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Abstract. In this paper, we address the problem of image splicing local-
ization with a multi-stream network architecture that processes the raw
RGB image in parallel with other handcrafted forensic signals. Unlike
previous methods that either use only the RGB images or stack several
signals in a channel-wise manner, we propose an encoder-decoder archi-
tecture that consists of multiple encoder streams. Each stream is fed with
either the tampered image or handcrafted signals and processes them
separately to capture relevant information from each one independently.
Finally, the extracted features from the multiple streams are fused in the
bottleneck of the architecture and propagated to the decoder network
that generates the output localization map. We experiment with two
handcrafted algorithms, i.e., DCT and Splicebuster. Our proposed app-
roach is benchmarked on three public forensics datasets, demonstrating
competitive performance against several competing methods and achiev-
ing state-of-the-art results, e.g., 0.898 AUC on CASIA.

Keywords: image splicing localization · image forensics ·
multi-stream fusion network · late fusion deep learning

1 Introduction

Images have long been considered reliable evidence when corroborating facts.
However, the latest advancements in the field of image editing and the wide
availability of easy-to-use software create very big risks of image tampering by
malicious actors. Moreover, the ability to easily alter the content and context of
images especially in the context of social media applications further increases the
potential use of images for disinformation. This is especially problematic as it
has become almost impossible to distinguish between an authentic and tampered
image by manual inspection.

To address the problem, researchers have put a lot of effort on the development
of image forensics techniques that can automatically verify the authenticity of mul-
timedia. Nevertheless, capturing discriminative features of tampered regions with
multiple forgery types (e.g., splicing, copy-move, removal) is still an open chal-
lenge [14], especially in cases that the image in question is sourced from the Inter-
net. Internet images have typically undergone many transformations (e.g. resizing,
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recompression), which result in the loss of precious forensics traces that could lead
to the localization of tampered areas [23]. This work focuses on the localization of
splicing forgeries in images, where a foreign object fromadifferent image is inserted
in an original untampered one.

Several approaches have been proposed in the literature, both handcrafted
and deep-learning, that attempt to tackle the problem of image splicing local-
ization. Handcrafted approaches [3,16] aim at detecting the manipulations by
applying carefully-designed filters that highlight traces in the frequency domain
or by capturing odd noise patterns in images. On the other hand, the more recent
deep learning approaches [1,9,22] leverage the advancements in the field and
build deep networks, usually adapting encoder-decoder architectures, trained to
detect the tampered areas in images based on large collections of forged images.

Although most splicing localization methods rely on handcrafted or deep
learning schemes and work directly with the RGB images [1,3,9,16,18,25], there
are only few works that combine the two solutions using a single network to fuse
the information extracted from the raw image and/or several handcrafted signals
[2,6,22]. The latter methods usually stack/concatenate all signals together in
a multi-channel fashion and process them simultaneously by a single network
stream that combines evidence from all signals to generate the output. This
can be viewed as a kind of early fusion. Yet, some traces can be missed by the
network when all signals are processed together. Instead, a late fusion approach
could be employed, where each handcrafted signal along with the raw image is
fed to a different network stream and then fused within the network to derive
the output localization map. Each input signal is processed independently, and
the network is able to capture the relevant information with different streams
focused on a specific signal.

Motivated by the above, in this paper, we propose an approach that leverages
the information captured from extracted handcrafted signals and the tampered
images themselves. We develop a multi-stream deep learning architecture for late
fusion following the encoder-decoder scheme. More specifically, the RGB images
along with several handcrafted forensic signals, i.e., DCT [16] for a frequency-
based and Splicebuster [3] for noise-based representation, which are robust to
the localization of the tampered areas with splicing manipulation [2]. All signals
are fed to different encoder streams that generate feature maps for each input
signal. All extracted feature maps are then concatenated and propagated to a
decoder network that fuses the extracted information and generates an output
pixel-level map, indicating the spliced areas. By leveraging separate network
streams for each input, we are able to extract richer features and, therefore,
have more informative representations for the localization.

Our contributions can be summarized in the following:

– We address the splicing localization problem with a multi-stream fusion app-
roach that combines handcrafted signals with the RGB images.

– We build an encoder-decoder architecture that processes each signal in a
different encoder stream and fuses them during the decoding.

– We provide a comprehensive study on three public datasets, where the pro-
posed approach achieves state-of-the-art performance.
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2 Related Work

Image splicing localization has attracted the interest of many researchers in the
last few decades; hence, several solutions have been proposed in the literature.
The proposed methods can be roughly classified into two broad categories, i.e.,
handcrafted and deep learning.

Early image manipulation detection methods were designed to tackle the
splicing localization problem using handcrafted methods, consisting of a simple
feature extraction algorithm and can be categorized according to the signals they
use and the compression type of the images they are applied on. For example,
there are noise-based methods that analyse the noise patterns within images,
e.g., Splicebuster [3] and WAVELET [17], methods that work with raw images
analyzing them using different JPEG compression parameters and detect arti-
fact inconsistencies, e.g., GHOST [5] and BLOCK [15], and double quantization-
based algorithms operating in the frequency domain, e.g., Discrete Cosine Trans-
form (DCT) [16]. An extensive review of such methods can be found in [23]. Nev-
ertheless, the forensic traces captured by these algorithms can be easily erased
by simple resizing and re-encoding operations. Also, these methods are often
outperformed by their deep learning-based counterparts.

Later works use deep learning to localize splicing forgeries based on a neu-
ral network, extracting features only from the raw images. A seminal work in
the field is ManTra-Net [22], which consists of two parts, a feature extractor
and an anomaly detection network. The feature extractor computes features of
the image by combining constrained CNNs, SRM features, and classical con-
volutional features concatenating them in a multi-channel fashion so as to be
processed by the rest of the network. The detection network applies deep learn-
ing operations (LSTMs and CNNs) to the features extracted and exports the
final localization map. SPAN [9] advanced ManTra-Net and modeled the spatial
correlation between image regions via local self-attention and pyramid propaga-
tion. In [1], the model utilizes both the information from the frequency and the
spatial domain of images. A CNN extracts the features in the spatial domain,
while a Long Short-Term Memory (LSTM) layer receives the resampled features
extracted from the image patches as input. The outputs of the two streams are
fused into a decoder network that generates the final localization map. Mazaheri
[18] added a skip connection to the above architecture, which exploits low-level
features of the CNN and combines them with high-level ones in the decoder.
In [21], the authors followed an encoder-decoder architecture and introduced a
bidirectional LSTM layer and gram blocks. The method proposed in [25] com-
bines top-down detection methods with a bottom-up segmentation-based model.
In [8], the authors proposed a multi-scale network architecture based on Trans-
formers, exploiting self-attention, positional embeddings, and a dense correction
module. However, the above architectures utilize only the information that can
be extracted from the raw images, which can be boosted with the use of hand-
crafted signals. Only ManTra-Net leverages some handcrafted features, which,
however, are early fused with image features in a multi-channeled manner.
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Fig. 1. Overview of the proposed network architecture (best viewed in colour). The
inputs are the RGB image and the handcrafted signals, i.e., DCT and Splicebuster,
processed by a different encoder stream. The encoding outputs are fused and propa-
gated to the decoder that outputs the predicted localization map, which is compared
to the ground-truth mask to compute the loss.

Finally, there are fusion approaches that leverage several handcrafted foren-
sic signals [2,6,10] aiming to increase the robustness of the models. In [6], the
authors employed the Dempster-Shafer theory of evidence [7] that allows han-
dling uncertain predictions provided by several image forensics algorithms. In
[10], the authors proposed a handcrafted approach that extracts several hand-
crafted signals that are further refined to generate the output map. In [2],
the authors proposed a deep learning-based architecture based on an encoder-
decoder scheme that receives several maps from handcrafted signals concate-
nated in a multi-channel way and processed by a single-stream network. The
latter two works do not exploit the information from the raw images into the
fusion process and do not rely on multi-stream processing of the signals.

3 Approach Overview

The main objective of our work is to develop a model that fuses different hand-
crafted forensic signals - in this work, we explore DCT [16] and Splicebuster [3]
- along with the raw manipulated image. The model follows an encoder-decoder
architecture. In the decoder, we fuse the outputs of multiple encoding streams,
which extract features of the input signals through convolutional operations.
Figure 1 illustrates an overview of the proposed architecture.
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3.1 Multi-stream Architecture

Our architecture has two parts, i.e., an encoder and a decoder. For the encoder,
we build multiple streams that process either the RGB images or the employed
handcrafted signals. For each stream, we employ a network architecture similar
to the one proposed in [18]. More specifically, each encoder stream comprises
five stages consisting of a 3× 3 convolutional layer, a residual block, and a max-
pooling layer. The residual blocks are composed of two 3×3 convolutional layers
with batch normalization [12] and a ReLU activation in the output. The number
of channels of each stage output are [32, 64, 128, 256, 512]. At the end of each
stream, we apply a 3 × 3 convolution with 32 output channels. Finally, we have
two kinds of encoder streams, with and without the skip connection, as proposed
in [18]. We use an encoder stream with the skip connection for the RGB image,
while the remaining streams of the handcrafted signals do not have that skip
connection. We empirically found that this setup yields the best performance.

For the decoder part, we first concatenate the feature maps of the encoder
streams following a late-fusion approach, and we then process them by the main
decoder network. The size of the decoder input depends on the number of encoder
streams in the system. Unlike prior works [1,18], we build a more sophisticated
architecture for our decoder, which performs upsampling in a learnable way by
employing trainable transpose convolutional layers. We use as many transpose
convolutional layers as the number of stages in our encoder streams, i.e., five
layers with output channels [64, 32, 16, 2, 2]. Following the practice of [18], We
add a skip connection from the second stage of the image encoder stream and
concatenate it to the feature map of the fourth decoder layer. At the end of the
decoder, we apply two 3 × 3 convolutions with a number of channels equal to
2. The output aggregated pixel-level predictions derive from the application of
a final 1 × 1 convolution with a single output channel, followed by a sigmoid
activation that maps the values to the [0, 1] range.

In that way, we build a multi-stream architecture that encodes several sig-
nals independently, i.e., RGB images and handcrafted signals, and performs a
late-fusion in the model’s bottleneck. The extracted features are then processed
altogether by a decoder network that outputs a binary mask with per-pixel pre-
dictions without the need for further post-processing.

3.2 Handcrafted Signals

In our approach, the number of the encoding streams equals the number of the
handcrafted forensics signals used for the prediction, plus one for the manipu-
lated image. Previous works tried to utilize the information from the frequency
and the spatial domain of the processed images, combining schemes based on
CNN and LSTM layers [1,18]. In contrast, to capture information from the fre-
quency domain, we employ the DCT [16] handcrafted signal, which is a Fourier-
based transform and can represent the JPEG images in the frequency domain. It
divides the image into segments based on its resolution and applies the discrete
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cosine transform whose coefficients contain information related to the frequen-
cies in the segments. DCT has been widely used in many different applications,
including forgery detection. In that way, the input images are represented in the
frequency domain, and with the application of convolutional filters, we capture
spatial information from the frequency domain.

Other works, e.g., ManTra-Net [22], extract noise-based handcrafted signals,
combined with the RGB image in a multi-channel way for image tampering local-
ization. To this end, in this work, we employ the Splicebuster [3] as a noise-based
handcrafted signal, which is among the top-performing handcrafted algorithms.
Splicebuster extracts a feature map for the whole image in three steps: (i) com-
pute the residuals of the image through a high-pass filter, (ii) quantize the output
residuals, and (iii) finally generate a histogram of co-occurrences to derive a sin-
gle feature map. Similar to DCT, we generate noise-based representations for
the input images, and with the application of convolutional filters, we extract
spatial information from these representations.

3.3 Training Process

The signals are extracted using the publicly available service in [24]. During
training, the RGB images and the extracted handcrafted signals are fed to the
model, each in a different stream, and it outputs a binary map as a pixel-level
prediction. The loss function used for the end-to-end training of the network is
the binary cross-entropy loss computed based on the ground-truth masks and
the generated outputs.

4 Experimental Setup

This section describes the datasets used for training and evaluation of our mod-
els, the implementation details, and the evaluation metrics used in our experi-
ments to measure the splicing localization performance.

4.1 Datasets

For the training of our model, we use the Synthetic image manipulation dataset
[1], and we extract the maps of our handcrafted signals for each image in the
dataset. The synthetic dataset contains images with tampered areas from splicing
techniques.

For evaluation, we used three image manipulation datasets, i.e., CASIA [4],
IFS-TC [11] and Columbia [19]. The models are further fine-tuned to evaluation
datasets. For CASIA, for the fine-tuning of our models we use CASIA2, which
includes 5,123 tampered images, and for evaluation CASIA1, which includes 921
tampered images, i.e. we use only the subset with spliced images for evaluation.
Regarding IFS-TC, we split the dataset to training and test set, and for fine-
tuning we use the training set, which includes 264 tampered images, and for
evaluation we use the test set, which includes 110 tampered images. Columbia
[19] is a very small dataset (180 tampered images); hence, we use it in its entirety
for evaluation without fine-tuning our model.
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4.2 Implementation Details

All of the models have been implemented using PyTorch [20]. For the training of
our model, we use Adam [13] as the optimization function with a 10−4 learning
rate. The network is trained for 20 epochs, and we save the model parameters
with the lowest loss in a validation set. Each batch contains 16 images along
with the maps of the handcrafted signals and their ground-truth masks. We run
our experiments on a Linux server with an Intel Xeon E5-2620v2 CPU, 128GB
RAM, and an Nvidia GTX 1080 GPU.

4.3 Evaluation Metrics

We use the pixel-level Area Under Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) as our primary metric to capture the model’s performance and
for comparison against the state-of-the-art splicing localization methods.

5 Experiments and Results

In this section, we provide an ablation study for our proposed method under var-
ious configurations (Sect. 5.1), the comparison against state-of-the-art methods
(Sect. 5.2), and some qualitative results (Sect. 5.3).

5.1 Ablation Study

Impact of Each Handcrafted Signal. First, we examine the impact of each
handcrafted signal, separately and combined, fused with our Multi-Stream (MS)
scheme and baseline Multi-Channel (MC) approach, where the signals are con-
catenated along the image channels. For the MS runs, we have two streams where
one handcrafted signal is used and three streams when all inputs are combined.
For the MC runs, the network has a single stream in all cases. Table 1 illus-
trates the results on the three evaluation datasets for several handcrafted signal
combinations using different fusion schemes. In general, using the MS fusion
scheme leads to better results than using MC for the majority of the hand-
crafted signals and datasets. RGB+SB with MS consistently achieves very high
performance, being among the top ranks in all datasets. It outperforms its MC
counterpart, achieving significantly better results on the IFS-TC dataset. Addi-
tionally, RGB+DCT+SB with MS outperforms the corresponding run with MC
in all datasets, highlighting that fusing multiple signals using MS leads to better
accuracy. MS-DCT reports improved performance compared to the MC-DCT
on two datasets, but it is worse than the other two configurations. Additionally,
combining handcrafted signals with the RGB images improves performance in
general, especially in the IFS-TC dataset. Finally, DCT and SB achieve com-
petitive performance in two datasets. This indicates that they capture useful
information, which our MS architecture exploits to further improve results.
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Table 1. Performance of our method with three signal and two fusion schemes on
CASIA, IFS-TC, and Columbia. MS and MC stand for Multi-Stream and Multi-
Channel processing, respectively.

Signals Fus. CASIA IFS-TC Columbia

DCT - 0.743 0.646 0.640

SB - 0.689 0.750 0.830

RGB - 0.877 0.614 0.818

RGB+DCT MC 0.866 0.732 0.688

MS 0.873 0.689 0.777

RGB+SB MC 0.869 0.679 0.855

MS 0.898 0.776 0.836

RGB+DCT+SB MC 0.851 0.721 0.717

MS 0.873 0.759 0.782

Table 2. Performance of our method with three signals with and without fine-tuning on
CASIA, IFS-TC, and Columbia. Note that we do not fine-tune our model on Columbia
due to its small size.

Signals FT CASIA IFS-TC Columbia

RGB ✗ 0.765 0.470 0.818

� 0.877 0.614 -

RGB+DCT ✗ 0.868 0.507 0.777

� 0.873 0.689 -

RGB+SB ✗ 0.753 0.460 0.836

� 0.898 0.776 -

RGB+DCT+SB ✗ 0.887 0.497 0.782

� 0.873 0.759 -

Impact of Fine-Tuning. Furthermore, we benchmark the performance of the
proposed multi-stream approach with and without fine-tuning on the evaluation
datasets. Table 2 displays the results of our method on the three evaluation
datasets when using the pre-trained and fine-tuned versions. Keep in mind that
we do not fine-tune for the Columbia dataset. It is noteworthy that there is
substantial performance gain in almost all cases where fine-tuning is applied. A
reasonable explanation is that, with the fine-tuning on the evaluation datasets,
the network learns to capture the information from the handcrafted features
based on the specific domain expressed by each dataset. Therefore, the extracted
cues from the employed handcrafted features might not be generalizable across
different datasets. We might improve the performance further on the Columbia
dataset if we could fine-tune our model on a dataset from a similar domain.

Impact of Skip Connections. Additionally, we benchmark the performance
of the proposed multi-stream approach with different configurations for the skip
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Table 3. Performance of our method with three signals and three configurations for
the skip connection on CASIA, IFS-TC, and Columbia. No indicates that no skip
connections are used. Img indicates that skip connection is used only for the image
stream. All indicates that skip connections are used only for all streams.

Signals Skip CASIA IFS-TC Columbia

RGB+DCT No 0.857 0.732 0.623

Img 0.873 0.689 0.777

All 0.840 0.616 0.742

RGB+SB No 0.879 0.773 0.741

Img 0.898 0.776 0.836

All 0.882 0.718 0.826

RGB+DCT+SB No 0.797 0.763 0.566

Img 0.873 0.759 0.782

All 0.871 0.808 0.762

connection. Table 3 displays the results of our method on the three evaluation
datasets using no, image-only and all-streams skip connections. It is notewor-
thy that the methods perform very robustly when a skip connection is used
in the image stream only. It achieves the best AUC in all cases, except for
RGB+DCT+SB in the IFS-TC dataset. Finally, the experiments with no use of
skip connections lead to the worst results, indicating that, thanks to the skip con-
nections, the network learns to successfully propagate useful information from
the encoder streams to the decoder. Yet, skip connections from the handcrafted
signals do not always help.

5.2 Comparison with the State-of-the-Art

In Table 4, we present our evaluation in comparison to four state-of-the-art
approaches. We select our networks with MS fusion and with skip connection
only to the image stream, denoted as MS-DCT, MS-SB, and MS-DCT+SB
for the three signal combinations. As state-of-the-art approaches, we have re-
implemented three methods, LSTMEnDec [1], LSTMEnDecSkip [18], and OwAF
[2], using the same training pipeline as the one for the development of our net-
works for fair comparison. These are closely related methods to the proposed
one. Also, we benchmark against the publicly available PyTorch implementa-
tion of ManTra-Net [22]1 without fine-tuning it on the evaluation datasets. All
methods are benchmarked on the same evaluation sets. In general, all three vari-
ants of our method achieve competitive performance on all evaluation datasets,
outperforming the state-of-the-art approaches in several cases with a significant
margin. Our MS-SB leads to the best results with 0.898 AUC, respectively, with
the second-best LSTMEnDecSkip approach achieving 0.810. Similar results are
reported on the IFS-TC dataset. Our MS-SB achieves the best AUC with 0.776,

1 https://github.com/RonyAbecidan/ManTraNet-pytorch.

https://github.com/RonyAbecidan/ManTraNet-pytorch
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Table 4. Performance comparison against the state-of-the-art on CASIA, IFS-TC, and
Columbia.

Method CASIA IFS-TC Columbia

ManTra-Net [22] 0.665 0.547 0.660

LSTMEnDec [1] 0.628 0.648 0.809

LSTMEnDecSkip [18] 0.810 0.670 0.207

OwAF [2] 0.754 0.680 0.551

MS-DCT (Ours) 0.873 0.689 0.777

MS-SB (Ours) 0.898 0.776 0.836

MS-DCT+SB (Ours) 0.873 0.759 0.782

followed by the OwAF method with 0.680. Finally, our MS-SB achieves the
best results in the Columbia dataset with 0.836. Notably, the LSTMEnDec is
the second-best approach, outperforming our two other variants, MS-DCT and
MS-DCT+SB; however, this method performs poorly on the other two datasets.

5.3 Qualitative Results

Figure 2 illustrates some example results from the IFS-TC dataset. The first
three columns contain the network inputs, i.e., the RGB image, DCT, and Splice-
buster. The third column presents the ground truth masks, and the last ones
depict the network predictions. In the first example, Splicebuster provides a
useful lead to the network, which is able to detect the tampered area with high
accuracy, especially the MS-SB run. In the second case, all of our networks detect

Fig. 2. Visual examples of our multi-stream network with three signal combinations
from the IFS-TC dataset.
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the tampered area, even though DCT does not seem to be helpful. In the next
two examples, none of the handcrafted signals precisely localize splicing, but our
MS-SB and MS-DCT+SB are able to detect it partially. Finally, in the last case,
our networks failed to localize the forged areas in the image, although the two
handcrafted signals highlight the correct area only in a small part. In general,
the qualitative results here align with the quantitative of the previous sections,
with MS-DCT providing the worst predictions among our three settings, while
MS-SB detects the tampered areas with significantly higher accuracy.

6 Conclusion

In this work, we proposed a deep learning method that localizes spliced regions in
images by fusing features extracted from the RGB images with ones extracted
from handcrafted signals based on a multi-stream fusion pipeline. We experi-
mented with two popular handcrafted signals based on DCT and Splicebuster
algorithms. Through an ablation study on three datasets, we demonstrated that
our multi-stream fusion approach yields competitive performance consistently.
Also, we compared our approach to four state-of-the-art methods, achieving the
best performance on all three datasets. In the future, we plan to investigate more
architectural choices that improve the effectiveness of signal fusion and employ
more robust handcrafted signals.
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