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Abstract. The main goal of unsupervised domain adaptation is to
improve the classification performance on unlabeled data in target
domains. Many methods try to reduce the domain gap by treating mul-
tiple domains as one to enhance the generalization of a model. How-
ever, aligning domains as a whole does not account for instance-level
alignment, which might lead to sub-optimal results. Currently, many
researchers utilize meta-learning and instance segmentation approaches
to tackle this problem. But it can only obtain a further optimized
the domain-invariant feature learned by the model, rather than achieve
instance-level alignment. In this paper, we interpret unsupervised domain
adaptation from a new perspective, which exploits the energy difference
between the source and target domains to reduce the performance drops
caused by the domain gap. At the same time, we improve and exploit the
contrastive learning loss, which can push the target domain away from
the decision boundary. The experimental results on different benchmarks
against a range of the state-of-the-art approaches justify the performance
and the effectiveness of the proposed method.

1 Introduction

Convolutional Neural Network (CNN) is one of the representative algorithms of
deep learning. However, CNNs often rely on a large amount of labeled training
data in practical applications. Although we can provide rich labels for some fields
with many categories, this leads to high time costs. To address this problem,
Unsupervised Domain Adaptation (UDA) can transfer the knowledge learned
from the labeled source domain to the unlabeled target domain, which has
attracted a lot of attention from academia [5,18] and industry [22].

Unsupervised domain adaptation has made impressive progress so far, and
the vast majority of methods adjust the distribution of source and target domains
by reducing the domain discrepancy, such as Maximum Mean Discrepancy
(MMD) [1], joint maximum mean Discrepancy (JMMD) [2], etc. Another pre-
dominant streams in UDA based on the Generative Adversarial Networks [25] to
maximize the error of the domain discriminator to confuse the source and target
domains (Fig. 1).
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Fig. 1. We achieve instance-level alignment by contrasting the ability of learning to
pull away positives samples and push away negatives.

However, directing alignment on the feature space may lead to the following
problems: First, due to sampling variability, the label space of source and tar-
get domain samples on each mini-batch is different, which undoubtedly leads to
outlier generation and negative optimization of generalization performance. Sec-
ond, this direct approach to reducing the domain gap does not take into account
instance-level alignment. Therefore, domain adaptation urgently need a solution
that considers both distribution and categories discrepancy.

To tacle aforementioned problem, this paper propose an energy
representation-based contrastive learning algorithm to avoid the first two prob-
lems: first, we improve contrastive learning and apply it to the UDA task for
instance-level alignment. Secondly, we look at the UDA problem from another
perspective, treating the target domain data as out-of-distribution data with the
same labels as the source domain data. Due to the different data distributions in
the target domain and the source domain, their energy values will be different
to some extent [28,32,33]. So we use this difference to encourage the classifier
to fit the energy value of the target domain to the vicinity of the source domain
to mitigate the effects of domain shift. Since the energy is a non-probabilistic
scalar value, it can be regarded as a certain norm of the output vector, which
is less negatively affected by the label space in the mini-batch and reduce the
domain gap can better avoid the negative optimization caused by Randomness
of sampling.

We conduct experiments on several datasets to compare state-of-the-art meth-
ods, and the experimental results demonstrate the effectiveness of our method.
Furthermore, we comprehensively investigate the impact of different components
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of our approach, aiming to provide insights for the following research. The contri-
bution of this article is summarized as follows:

1. We provide a new perspective that treats the target domain as out-of-
distribution data with the same label space in the source domain, and achieves
unsupervised domain adaptation by narrowing the difference between the
OOD and ID data of the source and target domains

2. We improve the paradigm of contrastive learning, using contrastive learning
to pull positive pairs closer and push negative pairs farther, enabling instance-
level alignment

3. To verify the effectiveness of our method, we conduct extensive experiments
on two datasets in UDA and select multiple state-of-the-art methods as our
adversaries. Experiments show that our method has good consistency in UDA.
We further conduct comprehensive ablation experiments to verify the effec-
tiveness of our method in different settings.

2 Related Work

2.1 Contrastive Learning

Self-supervised learning aims to improve the feature extraction ability of mod-
els by designing auxiliary tasks to mine the representational features of data as
supervised information for unlabeled data. [6,16,17]. At the same time, thanks to
the emergence of contrastive learning, many methods have been proposed to fur-
ther Improve the performance of unsupervised learning by reducing the distance
between positive samples. SimClr [8] is mainly used to generate comparison pairs
for the data in the current mini-batch through data augmentation and cosine
similarity, which improves the generalization ability of the model; MoCov1 [9]
updates the historical features of the stored samples through momentum, so that
the contrastive learning samples can contain historical information to obtain bet-
ter feature representation. Recent research shows that comparative learning is
further extended as a paradigm. There are also many methods attempt to con-
trastive learning from the perspectives of clustering [23,27,31]. Inspired by this,
we want to achieve instance-level alignment of UDA by contrasting the ability
of learning to narrow the distance between positive samples.

2.2 Energy Based Model

The main purpose of an energy model is to construct a function that maps every
point in space to a non-probabilistic scalar called energy based model (EBM)
was first proposed by LeCun et al. in [29]. Through this non-probabilistic scalar,
the problem that the model caused by probability density is difficult to opti-
mize and unstable can be well solved. liu et al. [28] used energy to detect out-
of-distribution (OOD) data; and [32] employs a formal connection of machine
learning with thermodynamics to characterize the quality of learnt represen-
tations for transfer learning, the energy based model has also been explored
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Fig. 2. We use the sample features of different dimensions to generate energy, and
complete the knowledge transfer between the source domain and the target domain
through energy transfer. Meanwhile, to achieve cross-domain instance-level alignment,
we pull the positive samples of the source and target domains closer by contrastive
learning.

in domain adaptation. Similarly, we approach the UDA problem from another
perspective: taking energy as a domain-specific representation, and completing
knowledge transfer in unsupervised domain adaptation through energy transfer.

2.3 Unsupervised Domain Adaption

The main purpose of unsupervised domain adaptation (UDA) is to transfer
knowledge in the labeled source domain to the unlabeled target domain. Ben
et al. [15] theoretically verifies that reduce the domain gap in the process of
training data is more conducive to making the classifier suitable for the target
domain. Based on this, reducing the domain gap [1,3,35] is a classic method
to solve the UDA problem. Without dealing with instance information in each
domain data, knowledge transfer can be accomplished by map the data distri-
bution to the Reproducing Kernel Hilbert Space (RKHS) and by convolutional
neural network to reduce the domain discrepancy [2,13].

3 Proposed Method

3.1 Basic Definition

Given the well-annotated source domain {(xs
i , y

s
i )}ns

i=1 = Ds, and unlabeled tar-
get instances
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}nt

j=1
= Dt, and an augmented to the target domain data
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j )
}na

j=1
= Da, where N denotes the number of classes. Our aim is to transfer

the knowledge learned from the labeled source domain to the unlabeled target
domain.

The overall structure of our network is shown in Fig. 2, we extract features
with a feature extractor F and define it as fi. To obtain better feature embed-
dings, we utilize the projection head P to map the features to the latent contrast



Energy Transfer Contrast Network 119

space, defined as pi. Finally we will go through the classifier C to generate a
probabilistic model for each sample.

3.2 Contrastive Learning at the Instance Level

Contrastive learning is a framework that usually uses the context of the same
instance to learn representations by discriminating between positive queries and
a collection of negative examples in an embedding feature space. We hope to
accomplish cross-domain instance-level alignment through its ability to learn
representations. However, contrastive learning methods that suitable for unsu-
pervised learning do not involve knowledge transfer between domains, and They
tend to fail if there is not enough contrast, e.g. samples in a mini-batch is insuf-
ficient.

After exploring a lot of recent work on contrastive learning, we found that
memory-bank and data augmentation techniques can be used to reduce the risk
of contrastive learning failure. memory-bank [9] can make up for the shortage
of samples in mini-batch, while data augmentation can widen the gap between
sample representation and facilitate the model to learn instance-level invariant
features.

P t
i = momentum × phs

i + (1− momentum)× pns
i (1)

pns
i is the contrast feature obtained through the projection head, and phs

i is
the historical feature that already exists in the memory-bank. After obtaining
the corresponding features, we compute the feature similarity in the contrast
space.

sim =
∑N

i=1(P
s
i × ∑n

i=1 proj(f t
i ))√∑N

i=1(P
s
i )2 ×

√∑n
i=1(proj(f t

i ))2
(2)

Note that in Eq. 2 we involve samples from both source and target domains
and complete instance-level alignment. We use contrastive learning to relate
samples of the same class whether they are in the same domain or not, which
enables knowledge transfer across domains.

We take the sample with the largest feature similarity as the positive sample.
We do the same operation on the augmented target domain samples to meet the
requirement of discriminating positive and negative samples.

Simp1 = argmax
D

sim(P s, fAu) (3)

Simp2 = argmax
D

sim(P s, ft) (4)

Based on the above, we can get the final cross-domain contrastive learning
loss.

LCD = −log
exp(Sp1/τ) + exp(Sp2/τ)

exp(Sp1 + Sp2/τ) +
∑2N−1

j=1 exp(N2n/τ)
(5)
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where Sp1 and Sp2 are both positive sample pairs and N2n is a negative sample
pair. Compared with N-pair loss, we learned UDA task by comparison con-
sidering knowledge transfer. At the same time, the source domain sample in
memory-Bank is used as anchor to realize the instance-level alignment between
source domain and target domain. Through formula (5), we implemented com-
pact representation.

3.3 Energy Transfer

We explicitly express our desire to address the problem of domain distribution
alignment in UDA problems from another perspective. In some researches of out-
of-distribution detection, it has been clearly indicated that out-of-distribution
samples have higher energy [28], and the purpose of our energy transfer is to
encourage the classifier to obtain the target domain data of the distribution
closer to the source domain.

We first introduce the definition of the energy model. The essence of energy-
based models(EBM) is to construct a function E(X) that maps each point in
the input space to a non-probabilistic scalar called energy [15].

With the Gibbs distribution we can convert the energy into a probability
density and get the Gibbs free energy E(x) for any point as:

E(x) = −T log

∫

y′
e−E(x,y)/T (6)

where T is the temperature parameter. We can easily associate the classification
model with the energy model, and get the free energy for x as:

E(x, f) = −T log

N∑

i=1

efi(x)/T (7)

Note that the energy here has nothing to do with the label of the data, it can
be regarded as a kind of norm of the output vector fi(x). We use the definition
of thermodynamic internal energy to express information entropy and energy at
the same time [32], the internal energy of a system can be expressed as:

U = E + T
′
G (8)

where T
′

is the temperature parameter, E is the free energy, G is the entropy,
and U is the internal energy of the system. The temperature parameter T

′
is a

hyperparameter. Since the classifier and feature extractor share parameters and
weights, we believe that in both systems, the source and target domains, the
internal energy is not affected by external factors.

However, if the energy transfer between the source and target domains is
done directly through the internal energy of the system, two problems arise.
First, we cannot guarantee that the energy transfer directions of the source and
target domains are consistent. Second, the energy discrepancy of the mini-batch
energy in the source and target domains may be too large, making it difficult
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for the loss function to converge. Based on this, we restrict the energy transfer
loss function as follows:

L1 = −EDs
Xs + EDt

Xt (9)

L2 = 1(|Us − Ut| < β) (10)

To address the above issues, we use the L1 proposed in [7] to reduce the range
represented by the probability distribution in each mini-batch. The purpose of L2

is to alleviate the negative optimization caused by the large energy discrepancy.
In Simclr [8], Hinton et al. effectively improves the performance of unsu-

pervised learning through a simple projection head, and in [30], Wang et al.
demonstrate in detail that MLP can effectively improve the representation abil-
ity of samples. In order to make the internal energy function U better represent
the two different systems of the source domain and the target domain, we com-
bine the features of different dimensions through the MLP layer to get a better
expression. It can be expressed as:

xi =
K∑

i=1

MLPi(fi) (11)

where the fi are features of different dimensions. We can integrate features of
different dimensions together for better distributional representation, which can
more effectively focus on domain-invariant features [7]. So energy expression and
the energy transfer loss function can be summarized as follows:

E(x, xi) = −T log

N∑

i=1

exi/T (12)

LTrans = 1(|Us − Ut| < β) + L1 (13)

Finally, we utilize a simple cross-entropy loss Lcls to guarantee classification
accuracy in the source domain, while utilizing the domain adversarial loss LDa
[4] as a preliminary transfer target based on classification loss.

Our energy transfer contrast network can effectively learn a special feature
representation, and use this to achieve knowledge transfer between source and
target domains. Based on this, our overall loss function is as follows:

L = Lcls + LDa + a × LCD + b × LTrans

4 Experment

4.1 Datasets and Criteria

OfficeHome. [10] contains 4 domains, and each domain contains 65 categories,
which is the most commonly used dataset for UDA tasks.
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Office31. [11] Contains 3 domains, each domain has a total of 31 categories, and
there are about 4100 images in total.
Criteria. Following [1,20], we select two domain pairs (e.g. A2P, P2C) from the
dataset for each training, and use the classification accuracy to judge the pros
and cons of the model. Finally, we use the average accuracy of all domain pairs
as the criterion for evaluating the algorithm

4.2 Implementation Details

For fair comparison, following [7,13,19], we use Resnet-50 [12] trained on Ima-
geNet [34] as the backbone for UDA. In this paper, an SGD optimizer with
momentum 0.9 is used to train all UDA tasks. The learning rate is adjusted by
l = l1(1 + αβ)γ , where l1 = 0.01, α = 10, γ = 0.75, and β varies from 0 to 1
linearly with the training epochs.

4.3 Comparison with State of the Art

Table 2 shows the performance of different methods on the Office-Home dataset
under the UDA task scenario. The experiments are conducted on 12 domain
pairs, and we list the average scores under this dataset in the rightmost column.
From the table we can observe As a result, our accuracy is at least 0.7% higher
than other baselines, and even compared with MetaAlign, which has done further
work on GVB, our average accuracy is still improved by 0.3%. Similarly, as shown
in Table 1, for the Office31 dataset, our average accuracy is consistent with the
state of the art.

Table 1. Accuracy(%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Dataset Office31

Task W2D D2W A2W A2D D2A W2A Avg
Source-Only [12] 99.3 96.7 68.4 68.9 62.5 60.7 76.1
DAN [1] 99.6 97.1 89.9 78.6 63.6 62.8 80.4
JAN [2] 99.8 97.4 89.9 84.7 68.6 70.0 84.3
MDD [14] 100 98.4 94.5 93.5 74.6 72.2 88.9
GSDA [20] 100 99.1 95.7 94.8 73.5 74.9 89.7
CAN [26] 99.8 99.1 94.5 95.0 78.0 77.0 90.5
Ours 100 99.1 95.6 95.2 77.1 75.7 90.5

4.4 Ablation Studies

Feature Visualization. To demonstrate our approach’s achievement of intra-
class compactness across samples across domains, we use T-SNE [24] to reduce
sample dimensionality and visualize our method and HDA. We randomly selected
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Table 2. Accuracy (%) of different UDAs on Offce-Home with ResNet-50 as backbone.
Best in bold.

Dataset OfficeHome

Task A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg
Source-Only [12] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD [13] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
GSDA [20] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
GVB [19] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
HDA [7] 56.8 75.2 79.8 65.1 73.9 75.2 66.3 56.7 81.8 75.4 59.7 84.7 70.9
MetaAlign [21] 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
Ours 57.6 75.3 80.0 65.5 75.4 74.9 66.5 58.0 82.1 76.5 62.1 85.1 71.6

Fig. 3. T-SNE visualization results of HDA and our method, which demonstrate that
we achieve intra-class compactness.

11 categories from the P-R domain pair of Office-Home, where the same color
represents the same label. As shown in Fig. 3, we can achieve the effect of HDA
7500 iterations with only 1500 iterations, and the intra-class compactness gets
better with increasing iterations.

The Effect of the Number MLP Module. The energy transfer network is
the most important part of our model. By setting up multiple MLP modules
for the energy transfer network, we can effectively represent features of different
dimensions as energy, providing better generalization ability for the whole model.
In this ablation experiment, we selected a total of four sets of experiments with
different source domains from the UDA task to explore the effect of different
numbers of energy transfer networks on the model. The experimental results are
shown in Fig. 4. Experiments show that we choose N = 3 as the default number
setting for our MLP module.

Selecting Positive Samples by Thresholding in Contrastive Learning.
In the experimental process of contrastive learning, we inevitably think of deter-
mining positive and negative sample pairs through a threshold τ . When it is
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Fig. 4. Influence of the number of networks with different energy transfer on knowledge
transfer from source domain to target domain.

greater than the threshold τ , it is a positive sample pair, otherwise it is a neg-
ative sample pair. However, there is a fatal problem in the threshold judgment
method that the optimal results of different domain pairs are not the same
threshold. Figure 5 shows the effect of different thresholds on two UDA tasks.

Fig. 5. Figure (a) is the probability of learning true positive pairs under the conditions
of setting different thresholds, and Figure (b) is the accuracy rate generated by setting
different thresholds. As can be seen from the figure, different domain pairs apply to
different thresholds.

5 Conclusion

In this paper, we propose an energy representation to further improve the accu-
racy of UDA tasks. Specifically, we extract information of different dimensions of
features through multiple MLP layers, and then represent the difference between
the source and target domains through the combination of entropy and free
energy, and mitigate the effect of domain shift by reducing this gap. At the
same time, we also achieve instance-level alignment across domains through
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contrastive learning. Furthermore, our method is compared with many previ-
ous state-of-the-art on three datasets, which demonstrates the effectiveness of
our method.
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