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Abstract Various structural fit indices (SFIs) have been proposed to evaluate the 
structural component of a structural equation model (SEM). Decomposed SFIs treat 
estimated latent (co)variances from an unrestricted confirmatory factor analysis 
(CFA) as input data for a path model, from which standard global fit indices 
are calculated. Conflated SFIs fit a SEM with both measurement and structural 
components, comparing its fit to orthogonal and unrestricted CFAs. Sensitivity of 
conflated SFIs to the same structural misspecification depends on standardized fac-
tor loadings, but decomposed SFIs have inflated Type-I error rates when compared 
to rule-of-thumb cutoffs, due to treating estimates as data. We explored whether two 
alternative approaches avoid either shortcoming by separating the measurement and 
structural model components while accounting for uncertainty of factor-covariance 
estimates: (a) plausible values and (b) the Structural-After-Measurement (SAM) 
approach. We conduct population analyses by varying levels of construct reliability 
and numbers of indicators per factor, under populations with simple and complex 
measurement models. Results show SAM is as promising as existing decomposed 
SFIs. Plausible values provide less accurate estimates, but future research should 
investigate whether its pooled test statistic has nominal Type I error rates. 
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1 Evaluating Structural Fit 

A structural equation model (SEM) can include both measurement and structural 
components. The measurement model pertains to the relationship between observed 
and latent variables (i.e., shared variance among indicators of a common factor, vs. 
error variance unique to each indicator). The structural model represents the theo-
rized causal structure among latent variables. Evaluating how well a hypothesized 
SEM is substantiated by data can be conducted by (a) a null-hypothesis (. H0) test  
of exact fit, using the likelihood-ratio test (LRT or . χ2) statistic, or (b) quantifying 
approximate (mis)fit using at least one global fit index (GFI), such as the root-mean-
squared error of approximation (RMSEA) or comparative fit index (CFI; see Hu & 
Bentler, 1998, for an overview). 

When the goal is to test/evaluate the hypothesized structural model, its evaluation 
is complicated by qualities of the measurement model. Specifically, greater con-
struct reliability (determined by the magnitude of factor loadings and the number of 
indicators per factor in the measurement model) manifests worse apparent data– 
model fit (e.g., higher . χ2 or RMSEA, lower CFI). That is, the same structural 
misspecification is easier to detect when using instruments with larger loadings 
or more indicators than when using fewer or less reliable indicators. Hancock and 
Mueller (2011) refer to this as the reliability paradox: lower reliability yields better 
apparent data–model fit, inadvertently motivating researchers to use poor-quality 
measurement instruments. Two existing methods for assessing structural-model fit 
are conflated and decomposed approaches. 

Conflated approaches attempt to examine structural model fit by keeping the 
SEM intact, estimating both components simultaneously. A single SEM’s . χ2

statistic conflates misspecification from both components, so Anderson and Gerbing 
(1988) proposed evaluating structural-model fit with a LRT by comparing a SEM 
(with hypothesized structural restrictions) to an unrestricted confirmatory factor 
analysis (CFA), on the assumption1 that misspecification can only occur in the 
measurement component. Exact fit is thus tested with a .Δχ2

Δdf statistic: the 

difference between the hypothesized SEM’s . χ2
H and the structurally saturated CFA’s 

. χ2
S , with .Δdf = dfH − dfS . Approximate structural fit can be evaluated using this 

.Δχ2 statistic (and .Δdf ) in place of a single SEM’s . χ2 statistic (and df ) when 
calculating common GFIs, for example: 

.RMSEA(D)(or RDR) = (Δ)χ2 − (Δ)df

(Δ)df × N
. (1) 

When using .Δχ2
Δdf , Browne and Du Toit (1992) referred to Eq. (1) as the root-

deterioration per restriction (RDR), which Savalei et al. (2023) more recently called

1 The structural component might be misspecified even in a CFA if the number of factors is 
incorrect (Mulaik & Millsap, 2000). 
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.RMSEAD. In the specific context of comparing a CFA to a structurally restricted 
SEM, McDonald and Ho (2002) called it RMSEA-Path, which is the term we use 
throughout this chapter. 

Incremental fit indices (e.g., CFI) can also be calculated using .Δχ2
Δdf (Savalei 

et al., 2023), but must also include the . χ2
0 statistic for a structural “null” model— 

e.g., an independence model with endogenous factors orthogonal to themselves and 
to exogenous factors—which must be nested in the hypothesized SEM (and CFA). 
Like Savalei et al. (2023) did with RMSEA, Lance et al. (2016) unified some past 
definitions by proposing a family of structural fit indices (SFIs) called “C9” that are 
analogous to incremental GFIs, as well as their complement (C10 = . 1− C9) that 
quantifies badness rather than goodness of fit. For example, a C9 analogous to the 
normed fit index (NFI; Bentler & Bonett, 1980) is:  

.C9 = χ2
0 − χ2

H

χ2
0 − χ2

S

, (2) 

.C10 = χ2
S − χ2

H

χ2
0 − χ2

S

. (3) 

One can replace each model’s . χ2 in Eq. (2) with estimated noncentrality parameter 

(NCP) .χ2 − df for a C9 analogous to CFI, or with the ratio . 
χ2

df
for a C9 analogous 

to the nonnormed fit index (NNFI; Bentler & Bonett, 1980) or Tucker–Lewis (1973) 
index (TLI). 

Conversely, decomposed approaches examine structural model fit by separately 
estimating the measurement and structural components of a SEM in two steps. First, 
an unrestricted CFA is fitted and its model-implied latent covariance matrix (. ̂�) is  
extracted. Second, . ̂� is used as input data for subsequent path analysis that models 
the hypothesized relations among latent variables (i.e., matching the target SEM’s 
structural component). Two-stage estimation attempts to circumvent the reliability 
paradox by removing the (Stage-1) measurement model’s influence on (Stage-2) 
structural model. Hancock and Mueller (2011) proposed calculating GFIs for the 
Stage-2 path analysis to serve as SFIs. 

1.1 Issues with Current Methods 

Conflated SFIs have nominal Type-I error rates under correct specification (Lance 
et al., 2016; Rifenbark, 2019, 2022), but their power to detect structural misspec-
ification is moderated by the magnitude of factor loadings (McNeish & Hancock, 
2018). Thus conflated C9/C10 still suffer the reliability paradox: C9 indicates better 
fit with smaller than larger factor loadings. 

Although the decomposed approach appears to disentangle measurement-model 
misfit from structural misspecifications (Hancock & Mueller, 2011), their SFIs 
also suffer from inflated Type-I error rates (Rifenbark, 2022; Heene et al., 2021) 
when rule-of-thumb cutoffs are used (e.g., Hu & Bentler, 1999). Imprecision when
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estimating . ̂� increases an SFI’s sampling variance, which occurs when measuring 
the factors less reliably (lower factor loadings, fewer indicators). This broadening of 
an SFI’s sampling distribution sends more values past the “critical value” (cutoff), 
even when a structural model is correctly specified (i.e., due to sampling error alone; 
Marsh et al., 2004). 

Ideally, one would not use fixed cutoffs to judge the quality of a model with 
SFIs (Groskurth et al., 2021; McNeish & Wolf, 2023); however, while it remains 
common practice, it is valuable to investigate the practical consequences of doing 
so. Hancock and Mueller (2011) did not propose a decomposed . H0 test of exact 
fit because treating the Stage-1 . ̂� as observed data would inflate the Type I error 
rate. Thus, only approximate-fit solutions have been proposed from a decomposed 
perspective. 

1.2 Potential Remedies for Evaluating Structural Fit 

An ideal method would allow structural misspecifications to be identified inde-
pendent from measurement-model misfit, but without ignoring the measurement 
model’s imprecision when using . ̂� as input data. A true test of exact fit with nominal 
Type I error rate would also be welcome. 

We explore two potential solutions based on factor score regression (FSR; 
Thurstone, 1935; Thomson, 1934), which uses factor-score estimates (derived from 
Stage-1 measurement models) as input data for a path analysis. FSR suffers from 
the same limitation as decomposed SFIs: the input data are estimated (not known) 
factor scores, whose imprecision is not accounted for in Stage-2 estimation. One 
solution is numerical, the other is analytical. 

1.2.1 Numerical Solution: Sample Plausible Values 

Rather than obtain a single point estimate of subject i’s vector of factor scores, 
we can draw a sample of plausible values from their sampling distribution, whose 
variance reflects their imprecision. It was first proposed for Item Response Theory 
(IRT; Mislevy et al., 1992; von Davier et al., 2009) and has since been applied 
in SEM (Asparouhov & Muthén, 2010; Jorgensen et al., 2022).  The motivation is  
similar to sampling multiple imputations of missing values (Rubin, 1987), where 
the (100%-)missing values are the factor scores. Drawing m samples of plausible 
values provides m imputed data sets, where M should be large enough to minimize 
additional Monte Carlo sampling error. 

To use plausible values to evaluate a structural model’s fit, we first estimate an 
unrestricted CFA, drawm samples of plausible values, fit the hypothesized structural 
model (as a path analysis) to each of the m data sets, then use Rubin’s (1987) rules 
to pool parameter estimates across m results. The LRT statistic can also be pooled
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(Meng & Rubin, 1992) and the pooled statistic can be used to calculate SFIs in 
Eqs. 1 and 2. Variability of results across m imputations (i.e., between-imputation 
variance) captures the uncertainty around . ̂� and factor scores estimated from it. 
Imprecision should therefore be accounted for, resulting in decomposed SFIs that 
yield more robust inferences about structural fit, including a test of exact fit with 
approximately nominal Type I error rate. 

1.2.2 Analytical Solution: Use Bias-Correcting Formulas 

Croon (2002) developed a bias-correcting method for FSR, which Devlieger et al. 
(2016) showed outperforms other FSR methods in terms of bias, mean-squared 
error, and Type I error rates. Devlieger et al. (2019) extended Croon’s (2002) 
correction to construct fit indices (RMSEA, CFI, SRMR) and approximate χ2 for 
nested-model tests, validating their method with simulation results. These analytical 
solutions even outperform SEM when there are fewer observations than indicators. 

More recently, Rosseel and Loh (2022) developed structural-after-measurement 
(SAM) which generalizes Croon’s correction further to be applicable when ana-
lyzing summary statistics (̂�) rather than raw data. Thus, factor-score estimates 
are no longer required. SAM is implemented in the R package lavaan (Rosseel, 
2012) via the sam() function. As the name implies, measurement parameters are 
estimated first, potentially in separate independent measurement blocks to prevent 
misfit from propagating across factors (e.g., cross-loadings, residual correlations 
between indicators of different factors). There can be as many measurement blocks 
as there are latent variables or as few as one, and there are equivalent “local” and 
“global” SAM procedures (Rosseel & Loh, 2022). Only local SAM provides a 
“pseudo-χ2 statistic” (and fit indices calculated with it) to evaluate the fit of the 
structural model, so we focus only on local SAM. 

2 Asymptotic Investigation 

We compared how well SFIs from SAM or plausible values could evaluate structural 
fit, relative to the flawed decomposed SFIs (Hancock & Mueller, 2011) and to 
the conflated test (Anderson & Gerbing, 1988) and SFIs (Lance et al., 2016). 
We analyze population moments at the factor level (. �) and item level (. �) to  
obtain asymptotic results free from sampling error. Factor-level results enable us 
to determine “true” values (benchmarks for SFIs) of an overly restricted structural 
model. Item-level results enable evaluating how much each method’s SFIs are 
affected by different measurement-model conditions.
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2.1 Hypotheses 

We know from past research (McNeish & Hancock, 2018) that for a given structural 
misspecification, SFIs of Lance et al. (2016) indicate better (or worse) fit with lower 
(or higher) factor loadings and fewer (or more) indicators; conversely, Hancock and 
Mueller (2011) SFIs are not affected (on average) by measurement quality. How-
ever, measurement-model misspecifications (e.g., omitted cross-loadings) should 
bias estimates of factor (co)variances, thus biasing even Hancock and Mueller 
(2011) SFIs. 

Regardless of whether a measurement model is correctly specified, we expect 
plausible values to yield asymptotically identical SFIs as the decomposed SFIs of 
Hancock and Mueller (2011) regardless of measurement quality. Plausible values 
and decomposed SFIs both estimate . ̂� from a CFA, which will not be biased by poor 
measurement quality, but can be biased by measurement misspecifications (e.g., 
omitted cross-loadings). The advantage of plausible values is that beyond SFIs, a 
pooled . χ2 statistic can be calculated, which should be similar to the . χ2 obtained by 
fitting the same model to the population . �. 

Likewise, we expect SAM to yield asymptotically identical SFIs as the decom-
posed SFIs of Hancock and Mueller (2011) regardless of measurement quality, 
but only when a measurement model is correctly specified. Given measurement 
misspecifications (e.g., omitted cross-loadings), SAM’s independent measurement 
blocks provide a layer of protection from propagated errors, which should make 
SAM’s SFIs more robust than plausible values or Hancock and Mueller (2011) SFIs. 

2.2 Factor-Level Population Model 

First, we specified population parameters to derive . �, which enabled us to determine 
population-level SFI values for more-restricted models. We refer to these true-value 
results to evaluate the accuracy of SFI estimates under four different methods in 
the indicator level analysis. We selected a frequently used structural model for our 
population (Lance et al., 2016; McNeish & Hancock, 2018; Rifenbark, 2019, 2022), 
depicted in Fig. 1. These population parameters imply population covariance matrix 

.� = (I − B)−1 × � × [

(I − B)−1
]′
, to which we fit four models: 

– saturated Model S: all variables freely covary 
– null Model 0: only X1, X2, and X3 freely covary 
– true partial-mediation Model T : all paths in Fig. 1 estimated 
– misspecified full-mediation Model M: Model T with fixed . β51 = β52 = 0

Models were estimated with maximum likelihood (ML) in lavaan(), and the 
fitMeasures() function was used to obtain . χ2 (with .N = 500) and GFIs for 
Model M . We used Models M , S, and 0 to calculate C9 (Eq. (2)), and we verified 
that Model T estimates matched population parameters in Fig. 1.
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Model M’s .χ2
df =3 = 216.99, so population RMSEA . = 0.378 indicated very 

poor fit. Population CFI . = 0.863 and analogous C9 . = 0.852 were also unacceptable 
by most standards (Bentler & Bonett, 1980; Hu & Bentler, 1999). These “true 
values” are the benchmarks we will use to compare the four methods for evaluating 
structural fit using indicator-level data. 

2.3 Indicator-Level Population Model 

Holding the structural model constant, we specified different measurement models 
to investigate the impact of different measurement-model attributes on structural 
model evaluation. We manipulated three factors: 

– We used 3 or 6 indicators per factor (pF). Therefore, the full SEM (Lance et al., 
2016) or CFA (plausible values Hancock & Mueller, 2011) was  fitted to 15 or  
30 indicators. Local SAM’s fitted 5 single-indicator CFAs to each factor’s 3 or 6 
indicators before fitting the structural component (Model M). 

– Whereas McNeish and Hancock (2018) manipulated factor loadings directly, we 
selected loadings that would yield low or high construct reliability (CR . = 0.6 or 
0.9), which also depends on pF (Gagne & Hancock, 2006). As such, for a given 
construct reliability, factor loadings were lower when pF = 6 than when pF = 3. 
Table 1 shows the population . � values (of all pF indicators) for each factor under 
various conditions. They are standardized loadings, such that residual variances 
were set to .diag(�) = 1 − diag(���′). 

η1 
X1 

η2 
X2 

η3 
X3 

η4 
Y1 

η5 
Y2 

β41 = 0.4 (0.34) 

β51 = 0.6 (0.429) 

β42 = 0.6 (0.51) 

β52 = 0.4 (0.286) 

β43 = 0.4 (0.34) 

β52 = 0.4 (0.337) 

0.3 

0.3 

0.3 
ψ4,4 = 0.32 
R2 = 76.9% 

ψ5,5 = 0.462 
R2 = 76.3% 

Fig. 1 Population structural parameters. Each exogenous-factor variance .ψX,X = 1, so exogenous 
covariances are correlations. Standardized slopes in parentheses
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– In the population, the measurement model had either simple or complex struc-
ture. Simple structure implies each observed indicator loads onto only one latent 
variable, and residuals are uncorrelated. Our complex measurement model con-
tained both a cross-loading and a correlated residual. In the complex population, 
the covariance between the first indicators of Y1 and Y2 was .r = 0.20 (scaled 
to a covariance by multiplying residual SDs: .0.2

√

θy1θy7 ), and the last indicator 
of X3 cross-loaded onto X2. Table 1 shows that across pF and CR conditions, 
the cross-loading (in parentheses) was half as large as the primary loading, while 
maintaining indicator variances .θx,x = 1. 

In all six conditions, we computed the population indicator-level covariance 
matrix implied by our SEM parameters in Fig. 1 and Table 1: .� = ���′ + �. 

2.4 Procedure 

The same four structural models that we fitted to . � were augmented with a simple-
structure model. Thus, augmented Model S was an unrestricted CFA, augmented 
Model 0 was an orthogonal CFA, and augmented Models T and M were “full” 
SEMs representing partial and full mediation, respectively. In simple-structure 
conditions, the measurement model was correctly specified, but it was misspecified 
in complex-structure conditions because it omitted the cross-loading and residual 
covariance. Misspecifying the measurement model (which biases . ̂�) allowed us to  
compare how SFIs are influenced across the four methods. 

The four full SEMs were fitted to the indicator-level population . �, and resulting 
. χ2 values were used to calculate conflated SFIs for augmented Model M: RMSEA-
Path (Eq. (1); McDonald & Ho, 2002) and C9 with NCP (Eq. (2), analogous to CFI; 
Lance et al., 2016). To calculate decomposed versions of these SFIs (Hancock & 
Mueller, 2011), we saved the model-implied . ̂� and fitted the (nonaugmented) Model 
M to it, just as we did to obtain “true” population SFIs by fitting Model M to the 
population . �. However, . ̂� could vary across the 2 (simple vs. complex) . × 2 (pf  . =
3 or 6) . × 2 (CR . = 0.60 or 0.90) . = 8 conditions. 

Table 1 Population values for . �

pF = 3 pF = 6 

CR = 0.90 CR = 0.60 CR = 0.90 CR = 0.60 

X1–X3 0.866 0.578 0.775 0.448 

PL (CL) 0.696 (0.348) 0.464 (0.232) 0.622 (0.311) 0.359 (0.179) 

Y1 0.736 0.491 0.658 0.380 

Y2 0.620 0.413 0.554 0.320 

Note: Simple-structure parameters given in the top row. Second row shows PL = primary loading 
and CL = cross-loading of indicators of X1–X3 in complex-structure conditions. Bottom rows 
show loadings for Y1 and Y2 under either simple or complex structure
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To obtain SFIs using plausible values and SAM, raw data were necessary 
for analysis. We used the rockchalk::mvrnorm() function to generate a 
single data set with the argument empirical=TRUE to guarantee our sample’s 
covariance matrix was identical to the population . �. This minimized sampling error, 
although some Monte Carlo error was still expected because different raw data (even 
with identical covariance matrices) yield different factor-score estimates. 

2.4.1 Plausible Values 

We fitted an unrestricted CFA (augmented Model S) to the raw data, then used the 
semTools::plausibleValues() function (Jorgensen et al., 2022) to sample 
.m = 100 sets of plausible values. We used the semTools::sem.mi() function 
to fit Model M to each sample of plausible values. The fitMeasures() function 
provided SFIs using the pooled . χ2 statistic (the “D3” method; Meng & Rubin, 
1992). 

2.4.2 SAM 

We used the lavaan::sam() function to fit augmented Model M to the raw data, 
which internally fitted five single-factor CFAs (i.e., 5 measurement blocks using the 
argument mm=5), followed by fitting Model M to the . ̂� estimate obtained via the 
local-SAM method (Rosseel & Loh, 2022). SFIs are printed by the summary() 
function. 

2.5 Results and Discussion 

We verified that all GFIs, SFIs, and . χ2 showed perfect data–model fit when both 
the measurement and structural (Model T ) components were correctly specified. 
Table 2 presents estimated SFIs (RMSEA and CFI) for Model M across conditions, 
with their true values from Sect. 2.2 in the column headers. 

2.5.1 Conflated SFIs 

As expected (McNeish & Hancock, 2018; Rifenbark, 2019, 2022), RMSEA-Path 
(McDonald & Ho, 2002) and C9 (Lance et al., 2016) in the  . ̂� column of Table 2 
were affected by measurement quality (CR), with lower CR inducing better apparent 
fit. One might not even reject the model using SFIs when construct reliability was 
low. Even the additional misfit from the measurement model (complex populations) 
did not yield SFIs that indicated fit being as poor as the true values did, although the 
impact of measurement misspecification was small. Holding CR constant, number
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Table 2 Asymptotic estimates of SFIs across conditions 

RMSEA (= 0.378) CFI (= 0.863) 

Measurement CR pF .̂� .̂� PV SAM .̂� .̂� PV SAM 

Simple low 3 0.088 0.378 0.285 0.378 0.971 0.863 0.848 0.863 

(correctly 6 0.090 0.378 0.291 0.378 0.970 0.863 0.842 0.863 

specified) high 3 0.255 0.378 0.320 0.378 0.906 0.863 0.850 0.863 

6 0.257 0.378 0.323 0.378 0.905 0.863 0.848 0.863 

Complex low 3 0.080 0.356 0.254 0.358 0.977 0.890 0.888 0.887 

(misspecified) 6 0.085 0.364 0.261 0.366 0.973 0.878 0.877 0.877 

high 3 0.251 0.373 0.309 0.373 0.910 0.872 0.865 0.871 

6 0.254 0.375 0.310 0.375 0.907 0.867 0.862 0.867 

Note: True RMSEA and CFI provided in column headers as benchmarks. CR high (0.9) or low 
(0.6) construct reliability, pF = number of indicators per factor, . ̂� conflated SFIs (i.e., RMSEA-
Path or C9), . ̂� decomposed SFIs of Hancock and Mueller (2011). PV decomposed SFIs pooled 
from plausible values, SAM decomposed SFIs from pseudo-. χ2 of SAM approach 

of indicators (pF) also did not substantially affect expected values of RMSEA-Path 
or C9. 

2.5.2 Decomposed SFIs 

When the measurement model was correctly specified, Hancock and Mueller (2011) 
SFIs (in the . ̂� column of Table 2) nearly matched SAM’s results across all CR and 
pF conditions, indicating their SFIs have asymptotically equivalent expected values. 
Both methods estimated true SFIs accurately for simple-structure populations. But 
their equivalence did not hold for misspecified measurement models. Failing to 
model the cross-loading and residual correlation induced small differences between 
SAM and Hancock and Mueller (2011) SFIs, with SAM estimates being slightly 
closer to true values. Although the impact of pF was small (somewhat better fit with 
fewer indicators), its effect was greater when CR was low. 

Using plausible values also showed some promise, although its pooled SFIs 
were less accurate estimates of true values than SAM or Hancock and Mueller 
(2011). Pooled RMSEA showed better fit than the true values (particularly with 
low CR), and pooled CFI estimates were somewhat more accurate than RMSEA. 
However, pooled CFI showed better fit than true values (like RMSEA) only when 
the measurement model was misspecified; with correct specification, pooled CFI 
always showed worse fit than true values across conditions. Pooled SFIs always 
showed slightly worse fit with more indicators, but again this was negligible.



Remedies for Structural Model Evaluation 157

3 Conclusion 

Population analyses show that SAM and the decomposed SFIs of Hancock and 
Mueller (2011) are identical in the case of the simple measurement model. 
However, slight differences were observed when the complex measurement model 
was misspecified. This was expected because SAM isolates local misfit in each 
measurement block, which may enable SAM to outperform Hancock and Mueller 
(2011) in cases of greater measurement misspecification. 

In the current investigation, Hancock and Mueller (2011) SFIs appear asymptoti-
cally equivalent to SAM’s SFIs. Although their sampling distributions may have the 
same expected values, their sampling variances may yet differ. Caution is warranted 
until Monte Carlo studies reveal whether increasing either’s sampling variability 
inflates Type I errors (i.e., in smaller samples and lower CR). Holding CR constant, 
pF had negligible impact on SFIs, which warrants ignoring it in future Monte Carlo 
study, varying only CR via the magnitude of factor loadings. 

The oddly inconsistent plausible-value results are likely due to the relative misfit 
of Model 0 and Model M , but could also be due to Monte Carlo sampling error 
(we drew a finite sample of plausible values, so these results were not entirely 
asymptotic). Results could also depend on the method for pooling the . χ2 statistic; 
alternatives include the “D2” method (Li et al., 1991) and “D4” (Chan & Meng, 
2017). Grund et al. (2021) found that D2 can be too liberal, while D3 and D4 can be 
too conservative. Given how these patterns could be exacerbated in the extremely 
poor-fitting null Model 0, further investigation is warranted. The greatest promise 
of plausible values may not be for SFIs themselves, but in its ability to provide an 
actual (pooled) test of the . H0 of exact fit. 
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