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Abstract. In process mining settings, events are often recorded on a low level
and cannot be used for meaningful analysis directly. Moreover, the resulting vari-
ability in the recorded event sequences leads to complex process models that
provide limited insights. To overcome these issues, event abstraction techniques
pre-process the event sequences by grouping the recorded low-level events into
higher-level activities. However, existing abstraction techniques require elaborate
input about high-level activities upfront to achieve acceptable abstraction results.
This input is often not available or needs to be constructed, which requires con-
siderable manual effort and domain knowledge. We overcome this by propos-
ing an approach that suggests groups of low-level events for event abstraction. It
does not require the user to provide elaborate input upfront, but still allows them
to inspect and select groups of events that are related based on their common
multi-perspective contexts. To achieve this, our approach learns representations
of events that capture their context and automatically identifies and suggests inter-
esting groups of related events. The user can inspect group descriptions and select
meaningful groups to abstract the low-level event log.
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1 Introduction

Process mining comprises methods to analyze event data that is recorded during the
execution of organizational processes. Specifically, by automatically discovering pro-
cess models from event logs, process discovery yields insights into how a process is
truly executed [1]. Events recorded by information systems are often too fine-granular
for meaningful analysis, though, and the resulting variability in the recorded event
sequences leads to overly complex models. To overcome this issue, event abstraction
techniques aim to lift the low-level events recorded in a log to a more abstract represen-
tation, by grouping them into high-level activities [17].

Existing techniques for event abstraction (cf., [4,17]) are either unsupervised or
supervised. Unsupervised techniques do not require any input about targeted high-level
activities. Instead, they rely on control-flow similarities between low-level event types.

c© The Author(s) 2023
M. Montali et al. (Eds.): ICPM 2022 Workshops, LNBIP 468, pp. 31–43, 2023.
https://doi.org/10.1007/978-3-031-27815-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27815-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-27815-0_3


32 A. Rebmann et al.

Yet, they do not consider any other dependencies between events, such as the amount of
time between their execution. Since the user of such techniques has no control over the
abstraction result, there is no guarantee that they yield meaningful high-level activities,
making it hard to ensure that an abstraction is appropriate for a specific analysis goal.
For instance, if the goal is to understand interactions between employees in a process,
grouping events based on control-flow similarity might lead to high-level activities that
encompass different employees. This makes it difficult—if not impossible—to analyze
interactions in the process. Supervised event abstraction techniques aim to overcome
such issues by requiring input about high-level activities upfront, e.g., high-level pro-
cess models [2] or predefined event patterns [10]. In this manner, such techniques give
the user control over high-level activities. However, in practice the required informa-
tion is often not available beforehand. For instance, when applying event abstraction as
a preprocessing step to process discovery, high-level process models are typically not
available [17]. Even if knowledge on the desired high-level activities is available, it may
require a lot of manual effort to translate it into the necessary input, e.g., by defining
how these high-level activities manifest themselves in low-level event patterns [10].

These two extremes, between not giving the user any control over high-level activi-
ties and requiring too much input, call for a common middle ground, i.e., a convenient
means to support users in their abstraction tasks. In particular, users should be enabled
to control the characteristics of high-level activities, while reducing the upfront knowl-
edge they need about the data. This is particularly challenging in situations where the
events’ labels do not reveal the purpose of the high-level activities they relate to. An
Update record event, for instance, could relate to any activity that modifies a business
object. In such situations it is inevitable to look at the context of events and identify
high-level activities in a more indirect manner.

To enable this, we propose an approach that allows the user to inspect groups of
events based on their common context, thus, guiding them towards identifying mean-
ingful high-level activities that can be used for abstraction without requiring upfront
input about these activities. Our approach learns representations that capture complex
contextual dependencies between low-level events, e.g., that events are executed within
a short period of time and are performed by the same resource. Based on these repre-
sentations, it automatically identifies and suggests groups of events. The user can select
meaningful groups that can in turn be used to abstract the low-level log.

We motivate the need for the multi-perspective identification of event groups for
abstraction in Sect. 2, before introducing preliminaries in Sect. 3. We present our app-
roach in Sect. 4. Then, Sect. 5 describes a proof of concept demonstrating the potential
of our approach. Section 6 summarizes related work; Finally, Sect. 7 discusses limita-
tions of our work, gives an outlook on next steps, and concludes.

2 Problem Illustration

Our work deals with situations in which there are complex n:m relations between low-
level event classes and high-level activities, which means that events with the same
label can relate to different activities, which themselves can relate to any number of
events. Such low-level recording is a common issue, e.g., when dealing with UI logs,
logs from messaging and document management systems, and logs of sensor data. In
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Table 1. A single case of a request handling process recorded on a low level.

CaseID EventID Class Timestamp Role Column

C1 e1 Receive email 05-23 07:45 Assistant

C1 e2 Create record 05-23 09:07 Assistant

C1 e3 Open document 05-23 10:40 Assistant

C1 e4 Close document 05-23 10:51 Assistant

C1 e5 Update record 05-23 10:52 Assistant isComplete

C1 e6 Open document 05-25 15:03 Manager

C1 e7 Update record 05-25 15:20 Manager isAccepted

C1 e8 Close document 05-25 15:23 Manager

C1 e9 Send email 05-26 10:03 Assistant

such settings, individual events are often not informative and cause a high degree of
variability in event logs resulting in the discovery of spaghetti models [17].

For illustration purposes, consider a request-handling process, which is supported
by an information system logging events on a low level, i.e., on the level of database
and document operations, such as Open document, Update record, and Send email. A
single case of the low-level event log of this process is depicted in Table 1. On the
activity level, blue events (e1–e2) record that a new request has been received, purple
events (e3–e5) refer to checking required documents for completeness, whereas brown
events (e6–e8) refer to a decision about a request. Finally, the gray event (e9) represents
the notification about the outcome of the request.

Looking at the sequence of events in case C1, however, does not reveal these activi-
ties, because their purpose is not explicitly indicated in the available data. For instance,
from an Open document event like e3, it is unclear if it refers to a check for com-
pleteness or a decision. Therefore, we have to discover meaningful activities in a more
indirect manner, i.e., by looking for events that occur in a commonly recurring context.
This may include the temporal context, e.g., that events occur within a short period of
time, the organizational context, e.g., that events are executed by the same resource,
and the data context associated with individual events. For instance, the purple events
(e3–e5) happen within a short period of time (12min), are executed by an assistant,
while e5 changes the value of the isComplete column. In contrast, the brown events
(e6–e8) happen within 20min, are executed by a manager, while e7 changes the value
of the isAccepted column. The events within these two groups share a common con-
text from both the time and resource perspectives, whereas the different columns they
update indicate a clear difference between the groups in C1, i.e., they hint at the purpose
of an underlying business activity.

Therefore, our goal is to group events that have similar contexts, in order to make
the purpose of activities that the low-level events represent more apparent. However,
commonly recurring contexts of events, like the ones illustrated above, often cannot
be identified from individual cases, because these represent single process instances
in which contexts may not recur. Therefore, we have to consider the entire event log
for this task, i.e., all events, across cases. The identification of these recurring contexts
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is highly complex from the low-level event log, though, which may have dozens of
event classes and attributes and thousands of cases. Hence, this requires an automated
identification of groups of events, yet, we also want to make sure that identified groups
are actually meaningful for a user and their specific analysis purpose.

We tackle this through two main parts:

CaseID: C1
EventID: e5
Class: Update record
Column: isComplete
Role: Assistant
Timestamp: 05-23 10:52

CaseID: C1
EventID: e7
Class: Update record
Column: isAccepted
Role: Manager
Timestamp: 05-25 15:20

CaseID: C1
EventID: e3
Class: Open document
Role: Assistant
Timestamp: 05-23 10:40

CaseID: C2
EventID: e22
Class: Update record
Column: isComplete
Role: Assistant
Timestamp: 05-29 11:02

Fig. 1. Multi-perspective event groups.
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Fig. 2. Suggestion of a group of events.

Multi-perspective Event Groups. We
identify groups of events based on their
multi-perspective context. In particular,
we assign similar events that share com-
monly recurring contexts across process
perspectives to the same group and dis-
tinct events that do not share such con-
texts to different groups. An example is
shown in Fig. 1, where, e.g., an Open doc-
ument is grouped with an Update record
event, as both are executed by an assis-
tant and happen within 20min. In con-
trast, theUpdate record event executed by
a manager changing the value of the isAc-
cepted column is assigned to a different
group. While these events belong to the
same case C1, it is important to stress that
we aim for groups of events that span indi-
vidual cases. If, for instance, a hypotheti-
cal Update record event of a case C2 is
also executed by an assistant and changes
the isComplete column, we aim to assign
it to the same group as e3 and e5, because
they share contexts across cases.

Effective Group Suggestions. To ensure that identified groups are indeed meaningful,
we support the user with understandable suggestions, allowing them to assess and select
groups of related events based on their context. For instance, in our running example we
identified that a group of events is executed within a short period of time by the same
role, which changes the status of the request as shown in Fig. 2. Given that the events
in this group occur in a similar context and there is a clear property that differentiates
this from other groups, i.e., the change of the isComplete value, we aim to suggest it to
the user. They might associate this group with a check for completeness in the request-
handling process, select it for abstraction, and later assign it a suitable label.

3 Preliminaries

Events. We consider events recorded during the execution of a process and write E for
the universe of all events. Events have unique identifiers and carry a payload contain-
ing their Class and optional contextual information, such as a timestamp, resource
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information, or relevant data values. We capture this payload by a set of attributes
D = {D1, . . . , Dp}, with dom(Di) as the domain of attribute Di, 1 ≤ i ≤ p. We
write e.D for the value of attribute D of an event e. For instance, for event e1 in Table
1, we write e1.Class = Receive email and e1.Role = Assistant.

Event Log. An event log is a set of traces L, with each trace a sequence of events
σ ∈ E∗, representing a single execution of a process, i.e., a case. An event belongs to
exactly one trace. We write EL for the set of all events of the traces in L.

Event Groups. An event group is a set of events g ⊆ EL. A grouping of events G =
{g1, ..., gk} is a set of event groups, such that G’s members are disjoint and cover all
events in EL, i.e.,

⋃k
i gi = EL ∧ ⋂k

i gi = ∅.

4 Approach

As visualized in Fig. 3, our approach takes as input an event log and consists of four
steps to create event group suggestions for event abstraction. Step 1 learns contextual
dependencies between events and establishes multi-perspective representations. Step 2
groups the events based on these representations, which yields event groups as visual-
ized in Fig. 1. Step 3 then computes key properties per group, which Step 4 uses to create
suggestions by selecting groups with interesting properties and generating descriptions
of the common contexts in which a groups’ events occur. The output is a set of group
suggestions and textual descriptions per group, such as shown in Fig. 2. The user can
inspect these suggestions and select meaningful groups that serve their analysis pur-
pose. The selected groups can then be used to abstract the low-level event log.

2. Discover  
event groups

1. Learn multi-perspective 
event representations

Event log 

3. Compute 
group properties

Groups & Descriptions

explores & 
selects 

Representations R

Groups G

4. Suggest 
event groups 

Properties per group Descriptions

Suggested 
groups GS

Groups G

Fig. 3. The main steps of our approach.

4.1 Step 1: Learn Multi-perspective Event Representations

In the first step, we establish event representations that capture the multi-perspective
context of low-level events, i.e., we aim to derive a representation r for each low-
level event e, which contains contextual information available in e’s attributes as well
as its context in terms of surrounding events in its trace. As illustrated in Sect. 2, it
is essential to consider this multi-perspective context of events to obtain meaningful
event groups. The challenge here lies in generating representations that contain the rel-
evant context required to create such groups. To this end, we leverage the ability of the
Multi-Perspective Process Network (MPPN) [11]. The approach processes traces with
various perspectives of different types, i.e., categorical, numerical, and temporal event
attributes, as well as the trace-based context.
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MASK MASK MASK

Class:          Update record
Column:      isAccepted
Role:            Manager
Timestamp: 05-25 15:21

PredictionsRepresentation of e7MPPN

0.78 

0.04 

-0.23
MASK

Fig. 4.Masked event prediction to learn multi-perspective representations.

For a trace σ, MPPN transforms the sequence of each available attribute’s values
into distinct 2D “images”. Each image is processed by a pre-trained convolutional neu-
ral network (CNN) and results in one feature vector per attribute. Then, in order to
obtain multi-perspective representations, the individual per-attribute vectors are pooled
and processed by a fully-connected neural network resulting in one representation of
adjustable size per trace, which contains features of all perspectives. Through the trans-
formation of sequences of attribute values into images and the use of CNNs, the app-
roach can focus on detecting similar patterns across traces in L, rather than focusing on
the specific order in which events occur in individual traces. This flexibility in terms of
how traces are processed makes MPPN a good choice for the task at hand, since, espe-
cially in event abstraction settings, we need to account for the considerable degree of
variability present in low-level event sequences. Moreover, the learned representations
include all process perspectives and thus, can be used for multi-perspective clustering
tasks.

Originally, MPPN was developed to learn representations per trace σ ∈ L. There-
fore, we have to adapt its learning strategy during training to be able to obtain one
representation r per event e ∈ EL, which captures e’s multi-perspective context. To
this end, we randomly mask all attribute values of events and train MPPN to predict
these masked values given all other information in σ. For instance, as shown in Fig. 4,
we replace the values of e7.Class, e7.Timestamp, e7.Role, and e7.Column with
MASK. The task of MPPN is to predict all masked attribute values of e7 using the infor-
mation from the trace’s other events. If MPPN is able to accurately predict the attribute
values of the masked events, this indicates that the learned representations capture their
events’ contexts well. Since MPPN has access to all events and their attributes before
and after e7, rich contextual information can be incorporated into r.

After being trained in this manner on the whole event log, we obtain a set R of
representations: for each event e, we mask all attribute values of e, process σ with
MPPN, and add the generated representation r to R.

4.2 Step 2: Discover Event Groups

Step 2 discovers groups of events with commonly recurring multi-perspective contexts,
which may represent high-level activities. To establish a set G of event groups, we clus-
ter events with similar learned representations since they are likely to share a similar
context, for instance, because they are executed by the same resources and occur within
a short period of time. For performance reasons, we reduce the complexity of the repre-
sentations using Principal Component Analysis (PCA). Then, we apply the well-known
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Table 2. Exemplary group properties used by our approach.

Level Perspective Property Example description based on template sentences

Group Control-flow # of event classes This group has “Open document” and “Close document” events

Resource # of resources All events of this group are executed by 20 different resources.

Resource # of roles All events of this group are executed by the “Assistant” role.

Time Day of occurrence 90% of events in this group happened on a Wednesday.

Time Time of occurrence All events in this group happened before noon.

Data (cat.) Distinct values All events have the value “Loan takeover” for the Goal attribute.

Data (num.) Value range The Cost attribute ranges between 1,000 and 1,500 in this group.

Case Control-flow # of event classes For this group, there are on average 3 events per case.

Control-flow Range of positions The events of this group occur in a range of 2 to 3 events.

Resource # of resources All events in this group are executed by the same resource per case.

Resource # of roles All events in this group are executed by the “Manager” role.

Time Duration This group of events takes 45min on average per case.

Data (cat.) Distinct values The value of the isAccepted attribute changes once on average.

Data (num.) Value range Cost attribute has a range of 50 on average for this group per case

k-means algorithm to obtain clusters. Instead of setting a specific number of clusters k,
we use the elbow method [15] to select an appropriate k from a range of values (from 2
up to twice the number of event classes).

This clustering yields a grouping G as illustrated in Fig. 1. By assigning labels to
each group g ∈ G, we could build a mapping between low-level events and high-
level activities at this point already, which can be used to abstract a low-level event log.
However, the remaining steps further process the groups to suggest only interesting ones
to the user to make sure that they can assess how meaningful groups are for abstraction.

4.3 Step 3: Compute Group Properties

Next, based on the available event attributes, we compute a set of properties for each
group g ∈ G, which jointly describe the multi-perspective common context of the
events in g. These are later used to (1) assess how interesting a group is and (2) create
textual descriptions of the group as exemplified in Fig. 2. An overview of considered
properties is provided in Table 2. These do not necessarily consider all aspects of a par-
ticular input event log, yet, our approach can be easily extended with additional ones.
As the table shows, properties either refer to all events in g or to the events in g per
case. Moreover, each property refers to one attribute and, as such, to one main process
perspective, i.e., the control-flow, resource, time, or data perspective. For instance, a
group-based, resource-related property would be the number of distinct roles that exe-
cute events within a group, whereas a case-based one would be the average number of
distinct roles in a group per case.

We compute group-level properties by aggregating the attribute values of events in
a group, i.e., we collect distinct categorical and sum, average, and compute the range
of numerical attribute values. For case-level properties, we first aggregate per trace and
then take the average, minimum, and maximum. For instance, for a case-level property
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that explains the maximum number of distinct resources per trace, we count distinct
resources that executed a group’s events for each trace and take the maximum.

Handling Noise. There may be events with attribute values that occur infrequently in
the established groups, which may pollute otherwise clear, representative group proper-
ties. To deal with such noise, we introduce a noise-filtering threshold τ , which can take
values between 0 and 1 with a default value of 0.2 (the commonly used noise filtering
threshold to separate frequent from infrequent behavior). We remove an event from a
group g if the value’s relative frequency in g is less than τ times the values’ relative
frequency in the log and recompute the property.

4.4 Step 4: Suggest Event Groups

In the final step, we select those groups that have properties that are actually interesting,
i.e., we establish a set Gs ⊆ G of groups to be suggested to the user. For these, we then
create textual descriptions providing the most interesting properties per group, such as
visualized in Fig. 2 of our running example.

Selecting Groups to Suggest.Using the properties that have been derived for a group g,
we make a selection of groups to present to the user based on the interestingness of their
properties. We argue that there are primarily two aspects that determine if a property is
interesting for multi-perspective event abstraction: distinctness and uniqueness.

Distinctness. The distinctness of a property assumes that the more a property of a group
differs from that of others, the more interesting it is. For instance, if a group of events
is the only one that contains the Manager role, this makes it interesting. We compute
the earth mover’s distance [13] using the property’s value sets for categorical properties
and the property’s averages per case for numerical ones for each group versus all other
groups. The sum of the distances is the distinctness score of a property. The larger this
score, the more distinct this group is from others for the respective property.

Uniqueness. The uniqueness of a property reflects how similar events in a group are
with respect to a specific property. For instance, a group that contains events that all
refer to the Assistant role makes this group more interesting than a group, whose events
refer to five different roles. The uniqueness of a categorical property is the number of
distinct values that occur for it in this group, whereas for numerical ones, we calculate
the variance of the values within a group. On the case level, the uniqueness can be
quantified using the mean number of distinct values per case for categorical properties,
respectively the mean value range (difference between minimum and maximum) for
numerical ones. The smaller this score, the more unique a group is for the property.

Inclusion Criterion. We rank the groups per property and include a group g in Gs if it
ranks highest for at least one property for either uniqueness or distinctness.

Generating Textual Group Descriptions. Next, we provide understandable explana-
tions for the groups in Gs. To this end, we create natural language descriptions of the
properties of a group g, such as exemplified in Fig. 2. For each property, we fill slots
of pre-defined template sentences. Examples of already filled template sentences are
provided in the rightmost column of Table 2.
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4.5 Output

Our approach outputs the set Gs of event group suggestions for event abstraction along
with their corresponding textual descriptions. A user can inspect the generated descrip-
tions and select meaningful groups. In this manner, we introduce a means to ensure
that the groups that are ultimately used for abstraction are actually useful for the user
with respect to their downstream analysis goal. While these textual descriptions are a
means to explain the generated suggestions in an intuitive manner, the set of suggested
groups in Gs are the important output for the actual event abstraction. They can be used
to build a mapping from low-level events to higher-level activities, once each selected
group is assigned a label. The concrete abstraction of the low-level event log can then
be instantiated in various manners. For instance, we can replace each low-level event’s
class with the label associated with its group, i.e., high-level activity, and only retain
the last event with the same label per trace. An important aspect is to consider multiple
instances of the same high-level activity within a trace [8], which we will address when
further developing our approach.

5 Proof of Concept

We implemented our approach as a Python prototype and simulated an event log that
mirrors the scenario outlined in the problem illustration (Sect. 2)1. We aim to show that
our approach can find groups of low-level events that correspond to meaningful high-
level activities and that these can be used for event abstraction.

Data. There are no public logs available that record data as considered in our work and
for which a ground truth is known. Therefore, we modeled a high-level and correspond-
ing low-level Petri net. We simulated the low-level net introducing multi-perspective
contextual dependencies and n:m relationships between the event classes and high-level
activities. For instance, the execution of the Decide on acceptance activity (cf. Fig. 5)
yieldsOpen document, Close document, andUpdate record events, is performed by one
manager per case, and takes at most 20min.

Settings. We trained MPPN on the event log (cf. Sect. 4.1) generating vectors r of size
128. It reached almost 100% accuracy on all attributes except Resource with 73%.
For PCA, we chose an explained variance of 0.99 to minimize information loss.

Results. Table 3 shows the groups suggested by our approach, including the multi-
perspective context found in their event attributes. How these groups relate to the orig-
inal high-level activities is indicated in Fig. 5.

We found that our approach identified three groups of events that exactly resemble
high-level activities. Group 2 corresponds to the Examine thoroughly activity, Group 3
to Decide on acceptance, and Group 4 to Communicate decision. Notably, Decide on
acceptance consist of the same set of low-level event classes as Examine thoroughly.
However, Group 1 represents the whole initial phase of the process, which actually con-
sists of four high-level activities, i.e., our approach could not discriminate the intended

1 The source code, high-level as well as low-level process models, simulation, and a detailed
scenario description are all available at https://github.com/a-rebmann/exploratory-abstraction.

https://github.com/a-rebmann/exploratory-abstraction
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Fig. 5. High-level process model with groups suggested by our approach.

Table 3. Group suggestions found by our approach.

Group 1 2 3 4

Event classes Open email, Open document,
Create record, Update record,
Close document, Send email

Open document, Query
record, Update record,
Close document

Open document,
Update record,
Close document

Generate document,
Query record,
Send email

Context Roles: Assistant
Resource: avg. 2.5 per case
Duration: 3 h 30m per case
Status: complete, incomplete

Roles: Expert
Resource: 1 per case
Duration: 20m per case
Status: complete

Roles: Manager
Resource: 1 per case
Duration: 15m per case
Status: accept, reject

Roles: Assistant
Resource: 1 per case
Duration: 8m per case
Status: accept, reject

high-level activities. This could be due to ambiguous contextual information, e.g.,
because the events all happen at the beginning of their case and are executed by the
same role. However, depending on the specific analysis purpose, this event group may
still be meaningful. If, for instance, a user is interested in how requests are examined
and how decisions are made, they do want to abstract from the details of this initial
phase.

To highlight the usefulness of the suggested groups for abstraction, we applied them
to the low-level event log, omitting events from groups not included in Gs. In partic-
ular, we map the low-level events of each group g ∈ Gs, to high-level activities. The
DFG of the low-level event log and the DFG obtained after abstracting the log are visu-
alized in Fig. 6. In the low-level DFG, the nodes refer to the distinct event classes in
the log. Because one event class can be part of multiple high-level activities and one
high-level activity can consist of multiple low-level event classes, limited insights can
be obtained about the underlying process. From Fig. 6a it is, therefore, impossible to
derive the actual relations to activities in Fig. 5. For instance, since Send email events
relate to both inquiring about missing information (at the start of the process) and com-
municating a decision (at the end), there is a loop in the low-level DFG from the last to
the first node, which obscures the distinct activities. However, our approach was able to
group events in a way, such that a meaningful structure becomes visible (Fig. 6b), e.g.,
by assigning Send email events with different contexts (start vs. end of the process) to
different groups. The initial process phase has been abstracted into a single activity,
i.e., Initial check (the values of the Status attribute, i.e., complete and incomplete, hint
at a checking activity). Moreover, clear behavioral patterns that were “hidden” in the
low-level DFG are revealed for the later phase of the process: there is a choice between
doing a thorough examination or not and there is a sequence between first examining
the request, deciding on it, and finally communicating the decision. Note that we man-
ually assigned meaningful labels to the new activities, since this is not yet supported
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by the approach. However, the descriptions of the multi-perspective event contexts our
approach creates already provide the user with hints on how to label the groups.

Open email

Open document
Update record

Generate document
Close document

Send email

Create record

Query record

(a) Low-level DFG
(before abstraction).

Initial 
check

Communicate 
decision

Decide on 
acceptance

Examine 
thoroughly

1

2

3

4

(b) DFG after abstraction;
omitting events from groups
not included in Gs.

Fig. 6. Abstraction impact achieved with the suggested groups.

These results indicate the potential of the approach to identify meaningful groups of
events for event abstraction without any knowledge of true high-level activities. Also,
the necessity to involve the user becomes clear, who can inspect group descriptions and
make the final decision if a group is meaningful and which activity it resembles.

6 Related Work

A broad range of event abstraction techniques has been proposed in the context of
process mining [4,17]. To conduct meaningful abstraction, techniques require explicit
input about high-level activities, which has to be provided by the user beforehand.
For instance, some techniques assume a data attribute to indicate higher abstraction
levels [7,9], whereas others assume high-level process models as input [2]. While a
recent technique explains the relations between low-level events and activities, the high-
level activities and a mapping to low-level event classes are still required [6]. Other
techniques do not require users to explicitly provide information about higher-level
activities themselves, but criteria about when events are considered to be part of the
same high-level activity, e.g., using temporal information [3] or requirements about
the specific characteristics high-level activities should have [12]. In contrast to these
techniques, our approach does not require the user to provide input about high-level
activities upfront, but supports them in finding suitable groups of events based on their
properties, which can then be used to abstract the event log in a meaningful manner.

Beyond the context of event abstraction, a recent study [18] examined exploratory
analysis practices in process mining finding that few techniques support the user in the
exploration of event data. A notable example is the work by Seeliger et al. [14] who
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introduced a system for trace clustering, which recommends clusters to analyze based
on process performance indicators and thus, suggests groups of cases rather than events.
Tsoury et al. [16] strive to augment logs with information derived from database records
and transaction logs to allow for deeper insights when exploring event data. While these
works provide the user with valuable support when analyzing complex event logs, they
do not consider lifting low-level event data to a more meaningful level of abstraction.

7 Conclusion

This paper proposed an approach to identify and suggest groups of low-level events
based on their multi-perspective recurring contexts that it learns using only information
available in the event log. Users can inspect and select suggested groups, which supports
the meaningful abstraction of event logs without the need to provide elaborate input
about high-level activities upfront. In an initial proof of concept, we showed that the
approach can indeed identify groups that correspond to high-level activities.

The research presented in this workshop paper is work in progress. We aim to
expand the current work in several directions. First, we aim to extend the scope of our
approach by adding a phase in which users can explore groups and interactively refine
meaningful but too coarse-grained ones (such as Group 1 in Sect. 5), e.g., by triggering
a clustering of a single group. Also, we aim to provide the user with various options
for abstracting events by clustering the same representations but with different settings.
Furthermore, if a group is discarded by the user because it does not make sense to them,
e.g., because events with complete as the value for a Status attribute were assigned
to the same group as events with incomplete, we want to incorporate their decision. In
such cases, a re-clustering could be applied that takes this feedback into account and
suggest groups that adhere to it. Second, motivated by the shift towards conducting
data-driven process analysis in an object-centric and view-based manner [5], we aim to
overcome the assumption that low-level events belong to exactly one case. Finally, to
assess the usefulness of our (extended) approach, we aim to go beyond an evaluation
using synthetic logs, by applying it in real-word settings and involving participants in a
user study to assess the value of the suggestions our approach provides.
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