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Abstract. Organising and preprocessing are crucial steps in order to
perform analysis on lifelogs. This paper presents a method for prepro-
cessing, enriching, and segmenting lifelogs based on GPS trajectories and
images captured from wearable cameras. The proposed method consists
of four components: data cleaning, stop/trip point classification, post-
processing, and event characterisation. The novelty of this paper lies in
the incorporation of a visual module (using a pretrained CLIP model) to
improve outlier detection, correct classification errors, and identify each
event’s movement mode or location name. This visual component is capa-
ble of addressing imprecise boundaries in GPS trajectories and the parti-
tion of clusters due to data drift. The results are encouraging, which fur-
ther emphasises the importance of visual analytics for organising lifelog
data.
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1 Introduction

Lifelog refers to a comprehensive personal record of daily life activities captured
by individuals called lifeloggers. Lifelog data can contain varying amounts of detail
depending on the purpose of keeping such a record and could provide insight into an
individual’s behaviours [9]. Some examples of lifelog data can be images, videos,
and biometrics collected from a variety of wearable devices and sensors. Due to
its multimodal nature, lifelogging has many applications, namely, aiding memory,
retrieving past moments, and reminiscing, to name a few.

Challenges in lifelogging research involve efficient capturing, storing, access-
ing, and analysing large volumes of multimodal data. This is because lifelog
data tend to be passively captured in a continuous manner and the archive can
grow in size very quickly. Thus, organising and preprocessing, including annotat-
ing/enriching data and segmenting lifelogs into events, are crucial to manage a
lifelog [9]. The definition of events is not yet agreed upon; however, some factors
are suggested to the basic contexts of a past event are who, what, where, and
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when clues [23]. Therefore, boundaries in lifelogs can be created when there is a
change of social interactions (e.g. with family, friends, strangers, etc.), activities
(e.g., running, eating, working, etc.), locations (e.g. restaurants, parks, or per-
sonal locations such as home, work, etc.), or relative time (e.g. concepts such as
yesterday, last night, etc.). This approach was used in [17] for semantic enrich-
ment of lifelogs and, after that, segmentation.

Amongst these contexts, existing research [8] recognises the role played by
location clues in memory recall. Although not a focal point of recall, they support
recall over a prolonged period of time (which lifelogs are); trajectory reminders
(locations visited before and after) help recall through inference; and location
information might be useful when navigating through vast lifelogs. Furthermore,
location-related contexts are a good indicator of activity. For example, being
in a restaurant suggests having meal and in a supermarket suggests shopping.
Previous work has been done on lifelog location data to provide structure to
lifelogs [6,14], or to make meaning of food and physical activity behaviours [2].
In this paper, we further explore location contexts and propose a method of
preprocessing, enriching, and segmenting lifelogs based on integrating location
as a source of evidence. Regarding segmentation, there may be multiple events
happening at the same location, and lifelogs could be further segmented based
on other analyses in that location, which is beyond the scope of this work.

Generally, the processing of location data is based on GPS coordinates col-
lected from a wearable device or a smartphone. Clustering methods, including
variations of K-Means or DBSCAN [7,12,21,25] are used to detect places of
importance, defined as clusters that contain more than a threshold of continuous
data points [12]. These clusters are identified as ‘stays’ or ‘stops’. Further charac-
terisation of detected locations could be based on manual annotations [14,24] and
automatic reverse geocoding to assign place identifiers to geographic coordinates
[16]. Amongst these, location names and types attained from reverse geocoding
can provide rich semantics for lifelogs. However, it requires highly accurate sig-
nals that most conventional GPS devices lack. One way to address this is to
exploit lifelogs’ multimodal nature and incorporate cues from other modalities,
such as images. The success of computer vision models in various fields recently,
especially in lifelog retrieval [1,11,22], has motivated us to explore ways to lever-
age vision to identify semantic locations from lifelog GPS data. Therefore, in this
paper, we follow a conventional pipeline of GPS segmentation with the novelty of
employing a pretrained text-image embedding model with the aim of enhancing
the segmentation quality.

2 Related Work

2.1 GPS Trajectories Segmentation

GPS data have been widely collected by portable devices and smart phones.
Much work has been done to segment GPS trajectories into episodes or events
according to segmentation criteria such as stops or moves. This is equivalent to
identifying the locations of interest from continuous GPS data. By doing this,
semantics is added to the raw trajectories, allowing more complex analyses.
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The most popular approach to location identification involves a density-based
clustering algorithm to detect spatially connected GPS points with a distance
threshold. These are variants of DBSCAN [7,12,21,25] or OPTICS [26] with more
constraints, especially those related to time. For instances, [26] used both spatial
and temporal aspects to define the density for the clustering algorithm. In [7], the
authors proposed that all points in a cluster should be sequential in temporal order
and should have an even distribution of direction changes. Hwang et al. [12] apply a
temporal check after detecting spatial clusters to decide whether continuous data
points belong to the same cluster. Some work applies a second step to fine-tune
the location identification result by smoothing stop/move values [12], filtering out
nonactivity stops (such as being stuck in traffic) using SVMs on stop attributes
[7], or using improved clustering by fast search and identification of density peaks
[5]. One drawback of density-based methods is that they require data to be col-
lected with high frequency and accuracy [7]. Furthermore, a stop location could
be divided into multiple smaller groups due to data drift [5]. This work attempts
to address these shortcomings with the support of visual data.

2.2 Text-Image Embedding Models

Recently, pre-trained models have attracted considerable attention in different
fields. The core idea behind pre-training is to gain knowledge from a massive
amount of data, then transfer what has been learnt to various downstream tasks.
These models have achieved impressive performance in computer vision tasks [4]
such as image classification and object detection; and natural language process-
ing tasks [15,20] such as machine translation and natural language inference.

The fusion of computer vision and natural language processing allows pre-
training to be more scalable [3,19] by removing the need of a pre-defined set of
object classes (e.g., 100 classes in ImageNet). Some notable examples are Con-
trastive Language-Image Pre-Training (CLIP) [18] and A Large-scale ImaGe and
Noisy-text embedding (ALIGN) [13], which were trained on 400m/1B image-text
pairs. These models embed images and texts and then utilise contrastive loss to
minimise the cosine distance of matched image-text pairs and maximise that of
nonmatched pairs. In particular, CLIP’s zero-shot performance surpasses many
baselines across different datasets [18]. Regarding lifelog, CLIP models have been
integrated into lifelog retrieval systems and outperformed prior state-of-the-art
techniques in the field [1,11,22]. In this paper, we focus on extending the appli-
cations of CLIP in lifelogging by complementing GPS data with a vision module.

3 Lifelog Dataset

Our method is applied to lifelog data from the fifth iteration of the Lifelog Search
Challenge (LSC), LSC’22 [10]. This dataset features 18 consecutive months of mul-
timodal lifelog data collected by one lifelogger. The data are organised in sequence,
ordered by UTC time. Each data point, captured every minute, is aligned with
various types of lifelog data such as music listening history, biometrics, and GPS
coordinates. Furthermore, more than 725,000 point-of-view images, captured by a
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Fig. 1. Our method’s workflow, following the conventional framework for location iden-
tification on GPS trajectories. Our contributions are highlighted in green. (Color figure
online)

Narrative Clip wearable camera clipped on the lifelogger’s shirt, are included and
aligned to the minute sequence based on their time stamps. We would like to note
that because the images are captured at a higher frequency (around every 30 s),
a one-minute data point can be aligned with up to two images. This means that
these two images, although possibly very different (for example, in two different
locations), share the same GPS coordinates. We will address this in our method,
described in the next section.

In this work, we are interested only in the lifelog images and GPS coordinates
that come with the LSC’22 dataset. Because it is infeasible to produce a ground
truth or thoroughly verify the results on the entire 18-month dataset, we choose
to apply and validate our method only in the first month (January, 2019). This
part contains 44,640 one-minute data points and 42,640 lifelog images. Among
these, only 8,634 non-null GPS points are recorded.

4 The Proposed Method

Illustrated in Fig. 1 is our method. The main difference of this work from previous
work is the incorporation of a visual module. Specifically, L/14@336px, the last
published pre-trained CLIP model, was used to encode lifelog images.

4.1 Data Cleaning

Our proposed method follows the data cleaning and gap treatment process used
in [12]. Specifically, we calculated the moving speed based on the spatial distance
and the time duration between each point and its previous non-null data point.
Outliers, as defined by data points having an unusually high speed, are removed.
As noted by the authors, some false outliers (for example, as a result of speeding
in transportation) could be removed. As we aim to reserve as many data points
as possible, we improve outlier detection by incorporating the visual module to
identify the transport mode and define the speed threshold for each mode.
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Table 1. Texts used to assign transport modes to images.

Actual text Label

I am sitting on an airplane Airplane

I am in a car Car

I am in a public transport Public Transport

I am walking outside Walking Outdoor

I am in an airport Indoor

I am inside a building or a house Indoor

Fig. 2. Examples of transport modes classified by CLIP and their probabilities.

To assign the transport mode for each data point, we utilise the images
aligned with each minute. The CLIP model is used to calculate the mean image
features and compare them with the transportation labels using cosine similarity.
The texts and their associated labels are specified in Table 1. For the rest of the
paper, we will refer to the transportation modes as the labels in this table for the
sake of brevity. As seen in Fig. 2, CLIP model is remarkably reliable. However,
mis-classification does occur. By considering only the transport modes with a
probability greater than θ, we can increase the model’s precision. From these
points, the speed thresholds are identified and are illustrated in Fig. 3.

After removing possible outliers, we apply a gap treatment process, similarly
to that mentioned in [12]. For gaps whose time duration is at least q minutes, we
add k data points to the gap with linear interpolated time and GPS coordinates.
For more details and the rationale behind the process, see [12]. Moreover, we
observe that the coordinates can be missing when the lifelogger is still or walking
inside a building for a period of time. This results in a large number of false
gaps in the stop/trip point detection module below (since null data points are
considered as trip points). For this reason, we also interpolate gaps whose time
duration is less than q minutes and whose movement mode is classified as Indoor.

4.2 Stop/Trip Point Classification

Similar to [12], the spatial clustering is performed using DBSCAN. After clus-
tering, if a track log constituting a same spatial cluster are consecutive for the
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Fig. 3. Transport mode and their corresponding moving speed in the dataset. The
upper speed thresholds are 1.5 ∗ IQR where IQR is the interquartile range.

minimal duration of time t, then we classify them as stop points and assign a
cluster ID to them. The rest are marked as trip points with a null cluster ID.

4.3 Post-processing

Smoothing: The previous method still leaves us with some mis-classified points.
To address, we apply smoothing to the sequence stop and trip points. In effect,
we replace the stop/trip values with the most common value of a window of
three consecutive data points. Cluster IDs are also smoothed in the same way.

Boundary Adjustment: A specific step that is necessary for the vision mod-
ule to work correctly in the next component is to modify the cluster boundaries
to achieve a more accurate result. This is because for smaller clusters, if the
boundaries are not clear, which can easily happen if we only consider GPS sig-
nals, the event can include both indoor and outdoor images, making it difficult
to calculate the representative label of the whole cluster. Therefore, for each
stop cluster, we consider expanding or shrinking it by examining whether the
boundary image is labelled Indoor or not.

Verification: After boundary adjustment, we join consecutive data points with
the same stop/trip and cluster ID values to form an event. For each event, the
CLIP model is used to its images and average pooling is applied to obtain the
event visual vector. This vector can be used to compare to the transport modes
in Table 1 and verify the event type as described in Algorithm 1.

4.4 Event Characterisation

We then assign each event with its properties, summarised in Table 2. For exam-
ple, we can get the begin time, end time, and duration based on the first and
last minute IDs. Different processed are applied for stop and trip events.
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Algorithm 1. Verify event type after boundary adjustments.
label, probability ← Compare(Event, Transport modes)
if probability ≥ θ then

if label = Indoor then
type ← stop

else
type ← trip

end if
end if

Table 2. All event properties. � indicates that the property is applicable.

Property Description trip stop

1 Begin Time The first minute ID (of the event) � �
2 End Time The last minute ID � �
3 Duration The number of minute IDS � �
4 Visual Vector Average pooling over all encoded images � �
5 Begin Location GPS coordinates of the first minute ID �
6 End Location GPS coordinates of the last minute ID �
7 Movement Mode Airplane, Car, Bus, Walking, etc. �
8 Centre Point Mean GPS coordinates of all minute IDs �
9 Location Type Restaurant, Airport, University, etc. �
10 Location Name Name of the visited place, obtained from

the FourSquare Nearbys API
�

For trip events, the begin and end locations are obtained from the minute
IDs. Also, we reuse the transport mode in the verification step in Sect. 4.3.

As for stop events, their centre points are the mean GPS coordinates of
all points. In these experiments, we fixed two personal places as the lifelogger’s
homes, where they frequently stay. Thus, any stop that is less than 100m away
from these places and assigned as HOME 1 and HOME 2. For the rest, instead
of using straightforward reverse geocoding to attain the closest location name
from the GPS coordinates, VAILS exploits nearby locations. This addresses the
inaccuracy of off-the-shelf GPS devices by making use of visual cues to choose
the best match. To do this, we use the FourSquare Nearbys API1, which provides
location information of nearby Places Of Interest (POI), such as

– POI Name
– POI Types: restaurant, airport
– Related POIs: parent/children locations
– POI Images: indoor, outdoor or menu photos uploaded by FourSquare users.

However, the data are far from complete.

1 https://developer.foursquare.com/docs/places-api-overview.

https://developer.foursquare.com/docs/places-api-overview
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For each POI returned, we form a textual description using a template of ‘I am in
a {POI types} called {POI name}’. After that, we can compare the visual vector
of the event with each of the POI descriptions and choose the most probable POI
with its corresponding name and location type.

We also experiment on two more approaches to assigning the best POI to
stop events. The first exploits the Related POIs result from the API (called
Rel-VAISL), while the second takes advantage of the POI Images (called Img-
VAISL). Regarding Rel-VAISL, the process is identical with one extra step: If
the probability of the most probable POI is lower than a threshold θ, we merge
the POIs belonging to the same parent and take the sum of their similarity scores
to re-choose the best matching parent POI. This can be helpful in cases such as
when the lifelogger moves between different parts of a building and the moving
speed is generally not large enough for DBSCAN to distinguish the clusters. In
the second approach, Img-VAISL, if there are images available for a POI returned
by the API, we encode the images and take the average vector to compare with
the event vector using cosine similarity. The final similarity score for each POI
is the average of image similarity and text description similarity. However, since
the POI image dataset is not complete, we cannot rely solely on images. Thus,
for POIs without images, we use only their text description similarity. Similarly
to the pure method, the POI with the highest similarity score will be assigned to
the event. In addition, Combined-VAISL, which uses both of these approaches,
is also included in the experiments.

The last step is merging consecutive events of the same type having identical
Movement Mode (for trip events) or Location Name (for stop events). This step
aims to mitigate the problems of density-based methods mentioned in Sect. 2.1.
This reduces the number of events to a more accurate result.

5 Experiments and Results

In this section, we will analyse the results of our method. Since most of the
process is similar to that of [12], we reuse their parameters with slight modifica-
tions due to the difference in recording time intervals. Specifically, the minimal
time duration t remains unchanged as 3 min. However, since the recording time
interval, r, in our study is 60 s instead of 30 s, the MinPts for DBSCAN is set to
3 instead of 5. For gap treatment, the value of q is chosen in a way that q = t+r
(4 min) and that of k is k = MinPts+1 (4 data points). For DBSCAN clustering,
we also reuse eps = 50 m. Finally, the theta threshold for CLIP classifications is
chosen as 0.75.

To evaluate our method, we use the location history from the Google Maps
API2 that has been manually validated by the lifelogger. The location logs con-
tain information of visited places and transportation segments, the equivalences
of stop and trip events. According to the logs, the first month of 2019 can be
segmented into 206 stop events and 214 trip events in between. All properties
listed in Table 2 can be interpreted from the logs as the ground truth.
2 https://www.google.com/maps/timeline.

https://www.google.com/maps/timeline
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5.1 Event Detection Results

After finishing our proposed method, we assign each minute point with the
stop/trip values. We compare these values to those extracted from the ground-
truth location history. The classification confusion matrix can be seen in Table 3
with an accuracy score of 0.9663 and a Kappa index of 0.8155.

Table 3. Error matrix of stop/trip values from the ground truth and our result

Ground Truth

Stop Trip

VAISL Stop 37594 718

Trip 717 3611

(a) Compared to the ground truth. (b) Different variations of VAISL.

Fig. 4. Number of events detected at different steps. Despite having the identical move
events, VAISL’s variations result in various numbers of stay events.

Regarding the number of segments, after boundary adjustment, there are 338
stops and 289 trips detected. The verification step converted a considerable
amount of trip segments to stop. After identifying event types and merging
identical consecutive episodes, VAISL’s result contains 294 stops and 159 trips,
as summarised in Fig. 4. We also observe different numbers of stop events for
VAISL variations, with the highest figure from Pure VAISL. By merging places
that belong to the same building or organisation together, Rel-VAISL results in
224 stops. Moreover, similar figures are obtained when using the POI images
returned by the FourSquare API.
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5.2 Event Characterisation Results

Trip Events. As for moving periods, the movement modes provided here are of
only WALKING, IN PASSENGER VEHICLE, and FLYING. Thus, for an eas-
ier comparison, we transform the VAISL’s movement modes (in Table 1) from
Walking Outdoor to WALKING, Airplane to FLYING, and Car, Public Trans-
port to IN PASSENGER VEHICLE. The Indoor label can be ignored as we have
already changed it into a stop event in the verification step.

Out of 159 trip events detected, 128 of them are assigned a correct trans-
port mode. The remaining 31 events are inspected manually and most of the
mismatches are due to the imprecise boundaries of the groundtruth. Image-wise,
the classification achieved 0.9017 accuracy in this subset.

Stop Events. Regarding the stop events, we are interested in evaluating the
Location Name property. We could not do this automatically due to some dis-
crepancies in the location names provided by Google Maps API and FourSquare
API. Some examples are Dublin Airport vs. Dublin Airport (DUB) and City-
west Shopping Centre vs. Eddie Rocket’s (which is inside the shopping centre).
Therefore, we asked the lifelogger to manually verify the detected stop events.
Due to the large amount of data and the limited time we have with the lifelog-
ger, we were only able to verify 14 out of 31 days. We chose to exclude three
locations where the lifelogger spent most of the time to get a less biased view of
the result.

Table 4. Analysis on VAISL’s results on 14 days.

Variations #stops #correct Accuracy

Pure 65 42 0.63

Rel 65 45 0.69

Img 67 41 0.61

Combined 65 44 0.68

The results are summarised in Table 4 for the approaches mentioned in the
previous section and slight differences are observed. The highest performing
option is Rel-VAISL which exploits POI relationship information. This helps cor-
rect mistakes in Pure-VAISL where the segmentation between different indoor
places are not well-adjusted, resulting in choose a wrong POI. On the other
hand, the idea of using user-uploaded POI images has not proven useful, most
likely because the process favours POIs with images much more than others.
Thus, Img-VAISL and Combined-VAISL both have lower accuracy than their
counterparts, Pure-VAISL and Rel-VAISL, respectively.
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6 Discussions and Conclusion

This paper described an automatic method for organising and enriching lifelogs
based on location contexts. The advancement of embedding models has allowed
us to perform a better analysis of lifelog data. By integrating images with GPS
data, this work further confirms the importance of its visual aspects in lifel-
ogs, especially in segmentation. We believe having a well-segmented lifelog with
accurate location semantics can add value to different lifelog applications. How-
ever, because we only have access to one lifelogger’s data, it would be interesting
to see how this applies to other lifelogs. Future work on this could include per-
sonal location identifications. Personal locations are user-specific; some examples
include one’s office and relatives’ homes. In this work, we fixed two places as the
lifelogger’s homes before performing event characterisation. It would pose a chal-
lenge when this number increases, as these locations cannot be returned from
any reverse geocoding services. Additionally, how to effectively evaluate location
analysis on a large lifelog dataset remains a difficult question.
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