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Abstract. Process discovery is a family of techniques that helps to comprehend
processes from their data footprints. Yet, as processes change over time so should
their corresponding models, and failure to do so will lead to models that under-
or over-approximate behaviour. We present a discovery algorithm that extracts
declarative processes as Dynamic Condition Response (DCR) graphs from event
streams. Streams are monitored to generate temporal representations of the pro-
cess, later processed to create declarative models. We validated the technique by
identifying drifts in a publicly available dataset of event streams. The metrics
extend the Jaccard similarity measure to account for process change in a declara-
tive setting. The technique and the data used for testing are available online.
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1 Introduction

Process discovery techniques promise that given enough data, it is possible to output
a realistic model of the process as is. This evidence-based approach has a caveat: one
needs to assume that inputs belong to the same process. Not considering process vari-
ance over time might end in under- or over-constrained models that do not represent
reality. The second assumption is that it is possible to identify full traces from the
event log. This requirement indeed presents considerable obstacles in organizations
where processes are constantly evolving, either because the starting events are located
in legacy systems no longer in use, or because current traces have not finished yet.
Accounting for change is particularly important in declarative processes. Based on a
“outside-in” approach, declarative processes describe the minimal set of rules that gen-
erate accepting traces. For process mining, the simplicity of declarative processes has
been demonstrated to fit well with real process executions, and declarative miners are
currently the most precise miners in use1. However, little research exists regarding how
declarative miners are sensitive to process change. The objective of this paper is to study
how declarative miners can give accurate and timely views of partial traces (so-called
event streams). We integrate techniques of streaming process mining to declarative

1 See https://icpmconference.org/2021/process-discovery-contest/.
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Fig. 1. Contribution of the paper

modelling notations, in particular, DCR graphs [14]. While previous works of streaming
conformance checking have addressed other declarative languages (e.g.: Declare [23]),
these languages are fundamentally different. Declare provides a predefined set of 18
constraint templates with an underlying semantics based on LTL formulae on finite
traces [12]. Instead, DCR is based on a minimal set of 5 constraints, being able to cap-
ture regular and omega-regular languages [13]. In comparison with Declare, DCR is
a language adopted by the industry: DCR is integrated into KMD Workzone, a case
management solution used by 70% of central government institutions in Denmark [22].
Event streams present challenges for discovery. Streams are potentially infinite, mak-
ing memory and time computation complexities major issues. Our technique optimizes
these aspects by relying on intermediate representations that are updated at runtime.
Another aspect is extensibility: our technique can be extended to more complex work-
flow patterns via the combination of atomic DCR constraints. Figure 1 illustrates our
contribution: a streaming mining component, capable of continuously generating DCR
graphs from an event stream (here we use the plural graphs to indicate that the DCR
model could evolve over time, to accommodate drifts in the model that might occur).
Towards the long-term goal of a system capable of spotting changes in a detailed fash-
ion, we will also sketch a simple model-to-model metric for DCR, which can be used
to compare the results of stream mining with a catalogue or repository of processes.
An implementation of our techniques together with tests and datasets is available in
Beamline2 [6].

The rest of the paper is structured as follows: related works are presented in Sect. 2;
theoretical background is covered in Sect. 3. The streaming discovery is presented in
Sect. 4 and the approach is validated in Sect. 5. Section 6 concludes.

2 Related Work

This is the first work aiming at discovering DCR graphs from event streams. We find
related work in offline discovery of DCR graphs and stream process mining for Declare.

Offline Process Discovery Techniques. The most current discovery technique for DCR
graphs is the DisCoveR algorithm [4]. In their paper, the authors claim an accuracy of

2 See https://github.com/beamline/discovery-dcr.

https://github.com/beamline/discovery-dcr
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96,1% with linear time complexity (in PDC 2021 the algorithm achieved 96.2%). The
algorithm is an extension of the ParNek algorithm [21] using an efficient implementa-
tion of DCRmapping via bit vectors. In its most recent version [24], DisCoveR has been
extended with the idea of having both positive and negative examples to produce a more
precise process model. Other related works derive from conformance checking [10] and
process repair [1] techniques. Both fields aim at understanding whether executions can
be replayed on top of an existing processes model. However, in our case, we wanted to
separate the identification of the processes (i.e., control-flow discovery) from the calcu-
lation of their similarity (i.e., the model-to-model metric) so that these two contributions
can be used independently from each other. Conformance checking and process repair,
on the other hand, embed the evaluation and the improvement into one “activity”.

OnlineDiscovery forDeclarativeModels. In [7] a framework for the discovery ofDeclare
models from streams was introduced as a way to deal with large collections of datasets
that are impossible to store and process altogether. In [20] this work was generalized to
handle the mining of data constraints, leveraging the MP-Declare notation [9].

Streaming Process Mining in General. In his PhD thesis [29], van Zelst proposes process
mining techniques applicable to process discovery, conformance checking, and process
enhancement from event streams. An important conclusion from his research consists
of the idea of building intermediate models that capture the knowledge observed in the
stream before creating the final process model. In [5] the author presents a taxonomy for
the classification of streaming process mining techniques. Our techniques constitute a
hybrid approach in the categories in [5], mixing a smart window-based model which is
used to construct and maintain an intermediate structure updated, and a problem reduc-
tion technique used to transform the such structure into a DCR graph.

3 Background

In the following section, we recall basic notions of Directly Follows Graphs [1] and the
Dynamic Condition Response (DCR) graphs [14]. While, in general, DCR is expressive
to capture multi-perspective constraints such as time and data [15,26], in this paper we
use the classical, set-based formulation first presented in [14] that contains only four
most basic behavioural relations: conditions, responses, inclusions and exclusions.

Definition 1 (Sets, Events and Sequences). Let C denote the set of possible case iden-
tifiers and let A denote the set of possible activity names. The event universe is the set
of all possible events E = C × A and an event is an element e = (c, a) ∈ E . Given a
set N+

n = 1, 2, . . . , n and a target set A, a sequence σ : N+
n �→ A maps index values to

elements in A. For simplicity, we can consider sequences using a string interpretation:
σ = 〈a1, . . . , an〉 where σ(i) = ai ∈ A.

We can now formally characterize an event stream:

Definition 2 (Event stream). An event stream is an unbounded sequence mapping
indexes to events: S : N+ → E .
Definition 3 (Directly Follows Graph (DFG)). A DFG is a graph G = (V,R) where
nodes represent activities (i.e., V ⊆ A), and edges indicate directly follows relations
from source to target activities (i.e., (as, at) ∈ R with as, at ∈ V , so R ⊆ V × V ).
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Definition 4 (Extended DFG). An extended DFG is a graph Gx = (V,R,X) where
(V,R) is a DFG and X contains additional numerical attributes referring to the nodes:
X : V ×Attrs → R, where Attrs is the set of all attribute names. To access attribute α1

for node v we use the notation X(v, α1).

We use the following attributes: avgFO: average index of the first appearance of an
activity in a trace; noTraceApp: current number of traces containing the activity;
avgIdx: average index of the activity in a trace; and noOccur: number of activity occur-
rences.

Definition 5 (DCR Graph). A DCR graph is a tuple 〈A,M,→•, •→,→+,→%〉,
where A is a set of activities, M ⊆ P(A)×P(A)×P(A) is amarking, and φ ⊆ A×A
for φ ∈ {→•, •→,→+,→%} are relations between activities.

A DCR graph defines processes whose executions are finite and infinite sequences
of activities. An activity may be executed several times. The three sets of activities in
the marking M = (Ex,Re, In) define the state of a process, and they are referred to
as the executed activities (Ex), the pending response (Re)3 and the included activities
(In). DCR relations define what is the effect of executing one activity in the graph.
Briefly: Condition relations a→•a′ say that the execution of a is a prerequisite for a′,
i.e. if a is included, then a must have been executed for a′ to be enabled for execution.
Response relations a•→a′ say that whenever a is executed, a′ becomes pending. In
a run, a pending event must eventually be executed or be excluded. We refer to a′

as a response to a. An inclusion (respectively exclusion) relation a→+a′ (respectively
a→%a′) means that if a is executed, then a′ is included (respectively excluded).

For a DCR graph4 P with activities A and marking M = (Ex,Re, In) we write P•→
for the set of pairs {(x, y) | x ∈ A ∧ y ∈ A ∧ (x, y) ∈ •→} (similarly for any of the
relations in φ) and we write PA for the set of activities. Definition 5 omits the existence
of a set of labels and labelling function present in [14]. This has a consequence in the
set of observable traces: Assume a graph G = 〈{a, b}, (∅, {a, b}, {a, b}), ∅, ∅, ∅, ∅〉 as
well as a set of labels L = {p} and a labelling function l = {(a, p), (b, p)}. A possible
run of G has the shape σ = 〈p, p〉, which can be generated from 1) two executions of a,
2) two executions of b or 3) an interleaved execution of a and b. By removing the labels
from the events (or alternatively, assuming an injective surjective labelling function in
[14]), we assume that two occurrences of the event in the stream imply event repetition.

4 Streaming DCR Miner

This section presents the general structure of the stream mining algorithm for DCR
graphs. The general idea of the approach presented in this paper is depicted in Fig. 2:
constructing and maintaining an extended DFG structure (cf. Definition 4) starting from
the stream and then, periodically, a new DCR graph is extracted from the most recent
version of the extended DFG available. The extraction of the different DCR rules starts
from the same extended DFG instance. For readability purposes, we split the approach

3 We might simply say pending when it is clear from the context.
4 We will use “DCR graph” and “DCR model” interchangeably in this paper.
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Fig. 2. Conceptual representation of the discovery strategy in this paper.

Algorithm 1: General structure of Streaming DCR Miner
Input: S: stream of events; mt: maximum number of traces to store; me: maximum number of events per trace to

store; 〈T, ≤〉: Pattern poset

1 Initialize map obs � Maps case ids to the sequence of activities
2 Initialize map deps � Maps case ids to one activity name
3 Initialize extended DFG GX = (V, R, X)
4 forever do

� Step 0: Observe new activity a for case c
5 (c, a) ← observe(S)

� Step 1: Update of the extended DFG
6 if c ∈ obs then
7 Refresh the update time of c
8 if |obs(c)| ≥ me then
9 Remove oldest (i.e., earliest update time) event from list obs(c)

10 Update V and X of GX to be consistent with the event just removed

11 else
12 if |obs| ≥ mt then
13 Remove the oldest (i.e., earliest update time) trace from obs and all its events
14 Update V and X of GX to be consistent with the events just removed

15 obs(c) ← 〈〉 � Create empty list for obs(c)

16 obs(c) ← obs(c) · 〈a〉 � Append a to obs(c)
17 V ← V ∪ {a}
18 Update frequency and avg appearance index in X component of GX � The average appearance index is

updated considering the new position given by |obs(c)|
19 if c ∈ deps then
20 R ← R ∪ {(deps(c), a)}
21 deps(c) ← a
22 if trigger periodic cleanup then � Periodic cleanup of deps
23 Remove the oldest cases from deps

� Step 2: Periodic update of the DCR model (enough time/new behaviour)
24 if trigger periodic update of the model then
25 M ← mine(〈T, ≤〉, GX) � See Algorithm 2
26 Notify about new model M

into two phases. The former (Algorithm 1) is in charge of extracting the extended DFG,
the latter (Algorithms. 2, 3, 4) focuses on the extraction of DCR rules from the extended
DFG.

Algorithm 1 takes as input a stream of events S, two parameters referring to the
maximum number of traces mt and events to store me and a set of DCR patterns to
mine. The algorithm starts by initializing two supporting map data structures obs and
deps as well as an empty extended DCR graphGX (lines 1–3). obs is a map associating
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Algorithm 2: Mining of rules starting from the extended DFG
Input: 〈T, ≤〉: Pattern poset, GX = (V, R, X): extended DFG

1 P ← 〈V, Minit, →• = ∅, •→ = ∅, →+ = ∅, →% = ∅〉 � Initial DCR graph
2 Rels, CompRels ← ∅, ∅
3 foreach t ∈ MinimalElements(〈T, ≤〉) do � Baseline for atomic patterns
4 Rels ← Rels ∪ MineAtomic(GX , t)

5 foreach t ∈ T\MinimalElements(〈T ≤〉) do � Composite case
6 CompRels ← CompRels ∪ MineComposite(GX , t, Rels)

7 if CompRels = ∅ then
8 P ← P ⊕ CompRels
9 else

10 P ← P ⊕ Rels

11 return RemoveRedundancies(P ) � Apply transitive reduction

case ids to sequences of partial traces; deps is a map associating case ids to activity
names. After initialization, the algorithm starts consuming the actual events in a never-
ending loop (line 4). The initial step consists of receiving a new event (line 5). Then, two
major steps take place: the first step consists of updating the extended DFG; the second
consists of transforming the extended DFG into a DCR model. To update the extended
DFG the algorithm first updates the set of nodes and extra attributes. If the case id c of
the new event has been seen before (line 6), then the algorithm refreshes the update time
of the case id (line 7, useful to keep track of which cases are the most recent ones) and
checks whether the maximum length of the partial trace for that case id has been reached
(line 8). If that is the case, then the oldest event is removed and the GX is updated to
incorporate the removal of the event. If this is the first time this case id is seen (line 11),
then it is first necessary to verify that the new case can be accommodated (line 12) and,
if there is no room, then first some space needs to be created by removing oldest cases
and propagating corresponding changes (lines 13–14) and then a new empty list can
be created to host the partial trace (line 15). In either situation, the new event is added
to the partial trace (line 16) and, if needed, a new node is added to the set of vertices
V (line 17). The X data structure can be refreshed by leveraging the properties of the
partial trace seen so far (line 18). To update the relations in the extended DFG (i.e., the
R component of GX ), the algorithm checks whether an activity was seen previously for
the given case id c and, if that is the case, the relation from such activity (i.e., deps(c))
to the new activity just seen (i.e., a) is added (lines 19–20). In any case, the activity just
observed is now the latest activity for case id c (line 21) and oldest cases (i.e., cases
not likely to receive any further events) are removed from deps (line 23). Finally, the
algorithm refreshes the DCR model by calling the procedure that transforms (lines 25-
26) the extended DFG into a DCR model (cf. Algorithm 2). Updates can be triggered
based on some periodicity (line 24) or based on the amount of behaviour seen. The
mechanics of such periodicity are beyond the scope of the paper.

Algorithm 2 generates a DCR graph from an extended DFG. First, it (1) defines
patterns that describe occurrences of atomic DCR constraints in the extended DFG, and
then it (2) defines composite patterns that describe the most common behaviour. Given
a set of relation patterns T , 〈T,≤〉 denotes a pattern dependency poset with ≤ a partial
order over T . Similarly MinimalElements(〈T,≤〉) = {x ∈ T |� ∃y ∈ T.y ≤ x}. Pat-
terns as posets allow us to reuse and simplify the outputs from the discovery algorithm.
Consider a pattern describing a sequential composition from a to b (similar to a flow
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Algorithm 3: Atomic miner
Input: GX = (V, R, X): extended DFG, u: DCR Pattern

1 Rels ← ∅ � Empty dictionary of mined relations
2 foreach (s, t) ∈ R do
3 switch u � Pattern match with each atomic pattern
4 do
5 case RESPONSE
6 if X(s, avgIdx) < X(t, avgIdx) then
7 Rels[u] ← Rels[u] ∪ (s, t, •→)

8 case CONDITION
9 if X(s, avgFO) < X(t, avgFO) ∧ X(s, noTraceApp) ≥ X(t, noTraceApp) then

10 Rels[u] ← Rels[u] ∪ (s, t, →•)
11 case SELFEXCLUDE
12 if X(s, noOccur) = 1 then
13 Rels[u] ← Rels[u] ∪ (s, s, →%)

� Further patterns here...
14 return Rels

Algorithm 4: Composite miner
Input: GX = (V, R, X): extended DFG, u: DCR Pattern, Rels : Mined Relations

1 switch u do
2 case EXCLUDEINCLUDE
3 return Rels[SELFEXCLUDE] ∪ Rels[PRECEDENCE] ∪ Rels[NOTCHAINSUCCESION] � Removes

redundant relations
4 � Further patterns here

in BPMN). A DCR model that captures a sequential behaviour will need 4 constraints:
{a→•b, a•→b, a→%a, b→%b}. Consider T = {T1 : Condition, T2 : Response, T3 :
Exclusion, T4 : Sequence}. The pattern poset 〈T, {(T4, T1), (T4, T2), (T4, T3)}〉 defines
the dependency relations for a miner capable of mining sequential patterns. Additional
patterns (e.g. exclusive choices, escalation patterns, etc.), can be modelled similarly.
Pattern posets are finite, thus there exist minimal elements. The generation of a DCR
model from an extended DFG is described in Algorithm 2. We illustrate the mining of
DCR conditions, responses and self-responses, but more patterns are available in [25].
The algorithm takes as input an extended DFGGX and a pattern poset. It starts by creat-
ing an empty DCR graph P with activities equal to the nodes in GX and initial marking
Minit = {∅, ∅, V }, that is, all events are included, not pending and not executed. We then
split the processing between atomic patterns (those with no dependencies) and compos-
ite patterns. The map Rel stores the relations from atomic patterns, that will be used for
the composite miner. We use the merge notation P ⊕ Rels to denote the result of the
creation of a DCR graph whose activities and markings are the same as P , and whose
relations are the pairwise union of the range of Rels and its corresponding relational
structure in P . Line 11 applies a transitive reduction strategy [4], reducing the number
of relations while maintaining identical reachability properties.

The atomic and composite miners are described in Algorithms 3, and 4. The atomic
miner in Algorithm 3 iterates over all node dependencies in the DFG and the pattern
matches with the existing set of implemented patterns. Take the case of a response
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constraint. We will identify it if the average occurrence of s is before t (line 6). This
condition, together with the dependency between s and t in GX is sufficient to infer a
response constraint from s to t. To detect conditions, the algorithm verifies another set
of properties: given a dependency between s and t, it checks that the first occurrence of
s precedes t and that s and t appeared in the same traces (approximated by counting the
number of traces containing both activities, line 9). The composite miner in Algorithm
4 receives the DFG, a pattern, and the list of mined relations from atomic patterns. We
provide an example for the case of include and exclude relations. This pattern is built
as a combination of self-exclusions, precedence, and not chain successions. As these
atomic patterns generate each set of include/exclude relations, the pattern just takes the
set union construction.

Suitability of the Algorithms for Streaming Settings. Whenever discussing algorithms
that can tackle the streaming process mining problem [5], it is important to keep in
mind that while a stream is assumed to be infinite, only a finite amount of memory can
be used to store all information and that the time complexity for processing each event
must be constant. Concerning the memory, an upper bound on the number of stored
events in Algorithm 1 is given by mt · me where me is the number of unique events
and mt is the number of parallel traces. Moreover, note that the extended DFG is also
finite since there is a node for each activity contained in the memory. Concerning the
time complexity, Algorithm 1 does not perform any unbounded backtracking. Instead,
for each event, it operates using just maps that have amortized constant complexity or
on the extended DFG (which has finite, controlled size). The same observation holds
for Algorithm 2 as it iterates on the extended DFG which has a size bounded by the
provided parameters (and hence, can be considered constant).

5 Experimental Evaluation

To validate our approach we executed several tests, first to validate quantitatively the
streaming discovery on synthetic data, then to qualitatively evaluate the whole approach
on a real dataset. Due to lack of space, we only report quantitative tests, while perfor-
mance and the qualitative evaluation can be found in a separate technical report [8].

5.1 Quantitative Evaluation of Streaming Discovery

Recall from the previous section that time/space complexity are constant for streaming
settings. Thus, our analysis will focus on studying how the algorithm behaves when
encountering sudden changes in a stream. We compare with other process discovery
algorithms for DCR graphs, in this case, the DisCoveR miner [4]. The tests are per-
formed against a publicly available dataset of events streams [11]. This dataset includes
(1) a synthetic stream inspired by a loan application process, and (2) perturbations to
the original stream using change patterns [28]. Recall that the DisCoveR miner is an
offline miner, thus it assumes an infinite memory model. To provide a fair evaluation
we need to parameterize DisCoveR with the same amount of available memory. We
divided the experiment into two parts: a simple stream where the observations of each
process instance arrive in an ordered manner (i.e., one complete process instance at a
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Fig. 3. Performance comparison between the offline DisCoveR miner and the streaming DCR
Miner with equal storage available (capacity of up to 100 and 500 events).

time) and a complex stream where observations frommany instances arrive intertwined.
As no initial DCR graph exists for this process, and no streaming DCR miner exists,
we used the DisCoveR miner in its original (offline) setting to generate a baseline graph
using the entire dataset. This model (the one calculated with offline DisCoveR) was
used to calculate the model-to-model similarity between the DCR stream miner and
the DisCoveR miner with memory limits. For the sake of simplicity, in this paper, we
considered only the case of sudden drifts, while we discuss other types of drift in future
work.

We introduce a metric that quantifies the similarity between two DCR graphs. It
can be used, for example, to identify which process is being executed with respect to
a model repository, or by quantifying the change rate of one process over time. The
metric takes as input two DCR graphs P and Q as well as a weight relation W that
associates each DCR relation in φ (cf. Definition 5) with a weight, plus one additional
weight for the activities. Then it computes the weighted Jaccard similarity [17] of the
sets of relations and the set of activities, similarly to what happens in [2] imperative
models:

Definition 6 (DCR Model-to-Model metric). Given P and Q two DCR graphs, and
W : φ∪{act} → R a weight function in the range [0, 1] such that

∑
r∈φ∪{act} W (r) =

1. The model-to-model similarity metric is defined as:

S(P,Q,W ) = W (act) · |PA ∩ QA|
|PA ∪ QA| +

∑

r∈φ

W (r) · |Pr ∩ Qr|
|Pr ∪ Qr| (1)
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The similarity metric compares the relations in each of the two DCR graphs, thus
returning a value between 0 and 1, where 1 indicates a perfect match and 0 stands for
no match at all. A brief evaluation of the metric is reported in Appendix A.

The results of the quantitative evaluation are reported in Fig. 3. Each figure shows
the performance of the incremental version of DisCoveR and the streaming DCR miner
against 2 different configurations over time. The vertical black bars indicate where a
sudden drift occurred in the stream. While the performance for the simple stream is very
good for both the DisCoveR and the streaming DCR miners, when the stream becomes
more complicated (i.e., Fig. 3b), DisCoveR becomes less effective, and, though its aver-
age performance increases over time, the presence of the drift completely disrupt the
accuracy. In contrast, our approach is more robust to the drift and more stable over time,
proving its ability at managing the available memory in a more effective way.

5.2 Discussion

One of the limitations of the approach regards precision with respect to offline min-
ers. A limiting aspect of our work is the choice of the intermediate structure. A DFG
representation may report confusing model behaviour as it simplifies the observations
using purely a frequency-based threshold [27]. A DFG is in essence an imperative data
structure that captures the most common flows that appear in a stream. This, in a sense,
goes against the declarative paradigm as a second-class citizen with respect to declara-
tive constraints. We believe that the choice of the DFG as an intermediate data structure
carries out a loss of precision with respect to the DisCoveR miner in offline settings.
However, in an online setting, the DFG still provides a valid approximation to observa-
tions of streams where we do not have complete traces. This is far from an abnormal sit-
uation: IoT communication protocols such as MQTT [16] assume that subscriber nodes
might connect to the network after the communications have started, not being able
to identify starting nodes. Specifically, in a streaming setting it is impossible to know
exactly when a certain execution is complete and, especially in declarative settings, cer-
tain constraints describe liveness behaviours that can only be verified after a whole trace
has been completely inspected. While watermarking techniques [3] could be employed
to cope with lateness issues, we have decided to favour self-contained approaches in
this paper, leaving for future work the exploration of watermarking techniques.

6 Conclusion and Future Work

This paper presented a novel streaming discovery technique capable of extracting
declarative models expressed using the DCR language, from event streams. Addition-
ally, a model-to-model metric is reported which allows understanding if and to what
extent two DCR models are the same. An experimental evaluation, comprising both
synthetic and real data, validated the two contributions separately as well as their com-
bination in a qualitative fashion, which included interviews with the process owner.

We plan to explore several directions in future work. Regarding the miner, we plan
to extend its capabilities to the identification of sub-processes, nesting, and data con-
straints. Regarding the model-to-model similarity, we would like to embed more seman-
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tic aspects, such as mentioned in [18]. A possible limitation of the streaming miner algo-
rithm approach followed here relates to the updating mechanism. Currently lines 22–24
of Algorithm 1 perform updates based entirely on periodic updates triggered by time,
which will generate notifications even when no potential changes in the model have
been identified. A possibility to extend the algorithm will be to integrate the model-to-
model similarity as a parameter to the discovery algorithm, so models only get updated
after a given change threshold (a similarity value specified by the user) is reached.

A Quantitative Evaluation of Model-to-Model Metric
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To validate our metric we used
a dataset of 28 DCR process
models collected from previ-
ous mapping efforts [19]. For
each model, we randomly intro-
duced variations such as: adding
new activities connected to the
existing fragments, adding dis-
connected activities, deleting
existing activities, adding and
removing constraints, and swap-
ping activity labels in the pro-
cess. By systematically apply-
ing all possible combinations of
variations in a different amount
(e.g., adding 1/2/3 activities and
nothing else; adding 1/2/3 activ-
ities and removing 1/2/3 con-
straints) we ended up with a total of 455,826 process models with a quantifiable
amount of variation from the 28 starting processes. Figure 4 shows each variation on
a scatter plot where the x axis refers to the number of introduced variations and the y
axis refers to the model-to-model similarity. The colour indicates the number of mod-
els in the proximity of each point (since multiple processes have very close similar-
ity scores). For identifying the optimal weights we solve an optimization problem,
aiming at finding the highest correlation between the points, ending up with: W =
{(→•, 0.06), (•→, 0.07), (→�, 0.06), (→+, 0.07), (→%, 0.13), (act, 0.61)} leading to
a Pearson’s correlation of −0.56 and a Spearman’s correlation of −0.55. These values
indicate that our metric is indeed capable of capturing the changes. As the metric is very
compact (value in [0, 1]) and operates just on the topological structure of the model, it
cannot identify all details. However, the metric benefits from a fast computation.
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