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Abstract. The concept of object-to-object similarity plays a crucial role
in interactive content-based video retrieval tools. Similarity (or distance)
models are core components of several retrieval concepts, e.g. Query by
Example or relevance feedback. In these scenarios, the common approach
is to apply some feature extractor that transforms the object to a vector
of features, i.e., positions it into an induced latent space. The similarity
is then based on some distance metric in this space.

Historically, feature extractors were mostly based on some color his-
tograms or hand-crafted descriptors such as SIFT, but nowadays state-
of-the-art tools mostly rely on some deep learning (DL) approaches. How-
ever, so far there were no systematic study of how suitable are individual
feature extractors in the video retrieval domain. Or, in other words, to
what extent are human-perceived and model-based similarities concor-
dant. To fill this gap, we conducted a user study with over 4000 similar-
ity judgements comparing over 20 variants of feature extractors. Results
corroborate the dominance of deep learning approaches, but surprisingly
favor smaller and simpler DL models instead of larger ones.

Keywords: Content-based video retrieval · Similarity models · User
study

1 Introduction

In the 21st century, digital video data started to be produced at an unprece-
dented quantity. Even individual users may produce tens hours of home videos
every year, while hundreds hours of video content is being uploaded to YouTube
every minute1. Nonetheless, while the volume of produced content increases at
tremendous speed, the challenge of effective and efficient search and retrieval of
this content remains open. Commercially available search engines still mainly
focus on metadata-based search, but current research gradually shift towards
multimedia content understanding, innovative retrieval models and GUIs.

This is well illustrated e.g. on the recent editions of Video Browser Showdown
competitions [7] as well as prototype tools for content-based video retrieval, e.g.
[8,12,16]. While the main task of these tools is to search within the video con-
tent, this is often simplified by representing videos as sequences of keyframes and
1 https://www.oberlo.com/blog/youtube-statistics.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D.-T. Dang-Nguyen et al. (Eds.): MMM 2023, LNCS 13834, pp. 54–65, 2023.
https://doi.org/10.1007/978-3-031-27818-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27818-1_5&domain=pdf
http://orcid.org/0000-0002-5985-3310
http://orcid.org/0000-0001-8082-4509
https://www.oberlo.com/blog/youtube-statistics
https://doi.org/10.1007/978-3-031-27818-1_5


Less Is More: Similarity Models for Content-Based Video Retrieval 55

therefore reduced to an image search with some additional information (e.g.,
audio transcription or the notion of sequentiality). Some of the main utilized
retrieval concepts are text search via text-to-image joint embeddings [14,21],
using multi-queries with some temporal proximity conditions [8,12,16], various
Query-by-Example (QBE) models [8,16], or models incorporating iterative rele-
vance feedback of users [12]. Especially the latter two approaches are based on
the concept of object-to-object similarity, which is the main focus of this paper.

Early approaches on similarity modeling utilized handcrafted features such
as color histograms [18], texture descriptors [10] or more complex sets of low-
level semantic descriptors [11]. In contrast, the vast majority of state-of-the-art
solutions use some variant of pre-trained deep networks, mostly convolutional
neural networks (CNN) or transformer-based architectures. Deep learning (DL)
approaches provided tremendous improvements in many computer vision related
tasks, such as image classification, object detection, video segmentation and so
on. However, the problem of suitability of (pre-trained) DL approaches to serve
as feature extractors for some similarity models was largely neglected so far. More
specifically, we are not aware of any systematic evaluation of human-perceived
and machine-induced similarity models in the context of video retrieval. We
assume that part of the reason is the lack of suitable datasets for the video
retrieval domain and its rather costly acquisition due to the necessity to collect
human similarity judgements.

We consider this to be a substantial gap, which may hinder the future devel-
opment of effective video retrieval systems. The problem is not only to evaluate
which feature extractors are more suitable for similarity-based retrieval tasks,
but also to estimate how much confidence we may have in the conformity of
the similarity models. In general, our work focus on the duality between data
semantics and its visual similarity [23], where the duality of human- and machine-
perceived similarity can be considered as an instance of this generic problem. In
particular, the main contributions of this paper are as follows:

– Evaluating the level of concordance with human similarity judgements for
over 20 feature extractors including both recent DL and shallow techniques.

– Identifying several contextual features affecting expected levels of agreement.
– Providing a dataset of human similarity judgements for future usage.

2 Related Work

We are not aware of any directly related work from the video retrieval domain.
However, there are some works aiming on the similarity perception in the image
domain [6,13,20,22], which is quite close to our research area.

Peterson et al. [20] focused on 6 categories of images (e.g., animals, automo-
biles, furniture) and human judgement was obtained for within-category pairs
on a 10-point rating scale (from “not similar at all” to “very similar”). Authors
then compared human similarity judgements with the similarity induced by sev-
eral CNN networks (AlexNet, VGG, GoogLeNet and ResNet) pre-trained on
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Fig. 1. Samples from ImageNet dataset (left) and V3C1 dataset (right).

the ImageNet dataset [3]. Results indicate varying performance among different
image categories, but ResNet architecture [5] achieved the best performance on
raw representations (i.e., without any fine-tuning for the particular task).

Roads and Love [22] published the Human Similarity Judgements extension
to the ImageNet dataset [3]. In this case, users were asked to select first and
second most similar images (out of 8 available) to the query image. Similar-
ity models were subsequently compared w.r.t. triplet accuracy, i.e. whether the
candidate image A or B is more similar to the query item Q. Relatively large
pool of deep learning architectures were compared including e.g., VGG, ResNet,
DenseNet and Inception. Again, ResNet model [5] with 50 layers provided the
best triplet accuracy.

In contrast to both related works, we added several “up-to-date” network
architectures which emerged recently. Similarly as in [22], we adopted a query-
response style of similarity judgements and we also utilized triplet accuracy as
our main evaluation metric. However, instead of “select two from eight” sce-
nario, we asked users to only compare the similarity of two candidate items,
directly following the triplet scenario. On one hand, this reduces the volume of
triplets generated from a single user feedback, but it also minimizes the effects of
positional biases [9] and contextual interference of other displayed items. Also,
this decision allows us to easily tune the expected difficulty of the task through
estimated similarity levels between all three images (see Sect. 3.3). More impor-
tantly, there are fundamental differences between underlying datasets. While
ImageNet images mostly depict one clearly identifiable object, video keyframes
are much more heterogeneous. There can be multiple “main” objects visible,
some of them blurry or fuzzy due to the camera motion etc. (see Fig. 1 for exam-
ples). Therefore, it is not clear whether the performance on ImageNet or similar
image datasets transfer well into the video domain.

It is also worth noting that instead of using pre-trained feature extractors,
one can aim to learn feature representations directly from similarity judgements.
However, such approaches are extremely demanding on the volume of available
data. This is problem in ours as well as many other domains, so the approaches
such as [6] (as well as active learning and transformed representations mentioned
in [22] and [20] resp.) are not plausible in our scenario.
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The volume of similarity judgements we collected is lower than in the related
works, but the dataset is large enough to identify the most suitable feature
extractors and also to suggest several contextual features that may help to esti-
mate the level of agreement between human-perceived and machine-induced sim-
ilarity.

3 User Study

3.1 Dataset and Pre-processing

Usually, image datasets consist of images with a focus on the main object or a
few main objects. The number of main object types is often limited and even
some of the biggest ones such as ImageNet [3] have a limited number of classes.
Image similarity is a subjective skill of humans to assess which images are more
or less similar. This skill can be used not only on nicely arranged images but
in general on any image - even the ones where we can’t properly describe the
overall scenery. We aim to investigate if we can mimic the said human skill with
computer vision and deep learning methods in general. To achieve this, we used
the first part of the Vimeo Creative Commons Collection dataset (V3C1) [1].
This dataset contains 7 475 videos of various lengths and topics. We specifically
utilized the provided keyframes for each shot, resulting into 1 082 659 images
in total. Additional cleaning process was applied to remove single color images
and other trivial artefacts (e.g. extremely blurry images). After the cleaning, 1
010 398 keyframes remained in the dataset.

3.2 Similarity Models

In this study, we utilized four types of feature extractors (Color-based, SIFT-
based, CNN-based and Transformer-based) to acquire feature vectors. For each
of these vectors, we used cosine distances to estimate image similarities.

Color-Based Extractors. Simple color-based extractors were commonly used
in the pre-deep learning era for content-based image retrieval. Due to their usual
simplicity, it worked well in some domains [18] and thanks to the hand-crafted
nature these methods usually do not need any training data. We utilized three
variants of color-based feature extractors denoted as RGB Histogram, LAB Clus-
tered and LAB Positional.

RGB Histogram computes a pixel-wise histograms of all three color channels
(64 and 256 bins per histogram were evaluated). Then the three histograms are
concatenated and L2-normalized. The downside of RGB color space is that it
is not uniformly distributed w.r.t. human-perceived color similarity. Thus we
also focused on LAB color space [19] that is designed to cope with this non-
uniformity. Specifically, LAB Clustered extractor computes K-means w.r.t. LAB
representation of all pixels. The centroids from K-means are then taken as rep-
resentatives for the image. Representative colors are sorted w.r.t. hue compound
of HSV color space and concatenated to form a final feature vector. The variant
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with K = 4 clusters was evaluated. Finally, LAB Positional extractor exploits
individual regions of the image. The image is divided into several chessboard-like
regions, which are represented via its mean color. We evaluated region grids of
2 × 2, 4 × 4 and 8 × 8.

SIFT-Based Extractors. People usually do not use only the color when assess-
ing the similarity - shapes and textures can also play a significant role. Such
image attributes can be captured by Scale-invariant feature transform (SIFT)
[17] keypoints. However, the number of keypoints may vary among images, so
additional post-processing is necessary to get a global feature descriptor. We
utilize the vector of locally aggregated descriptors (VLAD) as proposed in [11].
VLAD is obtained by computing the bag-of-features dictionary for SIFT key-
points and then aggregating the keypoints as residuals from the nearest features
from the dictionary (the variant with a dictionary of 64 features was evaluated).

CNN-Based Extractors. In the recent years, convolutional neural networks
such as [5,25] have been widely used as state-of-the-art in many fields of com-
puter vision and video/image retrieval. These deep networks need a lot of train-
ing data to learn and such large datasets are currently not available for general
video keyframes similarity as well as many other domains. Therefore, trans-
fer learning [24] approach is often used. The method uses data from another
domain to train a deep network and then use this pre-trained (optionally fine-
tuned) network on the target domain. In video retrieval, the fine-tuning step is
often skipped and keyframe’s features are represented as activations of the last
connected layer.

We utilized the following architectures: ResNetV2 [5] with 50, 101, and 152
layers, EfficientNet [25] and its variants B0, B2, B4, B6, and B7 (indicating the
size of the network) and W2VV++ [14]. Both ResNetV2 and EfficientNet were
trained on image classification task using the ImageNet [3] dataset. In contrast,
W2VV++ was trained on MSR-VTT [27] and TGIF [15] datasets and its task
was to project both images and textual description to a joint vector space.

Transformer-Based Extractors. A novel Transformer architecture [26] was
originally proposed for natural language processing, but it was soon adopted in
many other domains. The Vision transformers were first applied in [4] and quickly
improve over state-of-the-art in many computer vision tasks. We utilized three
variants of transformers architecture: Vision transformer (ViT ) [4], CLIP [21]
and ImageGPT [2]. All Transformer models were taken from the HuggingFace
library2. Similarly as for CNNs, we used activations of the last connected layer
as a feature vector. ViT was trained on the ImageNet dataset and we evaluated
two sizes: base and large. For the CLIP model we used two patch size variants:
16 and 32. Similarly as W2VV++, CLIP also aim to create a shared latent space
for text and images. Finally, for ImageGPT was also trained on the ImageNet
dataset and we utilized its small and medium variants. In this case - as per
author’s suggestions - we used network’s middle layers to create feature vectors.

2 https://huggingface.co/.

https://huggingface.co/
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3.3 Evaluation Procedure

The user study was conducted during June–August, 2022 via a dedicated web-
site3. Participants were recruited via internal channels, mostly from the pool
of reliable participants of previous studies conducted by the authors. Partici-
pants’ task was first to (optionally) provide some personal details (age, educa-
tion, knowledge of DL) and then they were forwarded to the study itself. At each
step, participants were presented with one query keyframe Q and two candidate
keyframes A and B. The task was to decide, which of the candidates is more
similar to the query4. Participants simply clicked on the desired image and con-
firmed the selection. The volume of iterations was not limited (i.e., participants
could continue with the study as long as they wanted). In the initial briefing,
users were asked to provide at least 20–30 judgements, but most participants
actually provided more feedback (mean: 116, median: 77 judgements per user).

For each iteration of the study, individual tasks were selected at random
from the dataset of 66 000 pre-generated triplets. This dataset was selected as
follows: first, 100 query items were selected at random. Then, for each feature
extractor, we sorted all 1M keyframes from the most to least similar (w.r.t. cosine
and Euclidean distances) and clustered them into 5 bins w.r.t. their rank (break
points at [24, 28, 212, 216, 220]). Then, for each bin, we selected one candidate from
that bin at random and iterated over all same-or-more distant bins, selecting the
second candidate from each of them. This produced 30 triplets per extractor and
query item. The idea behind this procedure is to include both similar and distant
examples w.r.t. all extractors. Naturally, for all judged triplets we evaluated
distances and ranks w.r.t. all extractors.

Overall, we collected 4394 similarity judgements from 38 unique participants.
The pool of participants leaned a bit towards higher-educated and higher DL
knowledge as compared to the general population. Most of participants were
20–35 years old. The sample could be a bit better balanced, which we plan to
address in our follow-up work. However, note that all observed age, education
and DL knowledge groups were present in the pool of participants.

For all extractors and all triplets with human judgement, we evaluated which
of the candidate items (A or B) is closer to the query keyframe Q. Then, we
compared this with the actual human judgement. We report on triplet accuracy
(acc), i.e., the ratio of concordant judgements in the dataset.

4 Results

Figure 2 depicts overall triplet loss results for individual extractors. All extrac-
tors performed better than random guessing (i.e., acc > 0.5), but performance
differences among extractors were rather substantial. Notably, there was a clear
gap between shallow (color and SIFT-based) approaches, which were inferior to
all deep-learning models. Out of DL models, ImageGPT (both versions) was

3 https://otrok.ms.mff.cuni.cz:8030/user.
4 The exact prompt was “Which image is more similar to the one on the top?”.

https://otrok.ms.mff.cuni.cz:8030/user
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Fig. 2. Triplet accuracy results w.r.t. individual feature extractors. X-axis denote
triplet accuracy, black bars denote 95% confidence intervals and horizontal line indicate
the accuracy of random guessing.

clearly inferior, while there was another larger gap between the performance of
the best extractor (W2VV++) and the second best (EfficientNetB0 ).5

We also observed an interesting fact that smaller variants of the same archi-
tecture almost consistently outperformed the larger variants. To verify this, we
compared results of two groups of models including largest and smallest vari-
ant of given architectures respectively.6 Overall, smaller models significantly
outperformed the larger ones with p = 0.016 according to Fisher exact test.
Similarly, transformer-based architectures (CLIP, ViT, ImageGPT ) were signif-
icantly dominated by traditional CNN architectures (ResNetV2, EfficientNet,
W2VV++): p = 2.2e− 11 w.r.t. Fisher exact test.

Next we focused on how similarity estimations of individual extractors corre-
late with each other and whether this can be utilized in some form of an ensemble
model. Figure 3 denote the ratio of concordant judgements for all pairs of extrac-
tors. Different size variants of the same architecture were all highly correlated
(0.7–0.95) as well as all DL approaches (0.65–0.85) except for ImageGPT. These
were, quite surprisingly, more correlated to RGB Histogram models than to other
DL approaches. Overall, there were no prevalently discordant pairs, but average
agreement of pairs not specifically mentioned here was quite small (0.5–0.65).

To evaluate the possibility of creating ensemble models, we focused on how
the level of agreement between extractors affect the triplet accuracy scores.
Figure 4 depicts how triplet accuracy changes when certain volume of other
extractors assume the same ordering of candidates as the current one. For the
sake of space we only depict results for the best and the worst extractor. In both
cases, the accuracy improves almost linearly with the volume of concordant

5 All mentioned differences were stat. sign. with p < 0.05 w.r.t. Fisher exact test.
6 The first group included RGB Histogram 256, LAB Positional 8x8, ImageGPT

medium, EfficientNetB7, ViT large and ResNetV2 152. The second group included
RGB Histogram 64, LAB Positional 2x2, ImageGPT small, EfficientNetB0, ViT base
and ResNetV2 50.
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Fig. 3. Level of agreement between individual feature extractors.

extractors. For W2VV++, however, the difference is smaller overall and also
the situation where only a handful of extractors agree with W2VV++ is quite
rare (as the larger confidence intervals indicate). We also experimented with a
variant where only the 6 best-performing extractors are considered. In this case,
if none or just one additional extractor agrees with W2VV++ (in total 10%
of cases), the model would perform better with inverted predictions. Therefore,
we can conclude that there is some space for improvements via ensemble-based
solutions in the future.

Next, we focused on how does the distances between images affect the results.
In principle, three variables (and their interplay) should be considered: distance
from query image to both candidates and distance between both candidates.
In either case, we can focus on the raw values, or some derived statistics, e.g.

Fig. 4. Dependence of triplet accuracy on the volume of other feature extractors agree-
ing with the current one. Left: W2VV++ (best-performing extractor), right: LAB
Clustered (worst-performing). Note that for W2VV++, there were only very few cases
where the volume of agreeing extractors was < 7.
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Fig. 5. The effect of distance-based ranking of both candidate items on triplet accu-
racy. Left: W2VV++ (best-performing extractor), center: EfficientNetB4 (average-
performing), right: LAB Clustered (worst-performing). Note that only bins with 10+
items are depicted.

distance-based ranking. Figure 5 depict how the triplet accuracy depends on the
distance-based ranking of both candidate items. We can see a clear decrease
of performance towards the diagonal (i.e., where both candidates are approx.
equally distant from the query image). In these cases, even the similarity esti-
mation of the best extractors are close to the random guess. For all extractors,
accuracy improves with increasing difference in ranks of both candidates (i.e.
towards bottom-left corner). Specifically, if one of the candidates is very close
or very distant (first column/last row), even average extractors are almost 100%
concordant with the human judgement. We further performed a Gini gain anal-
ysis for the best extractor. Seemingly, the most informative single variable is
the difference in distances of both options to the query. Additional gain can be
achieved by also adding the distance between both candidates, but the improve-
ments were small compared to the previous case. For the sake of completeness,
Fig. 6 (left) depicts dependence of accuracy on the relative difference in candi-
date’s distances (normalized by the distance to the farther candidate), where a
similar pattern can be observed for all extractors.

Finally, we observed whether some features derived from the user’s behavior
can suggest the level of concordance between similarity perception. As Fig. 6
(right) indicate, if users needed shorter time to decide about the similarity, their
decision was more concordant with the similarity based on feature extractors.
Supposedly, this would mostly indicate simpler cases, but using time to decide
as additional factor along with the difference in query-candidate distances and
the distance between both candidates, further Gini gain was achieved. As such,
user’s feedback features can provide valuable additional information.

Note that it is not realistic to assume that either query-candidate distances
or user’s time to decision can be manipulated on purpose to achieve better con-
cordance of similarity perception. Instead, this information can be transformed
to the level of “trust” we have in our model of similarity perception. The level
of trust can e.g. affect the strictness of update steps in relevance feedback, or
introduce certain level of randomness in QBE approach.
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Fig. 6. The dependence of triplet accuracy on the relative differences in query-
candidate distances (left) and user’s time to decision (right). Extractors are sorted
w.r.t. their overall performance.

5 Discussion and Conclusions

In this paper we focused on evaluating the agreement between human-perceived
and machine-induced models of similarity for video retrieval. Specifically, we
collected a dataset of over 4000 human similarity judgements and compared it
with similarity judgements based on 22 variants of feature extractors. The best
performing extractor was W2VV++ [14] and in general DL approaches outper-
formed all shallow models by a large margin. Surprisingly, smaller DL architec-
tures and traditional CNN-based architectures outperformed larger models and
those based on transformers respectively. We also identified several variables
that can help to estimate reliability of our similarity models, e.g., difference
in query-candidate distances, user’s time to decision or the level of agreement
among extractors.

Nonetheless, this initial study has several limitations. First, participants were
forced to make decision even when they were unsure about it. In the future we
plan to enhance the study design to allow users to provide graded feedback and
therefore reflect the level of uncertainty in their decisions. Related to this, we
did not yet focus on an inherent level of noise in human judgements, i.e., what
is the level of agreement if multiple users evaluate the same triplets. Both of
these enhancements could provide additional context on differences in similarity
perception, i.e., are there cases where humans are highly certain and unanimous,
yet discordant with machine-induced similarity judgements? Furthermore, so far
we did not consider the context of evaluated keyframes. In theory, one extractor
may provide well-aligned similarity for, e.g., landscape images, while fail in the
similarity of people. Such evaluation would, however, require larger data samples
than currently collected. Therefore, we plan to conduct a larger follow-up study
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focusing on uncertainty in human judgements as well as various sub-spaces of
the dataset.

In a different line of the future work, the study showed some potential for
ensemble approaches as well as variables allowing to estimate reliability of the
similarity models. These findings should be exploited to improve both used simi-
larity models as well as their application in retrieval tasks. We do not assume that
larger quantities of similarity judgement data would be readily available for real-
istic content-based video retrieval tasks. However, another line of the future work
may focus on how to collect such data from the causal usage of video retrieval
systems and e.g. propose on-line improvements of similarity judgements through
reinforcement learning.

Finally, in a related line of our research, we focus on the problem of con-
structing artificial visualizations for originally non-visual data for the purpose
of similarity-based retrieval [23]. We plan to utilize the findings on human-
vs. machine- based similarity compliance to derive an automated visualization
quality assessment, which would allow to test a wider range of visualization
approaches off-line, without the need for expensive user studies.
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