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Abstract. High-resolution magnetic resonance (MR) imaging is bene-
ficial for accurate disease diagnosis and subsequent analysis. Currently,
the single image super-resolution (SR) technique is an effective and less
costly alternative technique to improve the spatial resolution of MR
images. Structural information in MR images is crucial during clinical
diagnosis, but it is often ignored by existing deep learning MR image
SR technique. Consequently, we propose edge assisted feature extraction
block (EAFEB), which can efficiently extract the content and edge fea-
tures from low-resolution (LR) images, allowing the network to focus
on both content and geometric structure. To fully utilize the features
extracted by EAFEB, an asymmetric convolutional group (ACG) is pro-
posed, which can balance structural feature preservation and content fea-
ture extraction. Moreover, we design a novel contextual spatial attention
(CSA) method to facilitate the network focus on critical information.
Experiment results in various MR image sequences, including T1, T2,
and PD, show that our Edge Assisted Asymmetric Convolution Network
(EAACN) has superior results relative to recent leading SR models.

Keywords: Magnetic Resonance Imaging · Super-Resolution · Edge
Assisted · Asymmetric Convolution · Contextual Spatial Attention

1 Introduction

Image super-resolution (SR) [1] is a process of extrapolating a high-resolution
(HR) image from one or more low-resolution (LR) images. It has ability to
recover image details and is now widely used in medical images [2], remote
sensing [3], surveillance, and security [4]. HR Magnetic resonance (MR) images
with clear details are difficult to obtain directly from medical instruments due
to limitations in instrumentation, scanning time, body motion, and interference
from noise during imaging. Specifically, HR MR images are essential for disease
diagnosis and facilitate intelligent analysis, such as detection, registration, and
segmentation [5]. Therefore, SR techniques are critical to MR images.

Deep learning-based SR methods have gradually been applied to MR image
SR in recent years, which are more flexible and have better evaluation metrics
as well as visual performance than traditional MR SR methods. The existing
deep learning MR image SR has been studied primarily in the depth and width
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of the network. In particular, the number of pixels, image types, and shapes in
MR images is much lower than in natural images, and deep networks are likely
to be ineffective, over-fitted, and unable to obtain a clear edge structure.

According to the mechanism of the human visual system (HVS), the human
eye is most sensitive to edge information compared to other components in med-
ical images. Besides, MR images have large background regions with little infor-
mation and target regions containing complex tissue textures. The edge-based
approach can divide background and target regions, reconstruct the structural
features of target regions well. As a result, We specifically design an edge fea-
ture extraction branch in edge assisted feature extraction block (EAFEB) to
obtain edge features. To fully utilize the features extracted by EAFEB, we pro-
pose an asymmetric convolutional group (ACG), which can balance structural
feature preservation and content feature extraction. Meanwhile, to alleviate the
burden of the model and allow it to focus on processing critical information, we
incorporate contextual spatial attention (CSA) in nonlinear mapping processing.

In summary, our contributions are four-fold:
(1) Edge assisted feature extraction block (EAFEB) is proposed to efficiently

extract the content and edge features from low-resolution images, allowing the
network to focus on both content and geometric structure with minimal compu-
tational effort. (2) A novel Asymmetric Convolutional Group (ACG) is designed
to preserve structural features while further extracting content features. (3) We
propose Contextual Spatial Attention (CSA), which encompasses a broader per-
ceptual domain and allows the network to focus on critical information. (4) Qual-
itative and quantitative experimental results in MR image datasets demonstrate
the superiority of our model over other advanced models.

2 Related Work

2.1 Edge Assisted Image Super-Resolution

Edge information has been used in many previous SR tasks. Yang et al. [6]
introduce a deep edge-guided recurrent residual network to progressively recover
high-frequency details. A soft edge-assisted network proposed by Fang et al. [7],
integrate image edge prior knowledge into the model. Ma et al. [8] designed
a structure-preserving branch to alleviate structural distortions in the trunk
branch. Pablo et al. [9] propose a set of one-layer edge SR architectures that have
superior SR quality at the same speed as bicubic interpolation. Edge information
is crucial information in images, as well as for MR images. Therefore, we design
an edge feature extraction branch and also implement preservation of feature
structure in Nonlinear mapping, details will be described in Sect. 3.

2.2 MR Image Super-Resolution

MR is a safe, radiation-free medical imaging technique that highlights multi-
ple details of tissue through multiple sequences of imaging. Nevertheless, MR
images suffer from low spatial resolution and artifacts. Recently, advanced meth-
ods based on deep learning [2,10] are used for MR image SR. For example,
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Fig. 1. Framework of the Edge Assisted Asymmetric Convolution Network (EAACN).

Feng et al. [11] proposed T 2Net, which uses joint learning of MR image recon-
struction and SR tasks with a transformer to learn correlations between tasks,
thus improving the performance of SR. Du et al. [12] proposed an anisotropic
MR image reconstruction method, which based on residual learning with long
and short skip connections, can effectively restore high-frequency details of MR
images. For efficient processing of hierarchical features discriminatively on differ-
ent channels, Zhao et al. [13] further propose a channel splitting network (CSN).

3 Methods

3.1 Network Architecture

The goal of MR SR is to make the output SR image as close as possible to the real
HR image. As shown in Fig. 1, our EAACN network mainly contains three parts:
Shallow Feature Extraction, Nonlinear Mapping, and Image Reconstruction.

Shallow Feature Extraction. In the shallow feature extraction section, shal-
low features Fshallow will be extracted by EAFEB from the input LR image:

Fshallow = EAFEB(ILR) (1)

where ILR is original LR input. EAFEB’s multi-channel output includes both
content and edge information features, which is beneficial to guarantee the reten-
tion of content features and structural features of ILR in the following network.

Nonlinear Mapping. The nonlinear mapping section contains several ACGs,
each of which is directly connected to ensure a smooth flow of features. Fshallow

is ACG’s initial input. To enable the network to fully exploit global features of
both shallow and deep features, we use hierarchical feature fusion (HFF) to fuse
output features of all ACGs and extract the effective features of each stage:

FHFF = HFF [A1,o,A2,o, · · · ,An,o] (2)
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where An,o denotes output of n-th ACG, [· · · ] implies concatenation. HFF is
hierarchical feature fusion, which consists of 1 × 1 convolutional layer and CSA
block. Convolutional is used to modify the channel dimension, while CSA is
used to refine spatial dimension. In addition, global residual connection (GRC)
is adopted to alleviate network training difficulty, output Fmapping can be for-
mulated as:

Fmapping = FHFF + Fshallow (3)

Image Reconstruction. In the final section of the entire network, Fmapping is
upscaled via the Sub-Pixel Convolutional [14] layer, and the output ISR can be
represented as follows with the addition of External Residual Connection (ERC):

ISR = S↑(Fmapping) + ÎLR (4)

here S↑ is composed of a sub-pixel convolutional layer followed by a 3 × 3 con-
volutional layer, ÎLR is interpolated results of the original input LR image. In
our model, the bicubic approach is used to implement the interpolation.

Training Objective. Given an MR dataset {IiLR, IiHR}Ni , where IiHR represents
the ground truth of IiLR and N denotes the total number of training sets. L1 loss
is utilized to train the model in order to optimize the EAACN network:

L(θ) =
1
N

N∑

i=1

∥∥HEAACN (IiLR, θ) − IiHR

∥∥
1

(5)

where θ indicates the parameter setting in EAACN.

3.2 Edge Assisted Feature Extraction Block

Figure 2 depicts the detailed structure of the EAFEB block. EAFEB block takes
a single-channel grayscale image as input and outputs an a-channel feature map,
its two branches handle the extraction of content features and extraction of edge
information, respectively. The output channel size of each branch is set to a/2,
and the final output is obtained by concatenating the results of the two branches.

The content feature extraction branch achieves channel dimension increase
and content information extraction, its output FC can be expressed as:

FC = EC(ILR) (6)

where EC denotes the content feature extraction branch, which consists of 3× 3
convolution, ReLU and 1 × 1 convolution. Inspired by WDSR [15], to extract
more useful features and enable a smoother flow of features, wide convolutional
is used. The first 3 × 3 convolution of the content feature extraction module
increases the number of feature channels to 2a, instead of the output channel
a/2 of this branch. Following the ReLU function, 1 × 1 convolution fuses the
multidimensional features, and the final output channel is a/2.
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Fig. 2. Framework of the proposed Edge Assisted Feature Extraction Block (EAFEB).

The edge information extraction branch achieves channel dimension increase
and edge feature extraction. FR is obtained by 3 × 3 convolution and ReLU:

FR = ReLU(Conv3×3(ILR)) (7)

where Convn×m indicates the convolution with kernel size n × m and ReLU
is the activation function. Then, from the FR, we extract the edge information
map Edge(FR) by calculating the difference between adjacent pixels:

FR_x(X) = FR(x + 1, y) − FR(x − 1, y)
FR_y(X) = FR(x, y + 1) − FR(x, y − 1)
∇FR(X) = (FR_x(x), FR_y(x))

Edge(FR) = ‖∇FR‖2

(8)

Edge(·) is implemented by two convolutions with fixed parameters, which com-
pute gradient information in the horizontal and vertical directions of coordinate
point X = (x, y), respectively.

The edge feature Edge(FR) has values close to zero in most regions and only
takes values at the edge areas. To limit the impact of noise on edge feature map
even further, 1×3 and 3×1 convolutions were refined horizontally and vertically,
respectively, to obtain the enhanced edge feature map FS :

FS = Conv3×1(Conv1×3(Edge(FR))) (9)

The multidimensional edge feature maps are then fused by 1×1 convolution,
and its output channel is a/2. Finally, content features and edge features are
aggregated in channel dimension, output Fshallow of EAFEB is thus given by:

Fshallow = [FC, Conv1×1(FS)] (10)

Without a doubt, the most significant task in network design for MR images
is the maintenance of structural information. Incorporating edge feature into
Fshallow can enrich Fshallow with structural information, making subsequent net-
works easier to maintain structural features. Furthermore, EAFEB is placed at
the very beginning of the network rather than in each group or block in the
nonlinear mapping part as it reduces the number of parameters, allowing edge
feature extraction module to be performed only once.
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Fig. 3. Architecture of the proposed Asymmetric Convolution Group (ACG) and
Asymmetric Convolution Block (ACB).

3.3 Asymmetric Convolution Group

In this section, we will discuss the ACG module, which has excellent percep-
tion for both edge and content features. Figure 3-A depicts the overall structure
of ACG, which consists of multiple directly connected Asymmetric Convolu-
tion Blocks (ACB) and local residual connections. ACB is a lightweight feature
extraction block that can improve the content and structural features.

In ACB block, as shown in Fig. 3-B, input features are first extracted by
asymmetric convolution in both horizontal and vertical directions, afterwards
concatenation and 1 × 1 convolution are adopted to combine and refine the
extracted feature results:

FA = Conv1×1[Conv1×3(Fin), Conv3×1(Fin)] (11)

where Fin is ACB block’s input and FA is ACB’s stage output. We design this
method to extract the feature FA rather than directly using 3×3 convolution for
two reasons: 1. There are fewer parameters in this method. 2. It is more effective
at extracting edge structure features. Later, ReLU is introduced to improve the
ACB block feature stream’s nonlinear ability, and 3× 3 convolution is then used
to improve the perception of content features.

Furthermore, based on the spatial information of the input feature map,
we propose a contextual spatial attention block that can dynamically adjust
the network’s attention to important spatial information. Next, to improve the
stability of the network training, residual connection is added, and the resulting
ACB output Fout is shown below:

Fout = CSA(Conv3×3(ReLU(FA))) + Fin (12)

3.4 Contextual Spatial Attention

In order to improve the effectiveness of ACB, we incorporate an attention mecha-
nism that allows the network to focus more on crucial information computation.
The perceptual field of the attention module should be expanded in the design
of the CSA module, and the number of parameters should also be considered.

To control the number of parameters, the CSA network’s computational effort
is focused on low dimensions and small scales. At the beginning of the CSA,
an 1 × 1 convolutional layer is adopted to compress the number of channels.
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Fig. 4. Detailed implementation of Contextual Spatial Attention (CSA).

Besides, to increase the receptive fields and reduce the computational overhead
of the subsequent convolution steps, an avg-pooling layer and a max-pooling
layer (kernel size 5, stride size 2) are used (Fig. 4).

Furthermore, a convolutional group is designed for adding learnable param-
eters to achieve feature full utilization of CSA, it consists of three convolutional
layers. To widen the perceptual field, we set the middle convolutional layer’s
dilatation rate to 2. Then, the output features are upscaled to their original size.
We also add a residual connection to obtain a more stable output. After that,
we use an 1× 1 convolutional layer to recover the number of channels and a sig-
moid layer to obtain the attention mask. Finally, attention mask is element-wise
producted with input features to focus significant spatial regions of the inputs.

4 Experiments

4.1 Datasets and Implementation Details

Three MR image sequences from the public IXI dataset, proton density-weighted
imaging (PD), T1-weighted imaging (T1), and T2-weighted imaging (T2), are
used for experiment. 576 3D volumes for each MR image type are utilized, and
each volume is clipped to the size of 240 × 240 × 96 (height × width × depth),
the same as [13]. We divide them randomly into 500 training sets, 70 testing
sets, and 6 validation sets, respectively. Each 3D volume can be regarded as
96 240 × 240 2D images in the vertical direction, 10 images chosen as training
samples using interval sampling. Thus, in every MR image sequences, we gained
50× 100 = 5000 training images, 70× 10 = 700 testing images, and 6× 10 = 60
validation images in every MRI sequence.

The configuration setting of EAACN is shown in Fig. 1, the number of ACG
and ACB is set to 10 and 8, respectively. Data augmentation is performed on the
5000 training images, which are randomly rotated by three angles (90◦, 180◦,
270◦) and horizontally flipped. In each training batch, we feed 12 randomly
cropped 60×60 patches into our EAACN. L1 loss function and ADAM optimizer
with β1 = 0.9, β2 = 0.999, and ε = 10−8 are used for training. Initial learning
rate is set to 10−4 and halved at every 6 × 104 iteration. We implement our
network using the PyTorch framework with a 3090 GPU.
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Table 1. Ablation investigation of EAFEB in EAACN. We report best PSNR/SSMI
values on PD sequences. The maximal values of each row are highlighted.

Method AvgParameters/M SR×2 SR×3 SR×4

FEB 7.03 38.212/0.9794 33.000/0.9477 30.274/0.9113

EAFEB 7.18 38.239/0.9795 33.028/0.9480 30.304/0.9119

Fig. 5. Architecture of various structures in ACB, A is the baseline, B and C are the
parallel and serial models, respectively.

4.2 Model Analysis

We study the effects of several components in EAACN, including Edge Assisted
Feature Extraction Block (EAFEB), Asymmetric Convolution Block (ACB), and
Contextual Spatial Attention (CSA).

Effect of EAFEB. To demonstrate the effectiveness of the EAFEB, we redesign
a feature extraction module called FEB, which differs from EAFEB in that it
only has a content extraction branch. The LR features extracted by FEB have the
same output feature dimension as EAFEB. We conduct ablation experiments in
the PD×2, PD×3, and PD×4, respectively. As shown in Table 1, when compared
to the standard FEB block, the EAFEB block improves SR performance by
an average of 0.028 dB in PSNR values and a slight increase in the number
of parameters. This demonstrates EAFEB’s effectiveness in fusing content and
edge features.

Effect of ACB. Our proposed ACB can use various basic structures, and
we design three different combination convolutional structures for future spe-
cific exploration of the module’s capabilities (see Fig. 5). To simplify the repre-
sentation, only necessary connections have been drawn. Figure 5-A depicts the
model’s general infrastructure. We replace only one convolutional block with AC
to improve edge structure information retention while still maintaining a sense
of content information. It is worth noting that the AC has fewer parameters
than the convolutional block. As shown in Fig. 5-B and Fig. 5-C, parallel and
serial modes are used separately. Larger multiples of the SR task would be more
dependent on the structure retention, so SR×4 is chosen for the ablation test.

The quantitative comparison results are reported in Table 2, replacing convo-
lutional blocks with AC improves performance, demonstrating hybrid edge and
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Table 2. Ablation investigation of ACB in EAACN. We report best PSNR/SSMI
values. The maximal values of each row are highlighted.

Method Parameters/M PD T1 T2

baseline 7.54 30.231/0.9113 28.268/0.8482 29.634/0.9042
ACB-p 7.22 30.262/0.9115 28.290/0.8488 29.658/0.9041
ACB-s 7.22 30.304/0.9119 28.301/0.8487 29.710/0.9045

Table 3. Ablation investigation of Spatial Attention in EAACN. We report best
PSNR/SSMI values in SR×2. The maximal values of each row are highlighted.

Method Parameters/M PD T1 T2

w/o SA 6.32 38.145/0.9793 34.882/0.9619 37.681/0.9761
w/o SA+CBAM 6.37 38.157/0.9793 34.936/0.9621 37.712/0.9761
w/o SA+CSA 7.07 38.239/0.9795 34.977/0.9624 37.772/0.9763

content feature extraction’s superiority. The serial ACB-s perform best, which
is capable of balancing edge and content perception, with an average 0.06 dB
increase over the three datasets when compared to the base structure.

Effect of CSA. Attention mechanisms play an important role in networks,
and to demonstrate the effectiveness of CSA in EAACN, we compared it to the
previous spatial attention mechanisms CBAM [16], the results of which are shown
in Table 3. Removing or replacing CSA results in a considerable performance
decrease (PSNR of 0.093 dB and 0.061 dB, respectively). Figure 6 depicts the
experimental PSNR performance graph of attention mechanism used in EAACN.
As can be observed, CSA has a more steady PSNR curve than CBAM due
to its larger perceptual field. Besides, CSA can significantly increase network
performance compared to CBAM.

4.3 Comparison with Other Methods

To further demonstrate the effectiveness of our proposed network, we compare
EAACN with several SOAT SR networks evaluated by objective evaluation met-
rics, containing VDSR [17], SRResNet [18], EDSR [19], SeaNet [7], CSN [13] and
W2AMSN [10]. These models are trained and tested using their default parame-
ter settings with MR image sequences datasets. As shown in Table 4, EAACN+
has the best performance by using self-ensemble, EAACN achieves better per-
formance on each sequence than other methods.

Performance, parameters, and flops volume analysis of these networks are
shown in Fig. 7. Compare to the proximity performance performer, EDSR, CSN,
and W 2AMSN , our network has a smaller number of parameters and flops.
As for compare to another edge prior network, SeaNet, our EAACN shows a
significant performance improvement with a similar number of parameters.

Figure 8 shows the visual results of these methods after recovering images
at different sequences and different resolutions. As can be seen from the arrow
pointing at the enlarged part of the figure, the structure and content of our
network recovery are the closest to the real image. For example, the bottom row
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Fig. 6. The performance comparison
with attention block. T2 sequence
(SR×2) is measured.

Fig. 7. Performance, parameters, and flops.
The number of flops is reflected by the size
of the bubbles. T1 sequence (SR×2) is mea-
sured.

Fig. 8. Visual comparison for PD (top), T1 (middle) and T2 (bottom) with SR×2
(top), SR×3 (middle) and SR×4 (bottom), respectively. The places indicated by red
arrows are complex positions. (Color figure online)

in Fig. 8 shows the T2 sequence with SR×4. The red arrow points to the location
of the black pathway, which is recovered completely by our method, while others
cannot accurately restore it.
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Table 4. Quantitative results with PD, T1, and T2 sequence. Maximal and second
ones are highlighted and underlined.

Method Scale PD T1 T2
PPSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic ×2 31.36/0.9394 30.55/0.9108 30.95/0.9304
VDSR [17] ×2 36.59/0.9737 34.22/0.9567 36.41/0.9716
SRResNet [18] ×2 37.71/0.9778 34.64/0.9602 37.32/0.9748
EDSR [19] ×2 38.15/0.9792 34.85/0.9617 37.72/0.9761
SeaNet [7] ×2 37.93/0.9784 34.74/0.9609 37.53/0.9755
W2AMSN [10] ×2 38.08/0.9790 34.85/0.9617 37.62/0.9759
CSN [13] ×2 38.13/0.9792 34.89/0.9619 37.70/0.9760
EAACN (ours) ×2 38.24/0.9795 34.98/0.9624 37.77/0.9763

EAACN+(ours) ×2 38.42/0.9800 35.08/0.9630 37.95/0.9768
Bicubic ×3 27.59/0.8679 27.00/0.8033 27.37/0.8527
VDSR [17] ×3 31.06/0.9272 29.49/0.8816 31.10/0.9271
SRResNet [18] ×3 32.38/0.9416 30.11/0.8960 32.07/0.9382
EDSR [19] ×3 32.84/0.9465 30.37/0.9017 32.47/0.9424
SeaNet [7] ×3 32.57/0.9438 30.24/0.8993 32.29/0.9410
W2AMSN [10] ×3 32.79/0.9460 30.33/0.9015 32.42/0.9419
CSN [13] ×3 32.81/0.9463 30.36/0.9025 32.46/0.9421
EAACN (ours) ×3 33.03/0.9480 30.50/0.9049 32.63/0.9435

EAACN+(ours) ×3 33.29/0.9499 30.68/0.9072 32.90/0.9454
Bicubic ×4 25.46/0.7943 25.17/0.7071 25.43/0.7764
VDSR [17] ×4 28.52/0.8783 27.27/0.8101 28.33/0.8764
SRResNet [18] ×4 29.78/0.9015 27.94/0.8356 29.29/0.8966
EDSR [19] ×4 30.21/0.9107 28.21/0.8464 29.60/0.9031
SeaNet [7] ×4 30.03/0.9073 28.12/0.8430 29.60/0.9024
W2AMSN [10] ×4 30.09/0.9087 28.13/0.8437 29.52/0.9017
CSN [13] ×4 30.17/0.9094 28.20/0.8453 29.58/0.9026
EAACN (ours) ×4 30.30/0.9119 28.30/0.8487 29.71/0.9045

EAACN+(ours) ×4 30.65/0.9157 28.54/0.8536 30.05/0.9086

5 Conclusion

One of the main issues with deep learning-based super-resolution of MR images
is the difficulty in recovering clearer structural features, which is critical informa-
tion in diagnostic process. In this work, we present EAACN for super-resolution
of 2D MR images. To maintain the sharp edges and geometric structure of MR
images, we innovatively add an edge assisted feature extraction block. An asym-
metric convolutional group is adopted in order to allow the network to keep geo-
metric structure while extracting content information. In addition, contextual
spatial attention is proposed with a great perceptual field and effective results.
Extensive experiments prove that EAACN is superior to state-of-the-art models
in both quality and quantity. We believe that our method has the potential to
be applied in other types of medical images as well, such as CT and PET.
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