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Abstract. The goal of rain streak removal is to recover the rain-free
background scenes of an image degraded by rain streaks. Most current
deep convolutional neural networks methods have achieved dramatic per-
formance. However, these methods still cannot capture the discriminative
features to well distinguish the rain streaks and the important image con-
tent. To solve this problem, we propose a Multi-scale and Multi-stage
deraining network in the end-to-end manner. Specifically, we design a
multi-scale rain streak extraction module to capture complex rain streak
features across different scales through the multi-scale selection kernel
attention mechanism. In addition, multi-stage learning is used to extract
deeper feature representations of rain streak and fuse different stages of
background information. Furthermore, we introduce a Fourier space loss
function to reduce the loss of high-frequency information in the back-
ground image and improve the quality of deraining results. Extensive
experiments demonstrate that our network performs favorably against
the state-of-the-art deraining methods.

Keywords: Image deraining · Multi-scale · Multi-stage · Fourier space
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1 Introduction

Image quality is degraded when images are captured in rainy conditions, which
not only affects human visual perception but also drastically drop the perfor-
mance of downstream vision tasks, such as optical flow estimation [21], object
recognition [1] and object tracking [19]. Therefore, it is important to study how
to effectively remove rain streaks from the given rain image.

The de-rain problem is usually represented by the following linear superim-
position model [17]:

O = B + R, (1)

where O denotes the rain image, R is the rain layer, and B is the background
layer, which is generally called the rain-free image.

In recent decades, many methods have been proposed for single image derain-
ing (SID). The tradition methods are layer priors with Gaussian mixture model
(GMM) [16], discriminative sparse coding (DSC) [17], and joint convolutional
analysis and synthesis sparse representation (JCAS) [6]. Although the above SID
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methods can achieve good performance, they still cannot separate the rain layer
from rainy images completely. Besides, the handcraft low-level representation
produced by strong prior assumptions, leads to bad generalization performance
for rain streaks removal.

Recently, deep learning has been widely used in computer vision and has
shown competitive results. Various SID methods based on convolutional neu-
ral network(CNN) have been proposed [13,15,23]. In order to adequately sepa-
rate the rain streaks from the rain images, Li et al. [13] adopted Squeeze-and-
Excitation network to explore the relationship between channels and rain streaks
of the rain images. Wang et al. [23] designed an iterative algorithm using proxi-
mal gradient descent technique to extract rain streaks. In addition, Li et al. [15]
applied rain embedding loss and rectified local contrast normalization to SID.
However, the above methods often tend to excessive or insufficient removal of
rain streaks, resulting in the loss of structural information of the reconstructed
images. The main reason maybe that these methods do not consider the char-
acteristics of rain streaks semantically related to the image content [7], such as
the different shapes, directions, transparency across the image, which leads to
inadequate learning ability of their basic modules to rain streaks.

In the paper, we propose a novel MS2DNet by learning rain streaks distri-
bution to solve the above mentioned difficulties. We note that the similarity of
patch-level rain streaks exists not only in the same scale but also in different
scales. Therefore, we construct a multi-scale feature extraction module to effec-
tively capture the local and global features of rain streaks. To be specific, for the
multi-scale feature extraction module, we first use convolution with SE residuals
in residual blocks [30] to extract rain streaks information from different scales.
Secondly, we use a selective feature fusion mechanism [14] to align and adaptively
extract features from different scales. Finally, the extracted rain streak features
are fused again and the rain streaks map is sent as the background module to
predict the rain-free image. In addition, we also introduce frequency features
by Fourier transform to further improve the derain quality. In this paper, we
perform a series of experimental validation on MS2DNet. The quantitative and
qualitative results show the superior performance of the MS2DNet. The main
contributions of this work are as follows:

• We propose a novel MS2DNet to incorporate multi-scale information with
multi-stage learning strategy for SID. Our MS2DNet can extract the rain
streak features from rainy images by using a multi-scale rain streaks extrac-
tion module (MREM) that can adaptively select and fuse the rain streak
features extracted from different scales to improve the performance. To fur-
ther improve the performance, we propose a multi-stage learning strategy to
extract deeper information about rain streaks and to fuse background infor-
mation from different stages.

• To preserve the frequency domain information as well as preserving content and
structure information of the image, we introduce the frequency space loss by
calculating the frequency components with the fast Fourier transform (FFT).

• Extensive experiments demonstrate that our approach achieves outstanding
performance on synthetic and real-world rain datasets.
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2 Related Work

2.1 Single Image Deraining

Most single image derain methods acquire the background layer by separating
the rain layer from the rain image. These approaches can be divided into two
categories: model-driven and data-driven.

The model-driven approaches use a priori knowledge derived from statistical
images to extract rain streaks. Kang et al. [11] decomposed the rain streaks into
the high-frequency part, and then extracted the rain streaks by dictionary learn-
ing. This method successfully extracts the rain streaks. However, the separated
boundaries can not be obtained precisely, resulting in blurred background infor-
mation. To solve the above problem, Zhang et al. [27] combined sparsity code
with low-rank representation to obtain clear background layer and rain layer.

The data-driven approachs use the powerful fitting capabilities of CNN to
distinguish the difference between background and rain streaks. Yang et al. [25]
proposed a SID model based on recurrent network to remove rain streaks. RES-
CAN [13] designs a recurrent network to obtain rain streaks, where the dilated
convolution is used to learn the contextual information. To full use multi-scale
collaborative representation for rain streaks from the perspective of input image
scales, Jing et al. [8] designed a progressive network to learn the intermediate
information of the image, which consists of multiple residual blocks, while intro-
ducing the LSTM. To better capture the characteristics of rain streaks, Wang et
al. [23] proposed a convolutional dictionary to extract rain streaks and replace
complex optimization processes with proximal gradient algorithms.

2.2 Multi-scale Learning

There is a high similarity of rain streaks between same scale and different scales
in natural environments. How to use this property to achieve effective extraction
of rain streaks has attracted the attention of many researchers. For example, Li
et al. [12] proposed a scale-aware multi-stage convolutional neural network to
learn rain streaks at different scales. Fu et al. [4] proposed multi-branch pyra-
midal networks to learn rain streaks features in a specific pyramidal spatial.
However, this method ignored the correlated information among these pyramid
layers. Zheng et al. [31] proposed a cascaded pyramidal network instead of the
optimization method of coarse to fine. Unfortunately, some details and scale fea-
tures are lost due to the excessive focus on higher-level features. Different from
the above methods, we design a new multi-scale feature extraction and fusion
module, in which rich information of different scale obtained by residual atten-
tion module extraction is fused by adaptive selection network. As a result, we
are able to obtain more accurate rain streaks distribution.

2.3 Multil-stage Learning

It is proved that extracting features through multiple stages is more beneficial
for feature representation [13,22,29]. For example, Nah et al. [18] divided the
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image recovery task into three stages: coarse, medium and fine, and used the
information from the first two stages to retain detailed features. Fu et al. [4]
attempted to capture complex rain streaks in different stages based on pyramidal
division into networks. To tackle the optimization problem from a coarse to fine,
a cascaded pyramidal network is proposed by Zheng et al. [31]. However, it is
difficult to make full use of feature information by simply cascading multiple
stages. Different from the above methods, we propose a multi-stage learning
strategy to adaptively fuse the useful information of the previous stage rain-
free background image to guide the deraining in later stages. Such a simple
implementation preserves the desired fine texture in the final output image.

3 Proposed Method

3.1 The Overall Structure of MS2DNet

The proposed Multi-scale and Multi-Stage deraining Network (MS2DNet) con-
sists of N stages. Each stage is composed of Multi-scale rain streaks extraction
module (MREM) and Background recover module (BRM). The architecture of
MS2DNet is shown in Fig. 1. MREM is designed for extracting rain streaks infor-
mation, which is mainly composed of SE-residual in residual block [30] (SRiR)
and selective kernel feature fusion mechanism [14] (SKFF). In order to further
improve the quality of deraining images, BRM is introduced to recover the back-
ground image through different stages to avoid low-quality background images
caused by excessive or incomplete deraining.

3.2 Multi-scale Rain Streaks Extract Module

Rain streaks extraction is a critical step for the rain removal. The multi-scale
residual block [26] was used for image enhancement which extracts features and
fuses information from different streams through multiple attention mechanisms.
Inspired by this, we design a novel multi-scale residual extract feature module
to effectively capture rain streaks information. Our MREM consists of three
convolution streams connected in parallel and SRiR is used for feature extraction
on different scales. In order to fully exploit the representation power of the
network, we use SKFF to adaptively fuse and select features from different scales.
In MREM module, as shown in Fig. 1, we firstly apply downsampling operation
(DS) with different times to obtain the multi-scale rain feature maps, and utilize
a convolution operation to adjust the channels of feature according to different
scales. It can be mathematically described as:

⎧
⎪⎨

⎪⎩

R̃ = Conv(Rs−1), 1 ≤ s,

R̃i = R̃, if i = 0,
R̃i = Conv(DS(R̃i−1)), if i > 0,

(2)

where Rs−1 denotes rain layer from s − 1 stage, R̃ is the input of MREM, R̃i

represents the rain feature maps of different scales, DS denotes downsampling
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Fig. 1. The overall framework of the proposed Multi-scale and Multi-stage Deraining
Network (MS2DNet).

operation. Then, we employ SRiR to extract effective rain feature maps. In order
to fully exchange information and obtain contextual information from different
scales, a feature fuse and select module is also applied as following:

⎧
⎪⎨

⎪⎩

R̃r
i = SRiR(R̃i), if i = 0, 1, 2,

R̃k
i = SKFF (UDS(Conv(R̃r

i ))), if i = 0, 1, 2,
R̂r

i = SRiR(R̃k
i ), if i = 0, 1, 2,

(3)

where UDS denotes upsampling or downsampling operation which is used to
adjust the scale of rain features. After obtaining the effective rain feature maps
R̂k

i , and again, we adopt feature fusion module to fuse and select informative
features from different scales as following:

R̂k = SKFF (US(Conv(R̂r
i ))), i = 0, 1, 2, (4)

Rs = Conv(Conv(R̂k) + R̃). (5)

3.3 Background Recover Module

After obtaining the rain layer Rs from MREM, we need to recover the back-
ground Bs. However, obtaining background information directly can lead to
contain some residual rain streaks or lose some image content. Inspired by [23],
we develop a fusion module that recovers the background B̂s with rain maps Rs,
and fuses B̂s with the previously stage Bs−1 by the parameters of the learnable
ξ to get the derained results. The background fusion module (shown in Fig. 1)
can be defined as:
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{
B̂s = O − Rs,

Bs = G((1 − ξ)Bs−1 + ξB̂s),
(6)

where O represents rain image and G is a residual group consisting of several
residual blocks.

3.4 Training Loss for Deraining Network

In order to obtain derained images with high quality perception and texture
from the deraining model, the loss of the model is formulated as:

LS = Lr + αLp + βLf , (7)

where Lr represents the reconstruction loss, Lp represents the perceptual loss,
Lf represents the Fourier space loss that aims to preserve the image details as
much as possible under the supervision of groundtruth image, α and β are the
balancing weights.

Reconstruction Loss. To obtain the reconstruction result, we use mean
squares error [2] (L2) to measure the distance between ground truth image and
deraining result as:

Lr = ||P (O) − B||2, (8)

where P (O) is the predicted image, and B represents the ground truth image.

Perceptual Loss. The perceptual loss [10] (PL) is used as a feature-level con-
straint to obtain the more semantic-level features of the acquired image. Percep-
tual loss can be defined as:

Lp =
1

CiHiWi
‖ϕi(P (O)) − ϕi(B)‖22 , (9)

where ϕi denotes the convolution operation used to extract features at layer i,
and Ci × Hi × Wi denotes the feature maps shape of the output at layer i. We
use the L2 to measure the inter-feature distance, and in this loss we use the
pre-trained VGG19 model.

Fourier Space Loss. Although having good performance in the image recon-
struction, the above two loss functions do not fully recover the details of the
groundtruth image. To solve the above problem, some methods [5,9] adopt fre-
quency information to compensate for missing texture details. Following these
methods, we introduce Fourier space loss (FSL) to the deraining network to pre-
serve texture information. The image I(x, y) are transformed into Fourier space
by applying the Fast Fourier transform (FFT). We calculate the amplitude dif-
ference Lf , |.| and phase difference Lf ,∠ of all frequency components between
output image and ground truth image. The averaged differences is computed as
the total frequency loss Lf as following:



Multi-scale and Multi-stage Deraining Network with Fourier Space Loss 581

Lf , |.| = 2
UV

U/2−1∑

u=0

V −1∑

v=0

∣
∣
∣
∣

∣
∣
∣Ŷ

∣
∣
∣
u,v

− |Y |u,v
∣
∣
∣
∣ , (10)

Lf ,∠ =
2

UV

U/2−1∑

u=0

V −1∑

v=0

∣
∣
∣∠Ŷu,v − ∠Yu,v

∣
∣
∣ , (11)

Lf =
1
2
Lf , |.| + 1

2
Lf ,∠, (12)

where Ŷu,v represents the spectrum of the recovered image, and Yu,v represents
the spectrum of the ground truth image.

4 Experiment and Result

4.1 DataSet

To evaluate the effectiveness of our proposed method, the experiments on the
synthetic dataset and the real dataset are conducted seperately. Rain200H
[25] and Rain200L [25] contains 1800 training images and 200 testing images.
Rain100L [25] contains 200 training images and 100 testing images. Rain12 [16]
has only 12 images for testing. Real-world dataset [28] includes 167 rain images
for testing. The model trained on Rain200H is used to test on Rain12 and real-
world datasets.

4.2 Implementation Details

In this paper, we adopt the Adam optimizer with the Hyperparameters β1 = 0.9,
β2 = 0.999. The learning rate is 5× 10−4, and the batch size is set to be 16. The
weight parameters α and β are 0.1 and 10 in the loss function, respectively. We
randomly crop the patch of which size is 128× 128 as the input of the deraining
network and the total epoch is 200. Our implementation is based on the Pytorch
platform and we train our model on an NVIDIA V100.

4.3 Comparisons with the State-of-the-arts

The proposed MS2DNet is compared to several state-of-the-art image deraining
methods, including RESCAN [13], SpaNet [24], PreNet [20], MSPFN [8], RCD-
Net [23], RLNet [3] and ECNetLL [15]. We use some common evaluation metrics
including PSNR and SSIM for quantitative deraining.

Result on Synthetic Datasets. The quantitative results on the synthetic
datasets are presented in Table 1. We can notice that the proposed MS2DNet
achieves remarkable improvement over the existing state-of-the-art methods.
Meanwhile, it can be observed that MS2DNet has a better generalization ability
than other models via comparing the results on Rain12. We also provided the
visual results on synthetic datasets in Fig. 2. We can observe that our method can
obtain better recovered images and obtain more accurate structure and cleaner
background, especially in the cropped areas.
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Result on Real-World Datasets. We also verify the robustness on real-
world datasets. Since there are no corresponding groundtruth images to these
real-world datasets, the de-rained results are only evaluated by human visual
perception. For the two illustrated examples in Fig. 3, we can find that MS2DNet
has effectively remove rain streaks and restore better rain-free images. These
results show the strength of our methods to distinguish the rain streaks and the
important image content.

Table 1. PSNR and SSIM comparisons on four benchmark datasets. Bold indicates 1st
rank. * indicates the results directly copied from [3] since the authors do not provide
the full codes.

Methods Rain200H Rain200L Rain100L Rain12
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RESCAN [13] 26.66 0.841 36.99 0.978 36.58 0.970 32.96 0.954
SpaNet [24] 25.48 0.858 36.07 0.977 27.85 0.881 33.21 0.954
PreNet [20] 27.52 0.866 34.26 0.966 36.28 0.979 35.09 0.940
MSPFN [8] 25.55 0.803 30.36 0.921 33.50 0.948 34.25 0.946
RCDNet [23] 28.69 0.890 38.40 0.984 38.60 0.983 31.03 0.906
RLNet* [3] 28.87 0.895 – – 37.38 0.980 – –
ECNetLL [15] 28.85 0.898 38.35 0.984 38.26 0.982 32.35 0.962
MS2DNet (Ours) 29.91 0.908 39.28 0.986 38.39 0.983 36.70 0.966

Fig. 2. Visual comparison of the synthetic example on Rain200H. (a) Rainy image.
Draining results by (b) SpaNet, (c) PreNet, (d) MSPFN, (e) RCDNet, (f) ECNetLL,
(g) MS2DNet, (h) GT.

4.4 Ablation Study

We conduct the ablation studies to discuss the effectiveness of different compo-
nents in MS2DNet.

Effectiveness of the Different Modules
To validate the superiority of the MS2DNet, we conduct ablation study and ana-
lyze different components of the module. MREM+BRM denotes the MS2DNet.
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The results of the different modules are shown in Table 2. We can observe that
only the MERM module, we get (PSNR:29.37, SSIM:0.896), which can outper-
form the compared SOTA RLNet [3] (PSNR:28.87, SSIM:0.895). The addition
of the BRM module can further improve the rain removal performance.

Fig. 3. Visual comparison of the competing methods on real-world dataset. (a) Rainy
image. Draining results by (b) RESCAN, (c) SpaNet, (d) PreNet, (e) MSPFN, (f)
RCDNet, (g) ECNetLL, (h) MS2DNet.

Table 2. Ablation study on the effectiveness of the different modules on Rain200H.

Modules BRM MREM MREM+BRM PSNR SSIM

BRM � 28.07 0.881
MREM � 29.37 0.896
MREM+BRM � 29.91 0.908

Effectiveness of the Fourier Space Loss. To validate the effectiveness of the
Fourier space loss function, we conduct ablation experiments and analyze the
effectiveness of the mentioned loss functions for rain removal. Table 3 presents
the results of different loss combinations. We can observe that the Fourier space
loss improves the results compared to the perceptual loss, and approximates the
results which obtained by a combination of all loss functions.

Number of Stages in the MS2DNet. To explore the influence of different
numbers of stages, we conduct ablation experiments and the results are shown in
Table 4, where N indicates MS2DNet with different numbers of stages. We can
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observe that our method with 3 stages achieves the best performance. We set
the stages to be 3 for the balance of the computation cost and performance of
our algorithm.

Table 3. Ablation study on the effectiveness of loss functions on Rain200H.

Loss MSE PL FSL PSNR SSIM

Lr � 29.24 0.897
Lr + Lp � � 29.70 0.905
Lr + Lf � � 29.86 0.908
Lr + Lp + Lf � � � 29.91 0.908

Table 4. Ablation study on stage (MS2DNet) numbers on Rain200H.

Stage N = 2 N = 3 N = 4

PSNR 29.52 29.91 29.89
SSIM 0.901 0.908 0.906

5 Conclusion

In this paper, we have proposed a multi-scale and multi-stage deraining network
with Fourier space loss. In order to obtain high-quality derained images, a new
multi-scale and multi-stage deraining network is designed to extract complex
rain streaks and fuse background information from different stages. Especially,
the selection kernel attention mechanism is beneficial to fuse and select useful
rain streaks information from different scales. In addition, in order to eliminate
the blurring of the reconstruction content brought by the popular pixel-level loss
function, we introduce a Fourier space loss to reduce the loss of high-frequency
information and improve the deraining quality. The experiments in this paper
fully demonstrate the effectiveness of our proposed method on synthetic and
real-world datasets.
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