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Abstract. Complexity is an important aspect of business processes.
Numerous metrics have been introduced to measure process complexity,
however, existing metrics view processes merely as sequences of activi-
ties, disregarding the corresponding data. This is a major omission since
much of the complexity of business processes stems from the variation of
data that is associated with it. In this paper, we refer to recent research
on how behavioral complexity of business processes can be defined. More
specifically, we extend entropy-based complexity metrics such that they
are capable of capturing the variation of event data. We provide some
first insights into the implications of applying these newly proposed
metrics.
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1 Introduction

The central objectives of Business Process Management (BPM) is the improve-
ment of process performance [5]. One of the factors hampering process perfor-
mance is complexity. For this reason, it is key prerequisite for process improve-
ment to be able to, first, measure process complexity in an appropriate way and,
then, define measures to address it.

Prior research has contributed to our understanding of how process complex-
ity can be measured based on event logs [1]. However, it is an important omission
that these event-log measures are defined purely based on the behaviour aspects
of event sequences. This neglects observations from work on process standard-
ization that identified eleven theoretical dimensions that are tied to process
standardization [13]. Notably, two of them relate to inputs & outputs and to
data. Also other fields like Machine Learning acknowledge the importance of
data complexity and its impact on results of, e.g., prediction models. So far,
there is no process complexity measure that reflects the complexity of data.

In this paper, we address this research problem and discuss how the complex-
ity of process-related data can be integrated with process complexity measures.
To this end, we extend an existing entropy-based process complexity metric with
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aspects of process-related event data. We provide a preliminary evaluation on an
artificial as well as a real-life event logs and discuss directions for future work.

The remainder of this paper is organized as follows. Section 2 introduces
existing complexity metrics and their limitations. Section 3 presents our app-
roach. Section 4 shows the preliminary evaluation, its discussion and limitations
of this paper. Section 5 concludes the paper.

2 Background

This section discusses the background of our research. We first reflect upon prior
contributions to measuring process complexity based on event logs. Then we turn
to approaches from neighboring fields on how to measure data complexity.

2.1 Process Complexity Metrics

Over the years, several process complexity metrics have been introduced. They
have focused on one of the following aspects: size, variability and distance. Size-
based metrics count properties of an event log, such as the number of events,
traces, average trace length, etc. Metrics related to variability show the variation
in the event log, they often build transition matrices based on directly-follows
relations observed in the event log [1] or use the number of unique sequences
in the log [12]. Distance-based metrics measure the difference between traces in
the event log, e.g. affinity of two event sequences, i.e. the extent to which the
directly-follow relations of the sequences overlap [6].

Recently, complexity metrics based on graph entropy have been introduced:
variant entropy, normalized variant entropy, sequence entropy and normalized
sequence entropy [1]. The latter one has been proven to capture all the three
aspects of process complexity and also correlate with the complexity of the dis-
covered process models. A major drawback of all these metrics is, however, that
they are sill solely focused on the behavior and ignore event data.

2.2 Data Complexity Metrics

Machine Learning domain has a long history of measuring data complexity. This
is not surprising as the complexity of the input data is expected to influence the
performance of the predictions. Researchers in the Machine Learning domain
generally used three kinds of complexity metrics proposed in [7] and [8]:

1. Measure of overlap: Fisher’s discriminant ratio (F1), volume of overlap region
(F2), feature efficiency (F3).

2. Measure of class separability: The minimized sum of the error distance of a
linear classifier (L1), training error of linear classifier (L2), the ratio of average
intra/inter class nearest neighbor distance (N2), leave one out error rate of
the 1-NN classifier (N3).
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3. Measure of geometry, topology and density of manifolds: Nonlinearity of lin-
ear classifier by Linear programming (L3), nonlinearity of 1-NN classifier
(N4), space covering by ε-neighborhoods (T1), average number of points per
dimension (T2), density (D1).

These metrics have been widely used for different tasks, e.g. [9] uses them
for the selection of suitable normalization technique for a particular classifica-
tion problem, [10] uses some of the data complexity measures to estimate the
significant intervals for oversampling.

However, such complexity metrics have limited applicability in the process
mining domain. First, these metrics measure assume the data has class labels
and, moreover, implicitly assume that these labels are fixed. They then measure
complexity with respect to this classes, e.g. overlap between classes or class sep-
arability. While such metrics seem useful for some applications, e.g. categorical
outcome prediction in Predictive Process Monitoring, they would provide little
help when the data is not split into classes at all or these classes are not relevant
for the problem at hand, e.g. remaining time prediction. Furthermore, even if
useful, such metrics would give different results for the same data depending on
the problem, e.g. if the same dataset is used for categorical outcome and next
activity prediction, the classes for two problems would be different and thus
the complexity measurements. Second, a study has shown that while some of
the data complexity metrics provide useful information, e.g. are connected with
classifier performance, they cannot be used to compare different datasets wihh
different characteristics [2]. Finally, these metrics ultimately treat the data as a
sample of independent observations, ignoring the process notion and the corre-
sponding relations between the data points, i.e. events. This might be a critical
drawbacks for process mining applications.

While the former drawbacks could theoretically be fixed by taking a step back
and using entropy or Gini index of the entire dataset as a metric of complexity,
the latter problem of losing the process notion would still persist. Thus, our
goal in this paper is to extend an existing process complexity metric with the
capability of considering data complexity as well.

3 Approach

In order to incorporate data complexity into a process complexity metric, we
extend the existing complexity metrics based on graph entropy [1]. First, we
introduce Enriched Extended Prefix Automata that include event data. Second,
we introduce cumulative complexity metrics that allow to study in more detail
how the complexity changes as new events are observed.

Extended Prefix Automata (EPA), introduced in [1], are a representation
of business processes without abstraction. However, in its basic form, an EPA
only contains information about the behavior. It means, the transitions between
states are only labeled with activity labels, and the events in the EPA only
contain activity label, case ID timestamp and a link to the predecessor event.
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Enriched EPAs, or EEPAs for short, are EPAs enriched with other event data.
In essence, it is achieved in the following way. First, an event in the EEPA does
not only contain its basic attributes (case ID, activity label, timestamp and pre-
decessor) but also an Attribute Container, where all trace and event attributes
are stored. The distinction between trace and event attributes is made in order
to prevent name collisions, otherwise these attributes are treated equally, and
each event in the trace contains all trace attributes of its trace. The EEPA con-
taining such events is then a state automaton with guards. Thus, the transitions
of an EEPA are labeled not only with activity labels but also with correspond-
ing attribute values. In order to follow a transition on EEPA, the event thus
should have not only a matching activity label but also matching attributes.
In case there is no matching transition, a new partition with new state and a
corresponding new transition is added to an EEPA, in the same way as a new
partition is added to an EPA on a previously unobserved prefix. One can then
apply the same complexity metrics to an EEPA as to an EPA – variant entropy,
normalized variant entropy, sequence entropy and normalized sequence entropy
– but they will now take data into account as well because the underlying EEPA
is partitioned based on behavior and the data.

Fig. 1. Difference between an extended prefix automaton and an enriched extended
prefix automaton built from the same event log.

Figure 1 shows the difference between an EPA and an EEPA built from the
same event log L = [〈a, b, c〉2, 〈a, c, d〉] where in of the 〈a, b, c〉 traces the activity
b carries event data value1 and in the second one value2. While the EPA only
has 2 partitions and both 〈a, b, c〉 traces belong to partition 1, the corresponding
EEPA makes difference between these two traces based on the event data and
thus puts these traces in 2 different partitions and has 3 partitions in total.
This necessarily means an EEPA would have more states and partitions than
an EPA built from the same log, leading to higher variant entropy. An EEPA is
also expected to have higher sequence entropy and normalized sequence entropy
as it has more partitions with the same number of events. This is, however, not
necessarily the case for normalized variant entropy exactly because an EEPA has
more partitions but at the same time more states than a corresponding EPA.
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It is important to note though that attribute selection plays a crucial role in
building an EEPA. If an event log is rich in attributes, including them all might
lead to an EEPA where every trace is represented with a separate partition,
which is not too insightful. First, it is recommended to use only categorical vari-
ables, since numeric ones have a much lower probability to coincide on different
events. Thus, existing numerical attributes should either be disregarded or trans-
formed into categorical bins, where the size of the bins also has significant impact
and thus should be chosen with caution. Second, for the same reason it might
be meaningful to also perform similar binning even on categorical attributes in
case they have a large number of values. Finally, one should consider based on
the value ranges as well as the attribute description whether the attribute is
relevant at all and possibly reduce the pool of attributes used.

Our claim is that data adds an additional layer of complexity on top of
behavior. Thus, it is interesting to observe how complexity of a process increases
over time by adding new data values while the behavior stays exactly the same.
In order to do so, we also introduce the concept of cumulative complexity. That
is, we want to not only measure the total complexity of the entire log but also
want to see how it evolved, i.e. how new behavior and/or data influenced the
complexity. To this end, we introduce the concept of an active event which is
an event in the (E)EPA that happened (arbitrarily far in the past) before some
threshold timestamp, i.e. an event having a timestamp smaller than some given
threshold. Similarly, an active state is a state in an (E)EPA that includes at
least one active event. Then we only consider active events/states for measuring
sequence and variant entropy, respectively.

By gradually increasing the threshold, we can add more and more events
to the (E)EPA as if we were building it in real time and get the complexity
metrics at each point in time, e.g. at the end of each week, month, year, etc.
It is equivalent to measuring complexity after each period and then continuing
to build the (E)EPA, however, can be repeated indefinitely with different time
granularity over the same automaton. In addition, it enables to use two kinds of
normalization.

Normally, the variant and sequence entropy are calculated using all
states/events in an EPA. Then, the normalization is done by dividing the met-
ric by |X|log(|X|), where |X| is the total number of states/events in the EPA.
When normalizing cumulative metrics, however, there are two possibilities. While
variant and sequence entropy are obviously measured over active states/events,
when it comes to normalization these metrics can be divided by either the num-
ber of active states/events or by the total number of the states/events in the full
(E)EPA (containing the full event log). The former option would be indeed equiv-
alent to measuring normalized metrics at the end of each time period, and the lat-
ter one allows to observe cumulative growth of the normalized metrics over time.
These 6 cumulative complexity metrics – variant entropy, variant entropy nor-
malized over active states, variant entropy normalized over all states, sequence
entropy, sequence entropy normalized over active events, sequence entropy nor-
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malized over all events – equip us with the means of observing how new events
(carrying new behavior and/or data) influence the complexity.

4 Evaluation

In this section, we present the preliminary evaluation of our approach. First,
with an artificial event log and then with real-life event logs. Next, we discuss our
results and report current limitations. The implementation is publicly available
on GitHub1.

4.1 Artificial Event Log

We use an example loan process application from [5] shown in Fig. 2. We manu-
ally created an event log with 10 traces. All events have a user associated with
it. The event Loan application received is always associated with a user System,
which is not considered further. The events associated with the activity Assess
loan risk have a categorical variable Risk and the events associated with the
activity Appraise property have a numerical variable Price. In the first month,
there are 4 traces following 2 variants with 1 user and 2 risk levels. In the second
month, additional 2 variants are introduced. In the third month, additional user
is added who follows the same variants. Finally, in the fourth month additional
risk level is added, while the users and variants are kept the same. The prices
vary over the entire event log.

Reject
applicat ion

Send
acceptance

pack
Acceptance
pack sent

Loan
applicat ion

rejected
Assess

eligibility

Prepare
acceptance

pack

Check credit
history

Appraise
property

Loan
applicat ion

received

Assess loan
risk

applicant
eligible

applicant
not eligible

Fig. 2. Loan process, reused from [5].

We then computed the four complexity metrics – variant entropy, normalized
variant entropy, sequence entropy and normalized sequence entropy – for this log
but varied the data that we took into consideration. Table 1 shows the results.
The first row corresponds to an EPA that only considers the behavior and uses no
data. The second row corresponds to an EEPA that only uses the User variable
of the events, and so on. We also split the numeric price into 3 bins to show how
numeric data can also be incorporated.

As we can see, the complexity of the EEPAs using additional data on top
of behavior is considerably higher than the complexity of an EPA. We also see
1 https://github.com/MaxVidgof/process-complexity.

https://github.com/MaxVidgof/process-complexity
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Table 1. Complexity of the artificial event log using different amount of event data.

Data Variant
entropy

Normalized
variant entropy

Sequence
entropy

Normalized
sequence
entropy

None 16.25 0.4 47.16 0.17

User 42.58 0.53 95.64 0.35

User & Risk 80.0 0.56 118.52 0.44

User & Risk

& Price (binned) 109.12 0.59 135.94 0.50

User & Risk

& Price (numeric) 109.12 0.59 135.94 0.50

that all metrics continue to grow as we consider more variables since it leads to
higher partition counts in the EEPA.

Fig. 3. Cumulative variant entropy for simple EPA and an enriched EPA with User
and Risk event data.

Cumulative complexity metrics also enable us to observe how the complexity
changes as new events are observed. For instance, Fig. 3 shows the development
of variant entropy. When only behavior is considered (Fig. 3a), the complexity
stops growing as soon as all variants are observed. When the event data is also
taken into account (Fig. 3b), however, variant entropy continues to grow even
when all variants are observed because of the new data: new user introduced in
March and new risk level added in April.

4.2 Real-Life Event Logs

We also conducted a preliminary evaluation of our technique on the Business
Process Intelligence Challenge logs from years 2012 [4], 2013 [11] and 2015 [3].
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For each event log, we did the following. First, we filtered the event logs such
that they contain only categorical attributes, i.e. we removed all attributes hav-
ing numeric values or representing dates. Second, we generated an Extended
Prefix Automaton from each log. We will further refer to these automata as sim-
ple EPAs. We calculated variant entropy, normalized variant entropy, sequence
entropy and normalized sequence entropy for each of these simple EPAs. Further-
more, we calculated cumulative metrics – variant entropy, variant entropy nor-
malized over active states, variant entropy normalized over all states, sequence
entropy, sequence entropy normalized over active events, sequence entropy nor-
malized over all events – for each month from the month of the rirst event in the
respective log to the month of the last event. Then, we generated Enriched
Extended Prefix Automata (enriched EPAs or EEPAs) from the same logs
repeated the same procedures, i.e. calculated the 4 total complexity metrics as
well as 6 cumulative complexity metrics over time. As a result, for each log we
had 4 complexity metrics for the corresponding simple EPA, 4 complexity met-
rics of the corresponding EEPA, 6 time series of cumulative complexity metrics
for the EPA and 6 time series of cumulative complexity metrics for the EEPA.

First, we wanted to evaluate whether the new metrics adequately depict
the additional complexity introduced by event data. Two-sided t-test reported
significant difference between normalized sequence entropy of the enriched and
the simple EPA. In all cases, except the normalized variant entropy, the metric
for the enriched EPA was greater than of its simple counterpart. Thus, we also
performed one-sided t-tests. While the p-values were considerably smaller in all
cases, normalized sequence entropy still remained the only one with significant
difference (p-value 0.01). Interestingly, difference in variant entropy was also
close to significant (p-value 0.09). More observations might render it significant
as well.

For each of the logs we also compared the time series of the 6 cumulative com-
plexity metrics measured with the simple and enriched EPAs. Here, we not only
performed two-sided t-tests that would say whether the difference in means of
the two samples is significant but also performed two-sided Kolmogorov-Smirnov
tests that would assess whether two samples come from the same continuous dis-
tribution. It is important to note that some event logs carry events from before
the observation period, e.g. BPIC 2012 includes some events from late 2011.
This introduces periods having only 1 event and thus entropy metrics equalling
0, which might influence the value distribution. Thus, in such cases we also filter
the metrics for the corresponding event log, keeping only non-zero observations.
Periods with non-zero observations are naturally the same for the metrics com-
puted with EPA and EEPA.

The results of these tests can be seen in Table 2. The columns in the table
represent the metric, the rows are different time series pairs (for a simple and
enriched EPA) and cells indicate whether there was a significant difference
between two time series. T means t-test reported significant difference and K
means Kolmogorov-Smirnov test reported significant difference. We say the dif-
ference is significant when the p-value is below 0.05.
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Table 2. Differences in cumulative complexity metrics of enriched extended prefix
automata and extended prefix automata for real-life event logs. T stands for sig-
nificant difference reported by t-test, K stands for significant difference reported by
Kolmogorov-Smirnov test.

Data Variant
entropy

Normalized
variant
entropy
(active)

Normalized
variant
entropy
(all)

Sequence
entropy

Normalized
sequence
entropy
(active)

Normalized
sequence
entropy (all)

BPIC12 TK TK

BPIC13 K

BPIC13 filtered TK

BPIC15 1 TK K TK

BPIC15 2 K

BPIC15 2 filtered TK

BPIC15 3 TK K TK

BPIC15 3 filtered TK K TK

BPIC15 4 K K K

BPIC15 4 filtered T K TK

BPIC15 5 T K

BPIC15 5 filtered T K TK

As we can see, sequence entropy normalized over active events significantly
differs for all event logs with Kolmogorov-Smirnov test and for almost all event
logs with t-test. Variant entropy shows significant difference with Kolmogorov-
Smirnov test in 4 logs and with t-test in 7 logs. Variant entropy normalized over
active states shows significant difference in Kolmogorov-Smirnov test in 6 logs.
Finally, sequence entropy normalized over all events shows significant difference
with Kolmogorov-Smirnov test in 1 log.

4.3 Discussion

The evaluation on the artificial log shows that the new metrics are capable of
highlighting the complexity introduced by new event data. While some of this
increased complexity could be uncovered by using existing process complex-
ity metric in conjunction with auxiliary metrics, e.g. the added user could be
also spotted with Social Network Analysis and multimple risk levels could be
extracted from internal documentation or a BPMS, this would not necessarily
work with all data, especially if this data comes from external sources. It is also
important to note that while binning indeed allows taking numerical data into
consideration, the efficiency of such method largely depends on the granularity,
since if set too high it might bring no additional value compared to directly using
numerical data.

Evaluation on the real-life logs further confirms these results. Normalized
sequence entropy seems to highlight the increase in complexity due to data in
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the most effective way. This is not surprising as normalized sequence entropy
also the only one that significantly correlates with, e.g. model complexity [1]
and may just be a better metric.

When it comes to the cumulative metrics, sequence entropy normalized over
active events shows best significance, also confirming the above stated ideas. As
expected, also the differences in variant entropy are significant. The underlying
idea that with the same behavior more distinct data would lead to more branch-
ing and more partitions in the EEPA than in the EPA of the corresponding log,
which would also logically lead to higher variant entropy, seems to have found
its confirmation. The fact that such effect is observed not in all event logs may
be attributed to lower difference in data in the other logs. However, it needs
further and more detailed investigation.

4.4 Limitations

This paper is a work in progress and thus suffers from a range of limitations.
First, there are limitations in terms of the implementation. While it is capable
of handling smaller event logs, it does not scale well, thus restricting evaluation
and, more importantly, real-life application of the metrics. Second, the attribute
selection in the real-life log evaluation was superficial. It considered all of the
categorical attributes and none of the numeric ones. More thorough selection
of categorical attributes as well as meaningful binning of the numeric ones is
expected to give more adequate results. Third, only basic statistical methods
were used for the analysis, especially when it comes to cumulative metrics. While
they are definitely time series, no analysis techniques specific to this kind of data
has been applied yet.

5 Conclusion and Future Work

Complexity is important aspect of business processes that requires thorough
studying. While existing process complexity metrics are successful in measuring
behavioral complexity of the processes, they completely ignore the data associ-
ated with the events and thus miss the next layer of complexity that is added
by this data. On the other hand, there exist data complexity metrics, however,
they do not have the notion of process and also have other implicit assumptions
that limit their usability in process mining.

In this paper, we proposed a set of new process complexity metrics that take
into account event data in addition to behavior. These metrics are based on
existing complexity metrics for Extended Prefix Automata but use an updated
version of such automata – Enriched EPAs. We conducted preliminary evaluation
on a small artificial example as well as on a set of real-life event logs.

The initial results show that our new metrics capture the data complexity
in addition to behavior complexity. We plan to extend our evaluation on more
real-life logs, improve the implementation and analyse the results in more detail.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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