Phillips and Law 2000; Law and Phillips 2005;
Frimmel and Hennigh 2015). The existence of a
now vanished or buried, hypothetical massif as a
source of this huge amount of gold would pose
an equally important question about how this
massif would have been exceptionally well
endowed with gold.

An epigenetic (hydrothermal) origin of the
gold is supported by several petrographic
observations. Yet, cross-cutting relationship
suggest that hydrothermal activity took place
before deposition of the Platberg Group, that is,
before ca. 2.7 Ga (e.g., Law and Phillips 2005;
Meier et al. 2009). U-Pb dating of diagenetic
xenotime have yielded a major peak between
2.78-2.72 Ga which could be related to a heating
event and flood-basalt volcanism during the
deposition of the Klipriviersberg Group, imme-
diately following the deposition of the Witwa-
tersrand Supergroup (Fig. 9; England et al. 2001;
Kositcin et al. 2003). Although this timing for
gold introduction would be consistent with tem-
poral constrains, the association of gold with this
2.78-2.72 Ga xenotime has not been reported.
Additionally, U-Pb dating of metamorphic-
hydrothermal REE-phosphates (monazite and
xenotime) paragenetically associated with some
gold or unrelated to gold mostly records ages
between 2.06 and 2.03 Ga throughout the strati-
graphic succession from the Witwatersrand to the
Transvaal Supergroups (Fig. 9; England et al.
2001; Kositcin et al. 2003; Rasmussen et al.
2007a). This age is consistent with the
emplacement age lof the Bushveld complex on
the northern flank of the Witwatersrand Basin
(Zeh et al. 2015) which most likely triggered
fluid circulation, gold remobilization and peak
greenschist metamorphic conditions in the basin
(Rasmussen et al. 2007a).

While none of the available U-Pb data for the
Witwatersrand basin (Fig. 9) can firmly date gold
deposition, or conclusively explain how gold was
deposited, they have provided the necessary
temporal framework on which to challenge rel-
ative chronological data. They have brought

significant arguments against each of the classi-
cal models invoked for the formation of this
district (syngenetic vs epigenetic) while con-
firming that gold remobilization occurred long
after the formation of the deposit and contributed
to the emergence of new ore forming models
(Frimmel and Hennigh 2015; Heinrich 2015).
This example highlights the necessity to properly
constrain each U-Pb date against paragenetic,
cross-cutting and stratigraphic observations in
order to draw meaningful conclusions. The
Witwatersrand gold deposits result from a long-
lived and multi-episodic geological history where
U-Pb geochronology provided constraints on
basin formation, sediment provenance, diagene-
sis and metamorphism. It is noteworthy that the
different minerals that were dated (zircon, mon-
azite, xenotime), individually record a limited
portion of the multiple processes that shaped the
Witwatersrand basin and proved to be highly
complementary to each other. Unveiling this
protracted history did not require particularly
high-precision dating methods, as LA-ICPMS
and SIMS instruments with high sample
throughput (Table 1) proved very effective.
Additionally, the very high spatial resolution
achievable with a SIMS instrument was crucial in
unlocking the U-Pb information in tiny xenotime
and monazite crystals identified from thin
sections.

6.2 Zircon U-Pb Insights
into the Genesis
on Porphyry Copper
Deposits

Porphyry copper deposits (PCDs) typically form
at convergent margins in association with sub-
duction or post-subduction magmatism (e.g.,
Richards 2009). Metals and sulfur fixed in these
deposits are thought to have been sourced from a
cooling and degassing fluid-saturated magma
body emplaced at shallow depths within the
upper crust and transported to the site of depo-
sition by magmatic-hydrothermal fluids (Heden-
quist and Lowenstern 1994; Sillitoe 2010; Pettke
et al. 2010; Simon and Ripley 2011; Richards



70

2011). Ultimately, very efficient fluid focusing
and sulfide precipitation together with post-
mineralization ore deposit preservation will
favor the presence of economic porphyry
deposits at erosion levels.

The USGS global database of PCDs shows
that these deposits span more than four orders of
magnitude in copper endowment (Singer et al.
2008; Fig. 10a). Yet, the specific factors that
control the size of these deposits have remained
speculative. Comparing ‘standard’ and ‘giant’
PCDs, Richards (2013) speculated that the for-
mation of the largest deposits result from a
combination of copper enrichment in the magma,
the focusing of fluids in structural corridors and,
long-lived hydrothermal activity may favor the
formation of the largest deposits. Among these
possible factors, the timescale of PCD formation
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may play a significant role in their size. Com-
piling geochronological data (U-Pb on zircon
and Re-Os on molybdenite) from PCDs around
the world, Chelle-Michou et al. (2017) and
Chiaradia and Caricchi (2017) have highlighted a
correlation between the duration of the mineral-
izing event and the total mass of copper depos-
ited, suggesting an average copper deposition
rate of about 40 Mt/Ma (Fig. 10b). This rela-
tionship probably reflects the mass balance
requirement for a giant deposit to be sourced by a
large body of magma, which is incrementally
injected into the upper crust over long timescales
(see Chelle-Michou et al. 2017).

Similar conclusions where reached by Caric-
chi et al. (2014) who suggested that magma-
tism associated with economic PCDs is
distinguishable from background pluton-forming
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Fig. 10 a probability density distribution of Cu endow-
ment in global porphyry copper deposits (PCDs). Data
from Singer et al. (2008). b Correlation between the
duration of the mineralizing event and the total amount of
Cu deposited (adapted from Chiaradia and Caricchi,
2017). BH: Batu Hijau (Indonesia), BjA: Bajo de
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magmatism and large-eruption-forming magma-
tism by large magma volumes emplaced at
average rate of magma injection (~0.001 km?/
yr). This conclusion was drawn through inverse
thermal modelling of high-precision CA-ID-
TIMS U-Pb zircon age distributions.

While geochronology on PCDs has been
mostly used to determine the formation age of
these deposits, high-precision geochronological
data can now be used to elucidate the duration of
the ore-forming process. Figure 10b shows that
the duration of ore-formation may be a signifi-
cant control on their size (i.e., metal endowment)
and, by inference, on the specific processes
responsible for their formation. In addition, high-
precision geochronological data may be able to
help test the validity of numerical models of PCD
formation (e.g., Weiss et al. 2012), or directly as
input data into numerical models aiming at
quantifying the time-volume-flux-geochemistry
relationships of the magmatism associated with
PCD genesis (e.g., Caricchi et al. 2014; Chelle-
Michou et al. 2017; Chiaradia and Caricchi
2017). These studies only start to unearth the
great potential of high-precision CA-ID-TIMS
U-Pb dating for PCD exploration, and can also
significantly contribute to a better understanding
of PCD magmatic ore-forming processes.

7 Concluding Remarks

Over the past two decades U-Pb geochronology
has become an essential tool for the study of ore
deposits. After a century of development, more
than 16 minerals can now be dated with the U-
Pb technique allowing its use for most types of
ore deposits. U-Pb dating is most commonly
used to provide the age of a particular geological
event related to a studied deposit (e.g., mag-
matism, hydrothermal activity, sedimentation,
metamorphism, ore deposition and remobiliza-
tion), depending on the mineral(s) available for
dating. The choice of the mineral(s) and of the
analytical technique (LA-ICPMS, SIMS or ID-
TIMS) used for dating mainly depends on the
scientific questions that need to be answered and
on the opportunities offered by the studied

deposit. This point is perhaps one of the main
limitations of the U-Pb dating of ore deposits.
For example, MVT deposits rarely contain
minerals suitable for U-Pb dating (potentially
calcite, provided it has low initial Pb), in which
case the use of other isotopic systems will be
necessary (e.g., Rb—Sr on sphalerite, Re—Os on
sulfides). In addition, as we have seen in the
case of the Witwatersrand basin, the spatial
resolution required for the analysis may some-
times critically guide the choice of the analytical
method.

Recent advances that combine numerical
modelling with U-Pb geochronology for por-
phyry copper deposits suggest that high-
precision zircon U-Pb data may also be used as
a window to better understand the magmatic
aspect of the ore-forming process (Caricchi et al.
2014) and to unravel the fundamental controls on
the size of the deposit (Chelle-Michou et al.
2017; Chiaradia and Caricchi, 2017). Compara-
ble studies on other deposit types could poten-
tially advance our understanding of ore-forming
processes and may generate innovative tools for
mineral exploration.

A further important development of U-Pb
geochronology concerns its coupling with tex-
tural and geochemical data (e.g., trace elements,
Lu-Hf isotopes, O isotopes) obtained on the
same grain or on the same spot as the U-Pb data.
This is commonly referred to as ‘petrochronol-
ogy’ and allows temporal information relative to
the evolution and/or the source of the liquid (a
magma or an aqueous fluid) from which the
mineral precipitated and potentially the rate of its
evolution (e.g., Ballard et al. 2002; Smith et al.
2009; Valley et al. 2010; Pal et al. 2011; Rao
et al. 2013; Yang et al. 2013; Griffin et al. 2014;
Rezeau et al. 2016; Poletti et al. 2016; Gardiner
et al. 2017). In particular, high-precision
petrochronology on zircon and baddeleyite can
provide unprecedented insights into the pro-
cesses at play during magma evolution, the
potential turning point leading to mineralization,
or, the link between small intrusive bodies (dykes
or stocks) or volcanic products and their larger
deep-seated plutonic source (e.g.,Wotzlaw et al.
2013, 2015; Chelle-Michou et al. 2014; Tapster



72

et al. 2016; Buret et al. 2016; 2017; Schaltegger
and Davies, 2017).

The field of U-Pb geochronology is working
towards a level of maturity whereby inter-
laboratory reproducibility will be guaranteed in
most labs around the world and where each date
and its uncertainty can be fully traceable to SI
units. This however, should not mask the high-
level of competency and training required to
certify the quality of the analysis, to maintain the
lab at the best level (picogram levels of common
Pb contaminations can be dramatic in a CA-ID-
TIMS lab) and, very importantly, the interpreta-
tion of the dates into geologically relevant ages.
As we have shown, there are numerous potential
pitfalls that, if not carefully accounted for, can
result in unsupported or even wrong conclusions.

The improving precision, accuracy and spatial
resolution of analyses now achievable, chal-
lenges paradigms of ore-forming processes and
will continue to contribute significant break-
throughs in ore deposit research and potentially
also contribute to the development of new min-
eral exploration tools. The full added value of U-
Pb geochronology will however only be assured
through its coupling with geochemical data,
high-quality field and petrographic observations
and numerical modelling.
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