
Chapter 8 
Existence, Regularity, and Stability in the 
.α-Norm for Some Neutral Partial 
Functional Differential Equations in 
Fading Memory Spaces 

Khalil Ezzinbi, Bila Adolphe Kyelem, and Stanislas Ouaro 

Abstract The aim of this chapter is to study the regularity and the stability in the .α-
norm for neutral partial functional differential equations in fading memory spaces. 
We assume that a linear part is densely defined and generates an analytic semigroup. 
The delayed part is assumed to be Lipschitzian. For illustration, we provide an 
example for some reaction–diffusion equation involving infinite delay. 

Keywords Analytic semigroup · Neutral partial functional differential 
equations · .α-norm · Stability · Fading memory space 

8.1 Introduction 

Let .(X, |.|) be a Banach space, .(ℒ(X), |.|ℒ) be the space of bounded linear 
operators on X, and . α be a constant such that .0 < α < 1. The aim of this chapter 
is to study the stability results of the following class of neutral partial functional 
differential equations in the .α-norm in fading memory spaces 
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.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (ut ) for t ≥ 0,

u0 = φ ∈ Bα,

(8.1) 

where .f : Bα → X is a continuous function and .A : D(A) ⊆ X → X is a linear 
operator such that .(−A) generates an analytic semigroup .(T (t))t≥0 on the Banach 
space X. .D(A) is the domain of the operator A. We also denote .R(A) the range of 
the operator A. For .0 < α < 1, . Aα denotes the fractional power of A, and the space 
. Xα will be defined later. The initial function . φ belongs to a Banach space . Bα of 
functions mapping .(−∞, 0] into . Xα and satisfying some axioms to be introduced 
later. . D is a bounded linear operator defined on . Bα with values in X as follows: 

.D(φ) = φ(0) −D0(φ) forφ ∈ Bα, (8.2) 

where . D0 is also a bounded linear operator defined on . Bα with values in X. 
We denote by . ut for .t ∈ R

+ the historic function defined on .(−∞, 0] by 

. ut (θ) = u(t + θ) for all θ ≤ 0,

where u is a function from . R into . Xα . 
The existence results of neutral partial functional differential equations with 

delay are an important subject studied by many authors (see [1, 3, 5, 6, 8, 11, 20] 
and the references therein). One of the qualitative behaviours of solutions of neutral 
partial functional differential equations with delay developed in many works is the 
stability (see [2, 4, 7, 9, 10, 15, 21, 22] and the references therein). 

One of the most important qualitative results of the functional partial differential 
equations is the stability, extensively studied by many authors. A mechanical or an 
electrical device can be constructed to a level of perfect accuracy that is restricted 
by technical, economic, or environmental constraints. What happens to the expected 
result if the construction is a little off specifications? Does output remain near design 
values? How sensitive is the design to variations in fabrication parameters? Stability 
theory gives some answers to these and similar questions. 

Adimy and Ezzinbi in [4] established the stability results in the .α-norm for the 
problem of neutral type of the form 

. 

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (ut ) for t ≥ 0,

u0 = φ ∈ Cα,

where .f : R × Cα → X is a continuous function and .A : D(A) ⊆ X → X is a 
linear operator;
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.ut for .t ∈ R is the historic function defined on .[−r, 0] with .r > 0 by . ut (θ) =
u(t + θ) for .θ ∈ [−r, 0], where u is a continuous function from . R into . Xα; . Cα =
C([−r, 0];D(Aα)) is the space of continuous functions from .[−r, 0] into . D(Aα)

provided with the uniform norm topology, . D is a bounded linear operator from 
.C = C([−r, 0];X) into X defined by 

. D(φ) = φ(0) −D0(φ) forφ ∈ C,

where the operator . D0 is given by 

. D0(φ) =
∫ 0

−r

dη(θ)φ(θ) forφ ∈ C,

and .η : [−r, 0] → ℒ(X) is of bounded variation and non-atomic at zero, that is, 
there exists a continuous nondecreasing function .δ : [0, r] → [0,+∞) such that 
.δ(0) = 0 and 

. 

∣
∣
∣
∣

∫ 0

−s

dη(θ)φ(θ)

∣
∣
∣
∣ ≤ δ(s) |φ|C for φ ∈ C and s ∈ [0, r].

In our work, we study the stability results of Eq. (8.1) following the results 
obtained in [2, 4, 7, 9, 10, 21]. 

To get some stability results in the uniform fading memory spaces, we make use 
of the spectral theory of linear operators, the fractional power operators, and the 
linear semigroup theory (see [13, 19]). 

The organization of this chapter is as follows: In Sect. 8.2, we introduce some 
preliminary results on analytic semigroups, fractional powers of operator, and 
axiomatic phase space adapted to the fractional norm space for infinite delay. In 
Sect. 8.3, the existence and uniqueness of strict solutions is established. In Sect. 8.4, 
we are concerned with the smoothness results of the solutions. In Sect. 8.5, we  
investigate the stability near an equilibrium by using the linearized principle. In the 
last section, an example is provided to illustrate the applications of the main results 
of this chapter. 

8.2 Analytic Semigroup, Fractional Power of Its Generator, 
and Partial Functional Differential Equations 

Throughout this chapter, we assume the following: 

.(H1) .(−A) is the infinitesimal generator of an analytic semigroup of linear 
operators .{T (t)}t≥0 on a Banach space X. Without loss of generality, we suppose 
that .0 ∈ ρ(A); otherwise, instead of A, we take  .A − δI , where . δ is chosen such 
that .0 ∈ ρ(A − δI ) and where .ρ(A) is the resolvent set of A.
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It is well-known that .|T (t)x| ≤ Meωt |x| for all .t ≥ 0, .x ∈ X, where .M ≥ 1 and 
.ω ∈ R. 

For all .0 < α < 1, we define (see [19]) the operator .A−α by 

. A−αx = 1

	(α)

∫ +∞

0
tα−1T (t)xdt for all x ∈ X,

where .	(α) denotes the well-known gamma function at the point . α. The operator 
.A−α is bijective, and the operator . Aα is defined by 

. Aα = (A−α)−1.

We denote by .D(Aα) the domain of the operator . Aα . Then, .D(Aα) endowed with 
the norm .|x|α = |Aαx| for all .x ∈ D(Aα) is a Banach space [19]. We denote it by 
. Xα . Moreover, we recall the following known results. 

Theorem 8.2.1 ([19], p.69–75) Let .0 < α < 1, and assume that .(H1) holds. 
Then: 

(a) .T (t) : X → D(Aα) for each .t > 0 and .α ≥ 0. 
(b) For all .x ∈ D(Aα), .T (t)Aαx = AαT (t)x. 
(c) For each .t > 0, the linear operator .AαT (t) is bounded and . |AαT (t)x| ≤

Mαt−αeωt |x|, where .Mα is a positive real constant. 
(d) For .0 < α ≤ 1 and .x ∈ D(Aα), .|T (t)x − x| ≤ Nαtα|Aαx|, for  .t > 0, where 

. Nα is a positive real constant. 
(e) For .0 < α < β < 1, .Xβ ↪→ Xα . 

From now on, we use an axiomatic definition of the phase space . B that was first 
introduced by Hale and Kato in [16]. We assume that . B is the normed space of 
functions mapping .(−∞, 0] into X and satisfying the following axioms: 

(A) There exist a positive constant N , a locally bounded continuous function 
.M(.) on .[0,+∞), and a continuous function .K(.) on .[0,+∞), such that if 
.u : (−∞, a] → X is continuous on .[ξ, a] with .uξ ∈ B for some .ξ < a where 
.0 < a, then for all .t ∈ [ξ, a]: 
(i) .ut ∈ B. 
(ii) .t → ut is continuous on .[ξ, a]. 
(iii) .N |u(t)| ≤ |ut |B ≤ K(t − ξ) sup

ξ≤s≤t

|u(s)| + M(t − ξ)|uξ |B. 

(B) . B is a Banach space. 

Lemma 8.2.1 ([7]) Let .C00 be the space of continuous functions mapping . (−∞, 0]
into X with compact supports and .Ca

00 be the subspace of functions in .C00 with 
supports included in .[−a, 0] endowed with the uniform norm topology. Then 
.Ca
00 ↪→ B. �	
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Let 

. Bα = {φ ∈ B : φ(θ) ∈ D(Aα) for θ ≤ 0 and Aαφ ∈ B} .

and provide . Bα with the following norm: 

. |φ|Bα = |Aαφ|B for φ ∈ Bα.

We also assume that 

.(H2) .A−αφ ∈ B for all .φ ∈ B, where the function .A−αφ is defined by 

. (A−αφ)(θ) = A−α(φ(θ)) for θ ≤ 0

and 

.(H3) .K(0)|D0| < 1. 

Lemma 8.2.2 ([7]) Assume that .(H1) and .(H2) hold. Then, . Bα is a Banach space 
and satisfies the axiom . (A). �	

For regularity results in the Banach space X, consider the following problem: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (t) for t ≥ 0,

u0 = φ.

(8.3) 

Definition 8.2.1 Let .φ ∈ B. A function .u : (−∞, a] → X is called a mild solution 
of Eq. (8.3) associated to . φ if 

. 

⎧
⎪⎪⎨

⎪⎪⎩

D(ut ) = T (t)D(u0) +
∫ t

0
T (t − s)f (s)ds for t ∈ [0, a]

u0 = φ.

Definition 8.2.2 Let .φ ∈ B. A function .u : (−∞, a] → X is called a strict solution 
of Eq. (8.3) associated to . φ if 

. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t 
−→ D(ut ) is continuously differentiable on [0, a]

D(ut ) ∈ D(A) for t ≥ 0

u(t) satisfies the system (8.3) for t ≥ 0. 

We have the following important result.
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Theorem 8.2.2 Let .u0 = φ, .D(φ) ∈ D(A), and .f ∈ C1([0, a];X). The existence 
of a mild solution u of (8.3) on .[0, a] implies the existence of a strict solution of 
(8.3) on .[0, a]. �	
Proof Let u be a mild solution of (8.3). Then, 

.D(ut ) = T (t)D(u0) +
∫ t

0
T (t − s)f (s)ds for t ∈ [0, a]. (8.4) 

Show that .t 
→ D(ut ) is continuously differentiable. We need to only examine the 
second term of the right-hand side of (8.4), which will be denoted by . v(t). It is well-
known that .T (t − s) = − ∂

∂s
(T (t − s))(−A)−1 since .(−A) generates the analytic 

semigroup .(T (t))t≥0. Hence, 

. v(t) = −
∫ t

0

∂

∂s
(T (t − s))(−A)−1f (s)ds

=
[
−(T (t − s))(−A)−1f (s)

]t

0
+
∫ t

0
T (t − s)(−A)−1f ′(s)ds

= −(−A)−1f (t) + T (t)(−A)−1f (0) +
∫ t

0
T (t − s)(−A)−1f ′(s)ds.

Since . lim
h→0

[∫ t

0

T (t + h − s) − T (t−s)

h
(−A)−1f ′(s)ds + 1

h

∫ t+h

t

T (t−s)(−A)−1

f ′(s)ds
] = (−A)−1f ′(t) +

∫ t

0
T (t − s)f ′(s)ds, it is easy to see that 

.
d

dt
v(t) = T (t)f (0) +

∫ t

0
T (t − s)f ′(s)ds. (8.5) 

Using Eq. (8.5) and the fact that .f ∈ C1([0, a];X) and the semigroup . (T (t))t≥0
is analytic, then .t 
→ d

dt
v(t) is continuous. Consequently, .t 
→ D(ut ) is 

continuously differentiable on .t ∈ [0, a]. 
Now, let us show that .D(ut ) ∈ D(A). Since .T (t)D(φ) ∈ D(A), it remains to 

prove that .v(t) ∈ D(A). We use the relation (8.5) in order to obtain 

. 
d

dt
v(t) = T (t)f (0) +

∫ t

0
T (t − s)f ′(s)ds

= −Av(t) + f (t).

Thus, .Av(t) = − d

dt
v(t) + f (t) exists and .v(t) ∈ D(A).
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To finish, let us prove that u verifies (8.3). Using  (8.4), one can write 

. 
d

dt
(D(ut )) = T ′(t)D(φ) +

∫ t

0

∂

∂s
(T (t − s))f (s)ds + f (t)

= −AT (t)D(φ) − A

∫ t

0
T (t − s)f (s)ds + f (t)

= −A

[

T (t)D(φ) +
∫ t

0
T (t − s)f (s)ds

]

+ f (t)

= −AD(ut ) + f (t).

�	

8.3 Existence and Uniqueness of Strict Solutions 

Now, we give the notions of solutions that will be studied in our work. 

Definition 8.3.1 Let .φ ∈ Bα . A function .u : (−∞, +∞) → Xα is called a mild 
solution of Eq. (8.1) associated to . φ if: 

(i) . D(ut ) = T (t)D(φ) +
∫ t

0
T (t − s)f (us)ds for t ≥ 0.

(ii) .u0 = φ.
�	

Definition 8.3.2 Let .φ ∈ Bα . A function .u : (−∞,+∞) → Xα is called a strict 
solution of Eq. (8.1) associated to . φ if: 

(i) .t 
−→ D(ut ) is continuously differentiable on .[0,+∞). 
(ii) .D(ut ) ∈ D(A) for .t ≥ 0. 
(iii) .u(t) satisfies the system (8.1) for .t ≥ 0.

�	
Often in this chapter, .ut (., φ) and .ut (φ) denote the mild solution associated to 

the initial data . φ, and we simply denote it by . ut if there is no confusion. 
We assume that there exists .k > 0 such that 

.(H4) .|f (φ1) − f (φ2)| ≤ k|φ1 − φ2|Bα for all . φ1, .φ2 ∈ Bα . 

Theorem 8.3.1 ([14]) Assume that .(H1), .(H2), .(H3), and .(H4) hold. Then, for each 
.φ ∈ Bα , there exists a unique mild solution of Eq. (8.1) that is defined for .t ≥ 0. 

Lemma 8.3.1 Assume that .(H1), .(H2), and .(H3) hold. Let .φ ∈ Bα and . h ∈
C(R+;Xα) such that .D(φ) = h(0). Then, there exists a unique continuous function 
x on . R+ that solves the following problem:
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.

⎧
⎨

⎩

D(xt ) = h(t) for t ≥ 0,

x(t) = φ(t) for t ∈ (−∞, 0].
(8.6) 

Moreover, there exist two functions a and b in .L∞
loc(R

+;R+) such that 

.|xt |Bα ≤ a(t)|φ|Bα + b(t) sup
0≤s≤t

|h(s)|α for t ≥ 0. (8.7) 

Proof We define for .p > 0 the space 

. W = {x ∈ C([0, p];Xα) : x(0) = φ(0)}

endowed with the uniform norm topology. For .x ∈ W , we define its extension . x̃ on 
. R− by 

. x̃(t) =
⎧
⎨

⎩

x(t) for t ∈ [0, p]

φ(t) for t ∈ (−∞, 0].

Using axiom (A), one can see that .t 
→ x̃t is continuous from .[0, p] to . Bα . Let  
us define the function . K on W by 

. (K(x))(t) = D0(x̃t ) + h(t) for t ≥ 0.

One must show that . K has a unique fixed point on W . Since .h ∈ C(R+;Xα), then 
.h ∈ C([0, p];Xα). Moreover, .h(0) = D(φ) = φ(0) −D0(φ). It follows  that  

. K(W) ⊂ W.

We can also write for .x, y ∈ W with their respective extensions . x̃ and . ỹ associated 
to . φ

. |(K(x) −K(y))(t)|α ≤ |D0||x̃t − ỹt |Bα

≤ |D0|K(t) sup
0≤s≤t

|x(s) − y(s)|α

≤ |D0|K(t)|x − y|W .

Choosing .p > 0 small enough, one obtains that . K is a strict contraction. 
Consequently, (8.6) has a unique solution x on .(−∞, p].
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It follows for .s ∈ [0, p] that 

. |xs |Bα ≤ K(s) sup
0≤τ≤s

|x(τ)|α + M(s)|φ|Bα

≤ K(s)
(
|D0| sup

0≤τ≤s

|xτ |Bα + sup
0≤τ≤s

|h(τ)|α
)

+ M(s)|φ|Bα

≤ Kp|D0| sup
0≤τ≤s

|xτ |Bα + Kp sup
0≤τ≤s

|h(τ)|α + Mp|φ|Bα ,

where .Kp = sup
s∈[0,p]

K(s) and .Mp = sup
s∈[0,p]

M(s). 

Therefore, 

. sup
0≤s≤t

|xs |Bα ≤ sup
0≤s≤t

{
Kp|D0| sup

0≤τ≤s

|xτ |Bα + Kp sup
0≤τ≤s

|h(τ)|α + Mp|φ|Bα

}

≤ Kp|D0| sup
0≤s≤t

|xs |Bα + Kp sup
0≤s≤t

|h(s)|α + Mp|φ|Bα .

Thus, for .p > 0 small enough and using .(H3), one can write for .t ∈ [0, p], 

. sup
0≤s≤t

|xs |Bα ≤ Kp

1 − Kp|D0| sup
0≤s≤t

|h(s)|α + Mp

1 − Kp|D0| |φ|Bα .

As a consequence, we have the existence of .a, b ∈ L∞
loc([0, p];R+) such that 

. |xt |Bα ≤ a(t)|φ|Bα + b(t) sup
0≤s≤t

|h(s)|α, for t ∈ [0, p].

Now, to extend the solution x on .[p, 2p], we consider the space 

. W1 = {u ∈ C([p, 2p];Xα) : u(p) = x(p)}

endowed with the uniform norm topology and the following problem: 

. ̃u(t) =
⎧
⎨

⎩

u(t) for t ∈ [p, 2p],

x(t) for t ∈ (−∞, p].

We define the function . K1 on . W1 by 

. (K1(u))(t) = D0(ũt ) + h(t), for t ∈ [p, 2p].

Using the same arguments as above, we show that . K1 is a strict contraction on . W1. 
That leads to the existence of a unique solution u of (8.6) on .(−∞, 2p], and u is the 
extension of x on .(−∞, 2p].
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Also, we have to extend .a, b on .[p, 2p]. Therefore, let .s ∈ [p, 2p]. Then, one 
can write 

. |xs |Bα
≤ K(s − p) sup

p≤τ≤s
|x(τ)|α + M(s − p)

∣
∣xp

∣
∣
Bα

≤ Kp sup
p≤τ≤s

|x(τ)|α + Mp

∣
∣xp

∣
∣
Bα

≤ Kp sup
p≤τ≤s

{|D0| |xτ |Bα
+ |h(τ)|α

}+ Mp

∣
∣xp

∣
∣
Bα

.

Therefore, for each .t ∈ [p, 2p] such that .s ≤ t , we have  

. sup
p≤s≤t

|xs |Bα
≤ sup

p≤s≤t

{

Kp sup
p≤τ≤s

{|D0| |xτ |Bα
+ |h(τ)|α

}+ Mp

∣
∣xp

∣
∣
Bα

}

≤ Kp |D0| sup
p≤s≤t

|xτ |Bα
+ Kp sup

p≤s≤t
|h(τ)|α + Mp

∣
∣xp

∣
∣
Bα

.

Thus, for .t ∈ [p, 2p], 

. |xt |Bα
≤ Kp

1 − Kp |D0| sup
p≤s≤t

|h(s)|α + Mp

1 − Kp |D0|
∣
∣xp

∣
∣
Bα

.

Since .p ∈ [0, p], one can write 

. |xp|Bα ≤ a(p)|φ|Bα + b(p) sup
0≤s≤p

|h(s)|α.

Consequently, 

. |xt |Bα
≤ Kp

1 − Kp |D0| sup
p≤s≤t

|h(s)|α + Mp

1 − Kp |D0|
∣
∣xp

∣
∣
Bα

≤ Kp

1 − Kp |D0| sup
p≤s≤t

|h(s)|α + Mpa(p)

1 − Kp |D0| |φ|Bα

+ Mpb(p)

1 − Kp |D0| sup
0≤s≤p

|h(s)|α

≤ Mpa(p)

1 − Kp |D0| |φ|Bα
+ max

{ Kp

1 − Kp |D0| ,
Mpb(p)

1 − Kp |D0|
}

sup
0≤s≤p

|h(s)|α

+max
{ Kp

1 − Kp |D0| ,
Mpb(p)

1 − Kp |D0|
}

sup
p≤s≤t

|h(s)|α

≤ Mpa(p)

1 − Kp |D0| |φ|Bα
+ 2max

{ Kp

1 − Kp |D0| ,
Mpb(p)

1 − Kp |D0|
}

sup
0≤s≤t

|h(s)|α .
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Thus, for all .t ∈ [p, 2p], 

. |xt |Bα
≤ a1(t) |φ|Bα

+ b1(t) sup
0≤s≤t

|h(s)|α ,

where . a1 can be seen as the extension of a on .[0, 2p] and . b1 the extension of b on 
.[0, 2p]. It is exactly to say there exist .a, b ∈ L∞

loc([0, 2p];R+) such that 

. |xt |Bα ≤ a(t)|φ|Bα + b(t) sup
0≤s≤t

|h(s)|α, for t ∈ [0, 2p].

Inductively, one can show the existence of an extension u of x on . [np, (n + 1)p]
and the extension .anp of a, .bnp of b on .[np, (n + 1)p]. Finally, the solution x is 
unique and continuous defined on . R+. Also, the functions .a ∈ L∞

loc(R
+;R+) and 

.b ∈ L∞
loc(R

+;R+) are well-defined. �	
We have the following result. 

Theorem 8.3.2 ([14]) Assume that .(H1), .(H2), .(H3), and .(H4) hold. Let u and v 
be two mild solutions of Eq. (8.1) on . R, respectively, associated to the initial data . φ

and . ψ . Then, for any .a > 0, there exists .l(a) > 0 such that 

.|ut (φ) − vt (ψ)|Bα ≤ l(a)|φ − ψ |Bα for t ∈ [0, a]. (8.8) 

For the regularity of the mild solution, we suppose that . B satisfies the following 
axiom: 

.(B1) If .(φn)n≥0 is a Cauchy sequence in . B and converges compactly to . φ in 
.(−∞, 0], then .φ ∈ B and .|φn − φ|B → 0 as .n → +∞. 

Now, we can claim the existence and uniqueness of strict solution for Eq. (8.1). 

Theorem 8.3.3 Assume that .(H1), .(H2), .(H3), and .(H4) hold. Furthermore, 
assume that . B satisfies axiom: .(B1) .f : Bα → X is continuously differentiable 
with . f ′ locally Lipschitz continuous. Let .φ ∈ Bα be such that 

. φ′ ∈ Bα, D(φ) ∈ D(A) and D(φ′) = −AD(φ) + f (φ).

Then, the mild solution u of the problem (8.1) is a strict solution of the problem 
(8.1). �	
Proof Let .p > 0 and u be the mild solution of the problem (8.1) associated to . φ. 
We consider the following problem: 

.

⎧
⎪⎪⎨

⎪⎪⎩

D(wt ) = T (t)D(φ′) +
∫ t

0
T (t − s)f ′(us)wsds, for t ∈ [0, p]

w0 = φ′
(8.9)
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and .z ∈ C((−∞, p];Xα) defined by 

.z(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(0) +
∫ t

0
w(s)ds, for t ∈ [0, p]

φ(t) for t ≤ 0.

(8.10) 

Then (8.9) has a unique mild and continuous solution w on .(−∞, p]. Also, one 
can recall the following lemma that plays an important role in the proof of this 
current theorem. 

Lemma 8.3.2 ([7]) The function z defined above verifies 

.zt = φ +
∫ t

0
wsds, for t ∈ [0, p]. (8.11) 

Note that our objective is to show that .u = z on .[0, p]. Using  (8.9), we get 

.

∫ t

0
D(ws)ds =

∫ t

0
T (t −s)D(φ′)ds +

∫ t

0

∫ s

0
T (s −τ)f ′(uτ )wτdτds. (8.12) 

For .t ∈ [0, p], we have  

.
d

dt

∫ t

0
T (t − s)f (zs)ds = T (t)f (φ) +

∫ t

0
T (t − s)f ′(zs)wsds. (8.13) 

Consequently, 

. 

∫ t

0
T (s)f (φ)ds =

∫ t

0
T (t − s)f (zs)ds −

∫ t

0

∫ s

0
T (s − τ)f ′(zτ )wτdτds.

(8.14) 
Using Eq. (8.11), it follows that 

. D(zt ) = D(φ) +
∫ t

0
T (t − s)

(
− AD(φ) + f (φ)

)
ds

+
∫ t

0

∫ s

0
T (s − τ)f ′(uτ )wτdτds

= T (t)D(φ) +
∫ t

0
T (s)f (φ)ds +

∫ t

0

∫ s

0
T (s − τ)f ′(uτ )wτdτds.

Using Eq. (8.14), we have  

. D(zt ) = T (t)D(φ) +
∫ t

0
T (t − s)f (zs)ds

+
∫ t

0

∫ s

0
T (s − τ)

(
f ′(uτ ) − f ′(zτ )

)
wτdτds. (8.15)
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Therefore, 

. D(ut − zt ) =
∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

∫ s

0
T (s − τ)

(
f ′(uτ ) − f ′(zτ )

)
wτdτds. (8.16) 

By Fubini’s theorem, we get that 

. D(ut − zt ) =
∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

( ∫ t−s

0
T (τ)dτ

)(
f ′(us) − f ′(zs)

)
wsds. (8.17) 

Then, we put for .t ∈ [0, p], 

. h(t) =
∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

( ∫ t−s

0
T (τ)dτ

)(
f ′(us) − f ′(zs)

)
wsds,

to obtain for some positive constants k and . C1, 

. |h(t)|α =
∣
∣
∣

∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

( ∫ t−s

0
T (τ)dτ

)(
f ′(us) − f ′(zs)

)
wsds

∣
∣
∣
α

≤
∫ t

0

∣
∣
∣T (t − s)

(
f (us) − f (zs)

)∣
∣
∣
α
ds

+
∫ t

0

∫ t−s

0

∣
∣
∣T (τ)(f ′(us) − f ′(zs))ws

∣
∣
∣
α
dτds

≤ kMα

∫ t

0

eω(t−s)

(t − s)α
|us − zs |Bαds

+C1Mα

∫ t

0

( ∫ t−s

0

eωτ

τα
dτ
)
|us − zs |Bαds.

One can write for . ω > 0

.

∫ t−s

0

eωτ

τα
dτ ≤ eω(t−s)

∫ t−s

0

1

τα
dτ

≤ eω(t−s)
[ 1

1 − α

1

τα−1

]t−s

0
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≤ eω(t−s) t − s 
1 − α 

1 

(t − s)α 

≤ eω(t−s) p 
1 − α 

1 

(t − s)α . 

Therefore, 

. |h(t)|α ≤ kMα

∫ t

0

eω(t−s)

(t − s)α
|us − zs |Bαds + C1pMα

1 − α

∫ t

0

eω(t−s)

(t − s)α
|us − zs |Bαds.

Moreover, since for all .θ ∈ (−∞, 0], .u(θ) = z(θ), then one has for all .s ∈ [0, t], 

. |us − zs |Bα ≤ max
0≤τ≤t

∣
∣
∣u(τ) − z(τ )

∣
∣
∣
α
.

Thus, 

. |h(t)|α ≤
(
kMα + C1pMα

1 − α

)( ∫ p

0

eωτ

τα
dτ
)

max
0≤τ≤p

∣
∣
∣u(τ) − z(τ )

∣
∣
∣
α
.

Using Lemma 8.3.1, one obtains 

. |ut − zt |Bα ≤
(
kMα + C1pMα

1 − α

)( ∫ p

0

eωτ

τα
dτ
)

max
0≤τ≤p

∣
∣
∣u(τ) − z(τ )

∣
∣
∣
α
.

One can choose .p > 0 small enough such that 

. 

(
kMα + C1pMα

1 − α

)( ∫ p

0

eωτ

τα
dτ
)

< 1.

It follows that .u = z in .(−∞, p] and that leads to u continuously differentiable 
on .[0, p] with respect to the .α-norm. In order to extend the solution to .[p, 2p], we  
consider the following problems: 

. 

⎧
⎪⎪⎨

⎪⎪⎩

D(wt ) = T (t − p)D(u′
p) +

∫ t

p

T (t − s)f ′(us)wsds for t ∈ [p, 2p]

wp = u′
p,

and .z̃ ∈ C((−∞, 2p];Xα) defined by 

.z̃(t) =

⎧
⎪⎪⎨

⎪⎪⎩

up(0) +
∫ t

p

w(s)ds for t ∈ [p, 2p]

z(t) for t ≤ p.



8 Existence, Regularity, and Stability in the .α-Norm for Some Neutral Partial. . . 199

Using the same technique, one obtains that .u = z̃ on .(−∞, 2p]. Proceeding 
inductively, solution u is uniquely extended to .[np, (n + 1)p] for all .n ∈ N

∗ with 
respect to the .α-norm. Since .Xα ↪→ X, one obtains that .u ∈ C1([0,+∞); X). 
Finally, using Theorem 8.2.2 , u is the strict solution defined on . R. �	

8.4 Smoothness Results of the Operator Solution 

Let .K : D(K) ⊆ Y → Y be a closed linear operator with dense domain .D(K) in a 
Banach space Y . We denote by .σ(K) the spectrum of K . 

Definition 8.4.1 The essential spectrum .σess(K) of K is the set of all .λ ∈ C such 
that at least one of the following relations holds: 

(i) The range .Im(λI − K) is not closed. 
(ii) The generalized eigenspace .Mλ(K) =

⋃

n≥0

ker(λI − K)n of . λ is infinite-

dimensional. 
(iii) . λ is a limit of .σ(K), that is, .λ ∈ σ(K) − {λ}.

�	
The essential radius denoted by .ress(K) is given by 

. ress(K) = sup {|λ| : λ ∈ σess(K)} .

Definition 8.4.2 The spectral bound .s(A) of the linear operator A is defined as 

. s(A) = sup {Reλ : λ ∈ σ(A)} .

Definition 8.4.3 The type of the linear operator .(T (t))t≥0 is defined by 

. ω0(T ) = inf

{

ω ∈ R : sup
t≥0

{
e−ωt |T (t)| < ∞}

}

.

In the sequel, we recall the . χ measure of noncompactness, which will be used 
in the next to analyse the spectral properties of semigroup solution. The . χ measure 
of noncompactness for a bounded set H of a Banach space Y with the norm .|.|Y is 
defined by 

. χ(H) = inf {ε > 0 : H has a finite cover of diameter < ε} .

The following results are some basic properties of the . χ measure of noncompact-
ness.
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Lemma 8.4.1 ([17]) Let . A1 and . A2 be bounded sets of a Banach space Y . Then: 

(i) .χ(A1) ≤ dia(A1), where .dia(A1) = sup
x,y∈A1

|x − y|. 
(ii) .χ(A1) = 0 if and only if . A1 is relatively compact in Y . 
(iii) .χ(A1

⋃
A2) = max {χ(A1), χ(A2)}. 

(iv) .χ(λA1) = |λ|χ(A1), .λ ∈ R, where .λA1 = {λx : x ∈ A1}. 
(v) .χ(A1 +A2) ≤ χ(A1)+χ(A2), where .A1 +A2 = {x + y : x ∈ A1, y ∈ A2}. 
(vi) .χ(A1) ≤ χ(A2) if .A1 ⊆ A2. 

Definition 8.4.4 The essential norm of a bounded linear operator K on Y is defined 
by 

. |K|ess = inf {M ≥ 0 : χ(K(B)) ≤ Mχ(B) for any bounded set B in Y } .

Let .V = (V (t))t≥0 be a .c0-semigroup on a Banach space Y . 

Definition 8.4.5 The essential growth .ωess(V ) of .(V (t))t≥0 is defined by 

. ωess(V ) = inf

{

ω ∈ R : sup
t≥0

e−ωt |V (t)|ess < ∞
}

.

Theorem 8.4.1 ([7]) The essential growth bound of .(V (t))t≥0 is given by 

.ωess(V ) = lim
t→+∞

1

t
log |V (t)|ess = inf

t>0

1

t
log |V (t)|ess . (8.18) 

Moreover, 

.ress(V (t)) = exp(tωess(V )), for t ≥ 0. (8.19) 

Assume now that: 

.(H5) The semigroup .(T (t))t≥0 is compact for .t > 0. 

Theorem 8.4.2 Assume that .(H1), .(H2), .(H3), .(H4), and .(H5) hold. Then, the 
solution .u(., φ) of Eq. (8.1) is decomposed as follows: 

. ut (., φ) = 𝒰(t)φ + 𝒲(t)φ, for t ≥ 0,

where .𝒲(t) is a compact operator on . Bα , for each .t > 0, and .𝒰(t) is the semigroup 
solution of the following equation: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(xt ) = −AD(xt ) for t ≥ 0,

x0 = φ ∈ Bα.

(8.20)
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Proof Let .𝒰(t) be defined by 

.(𝒰(t)φ)(θ) =
⎧
⎨

⎩

φ(t + θ) for t + θ ≤ 0

v(t + θ) for t + θ ≥ 0,
(8.21) 

where v is a unique solution of the problem 

.

⎧
⎨

⎩

D(vt ) = T (t)D(φ) for t ≥ 0

v(t) = φ(t) for t ≤ 0.
(8.22) 

We can write .𝒲(t)φ = wt(., φ) = ut (., φ) − 𝒰(t)φ = ut (., φ) − vt (., φ). Then, 

. D(𝒲(t)φ) = D(ut (., φ)) −D(vt (., φ)) =
∫ t

0
T (t − s)f (us)ds.

Consequently, 

.

⎧
⎪⎪⎨

⎪⎪⎩

D(wt ) = h(t, φ) =
∫ t

0
T (t − s)f (us)ds for t ≥ 0,

w0 = 0 for t ≤ 0.

(8.23) 

Let .{φk}k≥0 be a bounded sequence in . Bα . We will show that the family . {h(., φk) :
k ≥ 0} is equicontinuous and bounded on .C([0, σ ];Xα), for any .σ > 0 fixed. For 
all .0 < α < β < 1, there exists a positive constant C such that 

. |Aβh(t, φk)| = |Aβ

∫ t

0
T (t − s)f (us(., φk))ds|

≤
∫ t

0
|AβT (t − s)f (us(., φk))|ds

≤ MβC

∫ t

0

eωs

sβ
ds,

for every .k ≥ 0. 
Using the compactness of the operator .A−β : X → Xα , we get that the set 

.{h(t, φk) : k ≥ 0} is relatively compact in . Xα for each .t ≥ 0. Now, let us prove the 
equicontinuity of the family .{h(., φk) : k ≥ 0} in the .α-norm. For this purpose, let 
.t > t0 ≥ 0. Then,
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. Aαh(t, φk) − Aαh(t0, φk) =
∫ t

0
AαT (t − s)f (us)ds −

∫ t0

0
AαT (t0 − s)f (us)ds

=
∫ t0

0
Aα[T (t − s) − T (t0 − s)]f (us)ds

+
∫ t

t0

AαT (t − s)f (us)ds

= [T (t − t0) − I ]
∫ t0

0
AαT (t0 − s)f (us)ds

+
∫ t

t0

AαT (t − s)f (us)ds.

We obtain that 

. 

∣
∣
∣
∣

∫ t

t0

AαT (t − s)f (us)ds

∣
∣
∣
∣ ≤ Mαk

∫ t

t0

eωs

sα
ds → 0 as t → t0 uniformly in φk.

Moreover, since .{Aα

∫ t0

0
T (t0−s)f (us(., φk))ds : k ≥ 0} is relatively compact 

in X, then there is a compact set . 	 in X such that 

. 

∫ t0

0
AαT (t0 − s)f (us(., φk))ds ⊂ 	 for all φk.

It is well-known by the Banach–Steinhaus theorem that 

. lim
t→t0

sup
x∈	

|(T (t − t0) − I )x| = 0.

Thus, 

. lim
t→t0

|h(t, φk) − h(t0, φk)|α = 0 uniformly in φk.

Using the same argument, we also obtain for .t0 > t , 

. lim
t→t0

|h(t, φk) − h(t0, φk)|α = 0 uniformly in φk.

Therefore, the family .{h(., φk) : k ≥ 0} is relatively compact on . C([0, σ ];Xα)

for each .σ > 0. Then, there exists a subsequence .{φk : k ≥ 0} such that . h(t, φk)

converges as .k → +∞ uniformly on .[0, σ ] to some function .h(t) with respect to 
the .α-norm. Let . wk

t be the solution of problem (8.23) with the initial data .φ = φk . 
Then, 

.D(w
j
t − wk

t ) = h(t, φj ) − h(t, φk).
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Using Lemma 8.3.1, we obtain 

. |wj
t − wk

t |Bα ≤ b(t) sup
0≤s≤t

|h(t, φj ) − h(t, φk)|α,

which implies that .{wk
t }k≥0 = {wt(., φk)}k≥0 is a Cauchy sequence in . Bα . 

Therefore, .𝒲(t) is compact in . Bα . �	
Definition 8.4.6 . D is said to be stable if the zero solution of the difference system 

. 

⎧
⎨

⎩

D(xt ) = 0 for t ≥ 0,

x0(t) = φ(t) for t ≤ 0

is exponentially stable. �	
Now, we give the definitions of fading memory spaces that will be used later on. 

For .φ ∈ B, .t ≥ 0 and .θ ≤ 0, we define the following: 

.[S(t)φ](θ) =
⎧
⎨

⎩

φ(0) if t + θ ≥ 0,

φ(t + θ) if t + θ < 0.
(8.24) 

Then, .{S(t)}t≥0 is a strongly continuous semigroup on . B. We set  

. S0(t) = S(t)/B0, where B0 = {φ ∈ B : φ(0) = 0} .

Definition 8.4.7 [7] We say that . B is a uniform fading memory space if the 
following conditions hold: 

(i) If a uniformly bounded sequence .(φn)n∈N in .C00 converges to a function . φ
compactly on .(−∞, 0], then . φ is in . B and .|φn − φ|B → 0 as .n → +∞. 

(ii) .|S0(t)|B → 0 as .t → +∞. �	
Lemma 8.4.2 ([7]) If . B is a uniform fading memory space, then K and M can be 
chosen such that K is bounded on . R+ and .M(t) → 0 as .t → +∞. �	
Lemma 8.4.3 If . B is a uniform fading memory space, then . Bα is a uniform fading 
memory space. �	
Proof Let .(φn)n∈N in .C00 be a uniformly bounded sequence that converges to a 
function . φ compactly on .(−∞, 0]. Then . φ is in . B and .|φn − φ|B → 0 as . n → +∞
since . B is a uniform fading memory space. Using .(H2), one can write . A−αφ ∈ B
since .φ ∈ B. .A−αφ ∈ B leads to the existence of .A−αφ(θ). We know that 
.R(A−α) = D(Aα). For this reason, .

∣
∣A−αφ(θ)

∣
∣
α
is well-defined. The fact that . A−α

is bounded linear operator implies .|φ(θ)|α exists. Therefore, .φ(θ) ∈ D(Aα) for all 
.θ ≤ 0. Also,  

.
∣
∣A−αAαφ

∣
∣
B = |φ|B < ∞.
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Using again the boundedness of .A−α , one obtains the existence of .|Aαφ|B. Thus, 
.Aαφ ∈ B. Hence, we establish that .φ ∈ Bα . Moreover, 

. |φn − φ|B = ∣∣A−αAα(φn − φ)
∣
∣
B → 0 as n → +∞.

Since .A−α is a bounded linear operator, one obtains 

. 
∣
∣Aα(φn − φ)

∣
∣
B = |φn − φ|Bα

→ 0 as n → +∞.

Consequently, the condition . (i) of Definition 8.4.7 is satisfied. 
Now, we have to show that the condition .(ii) of Definition 8.4.7 is verified. In 

order to do this, we use the fact that .A−α is a bounded linear operator and . B is a 
uniform fading memory space to write 

. |S0(t)|B = ∣∣A−αAαS0(t)
∣
∣
B → 0 as t → +∞

and 

. |S0(t)|Bα
→ 0 as t → +∞.

Hence, the condition .(ii) is satisfied. Finally, . Bα is a uniform fading memory space. 
�	

Now, we have to prove that .𝒰(t) is exponentially stable. It is known that .𝒰(t) in 
Theorem 8.4.2 is defined by 

. (𝒰(t)φ)(θ) =
⎧
⎨

⎩

φ(t + θ) for t + θ ≤ 0

v(t + θ) for t + θ ≥ 0,

where v is a unique solution for the same initial data . φ of the following problem: 

. 

⎧
⎨

⎩

D(vt ) = T (t)D(φ) for t ≥ 0

v(t) = φ(t) for t ≤ 0.

Using the superposition principle of solutions of linear systems, we have 

. v(t) = x(t) + y(t) for t ∈ R,

where 

.

⎧
⎨

⎩

D(xt ) = 0 for t ≥ 0,

x(t) = φ(t) for t ≤ 0
(8.25)
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and 

.

⎧
⎨

⎩

D(yt ) = T (t)D(φ) for t ≥ 0,

y(t) = 0 for t ≤ 0.
(8.26) 

Now, let .K∞ = sup
s≥0

K(s). We have the following result. 

Theorem 8.4.3 Assume that .(H1), .(H2), and .(H3) hold. Moreover, suppose that 
. Bα is a uniform fading memory space, . D is stable, the semigroup .{T (t)}t≥0 is 
exponentially stable, and .K∞|D0| < 1. Then, the semigroup solution . {𝒰(t)}t≥0
defined in Theorem 8.4.2 is exponentially stable. �	
Proof Since y verifies problem (8.26) and . Bα is a uniform fading memory space, 
then, using Axiom (A)-(iii), one can write for . t ≥ s ≥ ε > 0

. |ys |Bα ≤ K(ε) sup
s−ε≤τ≤s

|y(τ)|α + M(ε)|ys−ε |Bα

≤ K(ε)|D0| sup
s−ε≤τ≤s

|yτ |Bα + K(ε) sup
s−ε≤τ≤s

|T (τ)D(φ)|α + M(ε)|ys−ε |Bα

≤ K(ε)|D0| sup
s−ε≤τ≤s

|yτ |Bα + K(ε) sup
s−ε≤τ≤s

|T (τ)D(φ)|α
+M(ε) sup

s−ε≤τ≤s
|yτ |Bα .

Therefore, taking .ε > 0 such that .s − ε ≥ t − 2ε ≥ 0, then 

. |ys |Bα ≤ K(ε)|D0| sup
t−2ε≤τ≤s

|yτ |Bα + K(ε) sup
t−2ε≤τ≤s

|T (τ)D(φ)|α

+M(ε) sup
t−2ε≤τ≤s

|yτ |Bα .

Now, one can write 

. sup
t−2ε≤s≤t

|ys |Bα ≤ sup
t−2ε≤s≤t

{
K∞|D0| sup

t−2ε≤τ≤s

|yτ |Bα

+K∞ sup
t−2ε≤τ≤s

|T (τ)D(φ)|α + M(ε) sup
t−2ε≤τ≤s

|yτ |Bα

}

≤ K∞|D0| sup
t−2ε≤s≤t

|ys |Bα + K∞ sup
t−2ε≤s≤t

|T (s)D(φ)|α

+M(ε) sup
t−2ε≤s≤t

|ys |Bα .
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Since .M(ε) → 0 as .ε → +∞, then we choose . ε big enough such that . 0 <

1 − K∞|D0| − M(ε). We obtain that 

. |yt |Bα ≤ K∞
(
1 − K∞|D0| − M(ε)

) sup
t−2ε≤s≤t

|T (s)D(φ)|α.

Since .{T (t)}t≥0 is exponentially stable, then there exist positive constants . α′ and 
. β ′ such that .|yt |Bα ≤ β ′e−α′t for all .t ≥ 0. 

Since . D is stable, then .xt (φ) → 0 as .t → +∞. On the other hand, we have 

. 𝒰(t)φ = xt (φ) + yt (φ).

Then, it follows that .𝒰(t) → 0 as .t → 0 and .{𝒰(t)}t≥0 is exponentially stable. �	
In the sequel, we give the following. 

Theorem 8.4.4 Assume that there exists .r > 0 such that the elements .φ ∈ Bα are 
continuous from .[−r, 0] to . Xα . If  .D(φ) = φ(0) − qφ(−r) for all .φ ∈ Bα with 
.0 < q < 1 and . Bα a uniform fading memory space, then . D is stable. �	
Proof Since .D(xt ) = 0 and .x0 = φ, then for all .t ∈ [0, r], we have  . x(t) =
qx(t − r). Therefore, 

. |x(t)|α ≤ q|φ(t − r)|α.

Also, for all .t ∈ [r, 2r], 

. |x(t, φ)|α ≤ q2|φ(t − 2r)|α.

Inductively, for all .t ∈ [(n − 1)r, nr], we have  

. |x(t, φ)|α ≤ qn|φ(t − nr)|α;

since .t ∈ [(n − 1)r, nr], then .t − nr ∈ [−r, 0]. Furthermore, . Bα is assumed to be 
the space of functions from .(−∞, 0] to . Xα that are continuous on .[−r, 0]. Thus, for 
all .t ∈ [(n − 1)r, nr], 

. |x(t, φ)|α ≤ qn sup
−r≤s≤0

|φ(s)|α,

for all .φ ∈ Bα . 
Thus, there exist .α = − ln(q)

r
> 0 and .C > 0 such that 

.|x(t, φ)|α ≤ qn sup
−r≤s≤0

|φ(s)|α

≤ Ce−αt .
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Hence, for all .φ ∈ Bα , 

. lim
t→+∞ x(t, φ) = 0.

Now, let .φ ∈ Bα such that .|φ|Bα ≤ 1. 
Using again Axiom (A)-(iii) and the fact that . Bα is a uniform fading memory 

space, we have for . t ≥ s ≥ ε > 0

. |xs(., φ)|Bα ≤ K(ε) sup
s−ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

≤ K∞ sup
s−ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα .

Choosing .ε > 0 such that .s − ε ≥ t − 2ε ≥ 0, we have  

. |xs(., φ)|Bα ≤ K∞ sup
s−ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

≤ K∞ sup
t−2ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

≤ sup
t−2ε≤s≤t

{
K∞ sup

t−2ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

}

≤ K∞ sup
t−2ε≤s≤t

|x(s, φ)|α + M(ε) sup
t−2ε≤s≤t

|xs(., φ)|Bα .

Thus, 

. sup
t−2ε≤s≤t

|xs(., φ)|Bα ≤ K∞ sup
t−2ε≤s≤t

|x(s, φ)|α + M(ε) sup
t−2ε≤s≤t

|xs(., φ)|Bα .

Since .M(ε) → 0 as .ε → +∞, then we can choose . ε big enough such that 
.0 < 1 − M(ε). Therefore, 

. |xt (., φ)|Bα ≤ K∞
(1 − M(ε))

sup
t−2ε≤s≤t

|x(s, φ)|α, for all φ ∈ Bα with |φ|Bα ≤ 1.

Thus, .xt (., φ) → 0 as .t → +∞ whenever .φ ∈ Bα and .|φ|Bα ≤ 1. Hence, . D is 
stable. �	
Example 8.4.1 Let . γ be a real number, .1 ≤ p < +∞, and .r > 0. We define 
the space .Cr × L

p
γ that consists of measurable functions .ϕ : (−∞, 0] → X that 

are continuous on .[−r, 0] such that .eγ θ |ϕ(θ)|p is measurable on .(−∞, −r]. Let us 
provide the space .Cr × L

p
γ with the following norm: 

. |ϕ|B = sup
−r≤θ≤0

|ϕ(θ)| +
∫ −r

−∞
eγ θ |ϕ(θ)|pdθ.

.(Cr × L
p
γ , |.|B) is a normed linear space satisfying Axioms (A) and (B).
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Corollary 8.4.1 Suppose that assumptions .(H1), .(H2), and .(H3) hold, and there 
exists a positive constant r such that all .φ ∈ Bα imply that . φ is continuous on 
.[−r, 0] with values in . Xα . Moreover, suppose that . Bα is a uniform fading memory 
space, .D(φ) = φ(0) − qφ(−r) for all .φ ∈ Bα , the semigroup .{T (t)}t≥0 is 
exponentially stable, and .K∞|D0| < 1. Then, the semigroup solution . {𝒰(t)}t≥0
defined in Theorem 8.4.2 is exponentially stable. �	

8.5 Linearized Stability of Solutions 

Coming back to the operator .U(t) for .t ≥ 0 defined on . Bα by 

. U(t)(φ) = ut (., φ),

where .ut (., φ) is the unique mild solution of the problem (8.1) for the initial 
condition .φ ∈ Bα , it is proved that the following result holds. 

Proposition 8.5.1 ([4]) The family .(U(t))t≥0 is a nonlinear strongly continuous 
semigroup on . Bα , that is: 

(i) .U(0) = I . 
(ii) .U(t + s) = U(t)U(s), for .t, s ≥ 0. 
(iii) For all .φ ∈ Bα , .U(t)(φ) is a continuous function of .t ≥ 0 with values in . Bα . 
(iv) For .t ≥ 0, .U(t) is continuous from . Bα to . Bα . 
(v) .(U(t))t≥0 satisfies the following translation property, for .t ≥ 0 and .θ ≤ 0: 

.(U(t))(θ) =
⎧
⎨

⎩

(U(t + θ)(φ))(0), if t + θ ≥ 0,

φ(t + θ) if t + θ ≤ 0.
(8.27) 

It is now interesting to investigate the stability results of the equilibriums of 
the problem (8.1). Recalling that equilibrium means a constant solution . u∗ of the 
problem (8.1). To preserve the generality, we can suppose that .u∗ = 0. 

Now, let us assume that: 

.(H6) .f : Bα → X is differentiable at zero. 

It is well-known that the linearized problem associated to problem (8.1) is given by 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(yt ) = −AD(yt ) + L(yt ), for t ≥ 0,

y0 = φ ∈ Bα,

(8.28) 

with .L = f ′(0).
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Let .(V (t))t≥0 be the semigroup solution on . Bα associated to the problem (8.28). 

Theorem 8.5.1 Assume that .(H1), .(H2),.(H3), .(H4), and .(H6) hold. Then, for every 
.t > 0, the derivative of .U(t) is .V (t). �	
Proof Let .t ≥ 0 be fixed and .φ ∈ Bα . One has 

. D
[
U(t)φ − V (t)φ

]
=
∫ t

0
T (t − s)

[
f (U(s)(φ)) − L(V (s)(φ))

]
ds.

Let us set 

. wt = U(t)(φ) − V (t)(φ)

and 

. h(t) =
∫ t

0
T (t − s)

[
f (U(s)(φ)) − L(V (s)(φ))

]
ds.

Then, we can write 

. h(t) =
∫ t

0
T (t − s)

[
f (U(s)(φ)) − f (V (s)(φ))

]
ds

+
∫ t

0
T (t − s)

[
f (V (s)(φ)) − L(V (s)(φ))

]
ds.

Using Lemma 8.3.1, we obtain 

. |wt |Bα ≤ b(t) sup
0≤s≤t

|h(s)|α, for t ∈ [0, T ].

Moreover, 

. |h(t)|α ≤ kMα

∫ t

0

eω(t−s)

(t − s)α
|ws |Bαds

+ Mα

∫ t

0

eω(t−s)

(t − s)α

∣
∣
∣f (V (s)(φ)) − L(V (s)(φ))

∣
∣
∣ds.

Using the fact that f is differentiable at zero with differential L at zero, we can state 
that for all .ε > 0, there exists .η > 0 such that 

.Mα

∫ t

0

eω(t−s)

(t − s)α

∣
∣
∣f (V (s)(φ)) − L(V (s)(φ))

∣
∣
∣ds ≤ ε|φ|Bα

∀φ ∈ Bα with |φ|Bα < η.
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Note that .w0 = 0, so we can  write  

. |ws |Bα ≤ sup
0≤τ≤t

|w(τ)|α ≤ |wt |Bα , for s ∈ [0, t].

Therefore, for .t ∈ [0, T ], 

. sup
0≤s≤t

|h(s)|α ≤ ε|φ|Bα + kMα

( ∫ t

0

eωs

sα
ds
)
|wt |Bα

≤ ε|φ|Bα + kMα

( ∫ T

0

eωs

sα
ds
)
|wt |Bα .

We can choose .T > 0 small enough such that .kMαb(T )
( ∫ T

0

eωs

sα
ds
)

< 1. 

Consequently, for all .|φ|Bα < η, 

. |wt |Bα ≤ b(T )

1 − kMαb(T )
( ∫ T

0
eωs

sα ds
)ε|φ|Bα .

Thus, .U(t) is differentiable at zero for all .t ∈ [0, T ] with .dφU(t)(0) = V (t). 
Proceeding by steps, one can prove that .dφU(t)(0) = V (t), for all .t > 0. �	
Theorem 8.5.2 Assume that .(H1), .(H2), .(H3), .(H4), and .(H6) hold. If the zero 
equilibrium of .(V (t))t≥0 is exponentially stable, then the zero equilibrium of 
.(U(t))t≥0 is locally exponentially stable, which means that there exist .η > 0, .β > 0, 
and .C ≥ 1 such that for .t ≥ 0, 

. |U(t)(φ)|Bα ≤ Ce−βt |φ|Bα for all φ ∈ Bα with |φ|Bα ≤ η.

Moreover, if . Bα can be decomposed as .Bα = B1α ⊕ B2α , where . Bi
α are V -invariant 

subspaces of . Bα and . B1α a finite-dimensional with 

. ω0 = lim
h→+∞

1

h
log
∣
∣
∣V (h)/B2α

∣
∣
∣
α

and 

. inf{|λ| : λ ∈ σ(V (t)/B1α)} > eω0t ,

then the zero equilibrium of .(U(t))t≥0 is not stable, in the sense that there exist 
.ε > 0, a sequence .(φn)n∈N converging to 0, and a sequence .(tn)n∈N of positive real 
numbers such that .|U(tn)φn|α > ε. �	

The proof of this theorem is based on the Theorem 8.5.1 and the following 
theorem.
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Theorem 8.5.3 ([12]) Let .(W(t))t≥0 be a nonlinear strongly continuous semigroup 
on the subset . � of a Banach space .(X; ||.||). Assume that .x0 ∈ � is an equilibrium 
of .(W(t))t≥0 such that .W(t) is differentiable at . x0 for each .t ≥ 0 with . Z(t)

the derivative of .W(t) at . x0. Then, .(Z(t)t≥0 is a strongly nonlinear continuous 
semigroup of bounded linear operators on X, and if the zero equilibrium of 
.(Z(t))t≥0 is exponentially stable, then the equilibrium . x0 of .(W(t))t≥0 is locally 
exponentially stable. Moreover, if X can be decomposed as .X = X1 ⊕ X2, where 
. Xi are Z-invariant subspaces of X, . X1 a finite-dimensional with 

. ω = lim
h→+∞

1

h
log
∣
∣
∣|Z(h)/X2|

∣
∣
∣

and 

. inf{|λ| : λ ∈ σ(Z(t)/X1)} > eωt ,

then the zero equilibrium of .(W(t))t≥0 is not stable, in the sense that there exist 
.ε > 0, a sequence .(φn)n∈N converging to 0, and a sequence .(tn)n∈N of positive real 
numbers such that 

. |W(tn)φn|α > ε.

Lemma 8.5.1 ([19], Corollary 1.2, page 43) Let . � be a continuous and right 
differentiable function on .[a, b). If the right derivative function .d+� is continuous 
on .[a, b), then . � is continuously differentiable on .[a, b). �	

Now, we make some sufficient conditions on . B in order to determine 
.(AV ,D(AV )), the generator of the semigroup .(V (t))t≥0. So, we assume the 
following axiom: 

(C): Let .(φn)n≥0 be a sequence in . B such that .φn → 0 as .n → +∞ in . B; then, 
.φn(θ) → 0 as .n → +∞ for all .θ ≤ 0. 

We can state the following result. 

Theorem 8.5.4 Assume that .(H1), .(H2), .(H3), .(H4), and .(H6) hold. Moreover, 
suppose that . B satisfies axioms . (A), . (B), and . (C). If . B is a subspace of the space of 
continuous functions from .(−∞, 0] into X, then .(AV ,D(AV )) is given by 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D(AV ) =
{
φ ∈ Bα : φ′ ∈ Bα, D(φ) ∈ D(A) and

D(φ′) = −AD(φ) + L(φ)
}
,

AV φ = φ′ for φ ∈ D(AV ).

Proof Let B be the infinitesimal generator of the semigroup .(V (t))t≥0 on . Bα and 
.φ ∈ D(B). Then, one can write
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. 

⎧
⎪⎪⎨

⎪⎪⎩

lim
t→0+

1

t
(V (t)φ − φ) = ψ exists in Bα,

Bφ = ψ.

Using axiom (C), one obtains 

. lim
t→0+

1

t
(φ(t + θ) − φ(θ)) = ψ(θ) for θ ∈ (−∞, 0).

It follows that the right derivative .d+φ exists on .(−∞, 0) and is equal to . ψ . The  
fact that each function in . Bα is continuous on .(−∞, 0] leads to .d+φ continuous on 
.(−∞, 0). 

Using Lemma 8.5.1, we deduce that the function . φ is continuously differentiable 
and .φ′ = ψ on .(−∞, 0). Moreover, 

. lim
θ→0

d+φ(θ) = ψ(0),

which implies that the function . φ is continuously differentiable from .(−∞, 0] to 
. Xα and .φ′ = ψ on .(−∞, 0]. 

We have 

. 
1

t
(T (t)D(φ) −⇐φ)) = 1

t
D(V (t)φ − φ) − 1

t

∫ t

0
T (t − s)L(V (s)φ)ds.

It is well-known that 

. lim
t→0

1

t

∫ t

0
T (t − s)L(V (s)φ)ds = L(φ)

in X-norm and 

. lim
t→0

1

t
D(V (t)φ − φ) = D(φ′)

in .α-norm. The fact that .Xα ↪→ X implies 

. lim
t→0

1

t
D(V (t)φ − φ) = D(φ′)

in X-norm. Consequently, 

.D(φ) ∈ D(A) and lim
t→0

1

t
(T (t)D(φ) −⇐φ)) = AD(φ)
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in X-norm. It follows that 

. 

⎧
⎪⎨

⎪⎩

D(B) ⊆
{
φ ∈ Bα : φ′ ∈ Bα, D(φ) ∈ D(A) and D(φ′) = −AD(φ) + L(φ)

}
,

B(φ) = φ′.

Conversely, let .φ ∈ Bα be such that 

. φ′ ∈ Bα, D(φ) ∈ D(A) and D(φ′) = −AD(φ) + L(φ).

Since .t → T (t)φ is continuously differentiable from . R+ to . Xα , then .φ ∈ D(B). 
�	

Now, let us study the spectral of the linear equation. We assume that . Bα satisfies 
the following axiom: 

(D) There exists a constant .ν ∈ R such that for every .x ∈ X and .λ ∈ C with 
.�(λ) > ν, one has 

. ελ ⊗ x ∈ Bα and sup
|x|≤1

|ελ ⊗ x| < ∞,

where .(ελ ⊗ x)(θ) = eλθx for .θ ≤ 0. 

For .λ ∈ C such that .�(λ) > ν, we define the linear operator .�(λ) by 

. 

⎧
⎪⎨

⎪⎩

D(�(λ)) =
{
x ∈ Xα : D(eλ.x) ∈ D(A) and AD(eλ.x) − L(eλ.x) ∈ Xα

}
,

�(λ) = λD(eλ.I ) + AD(eλ.I ) − L(eλ.I ).

Let .(AV ,D(AV )) be the infinitesimal generator of the semigroup .(V (t))t≥0 and 
.σp(AV ) be the point spectrum of . AV . 

Theorem 8.5.5 Assume that .(H1), .(H2), .(H3), .(H4), and .(H6) hold. Assume 
furthermore that the axioms . (A), . (B), . (C), and .(D) are satisfied. Let .λ ∈ C with 
.�(λ) > ν. If  . Bα is a uniform fading memory space and . D is stable, then the 
following are equivalent: 

(i) .λ ∈ σp(AV ). 
(ii) .ker�(λ) �= {0}.

�	
Proof Let .λ ∈ σp(AV ) with .�(λ) > ν. Then, there exists .φ ∈ D(AV ), .φ �= 0, with 
.AV φ = λφ. That leads to 

. lim
t→0

1

t
(V (t)φ − φ) = λφ
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and 

. lim
t→0

1

t
D(V (t)φ − φ)(0) = λD(φ(0)).

Since for all .t > 0, 

. 
1

t
(T (t)D(φ(0)) −⇐φ(0))) = 1

t
D(V (t)φ − φ)(0) − 1

t

∫ t

0
T (t − s)L(V (s)φ)ds,

then letting t goes to 0, and one obtains 

.D(φ(0)) ∈ D(A) and − AD(φ(0)) = λD(φ(0)) − l(φ). (8.29) 

Moreover, using the spectral mapping (Theorem . 2.4 in [18]), we have 

. eλt ∈ σp(V (t)) and V (t)φ = eλtφ for all t > 0.

Letting .t > 0 and .θ ≤ 0 such that .t + θ ≥ 0, the translation property of the 
semigroup solution leads to 

. (V (t)φ)(θ) = (V (t + θ)φ)(0) = eλtφ(θ) = eλ(t+θ)φ(0).

Thus, .φ(θ) = eλθφ(0) for .θ ≥ 0. Since .φ �= 0, using  (8.29), it follows that 
.D(φ(0)) ∈ ker�(λ). 

Conversely, if . φ verifies all conditions of Theorem 8.3.3, then .AV φ = φ′. Taking 
.x ∈ D(A) such that .x �= 0 and .�(λ)x = 0, then the function .ελ ⊗ x satisfies all 
conditions of Theorem 8.3.3, and we deduce that 

. AV (ελ ⊗ x) = λ(ελ ⊗ x).

�	
Now, let 

. ν0 = inf{ν ∈ R : such that (D) is satisfied}.

Lemma 8.5.2 ([18]) If . B is a uniform fading memory space, then .ν0 < 0. �	
Definition 8.5.1 .λ ∈ C is a characteristic value of Eq. (8.28) if 

. �(λ) > ν0 and ker�(λ) �= {0}.

Let 

.s′(AV ) = sup{�(λ) : λ ∈ σ(AV ) − σess(AV )}.
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It is well-known that .σ(AV ) − σess(AV ) contains a finite number of eigenvalues of 
. AV . Consequently, the stability of .(V (t))t≥0 is completely determined by .s′(AV ). 

Theorem 8.5.6 Assume that .(H1), .(H2), .(H3), .(H4), .(H5), and .(H6) hold. Further-
more, assume that the axioms . (A), . (B), . (C), and .(D) are satisfied. If . B is a uniform 
fading memory space and . D is stable, then the following holds: 

(i) If .s′(AV ) < 0, then .(V (t))t≥0 is exponentially stable. 
(ii) If .s′(AV ) = 0, then there exists .φ ∈ Bα such that .|V (t)φ|Bα = |φ|Bα . 
(iii) If .s′(AV ) > 0, then there exists .φ ∈ Bα such that . lim

t→+∞ |V (t)φ|Bα = +∞.

�	
We deduce the following stability result in the nonlinear case, from Theo-

rem 8.5.2. 

Theorem 8.5.7 Assume that .(H1), .(H2), .(H3), .(H4), .(H5), and .(H6) hold. Further-
more, assume that the axioms . (A), . (B), . (C), and .(D) are satisfied. If . B is a uniform 
fading memory space and . D is stable, then the following holds: 

(i) If .s′(AV ) < 0, then the zero equilibrium of .(U(t))t≥0 is locally exponentially 
stable. 

(ii) If .s′(AV ) > 0, then the zero equilibrium of .(U(t))t≥0 is unstable.
�	

8.6 Application 

To apply the theoretical results of this chapter, we consider the following nonlinear 
system with infinite delay: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
v(t, ξ) − qv(t − r, ξ)

]
= ∂2

∂ξ2

[
v(t, ξ) − qv(t − r, ξ)

]

+b ∂
∂ξ

[
v(t, ξ) − qv(t − r, ξ)

]

+c

∫ 0

−∞
g(θ, v(t + θ, ξ))dθ for t ≥ 0 and ξ ∈ [0, π ]

v(t, 0) − qv(t − r, 0) = v(t, π) − qv(t − r, π) = 0 for t ≥ 0

v(θ, ξ) = ψ(θ, ξ) for θ ∈ (−∞, 0] and ξ ∈ [0, π ],

(8.30) 

where .g : (−∞, 0] × R → R is a function and .c ∈ R
∗+, .b ∈ R. q is a 

positive constant such that .|q| < 1. .H : R2 → R is a Lipschitz continuous with 
.H(0, 0) = 0. The initial data . ψ will be precised in the next.
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In order to write system (8.30) in an abstract form, we introduce the space . X =
L2((0, π);R). Let  A be the operator defined on X by 

. 

⎧
⎨

⎩

D(A) = H 2((0, π);R) ∩ H 1
0 ((0, π);R),

Ay = −y′′ for y ∈ D(A).

Then, .(−A) generates an analytic semigroup .(T (t))t≥0 on X. Moreover, . T (t)

is compact on X for every .t > 0. The spectrum .σ(−A) is equal to the point 
spectrum .Pσ(−A) and is given by .σ(−A) = {−n2 : n ≥ 1

}
, and the associated 

eigenfunctions .(φn)n≥1 are given by .φn =
√

2
π
sin(nx) for .x ∈ [0, π ]; the associated 

analytic semigroup is explicitly given by 

. T (t)y =
∞∑

n=1

e−n2t (y, φn) φn for t ≥ 0 and y ∈ X,

where .(., .) is an inner product on X. 

Lemma 8.6.1 ([21]) If .α = 1
2 , then 

. Ay =
+∞∑

n=1

n2(y, φn)φn for y ∈ D(A),

. A
1
2 y =

+∞∑

n=1

n(y, φn)φn for y ∈ X,

. A
1
2 T (t)y =

+∞∑

n=1

ne−n2t (y, φn)φn for y ∈ X,

. A− 1
2 y =

+∞∑

n=1

(1

n

)
(y, φn)φn for y ∈ X,

and 

. A− 1
2 T (t)y =

+∞∑

n=1

(1

n

)
e−n2t (y, φn)φn for y ∈ X.

There exists .M ≥ 1 (see [21]) such that for .t ≥ 0, . |T (t)| ≤ Meωt for some − 1 <

ω < 0.
Then, the semigroup .{T (t)}t≥0 is exponentially stable.
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Note also that (see [21]) there exists .M 1
2

≥ 0 such that 

. |A 1
2 T (t)| ≤ M 1

2
t−

1
2 eωt for each t > 0.

Therefore, hypotheses .(H1) and .(H5) are satisfied. 

Lemma 8.6.2 ([7]) If .m ∈ D(A
1
2 ), then m is absolutely continuous, . ∂

∂x
m ∈ X. 

Moreover, there exist positive constants . N0 and . M0 such that 

. N0|A 1
2 m|X ≤ | ∂

∂x
m|X ≤ M0|A 1

2 m|X.

Let .γ > 0. We consider the following phase space 

. B = Cγ =
{

φ ∈ C((−∞, 0];X) : lim
θ→−∞ eγ θ |φ(θ)| exists in X

}

provided with the following norm: 

. |φ|Cγ = sup
θ≤0

eγ θ |φ(θ)|X for φ ∈ Cγ .

According to [7], . B satisfies Axioms (A), (B) and is a uniform fading memory space. 
Moreover, it is well-known that .K(t) = 1 for every .t ∈ R

+ and .M(t) = e−γ t for 
.t ∈ R

+. Therefore, the norm in . B 1
2
is given (see [7]) by 

. |φ|B 1
2

= sup
θ≤0

eγ θ |A 1
2 φ(θ)|X.

One can write ( see, [21], p.144) 

.

∫ π

0

(
φ(θ)(ξ)

)2
dξ ≤ |A 1

2 φ(θ)|2X =
∫ π

0

( ∂

∂ξ
φ(θ)(ξ)

)2
dξ. (8.31) 

Next, we assume the following. 

.(H7) For .θ ≤ 0 and .ζ1, ζ2 ∈ R, .|g(θ, ζ1)−g(θ, ζ2)| ≤ s(θ)|ζ1−ζ2|, .g(θ, 0) = 0, 
.
∂
∂ζ

g(θ, 0) �= 0, where s is some nonnegative function that verifies 

. 

∫ 0

−∞
e−2γ θ s(θ) < ∞.

Let .f1, f2, and f be defined on . B 1
2
by
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. f1(φ)(ξ) = c

∫ 0

−∞
g(θ, φ(θ)(ξ))dθ for ξ ∈ [0, π ],

. f2(φ)(ξ) = b
∂

∂ξ

[
φ(0)(ξ) − qφ(−r)(ξ)

]
for ξ ∈ [0, π ],

and 

. f (φ)(ξ) = f1(φ)(ξ) + f2(φ)(ξ) for ξ ∈ [0, π ].

Proposition 8.6.1 For each .φ ∈ B 1
2
, .f (φ) ∈ L2((0, π);R), and f is continuous 

on . B 1
2
. �	

Proof Let .φ ∈ B 1
2
. Since for all .ξ ∈ [0, π ] and for all .θ ∈ (−∞, 0], we have  

. |g(θ, ξ)| ≤ s(θ)|ξ | + |g(θ, 0)|
= s(θ)|ξ |,

then for all .ξ ∈ [0, π ], 

. |f1(φ)(ξ)| ≤ c

∫ 0

−∞
|s(θ)| |φ(θ)(ξ)|dθ.

Let us set 

. B(ξ) =
∫ 0

−∞
|s(θ)||φ(θ)(ξ)|dθ for ξ ∈ [0, π ].

Using H. ̈older inequality, one can write 

. B(ξ) =
∫ 0

−∞
e−2γ θ |s(θ)||φ(θ)(ξ)|e2γ θdθ

≤
(∫ 0

−∞
|e−2γ θ s(θ)|2dθ

) 1
2
(∫ 0

−∞
|φ(θ)(ξ)e2γ θ |2dθ

) 1
2

.

Then, using the above inequality and the inequality (8.31), 

.

∫ π

0
|B(ξ)|2dξ ≤

∫ π

0

((∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)( ∫ 0

−∞
|φ(θ)(ξ)e2γ θ |2dθ

))

dξ

=
∫ π

0

(

|e−2γ.s|2
L2(R−)

∫ 0

−∞
|φ(θ)(ξ)e2γ θ |2dθ

)

dξ
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≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

e2γ θ

∫ π 

0 
|φ(θ)(ξ)|2dξ

)

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

e2γ θ

∫ π 

0 
| ∂ 
∂ξ 

φ(θ)(ξ)|2dξ

)

dθ

)

= |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

e2γ θ | ∂ 
∂ξ 

φ(θ)|2 
L2([0,π ];R)

)

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

sup 
θ≤0 

e2γ θ | ∂ 
∂ξ 

φ(θ)|2 
L2([0,π ];R)

)

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(
sup 
θ≤0 

e2γ θ |A 
1 
2 φ(θ)|2 

L2([0,π ];R)

)
dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ |φ|2 B 1 

2 

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

|φ|2 B 1 
2

∫ 0 

−∞ 
e2γ θ  dθ 

< ∞. 

Also, we refer to Minkowski inequality to obtain 

.

∫ π

0
|f2(φ)(ξ)|2dξ =

∫ π

0

∣
∣
∣

∂

∂ξ

[
φ(0)(ξ) − qφ(−r)(ξ)

]∣
∣
∣
2
dξ

≤
∫ π

0

∣
∣
∣

∂

∂ξ
φ(0)(ξ)

∣
∣
∣
2
dξ +

∫ π

0

∣
∣
∣q

∂

∂ξ
φ(−r)(ξ)

∣
∣
∣
2
dξ

+2
( ∫ π

0

∣
∣
∣

∂

∂ξ
φ(0)(ξ)

∣
∣
∣
2
dξ
) 1

2
( ∫ π

0

∣
∣
∣q

∂

∂ξ
φ(−r)(ξ)

∣
∣
∣
2
dξ
) 1

2

≤
∣
∣
∣A

1
2 φ(0)

∣
∣
∣
2

L2([0,π ];R)
+ q2

∣
∣
∣A

1
2 φ(−r)

∣
∣
∣
2

L2([0,π ];R)

+2q
∣
∣
∣A

1
2 φ(0)

∣
∣
∣
L2([0,π ];R)

∣
∣
∣A

1
2 φ(−r)

∣
∣
∣
L2([0,π ];R)

≤ sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
2

L2([0,π ];R)

+q2e2γ r sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
2

L2([0,π ];R)

+2q sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
L2([0,π ];R)

e2γ r

× sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
L2([0,π ];R)



220 K. Ezzinbi et al.

≤ sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 φ(θ)

∣
∣
∣
2 

L2([0,π ];R) 

+q2e2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 φ(θ)

∣
∣
∣
2 

L2([0,π ];R) 

+2qe2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 φ(θ)

∣
∣
∣
2 

L2([0,π ];R) 

< ∞. 

We conclude that .f (φ) = (f1 + f2)(φ) ∈ L2([0, π ];R) for all .φ ∈ B 1
2
. 

Let us show that f is continuous. For this purpose, let .(φn)n∈N be a sequence in 
. B 1

2
and .φ ∈ B 1

2
such that .φn → φ in . B 1

2
as .n → +∞. Then 

. 

(
f1(φn) − f1(φ)

)
(ξ) = c

∫ 0

−∞
g(θ, φn(θ)(ξ))dθ − c

∫ 0

−∞
g(θ, φ(θ)(ξ))dθ

= c

∫ 0

−∞

[
g(θ, φn(θ)(ξ)) − g(θ, φ(θ)(ξ))

]
dθ,

and we obtain that 

. |(f1(φn) − f1(φ))(ξ)| ≤ c

∫ 0

−∞
|s(θ)| |φn(θ)(ξ) − φ(θ)(ξ))|dθ.

Let us set  for all .ξ ∈ [0, π ], 

. Jn(ξ) = c

∫ 0

−∞
|s(θ)|

∣
∣
∣φn(θ)(ξ) − φ(θ)(ξ)

∣
∣
∣dθ.

Then 

. |Jn(ξ)| ≤ c

∫ 0

−∞
e−2γ θ |s(θ)|

∣
∣
∣φn(θ)(ξ) − φ(θ)(ξ)

∣
∣
∣e

2γ θdθ

≤ c

(∫ 0

−∞

∣
∣
∣e

−2γ θ s(θ)

∣
∣
∣
2
dθ

) 1
2
(∫ 0

−∞

∣
∣
∣

(
φn(θ)(ξ) − φ(θ)(ξ)

)
e2γ θ

∣
∣
∣
2
dθ

) 1
2

,

which leads to 

.

∫ π

0
|Jn(ξ)|2dξ ≤ |c|2|e−2γ.s|2

L2(R−)

∫ 0

−∞

(

e2γ θ e2γ θ

∫ π

0

∣
∣
∣φn(θ)(ξ)

− φ(θ)(ξ)

∣
∣
∣
2
dξ

)

dθ
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≤ |c|2|e−2γ.  s|2 
L2(R−)

∫ 0 

−∞

(

e2γ θ  e2γ θ

∫ π 

0

∣
∣
∣

∂ 
∂ξ 

φn(θ)(ξ) 

− 
∂ 
∂ξ 

φ(θ)(ξ)

∣
∣
∣
2 
dξ

)

dθ 

≤ |c|2|e−2γ.  s|2 
L2(R−)

∫ 0 

−∞ 
e2γ θ

(

sup 
θ≤0 

e2γ θ

∫ π 

0

∣
∣
∣

∂ 
∂ξ 

φn(θ)(ξ) 

− 
∂ 
∂ξ 

φ(θ)(ξ)

∣
∣
∣
2 
dξ

)

dθ 

≤ |c|2|e−2γ.  s|2 
L2(R−)

∫ 0 

−∞ 
e2γ θ

(
sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 (φn(θ) 

−φ(θ))

∣
∣
∣
2 

L2([0,π ];R)

)
dθ 

≤ |c|2
∣
∣
∣e

−2γ.  s
∣
∣
∣
2 

L2(R−)

∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2

∫ 0 

−∞ 
e2γ θ  dθ. 

Since .φn → φ in . B 1
2
, then .

∫ π

0
|Jn(ξ)|2dξ → 0 as .n → +∞. Therefore, . f1 is 

continuous. Moreover, 

.

∫ π

0

∣
∣
∣f2

(
φn(ξ) − φ(ξ)

)∣
∣
∣
2
dξ =

∫ π

0

∣
∣
∣

∂

∂ξ

[(
φn(0) − φ(0)

)
(ξ)

−q
(
φn(−r) − φ(−r)

)
(ξ)
]∣
∣
∣
2
dξ

≤
∫ π

0

∣
∣
∣

∂

∂ξ

(
φn(0)(ξ) − φ(0)(ξ)

)∣
∣
∣
2
dξ

+
∫ π

0

∣
∣
∣q

∂

∂ξ

(
φn(−r)(ξ) − φ(−r)(ξ)

)∣
∣
∣
2
dξ

+2
( ∫ π

0

∣
∣
∣

∂

∂ξ

(
φn(0)(ξ) − φ(0)(ξ)

)∣
∣
∣
2
dξ
) 1

2

×
( ∫ π

0

∣
∣
∣q

∂

∂ξ

(
φn(−r)(ξ) − φ(−r)(ξ)

)∣
∣
∣
2
dξ
) 1

2

≤
∣
∣
∣A

1
2

(
φn(0) − φ(0)

)∣
∣
∣
2

L2([0,π ];R)

+q2
∣
∣
∣A

1
2

(
φn(−r) − φ(−r)

)∣
∣
∣
2

L2([0,π ];R)
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+2q
∣
∣
∣A 

1 
2

(
φn(0) − φ(0)

)∣
∣
∣
L2([0,π ];R)

∣
∣
∣A 

1 
2 

×
(
φn(−r) − φ(−r)

)∣
∣
∣
L2([0,π ];R) 

≤ sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
2 

L2([0,π ];R) 

+q2e2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
2 

L2([0,π ];R) 

+2q sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
L2([0,π ];R) 

×e2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
L2([0,π ];R) 

≤
∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2 

+ q2e2γ r
∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2 

+2qe2γ r
∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2 

. 

Using the fact that .φn → φ in . B 1
2
as .n → +∞, we obtain that . 

∫ π

0

∣
∣
∣f2

(
φn(ξ) −

φ(ξ)
)∣
∣
∣
2
dξ → 0 when .n → +∞. 

Hence, .f (φn) → f (φ) in .L2([0, π ];R) as .n → +∞ and the proof is complete. 
�	

Let 

. 

⎧
⎨

⎩

u(t)(x) = v(t, x) for t ≥ 0 and x ∈ [0, π ],

u0(θ)(x) = ψ(θ, x) for θ ∈ (−∞, 0] and x ∈ [0, π ].

We need the following result to prove that .(H3) is satisfied. 

Proposition 8.6.2 Assume that .(H7) holds. Then, f is Lipschitzian. 

Proof We have to show that . f1 and . f2 are Lipschitz functions. So, let . φ and . ψ be 
in . B 1

2
. Then, for .ξ ∈ [0, π ], one has 

. (f1(φ) − f1(ψ))(ξ) = c

∫ 0

−∞

[
g(θ, φ(θ)(ξ)) − g(θ, ψ(θ)(ξ))

]
dθ for ξ ∈ [0, π ].

Note that using H. ̈older inequality, one can write
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. | (f1(φ) − f1(ψ)) (ξ)| ≤ |c|
∫ 0

−∞

∣
∣
∣g(θ, φ(θ)(ξ)) − g(θ, ψ(θ)(ξ))

∣
∣
∣dθ

≤ c

∫ 0

−∞
|s(θ)|

∣
∣
∣φ(θ)(ξ) − ψ(θ)(ξ)

∣
∣
∣dθ

= c

∫ 0

−∞
e−2γ θ |s(θ)| e2γ θ

∣
∣
∣φ(θ)(ξ) − ψ(θ)(ξ)

∣
∣
∣dθ

≤ c

(∫ 0

−∞
|e−2γ θ s(θ)|2dθ

) 1
2
(∫ 0

−∞
e4γ θ

∣
∣
∣φ(θ)(ξ)

− ψ(θ)(ξ)

∣
∣
∣
2
dθ

) 1
2

.

Therefore, 

. |f1(φ)(ξ) − f1(ψ)(ξ)|2 ≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)( ∫ 0

−∞
e4γ θ

∣
∣
∣φ(θ)(ξ)

− ψ(θ)(ξ)

∣
∣
∣
2
dθ
)
,

for which we deduce that 

.

∫ π

0
|f1(φ)(ξ) − f1(ψ)(ξ)|2dξ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)
×
∫ 0

−∞
e4γ θ

(∫ π

0
|φ(θ)(ξ) − ψ(θ)(ξ)|2 dξ

)

dθ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)

×
∫ 0

−∞
e2γ θ

(

sup
θ≤0

e2γ θ

∫ π

0

∣
∣
∣
∣

∂

∂ξ
φ(θ)(ξ) − ∂

∂ξ
ψ(θ)(ξ)

∣
∣
∣
∣

2

dξ

)

dθ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)

×
∫ 0

−∞
e2γ θ

⎛

⎝sup
θ≤0

eγ θ

√
∫ π

0

∣
∣
∣
∣

∂

∂ξ
φ(θ)(ξ) − ∂

∂ξ
ψ(θ)(ξ)

∣
∣
∣
∣

2

dξ

⎞

⎠

2

dθ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)
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×
∫ 0 

−∞ 
e2γ θ

(

sup 
θ≤0 

eγ θ |A 
1 
2 (φ(θ) − ψ(θ))|L2([0,π ];R)

)2 

dθ 

≤ |c|2
( ∫ 0 

−∞ 
|e−2γ θ  s(θ)|2dθ

) ∫ 0 

−∞ 
e2γ θ  |φ − ψ |2 B 1 

2 

dθ 

≤ 
|c|2 
2γ

∣
∣
∣e

−2γ.  s
∣
∣
∣
2 

L2(R−)

∣
∣
∣φ − ψ

∣
∣
∣
2 

B 1 
2 

. 

Finally, we obtain that 

. |f1(φ) − f2(ψ)|L2([0,π ];R) ≤ k′ |φ − ψ |B 1
2

for φ,ψ ∈ B 1
2
,

where 

. k′ = |c|√
2γ

(∫ 0

−∞
|e−2γ θ s(θ)|2dθ

) 1
2

.

Moreover, 

. 

∣
∣
∣f1(φ) − f2(ψ)

∣
∣
∣
2

L2([0,π ];R)
≤
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

+ q2e2γ r
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

+ 2qe2γ r
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

≤ k′′
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

.

Therefore, f is Lipschitzian and .(H4) is satisfied. �	
Let us define the operators . D and . D0 on . B 1

2
by 

. (D(φ)(ξ)) = φ(0)(ξ) − qφ(−r)(ξ) for all ξ ∈ [0, π ]

and 

. (D0(φ))(ξ) = qφ(−r)(ξ) for all ξ ∈ [0, π ].

Then, .D(φ) = φ(0) −D0(φ). 

Proposition 8.6.3 . D ∈ L(B 1
2
;X). �	

Proof Let .φ ∈ B 1
2
. Then, .D0(φ)(ξ) = qφ(−r)(ξ) for all .ξ ∈ [0, π ]. We can write 

.

∫ π

0
|D0(φ)(ξ)|2dξ =

∫ π

0
q2|φ(−r)(ξ)|2dξ
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= q2e2γ r  e−2γ r

∫ π 

0 
|φ(−r)(ξ)|2 

= q2e2γ r  e−2γ r

∫ π 

0 
| ∂ 
∂ξ 

φ(−r)(ξ)|2 

≤ q2e2γ r  sup 
θ≤0 

e2γ θ |A 
1 
2 φ(θ)|2 

L2([0,π ];R) 

= q2e2γ r |φ|2 B 1 
2 

. 

Hence, .D0 ∈ L(B 1
2
;X). It is obvious that .φ(0) ∈ L(B 1

2
;X). Therefore, we can 

conclude that .D ∈ L(B 1
2
;X) and the proof is complete. �	

Since .0 < q < 1, then . D is stable and .|D0| < 1. Thus, hypothesis .(H3) is 
satisfied. 

Now, let . ϕ be defined by .ϕ(θ)(ξ) = ψ(θ, ξ) for all .θ ∈ (−∞, 0] and .ξ ∈ [0, π ]. 
We make the following additional assumption. 

.(H8) .ϕ(θ) ∈ D(A
1
2 ) for all .θ ≤ 0, with 

. sup
θ≤0

eγ θ

√
∫ π

0

(
∂

∂ξ
ψ(θ, ξ)

)2

dξ < ∞

and 

. lim
θ→θ0

∫ π

0

(
∂

∂ξ
ψ(θ, ξ) − ∂

∂ξ
ψ(θ0, ξ)

)2

dξ = 0 for all θ0 ≤ 0.

Remark that .(H8) implies .ϕ ∈ B 1
2
. Then, Eq. (8.30) can be written as follows: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (ut ) for t ≥ 0,

u0 = ϕ.

(8.32) 

Consequently, we obtain the existence and uniqueness of a mild solution of prob-
lem (8.32). Furthermore, it is clear that . f1 and . f2 are continuously differentiable and 
their differential functions are given for .φ,ψ ∈ B 1

2
and .ξ ∈ [0, π ] by 

. f ′
1(φ)(ψ)(ξ) = c

∫ 0

−∞
∂

∂ζ
g(θ, φ(θ)(ξ))ψ(θ)(ξ)dθ

and 

.f ′
2(φ)(ψ)(ξ) = b

∂

∂ξ

[
ψ(0)(ξ) − qψ(−r)(ξ)

]
for ξ ∈ [0, π ].



226 K. Ezzinbi et al.

Let .v0 = ψ ∈ B 1
2
such that: 

(a) .v0(0, .) − qv0(−r, .) ∈ H 2(0, π) ∩ H 1
0 (0, π) and .

∂v0
∂θ

∈ B 1
2
. 

(b) . 
∂v0(0, ξ)

∂θ
− q

∂v0(−r, ξ)

∂θ
= ∂2

∂ξ2

[
v0(0, ξ) − qv0(−r, ξ)

]
+ b

∂

∂ξ

[
v0(0, ξ) −

qv0(−r, ξ)
]

+ c

∫ 0

−∞
g(θ, v0(θ, ξ))dθ for and ξ ∈ [0, π ]. 

We deduce that 

. ψ ∈ B 1
2
, ψ ′ ∈ B 1

2
, D(ψ) ∈ D(A) , and D(ψ ′) = −AD(ψ) + f (ψ).

Then, problem (8.32) has a unique strict solution for every .φ ∈ B 1
2
. 

Now, we can see that .f = f1 + f2 is continuously differentiable, and zero is a 
solution of (8.30), ,i.e., .f (0) = 0. The differential of f in 0 is given for . φ,ψ ∈ B 1

2
and .ξ ∈ [0, π ] by 

. L(ψ)(ξ) = f ′(0)(ψ)(ξ) = c

∫ 0

−∞
∂

∂ζ
g(θ, 0)ψ(θ)(ξ)dθ

+ b
∂

∂ξ

[
ψ(0)(ξ) − qψ(−r)(ξ)

]
.

Consequently, the linearized equation of (8.30) can be written as follows: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
v(t, ξ) − qv(t − r, ξ)

]
= ∂2

∂ξ2

[
v(t, ξ) − qv(t − r, ξ)

]

+b ∂
∂ξ

[
v(t, ξ) − qv(t − r, ξ)

]
+ c

∫ 0

−∞
p(θ)v(t + θ, ξ)dθ for t ≥ 0 and ξ ∈ [0, π ]

v(t, 0) − qv(t − r, 0) = v(t, π) − v(t − r, π) = 0 for t ≥ 0

v(θ, ξ) = ψ(θ, ξ) for θ ∈ (−∞, 0] and ξ ∈ [0, π ],
(8.33) 

where .p = ∂
∂ζ

g(., 0) : (−∞, 0] → R is a continuous and measurable function. 
We state the main result of the stability of the solutions. 

Theorem 8.6.1 Assume that .(H7) and .(H8) hold. Furthermore, suppose that 

.0 < c

∫ 0

−∞
|p(θ)|dθ <

(

1 + b2

4

)

(1 − q). (8.34) 

Then, the semigroup solution of (8.33) is exponentially stable. �	
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The proof of Theorem 8.6.1 makes use of this following lemma. 

Lemma 8.6.3 ([4]) The spectrum .σ(Ã) of the operator .Ã = ∂2

∂ξ2
+ b

∂

∂ξ
is equal 

to the point spectrum .Pσ(Ã) = {−n2 − b2

4
: n ∈ N

∗}. �	
Proof of Theorem 8.6.1 The exponential stability of (8.33) is obtained when 
.s′(Ã) < 0, which is true only if 

. sup
{
�(λ) : λ ∈ σ(Ã) − σess(Ã) and �(λ) > −γ

}
< 0.

Moreover, the characteristic equation is given by 

. 

⎧
⎪⎪⎨

⎪⎪⎩

�(λ) > −γ, f ∈ D(A), f �= 0

λ(1 − qe−λr )f − (1 − qe−λr )(f ′′ + bf ′) − c
( ∫ 0

−∞
p(θ)eλθdθ

)
f = 0,

(8.35) 
which leads to 

. λ − c

1 − qe−λr

∫ 0

−∞
p(θ)eλθdθ ∈ σp

(
∂2

∂ξ2
+ b

∂

∂ξ

)

.

Since 

. σp

(
∂2

∂ξ2
+ b

∂

∂ξ

)

= Pσ(Ã) = {−n2 − b2

4
: n ∈ N

∗},

then the characteristic equation (8.35) becomes 

.

⎧
⎪⎪⎨

⎪⎪⎩

�(λn) > −γ,

λn = c

1 − qe−λnr

∫ 0

−∞
p(θ)eλnθdθ − n2 − b2

4
for some n ∈ N

∗.
(8.36) 

Let .kn = n + b2

4
. Then, using (8.36), we obtain that 

.(λn + kn)(1 − qe−λnr ) = c

∫ 0

−∞
p(θ)eλnθdθ.
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Therefore, 

. |λn + kn||1 − qe−λnr | = |c
∫ 0

−∞
p(θ)eλnθdθ |

≤ c

∫ 0

−∞
|p(θ)|e�(λnθ)dθ.

We have also 

. |λn + kn| ≥
√

(�(λn) + kn)2

and 

. 

∣
∣
∣1 − qe−λnr

∣
∣
∣ ≥

∣
∣
∣|1| − |qe−λnr |

∣
∣
∣ = |1 − qe−�(λnr)|.

It follows that 

. 
√

(�(λn) + kn)2
∣
∣
∣1 − qe−�(λnr)

∣
∣
∣ ≤ c

∫ 0

−∞
|p(θ)|e�(λnθ)dθ.

Now, assume that .�(λn) ≥ 0. Then, 

. 

∣
∣
∣1 − qe−�(λnr)

∣
∣
∣ ≥ (1 − q).

Consequently, 

. (1 − q)
[
�(λn) + kn

]
≤ c

∫ 0

−∞
|p(θ)|dθ.

Finally, since .(1 − q)�(λn), we obtain 

. (1 − q)kn ≤ c

∫ 0

−∞
|p(θ)|dθ.

Taking .n = 1, we obtain a contraction with condition (8.34). That leads to .�(λ) < 0. 
�	
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