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Foreword 

Aquatic macrophytes are extremely important for the functioning and maintenance 
of aquatic ecosystems, as they are a source of organic matter, influence the cycling 
of nutrients and also provide food, shelter and a breeding place for fauna. In addition 
to these ecological benefits, they are of great interest since many macrophyte species 
are used for the treatment of domestic and industrial wastewater. My experience with 
macrophytes is related to studies of phytoremediation as an emerging alternative for 
water decontamination. The use of plants to metabolize, stabilize and/or accumu-
late contaminants and pollutants in their biomass has shown promising results for 
the removal of pharmaceuticals from water, for example. More specifically, pterido-
phyte species have been identified as effective phytoremediator agents. Among them, 
aquatic macrophytes have shown prominence in water decontamination, mainly due 
to their rapid growth and ability to reclaim contaminants. 

Therefore, this book is a timely and important review and discussion of new 
approaches for the use of macrophytes. In addition to phytoremediation, the appli-
cation of bioindicators for pollutants are being considered in the ecological risk 
assessment (ERA) for chemicals and other contaminants that could affect their 
services. There are some challenges in fullfilling this toxicity assessment which 
include: which macrophytes should be used, including submerged and emergent 
species, local species or varieties, and consideration of the diversity of climates, the 
complexity of stressor exposures and ecological contexts. The chapters in this book 
discuss some microcosm and mesocosm studies and modeling approaches, providing 
a global perspective on the use of macrophytes for ERA. 

The book also addresses both traditional and innovative approaches for monitoring 
responses to contaminant exposure, addressing current issues at hand, and providing 
a research guide for studying the effects of pollution on aquatic macrophytes in 
the field. An integrated model for monitoring multiple biomarkers from bench-scale 
studies of biomarker responses to metals, pesticides, pharmaceuticals and per- and 
poly-fluoroalkyl substances is described. 

This book is a comprehensive overview of the current knowledge on aquatic 
macrophyte ecotoxicology and was written for specialist scientists from different
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countries. It was a pleasure to review this book and I congratulate the co-editors for 
this scientific contribution. In the chapters, detailed reviews are introduced, as well 
as important concepts and future developments for macrophyte applications. 

Helena Cristina da Silva de Assis 
Environmental Toxicology Laboratory 

Federal University of Paraná 
Curitiba, Paraná, Brazil
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Chapter 1 
The Ecotoxicology of Aquatic 
Macrophytes: An Overview 

Mirta L. Menone , Braedon W. Humeniuk , and Chris D. Metcalfe 

Abstract Aquatic macrophytes are a morphologically and physiologically diverse 
group of vascular plants that are distributed all over the world in a variety of aquatic 
habitats. They provide a range of ecological services, as well as habitat for aquatic 
vertebrates and invertebrates, and are important primary producers that support both 
herbivores and detritivores. Aquatic macrophytes are exposed to a range of contami-
nants of both geogenic and anthropogenic origin. In order to protect aquatic ecosys-
tems from the impacts of these contaminants, toxicity studies with species of aquatic 
macrophytes should be essential components of ecological risk assessments. This 
chapter provides an overview of the challenges and the opportunities for ecotoxi-
cology studies using aquatic macrophytes and provides an introduction to the more 
detailed reviews and reports in subsequent chapters of the book. 

1.1 Introduction 

Aquatic macrophytes constitute an assemblage of taxonomically diverse macro-
scopic plants that are characterized by a life cycle that takes place completely or 
partially in the aquatic environment. Macrophytes have evolved mechanisms that 
allow them to adapt to environmental heterogeneity (e.g., changing water levels) 
and to inhabit various types of aquatic habitats, including lakes, rivers, streams, 
wetlands, swamps, seasonally flooded areas, as well as brackish and marine environ-
ments (Lesiv et al. 2020). Vascular plants represent the largest group among macro-
phytes, including aquatic ferns (Azolla spp., Salvinia spp.) but mostly Angiosperms;
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both monocots and dicots (Rejmánková 2011). These vascular aquatic macrophytes 
(hereafter referred to as aquatic macrophytes) are represented by 33 orders and 88 
families, with about 2,614 species distributed worldwide. Overall, the diversity is 
highest in the Neotropics (984 species), intermediate in the Indomalayan, Nearctic 
and Afrotropics (664, 644 and 614 species, respectively), lower in the Palearctic and 
Australasia (497 and 439 species, respectively), and in the Oceanian (108 species), 
while only a very few vascular macrophyte species have been found in the Antarctica 
bioregion (Chambers et al. 2008). 

The most common classification for aquatic macrophytes is by their growth form 
or the basis of attachment to the substratum, which includes four groups: (1) emergent 
macrophytes that are rooted in sediments or soils that are periodically inundated, but 
with aerial leaves; (2) floating leaved macrophytes rooted to the bottom substrate in 
streams and lakes with leaves that float on the surface of the water; (3) free-floating 
macrophytes that typically float on or under the water surface but are not attached to 
the bottom; and (4) submerged macrophytes that grow completely submerged under 
the water, with roots attached to, or closely associated with the substrate (Wetzel 
1975; Chambers et al. 2008; Srivastava et al. 2008; Hanson 2013). Examples of the 
types of macrophytes are illustrated in Fig. 1.1.

This introductory chapter describes the importance of aquatic macrophytes for 
the functioning of aquatic ecosystems and for the well-being of humans, and also 
provides an overview of approaches for using aquatic macrophytes in ecotoxicology 
studies and for risk assessments. In subsequent chapters in this book, experts in the 
field of the ecotoxicology of aquatic macrophytes provide in-depth descriptions of 
the use of these plants for assessing the impacts of environmental pollution through 
biomonitoring and biomarkers, evaluating recoveries from contamination and for 
conducting risk assessments, as well as the potential for using macrophytes for 
bioremediation. 

1.2 The Importance of Macrophytes in Aquatic Ecosystems 

Aquatic macrophytes are primary producers at the base of both herbivorous and detri-
tivorous food chains. They also provide physical structure to aquatic ecosystems, 
increase habitat complexity and heterogeneity, affect oxygen and nutrient concen-
trations, provide refuge from predation and release dissolved organic carbon which 
can be used by microbial complexes in periphyton or plankton (Bakker et al. 2016). 
Thus, aquatic macrophytes play an important role in the structure and the functioning 
of aquatic ecosystems. Photosynthesis driving primary production by macrophytes 
provides energy flow to the food webs of a range of aquatic ecosystems. In addition to 
the role of carbon derived from microalgae to higher trophic levels, there is evidence 
that carbon from the detritus generated by macrophytes may be an important carbon 
source for invertebrates and fish. In addition to providing organic matter for detriti-
vores, macrophytes also provide food resources to aquatic and terrestrial herbivores 
(Thomaz 2021). 

Plant biodiversity is also the foundation of food security for humans and in some 
cases, the basis for identifying new medicines. Aquatic macrophyte communities
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Fig. 1.1 Selected freshwater macrophytes that have been used in ecotoxicology studies: (a) 
cattail (Typha spp.), (b) beggartick (Bidens spp.), (c) water hyacinth (Eichhornia spp.), (d) duck-
weed (Lemna spp.), (e) primrose-willow (Ludwigia spp.), (f) water milfoil (Myriophyllum spp.). 
Photographs a, b, c and e were provided by Silvina Bachmann, photograph d by Nicolás Chiaradía 
and photograph f by Débora Pérez

offer multiple other benefits to humankind in terms of ecosystem functions, as well as 
resilience to climate change and other perturbations (Ebert and Engels 2020). Thomaz 
(2021) recognized these benefits within the paradigm of “ecosystem services” and 
identified more than 26 types of ecosystem services provided by aquatic macrophytes. 
These services were classified into supporting (e.g., photosynthesis and production 
of oxygen), provisioning (e.g., food and fiber provided by plant biomass), regulating 
(e.g., water purification through retention of nutrients and pollutants) and cultural
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(e.g., local knowledge systems of communities which depend on ecosystems with 
macrophytes for survival). 

1.3 Ecotoxicology Studies with Aquatic Macrophytes 

Ecological stressors such as climate change, eutrophication, acidification or intro-
duced species have been recognized as drivers of reduced macrophyte diversity in 
aquatic ecosystems (Chambers et al. 2008). In addition, natural ecosystems are 
subject to contamination by a number of elements of geogenic or anthropogenic 
origin, as well as xenobiotics. Anthropogenic activities such as discharges of indus-
trial and municipal wastewater, and wastes originating from households, industry 
and agriculture are the main sources of the contaminants transported into aquatic 
ecosystems (Piwowarska and Kiedrzynska 2022). Aquatic macrophytes have been 
used as bioindicators of water quality in lentic and lotic systems in studies that focus 
on changes in plant communities (Thiebaut and Muller 1999; Ceschin et al. 2010), 
as well as studies of effects at the organismal level (Menone et al. 2000; Bonanno 
et al. 2017; Pérez et al. 2017). Despite the crucial role of macrophytic plants in 
aquatic ecosystems, these organisms have been underemployed for evaluating the 
impacts of anthropogenic activities, if compared to the number of comparable studies 
conducted with animals. Even so, the majority of ecotoxicology studies with aquatic 
macrophytes have focused on a narrow range of plant species, including Lemna 
spp., Myriophyllum spp. and Hydrilla spp. (Ceschin et al. 2021). These and other 
macrophytes species that have been used in ecotoxicology studies conducted in the 
laboratory and in the field are listed in Table 1.1.

Ecological risk assessments typically involve two main experimental or predictive 
approaches, as illustrated in Fig. 1.2. “Exposure Assessments” consist of measure-
ments of the concentration of a toxicant of interest in a relevant environmental matrix 
(e.g., water, sediment, soil, air) or alternatively, calculations to predict what the 
concentration is expected to be. These data are used to determine a Predicted Expo-
sure Concentration (PEC). “Effects Assessments” consist of measurements of the 
acute or chronic toxicity of the toxicant of interest to a range of organisms and these 
data are used to determine a Predicted No Effect Concentration (PNEC). The “Risk 
Characterization” step involves comparing the PEC to the PNEC to determine if 
exposure concentrations are likely to exceed the thresholds for toxicity (Fig. 1.2). 
Risk Management steps may be needed if there is a clear risk of impacts to aquatic or 
terrestrial species. For Effects Assessments that focus on threats to aquatic ecosys-
tems where there are macrophytes (e.g., wetlands), there is no specific species or 
taxonomic group that is consistently more sensitive to the toxic effects of contami-
nants, including the standard duckweed (Lemna spp.) test organisms (Fairchild et al. 
1998; Arts et al.  2008; Giddings et al. 2013). This highlights the need to incorporate 
toxicity studies with a suite of macrophytic test species into risk assessments (Lemly 
et al. 1999; Hanson and Arts 2007; Repetto 2013).

Duckweed species offer several advantages as a model test organism, as they have 
a wide geographic range (i.e., environmentally relevant), are exceptionally easy to
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Table 1.1 Aquatic macrophytes that have been used in ecotoxicological studies, classified as 
emergent, floating leaved, free floating and submerged 

FW: freshwater (lakes, streams, wetlands); SM: saltmarsh; MG: mangrove; M: marine 

Emergent Free floating Floating leaved Submerged 

Bidens laevis (FW) Eichhornia 
crassipes (FW) 

Ludwigia peploides 
(FW) 

Elodea canadensis 
(FW) 
E. nutalli 

Bruguiera 
gymnorrhiza (MG) 
Kandelia candel 
(MG) 
Rhizophora 
mucronate (MG) 

Ceratophyllum 
demersum (FW) 

Potamogeton 
natans (FW) 

Hydrilla verticillate 
(FW) 

Glyceria maxima 
(FW) 

Lemna minor (FW) 
L. gibba 

Myriophyllum 
aquatium (FW) 
M. alterniflorum, 
M. quitense, 
M. spicatum 

Oryza sativa (FW) Spirodela polyrhiza 
(FW) 

Posidonia oceánica 
(M) 

Phragmites 
australis (FW) 

Vallisneria 
neotropicalis (FW) 
V. natans 

Spartina densiflora 
(SM) 
S. alterniflora 

Zostera marina (M) 

Typha latifolia (FW) 
T. domingensis 

Fig. 1.2 The elements of an 
ecological risk assessment. 
PEC = Predicted Exposure 
Concentration; PNEC = 
Predicted No Effect 
Concentration; PEC/PNEC 
= Hazard Quotient

Hazard 
Identification 

Exposure 
Assessment 

(PEC) 

Effects 
Assessment 

(PNEC) 

Risk 
Characterization 

(PEC/PNEC) 

Risk 
Management 

Acute toxicity tests: 
. Microorganisms 
. Plants 
. Invertebrates 
. Vertebrates 
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culture, bioassays are relatively inexpensive and simple to conduct, and it is possible 
to measure toxicity over a relatively short period of time (Rand et al. 1995; Brain  
and Solomon 2007; Hanson 2013). Duckweed species have been used to evaluate 
the cytotoxic and mutagenic effects of several classes of contaminants, including 
pesticides, pharmaceuticals, polycyclic aromatic hydrocarbons, metals, metalloids, 
organometal compounds and radionuclides (Mkandawire et al., 2013). However, 
duckweed species lack stems, true leaves and a sediment-interacting root system, 
and therefore, concerns have been raised about the suitability of Lemna spp. as a 
surrogate for all macrophytes, especially when testing compounds with herbicidal 
activities or assessing the risks to wetland ecosystems (Maltby et al. 2009; Arts et al.  
2010; Hanson 2013). There are also limitations when evaluating responses under 
controlled field assessments (e.g., microcosm or mesocosm studies), as these systems 
are not typically eutrophic. This can mean that growth responses of duckweed are 
reduced under conditions of nutrient deficiency, especially in comparison to rooted 
submerged and emergent macrophytes, which are able to access nutrients available 
from both the sediments and the water column (Maltby et al. 2009; Hanson 2013). 
Additionally, effects of stressors that may impair light availability within the water 
column (e.g., turbidity) are not effectively captured by duckweed, as they typically 
float at the surface with ample access to light (Brain et al. 2005). 

Because of the limited predictive capabilities of duckweed for evaluating the 
effects of sediment-bound contaminants, there are also standardized test methods for 
the rooted, submerged eudicot, Myriophyllum spp. Toxicity tests with M. sibiricum or 
M. spicatum have been applied when assessing the risks from exposure to herbicides 
that partition into sediments or for studies of eudicot targeted herbicides such as 
chlorophenoxy compounds (Arts et al. 2010; OECD 2014). Although there have 
been numerous other macrophytes used in toxicity tests (Table 1.1), the widespread 
adoption of additional test species for risk assessments has been limited, due in part 
to the lack of standardization and validation of testing procedures (Hanson 2013). 
However, there is ample evidence that macrophytes should be an essential component 
of effects assessments for a range of aquatic ecosystems (Hanson and Arts 2007; Arts  
et al. 2010; Giddings et al. 2013; Hanson 2013). 

Because of the diversity of growth forms or the basis of attachment to substrata, 
macrophytes can be exposed to contaminants through several pathways, such as in 
sediments, in the water column, or through aerial exposure (Vonk and Kraak 2020). 
It is imperative for risk assessments to address the different pathways of exposure 
that apply to a particular ecosystem or to a specific toxicant of interest. Single-
species toxicity testing introduces high levels of uncertainty for an effects assessment, 
especially when used as a sole line of evidence rather than in a weight-of-evidence 
approach (Maltby et al. 2009; Taylor and Scroggins 2013). To reduce uncertainty 
when characterizing the risk to non-target organisms, studies with macrophytes with 
different morphologies and exposure pathways must be included in the standard 
regulatory risk assessment process. In Chap. 5, wild rice (Zizania spp.) is presented 
as a candidate species for assessing risks to wetland ecosystems, as this rooted and 
emergent plant can be exposed to contaminants in sediment, water and air. Chapter 4 
provides a global perspective on the use of macrophytes for risk assessments.
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As was pointed out decades ago, simply determining the contaminant loads of 
organisms does not necessarily provide information on the toxicological significance 
of the body burden, or on the many factors which can influence the accumulation 
of contaminants. An alternative and potentially more useful approach is to evaluate 
indexes of sublethal stress, or “biomarkers” (Padinha et al. 2000). There are several 
studies in the literature on biomonitoring with macrophytes that include data on 
stress biomarkers, which are mostly biochemical responses (Lytle and Lytle 1998; 
Nimptsch et al. 2005; Turull et al. 2017; Bertrand et al. 2019). Chapter 3 in this book, 
provides a review of studies of bioaccumulation and biomarker responses with an 
emergent freshwater macrophyte, Potamogeton pusillus, and with mangrove species 
exposed in the laboratory and in the field to metals and metalloids. In this book, 
Chap. 2 provides a review of physiological, biochemical and genotoxicity biomarkers 
that have been measured in aquatic macrophytes in response to exposures to different 
classes of contaminants, including metals and metalloids, current use pesticides and 
emerging contaminants such as pharmaceuticals and personal care products (PPCPs) 
and per- and polyfluoroalkyl substances (PFASs). In addition, Chap. 6 includes a 
discussion of the potential for recovery by aquatic macrophytes from the effects of 
exposure to herbicides. 

Due to the detrimental effects of toxic elements and xenobiotics on living organ-
isms, there is a pressing need to develop strategies for eliminating or mitigating 
exposures to the contaminants that are discharged into the aquatic environment 
(Piwowarska and Kiedrzynska, 2021). On this subject, Chap. 7 describes best prac-
tices using drainage ditches vegetated with macrophytes as a management strategy 
to reduce the levels of contaminants (primarily pesticides and nutrients) entering 
surface waters in runoff from agricultural lands. Similarly, Chap. 8 describes “Green 
Liver” systems applied at laboratory and field scales, as low-impact, low-energy and 
low-cost systems for the remediation of pollutants in water. 

1.4 Conclusions 

Overall, this book provides a valuable addition to the literature on the use of macro-
phytes to assess the impacts of contaminants in aquatic ecosystems, and also, the 
potential for using macrophyte communities to reduce pollutant loading to the envi-
ronment. Clearly, there is a need to develop standardized methods for toxicity testing 
using alternative test species, in addition to the standard operating procedures that 
have been developed with Lemna spp. and Myriophyllum spp. Continued work is 
needed to identify stress responses that can be used as biomarkers of exposure to toxi-
cants, including employing -omics approaches. Finally, communities of macrophytes 
offer promise as “Nature-based Solutions” for mitigating the effects of substances 
that enter the aquatic environment from geogenic and anthropogenic sources. 

Acknowledgements We appreciate the assistance of Silvina Bachmann, Débora Pérez and Nicolás 
Chiaradía for providing photographs of aquatic macrophytes for this chapter.
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Chapter 2 
Biomarkers in Aquatic Macrophytes: 
Traditional and Novel Approaches 
for Monitoring Responses to Exposure 
to Pollutants 

Mirta L. Menone and Débora J. Pérez 

Abstract The present work is a compilation and a discussion of articles published 
from 2008 to date, focusing on physiological, biochemical and genotoxicity 
biomarkers in aquatic macrophytes, including those most frequently used methods as 
well as novel approaches. This review indicates that batteries of biomarkers mainly 
related to dysfunction of the photosynthetic process and to oxidative stress/damage 
have been applied for testing responses of aquatic macrophytes to a range of 
pollutants. These include metals, metalloids and organometals (METs), current use 
pesticides (CUPs), polynuclear aromatic hydrocarbons (PAHs) and contaminants 
of emerging concern, which includes pharmaceuticals and personal care products 
(PPCPs) and per- and polyfluoroalkyl substances (PFASs), among others. Some 
research gaps emerged from the analysis of the literature, such as few ecotoxicolog-
ical bioassays that evaluate the effects of environmental conditions (abiotic factors) 
on toxicity to macrophytes at realistic environmental concentrations. There is also 
a lack of studies focusing on marine species versus freshwater macrophytes. Tradi-
tional biomarkers like markers of oxidative stress and the content of photosynthetic 
pigments are still the most widely used methods. Other biomarkers related to the 
function of the mitochondrial electron transport chain and chlorophyll fluorescence 
(Chl F) are also recommended. Novel molecular biomarkers (e.g., gene expression) 
have shown promising results. For most of the types of pollutants studied, batteries 
of biomarkers in bench-scale tests have demonstrated modes of action (MoAs) but 
there is still a lack of validation of these methods under natural exposure scenarios
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since in situ studies are scarce. To guide researchers studying pollution effects on 
aquatic macrophytes in the field, we developed integrated models for monitoring 
of multiple biomarkers from bench-scale studies of biomarker responses to copper, 
atrazine, ciprofloxacin and PFASs. 

2.1 Biomarker Definition and Classification 

The term biomarker has been defined as “biological responses to an environmental 
chemical at the individual level or below; demonstrating a departure from the normal 
status” (Walker et al. 2001). The principal biomarkers tested have been ‘measurable 
responses’ that occur in photosynthetic activity, enzymatic processes of nutrition, 
secondary metabolite synthesis, oxidative stress and/or detoxification mechanisms 
(Ferrat et al. 2003). However, the development and availability of sophisticated tech-
niques has made it possible to study biological pathways in greater depth, and to 
include other biological responses as biomarkers. In this sense, novel measured 
responses which involve mitochondrial respiration, DNA damage, gene expression, 
metabolomics, epigenetic changes, among others, are now considered as “novel 
biomarkers.” 

In this chapter, there is a discussion of the biological implications of changes in 
biomarkers in aquatic plants exposed to a range of contaminants, such as metals, 
metalloids and organometals (METs), polynuclear aromatic hydrocarbons (PAHs), 
current use pesticides (CUPs), contaminants of emerging concern, which include 
pharmaceuticals and personal care products (PPCPs) and per- and polyfluoroalkyl 
substances (PFASs), among other xenobiotics, such as phthalates and other plas-
ticizers and surfactants. The cited literature is a compilation of original articles 
published from 2008 to date, taking as a starting point the seminal work of Brain and 
Cedergreen (2008). In that work, the authors concluded that all assessed biomarkers 
provided valuable information on the physiological effects of specific stressors, and 
that they were valuable tools in identifying modes of action (MoAs). In addition, 
these authors predicted that studies of aquatic plant biomarkers would be confined 
primarily to laboratory studies until further knowledge is gained regarding the 
time, dose and growth-factor dependence of biomarkers, in different species. The 
present work confirms this prediction since most of the research conducted subse-
quent to 2008 involves bench-scale bioassays, while examples of the application of 
biomarkers as tools for in situ biomonitoring are scarce. The studies reviewed in the 
present work show the sensitivity and versatility of biomarkers in aquatic plants for 
identifying MoAs, but these techniques have been applied to a much lesser extent in 
field studies. Studies have been classified according to major classes of biomarkers 
such as physiological, biochemical, genotoxicity and molecular. 

• Physiological biomarkers: including cellular responses involved mainly in the 
processes of photosynthesis and mitochondrial respiration.
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• Biochemical biomarkers: including the activity of detoxification enzymes, 
antioxidant enzymes, intermediate metabolism enzymes and biosynthesis and 
degradation enzymes; levels of scavengers or antioxidant molecules like 
glutathione (GSH), anthocyanins (Antho), free proline, ascorbate acid (ASC, 
vitamin C), α-Tocopherol (vitamin E), β-carotene (vitamin A); levels of metal-
lothioneins (MTs) and phytochelatins (PCs); metabolites from phase I and 
II detoxification and products of oxidative damage of biomolecules, such as 
malondialdehyde (MDA). 

• Genotoxicity biomarkers: including DNA damage such as chromosomal abnor-
malities and DNA fragmentation, both observed by microscopy. 

• Molecular biomarkers: including sub-lethal responses which involve direct and 
indirect effects on DNA biomolecule, gene expression (e.g., expression of antiox-
idant enzymes), transcript levels as well as epigenetic changes (e.g., DNA bases 
methylation). 

2.2 Physiological Biomarkers 

The electron transport for photosynthesis in chloroplasts and the electron flux that 
drives respiration in mitochondria are key physiological processes in plants. Due 
to the universality and sensitivity of both processes in plants, biomarker responses 
related to these MoAs have been widely used to study the effects of environmental 
pollutants to aquatic macrophytes. The misdirection of electron flux, or the inability 
to transfer them correctly, will result in the break-down of plant homeostasis (Gill 
and Tuteja 2010), that can be monitored through various physiological biomarkers. 

In particular, changes in the content of photosynthetic pigments, which can be 
measured as total chlorophyll (TChl), chlorophyll a (Chl a), chlorophyll b (Chl b), 
the ratio of Chl a/b, phaeophytins (Pheo), carotenoids (Caro) and re-emission of light 
measured as chlorophyll a fluorescence (Chl F) are the main physiological biomarkers 
used in aquatic plants to evaluate the effects of stressors on photosynthesis (Table 
2.1). Other biomarkers, such as photosynthetic oxygen production (P–O2), levels of 
plastoquinone (PQ) and the electron transport rate (ETR) in chloroplasts have also 
been utilized as biomarkers of the photosynthetic process (Vervliet-Scheebaum et al. 
2008; Gomes et al. 2017; Pietrini et al. 2019). The biomarkers used to study effects 
on mitochondrial respiration in aquatic plants include the ETR in mitochondria, 
activity of complex I, II, III, IV of the electron transport chain, and the total levels 
of ubiquinone (UbQ), and their redox status as the ratio of the oxidized (UbQoxi) 
and reduced (UbQred) forms of this coenzyme (Table 2.1). These parameters include 
some of the more novel physiological biomarkers (Gomes et al. 2017; 2020).

By far the greatest number of biomarker studies have focused on the effects on 
photosynthesis. To understand the MoAs for biomarker responses related to plant 
photosynthesis, it is necessary to describe in more detail the photosynthetic process. 
In vascular plants, the absorption of photons is carried out mainly by Chl a (primary 
pigment) and Chl b (accessory pigment) located in the chloroplasts. Photons absorbed
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can undergo one of three fates: (a) the photosynthesis process (photochemistry); 
(b) dissipation of excess energy as heat; (c) re-emission as light (referred to as 
Chl F) (Maxwell and Johnson 2000). Chlorophylls are assembled with membrane 
polypeptides, constituting the photosystem complex, named photosystem I (PSI) 
and photosystem II (PSII). When Chl a absorbs a photon, the molecule acquired 
an excited unstable state (Chl a*). The excited state of Chl a* can be converted to 
energy by the transfer of electrons down the electron transport chain to the PQ in the 
binding site QA and later to QB (reaction center ‘closed’). At that point, the Chl a* 
will return to the stable state (Chl) by releasing the absorbed energy, by re-emitting 
a photon of light as fluorescence, most commonly referred to as Chl F. When the 
rate of reaction center ‘closed’ is high due to light-induction, the Chl F increases, 
and such quenching is referred as ‘photochemical quenching’ (qP), which represents 
the proportion of ‘reaction center open’ PSII. Concomitantly, a proportion of Chl 
a* causes dissipation of excess energy by conversion to heat, referred to as ‘non-
photochemical quenching’ (NPQ), as described by Maxwell and Johnson (2000). 
The NQP reflects the dissipation of excess excitation energy in the form of harmless 
heat from the PSII, thus protecting the plant from the potential damage from the 
formation of reactive oxygen species (ROS), as described by Pietrini et al. (2019). 

Under natural conditions, plants exhibit a characteristic Chl F kinetics, as the 
initial fluorescence (F0) represents the Chl F before that energy has migrated to the 
reaction center, and maximum fluorescence (Fm) is reached when the PSII Chl a 
is fully reduced. The variation between Fm and F0 is referred as Fv, and reflects 
the reduction of PSII electron acceptors. The relation between Fv and Fm repre-
sent the maximum quantum yield of PSII (Fv/Fm), the quantum efficiency of PSII 
(ΦPSII) represent the relation between Fm and Ft (i.e., the level of Chl F imme-
diately before the saturating flash), as described by Maxwell and Johnson (2000). 
Moreover, the electron transport flux through PSII, measured as ETR can be moni-
tored (Pietrini et al. 2019). However, under conditions of exposure to pollutants, the 
electron transfer chain can become uncoupled, and the effects on the photochemical 
and non-photochemical Chl F parameter can be monitored quickly, efficiently and 
non-destructively to evaluate the effects on photosynthesis. For example, in Lemna 
minor exposed to 2 μg/L of perfluorooctanoic acid (PFOA), transient effects were 
observed on Fv/Fm, ΦPSII, NPQ and ETR (Pietrini et al. 2019). Moreover, Gomes 
et al. (2017) observed decreases in Fv, Fv/Fm, NPQ, UbQred, complex I–IV activities 
and ETR, and increases in F0, qP and UbQoxi in L. minor exposed to the antibiotic 
ciprofloxacin (Table 2.1). When the electron transport chain is uncoupled, the Chl 
a* cannot return to its ground state, because the blocked electron acceptor is not able 
to accept the electron and the Chl F decreases (de Albuquerque et al. 2020). More-
over, the Chl* induces production of ROS, resulting in oxidative damage, enzyme 
activation, inhibition or degradation, reductions in CO2 assimilation rate, among 
other effects. In this way, a direct adverse consequence is the damage, oxidation and 
degradation of the main photosynthetic pigments (Chl a, Chl b) and the accessory 
pigments (Caro, Phae and Antho). 

The catalytic activity of some enzymes involved in the metabolic pathways for 
synthesis and degradation of pigments can be targeted by different xenobiotics,
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Fig. 2.1 Percentage of the different types of biomarkers used to evaluate effects on plant photo-
synthesis used for each group of contaminants: METs, PAHs, CUPs, PPCPs and other xenobiotics 
(e.g., PFASs, solvents and plasticizers). PSII: parameters related to the function of Photosystem II: 
Chlorophyll a fluorescence, Fm/Fv, FPSII; Other pigments: Caro, Phae, Antho 

mainly herbicides. For example, the enzyme protoporphyrinogen IX oxidase that 
catalyzes the conversion to protoporphyrinogen IX from protoporphyrin IX, is a 
target for the diphenyl ether class of herbicides (Tanaka and Tanaka 2006). As a 
result of this damage to the photosynthetic pathways, chlorosis, necrosis and early 
senescence can occur in the plant. The photosynthetic gas exchange rates, referred to 
as the CO2 uptake and O2 production (Di Baccio et al. 2017), are used as indicators of 
photo-inhibition and photosynthetic capacity, but these parameters have been poorly 
explored in ecotoxicology studies. 

In conclusion, among the physiological biomarkers, the photosynthetic pigment 
contents constitute the main biomarkers that are used to monitor responses to a 
range of contaminants, while the PSII parameters are more restricted to identify 
effects caused by exposure to CUPs and PPCPs (Table 2.1). Figure 2.1 illustrates the 
percentage of the various types of biomarkers that have been utilized to monitor 
effects on photosynthesis from exposure to various classes of contaminants, as 
indicated from the data compiled in Table 2.1. 

2.3 Biochemical Biomarkers 

2.3.1 Oxidative Stress 

Oxidative stress is described as the imbalance between the generation and the neutral-
ization of ROS by antioxidant mechanisms within an organism (Davies 1995), or in 
other words, intracellular levels of ROS increase to such a level that cellular antiox-
idant defenses are insufficient to maintain these harmful molecules at a level below 
a toxic threshold (Cnubben et al. 2001). The production of low levels of oxygen free 
radicals and non-radical reactive species, collectively called ROS, is normal in several



22 M. L. Menone and D. J. Pérez

processes like the mitochondrial electron transport involved in the reduction of O2 to 
water (Rand 1995). In addition, several other sources of endogenous ROS production 
have been identified such as the electron transport chains of chloroplasts and the activ-
ities of a number of metabolic cytochromes, such as cytochrome P450 (CYP450), 
as described by Valavanidis et al. (2006) and Sharma et al. (2012). If during these 
metabolic processes, a small proportion (2–3%) of ROS escapes from the various 
antioxidant mechanisms, oxidative damage to cellular macromolecules (e.g., lipids, 
proteins, DNA) can take place. However, enzymatic and non-enzymatic antioxidant 
mechanisms have evolved in both plants and animals to protect cellular compo-
nents from damage by maintaining ROS below a critical level (Valavanidis et al. 
2006). Plants particularly use ROS as messengers in signal transduction cascades in 
processes as diverse as mitosis, tropisms and cell death, and their accumulation is 
crucial to plant development, as well as defense (Foyer and Noctor 2005). Therefore, 
the concept of oxidative stress in plants has been proposed to be called ‘oxidative 
signalling’, that is, a critical function associated with the mechanisms by which plant 
cells sense the environment and make appropriate adjustments to gene expression, 
metabolism and physiology (Foyer and Noctor 2005). 

ROS includes singlet oxygen (1O2), superoxide radical anion (O2 
•−), hydroxyl 

radical (OH•) and hydrogen peroxide (H2O2). The generation of toxic ROS occurs 
in various cellular sites, such as in the mitochondria, chloroplasts, peroxisomes and 
apoplasts. Particularly, the chloroplast is one of the leading ROS production sites 
in plants where ROS generation, directly and indirectly, depends on the interaction 
of Chl and light (Hasanuzzaman et al. 2020). As was explained previously, chloro-
plasts convert light energy to the energy required for creating chemical bonds. Light 
absorption by the Chl molecules of PSI and PSII triggers a sequence of redox reac-
tions along the thylakoid membrane of chloroplasts that result in the oxidation of 
water, reduction of NADP+ to NADPH and formation of a proton gradient across 
the membrane. The reduction in O2 by reduced forms of electron carriers in the 
photosynthetic electron transfer chain can produce O2 

•− and H2O2 (Khorobrykh 
et al. 2020). For example, in PSI, O2 

•− is produced by Mehler reaction and then the 
metalloprotein manganese superoxide dismutase (Mn-SOD) converts this molecule 
into H2O2 (Hasanuzzaman et al. 2020). On the other hand, in plant organs that do 
not contain chlorophyll, particularly in the root, mitochondria are the major sites of 
ROS generation (Bose et al. 2014). 

Plants have evolved several enzymatic and non-enzymatic ROS-scavenging and 
quenching mechanisms, and ROS-mediated signaling and ROS detoxification are 
coupled (Khorobrykh et al. 2020). The antioxidant defense system consists of several 
non-enzymatic antioxidants that are low molecular weight biomolecules, including 
ascorbic acid (ASC), carotenoids, phenolic compounds, α-tocopherol and some 
alkaloids. Antioxidant enzymes include different isoforms of superoxide dismu-
tases (SOD), catalases (CAT), guaiacol peroxidase (POD) and ascorbate peroxi-
dases (APx). Like in animals, the reactions involved in the cycling of the tripeptide 
glutathione between its oxidized form (GSSG) and reduced form (GSH) are catalyzed 
by glutathione reductase (GR) and glutathione peroxidase (GPx) and these redox 
reactions neutralize ROS (Fig. 2.2). Glutathione and these enzymes that catalyze
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the redox reactions that neutralize ROS are mainly associated with the cytosol and 
endoplasmic reticulum, but are also found in chloroplasts, mitochondria and other 
organelles (Hasanuzzaman et al. 2012). However, plant GPx probably make a very 
small contribution to overall peroxide metabolism, compared to CAT and APx (Foyer 
and Noctor 2005). In the chloroplasts, the O2 

•− produced is scavenged efficiently 
by SOD associated with the stromal face of the thylakoid membrane while H2O2 is 
reduced in a reaction catalyzed by APx. On the other hand, carotenoids and toco-
pherols are the main non-enzymatic antioxidants that neutralize 1O2 in chloroplast 
(Khorobrykh et al. 2020). 

The over-generation of ROS disrupts the equilibrium between ROS accumulation 
and degradation, causing oxidative damage to biomolecules (Hasanuzzaman et al. 
2020). Although under oxidative stress biomolecules like lipids, proteins, DNA and 
carbohydrates become reversibly or irreversibly modified, many of the ecotoxico-
logical studies have focused on the damage to lipids known as lipid peroxidation 
(LPO), as shown in Table 2.2. In the membrane phospholipids, the most susceptible 
sites for ROS attack are the carbon (C) atoms and the ester linkage between fatty 
acids and glycerol. Moreover, 1O2 and OH• attack the polyunsaturated fatty acids in 
the plasma membrane. After several steps, aldehydes like malondialdehyde (MDA), 
acrolein and 4-hydroxy-2-nonenal are formed, which are all oxidative stress markers 
in plants. Products of oxidative damage to nucleotides of DNA such as 8-hydroxy-
guanidine (8-OHdG) can also be monitored as indicators of oxidative stress. Extreme 
LPO results in loss of membrane function and thus, cellular organelles and the cell

Fig. 2.2 Mechanism for 
reduction of hydrogen 
peroxide by the activity of 
glutathione peroxidase 
(GPx) and other enzymes 
involved in the cycling of 
glutathione between its 
oxidized state (GSSG) and 
reduced state (GSH) 
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Fig. 2.3 Percentage of the different types of biochemical biomarkers used to evaluate the effects of 
exposure to each group of contaminants: METs, PAHs, CUPs, PPCPs and other xenobiotics (e.g., 
PFASs, solvents and plasticizers) 

membrane disintegrate, while there is also malfunctioning of enzymes, and damage 
to DNA and RNA (Ahmad et al. 2019; Hasanuzzaman et al. 2020).

Recent literature indicates that there is a sharp threshold for ROS levels that are 
beneficial or toxic, depending on the plant species, their growth stages and type of 
abiotic stresses, stress intensity and duration (Hasanuzzaman et al. 2020). Huang 
et al. (2019) pointed out that it is very difficult to distinguish between the cyto-
toxic and signaling events that are induced by a particular ROS species. Therefore, 
caution should be applied in interpreting data on biomarkers of oxidative stress in an 
ecotoxicological context. In general, ROS production tends to be greatly increased 
by pollution as a stressor (Dordio et al. 2011b). As can be seen in Fig. 2.3, the  
levels of antioxidant enzymes are the most widely studied biomarkers among the 
biochemical group, although other biomarkers of oxidative stress such as levels of 
total glutathione (tGSH), GSSG and GSH are also monitored. The products of lipid 
peroxidation (e.g., MDA) and oxidative damage to DNA (8-OHdG) are also widely 
monitored (Fig. 2.3). From our point of view, integration of batteries of biochemical 
biomarkers with physiological biomarkers is recommended for studies of responses 
in aquatic macrophytes to environmental stressors. 

2.4 Detoxification/biotransformation 

Concerning metals and metalloids, primary detoxification refers to the processes 
to complex/chelate metal ions with cellular components (cell wall), gene-encoded 
polypeptides such as metallothioneins (MTs), enzymatically synthesized peptides 
like phytochelatins (PCs) and organic acids such as citrate and malate (Shrivastava 
and Srivastava 2021). The cysteine-rich group of polypeptides known as MTs regu-
late cellular homeostasis for both essential cations (e.g., Zn2+) and non-essential 
cations (e.g., Cd2+) in plants and animals through the processes of cytosolic metal 
binding, vacuolar sequestration and metal efflux through the plasma membrane. The
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expression of MTs is rapidly activated under conditions of high cation concentra-
tions and are expressed in metal-sensitive organisms to provide tolerance toward 
treatment with Cd, Cu and Zn (Zhou et al. 2014; Ur-Rahman et al. 2020). Although 
MTs are primarily involved in the homeostatic regulation of essential cations, such 
as copper and zinc, they can also play a protective role by detoxifying non-essential 
metals (Talebi et al. 2019). Another group of Cys-rich peptides, which are also metal 
and metalloid chelators in plants is PCs (Yadav 2010). As an example, the process 
of arsenic detoxification in plants involves the formation of an As(III)-PC complex 
in the cytosol followed by sequestration in the vacuoles with the help of protein 
transporters. Indeed, this is the tolerance strategy adopted by plants to alleviate As-
induced oxidative stress (Bali and Sidhu 2021). However, for some cations like Hg, 
the tolerance strategies of the plant are likely to involve cell wall immobilization in 
the roots as a dominant mechanism of resistance, rather than chelation in the cytosolic 
fraction (Válega et al. 2009). 

For organic contaminants, an important group of biochemical biomarkers in plants 
are the enzymes and cofactors associated with biotransformation processes by which 
a compound is converted into more water-soluble and often less toxic metabolites 
that are easier to eliminate than the parent compound (Rand 1995). For aquatic 
macrophytes, the herbicide detoxification systems have been traditionally studied. 
Biotransformation processes consist of three metabolic phases: (i) phase I reac-
tions catalyzed by CYP450 monooxygenases; (ii) phase II reactions consisting of 
the conjugation with biomolecules, catalyzed by glutathione-S-transferases (GST) to 
form glutathione conjugates and glycosyl transferases to form conjugates with glyco-
sides; and (iii) phase III processes involving membrane-associated transporters that 
carry metabolites across cell membranes (Benekos et al. 2010). In addition, specific 
metabolites of important herbicides like atrazine have been characterized (Tan et al. 
2015; Qu et al.  2018; Pérez et al. 2022). However, investigations of CYP450 and 
phase II enzyme systems in plants exposed to contaminants are relatively scarce 
(Brain and Cedergreen 2008). Hence, more research is needed on the biotransfor-
mation of all classes of organic pollutants by aquatic macrophytes. An example of 
these types of studies is the work by Bartha et al. (2014) on  Typha latifolia exposed 
to diclofenac, where the metabolism of this anti-inflammatory drug through phase 
I mechanisms was observed to produce 4-OH diclofenac at 24 h after treatment in 
higher amounts than diclofenac itself. In addition, phase II conjugates with glyco-
side (4-O-glucopyranosyl-oxydiclofenac) and with glutathione (4-OH-glutathionyl-
diclofenac) were detected. Recently, analysis of the plant transcriptome has helped 
to understand gene expression and mechanisms for detoxification and metabolism of 
toxic compounds in plants (Lu et al. 2013). More about it is described in the section 
on molecular biomarkers.
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2.5 Genotoxicity Biomarkers 

Genetic information is encoded in the molecular structure of the nucleic acids that 
make up the structures of DNA and RNA. The vehicles of genetic information within 
the cell are the chromosomes, which are made up of DNA and associated proteins. 
The integrity of DNA is under constant attack by radiation, exposure to chemi-
cals and spontaneous changes resulting from the infidelity of replication (Pearce 
2009). Genotoxicity is a broader term that refers to the ability to interact with 
DNA and/or the cellular apparatus that regulates the fidelity of the genome, such 
as the spindle apparatus and topoisomerase enzymes (Maurici et al. 2005). Most 
studies with plants have focused on: (i) visualizing chromosomal aberrations during 
anaphase or telophase, (ii) observing the frequency of micronuclei in meiotic cells, 
such as in the Tradescantia bioassay, or (iii) using the comet assay to evaluate the 
extent of DNA strand breakage. As illustrated in Fig. 2.4, many of these responses 
can be visualized during metaphase through changes in chromosomal number (poly-
ploidy or aneuploidy) or the formation of multi-nucleated cells or micronuclei, or 
during telophase and anaphase as changes in the structure of the chromosomes (i.e., 
clastogenicity). Because of the relative simplicity of using these microscopy tech-
niques with plant cells, the numbers of various chromosomal aberrations observed 
during anaphase or telophase (CAAT) in rapidly dividing somatic cells have been 
widely used as biomarkers of genotoxicity in aquatic macrophytes (Table 2.3). The 
microscopy techniques can be used to examine rapidly dividing plant tissues, such 
as the tips of growing roots and shoots.

As an alternative to quantify genotoxicity, DNA fragmentation can be measured by 
the Comet assay (i.e., single-cell gel electrophoresis assay). One of its advantages is 
that it requires nucleoids but not proliferating cells, and therefore it is applicable to any 
cell line or tissue from which a single-cell suspension can be obtained (Koppen et al. 
2017). Cells embedded in agarose on a microscope slide are lysed to form nucleoids 
containing supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis 
at high pH results in the development of structures resembling comets is observed by 
fluorescence microscopy. The intensity of the comet “tail” relative to the head reflects 
the number of DNA breaks because the loops of DNA containing a break lose their 
supercoiling and can migrate more rapidly toward the anode during electrophoresis. 
Several other methods have been developed and used in the last three decades to test 
the effects of genotoxic chemicals in plants, from the traditional Allium CAAT assay 
(Fiskesjo 1985) to the Comet assay (Koppen and Verschaeve 1996). 

Due to its simplicity and sensitivity, and the small number of cells required to 
obtain robust results, the Comet assay has been widely applied in model plant species, 
such as Allium cepa, Nicotiana tabacum, Vicia faba or Arabidopsis thaliana, and the 
number of plant species tested has increased in recent years (Santos et al. 2015). 
It is noteworthy, however, that all the mentioned species are terrestrial, while only 
a few studies have applied this method to aquatic plants. As an example, Radić 
et al. (2013) studied the genotoxic potential of polluted surface water contaminated
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Fig. 2.4 Mechanisms of chromosome aberration formation in plant somatic cells. Aneunogenic or 
spindle disturbance mechanism (A–C), Clastogenic mechanism (D–E). A C-mitosis (or), modified 
mechanism of mitosis division induced by partial or total inactivation in spindle formation. This 
mechanism can result in polyploid cell or multinucleated cell. B Non-congregated chromosome 
occurring when a whole chromosome cannot insert in the spindle. C Laggard or vagrant chromatid 
or whole chromosome occurring when a chromatid or a whole chromosome cannot insert in the 
spindle. In either case (B and C) chromatid or whole chromosome, could form a micronucleus. 
D–E Chromosome bridge formation (D) where the genotoxin breaks the telomeres and two sticky 
chromosome fragments merge; (E) the genotoxin can break both extremes of one chromosome and 
these can merge; in both cases, it can be broken during migration in anaphase-telophase, resulting 
in the loss of an acentric fragment and dicentric chromatid, which finally could form a micronucleus 
in the daughter cell

by the effluents of a fertilizer factory using a battery of physiological, biochem-
ical and genotoxicity biomarkers in Lemna minor. The authors reported that DNA 
damage measured through the Comet assay, among other biomarkers displayed a 
high sensitivity to pollutant levels and that the genotoxicity observed from in situ 
exposure was the result of numerous interactions between contaminants themselves 
and environmental factors, stressing the use of realistic exposure conditions.
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Table 2.3 Genotoxicity biomarkers used to evaluate toxic effects in aquatic macrophytes 

Genetic 
biomarker 

Plant specie Stressor Exposure 
concentration -
time 

Biomarker 
responses 

Reference 

Metals, metalloids and organometals (METs) 

DNA 
fragmentation 

Lemna minor Cu 
Cd 

2.5 μmol/L; 
5 μmol/L each 
one and their 
mixture - 4, 7 d 

↑ DNA 
fragmentation 
with Cd and 
Cu + Cd 

Cvjetko et al. 
(2010) 

DNA 
fragmentation 

Salvinia 
natans 

Al 240, 360, 
480 μM - 7 d  

↑ DNA 
fragmentation 

Mandal et al. 
(2013) 

CAAT Elodea 
canadensis 

Metals 
Radionuclides 

Contaminanted 
sediments 

↑ CAAT Zotina et al. 
(2015) 

Current use pesticides (CUPs) 

CAAT, AM Bidens laevis Endosulfan 0.02, 0.5, 5, 10, 
50, 100 μg/L
- 2 d  

↑ CAAT, AM Pérez et al. 
(2011) 

DNA 
fragmentation 

Myriophyllum 
quítense 

Azoxystrobin 0.1, 1, 10, 50, 
100 μg/L - 1 d 

↑ DNA 
fragmentation 

Garanzini 
and Menone 
(2015) 

CAAT, AM, 
Cm 

Bidens laevis Imidacloprid 1, 10, 100, 
1000 μg/L - 1 
d 

↑ CAAT, AM Lukaszewicz 
et al. (2019) 

CAAT, AM Bidens laevis Tebuconazole 1, 10, 100 μg/L
- 2 d  

↑ CAAT, AM Moreyra 
et al. (2019) 

CAAT, AM Bidens laevis Azoxystrobin 0.1, 1, 10, 50, 
100 μg/L- 2 d 

↑ CAAT, AM Pérez et al. 
(2019) 

AM: abnormal metaphases; CAAT: chromosomal aberrations in anaphase-telophase; d: days; Cm: 
C-mitosis

2.6 Molecular Biomarkers 

Whereas most traditional biomarkers focus on measures of organism physiology or 
biochemistry, advances in molecular biology are extending biomarkers to the level of 
the genes (i.e., ecotoxicogenomics). With the ongoing rapid developments in modern 
molecular techniques, such approaches have been suggested as the way forward in 
biomarker development (Forbes et al. 2006). The techniques of genomics and tran-
scriptomics have great potential in ecotoxicology as the basis for biomarker assays. 
For example, DNA microarray assays allow the measurement of changes in gene 
expression when organisms are exposed to chemicals such as metals (Magrini et al. 
2008) or the PAH naphthalene (Peng et al. 2011), but all of these methods have been 
developed with the terrestrial plant, A. thaliana. The pattern of genomic response 
may give critical evidence about the MoAs and these molecular biomarkers have 
great potential for screening for toxic effects in the environment (Walker 2009). 
For example, Tan et al. (2015) evaluated the expression of CYP450 genes in rice
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exposed to atrazine; observing 21 genes up-regulated and 29 genes down-regulated 
in the roots, while among the 29 genes in the shoots, 15 were up-regulated and 14 were 
down-regulated. In addition to the expression of enzymes from phase I metabolism, 
expression of phase II enzymes has been used to evaluate the effects of the herbicide 
fenclorim in rice, showing the up-regulation of GST, glycosyl transferase, amino-
transferase and aminodehydrogenase (Hu et al. 2020). The up-regulation of genes 
involved in lipid biosynthesis, cell wall formation, PSII has also been reported in 
aquatic plant species exposed to PFOS (Li et al. 2020). But most of the recent work 
on molecular biomarkers in aquatic macrophytes has been developed to evaluate 
metal exposures (Table 2.4). Among them, expression of genes for proteins involved 
in detoxification (e.g., MTs, PC synthase) or antioxidant enzymes (e.g., APx, CAT) 
predominate (Talebi et al. 2019; Greco et al. 2019; Nualla-ong et al. 2020; Chen et al. 
2021).

On the other hand, the field of molecular biology has rapidly incorporated epige-
netic studies to evaluate organism-environment interactions that can result in chronic 
effects. Knowledge of epigenetic mechanisms provides the potential for a compre-
hensive evaluation of multigenerational and heritable effects from environmental 
stressors (Brander et al. 2017). In this sense, we have included epigenetic modi-
fications that modulate transcriptionally silent or active chromatin by reversible 
methylation/demethylation processes as another type of molecular biomarker. These 
processes may be involved in metal tolerance in several plant species. Indeed, 
Greco et al. 2019 showed that both Cu and Cd induced the overexpression of 
the DNA methyltransferases such as chromomethylase 3 (CMT3) and methylase 
2 (DRM2) in the seagrass Zostera marina. Both genes were significantly upregu-
lated in all metal treatments, but this overexpression was to different magnitudes, 
which could suggest metal-specific methylation strategies. Shi et al. (2017) employed 
a proteomics approach to observe that excess Cu significantly induced the expression 
of DNA methylation-related proteins in H. verticillata. It is remarkable that plants 
are by far the most extensively studied group of living organisms when it comes to 
epigenetics (Brander et al. 2017) but much more study is necessary before a battery 
of biomarkers can be recommended for field studies. 

2.7 Hypothetical Integrative Models of Biomarker 
Responses 

In order to integrate the information compiled from our review of the literature, 
we developed hypothetical models of integrative biomarkers that have been used in 
bench-scale bioassays to screen for responses to four different classes of pollutants; 
that is, for exposure to copper (metal), atrazine (herbicide), ciprofloxacin (antibi-
otic) and PFASs (industrial chemicals). These models highlight the importance of 
using batteries of biomarkers, and also identify the most sensitive methods that could 
be used to evaluate the effects of chemicals on aquatic macrophytes. In particular, 
batteries of these biomarkers could be used in field studies to screen for responses 
by aquatic macrophytes to exposure to complex mixtures of pollutants, such as
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Table 2.4 Molecular biomarkers used to evaluate toxic effects in aquatic macrophytes 

Molecular 
biomarker 

Plant specie Stressor Exposure 
concentration
- time  

Biomarker responses Reference 

Metals, metalloids and organometals (METs) 

Gene-Exp Elodea 
nuttallii 

Hg 
UV radiation 

77 ng/L and 
77 μg/L - 1 d 

Dysregulated 
Gen-Exp involved in 
photosynthesis, 
energy metabolism, 
lipid metabolism, 
nutrition, and redox 
homeostasis 

Regier 
et al. 
(2016) 

Gene-Exp 
8-OHdG 

Hydrilla 
verticillata 

Cu 0.05 mg/L - 5 
d 

↑ Gen-Exp of 
proteins involved in 
DNA methylation 
↑ 8-OHdG 

Shi et al.  
(2017) 

Gene-Exp Zostera 
marina 

Cu 
Cd 

0.8, 2.4 mM 
Cu - 6 d 
0.89, 8.9 mM 
Cd - 6 d 

↑ Gen-Exp of MTs, 
GR, APx, CAT, DNA  
methyltransferases 
CMT3, DRM2 

Greco et al. 
(2019) 

Gene-Exp Azolla 
pinnata 
Azolla 
filiculoides 

Cu 
Zn 
Ni 
Cd 

0, 10, 50, and 
500 mM of 
each one - 1, 
2, 3 d 

↑ Gen-Exp of MTs, 
PC synthase 

Talebi et al. 
(2019) 

Gene-Exp Rhizophora 
mucronata 

Cu 
Zn 

Cu: 200 mg/L
- 1 and 5 d  
Zn: 200 mg/L
- 1 and 5 d  

↓ Gen-Exp of PC 
synthase with Cu at 
5 days  
↓ Gen-Exp of PC 
synthase with Zn at 
1 day and recovery at 
5 days  

Nualla-ong 
et al. 
(2020) 

Gene-Exp Oryza 
sativa 

Cd 10 μM 6,  
12 h, 1, 2, 4 d 

Gen-Exp of SOD, 
CAT, APx, POD, 
APR, GlyA, SAT, 
GDH, MRP, GST 

Chen et al. 
(2021) 

Current use pesticides (CUPs) 

Gene-Exp Oriza sativa Atrazine 0.4 mg/L - 2 
d 

Modification of 
Gene-Exp patterns of 
CYP450 

Tan et al. 
(2015)

(continued)
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Table 2.4 (continued)

Molecular
biomarker

Plant specie Stressor Exposure
concentration
- time

Biomarker responses Reference

Gene-Exp Oriza sativa Fenclorim 
(FEN), 
Pretilachlor 
(PRE) 

10 μM FEN;  
10 μM PRE;  
10 μM FEN  
+ 10 μM 
PRE - 3 d 

FEN: ↑ Gen-Exp of 
genes involved in 
phase I metabolism 
(P450, Oxygenese, 
Peroxidase, Glycosyl 
hydrolase, 
Lipase/thioesterase), 
and phase II (GST, 
Glycosyl transferase, 
aminotransferase, 
aminodehydrogenase) 

Hu et al. 
(2020) 

Other organic xenobiotics 

Gene-Exp Eichhornia 
crassipes 
Cyperus 
alternifolius 

Perfluorooctane 
sulfonate 

10 mg/L - 42 
d 

↑ Gen-Exp of genes 
involved in lipid 
biosynthesis, cell wall 
formation, hormones, 
proteins of PSII 
↓ Gen-Exp of 
Mn-SOD in E. 
crassipes 

Li et al. 
(2020) 

APR: adenosine 5’-phosphosulfate reductase; APx: ascorbate peroxidase; CAT: catalase; CMT3: 
chromomethylase 3; CYP450: cytochrome-P450; d: days; DRM2: methylase 2; GDH: gluta-
mate dehydrogenase; Gen-Exp: gene expression; GlyA: glycine hydroxymethyltransferase; 
GR: glutathione reductase; GST: glutathione-S-transferase; h: hours; Mn-SOD: manganese-
superoxide dismutase; MRP: Multidrug Resistance-associated Protein; MTs: metallothioneins; 
PC: phytochelatin synthase; POD: guaiacol peroxidase; SAT: serine O-acetyltransferase; SOD: 
superoxide dismutase; 8-OHdG: 8-hydroxy-2’-deoxyguanosine

municipal and industrial wastewaters, runoff from mine tailings, landfill leachate, 
etc. 

2.8 Biomarker Responses to Copper 

Based on our analysis of the available literature, copper is the most widely studied 
metal for effects on macrophytes. While copper is considered an essential metal for 
plants, when present in excess it is toxic and causes alterations to the vital process 
of photosynthesis (Krayem et al. 2021). The main biomarker responses observed for 
copper were a decrease in pigment contents, mainly Chl and Phae, in conjunction 
with Chl F reduction (Table 2.1). As shown in Table 2.2 and in Fig. 2.5, exposure 
to copper also triggers: (1) oxidative stress, demonstrated by increased ROS levels 
(H2O2, O2 

•−), changes in contents of α-tocopherol, increased antioxidant enzyme 
activities and changes in their gene expression; and (2) oxidative damage, evidenced 
by formation of aldehyde products of lipid peroxidation (MDA) and DNA damage
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Fig. 2.5 Hypothetical integrative model of the biomarker responses in aquatic macrophytes 
exposed to copper (Cu). Black arrows indicate the site of action of Cu and their subsequent 
biomarker responses. Red arrows indicate increased levels or enzymatic activation (up-arrow) and 
decreased levels (down-arrow). 8-OHdG: 8-Hydroxy-Guanidine; Chl: chlorophyll; Chl F: chloro-
phyll a fluorescence; GPx: glutathione peroxidase; GR: glutathione reductase; GSH: glutathione 
oxidized state; GSSG: glutathione reduced state; MDA: malondialdehyde; MTs: metallothioneins; 
Phae: phaeophytins; POD: guaiacol peroxidase; ROS: reactive oxygen species 

(formation of 8-OHdG and fragmentation). Likewise, Cu induced changes in the 
expression of the genes for MTs and epigenetic modifications, as in DNA methylation 
enzymes. Moreover, it has been demonstrated that Cu has a detrimental effect on 
hormonal balance, inducing changes in phytohormone levels of plants (Krayem et al. 
2021) but more research to use them as biomarkers of toxicity in aquatic macrophytes 
is required (Nguyen et al. 2021). 

2.9 Biomarker Responses to Atrazine 

Herbicides are the most widely studied CUPs, as they were developed to target plant 
considered as pests, and so aquatic macrophytes are vulnerable to these negative 
effects by similar MoAs. Figure 2.6 shows that, as mentioned earlier in the section 
on physiological biomarkers, when a photon of light reaches the chloroplast, there 
are three possible fates: (1) photosynthesis process, (2) re-emission as Chl F; (3) heat 
dissipation (NPQ). However, when a macrophyte is exposed to atrazine, an immediate 
reduction in Chl F and FPSII is observed, which indicates that this herbicide induces 
a block in the photosynthetic process of electron transport at PSII level. The blocking 
occurs because atrazine attaches at the PQ binding site, and the Chl a* cannot return
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Fig. 2.6 Hypothetical integrative model of the biomarker responses in aquatic macrophytes 
exposed to atrazine. Blue arrows indicate the fate of photon: (1) photosynthesis process, (2) re-
emission as Chl F; (3) heat dissipation. Black arrows indicate the normal electron transport chain. 
Red arrows indicate the block of atrazine in PSII and the subsequent biomarker responses. Chl: 
chlorophyll; Chl a: chlorophyll a; Chl a*: excited chlorophyll a; Chl F: chlorophyll a fluorescence; 
e-: electron; NADPH: nicotinamide adenine dinucleotide phosphate; NADPH CYP450: nicoti-
namide adenine dinucleotide phosphate cytochrome-P450; NPQ: non-photochemical quenching; 
P–O2: photosynthetic oxygen production; PQ: plastoquinone; PQH2: plastoquinol; PC: plasto-
cyanin; FPSII: quantum yield efficiency of photosystem II; PSI: Photosystem I; PSII: Photosystem 
II; ROS: reactive oxygen species 

to its ground state (Chl), consequently interrupting the flow of electrons between 
the PSII and PSI. This imposes a high energy load on Chl molecules, leading to 
their destruction, and a subsequent reduction in P–O2, and ultimately inhibition of 
photosynthesis. 

2.10 Biomarker Responses to Ciprofloxacin 

We might expect that there are a number of physiological and biochemical targets for 
the effects of antibiotics in plants because of the bacterial ancestry of the plastids and 
mitochondrial organelles present in the cells of vascular plants (Brain et al. 2009). 
In this case, the model on biomarker responses was based mainly on studies from 
exposure of Lemna spp. to the antibiotic, ciprofloxacin. The main responses observed
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are linked to effects on both the chloroplastic and mitochondrial electron transport 
chains (Fig. 2.7). These studies showed that ciprofloxacin blocks the photosynthetic 
process at the electron transfer between PSII and PSI. Thus, modifications in some 
biomarkers associated with the photon fate, such as the reduction in NPQ, increase in 
qP and finally a decrease in the ΦPSII are observed. Likewise, ciprofloxacin induced 
modification in the PQ redox cycle. In the mitochondrial electron transport, activities 
in Complex I–IV, mainly at Complex I level, decrease, and there are modifications to 
the NADH content and triggers to ROS formation. This process results in a decrease 
in Complex II–IV and reduction in ETR. Ciprofloxacin induced oxidative stress, 
resulting in increased antioxidant defenses such as ASC content, and damage to 
biomolecules (increased MDA). 

Fig. 2.7 Hypothetical integrative model of the biomarker responses in aquatic macrophytes 
exposed to ciprofloxacin. Black arrows indicate the normal electron transport chain. Red arrows and 
lines indicate the ciprofloxacin effects. APx: ascorbate peroxidase; ASC: ascorbic acid; Caro: caro-
teonids; CAT: catalase; Chl a*: excited chlorophyll a; Chl F: chlorophyll a fluorescence; Chl: chloro-
phyll; CytC: cytochrome C; e-: electron; ETR: electron transport rate; MDA: malondialdehyde; 
NADP: nicotinamide adenine dinucleotide phosphate; NPQ: non-photochemical quenching; PC: 
plastocyanin; POD: peroxidase; PQ: plastoquinone; PQH2: plastoquinol; PSI: photosystem I; PSII: 
photosystem II; qP: photochemical quenching; ROS: reactive oxygen species; SOD: superoxide 
dismutase; UbQ: ubiquinone; FPSII: quantum yield efficiency of photosystem II
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2.11 Biomarker Responses to PFAS 

PFAS compounds include a very large class of chemicals used in many industries 
worldwide as additives to food packaging, stain repellents, waterproof products and 
in flame-fighting foams. The most widely studied compounds in toxicity studies 
are the long-chain perfluorinated polymers, perfluorooctane sulfonate (PFOS) and 
perfluorooctanoic acid (PFOA). These compounds are used in a variety of indus-
trial and domestic products, but they also can be formed by biotransformation, as 
PFOS is the final product of microbial degradation of perfluoroalkyl acid (Li et al. 
2020). Recent studies have demonstrated the negative effects of these chemicals on 
macrophytes (Pietrini et al. 2019; Li et al.  2020). As summarized in Fig. 2.8, PFOA 
mainly induces transient negative effects on mitochondrial and photosynthetic elec-
tron transport chains, while PFOS cause changes in pigment content and detoxi-
fication enzyme activities, as well as lipid peroxidation. Moreover, PFOS induced 
modification in the gene expression, such as up-regulation of proteins involved in 
the PSII and down-regulation of SOD. 

Fig. 2.8 Hypothetical integrative model of the biomarker responses in aquatic macrophytes 
exposed to PFASs. Caro: caroteonids; CAT: catalase; Chl F: chlorophyll a fluorescence; Chl: chloro-
phyll; ETR: electron transport rate; MDA: malondialdehyde; NPQ: non-photochemical quenching; 
PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; POD: peroxidase; PSII proteins: 
proteins involved in photosystem II; SOD: superoxide dismutase; FPSII: quantum yield efficiency 
of photosystem II
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2.12 Conclusions 

As can be seen from the information collected in this review, most of the work on 
the effects of chemical contaminants on aquatic macrophytes has been done under 
laboratory conditions while field studies of biomarker responses are scarce. In addi-
tion, many studies test the effects of toxicants at concentrations over the range of 
realistic levels which indicate that there is still too much work ahead for applying 
biomarkers for in situ biomonitoring. However, it is encouraging that biomarkers 
have applied to study the MoAs and to characterize the toxicity of all types of 
pollutants, including contaminants of emerging concern, such as PPCPs and PFASs. 
However, there are many challenges to overcome before biomarkers can be widely 
applied in field studies. Firstly, those biomarkers selected should be sensitive to 
responses at environmentally relevant concentrations of the pollutants. Studies must 
also take into consideration the interplay between contaminants and other abiotic and 
biotic variables that might have confounding effects in order to better understand the 
effects of multiple stressors in aquatic environment (Regier et al. 2016). The topic 
of confounding factors has been addressed since the beginning of the definition of 
biomarkers (Huggett et al. 1992; Peakall 1994) but not much progress has been done 
related to aquatic macrophytes in this matter. From all the papers included in this 
review, only one study by Regier et al. (2016) included an evaluation of the effects of 
a single chemical stressor plus an environmental variable (Hg + UV radiation). This 
is evidence of the critical information gap regarding the effects on macrophytes of 
a combination of chemical and other environmental stressors. Although the present 
work did not include the effects of abiotic stressors, it is important to take into 
account that macrophytes often undergo distinct environmental stress conditions, 
like changes in salinity, extreme temperatures, altered nutrient availability, drought 
and ultraviolet irradiation. These changes mean that macrophytes must strike an equi-
librium between growth, development and survival, and as a result, adapt to stressful 
surroundings by reprogramming metabolic pathways and gene expression, beginning 
from perception of stress and concluding with particular transcriptional modifica-
tions (Hilal et al. 2019). Therefore, waterborne pollutants add more complexity to 
the adjustments that plants need to make to adapt to a changing environment and 
consequently, care should be taken in interpreting data gathered on toxicity. 

The lack of studies focusing on marine or estuarine species versus fresh-
water macrophytes was noted. Recently, physiological, biochemical and molecular 
biomarkers have been studied together in the seagrass Z. marina exposed to cadmium 
and copper (Greco et al. 2019), but for most of the other marine species, only one class 
of biomarker has been studied, particularly those related to oxidative stress exerted 
by metals, such as in the halophytes from salt marshes, Limonium brasiliense, Suaeda 
maritima, Halimione portulacoides, Sarcocornia perennis and Spartina maritima, or  
in the mangrove species Kandelia candel, Bruguiera gymnorrhiza and Rhizophora 
mucronata (Table 2.2). Hence, there is an information gap concerning batteries of 
biomarkers for marine macrophytic plant species, mainly for organic contaminants. 
Concerning freshwater species, as can be seen in the tables, the duckweed species,
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L. gibba and L. minor are the main species that have been used in ecotoxicological 
studies, followed by M. spicatum and M. alterniflorum from the Northern Hemi-
sphere, and M. quitense from the Southern Hemisphere. Our survey of the literature 
is consistent with the review by Vonk and Kraak (2020), as these authors reported 
data for 109 freshwater taxa belonging to 66 genera that were tested for herbicide 
toxicity and the most frequently selected genus for these studies was Lemna. 

It is noteworthy that traditional biomarkers like photosynthetic pigment contents 
are still the most widely used, which reflects the vital process of photosynthesis 
in aquatic macrophytes. However, we recommend that these biomarkers be studied 
together with other biochemical, genotoxicity and molecular biomarkers in order to 
identify the most sensitive endpoints. In this sense, applications of gene expression 
have shown promising results, allowing the measurement of significant responses 
at environmentally relevant concentrations (Cosio 2020). Other optional novel 
biomarkers include those related to the mitochondrial electron transport chain 
(Gomes et al. 2017; Pietrini et al. 2019) and the non-destructive biomarker of Chl F 
(Pérez et al. 2019). 

Overall, this review of the literature that has been published since 2008 on 
biomarker responses in aquatic macrophytes shows that there are many promising 
research questions to be explored in this field. The goal of the research should be to 
identify a suite of sensitive and robust biomarkers that can be used in field studies to 
evaluate effects in aquatic macrophytes exposed in situ to a range of environmental 
pollutants. 
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Chapter 3 
Metal(loid)s in Macrophytes 
from the Americas 

Magdalena V. Monferrán, Iara da C. Souza, Hiulana P. Arrivabene, 
and María V. Amé 

Abstract Pollution from metals and metalloids is a major concern due to the persis-
tence of these elements in the environment and the impacts on ecological and human 
health. Evaluation of the distribution, bioaccumulation and toxicity of metal(loid)s 
in aquatic organisms has been studied for many years. In consequence, research 
on plants with a high tolerance to metals, and therefore, of use as bioindicators of 
theses contaminants, has become a subject of interest in recent years. This chapter 
presents a brief analysis of the bioaccumulation patterns and physiological responses 
of aquatic plants to pollution from metals and metalloids, with a focus on describing 
what we have learned from our studies conducted in the laboratory and in the field 
with the emergent macrophyte, Potamogeton pusillus and with the mangrove species, 
Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle, all of which 
are native to South America. Furthermore, the capacity of P. pusillus to be used for 
active and passive biomonitoring in aquatic ecosystems highly impacted by environ-
mental degradation is discussed. In addition, there is a discussion of the bioaccumu-
lation and translocation of metals from interstitial water and sediment to the roots and 
leaves of mangroves inhabiting estuaries in Brazil with different levels of pollution, 
correlating metal bioaccumulation with differences in macrophyte anatomy. Finally, 
the use of stable isotopes in mangroves as biomarkers of environmental pollution is 
demonstrated.
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3.1 Introduction 

In recent years, there has been increasing evidence of the widespread occurrence of 
contamination by metals and metalloids in aquatic ecosystems from all around the 
world. These elements, unlike organic contaminants, which can be degraded to less 
harmful products by biotic or abiotic processes, are non-degradable and persistent, 
with high toxicity, and can be bioaccumulated in aquatic organisms, resulting in 
sublethal concentrations affecting the biota. In some cases, these elements can even 
be biomagnified in the food chain, thus threatening human health (Cordoba-Tovar 
et al. 2022). 

There are different sources of metals and metalloids in the environment. These can 
be of natural origin (geogenic) or derived from human activities (anthropogenic). The 
most important natural sources are mineral weathering, erosion and volcanic activity, 
while anthropogenic sources include mining, smelting, electroplating, pesticide and 
fertilizer use, as well as biosolids from agriculture, sludge dumping from industrial 
and domestic sources, among others (Shi et al. 2022). Although some metal(loid)s can 
be strongly adsorbed onto the suspended particles and sediments, they can be released 
into the water under suitable conditions of pH and redox potential, leading to further 
contamination (Wang et al. 2022). Some metals, including cadmium (Cd), zinc (Zn), 
lead (Pb), chromium (Cr), nickel (Ni), copper (Cu), vanadium (V), platinum (Pt), 
silver (Ag), tin (Sn) and titanium (Ti) are highly toxic to aquatic organisms (Zaynab 
et al. 2022). 

Many aquatic ecosystems in South America are contaminated with metals and 
metalloids. Their distribution is quite variable, reflecting contamination from both 
point and non-point sources. For example, the upper and middle reaches of the 
Cachapoal River in Chile are characterized by elevated concentrations of Cu, Mo, 
As, Pb, Cr that reflect inputs of material from mining activities (Lacassie and Ruiz-
Del-Sola 2021). Also, the Río de La Plata between Argentina and Uruguay shows 
strong features of sediment retention, favoring pollutant accumulation. Sediments 
from Montevideo Bay are highly polluted with Zn, Pb, Cu, Cr and mercury (Hg) 
and moderately contaminated with Ni and Ag (Barletta et al. 2019). The presence of 
metals was also documented in the main water bodies of the Province of Córdoba, 
Argentina, in the Suquía, Xanaes and Ctalamochita Rivers and in the San Roque, 
Los Molinos and Río Tercero Reservoirs, which is mainly associated with urban 
pollution (Contardo-Jara et al. 2009; Monferrán et al. 2011, 2016a, b; Griboff et al. 
2017, 2018b, 2020; Bertrand et al. 2019). Moreover, high levels of aluminum (Al), 
Cr, manganese (Mn), iron (Fe), Ni, Cu, Zn, arsenic (As), selenium (Se), Ag, Cd, Hg 
and Pb were found in water and sediment in two neotropical estuaries located in the 
State of Espírito Santo, Brazil, namely, Vitória Bay and Santa Cruz, which are areas 
affected by different pollution sources and marine processes (Souza et al. 2014a, 
2015). 

The accumulation of metals and metalloids in biota depends on the chemical 
properties of each element, the characteristics of individual organisms and the role 
played by different organs and tissues in the processes of absorption, regulation, 
storage and excretion. Some essential elements, such as Zn, Fe and Cu are necessary
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for cellular functions, but exposure to high and/or prolonged doses of these elements 
can lead to neurotoxic, genotoxic and carcinogenic alterations (Geng et al. 2019). 
Exposure to high concentrations of metals and metalloids can induce oxidative stress 
by producing reactive oxygen species (ROS), resulting in DNA damage, lipid perox-
idation, depletion of protein sulfhydryl groups, impairment of cell signaling, altered 
Ca homeostasis, changes in expression of the Ca regulation gene, etc. In addition, 
they can replace essential metals in pigments or enzymes, disrupting their normal 
function (Kolarova et al. 2021). 

To detect environmental pollution by using biological materials as indicators is 
a reliable and simple alternative to conventional sampling methods. The distribu-
tion and condition of many aquatic macrophytes are often correlated with water 
quality. Some macrophytic species can accumulate considerable amounts of metals 
in their tissues. Therefore, aquatic macrophytes stand out as having the potential to 
be useful indicators of metal contamination in the aquatic environment (i.e., biomon-
itors, bioindicators) as documented by Farias et al. (2018), due to their high tolerance 
to metal pollution, convenience for sampling and easy culturing in the laboratory. 
As we document in this chapter, our previous studies have shown that monitoring of 
the macrophyte species, Potamogeton pusillus, Avicennia schaueriana, Laguncularia 
racemosa and Rhizophora mangle can be an effective tool for studying contamination 
by metals and metalloids in both fresh and brackish waters. 

Potamogeton pusillus is an aquatic plant of 20–30 cm length, with thin and 
branched stems (Fig. 3.1). Its leaves are shaped like a ribbon, flattened and subphyli-
form when the plant is young, and they are between 3 and 6 cm long and 0.6–1 cm 
wide, hyaline, with 1–3 vascular bundles and air channels in the central region of the 
sheet. These freshwater plants have a fully developed root system that is completely 
submerged in the river sediment. It is considered a sentinel native macrophyte, having 
ecological importance within sub-tropical aquatic ecosystems, providing shelter and 
habitat for young fishes and other aquatic animals (Novara 2003. http://www.iuc 
nredlist.org). This species is present in aquatic environments that are moderately to 
highly polluted in the main rivers of the state of Córdoba in Argentina, which makes 
this macrophyte very useful as a biomonitoring species (Harguinteguy et al. 2016; 
Bertrand et al. 2019).

Avicennia schaueriana (Stapf & Leechm. ex Moldenke) of the plant family 
of Acanthaceae, Laguncularia racemosa (L., C. F. Gaertn) of the Combretaceae 
family and Rhizophora mangle (L.) of the Rhizophoraceae family are three true 
mangrove species (Tomlinson 2016). A. schaueriana has extensive underground 
roots, supporting pneumatophores and absorption roots. Its bark is variably rough, 
dark, rigid and fissured. It has an entire leaf blade, ranging from ovate to elliptical. 
The leaf blade is leathery or slightly fleshy, with inconspicuous veins and a promi-
nent mid-rib below (Fig. 3.2). It has salt glands on both sides of the leaf blade and 
water storage parenchyma underlying the adaxial surface of the epidermis. L. race-
mosa has extensive underground roots, cable-like, supporting pneumatophores and 
absorbing roots. Its bark is rough, fissured and grayish. Its branches have numerous 
slightly prominent lenticels. Its leaf blade is somewhat fleshy, elliptical to oblong 
(Fig. 3.2). They have leaves with a petiole containing a pair of extrafloral nectaries

http://www.iucnredlist.org
http://www.iucnredlist.org
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Fig. 3.1 Potamogeton pusillus in the Suquía River at La Calera, Córdoba, Argentina (A). P. pusillus 
leaves shaped like a flattened ribbon (B and C)

on their adaxial surface. The leaf blade has salt glands distributed on the abaxial 
and adaxial surfaces of the epidermis. A cross-section of the blade reveals a water 
storage parenchyma in its middle portion. Finally, R. mangle presents rhizophores 
with positive geotropism, responsible for providing stability in the sediment, which, 
when in contact with the soil, form the roots. Its leaves are entire, elliptical, glabrous 
and with numerous cork warts on the abaxial surface, visible on older leaves as dark 
spots (Fig. 3.2). They have evident but not prominent veins. Its seeds are viviparous, 
germinated by the extension of the hypocotyl, with propagules measuring about 20– 
30 cm. The analysis of oxygen isotopes (18O/16O) in R. mangle showed that this 
mangrove plant use surface soil and seawater rather than groundwater as a water 
source, even when the water has a high salinity (Lin and Sternberg 1994).

This chapter describes the responses of these structurally and physiologically 
different macrophyte species that grow in freshwater and under saline conditions 
when they are exposed to metals and metalloids both in the laboratory and in the 
environment under natural conditions.
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Fig. 3.2 Mangroves from Santa Cruz estuary, State of Espírito Santo, Brazil (A). Leaves of 
mangrove plants: Laguncularia racemose (B), Avicennia schaueriana (C) and Rhizophora mangle 
(D)

3.2 Laboratory Studies 

3.2.1 Accumulation of Metal(loid)s in P. pusillus and Impact 
on Biochemical Parameters 

We have carried out several laboratory studies with P. pusillus to assess bioaccu-
mulation and effects from exposure to different metals. The concentrations used in 
the laboratory experiments were selected according to environmentally relevant data 
found in the literature (Cheung et al. 2003; Smolders et al. 2003; Monteiro et al. 
2010; Hashem et al. 2020; Francisca et al. 2006). 

In one series of experiments, we collected macrophytes from a reference site, 
placed them into a 40 L tank containing 10% Hoagland’s solution and sediment (1/4) 
from the same sampling area and grew them for two weeks under a light/dark photope-
riod of 14 h:10 h before starting the exposures (Monferrán et al. 2012a). For exposure 
to metals and metalloids, organisms were relocated into 1 L beakers (three plants 
per beaker, 5–8 g wet weight-w.w. per liter) containing 10% Hoagland’s solution 
prepared without the element to be tested. After the exposure time, which depended 
on the element studied in each case, plants were washed three times with ultra-pure



58 M. V. Monferrán et al.

water, frozen with liquid nitrogen and kept at −80 °C until analysis. Concentrations 
of metals and metalloids in exposure media were measured by inductively coupled 
plasma-mass spectrometry (ICP-MS) and accumulation in plant tissues was deter-
mined by atomic absorption spectroscopy (AAS) after digestion of the samples with 
aqua regia (Monferrán et al. 2012a), with the exception of Hg and As, which were 
also analyzed by ICP-MS. 

A laboratory bioassay testing the kinetics of Cu+2 and Cr+6 uptake by P. pusillus 
from water solutions (individual exposure) demonstrated that accumulation of these 
metals is in a concentration and time-dependent manner, where the most signifi-
cant increase in concentration observed was at 5-day exposure, although the metal 
content continued to increase gradually up to 15 days. Time-dependent (kinetic) 
studies on the uptake of metals by aquatic plants have shown an initial rapid accumu-
lation phase, followed by a slower linear phase. The initial phase represents a rapid, 
reversible, metal binding process (i.e., biosorption), while the subsequent slower 
phase is governed by metal transport across the plasma membrane into the plant 
cytoplasm (i.e., bioaccumulation), as described by Monferrán et al. (2012a). 

Another experiment was conducted to assess the effect of Cu+2 on the bioaccumu-
lation of Cr+6 by P. pusillus. These assays showed that the presence of Cu+2 drastically 
increased the phytoextraction of Cr+6, particularly at the lowest Cu+2 concentrations 
of 0.1 mg/L and 0.5 mg/L, where the phytoextraction of Cr+6 by the plant rose 3.5-fold 
when Cu+2 concentration was increased from 0 to 0.5 mg/L, keeping Cr+6 concen-
tration constant. These observations are clear evidence of enhanced phytoextraction 
of Cr+6 by P. pusillus from binary solutions containing Cu+2. 

The accumulation of both metals in the plant resulted in toxic effects. This was 
seen when NOEC (no observed effect concentration) and LOEC (lowest observed 
effect concentration) values were calculated, based on changes in chlorophyll-a (Chl-
a) and protein contents in P. pusillus exposed to different concentrations of Cu+2 and 
Cr+6. The NOEC for Chl-a was 0.5 mg/L for Cu+2 and 2 mg/L for Cr+6 (Monferrán 
et al. 2012a). This indicates that Cu+2 is more toxic to the plant than Cr+6. The  
same trend was found when protein contents were used to calculate the NOECs, 
which were 1 mg/L for Cu+2 and 2 mg/ L for Cr+6. This indicated that Chl-a is the 
more sensitive toxic endpoint for Cu+2 toxicity than the protein level (i.e., NOEC = 
0.5 mg/L for Chl-a and NOEC = 1 mg/L for proteins), while Cr+6 showed the same 
NOEC for both toxic endpoints. 

We also demonstrated that P. pusillus was able to accumulate significant concen-
trations of Hg after 7, 14 and 20 days of hydroponic treatment (Griboff et al. 2018a). 
The maximum rate of metal accumulation was found after day 7 in a treatment with 
2 mg/L Hg, when 96% of the total accumulated metal was taken up by the plant 
(2,372 μg/g dw). Metal accumulation continued through days 14 and 20, although 
the bioaccumulation rate was lower than that reported for day 7. Thus, Hg content 
was 2,034 μg/g dw (83%) after a 14-day exposure, and 2,465 μg/g dw after a 20-day 
exposure. It is worth mentioning that bioaccumulation also occurred at lower Hg 
concentrations (i.e., 0.1; 0.5 and 1 mg/L) but at lower rates in comparison with the 
bioaccumulation observed during exposures at 2 mg/L.
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When the capacity of P. pusillus to accumulate As was evaluated, we observed that 
the accumulation of As+3 and As+5 by P. pusillus increased as the exposure concen-
tration increased, but it did not increase as the exposure time increased. Specifically, 
the concentration of As accumulated by P. pusillus when it was exposed for 7 days at 
different As+3 or As+5 concentrations was the same or not statistically different from 
treatments with exposure for 14 or 20 days to the same concentrations (Griboff et al. 
2018a). This plant accumulated more As when it was exposed to As+3 (281 μg/g dw) 
relative to accumulation when exposed to relative to As+5 at the same concentration 
(117 μg/g dw). These results are important, given that As+5 is more toxic than As+3. 

NOEC and LOEC values were calculated for the toxic endpoints of Chl-a and 
protein content in P. pusillus exposed to different concentrations of As+3, As+5 and Hg 
over 15 days. NOEC for chlorophyll-a was 0.1 mg/L for As+3, As+5 and Hg (Griboff 
et al. 2018a). These experiments indicated that the As species were more toxic to 
the plant than Hg, taking into account that the concentrations of Hg accumulated 
(46 μg/g dw) at 0.1 mg/L of exposure were much higher than that of As (10 and 
6 μg/g dw for As+3 and As+5 exposure, respectively) exposed in treatments at the 
same concentration. No statistically significant differences in protein levels were 
observed in the plants exposed to As+3, As+5 or Hg compared to the control group. 
Comparing these results, it appears that Chl-a is a more sensitive endpoint for the 
toxic effects of As+3, As+5 and Hg than the proteins level (NOEC = 0.1 mg/L). In 
our experiments, significant damage to the macrophyte pigments were observed in 
P. pusillus after exposure to As+3, As+5 and Hg (Griboff et al. 2018a). These changes 
reflect the diversity of the disorders to cellular metabolism generated by exposure to 
these elements. Loss of photosynthetic pigments is a common response of plants to 
environmental stressors such as heat, diseases and pollution. 

P. pusillus accumulated large amounts of Pb (2,470 μg/g dw) after exposures of 
the plants for 10 days to Pb+2 at a concentration of 2.0 mg/L, with removal of 74– 
92% of this metal from solution. In addition, P. pusillus accumulated large amounts 
of Cd+2 (2,045 μg/g dw) after exposure of the plants for 10 days to 2.0 mg/L of 
Cd2+, with removals from solution of 89 to 91% (Rivela Fretes et al. 2021a, b). The 
accumulation of Pb in P. pusillus did not result in changes to the content of Chl-a 
and b, malondialdehyde (MDA) and sugars in all treatments. However, the content of 
carotenes increased relative to the control treatment for the plants exposed to 0.5 mg/L 
of Pb for 7 days. Carotenoids belong to the plant’s non-enzymatic antioxidant defense 
system and in fact play a key role in protecting the photosynthetic system from the 
effects of excess metals. Carotenoids trap and then scavenge ROS (Krayem et al. 
2021). In contrast, the accumulation of Cd resulted in changes in levels of Chl-a and 
Chl-b. Chlorophyll-a and b decreased as Cd concentration increased and the NOEC 
for Chl-a and b toxic endpoints was 1 mg/L. The content of carotenoids, sugars and 
MDA were not affected by exposure to Cd in all treatments. 

Finally, to determine the potential use of P. pusillus as a bioindicator of aquatic 
contamination with Zn, the macrophyte was experimentally exposed to this metal 
and the response of biomarkers of exposure and effect were evaluated (Bertrand et al. 
2016). In this study, both the biomarkers and the accumulation of Zn were evaluated 
in different tissues of the plant (leaf, stem and root). The experimental treatments 
were: Control (not metal exposed) and plants exposed to 5, 50 and 500 μg/L Zn. The
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biomarkers of toxicity monitored were hydrogen peroxide (H2O2) concentration, 
lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARs), 
antioxidant enzymes activities and concentrations of chlorophyll (Chl) and pheo-
phytins (Pheo) concentrations, consistent with Bertrand et al. (2016). In these experi-
ments, Zn bioaccumulation and biological responses (i.e., oxidative stress biomarkers 
and pigments) indicated a differential response pattern among leaf, stem and roots 
in P. pusillus. This macrophyte showed rapid Zn accumulation, with a significant 
increase in tissue concentrations in treatments with 50 μg/L in the leaf and in treat-
ments with 5 μg/L in the stem and root. Although Zn accumulation in the leaf 
occurred at higher exposure concentrations than in the other plant tissues, the bioac-
cumulation in the treatment with 500 μg/L was greater than those in stem and root. 
Specifically, the Zn concentration in leaf exposed at 500 μg/L was five times higher 
than in the control treatment (i.e., leaf in control = 198 ± 34 μg/g d.w.; leaf in 
500 μg/L treatment = 1,063 ± 208 μg/g d.w.), while Zn concentrations in other 
plant tissues increased only three times relative to the control (i.e., stem in control 
= 177 ± 56 μg/g d.w.; stem in 500 μg/L treatment = 676 ± 165 μg/g d.w.; root in 
control = 146 ± 83 μg/g d.w.; root in 500 μg/L treatment = 554 ± 120 μg/g d.w.). 

The induction of cellular changes often goes along with the bioaccumulation of 
metals in higher plants, some of which directly contribute to metal tolerance of plants. 
In P. pussilus, even though a significant rise in H2O2 was observed in leaf and root 
in treatments with Zn at 5 μg/L, no significant variations in TBARs concentration 
were detected in any of the plant tissues (Bertrand et al. 2016). Higher levels of 
H2O2 were measured in the root from the Zn treatment at 500 μg/L, at levels three 
times greater than in the control condition (i.e., root in control = 0.33 ± 0.06 mg/g 
H2O2 w.w.; root in 500 μg/L treatment = 0.92 ± 0.19 mg/g H2O2 w.w.). When this 
macrophyte was exposed to Zn, the levels of Chl-a in the leaf decreased significantly 
in the 500 μg/L treatment (i.e., leaf in control = 399 ± 35 μg/g w.w.; leaf in 500 μg/L 
treatment = 191 ± 55 μg/g w.w.). However, no significant differences between the 
control and other treatments were observed in the Chl-b, Pheo-a or Pheo-b levels 
measured either in the leaf or the stem. Among pigments, Chl-a is well-known to be 
the most sensitive to oxidative stress. Therefore, the decrease in Chl-a concentrations 
in the leaf could be related to the increased H2O2 levels in the same plant tissue. In 
the stem, concentrations of Chl-a remained constant. The Zn concentration at which 
a significant effect on pigments is detected is species-dependent. In P. pectinatus, 
significant Chl-a loss was observed in the treatment with 6.5 mg/L Zn after 24 h 
exposure (Tripathi et al. 2003), while similar changes in Ceratophyllum demersum 
required concentrations higher than 13 mg/L Zn to affect the photosynthetic system, 
including the pigments (Aravind and Prasad 2004). 

Regarding antioxidant enzyme activities, there was significant inhibition of 
glutathione peroxidase (GPx) activity in the leaf and root in the Zn treatment with 
5 μg/L, the lowest Zn concentration tested, while in the stem, the enzyme activity 
increased in the treatments with 5 and 50 μg/L. The activity of glutathione reduc-
tase (GR) in leaf diminished in the 500 μg/L treatment, while in the root, the same 
effect was observed at 50 and 500 μg/L (Bertrand et al. 2016). The capacity of Zn to 
inhibit the activity of GR in plants has been reported by other authors (Schaedle and
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Bassham 1977). This response could indicate a negative effect on enzymatic antiox-
idant mechanisms. However, no variations were observed in guaiacol peroxidase 
activity (POD). This lack of response could indicate that exposure concentrations 
were not sufficient to affect this enzyme of the antioxidant system. No change in 
enzymatic activity was detected for glutathione-S-transferase (GST) in microsomal 
or cytosolic fractions, as well as for GR in the stems. 

All results considered, the leaf of P. pusillus showed a higher resistance to the inhi-
bition of antioxidant enzymes in comparison to the root. The increase in H2O2 levels 
(i.e., ROS) in the leaf was not enough to activate the enzymes from the antioxidant 
and protective system. This could be due to non-enzymatic antioxidant mechanisms 
being able to neutralize the ROS. Non-enzymatic antioxidant mechanisms such as 
glutathione were not measured in the present study. The biomarkers of Chl-a and 
GR measured in leaf as well as H2O2 and GR activity in root were the best param-
eters to explain the variation in effects from Zn exposure concentrations (Bertrand 
et al. 2016). However, these biomarkers did not show a good capacity to predict 
impacts from the different exposure concentration. The levels of Zn accumulated in 
any tissues of P. pusillus were more representative of exposure concentrations. 

Submerged plants have very thin cuticles through which metals in the surrounding 
water can readily pass. The accumulation of metals and metalloids by P. pusillus is 
selectively related to the physiological roles of these elements in the metabolism of 
the plant. The surfaces of submerged plants such as P. pusillus are usually coated with 
active biofilms, which consist of a complex combination of microorganisms, exudate 
polymers, absorbed nutrients and metabolites, and particulate materials. Biofilms 
have been found to exert effective control on metal pollution in aquatic systems. 
Since they are polyanionic, biofilms can facilitate the biosorption of metal compounds 
(Geng et al. 2019). In addition, some bacteria species can modify sorption of these 
elements by increasing the surface area of the plants or root length, or promoting 
biofilm formation, which can potentially increase their bioavailability (Palansooriya 
2019). 

The bioaccumulation of metals in P. pusillus is often accompanied by the induction 
of a variety of cellular changes, some of which directly contribute to the metal 
tolerance of plants. Among the variety of toxicity endpoints for the elements that 
we studied in P. pusillus, the photosynthetic apparatus and protein contents seem 
the most sensitive. The toxicity of metals also involves oxidative stress, followed by 
oxidative damage to membranes and pigments. 

3.2.2 Distribution of Metal(loid)s in P. pusillus Tissues 

Our previous studies on the accumulation Cu and Cr by P. pusillus showed that the 
amounts accumulated in the plant tissues were consistent with the concentrations of 
the metals in the aqueous medium, with significantly higher levels of both metals in 
the root and leaves than in the shoots (Monferrán et al. 2012a). The relative amounts of 
As and Hg increased in all studied tissues as metal concentration increased, showing
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significantly higher levels of As in the root than in the shoots or leaves when the 
aquatic plant was exposed to all concentrations of As3+. On the other hand, when 
P. pusillus was exposed to As5+, the plant tissues with the highest As accumulation 
were the root at the lowest exposure concentration of 0.1 mg/L and the stems at 
the exposure concentration of 0.5 mg/L, while no statistically significant differences 
were observed between the plant tissues in treatments at 1 and 2 mg/L. Finally, when 
P. pusillus was exposed to Hg, it was observed that the highest levels of Hg were 
found in leaves relative to the shoots or roots at all concentrations evaluated (Griboff 
et al. 2018a). 

When P. pusillus was exposed to Cd at concentrations of 0.5 and 1 mg/L, no 
significant differences were observed in accumulation in the different parts of the 
plant. However, in a treatment at 2 mg/L of Cd for 10 days, the leaves showed higher 
accumulation for this metal relative to the stem and root. The P. pusillus tissue that 
accumulated the highest Pb concentrations was the root (Rivela Fretes et al. 2021a, 
b). 

As was described earlier, P. pusillus exposed to Zn at 5 and 50 μg/L showed no 
significant differences in Zn concentration accumulated in the different sections of 
the plant. However, in a treatment with 500 μg/L Zn for 4 days, the leaves showed 
a higher accumulation for this metal relative to the stem and root. 

Submerged plants have considerable potential to accumulate metals from the 
surrounding environment. The leaves and roots provide physical support for biofilms, 
which facilitate both facultative anaerobic and anaerobic microorganisms to absorb 
nutrients. In addition to the nutrients required by living organisms, plants and biofilms 
also accumulate non-essential elements (e.g., Cd, Cr and As). The epiphytic biofilms 
adsorb/absorb metals and transport them to the leaves (Geng et al. 2019). 

Roots are the main tissue for the accumulation of various metals by aquatic plants. 
The sequestration, immobilization and accumulation of metals in the root may be 
due to the process of rhizofiltration, which is commonly observed in aquatic plants. 
Roots exudates in the rhizosphere may also cause settling of metals onto the root 
surface. Moreover, metals can be actively absorbed into root cells via plasmalemma, 
adsorbed onto cell walls via passive diffusion or moved acropetally in the roots of 
aquatic macrophytes. Besides, ion exchange with the surrounding solution may also 
take place rapidly in the “free space” (apoplasm) of the root, which facilitates the 
penetration process without passing through living membranes (Tibbett et al. 2021). 

Metal accumulation in leaves may be largely attributed to ion exchange within 
this tissue and the surrounding solution and also via passive transport of ions into the 
peripheral region. Aquatic macrophytes, with a well-developed root/rhizome system 
and totally submerged foliage, extract elements mostly from sediments. However, 
uptake by leaves becomes important when the metal concentration in the surround-
ings is high or when metals are bound to not readily available compounds in the 
sediment (Rezania et al. 2016). 

Stems of P. pusillus accumulated much less metals than leaves or roots. This could 
be due to its lower volume in relation to a large surface area for uptake in leaves. It has 
been demonstrated that the ratio of total volume to surface area differed significantly 
between leaves and stems in P. natans (Rezania et al. 2016). Additionally, leaves have
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lower water content than stems, indicating that leaves contain more dry material to 
which metals can bind. Furthermore, the organic matter content may influence the 
binding capacity, since metals have a high affinity for organic material. The organic 
matter consists largely of cell walls containing pectin, which contain a number of 
negative-charged polygalacturonic acid sites, allowing cation exchange and thus, 
metal absorption (Rezania et al. 2016). 

3.2.3 Accumulation and Translocation of Metal(loid)s 
in Mangrove Plants 

Mangrove ecosystems in tropical and subtropical intertidal zones play a key role 
in maintaining the coastal ecological balance and species diversity (Souza et al. 
2015). Ecotoxicological studies with mangrove plants can be carried out by growing 
the plants in a greenhouse. In experiments described by Arrivabene et al. (2016), 
propagules of A. schaueriana, L. racemosa and R. mangle were collected directly 
from the mother plant in an ecological reserve, transported to a greenhouse and 
cultivated in pre-cleaned PVC pots (2.8 L each) containing washed sand. Sand pots 
were stored in receptacles containing Hoagland’s nutrient solution, with 0.25 ionic 
strength and a salt content of 7 g/L. The level of the nutrient medium in the substrate 
was approximately 3 cm during plant growth, and approximately 7 cm during expo-
sures, simulating mangrove swamp conditions. The nutrient medium was covered 
with a black PVC film to prevent photo-oxidation. Propagules were developed during 
eight months and afterward plants were used for metal exposure. Initially, exposures 
were performed by adding 0 (control), 10, 20 and 100 mg/L Fe(II)SO4 (to simu-
late the bioavailable form of Fe), disodium EDTA and MES buffer (1 mM, pH 6) 
to the nutrient medium (which already contained 0.53 mg L−1 Fe as FeCl3). Iron 
concentrations of 10 and 20 mg/L were selected as they are close to values found in 
the interstitial water during field studies and the highest concentration (100 mg/L) 
was selected to simulate a more toxic condition, with iron levels exceeding current 
environmental levels. Sets of five independent plants from each species (randomly 
selected) were exposed to different Fe concentrations over a period of eight weeks. 
After exposure, plants were harvested and analyzed. 

In the experiments conducted according to this protocol, it was found that the 
three plant species were capable of bioaccumulating Fe in their tissues (Arrivabene 
et al. 2016). L. racemosa showed dose-dependent bioaccumulation in root and in 
iron plaque, in addition to an inhibitory behavior with secretion of Fe through salt 
glands. This species was judged to be the most appropriate mangrove for biosensing 
the amount of iron present in estuarine/marine environments due to environmental 
pollution. A significant decline in translocation factors between aerial parts of the 
plant and the root was evident, mainly in R. mangle and A. schaueriana, indicating 
the impact on the plant transport mechanism induced by high concentrations of 
added Fe(II). Changes in plant anatomy and histochemistry were not as evident as 
those observed with bioaccumulation and translocation. Iron plaque proved to be an
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important site of accumulation of the metal, functioning as a barrier to entry into 
the plant. Furthermore, Fe elimination was observed by salt glands located in leaves 
of A. schaueriana and L. racemosa, although there was no greater Fe elimination in 
plants subjected to higher doses of Fe in the substrate (Arrivabene et al. 2016). 

Using the same experimental design, a study was carried out to evaluate the 
effects of salinity on the bioaccumulation of Cr, As, Hg and Pb and on the anatomical, 
physiological and biochemical characteristics of L. racemosa and R. mangle (Campos 
2018). Exposures to these metal(loid)s occurred by adding 28 μg/L of Cr2O7, 2  μg/L 
of As2O3, 10  μg/L of HgCl2 and 10 μg/L of PbCl2 into Hoagland’s nutrient solution. 
After 12 weeks of treatment, samples were collected for analysis. The results showed 
that L. racemosa was more responsive to the sublethal toxic effects of Cr, As and Hg 
than R. mangle, especially in the root. In L. racemosa, the accumulation of Cr, As 
and Hg in the root changed stomatal density, stomatal conductance and the vascular 
bundle area of the mid-rib. Therefore, considering the species studied, L. racemosa 
proved to be most suitable as an environmental bioindicator for the presence of these 
elements (Campos, 2018). 

3.3 Field Studies 

3.3.1 Potamogeton pusillus as a Bioindicator of Elemental 
Contamination 

Biomonitoring can be conducted by sampling organisms living in an investigated 
area (i.e., passive biomonitoring), or by exposure of organisms collected from a 
reference site or from a laboratory culture translocated to the investigated area (i.e., 
active biomonitoring). Both approaches were applied with P. pusillus in our field 
studies conducted in Córdoba Province: passive biomonitoring in the Suquía River 
and active biomonitoring in the Ctalamochita River. 

3.3.1.1 Suquía River, Córdoba Province, Argentina 

The Suquía River basin is the main source of drinking water for the city of Córdoba in 
Argentina. In recent times, the use of agrochemicals in nearby lands and discharges 
of metals and poorly treated domestic waste have resulted in increased pollution of 
its waters. In order to assess whether P. pusillus reflects different degrees of pollution 
generated by anthropogenic sources, the concentrations of a range of metals, metal-
loids and other elements were evaluated in P. pusillus, matching this information with 
the concentrations in corresponding water and sediment samples from the river basin. 
The elements studied included Ag, Al, As, gold (Au), barium (Ba), beryllium (Be), 
bismuth (Bi), boron (B), calcium (Ca), Cd, cerium (Ce), cobalt (Co), Cr, Cu, dyspro-
sium (Dy), europium (Eu), erbium (Er), Fe, gallium (Ga), gadolinium (Gd), hafnium 
(Hf), Hg, holmium (Ho), potassium (K), lanthanum (La), lithium (Li), lutetium (Lu),
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magnesium (Mg), Mn, molybdenum (Mo), palladium (Pd), praseodymium (Pr), Pt, 
sodium (Na), neodymium (Nd), Ni, Pb, rubidium (Rb), Se, samarium (Sm), stron-
tium (Sr), terbium (Tb), thorium (Th), thallium (Tl), thulium (Tm), uranium (U), V, 
yttrium (Y), ytterbium (Yb) and Zn. Sample preparation and analyses of samples 
were carried out according to Monferrán et al. (2011, 2012a). Plants were collected 
during the wet season at two stations along the Suquía River basin, having different 
degrees of pollution and anthropogenic impacts. One area was located upstream from 
the provincial capital city of Córdoba, representing a site with low population impact 
and with less pollution according to previous studies. The second monitoring station 
was located downstream from Córdoba city. This area is primarily affected by the 
input of pollutants from domestic sewage, in addition to massive urbanization and 
intensive agriculture downstream from the city. 

Considering the concentrations of the target elements in both water and sediments, 
most of the elements were at lower concentrations upstream from Córdoba city. Some 
elements (i.e., Al, B, Ba, Ce, Cr, Cu, Fe, Ga, Hg, Mn, Ni, Pb, Pd, Rb, Rh, Sb, Sn, Sr, V, 
Y and Zn) were present in sediments and water at significantly higher concentrations 
downstream of Córdoba, originating from sewage discharge. Chemometrics demon-
strated good matching between metal and trace element concentrations found in water 
and sediment with those observed in aquatic plants collected at each monitoring site, 
indicating the accumulation of these pollutants from both water and sediment to the 
plant (Monferrán et al. 2012b). These results demonstrate the capacity of P. pusillus 
to be used as an effective bioindicator of aquatic pollution. 

3.3.1.2 Ctalamochita River, Córdoba Province, Argentina 

An active biomonitoring approach was used to evaluate the capacity of P. pusillus to 
reflect environmental quality. Plants were translocated from a pristine reference site 
and exposed during two different seasons at seven sites in the river (i.e., S1–S7) with 
different land uses, where variations in pollution could be expected due to the impacts 
of different sources (Fig. 3.3). Before the exposures, individuals of P. pusillus were 
acclimated during two weeks in glass aquaria filled with 10% Hoagland’s solution, 
sediments (1/4) from the same sampling area, and maintained at 25 ± 1 °C under a 
natural light: dark regime. Then, acclimated plants were transported in tanks to the 
monitoring area. Perforated plastic envelopes containing groups of 24 macrophytes 
were deposited at each site. Envelopes were maintained at a water depth of 0.5–0.7 m, 
simulating environments usually colonized by P. pusillus. The plants were exposed 
for four days. Studies were performed in two seasons, reflecting the rain seasonality 
and temperature variation for the Ctalamochita River basin; that is, cold in July 
(CP) and warm in December (WP), according to previous studies (Bertrand et al. 
2018). After exposure, macrophytes were collected, counted, washed with ultrapure 
water, flash frozen in liquid nitrogen and stored at -80 °C until analysis. During each 
monitoring campaign, water and sediment samples were also collected. A water 
quality index (WQI) was calculated with physicochemical and bacteriological data 
from water samples (Pesce and Wunderlin 2000). Residues of 13 pharmaceuticals 
were also measured in water samples and 20 elements, including 17 metals and three
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metalloids were quantified in collected water and sediment samples, according to 
methods described by Valdés et al. (2014) and Bertrand et al. (2018), respectively. 

The WQI displayed spatio-temporal variations along the basin, with lower values 
measured during the WP when compared to the CP (Bertrand et al. 2019). In most 
cases, a decrease in water quality could be observed at those sites downstream of cities 
(S2, S4, S6), with S6 being the site with the lowest WQI in both monitored periods. 
The presence of pharmaceutical compounds in water along the basin (e.g., atenolol 
and carbamazepine showed the highest levels), as well as metal(loid)s in water (Pb, 
Al, As, B, Hg) and in sediments (Hg) surpassing local and international environmental 
guidelines were evidence of discharges of inadequately treated sewage and, possibly, 
industrial wastewater. In P. pusillus, the levels of metals and metalloids measured in 
plant tissues showed the following order: stem < root < leaf in the CP and the inverse 
pattern during WP; leaf < root < stem. During the CP, the maximum accumulated 
concentrations in leaf and root occurred in plants at S4, thus exceeding by 7 and 10 
times, respectively, the accumulation values of plants at the reference site, S1. On 
the other hand, maximum accumulation levels in the stem were observed in plants 
from S5 (i.e., the site with moderate industrial activities), representing a doubling 
over levels at S1. In WP, the maximum concentrations of metal(loids) in leaf and

Fig. 3.3 Field study locations that include: (A) Active biomonitoring sites for P. pusillus in the 
Ctalamochita River in Córdoba Province, Argentina; Note that S1 was considered a reference site 
due to low anthropogenic activities upstream (B) Monitoring sites for mangroves in the State of 
Espírito Santo in Brazil illustrating the sampling points located in Santa Cruz, Vitória Bay and 
Tubarão Complex 
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root were observed in plants from S3, where there is low urban but high agricultural 
activities, doubling the values in plants from S1. In contrast, the stems showed the 
highest concentrations of total metal(loids) accumulated in plants from S4 and the 
lowest in plants from S6. In general, the accumulation of target elements in leaf and 
stem showed a significant correlation with elemental concentrations in water, for both 
monitoring periods (i.e., significant for Al, As, Ba, Cr, Pb, Sr and V). In contrast, the 
accumulation of elements in roots was correlated with the elements measured in the 
bioavailable and pseudo-total fractions of the sediments (i.e., significant for Cd, Co, 
Pb, V and Zn). 

Throughout the study, biomarker responses in P. pusillus showed sensitivity under 
different environmental scenarios and indicated the most contaminated sites. In CP, 
Chl-a, Chl-b, Pheo-a and Pheo-b levels decreased significantly or showed a tendency 
to decline at sites S2, S4, S5 and S6, relative to the reference site (Bertrand et al. 2019). 
However, this trend was not so clear in the WP. Regarding antioxidant enzymes, 
different patterns of response were observed at each monitoring site, depending on 
the season of sampling, of the tissue or the biomarker measured. When comparing the 
antioxidant enzyme responses in plants from S2 to S7 with plants from S1, a greater 
number of significant responses were observed in plants deployed in WP than for 
plants deployed in CP, and they were observed in both leaf and root. Inhibition and/or 
induction of GPx, POD and SOD activities indicated significant levels of oxidative 
stress in P. pusillus translocated to the Ctalamochita River, particularly at the urban 
sites (S4 and S6) as well as at those sites with intense industrial and agricultural 
activities (S5 and S7, respectively). 

The individual interpretation of biomarkers in field studies is complex due to the 
different patterns observed for each of them. Therefore, an integrative biomarker 
response index (IBR) was used as a tool to integrate and interpret responses obtained 
along the basin to achieve a comprehensive understanding of the biomonitoring 
response (Bertrand et al. 2016). During both monitoring periods, the stressor response 
in P. pusillus increased along the basin from S1 to S5 or S6, with a slight or strong 
decline at S7. The higher values of IBR in plants deployed at S5 and S6 could be 
associated with an increased complexity of the pollutant mixture originating from 
multi-sources discharges into the river at both sites. The higher conductivity and 
salinity observed in the lower basin could be responsible for the IBR decrease in 
plants at S7, since those physicochemical parameters were described to promote 
variations in the speciation and bioavailability of pollutants (Luoma and Rainbow, 
2008). Through our results, there is strong evidence of the potential to use P. pusillus 
as a biomonitor of pollution hotspots in aquatic ecosystems using both passive and 
active biomonitoring approaches. 

3.3.2 Mangrove Plants as Bioindicators of Metal 
Contamination 

Field studies to measure the concentrations of metals in the abiotic medium and 
in mangrove plants can be carried out to assess the health of estuarine and marine



68 M. V. Monferrán et al.

ecosystems. Our field studies in southeastern Brazil (Fig. 3.3) conducted in contam-
inated and pristine mangrove areas provide an example of how this can be done. 
Using A. schaueriana, L. racemosa and R. mangle, it was possible to evaluate the 
accumulation of 28 metals, metalloids and other elements (i.e., Ag, Al, As, B, Ba, 
Bi, Cd, Ce, Cu, Cr, Fe, Hg, La, Mn, Ni, Nb, Pb, Rb, Se, Sn, Sr, Ta, Ti, V, W, Y, Zn and 
Zr) in sediment, interstitial water, roots and leaves, in addition to some anatomical 
responses of these plants to pollutants and different physical conditions (Arrivabene 
et al. 2014; Souza et al. 2014a, b, 2015). The studies showed that the elements 
accumulate in different concentrations in sediment and interstitial water close to the 
rhizosphere of each species. Our studies also indicated that there is a differential in 
the bioaccumulation of these elements between the three study species. In general, 
the elements showed preferential accumulation in roots, but some of the elements 
were more easily translocated to the shoot, such as Cu, Ag, B and Mn (Arrivabene 
et al. 2014; Souza et al. 2014a, b, 2015). Comparing the three species, A. schaueriana 
was the mangrove plant that generally accumulated higher levels of the elements in 
their tissues. 

The three mangrove species also showed adaptive plasticity by changing their root 
anatomy in response to the pollutants, where air gap area, cortex/vascular cylinder 
ratio, periderm thickness and lignification of the periderm were some of the parame-
ters directly related to the level of environmental contamination. Multivariate analysis 
revealed that among more than 60 parameters evaluated (between physical, chem-
ical and biological parameters), only 6 to 15 parameters (6 for A. schaueriana, 13  
for R. mangle and 15 for L. racemosa) were necessary to identify the study areas 
according to the anatomical responses, with 100% correct classification. For L. race-
mosa, the multivariate analysis indicated that the cortex/vascular cylinder ratio of 
pneumatophores, periderm of pneumatophores and air gap area of absorption roots 
were the parameters showing the maximal discriminating power. For A. schaueriana, 
anatomical parameters evaluated in roots were also the most important for such differ-
entiation. Thus, it is clear that the condition of the plant can indicate differences in 
pollution between mangrove areas to complement analytical measurements from 
sediment and interstitial water. 

Regarding pollution by sources of atmospheric metals in dust, the leaf structure 
may or may not favor metal accumulation on the leaf surface. Leaves such as those of 
A. schaueriana and L. racemosa, which have salt glands, tend to accumulate dust that 
easily adheres to the saline secretions deposited on the leaf surface, while glabrous 
leaves with a large amount of epicuticular wax, such as of R. mangle, accumulate less 
dust (Arrivabene et al. 2015). Leaf analysis of these three mangrove species showed 
that dust from mining activities deposited on the leaf surface was not capable of 
generating morphological and anatomical changes. Although gas exchange was not 
evaluated, it was observed by scanning electron microscopy that the dust particles 
were large enough to obstruct the stomatal pore and had the potential to alter gas 
exchange rates. The dust was largely made up of Fe, but it also contained Al, Mn, 
Zn, Sr, Cr, Ni, V, Cu, Pb, Rb and As. Furthermore, the chemical analyses of Fe in 
the leaves and in the substrate suggest that there is foliar absorption of this element 
(Arrivabene et al. 2015).
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3.3.3 Stable Isotopes in Mangrove Plants as Bioindicators 
of Environmental Pollution 

Stable isotopic studies to assess the sources of environmental pollution were carried 
out by Souza et al. (2018) over eight trophic levels, including mangrove plants (R. 
mangle, L. racemosa and A. schaueriana). Analysis of isotopes of Sr (87Sr/86Sr) 
showed the influence of marine water on mangrove plants, which also demonstrate 
the potential for using these plants for estuarine/marine monitoring programs. Lin and 
Sternberg (1994), based on the analysis of oxygen isotopes (18O/16O) in R. mangle, 
also showed that mangrove plants use surface soil and seawater rather than ground-
water as a water source, even when the water has a high salinity. Mangrove plants 
also proved to be good bioindicators of environmental contamination by particulate 
matter through the analysis of Pb stable isotopes (206Pb/207Pb and 208Pb/207Pb), which 
have higher values in plants located in areas with metallurgical activity as the main 
contamination source, such as at the Tubarão Complex (Fig. 3.3). Moreover, field 
research measuring stable nitrogen isotopes, such as δ15N, in mangrove plants, can 
show the anthropogenic impact of fertilizers (Souza et al. 2018). Changes in the ratios 
of δ15N were associated with nitrogen enrichment from fertilizers in the mangrove 
plants from Vitória Bay when compared with those in Santa Cruz estuary, which is 
in close proximity (Souza et al. 2018). According to Tanu et al. (2020), the nitrogen 
ratios in mangroves from less contaminated site are typically lower than the ratios in 
mangroves from contaminated sites, highlighting how mangroves can be a powerful 
tool for anthropogenic disturbances. Therefore, the measurement of δ15N ratios in 
mangroves allowed us to define Santa Cruz as a quasi-pristine mangrove ecosystem 
(−2‰ δ15N, according to Souza et al. 2018) and this site was used in this study as a 
reference location to understand metal/metalloid dynamics under natural conditions. 
Conversely, the higher δ15N values for mangroves from Vitória Bay represented an 
anthropogenically impacted site. Consequently, a comparison between δ15N in these 
estuarine plants is instructive. Due to the close proximity of the study sites (i.e., just 
70 km), the original ecosystems should have been similar but current differences in 
stable isotopes can be attributed to the intensive development around Vitória Bay 
(Souza et al. 2018). 

3.4 Conclusions 

This chapter highlighted the capacity of macrophytes, which grow under different 
environmental conditions, to adapt to stress caused by exposure to metal(loids), with 
specific examples from laboratory and field studies with P. pusillus, A. schaueriana, 
L. racemosa and R. mangle. We observed that each of these macrophyte species 
adapted differently, taking into account their physiology or structure. For instance, 
A. schaueriana showed adaptive changes, leading to reduced amounts of metals and 
metalloids in roots by limiting the uptake and/or increasing the translocation of the 
elements, or both. However, it is not fully understood what triggers these anatomical
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and physiological changes to adapt to the presence of environmental contaminants by 
preventing the absorption of potentially toxic metals and metalloids. Future studies, 
evaluating gene expression and epigenetic factors could help to elucidate the research 
questions arising from the current results. 

Analysis of Sr isotopes (87Sr/86Sr) in A. schaueriana, L. racemosa and R. mangle 
demonstrated that they use seawater rather than groundwater as a source of water. 
Although this was already demonstrated by other authors in R. mangle using oxygen 
isotopes, these studies are the first to demonstrate this mechanism in A. schaue-
riana, L. racemosa and R. mangle using other isotopes (i.e., 87Sr/86Sr). These results 
confirm the high potential of these plants to be used for estuarine/marine quality 
biomonitoring programs. 

Studies carried out on P. pusillus exposed to metal(loid)s indicated that this macro-
phyte species can be used as a bioindicator for these elements, but also, this species 
shows potential for removing them from solution (e.g., industrial and domestic 
wastewaters), particularly for those aqueous solutions with high Hg concentrations. 
Our results are of note since previous studies reported lower Hg accumulation for 
different plant species than those reported in our work with P. pusillus. Further work 
is in progress to understand the molecular and biological mechanisms by which P. 
pusillus can accumulate large amounts of Hg in its tissues without showing great 
physiological damage. 

Our results could help to understand the responses of different kinds of macro-
phytes to metal exposure. This will contribute to a more precise risk assessment, 
helping to predict and prevent toxic effects in these species. These studies will also 
guide regulatory decisions for the development of national and international plans 
for conserving biodiversity and protecting wetlands. 
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Chapter 4 
Global Perspective for the Use of Aquatic 
Macrophytes in Regulatory Risk 
Assessment for Contaminants 

Verena Sesin , Judith L. Arnolds , and Gertie H. P. Arts 

Abstract Macrophytes (aquatic plants) perform key structural and functional roles 
in aquatic and semi-aquatic ecosystems, and they also provide important ecosystem 
services for humans. It is therefore pertinent that macrophytes are considered in the 
ecological risk assessment (ERA) for chemicals and other contaminants that could 
impact their services. Macrophytes can display a range of morphologies and growth 
forms, and depending on those, require water, sediment (including pore water), and/or 
air to thrive in their environment; this diversity must be considered in ERAs. This 
chapter provides an overview of the use of macrophytes for ERAs as part of regu-
latory procedures. For several decades, free-floating Lemna spp. have been used as 
a “default” standard test species in phytotoxicity assays and ERA. During the last 
15 years, additional species as well as toxicity endpoints beyond morphology and 
biomass have been included in regulatory approaches for potential contaminants of 
concern. Furthermore, increasingly complex, “higher-tier” ecological effects assess-
ment approaches were developed, including species sensitivity distributions, micro-
cosm and mesocosm studies, and modeling approaches. This chapter summarizes 
these developments and provides a global perspective on macrophyte use for risk 
assessments. It concludes with three recommendations for future ERAs with macro-
phytes: to educate young scientists in and raise awareness of ERA frameworks and 
testing methods for macrophytes, on a global scale; to fill knowledge gaps in the 
toxicity assessment with focus on submerged and emergent species and local species 
or varieties and climates; and to consider the complexity of stressor exposures and 
ecological contexts.
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4.1 Introduction to Aquatic Macrophytes as Relevant 
to Risk Assessment 

4.1.1 Macrophyte Growth Forms 

Macrophytes (aquatic plants) are growing in or near water and might be growing with 
upright positions above the water surface (e.g., sediment-rooted, emergent), below 
the water surface (e.g., sediment-rooted, submerged, or non-rooted, submerged) or 
floating (e.g., rooted, floating-leaved, or free-floating) (see Fig. 4.1). Several exam-
ples of macrophytes include coontail (Ceratophyllum demersum L.), cattail (Typha 
L.), waterthyme (Hydrilla verticillata (L.f.) Royle), common water hyacinth (Pont-
ederia crassipes Mart.), and duckweed (Lemna L.). Aquatic ecosystems provide 
essential services and macrophytes perform a key role in their functioning (Jackson 
et al. 2001; Maltby et al. 2010; Borst et al. 2018; Temmink et al. 2021). Abiotic and 
biotic factors influence the natural occurrence and abundance of macrophytes, and 
thereby affect ecosystem services (Temmink et al. 2021). Relevant abiotic conditions 
include water transparency (i.e., light availability), water temperature, carbon species, 
nutrient enrichment availability in surface water and sediment, water movement, and 
sediment and water phytotoxicity. Biotic factors that influence plant occurrence, 
distribution, and growth include herbivory and bioturbation by water birds, large 
fish, and crayfish (Lamers et al. 2013; Dar et al. 2014; Bakker et al. 2016; Temmink 
et al. 2021).

Macrophytes are adapted to growing in water-saturated sediments. The major 
difference between water-saturated and well-drained sediments is oxygen avail-
ability. The pore spaces are filled with air with a relatively high oxygen content in 
well-drained soils. Microorganisms that inhabit the soil and roots of plants growing 
in the soil are able to get oxygen directly from their surroundings. In water-saturated 
sediments, pore spaces are water-filled, and because of the slow rate of oxygen diffu-
sion in water, the water-saturated sediments become anaerobic. The root systems 
of macrophytes growing in water-saturated substrates therefore must use oxygen 
from their aerial parts via internal transport. These macrophytes are morphologi-
cally adapted to grow in water-saturated sediment through large internal spaces for 
transportation of oxygen and rhizomes (Brix 1994). Some macrophytes are also able 
to radiate oxygen from their roots to the root environment to oxidize the sediment 
around the root tips. 

4.1.2 Macrophyte Plasticity 

The successful distribution of aquatic plants in new environments is often linked 
to multiple introductions and a diverse gene pool that facilitates adaptation to vari-
able environmental conditions (Riis et al. 2010). However, there are two distinctive 
adaptive mechanisms that improve the survival, reproduction, and dispersal of plant
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Fig. 4.1 Overview of macrophyte species used for phytotoxicity testing and ecological risk assess-
ments. The figure displays examples of different growth forms and respective species, test systems 
of varying complexity, and potted plant systems

species: phenotypic plasticity and local adaptation (i.e., the capacity of a species to 
rapidly adapt genetically by virtue of a diverse gene pool) (Ward et al. 2008; Riis 
et al. 2010). 

The capacity of a given genotype to express different phenotypes in different envi-
ronments is called phenotypic plasticity (Sultan 2000). Plants are capable of rapidly
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changing their phenotypic characters if phenotypic plasticity is the primary adaptive 
mechanism for plants to spread into a range of habitats. The change is caused by envi-
ronmental conditions in the habitat (Ward et al. 2008; Riis et al. 2010). Phenoplastic 
species can change their physiology or morphology in response to variations in envi-
ronmental conditions (Schlichting 1986). The number of introductions of a species is 
essential in determining whether phenotypic plasticity or local adaptation is the most 
adaptive mechanism for invasive plant species (Kawecki and Ebert 2004). A morpho-
logically plastic plant can display either competitor or stress-tolerant phenological 
traits, depending on the environmental conditions (Kautsky 1988; Garbey et al. 2004). 
One of the most important environmental conditions determining plasticity in aquatic 
systems is disturbance (Barrat-Segretain 2001). 

4.1.3 Role of Macrophytes in Aquatic Ecosystems 

Macrophytes are important components of aquatic and wetland ecosystems (Lesiv 
et al. 2020; Rejmankova 2011; Thomaz 2021) and play a diverse role in determining 
the structure and function of these systems through, for example, oxygenation of 
water, productivity, and nutrient recycling (Meena and Rout 2016; Ceschin et al. 
2020). Macrophytes are involved in ecosystem processes such as biomineralization, 
transpiration, and sedimentation. Among biotic components of aquatic ecosystems, 
higher aquatic plants are one of the main factors of the formation and regulation 
of water quality and oxygen content in natural water (Rejmankova 2011). They are 
primary producers and provide food to invertebrates, fish, and birds, as well as organic 
carbon for bacteria. Macrophytes are at the bottom of herbivorous and detritivorous 
food chains, and their stems, roots, and leaves serve as substrate for periphyton, and as 
shelter for several invertebrates and different stages of fish, amphibians, and reptiles 
(Timms and Moss 1984; Rejmankova, 2011). Certain macrophytes are valuable for 
their direct contributions to human societies by providing food, biomass, and building 
materials (Egertson et al. 2004; Bornette and Puijalon 2011; Rejmankova, 2011). 
Moreover, macrophytes can accumulate heavy metals and other toxic substances 
from water bodies and play an important role in bioindication and phytoremediation 
(Kurilenko and Osmolovskaya 2005; Ceschin et al. 2020, 2021; Kumar et al. 2022). 

The occurrence and growth forms of macrophytes influence the biogeochemical 
processes and movements in the water column and sediments. Submerged macro-
phytes play an important role in maintaining good water quality and high biodiver-
sity in shallow ecosystems, and act as biofilters. Sediments represent an important 
source of nitrogen and phosphorus for rooted aquatic macrophytes (Barko & Smart 
1981). The accumulation of nutrients in an aquatic system causes eutrophication 
which results in substantial growth of macrophytes and weeds. Submerged macro-
phytes could play a role in alleviating the adverse effects of phosphorus resuspension 
and release from bottom sediments. Particles resuspended from the bottom could 
increase turbidity and deteriorate the underwater light field. Resuspension processes 
influence nutrient flux at the sediment-water interface and in the water column, and
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then affect primary production by macrophytes (Zhu et al. 2015). Submerged macro-
phytes can also prevent the growth of algal blooms through the reduction of nutrients, 
allelopathy, and shading (Dhote 2007; Lv et al.  2019). 

4.1.4 Ecosystem Services Provided by Macrophytes 

The Millennium Ecosystem Assessment (MEA 2003, 2005) describes ecosystem 
services as “the benefits people obtain from ecosystems.” These benefits can be clas-
sified into four broad categories: supporting, provisioning, regulating, and cultural 
services. Supporting services include soil and sediment formation, photosynthesis, 
primary production, nutrient cycling, water cycling, and provisioning of habitat. 
Regulating services include climate regulation (e.g., through carbon sequestration), 
water regulation, erosion regulation on shores, water purification, waste treatment, 
disease regulation through filtration of pollutants and pathogens, pest regulation, 
and biological control. Provisioning services include food, fiber, genetic resources, 
and environmental monitoring. Lastly, cultural services include educational value 
and cultural heritage value (MEA 2003, 2005; Dhote and Dixit 2009; Thomaz 
2021; Kumar et al. 2022). The multiple benefits provided by macrophytes are often 
associated with ecosystems such as wetlands and shallow lakes (Taillardat et al. 
2020). 

4.2 Current Use of Macrophytes in Ecological Risk 
Assessments 

4.2.1 Overview and Rationale for Ecological Risk 
Assessments 

Effective environmental protection strategies face diverse ecological issues, 
including climate change, loss of biodiversity, and ubiquitous pollution by anthro-
pogenic substances (Hope 2006). Ecological risk assessments (ERAs) use scientific 
knowledge and tools to generate informed conclusions that can support environ-
mental decision-makers in designing effective protection strategies (Suter 2006). 
The ERA process is designed to evaluate how likely adverse ecological effects occur 
following exposure to one or more environmental stressors (Suter 2006; Quanz et al. 
2020), with the goal to generate transparent, objective, and reliable information 
for decision-makers. Frameworks to guide this process are established by govern-
ment authorities, including in Europe (e.g., European Chemicals Agency, European 
Food Safety Authority), North America (e.g., United States Environmental Protec-
tion Agency, Canadian Pest Management Regulatory Agency), Asia (e.g., Fan et al.
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2019), Africa (e.g., Utembe and Gulumian 2015), Australia (e.g., Australian Govern-
ment 2021), and across countries (e.g., Organisation for Economic Co-operation and 
Development, International Organization for Standardization). While there is no 
single internationally accepted framework (Quanz et al. 2020), most jurisdictions 
follow similar principles. 

The three general principles of ERAs are problem formulation, analysis of expo-
sure and effects, and risk characterization (Hope 2006; Suter 2006) (Fig. 4.2). 
Problem formulation specifies the issue to be solved, defines environmental compo-
nents to be protected, and outlines a plan to obtain the necessary data to perform the 
assessment (Hope 2006; Suter 2006). The analysis of exposure and effects character-
izes the spatio-temporal fate as well as interactions of a stressor in the environment, 
and then assesses the response of environmental components to exposures of real-
istic durations and magnitudes (Hope 2006; Suter 2006). Finally, risk characterization 
integrates all obtained information and estimates the ecological risks (Hope 2006; 
Suter 2006).

The ERA process consists of several levels, so-called tiers, that range from lower-
tier screening methods employing hazard quotients calculated from laboratory-
derived exposure and effect data, to higher-tier approaches such as ecological 
modeling, mesocosm and field studies, and weight-of-evidence analysis (Hope 2006; 
Suter 2006). The progression from lower to higher tiers increases complexity and 
costs but also results in higher accuracy, realism (risk-based), and predictive power 
for environmental decision-making (Solomon et al. 2008). Risk assessments are 
designed to be iterative, where decisions are refined through the acquisition of addi-
tional data (Solomon et al. 2008). The process starts with a lower-tier assessment, 
which if it suggests a potential risk, triggers a higher-tier assessment to further inves-
tigate the nature and extent of the risk. This progression promotes efficient use of 
resources while ensuring that risks are sufficiently characterized for an informed 
decision (Hope 2006). Scientific ERAs thereby represent an important part of regu-
latory environmental protection decisions that ultimately consider multiple factors, 
including economic benefits associated with an activity that results in environ-
mental stress, possible human health risks, and the options for impact mitigation 
and management. 

4.2.2 Macrophyte Use in Ecological Risk Assessments 

Macrophytes play an important role in aquatic ecosystems, contributing to struc-
tural complexity, biogeochemical cycles, and overall productivity of waterbodies 
(Carpenter and Lodge 1986; Thomaz and Da Cunha 2010; Lewis and Thursby 
2018), as outlined in previous sections. Risk assessments intend to ensure that 
these ecosystem services are not compromised by any activities that directly or 
indirectly affect macrophytes and their habitat. Macrophytes are therefore consid-
ered in risk assessments and monitoring of water quality including nutrient loading 
and eutrophication (Delmail 2014; Szoszkiewicz et al. 2020), wastewater discharges
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Fig. 4.2 General principles of ecological risk assessments including the core steps of problem 
formulation, analysis of exposure and effects, and risk characterization, as well as pre-assessment 
planning and post-assessment risk management and monitoring. The arrows indicate that this is an 
iterative process. Modified from Hope (2006), Suter (2006), and Health Canada (2021c)
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(EPA Victoria 2009), contaminated sites (Government of Canada 2012), nuclear 
facilities and activities (CSA 2022), and chemicals that may be released into the 
environment (Australian Environment Agency 2009; ECHA 2017). 

One important stressor to macrophytes that typically warrants ERA is pesti-
cide use. Pesticides are anthropogenic chemicals designed for the control of pest 
organisms, including weeds, insects, rodents, and fungi. Pesticides are applied in 
agricultural, industrial, urban, and residential areas, in both terrestrial and aquatic 
settings. Their use is regulated through a complex registration process and tiered 
ERA performed by many government authorities worldwide, including Australia, 
Brazil, China, Europe, India, Japan, South Africa, and the United States, and efforts 
toward global harmonization of procedures and standards are ongoing (Handford 
et al. 2015). Macrophytes are an integral part of ERAs for pesticides in Canada 
(Health Canada 2021a), the United States (US EPA 2017), and Europe (EFSA PPR 
2013). Pesticides with an herbicidal mode of action, such as herbicides, plant growth 
regulators, and certain fungicides, must undergo ERA on macrophytes prior to their 
registration (European Commission 2013; Health Canada 2021b; US EPA  2021). 

4.2.3 Phytotoxicity Assessment Using Standardized Test 
Protocols 

A key step in macrophyte ERA is phytotoxicity assessment, which determines the 
hazards posed by a stressor (e.g., pesticide, heavy metal, pharmaceutical, plastic) to 
selected non-target macrophyte species using a range of realistic exposure concen-
trations (e.g., Health Canada 2021a). Hereby, in lower-tier assessments, government 
agencies frequently rely on data from phytotoxicity studies following standardized 
test protocols which are designed to produce reliable and reproducible data for regu-
latory decisions (Taylor and Scroggins 2013; Rudén et al. 2017). The development 
of a standardized test protocol can be spearheaded by government agencies, industry, 
scientific societies, or any group of scientists, to address a lack of data in risk 
assessments (OECD 2009; Taylor and Scroggins 2013). Development procedures 
involve the selection of a suitable test species, establishing technical procedures of 
how to conduct the test, and validating that the method produces consistent results 
across laboratories (Taylor and Scroggins 2013). The final test protocol is typically 
published by an internationally recognized organization, such as the Organisation 
for Economic Co-operation and Development (OECD) or the American Society for 
Testing and Materials (ASTM) International. A selection of internationally recog-
nized, standardized macrophyte tests are listed in Table 4.1. Development of stan-
dardized protocols has primarily focussed on testing on the laboratory to green-
house scale, although a few testing guidelines have been proposed for higher-tier 
testing such as mesocosms (e.g., OECD 2003; Coors et al. 2006; EFSA PPR 2013); 
some of these have been standardized among continents, such as the Myriophyllum
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spicatum water-sediment test protocol (OECD 2014b) and the Lemna sp. growth inhi-
bition test (OECD 2006). Standardization of test protocols aims to harmonize ERAs 
across countries (Taylor and Scroggins 2013) and continents, which can increase 
international cooperation as well as save costs and resources. 

Table 4.1 Examples of internationally recognized, standardized macrophyte tests, listing key 
features of the tests: macrophyte species, duration of the test, exposure type, and assessment 
endpoints 

Publisher Year Protocol Macrophyte Duration Exposure 
type 

Endpoint(s) Reference 

Floating species 

ASTM 2013 E1415-91 Lemna gibba 7 days Aqueous Growth 
inhibition 

ASTM 
(2013) 

EC 2007 EPS 
1/RM/37 

Lemna minor 7 days Aqueous Frond 
number and 
frond dry 
weight 

EC (2007) 

ISO 2005 ISO 
20079 

Lemna minor 7 days Aqueous Growth rate 
based on 
frond 
number, 
frond area, 
chlorophyll, 
and dry 
weight 

ISO (2005) 

OECD 2006 TG 221 Lemna gibba, 
Lemna minor 

7 days Aqueous Frond 
number, total 
frond area, 
and fresh and 
dry weight 

OECD 
(2006) 

US EPA 2012 OCSPP 
850.4400 

Lemna gibba, 
Lemna minor 

7 days Aqueous Growth rate 
and yield 
based on 
frond 
number, 
frond area, 
and frond 
dry weight 

US 
EPA (2012) 

Submerged species

(continued)
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Table 4.1 (continued)

Publisher Year Protocol Macrophyte Duration Exposure
type

Endpoint(s) Reference

ASTM 2017 E1913-97 Myriophyllum 
sibiricum 

14 days Aqueous Plant growth, 
shoot length, 
root number 
and length, 
fresh and dry 
weight, 
oxygen 
production, 
membrane 
permeability, 
and 
chlorophyll 
and 
carotenoid 
content 

ASTM 
(2017) 

ISO 2013 ISO 
16191 

Myriophyllum 
aquaticum 

10 days Sediment Growth rate 
based on 
fresh weight, 
length, and 
number of 
new shoots 
and roots 

ISO (2013) 

OECD 2014 TG 238 Myriophyllum 
spicatum 

14 days Aqueous Growth rate 
and yield 
based on 
shoot length, 
shoot fresh, 
and dry 
weight 

OECD 
(2014a) 

OECD 2014 TG 239 Myriophyllum 
spicatum 

14 days Aqueous, 
sediment 

Growth rate 
and yield 
based on 
shoot length, 
shoot fresh. 
and dry 
weight 

OECD 
(2014b) 

ASTM: American Society for Testing and Materials International; EC: Environment Canada; ISO: 
International Organization for Standardization; OECD: Organisation for Economic Co-operation 
and Development; US EPA: United States Environmental Protection Agency 

4.2.4 Standard Test Species for Phytotoxicity Assessment 

It is not practical for an environmental assessment to analyze all species within the 
area under consideration; therefore, a set of representative “reference” animals and 
plants, in some sectors also referred to as “surrogates”, is typically used (Charrasse
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et al. 2022). Standard test species are species for which standardized test protocols 
have been developed. Typically, these species are model organisms, which are species 
that have been extensively studied to understand biological processes. To assess the 
suitability of a species for standardized testing, a set of criteria are routinely consid-
ered (Table 4.2). These criteria ensure that testing can be easily and reliably performed 
across facilities, producing ecologically meaningful results to inform environmental 
protection decisions. Ideally, phytotoxicity assessment is performed with a range of 
macrophytes representing the community, because no species is consistently the most 
sensitive to stressors (Fairchild et al. 1998;Arts et al.  2008; Lewis and Thursby 2018). 
Depending on the stressor mode of action and relevant exposure pathways, testing 
should include macrophytes of differing morphology and growth forms (e.g., free-
floating and floating-leaved; sediment-rooted, submerged; non-rooted, submerged; 
sediment-rooted, emergent) (Fig. 4.1). Moreover, species should be chosen to reflect 
realistic environmental conditions, such as freshwater or saltwater, temperate or trop-
ical environments. Marine macrophyte species are often neglected in toxicity testing 
(Vonk and Kraak 2020), although saltwater macrophytes can be more sensitive to 
several stressors, including cadmium, copper, diuron, and irgarol, compared to fresh-
water species (Lewis and Thursby 2018). Moreover, tropical species are commonly 
underrepresented in phytotoxicity studies, although they can be more sensitive than 
temperate species to some stressors (Binet et al. 2018; Mooney et al. 2019). When 
selecting a test species, consideration should also be given to the differing sensi-
tivities of ecotypes (Kanoun-Boulé et al. 2009), as well as genotypic, intraspecific 
variation (Roubeau Dumont et al. 2019).

The internationally most commonly used standardized test species are free-
floating, non-rooted Lemna spp. and submersed-rooted Myriophyllum spp. (see also 
Table 4.1). These standard tests typically quantify growth and biomass changes 
following 7–14 days of static exposure to a range of concentrations of a stressor. To 
address a lack of test protocols for emergent species, a guideline is currently under 
development for a 14-day test with Glyceria maxima (Hartm.) Holmb. (Davies et al. 
2019). Another proposed emergent macrophyte is Typha that fulfilled many of the 
selection criteria (Sesin et al. 2021), although test methods are not yet developed. 
Several other macrophyte species and test procedures have been proposed for stan-
dardized testing. These proposals include a 48-h phytotoxicity test method using 
root-regrowth as a sensitive endpoint for Lemna spp. (Park et al. 2013) (updated 
to 72-h in Park et al. 2022 and ISO/DIS 4979), a 7-day test with the macrophyte 
Salvinia natans (L.) All. (Cui et al. 2020), and a bioassay with the tropical, marine 
seagrass Halophila ovalis (Wilkinson et al. 2015). Further unpublished testing proto-
cols have been developed in research centers and by industry (Maltby et al. 2010), 
covering a range of floating species belonging to various genera including Azolla, 
and submerged species of the genera Egeria, Elodea, and Ceratophyllum, as well  
as emergent species of the genera Sparganium, Sagittaria, and Phragmites (Table 
4.3); however, standardized test methods are not yet available for these species, but 
tests are based upon existing protocols such as the Myriophyllum spicatum water-
sediment test (OECD 2014b) for submerged macrophytes or the Glyceria maxima 
water-sediment test (in development) for emergent macrophytes (Arts et al. 2022).
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Table 4.2 Criteria to select macrophyte standard test species for phytotoxicity assessment 
(summarized from Powell et al. 1996; Maltby et al.  2010; Sesin et al. 2021) 

Criterion Explanation 

Ecological relevance The macrophyte should be relevant to the 
ecosystem and stressor exposure under 
investigation. Selection considers a species’ role 
and importance in the ecosystem, geographical 
relevance (e.g., temperate or tropical areas), as well 
as its morphology and physiology 

Suitability for different exposure pathways Macrophytes can be exposed via different exposure 
routes depending on their growth form (e.g., 
emergent, submerged, floating). Selection considers 
if a species is likely to be exposed to the stressor 
via realistic routes (e.g., soil, water, air, spray drift, 
sediment, pore water) 

Availability of material Macrophyte material should ideally be available 
year-round to allow for continuous, timely testing. 
Selection considers the availability of material from 
natural populations as well as whether stock 
cultures can be established for continuous supply 

Ease of cultivation Standardized testing relies on protocols that 
minimize cost, workload, and space. Selection 
considers if a species can be cultivated under 
controlled conditions such as a growth chamber or 
greenhouse, and if cultivation is straightforward 
with high return of usable test material 

Uniform growth Macrophytes with low inherent variability in 
morphology and biomass are preferred as this can 
facilitate the statistical discernment between 
natural and stressor-related changes that are 
measured in the test. Selection considers the 
variation in these growth parameters to ensure it is 
acceptable for the test design (e.g., sample size). 
This criterion is transferrable to non-growth-related 
endpoints that may be assessed 

Appropriate assessment endpoints Endpoints are measured variables that reflect the 
performance of the macrophyte during the test. 
Selection considers if the endpoints are 
toxicologically sensitive to the stressor, exhibit low 
variability within treatments, and are biologically 
meaningful (i.e., useful for interference of effects 
on the individual to community level)

(continued)
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Table 4.2 (continued)

Criterion Explanation

Sensitivity toward stressors The test species is ideally among the most sensitive 
species toward the stressor, so that the test results 
are protective of other co-occurring macrophytes. 
Selection considers the relative sensitivities of 
species, taking into account any “safety factors” to 
account for uncertainty that may be applied during 
ecological risk calculation or to extrapolate to other 
macrophyte species

Moreover, experimental conditions generally adopted in freshwater toxicity tests 
with macrophytes were recently summarized in a review by Ceschin et al. (2021).

4.2.5 Tier 1 (Lower-Tier) Phytotoxicity Tests 
with Macrophytes 

Tier 1 tests are short-term, laboratory-based, and single-species phytotoxicity tests 
used to screen for major toxic effects. Typically, these lower-tier tests employ stan-
dardized test protocols as outlined in Table 4.1. Various potential stressors have 
been tested for their phytotoxicity using simple testing approaches that follow, or 
are modified from, standardized test protocols; these stressors include heavy metals, 
pharmaceuticals and personal care products, pesticides, hydrocarbons, surfactants, 
and plastics (summarized in Ceschin et al. 2021). Of all aquatic plants used in ecotox-
icity testing, the majority (60%) are microalgae (Ceschin et al. 2021). Lemna spp., 
Myriophyllum spp., and Hydrilla spp. collectively account for one third (33%) of 
test species (Ceschin et al. 2021). 

The small size, simple anatomy, and ease of culturing make Lemna spp. ideal test 
organisms for ecotoxicological investigations (Mkandawire et al. 2014). However, 
Lemna spp. are not appropriate test organisms in all cases and additional testing 
options with other macrophytes are needed. The AMRAP (Aquatic Macrophyte 
Risk Assessment for Pesticides) workshop (Maltby et al. 2010), held in 2008, trig-
gered the development of test protocols for sediment-rooted aquatic macrophytes. 
Namely, the AMRAP workshop concluded upon regulatory concerns that risk assess-
ments solely based on Lemna spp. and algal data at Tier 1 might underestimate 
the risk of plant protection products to aquatic macrophytes. One concern was that 
Lemna spp. are monocotyledonous species, while herbicides might also and some-
times specifically target dicotyledonous species (e.g., 2,4-D; Belgers et al. 2007). 
Moreover, concern was raised that Lemna spp. may not be sensitive to pesticides that 
form residues in sediment; because of considerable knowledge and experience with 
Myriophyllum spicatum L., this species was recommended as an additional Tier 1 test 
species (Maltby et al. 2010). After extensive test development and ring-testing among
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Table 4.3 Macrophyte species previously used in laboratory studies that are potentially suitable 
for toxicity tests. Common names may not reflect all names used globally 

Growth type Species English common name(s) 

Floating Azolla* Water fern 

Lemna* Duckweed 

Salvinia Watermoss, kariba weed 

Spirodela* Duckmeat, duckweed 

Submerged, non-rooted Ceratophyllum* Coontail, hornwort 

Chara Stonewort 

Submerged, rooted Callitriche Water-starwort 

Egeria* Waterweed 

Elodea* Waterweed, pondweed 

Hydrilla Hydrilla, water thyme 

Heteranthera* Mud plantain, ducksalad 

Hottonia Water violet, featherfoil 

Hygrophila Swampweed, starhorn 

Lagarosiphon* Oxygen weed, African elodea, curly waterweed 

Myriophyllum* Water milfoil 

Najas Water nymph, naiad 

Potamogeton Pondweed, ribbonleaf 

Ranunculus Water crowfoot 

Vallisneria* Eelgrass, tape grass, vallis 

Emergent Glyceria* Sweet-grass, mannagrass 

Phragmites Common reed 

Sagittaria Arrowhead, duck potato, katniss, swamp potato, tule 
potato 

Sparganium Bur-reed 

Typha Bulrush, cattail, reedmace, cumbungi 

The asterisk identifies species that are available from commercial suppliers, although import licences 
may be required. Table modified from Maltby et al. (2010)

several laboratories, a sediment-water guideline was published (OECD 2014b) and 
the test was adopted by the European Aquatic Guidance document (EFSA PPR 2013) 
and included in the data requirements of the pesticide regulation in Europe (EC 
2013). These data requirements specifically include additional aquatic macrophyte 
species tests to be undertaken on a dicotyledonous species, such as M. spicatum, M. 
aquaticum, or a monocotyledonous species, such as the aquatic grass G. maxima, as  
appropriate. Research has shown that G. maxima is a suitable candidate for testing 
grass-specific herbicides (Mohr et al. 2015). The need to perform studies with rooted, 
submerged, and emergent macrophytes is to be discussed with the national competent 
authorities.
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The M. spicatum water-sediment test (OECD 2014b) uses an artificial sediment 
(OECD 2004) with an overlying Smart and Barko test medium (Smart and Barko 
1985). The sediment is enriched with nutrients (phosphorus and nitrogen) (OECD 
2014b) to enable optimum growth of the macrophytes, while the overlying Smart 
and Barko medium only includes carbon. The protocol can be used as a blueprint for 
testing other sediment-rooted macrophytes in the laboratory, such as Elodea nuttallii 
(Planch.) H. St. John and Elodea canadensis Michx. In addition, exposure via the 
sediment may be simulated by spiking the artificial sediment with a test chemical 
and transplanting plants into this spiked sediment. As stated above, a G. maxima test 
is under development and has been ring-tested since 2016 (Arts et al. 2022). 

Submerged macrophytes are easy to propagate, as each side shoot can develop 
new roots and can grow into a new shoot. Emergent macrophytes are different: 
mother plants need to be propagated to develop enough young shoots of similar 
length and leaf number to perform a test. Besides G. maxima as a potential emergent 
test species, Typha species turned out to be promising (Sesin et al. 2021). Typha spp. 
are increasingly used to assess the phytotoxicity of pollutants. Typha is easy to grow 
and suitable for water, soil, and air exposure tests. It enables a suite of morphological 
and physiological toxicity endpoints to be measured (Sesin et al. 2021). A drawback 
might be that Typha species have an ability to hybridize, which might be an issue in 
certain geographical regions. No species within the Typha genus is consistently the 
most sensitive to a range of stressors although comparable data is currently limited 
(Sesin et al. 2021). Selection of a Typha test species may therefore be based on local 
availability, and on the feasibility to propagate enough young shoots with an initial 
variability low enough to perform a toxicity test following regulatory requirements. 
This latter issue is relevant for all emergent macrophytes for use in laboratory toxicity 
tests. 

4.2.6 Higher-Tier Phytotoxicity Tests with Macrophytes 

In the risk assessment for pesticides, microcosm and mesocosm test systems can 
be used as a suitable reference tier. Maltby et al. (2010) stressed that the required 
endpoints for macrophytes need to be studied as naturally as possible, considering 
competition, predation, and natural stressors. Microcosms and mesocosms enable 
this type of studies as species are considered within their community. Microcosm 
and mesocosm studies with aquatic macrophytes can be performed as two different 
test designs: one option is the inclusion of the macrophytes as free-growing natural 
populations; the second option introduces the macrophytes as potted plants (Fig. 4.1). 
The first design limits the number of macrophyte species that can be studied, because 
free-living populations require a large surface area. It is only achievable in larger 
mesocosms such as experimental ditches. The second design with potted plants 
excludes below-ground competition between the rooted macrophyte species. Both 
approaches might be combined in a mesocosm when it is divided into two parts: 
one part is reserved for free-growing populations and the other part for potted plants
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(e.g., in the form of bioassays). Both design options allow the study of effects on 
free-living algae populations, phytoplankton and periphyton. Maltby et al. (2010; 
see Table 3.3 therein) gives an overview of advantages and limitations of assessing 
phytotoxicity in microcosms and mesocosms using potted plants versus plants rooted 
in natural sediment. 

The earliest mesocosm studies were performed in the United States in the 1980’s 
(Graney 1990; Solomon et al. 1996). There was only a short time window from 1988 
to 1992 in which the United States Environmental Protection Agency (US EPA) 
required aquatic field studies (Boyle and Fairchild 1997). Afterward, the interest for 
mesocosm studies declined, partly due to difficulties in interpretation; however, there 
is a recent revival of the interest (see recent sessions and presentations in SETAC 
scientific congresses). Microcosm and mesocosm studies targeted for aquatic macro-
phytes have been comparably rare. An overview of mesocosm studies in ecotox-
icology by Caquet et al. (2000) only mentions aquatic macrophytes as structural 
elements for other groups of organisms, but not as a sensitive or vulnerable taxo-
nomic group to be studied. Studies performed in the 1990s addressed the effects of 
linuron, an herbicide, on primary producers including aquatic macrophytes in exper-
imental ditches (Brink et al. 1997; Cuppen et al. 1997). Fairchild and Sappington 
(2002) studied the fate and effects of the triazinone herbicide metribuzin in experi-
mental pond mesocosms including the effect on the inhabiting macrophytes. Mohr 
et al. (2007, 2009) performed studies in experimental pond and stream mesocosms. 
An alternative is to use bioassays with aquatic macrophytes in mesocosms (Coors 
et al. 2006). Bioassays are in situ tests and include the use of, for example, potted 
plants (Fig. 4.1). 

The AMRAP workshop and its publication (Maltby et al. 2010) drew renewed 
attention to the inclusion of aquatic macrophytes in the risk assessment for pesticides 
and stressed the need for a proper higher-tier risk assessment for aquatic macrophytes. 
It is only recently, after the publication of the Aquatic Guidance document in Europe 
(EFSA PPR 2013) and a publication about the Minimum Detectable Difference 
approach for mesocosm studies (Brock et al. 2015), that potted-plant studies are 
presented by regulators as the only way forward for higher-tier aquatic macrophyte 
mesocosm studies to meet the European regulatory requirements of the inclusion of 
eight sensitive species. 

Mesocosm studies were also performed in tropical climates (Daam et al. 2009a, 
b). The comparison of microcosm and mesocosm studies between temperate and 
tropical climates does not generate an unambiguous conclusion (Daam and van den 
Brink 2010). Pesticide dissipation rates and vulnerability of freshwaters do not appear 
consistently higher or lower in tropical regions compared to their temperate counter-
parts (Daam and van den Brink 2010). However, differences in fate and effects may 
occur for individual pesticides and taxa. Moreover, intensive agricultural practices 
in tropical countries lead to a higher input of pesticides and spread of contamination 
over watersheds (Daam and van den Brink 2010).
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4.2.7 Ecotoxicological Endpoints for Macrophytes 

Endpoints are explicit expressions of environmental values that environmental 
managers wish to protect (CSA 2022). An ecotoxicological endpoint can be defined 
as a variable reflecting macrophyte performance and development during and after 
exposure to a toxic compound. Several different categories of endpoints can be distin-
guished (Arts et al. 2008). Assessment endpoints are directly related to environ-
mental management goals but they are typically stated in terms of population and 
community attributes (e.g., population success, community success, diversity) (CSA 
2022). However, it is not always practical to quantify those attributes; therefore, more 
readily measurable or predictable surrogates, so-called measurement endpoints, can 
be selected (CSA 2022). For instance, for an assessment endpoint of “probability of 
greater than 10% reduction” in recruitment, the related measurement endpoints could 
be “% mortality” in exposed habitats (CSA 2022). Measurement endpoints should 
be defined in terms of survival, growth, or reproduction (CSA 2022). Examples for 
plants include biomass, frond number, number of leaves, area of leaves, shoot height, 
fresh weight (related to growth), mortality (related to survival), and number of new 
ramets, or number of seeds (related to reproduction). When defining measurement 
endpoints, priority should be given to those that are closely linked to assessment 
endpoints; for example, survival, growth, and reproduction are generally considered 
to be closely linked to population success (CSA 2022). 

Assessment endpoints are used in the formal risk assessment. These may include 
the LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect 
Concentration), or ECx (effect concentration for x% of the test population). For 
primary producers, both growth rate (ErC50) and yield/biomass endpoints (EyC50 

or EbC50) are assessment endpoints. ErC50 is the preferred endpoint for primary 
producers (EFSA PPR 2013; OECD 2006, 2014b) and is a protective endpoint in 
most cases (Van Wijngaarden and Arts 2018). In order to use growth rate as an 
endpoint, exponential growth in the control plants should be demonstrated (EFSA 
2015, 2019). Growth rate endpoints are independent of test duration, while yield or 
biomass endpoints decrease with test duration (Bergtold and Dohmen 2011). This is 
a consequence of mathematical calculation and not sensitivity (EFSA PRR 2013). 

Effects of pesticides, other organic chemicals, as well as other pollutants on macro-
phytes generally do not cause mortality if environmental concentrations are applied 
(Maltby et al. 2010). Only at very high doses, macrophytes cannot survive. This 
means that endpoints for aquatic macrophytes are sub-lethal by nature (Arts et al. 
2008). A range of endpoints is available to test the response and fitness of macro-
phytes. However, the endpoints included in toxicity tests should meet a number 
of criteria. They need to be sensitive to the stressor(s), exhibit low variability, and 
allow for easy measurement in standardized laboratory tests (Arts et al. 2008). In the 
M. spicatum test protocol (OECD 2014b), measurement endpoints are shoot fresh 
weight, total shoot dry weight, and total shoot length. In the ring-tests performed 
for the validation of this test protocol, these endpoints performed best in terms of 
achieving a low variability and appropriate sensitivity. These endpoints might slightly 
differ per plant species and growth form. For example, for the G. maxima protocol 
that is currently in development, shoot height was not an appropriate and sensitive
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endpoint and was replaced by total leaf length (Davies et al. 2017; Arts et al.  2022). 
Root endpoints were considered in some studies and are a sensitive endpoint (e.g., 
Belgers et al. 2007); however, limitations include potential high variability (Arts et al. 
2008) and difficulty to continuously measure if plants are grown in soil (Sesin et al. 
2020). 

The following are examples of endpoints used for various contaminants: growth 
rate and biomass endpoints were used to assess toxicity of heavy metals, pharma-
ceuticals, pesticides, surfactants, and plastics (Ceschin et al. 2021). Measurements 
of enzymatic activity were performed to assess toxicity of heavy metals, pharma-
ceuticals, hydrocarbons, and pesticides (Ceschin et al. 2021). Antioxidant enzymes 
(e.g., superoxide dismutase, catalase, peroxidase) scavenge reactive oxidant species 
and thereby prevent oxidative damage, and can serve as biomarkers for exposure, 
particularly for stressors that target the photosynthetic chain by disrupting elec-
tron flow (Brain and Cedergreen 2009). Chlorophyll fluorescence was measured 
to assess toxicity of heavy metals, pharmaceuticals, and surfactants (Ceschin et al. 
2021). Chlorophyll and carotenoid pigments absorb light energy for photosynthesis; 
stressors can affect their content and composition (Brain and Cedergreen 2009). 
Moreover, a review by Sesin et al. (2021) summarized morphological and physio-
logical endpoints that can be used for ecotoxicological tests for various stressors (e.g., 
chemicals, heavy metals, carboxylic acids, xenobiotics, pharmaceuticals, persistent 
organic pollutants, wastewater, and algal toxins) with the emergent macrophyte Typha 
spp. 

4.2.8 Sensitivity of Macrophyte Species and Endpoints 

Macrophyte species might differ in their sensitivity to pollutants. We already 
discussed, as an example, the potential differences between monocotyledonous and 
dicotyledonous macrophytes in sensitivity to specific herbicides. Depending on the 
endpoint, sensitivity can vary greatly within a species, and pollutant- and species-
specific endpoints should be considered in ERA (Berghahn et al. 2007; Dumont 
et al. 2019). Giddings et al. (2013) state that endpoints might differ in sensitivity 
by a factor of 10–1000. These authors compared the sensitivity of different aquatic 
primary producers (macrophytes and algae) to a series of herbicides by using the 
species sensitivity distribution (SSD) approach. They used the lowest reported reli-
able EC50 for each species after calculation of the geometric mean of identical 
measurement endpoints as recommended by Brock et al. (2011). This methodology 
gives insight into the sensitivity of standard test species used in the risk assessment 
for pesticides compared to other algae and macrophyte species. They found that no 
single species consistently represents the most sensitive aquatic plant species. For 
12 of 14 chemicals, Lemna gibba L. and the Federal Insecticide, Fungicide, and 
Rodenticide Act (FIFRA) algae (i.e., the algae used in the risk assessment under 
the United States Federal Insecticide, Fungicide, and Rodenticide Act; Pseudokirch-
neriella subcapitata, Anabaena flos-aquae, Navicula pelliculosa, and Skeletonema
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costatum) included an EC50 near or below the lowest macrophyte EC50 and the 
macrophyte HC5 (i.e., hazardous concentration for 5% of species). For the other 
compounds, M. spicatum was the most sensitive species of all aquatic plants consid-
ered. Overall, these results support the usefulness of testing L. gibba, M. spicatum, 
and the FIFRA algae for assessing pesticide risks to aquatic primary producers. 

4.3 Global Examples of the Use of Macrophytes 
in Regulatory Risk Assessment 

4.3.1 North America 

Macrophytes are an important part of pesticide risk assessments in Canada that 
applies a tiered ERA approach (Health Canada 2021c). An initial screening level 
identifies non-target organisms for which there may be a potential risk. The screening 
uses conservative exposure scenarios and sensitive toxicity effects endpoints. A risk 
quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxi-
city value, which is then compared to the level of concern (LOC). If the RQ is equal 
to or greater than the LOC, then a refined risk assessment is warranted to further char-
acterize the risk. The refined assessment considers more realistic exposure scenarios 
and different toxicity endpoints. Refined methods include exposure modeling, moni-
toring data, mesocosm or field study data, and probabilistic approaches. The refine-
ment process continues until either the risk is judged to be adequately characterized, 
or no further refinement is possible due to limited available data. 

Currently, testing with aquatic vascular plants in Canadian pesticide risk assess-
ments is only required if there is potential for freshwater exposure. From a regulatory 
perspective, testing with macrophytes of the genus Lemna is sufficient to meet the 
requirements (Sauvé 2012; Whiteside 2017), although data from other macrophytes 
are considered in assessments, if available. For example, the re-evaluation of the 
pesticide glyphosate (HC PMRA 2015) included data from the floating Nymphaea 
odorata Aiton, and emergent Pontederia cordata L. and Carex comosa Boott, all of 
which turned out to be more sensitive than Lemna spp. to the formulated product as 
compared by their respective EC50 values. 

Macrophytes are also an important consideration in ERAs for nuclear facilities and 
activities regulated by the Canadian Nuclear Safety Commission (CNSC). The ERAs 
evaluate exposure and effects on representative biota and valued ecosystem compo-
nents (CNSC 2020; CSA  2022), which in many cases include aquatic plants. More-
over, the assessments must specifically consider vulnerable, threatened, and endan-
gered species, including plants, listed under the Government of Canada’s Species at 
Risk Act as well as corresponding provincial and territorial statutes and regulations 
(CSA 2022). 

The United States use a similar approach to Canada for most pesticide risk assess-
ments. For aquatic macrophytes, the screening level RQ is routinely based on the
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lowest EC50, although other toxicological endpoints may be used if they can be linked 
to assessment endpoints in a reasonable and plausible manner (US EPA 2022a). Typi-
cally, Lemna gibba is used in Tiers 1 and 2 (US EPA 2022b). In Tier 3, aquatic field 
tests are performed on a case-by-case basis if macrophytes show greater than 50% 
adverse effects on plant growth (US EPA 2022b). The US EPA has also developed 
the Plant Assessment Tool to better align macrophyte exposure models to pesticide 
fate and transport (Moore et al. 2021). The tool can be used to estimate pesticide 
exposures to plants inhabiting semi-aquatic areas that are adjacent to treated sites 
(Hook 2020). In a refined risk assessment, probabilistic tools and methods are used 
to estimate the variability and uncertainty in factors that influence risk (US EPA 
2022a). 

The US EPA specifically considers threatened and endangered species listed under 
the Endangered Species Act. Under this Act, all federal agencies must ensure that 
their regulatory actions are not likely to jeopardize the continued existence of listed 
species or destroy or adversely modify their critical habitat (US EPA 2022a). For 
threatened or endangered macrophytes, the NOEC is used in the RQ calculation. 
However, toxicity data are rarely available for listed species, and therefore surrogate 
species are often used, such as Lemna spp. (US EPA 2004). For data-deficient species, 
expert knowledge can also fill gaps and support decision-making (Fitzgerald et al. 
2021). 

4.3.2 South America 

Risk assessment, especially for pesticides, is rapidly developing in South America 
(Carriquiriborde et al. 2014; Casallanovo et al. 2021a, 2021b). In Brazil, the current 
process is mainly hazard-based, but risk assessment guidelines for aquatic, terrestrial, 
and soil organisms are expected to be published by regulators within the next two 
years (Casallanovo et al. 2021b). A workshop held in 2014 (Carriquiriborde et al. 
2014) recommended including macrophytes in the first tier of the risk assessment in 
the form of required tests for Lemna spp. Brazil uses procedures adapted from the 
European scheme (Topping et al. 2020). 

4.3.3 Europe 

In Europe, a tiered risk assessment procedure for pesticides has been established and 
is in force (EFSA PPR 2013; European Commission 2013). For compounds with an 
herbicidal mode of action, the first tier requires tests with Lemna spp. (L. gibba or 
L. minor). For substances with an herbicidal mode of action for which Lemna spp. 
are not sensitive or there is expected uptake from sediment by the roots of macro-
phytes, toxicity testing is required with another macrophyte, either M. spicatum or G.
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maxima. The regulatory endpoint used in the risk assessment is the regulatory accept-
able concentration (RAC), which—for macrophytes—is the EC50 with an assessment 
factor of 10. This RAC is compared with the predicted environmental concentrations 
(PECs) resulting from modeling of FOCUS scenarios for the use of the specific 
compound under evaluation. This results in tables with conclusions about the safe or 
unsafe use of the compound in the different scenarios. 

In the aquatic risk assessment, the second tier provides several methods to refine 
the risk assessment (EFSA PPR 2013). If primary producers are the most sensitive 
group of organisms in Tier 1, a geomean approach can be followed if more macro-
phyte or algae endpoints are available, but less than eight. If at least eight endpoints 
from macrophytes and algae are available, an SSD curve can be generated. Rules are 
in place which organisms can be combined in one SSD. The best approach is to make 
an SSD with all primary producers first. If one of the groups of primary producers 
(e.g., algae, diatoms, macrophytes) are more sensitive than the others, separate curves 
for these groups need to be generated and the HC5 of the most sensitive curve can 
be used in the risk assessment. A third option in the second tier is modified exposure 
tests. These tests include the standard test species but have a modified, more realistic 
exposure. These tests can be combined with TKTD (i.e., Toxicokinetic–Toxicody-
namic) modeling. For example, for Lemna spp. a fit-for-purpose model is available 
(Schmitt et al. 2013), while this is in development for M. spicatum (Heine et al. 
2015). 

The third tier includes microcosm and mesocosm studies, which are described 
in Sect. 4.2.6. The highest tier might be on the landscape level, including a multi-
species and multi-compound approach. This landscape approach is currently under 
debate and development in Europe. 

4.3.4 Africa 

In developing countries, risk assessment on pesticides has not been adequately 
studied due to the situation that concentrations and fate of pesticides in the envi-
ronment are often undetermined. South Africa is facing challenges with significant 
pressures on its freshwater and agricultural resources, which enhances the prospects 
of pesticide effects. A few studies have been performed in South Africa in terms of 
pesticide risk assessment. The majority of the work concentrated on the estuaries and 
rivers of the Western Cape (Bollmohr et al. 2007; Malherbe et al. 2013). The PRIMET 
model is currently used in South Africa to predict risk to the aquatic environment. 
Models that are used to predict risks must be validated through field monitoring of 
pesticide exposure and effects. Most studies on macrophytes have focused on these 
plants as invasive alien species and very little work has been done on risk assessment. 

In Ethiopia, the risk assessment that is currently being implemented is based on 
European principles on aquatic risk assessment and the registration procedure for 
pesticides. Risks for aquatic organisms are calculated by using water concentra-
tions demonstrating the 90th percentile probability of occurrence in Ethiopia. This
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percentile is standard in the European Union’s registration procedures for risks in 
the aquatic ecosystem and reflects a less strict requirement for the protection of 
aquatic organisms compared to humans. Pesticide toxicity to rooted macrophytes is 
not currently considered as a future addition to the risk assessment procedure (Teklu 
et al. 2015). Moreover, there is no pesticide monitoring system in place for the envi-
ronment, primarily due to poor institutional capacity, and a lack of coordination on 
the safe use of pesticides among federal and regional governments (Negatu et al. 
2021). A need to raise awareness of the public on issues of pesticide misuse was 
identified by scientists (Negatu et al. 2021). 

4.3.5 Australia 

Australia has a well-developed risk assessment process that evaluates the impacts 
associated with licensed activities that include various potential stressors such as 
radioactive substances, pesticides, and hazardous chemicals (NSW EPA 2022). For 
example, in the pesticide risk assessment, non-target macrophyte toxicity tests are 
integral to the hazard assessment (APVMA 2019). Notably, Australia uses a site-
specific, “eco-regionalized” approach that recognizes the wide range of ecosystem 
types (e.g., tropical, temperate, arid environments) within their jurisdiction, and asso-
ciated differences in water quality characteristics (Water Quality Australia 2019). 
As one example, an ERA of tebuthiuron in tropical Australian wetlands considered 
specifically tropical species including the macrophyte Lemna aequinoctialis Welw. 
(Dam et al. 2004). 

4.3.6 Global Perspective on the Risk Assessment 
for Macrophytes 

The United States, Canada, and the European Union were pioneers in developing 
sound risk assessment schemes (Casallanovo et al. 2021b). The procedures devel-
oped in these countries are taken as examples and adapted to other countries and 
their specific circumstances, such as in Brazil (Topping et al. 2020; Casallanovo et al. 
2021b). However, macrophytes are often not included in risk assessment schemes, 
and if they are, then it is usually limited to requiring the standard test species Lemna 
spp. in the first tier of the risk assessment. Europe also considers rooted macrophytes 
in the risk assessment when triggered by the fate of the compound and/or the sensi-
tivity of the standard test species Lemna spp., while in North America toxicity data 
from other macrophytes might be used in the risk assessment when available. The 
comparably minor role of macrophytes in ecotoxicological investigations does not
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reflect the major role macrophytes play in ecosystems. Many contaminants enter 
ecosystems via plants which are a key link in food webs (Ceschin et al. 2021). The 
usefulness of macrophytes goes beyond simple toxicity tests; they can also serve as 
bioindicators of water quality and phytoremediation agents (Ceschin et al. 2021). 
Moreover, there is a potential to establish large-scale monitoring programs to verify 
risk assessment predictions on a global level; for example, South African scien-
tists called for intensifying and expanding water monitoring for pesticides using 
chemical, toxicological, and biological techniques (Ansara-Ross et al. 2012). Lastly, 
risk assessments on a global scale are heavily relying on standard test toxicity data 
produced in Europe or North America, and there is a lack of locally adapted and 
indigenous species being tested (e.g., Daam and van den Brink 2010; Ansara-Ross 
et al. 2012) which would be most relevant to the local risk assessment context. 

4.4 Conclusion and Outlook: Future Ecological Risk 
Assessments with Macrophytes 

Macrophytes are important components of aquatic and wetland ecosystems and 
sustain many ecosystem services, and therefore need to be an integral part of ERAs. 
Yet, ERAs tend to overlook the complexity of macrophytes, their growth forms 
and plasticity on an individual to community level, possibly resulting in insufficient 
protection measures. On an individual level, macrophyte growth forms (e.g., emer-
gent, submerged, floating) and classes (e.g., monocots or dicots) influence exposure 
pathways and responses to stressors. On a community level, co-occurring species 
can influence community dynamics through competition for light or resources. As 
this chapter outlined, ERA approaches have been updated to try to address these 
factors, such as through the addition of new single-species tests with submerged and 
emergent species, as well as higher-tier, multi-species testing and modeling methods. 

Scientific knowledge is continuously evolving, and the scientific community regu-
larly proposes new ERA processes and tools to align approaches with environmental 
reality (Topping et al. 2020). However, regulatory frameworks are rarely modern-
ized. This causes a time-lag of incorporating the most recent scientific knowledge 
into regulatory decisions. In addition, the widely used tiered risk assessment process 
is primarily based on single-stressor, single-use assessments (Topping et al. 2020), 
although multiple chemical products are typically used on the landscape scale. If the 
goal of ERA is to protect macrophyte populations and communities and ultimately 
biodiversity, then the current approach can be ineffective (Frische et al. 2018; Schäfer 
et al. 2019; Topping et al. 2020). Moreover, regulatory progress is not equivalent on 
a global level, and many countries have not yet established ERA frameworks for 
macrophytes (e.g., South Africa, Ethiopia, and countries in Latin America, possibly 
also in Asia).
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We have three key recommendations for ERAs with macrophytes that can be 
considered in the adaptation of current regulatory processes as well as in the 
establishment of new frameworks, which should be relevant across countries. 

First, we recommend educating young scientists all over the globe in ERA frame-
works, in the effects of pollutants on individual, population, and ecosystem levels, 
on how these can be assessed (experimental and modeling tools), and on how a risk 
assessment process could look like in practice (see also Fig. 4.2). Awareness needs 
to be raised about the diversity of species and ecosystems in the environment and 
how these organisms can be protected from adverse effects. Knowledge exchange 
could be facilitated through bilateral or multilateral collaboration and training. One 
recent example is the collaboration between the International Institute for Sustain-
able Development and the African Center for Aquatic Research and Education to 
strengthen freshwater science in large lakes, addressing pollution at local, regional, 
and global scales (IISD 2020). Education can also extend to the public, and outreach 
and engagement efforts can include local residents, naturalist and stewardship groups, 
and indigenous communities. These stakeholders already have tremendous knowl-
edge and experience with the local environment and plant communities. Acknowl-
edging that communication is a two-way process, stakeholders’ knowledge can in 
turn be linked to the ERA framework and could inform the selection of macrophyte 
test species as well as monitoring sites, frequency, and sample types. One example 
is the ERA conducted for certain nuclear facilities in Canada, which is periodi-
cally reviewed and revised using site-specific knowledge and indigenous knowledge, 
among other sources (CNSC 2020). 

Secondly, we recommend developing scientific approaches to fill the gaps in our 
knowledge related to risk assessment for aquatic macrophytes. We have identified 
the following knowledge gaps: (1) we need more understanding of the sensitivity of 
different macrophyte growth forms, (indigenous) species, macrophyte ecotypes, and 
genotypes to herbicide exposure and exposure to other contaminants such as phar-
maceuticals, nanoparticles, or radionuclides. (2) We need more knowledge on how 
to do a proper risk assessment on a local level, especially in different climatic zones 
all over the globe. Compared to temperate zones, tropical zones and tropical macro-
phyte species are less studied. For example, the applied field rates of pesticides and 
associated exposure routes differ locally, influenced by the climate, crop production, 
and government laws and regulations, among other factors. (3) We need to develop 
statistical and TKTD models for rooted (submerged and emergent) macrophytes to 
be used in risk assessment. (4) We need to revive aquatic microcosm and meso-
cosm studies with aquatic macrophytes as an important intermediate step between 
the lower-tier risk assessment for individual species and the risk assessment at the 
landscape level. (5) We need to develop approaches to perform a risk assessment for 
aquatic macrophytes at the landscape level. 

Third, while further developing risk assessment for aquatic macrophytes, we 
recommend that future ERAs reflect the complexity of stressors that may expose 
macrophytes, as well as their ecological context. Macrophytes are typically exposed 
to a mixture of stressors, including anthropogenic pollutants, habitat disturbances
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and loss, climatic changes, and competition by invasive species. Exposure to stres-
sors can be highly variable in temporal and spatial dimensions, and accounting for 
these in an assessment can increase environmental realism. Moreover, ERAs should 
ideally consider the ecological context, such as species interactions and community 
composition, as well as the landscape context, including habitat types and connec-
tivity (Milner and Boyd 2017; Schäfer et al. 2019). As the case of South Africa shows, 
on a local level, invasive macrophyte species represent a significant pressure on fresh-
water ecosystems, and these issues should be considered in ERAs for co-occurring 
stressors, for example through a cumulative risk assessment. Renewed interest in 
microcosm and mesocosm studies is also promising in this regard. While accounting 
for all these factors is challenging, partly due to limited data availability, an approach 
that reflects the complexity and interdependence of ecosystem components, however, 
is needed to provide effective, long-term environmental protection. 
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Chapter 5 
Wild Rice (Zizania spp.) as a Model 
Macrophyte Toxicity Test Species 
for Ecotoxicological Risk Assessment 

Stefanie Kornberger, Heather M. R. Jovanovic, Mark L. Hanson , 
and Braedon W. Humeniuk 

Abstract This chapter outlines the life history of wild rice (Zizania spp.), assesses 
their ecological, sociocultural, and economic relevance, reviews the current state of 
knowledge around their use as a test species, and makes recommendations around 
their possible inclusion in ecological risk assessments. Northern wild rice (Zizania 
palustris) holds significant importance to North American Indigenous communities, 
is an integral aspect of wetland structure and function, and is rising in commer-
cial demand and value due to their high nutritional content and long shelf-life. 
While Z. palustris has been used as a species in toxicity assessments, a standard 
test protocol has not yet been established. We performed a review to assess the utility 
and identify gaps in the available peer-reviewed literature for wild rice toxicity studies 
pertaining to methodology and experimental design. We found 11 articles reporting 
22 studies that specifically examined the responses of Z. palustris to contaminants 
under controlled conditions (laboratory or mesocosm studies). The studies were 
evaluated for methodological reporting in five categories: (1) test organism; (2) test 
conditions; (3) test media; (4) experimental design; and (5) test performance. The 
conditions for stratification and control performance, both crucial for experimental 
replication and credibility, were under-reported in the literature (only 45% and 14% 
of studies, respectively). It was also found that conditions for seed storage were 
highly ambiguous or were not included at all. There were few consistent approaches 
between different research groups when conducting wild rice toxicity studies. We 
recommend that wild rice toxicity test reports incorporate experimental conditions in 
detail to ensure both transparency as well as to facilitate the ability of others to adopt

Throughout this chapter, wild rice is referred to as “they/them”. In Anishinaabemowin (the shared 
language of the Algonquin, Mississauga, Nipissing, Odawa, Ojibwe, Potawatomi, and Saulteaux 
North American Indigenous peoples), northern wild rice, or manoomin, is grammatically referred 
to as “him/her/them”, as opposed to “it”, since they are not viewed as inanimate “resources” by 
the Anishinaabeg (Vizenor 2008). This important distinction in translation highlights the need for 
Western societies to recognize the rights of all organisms, not just humans and animals. 
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Z. palustris as a toxicity test species. Overall, wild rice has potential as a macrophyte 
toxicity test species, but significant work is required to validate methods to ensure 
repeatable and reproducible data across various life stages. 

5.1 Introduction 

As outlined in Chap. 1, macrophytes are an essential component of nontarget toxi-
city characterization when assessing the risk to aquatic ecosystems; however, their 
widespread use in ecotoxicological testing is still relatively lacking, with most studies 
focusing on a narrow range of species. Many ecological risk assessments rely on a 
single macrophyte test species to extrapolate responses to population, community, 
or ecosystem-level effects for this class of organisms. This has led to concerns about 
the predictive capabilities of these assessments, especially under varying exposure 
scenarios (e.g., sediment, water column, or aerial exposure). As it pertains to primary 
producers, standardized algae and duckweed tests offer advantages for characterizing 
the effects of contaminants present in the water column (e.g., cost-effective, quick, 
and simple to conduct); however, they may lack ecological relevance for sediment-
bound toxicants. To reduce uncertainty when characterizing the risk to nontarget 
organisms, representation of macrophytes with different morphologies and expo-
sure pathways (e.g., rooted emergent species) are needed in the standard regulatory 
risk assessment process. As such, wild rice (Zizania spp.) may be a suitable candi-
date for inclusion into the battery of test species when assessing the risk to wetland 
ecosystems. 

Wild rice species (Zizania spp.) are rooted emergent aquatic macrophytes that 
are indigenous to North America (except for Manchurian wild rice, Z. latifolia), 
resulting in potential exposure to toxicants bound to sediment, suspended in the 
water column, or deposited aerially. Additionally, studies have found that wild rice 
is sensitive under both laboratory and field conditions, predominantly conducted 
using the species Zizania palustris (Durkee Walker et al. 2006, 2010; Fort et al.  
2014, 2017, 2020; Johnson et al. 2019; LaFond-Hudson et al. 2018; Malvick and 
Percich 1993; Nimmo et al. 2003; Pastor et al. 2017; Sims et al. 2012). Overall, wild 
rice presents the opportunity to address some of the identified gaps in macrophyte 
testing within North American ecotoxicological risk assessments. 

To extrapolate meaningful and relevant results from toxicity tests, six criteria 
should be considered when selecting an appropriate test organism: (1) a group of 
species representing a broad range of sensitivities should be used whenever possible, 
as sensitivities vary among species; (2) species that are widely abundant and avail-
able should be considered; (3) species that are indigenous to or representative of the 
ecosystem of interest should be studied whenever possible; (4) species of ecolog-
ical, cultural, or commercial importance should be included; (5) species should be 
amenable to routine maintenance, with techniques available for culturing and rearing 
in the laboratory to facilitate both acute and chronic tests; and (6) species with
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adequate background information (e.g., their genetics, physiology, and behavior) 
may allow for test results to be more easily interpreted, and should be considered 
(Rand et al. 1995). In this chapter, we examine how wild rice would meet these 
expectations, as well as reviewing the current state of knowledge and making recom-
mendations to promote their inclusion as an alternative test species in ecological risk 
assessment. 

5.2 Wild Rice Life History 

Wild rice species (Zizania spp.) are emergent aquatic macrophytes that grow in dense 
(often monotypic) stands, typically in freshwater riparian and littoral zones (Ahmad 
et al. 2018; Crow and Hellquist 2006; LaFond-Hudson et al. 2018; Myrbo et al. 2017; 
Pastor et al. 2017; Wetzel 1975). They are monocotyledonous flowering grasses of 
the Family Poaceae (Aiken et al. 1988; Crow and Hellquist 2006; Pastor et al. 2017; 
Terrell et al. 1997). They have also been classified as part of the Tribe Oryzeae, as 
there is extensive genetic colinearity and synteny between wild rice (Zizania spp.) 
and domesticated rice (Oryza sativa), with differences primarily occurring in the 
number of chromosomes (e.g., wild rice has 15 pairs, while domesticated rice has 
12) and total DNA content (e.g., wild rice has two times more than domesticated rice) 
(Grombacher et al. 1996; Hass et al.  2003; Kennard et al. 2000; Porter 2019). There 
are four recognized species of wild rice within the genus Zizania L.; two of which are 
annual species, Z. palustris L. (northern wild rice) and Z. aquatica L. (southern wild 
rice), and the other two are perennial species, Z. latifolia (Griseb.) Turcz. ex Stapf 
(Manchurian wild rice), and Z. texana Hitchc. (Texas wild rice) (Ahmad et al. 2018; 
Aiken et al. 1988; Archibold 2003; Crow and Hellquist 2006; Duvall and Biesboer 
1988; Porter 2019; Terrell et al. 1997). In this chapter, we primarily focus on northern 
wild rice (Z. palustris) and discuss the other species for context and contrasting. 

Northern wild rice (Z. palustris) is the most prevalent of the four species, and due 
to their larger seed size, they have been traditionally and commercially harvested 
as a food source (Archibold 2003; Porter 2019). They are predominantly found in 
freshwater wetlands, slow-moving rivers and streams, and the shallow waters of lakes 
within the Great Lakes and Boreal Forest regions of Canada and the United States, 
as seen in Fig. 5.1 (Ahmad et al. 2018; Aiken et al. 1988; Archibold 2003; Crow  
and Hellquist 2006; Duquette and Kimball 2020; Fort et al.  2014; LaFond-Hudson 
et al. 2018; Malvick and Percich 1993; Pastor et al. 2017; Porter 2019). Southern 
wild rice (Z. aquatica) can be found along the Atlantic coastal plains of Canada and 
the United States, with one variety (Z. aquatica var. brevis Fassett) found in the tidal 
waters and tributaries of the St. Lawrence River in Quebec (Aiken et al. 1988; Crow  
and Hellquist 2006; Terrell et al. 1997). Manchurian wild rice (Z. latifolia) is widely  
grown in southeastern Asia, primarily as a cultivated crop (Surendiran et al. 2014; 
Terrell et al. 1997; Xu et al.  2010). Texas wild rice (Z. texana) is an endangered 
species that is native to a small portion of the upper San Marcos River in Texas 
(Porter 2019; Surendiran et al. 2014; Xu et al.  2010).
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Fig. 5.1 Map of the distribution of northern wild rice (Zizania palustris) across Canada and the 
United States, excluding artificial paddies for commercial harvesting. The natural ranges of both 
Z. palustris var palustris and Z. palustris var interior were included and adapted from maps by 
Barkworth et al. (2007) and  Porter  (2019) 

Aside from distribution and life cycle duration (annual versus perennial), spikelet 
anatomy is a reliable characteristic for distinguishing between the species, as the 
morphology of the pistillate lemmas and paleas of Z. palustris are coriaceous (i.e., 
leathery), whereas the intercostal species (e.g., Z. aquatica, Z. latifolia, and Z. texana) 
are chartaceous (i.e., papery), as described by Crow and Hellquist (2006), Duvall 
and Biesboer (1988), and Porter (2019). The two varieties of Zizania palustris are 
Z. palustris var. palustris and Z. palustris var. interior, both of which are commonly 
referred to as northern wild rice (Ahmad et al. 2018; Archibold 2003; Crow and 
Hellquist 2006). These can be distinguished based on height, leaf width, ligule 
length, and number of spikelets on the lower pistillate branches, as Z. palustris 
var. palustris has a height of about 0.7–1.5 m, 3–15 mm wide leaves, 3–5 mm long 
ligules, and 2–8 spikelets, while Z. palustris var. interior has a height of 0.9–3 m, 
20–40 mm wide leaves, 10–15 mm long ligules, and 9–30 spikelets (Ahmad et al. 
2018; Crow and Hellquist 2006). Wild rice (hereafter referring to the annual species 
Z. palustris and Z. aquatica collectively) are heterophyllus, with submerged and
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floating leaves preceding mature aerial leaves and the production of aerial reproduc-
tive organs (Wetzel 1975). They typically have short roots, long, narrow blade-like 
leaves, hollow, cylindrical stems, a panicle at the apex for the type of inflorescence, 
with spikelets of the upper inflorescence branches pistillate (female), and spikelets of 
the lower branches staminate (male) (Ahmad et al. 2018; Crow and Hellquist 2006; 
Surendiran et al. 2014). With their roots only extending into the shallow depths of 
the sediment, there is an increased risk of exposure to sediment-bound contaminants 
(i.e., those that form residues near the top of the sediments) in comparison to deeper 
rooting macrophytes. In addition, these short roots are easily pulled up, which can 
be ideal when examining root and shoot endpoints directly. As annual macrophytes, 
they must undergo all allocation processes required to complete their life cycle within 
the same year as their germination, often resulting in trade-offs between seed, leaf, 
stem, and root development if carbon or nutrients are limited (Sims et al. 2012). 
Wild rice has been found to respond plastically to environmental conditions, as the 
morphology of wild rice typically varies between natural stands and years. However, 
when seeds are grown in similar conditions, the variation significantly decreases 
(Archibold et al. 1989; Durkee Walker et al. 2010; Sims et al. 2012). Therefore, it is 
important to maintain appropriate water levels (ideally 0.75–1 m) when establishing 
wild rice stands, as greater water depths produce plants with longer, thinner stems 
and fewer seed heads (Archibold et al. 1989; Archibold 2003). 

With the male and female flowers separate from each other on the same stalk, 
wild rice cross-pollinates to reproduce, and with clusters of receptive female florets 
emerging prior to the male florets, the chances of self-pollination are low, as females 
are often pollinated before the males emerge and shed pollen (Duquette and Kimball 
2020). As seeds mature, they will shatter from the panicle, falling to the bottom of 
the water column to overwinter in the sediments in a dormant state. However, during 
commercial production, seeds are harvested and stored in near freezing water to 
mimic overwintering in controlled settings (Duquette and Kimball 2020; Grombacher 
et al. 1996). Early growth stages are susceptible to being uprooted or drowned by 
wave action if there is too much wind or the water depth is greater than 2.5 m (Aiken 
et al. 1988; Archibold 2003; Porter 2019). Wild rice does require water for growth, 
but does not grow well in saline, alkaline, or acidic water that is low in essential 
nutrients, as optimal alkalinity values range from 40 to 80 mg/L and optimal pH 
values range from 6.9 to 7.4 (Archibold 2003). Optimal wild rice habitats have long, 
cold winters, as seeds will germinate at low rates if the winter is too short or too warm 
(Ahmad et al. 2018; Myrbo et al. 2017). Additionally, transparent surface waters in 
the spring and summer are ideal, as low water clarity can inhibit photosynthesis prior 
to emergence (Ahmad et al. 2018; Myrbo et al. 2017). 

In more northern latitudes, wild rice commence their annual life cycle with seed 
germination in the spring (i.e., May), followed by emergence from the sediment 
and water column typically in June, continuing their vegetative growth throughout 
the summer, with flowering and seed production usually beginning in August, and 
then the seeds begin to shed in autumn (Fig. 5.2); the plant dies as temperatures 
drop at the end of the season and seeds overwinter in the sediment until the cycle 
begins again the following spring (Grava and Raisanen 1978; LaFond-Hudson et al.
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Fig. 5.2 The life cycle of northern wild rice (Zizania palustris). Seeds germinate in the sediment, 
with the development of the primary root (radicle). The mesocotyl then emerges from the sediment 
and elevates the coleoptile, which sheathes the emerging shoot and first leaf. This is followed by 
the floating-leaf stage, with further development of the roots. Next is the aerial leaf stage, where 
the plant begins to emerge out of the water. Then, at the mature plant stage, prop roots arise from 
the stem to provide additional support, and there is the development of the panicle, comprised 
of staminate spikelets (male florets) and pistillate spikelets (female florets). Potential contaminant 
exposure pathways are highlighted in red

2018; Sims et al. 2012). The plant requires approximately 120 days to reach maturity 
from germination (Archibold 2003). Seeds will penetrate the upper 2–5 cm of the 
sediment after falling through the water column, and this is where seed germination 
and early seedling growth (e.g., development of primary root and shoot) occurs the 
following spring (Pastor et al. 2017). Young plants are submerged for their first 3 
to 4 weeks of growth and then long, thin leaves reach the top of the water column 
as they enter the floating-leaf stage (Archibold 2003). The floating leaves fix carbon 
into carbohydrates for root production and subsequently nutrient (e.g., nitrogen and 
phosphorous) uptake (Pastor et al. 2017). They will then progress to the aerial stage, 
with the stem emerging out of the water, and then as they enter the reproductive 
cycle, the panicle emerges, the stem elongates, the flowers develop for pollination, 
and the seeds begin to mature prior to senescence (Duquette and Kimball 2020). 



5 Wild Rice (Zizania spp.) as a Model Macrophyte Toxicity Test Species … 115

5.3 Wild Rice Ecological Relevance 

Wild rice plays an integral role in the structure and function of freshwater ecosys-
tems. Emergent angiosperms (such as wild rice) are highly productive macrophytes, 
due to the abundance of available water and nutrients in sediments compared to 
floating macrophytes, and the greater availability of atmospheric carbon dioxide 
and oxygen compared to submerged macrophytes (Wetzel 1975). Emergent macro-
phytes are often found within the littoral region of small and shallow lakes, and as 
such are a major source of organic matter synthesis, contributing significantly to 
the productivity and metabolism regulation of the whole lake ecosystem (Wetzel 
1975). By converting carbon dioxide and solar energy to organic matter via primary 
production, they provide food and habitat resources for herbivores, omnivores, and 
detritivores in aquatic ecosystems (Arts et al. 2008, 2010; Fairchild et al. 1998; 
Wetzel 1975). Wild rice is a vital food source for waterfowl, muskrats, beavers, 
moose, and other wildlife (Aagaard et al. 2019; Archibold 2003; Crow and Hellquist 
2006; Fort et al.  2014; Myrbo et al. 2017; Pastor et al. 2017). Wild rice also provides 
habitat and shelter for both aquatic and terrestrial organisms, as the dense monotypic 
stands hide them from predators (Lewis 1995; Myrbo et al. 2017; Pastor et al. 2017). 
Wild rice stands are especially valuable resources for migrating waterfowl and other 
wetland birds, as they provide direct (e.g., consumption of seeds, flowers, young 
shoots, leaves, and mature stems) and indirect forage (e.g., consumption of nearby 
invertebrates), roosting habitat during migration, and nesting habitat for breeding 
(Aagaard et al. 2019). For instance, wild rice is a primary dietary constituent of mute 
swans (Cygnus olor), Canada geese (Branta canadensis), and red-winged blackbirds 
(Agelaius phoeniceus) (Bailey et al. 2008; Haramis and Kearns 2007; Meanley 1961), 
and the preferred food of soras (Porzana carolina), with wild rice comprising up to 
94% of their fall diet (Webster 1964). 

In addition to primary productivity, emergent macrophytes, such as wild rice, 
contribute to the biogeochemical cycling and structural complexity of aquatic ecosys-
tems (Carpenter and Lodge 1986; Lemly et al. 1999; Lewis and Thursby 2018). The 
emergent leaves of wild rice reduce light availability to submerged macrophytes and 
algae, reduce water column circulation, and the shading provided by the leaves may 
reduce water temperatures (Carpenter and Lodge 1986; Lemly et al. 1999). The roots 
and shoots of wild rice stabilize sediments, introduce structural components (e.g., 
cellulose and lignin) to the detrital pool, and may enhance or reduce mineral uptake 
and release into aquatic ecosystems (Carpenter and Lodge 1986; Diepens et al. 2017; 
Fairchild et al. 1998; Lemly et al. 1999; Lewis  1995; Wetzel 1975).  The roots of wild  
rice create a redox interface, which cycles nitrogen, sulfur, iron, and other metals 
(LaFond-Hudson et al. 2018). As oxygen is transported from the atmosphere to the 
roots, an aerobic rhizosphere develops from the radial oxygen loss of the roots, which 
may result in the sequestration of heavy metals due to the high adsorption capacity 
of iron hydroxides that may form as iron plaque on the root (Jorgenson et al. 2013).
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These iron root plaques may also function to sequester nutrients, such as phosphorus, 
which has implications on bioremediation efforts in eutrophic systems (Jorgenson 
et al. 2013). Wild rice plays clear structural and functional roles, as well as in the 
suppling of essential ecosystem services. 

5.4 Wild Rice Socio-Cultural and Economic Importance 

Northern wild rice, or manoomin as it is called by the Anishinaabe First Peoples of 
North America, is an important food resource for Indigenous communities that has 
been traditionally harvested across North America for thousands of years (Ahmad 
et al. 2018; Aiken et al. 1988; Archibold 2003; Crow and Hellquist 2006; Fort et al.  
2014; Porter 2019). Manoomin is often translated as “the good fruit” or “the good 
berry” in Anishinaabemowin or Ojibwemowin (David et al. 2019). They are a nutri-
tious staple that is high in carbohydrates, proteins, vitamins (e.g., riboflavin), minerals 
(e.g., potassium and zinc), antioxidants, and dietary fiber, while also having a low-fat 
profile (Ahmad et al. 2018; Aiken et al. 1988; Fort et al.  2014; Surendiran et al. 2014). 
Within the traditional diet, manoomin was overall more nutritious than any other food 
available, and despite the labor-intensive process of harvesting and finishing, grains 
were seasonally abundant, and could be preserved for extensive periods of time (e.g., 
over the winter, when other foods are scarce) (David et al. 2019; Vennum Jr 1988). 
Manoomin is an integral part of the lives of the Anishinaabeg, and is often the first 
food given to children and the last food given to elders (David et al. 2019; Vennum 
Jr 1988; Vizenor 2008). 

Manoomin holds strong spiritual and cultural significance and remains part of 
many ceremonies (as both a sacred food and medicine) and legends (Archibold 
2003; David et al. 2019; Vennum Jr 1988). According to the sacred migration story 
of the Anishinaabeg, a prophet long ago beheld a vision from the Creator calling 
the Anishinaabeg to move west until they found the place “where food grows on 
the water” (Vizenor 2008). This journey led them to find the wild rice stands of the 
Great Lakes region. For generations, the Anishinaabeg of the western Great Lakes and 
upper Mississippi region have understood their connection to Anishinaabe Akiing 
(the land of the people) and the significance of manoomin as a gift from the Creator 
(Vizenor 2008). In the words of White Earth Tribal Historian Andy Favorite (as told 
by Erma Vizenor, former Chairwoman of the White Earth Nation), “Wild rice is part 
of our prophecy, our process of being human, our process of being Anishinaabe … 
we are here because of the wild rice. We are living a prophecy fulfilled” (Vizenor 
2008). 

Northern wild rice is connected to the identity, culture, religion, and livelihood 
of the Anishinaabeg (Vizenor 2008). Wild rice is still harvested using traditional 
methods, with one person poling a canoe through the dense aquatic stands, while 
another knocks ripe seeds from the stems using ricing sticks, with many seeds also 
intentionally knocked into the water to ensure re-seeding for the following year 
(Archibold 2003; Grombacher et al. 1996; Porter 2019). Other Indigenous groups,
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such as the Cree and Dene, have actively managed natural and planted stands of wild 
rice as their livelihoods (Grombacher et al. 1996). Though, by the end of the nine-
teenth century, wild rice as a commodity was of interest to non-Indigenous groups. 
Initially, brokers sought control of processing and sales, and then farmers and other 
planters attempted to gain control of the industry (Archibold 2003). After repeated 
attempts of Indigenous communities highlighting the significance of wild rice during 
treaty negotiations, several federal and state laws in the United States and legislation 
in Canada were passed, specifying the amount that can be commercially harvested, 
the type of equipment used, and Indigenous involvement in wild rice production 
(Archibold 2003). Though, due to high commodity prices and increased commer-
cial demand in the 1970s, artificial paddies were rapidly established to enhance 
production (Archibold 2003). 

The majority of wild rice production now occurs in artificial paddies, and with 
recent interest in their health-promoting properties (e.g., high in nutrients, with 
antioxidant and cholesterol-lowering effects), the commercial harvesting industry 
holds significant economic values (Fort et al. 2014; Surendiran et al. 2014). Wild rice 
has been cultivated in paddies since the early 1950s, and is still undergoing domesti-
cation as a crop (Porter 2019). Wild rice was initially cultivated in Minnesota, but with 
the recent commercial exploitation, production of the crop has extended beyond their 
natural range to California, Oregon, Saskatchewan, and has been established outside 
of North America in Australia, Finland, and Hungary (Ahmad et al. 2018; Archi-
bold 2003; Malvick and Percich 1993; Porter 2019). Globally, the production and 
demand for wild rice is continuing to rise, likely due to their unique properties, such 
as their nutritional values, long shelf-life, versatility in food dishes, food-processing 
potential (e.g., wild rice blended with precooked meat has reduced cook times and 
enhance nutritional properties), use of presently discarded hulls (e.g., in the adhesive, 
paper, and textile industries), and the ability to re-seed themselves once established, 
unlike other commercial crops (Ahmad et al. 2018; Archibold 2003; Porter 2019; 
Surendiran et al. 2014). 

5.5 Review of the Current State of Northern Wild Rice 
Ecotoxicology 

5.5.1 Background 

Toxicology test methods used in studies must be reported with sufficient detail for the 
experimental setup and procedures to be replicated effectively by other researchers. 
As well, inadequate reporting in peer-reviewed literature could result in the exclusion 
of data from formal ecological risk assessments due to uncertainty related to data 
quality. These concerns surrounding reliability and completeness of methodological 
reporting in the ecotoxicology literature are not unusual or limited to macrophytes 
(Ågerstrand et al. 2011; Hanson et al. 2017). Therefore, the need for direct, precise,
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and transparent methodology reporting must be a priority if northern wild rice is 
to be more widely adopted as a test species. Currently and to our knowledge, no 
standard test method exists for wild rice in toxicology studies. Therefore, contrasting 
between wild rice studies, and wild rice with other species, is difficult or not possible 
without clear methodological reporting, and ideally consistent methods across tests 
in general. 

This section collates and summarizes current toxicity test methods for northern 
wild rice (as of 2021). The totality of the peer-reviewed scientific literature was 
systematically evaluated to outline similarities and differences in basic methodolog-
ical techniques and reporting. Gaps were identified and direction is given on how to 
approach the growth and maintenance of this species for future testing. The effects 
that test compounds have on the wild rice were beyond the scope of this review. The 
aim was to identify areas in need of further research and standardization to effectively 
allow the use of Z. palustris in ecotoxicology. 

5.5.2 Methods 

5.5.2.1 Literature Search 

Our focus was on studies of northern wild rice toxicity tests that were conducted in 
a laboratory, an indoor area (such as a greenhouse), or outdoor mesocosms (e.g., 
simulated wetland enclosures). The databases Google Scholar, Scopus, Web of 
Science, and University of Manitoba Library Services were utilized to search for 
articles related to wild rice ecotoxicology. Search queries commenced with “Wild 
rice OR Zizania palustris”, and then became more specific including, “wild rice toxi-
cology testing” and “wild rice stratification”. Additional articles were also found 
by reviewing references in relevant wild rice articles. Alerts were set up on Google 
Scholar and Web of Science using key words such as “Wild Rice”, “Zizania palus-
tris”, and “Wild Rice Toxicity Testing”. The search was completed by April 2021. 
The selection criteria for the inclusion of articles in this review were: 

1. Must use northern wild rice (Z. palustris) as test organism 
2. Toxicity test conducted in a laboratory, indoor area (greenhouse), or a mesocosm 
3. Written in English language only 
4. Peer-reviewed article published in a scientific journal by a recognized database 

For the purposes of this chapter, single published papers within a scientific journal are 
referred to as an article, while separate experiments conducted within an article are 
referred to as studies, as an article may contain multiple types of studies. The criteria 
used to distinguish between an article and a study revolved around if the experiments 
in question were: (1) conducted at separate times; (2) independent control organisms 
were used; and (3) if any component of the study design was changed.
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5.5.2.2 Methodology Assessments 

The review was organized as a list of questions in five categories: (1) test organism; 
(2) test conditions; (3) test media; (4) experimental design; (5) and test perfor-
mance (Fig. 5.3). These categories pertained directly to elements that would allow 
for effective replication and data quality assessment of any experiment. Metadata 
were extracted from each study, covering contributing authors, the scientific journal, 
test compounds with their accompanying concentration, and whether the experiment 
was laboratory, greenhouse, or outdoor mesocosm based. Questions were generated 
with direction from the ASTM (American Society for Testing and Materials) Inter-
national E1841-04 Standard Guide for conducting renewal phytotoxicity tests with 
freshwater emergent macrophytes (ASTM 2012), as well as previous reviews of data 
reliability for primary producer toxicity literature (Hanson et al. 2019). The guide 
provided key details that “must be met”, and requirements that were relevant to 
wild rice toxicity testing design or methods were considered and incorporated. For 
instance, the ASTM guide requires that plant test organisms used must be the same 
age and collected from the same source.

Laboratory and mesocosm studies were addressed separately for certain aspects 
(e.g., growth chamber settings) that were not applicable across study types. The 
test organism section first identified the source of wild rice seeds or plants either 
by collection location or by supplier to satisfy the ASTM requirements (ASTM 
2012). Depending upon if seeds were purchased from a supplier or harvested, storage 
conditions prior to and post-purchasing were collected to assess viability (Kovach 
and Bradford 1992). The remainder of the section focused largely on stratification 
techniques. Stratification is a crucial component for the germination of wild rice, 
as it is a process used to simulate the natural overwintering conditions necessary to 
break seed dormancy (Baskin and Baskin 2014). 

Test conditions pertained to such elements as growth chambers and vessels used 
to house the plants. The photoperiod and temperature are fundamental conditions 
for replication of the experiment. In-depth questions on vessel structure, size, and 
rooting substrates were included, as the ASTM requirements outlined that the vessel 
should be large enough to prevent the plant from becoming root bound (ASTM 
2012). Test media looked specifically at the composition of nutrient solutions used to 
support adequate plant growth, and what type of water source was used for dilution. A 
subsection was also created in the case that a nutrient solution was not used, common 
with mesocosm experiments, in which only water conditions were addressed. 

Experimental design was related to setup procedures, such as numbers of test 
organisms per replicate and replicate numbers. Maintenance of the test conditions, 
such as if the test organisms spent time outside the growth chamber, were also covered 
as exposure to different surroundings can influence growth; ASTM requirements 
stress the importance of consistency within an experiment (ASTM 2012). The test 
performance category was solely focused on controls and potential contamination 
of the system throughout the duration of the study. Test performance criteria for
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controls were recorded as either qualitatively and/or quantitatively as applicable, as 
the success of controls provides an indicator of method viability. Specific questions 
concerning wild rice toxicity outcomes in response to tested compounds were not 
included, as this was beyond the scope of the review. 

5.5.3 Results 

5.5.3.1 Overview of Articles and Studies Reviewed 

The search returned 11 published articles that met the inclusion criteria, and of those, 
22 unique studies were identified and individually assessed. The majority of articles 
were published in the last decade (2011–2021). Overall, there were six outdoor 
mesocosm and 16 laboratory or indoor studies conducted within the total articles 
collected; therefore, laboratory or indoor experiments were the dominant type of 
experiment. Due to the nature of control in these types of experiments (laboratory 
or indoor vs. mesocosm), they were compared separately for certain components of 
study design, and the breakdown of results was presented independently. 

5.5.3.2 Summary of Seed Harvest and Preparation 

Half of the studies (n = 11) utilized northern wild rice seeds as the initial test 
organism, with the remaining half using seedlings or mature plants (Fig. 5.4). All 
studies conducted in mesocosms (n = 6) used seeds, and then allowed the plant 
to complete successive life cycles, which produced seeds fueling the successive 
generations. Durkee Walker et al. (2006) was the only mesocosm study to use both 
seeds and seedlings. The source of seeds (e.g., harvested or purchased) was not 
reported in all studies (n = 3 did not report), but of the studies that did report source, 
all were obtained by harvesting from natural stands (n = 19). Locations for the 
harvesting of wild rice seeds were all within the native growing range of the species, 
but at times vaguely stated (e.g., Central Minnesota by Malvick and Percich [1993]). 
None of the studies reported using commercial suppliers.

Only 27% of the studies (n = 6) provided information on seed sterilization or 
debris removal techniques. Fort et al. (2014, 2017) used a sieve with mesh to remove 
unwanted debris and the four studies within Nimmo et al. (2003) used deionized 
water to rinse harvested seeds. No indoor or laboratory studies indicated use of 
any sterilization techniques on the seeds to remove potential pathogens prior to 
experimental use. 

Seed storage conditions were generally inadequately reported. Explicit informa-
tion on storage conditions or time frames were limited. For example, Pastor et al. 
(2017) stated that storage of seeds occurred until needed for experiments, but did 
not include information such as temperature, light, or humidity, leading to questions 
about possible decline in seed viability over time. Fort et al. (2014, 2017, 2020),
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Fig. 5.4 Initial growth stage of northern wild rice (Zizania palustris) utilized for laboratory or 
indoor and mesocosm experiments from 22 ecotoxicology studies

stored seeds at 4 °C in the dark, but did not include details on storage duration, 
vessel type, or if water media was used in the three studies. LaFond-Hudson et al. 
(2018) indicated a one-year storage period, but did not include storage conditions. 
Storage of seed is not an experimental condition of the toxicity test itself; however, 
the literature should acknowledge this step, especially over long durations of times 
(months to years), to ensure the viability of test organisms. Ultimately, it is akin to 
the culturing of test organisms (along with stratification discussed below), which 
typically have detailed protocols that are followed. We concluded that all available 
studies provided insufficient information on all three of the following categories: 
seed acquisition, cleaning, and storage conditions. 

Stratification 

The conditions under which studies reported performing stratification of their 
northern wild rice seed is found in Table 5.1. The use of stratification was stated 
in 45% of the studies (n = 10). Of these 10 studies, 60% (n = 6) provided limited 
information, meaning they mentioned at least one component, such as duration of 
stratification, but failed to further expand on other necessary details to allow for 
replication. The four laboratory Nimmo et al. (2003) studies, which accounts for the 
remaining 40%, had sufficient information to replicate the process. They completed 
stratification by submerging a burlap sack into a lake; however, all were from the 
same article, and therefore, only one stratification approach was undertaken to germi-
nate all the seeds used. Durkee Walker et al. (2006) and Sims et al. (2012) were the
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Table 5.1 Summary of stratification data for the 22 studies conducted with Zizania palustris. Letter 
designations present the breakdown of studies within the article. N/R (Not Reported) 

Study Stratification 
performed 

Temperature Duration Stratification 
vessel 

Seed 
density 
or 
mass 

Stratification 
location 

Durkee Walker 
2006* 

Yes 2–4 °C 26 weeks N/R N/R N/R 

Durkee Walker 
2010a* 

N/R N/R N/R N/R N/R N/R 

Durkee Walker 
2010b 

N/R N/R N/R N/R N/R N/R 

Fort 2014 N/R N/R N/R N/R N/R N/R 

Fort 2017 N/R N/R N/R N/R N/R N/R 

Fort 2020 N/R N/R N/R N/R N/R N/R 

Johnson 2019* N/R N/R N/R N/R N/R N/R 

LaFond-Hudson 
2018* 

N/R N/R N/R N/R N/R N/R 

Malvick 1993a Yes 3.5 °C 12 weeks N/R N/R N/R 

Malvick 1993b Yes 3.5 °C 12 weeks N/R N/R N/R 

Malvick 1993c Yes 3.5 °C 12 weeks N/R N/R N/R 

Malvick 1993d Yes 3.5 °C 12 weeks N/R N/R N/R 

Nimmo 2003a Yes N/R 8.5 weeks Burlap sack 50 kg Submerged 
1.5 m from 
lake surface 

Nimmo 2003b Yes N/R 8.5 weeks Burlap sack 50 kg Submerged 
1.5 m from 
lake surface 

Nimmo 2003c Yes N/R 8.5 weeks Burlap sack 50 kg Submerged 
1.5 m from 
lake surface 

Nimmo 2003d Yes N/R 8.5 weeks Burlap sack 50 kg Submerged 
1.5 m from 
lake surface 

Pastor 2017a N/R N/R N/R N/R N/R N/R 

Pastor 2017b N/R N/R N/R N/R N/R N/R 

Pastor 2017c N/R N/R N/R N/R N/R N/R 

Pastor 2017d N/R N/R N/R N/R N/R N/R 

Pastor 2017e* N/R N/R N/R N/R N/R N/R 

Sims 2012* Yes 4 °C 34.7 weeks N/R N/R N/R 

*Indicates a mesocosm study
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only two studies conducted in mesocosms that report that the seeds were stratified 
before being added into the system. The remaining mesocosm studies state adding 
their seeds to the mesocosms in springtime without mention of stratification. Without 
the inclusion of information on seed harvesting (and therefore potential for natural 
stratification if done in early spring), nor information on stratification techniques, 
seeds used in a replication of this experiment may not reach sufficient temperature 
to break dormancy, and thus would be unsuccessful.

Stratification durations (Table 5.1) were highly variable and ranged from 60 days 
to approximately eight months. The maximum duration value reported, eight months, 
is approximate as Sims et al. (2012) indicated a date range of Fall 2008 to Spring 2009, 
with the sowing of seeds the following June 2009. Overall, stratification conditions 
were poorly reported. The average stratification temperature across the ten studies 
was 3.5 °C, but it was not indicated whether this was water or air temperature in 
six of the studies. Stratification conditions, such as vessel type, photoperiod, seed 
density, and media use, were also not reported in these six studies. 

5.5.3.3 Test Conditions 

All studies described the growth environment and housing vessels used in their 
experiments; the types of chambers and vessel data identified in each study are 
described in Table 5.2. ASTM guidelines for photoperiod with freshwater emergent 
macrophytes in growth chambers or greenhouses is 16 h of light (ASTM 2012). While 
all laboratory or indoor studies reported photoperiod values, consistent durations or 
justifications were not provided. Nimmo et al. (2003) used 12 h in three studies, and 
one from Durkee Walker et al. (2010) used a range of 10, 14, and then natural light 
exposure durations since they were contained in a greenhouse. All mesocosm studies 
were conducted outdoors, using natural light sources, but none reported use of light 
meters to confirm light levels.

The specifications surrounding types of test vessels, their measurements, and 
material type were well reported across all studies, with either the volume or dimen-
sions of the test vessel(s) provided. Studies using sediment as substrate in mesocosm 
studies, as seen in Table 5.2, were all obtained from location of the water source where 
the wild rice seeds were harvested; however, in some of these studies, additional sand 
was added. It was not clear if this sand was naturally obtained or purchased from a 
commercial supplier. None of the laboratory or indoor experiments that used artificial 
substrates (n = 4) reported the substrate brand names or other characteristics of the 
materials. It should be noted that 44% (n = 7) of laboratory or indoor experiments 
failed to indicate whether a substrate was used.
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Nutrient Solutions and Other Media 
In total, 11 studies (50% of all; 69% of laboratory or indoor studies) reported using a 
standardized nutrient solution in their experimental procedures. Modified Hoagland’s 
solution was the only standardized nutrient solution used among laboratory or indoor 
studies. All mesocosm studies indicated reliance of natural sediment from northern 
wild rice stands to provide nutrients instead. While each study using the modified 
Hoagland’s solution reported it as such, the modifications (e.g., concentrations and 
recipes) differed between studies. For example, four of the Pastor et al. (2017) studies 
indicated a 1/5 strength Hoagland’s solution, while Fort et al. (2014, 2017, 2020) 
used a modified Hoagland’s solution with 25% ammonium (molar basis) in a mixture 
of ammonium and nitrate. 

The laboratory or indoor experiments that did not use a standardized solution 
either had a short test duration (ten days in the case of studies a-d in Nimmo et al. 
2003) or had nitrogen and phosphorus as the test compound (Durkee Walker et al. 
2006) and, therefore, did not require additions to prevent nutrient deficiency. No 
studies autoclaved their nutrient solutions and none used an additional solvent to add 
a test compound, other than water. As seen in Table 5.3, pH and type of water diluent 
were not reported in various laboratory or indoor studies utilizing a standardized 
solution. These types of inconsistencies between studies of the same article were not 
uncommon. Mesocosm studies used either groundwater or well water for the filling 
of system; however, none of the studies stated if a characterization for nutrients 
occurred. Water volume levels used in the mesocosms were all reported.

5.5.3.4 Experimental Design and Performance 

General experimental design weaknesses in the overall dataset were the lack of clarity 
on replicate and treatment numbers, endpoint rationales, and control performance. 
Three studies were missing information in regard to the number of test organisms per 
replicate or the replicates per treatment. Of these three studies, either the number of 
test organisms per replicate, or the number of replicates per treatment were indicated, 
but not both. All six mesocosm studies allowed their northern wild rice to complete 
a full life cycle and used seed production as a test endpoint. 

Control Validation and Standards 

Overall, 90% (n = 20) of the studies reported use of controls; however, of these 
20 studies, only three had clearly stated control standards (i.e., expectations around 
performance). Reported control standards were 95% seed activation, 30% mesocotyl 
emergence, 90% control survival, and boron control >80% phytotoxicity (Fort et al. 
2014, 2017, 2020); standards were met in all three studies. Of the 22 studies, only the 
same three (14%) Fort et al. (2014, 2017, 2020) experiments used a positive control, 
boron from boric acid, for the purpose of validating the experimental procedure and 
were all laboratory or indoor experiments. No citation was provided to support the
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Table 5.3 Summary of laboratory or indoor study data that used standardized test solutions. Letter 
designations are added beside the year of an article to present the breakdown of studies within the 
article. N/R (Not Reported) 

Study Standardized test 
solution 

pH Type of water 
dilutant 

Dissolved oxygen 
measured 

Fort 2014 Modified 
Hoagland 

6.1–7.2 Deionized Yes 

Fort 2017 Modified 
Hoagland 

6.0–7.5 ± 0.5 Deionized Yes 

Fort 2020 Modified 
Hoagland 

6.3–7.4 ± 0.3 Deionized Yes 

Malvick 1993a Modified 
Hoagland 

N/R Deionized N/R 

Malvick 1993b Modified 
Hoagland 

N/R Deionized N/R 

Malvick 1993c Modified 
Hoagland 

5 Distilled N/R 

Malvick 1993d Modified 
Hoagland 

5 Distilled N/R 

Pastor 2017a 1/5 Hoagland 6.8 ± 0.3 N/R Yes 

Pastor 2017b 1/5 Hoagland 6.8 ± 0.3 N/R No 

Pastor 2017c 1/5 Hoagland 6.8 ± 0.3 N/R N/R 

Pastor 2017d 1/5 Hoagland 6.8 ± 0.3 N/R N/R

use of boron as a positive control, but its known plant toxicant properties were stated 
in Fort et al. (2014, 2017); though, in the 2020 study, the author’s previous two 
experiments were cited as rationale for its use. 

5.5.4 Discussion 

This review was performed to assess key procedures and design gaps related to 
ecotoxicological experiments on northern wild rice (Z. palustris). In doing so, we 
hope to improve scientific reporting and direct future research. While relatively few 
articles were found in the peer-reviewed literature (n = 11), it is clear that key 
methodological components were missing across all articles for these experiments. 
This highlights the significant data reliability and replication issues within the field, 
and hinders the adoption of the species more widely within ecotoxicology. 

Ideally, test methods should focus on sensitive and ecologically relevant endpoints 
that allow for sufficient and conservative extrapolations to the field, which may 
include expanding the range of standard test endpoints beyond growth and biomass 
measures (Hanson and Arts 2007). Growth measurements are relatively easy to quan-
tify, have been widely applied under both laboratory and field conditions, and are
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useful for integrating overall effects of toxicants on macrophytes; however, they lack 
specificity (Lemly et al. 1999). Responses such as reduced growth rates, or growth 
inhibition, do not indicate which specific sites or mechanisms are being affected by 
a particular toxicant. This is particularly notable for rooted macrophytes, where it 
can be difficult to assess if toxic responses are occurring due to sediment or water 
column exposure. Other common test methods include measurements of biomass (dry 
and wet), chlorophyll-α concentrations, chloroplast morphology, photosynthetic rate, 
enzyme activity, reproduction, seed germination, seedling growth, and root growth 
(Hanson 2013; Lemly et al. 1999). There are ranges of variability, sensitivity, and 
relevance within macrophyte toxicity testing endpoints, though root endpoints have 
been found to be among the most sensitive (Arts et al. 2008). This further high-
lights the need for macrophyte toxicity tests to encompass an array of endpoints to 
maximize protection when assessing the risk to nontarget organisms. We suggest 
that laboratory studies and test development with northern wild rice (Z. palustris) 
should focus on seed germination assays, as well as root and shoot endpoints as a 
first possible step toward a standardized toxicity test. 

5.5.4.1 Major Weaknesses in Studies 

Overall, the extent of stratification data was weak. If studies did report information, 
it was limited in terms of its completeness. With greater than 50% of the studies 
failing to indicate a stratification process, it prevents full replication of the designated 
experiment as readers could be unaware that stratification is a required process. 
The feasibility of the outdoor Nimmo et al. (2003) stratification technique is also 
a concern, and other means of this process should be still determined. While some 
studies alluded to the fact, the range of limited data supports the idea that no consensus 
of laboratory stratification procedures exists. Storage conditions, and use of a storage 
period, were also poorly reported, and we detected ambiguity in the entirety of the 
test organism information reported. 

Another key methodology weakness in the overall dataset was the lack of any 
control performance standards. Few studies set criteria for control performance, 
making assay reliability highly uncertain. This is also concerning as control stan-
dards are needed to eliminate possible background effects. Therefore, none of the 
studies contained sufficient information to fully replicate the experiments, as either 
stratification, storage conditions, or control standards were absent or limited. 

5.5.4.2 Recommendations for Improving the Reporting and Testing 
Within Northern Wild Rice Literature 

To address this, we recommend those performing wild rice tests to: 

1. Explicitly describe critical factors related to seed source, stratification, and seed 
storage.
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In terms of wild rice, these two factors are crucial for seed viability and germi-
nation. The stratification technique used is particularly important to include, 
as no perceived standard method currently exists. The performance of various 
approaches will need to be assessed and contrasted to ensure selection of best 
practices regardless of the lab where a test is performed. 

2. State control performance and whether requirements were met. 
Control performance helps to validate a study and excluding this information 
results in significant uncertainty in the data. Therefore, any control information 
in regards to experimental design should also be explicitly stated. Expectations 
around control performance need to be determined in order to ensure adequate 
test conduction. 

3. Report all basic experimental conditions and design elements. 
An experimental conditions summary table, as seen in Fort et al. (2014, 2017, 
2020), would be useful to readers for understanding how the study was performed. 
Checklists are an effective means for authors to confirm all essential information 
for replication is included in the paper. 

5.6 Summary and Conclusions 

Wild rice (Zizania spp.) presents themselves as a suitable candidate for inclusion 
into the battery of test species for risk assessment. They meet all six criteria of 
an appropriate test organism to varying degrees (Rand et al. 1995), as they are: (i) 
sensitive to a range of exposure types and contaminants; (ii) abundant and available in 
their natural range; (iii) indigenous to impacted ecosystems within North America; 
(iv) ecologically, culturally, and economically important; (v) amenable to routine 
maintenance in the laboratory for both acute and chronic toxicity tests; and (vi) have 
adequate background information on their physiology and life history. 

We feel that risk assessments with wild rice will be most useful in North American 
contexts within their natural range and in situations where Indigenous concerns are 
paramount. Still, a significant amount of work is needed to advance wild rice toxicity 
testing by improving methods and reliability prior to wider adoption for ecological 
risk assessment, as noted by the results of this literature review.
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Chapter 6 
Recovery of Freshwater Aquatic 
Macrophytes After Exposure 
to Herbicides and the Implications 
for Ecological Risk Assessment 

Carlie Lau and Mark L. Hanson 

Abstract Ecosystem recovery following natural disturbances is a ubiquitous and 
well-understood process. Freshwater macrophytes are able to colonize areas in which 
they have been extirpated through a number of mechanisms. Herbicides, which are 
widely used in agriculture globally, may pose a threat to non-target freshwater plants 
and result in individual-, population-, or community-level impairment of plant struc-
ture and function. The same mechanisms that allow for recovery of plants from 
non-anthropogenic stressors apply to impacts as a result of exposure to herbicides. 
Current ecological risk assessment (ERAs) frameworks for herbicide registration 
focus primarily on characterizing toxicity, and do not explicitly require data that 
allow for the understanding of potential recovery of plants following effect. There 
is disagreement on how recovery should be incorporated into ERA’s for pesti-
cides, and currently, there are no regulatory guidelines that provide standardized 
methods for plants. Numerous studies have characterized the effects of herbicides 
and the ability of macrophytes to recover following the cessation of exposure to 
plant protection products. A critical review of the peer-reviewed literature on the 
availability and quality of evidence for recovery of macrophytes exposed to herbi-
cides was performed. A total of 25 recovery studies published between 1986 and 
2019 were assessed. The relevance of endpoint and strength of methods for the 
recovery studies were evaluated with a scoring rubric based on three main cate-
gories: (1) test substance; (2) test organism and experimental system; and (3) test 
design, statistics, and results. Ecological relevance of endpoints was based on the 
association of reported endpoint to the population and community levels of effect. 
A total of 21 test species had been evaluated for 33 different herbicides. The most 
tested herbicide group was photosystem II inhibitors at 38% of studies. In total, 86% 
of studies reported clear evidence of recovery after transfer to clean media. Around 
36% and 44% of tests from exposure and recovery phases, respectively, scored >50%
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on both strength of methods and endpoint relevance scores, which was the threshold 
for advising a study be used in ecological risk assessment. Laboratory studies in 
general may underestimate the potential for recovery as external mechanisms are 
fully excluded. Overall, we recommend that standard laboratory guidelines for the 
assessment of recovery in macrophytes be developed to improve the strength of 
methods and encourage improved reporting of toxicity data, and ultimately more 
formal inclusion in ecological risk assessment. 

6.1 Introduction 

Recovery of ecosystem structure and function can occur following natural distur-
bances, such as fires, flooding, and drought, and reflects the innate capacity of 
ecological systems to return through succession to previous or new stable states. 
The underlying mechanisms and processes driving ecosystem recovery will be the 
same for anthropogenic stressors, including chemical contaminants such as pesti-
cides. The primary differences between natural disturbances and those driven by 
pesticides are typically the degree of impairment and the selectivity of that impair-
ment. For example, fires tend to extirpate all extant species from the area in which the 
event occurs, while with pesticides, the removal of all non-target species off-field as a 
result application is unlikely, and typically only certain species classes are impacted 
due to compound mode of action. 

Of the pesticides, herbicides are the most widely used class of pesticide globally in 
agriculture, have been commonly observed in surface waters following translocation 
off-field, and have modes of action that target plants explicitly, including aquatic 
macrophytes. Therefore, as herbicide exposure in freshwater ecosystems may cause 
impacts on macrophyte populations and communities, understanding how and if 
recovery can occur following such changes is important in characterizing fully the risk 
posed by plant protection products. The inability to recover from herbicide exposure 
represents a greater risk overall relative to scenarios where recovery is possible. This 
chapter will outline the concept of recovery in ecotoxicology, including: 

• what recovery means for macrophytes; 
• approaches by which macrophyte recovery can be assessed; 
• inclusion of macrophyte recovery in ecological risk assessment; and 
• a review of the current state of knowledge and evidence for recovery in 

macrophytes exposed to herbicides. 

Finally, we will make recommendations for more effective inclusion of recovery for 
macrophytes in the ecological risk assessment of herbicides.
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6.2 Concept of Recovery and Ecotoxicology 

Recovery from natural disturbances as an ecological concept has been examined 
extensively, and the possible mechanisms by which an individual species may initially 
colonize or recolonize a habitat have been well characterized (Niemi et al. 1990). 
Ecological recovery extends beyond structural attributes, such as species abundance 
and richness, to functional elements such as overall biomass or nutrient cycling. The 
process of recovery, whether in terms of species structure or function, is limited 
to a few main drivers, most of which are heavily influenced by basic life history 
traits (e.g., reproductive strategies and fecundity), as well as inherent mobility and 
capacity for dispersal, coupled with the degree of isolation of the impacted ecosystem 
from unimpaired populations. Species have evolved a variety of strategies to survive 
transiently in unfavorable conditions such as temperature changes, shading, oxygen 
depletion, resource bottlenecks, and droughts (Ellis 1989). In turn, ecosystems can 
typically exist in several alternative stable states whereby each is characterized by 
different structural and functional parameters of the species that are found there at any 
one moment in time. When an impact occurs, the shift in structure and function can 
be ephemeral and followed by a return to the original state (O’Neill 1998). However, 
recovery may occur but to a “different” ecosystem, one that is permanently displaced, 
with a different structural and functional attributes, and reflect a new steady-state 
(Holling 1973; Scheffer et al. 2003). 

As noted above, species and ecosystems all have some innate capacity to withstand 
and recover from disturbances, whether periodic (e.g., regional seasonal changes) 
or stochastic (e.g., burn events, flooding, droughts, pest and disease outbreaks). The 
concept of functional redundancy helps explain the stability of ecosystem processes in 
the face of stressors and, in part, why recovery of populations following a disturbance 
is possible. Functional redundancy states that a decrease in biodiversity (e.g., the loss 
of species) can be endured to a threshold, as long as key species and their functions 
are not adversely affected. Most ecosystems exhibit functional redundancy, where 
multiple species are able to perform and contribute to some functional attribute of the 
system as a whole (Walker 1992, 1995). For example, manipulation of plant commu-
nities in grassland ecosystems showed that community function, such as nutrient 
cycling, was stable despite the loss of significant numbers (>50%) of species (Tilman 
1996). This is possible because of the redundancy in roles and functions provided by 
surviving species in the impacted ecosystem, allowing key biotic and abiotic needs 
to remain available (e.g., soil nutrients, structure, moisture) for extirpated species to 
successfully recolonize (Lawton 1994). These observations in support of the concept 
of functional redundancy underpin the idea in ecotoxicological risk assessment that 
some effects at the organism and population level can be allowed, provided that these 
effects are constrained temporally and spatially (Barnthouse 2004).
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It is important to distinguish at which level of biological organization recovery 
is being investigated (e.g., from the molecular and physiological to the ecosystem 
level). From an ecological context, most studies have focused on populations and 
communities, as well as functional attributes, while for ecotoxicology, recovery can 
be and has been a phenomenon examined and observed from the molecular level 
(e.g., binding site) and upwards (Brock et al. 2015, 2018). Recovery of a population 
or community from contaminant exposure will adhere to the same mechanisms as 
for a natural stressor. These can be broadly categorized as internal or external mech-
anisms (e.g., from within or outside the disturbed ecosystem) (Caquet et al. 2007; 
Hanson et al. 2007). For example, internal and external recovery can be through recu-
peration of impaired organisms after exposure, or immigration of new individuals 
from other uncontaminated areas, respectively (Barnthouse 2004; Brock et al. 2018). 
The degree and time course for recovery will be highly context-dependent, varying 
by species, life stage, severity and duration of effect or exposure, time between or 
frequency of events, the type of impairment, and the degree of ecological isolation 
(Barnthouse 2004). Recovery tends to be most rapid at the lower levels of biological 
organization, where repair and a return to normal function can occur on the order of 
seconds to minutes (e.g., gene expression, enzyme activity), relative to ecosystem 
process. Effects that are spatially and temporally confined may be viewed as ecolog-
ically unimportant and/or fall within the natural variability of impacted populations 
(Domsch et al. 1983). In ecotoxicology, the definition of recovery has typically 
remained fairly straightforward, in that recovery, regardless of the level of biological 
organization, is said to have occurred once the element under question is no longer 
statistically different from an undisturbed or previous state (Brock et al. 2015, 2018; 
Hanson et al. 2007; Caquet et al. 2007). As well, it is important to note the difference 
between actual recovery to a pre-disturbance state and the potential to recover once 
the contaminant exposure has declined to a level that direct effects are no longer 
possible and recovery could occur (see EFSA 2016). 

Regardless of the stressor type, there will be a threshold of intensity to which a 
stressor should be limited to prevent long-term adverse impacts on ecosystem struc-
ture and functions (e.g., beyond the inherent functional redundancy capacity). From 
an ecotoxicological perspective, the potential for recovery following the cessation 
of exposure is predicated on the biological level at which the effect is observed and 
upon the effect itself not being permanent (e.g., malformations in an individual) 
or continuing to worsen to the point where recovery is simply not possible (e.g., 
failure to reach sexual maturity, or outright mortality). The phenomenon of latency 
in ecotoxicology (i.e., when effects are observed relative to exposure) helps frame 
our understanding of the potential for recovery by an individual or a population and 
will be both contaminant- and species-specific. For example, Zhao and Newman 
(2006) showed that contaminants that do not cause cumulative damage and or/are 
cleared readily from an organism were unlikely to cause continuing mortality in 
amphipods (Hyalella azteca) upon the cessation of exposure, and therefore, surviving
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individuals have the theoretical capacity to recover. Ultimately, individuals, popu-
lations, communities of macrophytes, and ecosystems have the capacity to recover 
following a stressor, whether anthropogenic or non-anthropogenic, assuming the 
putative stressor is no longer present, and the impaired ecosystem has the underlying 
biotic and abiotic conditions to support recolonization, internally or externally. 

6.3 Recovery and Macrophytes 

Aquatic macrophytes are annual and perennial plants that can be found in both 
standing or flowing water and are physically large (i.e., individuals are visible to 
the naked eye) relative to phytoplankton or periphyton (Wetzel 1975). They are 
frequently classified by growth form and/or basis of attachment to substrates, such 
as non-rooted free-floating (e.g., duckweeds Lemna spp.), non-rooted submerged 
(e.g., coontail; Ceratophyllum spp.), rooted submerged (e.g., milfoils; Myriophyl-
llum spp.), rooted with floating leaves (lily pads; Nymphaea spp.), and rooted 
emergent (e.g., cattails; Typha spp.) (Hanson 2013; Wetzel 1975). Their commu-
nity composition, abundance, and biomass are subject to seasonal shifts, and are 
therefore relatively dynamic (Henry et al. 1996). Macrophytes have a sometimes-
underappreciated ecological role in freshwater ecosystems from both a structural and 
functional perspective. They provide food, shelter, and nurseries to waterfowl, fish, 
and invertebrates, nutrient cycling and sequestering, oxygen production, and stability 
to organic sediments and other substrates from wave action and flooding. As such, 
there is considerable value in characterizing both the response and recovery to anthro-
pogenic and non-anthropogenic stressors (Carpenter and Lodge 1986; Crowder and 
Painter 1991; Hanson 2013). 

Freshwater macrophytes have specific attributes related to their life histories and 
physical architecture that influence how recovery occurs following a disturbance, as 
well as the speed and the degree to which recovery is possible (Henry et al. 1996). In 
terms of recolonization of habitat from which a species has been extirpated, macro-
phytes employ tactics that are shared by all plants. These include seed dispersal and 
seedbanks, plant fragments (e.g., stems), expansion from intact parent plants (e.g., 
lateral growth), rhizomes, and resting or overwintering phases (e.g., turions). Species 
traits (e.g., those related to recolonization, such vegetative or sexual dissemination) 
can significantly influence the degree and likelihood of macrophyte recovery. Henry 
et al. (1996) examined recovery following frequent flooding events over multiple 
years on the Rhône River, France. The authors assessed, in part, the contributions of 
vegetative dissemination of plants by lateral spread without dispersion (including by 
extension of the root system); from stem fragments; and by specialized resting phases 
(e.g., turions), as well as the frequency of flowering of the species in question. They 
found that recovery was relatively rapid overall, with most species returning within a 
year, and typically early recovery was by those able to produce turions or other vege-
tative organs, followed by recovery via lateral spread and stem fragments. Dispersal 
mechanisms from un-impacted to impacted patches will include physical transport
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by currents, wave action, or flow, as well as by birds (e.g., migratory waterfowl). The 
efficiency of dispersal is driven in part by the degree of connectivity and geographic 
isolation between systems (e.g., small agricultural pond versus downstream on a 
river). Sand-Jensen et al. (2000) examined the shifts in macrophyte composition and 
abundance in 13 Danish streams over the period of a century. Connectivity of systems 
likely explained both local abundances as well as number of occupied sites by species 
in streams that were subject to frequent disturbance (Sand-Jensen et al. 2000). 

Coastal wetlands are subject to regular storm and flooding events of varying 
severity that can lead to pulses of salinity that can impair plant growth, so these 
ecoystems lend themselves to understanding the propensity for macrophyte recovery. 
Howard and Mendelssohn (1999) conducted a four-month greenhouse experiments 
with monocultures of four perennial emergent macrophytes species (Eleocharis 
palustris, Panicum hemitomon, Sagittaria lancifolia, and Schoenoplectus ameri-
canus) as potted monocultures at two levels of salinity (6 or 12 g/L), rate to reach 
exposure (3 days or 3 weeks), and duration of exposure (1, 2, or 3 months). Transfer 
to freshwater followed each exposure to allow for a 1-, 2-, or 3-month period of 
recovery depending on initial exposure duration. Both effect and recovery were 
species-dependent. Mortality (nonviable aboveground tissue) for all treatments and 
durations combined was 17.8% for P. hemitomon, 6.7% for  S. lancifolia 2.2% for E. 
palustris, and 0% for S. americanus. Within a species, salinity level and duration of 
exposure were the main factors that influenced the degree and rate of recovery, and 
the degree of recovery was correlated to the severity of the initial impact, with P. 
hemitomon exhibiting the least capacity for recovery, S. lancifolia and E. palustris 
moderate recovery, and S. americanus full recovery across all treatments. Howard 
and Mendelssohn (1999) theorized that the capacity to recover was related to the 
growth strategies of each tested species. Specifically, the plants with the ability to 
produce rhizomes that could outlast the exposure conditions provided a mechanism 
for recolonization once favorable growth conditions returned. 

The rate of recovery following the loss of species can be influenced in part by 
patch dynamics and the community composition of the borders surrounding the 
immediately impacted area. Barrat-Segretain and Amoros (1996) experimentally 
cleared macrophytes from 9 m2 patches (subdivided into 144 plots) of a river channel 
and tracked recovery over a period of greater than three months. Within three weeks 
of removal, most plots had new macrophyte growth of several species, and by the end 
of the study, most plots had multiple species (5–6) and dense coverage, illustrating the 
relatively rapid recovery that is possible for macrophytes, especially when colonizing 
populations are adjacent and actively growing. Barrat-Segretain and Amoros (1996) 
concluded that recolonization by macrophytes in their study was driven mainly by 
vegetative propagation. Specifically, parent plants expanded into the disturbed system 
from the edges of the plots (“peripheric propagation”) as an intact entity (e.g., through 
spreading rhizomes), or they had ramets that would break off from the parent plant and 
move some distance away from the edges to colonize patches from a distance. They 
also reported that plants could exhibit both strategies simultaneously, such as Elodea 
canadensis, while others were limited to one mechanism (e.g., Potamogeton natans
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for intact plant expansion from the edges; Potamogeton pusillus recolonization by 
fragments or propagules). 

Eutrophication of freshwater ecosystems is another common stressor that can 
result in the loss of macrophyte species through enhanced turbidity (typically via 
algal blooms) and subsequent loss of light penetration to support early plant growth. 
With improvements in wastewater treatment and enhanced efforts to reduce nutrient 
movement into surface waters generally, the process of recovery by macrophyte 
communities can be assessed. Baastrup-Spohr et al. (2017) took data from 1990 and 
2010 and examined the relationship between changes in eutrophication status and 
species richness and community composition of aquatic macrophytes in 56 lakes 
in Denmark. Overall, they found species richness increased over the 20 years with 
improved water quality, and that lake species richness was significantly positively 
related to a decline in concentrations of chlorophyll-a and improved water trans-
parency. In terms of species composition, there was a shift to biotic homogeniza-
tion, whereby the similarity between systems increased significantly through the 
acquisition across lakes of the same new species. In this case, macrophyte commu-
nity recovery was deemed to be ongoing, and likely lagging, in part due to lack of 
connectivity with un-impacted systems to facilitate recolonization. 

6.4 Herbicides, Macrophytes, Recovery, and Ecological 
Risk Assessment 

Currently, the majority of herbicides are used in agriculture for crop protection, but 
herbicides are also registered for forestry, invasive species control, and home uses 
(USEPA 1998; Gettys et al. 2014). Herbicides have a variety of modes of action 
that target different plant physiologies. The majority of herbicides interrupt plant-
unique biological mechanisms by binding at specific sites of action. In general, 
there are two categories of herbicides, non-selective and selective, which has impli-
cations for assessing recovery. Early herbicides tended to be non-selective, with 
more selective herbicides being invented following World War II (Vats 2015). Non-
selective herbicides, such as glyphosate, do not have specific targets (e.g., species 
or classes of plants) and are able to control many types of plants (Ross and Childs 
1996). In contrast, selective herbicides are more toxic to certain plant species, typi-
cally due to the mode of action that is unique to the target (De Carvalho et al. 
2009). For example, dicamba is a selective herbicide that mimics plant growth 
hormones and mainly targets eudicots like broadleaf weeds (Ross and Childs 1996). 
2,4-dichlorophenoxyacetic acid (2,4-D) is another selective herbicide used to target 
broadleaf dicotyledonous weeds (Song 2014). It is a pre-emergent and post-emergent 
herbicide that mimics growth-regulating auxins, affecting cell division and elonga-
tion (Grossmann 2010). In both these cases, monocots would be significantly less
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sensitive to the herbicide, so direct effects are minimal, and the need to assess recovery 
in these types of plants is not necessary. 

The application period of an herbicide depends on the crop, its targets, mode of 
action, the geographic region, and regulatory restrictions. There are three general 
categories of application period for herbicides: pre-plant, pre-emergence, and post-
emergence (Vats 2015). Pre-plant herbicides are applied before crops are planted or 
seeded to clear fields of weed species. Pre-emergence herbicides are those sprayed 
after planting and before seed crop germination, which do not affect the seed but 
will impact growing weeds. Post-emergence herbicides are sprayed after seeds have 
germinated and emerged and are typically selective for certain species or groups, 
other than the crop. These patterns of applications mean that herbicides that have 
migrated off fields through spray drift or runoff into surface waters are not constant 
or consistent through space and time, but are rather pulsed in nature, with periods 
of relatively high exposures, followed by declines and periods of low to no expo-
sure (Smith et al. 2021). For example, concentrations of atrazine in United States 
Midwestern streams near agricultural lands with intensive atrazine application tend 
to occur as pulses in the streams, with mean daily concentrations below 10 µg/L 
(Andrus et al. 2013). After rainfall, runoff concentrations were observed to increase 
up to 200 µg/L, but would return to under 10 µg/L in a short period of time (Andrus 
et al. 2013, 2015). As a result, herbicides can present a risk to macrophyte communi-
ties where they are applied and on multi-occurrences annually, and so characterizing 
recovery potential helps to understand to risks from possible cumulative effects. 

Concentrations of herbicides in the tissues of aquatic plants tend to track those 
in the surrounding water (King et al. 2016). As such, with the cessation of expo-
sure, internal concentrations should decline and aquatic macrophytes can poten-
tially recover, at least physiologically. This rapid response has been observed in 
algae where a study investigating the recovery of Pseudokirchneriella subcapitata, 
Anabaena flos-aquae, and Navicula pelliculosa found that PSII quantum yields were 
not significantly different from the control almost instantaneously following transfer 
to clean media (Brain et al. 2012a). This coupled with modes of action that target 
plant-specific biochemical or physiological processes (e.g., inhibit chlorophyll func-
tioning) to impair growth in general, but rarely result in direct mortality of plants 
below recommended application rates means less concern around possible latent 
effects. From a risk assessment perspective, the ability to recover following herbicide 
exposure reduces the risk of sustained adverse effects on macrophyte communities 
as a whole, which in turn is important for preventing indirect effects on organisms 
that rely on macrophytes for food and/or habitat (USEPA 1998). 

Current risk assessments and data registration requirements for herbicides in North 
America do not require recovery data for macrophytes, though an evaluation of 
adversity may include the potential for recovery (USEPA 1998). Typical regulatory 
requirements at the initial tier for the registration of herbicides include the submission 
of toxicity data from the free-floating macrophyte Lemna sp., commonly known 
as duckweed (Arts et al. 2010; Hanson 2013). Duckweed guidelines allow for the
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characterization of both toxicity and recovery under laboratory conditions and in a 
reasonable time frame using fairly straightforward techniques (Brain and Solomon 
2007). However, concerns have been raised aboutLemna sp. being used as a surrogate 
for all macrophytes (Hanson 2013; Rentz and Hanson 2009; Wang et al. 2010). As 
they are monocots that lack stems, true leaves, and a sediment-interacting root system, 
their predictive capabilities may be limited for eudicots, rooted, and/or submerged 
macrophytes (Hanson and Arts 2007). Despite this, duckweed as a model organism 
lends itself readily to the assessment of recovery in the laboratory (see Sect. 5) in  
part because of the ease by which one can transfer plants to fresh media to mimic 
the removal of the stressor. 

6.5 Review of the Current State and Quality of Evidence 
for Macrophyte Recovery Following Exposure 
to Herbicides 

Previous studies have expressed concerns around the quality of ecotoxicology studies 
and recommended criteria to determine the reliability and relevance of data for risk 
assessment (Ågerstrand et al. 2014; Hanson et al. 2017, 2019; Harris et al. 2014). 
Previous work using objective scoring rubrics to assess the quality of toxicity tests for 
atrazine and primary producers reported that a large number of studies had exper-
imental data fitting basic inclusion criteria, but only a small proportion provided 
sufficient details on the test substance, test organism, and test results to be consid-
ered of satisfactory quality for use in decision-making (Hanson et al. 2019). As 
part of this chapter, we set out to critically review the availability, reliability, and 
ecological relevance of macrophyte recovery data following exposure to herbicides 
in the peer-reviewed literature. We also examined the evidence from these studies 
that recovery can occur in macrophytes following exposure to herbicides. This was 
done, in part, to identify the data gaps and common methodological issues in order to 
improve the quality of future recovery studies. With sufficiently high-quality recovery 
data, policy makers could use the information to establish more credible guidelines 
and regulations, as well as to assay the overall risk posed by these compounds to 
macrophytes. 

6.5.1 Materials and Methods 

We assessed both the strength of methods and ecological relevance of endpoints 
from peer-reviewed recovery studies performed on primary producers exposed to 
herbicides. For the purposes of this exercise, we defined ‘recovery’ as measured 
endpoints not statistically different from control(s) at the end of a herbicide-free 
exposure period following a herbicide exposure phase. Scoring rubrics for strength
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and relevance were developed and applied to each published study that met our 
inclusion criteria. The rubrics were modified from the scoring criteria of Hanson 
et al. (2019). 

6.5.1.1 Literature Search 

The search for relevant literature was performed using databases available through 
The University of Manitoba libraries, including Scopus. Published studies that could 
be acquired through the University of Manitoba libraries database were reviewed. The 
search terms employed were combinations of “herbicide”, “recovery”, “exposure”, 
“aquatic primary producer”, and “macrophytes”. References in the scored papers 
were also reviewed for possible literature to be assessed. The inclusion criteria for 
scoring of studies required papers to have exposure and recovery periods (e.g., a pulse 
exposure period) for a single herbicide (no mixtures), reported effects on aquatic 
macrophytes, be written in English, and published in a peer-reviewed journal. The 
final search for published articles was performed on September 30th, 2019. 

6.5.1.2 Strength of Methods Scoring 

A strength of methods score (i.e., reliability) was assigned for each paper based 
on the information provided in the article and any associated supplementary files. 
The rubric for scoring strength was modified from the one Hanson et al. (2019) 
developed for primary producer toxicity tests. The rubric was used to evaluate all 
studies, regardless of species, herbicide, or reported endpoint. The criteria were 
divided into three main groups (Group 1: Test Substances—six criteria; Group 2: 
Test Organisms and Test System—four criteria; and Group 3: Test Design, Statistics, 
and Results—five criteria). The rubric and justifications for the scoring categories 
can be seen in Table 6.1. Performing and reporting for each criterion resulted in a 
score of 1, otherwise a score of zero was assigned.

The score for ecological relevance of exposures is one criterion that will be highly 
context-dependent (e.g., compound, time of year, geographic location). This criterion 
reflects the proximity of the recovery studies to a “real-world” situation and conse-
quent relevance for the purposes of ecological risk assessment. In risk assessment, 
demonstrating toxicity and recovery, or the lack thereof, at ecologically relevant 
concentrations helps reduce uncertainty. For this review, a score of 1 was given when 
at least one of the tested concentrations in the recovery testing was equal to or less 
than 20 µg/L (i.e., an “environmentally relevant concentration”), regardless of the 
herbicide. The level of 20 µg/L was chosen based on available data for herbicides in 
surface water (in general and for the compounds tested), which indicates that most 
environmental exposures will be at or below this level for these compounds. There 
are numerous monitoring programs reporting herbicide concentrations in surface 
water that support using 20 µg/L as a cut-off. Schuler and Rand (2008) summa-
rized the herbicide concentrations in South Florida’s surface water from 1990–2006.
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The authors reported that most herbicides in ten counties of South Florida had a 
maximum concentration that was lower than 20 µg/L, with a range of 0.003–18 µg/L 
and 90th percentile ranging from 0.003–1.91 µg/L. The exception was diuron in 
Hendry County, which had a maximum of 76 µg/L and 90th percentile of 0.15 µg/L 
(Schuler and Rand 2008). The monitoring program from Environment and Climate 
Change Canada in 2003–2005 showed that the majority of herbicide concentrations 
in surface waters across Canada were below 14.9 µg/L (ECCC 2011). Based on the 
reported values from these studies, it is reasonable to conclude that concentrations of 
herbicide in North America’s surface waters are usually below 20 µg/L. Therefore, 
20 µg/L was set as a generic environmentally relevant concentration in the strength 
of methods rubric. 

There were also critical criteria that were considered integral to identifying a 
strong study. The critical criteria were analytical confirmation and number of tested 
concentrations, replication, and use of appropriate statistical methods. The critical 
criteria are highlighted in red in Table 6.1. To better evaluate the strength of the study, 
total scores were reduced if a critical criterion was not met. When criterion 2, 5, 11, 
and/or 12 (Table 6.1) was not met, the total score would be multiplied by 0.5 for 
each missed criterion. If two critical criteria were not met, the total score would be 
multiplied by 0.25. The total score would be multiplied by an additional factor of 0.5 
if expert judgment deemed there were additional study flaws that were not captured 
in the standard rubric criteria. However, no further fundamental errors were found 
among reviewed papers, so no scores were reduced based on the judgment of the 
reviewer. 

6.5.1.3 Ecological Relevance of Endpoints Scoring 

The endpoints monitored in the studies were used to assign a score to the data 
for its relevance to ecological risk assessment. We worked from the assumption 
that the endpoints that are associated with higher levels of biological or ecological 
organization (i.e., population or community level) are most useful for risk assessment 
(Hanson et al. 2019). For each study, each reported response was assigned a relevance 
score. The scores for relevance for each endpoint were between 0 and 5 (Table 
6.2). The greater the relevance score for the endpoint, the more the response was 
conceptually and objectively linked to population and community-level responses 
that best inform ecological risk assessment.
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Table 6.2 Scoring criteria for the ecological relevance of endpoints from peer-reviewed recovery 
studies of aquatic macrophyte after herbicide exposure 

Score Macrophytes Detailed explanation 

0 No known linkage to survival, 
development, growth, and/or 
reproduction 

If a response has no real or hypothetical 
linkage to higher-level effects, then it has 
little to no value in elucidating ecological 
risk 

1 Biomarker response that has limited 
linkage to higher-level effects (e.g., 
genomic, proteomic, metabolomic) 

While informative from a mechanistic 
perspective, the relevance of these 
responses to population, community, and 
ecosystem-level effects is considered very 
low. In many cases, the responses 
characterized are regular processes to 
detoxify or adapt to a transient stressor, 
which in and of themselves are not adverse 

2 Biomarker responses such as enzymatic 
changes (e.g., nitrogenase activity) or 
general physiology (e.g., PSII quantum 
yield, chlorophyll-a concentrations) or 
functional responses, (e.g., rate of oxygen 
production) 

While informative from a mechanistic 
perspective, the relevance of these 
responses to population, community, and 
ecosystem-level effects is considered very 
low. In many cases, the responses 
characterized are regular processes to 
detoxify or adapt to a transient stressor, 
which in and of themselves are not adverse 

3 Changes in growth and development, 
such as biomass and growth rates 

These responses are typically highly 
relevant to the success or sustaining 
populations and communities in an 
ecological context 

4 Changes in reproduction, such as seed 
production, seed viability, flower 
production, frond number, plant number, 
and related metrics (e.g., growth rates) 

These responses are typically highly 
relevant to the success or sustaining 
populations and communities in an 
ecological context 

5 Mortality and/or community-level 
changes such as shifts in species 
diversity/composition 

Loss of individuals is highly relevant to the 
success or sustaining populations and 
communities in an ecological context 

6.5.1.4 Review QC/QA 

Once the strength and relevance scores were assigned, the resulting data spreadsheet 
underwent a quality control and quality assurance (QA/QC) exercise. The spread-
sheets (and papers) were reviewed again by a separate individual with experience in 
ecotoxicology studies to help ensure accuracy of interpretation and reporting.
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6.5.1.5 Data Analysis 

Graphs (e.g., scatter plot, bar graphs, bubble plots, and box plots) were generated 
with the use of R-studio (R Development Core Team 2019). Descriptive statistical 
analyses were performed in R studio (R Development Core Team 2019). 

6.5.2 Results 

6.5.2.1 Summary of Reviewed Studies 

A total of 25 studies published between 1986 and 2019 met the inclusion criteria and 
were reviewed (Table 6.3). The number of recovery studies has steadily increased 
over years (Fig. 6.1). 

Table 6.3 Summary of 25 peer-reviewed studies published between 1986 and 2019 on aquatic 
macrophytes exposed to herbicide and followed by a recovery period 

Organism 
type 

Number of 
peer-reviewed 
papers 

Number of 
experiments 

Number of 
species tested 

Number of 
herbicides 
tested 

Number of 
endpoints 
reported 

Duckweed 14 44 3 27 25 

Others 14 32 18 10 39 

Total 25 76 21 33 58 

Fig. 6.1 The cumulative number of published peer-reviewed recovery studies on aquatic macro-
phytes (duckweed, other species, total) exposed to herbicides between 1986 and 2019. The total 
number of papers found was 25



6 Recovery of Freshwater Aquatic Macrophytes After Exposure … 153

Test Organism Class and Species 

There were 76 unique experiments with macrophytes for 33 different herbicides and 
58 distinct endpoints (Tables 6.3 and 6.4). The most commonly tested species by 
unique experiments were Lemna sp. (n = 17), Lemna minor (n = 15), and Lemna 
gibba (n = 12).

Test Substances 

Figure 6.2 shows the herbicide groups tested over time. In general, there was 
increasing diversity of herbicide groups included in the recovery studies over time. It 
increased from a single herbicide group in the 1980s to eight herbicide groups in the 
2010s. A total of 33 herbicides were tested in the reviewed studies, and some studies 
examined recoveries after multiple types of single herbicide exposure (Table 6.4). 
Photosystem II inhibitors were the most studied herbicide group (n = 29 experi-
ments). The second most commonly tested herbicide group for macrophytes was 
acetolactate synthase (ALS) inhibitors (n = 21 experiments). The most commonly 
tested herbicides were atrazine (9 papers), diuron (4 papers), and metsulfuron-methyl 
(4 papers).

Test Duration 

The mean and median exposure durations for macrophytes were 18 and 7 days, 
respectively (n = 296) (Fig. 6.3). The mean and median duration for the recovery 
period were 13 and 7 days for macrophytes, respectively (n = 359). For duckweed, 
the mean and median were 9 and 7 days for exposure (n = 168), and 8 and 7 days 
for recovery (n = 176). The mean and median for others aquatic macrophyte were 
29 and 13 for exposure (n = 128), and 17 and 14 days for recovery, respectively (n 
= 183).

6.5.3 Strength of Method Scores 

The mean and median of strength of method scores for macrophytes were 6.0 and 
5.0, respectively (n = 76; Fig. 6.4). The mean and median of strength of method 
scores were 5.5 and 5 for duckweed (n = 44) and 6.6 and 8.0 for other species (n = 
32). The percentage of individual tests that received a score greater than 7.5 out of 
15 (i.e., > 50%) were 37% for total macrophytes (n = 76), 25% for duckweed (n = 
44), and 53% for others macrophyte species (n = 32). The highest strength scores 
by each herbicide are found in Table 6.5.
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Fig. 6.2 The number of aquatic macrophyte herbicide recovery studies by herbicide group between 
1986 and 2019. The n above each bar was the total number of unique tests in each year group, and 
the number in each stacked bar was the number of tests in each herbicide group in the corresponding 
year group
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Fig. 6.3 Boxplot with (A) exposure and (B) recovery test durations on macrophytes (duckweed, 
others, and total) herbicide exposure recovery studies. The n and mean listed at the top of the boxplot 
were the total number and mean unique responses by time point reported
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Fig. 6.4 Boxplot with strength of method score for each aquatic macrophytes (duckweed, others, 
and total). The n and mean listed above each boxplot were the total number and mean of individual 
test species in the studies

The scores as percentages for each criterion are found in Fig. 6.5. Criterion 8 
(The initial test organism characteristics were described) was met most commonly 
for macrophytes (92%, n = 76), followed by Criterion 7 (Test organisms strain/source 
were identified) with 91% (n = 76). The criterion least likely to be met was Criterion 
15 (Control criteria and performance) for macrophyte studies (18%, n = 76).

For critical criteria, Criterion 2 (measured concentrations) was met in 43% of 
macrophyte tests (n = 76). Criterion 5 (≥ three test concentrations, excluding control) 
was met by 87% of macrophyte studies. Criterion 11 (≥ 3 replicate in each concen-
tration) was met by 83% of macrophytes studies. For Criterion 12 (Appropriate test 
statistics for NOEC, LOEC, ECx), 78% of macrophyte studies met this requirement. 

6.5.4 Ecological Relevance of Endpoint Scores 

The majority of endpoint relevance scores for macrophytes from exposure and 
recovery phases ranged between 2 and 4 (Fig. 6.6). The most common endpoint 
assessed was reproduction (46%, n = 130 for exposure; 46%, n = 183 for recovery). 
For duckweed specifically, the most commonly tested endpoint was reproduction for 
exposure (70%, n = 81) and recovery (73%, n = 89). The most commonly tested 
endpoint class for other macrophyte species was physiological for exposure (53%, n 
= 49) and recovery (43%, n = 94).
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Fig. 6.5 The proportion of experiments with score of 1 for Criteria 1—15 from Group A (test 
substances), B (test organism and test system) and C (test design, statistics, and results) by aquatic 
macrophytes (n = 76). Criteria 2, 5, 11, and 12 were critical criteria and highlighted in red. The n 
is the total number of unique tests in each criteria group
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Fig. 6.6 Bubble plot with relevance score versus strength of method score from (A) exposure (n = 
130 of total number of individual endpoint in exposure) and (B) recovery (n = 183 of total number 
of individual endpoint in recovery) period for aquatic macrophytes (duckweed and other species). 
The n in each corner is the total number of individual endpoints in each quadrat
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a 

b 

Fig. 6.7 Boxplot of (A) NOECs (no observed effect concentration) and (B) LOECs (lowest 
observed effect concentration) for macrophytes (duckweed, other species, all species) from the 
exposure and recovery periods for herbicides. The n and mean at the top of the boxplot were the 
total number and mean of reported NOECs and LOECs in the reviewed studies 

6.6 How to Improve the Assessment of Macrophyte 
Recovery for Ecological Risk Assessment 

Overall, recovery after herbicide exposure was observed consistently across plant 
species and herbicides tested as indicated by the changes in NOECs and LOECs for 
exposure and recovery phases, as well as a review of the statements and conclusions of 
the papers themselves (Fig. 6.7). We did find that many studies would fail to meet our 
quality threshold to be recommended for inclusion in risk assessment (see Table 6.5 
for highest scoring studies). To increase the relevance and reliability of data for risk 
assessment, we recommend development of a guideline for recovery test procedures 
and encourage the use of reporting criterion to improve the reliability and relevance 
of recovery studies in future. The majority of tests were performed with duckweed, 
which is understandable considering its dominance as an organism for assessing 
direct toxic effects of contaminants in general, as well as the relative ease by which
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recovery can be assessed with this group of plants. Despite this, there is no defined 
methodology for assessing recovery, which hinders cross compound and species 
comparisons (ECCC 2007). Standardization of methodologies is important because 
aspects of the protocol (e.g., the size of test chambers, amounts of nutrients, and 
duration of the study) can affect growth rates and result in plants reaching the carrying 
capacity of the test system before the study ends. For example, with duckweed tests, 
the rates of change in growth endpoints are the most reliable endpoints because 
affected fronds may have a delayed response (i.e., latency), but after a few days in 
clean media show normal growth rates comparable to controls. However, since they 
are delayed in their onset of recovery, they will not catch up to the controls in frond 
number or biomass as the controls had a “head start”. Using rates of change over 
time gives a clearer and more realistic interpretation of recovery (e.g., Brain et al. 
2012b). 

To effectively incorporate recovery into ecological risk assessment, the decision-
maker may consider the recovery of function or structural attributes via internal and 
external recovery mechanisms (Barnthouse 2004; Brock et al. 2018). The recovery 
studies in this review mainly evaluated recovery after herbicide exposure in the lab 
under controlled conditions. Recovery was observed in both monocot (e.g., L. minor) 
and dicot (e.g., M. spicatum) plants and showed that both types of physiologies have 
the potential to recover after exposure to herbicides. It is rare for laboratory studies 
to evaluate the toxicity and recovery effect with the interaction of various species 
from the same (e.g., intra-competition) or different (e.g., grazing pressure) trophic 
levels (Barnthouse 2004). 

Given that laboratory tests do not allow for assessment of external recovery or 
other internal mechanisms of recovery (e.g., different life stages, seed banks), the true 
potential to recover following effects related to herbicides is likely underestimated 
in the available peer-reviewed literature. 

Our review found less than half of individual tests provided sufficient information 
to achieve a score > 7.5 for strength of methods (i.e., be recommended for inclusion 
in risk assessment). The criterion where most of the studies lost marks was the 
reporting of control performance. This is consistent with Hanson et al. (2019), where 
many atrazine primary producer exposure studies lacked information on control 
performance. Reporting the control value is important for demonstrating that test 
organisms were healthy and meeting the requirement from standard guidelines (i.e., 
≥ 8 times increase of L. minor frond number within a week), which increases the 
reliability of the study (ECCC 2007; Hanson et al. 2019). To further increase the 
number of reliable and relevant studies, journals should provide to researchers strict 
guidance for reporting and conducting basic toxicity studies.
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The need to incorporate realistic exposure concentrations to assess recovery is 
highlighted in studies where unrealistic concentrations are used to cause toxicity, 
and no subsequent recovery is observed. In this case, the potential for recovery is 
not captured, nor can the responses reported be easily extrapolated to the field to 
make predictions related to actual herbicide exposure. In the case where toxicity 
occurs, but recovery also occurs at unrealistic concentrations, the uncertainty about 
recovery at lesser concentrations has in fact been resolved (i.e., it can occur) for risk 
assessment. 

6.7 Conclusions and Recommendations 

Macrophytes play important ecological roles in freshwater ecosystems, and have 
the capacity to recovery from natural stressors through a variety of mechanisms 
in a relatively short period of time (days to weeks) if conditions are appropriate. 
Herbicides present a possible risk to these organisms, so understanding the potential 
for recovery from an herbicide-driven effect is important for reducing uncertainty 
in ecological risk assessments. Most published studies on recovery by macrophytes 
from herbicides are lab-based and conducted with Lemna spp., and many have data 
reporting and methodological deficiencies that limit their full incorporation into risk 
assessments. Moving forward, we recommend that: (1) ecotoxicologists performing 
response and recovery tests review and implement best practices to reduce uncertainty 
and improve data quality and reporting (e.g., control performance) for risk assessment 
overall; (2) test guidelines for duckweed recovery be developed and validated in 
the lab as well as the field; and (3) the data on the recovery of aquatic plants be 
incorporated formally into the lower tiers of ecological risk assessment of herbicides 
where a non-continuous exposure is expected. 
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Chapter 7 
Vegetated Ditches for Mitigation 
of Contaminants in Agricultural Runoff 

Matthew T. Moore, Jerry L. Farris, Rachel L. Nifong, Erin R. Bennett, 
Jason M. Taylor, Martin A. Locke, and Robbie Kröger 

Abstract The global population is expected to climb to 8.5 billion by the year 
2030, and by 2050, it is projected to reach 9.7 billion individuals. Meeting the food 
and fiber requirements for humanity with finite land resources will require agri-
culture to continue to increase production while also decreasing potential impacts 
to natural resources. In addition to in-field conservation practices that focus on 
tillage reduction and planting of cover crops to prevent soil erosion, edge-of-field 
conservation practices that mitigate impacts of agricultural runoff are also critical to 
protect downstream aquatic resources. To develop edge-of-field practices that limit 
loss of acreage, research was initiated in the 1990s to evaluate the possibility of 
using vegetated agricultural drainage ditches (VADDs) to mitigate the transport of 
contaminants (primarily pesticides and nutrients) in runoff. This chapter includes 
an overview of early vegetated ditch mitigation studies conducted in the USA and 
the expansion of VADDs research in other countries. In this chapter, we highlight: 
(1) important concepts behind the use of VADDs; (2) case studies of contaminant 
mitigation by vegetated ditches; (3) new technologies incorporated within VADDs 
to further promote contaminant mitigation; and (4) challenges and future research 
directions. Overall, VADDs show promise for the removal of a range of pesticides 
and for removals of nitrogen species from agricultural runoff. Studies of phosphorus 
removals by VADDs show variable results, but advanced ditch designs, additional
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treatment technologies and harvesting of plants during senescence may improve miti-
gation results. Key parameters for removal efficiencies include plant densities, the 
length, and the hydraulic retention times of the VADD systems. 

7.1 Introduction 

Agriculture, including row crops, livestock, and aquaculture, is considered one of 
the major global contributors to water pollution. Runoff following irrigation or storm 
events may release pesticides, nutrients, veterinary pharmaceuticals, sediments, and 
other contaminants into downstream aquatic receiving systems, potentially affecting 
both ecosystem and human health (UNEP 2016; Mateo-Sagasta et al. 2017). Several 
in-field conservation practices have been proposed to decrease agricultural runoff, 
including reducing tillage, cover crops, crop rotation, and nutrient management. 
However, to adequately address the significant issue of agricultural runoff, edge-
of-field practices should also be incorporated into farm management plans. Histori-
cally, edge-of-field practices have focused on establishing stiff grass hedges, riparian 
buffers, grass buffer strips, vegetated waterways, and constructed wetlands. While 
these practices have a common theme of utilizing vegetation to mitigate agricultural 
runoff, they also unfortunately require valuable acreage to be removed from produc-
tion. For instance, constructed wetlands can be a successful strategy for mitigating 
the transport of contaminants within agricultural runoff (Li et al. 2021; Vymazal 
and Březinová 2015). However, the costs of lost production acreage might outweigh 
the environmental benefits (Ilyas and Masih 2017). With this consideration in mind, 
scientists with the Agricultural Research Service of the United States Department of 
Agriculture (USDA-ARS) began to seek alternative edge-of-field options to minimize 
loss of production acreage, while maximizing agricultural contaminant mitigation 
potential. 

7.2 Why Ditches? 

Occasionally in research, the solution to a question is already present, albeit slightly 
hidden by other factors. While examining the agricultural production landscape for 
alternative edge-of-field mitigation options, one key observation was apparent: the 
ubiquitous presence and proximity of drainage ditches to fields (Fig. 7.1). Although 
these ditches are utilized for removing excess water from cropland to prevent damage, 
their structure led to other questions regarding their potential use (Dollinger et al. 
2015). Specifically, could vegetated agricultural drainage ditches (VADDs) mitigate 
agricultural runoff contaminants? Ditches meet the first requirement for an alternative 
mitigation option of minimal to no loss of agricultural production, since they are



7 Vegetated Ditches for Mitigation of Contaminants in Agricultural Runoff 173

Fig. 7.1 Examples of vegetated agricultural drainage ditches (VADDs) in early fall (left) and 
early spring (right). Representative ditches were located in Washington County (left) and Lafayette 
County (right), Mississippi, USA. Photos courtesy of Matthew T. Moore 

already present in the landscape. Ditches also are adaptable to individual farmer or 
producer needs through specific sizing options and variations in vegetation among 
climatic regions. 

Another key requirement for successful edge-of-field contaminant mitigation is 
a similarity in function to a constructed wetland. Wetlands are generally identified 
according to their hydric soils, hydroperiod, and aquatic or semi-aquatic vegetation 
(i.e., hydrophytes). While not all drainage ditches possess hydric sediment beds, 
most are of sufficient texture to hold water, since they usually are comprised of sedi-
ments from adjacent upland fields. The hydroperiod of each drainage ditch is highly 
variable, depending on slope, soil characteristics, amount of vegetation, and other 
physical and geomorphological parameters. Types of ditch vegetation are dependent 
on regional climatic conditions, position within the ditches (e.g., on slopes or within 
main channel), amount of water in the ditches, etc. As evidenced above, there is no 
such thing as a “typical” ditch. Attempts have been made to characterize and clas-
sify ditches based on several parameters, but those efforts were generally limited to 
specific regions, such as the Mississippi Delta in the USA (Bouldin et al. 2004). 

Prior to the 1990s, most literature with the keywords “drainage ditch” focused on 
ditch ecology, including macroinvertebrates, fish, and plant communities, as well as 
the physical impacts (e.g., sedimentation) of runoff. Several of these studies were 
conducted in Europe, primarily in fens of the United Kingdom and drainage ditches 
within the Netherlands. Meuleman and Beltman (1993) were some of the earliest 
proponents of utilizing vegetated drainage ditches for protecting water quality. In 
their seminal work, they noted the nation-wide problem of high levels of nutrients in 
river water in the Netherlands. They proposed routing contaminated water through 
a system of vegetated drainage ditches or marshlands to utilize biological, physical, 
and chemical processes for nutrient removal (Meuleman and Beltman 1993). Moore 
et al. (2001) used this initial concept to design USDA-ARS studies which focused on



174 M. T. Moore et al.

pesticide mitigation. Some 20 years after these initial studies of pesticide mitigation 
were conducted in the USA, VADD research has been adopted in many countries 
around the world, including China, the Czech Republic, Germany, Finland, Italy, 
and Mexico (Herzon and Helenius 2008; Bundschuh et al. 2016; Moeder et al. 2017; 
Soana et al. 2017; Kumwimba et al. 2018; Vymazal and Březinová 2018). 

7.3 Case Studies in Contaminant Mitigation 

7.3.1 Pesticides 

Initial USDA-ARS studies in VADDs focused on mitigation of pesticides in ditches 
surrounding production acreage which drained into oxbow lakes in the Mississippi 
Delta, USA. A 50 m stretch of a VADD in the Beasley Lake watershed, which 
is part of the Mississippi Delta Management Systems Evaluation Area, was dosed 
with a mixture of well water, the herbicide atrazine, and the insecticide lambda-
cyhalothrin to simulate a storm runoff event (Moore et al. 2001). The quantities 
of pesticides used for dosing simulated a worst-case 5% pesticide runoff from a 
0.64 cm rainfall event within a 2.03 ha contributing area. Water, sediment, and plant 
samples were collected at six locations within the ditch at times before, during, 
and after the simulated event and at locations 10 m above the inflow, at the inflow, 
and at 10, 20, 40, and 50 m downstream. Plant density at each sampling location 
was estimated, and shoot material exposed in the water column of predominant 
plant species (Polygonum amphibium, Leersia oryzoides, and Sporobolus sp.) were 
collected, dried, and biomass was estimated. One hour into the simulated event, 
61% of atrazine concentrations measured in samples were associated with plant 
shoot material, while 87% of measured lambda-cyhalothrin concentrations were 
found in plant shoot material, indicating the importance of vegetated material for 
sorption of pesticides in agricultural drainage ditches (Moore et al. 2001). Using 
linear regression, it was determined that the concentrations of both pesticides in 
water could be reduced to levels below aquatic toxicity thresholds (i.e., ≤ 20 µg L−1 

atrazine and ≤0.02 µg L−1 lambda-cyhalothrin) within the 50 m monitored stretch 
of reach, given the initial parameters for runoff and ditch flow (Moore et al. 2001). 

However, a parallel ecotoxicity assessment conducted by Farris et al. (2010) indi-
cated that toxicity persisted for 28 d post-application. Ten-day solid phase sedi-
ment exposures with larvae of the midge Chironomus tentans indicated persistent 
inhibition of survival and growth by exposures to sediments collected at all six 
sites in the drainage ditch. Toxicity tests with aqueous samples with the cladoceran 
Ceriodaphnia dubia and with larval fathead minnows, Pimephales promelas, indi-
cated that toxicity persisted post-application at all downstream sites. Movement of 
the sediment-bound atrazine and lambda-cyhalothrin among lower ditch sites was 
reduced in comparison with the pesticide transport in aqueous samples, but still did 
not provide sufficient evidence to distinguish between the two pesticide effects upon
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observed toxicity. While acute toxicity of sediments collected from the injection 
site persisted throughout the study, growth impairment also observed in C. tentans 
exposed to sediments from all downstream sites. This study using temporal and 
spatial sampling throughout 28 d following a simulated storm event failed to identify 
the duration at which acute exposures to sediment would have no sub-lethal effects 
in standard toxicity test organisms (Farris et al. 2010). 

Information gathered from that first study was used to strengthen the design 
of the second VADD study in 1999 conducted by the USDA-ARS, where the 
pyrethroid insecticide esfenvalerate was the pesticide applied in a simulated runoff 
event discharging into a 650 m ditch. In the study reported by Cooper et al. (2004), 
the pesticide was premixed with suspended sediment as a slurry before being intro-
duced into the ditch to better simulate a storm runoff event. Spatial and temporal 
samples of water, sediment, and plants (Ludwigia peploides, P. amphibium, and L. 
oryzoides; only shoot material exposed in water column) were collected and analyzed 
for esfenvalerate. Results indicated that 99% of esfenvalerate was associated with 
plant material, with pesticide half-lives in water, sediment, and plants calculated at 
0.12 d, 9 d, and 1.3 d, respectively. Using the linear regression model from Moore 
et al. (2001), it was determined that, based on initial parameters and conditions, 
the concentrations of esfenvalerate could be reduced to 0.1% of its original exposure 
concentration within a 510 m stretch of the VADD, well before entry into downstream 
Thighman Lake in Sunflower County, MS, USA (Cooper et al. 2004). 

The third VADD study in 2000 conducted by the USDA-ARS and reported by 
Bennett et al. (2005) focused again on the same ditch drainage system studied by 
Cooper et al. (2004), except the pesticides of interest were now the two pyrethroid 
insecticides bifenthrin and lambda-cyhalothrin. As in Cooper et al. (2004), a water, 
pesticide, and suspended sediment slurry was used to deliver the simulated runoff 
into the ditch. Spatial and temporal sampling of water, sediment, and plants occurred 
throughout the VADD. Based on mass balance determinations, plants were once 
again the primary sink or sorption site for both insecticides. Regression modeling 
determined insecticide concentrations could be decreased to 0.1% of their initial 
value within a 280 m reach of the 650 m VADD (Bennett et al. 2005). 

Following successful experiments in the Mississippi Delta, the research by the 
USDA-ARS of VADDs expanded to different cropping systems through collabora-
tion with partners in California, USA, interested in utilizing this nature-based tech-
nology to address pesticide transport in runoff from various crops, such as tomatoes 
and alfalfa. While initially, it seemed a simple solution to transfer the VADD tech-
nology among agricultural fields, regional differences in farmer practices and state 
regulations posed challenges to implementation. Whereas farmers in the Mississippi 
Delta maintain permanent ditches adjacent to fields, many of the ditches in the tomato 
and alfalfa growing regions of the Central Valley of California are temporary; dug and 
filled in each year after harvest. Differences in the shapes of ditch channels between 
the two regions posed challenges concerning hydrology and potential efficacy of 
pesticide mitigation. Mississippi Delta ditches were generally U-shaped with gentle 
sloping sides and a broad thalweg, while those in California were more V-shaped with 
steep slopes and minimal thalweg, owing to the type of implement commonly used
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to construct temporary ditches. Vegetation, the primary component of VADD tech-
nology, was also an initial concern in transferring this technology from the Missis-
sippi Delta to the California Central Valley. In the Mississippi Delta, vegetation was 
allowed to grow naturally in drainage ditches to serve as organic carbon sources 
for mitigation and microbial activity. Many of the plants found in these ditches 
are ubiquitous within the continental USA. However, California landowners saw 
them as nuisance vegetation that might provide habitat for other fauna. This concern 
was triggered by stricter environmental regulations in California. After consulting 
project partners in the US Environmental Protection Agency (US EPA) and the local 
Resource Conservation District (RCD) of the USDA, vegetation specific to California 
that alleviated nuisance or habitat creation concerns for landowners was chosen to be 
included in the experiments. Vegetation planted included Hordeum vulgare (barley) 
and Lolium multiflorum (annual ryegrass). The invasive weed Chenopodium album 
(lamb’s quarter) was also prevalent within the vegetated ditches. 

The initial California VADD experiment was conducted in Yolo County, where 
V-shaped vegetated and unvegetated ditches were constructed and dosed for 8 h with 
a simulated runoff of a slurry of suspended sediment and water containing the insec-
ticides diazinon and permethrin, as reported by Moore et al. (2008). As with previous 
VADD experiments, water, sediment, and plant (H. vulgare, L. multiflorum, and C. 
album; shoot material exposed in water column) samples were collected tempo-
rally and spatially throughout the experiment. Pesticide half-lives and half-distances 
were calculated in each ditch. Half-lives were similar, ranging from 2.4–6.4 h, while 
comparisons of half-distances between vegetated and non-vegetated ditches showed 
the value of the vegetation in ditch systems. In the V ditches, cis-permethrin half-
distances ranged from 22 m in vegetated systems to 50 m in unvegetated systems 
(Moore et al. 2008). Half-distances for diazinon ranged from 55 m for vegetated V 
ditches to 158 m for unvegetated V ditches (Moore et al. 2008). 

A second VADD experiment in California utilized in situ vegetated field ditches 
surrounding both alfalfa and tomato fields in Yolo County to evaluate irrigation runoff 
for removals of the organophosphate insecticide, chlorpyrifos and the pyrethroid 
insecticide, permethrin. From alfalfa field irrigation runoff, the VADDs decreased the 
chlorpyrifos concentration by 20% between the ditch inflow and outflow, with 32% 
of measured chlorpyrifos mass associated with plant (Leymus triticoides and Carex 
praegracilis) material. A decrease of 67% in permethrin concentrations between 
inflow to outflow was measured in a ditch conveying irrigation runoff from a tomato 
field (Moore et al. 2011). 

The California research project also had a separate ecotoxicity component to 
complement the measurements of chemical concentrations and load reduction in 
ditches draining irrigation water from tomato and alfalfa fields (Werner et al. 2010). 
One objective of this research was to validate the use of VADDs as a mitigation 
practice for selected organophosphate and pyrethroid insecticides. Early life stages 
of the fathead minnow P. promelas and the amphipod Hyalella azteca were deployed 
in custom-built exposure chambers within 400-m sections of two vegetated ditches, 
and in situ impairment of the organisms was intensively monitored during and after 
passage of chlorpyrifos and permethrin in ditch runoff. Both compounds are highly



7 Vegetated Ditches for Mitigation of Contaminants in Agricultural Runoff 177

toxic to aquatic invertebrates, such as standard test organisms like C. dubia and 
H. azetca, while less so to P. promelas. The predicted toxic units (TUs) from the 
in-stream concentrations in runoff generally agreed with the C. dubia 96-h LC50 
values in laboratory tests but underestimated the in situ impacts seen with H. azteca. 
Sediments collected near the ditch outflow were toxic to H. azteca, but no signifi-
cant mortality occurred with early life stages of P. promelas (Werner et al. 2010). 
Runoff containing chlorpyrifos remained highly toxic to both species and perme-
thrin continued to elicit toxic responses from H. azteca. The VADD failed to reduce 
pesticide concentrations below the measured effective concentration, which implied 
an additive or greater than additive impact from the pesticides present in tomato and 
alfalfa field runoff. There was a modest 15% in situ reduction in toxicity to H. azteca 
at both experimental sites. In contrast, chlorpyrifos and permethrin concentrations 
were 23% and 50% lower, respectively, at the ditch outflow. 

Scientists with the California Department of Pesticide Regulation (DPR) exam-
ined the efficacy of a vegetated irrigation ditch to mitigate runoff of chlorpyrifos 
associated with alfalfa irrigation (Gill et al. 2008).  The ditch (2 m width  × 200 m 
length) was planted with several native perennial grasses such as Dactylis glomerata, 
Agroyron trichophorum, L. triticoides, Elymus glaucus, and H. brachyantherum. For  
comparison, a conventional unvegetated V ditch was similarly evaluated. Results 
indicated that overall, chlorpyrifos concentrations were significantly lower in the 
outflow of the vegetated ditch than those observed in the unvegetated ditch outflow. 
As irrigation events continued to occur, there was a trend of a slight decrease in 
the removals of chlorpyrifos, but these reductions were not significantly different 
among the various irrigation events. The median reduction in chlorpyrifos concen-
tration was 38% in the vegetated ditch, while only a 1% reduction was observed in 
the conventional unvegetated ditch (Gill et al. 2008). 

Rogers and Stringfellow (2009) further investigated the mechanisms for parti-
tioning of chlorpyrifos between plants and sediments within VADDs using a batch 
equilibrium method for kinetics experiments. Plants and a homogeneous sediment 
mixture collected from a VADD located in Stanislaus County, CA, USA, were 
used in controlled experiments, and a standard soil from San Joaquin, CA, USA, 
was utilized as a reference comparison. Plant species examined included Triticum 
aestivum, Lolium sp., Medicago sativa, Typha sp., and Juncus patens. Sorption coef-
ficients (Kd) were more than 10 times higher in plants (570–1300 L kg−1) as opposed 
to soil and sediment (40–71 L kg−1). Plant sorption of chlorpyrifos was in the order 
of Typha sp. > T. aestivum > J. patens > Lolium > M. sativa (Rogers and Stringfellow 
2009). This study was one of the first definitive evaluations into the partitioning 
capacity of different species of plants. This study indicated that aquatic macrophytes 
(e.g., Typha sp.) with a high internal surface area due to porous tissues may be more 
effective for accumulating chlorpyrifos than hollow terrestrial plant species (Rogers 
and Stringfellow 2009). 

Several European studies on VADDs and pesticide mitigation have been conducted 
in Germany and Italy. Bundschuh et al. (2016) provided an extensive characterization 
of aquatic fungicide exposure at base flow and during rainfall events that occurred 
with German viticulture, contributing to catchments at a large spatial scale. The
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VADDs and vegetated detention ponds containing Phragmites australis, Glyceria 
sp., C. elata, Iris pseudacorus, Veronica beccabunga, Lemna minor, T. angustifolia, 
and Sparganium erectum were monitored across four seasons reduced the median 
fungicide concentrations and their associated ecotoxicological potential by 56% and 
38%, respectively (Bundschuh et al. 2016). During runoff events, the TU approach 
was used within the Uniform Principle of the European Union for Tier I pesti-
cide risk assessment. Given the properties of the mitigation systems, the short-term 
peaks of runoff events, and physico-chemical characteristics of the targeted fungi-
cides (azoxystrobin, boscalid, cyprodinil, dimethomorph, myclobutanil, pencona-
zole, pyrimethanil, tebuconazole, triadimenol, and trifloxystrobin), the reductions in 
measured concentrations of fungicides were consistent with the acute and chronic 
toxicity data for aqueous samples collected during runoff and base flow. Loads of 
fungicide mixtures detected during base flow indicated low risks for aquatic ecosys-
tems. Additionally, plant coverage, water depth, hydraulic retention time (HRT), 
flow length of the system as well as fungicide-specific partition coefficients (i.e., 
Log P) explained about 55% of the variability seen in detention ponds, in contrast to 
similar variables accounting for only 15% of the variability in the VADD systems. 
The importance of plant density was emphasized in these studies, as high densi-
ties contribute to greater surface areas for adsorption and for processes involving 
receptors and microbial degradation (Bundschuh et al. 2016). 

Otto et al. (2016) utilized a field experiment on a VADD in the Po Valley of 
Italy to determine whether field-measured mitigation efficiencies matched predic-
tions generated from a fugacity model. Water containing the herbicides mesotrione, 
S-metolachlor, and terbuthylazine was pumped through the VADD, and two subse-
quent flushes of herbicide-free water were conducted 27 d and 82 d after the original 
dosing event in order to assess potential herbicide wash off. Herbicide concentra-
tions were reduced by at least half in the VADD, regardless of the flooding condi-
tions. In the field experiment, herbicide half-distances were approximately 250 m. 
However, subsequent flood events indicated that these herbicides may be remobi-
lized after initially being sorbed to plant material, although the observed herbicide 
concentrations were still below drinking water limits (Otto et al. 2016). 

7.3.2 Nutrients 

In the early 2000s, studies by the USDA-ARS began to focus on the use of VADDs 
to mitigate the transport of nutrients entering the Lower Mississippi River Basin, 
with the aim of reducing hypoxia in the receiving waters of the Gulf of Mexico. 
Kröger et al. (2007a, 2008) reported on the ability of VADDs to reduce both nitrogen 
(N) and phosphorus (P) concentrations and loads leaving production agriculture 
fields in monthly baseflow and under individual storm flow conditions. Two vege-
tated ditches (L. oryzoides, Sagittaria latifolia, J. effuses, and Echinodorus cordi-
folius) surrounding fields planted in continuous no-till cotton were monitored for 
two years for nitrate, nitrite, ammonium, and orthophosphate. During the growing
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season, both nitrate and ammonium were reduced over the length of the monitored 
vegetated ditches while storm loads of dissolved inorganic N were reduced by 57% 
(0.84 kg ha−1 yr−1) by the VADDs (Kröger et al. 2007a). Phosphorus mitigation 
proved to be seasonal, with the ditches alternating between a P sink and a source. 
Annually, the ditches reduced the maximum inorganic P load leaving the ditches by 
approximately 44% (Kröger et al. 2008). 

Expanding upon studies by Kröger et al. (2007a, 2008), two agricultural ditches 
(one vegetated, one unvegetated), similar in size, landform, and location in the Missis-
sippi Delta were utilized by Moore et al. (2010) to determine nutrient mitigation 
during a simulated storm runoff event. No significant differences were observed 
between the two ditches in reductions of nitrate, ammonium or dissolved inorganic P 
between the inflow and outflow. Total inorganic P loads were reduced by 71 ± 4% in 
the non-vegetated ditch, while there was only a 36 ± 4% reduction in the vegetated 
ditch (Moore et al. 2010). The reductions in phosphorus loads were not unexpected in 
the unvegetated ditches, since sediments can provide significant P binding potential. 
Kröger and Moore (2011) examined P dynamics in drainage ditch sediments across 
a range of sites within the Lower Mississippi River Basin. Their results indicated 
most drainage ditch sediments had low immediately bioavailable P, with a degree 
of P saturation of <20% (Kröger and Moore 2011). However, since these ditches 
had low P binding energy (0.34–0.60 L mg−1) and low P sorption maxima (17.8– 
26.6 L mg−1), they may not necessarily serve as P sinks. These results highlight the 
challenges for VADD nutrient mitigation within ditches. Results are often highly 
variable, depending on local conditions. Collins et al. (2016) utilized in situ meso-
cosms in two ditches on a cattle ranch in the Everglades region of Florida, USA to 
examine P sorption potential. One ditch had an organic sediment and was vegetated 
with Pontederia cordata, while the second ditch had a mineral sediment and was 
vegetated with a mixture of Eichhornia crassipes and L. minor. Results indicated P 
uptake was greater and was also subsequently released more rapidly in the vegetated 
ditch. It was determined that vegetated ditch residence time (0.46 and 0.11 days) was 
insufficient to promote mitigation of P, and an extension of residence time would 
benefit P mitigation (Collins et al. 2016). 

Taylor et al. (2015) utilized mesocosms to explore the VADD concept and attempt 
to differentiate mechanisms which may be affecting N mitigation. Using three treat-
ments (unvegetated control), rice cutgrass (L. oryzoides), and common cattail (T. 
latifolia), they examined the N mitigation capability of treatment systems, while also 
quantifying denitrification rates in each system. Systems with L. oryzoides retained 
68% of nitrate loads in simulated runoff exposures, while T. latifolia and unvege-
tated controls retained 60% and 61%, respectively. Sediment cores removed from 
mesocosms planted in L. oryzoides had significantly higher mean denitrification rates 
(5.93 mg m−2 h−1) than either T. latifolia or unvegetated controls (0.2 mg m−2 h−1 

and −0.19 mg m−2 h−1, respectively), indicating the strong potential for perma-
nent removal of excess N through microbially mediated denitrification (Taylor et al. 
2015). 

Soana et al. (2017) utilized reach scale methods and laboratory incubations to 
estimate plant nutrient uptake in a study within the Po River plain of northern Italy.
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N removal, primarily via denitrification, was greater within vegetated ditch reaches 
(38–84 mmol N m−2 d−1) than in unvegetated reaches (12–45 mmol N m−2 d−1), 
as reported by Soana et al. (2017). Castaldelli et al. (2018) utilized mesocosms 
to evaluate denitrification in systems vegetated with P. australis and unvegetated 
systems under a range of runoff flow velocities (0–6 cm s−1). Results indicated 
that vegetated sediments had more denitrification activity (27–233 mmol N m−2 

d−1) than did unvegetated sediments (18–33 mmol N m−2 d−1), as reported by 
Castaldelli et al. (2018). Likewise, nitrate removal and denitrification rates increased 
by an order of magnitude when the water velocity increased from 0 to 6 cm s−1 

in the vegetated systems. Zhang et al. (2016) conducted a field-scale experiment 
examining ammonium removal and reduction of nitrous oxide emissions in ditches 
vegetated with P. cordata and Myriophyllum elatinoides versus unvegetated ditches. 
Results indicated that vegetated ditches increased ammonium removal while simul-
taneously decreasing nitrous oxide emissions (Zhang et al. 2016). Dominant ammo-
nium removal pathways differed between the two plant species, with M. elantinoides 
vegetated ditches achieving removal primarily by plant uptake and by nitrification– 
denitrification processes mediated by microbes. Alternately, unvegetated ditches and 
those vegetated with P. cordata removed ammonium via sediment sorption (Zhang 
et al. 2016). 

Soana et al. (2018) conducted mesocosm experiments to elucidate nitrate mitiga-
tion via denitrification within microbial biofilms colonizing dead P. australis stems 
during winter. Using chlorophyll a content as a proxy for the proportion of the 
autotrophic community on the biofilm, Soana et al. (2018) reported P. australis 
vegetated sediments were more efficient in conversion of nitrate through denitrifica-
tion (7–17 mmol N m−2 d−1) than were unvegetated sediments (3–5 mmol N m−2 

d−1). Results of this study indicated the best practice for ditch maintenance was to 
postpone mowing until the end of winter to promote nitrate removal throughout the 
year (Soana et al. 2018). Soana et al. (2019) conducted watershed modeling within 
the lowlands of the Po River Basin in Italy to determine nitrate mitigation through 
denitrification and the effects of ditch maintenance (mowing) within the watershed. 
Based on the current maintenance techniques, 11% of excess N was removed from 
the system (3300–4900 t N yr−1). However, this could be improved to 4000–33,600 
t N yr−1 if 90% of vegetated ditches were maintained (Soana et al. 2019). Additional 
gains in denitrification could be made by delaying ditch mowing at the end of the 
growing season, as pointed out previously by Soana et al. (2018). 

Kumwimba et al. (2016) examined the nutrient mitigation capacity of six plant 
species, Canna indica, Cyperus alternifolius, Colocasia gigantea, Acorus calamus, 
I. sibirica, and M. verticillatum, and reported removal efficiencies ranging from 
97–99%, 98–100%, and 90–98% for total N, ammonium, and total P, respectively. 
They also noted an 85–95% increase in aboveground biomass as plants sequestered 
nutrients, but a rapid nutrient loss occurred after 70 d during the senescent period 
(Kumwimba et al. 2016). Harvesting of plant biomass prior to senescence was 
suggested as a possible remedy for preventing nutrient release back into the vegetated 
ditch system. Kumwimba et al. (2020) examined VADD ability to retain nutrients 
during periods of low temperatures in China. Overwintering plants in the VADD
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included A. gramineus, M. aquaticum, and I. sibirica. Approximately 43–46% of N 
species were retained, with 46–52% of P species being retained by the VADD in low 
temperatures. It was estimated that 5.37 × 103 kg N y−1 and 0.65 × 103 kg P y−1 

were removed by the VADD. Further plant senescence did result in release of nutri-
ents during the experiment, so caution in design was noted (Kumwimba et al. 2020). 
Other studies have also demonstrated the potential for nutrient release during plant 
senescence but relied on experiments designed to represent worst-case scenario by 
using chambers with plant material and water only to estimate nutrient release rates 
(Peverly 1985; Kröger et al. 2007b; Menon and Holland 2014; Wang et al. 2018). 
In contrast, Taylor et al. (2020) measured P release from senescent plant mate-
rial in mesocosms during rain events throughout winter. Mesocosms representing 
intact ecosystems with sediment, root systems, senescent plant biomass, and asso-
ciated microorganisms demonstrated balanced retention; that is, import during the 
growing season and export during the senescent period when exposed to low P loads. 
However, mesocosms receiving high P inputs had high retention (80–90%), which 
could be partially explained by excess P being translocated to extensive root systems 
in mesocosms (Taylor et al. 2020). 

7.3.3 Complex Mixtures 

Early studies of VADDs by the USDA-ARS focused on a particular contaminant 
class, such as pesticides or nutrients. However, ditches receive a variety of contami-
nants, many of them simultaneously. Several studies have examined overall VADD 
efficiency regarding complex mixtures of contaminants. In a mesocosm experi-
ment, Moore and Locke (2020) examined the capacity of typical plant species in 
VADDs, M. aquaticum, P. amphibium, and T. latifolia to remove nutrients (orthophos-
phate, nitrate, and ammonium) as well as three pesticides, clomazone, propanil, and 
cyfluthrin during a simulated runoff event. The target inflow concentration for each 
nutrient species was 10 mg L−1, while pesticide inflow concentrations were 20 µgL−1 

for both propanil and clomazone and 10 µg L−1 for cyfluthrin. The simulated storm 
event was applied to individual mesocosms for 6 h (representing the HRT), followed 
by 48 h with no flow, a then a 6 h flush with unamended (no nutrients/pesticides) 
water. Samples were collected temporally throughout the experiment and load reduc-
tions were calculated. In the vegetated mesocosms, mean percent load reductions for 
orthophosphate, ammonium, and nitrate ranged from 39–52%, 47–62%, and 50– 
59%, respectively, while in the unvegetated mesocosms, mean percent load reduc-
tions were 42%, 52%, and 54% for orthophosphate, ammonium, and nitrate, respec-
tively (Moore and Locke 2020). Cyfluthrin retention varied only slightly between the 
unvegetated (76%) and vegetated systems (ranging from 79–86%). Similar results 
were noted for propanil, with 69% retention in unvegetated systems, while retention in 
vegetated systems ranged from 63–71%. Mesocosms vegetated with P. amphibium
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were most efficient at retaining clomazone (63%), followed by mesocosms vege-
tated with T. latifolia (44%), M. aquaticum (8%), compared to 5% retention in the 
unvegetated system (Moore and Locke 2020). 

Kumwimba et al. (2021) evaluated the effectiveness of VADDs in rural China 
to mitigate nutrients and metals from rural wastewater, as well as identifying the 
standing stock concentrations in associated vegetation (M. verticillatum, Acorus 
gramineus, Thalia dealbata, C. alternifolius, Hydrocotyle vulgaris, I. pseudacorus, 
C. gigantea, P. australis, A. calamus, and C. indica) N and P species were reduced 
by 48–63% and 51–58%, respectively. Additionally, Ni, Cu, Cr, Zn, Cd, Pb, As, Fe, 
Al, and Mn were reduced by 50%, 56%, 63%, 79%, 67%, 80%, 60%, 52%, 19%, 
and 24%, respectively (Kumwimba et al. 2021). The primary location of metals 
in the plants was in either in the stems or roots, with Al, Fe, and Mn having the 
highest recorded concentrations. Based on their data, Kumwimba et al. (2021) deter-
mined plant biomass harvesting in either August or early September was optimal for 
effective metal removal in the VADD. 

In Mexico, Moeder et al. (2017) studied a 3.6 km section of a VADD in Sinaloa 
State receiving both agricultural runoff and discharges of domestic wastewater from a 
nearby community. Five different points along the ditch were monitored on a monthly 
basis for 38 different pollutants, including pesticides, polycyclic aromatic hydrocar-
bons, artificial sweeteners, and pharmaceuticals. Sediment and plant samples were 
collected three times during the year and also measured for concentrations of pollu-
tants. Results indicated that cattails (T. domingensis) absorbed 10 of the 38 measured 
pollutants and sediment sorption was of minimal influence. It was hypothesized 
that microbial activity and the subtropical climate contributed to effective pollutant 
mitigation within the VADD. 

Vymazal and Březinová (2018) monitored a 200 m VADD for two years in the 
Czech Republic to examine its ability to mitigate levels of N and P, suspended 
solids, biochemical oxygen demand (BOD), and chemical oxygen demand (COD). 
Ditch vegetation was dominated by P. australis, T. latifolia, and Glyceria maxima. 
N and total P removal were estimated at 1,070 kg ha−1 y−1 and 804 kg ha−1 y−1, 
respectively. Fourteen percent of removed P load was attributed to plant uptake 
(Vymazal and Březinová 2018). Removal of suspended solids, BOD, and COD were 
2,0437 kg ha−1 y−1, 1,500 kg ha−1 y−1, and 7,000 kg ha−1 y−1, respectively. Nitrogen 
and organic removal were influenced by temperature, whereas P and suspended solids 
removal were not affected by temperature (Vymazal and Březinová 2018). 

7.3.4 New Technologies in VADDs 

A common misconception is that by utilizing an individual conservation practice, one 
can solve all the environmental issues for a particular location. While individual prac-
tices can certainly have a significant impact, suites of various conservation practices 
typically provide improved mitigation efforts needed to meet environmental goals.
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The capacity of VADDs to mitigate contamination from agricultural runoff is well-
documented in the literature and is summarized in this chapter, but VADDs cannot 
to be considered a “silver bullet” for mitigating all agricultural runoff. Instead, it 
should be viewed as a valuable tool in a larger toolbox. Goeller et al. (2020) provides 
an excellent resource for “tool stacking” for N mitigation. They describe various 
N mitigation tools that can be implemented at multiple locations within a water-
shed for better nutrient attenuation. Locations of these mitigation measures include 
in-stream, within channel margins, riparian buffer and floodplains, and edge-of-
field tools. Below is an overview of both old and new technologies that have been 
incorporated within VADDs that demonstrate the same “tool stacking” concept. 

Perhaps the best example of technologies incorporated within VADD is research 
recently published by Phillips et al. (2021) describing an integrated vegetated treat-
ment system (VTS) which included a sediment trap, vegetated ditch, compost swales, 
and a granulated activated carbon (GAC) or biochar polishing filter. Each component 
of the VTS was designed with a specific purpose in mind: coarse particulates would 
be removed by the sediment trap, while suspended sediment and insecticides would 
be removed by the vegetated ditch and compost swales. Any residual pesticides 
remaining would be treated by sorption using either GAC or biochar. Additionally, 
irrigation water for these experiments was treated with polyacrylamide (PAM), a 
long-chain polymer commonly used for erosion control, to minimize concentra-
tions of suspended sediments. Both simulated and actual runoff events were exam-
ined for the ability of VTS to reduce concentrations and loads of the neonicoti-
noid insecticide, imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-
2-ylideneamine] and the pyrethroid insecticide, permethrin. In the series of simulated 
runoff events, the VTS reduced the suspended sediment, imidacloprid, and perme-
thrin concentrations by 30–82%, 88–92%, and 98–100%, respectively, in tests with 
the GAC polishing treatment. With a biochar polishing treatment, concentrations of 
suspended sediment, imidacloprid, and permethrin were reduced 42–85%, 89–94%, 
and 98–99%, respectively (Phillips et al. 2021). Following VTS treatment and GAC 
polishing, loads of suspended sediment, imidacloprid, and permethrin were reduced 
by 63–95%, 94–98%, and 98–100%, respectively. When biochar was substituted for 
the polishing step, load reductions were 82–96%, 98–99%, and 99–100%, respec-
tively, for suspended sediment, imidacloprid, and permethrin. When actual runoff 
events from a lettuce field were routed through the VTS, concentrations of suspended 
sediment, imidacloprid, and permethrin were reduced by 78–84%, 74–80%, and 48– 
100%, respectively. Load reductions for these same events were approximately 98%, 
99%, and 97%, for suspended sediment, imidacloprid, and permethrin, respectively 
(Phillips et al. 2021). 

Addition of physical structures in VADDs have also been suggested to improve 
mitigation of agricultural runoff. Flora and Kröger (2014) examined in a meso-
cosm experiment the value of constructing low-grade weirs to VADDs containing L. 
oryzoides and T. latifolia that receive aquaculture pond effluent. In systems without 
weirs, there was a decrease in TP, total ammonia nitrogen (TAN), and nitrate loads 
of 47%, 43%, and 63%, respectively, but there was also a 154% increase in the loads 
of soluble reactive phosphorus (SRP). In VADDs with low-grade weirs, decreases of
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SRP, TP, TAN, and nitrate loads were 80%, 86%, 89%, and 89%, respectively (Flora 
and Kröger 2014). Low-grade weirs increased the HRT by 32% and decreased flow 
velocity, which likely contributed to decreases in nutrient loads exiting the system. 
Iseyemi et al.  (2018) reported that VADDs with weirs had significantly lower bioavail-
able P (0.018 mg g−1) than VADDs without weirs (0.021 mg g−1). Mean P sorption 
maxima ranged from 139–671.8 mg kg−1 in the summer to 525–1288 mg kg−1 in 
winter, with P binding energy measurements ranging from 0.63–1.34 L mg−1 in the 
summer to 0.09–0.30 L mg−1 in the winter (Iseyemi et al. 2018). Kröger et al. (2011, 
2012) found the use of low-grade weirs created zones upstream which allowed for 
sedimentation to occur and further improved denitrification and bound P removal. 

Faust et al. (2018a) provided a review of enhanced mitigation methods utilized in 
VADDs, in addition to VADDs alone. Riser and slotted board pipes had some reported 
success in decreasing nitrate loads in tile drainages, typically in northern and eastern 
states of the USA, but they noted limited evidence of the ability of these structures to 
enhance removals of ammonia, TN, TP, or total suspended solids (Faust et al. 2018a). 
Another physical structure similar in concept to VADD is the two-stage ditch. These 
special ditches are often used in the Upper Mississippi River Basin in the USA, and 
the “benches” created in these systems may serve to increase denitrification levels 
(Mahl et al. 2015; Powell and Bouchard 2010; Roley et al. 2012; Speir et al. 2020). 

Faust et al. (2018a, b) also discussed incorporation of organic carbon amend-
ments (if limiting) in VADDs with physical structures, such as weirs, as an additional 
step toward increased denitrification in these systems. Organic carbon amendments 
may include various wood media, corn stover (leaves, stocks, and cobs left over 
after harvest), rice straw, or Bermuda grass hay (Faust et al. 2018a). Eighty-nine 
drainage ditch sediments were collected from 35 sites throughout the Lower Missis-
sippi Valley, USA, to determine baseline organic carbon and N content, finding 
organic carbon content ranging from 0.253% to 6.04% (Faust et al. 2018b). These 
contents are well below sediment organic carbon expected in restored and natural 
wetlands, so organic carbon may be limiting denitrification in Lower Mississippi 
Valley drainage ditches. Nifong et al. (2019) used a flow through, intact sediment 
core experiment to assess the effects of gypsum or hardwood mulch overlying layers 
on ditch sediment denitrification. Sediment denitrification rates were 0.6, 1.3, 9.2, 
and 11.2 mg N2-N m−2 h−1 for control, gypsum, mulch-gypsum, and mulch cores, 
respectively. Mulch and mulch-gypsum treatments were estimated to remove 65 
and 69% of N loads, respectively (Nifong et al. 2019). Cai et al. (2021) examined 
amendments with rice straw and the mineral zeolite (independently and in combina-
tion) in bench-scale experiments designed to improve N removal in drainage ditches 
receiving either high ammonium or high nitrate concentrations with low carbon 
content. Ammonium removal rates were greatest in the rice straw-zeolite combi-
nation (48.9–77.7%), as were nitrate removal rates (67.6–82.7%). The presence of 
microbial denitrifying genes (nirK, nirS, narG, and napA) was significantly enhanced 
in the rice straw-zeolite mixture, contributing to the improved nitrate removals (Cai 
et al. 2021). 

Studies have also evaluated various VADD amendments for improved removal 
of P compounds. He et al. (2021) studied the use of akadama clay (particle size
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1–6 mm) barriers in mesocosm-scale experiments as a method of removing phos-
phate in VADDs. Akadama clay is a reddish-brown granulate derived from volcanic 
sources in Japan, although it is exported around the world. Highest P removals were 
in VADD mesocosms with akadama clay barriers that had the following character-
istics: akadama particle size of 1 mm; 10 cm height; and 90 cm length. Removal 
efficiencies were 97.1% for TP, 96.9% for particulate P, and 97.4% for dissolved P 
(He et al. 2021). While not specifically examining VADDs, Penn et al. (2007) did  
address several P sorbing materials that could be used to mitigate drainage ditch 
water. Materials suggested included limestone, byproduct gypsum, quick lime, and 
alum. They noted several factors including material cost, availability (including trans-
portation), potential contaminants, physical properties, and P sorption characteristics 
as issues of concern for choosing a P sorbing material. When examining the phys-
ical properties of sorbing materials, it was noted that an acidic pH is most effective 
for P sorption with Al and Fe complexes, while Ca and Mg are more effective at 
pH 6–7.5 for precipitation of P (Penn et al. 2007). How these sorbing materials are 
implemented was also addressed, including the potential of “flow dosing,” broadcast 
application, or the use of flow through structures, such as filter socks (Penn et al. 
2007). 

7.3.5 Challenge: VADD Maintenance 

Maintenance of VADDs is by far the most common challenge of concern to 
both researchers and landowners. Routine ditch maintenance, including dredging, 
mowing, chemical weeding, and burning is necessary for flood attenuation and to 
maintain proper flow. How often and to what degree maintenance must occur is a 
critical knowledge gap. This is not merely a simple engineering issue of hydraulics. 
If VADDs are utilized for drainage and contaminant mitigation, a balance must 
be maintained to allow sufficient water flow, while still providing vegetation and 
other organic carbon sites for binding of nutrients and pesticides. Dollinger et al. 
(2015) reviewed drainage ditch design and maintenance, noting the key parameters 
for maintaining ecosystem services in VADDs were the degree of vegetated cover, 
ditch morphology, reach connections, and slope orientation. They similarly noted that 
the geochemical, geophysical, and biological processes providing these ecosystem 
services varied widely with different ditch characteristics, but in general, there were 
low adverse effects on biodiversity conservation and water purification abilities if 
VADDs were mowed during the proper season (Dollinger et al. 2015). Iseyemi et al. 
(2019) examined carbon sequestration capabilities of mowed and unmowed VADDs 
(with and without weirs) in summer and winter experiments. Average carbon content 
in mowed and unmowed ditches was 16.54 ± 0.52 and 16.60 ± 0.44 g kg−1, respec-
tively in summer, while winter averages were 15.86 ± 0.71 g kg−1 and 14.89 ± 
0.77 g kg−1, respectively for mowed and unmowed ditches. These results indicate no 
difference in maintained and unmaintained ditches regarding average carbon content 
(Iseyemi et al.  2019).
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Another issue with VADD maintenance deals with the question of plant senes-
cence. If plants take up excess nutrients during the growing season, what happens 
when the plants die? Will those nutrients then be released back into the ditch, nulli-
fying any potential mitigation to downstream aquatic resources? Kröger et al. (2007b) 
examined this question by studying microcosms filled with harvested L. oryzoides 
plants in decomposition bags soaked in a control water of known nutrient composi-
tion. Treatments examined included enriched L. oryzoides samples (those exposed 
to  3.8 g m3 of N and P), L. oryzoides samples from a reference ditch with no enrich-
ment, and control microcosms with only water and no L. oryzoides plant samples. 
Decomposition and leaching were monitored for a 12-week period from December 
until February. Senescence of the enriched L. oryzoides samples resulted in higher 
concentrations of P present in microcosm water (2.19 ± 0.84 mg P L−1) (Kröger 
et al. (2007b). Taylor et al. (2020) further elucidated N and P dynamics in larger 
mesocosms observed during both the summer growing and winter decomposition 
seasons using L. oryzoides as the model plant. Throughout the experimental seasons, 
both measured N retention and modeled denitrification rates did not vary between 
treatments; however, retention of P increased significantly with P enrichment treat-
ments. They also reported winter export of N was less than 10% of the observed 
summer N uptake, and denitrification was likely responsible for approximately 40% 
of retained N. In mesocosms that lacked P enrichment, there was only 25% reten-
tion in the winter, while net P retention increased from 77 to 88% as enrichment 
treatments increased (Taylor et al. 2020). 

Furthermore, a recent study by Martin et al. (2021) illustrated that greater bed 
and bank vegetative coverage in VADDs provided improved water quality when 
comparing upstream and downstream sites, while showing that nutrient values were 
higher in the non-production season relative to the production season. This further 
illustrates the importance of vegetation density and the potential negative mitigative 
effect due to senescence, indicating that VADD seasonality requires consideration 
when utilizing this mitigation strategy. 

7.3.6 Future Directions 

Vegetated agricultural drainage ditches hold significant promise as effective edge-of-
field contaminant mitigation sites, even though results may vary by field, region, and 
contaminant due to a myriad of factors. Kumwimba et al. (2018) published a review of 
VADD designs, various management strategies, and other mechanisms which affect 
retention of contaminants in agricultural runoff, as well as components of domestic 
sewage. These authors highlighted the importance of vegetation, ditch substrate, and 
microbial activity as three key parameters for individual VADD success. Suggestions 
for future VADD research included further investigation on the effect of size, length, 
and slope of VADDs, vegetative cover and type, ditch substrate, microbial biofilms, 
organic carbon amendments for denitrification, impacts of low-grade weirs, and 
various maintenance practices for vegetation and substrates (Kumwimba et al. 2018).
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While several aspects of nutrient mitigation were discussed in this chapter, the 
future direction of VADD research with regard to nutrients will likely gravitate 
toward studies that integrate spatial and temporal patterns in processes. For example, 
using the principles developed for stream metabolism (Hall and Hotchkiss 2017), 
research focused on agriculture can begin to understand linkages between biological 
processes and nutrient mitigation in VADDs. Recent USDA-ARS research utilized 
sensor measurements (i.e., dissolved oxygen and temperature loggers) and hourly 
sampling in artificial streams vegetated with L. oryzoides to determine N and P 
uptake, gross primary productivity (GPP), ecosystem respiration (ER), and deni-
trification (Nifong et al. 2020a; Nifong and Taylor 2021). Vegetated ditches had 
significantly higher N uptake rates and removal (2 h: 63%, 4 h: 44%, 6 h: 32%) 
than unvegetated ditches (2 h: 32%, 4 h: 21%, and 6 h: 17%). In vegetated ditches, 
GPP and ER were significantly higher, and an increased HRT resulted in increased 
respiration rates (Nifong and Taylor 2021). Studies of this magnitude, while more 
complex than simple measurements of inflow versus outflow, provide key details in 
mechanisms and expectations for nutrient mitigation in VADDs. Similar approaches 
based on diel patterns in dissolved N2 gas are being explored to integrate denitri-
fication estimates across temporal and spatial scales within ditches (Nifong et al. 
2020b). 
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Chapter 8 
The “Green Liver” Concept: Green Liver 
Systems as Low-Impact Systems 
for Bioremediation Using Aquatic 
Macrophytes 

Maranda Esterhuizen and Stephan Pflugmacher 

Abstract Systems with aquatic macrophytes have been developed as low-impact, 
low-energy, and low-cost solutions for the remediation of water pollutants. As plants 
metabolize toxicants in much the same way that an animal liver would, the name 
“Green Liver Systems” was chosen. This technology relies on the ability of aquatic 
macrophytes to take up, biotransform, and intracellularly store xenobiotics; thereby, 
in this way, not releasing metabolites with unknown toxicity into the environment. 
Based on the wastewater pollutant composition, macrophytes can be screened in 
the laboratory to evaluate their affinity for contaminant uptake and select the most 
appropriate species for the system. The results of laboratory screening experiments 
to determine the uptake potential and remediation efficiency of several macrophytes 
species are presented here. The combination of the macrophytes used in the system 
may also affect the remediation potential due to differing uptake and biotransfor-
mation rates and possibly allelopathic effects. Therefore, various combinations of 
macrophytes can be used as a toolbox for correcting water quality issues. The most 
commonly utilized macrophytes in large-scale Green Liver Systems to date include 
species from the genera Ceratophyllum, Myriophyllum, Elodea, Egeria, Azolla, and 
Pontederia (formerly Eichhornia). The practical and large-scale application of this
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technology is illustrated with two case studies in China and Brazil. Additionally, the 
benefits and limitations of Green Liver Systems are discussed. Methods for utilizing 
spent biomass as a byproduct of Green Liver Systems need to be developed to ensure 
its sustainable maintenance as a green, low-impact phytoremediation system. 

8.1 Necessity of Sustainable Water Remediation 

Even though, the majority of the earth’s surface is covered by water, freshwater 
amounts to less than 3% thereof, with the majority sequestered as ice and groundwater 
(Hinrichsen and Tacio 2002). The quality of freshwater ecosystems, such as lakes, 
streams, rivers, swamps, reservoirs, and aquifers, is deteriorating due to eutrophica-
tion and increased pollution (e.g., microorganisms and their toxins, pesticides, phar-
maceuticals, and heavy metals), disrupting the health of these water bodies and dras-
tically influencing biodiversity (Albert et al. 2021). Other impacts of polluted aquatic 
ecosystems include economic, social, and environmental consequences (Carpenter 
et al. 1998; Kumaraswamy et al. 2020). Although these outcomes directly impact 
humans, the sources or origins of pollution can mostly be traced to anthropogenic 
activities (Akhtar et al. 2021). Nevertheless, access to clean water is necessary to 
sustain all life. Both the growing global population and demand for water are growing. 
Thus, access to freshwater as a critical resource is emerging as a global crisis, and 
reasonable use patterns and the development of sustainable water purification tech-
nologies are essential goals. Keen interest has been expressed in shifting toward green 
technologies, including bio-, myco-, phyco-, and phytoremediation for the purifica-
tion of polluted waters due to their overwhelming benefits relative to other treatment 
options (Vidali 2001). 

Phytoremediation, which utilizes the ecosystem services of plants, has proven 
promising as a broad spectrum, low-energy, eco-friendly technology appropriate to 
manage pollution. These treatment options can be classified according to their mech-
anism of action. For example, phytoextraction and phytodegradation involve bioac-
cumulation, biotransformation, storage, and/or metabolism. Rhizofiltration is when 
microbial biodegradation is facilitated by the rhizosphere, and phytostabilization is 
when plant-produced chemicals immobilize contaminants at the root/soil interface. 
Lastly, phytovolatilization is when xenobiotics are taken up and released via tran-
spiration (Pilon-Smits 2005). The selected plants are usually species that are native 
and noninvasive to where the phytoremediation system is used and are non-noxious, 
with minimal environmental adverse effects. Considering the materials needed for 
construction and operation, and the low maintenance requirements and negligible 
environmental impact of these systems, phytoremediation has been considered an 
economical, sustainable, and ecologically sound solution to various pollution issues. 
Concerning the phytoremediation of polluted waters, the efficacy of various plants



8 The “Green Liver” Concept: Green Liver Systems as Low-Impact … 195

has been studied, including other wetland plants (Wang et al. 2002), trees (Luqman 
et al. 2013), and aquatic macrophytes (Pflugmacher et al. 2015). However, for water 
remediation, the use of aquatic macrophytes in their natural habitat is a more natural 
approach. 

Aquatic macrophytes play an essential role in maintaining the health of aquatic 
ecosystems, as they increase habitat complexity by giving physical structure, avail-
ability of breeding habitat for other species, shelter, surface area for colonization by 
microorganisms (periphyton), and contribute to an overall increase in species rich-
ness and biodiversity (Esteves 1998; Thomaz and Cunha 2010). They act as a food 
source for aquatic herbivores and detritivores in the aquatic system (Bakker et al. 
2016) and contribute to sediments as an organic matter source (Kennedy et al. 2004). 
Aquatic macrophytes significantly influence the nutrient cycle by retaining solids 
and nutrients and reducing nutrient release from sediments (Pott and Pott 2003). 

Macrophytes are classified based on their growth in water. Emergent plants are 
rooted in sediment underwater with protruding stems and leaves, such as Typha lati-
folia (cattail). Floating macrophytes float on the water surface with their unanchored 
roots underwater, such as Lemna spp. (duckweed). In contrast, submerged macro-
phytes grow completely underwater, such as Ceratophyllum demersum (coontail) or 
Myriophyllum spp. (milfoil). All types of macrophytes can be used in the phytoreme-
diation of wastewater (Mustafa and Hayder 2021); however, turbidity can inhibit the 
growth of submerged plants as photosynthesis may be hindered (Goldsborough and 
Kemp 1988). Within the context of phytoremediation, macrophytes play a pivotal 
role given their fast growth, high tolerance to and capacity for uptake of contami-
nants, as well as easy management and control. Additionally, the spent biomass could 
be used for biofuel production (Arefin et al. 2021), as well as other circular economy 
initiatives (Kurniawan et al. 2021). 

8.2 Biotransformation of Pollutants 

One of the properties allowing macrophytes to cope with and remediate pollutants in 
their environment is their ability to take up, chemically transform, and bioaccumu-
late harmful substances through biotransformation. This three-phase process utilizes 
the action of several enzymes to convert hydrophobic substances into hydrophilic 
metabolites, which can then be stored in cellular structures by plants (Fig. 8.1).

Biotransformation is a relatively universal biochemical function in living organ-
isms, with similar enzymes involved in Phase I and Phase II biotransformations 
in both animals and plants (Sandermann 1992). Phase I, the transformation phase, 
involves the modification of the primary structure of the xenobiotics taken up by 
adding or unmasking functional groups, making the molecule more polar. This 
occurs through hydrolysis or redox reactions mainly catalyzed by cytochrome 
P450 monooxygenases. Phase II, or the conjugation phase, is the next step in 
modifying xenobiotics, where endogenous hydrophilic molecules are added to 
the intermediate formed in Phase I or directly to the xenobiotic. These primary
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Fig. 8.1 Schematic of the three phases of biotransformation, starting with Phase I, during which 
xenobiotics are transformed by adding or unmasking functional groups. In Phase II, biomolecules 
are conjugated with the xenobiotic or the functional groups added in Phase I. Both phases aim to 
make the molecule more polar and Phase III involves the active transport of metabolites that are 
stored by plants

reactions include sulfation, acetylation, methylation, glutathione conjugation, and 
glucuronidation, which are catalyzed by enzymes such as glutathione S-transferases 
and UDP-glucosyltransferases (Sandermann 1992, 1994). 

The core difference between plant and animal xenobiotic metabolism occurs in 
Phase III, or the sequestration phase, where animals excrete the formed metabo-
lites via urine and feces. In contrast, plants will sequester the formed metabolites by 
storage in cell vacuoles or the apoplast or by covalent binding to cell wall fractions 
such as celluloses and hemicelluloses (Fig. 8.2). The formed metabolites reach the 
vacuole or the apoplast by active transport, moving them through plasma membranes 
or the tonoplast (Colemann et al. 1997). In the case of aquatic macrophytes, xeno-
biotics are eliminated from the water column without releasing potentially harmful 
metabolites, making them ideal candidates for the phytoremediation of contaminated 
waters.

8.3 Phytoremediation Using Aquatic Macrophytes 

The use of macrophytes in phytoremediation has previously been reviewed, and 
several species were reported to remove organic and inorganic pollutants with high 
efficiency (Ansari et al. 2020; Mustafa and Hayder 2021). Due to their high prevalence 
and impacts as aquatic pollutants, a range of studies has focused on the phytoreme-
diation of cyanobacterial toxins (Esterhuizen et al. 2011; Pflugmacher et al. 2015; 
Flores-Rojas et al. 2019; Flores-Rojas and Esterhuizen 2020), pharmaceuticals (de 
Oliveira et al. 2019), heavy metals (Mishra and Tripathi 2008), and mixtures of 
contaminants (Loise de Morais Calado et al. 2019). Among these studies, species 
from the genera Ceratophyllum, Pontederia (formerly Eichhornia), Lemna, Egeria,
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Fig. 8.2 Dynamics of pollutants in plants. Xenobiotics are taken up and biotransformed via Phase 
I and Phase II reactions before being distributed and stored in the cell wall, apoplast, and vacuoles

and Myriophyllum have been reported to efficiently bioaccumulate these contami-
nants with no or only minor adverse effects on the plants (Esterhuizen-Londt et al. 
2011; Flores-Rojas et al. 2015; Vilvert et al. 2017). 

Considering the phytoremediation of pharmaceuticals, there have been vari-
able results reported in the literature. In shallow model constructed wetlands, 
macrophytes were found not to affect the removals of nutrients or pharmaceu-
tical concentrations from artificial municipal wastewater containing carbamazepine, 
clofibric acid, fluoxetine, naproxen, sulfamethoxazole, and sulfapyridine. The macro-
phytes used in this study included Typha spp. (cattails), Myriophyllum sibiricum 
(northern watermilfoil), and Utricularia vulgaris (bladderwort), as reported by 
Cardinal et al. (2014). However, De Oliveira et al. (2019) reported efficient reme-
diation of ibuprofen in vertical flow and free-floating macrophyte constructed 
wetlands containing Heliconia rostrata and Pontederia crassipes (formerly Eich-
hornia crassipes). However, a screening study for diclofenac (DCF) uptake by 42 
different macrophytes revealed that not all aquatic plants have the same affinity for 
internalizing this anti-inflammatory pharmaceutical, as shown in Fig. 8.3.

In this study, the highest DCF uptake rates were recorded among the Myrio-
phyllum spp.; with 2.1 ng/g/h for Myriophyllum roraima, 1.9 ng/g/h for Myriophyllum 
quitense, 1.7 ng/g/h for Myriophyllum aquaticum and Myriophyllum mattogrossense, 
and 1.1 ng/g/h for Myriophyllum tuberculatum. The  Ceratophyllum spp. also inter-
nalized DCF at a high rate, with an average uptake rate of 1.3 ± 0.1 ng/g/h. Other 
species with high uptake rates included Aegagropila linnaei (1.4 ng/g/h) and Hydrilla 
verticillata (1.0 ng/g/h). However, the remaining tested macrophytes took up DCF 
at a rate below 1 ng/g/h. Therefore, preliminary assessment tests like these beaker 
uptake experiments are essential to select the most suitable plants for inclusion in a 
phytoremediation system.
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Fig. 8.3 Varying concentrations (ng/g) of diclofenac (DCF) accumulated among 42 species of 
aquatic macrophytes over four days. Assessing the diclofenac uptake with time was performed 
as static exposures in beakers where 5 g of plant material from each macrophyte was exposed to 
250 μg/L diclofenac in DMSO. The exposures were maintained under a day-night cycle of 14 h 
light (100 mE/m2.s) and 10 h moonlight blue light. Plant biomass samples were collected after 24, 
48, 72, and 96 h and extracted with methanol, as described by Loise de Morais Calado et al. (2019) 
and analyzed via liquid chromatography-tandem mass spectroscopy (LC-MSMS), as reported by 
Esterhuizen-Londt et al. (2017b)
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Fig. 8.3 (continued)

8.4 Green Liver System Development and Optimization 

Constructed wetlands, which are phytoremediation systems consisting of plants, 
substrates, and associated microorganisms, rely on physical, chemical, and biological 
mechanisms to eliminate pollutants (Ingrao et al. 2020). However, the breakdown 
products produced by these microorganisms are largely unknown and may be equally 
toxic, as demonstrated for the metabolites of the cyanobacterial toxin microcystin-
LR (Schmidt et al. 2014; Pflugmacher et al. 2015). Nevertheless, to make use of 
the ability of aquatic plants to effectively remove environmental pollutants from 
water bodies, low-impact systems using only floating and submerged aquatic plants 
with negligible roots to minimize associated microbial growth were developed. As 
plants metabolize toxicants as a liver would, the name “Green Liver Systems” was  
chosen. Green Liver Systems rely on the principle that plants take up contaminants, 
subsequently internally metabolize and store them in cellular components. Thus, the 
macrophytes do not release the products of biotransformation, and the contaminants 
are removed from the water phase. These simulated phytoremediation systems do 
not contain any natural substrates in order to minimize root anchoring and associated 
microbial growth (Pflugmacher et al. 2015). 

As discussed above, not all plants have the same abilities to remove and metab-
olize contaminants. Therefore, the efficiency of using single aquatic plants versus
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combinations of three plants was tested in a laboratory scale Green Liver System. 
The test system used, as illustrated in Fig. 8.4, was a glass tank divided into three 
linked compartments with a total volume of 60 L. Since the laboratory scale Green 
Liver System was compartmentalized and all three compartments in the experimental 
tanks had the same size and volume, the fresh weight of 150 g per macrophyte type 
was used per compartment. For the sediment, pure quartz sand was added to give the 
plants stability. Flow, using a commercially available aquarium pump, was adjusted 
to 4 mL/min, resulting in a complete circulation of the entire water volume in the 
system over 24 h. Light was provided using LED lights with a 14:10 light/dark cycle 
and an irradiance of 100 mE/m2.s. The synthetic water used was prepared according 
to EN ISO 7346-3 (1996), with a pH of 7.1, conductivity of 300 μS/cm, and a 
dissolved oxygen content of 7 mg/L. 

Three different aquatic macrophytes, C. demersum, Myriophyllum spicatum, and 
Elodea canadensis, were chosen for the Green Liver System optimization experi-
ments based on established uptake efficiencies. C. demersum, commonly referred to 
as coontail or hornwort, is a submerged, free-floating aquatic plant. The distribution 
of this macrophyte is global, with the exception of Antarctica. C. demersum has 
no roots; therefore, uptake occurs entirely via the surface of the vegetative plants. 
Therefore, root uptake is not a confounding factor (Hak et al. 2020). M. spicatum, 
commonly called watermilfoil, is widely distributed geographically and a common 
species in freshwater lakes globally. This perennial submerged plant, which grows in

Fig. 8.4 Laboratory scale Green Liver test system 
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slow-moving waters, has two orders of lateral roots (Xie et al. 2007). The perennial E. 
canadensis, also called waterweed or pondweed, grows submerged in aquatic ecosys-
tems globally. While E. canadensis produces roots, they can grow free-floating. When 
the roots are anchored in soil, they produce root hairs, while their water roots do not 
(Cormack 1937). 

As test contaminants, the cyanobacterial toxin, microcystin-LR (MC-LR), the 
pharmaceutical DCF, and the insecticide cypermethrin (CYP) were used. MC-LR 
is a hepatotoxin produced by several cyanobacterial species that bloom in fresh-
water habitats, thus posing a risk to water quality in terms of potability, recreational 
use, agriculture, and aquaculture (Esterhuizen-Londt and Pflugmacher 2020). As a 
commonly detected pharmaceutical pollutant of freshwater ecosystems with known 
adverse effects on aquatic organisms (Lonappan et al. 2016), the anti-inflammatory 
drug DCF was included on the first Watch Lists established by the Commission Imple-
menting Decision (EU) 2015/495, but has subsequently been removed (European 
Commission et al. 2020). CYP is a class II pyrethroid pesticide used domestically 
and agriculturally. The insecticide, which can have neurotoxic effects on terrestrial 
non-target organisms, has also been reported as toxic to some aquatic organisms 
(Saha and Kaviraj 2008). 

The uptake of the three test contaminants (MC-LR, DCF, and CYP) in single 
contaminant experiments was tested in the laboratory scale Green Liver system 
containing only one species of each macrophyte at a time (Fig. 8.5). The exposure 
concentration for each contaminant was 10 μg/L in the single contaminant experi-
ments. Water samples of 50 mL were taken at the outlet of the recirculating system 
after the initial application of the compound, as well as after one, three, and seven 
days. All experiments were repeated fivefold. The concentrations of the contami-
nants were analyzed using LC-MS/MS following the published methods for MC-LR 
(Esterhuizen-Londt et al. 2017a), DCF (Esterhuizen-Londt et al. 2017b), and CYP 
(Singh et al. 2016).

Several macrophytes species have been tested previously for their remediation 
efficiency of cyanobacterial toxins for inclusion in the Green Liver System (Pflug-
macher et al. 2015, 2016; Contardo-Jara et al. 2015). In the experiments with MC-LR 
in the present study, C. demersum (R2 = 0.956), E. canadensis (R2 = 0.992), and M. 
spicatum (R2 = 0.980) linearly decreased the concentration of the cyanotoxin over 
seven days (Fig. 8.5a). C. demersum had the highest removal rate of 56.5 μg/day 
for the 60 L system, amounting to a 69.0% removal of MC-LR (Table 8.1) after  
seven days (p = 0.033). A multifactorial repeated-measures analysis of variance 
(ANOVA) with multiple comparisons revealed that E. canadensis statistically had a 
similar remediation efficiency as C. demersum (p = 1.000), amounting to a removal 
percentage of 57.6% (Table 8.1). Though a previous study showed equal uptake 
rates for MC-LR among the two species (Cao et al. 2019), in the present study, M. 
spicatum had a significantly lower removal efficiency than C. demersum (p = 0.033), 
equaling 28.9% (Table 8.1). The capacity of several macrophytes to bioaccumulate 
MCs from their environment has previously been demonstrated (Pflugmacher 2004; 
Saqrane et al. 2007). Pflugmacher et al. (1998) reported that C. demersum took up
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Fig. 8.5 Single species 
exposure to (a) MC-LR,  
(b) diclofenac, and 
(c) cypermethrin, each at a 
concentration of 10 μg/L in 
the laboratory scale Green 
Liver System for seven days. 
The concentrations of the 
three contaminants were 
monitored in the water on 
days one, three, and seven 
using LC-MS/MS. Data 
represent the mean 
contaminant concentration 
and standard deviation (n = 
5) sampled at the system 
outlet

Table 8.1 Remediation 
percentage using a Green 
Liver System with a single 
species plant set-up after 
seven days of exposure in 
recirculated water 

Plant species Remediation % 

MC-LR Diclofenac Cypermethrin 

C. demersum 69.0 21.5 51.8 

E. canadensis 57.6 25.6 25.3 

M. spicatum 28.9 21.1 20.2

1.98 μg/g wet weight of MC-LR in seven days, indicating that 95% of the adminis-
trated radiolabeled MC-LR was internalized. From the available data, it appears that 
several factors, such as the exposure concentration, plant species, and tolerance to 
the contaminant, can influence the amount of MC-LR taken up by macrophytes. 
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Figure 8.5b shows that equal remediation efficiencies were achieved for DCF 
among the three macrophyte species after seven days, averaging 17.99± 2.16 μg/day 
or 22.7 ± 2.5% (p = 0.396). Previous studies proved the low biodegradation but 
high rates of photodegradation of DCF in aquatic systems (Matamoros et al. 2009; 
Matamoros and Salvadó 2012). Thus, light may be a key factor resulting in similar 
remediation efficiencies in these uptake experiments. 

Menone et al. (2005) reported that CYP does not cause major adverse effects 
in C. demersum. Nonetheless, in the present study, the remediation efficiency of 
C. demersum was only 51.8%. Statistically, the differences between remediation 
efficiencies among the three macrophytes exposed to CYP were insignificant (p = 
0.134; Fig. 8.5c). An average removal rate of 25.82 ± 13.94 μg/day was achieved for 
CYP by the three macrophyte species, amounting to a removal percentage of 32.4 ± 
17.0% after seven days. Although macrophytes have been shown to reduce the levels 
of pesticides (Moore et al. 2001; Cooper et al. 2004), CYP removal has only been 
demonstrated with Lemna sp. in laboratory microcosmos (Mugni et al. 2011). None 
of the plants alone could completely remove the tested contaminants (Table 8.1). 

The Green Liver System’s remediation efficiency was also tested with all three 
plants, one per compartment, in various combinations, to test whether possible inter-
active effects could be observed in the downstream plants. This phenomenon, called 
allelopathy, includes all chemically mediated interactions between plants or microor-
ganisms. The chemical substances or allelochemicals, which are released into a 
surrounding environment, can elicit either positive or harmful responses in target 
organisms (Rice 1984). Some macrophytes produce allelochemicals that induce 
photosynthesis, which decreases carbon dioxide levels and cause the pH to increase, 
which would influence the growth of other biota, including other macrophytes 
(Lundholm et al. 2005). 

After three days, a significant split could be observed among the combinations 
for their ability to remove MC-LR (p < 0.05; Fig. 8.6a). However, after seven days, 
all tested combinations completely remediated the 10 μg/L of MC-LR administered 
to the Green Liver System (Fig. 8.6a). The average MC-LR removal rate was 76.69 
± 1.13 μg/day. For DCF, the combinations of E. canadensis + C. demersum + 
M. spicatum, E. canadensis + M. spicatum + C. demersum, and M. spicatum + 
E. canadensis + C. demersum were not statistically different (p < 0.05; Fig. 8.6b) 
and yielded the lowest average remediation percentage of 57.4 ± 6.2% (Table 8.2). 
The macrophyte combination consisting of C. demersum + E. canadensis + M. 
spicatum removed 75.9% (Table 8.2) of DCF from the system after seven days at a 
rate of 57.9 μg DCF/day. The other combination with C. demersum as the species in 
the first compartment (C. demersum + M. spicatum + E. canadensis) did not differ 
statistically in remediation percentage (p = 0.621). Differences in CYP remediation 
among the combinations were not statistically significant (p = 1; Fig. 8.6c). After 
seven days, an average of 43.4 ± 9.7% was removed at an average rate of 31.1 ± 
8.5 μg CYP/day (Table 8.2).

In a study by Loise de Morais Calado et al. (2019), a combination of Egeria densa, 
C. demersum, and M. aquaticum was used in a laboratory scale Green Liver System 
to evaluate removals of a mixture of paracetamol (0.7 μg/L), DCF (12 μg/L), and
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Fig. 8.6 Evaluation of the remediation efficiencies of the combinations of the three species (Cerato-
phyllum demersum, Elodea canadensis, and  Myriophyllum spicatum) in tests with exposure to 
(a) MC-LR, (b) diclofenac, and (c) cypermethrin each at a concentration of 10 μg/L using the 
Green Liver System set-up with a 60 L glass tank for seven days. Data represent the mean and 
standard deviation (n = 5)

MC-LR (2 μg/L). After seven days, the DCF concentration in the system remained 
unaffected. However, after 14 days, 93% was removed. For MC-LR, 69% was 
degraded after 24 h and 100% after three days (Loise de Morais Calado et al. 2019). 
Comparing the data from the two studies highlights the importance of the macrophyte 
combination to achieve optimal remediation. 

From the screening data for DCF uptake (Fig. 8.3), it is understood that various 
macrophytes have various uptake affinities for components. Therefore, the Green 
Liver system can be customized, like a tool kit, and the combinations of macrophytes 
can be selected and adjusted based on the contaminants that need to be remediated.



8 The “Green Liver” Concept: Green Liver Systems as Low-Impact … 205

Table 8.2 Remediation percentage using a Green Liver System with a three species plant set-up 
after seven days of circulation 

Macrophyte combination Remediation % 

MC-LR Diclofenac Cypermethrin 

C. demersum + E. canadensis + M. spicatum 100 75.9 38.3 

C. demersum + M. spicatum + E. canadensis 100 68.3 43.8 

E. canadensis + C. demersum + M. spicatum 100 63.3 34.5 

M. spicatum + C. demersum + E. canadensis 100 65.3 34.6 

E. canadensis + M. spicatum + C. demersum 100 50.9 50.5 

M. spicatum + E. canadensis + C. demersum 100 58.0 58.7

Based on the success of the laboratory scale Green Liver systems, large-scale systems 
have been globally constructed. 

8.5 Large-Scale Green Liver Systems 

Due to eutrophication, Lake Chao in Hefei, Anhui in the Peoples Republic of China, 
experiences toxic cyanobacterial bloom year-round. However, water from this lake 
is intended as a source for drinking water production. Therefore, the first pilot plant 
Green Liver System® (dimensions: 25 m × 10 m × 1.5 m, volume: 375 m3) was built 
at the water treatment plant located at Lake Chao to remediate eutrophication as well 
as the cyanotoxins produced by the harmful algal blooms. The first two compartments 
of the system were planted with Lemna sp., followed by Hydrilla sp. in compart-
ments two and three, Myriophyllum sp. in compartment four, and Phragmites sp. in 
compartments five and six. Prior to the construction of the system, the hepatotoxin 
congeners MC-LR (59.0 μg/L), MC-YR (1.7 μg/L), and MC-RR (42.6 μg/L) were 
detected. After installation and sustained operation and maintenance, the Green Liver 
System® removed 80 ± 5% of the toxins (Nimptsch et al. 2008). 

Similarly, wastewater from a tilapia fish farm near the city of Itacuruba in the 
state of Pernambuco, Brazil, released hormones and nutrients into the Luiz Gonzaga 
Dam, causing eutrophication and the development of cyanobacterial blooms. As the 
wastewater from aquacultural ponds needed to be cleaned before use for agricul-
tural irrigation or released into this nearby reservoir, a second pilot plant of a Green 
Liver System was constructed with a size of 100 m × 25 m × 2 m and a final 
volume of 5000 m3. The primary contaminants in the wastewater from the tilapia 
farm were oxytetracycline added in medicated feeds as a prophylactic antibiotic, 
methyltestosterone added for sex reversal of female fish since males grow faster, 
and cyanobacterial toxins due to the persistent blooms. Prior to construction, two 
cyanobacterial toxins were monitored and detected at concentrations of 22.4 μg/L 
for MC-LR and 31.2 μg/L for MC-RR. By stocking the Green Liver System with P.
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crassipes (formerly E. crassipes) in two compartments, E. densa in three compart-
ments, and M. aquaticum in one compartment, there were removals of 32% of MC-LR 
and 100% of MC-RR (Esterhuizen and Pflugmacher 2020). 

8.6 Green Liver System Advantages and Limitations 

Macrophytes used in the Green Liver Systems are customarily taken from water 
bodies in the vicinity, which also means that they are preconditioned for the climate 
conditions. One to two weeks are usually given for plants to establish themselves 
in the system before starting the water flow. As plants are native to the area and 
conditions, no specific care needs to be taken regarding testing the soil. Whether the 
selected macrophytes will flourish with the water quality of inflow must be tested at 
a laboratory scale before implementation. 

To avoid plants from migrating through the system with water currents created 
by the flow, (a) surface plants such as Pontederia (formerly Eichhornia) were kept in 
place with fishnets, and (b) for submerged plants, bundles were formed and attached 
to stones using soft ropes. Each bundle was given approximately 50 to 60 cm of 
space to allow growth. 

The primary benefit of the Green Liver System is the removal of pollutants from the 
water column without the addition of hazardous chemicals. By using combinations 
of macrophytes, including emergent and floating species, the entire water column 
can be covered. The contaminants are stored within the plants with no release of 
unknown metabolites. With the correct maintenance scheme, the whole plant can be 
removed from the system before expiry, thus safely removing harmful substances. 
The harvested biomass can be used to produce bioenergy (Wilkie and Evans 2010). 
However, the potential environmental impacts need to be comprehensively assessed. 
As native plants can be used, the system efficiently functions with little upkeep 
other than replacing macrophytes before expiration, therefore guaranteeing low cost 
and sustainable functioning. Additionally, macrophytes play a significant role in 
aquatic carbon cycling and carbon storage, supporting the removal of carbon dioxide 
as a greenhouse gas (Marba et al. 2015). Several macrophyte species are known 
to produce allelochemicals suppressing microalgal growth (Kurashov et al. 2021) 
and have antimicrobial properties (Juan et al. 2014). An added socio-environmental 
benefit of Green Liver Systems is its aesthetic appearance. 

Reduced macrophyte health and fitness are significant risks to a Green Liver 
system’s functioning and continual remediation efficiency. Dead and decaying plants 
will not actively take up and biotransform metabolites, meaning they would be useless 
biomass. Furthermore, continuous plant litter decomposition will increase dissolved 
and particulate organic carbon (Noller et al. 2003) and potentially release harmful 
chemicals. Therefore, how pollutants affect macrophytes on a morphological, phys-
iological, and toxicological level needs to be assessed in the laboratory, as the decay 
of the plants could lead to the release of the contaminants. These data are also neces-
sary to predict the rate at which the vegetation needs to be renewed. The second
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threat is the release of the stored metabolites back into the environment by decaying 
plants. The fitness of the macrophytes is, therefore, directly correlated to the whole 
system’s efficiency. Therefore, careful maintenance to ensure macrophyte vitality 
and the removal of spent biomass is critical for Green Liver Systems. Additionally, 
allelopathic interactions may lead to the suppression and death of particular species 
when grown in combination with others and, as previously highlighted, is a critical 
interaction to establish in the laboratory before applying in practice. 

Environmental factors threatening the functioning of a large-scale Green Liver 
System include flooding and droughts, as well as animal and plant invasions. Water 
level fluctuation can significantly affect the survival and growth of aquatic vegetation 
(Sousa et al. 2010). A rapid increase in the system’s water level would affect the avail-
ability of nutrients due to dilution and reduced available sunlight, thereby affecting 
biomass (Best et al. 2001). The quality of the inflow may directly impact the macro-
phyte. Highly turbid waters and rising water levels would decrease the available 
sunlight reaching submerged macrophytes, thus, affecting photosynthesis. Further-
more, pH changes may also affect some plants (Song et al. 2018). During droughts, 
contaminants and nutrients can be concentrated, dissolved oxygen may decrease, 
and water temperature may increase, threatening the plants’ survival (Bond et al. 
2008). As the macrophytes are selected based on the contaminants to be remediated, 
a rapid, sharp change in the types and concentrations of the contaminants may render 
the system less effective. Therefore, the waters should be tested occasionally for vari-
ations in the pollution types, with at least monthly testing recommended. Low-cost 
probes may be used for continual in-line monitoring, or commercial ELISA tests 
may be used (e.g., test for cyanobacterial toxins). Changing the macrophytes when 
drastic shifts in the inflow contaminant content are detected is suggested to ensure 
the system’s efficiency in maintaining a high remediation performance. 

Wild or domestic animals and birds may invade the system and forage on the 
contaminated plants, affecting the grazer’s health and the system’s functionality. For 
the Green Live System constructed in Itacuruba in Brazil (Esterhuizen and Pflug-
macher 2020), this issue was overcome by constructing wooden fences around the 
system to exclude goats and chicken wire to restrict birds. Similarly, invading plants 
carried into the system by birds or wind could outcompete the planted macrophytes 
(Fleming and Dibble 2015). Suitable covering, such as surrounding the system with 
shade cloth or hard plastic, could lessen this threat. However, care should be taken in 
selecting the cover so as not to reduce illumination and hinder photosynthesis. Never-
theless, through good management and maintenance, invasive plants can be removed 
before they become a nuisance. The applicability of Green Liver Systems as a reme-
diation technology may also be seasonally limited at certain altitudes and in certain 
climates, as winter temperatures may hamper macrophyte growth and survival (Yan 
and Xu 2014). For example, C. demersum’s optimal growth temperature is between 
15 to 30 °C; however, it can survive at −2 °C.  Myriophyllum spp., on the other 
hand, prefer warmer conditions with an optimal growth temperature between 26 and 
32 °C and is only able to tolerate minimum water temperatures of 18 °C. Below this 
temperature, they are likely to produce turions (Aiken and Walz 1979). Therefore, it
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is suggested to use native macrophytes that have likely evolved to acclimate to the 
prevailing environmental conditions (Hyldgaard and Brix 2012). 

Green Liver Systems may adversely affect the environment as plants that 
are grazed upon, and decaying plants could emit methane as a greenhouse gas 
(Petruzzella et al. 2015). The system may function as a breeding ground for pests, 
such as mosquitoes (Greenway et al. 2003), especially since the system is artificial 
with few macroinvertebrates present to control pest numbers. However, pest breeding 
could be reduced by maintaining a sufficient flow rate. Typically, a flow rate of 8 
L/h is maintained in large-scale Green Liver Systems (Esterhuizen and Pflugmacher 
2020). With its curved separation walls, the system is designed not to have any “dead” 
zones with stagnant water, which will act as a breeding zone for mosquitoes. 

Another hazardous byproduct of Green Liver Systems is the spent contaminated 
macrophytes that need to be harvested and replaced periodically for maintenance 
purposes. These plants cannot be utilized as animal feed or agricultural fertilizer 
because of pollutants, and their metabolites may be biotransferred (Pflugmacher 
et al. 2015). Micro-mining for heavy metals and combustion to produce bioenergy 
seem adequate approaches to deal with the used macrophytes, but the environmental 
implications of these processes need to be studied. 

Proper system maintenance can reduce most of these environmental risks and 
disadvantages identified above. As Green Liver Systems® are entirely artificial 
systems containing a limited amount of different aquatic macrophytes, the manage-
ment of these systems is straightforward and low cost. The flow in the system can 
be maintained with solar-powered pumps or gravitational flow and is thus a low-
energy option. The primary maintenance requirements are to ensure constant flow 
through the system and to sporadically replace the macrophytes, which could be 
cultured onsite. Contaminants should constantly be monitored in the inflow to adapt 
the system to changing pollutant levels. 

8.7 Conclusion 

Green Liver Systems utilize the ecological services of macrophytes to remediate 
contaminants by uptake, biotransformation, and intracellular storage, with no extra-
cellular release of metabolites with unknown environmental effects. The systems are 
fully customizable for mixtures of pollutants in wastewaters by selecting suitable 
macrophytes with high uptake affinities for the substances in question. The tech-
nology is green, low maintenance, low cost, and low energy, making it especially 
appealing to developing countries. However, the application of the system is limited 
by seasonality, climate, and altitude due to the growth requirements of the macro-
phytes. In the future, technologies should be developed to process used macrophytes 
containing toxins and pollutants to minimize their environmental impact.
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