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Preface

Préface (Version française)

Le Professeur Hamidou TOURÉ est né le 14 octobre 1954 à Bobo Dioulasso
dans l’actuelle Burkina Faso. Du 05 au 07 novembre 2018, alors qu’il a 64
ans et se prépare à faire valoir ses droits à la retraite dans moins d’un an, le
Laboratoire de Mathématiques et Informatique (LAMI) de l’Université Joseph KI-
ZERBO de Ouagadougou au Burkina Faso a décidé de l’honorer en organisant
un colloque international avec pour thème «Équations aux dérivées partielles et
applications». En effet, le Professeur Hamidou TOURÉ a, durant ses 37 ans de
carrière universitaire formé beaucoup d’étudiants en mathématiques, contribué à
beaucoup de travaux scientifiques et surtout a, avec deux de ses amis, les professeurs
Mary Teuw NIANE du Sénégal et Iselkou Ould Ahmed IZID BIH de la Mauritanie,
créé en mai 1999 au centre de Physique Théorique Abdoul Salam (ICTP) à
Trieste en Italie, un réseau de recherche en mathématique dénommé Réseau EDP-
Modélisation et Contrôle (EDP-MC), qui a contribué à la formation de plus d’une
centaine de docteurs en mathématiques en Afrique et à la production de plus de 1000
publications scientifiques. Ce numéro spécial est une contribution des participants
au colloque international à un hommage mérité au Professeur Hamidou TOURE.

Préface (Version anglaise)

Prof. Hamidou TOURE was born on October 14, 1954 in present-day Burkina
Faso’s Bobo Dioulasso. The Laboratoire de Mathématiques et Informatique (LAMI)
of the Joseph KI-ZERBO University in Ouagadougou, Burkina Faso, decided
to honor him by hosting an International Colloquium titled “Partial Differential
Equations and Applications” from November 5 to 7, 2018, when he was 64 years
old and preparing to claim his retirement benefits in less than a year.

v



vi Preface

Throughout his 37-year university career, Prof. Hamidou TOURE has trained
many students in mathematics, contributed to numerous scientific works, and,
along with two of his friends, Prof. Mary Teuw NIANE from Senegal and Prof.
Iselkou Ould Ahmed IZID BIH from Mauritania, established in May 1999 at the
Abdoul Salam Theoretical Physics Centre (ICTP) in Trieste, Italy, a mathematical
research network known as the “PDE-Modeling and Control Network”, which has
contributed to the training of over a hundred PhD students in mathematics in Africa
and the production of over a thousand scientific publications.

The participants of the above-mentioned International Colloquium have put
together these proceedings as their contribution to a fitting tribute to Prof. Hamidou
TOURE, who has made major contributions to mathematics and related areas.

Avant Propos (Version française)

Du 05 au 07 Novembre 2018, a eu lieu, à l’Université Joseph KI-ZERBO de
Ouagadougou au Burkina Faso, un colloque international autour du thème :
«Équations aux Dérivées Partielles et Applications» en honneur au Professeur
Hamidou TOURE à l’occasion de ses 64 ans de vie et de 36 années consacrées
à l’enseignement et au développement des mathématiques en Afrique. A l’issue
du colloque, les communications originales non encore soumises à publication ont
été soumises à publication dans Springer Nature. Les travaux examinés, évalués et
acceptés font l’objet de ce numéro spécial dédié au Professeur Hamidou TOURE à
l’occasion de ses 64 années.

Avant Propos (Version anglaise)

From 05 to 07 November 2018, an international symposium was held at the Joseph
KI-ZERBO University in Ouagadougou, Burkina Faso under the title: «Partial
Differential Equations and Applications» in honour of Professor Hamidou TOURE
on the occasion of his 64 years of life and 36 years devoted to the teaching and
development of mathematics in Africa. At the end of the symposium, original papers
not yet submitted for publication were submitted for publication in Springer Nature.
The works reviewed, evaluated and accepted are the subject of this special issue
dedicated to Professor Hamidou TOURE on the occasion of his 64 years.

Huntsville, AL, USA Toka Diagana
Marrakesh, Morocco Khalil Ezzinbi
Ouagadougou, Burkina Faso Stanislas Ouaro
November 2018
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Chapter 1 
Existence and Uniqueness of Solution 
for Semi-linear Conservation Laws 
with Velocity Field in L∞ 

Souleye Kane, Serigne Fallou Samb, and Diaraf Seck 

Abstract In this chapter, we extend results obtained in Besson and Pousin (Arch 
Ration Mech Analy 2:159–175, 2007) and Benmansour et al. (Discrete Contin Dyn 
Syst 29:1001–1030, 2011). By considering a semi-linear conservation law with 
velocity in .L∞, we prove by fixed-point arguments existence and uniqueness result 
and even in a penalized situation. 

Keywords Transport equations · Semi-linear PDE · Fixed-point methods · 
STILS method · Conservation laws · Advection–reaction · Finite-element 
method · Newton’s method · Picard’s iteration 

1.1 Introduction 

This chapter deals about semi-linear conservations laws with velocity field in . L∞.

Our goal is twofold. On the one hand, the focus is to propose a generalization 
of space–time integrated least-square (STILS) method introduced by O. Besson 
and J. Pousin in [1] for linear conservation laws to semi-linear ones. The STILS 
method has been widely studied in numerous linear cases. Our aim is to introduce a 
nonlinearity in the source term and look for theoretical methods to prove existence 

S. Kane (�) 
Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Senegal 
e-mail: souleye@ucad.edu.sn 

S. F. Samb 
Département de Mathématiques et Informatique, Université Cheikh Anta Diop de Dakar, Dakar, 
Senegal 
e-mail: serignefallou.samb@ucad.edu.sn 

D. Seck 
Ecole Doctorale de Mathématiques et Informatique, Université Cheikh Anta Diop de Dakar, 
Dakar, Senegal 
e-mail: diaraf.seck@ucad.edu.sn 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
T. Diagana et al. (eds.), Partial Differential Equations and Applications, 
Springer Proceedings in Mathematics & Statistics 420, 
https://doi.org/10.1007/978-3-031-27661-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27661-3protect T1	extunderscore 1&domain=pdf

 885 45775 a 885 45775 a
 
mailto:souleye@ucad.edu.sn
mailto:souleye@ucad.edu.sn
mailto:souleye@ucad.edu.sn

 885 50756 a 885 50756 a
 
mailto:serignefallou.samb@ucad.edu.sn
mailto:serignefallou.samb@ucad.edu.sn
mailto:serignefallou.samb@ucad.edu.sn
mailto:serignefallou.samb@ucad.edu.sn

 885 55738 a 885 55738
a
 
mailto:diaraf.seck@ucad.edu.sn
mailto:diaraf.seck@ucad.edu.sn
mailto:diaraf.seck@ucad.edu.sn
mailto:diaraf.seck@ucad.edu.sn
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1
https://doi.org/10.1007/978-3-031-27661-3_1


2 S. Kane et al.

and uniqueness results. For this, we shall propose methods combining variational 
and topological methods. 

To reach this aim, we shall use two fixed-point theorems. The first one is the 
Banach’s fixed-point theorem, and the second is due to Schauder. In this latter case, 
we shall need a penalization argument. 

On the other hand, we endeavour to propose numerical methods to analyse semi-
linear boundary-value problems. We shall use finite-element methods combined 
with Picard’s iteration and Newton’s methods. 

Finite-element method is known to produce spurious oscillations and add 
diffusions in the orthogonal directions of integral curve when convection-dominated 
problem is solved, see [2] and references therein. To remedy it, the space–time 
integrated least-square method has been introduced in finite-element context by 
H. Nguyen and J. Reynen in [3] for solving advection–diffusion equation. And 
a time-marching approach of STILS has been proposed by O. Besson and G. De 
Montmollin in [4] for solving numerically linear transport equation using the finite-
element method with .div(u) = 0. To get discrete maximum principle and remove 
the oscillations produced by the STILS method, J. Pousin et al. in [5] added to the 
formulation a constraint of positivity and a penalization of the total variation. 

Before presenting the organization of our work, let us point out that interesting 
works on the SILS method have been already realized. We quote some among them 
closely related to our theoretical works. In fact, it has been used by P.Azerad and 
O. Besson in [6] to give a coercive variational formulation to the transport equation 
with a free divergence . C1 regular velocity vector field. Existence and uniqueness 
of space–time least-square solution of linear conservation law with velocity field 
in .L∞ is proved in [1] by O. Besson and J. Pousin. And in the same paper, these 
latter deduce a maximum principle result from Stampacchia’s theorem and have 
established the comparison between the least-square solution and the renormalized 
solution of these equations. 

This chapter is organized as follows. In the next section, we shall do the 
presentation of the problem with some useful mathematical tools for our study. 
The third section is devoted to the existence and uniqueness results. The main 
used arguments are fixed-point theorems (Banach–Picard’s theorem, Schauder’s 
Theorem). And in the last section, we propose two new numerical methods for 
computing the solution by using fixed-point algorithm. 

1.2 Position of the Problem 

1.2.1 Statement of the Aim and Functional Setting 

Let .� ⊂ R
d(d ∈ N

∗) be a domain with a Lipschitz boundary .∂� satisfying the 
cone property. Let us take . T > 0, a set .Q = �×]0, T [, and consider an advection 
velocity .u : Q → R

d with the following regularity property:
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. u ∈ L∞(Q)d with div (u) ∈ L∞(Q).

Let .f : R −→ R be a function such that .f ∈ W 1,∞(R). In some situations, we can 
consider f as a .k-Lipschitz, for . k small enough. 

The first question we will look is to find a space–time least-square solution for 
the following boundary-value problem: 

.

⎧
⎨

⎩

∂c
∂t

+ div (uc) = f (c) in Q

c(x, 0) = c0(x) in �

c(x, t) = c1(x, t) on �−
, (1.1) 

where 

. �− = {x ∈ ∂� : (n(x), u(x, t)) < 0; ∀t ∈ (0, T )},

and .(., .) is the inner product in . Rd , and .n(x) is the outer normal to .∂� at point . x. 
For the sake of simplicity, one assumes that .�− does not depend on the time t. 

Let us consider 

. u ∈ L∞(Q)d such that div (u) ∈ L∞(Q),

and set .̃u = (1, u1, u2, ...., ud) and .̃n(x, t) the outer normal to .∂Q at .(x, t). 
We shall use the notation .| E | to mean the Lebesgue measure of a set E 

throughout this chapter. Let us recall that the space–time incoming flow boundary 
is given by 

. ∂Q− = {
(x, t) ∈ ∂Q, (̃u(x, t), ñ(x, t)) < 0

} = � × {0} ∪ �−×]0, T [.

The incoming flow boundary condition in space–time is defined as follows: 

. cb(x, t) =
{

c0(x) if t = 0
c1(x, t) on �−

.

We introduce the following norm defined by: 

1. .‖φ‖2 = ‖φ‖2
L2(Q)

+ ‖d̃iv(̃uφ)‖2
L2(Q)

−
∫

∂Q−
φ2(̃u, ñ)ds for all . φ ∈ D(Q).

where 
2. . ∇̃φ = ( ∂φ

∂t
,

∂φ
∂x1

,
∂φ
∂x1

, ..,
∂φ
∂xd

)
.

3. . div (̃uφ) = ∂φ
∂t

+
d∑

i=1

∂(φu)

∂xi

.

4. And the Sobolev space .H(u,Q) = D(Q)
‖.‖

.
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5. Note that if u is regular enough for instance . u ∈ L∞(Q)d with div(u) ∈ L∞(Q),

then . H(u,Q) ∩ L∞ = {
φ ∈ L2(Q); d̃iv(̃uφ) ∈ L2(Q), φ/∂Q− ∈ L2(∂Q−; |

(̃u, ñ) |)} ∩ L∞ for more details, see [1]. 

Before proceeding further, let us remind the following theorems that will be useful 
for our work and for their proofs, and we invite the reader to see [1]. 

Theorem 1.2.1 Let us consider .u ∈ L∞(Q)d with div(u) ∈ L∞(Q). Then the 
normal trace of u .(̃u, ñ) ∈ L∞(∂Q). �

Theorem 1.2.2 Let .u ∈ L∞(Q)d with div(u) ∈ L∞(Q). Then there exists a linear 
continuous trace operator 

. 
γñ : H(u,Q) −→ L2(∂Q; (̃u, ñ))

φ �−→ φ/∂Q,

which can be localized as 

. 
γñ± : H(u,Q) −→ L2(∂Q±; (̃u, ñ))

φ �−→ φ/∂Q± .

Finally, let us define the spaces 

. H0(u,Q, ∂Q−) = {
φ ∈ H(u,Q), φ = 0 on ∂Q−

} = H(u,Q) ∩ Kerγñ−

and 

. G± = γñ±(H(u,Q)).

Let us give the curved inequality still called curved Poincaré inequality, below 
that is fundamental and even is the precursor of existence of STILS solution. It has 
been introduced and proved in [6] for free divergence and extended in [1]. 

There exists .cp > 0 such that for any . φ ∈ H(u,Q) :

.‖φ‖2
L2(Q)

≤ c2
p

(

‖d̃iv(̃uφ)‖2
L2(Q)

−
∫

∂Q−
φ2(̃u, ñ)ds

)

. (1.2) 

From the curved inequality, one deduces the following theorem. 

Theorem 1.2.3 Let .u ∈ L∞(Q)d with div(u) ∈ L∞(Q). Then the semi-norm on 
.H(u,Q) defined by 

. | φ |21,u= ‖d̃iv(̃uφ)‖2
L2(Q)

−
∫

∂Q−
φ2(̃u, ñ)ds

is a square of norm, equivalent to the norm defined on .H(u,Q).



1 Existence and Uniqueness of Solution for Semi-linear Conservation Laws. . . 5

Thus .H(u,Q) can be equipped by the norm . | . |1,u .

Remark 1.2.1 In the free-divergence case, one gets that .cp ≤ 2T (see, for instance, 
[6] for additional information). �


1.2.2 Space–Time Least-Square and Linear Problem 

In this section, we are going to recall the design and some proprieties of STILS 
method for solving the following linear conservation laws problem: 

.

⎧
⎨

⎩

∂c
∂t

+ div(uc) = f in Q

c(x, 0) = c0(x) in �

c(x, t) = c1(x, t) on �−.

(1.3) 

The space–time least-square solution of (1.3) corresponds to a minimizer in 

. 
{
φ ∈ H(u,Q); γñ−(φ) = cb

}

of the following convex, .H(u,Q)-coercive functional defined by 

.J (c) = 1

2

( ∫

Q

(d̃iv(̃uc) − f )2dxdt −
∫

∂Q−
c2(̃u, ñ)ds

)

. (1.4) 

The Gâteaux differential of J yields 

.D[J (c)].φ =
∫

Q

(d̃iv(̃uc) − f )d̃iv(̃uφ)dxdt −
∫

∂Q−
cφ(̃u, ñ)ds. (1.5) 

Thus, if .cb ∈ G−, the space–time least-square formulation of (1.3) is expressed 
as follows: 

.

∫

Q

d̃iv(̃uc)d̃iv(̃uφ)dxdt =
∫

Q

f d̃iv(̃uφ)dxdt ∀ φ ∈ H0(u,Q) (1.6) 

and 

. γñ−(c) = cb.

For more details, see [1, 5]. 
Thanks to Theorem 1.2.2, we can reduce the problem (1.6) in a homogeneous one 

in .∂Q−. For .cb ∈ G−, let .Cb ∈ H(u,Q) such that .γñ−(Cb) = cb; then . ρ = c − Cb

is the unique solution of
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. 

∫

Q

d̃iv(̃uρ)d̃iv(̃uφ)dxdt =
∫

Q

(f − d̃iv(̃uCb))d̃iv(̃uφ)dxdt ∀ φ ∈ H0(u,Q).

(1.7) 
Finally, let us recall the following theorem proved in [1]. 

Theorem 1.2.4 For .u ∈ L∞(Q)d with div(u) ∈ L∞(Q), .cb ∈ G−, and . f ∈
L2(Q), the problem (1.7) has a unique solution. Moreover, 

. | ρ |1,u≤ ‖f ‖L2(Q) + ‖d̃iv(̃uCb)‖L2(Q),

and the function .c = ρ + Cb is the space–time least-square solution of (1.3). �


1.2.3 Space–Time Least-Square and Semi-linear Problem 

This last subsection is devoted to introducing a variational formulation (1.1). 
Otherwise, our aim is to find .c ∈ H(u,Q) such that 

. 

∫

Q

d̃iv(̃uc)d̃iv(̃uφ)dxdt =
∫

Q

f (c)d̃iv(̃uφ)dxdt ∀ φ ∈ H0(u,Q, ∂Q−)

(1.8) 
and 

.γñ−(c) = cb. (1.9) 

It is important to stress that the above formulation is nonlinear. And we shall propose 
fixed-point methods to study it. Let us recall that there are at least three distinct 
classes of such abstract theorems that are useful for proving existence results in a 
wide family of partial differential equations. These classes are:

• Fixed-point theorems for strict contractions
• Fixed-point theorems for compact mappings
• Fixed-point theorems for order-preserving operators 

We shall use in the following the first two types. 

1.3 Existence and Qualitative Results 

1.3.1 Existence and Uniqueness 

In this section, we shall study the problem (1.8) by establishing and proving 
existence and uniqueness theorems for the STILS solution. These results are 
deduced thanks to the fixed-point theory, namely the Banach–Picard and Schauder 
theorems.
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At first, in the case where f is k-Lipschitz with . k is small enough that will 
be precised and by using the Banach–Picard fixed-point theorem [7], we have the 
following existence and uniqueness theorem of STILS solution. 

Theorem 1.3.1 Let .u ∈ L∞(Q) with .div(u) ∈ L∞(Q), and .cb ∈ G−, f be k-
Lipschitz in . R with .k < 1

cp
. Then the problem (1.8)–(1.9) has a unique solution. �


Proof Let us consider 

. H = {
φ ∈ H(u,Q), γñ−(φ) = cb

}
.

For all .ρ ∈ H,.f (ρ) ∈ L2(Q), then, by Theorem 1.2.4, there exists a unique element 
.c ∈ H satisfying: 

.

∫

Q

d̃iv(̃uc)d̃iv(̃uφ)dxdt =
∫

Q

f (ρ)d̃iv(̃uφ)dxdt (1.10) 

for all .φ ∈ H0(u,Q, ∂Q−). 
Let us define 

.T : H → H (1.11) 

such that 

.T (ρ) = c; (1.12) 

thus a solution of the nonlinear problem (1.8)–(1.9) is a fixed point of T. 
Let . ρ1, .ρ2 . ∈ . H and .c1 = T (ρ1), . c2 = (Tρ2).

Since .c1 − c2 = 0 on .∂Q−, 

. | c1 − c2 |21,u = ‖d̃iv(̃u(c1 − c2))‖2
L2(Q)

=
∫

Q

d̃iv(̃u(c1 − c2))d̃iv(̃u(c1))dxdt

−
∫

Q

d̃iv(̃u(c1 − c2))d̃iv(̃u(c2))dxdt.

For .c1 = T (ρ1) and .c2 = T (ρ2), we have  

. 

∫

Q

d̃iv(̃uc1)d̃iv(̃u(c1 − c2))dxdt =
∫

Q

f (ρ1)d̃iv(̃u(c1 − c2))dxdt

and 

.

∫

Q

d̃iv(̃uc2)d̃iv(̃u(c1 − c2))dxdt =
∫

Q

f (ρ2)d̃iv(̃u(c1 − c2))dxdt.
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Then a computation yields 

. | c1 − c2 |21,u=
∫

Q

f (ρ1)d̃iv(̃u(c1 − c2))dxdt −
∫

Q

f (ρ2)d̃iv(̃u(c1 − c2))dxdt.

. | c1 − c2 |21,u=
∫

Q

(f (ρ1) − f (ρ2))d̃iv(̃u(c1 − c2))dxdt.

By Young’s inequality, we get 

. | c1 − c2 |21,u≤ ‖f (ρ1) − f (ρ2)‖L2(Q)‖d̃iv(̃u(c1 − c2))‖L2(Q).

Since f is k-Lipschitz in . R and .| c1 − c2 |1,u= ‖d̃iv(̃u(c1 − c2))‖L2(Q), we have  

. | c1 − c2 |21,u≤ k‖ρ1 − ρ2‖2
L2(Q)

| c1 − c2 |1,u,

and hence, 

. | c1 − c2 |21,u≤ kcp | ρ1 − ρ2 |1,u| c1 − c2 |1,u .

Finally, we get 

. | T (ρ1) − T (ρ2) |1,u≤ kcp | ρ1 − ρ2 |1,u .

Thus T is a strict contraction, provided that .kcp < 1. The Banach’s fixed-point 
theorem ensures the existence and uniqueness of .c ∈ H with .T (c) = c that solves 
(1.8)–(1.9). �

Remark 1.3.1 In the free-divergence case, the previous assumption gives .k < 1

2T
; 

thus we get a solution for small times. But it cannot be extended because of the loss 
of continuity. 

The constant . cp is not optimal (see [1] for more details). And so, the condition 
.kcp < 1 could be improved. �

Now, let us state and prove the following technical lemmas that will be key steps in 
the building of the next existence theorem. 

Lemma 1.3.1 There is a positive constant .C > 0 such that for any . φ ∈
D(Q) verifying φ = 0 on ∂Q−, we have .‖∇̃φ‖L2(Q)d+1 ≤ C‖d̃iv(̃uφ)‖L2(Q). �

Proof Let us suppose that the inequality is false. Then for any integer .n ∈ N, there 
is .φn ∈ D(Q) such that: 

.‖∇̃φn‖L2(Q)d+1 > n‖d̃iv(̃uφn)‖L2(Q). (1.13)
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If n is such that .‖∇̃φn‖L2(Q)d+1 = 0, then . ‖∇̃φn‖L2(Q)d+1 = n‖d̃iv(̃uφn)‖L2(Q) =
0, which is a contradiction with (1.13). 

Now dividing (1.13) by .‖∇̃φn‖L2(Q)d+1 , we have  

.‖∇̃ φn

‖∇̃φn‖‖L2(Q)d+1 > n‖d̃iv(̃u
φn

‖∇̃φn‖ )‖L2(Q). (1.14) 

Setting .θn = φn

‖∇̃φn‖
L2(Q)d+1

, we obtain 

.‖∇̃θn‖L2(Q)d+1 = 1 (1.15) 

and 

.‖d̃iv(̃uθn)‖L2(Q) = ‖d̃iv

(

ũ
φn

‖∇̃φn‖
)

‖L2(Q). (1.16) 

Thanks to (1.15) and (1.16), the inequality (1.14) can be written as follows: 

.‖d̃iv(̃uθn)‖L2(Q) <
1

n
. (1.17) 

By curved inequality (also named curved Poincaré inequality), we get existence of 
a positive constant .A > 0 such that: 

. ‖θn‖L2(Q) ≤ √
A‖d̃iv(̃uθn)‖L2(Q),

and then 

.‖θn‖L2(Q) ≤
√

A

n
. (1.18) 

This implies that 

.θn −→ 0 in L2(Q). (1.19) 

From (1.15) and (1.18), one deduces that .(θn) is bounded in .H 1(Q). Then there is a 
convex combination of the sequence .(θn) that converges to .θ∗ ∈ H 1(Q) weakly, and 
so in .L2(Q) too. Using (1.19), this convex combination converges to 0 in .L2(Q). 
Thanks to the uniqueness of the limit, we have .θ∗ = 0. 

As a sum up, one sees that (1.13) yields existence of a sequence . (θn)n ⊂ D(Q) ⊂
H 1(Q) satisfying: 

.

{
θn −→ 0 weakly in H 1(Q) (i)

‖∇̃θn‖L2(Q)d+1 = 1 for any n ∈ N (ii)
. (1.20)
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(i) implies that . ∇̃θn −→ 0 weakly in L2(Q).

Let .ψ ∈ L2(Q)d+1 such that . ‖ψ‖L2(Q)d+1 = 1.

We have .(ψ, ∇̃θn) −→ 0 in R. 
The translation of the definition of the limit allows us to write: 
.∃n0 ∈ N such that for any . n ≥ n0, we have .| (ψ, ∇̃θn) |< 1. 
Thus we get . Sup

‖ψ‖
L2(Q)d+1=1

| (ψ, ∇̃θn) |< 1. 

Hence, one deduces that .‖∇̃θn‖L2(Q)d+1 < 1 for any .n ≥ n0 : what is in 
contradiction with (ii). �

Lemma 1.3.2 Let .f : R −→ R be a k-Lipschitzian function. 

For any .ρ ∈ H(u,Q), we have .f (ρ) ∈ H 1(Q). In addition, there exists a 
positive .C > 0 such that 

. ‖∇̃f (ρ)‖L2(Q)d+1 ≤ C‖d̃iv(̃uρ)‖L2(Q).

Proof Let .ρ ∈ H(u,Q); then there is a sequence .(ρn) ⊂ D(Q) that converges to . ρ

in .H(u,Q). 
Since f is k-Lipschitzian, we get 

.| f (ρn) |≤ k | ρn | + | f (0) | and .| f (ρ) |≤ k | ρ | + | f (0) |. 
Therefore, .(f (ρn)) ⊂ L2(Q) and .f (ρ) ∈ L2(Q). In addition: . ‖f (ρn) −

f (ρ)‖L2(Q) ≤ k‖ρn − ρ‖L2(Q), and . ρn converges to . ρ in . L2; thus .f (ρn) converges 
to .f (ρ) in .L2. And in particular, any convex combination of .f (ρn) converges to 
.f (ρ) in . L2.

Now let us take .x, y in Q. 

. | f (ρn(x)) − f (ρn(y)) |≤ k | ρn(x) − ρn(y) | (1.21) 

. | f (ρn(x)) − f (ρn(y)) |≤ k | ∇ρn |∞| x − y | .

Under Rademacher’s theorem, for any integer n, the function .f (ρn) is differentiable 
almost everywhere, and there is a positive constant depending on .n, . Cn such that 
.| ∂f (ρn)

∂xi
|≤ Cn; then . ∂f (ρn)

∂xi
∈ L2(Q) for any i = 1, ..., d + 1. 

Using again the inequality (1.21), one sees that 

. | ∂f (ρn)

∂xi

|≤ k | ∂ρn

∂xi

| for any i = 1, ..., d + 1,

and then 

.‖∇̃f (ρn)‖L2(Q)d+1 ≤ k‖∇̃ρn‖L2(Q)d+1 .
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By Lemma 1.3.1, we have .‖∇̃ρn‖L2(Q)d+1 ≤ C‖d̃iv(̃uρn)‖L2(Q). 
This yields 

.‖∇̃f (ρn)‖L2(Q)d+1 ≤ kC‖d̃iv(̃uρn)‖L2(Q). (1.22) 

Since .(ρn) converges to . ρ in .H(u,Q), we get .‖d̃iv(̃uρn)‖L2(Q) converges to 
.‖d̃iv(̃uρ)‖L2(Q). And we can conclude that .(f (ρn)) is bounded in .H 1(Q). 

And more, we have .(f (ρn)) is bounded in .H 1(Q). Then there is .θ ∈ H 1(Q) such 
that .(f (ρn)) converges to . θ weakly. Thanks to Mazur’s lemma, there is a convex 
combination of the sequence .(f (ρn)), denoted . θn that strongly converges to . θ in 
.H 1(Q)and then in .L2. And the same convex combination converges to .f (ρ) in 
.L2(Q). 

Under uniqueness in . L2(Q), we have .f (ρ) = θ but .θ ∈ H 1(Q). This ensures us 
that .f (ρ) ∈ H 1(Q). 

Passing to the limit, the inequality (1.22) yields 

. ‖∇̃f (ρ)‖L2(Q)d+1 ≤ kC‖d̃iv(̃uρ)‖L2(Q).

�

Lemma 1.3.3 Let .f : R −→ R be a k-Lipschitzian function, C be a bounded 
subset of .H(u,Q), and .(ρn), .(cn) be sequences in . C. Denoting by c the weak limit 
of .(cn) in .H0(u,Q). We have 

. 

∫

Q

f (ρn)d̃iv(̃u(cn − c))dxdt −→ 0.

Proof Since .C ⊂ H(u,Q), .(ρn), .(cn) are sequences of C, there are .M > 0 and 
.c ∈ H(u,Q) such that 

.‖d̃iv(̃uρn)‖L2(Q) ≤ M (1.23) 

and 

.cn ⇀ c faiblement dans H(u,Q). (1.24) 

Using the curved Poincaré inequality (1.23), we have 

.‖ρn‖L2(Q) ≤ M
√

A (1.25) 

. | f (ρn) |≤ k | ρn | + | f (0) | . (1.26) 

Thus (1.25)–(1.26) yield a constant . C(1.27) such that:
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.‖f (ρn)‖L2(Q) ≤ C(1.27). (1.27) 

In another way, by Lemma 1.3.2, there exists a constant .C > 0 such that 

.‖∇̃f (ρn)‖L2(Q)d+1 ≤ C‖d̃iv(̃uρn)‖L2(Q). (1.28) 

From (1.23) and (1.28), we have the following estimation 

.‖∇̃f (ρn)‖L2(Q)d+1 ≤ CM. (1.29) 

Relations (1.27) and (1.29) imply that the sequence .(f (ρn)) is bounded in . H 1(Q).

Then, by Rellich’s theorem, even if it means extracting a subsequence, there is . F ∈
L2(Q) such that 

.f (ρn) −→ F strongly in L2(Q). (1.30) 

From (1.24) and (1.30), we get 

.〈f (ρn), d̃iv(̃u(cn − c))〉 −→ (F, 0) = 0. (1.31) 

Finally, we have 

. 

∫

Q

f (ρn)d̃iv(̃u(cn − c))dxdt −→ 0.

�

Having at hands these lemmas and using fixed Schauder’s theorem, we can proceed 
further to get existence and uniqueness results. 

Theorem 1.3.2 Let .u ∈ L∞(Q) with .div(u) ∈ L∞(Q) and .cb ∈ G−, . f ∈
W 1,∞(R). Then the problem (1.8)–(1.9) has a solution in .H0(u,Q, ∂Q−). 

Proof Since .cb ∈ G− changing the source term if necessary, we shall assume that 
.cb = 0 on ∂Q−. 

Existence. 
The proof is relied mainly on the Schauder’s fixed theorem. 

Step 1: We first have to choose a bounded subset . X of .H0(u,Q, ∂Q−) and a 
mapping .T : X → X. To achieve this aim, for all .ρ ∈ V , under Lemma 1.3.2, 
or since .f ∈ W 1,∞(R), we have .f (ρ) ∈ L2(Q). Then by Theorem 1.2.4, there 
exists a function .c ∈ H0(u,Q, ∂Q−) such that 

. 

∫

Q

d̃iv(̃uc)d̃iv(̃uφ)dxdt =
∫

Q

f (ρ)d̃iv(̃uφ)dxdt for all φ ∈ H0(u,Q, ∂Q−).

Moreover, .| c |1,v≤ ‖f (ρ)‖L2(Q).
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Since .f ∈ W 1,∞(R), we have . | c |1,u≤| f |L∞| Q | 1
2 .

Let us define .T : H0(u,Q, ∂Q−) → H0(u,Q, ∂Q−) such that .c = T (ρ). 
Solving (1.39) is equivalent to show the existence of fixed-point theorem of T . 
Let us proceed further and choose a convex set . X as follows: 

. X = {φ ∈ H0(u,Q, ∂Q−), | φ |1,u≤ M}

when M is to be precised later. 

. | Tρ |1,u=| c |1,u≤| f |L∞| Q | 1
2 , for all ρ ∈ X.

Thus, choosing .M =| f |L∞| Q | 1
2 , the following inclusion yields 

. T (H0(u,Q, ∂Q−)) ⊂ X

and then 

. T (X) ⊂ X.

So we will consider . T : X → X.

Step 2: Thus T is continuous. �

Proof of Step 2 Then a computation yields 

. | c1 − c2 |21,u=
∫

Q

f (ρ1)d̃iv(̃u(c1 − c2))dxdt −
∫

Q

f (ρ2)d̃iv(̃u(c1 − c2))dxdt

. | c1 − c2 |21,u=
∫

Q

(f (ρ1) − f (ρ2))d̃iv(̃u(c1 − c2))dxdt.

By Young’s inequality, we get 

. | c1 − c2 |21,u≤ ‖f (ρ1) − f (ρ2)‖L2(Q)‖d̃iv(̃u(c1 − c2))‖L2(Q).

Since .f ∈ W 1,∞(R), we have  

. ‖f (ρ1) − f (ρ2)‖L2(Q) ≤| f
′ |L∞| ‖ρ1 − ρ2‖2

L2(Q)
,

and hence, 

. | c1 − c2 |21,u≤| f
′ |L∞ cp | ρ1 − ρ2 |1,u| c1 − c2 |1,u;

finally, we get 

. | Tρ1 − Tρ2 |1,u≤| f
′ |L∞ cp | ρ1 − ρ2 |1,u .
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Thus T is Lipschitz so continuous. �

Step 3: . X is a subset convex, closed in .H0(u,Q, ∂Q−), and .T (X) compact in 
.L2(Q). 

Proof of Step 3 It is clear that . X is convex and closed in . H0(u,Q, ∂Q−).

Let .(cn) be sequences in .T (X); then there exists .(ρn) sequence in . H0(u,Q, ∂Q−)

such that 

. 

∫

Q

d̃iv(̃ucn)d̃iv(̃uφ)dxdt =
∫

Q

f (ρn)d̃iv(̃uφ)dxdt ∀φ ∈ H0(v,Q, ∂Q−).

(1.32) 
Since .(cn) bounded in .H0(u,Q, ∂Q−), then there exists . c ∈ H0(u,Q, ∂Q−)

such that 

. cn ⇀ c weakly in H0(u,Q, ∂Q−),

then .d̃iv(̃u(cn − c)) ⇀ 0 weakly in L2(Q), and in particular, 

.

∫

Q

d̃iv(̃u(cn − c))d̃iv(̃u(c))dxdt −→ 0 (1.33) 

. | cn − c |21,u = ‖d̃iv(̃u(cn − c))‖2
L2(Q)

=
∫

Q

d̃iv(̃u(cn − c))d̃iv(̃u(cn))dxdt

−
∫

Q

d̃iv(̃u(cn − c))d̃iv(̃u(c))dxdt. (1.34) 

Using (1.32), we have  

. | cn − c |21,u=
∫

Q

f (ρn)d̃iv(̃u(cn − c))dxdt −
∫

Q

d̃iv(̃u(cn − c))d̃iv(̃u(c))dxdt.

And by Lemma 1.3.3, even if it means extracting a subsequence, we have 

.

∫

Q

f (ρn)d̃iv(̃u(cn − c))dxdt −→ 0. (1.35) 

Equations (1.33) and (1.35) imply that 

. | cn − c |21,u−→ 0.

�

Since . X is convex, closed in .H0(u,Q, ∂Q−), and .T : X → X continuous, . T (X)

is relatively compact in .H0(u,Q, ∂Q−). By Schauder’s theorem, T has a fixed point.
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1.4 Existence and Uniqueness Result for the Penalization 
Version 

Let us consider the space 

. (i) V = H0(u,Q, ∂Q−) ∩ H 1(Q),

where .H 1(Q) is the usual Sobolev spaces, with the norm 

. (ii) ‖φ‖2
V

= ‖φ‖2
L2(Q)

+ ‖d̃iv(̃uφ)‖2
L2(Q)

+ ‖∇̃φ‖2
L2(Q)

.

From the curved inequality (1.2), one deduces that the following semi-norm 

. | φ |V= (‖d̃iv(̃uφ)‖2
L2(Q)

+ ‖∇̃φ‖2
L2(Q)

) 1
2

becomes a norm, equivalent to the norm given on . V. And the space . V will be 
equipped with the norm . | . |V .

For any .λ ∈ R+ and .f ∈ L2(Q), we are going to study the following 
optimization problem: 

.ρλ = Argmin
c∈V

J (c) + λ‖∇̃c‖2
L2(Q)

= Argmin
c∈V

Jλ(c), (1.36) 

where 

. J (c) = 1

2

( ∫

Q

(d̃iv(̃uc) − f )2dxdt

)

.

Proposition 1.4.1 For any non-negative real number . λ and .f ∈ L2(Q), the  
problem (1.36) has a unique solution. 

Moreover, for any .λ ≥ 1, there exists .α := α(λ) such that . | c |V≤ α‖f ‖L2(Q).

Proof Since . Jλ is strictly convex and Gâteaux-differentiable, we have to show that 
there is a function .c ∈ V such that .DJλ(c).φ = 0 for all . φ ∈ V.

An easy computation gives 

.DJλ(c).φ =
∫

Q

(d̃iv(̃uc) − f )d̃iv(̃uφ)dxdt + λ

∫

Q

∇̃c∇̃φdxdt. (1.37) 

And we obtain the following weak formulation: 

.

∫

Q

d̃iv(̃uc)d̃iv(̃u∇̃φ)dxdt + λ

∫

Q

∇̃c∇̃φdxdt =
∫

Q

f d̃iv(̃uφ)dxdt (1.38) 

for all .φ ∈ V.
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Let us now consider the bilinear form .aλ(., .) : V × V → R defined for all 
.φ ,ψ ∈ V by 

. aλ(φ,ψ) =
∫

Q

d̃iv(̃uφ)d̃iv(̃uψ)dxdt + λ

∫

Q

∇̃φ∇̃ψdxdt

and the linear form .L : V → R defined for all .φ ∈ V by: 

. L(φ) =
∫

Q

f d̃iv(̃uφ)dxdt.

Thus the expression (1.36) can be written as follows: find .c ∈ V such that 

. aλ(c, φ) = L(φ) for all φ ∈ V.

Taking .m = min(λ, 1) > 0, we have 

. aλ(φ, φ) =
∫

Q

d̃iv(̃uφ)2dxdt + λ

∫

Q

| ∇̃φ |2 dxdt ≥ m | φ |2
V

.

Then .a(., .)λ is . V elliptic on the one hand. 
On the other hand, by using Holder’s inequality, we have 

. | aλ(φ,ψ) |≤ ‖d̃iv(̃uφ)‖L2(Q)‖d̃iv(̃uψ)‖L2(Q) + λ‖∇φ‖L2(Q)‖∇ψ‖L2(Q).

And the following estimate holds 

. | aλ(φ,ψ) | ≤ max(λ, 1)(‖d̃iv(̃uφ)‖L2(Q)‖d̃iv(̃uψ)‖L2(Q)

+ ‖∇φ‖L2(Q)‖∇ψ‖L2(Q)).

By taking .C = max(λ, 1) and using Cauchy–Schwarz’s inequality in . R2, we have  

. | aλ(φ,ψ) |≤ C | φ |V| ψ |V, for all φ,ψ ∈ V.

And we conclude that .aλ(., .) is continuous. 
Let us now prove that . L is continuous. 

. | L(φ) |≤ ‖f ‖L2(Q)‖d̃iv(̃uφ)‖L2(Q)

so, 

. | L(φ) |≤ ‖f ‖L2(Q) | φ |V .

Since L is linear with respect to . φ, we get its continuity.
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Hence by the Lax–Milgram’s theorem, there is a unique solution of (1.36) that 
satisfies 

. min(1, λ) | cλ |2
V
≤ aλ(cλ, cλ) =| L(cλ) |≤ ‖f ‖L2(Q) | cλ |V .

So for .λ ≥ 1, we get the desired result . | c |V≤ ‖f ‖L2(Q).

�

Theorem 1.4.1 Let .λ > 1 and .f ∈ W 1,∞(R). Then there exists function . cλ ∈ V

such that 

. 

∫

Q

d̃iv(̃ucλ)d̃iv(̃uφ)dxdt+λ

∫

Q

∇̃cλ∇̃φdxdt =
∫

Q

f (cλ)d̃iv(̃uφ)dxdt for all φ ∈ V

(1.39) 
for all .φ ∈ V. 

The solution is unique if .λ > 2T 2 | f ′ |2L∞(R) ‖ũ‖2
L2(Q)

and .div(u) = 0. �

Proof 
A-Existence: 
The proof is relied mainly on the Schauder’s fixed theorem. 
Step 1: We first have to choose a bounded subset . X of . V and a mapping .T : X → X. 
To achieve this aim, for all .ρ ∈ V , since .f ∈ W 1,∞(Q), .f (ρ) ∈ L2(Q), then by 
Proposition 1.4.1, there exists a function .cλ ∈ V such that 

. 

∫

Q

d̃iv(̃ucλ)d̃iv(̃uφ)dxdt+
∫

Q

∇̃cλ∇̃φdxdt =
∫

Q

f (ρ)d̃iv(̃uφ)dxdt for all φ ∈ V.

Moreover, . | cλ |V≤ ‖f (ρ)‖L2(Q).

Since .f ∈ W 1,∞(R), we have . | cλ |V≤| f |L∞| Q | 1
2 .

Let us define .T : V → V such that .cλ = T (ρ). 
Solving (1.39) is equivalent to showing the existence of fixed-point theorem of T. 
Let us proceed further and choose a convex set . X as follows: 

. φ ∈ V, | φ |V≤ M,

when M is to be precised later. And 

. | Tρ |V=| cλ |V≤| f |L∞| Q | 1
2 , for all ρ ∈ X.

Thus, choosing .M =| f |L∞| Q | 1
2 , the following inclusion yields 

.T (V) ⊂ X
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and then 

. T (X) ⊂ X.

So we will consider . T : X → X.

Step 2: T is continuous for all . λ ≥ 1. �

Proof of Step 2 T can be written as composition of following application: 

. L2(Q) −→ L2(Q) −→ V ↪→ L2(Q)

. ρ �−→ f̃ (ρ) = f ◦ ρ �−→ T (ρ) ↪→ T (ρ).

By Caratheodory theorem, .ρ �−→ f̃ (ρ) = f ◦ ρ is continuous from .L2(Q) into 
.L2(Q). And Lax–Milgram’s lemma gives the continuity of .f ◦ ρ �−→ T (ρ) from 
.L2(Q) into . V.Using the curved inequality (1.2), it is easy to see that the injection 
.ρ ∈ V �−→ ρ ∈ L2(Q) is also continuous. 

Then T is continuous 
�


Step 3: . X is a subset, convex, and compact in .L2(Q). 

Proof of Step 3 

. ‖φ‖2
H 1(Q)

= ‖φ‖2
L2(Q)

+ ‖∇̃φ‖2
L2(Q)

∀φ ∈ H 1(Q).

By the inequality (1.2), we have 

. ‖φ‖2
H 1(Q)

≤ (1+c2
p)(‖d̃iv(̃uφ)‖2

L2(Q)
+‖∇̃φ‖2

L2(Q)
) = (1+c2

p) | φ |V ∀φ ∈ V.

Then . X that is bounded in . V is bounded in .H 1(Q). And by Rellich’s theorem, we 
know that .H 1(Q) ⊂ L2(Q) with compact injection so . X is relatively compact in 
. L2(Q).

Moreover, . X is closed in . L2(Q).

In fact, let . xn be a sequence in . X with .xn −→ x ∈ L2(Q); then . xn is bounded in 
. V, which is a reflexive Banach space; then there is a subsequence .xnk that converges 
in the weak topology .σ(V,V∗) to . x∗ ∈ V.

. X is convex closed in the strong topology, then . X is convex closed in the weak 
topology (see [8],Theorem 3.2), so we have .x∗ ∈ X. 

And from Mazur’s theorem, there are a convex combination of . xnk , themselves 
elements of . X which converge strongly towards .x∗ ∈ X.
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But these same convex combinations converge towards .x ∈ X in . L2(Q). By  
uniqueness of the limit in . L2(Q), we have .x = x∗. 

Furthermore, 

. | v |V≤ lim inf | xnk |V≤ M a.e x ∈ X;

therefore, . X is closed in .L2(Q). 
Since . X is relatively compact and closed in .L2(Q), then it is compact in .L2(Q). 

�

Since . X is convex, compact in .L2(Q), and .T : X → X continuous, from 

Schauder’s fixed-point theorem, T has a fixed point. 
B-Uniqueness: 
Let . ρλ and . ρλ be two solutions of 1.39, and we have 

. 

∫

Q

| d̃iv(̃u(ρλ − ρλ)) |2 dxdt + λ

∫

Q

| ∇̃(ρλ − ρλ) |2 dxdt

=
∫

Q

(f (ρλ) − f (ρλ))d̃iv(̃u(ρλ − ρλ))dxdt.

By Young’s inequality, we have 

. 2‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

+ 2λ‖∇̃(ρλ − ρλ)‖2
L2(Q)

≤ ‖(f (ρλ) − f (ρλ))‖2
L2(Q)

+ ‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

.

Since .f ∈ W 1,∞(R), we have  

. ‖f (ρλ) − f (ρλ)‖L2(Q) ≤| f ′ |L∞(R) ‖ρλ − ρλ‖L2(Q),

and it follows that 

. 2‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

+ 2λ‖∇̃(ρλ − ρλ)‖2
L2(Q)

≤| f ′ |2L∞(R) ‖ρλ − ρλ‖2
L2(Q)

+ ‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

.

Since .div(u) = 0, Remark 1.2.1 yields 

. ‖ρλ − ρλ‖2
L2(Q)

≤ 4T 2‖(̃u, ∇̃(ρλ − ρλ))‖2
L2(Q)

.

And then, we have 

.2‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

+ 2λ‖∇̃(ρλ − ρλ)‖2
L2(Q)

≤ 4T 2 | f ′ |2L∞(R) ‖(̃u, ∇̃(ρλ − ρλ))‖2
L2(Q)

+ ‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

.
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By using Cauchy–Schwarz’s inequality, we have 

. 2‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

+ 2λ‖∇̃(ρλ − ρλ)‖2
L2(Q)

≤ 4T 2 | f ′ |2L∞(R) ‖ũ‖2
L2(Q)

‖∇̃(ρλ − ρλ)‖2
L2(Q)

+ ‖d̃iv(̃u(ρλ − ρλ))‖2
L2(Q)

. ‖d̃iv(̃u(ρλ−ρλ))‖2
L2(Q)

+(2λ−4T 2 | f ′ |2L∞(R) ‖ũ‖2
L2(Q)

)‖∇̃(ρλ−ρλ)‖2
L2(Q)

≤ 0.

Thus .ρλ = ρλ provided that . λ > 2T 2 | f ′ |2L∞(R) ‖ũ‖2
L2(Q)

.

1.5 Numerical Study and Simulations 

In this section, two numerical methods are presented for computing the solution 
of semi-linear conservation law problem (1.10). The first consists in using Picard’s 
iteration or Newton-adaptive for the linearization of the semi-linear problem. These 
linearized problems are discretized by using discontinuous Galerkin’s method of the 
STILS formulation (1.6) and continuous finite-element method for the penalization 
version (1.38). Moreover, a posteriori error bounds are established when Newton 
iteration is used. 

In the sequel, we shall assume that the function f is k-Lipschitz; then by 
Rademacher’s theorem (see [9] for more details), f is differentiable almost every-
where. 

1.5.1 A Finite-Element Method for Semi-linear Conservations 
Laws 

Let us assume that the problem (1.8)–(1.9) admits a unique solution . c ∈ Hk+1(Q)∩
H(u,Q). In order to provide numerical approximation for computing the solution 
of (1.8)–(1.9) after linearization, we shall use a simple finite-element approximation 
that can be derived from the use of discontinuous Galerkin’s approximations of the 
space–time least-square formulation. This method is introduced in [10] for linear 
hyperbolic problem and [11] for Poisson problem. 

Let .Th be a regular partition of the domain . Q more precisely a triangulation 
in which each element is a polygon (respectively, polyhedra) in two dimensions 
(respectively, in three dimensions). For .k ≥ 1, we consider the discontinuous finite-
element space (see [10] )  

.Vh = {
φ ∈ L2(Q), φ | T ∈ Qk(T ) ∀T ∈ Th}, (1.40)
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where .Qk(T ) is the space of linear polynomials of degree k in each variable on T 
and 

.V = {
φ ∈ L2(Q), φ | T ∈ Hk+1(T ) ∩ H(u, T ) ∀T ∈ Th}. (1.41) 

It is easy to remark that . V contains .Vh and .Hk+1(Q) ∩ H(u,Q). Let . Eh be the set 
of all edges for .d = 1 or flat face for .d = 2 and .E0

h = Eh\∂Q−. For . T ∈ Th, let  
us denote by .hK the diameter of K and .ρK the supremum of the diameters of the 
inscribed spheres of K , .h = max hT the mesh size of . Th. Let us suppose that . Th is 
shape regular, and also there exists two non-negative constants . C(1)

(1.42) and . C(2)

(1.42) 
such that 

. C
(1)

(1.42) ≤ 
hT 
he 

≤ C (2) 
(1.42) ∀ T ∈ Th ∀ e ⊂ T . (1.42) 

Moreover, for .T ∈ Th, we introduce the following notations: 

. Eh(T ) = {
E ∈ Eh ; E ⊂ ∂T

}
.

For .φ ∈ Vh and .e ∈ Eh with .e = ∂T1 ∩ ∂T2, .T1, T2 ∈ Th, let we define .[φ] the 
jump of . φ across .e ∈ E0

h as following: 

. [φ] = φ |∂T1 ñ1 + φ |∂T1 ñ2

and also 

. [(̃u, ñ)φ] = (̃u, ñ1)φ |∂T1 +(̃u, ñ2)φ |∂T2 ,

where . ñ1 and . ñ2 denote the unit outward vectors on .∂T1 and .∂T2, respectively. For 
.e ∈ ∂Q−, .[φ] = φ and . [(̃u, ñ)φ] = (̃u, ñ)φ.

By considering the following bilinear form in . V × V

. A(c, φ) =
∑

T ∈Th

∫

T

d̃iv(̃uc)d̃iv(̃uφ)dxdt +
∑

e∈E0
h

∫

e

h−1
e [(̃u, ñ)c][(̃u, ñ)φ]ds.

(1.43) 
Since .c ∈ V, then 

. A(c, φ) =
∑

T ∈Th

∫

T

f (c)d̃iv(̃uφ)dxdt+
∑

e∈∂Q−

∫

e

h−1
e [(̃u, ñ)cb][(̃u, ñ)φ]ds ∀φ ∈ Vh.

(1.44) 
The corresponding approximation of (1.44) is called in ([10]) simple finite-element 
methods. It is easy to see that the bilinear form 

.‖φ‖2
DG = A(φ, φ) + |φ|Th,k+1
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defines a norm in . V. Moreover, we have where 

.|ρ|Th,k+1 =
∑

T ∈Th

|ρ|2k+1,T (1.45) 

.A(φ,ψ) ≤ ‖φ‖DG‖ψ‖DG∀ ψ , φ ∈ V. (1.46) 

As in [12], we shall use the following abbreviation .x � y for signifying . x ≤ Cy

for some constant .C > 0 independent to the mesh size . h and . λ. Let . Ph be the . L2

projection onto . Vh; we have the following results, see [13] for more details. 
There exists a constant . C(1.47) > 0 such that for all . ρ ∈ V

.‖∇̃(ρ − Phρ)‖0,T ≤ C(1.47)h
k|ρ|k+1,T (1.47) 

for all .T ∈ Th and 

.‖ρ − Phρ‖0,T ≤ C(1.47)h
k+1|ρ|k+1,T . (1.48) 

It is also proved in [14] that there exists a constant . C(1.49) independent of the mesh 
size . h such that for any .T ∈ Th and .e ⊂ ∂T , we have  

.‖ρ‖2
e ≤ C(1.49)(h

−1‖ρ‖2 
T + h‖∇̃ρ‖2 

T ). (1.49) 

Finally, we deduce the following approximation lemma. 

Lemma 1.5.1 For all .ρ ∈ V, 

.‖ρ − Phρ‖DG � hk‖ρ‖Th,k+1 ∀ T ∈ Th. (1.50) 

Proof 

. ‖ρ−Phρ‖2
DG =

∑

T ∈Th

∫

T

d̃iv(̃u(ρ−Phρ))2dxdt+
∑

e∈Eh

∫

e

h−1
e ‖[(̃u, ñ)(ρ−Phρ)]‖2ds.

By theorem (1.2.1), .(̃u, ñ) ∈ L∞(∂T ), then it follows from (1.49) and (1.42) 

. 

∫

e

h−1
e ‖[(̃u, ñ)(ρ − Phρ)]‖2ds ≤ C

(2)

(1.42) h
−1‖(̃u, ñ)‖L∞(e)

∫

e

‖[(ρ − Phρ)]‖2ds. 
(1.51) 

This and (1.49) yield 

. 

∫

e

‖[(̃u, ñ)(ρ − Phρ)]‖2ds ≤ 4C
(2)

(1.42)
‖(̃u, ñ)‖L∞(e)C(1.49)(h

−2‖ρ − Phρ‖2 
T 

+ ‖∇̃(ρ − Phρ)‖2 
T ). (1.52)



1 Existence and Uniqueness of Solution for Semi-linear Conservation Laws. . . 23

And from (1.47) and (1.48), it follows 

.

∫

e

‖[(̃u, ñ)(ρ − Phρ)]‖2ds ≤ c(1.53)h
2k|ρ|2 

k+1,T , (1.53) 

where 

. c(1.53) = C(1.49)C(1.47)C (2) 
(1.42)

‖(̃u, ñ)‖L∞(e). (1.54) 

We also have from triangular inequality 

.‖d̃iv(ρ − Phρ)‖T ≤ ‖(̃u∇̃(ρ − Phρ))‖T + ‖div(̃u)(ρ − Phρ)‖T . (1.55) 

Since .̃u ∈ L∞(T ) and .div(̃u) ∈ L∞(T ), we get from (1.47)–(1.48) 

.‖d̃iv(ρ − Phρ)‖T ≤ C(1.47)α(u,1.57)(h
k|ρ|k+1,T ), (1.56) 

where 

.α(u,1.57) = max {‖div(̃u)‖L∞(T ), |Q|‖ũ‖L∞(T )}. (1.57) 

From (1.53) and (1.56), we get the result. �


1.5.1.1 A Finite-Element Method and Picard’s Iteration 

Let f be a k-Lipschitz function in . R with .k < 1
cp

. In this case, the solution . ch can be 
computed by using the Picard iteration of some linear problem. The Picard iteration 
in this context is given by the following scheme: 

Algorithm

• Start STILS-MT1 with some given . C0.
• Compute .ch

n+1 from . ch
n such that 

. A(ch
n+1, φh) =

∑

T ∈Th

∫

T

f (ch
n)d̃iv(̃uφh)dxdt

+
∑

e∈∂Q−

∫

e

h−1
e [(̃u, ñ)cb][(̃u, ñ)φh]ds ∀φh ∈ Vh. (1.58)
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1.5.1.2 A Finite-Element Method and Newton’s Method 

We suppose that the problem (1.8)–(1.9) has a unique solution . V = H 2(Q) ∩
H(u,Q). Recalling (1.58), we can write (1.8)–(1.9) as follows:  

.find c ∈ V such that F(c) = 0, (1.59) 

where 

. F : V −→ V∗

. 〈F(c), φ〉V∗,V = A(c, φ) −
∑

T ∈Th

∫

T

f (c)d̃iv(̃uφ)dxdt

−
∑

e∈∂Q−

∫

e

h−1
e [(̃u, ñ)cb][(̃u, ñ)φ]ds ∀φ ∈ V. (1.60) 

Given some initial guess .c0, the classical Newton–Raphson’s method for solving 
equation (1.59), when . F is differentiable and consists in generating a sequence of 
approximation that converges in the quadratic sense, to the exact solution as follows: 

.

{
c0 ∈ V

cn+1 = cn − F
′
(cn)

−1.F (cn) ∀n ∈ N
∗. (1.61) 

This method is known to produce a chaotic behaviour when . c0 is far to the desired 
root, see, for instance, (see[15]) for more details. In order to remedy the chaotic 
behaviour, the following Newton damping method is proposed (see[16]). In that 
case, (1.61) is written as 

.

{
C0 ∈ V

cn+1 = cn − δtF
′
(cn)

−1.F (cn) ∀n ∈ N
∗. (1.62) 

We shall use adaptive Newton–Galerkin’s method; more precisely, the damping 
parameter . δt in (1.62) may be adjusted and adapted in each iteration. For illustration 
of the choice of . δt , let us define the Newton–Raphson’s transform as follows: 

. ρ �−→ NF (ρ) := −F
′
(ρ)−1.F (ρ).

By (1.62), we have 

.
cn+1 − cn

δn

= NF (cn).
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And we remark that (1.62) may be seen as a forward Euler scheme of the following 
ordinary differential equation: 

.
d

ds
ρ(s) = NF (ρ(s)) ∀s ρ(0) = c0. (1.63) 

If .cn ∈ V for all .n ≥ 1 and F is enough smooth, for instance, .F
′
(ρ)−1.F (ρ) exists 

for all .ρ ∈ V, then we obtain the solution of (1.63) satisfies 

. F(ρ(t)) = F(ρ(0)) exp(−t), ∀ t ≥ 0.

It is easy to see that .F(ρ(t)) −→ 0 as . t −→ 0.

The adaptive Newton–Raphson (see [17]) consists in choosing the damping 
parameter .δtn so that the discrete forward Euler’s solution of (1.62) stays reason-
ably close to the continuous solution of (1.63). Finally, we obtain the following 
algorithm, see [12]. 

Algorithm 
Fix a tolerance . ε: 

(i) Start the Newton iteration with some initial guess .c0 ∈ V. 
(ii) In each iteration step .n = 1, 2, ..., compute 

.δtn = min

(√
2ε

‖NF (cn)‖V , 1

)

. (1.64) 

(iii) Compute .cn+1 from (1.62) and go (ii). 

In the sequel, we suppose that .f
′
(cn) exists for all .n ≥ 1, thus the sequels in 1.62 

are well-defined, and we have 

. β(c, ρ, φ) =: 〈F ′
(c)ρ, φ〉V∗,V = A(ρ, φ)

−
∑

T ∈Th

∫

T

f
′
(c)ρ(̃uφ)dxdt for all φ ∈ V. (1.65) 

Let us define 

. L(c, φ) := 〈F(c), φ〉V∗,V

with the previous notation (1.62) can be written as follows: given .cn ∈ V, find 
.cn+1 ∈ V such that 

.β(cn, cn+1, φ) = β(cn, cn, φ) − δtnL(cn, φ) for all φ ∈ V. (1.66)
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Let us now consider the following finite-element approximation: find . ch
n+1 ∈ V

from .ch
n ∈ Vh such that 

.β(ch
n, ch

n+1, φ) = β(ch
n, ch

n, φ) − δtnL(ch
n, φ) for all φ ∈ Vh. (1.67) 

By introducing the following notation: 

.c
(δtn,h)
n+1 := ch

n+1 − (1 − δtn)c
h
n (1.68) 

and 

.f δtn
(
ch
n+1

) := δtnf
(
ch
n

) + f
′(
ch
n

)(
ch
n+1 − ch

n

)
, (1.69) 

we have, from (1.66), 

. 

∑

T ∈Th

∫

T

d̃iv(̃uc
(δtn,h)
n+1 )d̃iv(̃uφ)dxdt +

∑

e∈E0
h

∫

e

h−1
e [(̃u, ñ)c

(δtn,h)
n+1 ][(̃u, ñ)φ]ds

=
∑

T ∈Th

∫

T

f δtn(ch
n+1)d̃iv(̃uφ)dxdt

+
∑

e∈∂Q−

∫

e

δtnh
−1
e [(̃u, ñ)cb][(̃u, ñ)φ]ds ∀φ ∈ Vh.

Let us define the following quantities: 

. αT = ‖d̃iv(̃uc
(δtn)
n+1 ) − f (c

(δtn,h)
n+1 )‖0,T and βT = ‖f δtn(ch

n+1) − f (c
δtn,h
n+1 )‖0,T

(1.70) 
.αe = ‖[(̃u, ñ)c

(δtn)
n+1 ]‖0,e and βe = ‖[(̃u, ñ)cb]‖0,e. (1.71) 

We also have the following result expressed by an inequality. 

Theorem 1.5.1 

. 
∥
∥F

(
c
(δtn,h)
n+1

)∥
∥
V∗ � hk max

(( ∑

T ∈Th

β2
T

) 1
2

, max

(( ∑

T ∈Th

α2
T

) 1
2

,

( ∑

e∈E0
h

h−1
e α2

e

) 1
2

+
( ∑

e∈E0
h

h−1
e β2

e

) 1
2
))

. (1.72) 

Proof 

.〈F(c), φ〉V∗,V = 〈F(c), φ − Phφ〉V∗,V + 〈F(c), Phφ〉V∗,V.
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Since .Ph ∈ V, from (1.66), it follows 

. 
〈
F

(
c
(δtn,h)
n+1

)
, Phφ

〉

V∗,V =
∑

T ∈Th

∫

T

(
f δtn

(
ch
n+1

) − f
(
c
δtn,h
n+1

))
d̃iv(̃uPhφ)dxdt,

and it follows, from Cauchy–Schwarz inequality in .L2(T ) and .Rq with . q =
dim(Th), 

. 
〈
F

(
c
(δtn,h)
n+1

)
, Phφ

〉

V∗,V ≤
∑

T ∈Th

‖f δtn
(
ch
n+1

) − f
(
c
δtn,h
n+1

)‖0,T ‖Phφ‖0,T

. 
∣
∣
〈
F

(
c
(δtn,h)
n+1

)
, Phφ

〉

V∗,V
∣
∣

≤ ( ∑

T ∈Th

‖f δtn
(
ch
n+1

) − f
(
c
δtn,h
n+1

)‖2
0,T

) 1
2

( ∑

T ∈Th

‖Phφ‖2
0,T

) 1
2

.

Since . Ph satisfies .
∑

T ∈Th

‖Phφ‖2
0,T ≤ ∑

T ∈Th

‖φ‖2
0,T ∀φ ∈ L2(Q) (see [8]), we have 

.
∣
∣
〈
F

(
c
(δtn,h)
n+1

)
, Phφ

〉

V∗,V
∣
∣ ≤

( ∑

T ∈Th

β2
T

) 1
2
( ∑

T ∈Th

‖φ‖2
0,T

) 1
2

. (1.73) 

And using Lemma 1.5.1, we have  

.
∣
∣
〈
F

(
c
(δtn,h)
n+1

)
, Phφ

〉

V∗,V
∣
∣ ≤

( ∑

T ∈Th

β2
T

) 1
2

hk‖φ‖Th,k+1. (1.74) 

.
〈
F

(
c
(δtn,h)
n+1

)
, φ − Phφ

〉

V∗,V =
∑

T ∈Th

∫

T

(
d̃iv

(
ũc

(δtn)
n+1

) − f
(
c
(δtn,h)
n+1

))

d̃iv(̃u(φ − Phφ))dxdt

+
∑

e∈E0
h

∫

e

h−1
e

[
(̃u, ñ)c

(δtn)
n+1

][(̃u, ñ)(φ − Phφ)]ds

−
∑

e∈∂Q−

∫

e

h−1
e [(̃u, ñ)cb][(̃u, ñ)(φ − Phφ)]ds
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. 

∑

T ∈Th

∫

T

(
d̃iv

(
ũc

(δtn)
n+1

) − f
(
c
(δtn,h)
n+1

))
d̃iv(̃u(φ − Phφ))dxdt

≤
( ∑

T ∈Th

α2
T

) 1
2
( ∑

T ∈Th

‖d̃iv(̃u(φ − Phφ)‖2
0,T )

1
2

)

(1.75)

�


. 

∑

e∈E0
h

∫

e

h−1
e

[
(̃u, ñ)c

(δtn)
n+1 big][(̃u, ñ)(φ − Phφ)]ds

≤
( ∑

e∈E0
h

h−1
e α2

e

) 1
2
( ∑

e∈E0
h

h−1
e ‖[(̃u, ñ)(φ − Phφ)]‖2

0,e

) 1
2

(1.76) 

. 

∑

e∈∂Q−

∫

e

h−1
e [(̃u, ñ)cb][(̃u, ñ)(φ − Phφ)]ds

≤
( ∑

e∈E0
h

h−1
e β2

e

) 1
2
( ∑

e∈E0
h

h−1
e ‖[(̃u, ñ)(φ − Phφ)]‖2

0,e

) 1
2

. (1.77) 

The inequalities (1.75)–(1.77) yield 

. 
∣
∣
〈
F

(
c
(δtn,h)
n+1

)
, φ − Phφ〉V∗,V

∣
∣ ≤ max

( ∑

T ∈Th

α2
T

) 1
2

,

( ∑

e∈E0
h

h−1
e α2

e

) 1
2

+
( ∑

e∈E0
h

h−1
e β2

e

) 1
2 ‖φ − Phφ‖DG. (1.78) 

Thus, it follows from Lemma 1.5.1 

. 
∣
∣
〈
F

(
c
(δtn,h)
n+1

)
, φ − Phφ

〉

V∗,V| � max

(( ∑

T ∈Th

α2
T

) 1
2

,

( ∑

e∈E0
h

h−1
e α2

e

) 1
2

+
( ∑

e∈E0
h

h−1
e β2

e

) 1
2
)

hk‖φ‖Th,k+1. (1.79)
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From (1.74) and (1.79), we deduce 

. 
∣
∣
〈
F

(
c
(δtn,h)
n+1

)
, φ〉V∗,V|

� max

(( ∑

T ∈Th

β2
T

) 1
2

, max

(( ∑

T ∈Th

α2
T

) 1
2

,

( ∑

e∈E0
h

h−1
e α2

e

) 1
2

+
( ∑

e∈E0
h

h−1
e β2

e

) 1
2
))

hk‖φ‖Th,k+1. (1.80) 

�


1.5.2 STILS for Semi-linear Conservations Laws 

In the following, we assume that the problem (1.39) admits a unique solution 
.c ∈ V := H0(u,Q) ∩ Hk+1(Q), and we will omit the dependency of the 
function according to the parameter . λ. Our aims are to give numerical methods 
for solving problem (1.39) based on the classical finite-element approximation of 
STILS formulation and establish a posteriori estimations. For this, we shall first 
consider first a finite-element approximation based on quadrilateral mesh by starting 
with the following finite-dimensional spaces: 

.V (K̂) = {
φ ∈ C0(Q), φ | K̂ ∈ Q̂k}, (1.81) 

where . K̂ is the so-called reference element and .Q̂k is the space of polynomials 
of degree at most k in each variable, separately defined in . K̂. Let . S be a class of  
invertible affine mapping defined on . K̂ into . Rd+1. For .K = FK(K̂) with .FK ∈ S, 
the finite-element space can be defined by composition with the inverse of .FK as 
follows: 

.V (K) = {
ρ : K → R : ρ = ρ̂ ◦ FK for some ρ ∈ V (K̂)}. (1.82) 

Let . Th be a triangulation of . Q such that each of its element is the transformation of 
. K̂ with some mapping in S. Thus we get the classical finite-element approximation 

. Vh = {
ρ : Q → R : ρ | K ∈ V (K) for all K}.

In order to obtain the CFL condition stability of STILS-MT1 (see [4]), we shall 
consider a strict rectangular mesh. Let 

.� : V −→ Vh such that �q = q for all q ∈ Qk (1.83) 

be a linear operator.
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Let us recall the following approximation result proved in [18], pp 103, Corollary 
4.4.2. 

Lemma 1.5.2 Let us suppose that .d ≤ 2 and .k ≥ 1; then, there exist . C such that, 
for all .0 ≤ m ≤ k + 1, .c ∈ Hk+1(K), the following inequality holds: 

. | c − �c |m,K≤ hk+1

ρm
C�,Q | c |k+1,K . (1.84) 

The above lemma provides us the existence of .C > 0 such that the following 
inequalities hold for any .c ∈ H(u, T ) ∩ Hk+1(T ), 

.‖c − �c‖0,T ≤ Chk+1|c|k+1,T ∀ T ∈ Th, (1.85) 

and 

.‖∇̃(c − �c)‖0,T ≤ Chk|c|k+1,T ∀ T ∈ Th. (1.86) 

As in the proof of Lemma 1.5.1, there is a non-negative constant . Cu such that: 

.‖d̃iv(̃u(c − �c))‖0,T ≤ Cuh
k|c|k+1,T ∀ T ∈ Th. (1.87) 

1.5.2.1 STILS and Picard’s Iteration 

In this section, we suppose that f is k-Lipschitz with .k < 1
cp

. Then the mapping 
T defined by (1.11)–(1.12) is a strict contraction, and thus, we shall use Picard’s 
iteration algorithm for the linearization of (1.10)–(1.9). 

The Picard’s iteration in this context is given by following scheme: 

Algorithm

• Start STILS-MT1 with some given . C0.
• Find .ch

n+1 ∈ Vh from . ch
n by the formula 

. 

∫

Q

d̃iv(̃uch
n+1)d̃iv(̃uφh)dxdt + λ

∫

Q

∇̃ch
n+1∇̃φdxdt

=
∫

Q

(f (ch
n) − d̃iv(̃uCb))d̃iv(̃uφh)dxdt ∀ φh ∈ Vh. (1.88)
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1.5.3 STILS Adaptive Newton Method 

Since the problem (1.39) has a unique solution, .V = Hk+1(Q) ∩ H0(u,Q). Then 
the problem can be written as follows: 

.find c ∈ V such that Fλ(c) = 0, (1.89) 

where 

. Fλ : V −→ V∗

such that 

. 〈Fλ(c), φ〉V∗,V :=
∫

Q

d̃iv(̃uc)d̃iv(̃uφ)dxdt − λ

∫

Q

∇̃c∇̃φdxdt

−
∫

Q

f (c)d̃iv(̃uφ)dxdt ∀ φ ∈ V. (1.90) 

Since f is differentiable, then . Fλ is differentiable, and we have 

. βλ(c, ρ, φ) =: 〈F ′
λ(c)ρ, φ〉V∗,V =

∫

Q

d̃iv(̃uρ)d̃iv(̃uφ)dxdt − λ

∫

Q

∇̃ρ∇̃φdxdt

−
∫

Q

f
′
(c)ρd̃iv(̃uφ)dxdt ∀ φh ∈ V. (1.91) 

Let us also define the following linear form in . V

.λ(ρ, φ) = 〈Fλ(ρ), φ〉V∗,V. (1.92) 

We assume that F is invertible, and inserting (1.91) and (1.92) in (1.62), we get 

.βλ(cn, cn+1, φ) = βλ(cn, cn, φ) − δtnLλ(cn, φ) for all φ ∈ V. (1.93) 

Let . ch
n be the finite-element approximation of . cn (1.66). We obtain the following 

FEM adaptive Newton: 

.βλ(c
h
n, ch

n+1, φ) = βλ(c
h
n, ch

n, φ) − δtnLλ(c
h
n, φ) for all φ ∈ Vh. (1.94) 

By introducing the following notation: 

.c
(δtn,h)
n+1 := cn+1

h − (1 − δtn)c
n
h (1.95)
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and 

.f δtn(ch
n+1) := δtnf (ch

n) + f
′
(ch

n)(ch
n+1 − ch

n), (1.96) 

it follows from (1.94) the following result 

. 

∫

Q

d̃iv
(
ũc

(δtn,h
n+1

)
d̃iv(̃uφ)dxdt + λ

∫

Q

∇̃c
(δtn,h)
n+1 ∇̃φdxdt

=
∫

Q

f δtn(ch
n+1)d̃iv(̃uφ)dxdt for all φ ∈ Vh. (1.97) 

We also get the following result. 

Theorem 1.5.2 

.
∥
∥Fλ

(
c
(δtn,h)
n+1

)∥
∥
V

∗ � hk

(( ∑

T ∈Th

α2
T

) 1
2 +

( ∑

T ∈Th

β2
T

) 1
2 +λ

( ∑

T ∈Th

γ 2
T

) 1
2
)

, (1.98) 

where 

. αT = ∥
∥
((

d̃iv
(
ũc

(δtn,h
n+1

)) − f δtn
(
ch
n+1

))∥
∥

0,T
,

βT = ∥
∥f δtn

(
ch
n+1

) − f
(
c
(h,δtn)
n+1

)∥
∥

0,T
and γT = ∥

∥∇̃c
(δtn,h)
n+1

∥
∥

0,T
.

Proof 

. 
〈
Fλ

(
c
(δtn,h)
n+1

)
, φ

〉 =
∫

Q

(
d̃iv

(
ũc

(δtn,h)
n+1

) − f
(
c
(h,δtn)
n+1

))
d̃iv(̃uφ)dxdt

+ λ

∫

Q

∇̃c
(δtn,h)
n+1 ∇̃φdxdt. (1.99) 

By adding and subtracting .φh = �φ in (1.99) and using (1.97), the following result 
holds 

.
〈
Fλ

(
c
(δtn,h)
n+1

)
, φ〉 =

∫

Q

(
d̃iv

(
ũc

(δtn,h
n+1 ) − f

(
c
(h,δtn)
n+1

))
d̃iv(̃u(φ − φh))dxdt

+λ

∫

Q

∇̃c
(δtn,h)
n+1 ∇̃(φ − φh)dxdt +

∫

Q

(
f δtn

(
ch
n+1

)

−f
(
c
(h,δtn)
n+1

))
d̃iv(̃uφh)dxdt
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. 

∫

Q

((
d̃iv

(
ũc

(δtn,h)
n+1

)) − f δtn
(
ch
n+1

))
d̃iv(̃u(φ − φh))dxdt

≤
∑

T ∈Th

‖((d̃iv
(
ũc

(δtn,h)
n+1

)) − f δtn
(
ch
n+1

))‖0,T ‖d̃iv(̃u(φ − φh))‖0,T . (1.100) 

Applying Cauchy–Schwarz inequality leads to 

. 

∫

Q

((
d̃iv

(
ũc

(δtn,h)
n+1

)) − f δtn
(
ch
n+1

))
d̃iv(̃u(φ − φh))dxdt

≤
( ∑

T ∈Th

∥
∥
(
d̃iv

(
ũc

(δtn,h)
n+1

) − f δtn
(
ch
n+1

))‖2
0,T

) 1
2
( ∑

T ∈Th

‖d̃iv(̃u(φ − φh))‖2
0,T

) 1
2

,

(1.101) 

and recalling (1.87), it follows 

. 

∫

Q

((
d̃iv

(
ũc

(δtn,h)
n+1

)) − f δtn
(
ch
n+1

))
d̃iv(̃u(φ − φh))dxdt

≤ Cu

( ∑

T ∈Th

∥
∥
((

d̃iv
(
ũc

(δtn,h)
n+1

)) − f δtn
(
ch
n+1

))∥
∥2

0,T

) 1
2

hk|φ|k+1,Q. (1.102) 

Thus, 

. 

∫

Q

(
f δtn

(
ch
n+1

) − f
(
c
(h,δtn)
n+1

))
d̃iv(̃uφh)dxdt �

( ∑

T ∈Th

α2
T

) 1
2

hk|φ|k+1,Q.

(1.103) 
It also follows 

. λ

∫

Q

∇̃c
(δtn,h)
n+1 ∇̃(φ − φh)dxdt ≤

( ∑

T ∈Th

‖∇̃c
(δtn,h)
n+1 ‖0,T ‖∇̃(φ − φh)‖0,T

)

.

Using inequality (1.85), the following estimation holds 

.λ

∫

Q

∇̃c
(δtn,h)
n+1 ∇̃(φ − φh)dxdt � λhk

( ∑

T ∈Th

γ 2
T

) 1
2 |φ|k+1,Q. (1.104) 

It follows from (1.102), (1.103), and (1.104). 

.
〈
Fλ

(
c
(δtn,h)
n+1

)
, φ

〉 � hk

(( ∑

T ∈Th

α2
T

) 1
2 +

( ∑

T ∈Th

β2
T

) 1
2 + λ

( ∑

T ∈Th

γ 2
T

) 1
2
)

|φ|k+1,Q.
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Furthermore, .‖Fλ(c
(δtn,h)
n+1 )‖V∗,V = sup〈Fλ(c

(δtn,h)
n+1 ), φ〉 and .|φ|k+1,Q � ‖φ‖V, and 

then we get the results. �

Since .δtn = 1, if the adaptive Newton converges, .‖Fλ(c

(δtn,h)
n+1 )‖V∗ is a reasonable 

approximation; moreover, under certain conditions on f, we can show that . ‖c −
c
(δtn,h)
n+1 ‖V is equivalent to .‖Fλ(c

(δtn,h)
n+1 )‖V∗ . 

1.5.4 Numerical Experiment 

Let we consider the following one-dimension hyperbolic conservations laws with 
linear convection and stiff source terms (see [19]). 

. f (s) = −μs(s − 1)

(

s − 1

2

)

,

and initial data 

. c0(x) =
{

1 if x ≤ 0.3
0 if x > 0.3

.

The exact solution approaches the following waves solution .ω(x − t) with 

. ω(x) =
⎧
⎨

⎩

0 if c0(x) < 1
2

1
2 if c0(x) = 1

2
1 if c0(x) > 1

2

.

Example 1.5.1 We first choose . μ such that T is a contraction for instance .μ = 1
7 , 

and we will compute the solution of (1.8)–(1.9) by using Picard iteration and simple 
finite-element method and (1.39) by Picard iteration and STILS-MT. The mesh size 
of the space is . 160 and the times step . 165 , which give .60 × 65 element in space–time. 
The solution is presented at .t = 1

4 in Fig. 1.1. �

Example 1.5.2 Let we choose now .μ = 7 and compute the solution of simple finite-
element method and STILS-MT1 with penalization .λ = 5

12 and using Newton– 
Raphson iteration for the semi-linearity. The mesh size of the space is . 120 and the 
times step . 125 , which give .20 × 25 element in space–time. The solution is presented 
at .t = 1

4 . �

Both numerical methods can be used to tame the spurious oscillations produced by 
STILS-MT and classical finite-element methods when advection problem is solved. 
In the case of simple finite-element methods, we have spurious diffusion for this 
semi-linear conservation; on the other hand, the same fact can be obtained when
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Fig. 1.1 Left: Picard’s iteration with STILS-MT1 with penalization .λ = 5
12 . Right: Picard’s 

iteration with simple finite-element method
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Fig. 1.2 Left Newton-adaptative–Raphson’s iteration with STILS-MT1 with penalization .λ = 5
12 , 

right Newton-adaptative–Raphson’s iteration with simple finite-element method 

penalization version is used, but it can be controlled by the parameter . λ. Moreover, 
STILS-MT cannot be used for simple finite element and that gives an important time 
calculation. We can clearly see that STILS-MT with penalization provides effective 
methods for solving semi-linear conservation law numerically (Fig. 1.2). 
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Chapter 2 
Structural Stability of .p(x)-Laplace 
Problems with Robin-Type Boundary 
Condition 

Kpè Kansie and Stanislas Ouaro 

Abstract In this chapter, a continuous dependence result on coefficients of solu-
tions of the nonlinear nonhomogeneous Robin boundary-value problems involving 
the .p(x)-Laplace operator is established. 

Keywords Generalized Lebesgue and Sobolev spaces · Leray–Lions operator · 
Weak solution · Renormalized solution · Thermorheological fluids · Continuous 
dependence · Young measures · Robin-type boundary condition 

2.1 Introduction 

Our work has for goal to study the convergence of sequences of solutions of 
degenerate elliptic problems with variable coercivity and growth exponents . pn of 
the form 

. (Pbn) :
{

b(un) − divan(x,∇un) = fn in �,

an(x,∇un).η = −|un|pn(x)−2un on ∂�,

where . � is an open bounded domain of . R
N (.N ≥ 3) with smooth boundary . ∂� and 

. η is the outer unit normal to . ∂�. Here, .b : R −→ R is a continuous, onto, and non-
decreasing function such that .b(0) = 0; .(an(x, ξ))n∈N is a family of applications 
that verify the classical Leray–Lions hypotheses but with a variable summability 
exponent .pn(x) converging in measure to some exponent p such that .1 < p− ≤
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pn(.) ≤ p+ < ∞ and .(fn)n∈N ⊂ L1(�). We show that the limit of this sequence of 
solutions is the solution of the following problem associated to the exponent p:

.(Pb) :
{

b(u) − diva(x,∇u) = f in �,

a(x,∇u).η = −|u|p(x)−2u on ∂�.
(2.1) 

Andreianov, Bendahmane and Ouaro (see [1]) studied the structural stability of 
weak and renormalized solutions . un of the following nonlinear homogeneous 
Dirichlet boundary-value problem: 

.

{
b(un) − div an(x,∇un) = fn in �,

un = 0 on ∂�,
(2.2) 

where .(an(x, ξ))n∈N verifies the classical Leray–Lions hypotheses with the variable 
exponents .pn(x) such that .1 < p− ≤ pn(.) ≤ p+ < ∞. Since the exponent . pn, and 
thus the underlying function space for the solution . un, varies with n, the convergence 
of weak solutions . un requires some involved assumptions on the convergence of the 
sequence . fn of the source terms. To bypass this difficulty, they used the technique of 
renormalized solutions. Indeed, the study of convergence of renormalized solutions 
of the problem (2.2) permits them to deduce convergence results for the weak 
solutions under much simpler assumptions on .(fn)n∈N, in particular the weak . L1

convergence of . fn to a limit f sufficiently regular so that to allow for the existence 
of a weak solution. Moreover, the structural stability results permit them to deduce 
also new existence results of solutions. 

This chapter is related to Robin-type boundary condition, so we cannot work in 
the space .W 1,p(.)

0 (�), but in the space .W 1,p(.)(�). Therefore, Poincaré inequality 
does not apply. Nevertheless, we use in this chapter a Poincaré–Sobolev-type 
inequality. The technique of Young measures (see [10, 12, 14]) is essential for the 
convergence of the sequence of gradients of solutions. 

Problems with variable exponents .p(x) and .pn(x) were arisen and studied by 
Zhikov in the pioneering paper [23]. The study of problems involving variable 
exponent has received considerable attention in recent years due to the fact that they 
can model various phenomena that arise in the study of elastic mechanics, elec-
trorheological, and thermorheological fluids (see [6, 18–20]) or image restoration 
(see [5, 13]). 

Let us give the outline of the paper. In Sect. 2.2, we introduce some preliminary 
results. In Sect. 2.3, we prove the existence and uniqueness of the renormalized 
solution of (2.1) with .L1-data f . In Sect. 2.4, we tackle the question of continuous 
dependence for renormalized solutions.
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2.2 Preliminaries 

In this section, we do some assumptions on the model problem (2.1) and give some 
preliminary results. 

.p : � −→ R is a continuous function such that 1 < p− ≤ p+ < ∞, (2.3) 

where .p− := inf
x∈�

p(x) and .p+ := sup
x∈�

p(x). 

.

{
b : R −→ R is a continuous, non-decreasing,
and onto function such that b(0) = 0.

(2.4) 

.a(., .) : � × R
N −→ R

N is a Carathéodory function with 

.a(x, 0) = 0 for a.e. x ∈ �, (2.5) 

satisfying, for a.e. .x ∈ �, the strict monotonicity assumption 

.(a(x, ξ) − a(x, η)).(ξ − η) > 0 for all ξ, η ∈ R
N, ξ 	= η, (2.6) 

and the following growth and coercivity assumptions in . ξ : 

.|a(x, ξ)| ≤ C1(M(x) + |ξ |p(x)−1), (2.7) 

.a(x, ξ).ξ ≥ C2|ξ |p(x), (2.8) 

where . C1 and . C2 are the positive constants, and . M is a non-negative function in 
.Lp′(.)(�) with .1/p(x) + 1/p′(x) = 1. 

Remark 2.2.1 The condition (2.5) is a consequence of the continuity and the 
coercivity of .a(., .). ��
For the given exponent p, we denote by . p′ its conjugate exponent such that . 1/p(x)+
1/p′(x) = 1 and by . p∗ its optimal Sobolev embedding exponent such that 

. p∗ :=
⎧⎨
⎩

Np/(N − p) if p < N,

any real value if p = N,

∞ if p > N.

For any given .k > 0, we define the truncation function .Tk : R −→ R by 

.Tk(r) = max(min(r, k),−k).
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We put 

. sign(z) =
⎧⎨
⎩
1 if z > 0,
0 if z = 0,
−1 if z < 0.

The truncation function . Tk has so the following properties: 

. |Tk(z)| = min(|z|, k), lim
k→∞ Tk(z) = z and lim

k→0

1

k
Tk(z) = sign(z).

For a Lebesgue measurable set .A ⊂ �, . χA denotes its characteristic function, and 
.meas(A) denotes its Lebesgue measure. Also, we denote by .measN−1(B) or . μ(B)

the Lebesgue measure of .B ⊂ ∂�. 
Let .u : � −→ R be a function and .k ∈ R, and we write .{|u| ≤ k} for the set 

.{x ∈ � : |u(x)| ≤ k} (respectively, .≥,=,<,>). 
We will also need to truncate vector-valued functions with the help of the 

following maps: 

.for m > 0, hm : RN −→ R
N, hm(λ) =

⎧⎨
⎩

λ if |λ| ≤ m,
m

|λ|λ if |λ| > m.
(2.9) 

We have the following property (see [1, Lemma 2.1]). 

Lemma 2.2.1 Let .hm(.) be defined by (2.9) and .a(x, .) be monotone in the 
sense (2.6). Then, for all .λ ∈ R

N , the  map  .m �−→ a(x, hm(λ)).hm(λ) is non-
decreasing and converges to .a(x, λ).λ as .m → ∞. ��
The exponent .p(.) appearing in (2.7) and (2.8) depends on the spatial variable x and 
then requires so to work with Lebesgue and Sobolev spaces with variable exponents. 

We define the Lebesgue space with variable exponent .Lp(.)(�) as the set of all 
measurable functions .u : � −→ R for which the convex modular 

. ρp(.)(u) :=
∫

�

|u|p(x)dx

is finite. If the exponent is bounded, i.e., if .p+ < ∞, then the expression 

. ‖u‖p(.) := ‖u‖Lp(.)(�) := inf

{
λ > 0 : ρp(.)

(
f

λ

)
≤ 1

}

defines a norm in .Lp(.)(�), called the Luxembourg norm. The space 
.
(
Lp(.)(�), ‖.‖p(.)

)
is a separable Banach space. Moreover, if .1 < p− ≤ p+ < ∞, 

then .Lp(.)(�) is uniformly convex, hence reflexive, and its dual space is isomorphic 
to .Lp′(.)(�).
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Moreover, we have the Hölder-type inequality 

.

∣∣∣∣
∫

�

uv dx

∣∣∣∣ ≤
(

1

p−
+ 1

(p′)−

)
‖u‖p(.) ‖v‖p′(.) , (2.10) 

for all .u ∈ Lp(.)(�) and .v ∈ Lp′(.)(�). 
.W 1,p(.)(�) denotes the space of all functions .u ∈ Lp(.)(�) such that its gradient 

. ∇u, taken in the sense of distributions, belongs to .(Lp(.)(�))N . This space is a 
Banach space equipped with the following norm: 

. ‖u‖1,p(.) := ‖u‖W 1,p(.)(�) := ‖u‖p(.) + ‖∇u‖p(.) .

The space .
(
W 1,p(.)(�), ‖.‖1,p(.)

)
is a separable and reflexive Banach space; for 

more details on the generalized Lebesgue and Sobolev spaces, see [8, 15] and the 
references therein. 

In manipulating the generalized Lebesgue and Sobolev spaces, the following 
lemma (cf.[11]) permits to pass from norm to convex modular and vice versa. 

Lemma 2.2.2 If .un, u ∈ Lp(.)(�) and .p+ < ∞, then the following properties 
hold: 

.(i) .ρp(.)

(
u/ ‖u‖p(.)

) = 1, if . u 	= 0.
.(ii) . ρp(.)(u) < 1 (respectively = 1;> 1) ⇐⇒ ‖u‖p(.) < 1 (respectively = 1;>

1). 
.(iii) .ρp(.)(u) ≤ 1 �⇒ ‖u‖p+

p(.) ≤ ρp(.)(u) ≤ ‖u‖p−
p(.). 

.(iv) .ρp(.)(u) ≥ 1 �⇒ ‖u‖p−
p(.) ≤ ρp(.)(u) ≤ ‖u‖p+

p(.). 
.(v) . ‖un‖p(.) → 0 (respectively → ∞) ⇐⇒ ρp(.)(un) → 0 (respectively →

∞). ��
For a measurable function .u : � −→ R, we introduce the function 

. ρ1,p(.)(u) :=
∫

�

|u|p(x)dx +
∫

�

|∇u|p(x)dx.

Then, we have the following lemma (see [21]). 

Lemma 2.2.3 If .u ∈ W 1,p(.)(�), then the following properties are true: 

.(i) . ρ1,p(.)(u) < 1 (respectively = 1;> 1) ⇐⇒ ‖u‖1,p(.) < 1 (respectively =
1;> 1). 

.(ii) .ρ1,p(.)(u) ≤ 1 �⇒ ‖u‖p+
1,p(.) ≤ ρ1,p(.)(u) ≤ ‖u‖p−

1,p(.). 

.(iii) .ρ1,p(.)(u) ≥ 1 �⇒ ‖u‖p−
1,p(.) ≤ ρ1,p(.)(u) ≤ ‖u‖p+

1,p(.). 
.(iv) . ‖un‖1,p(.) → 0 (respectively → ∞) ⇐⇒ ρ1,p(.)(un) → 0 (respectively →

∞). ��
One has below, imbedding result between Lebesgue and Sobolev spaces with 
variable exponent.



42 K. Kansie and S. Ouaro

Proposition 2.2.1 (See [8, 11]) Let .p, q ∈ C(�) with .p− > 1. Assume that . q(x) <

p∗(x) for all .x ∈ �. Then, there is a compact imbedding .W 1,p(.)(�) ↪→ Lq(.)(�). 
In particular, there is a compact imbedding .W 1,p(.)(�) ↪→ Lp(.)(�). ��
Put 

.p∂(x) := (p(x))∂ :=
⎧⎨
⎩

(N − 1)p(x)

N − p(x)
if p(x) < N,

∞ if p(x) ≥ N;
(2.11) 

then, one also has the following imbedding result. 

Proposition 2.2.2 (See [22]) Let .p ∈ C(�) with .p− > 1. If  .q ∈ C(∂�) satisfies 
the condition 

. 1 ≤ q(x) < p∂(x) ∀x ∈ ∂�,

then there is a compact imbedding .W 1,p(.)(�) ↪→ Lq(.)(∂�). In particular, there is 
a compact embedding .W 1,p(.)(�) ↪→ Lp(.)(∂�). ��
For any .u ∈ W 1,p(.)(�), we denote by .τ(u) the trace of u on . ∂� in the usual sense. 
Proposition 2.2.2 means that, for every .1 ≤ p ≤ ∞, the trace operator 

. τ : W 1,p(.)(�) → Lp(.)(∂�), u �→ τ(u) = u|∂�,

is compact. 
The following result (corollary of Lebesgue-dominated convergence theorem) is 

very powerful to prove strong convergence results. 

Lemma 2.2.4 (Lebesgue Generalized Convergence Theorem) Let .(fn)n∈N be a 
sequence of measurable functions and f a measurable function such that . fn → f

a.e. in . �. Let .(gn)n∈N ⊂ L1(�) such that for all .n ∈ N, .|fn| ≤ gn a.e. in . � and 
.gn → g in .L1(�). Then, 

. 

∫
�

fn dx −→
∫

�

f dx.

We also recall a Poincaré-type inequality and a Poincaré–Sobolev-type inequality 
(see [17]). 

Lemma 2.2.5 There exists .C1 > 0 such that for all .u ∈ W 1,1(�), one has 

. 

∫
�

|u| dx ≤ C1

(∫
�

|∇u| dx +
∫

∂�

|u| dσ

)
,

and there exists .C2 > 0 such that for all .u ∈ W 1,q (�), .1 < q < N , one has
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. 

(∫
�

|u|q∗
dx

)q/q∗

≤ C2

(∫
�

|∇u|q dx +
(∫

∂�

|u| dσ

)q)
,

where .1/q∗ = 1/q − 1/N . ��
For the applications we have in mind, we will need the following theorem in which 
the results of .(ii) and .(iii) express measure convergence of some sequences. 

Theorem 2.2.1 (Young Measures and Nonlinear weak-* Convergence, cf. [1]) 

.(i) Let .� ⊂ R
N , .N ∈ N, and .(vn)n∈N an equi-integrable sequence on . � of 

functions to values in . Rd , .d ∈ N. Then, there exist a subsequence . (vnk
)k∈N

and a parametrized family .(νx)x∈� of probability measures on . Rd , weakly 
measurable in x with respect to the Lebesgue measure on . �, such that for all 
Carathéodory function .F : � × R

d → R
t , .t ∈ N, we have 

. lim
k→∞

∫
�

F(x, vnk
(x)) dx =

∫
�

∫
R

d
F (x, λ) dνx(λ)dx, (2.12) 

whenever the sequence .(F (., vn(.)))n∈N is equi-integrable on . �. In particular, 

.v(x) :=
∫
R

d
λdνx(λ) (2.13)

��
is the weak limit of the sequence .(vnk

)k∈N in .L1(�), as .k → ∞. 
The family .(νx)x∈� is called the Young measure generated by the subse-

quence .(vnk
)k∈N. 

.(ii) If . � is of finite measure, and .(νx)x∈� is the Young measure generated by a 
sequence .(vn)n∈N, then 

. 
(
νx = δv(x)a.e.x ∈ �

) ⇐⇒ (vn converges in measure on � to v as n → ∞) .

.(iii) If . � is of finite measure, .(un)n∈N generates a Dirac Young measure . 
(
δu(x)

)
x∈�

on . Rd1 , and .(vn)n∈N generates a Young measure .(νx)x∈� on . Rd2 , then the 
sequence .((un, vn))n∈N generates the Young measure .

(
δu(x) ⊗ νx

)
x∈�

on 

.R
d1+d2 . ��

Whenever a sequence .(vn)n∈N generates a Young measure .(νx)x∈�, following 
the terminology of [9], we will say that .(vn)n∈N nonlinear weak-* converges, 
and .(νx)x∈� is the nonlinear weak-* limit of the sequence .(vn)n∈N. In the case 
.(vn)n∈N possesses a nonlinear weak-* convergent subsequence, we will say that it is 
nonlinear weak-* compact. Theorem 2.2.1.–(i) thus means that any equi-integrable 
sequence of measurable functions is nonlinear weak-* compact on . �.
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2.3 Renormalized Solution 

In this part, we define the notion of associated renormalized solution to the 
problem (2.1) and prove an existence and uniqueness result of renormalized solution 
for .L1−data f . 

Let us put 

. T1,p(.)(�) := {u : � −→ R measurable such that Tk(u) ∈ W1,p(.)(�), for any k > 0}.

Then, we define .T1,p(.)
tr (�) as the set of functions .u ∈ T1,p(.)(�) such that there 

exists a sequence .(un)n∈N ⊂ W 1,p(.)(�) satisfying the following conditions: 

.(C1) .un −→ u a.e. in . �. 

.(C2) .∇Tk(un) −→ ∇Tk(u) in .L1(�) for any .k > 0. 

.(C3) . There exists a measurable function v on ∂� such that un → v on ∂�.

The function v is the trace of u in the generalized sense. In the sequel, the trace 
of .u ∈ T1,p(.)

tr (�) on . ∂� will be denoted by .tr(u). If  .u ∈ W 1,p(.)(�), then . tr(u)

coincides with .τ(u) in the usual sense. Moreover, for .u ∈ T1,p(.)
tr (�) and for every 

.k > 0, .τ(Tk(u)) = Tk(tr(u)), and if .φ ∈ W 1,p(.)(�) ∩ L∞(�), then . (u − φ) ∈
T1,p(.)

tr (�) and .tr(u − φ) = tr(u) − tr(φ) (see [2, 3] for more details). 

Remark 2.3.1 We will use the same notation u for u and its trace when there is not 
an inconvenience. ��
The following proposition (see, e.g., [4]) is useful because it allows us to give a sense 
to the definition of the renormalized solution for problem (2.1) (see Definition 2.3.1 
below). 

Proposition 2.3.1 Let .u ∈ T1,p(.)(�). Then, there exists a unique measurable 
function .v : � −→ R

N such that 

. ∇Tk(u) = vχ{|u|<k}, for all k > 0,

where . χE is the characteristic function of a measurable set E. The function v is a 
generalized gradient and is denoted by .∇u .(weak gradient of u. ). If, moreover, 

u belongs to .W 1,p(.)(�), then v belongs to .
(
Lp(.)(�)

)N
and coincides with the 

standard distributional gradient of u. ��
Let us also set 

. S := {S ∈ W 1,∞(R) such that suppS is compact}.
The following function, 

.for k > 0, Sk : z ∈ � �−→
⎧⎨
⎩
1 if |z| ≤ k − 1,
k − |z| if k − 1 ≤ |z| ≤ k,

0 if |z| ≥ k,

(2.14)
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is an example of function in . S that will be used a lot in the sequel. Note that 
this function is non-negative with .suppSk = [−k, k], and .suppS′

k is contained in 
.[−k,−k + 1] ∪ [k − 1, k] and that the sequences . Sk and . S′

k are uniformly bounded 
by one. 

Now, we give the definition of renormalized solution for problem (2.1) under the 
assumptions (2.3)–(2.8). 

Definition 2.3.1 A measurable function .u : � → R is a renormalized solution of 
problem (2.1) if:  

. 

∣∣∣∣∣∣
For all k > 0, Tk(u) ∈ W 1,p(.)(�);
there exists v ∈ Lp(.)−1(∂�) such that for a.e. k > 0, one has Tk(v) = τ(Tk(u));
b(u) ∈ L1(�);

. lim
k→∞

∫
{k<|u|<k+1}

a(x,∇u).∇udx = 0, (2.15) 

and, for all .S ∈ S and for all .φ ∈ W 1,p(.)(�) ∩ L∞(�), 

. 

∫
�

S(u)a(x,∇u).∇φdx +
∫

�

S′(u)a(x,∇u).(∇u)φdx +
∫

�

b(u)S(u)φdx

+
∫

∂�

S(u)|u|p(x)−2uφdσ =
∫

�

f S(u)φdx, (2.16) 

where . dσ is the surface measure on . ∂�. ��
Remark 2.3.2 All the integrals in (2.15) and (2.16) make sense. For the third and 
fifth integrals of (2.16), it is clear. We focus our attention on the other integrals. 
As the support of S is compact, we can write .suppS ⊂ [−k, k] with .k > 0. So, 
one has .S(u)|u|p(x)−2u = S(u)|Tk(u)|p(x)−2Tk(u), and as . Tk(u) ∈ W 1,p(.)(�) ↪→
Lp(.)(∂�), then .Tk(u) ∈ Lp(.)(∂�), and so .|Tk(u)|p(x)−2Tk(u) ∈ Lp′(.)(∂�). 
Also, as .φ ∈ W 1,p(.)(�) ↪→ Lp(.)(∂�), then we have . S(u)|Tk(u)|p(x)−2Tk(u)φ ∈
L1(∂�) by Hölder-type inequality, and the fourth integral of (2.16) makes sense. 
Moreover, as .suppS ⊂ [−k, k] and thanks to Proposition 2.3.1, we can replace 
the terms .∇u by .∇Tk(u) in Eq. (2.16). Since .Tk(u) ∈ W 1,p(.)(�), then, by 
the growth assumption (2.7), the term .S(u)a(x,∇u) is in .Lp′(.)(�), and so, the 
terms .S(u)a(x,∇u).∇φ and .S′(u)a(x,∇u).∇u both lie in .L1(�) by Hölder-type 
inequality. Thus, all the terms in (2.16) make sense. 

For the integral in (2.15), one can replace . ∇u by .∇Tk+1(u) thanks to Proposi-
tion 2.3.1, and so, by Hölder-type inequality, .χ{k<|u|<k+1}a(x,∇u).∇u ∈ L1(�). 
Hence, the integral in (2.15) makes sense. 

Notice that we do not require explicitly that .u ∈ T1,p(.)
tr (�) in the definition 

above because we can replace it by the technical hypothesis: 
“There exists .v ∈ Lp(.)−1(∂�) such that for a.e. .k > 0, one has . Tk(v) =

τ(Tk(u))”
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for the analytic interpretation of the trace of u such that . Tk(u) ∈ W 1,p(.)(�)

. (see [4]. ). ��
The following theorem guarantees the existence of the sequence of renormalized 
solutions associated to problems .(Pbn). 

Theorem 2.3.1 Assume (2.3)–(2.8). Then, there exists at least one renormalized 
solution u of the elliptic equation (2.1). ��
For the proof of existence of solution, we recall the definition of the weak solution 
of the elliptic equation (2.1) for data .f ∈ L∞(�). 

Definition 2.3.2 (See [16, Definition 3.1]) Let .f ∈ L∞(�); a measurable function 
.u : � → R is a weak solution of (2.1) if  .u ∈ W 1,p(.)(�), .b(u) ∈ L∞(�), 
.|u|p(x)−2u ∈ L∞(∂�), and 

.

∫
�

a(x,∇u).∇φ dx+
∫

�

b(u)φ dx+
∫

∂�

|u|p(x)−2uφ dσ =
∫

�

f φ dx, (2.17) 

for all .φ ∈ W 1,p(.)(�). ��

2.3.1 Proof of Theorem 2.3.1 

The proof of existence of a renormalized solution of (2.1) is done in three steps: first, 
we introduce approximating problems for which existence of weak solutions . un is 
obvious; second, we establish some basic convergence results; third, we prove that 
these approximate solutions . un tend, as n goes to infinity, to a measurable function 
u that is a renormalized solution of the problem (2.1). 

2.3.1.1 Approximate Solutions 

Proof of Theorem 2.3.1 Let fn = Tn(f ) for all n ∈ N; let us consider the 
approximate problems 

.

{
b(un) − div a(x,∇un) = fn in �,

a(x,∇un).η = −|un|p(x)−2un on ∂�.
(2.18) 

One has fn ∈ L∞(�), so according to Theorem 3.2 in [16], the problem (2.18) 
admits a weak solution un, i.e., un ∈ W 1,p(.) (�), b(un) ∈ L∞(�), |un|p(x)−2un ∈ 
L∞(∂�), and 

. 

∫
�

a(x,∇un).∇φ dx +
∫

�

b(un)φ dx +
∫

∂�

|un|p(x)−2unφ dσ =
∫

�

fnφ dx,

(2.19) 
for all φ ∈ W 1,p(.) (�).
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We are going to prove that the sequence of these approximated solutions un 
converges to a measurable function u that is a renormalized solution of the limit 
problem (2.1). Note that the sequence of the terms fn converges strongly to f ∈ 
L1(�). Moreover, we have 

. ‖fn‖L1(�) ≤ ‖f ‖L1(�) , for all n ∈ N.

2.3.1.2 Convergence Results 

The following proposition (see the propositions 4.9 and 4.12, see also the relation 
(4.70) in [16]) will be useful in the sequel. 

Proposition 2.3.2 Assume that (2.3)–(2.8) hold true, and let . un be the weak 
solution of .(3.6); then: 

.(i) . 

⎧⎨
⎩
The sequence (un)n∈N is a Cauchy sequence in measure. In particular,
there exist a measurable function u and a subsequence still denoted (un)n∈N
such that un −→ u in measure and un −→ u a.e. in �.

.(ii) For all .k > 0, .∇Tk(un) converges to .∇Tk(u) in .(L1(�))N . 
.(iii) For all .k > 0, .a(x,∇Tk(un)) converges strongly to .a(x,∇Tk(u)) in . (L1(�))N

and weakly in .(Lp′(.)(�))N . 
.(iv) . un converges a.e. to some function v on . ∂�. 
.(v) .|un|p(x)−2un converges strongly to .|u|p(x)−2u in .L1(∂�). ��
Remark 2.3.3 For any .k > 0, the sequence .(Tk(un))n∈N is uniformly bounded in 
.W 1,p(.)(�) (see [16, Lemma 4.8]). Then, we can assume, up to a subsequence, that 

. Tk(un) ⇀ Tk(u) in W 1,p(.)(�),

and by the compact imbedding of .W 1,p(.)(�) in .Lp(.)(�) and in .Lp(.)(∂�), we have  

. Tk(un) → Tk(u) strongly in Lp(.)(�)

and 

. Tk(un) → Tk(u) strongly in Lp(.)(∂�).

The function v in Proposition 2.3.2–(iv) is defined on . ∂� by 

.v(x) := Tk(u(x)) if x ∈ ∂� with |Tk(u(x))| < k,
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moreover, .Tk(un) −→ Tk(u) a.e. on . ∂�, and we have so .v(x) = u(x) a.e. on . ∂�. 

We also have the following convergence result. 

Lemma 2.3.1 For all .k > 0, the sequence .a(x,∇Tk(un)).∇Tk(un) converges 
strongly to .a(x,∇Tk(u)).∇Tk(u) in .(L1(�))N . ��
Proof We use Vitali’s theorem to get this strong convergence in .L1(�). 

By Proposition 2.3.2, one has 

. a(x,∇Tk(un)).∇Tk(un) −→ a(x,∇Tk(u)).∇Tk(u) a.e. in �.

Moreover, by Hölder-type inequality, we get, for .E ⊂ �, 

. 

∫
E

a(x,∇Tk(un)).∇Tk(un) dx ≤ 2 ‖a(x,∇Tk(un))‖Lp′(.)(�)
‖∇Tk(un)χE‖Lp(.)(�) .

But, the sequence .
(
a(x,∇Tk(un))

)
n∈N is bounded in .Lp′(.)(�) because it converges 

weakly in .Lp′(.)(�) and .
(|∇Tk(un)|p(x)

)
n∈N is equi-integrable in . � because 

.(∇Tk(un))n∈N converges weakly in .Lp(.)(�). So, 

. lim
meas(E)

∫
E

|∇Tk(un)|p(x) dx = 0.

Therefore, by Lemma 2.2.2, .‖∇Tk(un)χE‖Lp(.)(�) → 0 as .meas(E) → 0. Hence, 
one has .a(x,∇Tk(un)).∇Tk(un) that is equi-integrable in . �, and so, by Vitali’s 
theorem, one has the result. ��

2.3.1.3 Existence of Renormalized Solution 

Lemma 2.3.2 The function u verifies the renormalized formulation (2.16). ��
Proof Let φ ∈ W 1,p(.) (�) ∩ L∞(�) and S ∈ S. We take  S(un)φ as test function 
in (2.17) to get 

. 

∫
�

S′(un)a(x,∇un).(∇un)φ dx +
∫

�

S(un)a(x,∇un).∇φ dx

+
∫

�

b(un)S(un)φ dx +
∫

∂�

|un|p(x)−2unS(un)φ dσ =
∫

�

fnS(un)φ dx.

(2.20) 

As suppS ⊂ (−k, k) for some real number k >  0, ∇un can be replaced by ∇Tk(un) 
in (2.20), and we get
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. 

∫
�

S′(un)a(x,∇Tk(un)).∇Tk(un)φ dx +
∫

�

S(un)a(x,∇Tk(un)).∇φ dx

+
∫

�

b(un)S(un)φ dx +
∫

∂�

|un|p(x)−2unS(un)φ dσ =
∫

�

fnS(un)φ dx.

(2.21) 

By definition, the function S is continuous and suppS is compact, so the sequences 
S(un) and |un|p(x)−2unS(un) are bounded. The function b is continuous, non-
decreasing, and b(0) = 0, so the sequence b(un)S(un) is bounded. Moreover, 
the sequences b(un)S(un) and |un|p(x)−2unS(un) converge almost everywhere, 
respectively, to b(u)S(u) and |u|p(x)−2uS(u), respectively, in � and on ∂�. 
Thus, by Lebesgue-dominated convergence theorem, the sequences b(un)S(un) and 
|un|p(x)−2unS(un) converge to b(u)S(u) and |u|p(x)−2uS(u), respectively, strongly 
in L1(�) and in L1(∂�). One has so 

. lim
n→∞

∫
�

b(un)S(un)φ dx =
∫

�

b(u)S(u)φ dx

and 

. lim
n→∞

∫
∂�

|un|p(x)−2unS(un)φ dσ =
∫

∂�

|u|p(x)−2uS(u)φ dσ.

By Proposition 2.3.2-(iii), one has a(x,∇Tk(un)) that converges weakly to 
a(x,∇Tk(u)) in Lp′(.) (�), and as S(un)∇φ converges strongly to S(u)∇φ in 
Lp(.) (�), we deduce that 

. lim
n→∞

∫
�

S(un)a(x,∇Tk(un)).∇φ dx =
∫

�

S(u)a(x,∇Tk(u)).∇φ dx.

By Lemma 2.3.1, a(x, ∇Tk(un)).∇Tk(un) converges strongly to a(x,∇Tk(u)). 
∇Tk(u) in L1(�). So, 

. lim
n→∞

∫
�

S′(un)a(x,∇Tk(un)).∇Tk(un)φ dx =
∫

�

S′(u)a(x,∇Tk(u)).∇Tk(u)φ dx.

Now, we are interested in the right-hand side of (2.21). Since fn = Tn(f ) converges 
strongly to f in L1(�), then we conclude that 

. lim
n→∞

∫
�

fnS(un)φ dx =
∫

�

f S(u)φ dx.

Thus, passing to the limit in (2.21), we get that u verifies equality (2.16). ��
Lemma 2.3.3 The function u respects the estimate (2.15). ��
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Proof Let us take φ = Tk+1(un) − Tk(un) as test function in (2.17) to get 

. 

∫
�

a(x,∇un).∇(Tk+1(un) − Tk(un)) dx +
∫

�

b(un)(Tk+1(un) − Tk(un)) dx

+
∫

∂�

|un|p(x)−2un(Tk+1(un) − Tk(un)) dσ =
∫

�

fn(Tk+1(un) − Tk(un)) dx.

(2.22) 

One has Tk+1(z) − Tk(z) = 

⎧⎨ 

⎩ 

sign(z) if |z| > k  + 1, 
0 if |z| < k,  
z − ksign(z) if k ≤ |z| ≤ k + 1. 

The test function Tk+1(un)−Tk(un) has a support contained in the set {|un| ≥  k}, is  
bounded by one and has the same sign that un which has the same sign that b(un) as 
b is non-decreasing and b(0) = 0. So, un(Tk+1(un)−Tk(un)) and b(un)(Tk+1(un)− 
Tk(un)) are non-negative. We also have∇(Tk+1(un)−Tk(un)) = ∇unχ{k<|un|<k+1}, 
and so, the equality (2.22) gives  

.

∫
{k<|un|<k+1}

a(x,∇un).∇un dx ≤
∫

{|un|≥k}
|fn| dx. (2.23) 

The sequence (fn)n∈N is equi-integrable on � as it converges strongly in L1(�). 
It is sufficient to prove that meas({|un| ≥  k}) converges to zero as k goes to 
infinity uniformly in n. For that, we take Tk(un) as test function in the weak 
formulation (2.17) to get 

. 

∫
�

a(x,∇Tk(un)).∇Tk(un) dx +
∫

�

b(un)Tk(un)dx +
∫

∂�

|un|p(x)−2unTk(un)dσ

=
∫

�

fnTk(un)dx. (2.24) 

As a(x, ∇Tk(un)).∇Tk(un) is positive by (2.6) and as b(un)Tk(un) and unTk(un) are 
positive since b and Tk are non-decreasing and b(0) = Tk(0) = 0, so, from (2.24), 
we get 

.

∫
�

b(un)Tk(un) dx ≤
∫

�

fnTk(un) dx, (2.25) 

which gives 

.

∫
{|un|≥k}

b(un)Tk(un) dx ≤
∫

�

fnTk(un) dx. (2.26)
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Since b is non-decreasing and b(0) = 0, then |b(un)| ≥  min(b(k), |b(−k)|) on 
{|un| ≥  k}, and (2.26) gives  

. min(b(k), |b(−k)|)
∫

{|un|≥k}
|Tk(un)| dx,≤

∫
�

fnTk(un) dx,

which becomes 

. kmin(b(k), |b(−k)|)meas({|un| ≥ k}) ≤ k ‖f ‖L1(�) ,

since |Tk(un)| =  k on {|un| ≥  k} and ‖fn‖L1(�) ≤ ‖f ‖L1(�). 
Thus, 

.meas({|un| ≥ k}) ≤ ‖f ‖L1(�)

min(b(k), |b(−k)|) −→ 0, as k −→ ∞, (2.27) 

since b is non-decreasing and onto and so has an infinity limit at infinity. 
Hence, by (2.27) and the equi-integrability of fn, the right-hand side of (2.23) 

tends to zero uniformly in n as k → ∞. So, by the monotonicity (2.6), one has 

. lim
k→∞ sup

n

∫
{k<|un|<k+1}

a(x,∇un).∇undx = 0

or 

. lim
k→∞ lim

n→∞

∫
�

a(x,∇Tk+1(un)).∇Tk+1(un)χ{k<|un|<k+1}dx = 0. (2.28) 

Let 

. Dn,k := a(x,∇Tk+1(un)).∇Tk+1(un).

According to Lemma 2.3.1, Dn,k → a(x, ∇Tk+1(u)).∇Tk+1(u) strongly in L1(�). 
Moreover, as un converges a.e. to u by Proposition 2.3.2, so by the continuity of 
χ(k,k+1)∪(−k−1,−k)(.) on the image of � by u(.), we conclude that, as n → ∞, 

. χ{k<|un|<k+1} = χ(k,k+1)∪(−k−1,−k)(un) → χ(k,k+1)∪(−k−1,−k)(u)

= χ{k<|u|<k+1} a.e. in �.

Indeed, χ(k,k+1)∪(−k−1,−k)(.) is continuous if meas ({|u| =  k}) = 0 for a.e. k >  0. 
But, for all n, one has 

.

{
|Tk(u)| ≥ k − 1

2

}
⊂ {|un| ≥ k − 1} ∪

{
|Tk(un) − Tk(u)| >

1

2

}
,
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and so 

. meas

({
|Tk(u)| ≥ k − 1

2

})
≤ meas ({|un| ≥ k − 1})

+ meas

({
|Tk(un) − Tk(u)| >

1

2

})
.

From (2.27) and as Tk(un) converges to Tk(u) in measure in �, one gets, as n → ∞, 

. meas ({|u| = k}) ≤ meas

({
|Tk(u)| ≥ k − 1

2

})
≤ 0 �⇒ meas ({|u| = k}) = 0.

Now, one has 

. 

⎧⎨
⎩

Dn,k → a(x,∇Tk+1(u)).∇Tk+1(u) strongly in L1(�),

Dn,kχ{k<|un|<k+1} → a(x,∇Tk+1(u)).∇Tk+1(u)χ{k<|u|<k+1} a.e. in �, and∣∣Dn,kχ{k<|un|<k+1}
∣∣ ≤ Dn,k ∈ L1(�) a.e. in �, for all n ∈ N.

So, by the Lebesgue generalized convergence theorem, we can write 

. lim
n→∞

∫
�

Dn,kχ{k<|un|<k+1} dx =
∫

�

a(x,∇Tk+1(u)).∇Tk+1(u)χ{k<|u|<k+1} dx.

(2.29) 

Now, coming back to the equality (2.28), we get the equality 

. lim
k→∞

∫
{k<|u|<k+1}

a(x,∇u).∇udx = 0, (2.30) 

which proves Lemma 2.3.3. ��
Lemma 2.3.4 The function u is a renormalized solution of (2.1). ��
Proof From Proposition 2.3.2 and Remark 2.3.3 and results of [2, proof of Theorem 
3.1], one has Tk(u) ∈ W 1,p(.) (�), and there exists a function v ∈ L1(∂�) such that 
un → v a.e. on ∂� and Tk(v) = τ(Tk(u)) a.e. on ∂� for all k >  0. Now, taking 
φ = sign(un) as test function in the weak formulation (2.17) for  un, we get 

. 

∫
�

b(un)sign(un) dx +
∫

∂�

|un|p(x)−2unsign(un) dσ =
∫

�

fnsign(un) dx,

which implies 

.

∫
∂�

|un|p(x)−2|un| dσ ≤ ‖f ‖L1(�) . (2.31)
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By Fatou’s lemma, as n → ∞, (2.31) gives  

. 

∫
∂�

|u|p(x)−2|u| dσ ≤ ‖f ‖L1(�) ,

which means that |u|p(x)−2u ∈ L1(∂�), i.e., v ∈ Lp(x)−1(∂�). 
Now, we prove that b(u) ∈ L1(�). By (2.26), one has 

. 

∫
�

|b(un)| dx =
∫

{|un|<k}
|b(un)| dx +

∫
{|un|≥k}

|b(un)| dx

≤ max(b(k), |b(−k)|)meas(�) + ‖f ‖L1(�) .

Therefore, ‖b(un)‖L1(�) is uniformly bounded. One also has, by the continuity of 
b, b(un) −→ b(u) a.e. in �. So, Fatou’s lemma gives us 

. 

∫
�

|b(u)| dx ≤ lim inf
n→∞

∫
�

|b(un)| dx

≤ max(b(k), |b(−k)|)meas(�) + ‖f ‖L1(�) .

Hence, b(u) ∈ L1(�). Also, thanks to lemmas 2.3.2 and 2.3.3, we conclude that u 
is a renormalized solution to the problem (2.1). 

This ends the proof of Theorem 2.3.1. ��
Now, let us go to the uniqueness of the solution of problem (2.1). 

2.3.2 Uniqueness of Renormalized Solution 

Theorem 2.3.2 Assume (2.3)–(2.8), f ∈ L1(�). Then, there is uniqueness of the 
renormalized solution to the problem (2.1). ��
Proof Let k, h > 0 and u1 and u2 be two renormalized solutions of problem (2.1) 
associated to the same data f ∈ L1(�). As  Th(u2) ∈ W 1,p(.) (�) ∩ L∞(�), then 
one has Tk(u1 − Th(u2)) ∈ W 1,p(.) (�) ∩ L∞(�) that can be taken as test function 
in (2.16) for  u1. Similarly, we can take Tk(u2 −Th(u1)) as test function in (2.16) for  
u2. Upon addition, we get 

.

∫
{|u1−Th(u2)|≤k}

SM(u1)a(x,∇u1).∇(u1 − Th(u2)) dx

+
∫

{|u2−Th(u1)|≤k}
SM(u2)a(x,∇u2).∇(u2 − Th(u1)) dx

+
∫

�

S′
M(u1)a(x,∇u1).(∇u1)Tk(u1 − Th(u2)) dx
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+
∫

�

S′
M(u2)a(x,∇u2).(∇u2)Tk(u2 − Th(u1)) dx 

+
∫

�

SM(u1)b(u1)Tk(u1 − Th(u2)) dx +
∫

�

SM(u2)b(u2)Tk(u2 − Th(u1)) dx 

+
∫

∂�

SM(u1)|u1|p(x)−2u1Tk(u1 − Th(u2)) dσ 

+
∫

∂�

SM(u2)|u2|p(x)−2u2Tk(u2 − Th(u1)) dσ 

=
∫

�

f
(
SM(u1)Tk(u1 − Th(u2)) + SM(u2)Tk(u2 − Th(u1))

)
dx, (2.32) 

where (SM) is the sequence of functions in S defined in (2.14). While M and k are 
fixed, h can be sent to infinity. Define the sets 

. E1 := {|u1−u2| ≤ k, |u2| ≤ h}, E2 := E1∩{|u1| ≤ h}, and E3 := E1∩{|u1| > h}.

We start with the first integral in (2.32). By (2.6), we have 

.

∫
{|u1−Th(u2)|≤k}

SM(u1)a(x,∇u1).∇(u1 − Th(u2)) dx

=
∫

{|u1−Th(u2)|≤k,|u2|≤h}
SM(u1)a(x,∇u1).∇(u1 − Th(u2)) dx

+
∫

{|u1−Th(u2)|≤k,|u2|>h}
SM(u1)a(x,∇u1).∇(u1 − Th(u2)) dx

=
∫

{|u1−Th(u2)|≤k,|u2|≤h}
SM(u1)a(x,∇u1).∇(u1 − u2) dx

+
∫

{|u1−Th(u2)|≤k,|u2|>h}
SM(u1)a(x,∇u1).∇u1 dx

≥
∫

{|u1−Th(u2)|≤k,|u2|≤h}
SM(u1)a(x,∇u1).∇(u1 − u2) dx

=
∫

E2

SM(u1)a(x,∇u1).∇(u1 − u2) dx +
∫

E3

SM(u1)a(x,∇u1).∇(u1 − u2) dx

=
∫

E2

SM(u1)a(x,∇u1).∇(u1 − u2) dx +
∫

E3

SM(u1)a(x,∇u1).∇u1 dx

−
∫

E3

SM(u1)a(x,∇u1).∇u2 dx
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≥
∫

E2 

SM(u1)a(x,∇u1).∇(u1 − u2) dx  −
∫

E3 

SM(u1)a(x, ∇u1).∇u2 dx. 

(2.33) 

Using (2.7) and Hölder-type inequality, the last integral in (2.33) gives  

. 

∣∣∣∣
∫

E3

SM(u1)a(x,∇u1).∇u2 dx

∣∣∣∣
≤ C sup

M

‖SM‖L∞

(
‖M‖p′(.) +

∥∥∥|∇u1|p(x)−1
∥∥∥

Lp′(.)({h<|u1|≤h+k})

)

×‖∇u2‖Lp(.)({h−k<|u2|≤h}) . (2.34) 

Now, we take φ = Tk(u1 − Th(u1)) as test function in (2.16) for  u1 and S ∈ S such 
that S = Sh+k+1. We get 

. 

∫
�

S(u1)a(x,∇u1).∇Tk(u1 − Th(u1)) dx

+
∫

�

S′(u1)a(x,∇u1).(∇u1)Tk(u1 − Th(u1)) dx

+
∫

�

b(u1)S(u1)Tk(u1−Th(u1)) dx

+
∫

∂�

S(u1)|u1|p(x)−2u1Tk(u1−Th(u1)) dσ

=
∫

�

f S(u1)Tk(u1 − Th(u1)) dx.

Since the third and fourth integrals are non-negative, then one has 

. 

∫
{h<|u1|≤h+k}

a(x,∇u1).∇u1 dx − k

∫
{h+k<|u1|≤h+k+1}

a(x,∇u1).∇u1 dx

≤ k

∫
{|u1|>h}

|f | dx,

and so 

.

∫
{h<|u1|≤h+k}

a(x,∇u1).∇u1 dx

≤ k

(∫
{|u1|>h}

|f | dx +
∫

{h+k<|u1|≤h+k+1}
a(x,∇u1).∇u1 dx

)
.
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By using (2.8), we get 

. C2

∫
{h<|u1|≤h+k}

|∇u1|p(x) dx

≤ k

(∫
{|u1|>h}

|f | dx +
∫

{h+k<|u1|≤h+k+1}
a(x,∇u1).∇u1 dx

)
.

By (2.15) and since meas({|u1| > h}) → 0 as  h → ∞, and since f ∈ L1(�), we  
deduce that 

. lim
h→∞

∫
{h<|u1|≤h+k}

|∇u1|p(x) dx = 0, for any fixed number k > 0,

and so, by Lemma 2.2.2, we get lim 
h→∞

∥∥∥|∇u1|p(x)−1
∥∥∥

Lp′(.)({h<|u1|≤h+k}) = 0. 
Similarly, taking φ = Tk(u2 − Th(u2)) as test function in (2.16) for  u2 with the 

same S in S, we get 

. lim
h→∞

∫
{h<|u2|≤h+k}

|∇u2|p(x) dx = 0, for any fixed number k > 0.

Hence, 

. lim
h→∞

∫
{h−k<|u2|≤h}

|∇u2|p(x) dx = lim
l→∞

∫
{l<|u2|≤l+k}

|∇u2|p(x) dx = 0,

for any fixed number k >  0 with l = h − k. 
So, by Lemma 2.2.2, 

. ‖∇u2‖Lp(.)({h−k<|u2|≤h}) → 0 as h → ∞, for any fixed number k > 0.

Therefore, from (2.33) and (2.34), we obtain 

. 

∫
{|u1−Th(u2)|≤k}

SM(u1)a(x,∇u1).∇(u1 − Th(u2)) dx

≥ Ih +
∫

E2

SM(u1)a(x,∇u1).∇(u1 − u2) dx, (2.35) 

where Ih converges to zero as h → ∞. 
We may adopt the same procedure to treat the second term in (2.32) to obtain 

.

∫
{|u2−Th(u1)|≤k}

SM(u2)a(x,∇u2).∇(u2 − Th(u1)) dx
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≥ Jh −
∫

E2 

SM(u2)a(x,∇u2).∇(u1 − u2) dx, (2.36) 

where Jh converges to zero as h → ∞. 
Now, for all h, k > 0, we set 

. Kh =
∫

�

SM(u1)b(u1)Tk(u1−Th(u2)) dx +
∫

�

SM(u2)b(u2)Tk(u2−Th(u1)) dx,

Ph =
∫

∂�

SM(u1)|u1|p(x)−2u1Tk(u1 − Th(u2))dσ

+
∫

∂�

SM(u2)|u2|p(x)−2u2Tk(u2 − Th(u1))dσ,

Rh =
∫

�

S′
M(u1)a(x,∇u1).(∇u1)Tk(u1 − Th(u2)) dx

+
∫

�

S′
M(u2)a(x,∇u2).(∇u2)Tk(u2 − Th(u1)) dx,

and 

. Fh =
∫

�

f
(
SM(u1)Tk(u1 − Th(u2)) + SM(u2)Tk(u2 − Th(u1))

)
dx.

We have 

. SM(u1)b(u1)Tk(u1 − Th(u2)) → SM(u1)b(u1)Tk(u1 − u2) a.e. in �, as h → ∞,

and 

. |SM(u1)b(u1)Tk(u1 − Th(u2))| ≤ k|b(u1)| ∈ L1(�).

Then, by Lebesgue-dominated convergence theorem, we deduce that 

. lim
h→∞

∫
�

SM(u1)b(u1)Tk(u1 − Th(u2)) dx =
∫

�

SM(u1)b(u1)Tk(u1 − u2) dx.

(2.37) 

Similarly, we have 

. lim
h→∞

∫
�

SM(u2)b(u2)Tk(u2 − Th(u1)) dx =
∫

�

SM(u2)b(u2)Tk(u2 − u1) dx.

(2.38) 

Using (2.37) and (2.38), we get
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. lim
h→∞ Kh =

∫
�

(
SM(u1)b(u1) − SM(u2)b(u2)

)
Tk(u1 − u2) dx. (2.39) 

By the same procedure as above, we use the Lebesgue-dominated convergence 
theorem to obtain 

. lim
h→∞ Ph =

∫
∂�

(
SM(u1)|u1|p(x)−2u1 − SM(u2)|u2|p(x)−2u2

)
Tk(u1 − u2) dσ, . 

(2.40) 

lim 
h→∞ 

Rh =
∫

�

(
S′

M(u1)a(x,∇u1).∇u1 − S′
M(u2)a(x,∇u2).∇u2

)
Tk(u1 − u2) dx,  

(2.41) 

and 

. lim
h→∞ Fh =

∫
�

f
(
SM(u1) − SM(u2)

)
Tk(u1 − u2) dx. (2.42) 

Using (2.35), (2.36), (2.39)–(2.42), we get from (2.32) the following inequality as 
h → ∞. 

. 

∫
{|u1−u2|≤k}

(
SM(u1)a(x,∇u1) − SM(u2)a(x,∇u2)

)
.∇(u1 − u2) dx

+
∫

�

(
S′

M(u1)a(x,∇u1).∇u1 − S′
M(u2)a(x,∇u2).∇u2

)
Tk(u1 − u2) dx,

+
∫

�

(
SM(u1)b(u1) − SM(u2)b(u2)

)
Tk(u1 − u2) dx

+
∫

∂�

(
SM(u1)|u1|p(x)−2u1 − SM(u2)|u2|p(x)−2u2

)
Tk(u1 − u2) dσ

≤
∫

�

f
(
SM(u1) − SM(u2)

)
Tk(u1 − u2) dx. (2.43) 

Now, we fix k >  0, and we pass to the limit in (2.43), as M tends to infinity. The 
second term of the left-hand side of (2.43) is, in absolute value, smaller than 

. k

(∫
{M−1≤|u1|≤M}

a(x,∇u1).∇u1 +
∫

{M−1≤|u2|≤M}
a(x,∇u2).∇u2

)
,

which converges to zero, as M → ∞, thanks to relation (2.15) for  u1 and for u2. 
Therefore, the second integral of (2.43) converges to zero as M → ∞. 

Since SM → 1 as  M → ∞, then
(
SM(u1)a(x,∇u1)−SM(u2)a(x,∇u2)

)
.
(∇u1− 

∇u2
)
converges a.e. to

(
a(x,∇u1)−a(x,∇u2)

)
.
(∇u1−∇u2

)
, and moreover, thanks 

to (2.7) and to Hölder-type inequality, one has
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. 
∣∣(SM(u1)a(x,∇u1) − SM(u2)a(x,∇u2)

)
.
(∇u1 − ∇u2

)∣∣
≤ (|a(x,∇u1)| + |a(x,∇u2)|

)
.
(|∇u1| + |∇u2|

) ∈ L1(�).

Thus, by the Lebesgue-dominated convergence theorem, the first integral in (2.43) 

converges to
∫

{|u1−u2|≤k}
(
a(x,∇u1) − a(x, ∇u2)

)
.∇(u1 − u2) dx. 

Similarly, one has the third and fourth integrals in (2.43) that converge, 

respectively, to
∫

�

(
b(u1) − b(u2)

)
Tk(u1 − u2) dx  and

∫
∂�

(
|u1|p(x)−2u1 − 

|u2|p(x)−2u2

)
Tk(u1 − u2) dσ  by the dominated convergence theorem. 

We next examine the right-hand side of (2.43). For all k >  0, 

. f
(
SM(u1) − SM(u2)

)
Tk(u1 − u2) → 0 a.e. in � as M → ∞

and 

. |f (
SM(u1) − SM(u2)

)
Tk(u1 − u2)| ≤ 2k|f | ∈ L1(�).

The dominated convergence theorem allows us to write 

. lim
M→∞

∫
�

f
(
SM(u1) − SM(u2)

)
Tk(u1 − u2) dx = 0.

Thus, as M → ∞, (2.43) gives  

. 

∫
{|u1−u2|≤k}

(
a(x,∇u1) − (u2)a(x,∇u2)

)
.∇(u1 − u2) dx

+
∫

�

(
b(u1) − b(u2)

)
Tk(u1 − u2) dx

+
∫

∂�

(
|u1|p(x)−2u1 − |u2|p(x)−2u2

)
Tk(u1 − u2) dσ ≤ 0, (2.44) 

for all k >  0. 
The functions b, Tk , and t �−→ |t |p−2t (p >  1) are non-decreasing and vanish 

at 0; then, by using (2.6), one has all the integrals in (2.44) that are non-negative. 
Therefore, for all k >  0, 

.

∫
{|u1−u2|<k}

(
a(x,∇u1) − a(x,∇u2)

)
.
(∇u1 − ∇u2

)
dx = 0, (2.45) 

.

∫
�

(
b(u1) − b(u2)

)
Tk(u1 − u2) dx = 0, (2.46)
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and 

.

∫
∂�

(
|u1|p(x)−2u1 − |u2|p(x)−2u2

)
Tk(u1 − u2) dσ = 0. (2.47) 

From the strict monotonicity assumption (2.6), (2.45) gives  

.∇u1 = ∇u2 a.e. on {|u1 − u2| < k}. (2.48) 

Because k is arbitrary, as k → ∞, we conclude that ∇u1 = ∇u2 a.e. on �. 
Therefore, 

.u1 − u2 = c a.e. in �, where c is a real constant. (2.49) 

From (2.47), for all k >  0, there exists a subset �∂ 
k ⊂ ∂� with measN−1(�

∂ 
k) = 0 

such that for all x ∈ ∂� \ �∂ 
k , 

.

(
|u1(x)|p(x)−2u1(x) − |u2(x)|p(x)−2u2(x)

)
Tk

(
u1(x) − u2(x)

) = 0. (2.50) 

Therefore, 

. 

(
|u1(x)|p(x)−2u1(x) − |u2(x)|p(x)−2u2(x)

)(
u1(x) − u2(x)

) = 0,

∀x ∈ ∂� \
(

∪
k∈N∗ �∂

k

)
. (2.51) 

But, since p− > 1, then from relation

(
|ξ |p(x)−2ξ − |η|p(x)−2η

)
(ξ − η) > 0 for all ξ,  η  ∈ R, ξ 	= η (cf. [10]), 

(2.51) gives  

.u1 = u2 a.e. on ∂�. (2.52) 

Now, for k >  0 fixed, one has, from (2.49), Tk(u1 − u2) = Tk(c) ∈ W 1,1(�), and 
so, according to Lemma 2.2.5, one gets 

. 

∫
�

|Tk(u1 − u2)| dx ≤ C3

(∫
{|u1−u2|≤k}

|∇(u1 − u2)| dx +
∫

∂�

|Tk(u1 − u2)| dσ

)
,

(2.53) 

which gives, by using  (2.48) and (2.52), 

.u1 = u2 a.e. in �. (2.54)

��
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2.4 Continuous Dependence of Renormalized Solution 

Assume that (2.3)–(2.8) are verified, for all .n ∈ N, with the diffusion flux functions 
.an(., .), the exponents .pn : � −→ [p−, p+], and the non-negative functions .Mn in 

.Lp′
n(.)(�) such that the sequence .

(
Mp′

n(.)
n

)
n∈N is equi-integrable, and with . C1, . C2, 

. p+, and . p− independent of n. 
According to theorems 2.3.1 and 2.3.2, there is a unique renormalized solution 

. un to problem .(Pbn) under assumption that data . fn are in .L1(�). 
The purpose of this section is to prove that the sequence of solutions .(un)n∈N to 

problems .(Pbn) converges to a function u that is the solution of limit problem (2.1), 
when we have the following convergence assumptions: 

.

∣∣∣∣∣∣
for all bounded subset K of RN,

sup
ξ∈K

|an(., ξ) − a(., ξ)| converges to zero in measure on �, (2.55) 

where .a(x, ξ) verifies the assumptions (2.5)–(2.8) with the exponent p verify-
ing (2.3) such that 

.pn converges to p in measure on �. (2.56) 

Finally, assume that 

. fn converges to f weakly in L1(�). (2.57) 

We further assume that the exponent p verifies log-Hölder continuity assumption: 

.∃c > 0,∀x, y ∈ �, x 	= y,−(log |x − y|)|p(x) − p(y)| ≤ c. (2.58) 

Remark 2.4.1 Note that several regularity results for Sobolev spaces with variable 
exponents can be obtained thanks to log-Hölder continuity condition (2.58); in 
particular, .C∞(�) is dense in .W 1,p(.)(�) . (for more details, see [7]). 

Now, through the theorem below, we establish a structural stability result for the 
renormalized solutions. 

Theorem 2.4.1 Under the assumptions (2.55)–(2.57), let .(un)n∈N be the sequence 
of renormalized solutions of the problems .(Pbn) associated to .an(., .), . fn and . pn. 

Assume that the exponents p, . pn verify log-Hölder continuity assump-
tion (2.58). 

Then, there exists a measurable function u defined on . � such that . un

converges to u a.e. in . � and .∇un converges to .∇u a.e. in . �, as  .n → ∞. The 
function u is a renormalized solution of the problem (2.1) associated to .a(., .), f 
and p. ��
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Proof of Theorem 2.4.1 We shall divide the proof into several steps. Throughout 
the proof, all extracted subsequences of a sequence will be still noted as this 
sequence and all constant independent of n will be denoted by C. 

Lemma 2.4.1 

.(i) For all .k > 0, the sequence .
(‖Tk(un)‖1,pn(.)

)
n∈N is bounded. 

.(ii) The sequence of renormalized solutions .(un)n∈N of the problems . (Pbn)

verifies, for .k > 0 large enough, the following estimates: 

.meas({|un| > k}) ≤ C ‖fn‖L1(�)

min (b(k), |b(−k)|) , (2.59) 

. sup
n

meas({|un| > k}) → 0, as k → ∞, (2.60) 

and 

. lim
k→∞ sup

n

∫
{k<|un|<k+1}

|∇un|pn(x) dx = 0. (2.61) 

.(iii) There exists a measurable function u on . � such that, for all .k > 0, . Tk(un)

converges to .Tk(u) ∈ W 1,p(.)(�)weakly in .W 1,p(.)(�). Furthermore, . un → u

a.e. on . �, and, for all .k > 0, .∇Tk(un) converges to a Young measure . (νk
x)x

on . R
N in the sense of the nonlinear weak-. ∗ convergence and 

.∇Tk(u) =
∫
R

N
λdνk

x(λ). (2.62) 

.(iv) There exists a function .v ∈ Lp(x)−1(∂�) such that for a.e. .k > 0, 

. Tk(v) = τ(Tk(u)) a.e. on ∂�.

.(v) For all .k > 0, 

. 

∫
R

N×�

|λ|p(x)dνk
x(λ)dx < ∞ et Tk(u) ∈ W 1,p(.)(�).

.(vi) One has 

. lim
k→∞

∫
�

|∇(Tk+1(u) − Tk(u))|p(x) dx = 0. (2.63)



2 Structural Stability of .p(x)-Laplace Problems with Robin-Type Boundary Condition 63

Proof 

.(i) In the renormalized formulation (2.16) of the problem .(Pbn), we choose 
.S ∈ S such that .S = Sh+k , where .Sh+k is defined in (2.14) with .h, k > 0, 
h large enough. Also, since .Tk(un) ∈ W 1,pn(.)(�) ∩ L∞(�) because . un

is a renormalized solution of the problem .(Pbn), then we can take . φ =
Tk(un) as test function in the renormalized formulation (2.16) and view that 

the terms .

∫
�

b(un)S(un)Tk(un) dx and .

∫
∂�

S(un)|un|pn(x)−2unTk(un) dσ are 

non-negative, and we get 

. 

∫
�

an(x,∇Tk(un)).∇Tk(un) dx +
∫

�

S′(un)an(x,∇un).(∇un)Tk(un) dx

≤ k

∫
�

|fn| dx.

While k is fixed, h can be sent to infinity. The second term of the left-hand 
side of this last inequality vanishes, as .h → ∞, due to (2.15). And, by using 
coercivity condition (2.8), we have 

. C2

∫
�

|∇Tk(un)|pn(x) dx ≤ k

∫
�

|fn| dx.

Since the sequence .(fn)n∈N converges weakly in .L1(�), then the right-hand 
side of this last inequality is uniformly bounded. So, we obtain 

.

∫
�

|∇Tk(un)|pn(x) dx ≤ Ck. (2.64) 

Moreover, 

.

∫
�

|Tk(un)|pn(x)dx ≤
∫

�

kpn(x)dx ≤ max
(
kp+ , kp−)

meas(�). (2.65) 

From (2.64) and (2.65), we deduce that the sequence .ρ1,pn(.)(Tk(un)) is 
uniformly bounded. By Lemma 2.2.3 and the fact that .pn(.) ∈ [p−, p+], one 
has 

. ‖Tk(un)‖1,pn(.) ≤ max
(
ρ1,pn(.)(Tk(un))

1/p− , ρ1,pn(.)(Tk(un))
1/p+

)
.

We conclude that the sequence .‖Tk(un)‖1,pn(.) is uniformly bounded.
.(ii) In the renormalized formulation (2.16) of problem .(Pbn), we assume that 

.S ∈ S is such that .S = Sk , and we take .φ = T 1
k
(un) as test function, with 

.k > 0 large enough. We obtain
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. 

∫
�

S(un)an(x,∇un).∇T 1
k
(un) dx +

∫
�

S′(un)an(x,∇un).(∇un)T 1
k
(un) dx

+
∫

�

b(un)S(un)T 1
k
(un) dx +

∫
∂�

S(un)|un|pn(x)−2unT 1
k
(un) dσ

=
∫

�

fnS(un)T 1
k
(un) dx,

which becomes 

. 

∫
�

an

(
x,∇T 1

k
(un)

)
.∇T 1

k
(un) dx +

∫
�

S′(un)an(x,∇un).(∇un)T 1
k
(un) dx

+
∫

�

b(un)S(un)T 1
k
(un) dx +

∫
∂�

S(un)|un|pn(x)−2unT 1
k
(un) dσ

≤ 1

k
‖fn‖L1(�) .

We deduce that 

. k

∫
�

S′(un)an(x,∇un).(∇un)T 1
k
(un) dx + k

∫
�

b(un)S(un)kT 1
k
(un) dx

≤ ‖fn‖L1(�)

and 

. k

∫
�

S′(un)an(x,∇un).(∇un)T 1
k
(un) dx

+k

∫
∂�

S(un)|un|pn(x)−2unT 1
k
(un) dσ ≤ ‖fn‖L1(�) .

The term .k
∫

�

S′(un)an(x,∇un).(∇un)T 1
k
(un) dx vanishes, as .k → ∞, due 

to (2.15). Also, .kT 1
k
(un) → sign(un) as .k → ∞. So, by using Fatou’s lemma, 

we get, as .k → ∞, 

.

∫
�

|b(un)| dx ≤ ‖fn‖L1(�) (2.66) 

and 

.

∫
∂�

|un|pn(x)−1 dσ ≤ ‖fn‖L1(�) . (2.67) 

The inequality (2.66) becomes, for .k > 0,
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.

∫
{|un|>k}

|b(un)| dx ≤ ‖fn‖L1(�) . (2.68) 

Therefore, since .|b(un)| ≥ min(b(k), |b(−k)|) on .{|un| > k}, the  rela-
tion (2.68) gives  

. min(b(k), |b(−k)|)meas({|un| > k}) ≤ ‖fn‖L1(�)

or again 

.meas({|un| > k}) ≤ ‖fn‖L1(�)

min(b(k), |b(−k)|) . (2.69) 

Being weakly convergent in .L1(�), the sequence .(fn)n∈N is bounded, so the 
right-hand side of (2.69) tends to zero as .k → ∞, then . meas({|un| > k})
tends to zero as .k → ∞ uniformly in n, and (2.60) is proved. 

For the proof of (2.61), let us take .φ = Tk+1(un) − Tk(un) as test function 
and .S ∈ S such that .S = Sk+2 in the renormalized formulation (2.16). The 
function .Tk+1(un) − Tk(un) has a support contained in the set .{|un| ≥ k} and 
is bounded by one. One deduces by (2.8) 

. C

∫
{k<|un|<k+1}

|∇un|pn(x) dx +
∫

�

S′(un)an(x,∇un).(∇un)φ dx

≤
∫

{|un|≥k}
|fn| dx.

(2.70) 

By the property (2.15) and by equi-integrability of . fn and because of (2.60), 
for .k → ∞, one deduces, from (2.70), the estimate (2.61).

.(iii) From Lemma 2.4.1–(i), one gets 

. ‖Tk(un)‖p−
W 1,p− (�)

=
∫

�

|Tk(un)|p−dx +
∫

�

|∇Tk(un)|p−dx

≤
∫

�

(
1+|Tk(un)|pn(x)

)
dx +

∫
�

(
1+|∇Tk(un)|pn(x)

)
dx

≤ 2meas(�) + ρ1,pn(.)(Tk(un))

≤ const (k).

And so, the sequence .Tk(un) is uniformly bounded in .W 1,p−(�). Therefore, 
up to a subsequence, we can assume that the sequence .Tk(un) converges to 
a certain function . σk weakly in .W 1,p−(�), and by the compact imbedding 
theorem of .W 1,p−(�) in .Lp−(�), one has .Tk(un) that converges strongly to
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. σk in .Lp−(�) and so a.e. in . �. Now, we have to prove that .σk = Tk(u) a.e. in 

. �. Let .s > 0, and define the sets 

. En := {|un| > k} , Em := {|um| > k} , andEn,m := {|Tk(un)−Tk(um)| > s} ,

with .k > 0. One has .{|un − um| > s} ⊂ En ∪ Em ∪ En,m, which gives 

. meas({|un − um| > s}) ≤ meas(En) + meas(Em) + meas(En,m).

Let .ε > 0. According to (2.60), we can choose .k = k(ε) to get 

. meas(En) ≤ ε

3
and meas(Em) ≤ ε

3
.

Since .Tk(un) converges strongly in .Lp−(�), then it is a Cauchy sequence in 
.Lp−(�). Hence, there exists .n0 = n0(ε, s) ∈ N such that for all .n,m ≥ n0, 

. meas(En,m) ≤ 1

sp−

∫
�

|Tk(un) − Tk(um)|p− dx ≤ ε

3
.

So, we deduce that 

. meas({|un − um| > s}) ≤ ε, for all n,m ≥ n0.

Finally, the sequence .(un)n∈N is a Cauchy sequence in measure. Hence, by 
extraction of subsequence, there exists a measurable function u such that 
.un → u a.e. in . �. Since . Tk is continuous, we have .Tk(un) → Tk(u) a.e. 
in . �, and by the uniqueness of the limit, one has .σk = Tk(u) a.e. in . � because 
.Tk(un) → σk a.e. in . �. 

Also, the weak convergence of .Tk(un) to .Tk(u) in .W 1,p−(�) leads to 
the weak convergence of .∇Tk(un) to .∇Tk(u) in .Lp−(�). Thanks to The-
orem 2.2.1. –(i), .∇Tk(un) nonlinear weak-* converges to a Young measure 
.
(
νk
x

)
x∈�

, and since its weak limit is .∇Tk(u), then .∇Tk(u) verifies the 
equality (2.62) according to (2.13). 

.(iv) One has .Tk(un) ⇀ Tk(u) in .W 1,p−(�) according to Lemma 2.4.1.–(iii), and 
since, for every .1 ≤ p ≤ ∞, the trace operator 

. τ : W 1,p(.)(�) −→ Lp(.)(∂�), u �−→ τ(u) = u|∂�,

is compact, .τ(Tk(un)) converges strongly to .τ(Tk(u)) in .Lp−(∂�), and so, up 
to a subsequence, we can assume that .τ(Tk(un)) converges a.e. to .τ(Tk(u)) on 
. ∂� for any .k > 0, and so . un converges a.e. to u on . ∂�. Then, since for a.e. 
.x ∈ �, .

(
Tk(u(x))

)
k
is monotone in k, we can define 

.v(x) := lim
k→∞ τ(Tk(u(x))) a.e. on ∂�, (2.71) 

and one has .Tk(v) = τ(Tk(u)), for a.e. .k > 0.
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Further, from (2.67), we have 

. 

∫
∂�

|un|pn(x)−1dσ ≤ ‖fn‖L1(�) ≤ C.

So, by Fatou’s lemma, one gets 

.

∫
∂�

|u|p(x)−1dσ ≤ C. (2.72) 

By (2.71) and (2.72), one has .v ∈ Lp(x)−1(∂�). 
.(v) By assumption (2.56), .pn → p in measure on . �, and since . ∇Tk(un) ⇀

∇Tk(u) in .Lp−(�), then according to Theorem 2.2.1.−(ii), .(iii), for all . k ∈
N, the sequence .(pn,∇Tk(un))n converges to the Young measure . δp(x) ⊗ dνk

x

on .R × R
N . 

Let us now consider the Carathéodory function 

. Fm : (x, (λ0, λ)) ∈ � × (R × R
N) �−→ |hm(λ)|λ0, m ∈ N,

where . hm is defined by (2.9). The sequence . (Fm(., (pn(.),∇Tk(un))))n∈N
is equi-integrable in . � since it is uniformly bounded in .L1(�) according 
to (2.64). Then, we apply the nonlinear weak-. ∗ convergence property (2.12) 
to the function . Fm to get 

. lim
n→∞

∫
�

Fm(x, (pn(x),∇Tk(un)(x))) dx

=
∫

�

∫
R×R

N
Fm(x, (λ0, λ)) dδp(x)(λ0)dνk

x(λ) dx

=
∫

�

∫
R

N
Fm(x, (p(x), λ)) dνk

x (λ)dx

=
∫

�×R
N

|hm(λ)|p(x) dνk
x(λ)dx.

Moreover, 

. lim
n→∞

∫
�

Fm(x, (pn(x),∇Tk(un)(x))) dx = lim
n→∞

∫
�

|hm(∇Tk(un))|pn(x) dx

≤ lim
n→∞

∫
�

|∇Tk(un)|pn(x) dx

≤ Ck according to (2.64).
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So, 

. 

∫
�×R

N
|hm(λ)|p(x) dνk

x (λ)dx ≤ Ck.

Since the sequence .(|hm|)m∈N is increasing and .hm(λ) −→ λ as .m → ∞, 
then by the monotone convergence theorem, we deduce that 

. 

∫
�×R

N
|λ|p(x) dνk

x(λ)dx ≤ Ck.

By the formula (2.62) and Jensen inequality, one has 

. 

∫
�

|∇Tk(u)|p(x) dx =
∫

�

∣∣∣∣
∫
R

N
λdνk

x(λ)

∣∣∣∣
p(x)

dx

≤
∫

�×R
N

|λ|p(x)dνk
x (λ)dx < Ck.

Hence, we deduce that .∇Tk(u) ∈ Lp(.)(�) and so .Tk(u) ∈ W 1,p(.)(�). 
.(vi) Up to subsequence, by .(iii), .Tk+1(un)−Tk(un) converges to . Tk+1(u)−Tk(u)

a.e. on . � and weakly in .W 1,p−(�). By arguing as in . (v), we get . ∇(Tk+1(u)−
Tk(u)) ∈ Lp(.)(�), and its modular is upper bounded by 

. sup
n

∫
�

|∇(Tk+1(u) − Tk(u))|pn(x) dx

= sup
n

∫
{k<|un|<k+1}

|∇un|pn(x) dx → 0, as k → ∞,

by (2.61). Thus, (2.63) follows. ��
Lemma 2.4.2 

.(i) For all .k > 0, the sequence .(Yk
n)n∈N, .Yk

n(x) := an(x,∇Tk(un(x))) is equi-
integrable on . �, and its weak limit .Yk ∈ Lp′(.)(�) is such that 

.Yk(x) :=
∫
R

N
a(x, λ)dνk

x(λ), a.e.x ∈ �. (2.73) 

.(ii) For all .̂k > k > 0, one has .Yk = Yk̂χ{|u|<k}. 

Proof 

.(i) We first show that the sequence .(Yk
n)n∈N, .Yk

n := an(x,∇Tk(un)) is equi-
integrable in . �. The assumption (2.7) applied on .an(., .) with exponent . pn(x)

implies, for all measurable subset .E ⊂ �,
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. 

∫
E

|Yk
n| dx ≤ C

∫
E

(
1 + Mn + |∇Tk(un)|pn(x)−1

)
dx

≤ C

∫
E

(1 + Mn) dx + 2C
∥∥∥|∇Tk(un)|pn(x)−1

∥∥∥
Lp′

n(.)
‖χE‖Lpn(.)

≤ C

∫
E

(1+Mn) dx +C′ max
((

ρpn(χE)
)1/p+ ,

(
ρpn(χE)

)1/p−)

≤ C

∫
E

(1 + Mn) dx + C′ max
(
meas(E)1/p+ ,meas(E)1/p−)

(2.74) 

by using Hölder-type inequality and Lemma 2.2.2, where 
.2C

∥∥|∇Tk(un)|pn(x)−1
∥∥

Lp′
n(.) is upper bounded by . C′ by (2.64). 

The whole right-hand side of (2.74) tends to zero when .meas(E) tends 
to zero because the sequence .(Mn)n∈N is equi-integrable in . �. And so, the 
sequence .(Yk

n)n∈N is equi-integrable in . �. By Theorem 2.2.1. –(i), there exists 
a weak limit . Yk for the sequence . Yk

n in .L1(�). 
In the following lines, we prove that the weak limit .Yk verifies the 

formula (2.73) and belongs to .Lp′(.)(�). 
We put the set 

. Rn := {x ∈ �; |p(x) − pn(x)| < 1/2} ,

and we consider auxiliary functions . Ỹk

n := a
(
x, (∇Tk(un))χRn

)
.

Let us show that the sequence .
(
Ỹk

n

)
n∈N is equi-integrable in . �. Indeed, 

we apply (2.7) with the exponent .p(.) on .a (., .) to get 

.

∫
E

Ỹk

n dx ≤ C

∫
E

(1 + M) dx + C

∫
E∩Rn

|∇Tk(un)|p(x)−1 dx. (2.75) 

The first term of the right-hand side of (2.75) tends to zero when . meas(E)

tends to zero. Also, for .x ∈ Rn, one has .p(x) ≤ pn(x) + 1/2, and, by using 
Hölder-type inequality, we have 

. 

∫
E∩Rn

|∇Tk(un)|p(x)−1 dx

≤
∫

E

(
1 + |∇Tk(un)|pn(x)−1/2) dx

≤ meas(E) + C

∥∥∥|∇Tk(un)|pn(x)−1/2
∥∥∥

L(2pn(.))′ ‖χE‖L2pn(.)

≤ meas(E) + C

∥∥∥|∇Tk(un)|pn(x)−1/2
∥∥∥

L(2pn(.))′ ‖χE‖L2pn(.) . (2.76)
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But, by (2.64), one has 

.ρ(2pn)′
(
|∇Tk(un)|pn(x)−1/2

)
= ρpn (∇Tk(un)) ≤ Ck. (2.77) 

Also, by Proposition 2.2.3, one has 

. ‖χE‖L2pn(.) ≤ max
((

ρ2pn (χE)
)1/(2p)+ ,

(
ρ2pn (χE)

)1/(2p)−
)

≤ max
(
(meas(E))1/(2p)+ , (meas(E))1/(2p)−

)
. (2.78) 

From (2.76)–(2.78), the second term of the right-hand side of (2.75) is  

uniformly small for .meas(E) small, and the equi-integrability of . 
(
Ỹk

n

)
n∈N

follows. 
Now, we assert that, by extraction of a subsequence, the sequence . Ỹk

n

converges weakly to some function .Ỹk
in .L1(�) as .n → ∞ thanks to 

Theorem 2.2.1. –(i). 

It remains to prove that .Yk = Ỹk
. For that, it is sufficient to prove that 

.Yk
n − Ỹk

n converges strongly to zero in .L1(�). 
Indeed, let .ε > 0. By the Chebyshev inequality, one has 

. meas({|∇Tk(un)| > L}) ≤
(∫

�

|∇Tk(un)| dx

) /
L

≤
∫

�

(
1 + |∇Tk(un)|pn(x)

)
dx

/
L

≤ (meas(�) + Ck) /L,

by inequality (2.64). 
It follows that .sup

n
(meas({|∇Tk(un)| > L}) → 0 as .L → ∞. The  

sequence .Yk
n − Ỹk

n is equi-integrable in . �, so there exists .L0 = L0(ε) such 
that for .L > L0, one has 

.

∫
{|∇Tk(un)|>L}

|Yk
n − Ỹk

n| dx ≤ ε/4, for all n ∈ N. (2.79) 

By the assumption (2.55), one has for all . σ > 0

. lim
n→∞ meas

({
x ∈ �; sup

|λ|≤L

|an(x, λ) − a(x, λ)| ≥ σ

})
= 0.
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Hence, by equi-integrability of .Yk
n − Ỹk

n on . �, there exists . n0 = n0(σ, L0) ∈
N such that for all .n > n0, 

.

∫
⎧⎨
⎩x∈�; sup

|λ|≤L

|an(x, λ) − a(x, λ)| ≥ σ

⎫⎬
⎭

|Yk
n − Ỹk

n| dx ≤ ε/4. (2.80) 

By the definition, one has .Ỹk

n = a(x,∇Tk(un)) on the set . Rn, and we consider 
the following set 

. RL,σ
n :=

{
x ∈ Rn; sup

|λ|≤L

|an(x, λ) − a(x, λ)| < σ, |∇Tk(un)| ≤ L

}
.

Since .|∇Tk(un)| ≤ L on .R
L,σ
n , then one has 

. |an(x,∇Tk(un)) − a(x,∇Tk(un))| < σ on RL,σ
n ,

and so, for all n, 

.

∫
R

L,σ
n

|Yk
n − Ỹk

n| dx ≤ σmeas(�) ≤ ε/4, (2.81) 

by taking .σ = σ(ε) < ε/(4meas(�)). 
Also, by (2.79) and (2.80), we have 

.

∫
Rn\RL,σ

n

|Yk
n − Ỹk

n| dx ≤ ε/2, for all n > n0(σ (ε), L(ε)). (2.82) 

Since . pn converges to p in measure on . �, one has . meas(� \ Rn) =
meas

( {|p − pn| ≥ 1/2} )
that converges to zero as .n → ∞, and the equi-

integrability of . Yk
n gives, for sufficiently large n, 

.

∫
�\Rn

|Yk
n − Ỹk

n| dx =
∫

�\Rn

|Yk
n| dx ≤ ε/4. (2.83) 

Now, by using (2.81), (2.82), and (2.83), we get, for .n > n0(σ (ε), L(ε)), 

. 

∫
�

|Yk
n − Ỹk

n|dx ≤ ε.

Hence, the sequence .Yk
n − Ỹk

n converges strongly to zero in .L1(�), as  n goes 
to infinity, and so, .Yk = Ỹk

.
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Let us show the representation formula (2.73) for  . Yk . Since . meas(� \
Rn) → 0 as .n → ∞, so, by the equi-integrability of .∇Tk(un) in . �, one 
has .∇Tk(un)(1 − χRn), which converges to zero as .n → ∞. Therefore, 
the sequence .∇Tk(un)χRn converges to the same Young measure . νk

x as 
the sequence .∇Tk(un). Now, fix  .ψ ∈ D(�), and let us consider the 

Carathéodory function .a(., .).ψ . Since the sequence . Ỹk

n = a(x,∇Tk(un)χRn)

is equi-integrable in . �, then we can use the nonlinear weak-* convergence 
property (2.12) to get 

. lim
n→∞

∫
�

a(x,∇Tk(un)χRn).ψ dx =
∫

�×R
N

a(x, λ).ψ dνk
x(λ)dx. (2.84) 

Since .a(x,∇Tk(un)χRn) converges weakly to . Ỹk
, (2.84) becomes 

. 

∫
�

Ỹk
.ψ dx =

∫
�×R

N
a(x, λ).ψdνk

x (λ)dx =
∫

�

(∫
R

N
a(x, λ)dνk

x (λ)

)
.ψdx,

which means that 

. Yk = Ỹk =
∫
R

N
a(x, λ)dνk

x (λ) inD′(�) and so, a.e. on �.

Now, we end the proof with .Yk ∈ Lp′(.)(�). One uses Jensen inequality, the 
assumption (2.7), and Lemma 2.4.1.–(v) to obtain 

. 

∫
�

|Yk(x)|p′(x)dx =
∫

�

∣∣∣∣
∫
R

N
a(x, λ)dνk

x(λ)

∣∣∣∣
p′(x)

dx

≤
∫

�×R
N

|a(x, λ)|p′(x)dνk
x (λ)dx

≤
∫

�×R
N

C(M(x) + |λ|p(x))dνk
x(λ)dx < ∞.

.(ii) Since .̂k > k, one has 

. Tk(un) ≡ Tk(Tk̂(un)),

and so 

. ∇Tk(un) = ∇Tk̂(un)χ{|Tk̂(un)|<k} = ∇Tk̂(un)χ{|un|<k}.

Moreover, from assumption (2.5), one has .an(x, 0) = 0 a.e. .x ∈ �. Hence,
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. an(x,∇Tk̂(un))χ{|un|<k} ≡ an(x,∇Tk(un)),

and the sequence .
(
hk

n

)
n∈N converges weakly to . Yk in .L1(�), according to . (i). 

Consider the sequence .
(
dk
n

)
n∈N such that 

. dk
n := gk

n − hk
n = an(x,∇Tk̂(un))

(
χ{|u|<k} − χ{|un|<k}

)
.

The function .χ(−k,k)(.) is continuous on the image of . � by .u(.) for a.e. .k > 0. 
Indeed, one has .meas ({|u| = k}) = 0 for a.e. .k > 0 by arguing as in the proof 
of Lemma 2.3.3. Therefore, since . un converges to u a.e. in . �, then 

. χ{|un|<k} = χ(−k,k)(un) → χ(−k,k)(u) = χ{|u|<k} a.e. in � as n → ∞.

So, 

. dk
n → 0 a.e. in �.

Moreover, by . (i), the sequence .
(
dk
n

)
n∈N is equi-integrable in . �. Hence, by 

Vitali’s theorem, the sequence .
(
dk
n

)
n∈N converges strongly to zero in .L1(�). 

Therefore, .gk
n = hk

n +dk
n tends to . Yk weakly in .L1(�). So, this ends the proof 

of . (ii). ��
Lemma 2.4.3 

.(i) For all .k > 0, 

. lim
n→∞

∫
�

Yk
n.∇Tk(un) dx =

∫
�

Yk.∇Tk(u) dx, (2.85) 

and the “div-curl” inequality 

.

∫
�×R

N
(a(x, λ) − a(x,∇Tk(u))).(λ − ∇Tk(u))dνk

x(λ)dx ≤ 0 (2.86) 

holds. 
.(ii) For all .k > 0, 

.Yk(x) = a(x,∇Tk(u(x))) for a.e. x ∈ �, (2.87) 

. and ∇Tk(un) converges to ∇Tk(u) in measure in � as n → ∞.

Proof 

. (i) Let .ψ ∈ C∞(�). Since .pn(.) is log-Hölder continuous, then .C∞(�) is 
dense in .W 1,pn(.)(�). So, we can take . ψ as test function in the renormalized
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formulation (2.16) for . un. We get 

. 

∣∣∣∣
∫

�

(
b(un)S(un)ψ + S(un)YM

n .∇ψ − fnS(un)ψ

)
dx +

∫
∂�

S(un)|un|pn(x)−2unψdσ

∣∣∣∣
≤ ‖ψ‖L∞

∫
�

|S′(un)|YM
n .∇TM(un) dx, (2.88) 

where .S ∈ S with .suppS ⊂ [−M,M], .M > 0. 

We are going to pass to the limit in (2.88), as n tends to infinity. By 
Lemma 2.4.1.–(iii), . un converges to u a.e. in . �. By the continuity of b and S, 
the term .b(un)S(un) converges a.e. in . � to .b(u)S(u). Also,  . |b(un)S(un)ψ | ≤
‖S‖L∞ max(b(M), |b(−M)|)|ψ | ∈ L1(�), and so, by the Lebesgue-dominated 
convergence theorem, 

.

∫
�

b(un)S(un)ψ dx −→
∫

�

b(u)S(u)ψ dx, as n → ∞. (2.89) 

Since . pn converges to p in measure in . � according to (2.56), then . pn converges to 
p a.e. in . �, up to a subsequence. Also, .un −→ u a.e. on . �. By the continuity of S, 
one has 

. S(un)|un|pn(x)−2un → S(u)|u|p(x)−2u a.e. on ∂�.

Moreover, since .suppS ⊂ [−M,M], then 

. 
∣∣S(un)|un|pn(x)−2unψ

∣∣ ≤ max
(
Mp−−1,Mp+−1

)
‖S‖L∞(∂�) |ψ | ∈ L1(∂�),

and so, the Lebesgue-dominated convergence theorem gives us 

. 

∫
∂�

S(un)|un|pn(x)−2unψ dσ −→
∫

∂�

S(u)|u|p(x)−2uψ dσ, as n → ∞.

(2.90) 
Let us prove now that 

.

∫
�

fnS(un)ψ dx −→
∫

�

f S(u)ψ dx, as n → ∞. (2.91) 

One has 

.

∫
�

fnS(un)ψ dx =
∫

�

fnS(u)ψ dx +
∫

�

fn(S(un) − S(u))ψ dx. (2.92) 

On the one hand, one has .
∫

�

fnS(u)ψ dx −→
∫

�

f S(u)ψ dx since .fn ⇀ f in 

.L1(�). On the other hand, one has, for .R > 0,
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. 

∫
�

|fn(S(un) − S(u))ψ | dx =
∫

{|fn|>R}
|fn(S(un) − S(u))ψ | dx

+
∫

{|fn|≤R}
|fn(S(un) − S(u))ψ | dx

≤ 2 ‖ψ‖L∞ ‖S‖L∞
∫

{|fn|>R}
|fn| dx

+R ‖ψ‖L∞
∫

�

|S(un) − S(u)| dx. (2.93) 

For .R > 0 fixed, the second term of the right-hand side of the inequality (2.93) 
tends to zero as .n → ∞. Indeed, because of the continuity of S and the compactness 
of .suppS, .S(un) converges strongly to .S(u) in .L1(�) by the Lebesgue-dominated 
convergence theorem. By the Chebyshev inequality and since . fn is bounded in 
.L1(�), one has 

. sup
n

meas({|fn| > R}) ≤
sup
n

‖fn‖1
R

≤ C

R
−→ 0 as R −→ ∞.

Since the sequence . fn is equi-integrable on . �, then the first term in the right-hand 
side of (2.93) can be made as small as desired by the choice of R. Hence, the 
second term of the right-hand side of (2.92) tends to zero. And so, we deduce the 
convergence result (2.91). 

To end the proof, let us prove that 

.

∫
�

S(un)YM
n .∇ψ dx →

∫
�

S(u)YM.∇ψ dx. (2.94) 

Indeed, for .R > 0, 

.

∫
�

S(un)YM
n .∇ψ dx =

∫
{|∇ψ |<R}

S(un)YM
n .∇ψ dx +

∫
{|∇ψ |≥R}

S(un)YM
n .∇ψ dx. (2.95) 

For the first term of the right-hand side of (2.95), one has 

. 

∫
{|∇ψ |<R}

S(un)YM
n .∇ψ dx =

∫
{|∇ψ |<R}

S(u)YM
n .∇ψ dx

+
∫

{|∇ψ |<R}
(S(un) − S(u))YM

n .∇ψ dx.

(2.96) 

Since .YM
n ⇀ YM in .Lp′(.)(�) by Lemma 2.4.2. –(i), then the first term of the right-

hand side of (2.96) tends to .

∫
{|∇ψ |<R}

S(u)YM.∇ψ dx as .n → ∞.
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For .α > 0 fixed, we can rewrite the second term of the right-hand side of (2.96) 
as follows: 

. 

∫
{|∇ψ |<R}

|(S(un) − S(u))YM
n .∇ψ | dx

=
∫

{|∇ψ |<R}∩
{
|YM

n |≤α
} |(S(un) − S(u))YM

n .∇ψ | dx

+
∫

{|∇ψ |<R}∩
{
|YM

n |>α
} |(S(un) − S(u))YM

n .∇ψ | dx

≤ αR

∫
�

|S(un) − S(u)| dx

+2R ‖S‖L∞
∫

{
|YM

n |>α
} |YM

n | dx. (2.97) 

The sequence .YM
n is equi-integrable on . � and is bounded in .L1(�) as it converges 

weakly in .L1(�), so using the same argument that leads to assert that the right-hand 
side of (2.93) tends to zero, as .n → ∞, in the inequality (2.97), then the second 
term of the right-hand side of (2.96) tends to zero as .n → ∞. Thus, the first term of 

the right-hand side of (2.95) converges to .

∫
{|∇ψ |<R}

S(u)YM.∇ψ dx as .n → ∞. 

For the second term of the right-hand side of (2.95), we note that, by Hölder-type 
inequality, 

. 

∣∣∣∣
∫

{|∇ψ |≥R}
YM

n .(∇ψS(un)) dx

∣∣∣∣ ≤ C ‖S‖L∞
∥∥∥YM

n

∥∥∥
Lp′

n(.)(�)

∥∥χ{|∇ψ |≥R}∇ψ
∥∥

Lpn(.)(�)
.

(2.98) 

One has .
∥∥∥YM

n

∥∥∥
Lp′

n(.)(�)
≤ C by Lemma 2.4.1. Also, since .ψ ∈ C∞(�), then one 

has .mes({|∇ψ | ≥ R}) → 0 as .R → ∞. Hence, 

. 

∫
{|∇ψ |≥R}

|∇ψ |pn(.)dx ≤ Cmes({|∇ψ | ≥ R}) → 0, as R → ∞,

where C is constant that does not depend on R. 
By Lemma 2.2.2.–(iii), (iv), .sup

n

∥∥χ{|∇ψ |≥R}∇ψ
∥∥

Lpn(.)(�)
tends to zero as . R →

∞. So, the second term of right-hand side of (2.95) tends to zero as .R → ∞. Hence, 
as .n → ∞ and .R → ∞ in the equality (2.95), we deduce (2.94). 

Thanks to convergences (2.89), (2.90), (2.91), and (2.94), we deduce, for n large 
enough, that (2.88) gives
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. 

∣∣∣∣
∫

�

(
b(u)S(u)ψ + S(u)YM.∇ψ − f S(u)ψ

)
dx +

∫
∂�

S(u)|u|p(x)−2uψ dσ

∣∣∣∣
≤ ‖ψ‖L∞ sup

n

∫
�

|S′(un)|an(x,∇TM(un)).∇TM(un) dx. (2.99) 

Now, fix .k > 0. By Lemma 2.4.1.–(v), one has .Tk(u) ∈ W 1,p(.)(�) ∩ L∞(�). So, 
by the density of .C∞(�) in .W 1,p(.)(�), we can replace . ψ by .Tk(u) in (2.99). 

Consider the sequence .(SM)M ⊂ S such that: 

• . SM and S′
M are uniformly bounded.

• . SM = 1 on [−M + 1,M − 1], suppSM ⊂ [−M,M], for all M ∈ N
∗.

• . The map M �−→ b(z)SM(z) is non-decreasing, for all z ∈ R.

From now on, we replace S by . SM in (2.99). 
According to Lemma 2.4.2.–(ii), for  .M > k, one has .Yk = YMχ{|u|<k}. Since 

.∇Tk(u) = 0 outside .{|u| < k}, then we can replace .YM.∇Tk(u) by .Yk.∇Tk(u). 
Also, one has .suppS′

M ⊂ [−M,−M + 1] ∪ [M − 1,M], and the sequence 
.S′

M is uniformly bounded, i.e., .
∥∥S′

M

∥∥
L∞(�)

≤ C, where C is a positive constant 
independent of M . So, the term of the right-hand side of (2.99) is bounded by 

. C sup
n

∫
{M−1≤|un|≤M}

an(x,∇TM(un)).∇TM(un) dx

≤ C sup
n

∫
{M−1≤|un|≤M}

(
Mn|∇Tk(un)| + |∇TM(un)|pn(x)

)
dx

≤ C sup
n

∥∥Mnχ{|un|≥M−1}
∥∥

Lp′
n(.)(�)

∥∥∇Tk(un)χ{M−1≤|un|≤M}
∥∥

Lpn(.)(�)

+C sup
n

∫
{M−1≤|un|≤M}

|∇TM(un)|pn(x) dx. (2.100) 

Thanks to Lemma 2.2.2, (2.60), (2.61), and the fact that .Mn is equi-integrable, one 
has the term of the right-hand side of (2.99) that tends to zero when .M → ∞. 

By the monotone convergence theorem, since .b(u)SM(u) is non-decreasing and 
converges a.e. in . � to .b(u), then .b(u)SM(u)ψ converges strongly to .b(u)ψ in 
.L1(�). Moreover, by the Lebesgue-dominated convergence theorem, the terms 
.SM(u)Yk.∇ψ , .f SM(u)ψ , and .SM(u)|u|p(x)−2uψ converge, respectively, strongly 
to .Yk.∇ψ , to  .f ψ in .L1(�) and to .|u|p(x)−2uψ in .L1(∂�). Hence, the inequal-
ity (2.99) becomes, with . ψ replaced by .Tk(u), as .M → ∞, 

. 

∫
�

(
b(u)Tk(u) + Yk.∇Tk(u) − f Tk(u)

)
dx +

∫
∂�

S(u)|u|p(x)−2uTk(u)dσ = 0.

(2.101)
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Now, we consider the renormalized formulation (2.16) for . un where we take . Tk(un)

as test function and .S ∈ S with .S = Sh, 

. 

∫
�

(
Sh(un)Yk

n.∇Tk(un) + S′
h(un)an(x,∇un).(∇un)Tk(un)

+b(un)Sh(un)Tk(un)

)
dx

+
∫

∂�

Sh(un)|un|p(x)−2unTk(un) dσ =
∫

�

fnSh(un)Tk(un) dx. (2.102) 

We are going to pass to the limit in (2.102), as .h → ∞. 
We use the property (2.15) to pass to the limit, as .h → ∞, in the term containing 

the factor .S′
h(un), and since . Sh is monotone in h, we use monotone convergence 

theorem to pass to the limit in the terms containing the factor .Sh(un). As  . h → ∞
in (2.102), we get then 

. 

∫
�

(
Yk

n.∇Tk(un) + b(un)Tk(un)

)
dx +

∫
∂�

|un|p(x)−2unTk(un) dσ

=
∫

�

fnTk(un) dx. (2.103) 

Since . un converges to u a.e. in . �, and also because .fn ⇀ f in .L1(�) and . ‖Tk‖ <

∞, arguing as in (2.92) and (2.93), we have 

. 

∫
�

fnTk(un) dx =
∫

�

fnTk(u) dx +
∫

�

fn (Tk(un) − Tk(u)) dx

→
∫

�

f Tk(u) dx, as n → ∞.

In the sequel, since .b(un)Tk(un) ≥ 0 and .|un|p(x)−2unTk(un) ≥ 0, by Fatou’s 
lemma, one deduces 

. 

∫
�

(
b(u)Tk(u) − f Tk(u)

)
dx +

∫
∂�

(|u|p(x)−2uTk(u)
)
dσ

≤ lim inf
n→∞

(∫
�

(
b(un)Tk(un) − fnTk(un)

)
dx +

∫
∂�

|un|p(x)−2unTk(un) dσ

)
.

And so, from the inequality above and by using (2.103) and (2.101), we get (2.85). 
Now, let us go to the proof of the “div-curl” inequality (2.86). Thanks to 

Lemma 2.2.1, we know that the sequence
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. 

(
an(x, hm(∇Tk(un))).hm(∇Tk(un))

)
m>0

is upper bounded by .Yk
n.∇Tk(un) because it converges while growing to 

.Yk
n.∇Tk(un), as .m → ∞. So, one has, by (2.85), 

. 

∫
�

Yk.∇Tk(u)dx ≥ lim inf
n→∞

∫
�

an(x, hm(∇Tk(un))).hm(∇Tk(un))dx, for all m > 0.

Since .

∫
�

λdνk
x(λ) and .

∫
�

a(x, λ)dνk
x (λ) are, respectively, the weak limits 

of .∇Tk(un) and .an(x,∇Tk(un)), then using the nonlinear weak-* convergence 
property (2.12), we get 

. lim
n→∞

∫
�

an(x, hm(∇Tk(un))).hm(∇Tk(un)) dx

=
∫

�×R
N

a(x, hm(λ)).hm(λ)dνk
x(λ)dx

and so 

. 

∫
�

Yk.∇Tk(u) dx ≥
∫

�×R
N

a(x, hm(λ)).hm(λ) dνk
x(λ)dx.

Now, thanks to Lemma 2.2.1, we can apply the monotone convergence theorem on 
the sequence .(a(x, hm(λ)).hm(λ))m to deduce that, as .m → ∞, 

.

∫
�

Yk.∇Tk(u) dx ≥
∫

�×R
N

a(x, λ).λ dνk
x(λ)dx. (2.104) 

Now using the representation formulas (2.62) and (2.73), and the fact that .νk
x(λ) is 

a probability measure on . R
N for a.e. .x ∈ �, we find 

.

∫
�×R

N

(
a(x, λ) − a(x,∇Tk(u))

)
.
(
λ − ∇Tk(u)

)
dνk

x(λ)dx

=
∫

�×R
N

a(x, λ).λdνk
x (λ)dx −

∫
�

(∫
R

N
a(x, λ)dνk

x(λ)

)
∇Tk(u)dx

−
∫

�

a(x,∇Tk(u))

(∫
R

N
λdνk

x(λ)

)
dx

+
∫

�

(a(x,∇Tk(u)).∇Tk(u))

(∫
R

N
dνk

x(λ)

)
dx
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=
∫

�×R
N 

a(x, λ).λdνk 
x (λ)dx −

∫
�

(∫
R

N 
a(x, λ)dνk 

x (λ)

)(∫
R

N 
λdνk 

x (λ)

)
dx 

=
∫

�×R
N 

a(x, λ).λdνk 
x (λ)dx −

∫
�

Yk .∇Tk(u) dx. 

From (2.104), we deduce (2.86). 

.(ii) We prove (2.87), i.e., .Yk = a(x,∇Tk(u)) a.e. in . �. 
Thanks to the “div-curl” inequality (2.86) and the strict monotonicity 

assumption (2.6) on .a(x, .), one has 

. 

(
a(x, λ) − a(x,∇Tk(u))

)
.
(
λ − ∇Tk(u)

)
dνk

x(λ) = 0 for a.e. x ∈ �,

and subsequently for a.e. .x ∈ �, .λ = ∇Tk(u) w.r.t. the measure . νk
x on . RN . 

Since, by the representation formula (2.62), .∇Tk(u) =
∫

�

λdνk
x(λ), then the 

measure . νk
x reduces to the Dirac measure .δ∇Tk(u). Now, from the representation 

formula (2.73), we can deduce (2.87). Indeed, one has 

. Yk(x) =
∫
R

N
a(x, λ)dνk

x (λ) =
∫
R

N
a(x, λ)dδ∇Tk(u(x))(λ) = a(x,∇Tk(u(x))).

Moreover, the sequence .∇Tk(un) generates the Young measure . νk
x = δ∇Tk(u)

a.e. on . �. So, from Theorem 2.2.1.–(ii), .∇Tk(un) converges to .∇Tk(u) in 
measure on . � as .n → ∞. ��

Lemma 2.4.4 For a.e. .k > 0, .an(x,∇Tk(un)).∇Tk(un) converges to 
.a(x,∇Tk(u)).∇Tk(u) strongly in .L1(�). ��
Proof By Lemma 2.4.3–(ii) and (2.55), up to a subsequence, we have 
.an(x,∇Tk(un)).∇Tk(un) that converges to .a(x,∇Tk(u)).∇Tk(u) a.e. in . �. Since 
.an(x,∇Tk(un)).∇Tk(un) ≥ 0, by Fatou’s lemma, one has 

. 

∫
�

a(x,∇Tk(u)).∇Tk(u) dx ≤ lim inf
n→∞

∫
�

an(x,∇Tk(un)).∇Tk(un) dx

and so, by (2.85), we have 

. lim inf
n→∞

∫
�

an(x,∇Tk(un)).∇Tk(un) dx =
∫

�

a(x,∇Tk(u)).∇Tk(u) dx.

Thus, by the Scheffé’s theorem (see [24]), one has .an(x,∇Tk(un)).∇Tk(un) that 
converges to .a(x,∇Tk(u)).∇Tk(u) strongly in .L1(�), up to subsequence. ��
Lemma 2.4.5 u is a renormalized solution of (2.1). ��
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Proof The first two requirements in Definition 2.3.1 are satisfied by Lemma 2.4.1– 
(iv), (v). 

Now, we prove that .b(u) ∈ L1(�). Indeed, from (2.101), one has 

. 

∫
�

b(u)Tk(u) dx ≤
∫

�

f Tk(u) dx

or 

. 

∫
�

b(u)
1

k
Tk(u) dx ≤ ‖f ‖L1(�) ,

which becomes, for .k → 0, 

. 

∫
�

|b(u)| dx ≤ ‖f ‖L1(�) ,

by Fatou’s lemma, since .
1

k
Tk(u) → sign(u) as .k → 0. Hence, .b(u) ∈ L1(�). 

Now, we prove (2.15) with the diffusion flux .a(., .). By (2.7) and Hölder-type 
inequality, we get 

. 

∫
{k<|u|<k+1}

a(x,∇u).∇u dx ≤ C

∫
{k<|u|<k+1}

(
M|∇u| + |∇u|p(x)

)
dx

≤ C
∥∥Mχ{|u|>k}

∥∥
Lp′(.)(�)

∥∥(∇u)χ{k<|u|<k+1}
∥∥

Lp(.)(�)

+C

∫
{k<|u|<k+1}

|∇u|p(x) dx. (2.105) 

Thus, (2.15) follows from (2.63). 
It remains to prove (2.16) for  u. Because .C∞(�) is dense in .W 1,p(.)(�) and in 

.W 1,pn(.)(�) since p and . pn verify (2.58), we can take test functions in .C∞(�). So, 
let .ψ ∈ C∞(�) a test function for the renormalized formulation (2.16) for . un. One  
has 

. 

∫
�

(
S(un)an(x,∇un).∇ψ + S′(un)an(x,∇un).∇unψ + b(un)S(un)ψ

)
dx

+
∫

∂�

|un|p(x)−2unS(un)ψ dσ =
∫

�

fnS(un)ψ dx, (2.106) 

where .S ∈ S with .suppS ⊂ [−M,M]. 
As .n → ∞ in (2.106), reasoning as above to pass from (2.88) to (2.99), we get 

the different limits given in (2.89)–(2.91) and (2.94). So, we should direct especially 
our attention to the term
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. 

∫
�

S′(un)an(x,∇un).(∇un)ψ dx =
∫

�

S′(un)YM
n .(∇TM(un))ψ dx.

The sequence .S′(un) is uniformly bounded and converges to .S′(u) a.e. in . �. Thanks 
to Lemma 2.4.4 and by using Lebesgue generalized convergence theorem, this term 
converges to 

. 

∫
�

S′(u)YM.∇TM(u)ψ dx =
∫

�

S′(u)a(x,∇u).∇uψ dx.

We deduce the renormalized formulation (2.16) for  u with test functions in . C∞(�)

and by density with test functions in .W 1,p(.)(�) ∩ L∞(�), which end the proof of 
Theorem 2.4.1. ��
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2. F. Andreu, N. Igbida, J.M. Maźon, J. Toledo, L1 existence and uniqueness results for quasi-
linear elliptic equations with nonlinear boundary conditions. Ann. Inst. H. Poincaré. Anal. Non 
Linéaire 24(1), 61–89 (2007) 
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Chapter 3 
Weak Solutions of Anti-periodic Discrete 
Nonlinear Problems 

Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, and Aboudramane Guiro 

Abstract We consider the existence of weak solutions for discrete nonlinear 
problems. The proof of the main result is based on a minimization method. 

Keywords Discrete nonlinear problems · Minimization method · Anti-periodic 

3.1 Introduction 

In this chapter, we investigate the existence of weak solution for the following 
anisotropic nonlinear discrete anti-periodic boundary problem: 

.

⎧
⎪⎪⎨

⎪⎪⎩

−�
[
α(k − 1)a(k − 1,�u(k − 1))

] = f (k, u(k)), k ∈ N[1, N ],

u(0) = −u(N); u(1) = −u(N + 1),

(3.1) 
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where .�u(k) = u(k + 1) − u(k) is the forward difference operator, . N[1, N ] =
{1, . . . , N}, and .a, α, f are functions to be defined later and where N is a fixed 
integer . ≥3. 

The theory of difference equations occupies now a central position in applicable 
analysis. We just refer to the recent results of Agarwal et al.[1], Yu and Guo 
[21], Koné and Ouaro [12], Guiro et al.[9], Cai and Yu [4], Zhang and Liu [22], 
Mihãilescu et al.[17], Candito and D’Agui [5], Cabada et al.[3], Jiang and Zhou 
[10], and the references therein. In [22], the authors studied the following problem: 

.

�2y (k − 1) + λf ((y (k)) = 0, k ∈ N [1, T ] ,

y (0) = y (T + 1) = 0,

(3.2) 

where .λ > 0 is a parameter, .�2y (k) = �(�y (k)), and .f : [0,+∞) −→ R is a 
continuous function satisfying the condition 

.f (0) = −a, where a is positive constant. (3.3) 

The problem (3.2) is referred as the “semipositone” problem in the literature, which 
was introduced by Castro and Shivaji [6]. Semipositone problems arise in bulking of 
mechanical systems, design of suspension bridges, chemical reactions, astrophysics, 
combustion, and management of natural resources. 

The studies regarding problems such as (3.1) or (3.2) can be placed at interface 
of certain mathematical fields such as nonlinear partial differential equations 
and numerical analysis. On the other hand, they are strongly motivated by their 
applicability in mathematical physics as mentioned above. 

In [10], Jiang and Zhou studied the following problem: 

.

�2y (k − 1) = f (k, u (k)) k ∈ N [1, T ] ,

u (0) = �u (T ) = 0,

(3.4) 

where T is a fixed positive integer and .f : N [1, T ] × R −→ R is a continuous 
function. 

Jiang and Zhou proved the existence of nontrivial solutions for (3.4) by using  
strongly monotone operator principle and critical point theory. 

In [11], it is considered a discrete variant of the variable exponent anisotropic 
problem
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.

−
N∑

k=1

∂

∂xi

ai

(

x,
∂u

∂xi

)

= f (x) in �

u = 0 on �1

∂u
∂η

= 0 on �2,

(3.5) 

where . � .⊂ R
N (N .≥ 3) is a bounded domain with smooth boundary .�1 ∪�2 = ∂�, 

.f ∈ L∞(�), and . pi is continuous on . � such that .1 < pi(x) < N for all . x ∈ �

and all .i ∈ N[1, N ], where .p−
i := ess inf

x∈�
pi(x) and .

N∑

i=1

(
1

p−
i

)

> 1. 

The first equation of (3.5) was recently analysed by Koné et al.[13] and Ouaro 
[18] and generalized to a Radon measure data by Koné et al. [14] for a homogeneous 
Dirichlet boundary condition (.u = 0 on . ∂�). The study (3.5) will be done in 
a forthcoming work. Problem such as (3.5) has been intensively studied in the 
last decades since they can model various phenomena arising from the study of 
elastic mechanics (see [20, 23]), electrorheological fluids (see [8, 19, 20]), and 
image restoration (see [7]). In [7], Chen et al. studied a functional with variable 
exponent .1 ≤ p(x) ≤ 2 that provides a model for image denoising, enhancement, 
and restoration. Their paper created another interest for the study of problems with 
variable exponent. 

Note that Mihãilescu et al. (see [15, 16]) were the first authors who study 
anisotropic elliptic problems with variable exponent. In general, the interested 
reader can find more information about difference equation in [1, 3, 5, 9, 11, 12]. 

Our goal in this chapter is to use a minimization method in order to establish 
some existence results of solutions of (3.1). The idea of the proof is to transfer 
the problem of the existence of solutions for (3.1) into the problem of existence of 
a minimizer for some associated energy functional. This method was successfully 
used by Bonanno et al.[2] for the study of an eigenvalue nonhomogeneous Neumann 
problem, where, under an appropriate oscillating behaviour of the nonlinear term, 
they proved the existence of a determined open interval of positive parameters for 
which the problem considered admits infinitely many weak solutions that strongly 
converge to zero, in an appropriate Orlicz–Sobolev space. Let us point out that, to 
our best knowledge, discrete problems such as (3.1) involving anisotropic exponents 
have been discussed for the first time by Mihãilescu et al. [17], in a second time by 
Koné and Ouaro [12], and in a third time by Guiro et al.[9]. In [17], the authors 
proved by using critical point theory the existence of a continuous spectrum of 
eigenvalues for the problem 

. 
−�

(|�u (k − 1) |p(k−1)−2�u (k − 1)
) = λ|u (k) |q(k)−2u (k) , k ∈ N [1, T ] ,

u (0) = u (T + 1) = 0,

(3.6)
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where .T ≥ 2 is the positive integer, and the functions . p : N [0, T ] −→ [2,+∞)

and .q : N [1, T ] −→ [2,+∞) are bounded, while . λ is positive constant. 
In [12], Koné and Ouaro proved, by using minimization method, existence and 

uniqueness of weak solutions for the following problem: 

.

−�(a (k − 1,�u (k − 1))) = f (k) , k ∈ N [1, T ]

u (0) = u (T + 1) = 0,

(3.7) 

where .T ≥ 2 is a positive integer. The function .(a (k − 1,�u (k − 1))) that appears 
in the left-hand side of problem (3.1) is more general than the one that appears 
in (3.6). 

In [9], Guiro et al. studied the following two-point boundary-value problems: 

.

−�(a (k − 1,�u (k − 1))) + |u (k) |p(k)u (k) = f (k) , k ∈ N [1, T ]

�u (0) = �u (T ) = 0.

(3.8) 

The function .(a (k − 1,�u (k − 1))) has the same properties as in [12], but the 
boundary conditions are different. For this reason, Guiro et al. defined a new norm 
in the Hilbert space considered in order to get, by using minimization methods, 
existence of unique weak solution (which is also a classical solution since the Hilbert 
space associated is of finite dimension). Indeed, they used the following norm: 

.‖u‖ =
(

T +1∑

k=1

|�u (k − 1) |2 +
T∑

k=1

|u (k) |2
) 1

2

, (3.9) 

which is associated to the Hilbert space 

.W = { v : N [0, T + 1] −→ R; such that �v (0) = �v (T ) = 0} . (3.10) 

In order to get the coercivity of the energy functional, the authors of [9] assumed 
the following on the exponent: 

.p : N [0, N] −→ (2, +∞) . (3.11) 

In this chapter, we assume that the exponent .p : N[0, N ] −→ [2,+∞). 
The remaining part of this chapter is organized as follows. Section 3.2 is devoted 

to mathematical preliminaries. The main existence and uniqueness result is stated 
and proved in Sect. 3.3. In Sect. 3.4, we have the extension of the problem (3.1).
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3.2 Mathematical Background 

By a solution to problem (3.1), we mean such a function . u : N[0, N + 1] −→ R

that satisfies the given equation on .N[1, N ] and the boundary conditions. In the 
N -dimensional Hilbert space, 

. X = {
u : N[0, N + 1] −→ R : u(0) = −u(N); u(1) = −u(N + 1)

}
,

with the inner product 

. 〈x, y〉 =
N+1∑

k=1

�x(k − 1)�y(k − 1), ∀ x, y ∈ X,

we consider the following norm: 

.‖x‖ =
( N+1∑

k=1

|�x(k − 1)|2
) 1

2

. (3.12) 

Let 

.p, r : N[0, N ] −→ [2,+∞) (3.13) 

and denoted by 

. p− = min
k∈N[0,N ] p(k), p+ = max

k∈N[0,N ] p(k), r− = min
k∈N[0,N ] r(k), and

r+ = max
k∈N[0,N ] r(k).

For the data .α, a, and f , we assume what follows: 

. (H1).

⎧
⎪⎪⎨

⎪⎪⎩

a(k, .) : R → R, k ∈ N[0, N] is continuous and there exists

A(., .) : N[0, N ] × R → R

which satisfies a(k, ξ) = ∂
∂ξ

A(k, ξ) and A(k, 0) = 0, for all k ∈ N[0, N ].

.(H2). For all .k ∈ N[0, N] and .ξ 
= η, 

. (a(k, ξ) − a(k, η)) .(ξ − η) > 0. (3.14) 

.(H3). For any .k ∈ N[0, N], ξ ∈ R, we have  

.A(k, ξ) ≥ 1

p(k)
|ξ |p(k). (3.15)
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.(H4). For each .k ∈ N[0, N ], the function .f (k, .) : R −→ R is continuous, and 
there exists a constant .C1 > 0 such that 

.|f (k, ξ)| ≤ C1
(
1 + |ξ |r(k)−1). (3.16) 

We denote 

.F(k, ξ) =
∫ ξ

0
f (k, s)ds for (k, ξ) ∈ N[0, N ] × R, (3.17) 

and we deduce that there exists a constant .C2 > 0 such that 

.|F(k, ξ)| ≤ C2
(
1 + |ξ |r(k)

)
. (3.18) 

.(H5). The function . α : N[0, N ] −→ (0,+∞) is such that for all k ∈ N[0, N ],

.0 < α− = min
k∈N[0,N ](α(k)) ≤ α(k) ≤ α+ = max

k∈N[0,N ](α(k)) < +∞. (3.19) 

.(H6). For each .k ∈ N[0, N ], .r (k) < p−. 

Example 3.2.1 There are many functions satisfying both .(H1) − (H5). Let us 
mention the following:

• .A(k, ξ) = 1

p(k)

(
(
1 + |ξ |2)p(k)/2 − 1

)

, where . a(k, ξ) = (
1 +

|ξ |2)(p(k)−2)/2
ξ, ∀ k ∈ N[0, N ], .ξ ∈ R.

• .f (k, ξ) = 1 + ∣
∣ξ

∣
∣r(k)−1

, ∀ k ∈ N[0, N ], and .ξ ∈ R.

• .α(k) = 1, ∀ k ∈ N[0, N ]. ��
Moreover, we may consider X with the following norm: 

.|x|m =
( N∑

k=1

|x(k)|m
) 1

m

, ∀ x ∈ X and m ≥ 2. (3.20) 

We have the following inequalities (see [4]): 

.N(2−m)/(2m)|x|2 ≤ |x|m ≤ N1/m|x|2, ∀ x ∈ X and m ≥ 2. (3.21)
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We need the following auxiliary results throughout our paper (see [17]): 

Lemma 3.2.1 

1. There exist two positive constant .C3, C4 such that 

.

N+1∑

k=1

|�x(k − 1)|p(k−1) ≥ C3‖x‖p− − C4 (3.22) 

for all .x ∈ X with .‖x‖ > 1. 
2. For any .m ≥ 2, there exists a positive constant . cm such that 

.

N∑

k=1

|x(k)|m ≤ cm

N+1∑

k=1

|�x(k − 1)|m, ∀ x ∈ X. (3.23) 

3.3 Existence of Weak Solutions 

In this section, we study the existence of weak solution of problem (3.1). 

Definition 3.3.1 A weak solution of problem (3.1) is .u ∈ X such that: 

.

T +1∑

k=1

α(k − 1)a(k − 1,�u(k − 1))�v(k − 1) =
T∑

k=1

f (k, u(k))v(k) (3.24) 

for all .v ∈ X. ��
Note that since X is a finite-dimensional space, the weak solutions coincide with 
the classical solution of the problem (3.1). 

Theorem 3.3.1 Assume that .(H1) − (H6) hold. Then, there exists a weak solution 
of the problem (3.1). 

We define the energy functional .J : X −→ R by 

.J (u) =
N+1∑

k=1

α(k − 1)A
(
k − 1,�u(k − 1)

) −
N∑

k=1

F
(
k, u(k)

)
. (3.25) 

Lemma 3.3.1 The functional J is well-defined on X and is of class .C1
(
X,R

)
with 

the derivative given by
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. 〈J ′(u), v〉 =
N+1∑

k=1

α(k − 1)a(k − 1,�u(k − 1))�v(k − 1) −
N∑

k=1

f
(
k, u(k)

)
v(k),

(3.26) 
for all .u, v ∈ X. ��

Proof Let .I (u) =
N+1∑

k=1

α(k − 1)A
(
k − 1,�u(k − 1)

)
and .
(u) =

N∑

k=1

F
(
k, u(k)

)
. 

As in [9], Lemma 3.4, we can prove that the functional I derivative is given by 

.〈I ′(u), v〉 =
N+1∑

k=1

α(k − 1)a
(
k − 1,�u(k − 1)

)
�v(k − 1). (3.27) 

On the other hand, for all .u, v ∈ X, we have  

. 〈
′(u), v〉 =
N∑

k=1

f (k, u(k)).

The functional J is clearly of class . C1. ��
Proposition 3.3.1 The functional J is coercive and bounded from below. ��
Indeed, according to (3.18) and (3.15) , we have  

. J (u) =
N+1∑

k=1

α(k − 1)A
(
k − 1,�u(k − 1)

) −
N∑

k=1

F
(
k, u(k)

)

≥ α−
N+1∑

k=1

A
(
k − 1,�u(k − 1)

) − C2

N∑

k=1

|u(k)|r(k) − C2

≥ α−
N+1∑

k=1

1

p(k − 1)

∣
∣�u(k − 1)

∣
∣p(k−1) − C2

N∑

k=1

|u(k)|r(k) − C2

≥ α−

p+
N+1∑

k=1

∣
∣�u(k − 1)

∣
∣p(k−1) − C2

N∑

k=1

|u(k)|r(k) − C2.

To prove the coercivity of J , we may assume that .||u|| > 1, and we deduce 
from (3.22) that 

.J (u) ≥ C3 α−

p+ ||u||p− − C4 − C2

N∑

k=1

|u(k)|r(k) − C2
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≥ 
C3 α

− 

p+ ||u||p− − C4 − C2 

N∑

k=1 

|u(k)|r− − C2 

N∑

k=1 

|u(k)|r+ − C2. 

Using (3.23), we see that 

. J (u) ≥ C3 α−

p+ ||u||p−−C4−C2(Cr−)

N∑

k=1

|�u(k)|r−−C2(Cr+)

N∑

k=1

|�u(k)|r+−C2.

By using (3.21), there exist positive constants . K1 and . K2 such that 

.J (u) ≥ C3 α−

p+ ||u||p− − C4 − K1||u||r− − K2||u||r+ − C2. (3.28) 

Since .p− > r+, J is coercive. 
Besides, for .||u|| ≤ 1, we see from the Weierstrass theorem that J is bounded 

from below there. Recall that X is finite-dimensional. Then it follows that summa-
rizing J is bounded from below. ��
Proof of Theorem 3.3.1 Since J is continuous, bounded from below, and coercive 
on X, using the relation between critical points of J and problem (3.1), we deduce 
that J has a minimizer that is a weak solution of problem (3.1). 

3.4 An Extension 

In this section, we show that the existence result obtained for (3.1) can be extended 
to a more general discrete boundary-value problem of the form 

. 

⎧
⎪⎪⎨

⎪⎪⎩

−�
[
α(k − 1)a(k − 1,�u(k − 1))

]+|u|q(k)−2u(k) = f (k, u(k)), k ∈ N[1, N ],

u(0) = −u(N); u(1) = −u(N + 1),

(3.29) 
with .q : N[1, N ] −→ (1,+∞). 

A function .u ∈ X is a solution of problem (3.29) if for any .v ∈ X, 

. 

N+1∑

k=1

α(k − 1)a(k − 1,�u(k − 1))�v(k − 1) +
N∑

k=1

|u(k)|q(k)−2u(k)v(k)

−
N∑

k=1

f
(
k, u(k)

)
v(k) = 0. (3.30)
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Theorem 3.4.1 Under asymptotes .(H1)− (H6), there exists a weak solution . u ∈ X

of problem (3.29). 

Proof For .u ∈ X, we defined the energy functional J by 

. J (u) =
N+1∑

k=1

α(k − 1)A
(
k − 1,�u(k − 1)

) +
N∑

k=1

1

q(k)
|u|q(k) −

N∑

k=1

F
(
k, u(k)

)
.

The functional J is well-defined, continuous, and of class .C1(X,R) with a 
derivative given by 

. 〈J ′(u), v〉 =
N+1∑

k=1

α(k − 1)a(k − 1,�u(k − 1))�v(k − 1) +
N∑

k=1

|u|q(k)−2u(k)v(k)

−
N∑

k=1

f
(
k, u(k)

)
v(k),

for all . u, v ∈ X.

Since 

. 

N∑

k=1

1

q(k)
|u|q(k) ≥ 0,

we have 

.J (u) ≥
N+1∑

k=1

α(k − 1)A
(
k − 1,�u(k − 1)

) −
N∑

k=1

F
(
k, u(k)

)
, (3.31) 

and, according to Proposition 3.3.1, that arguments applied above also work. 
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Chapter 4 
Boundary Feedback Controller over 
a Bluff Body for Prescribed Drag and Lift 
Coefficients 

Evrad M. D. Ngom, Abdou Sène, and Daniel Y. Le Roux 

Abstract This chapter presents an improved boundary feedback controller for the 
two- and three-dimensional Navier–Stokes equations, in a bounded domain . �, for 
prescribed drag and lift coefficients. In order to determine the feedback control 
law, we consider an extended system coupling the equations governing the Navier– 
Stokes problem with an equation satisfied by the control on the bluff body, which 
is a part of the domain boundary. By using the Faedo–Galerkin method and a priori 
estimation techniques, a boundary control is built. This control law ensures the 
controllability of the discrete system. Then, a compactness result then allows us 
to pass to the limit in the non-linear system satisfied by the approximated solutions. 

Keywords Navier–Stokes system · Boundary feedback stabilization · Bluff 
body · Drag and lift coefficients 

4.1 Introduction 

Flow over a bluff body is a common occurrence associated with fluid flowing over 
an obstacle or with the movement of a natural or artificial body. Evident examples 
are the flows past an airplane, a submarine, and wind blowing past a bridge or a high-
rise building. This chapter presents an improved boundary feedback control for the 
two- and three-dimensional Navier–Stokes equations around a bluff body. Let . � be 
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�b

�b

�b

�b
�c

�
ψ�

e2 

e1 e3 

Fig. 4.1 Description of the domain . � and of the two connected components . �b and . �c

a bounded and connected domain in .Rd (d = 2, 3), with a boundary . � of class . C2, 
and composed of two connected components . �b and . �c such that .� = �b∪�c. Such 
a boundary decomposition is schematized in Fig. 4.1. In particular, the boundary . �c

represents the contour of the bluff body, and it is the part of . � where a Dirichlet 
boundary control in feedback form has to be determined. 

For .ei = (δ1i , δ2i , δ3i ), i = 1, . . . , d, with . δij , the Kronecker symbol . �c is 
chosen such that 

.

∫
�c

ei · n dζ = 0, (4.1) 

where . n denotes the unit outer normal vector to . �. 
For example, condition (4.1) holds when . �c is a sphere with centre .(0, 0, 0) and 

radius r . Indeed, in that case, . �c is the locus of all points .X = (x, y, z)t such that 
.f (X) = ‖X‖2 − r2 = 0, which lead to 

. n = − ∇f (X)

‖∇f (X)‖ = − X
‖X‖ ,

and hence, (4.1) is obtained. Condition (4.1) also holds in the case where . f (x, y, z)

is the contour of a circular cylinder. More generally, when .f (x, y, z) represents the 
boundary . �c, condition (4.1) is satisfied if .∇f (x, y, z) is odd with respect to each 
variable .x, y, z, supplemented with specific symmetries for .f (x, y, z) and . �c. 

Let .T > 0 be a fixed real number, .Q = [0, T [×�, .�b = [0, T [×�b, . �c =
[0, T [×�c, and .V1/2(�̃), .̃� ⊂ �, is defined as the space of trace functions whose 
extension by zero over . � belongs to .H1/2(�). We consider the perturbed trajectory 
.(u, π), solution of the non-stationary Navier–Stokes model



4 Boundary Feedback Controller over a Bluff Body for Prescribed Drag and. . . 99

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− ν
u + (u · ∇)u + ∇π = f in Q,

∇ · u = 0 in Q,

u = ψ∞(x) on �b,

u = vc(t, x) on �c,

u(t = 0, x) = u0(x) in �,

(4.2) 

where . u and . π are the velocity field and the pressure, respectively, . ν is the kinematic 
viscosity, and .f ∈ H−1(�) represents body forces acting on the fluid. Further, . u0(x)
is the initial condition, and .vc(t, x) represents the control input on . �c, while the 
specified Dirichlet boundary condition .ψ∞ is such that 

.ψ∞ ∈ V1/2(�b) and
∫

�b

ψ∞ · n dζ = 0. (4.3) 

The different regimes of the flow are given by the values of the Reynolds number 

.Re = ψ∞ D

ν
, with D and .ψ∞ being the characteristic dimension (e.g., the size of 

. �c) and the characteristic velocity, respectively. 
For low Reynolds numbers, due to the highly viscous body, the force exerted on 

the body is mainly attributed to skin friction. However, when the Reynolds number 
. Re exceeds a certain critical value, small perturbations destabilize the solution of the 
system (4.2) and yield a periodic solution .(u, π) represented by the well-known von 
Kármán vortex street. In fluid dynamics, a von Kármán vortex street is a repeating 
pattern of swirling vortices caused by the unsteady separation of flow of a fluid 
around blunt bodies. This vortex shedding is responsible for such phenomena as the 
“singing” of suspended telephone or power lines, and the vibration of a car antenna 
at certain speeds that may lead to structural failure or reduction in performance. 
Further, vortex shedding occurs over a wide range of Reynolds numbers, causing 
significant increases in the mean drag and lift fluctuations. Therefore, the effective 
control of vortex shedding is important in engineering applications. 

Recall that in fluid dynamics, the drag coefficient, denoted by . Cx , is a dimen-
sionless quantity that is used to quantify the drag or resistance of an object in a 
fluid environment, such as air or water. A low drag coefficient indicates the object 
will have less aerodynamic or hydrodynamic drag. The lateral lift coefficient and 
the vertical lift coefficient denoted by .Cy and . Cz, respectively, are dimensionless 
coefficients that relate the lift generated by a lifting body to the density of the 
fluid around the body. It is common to show, for a particular airfoil section, the 
relationship between section lift coefficient and angle of attack. It is also useful to 
show the relationship between section lift coefficient and drag coefficient. 

The coefficients . Cx , . Cy , and . Cz, which are always associated with a particular 
surface area S, are defined [2, 15, 34] as
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.Cx(t) = 2 F1(u, π)

ρψ
2
∞S

, Cy(t) = 2 F2(u, π)

ρψ
2
∞S

, Cz(t) = 2 F3(u, π)

ρψ
2
∞S

, (4.4) 

where the fluid density . ρ is taken to .ρ = 1 in the present paper and 

.Fi(u, π) = −
∫

�c

[ν∇u · n − πn] · ei dζ, i = 1, . . . , d. (4.5) 

The control of the unsteady viscous flow past bluff bodies has been studied by 
a number of authors, e.g., [3, 8, 13, 16, 22] for the passive control, [1, 4, 5, 12, 
23, 24, 37] for the active open-loop control, and [2, 10, 21, 25, 26, 31] for active 
closed-loop control, also called a feedback control. Feedback control methods are 
an attractive choice over passive and active open-loop controls in that the control 
input is continuously modified according to the response of the flow system. For 
more examples of control over a bluff body, one can refer to the review work of H. 
Choi et al. [14]. 

In the above-mentioned papers, the authors aim at decreasing the mean drag 
coefficient, suppressing the vortex shedding, narrowing the wake width, and/or 
stabilizing the system around a given steady-state flow. In particular, the reduction 
of the drag coefficient remains a difficult and challenging issue, and an important 
question arises: what is the lowest possible drag achievable from control in the case 
of bluff bodies? For example, by employing a high-frequency rotation of the circular 
cylinder, Tokumaru and Dimotakis [37] experimentally obtained approximately 
.80% drag reduction at .Re = 15,000. A significant drag reduction is also obtained 
by Amitay et al. [1], Glezer and Amitay [19], for high Reynolds numbers ranging 
from .31,000 to .131,000, by applying a high-frequency forcing from a synthetic jet 
to flow over a circular cylinder. 

Apart from experimental and numerical simulations studies, a number of theo-
retical works have focussed about the stabilization around a prescribed equilibrium 
state, e.g., [6, 7, 17, 29, 30, 32, 33]. In most of these theoretical stabilization 
results, and thanks to the employed control laws, the authors aim to suppress the 
vortex shedding and narrow the wake width. Further, in [29] (in finite dimension) 
and in [32] (in infinite dimension), the stabilization result is obtained via enough 
small initial perturbations. However, if the above-mentioned studies aim to find an 
equilibrium state, such an equilibrium state is not reached by prescribing the drag 
coefficient . Cx and the lift coefficients . Cy and . Cz. 

This is why the present paper aims to present a theoretical study regarding the 
feedback control over a bluff body for prescribed drag and lift coefficients (which 
can be as small as desired). To our knowledge, such a study has not been conducted 
previously, and it is the main objective of the present paper. 

For prescribed time functions .̃λi(t), i = 1, . . . , d, we need to find a feedback 
control .vc = M(u), where . M is the feedback law, such that . Fi in (4.5) satisfies 

.Fi(u, π) = λ̃i (t), i = 1, . . . , d. (4.6)
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To this end, the boundary control . vc in (4.2) is written on the form 

.vc(t, x) =
d∑

i=1

αi(t) ei (x) on �c, (4.7) 

where the quantities . αi , .i = 1, . . . , d, are a priori unknown and have to be deter-
mined in the feedback form. In order to determine . αi , leading to the determination 
of the boundary control . vc, we consider the trajectory . (ψ, q) ∈ H1(�) × L2

0(�)

solution of the stationary Navier–Stokes model [18]: 

.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ν
ψ + (ψ · ∇)ψ + ∇q = f, in �,

∇ · ψ = 0 in �,

ψ = 0 on �c,

ψ = ψ∞ on �b,

(4.8) 

and we substitute .(u, π) by .(v+ ψ, p + q) in (4.2) and (4.6). Consequently, we get 
this extended system that is considered in the following: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
∂v
∂t

− ν
v + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v + ∇p = 0 in Q,

(b) ∇ · v = 0 in Q,

(c) v = 0 on �b,

(d) v = ∑d
i=1 αi(t) ei (x) on �c,

(e) v(t = 0, x) = v0(x) = u0(x) − ψ(x) in �,

(f ) 〈(−ν∇v + Ip) · n, ei〉
H− 1

2 (�c),H
1
2 (�c)

= λi, i = 1, . . . , d,

(4.9) 

where .λi(t) = −Fi(ψ, q) − λ̃i (t), i = 1, . . . , d. As in [29, 30] where the 
authors stabilize the two- and three-dimensional Navier–Stokes problem around 
a given stationary state, system (4.9) is solved via a Galerkin procedure. Such 
a procedure consists in building a sequence of approximated solutions using an 
adequate Galerkin basis. 

This chapter is organized as follows. In Sect. 4.2, the notations and mathematical 
preliminaries are given. In Sect. 4.3, the existence of at least one solution of the 
non-linear extended system (4.9) is established by applying the Galerkin method.
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4.2 Notation and Preliminaries 

4.2.1 Function Spaces 

The usual function spaces .L2(�), H 1(�), H 1
0 (�) are used, and we let . L2(�) =

(L2(�))d , .H1(�) = (H 1(�))d, .H1
0(�) = (H 1

0 (�))d . Further, we denote by . ‖ · ‖ =
‖ · ‖L2(�) the norm in .L2(�). Finally, if .u ∈ L2(�) is such that .∇ · u ∈ L2(�), the  

normal trace of . u in .H− 1
2 (�) is .u · n. 

A few spaces are now introduced: 

.V1(�) = {
u ∈ H1(�) : ∇ · u = 0 in �

}
, . (4.10) 

V1 
0(�) = {

u ∈ H1 
0(�) : ∇ ·  u = 0 in �

}
, . (4.11) 

V(�) = {
u ∈ V1(�), u = 0 on �b,

∫
�c 

u · n dζ = 0
}
, . (4.12) 

H(�) = {
u ∈ L2(�) : ∇ ·  u = 0 in �, u · n = 0 on �b

}
. (4.13) 

.H(�) is a Hilbert space endowed with .L2-norm, and .V(�) is Hilbert space endowed 
with .H1-norm. Denoting by .V−1(�) = (V1

0(�))′ the dual space of .V1
0(�) and 

considering .H(�) identified with its own dual, we have . V(�) ⊂ H(�) ⊂ V−1(�)

algebraically and topologically with compact injections. 
Finally, the solution . v of (4.9) is searched in the space 

. W(�) =
{
v ∈ V(�), ∃ α = (α1, · · · , αd) such that v =

d∑
i=1

αiei on �c

}
,

(4.14) 

where the orthonormal basis . ei of . R3 is such that .ei ∈ V1/2(�c), .i = 1, . . . , d. 

4.2.2 Linear Forms and a Few Inequalities 

In order to define a weak form of the Navier–Stokes equations, we introduce the 
continuous bilinear form 

. a(v1, v2) =
∫

�

∇v1 : ∇v2 dx, ∀v1, v2 ∈ H1(�),

and the trilinear form
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. b(v1, v2, v3) =
∫

�

(v1 · ∇)v2 · v3 dx, ∀v1, v2, v3 ∈ H1(�).

Thanks to Hölder inequality, we obtain 

. |b(v1, v2, v3)| ≤ ‖v1‖L3(�)‖∇v2‖‖v3‖L6(�).

Further, due to the generalized Sobolev’s inequality, there exists a positive constant 
C such that 

. ‖v1‖L3(�) ≤ C‖v1‖
1
2 ‖∇v1‖

1
2 and ‖v3‖L6(�) ≤ C‖∇v3‖, for d = 2, 3,

and hence, 

. |b(v1, v2, v3)| ≤ C‖v1‖
1
2 ‖∇v1‖

1
2 ‖∇v2‖‖∇v3‖. (4.15) 

By using Hölder inequality, we obtain 

. |b(v,u, v)| ≤ ‖v‖2
L4(�)

‖∇u‖, ∀u, v ∈ H1(�),

and hence thanks to [11, Remark III.2.17], we deduce 

.|b(v,u, v)| ≤ C‖v‖2− d
2 ‖∇v‖ d

2 ‖∇u‖, ∀u, v ∈ H1(�). (4.16) 

By employing integration by parts, the following property holds true 

.b(u, v, v) = 1

2

∫
�c

|v|2(u · n) dζ, ∀u ∈ V1(�) and ∀v ∈ V(�). (4.17) 

For all .v = ∑d
i=1 αiei and .̃v = ∑d

i=1 α̃iei on . �c, we have  

.v · ṽ =
d∑

i=1

αiα̃i on �c and v · n =
d∑

i=j

αj (ej · n) on �c. (4.18) 

From the trace theorem and the Poincaré inequality, we obtain . ‖v‖L2(�) ≤
C‖∇v‖, ∀v ∈ W(�), and hence, 

.‖v‖L2(�c)
=

√√√√ d∑
i=1

α2
i ≤ C‖∇v‖. (4.19) 

In the next section, the variational formulation of the control problem (4.9) is  
given.
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4.3 Existence Result 

4.3.1 The Variational Formulation 

We consider the variational formulation for the extended system (4.9). 

Definition 4.3.1 Let .T > 0 be an arbitrary real number, .λi(t) in .L2(0, T ), . i =
1, . . . , d and .v0 ∈ H(�); we shall say that . v is a weak solution of (4.9) on . [0, T )

if:

• .v ∈ L∞(0, T ;H(�)) ∩ L2(0, T ;V(�)).

• .∃ α = (α1, . . . , αd) ∈ L2(0, T ) such that v =
d∑

i=1

αi ei on �c, 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a)
d

dt

∫
�

v · ṽ dx + νa(v, ṽ) + b(v,ψ, ṽ)

+b(ψ, v, ṽ) + b(v, v, ṽ) = ∑d
i=1 α̃iλi,

(b)

(∫
�

v · ṽ dx
)

(0) =
∫

�

v0 · ṽ dx,

(4.20) 

.∀ ṽ ∈ W(�) with .̃v =
d∑

i=1

α̃i ei on �c. ��

Note that the initial condition (4.20. )b makes sense because for any solution . v
of (4.20. )a , function .t → ∫

�
v(t) · ṽ dx is continuous (see [11] Corollary II.4.2). 

We now first establish the a priori estimates for the extended system (4.9). 

4.3.2 A Priori Estimates 

Taking .̃v = v in (4.20. )a leads to 

.
1

2

d

dt
‖v‖2 + ν‖∇v‖2 + b(v, v, v) + b(ψ, v, v) + b(v,ψ, v) =

d∑
i=1

αiλi . (4.21) 

First, let us estimate the terms of .b(·, ·, ·) in (4.21). Using (4.17) yields 

.b(v, v, v) = 1

2

∫
�c

|v|2(v · n) dζ, ∀v ∈ W(�). (4.22) 

Using (4.1) and (4.18) in (4.22), we obtain
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.b(v, v, v) = 1

2

(
d∑

i=1

α2
i

)
d∑

j=1

αj

∫
�c

ej · n dζ = 0. (4.23) 

Second, from (4.17), we have 

. b(ψ, v, v) = 1

2

∫
�c

|v|2(ψ · n) dζ, ∀v ∈ W(�),

and since .ψ = 0 on . �c, we deduce 

.b(ψ, v, v) = 0. (4.24) 

Finally, using (4.15) and Young’s inequality leads to 

. |b(v,ψ, v)| ≤ C‖v‖ 1
2 ‖∇v‖ 1

2 ‖∇ψ‖‖∇v‖

≤ ε1

2
‖∇v‖2 + C2

2ε1
‖∇ψ‖2‖v‖‖∇v‖

≤ ε1 + ε2

2
‖∇v‖2 + 1

2ε2

(
C4

4ε2
1

‖∇ψ‖4

)
‖v‖2,

and taking .ε1 = ε2 = ν

4
, we obtain 

.|b(v,ψ, v)| ≤ ν

4
‖∇v‖2 +

(
8C4

ν3 ‖∇ψ‖4
)

‖v‖2. (4.25) 

We now estimate the term in the right-hand side of (4.21). Using (4.19), we obtain 
.|αi | ≤ C‖∇v‖, and hence, 

.

d∑
i=1

αiλi ≤ C ‖∇v‖
(

d∑
i=1

|λi |
)

≤ ν

4
‖∇v‖2 + Mλ(t), (4.26) 

where .Mλ(t) = 1

ν

(
C

d∑
i=1

|λi(t)|
)2

. Using (4.23)–(4.26) in (4.21), the following 

inequality holds 

.
1

2

d

dt
‖v‖2 + ν

2
‖∇v‖2 ≤

(
8C4

ν3 ‖∇ψ‖4
)

‖v‖2 + Mλ(t). (4.27)



106 E. M. D. Ngom et al.

Consequently, thanks to Gronwall lemma, we deduce from (4.27) the following 
estimation: 

. sup
t≤T

‖v(t)‖2 + ν

∫ T

0
‖∇v(t)‖2d t ≤ Cλ(T ), (4.28) 

where .Cλ(T ) depends on T , . Mλ, .‖∇ψ‖, and .‖v0‖ . 

Let us estimate . 
dv
dt

. By using integration by parts and the technics used in (4.23)– 

(4.24), we show that 

. b(v,ψ, ṽ) = −b(v, ṽ,ψ),

b(v, v, ṽ) = −b(v, ṽ, v).

Moreover, by employing (4.15) and (4.16), we obtain 

. |b(ψ, v, ṽ)| ≤ C‖ψ‖ 1
2 ‖∇ψ‖ 1

2 ‖∇v‖‖∇ṽ‖,
|b(v, ṽ,ψ)| ≤ C‖ψ‖ 1

2 ‖∇ψ‖ 1
2 ‖∇v‖‖∇ṽ‖,

|b(v, ṽ, v)| ≤ C‖v‖2− d
2 ‖∇v‖ d

2 ‖∇ṽ‖;

hence, from (4.20), by taking .α̃i = 0, yielding .̃v ∈ V1
0(�), we deduce 

. 

∥∥∥∥dv
dt

∥∥∥∥
V−1(�)

≤ ν‖∇v‖ + C‖ψ‖ 1
2 ‖∇ψ‖ 1

2 ‖∇v‖ + C‖v‖2− d
2 ‖∇v‖ d

2 := G(t),

where .G(t) is bounded in .L
4
d (]0, T [) according to estimate (4.28). Therefore, 

.

∥∥∥∥dv
dt

∥∥∥∥
L

4
d (]0,T [;V−1(�))

≤
(∫ T

0
G

4
d (t) dt

) d
4

≤ Cλ(T ). (4.29) 

Theorem 4.3.1 Assume that (4.1) is satisfied. For an arbitrary function . λi in 
.L2(0, T ), .i = 1, . . . , d, and an arbitrary initial data . v0 in .H(�), there exists a 
solution . v in the sense of Definition 4.3.1 and a distribution p on Q such that (4.9) 
holds. Moreover, . dv

dt
belongs to .L

d
4 (]0, T [;V−1(�)). ��

Proof In the first step, a Galerkin basis is built for the space .W(�) defined in (4.14), 
while in the second step we prove the existence of a weak solution . v. Finally, we 
prove the existence of the pressure.
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4.3.3 A Galerkin Basis for the Space W(�) 

For .i = 1, . . . , d, we consider the following Stokes problem: 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
wi + ∇qi = 0, in �,

∇ · wi = 0 in �,

wi = 0 on �b,

wi = ei on �c.

(4.30) 

From condition (4.1), .
∫
�c

ei ·n dζ = 0. Thus, system (4.30) admits a unique solution 

.(wi , qi) belonging to .H1(�) × L2
0(�) (see [11, Theorem IV.6.5]). Moreover, for all 

.z ∈ V1
0(�) defined in (4.11) and for all . αi ∈ R, we have . v = z + ∑d

i=1 αiwi ∈
W(�), where . wi satisfies (4.30). Indeed, we have .z,wi ∈ V(�), and since .z = 0 on 

. �c, we obtain .v = ∑d
i=1 αiwi on . �c. When .(zn)n∈N defines a countable orthonormal 

basis of .V1
0(�), since .wi = ei on . �c, the sequence .w1, . . . , wd , z1, z2, z3, . . . , is 

then linearly independent. Consequently, .W(�) can be rewritten as 

.W(�) = span(wi ){1≤i≤d} ⊕ span(zn){n∈N∗}, (4.31) 

and . v is expressed as 

. v = z +
d∑

i=1

αiwi , with z =
∞∑
i=1

θizi .

4.3.4 Existence of Weak Solution 

The proof of the existence follows a standard procedure [30]. In a first step, a 
sequence of approximate solutions using a Galerkin method is built. A compactness 
result allows us to pass to the limit in the system satisfied by the approximated 
solutions. 

4.3.4.1 The Galerkin Method 

Let .m ∈ N
∗; we define the space 

. Wm = span(w){1≤i≤d} ⊕ span(zi ){1≤i≤m},

and we express .vm ∈ Wm as



108 E. M. D. Ngom et al.

. vm =
d+m∑
i=1

αimϕi ,

where .ϕi = wi , for .i = 1, . . . , d, and .ϕi = zi−d , for . i = d + 1, d + 2, . . . , d + m.

We consider the following finite-dimensional problem: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a)
d

dt

∫
�

vm · ϕj dx + νa(vm,ϕj ) + b(vm,ψ,ϕj ) + b(ψ, vm,ϕj )

+ b(vm, vm,ϕj ) =
d∑

i=1

δ
ij
λi,

(b)

∫
�

vm(0) · ϕj dx =
∫

�

v0 · ϕj dx, for j = 1, 2, . . . , d + m.

(4.32) 

Lemma 4.3.1 The discrete problem (4.32) has a unique solution . vm belonging to 
.C1(0, Tm;Wm). Moreover, the solution satisfies 

.‖vm‖L∞(0,T ;L2(�)) + ‖vm‖L2(0,T ;H1(�)) ≤ Cλ(T ), . (4.33)∥∥∥∥dvm 
dt

∥∥∥∥
L 

4 
d (]0,T [;V−1(�)) 

≤ Cλ(T ), (4.34) 

where .Cλ(T ) is a positive constant independent of m. ��
Proof Classical results of non-linear ODEs lead to the existence of the greatest 
.Tm in .(0, T ) such that the discrete problem (4.32) has a unique solution . vm ∈
C1(0, Tm;Wm). Indeed, the resulting mass matrix defined as . Mij = ∫

�
ϕi · ϕj dx

.(1 ≤ i, j ≤ d + m) is nonsingular. In order to show that . Tm is independent of m, 
it is sufficient to verify the boundedness of the .L2-norm of . vm independently of m. 
Following the same procedure as for the derivation of the a priori estimates (4.28) 
and (4.29) yields (4.33) and (4.34). If .Tm < T , then .‖vm‖ should tend to .+∞ as 
.t → Tm because of the explosion criteria. However, this does not happen since . ‖vm‖
is bounded independently of m in (4.33), and therefore .Tm = T . ��

For a subsequence of . vm (still denoted by . vm), the estimates in (4.33) and (4.34) 
yield the following weak convergences as m tends to . ∞ :

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vm ⇀ v weakly in L2(]0, T [;V(�)),

vm ⇀ v weakly* in L∞(]0, T [;H(�)),

dvm

dt
⇀

dv
dt

weakly in L
4
d (]0, T [;V−1(�)).

(4.35) 

Nevertheless, the convergences in (4.35) are not sufficient to pass to the limit 
in the weak formulation (4.32) because of the presence of the convection term. 
Consequently, in order to utilize the compactness theory on the sequence of
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approximated solution . vm, we apply the Aubin theorem [27, Théorème 5.1, page 
58] with .p0 = 2, .p1 = 4

d
and .B0 = V(�), .B1 = V−1(�) and .B = H(�). Note that 

.B0 ⊂ B ⊂ B1, and the imbedding from . B0 to B is compact. Wet set 

. U = {v, v ∈ L2(]0, T [;V(�)), v ∈ L
4
d (]0, T [;V−1(�))},

and equipped with the norm .‖v‖L2(]0,T [;V(�)) + ‖v‖
L

4
d (]0,T [;V−1(�))

, . U is a Banach 

space. Then, by applying the Aubin compacity theorem, we prove that the imbed-
ding .U ⊂ L2(]0, T [;H(�)) is compact; hence, we obtain the following strong 
convergence (at least for a subsequence of . vm still denoted by . vm) 

.vm → v strongly in L2(0, T ;L2(�)). (4.36) 

Using the above strong convergence result and (4.35) enables us to pass to the limit 
in the weak formulation, obtained from (4.32) after multiplication by . ϕ ∈ D([0, T ))

and integration by parts with respect to time. Hence, for all . ̃vj = α̃jϕj , j =
1, 2, . . . , d + m, passing to the limit yields 

. −
∫ T

0

∫
�

v · ṽj ϕ
′(t) dx dt +

∫
�

v0̃vj ϕ(0) dx + ν

∫ T

0

∫
�

∇v : ∇ṽj ϕ(t) dx dt

+
∫ T

0

∫
�

(v · ∇v) · ṽj ϕ(t) dx dt +
∫ T

0

∫
�

(v · ∇ψ) · ṽj ϕ(t) dx dt

+
∫ T

0

∫
�

(ψ · ∇v) · ṽj ϕ(t) dx dt =
∫ T

0
α̃j δjkλk(t)ϕ(t) dt. (4.37) 

By linearity, Eq. (4.37) holds for all . ̃v combination of finite . ̃vj and, by density, for 
any element of .W(�). ��

Now we can retrieve the controlled problem (4.9). 

4.3.5 Retrieving the Controlled Problem 

First, we prove the existence of the pressure. 

Lemma 4.3.2 There exists .p ∈ D′(]0, T [;L2(�)) such that .(v, p) satisfies (4.9. )a
in the distribution sense. ��
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Proof By choosing .ϕ ∈ D(0, T ) in (4.37), .∀̃v = z̃+ α̃jwj ∈ W(�), j = 1, . . . , d , 

and .̃z ∈ V1
0(�), we obtain 

. 

∫ T

0

∫
�

∂v
∂t

· ṽϕ(t) dx dt + ν

∫ T

0

∫
�

∇v : ∇ṽϕ(t) dx dt

+
∫ T

0

∫
�

(v · ∇v) · ṽϕ(t) dx dt +
∫ T

0

∫
�

(v · ∇ψ) · ṽϕ(t) dx dt

+
∫ T

0

∫
�

(ψ · ∇v) · ṽϕ(t) dx dt =
∫ T

0
α̃j λj (t) ϕ(t)dt; (4.38) 

hence, 

. 

∫
�

∂v
∂t

· ṽ dx + ν

∫
�

∇v : ∇ṽ dx +
∫

�

(v · ∇v) · ṽ dx +
∫

�

(v · ∇ψ) · ṽ dx

+
∫

�

(ψ · ∇v) · ṽ dx = α̃j λj (t) in D′(0, T ). (4.39) 

Further, taking .̃αj = 0, .j = 1, . . . , d, yielding .̃v ∈ V1
0(�), we deduce 

. 

∫
�

∂v
∂t

· ṽ dx + ν

∫
�

∇v : ∇ṽ dx +
∫

�

(v · ∇v) · ṽ dx

+
∫

�

(v · ∇ψ) · ṽ dx +
∫

�

(ψ · ∇v) · ṽ dx = 0 in D′(0, T ). (4.40) 

Then, for . f defined as 

. f = ∂v
∂t

− ν
v + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v,

using (4.40) leads to .f ∈ D′(]0, T [ ; H−1(�)) and . 〈f, ṽ〉H−1(�),H1
0(�) = 0,

for all . ̃v in .V1
0(�). Hence, due to de Rham’s theorem[36], there exists . p ∈

D′(]0, T [ ; L2(�)) such that .f = −∇p. ��
Next, we prove that .(v, p) satisfies (4.9. )f . By writing (4.9. )a in the form 

. 
∂v
∂t

+ ∇ · (−ν∇v + Ip) + (v · ∇)ψ + (ψ · ∇)v + (v · ∇)v = 0 in Q

and using [36, Chap I, Theorem 1.2], we obtain 

.

∫
�

∂v
∂t

· ṽ dx +
∫

�

(ν∇v − Ip) : ∇ṽ dx + 〈(−ν∇v + Ip) · n, ṽ〉
H− 1

2 (�),H
1
2 (�)
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+
∫

�

(v · ∇v) · ṽ dx +
∫

�

(v · ∇ψ) · ṽ dx +
∫

�

(ψ · ∇v) · ṽ dx = 0, (4.41) 

for all . ̃v in .W(�). By comparing (4.39) and (4.41), we retrieve (4.9. )f , namely 

. 〈(−ν∇v + Ip) · n, ei〉
H− 1

2 (�c),H
1
2 (�c)

= λi.

Finally, it remains to verify that the initial condition (4.9. )e belongs to . W′(�). In  
this purpose, we multiply (4.9. )a by . ̃vϕ, with .ϕ(T ) = 0, and integrate with respect 
to time and space 

. −
∫ T

0

∫
�

v · ṽϕ′(t) dx dt +
∫

�

v(0)̃vϕ(0) dx + ν

∫ T

0

∫
�

∇v : ∇ṽϕ(t) dx dt

+
∫ T

0

∫
�

(v · ∇v) · ṽϕ(t) dx dt +
∫ T

0

∫
�

(v · ∇ψ) · ṽϕ(t) dx dt

+
∫ T

0

∫
�

(ψ · ∇v) · ṽϕ(t) dx dt =
∫ T

0

d∑
i=1

α̃iλi(t) ϕ(t)dt. (4.42) 

By comparing (4.37) and (4.42), we obtain .
∫
�
(v(0) − v0) · ṽϕ(0) dx = 0, and 

choosing . ϕ such that .ϕ(0) = 1 yields 

. 

∫
�

(v(0) − v0) · ṽ dx = 0 ∀̃v ∈ W(�);

hence, .v(0) = v0 in .W′(�). We conclude that . v is the solution of (4.9). 

4.4 Concluding Remarks 

In this chapter, the control of the two- and three-dimensional Navier–Stokes equa-
tions in a bounded domain is studied around prescribed drag and lift coefficients, 
using a boundary feedback control. In order to determine a feedback law, an 
extended system coupling the Navier–Stokes equations with an equation satisfied 
by the control on the domain boundary is considered. We first assume that on the 
bluff body . �c (a part of the domain boundary), the trace of the fluid velocity . vc is 
a linear combination of a given velocity field represented by .ei = (δ1i , . . . , δdi)

T , 

.i = 1, . . . , d, and the proportionality coefficient . αi , such that .vc = ∑d
i=1 αiei . The  

quantity . αi is an unknown of the problem and is written in a feedback form. By using 
the Galerkin method, . αi is determined such that the Dirichlet boundary control . vc is 
satisfied on . �c, and the controlling boundary control is built. Finally, we show that 
the feedback control (4.6) provides control of the Navier–Stokes problem around 
given drag and lift coefficients.
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Chapter 5 
Discrete Potential Boundary-Value 
Problems of Kirchhoff Type 

Abdoul Aziz Kalifa Dianda and Stanislas Ouaro 

Abstract In this chapter, we prove the existence of solutions for some discrete 
nonlinear difference equations of Kirchhoff type subjected to a potential boundary-
value condition. We make use of a variational technique that relies on Szulkin’s 
critical point theory, which ensures the existence of solutions by ground state and 
mountain pass methods. 

Keywords Szulkin critical point theory · Ground states method · Mountain pass 
theorem · Potentiel boundary-value condition 

5.1 Introduction 

This chapter is concerned with the existence of solutions to problems of the form 

. 

⎧
⎪⎪⎨

⎪⎪⎩

−M(A(k − 1,�u(k − 1)))�(a(k − 1,�u(k − 1))) = f (k, u(k)); k ∈ Z[1, T ]

(a(0,�u(0)),−a(T ,�u(T )) ∈ ∂j (u(0); u(T + 1)),

(5.1) 
where .T ≥ 2 is a positive integer and .�u(k) = u(k + 1) − u(k) is the forward 
difference operator. Here and hereafter, we denote by .Z[a, b] the discrete interval 
.{a, a+1, a+2, . . . , b}, where a and b are integers with .a < b. . f : Z[1, T ]×R → R

is a continuous and monotone function with respect to the second variable, . j : R ×
R → (−∞,∞) is convex, proper (i.e., .D(j) := {z ∈ R × R : j (z) < +∞} �= ∅), 
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and lower semicontinuous (in short l.s.c.), and . ∂j denotes the subdifferential of j . 
Recall that, for .z ∈ R × R, the set . ∂j is defined by 

.∂j (z) = {ζ ∈ R × R : j (ξ) − j (z) ≥ (ζ | ξ − z), for all ξ ∈ R × R}, (5.2) 

where .(. | .) stands for the usual inner product in .R × R. 
We also consider the function space .X = {v : {0, 1, . . . , T + 1} → R} with the 

inner product 

. (u, v) =
T +1∑

k=1

�u(k − 1)�v(k − 1), for all u, v ∈ X.

We assume that 

.a(k, .) : R → R is continuous for all k ∈ {0, 1, . . . , T }, (5.3) 

and there exists a mapping A : .Z[1, T ] × R → R that satisfies 

.A(k, 0) = 0, for all k ∈ Z[0, T ]. (5.4) 

.a(k, ξ) = ∂

∂ξ
A(k, ξ), for all k ∈ Z[0, T ]. (5.5) 

We also assume that:

• There exists a constant . C1 such that 

.|a(k, ξ)| ≤ C1(1 + |ξ |p(k)−1), for all k ∈ Z[0, T ]. (5.6)

• The following holds true. 

. (a(k, ξ)−a(k, η).(ξ −η) > 0, for all k ∈ Z[0, T ] and ξ, η ∈ R such that ξ �= η.

(5.7)
• The following holds true. 

.|ξ |p(k) ≤ a(k, ξ)ξ ≤ p(k)A(k, ξ), for all k ∈ Z[0, T ] and ξ ∈ R. (5.8) 

We also assume that 

.p : Z[0, T ] → (1,∞), (5.9) 

.M : (0,∞) → (0,∞) is continuous and nondecreasing, and there exist positive 
reals .B1, B2 with .B1 ≤ B2 and .α ≥ 1 such that 

.B1t
α−1 ≤ M(t) ≤ B2t

α−1 for t ≥ t∗ > 0. (5.10)



5 Discrete Potential Boundary-Value Problems of Kirchhoff Type 117

As examples of functions satisfying assumptions (5.3)–(5.10), we can give the 
following:

• .M (A(k, ξ)) = M

(
1

p(k)
|ξ |p(k)

)

= 1, where .M(t) = 1 and . a(k, ξ) =
|ξ |p(k)−2ξ , for .k ∈ Z[0, T ] and .ξ ∈ R.

• .M (A(k, ξ)) = b + c

p(k)

[(
1 + |ξ |2)p(k)/2 − 1

]
, where .M(t) = b + ct and 

.a(k, ξ) = (
1 + |ξ |2)(p(k)−2)/2

ξ , for all .k ∈ Z[0, T ] and . ξ ∈ R.

If we take .M(t) = 1, (5.1) is reduced to a problem studied by Kyelem et al. in [16]. 
In [16], the authors proved the existence of solutions for discrete potential 

boundary-value problem, by using variational techniques that rely on Szulkin’s 
critical point theory and ensure the existence of solutions by ground state and 
mountain pass methods. 

Problem (5.1) has its origin in the theory of nonlinear vibration and can be seen as 
a generalization of the problem studied in [16]. The equations of the type (5.1) were 
firstly proposed by Kirchhoff in 1876 (see [13]). After that, several physicists also 
considered such equation for their researches in the theory of nonlinear vibrations. 
The first study that deals with anisotropic discrete boundary-value problems of p(.) 
Kirchhoff type difference equation was done by Yucedag (see [23]). 

In [15], Koné et al. studied the problem 

. 

⎧
⎪⎪⎨

⎪⎪⎩

−M(A(k − 1,�u(k − 1)))�(a(k − 1,�u(k − 1))) = f (k); k ∈ Z[1, T ]

u(0) = �u(T ) = 0,

(5.11) 
where .T ≥ 2 is a positive integer and .�u(k) = u(k + 1) − u(k) is the forward 
difference operator. They proved the existence of weak solutions to a family of 
discrete boundary-value problems whose right-hand side belongs to a discrete 
Hilbert space. 

It is usually seen that nonlinear multivalued boundary condition includes particu-
lar cases of classical boundary conditions; these are obtained by appropriate choices 
of j (see, e.g., Ch.2 in [11]). For other choices of j yielding various boundary 
conditions, we refer the reader to Gasinski and Papageorgiou [8] and Jebelean and 
Serban [12]. 

The study of boundary-value problems with discrete Laplacian using variational 
approaches was developed in the last years. Most of the papers deal with classical 
boundary conditions such as Dirichlet boundary conditions (see, e.g., Agarwal et al. 
[1], Cabada et al. [4]), Neumann boundary conditions (see, e.g., Candito and D’Agui 
[5], Tian and Ge [22]), and periodic boundary conditions (see, e.g., He and Chen 
[10], Jebelean and Serban [12]).
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Recently, boundary-value problems with discrete Laplacian subjected to Dirich-
let, Neumann, or Periodic boundary conditions were studied by Bereanu et al. [2], 
Galewski and Glab [6, 7], Guiro et al. [9], Koné and Ouaro [14], Mashiyev et al. 
[17], and Mihailescu et al. [18, 19]. 

In [2], the authors are concerned with the existence of solutions of the following 
periodic and Neumann boundary .p(.)-Laplacian problem: 

.

⎧
⎪⎪⎨

⎪⎪⎩

−�p(k−1)x(k − 1) = f (k, x(k)) for k ∈ Z[1, T ],

x(0) − x(T + 1) = 0 = �x(0) − �x(T + 1),
(5.12) 

and the following Neumann boundary .p(.)-Laplacian problem: 

.

⎧
⎪⎪⎨

⎪⎪⎩

−�p(k−1)x(k − 1) = f (k, x(k)) for k ∈ Z[1, T ],

�x(0) = 0 = �x(T + 1).
(5.13) 

Bereanu, Jebelean, and Serban obtained in [2] the existence results of solutions to 
problems (5.12) and (5.13) in appropriate discrete spaces using variational methods 
and some applications of lower and upper solution theorems for both considered 
cases. In [3], Bereanu et al. made use of variational approach to obtain ground state 
and mountain pass solutions for the following problem: 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p(k−1)

(
u(k − 1)

)
= f (k, u(k)) for k ∈ Z[1, T ],

(hp(0)(�u(0)),−hp(T )(�u(T )) ∈ ∂j (u(0), u(T + 1)),

where .�u(k) = u(k + 1) − u(k) is the forward difference operator and .�p(·) is a 
discrete .p(·)-Laplacian operator that is 

. − �p(k−1)(u(k − 1)) := �(hp(k−1)(�u(k − 1))),

with .hp(k) : R → R defined by .hp(k)(u(k)) = |u(k)|p(k)−2u(k). 
In this chapter, we prove the existence of solutions to problem (5.1) by using 

ground state method and mountain pass technique. This chapter is organized as 
follows: Sect. 5.2 is devoted to mathematical preliminary, Sect. 5.3 deals with the 
existence of solutions to problem (5.1) using ground state method. In Sect. 5.4, we  
deal with the existence of non-trivial solutions to problem (5.1) by using mountain 
pass technique.
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5.2 Preliminary 

Our approach for the boundary-value problem (5.1) relies on the critical point theory 
developed by Szulkin [21]. 

We consider the following norm: 

. ‖u‖p(·) := inf

{

λ > 0 :
T∑

k=1

1

p(k)

∣
∣
∣
∣
u(k)

λ

∣
∣
∣
∣

p(k)

≤ 1

}

,

and we introduce the following function: 

. p : Z[1, T ] −→ (1,∞).

Let us denote 

. p− := min
k∈Z[0,T ] p(k) and p+ := max

k∈Z[0,T ]
p(k).

Let .ϕ : X −→ R be defined by 

.ϕ(u) = M̂

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

, for all u ∈ X, (5.14) 

where .M̂(t) = ∫ t

0 M(s)ds. 
Using the functional j , we introduce the functional .J : X −→ (−∞;∞) given 

by 

.J (u) = j (u(0); u(T + 1)), for all u ∈ X. (5.15) 

Note that, as j is proper, convex, and l.s.c., the same properties hold true for J . 
Let us set 

.ψ = ϕ + J. (5.16) 

Let us also define 

. F(k, t) =
∫ t

0
f (k, τ )dτ, for all k ∈ Z[1, T ], for all t ∈ R

and 

.�(u) = −
T∑

k=1

F(k, u(k)), ∀u ∈ X. (5.17)
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The energy functional associated to problem (5.1) is given by 

.I = � + ψ, (5.18) 

with . ψ given by (5.16) and . � given by (5.17). 

Lemma 5.2.1 Let .u ∈ X and .p+ < ∞; then .‖u‖p(.) is equivalent to the Luxemburg 
norm defined by 

. ‖u‖e := inf

{

λ > 0;
T∑

k=1

∣
∣
∣
∣
u(k)

λ

∣
∣
∣
∣

p(k)

≤ 1

}

.

Proof We have 

. 

T∑

k=1

1

p(k)

∣
∣
∣
∣
u(k)

λ

∣
∣
∣
∣

p(k)

≥ 1

p+
T∑

k=1

∣
∣
∣
∣
u(k)

λ

∣
∣
∣
∣

p(k)

;

thus, 

. ‖u‖p(.) ≥ λ1‖u‖e,

. 

T∑

k=1

1

p(k)

∣
∣
∣
∣
u(k)

λ

∣
∣
∣
∣

p(k)

≤ 1

p−
T∑

k=1

∣
∣
∣
∣
u(k)

λ

∣
∣
∣
∣

p(k)

;

therefore, 

. ‖u‖p(.) ≤ λ2‖u‖e.

We infer that 

.λ1‖u‖e ≤ ‖u‖p(.) ≤ λ2‖u‖e.


�
Now, let us present some basic properties of the general critical point theory. 

Let .I : X → R∪{∞} be the energy functional associated to problem (5.1) given 
by 

. (H) : I = � + ψ,

with .� : X → R a .C1(X,R) function and .ψ : X → R ∪ {∞} a convex, lower 
semicontinuous, and proper function.
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Definition 5.2.1 An element .u ∈ X satisfying (H) is called a critical point of the 
functional .I : X → R ∪ {∞} if . 〈�′(u), v − u〉 + ψ(v) − ψ(u) ≥ 0, for all v ∈ X.

Definition 5.2.2 The functional .I : X → R
⋃{∞} satisfying .(H) is said to satisfy 

the Palais–Smale (in short (PS)) condition in the sense of Szulkin, if every sequence 
.{un} ⊂ X for which .I (un) −→ c ∈ R and 

.〈�′(un); v − un〉 + ψ(v) − ψ(un) ≥ −ε‖v − un‖, for all v ∈ X, (5.19) 

where .εn −→ 0 possesses a convergent subsequence. 
�
Proposition 5.2.1 ([22], Proposition 1.1) If I satisfies (H), then each local mini-
mum point of I is necessarily a critical point of I. 

Theorem 5.2.1 ([20], Theorem 23.2) Let f be a convex function, and let x be a 
point where f is finite. Then . x∗ is a subgradient of f at x if and only if . f ′(x∗, y) ≥
〈x∗; y〉 f or all y ∈ X. In fact, the closure of .f ′(x∗, y) as a convex function 
of y is the support function of the closed convex set .∂f (x). 
�
Theorem 5.2.2 ([21], Theorem 3.2) Assume that I satisfies (H), the (PS) condition 
and the following: 

(i) .I (0) = 0, and there exist .α, ρ ≥ 0 such that .I (u) ≥ α if . ‖u‖ = ρ.

(ii) .I (e) ≤ 0 for some .e ∈ X with .‖e‖ ≥ ρ. 

Then, I has a critical value .c ≥ α that can be characterized by 

. c = inf
f ∈�

sup
t∈[0,1]

I (f (t)),

where .� = {f ∈ C([0, 1], X) : f (0) = 0, f (1) = e}. 
�

Proposition 5.2.2 Assume that (5.3)–(5.10) hold. Then: 

(i) . ϕ is convex and is in .C1(X;R). 
(ii) J is proper, convex, and l.s.c. 
(iii) . ψ is proper, convex, and l.s.c. 
(iv) .� ∈ C1(X;R). 
�
Proof 

(i) . ϕ is well-defined. A is convex with respect to the second variable according 
to (5.5) and (5.6). According to [16], . ϕ is convex on X and .C1(X,R), with 
derivative given by 

.〈ϕ′(u), v〉 = M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

×
T +1∑

k=1

a(k − 1,�u(k − 1))�v(k − 1), ∀u, v ∈ X.
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The continuity of the derivative comes from the continuity of .a(k, .). Hence, . ϕ
is in .C1(X;R). 

(ii) Note that as j is proper, convex, and l.s.c., the same properties hold for J . 
(iii) Since . ϕ and J are convex, then . ψ is convex. 

Suppose that . ψ can take the value .−∞; then, in this case, .J = ψ − ϕ can 
take the value .−∞ that is not possible. Therefore, . ψ cannot take the value 
.−∞. Hence, . ψ is proper. 

Note also that 

. J (u) ≤ lim
y→u

inf J (y).

Then, 

. ϕ(u) + J (u) ≤ lim
y→u

inf J (y) + ϕ(u)

≤ lim
y→u

inf J (y) + lim
y→u

inf ϕ(y)

≤ lim
y→u

inf ψ(y).

Therefore, .ψ(u) ≤ lim
y→u

inf ψ(y). Hence, . ψ is l.s.c. 

(iv) .|�(u)| = |
T∑

k=1

F(k, u(k))| < ∞. Then, . � is well-defined. 

By definition, . � is derivable, and his derivative is continuous; hence, . � ∈
C1(X;R). Moreover, 

. 〈�′(u); y〉 = lim
δ→0+

�(u + δy) − �(u)

δ

= − lim
δ→0+

T∑

k=1

F(k, u(k) + δy(k)) − F(k, u(k))

δ

= −
T∑

k=1

lim
δ→0+

F(k, u(k) + δy(k)) − F(k, u(k))

δ

= −
T∑

k=1

f (k, u(k))y(k), for all u, y ∈ X.

Now, let us claim the following important result. 

Proposition 5.2.3 If .u ∈ X is a critical point of the functional I in the sense that 

.〈�′(u); y − u〉 + ψ(y) − ψ(u) � 0, for all y ∈ X, (5.20) 

then u is a classical solution of problem (5.1). 
�
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Proof Since .〈�′(u); y − u〉 + ψ(y) − ψ(u) � 0, then we can take .y = u + sw for 
all .s > 0 in (5.20). Dividing (5.20) by s and letting .s −→ 0+, we get 

.〈�′(u);w〉 + 〈ϕ′(u);w〉 + J ′(u,w) ≥ 0, ∀ w ∈ X, (5.21) 

where .J ′(u;w) is the directional derivative of the convex function J at u in the 
direction of w. 

Since 

. J (u) = j (u(0), u(T + 1)),

then we get from (5.21), 

. 〈�′(u);w〉 + 〈ϕ′(u);w〉 + j ′((u(0), u(T + 1)),

(w(0), w(T + 1))) � 0, for all w ∈ X.

Since 

. 〈�′(u);w〉 = −
T∑

k=1

f (k, u(k))w(k) for all u,w ∈ X

and 

. 〈ϕ′(u),w〉 = M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

×
T +1∑

k=1

a(k − 1,�u(k − 1))�w(k − 1) for all u,w ∈ X,

then, one obtains 

. −
T∑

k=1

f (k, u(k))w(k) + M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

×
T +1∑

k=1

a(k − 1,�u(k − 1))�w(k − 1)

+j ′((u(0), u(T + 1)), (w(0), w(T + 1))) � 0.
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Therefore, 

. −
T∑

k=1

f (k, u(k))w(k) + M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

×
T +1∑

k=1

a(k − 1,�u(k − 1))[w(k) − w(k − 1)]

+j ′((u(0), u(T + 1)), (w(0), w(T + 1)))

� 0.

Then, 

. −
T∑

k=1

f (k, u(k))w(k) + M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

×
T +1∑

k=1

a(k − 1,�u(k − 1))w(k)

−M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T +1∑

k=1

a(k − 1,�u(k − 1))w(k − 1)

+j ′((u(0), u(T + 1)), (w(0), w(T + 1)))

� 0;

thus, 

. −
T∑

k=1

f (k, u(k))w(k) + M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

a(T ,�u(T ))w(T + 1)

+M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T∑

k=1

a(k − 1,�u(k − 1))w(k)

−M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T∑

k=0

a(k,�u(k))w(k)

+j ′((u(0), u(T + 1)), (w(0), w(T + 1)))

� 0,

which leads to
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. −
T∑

k=1

f (k, u(k))w(k) + M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

a(T ,�u(T ))w(T + 1)

−M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

a(0,�u(0))w(0)

+M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T∑

k=1

a(k − 1,�u(k − 1))w(k)

−M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T∑

k=1

a(k,�u(k))w(k)

+j ′((u(0), u(T + 1)), (w(0), w(T + 1)))

� 0.

Therefore, 

. −
T∑

k=1

f (k, u(k))w(k) + M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

a(T ,�u(T ))w(T + 1)

−M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

a(0,�u(0))w(0)

−M

(
T +1∑

k=1

A (k−1,�u(k−1))

)
T∑

k=1

[a(k,�u(k))−a(k−1,�u(k−1))]w(k)

+j ′((u(0), u(T + 1)), (w(0), w(T + 1)))

� 0;

thus 

. −
T∑

k=1

f (k, u(k))w(k) − M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

×
T∑

k=1

�a(k − 1,�u(k − 1))w(k)

+M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

a(T ,�u(T ))w(T + 1)



126 A. A. K. Dianda and S. Ouaro

−M

(
T +1∑

k=1 

A (k − 1,�u(k  − 1))

)

a(0,�u(0))w(0) 

+j ′((u(0), u(T + 1)), (w(0), w(T + 1)))

� 0, 

for all .w ∈ X. Thus we infer 

. M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T∑

k=1

(
− �a(k − 1,�u(k − 1)

)
w(k)

−
T∑

k=1

f (k, u(k))w(k) = 0.

As .w ∈ X is arbitrarily chosen, thus if .w(0) = w(T + 1) = 0, we obtain 

. M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T∑

k=1

(−�a(k − 1,�u(k − 1))) w(k)

=
T∑

k=1

f (k, u(k))w(k).

Hence, it follows that 

. − M(A(k − 1,�u(k − 1)))�(a(k − 1,�u(k − 1)))

= f (k, u(k)) for all k ∈ Z[1, T ]. (5.22) 

It remains to show that .(a(0,�u(0)),−a(T ,�u(T ))) ∈ ∂j (u(0), u(T + 1)). One  
has 

. −
T∑

k=1

f (k, u(k))w(k) − M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

×
T∑

k=1

�a(k − 1,�u(k − 1))w(k)

+ M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

[a(T ,�u(T ))w(T + 1) − a(0,�u(0))w(0)]

+ j ′((u(0), u(T + 1)), (w(0), w(T + 1))) � 0
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and 

. M

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)
T∑

k=1

(
− �a(k − 1,�u(k − 1)

)
w(k)

=
T∑

k=1

f (k, u(k))w(k).

Let 

. C =

⎧
⎪⎪⎨

⎪⎪⎩

B1 if − a(T ,�u(T )) + a(0,�u(0)) ≥ 0

B2 if − a(T ,�u(T )) + a(0,�u(0)) ≤ 0.

As .M(.) is positive, from (5.10), it follows that 

. j ′((u(0), u(T + 1)), (w(0), w(T + 1))) � C

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)α−1

× [−a(T ,�u(T ))w(T + 1) + a(0,�u(0))w(0)].

Now, let us take . s = C
(∑T +1

k=1 A (k − 1,�u(k − 1))
)α−1

.

Thus, 

. j ′((u(0), u(T + 1)), (w(0), w(T + 1))) � −a(T ,�u(T ))(sw(T + 1))

+ a(0,�u(0))(sw(0)).

Finally, for all .w ∈ X, taking .sw(0) = p and .sw(T + 1) = q, where .p, q ∈ R are 
arbitrarily chosen, it follows that 

. j ′((u(0), u(T + 1)), (w(0), w(T + 1))) � −a(T ,�u(T ))q

+a(0,�u(0))p, for p, q ∈ R.

Hence, .(a(0,�u(0)),−a(T ,�u(T ))) ∈ ∂j (u(0), u(T + 1)). 
�
Now, we have the following lemma that will be used later. 

Lemma 5.2.2 (See [16]) Let .u ∈ X and .p+ < ∞; then, the following properties 
hold:
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. (i) ‖u‖p(.) < 1 �⇒ ‖u‖p+
p(.) ≤

T∑

k=1

|u(k)|p(k)

p(k)
≤ ‖u‖p−

p(.);

. (ii) ‖u‖p(.) > 1 �⇒ ‖u‖p−
p(.) ≤

T∑

k=1

|u(k)|p(k)

p(k)
≤ ‖u‖p+

p(.).

In the following section, we turn out to the existence result by using ground state 
method. 

5.3 Proof of the Existence of Classical Solutions by Ground 
State Method 

In this section, we prove an existence result of classical solutions. This result shows 
that the energy functional I has a minimum in X, and for the proof, we use the 
positive constant 

. λ1 := inf

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∑T +1

k=1
1

p(k − 1)
|�u(k − 1)|p(k−1)

)α−1

∑T
k=1

1

p(k)
|u(k)|p(k)

: u ∈ X − {0}

and
(
u(0), u(T + 1)

) ∈ D(j)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

with .α ≥ 1, . α is given by (5.10). 
It is obvious that .λ1 > 0. 

Theorem 5.3.3 Assume that (5.3)–(5.8) hold. Moreover, suppose that 

. lim|t |→∞ sup
p(k)F (k, t)

|t |p(k)
< λ1, for all k ∈ Z[1, T ]. (5.23) 

Then, problem (5.1) has at least one classical solution that minimizes I on X. 
�
Proof 

Step 1: We first show that I is sequentially lower semicontinuous on X. 
Indeed, from Proposition 5.2.2, the functional . ψ is lower semicontinuous, and 
the function . � is . C1 on X. Therefore, the functional I is lower semicontinuous 
on X.
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Step 2: We prove that I is bounded from below and coercive on X. 
Using (5.23), one obtains the existence of some constants .α′ > 0 and .ρ > 1 such 
that 

. F(k, t) ≤ λ1 − α′

p(k)
|t |p(k) for all k ∈ Z[1, T ] and for all t ∈ R with |t | > ρ.

On the other hand, by the continuity of .F(k, .) over .[−ρ, ρ], there is a constant 
.Nρ > 0 such that 

. |F(k, t)| ≤ Nρ for all k ∈ Z[1, T ] and t ∈ [−ρ, ρ].

Hence, we infer that 

. F(k, t) ≤ Nρ + λ1 − α′

p(k)
|t |p(k) for all (k, t) ∈ Z[1, T ] × R.

To prove the coercivity of I , we use the above inequality to obtain for all . (k, t) ∈
Z[1, T ] × R, 

. −
T∑

k=1

F(k, u(t)) ≥ −NρT − (λ1 − α′)
T∑

k=1

|u(k)|p(k)

p(k)
.

It follows that 

. I (u) ≥ ϕ(u) − NρT − (λ1 − α′)
T∑

k=1

|u(k)|p(k)

p(k)
+ J (u)

≥ ϕ(u) − NρT − λ1

T∑

k=1

|u(k)|p(k)

p(k)
+ α′

T∑

k=1

|u(k)|p(k)

p(k)
+ J (u)

≥ ϕ(u) − NρT −
(

T +1∑

k=1

1

p(k − 1)
| �u(k − 1) |p(k−1)

)α−1

+ α′
T∑

k=1

|u(k)|p(k)

p(k)
+ J (u).

From (5.8) and (5.10), we get 

. A(k − 1,�u(k − 1)) ≥ 1

p(k − 1)
|�u(k − 1)|p(k−1),

which leads to
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. ϕ(u) = M̂

(
T +1∑

k=1

A (k − 1,�u(k − 1))

)

≥ B1

α

(
T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1)

)α

. (5.24) 

Hence, if .‖u‖p(.) > 1, one uses Lemma 5.2.2 and (5.24) to obtain 

. I (u) ≥ B1

α

(
T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1)

)α

− NρT

−
(

T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1)

)α−1

+ α′
T∑

k=1

|u(k)|p(k)

p(k)
+ J (u)

≥
(

B1

α

T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1) − 1

)

× e

(
T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1)

)α−1

+ α′
T∑

k=1

|u(k)|p(k)

p(k)
− NρT + J (u)

≥
(

B1

α
‖�u‖p−

p(.) − 1

)

‖�u‖(α−1)p−
p(.) − NρT + α′‖u‖p−

p(.) + J (u).

Since j is convex and l.s.c., it is bounded from below by an affine functional. 
Therefore, using .J (u) = j (u(0), u(T )), there are constants . m1, . m2, .m3 . ≥ 0
such that 

. I (u) ≥
(

B1

α
‖�u‖p−

p(.) − 1

)

‖�u‖(α−1)p−
p(.) − NρT + α′‖u‖p−

p(.)

− m1|u(0)| − m2|u(T + 1)| − m3

≥
(

B1

α
‖�u‖p−

p(.) − 1

)

‖�u‖(α−1)p−
p(.) + α′‖u‖p−

p(.) − m1|u(0)|

− m2|u(T + 1)| − C1,

where .C1 = NρT + m3 − N ; thus
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. I (u) ≥
(

B1

α
‖�u‖p−

p(.) − 1

)

‖�u‖(α−1)p−
p(.) + α′‖u‖p−

p(.) − C2‖u‖∞

− C1, where C2 = m1 + m2.

By the equivalence of the norms on X, there is some .C3 > 0 such that 

. I (u) ≥
(

B1

α
‖�u‖p−

p(.) − 1

)

‖�u‖(α−1)p−
p(.) + α′‖u‖p−

p(.) − C3‖u‖p(.) − C1.

Consequently, .I (u) −→ ∞ as .‖u‖p(.) −→ ∞. Therefore, I is coercive on X. 
Step 3: We now show that the functional I is bounded from below. 

For that, let .‖u‖p(.) < 1. We get by (5.8) and Lemma 5.2.2 the following: 

. I (u) ≥ ϕ(u) − NρT + J (u)

≥ −NρT + B1

α
‖u‖αp+

p(.) + J (u)

≥ −NρT + B1

α
‖u‖αp+

p(.) − m1|u(0)| − m2|u(T + 1)| − m3

≥ B1

α
‖u‖αp+

p(.) − K1‖u‖∞ − K
′
, where K

′ = NρT

+ m3 and K1 = m1 + m2.

Since any norm on X is equivalent to .‖.‖p(.), then there exists .K
′′

> 0 such that 

. I (u) ≥ B1

α
‖u‖p+

p(.) − K
′′ ‖u‖p(.) − K

′

≥ −K
′′ ‖u‖p(.) − K

′

≥ −K
′′ − K

′

> −∞.

Hence, I is bounded from below. Finally, we conclude that I is lower semicon-
tinuous, bounded from below and coercive on the real Banach space X. Thus, I 
attains its infimum at some .u ∈ X. Using now Propositions 5.2.1 and 5.2.3, one 
obtains that the problem (5.1) has at least one solution on X. 
�

Now, we show the existence of solution of problem (5.1) by using mountain pass 
technique.
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5.4 Proof of the Existence of Classical Solutions by Mountain 
Pass Method 

In this section, we are concerned with the existence of non-trivial solutions for 
problem (5.1). The main tool in obtaining such results is Theorem 3.2 in [12]. 

Theorem 5.4.4 Assume that (5.3)–(5.10) and .(H) hold. Moreover, suppose that 
there exist constants .θ > p+, K , M .> 0 such that: 

.(A1) .j (0, 0) = 0. 

.(A2) .j ′(z, z) ≤ θj (z) + K,∀z ∈ D(j). 

.(A3) . lim|t |→0
sup

p(k)F (k, t)

|t |p(k)
< λ1, for all k ∈ Z[1, T ]. 

.(A4) .0 < θF(k, t) ≤ tf (k, t) for all k ∈ Z[1, T ] with |t | > N . 
Then, there exists a non-trivial solution .u ∈ X of problem (5.1). 
�

Proof 

Step 1: We show that the functional I verifying .(H) satisfies the (PS) condition 
in the sense of Szulkin on .(X, ‖.‖p(.)). So, let .{un} ⊂ X be a sequence for which 
.I (un) −→ c ∈ R and (5.19) holds with .εn −→ 0. 
For this purpose, since X is finite-dimensional, it is sufficient to prove that . {un}
is bounded. We may assume that .{un} ⊂ D(I) = D(J ) and .‖un‖p(.) > 1 for all 
. n ∈ N. By .(A2) and (5.15), it follows that 

.J (v) − 1

θ
J ′(v; v) ≥ −K1, for all v ∈ D(J ), (5.25) 

with .K1 = K

θ
. Using the relation .(A4), one deduces that for all .n ∈ N, 

. 

T∑

k=1,|u(k)|>N

[θF (k, un(k)) − un(k)f (k, un(k))] ≤ 0.

Consequently, 

. − �(un) + 1

θ
< �′(un); un >

= 1

θ

T∑

k=1

[θF (k, un(k)) − un(k)f (k, un(k))]

= 1

θ

T∑

k=1,|un(k)|>N

[θF (k, un(k)) − un(k)f (k, un(k))]
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+ 
1 

θ 

T∑

k=1,|un(k)|≤N 
[θF (k,  un(k)) − un(k)f (k, un(k))] 

≤ 
1 

θ 

T∑

k=1,|un(k)|≤N 
[θF (k,  un(k)) − un(k)f (k, un(k))] 

≤ 
1 

θ 

T∑

k=1 

max|x|≤N 
|θF (k,  x)  − xf (k, x)| =: C3, 

where . C3 is some positive constant. Therefore, one can write 

. − �(un) + 1

θ
< �′(un); un >≤ C3. (5.26) 

Since the real sequence .(I (un))n∈N converges toward the real number c, it is  
clear that there is a constant .C4 > 0 such that 

.|I (un)| ≤ C4, for all n ∈ N. (5.27) 

Furthermore, setting .v = un + sun in (2.6), dividing by .s > 0, and letting 
.s −→ 0+, one obtains 

. < �′(un); un > + < ϕ′(un); un > +J ′(un; un) ≥ −εn‖un‖ for all n ∈ N.

(5.28) 
Using (5.27) and (5.28), we deduce that 

. C4 + εn

θ
‖un‖p(.) ≥ �(un) + ϕ(un) + J (un) + εn

θ
‖un‖p(.)

≥ �(un) − 1

θ
< �′(un); un > +ϕ(un) − 1

θ

< ϕ′(un); un > +J (un) − 1

θ
J ′(un; un),

and by virtue of (5.25), (5.26), and (5.27), it follows that 

. K1 + C3 + C4 + εn

θ
‖un‖p(.) ≥ ϕ(un) − 1

θ
< ϕ′(un); un > .

According to (5.10), it follows that 

.ϕ(un) − 1

θ
< ϕ′(un); un > = −1

θ
M

(
T +1∑

k=1

A(k − 1,�un(k − 1))

)
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× 
T +1∑

k=1 

a(k − 1,�un(k − 1))�un(k − 1) 

+ M̂

(
T +1∑

k=1 

A(k − 1,�un(k − 1))

)

�
(

T +1∑

k=1 

A(k − 1,�un(k − 1))

)α−1 

×
[

B1 − 
1 

θ 
B2(α − 1)

]

� λ1p
− 

T∑

k=1 

1 

p(k)
|u(k)|p(k)

[

B1 − 
1 

θ 
B2(α − 1)

]

, 

and from Lemma 5.2.2, we deduce that 

. K1 + C3 + C4 + εn

θ
‖un‖p(.) � λ1p

−
(

B1 − 1

θ
B2(α − 1)

)

‖u‖p−
p(.).

Moreover, .θ > p+. Then, we infer that the sequence .(un)n∈N is bounded. 
Step 2: We show that I has a mountain pass geometry. 

From .(A1), it is clear that 

. I (0) = �(0) + ϕ(0) + J (0) = 0.

Using . (A3), we have  

. lim|u|→0
sup

p(k)F (k, u(k))

|u(k)|p(k)
< λ1.

That leads to the existence of .ε, β > 0 such that 

. F(k, t) <
λ1 − ε

p(k)
|t |p(k) with |t | < β.

Consequently, 

. �(u) ≥ −(λ1 − ε)

T∑

k=1

1

p(k)
|u(k)|p(k), for all u ∈ X − {0},

u(0) = u(T + 1) and |u| < β. (5.29)
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Using again hypothesis (5.8), we get 

. �(u) + ϕ(u) ≥ −(λ1 − ε)

T∑

k=1

1

p(k)
|u(k)|p(k)

+ B1

α

(
T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1)

)α

≥ ε

T∑

k=1

1

p(k)
|u(k)|p(k) −

(
T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1)

)α−1

+ B1

α

(
T +1∑

k=1

1

p(k − 1)
|�u(k − 1)|p(k−1)

)α

.

According to (5.4) and . (A1), we have .J (u) = j (u(0), u(T + 1)) = j (0, 0) = 0. 
Therefore, for . β < 1,

. �(u) + ϕ(u) + J (u) ≥ ε‖u‖p+
p(.) − ‖�u‖(α−1)p+

p(.) + B1

α
‖�u‖(α−1)p+

p(.) + 0.

Hence, choosing .‖u‖p+
p(.) = β, which is equivalent to .‖u‖p(.) = β

1
p+ , and as 

there exists a positive constant . γ such that .‖�u‖p+
p(.) = γ ‖u‖p+

p(.), then . I (u) ≥ L

with .L = β(ε − γ α−1 + B1

α
γ α). 

Coming back to relation .(A4) and taking . |u| big enough, we have 

. 
f (k, u(k))

F (k, u(k))
≥ θ

u
.

So, .F(k, u(k)) ≥ cuθ for . |u| big enough. Thus, .F(k, u(k)) ≥ cuθ − K , for all 
.u > 0. 
One can use (5.4) to say that 

. A(k, ξ) =
∫ ξ

0
a(k, λ)dλ.

Using (5.7), we have the existence of a real .C1 > 0 such that 

.|a(k, ξ)| � C1(1 + |ξ |p(k)−1) for all k ∈ Z[0, T ] and for all ξ ∈ R.
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Therefore, 

. 

∫ ξ

0
|a(k, λ)|dλ ≤ C1

∫ ξ

0
(1 + |λ|p(k)−1)dλ

≤ C1[λ]ξ0 + C1[λ
p(k)

p(k)
]ξ0

≤ C1|ξ | + C1
|ξ |p(k)

p(k)
.

One deduces that 

. 

T +1∑

k=1

A(k − 1,�u(k − 1)) ≤ C1

T +1∑

k=1

|�u(k − 1)| + C1

T +1∑

k=1

|�u(k − 1)|p(k)

p(k)
.

Thus, according to (5.10), we can write 

. ϕ(u) ≤ B2C
α
1

α

[(
T +1∑

k=1

|�u(k − 1)|
)

+
(

T +1∑

k=1

|�u(k − 1)|p(k)

p(k)

)]α

≤ 2
B2C

α
1

α

(
T +1∑

k=1

|�u(k − 1)|
)α

.

Let .u0 ∈ X − {0} be such that .u0(0) = u0(T + 1) = 0 and . ‖u0‖p(.) > 1.

From .(A1), we have that .J (su0) = 0 for all .s ∈ R. Then, 

. I (su0) = �(su0) + ϕ(su0) + J (su0)

= −
T∑

k=1

F(k, su0(k)) + M̂

(
T +1∑

k=1

A(k − 1,�su0(k − 1))

)

+ 0

≤
T∑

k=1

(K − c|su0(k)|θ ) + 2
B2C

α
1

α

(
T +1∑

k=1

|�u(k − 1)|
)α

= T K − c

T∑

k=1

|su0(k)|θ + 2
B2C

α
1

α

(
T∑

k=1

|�su0(k)|
)α

≤ T K + C′′
1 ‖su0‖∞ − csθ‖u0‖θ∞ −→ −∞,

as .s −→ ∞.
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Hence, we can choose s large enough such that .I (su0) ≤ 0; therefore, 
.‖su0‖p(.) > β. We conclude by using Theorem 3.2 in [12] that the problem 
(5.1) has at least one non-trivial solution. 
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Chapter 6 
From Calculus of Variation to Exterior 
Differential Calculus: A Presentation and 
Some New Results 

Ngalla Djitte and Mariama Ndiaye 

Abstract In this chapter, we provide an introduction to exterior differential calcu-
lus. In detail, the Cartan–Kähler theorem is revisited. Using this, we give necessary 
and sufficient conditions for a second-order differential equation to be equivalent to 
some Euler–Lagrange equation. 

Keywords Exterior differential calculus · Integral element · Manifold · calculus 
of variation 

6.1 Introduction 

Let .Fi : Rn × R
n → R, .n ≥ 1, .1 ≤ i ≤ n, be real-valued functions defined on 

.R
n × R

n. Consider the following system of second-order differential equations: 

.
d2xi

dt2 = Fi

(
x1, x2, · · · , xn,

dx1

dt
,
dx2

dt
, · · · ,

dxn

dt

)
∀ i = 1, . . . , n. (6.1) 

A natural question, initially raised by Douglas [3], is the following: When is it 
possible to find a Lagrangian .L : Rn × R

n → R such that the solutions of (6.1) 
correspond to that of the Euler–Lagrange equations 

. 
d

dt

∂L

∂yi

(
x1, x2, · · · , xn,

dx1

dt
,
dx2

dt
, · · · ,

dxn

dt

)

− ∂L

∂xi

(
x1, x2, · · · , xn,

dx1

dt
,
dx2

dt
, · · · ,

dxn

dt

)
= 0, i = 1, . . . , n, (6.2) 
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corresponding to L? In other words, given . Fi , .1 ≤ i ≤ n, can we find . L : Rn ×
R

n → R such that L solves the following partial differential equation: 

.

n∑
k=1

∂2L

∂xk∂yi

yk +
n∑

h=1

∂2L

∂yh∂yi

Fh = ∂L

∂xi

i = 1, . . . , n? (6.3) 

It is our purpose in this chapter to propose an introduction to exterior differential 
calculus. In particular, we describe in some details two very powerful theorems, 
respectively, due to Darboux and to Cartan and Kähler. These theorems have 
recently been used in a very sophisticated way in economic theory of demand by 
Ekeland and Chiappori (see, e.g., [5–8]) and further by Ekeland and Djitté [9, 10]. 
We strongly believe that these theorems will be extremely helpful in many contexts, 
and they should profitably be included in economist’s toolbox. Here, we show how 
this approach can be useful for the solvability of some inverse problems of calculus 
of variation. In fact, we present an application of this approach to the Douglas 
problem. 

6.2 Exterior Differential Calculus 

In this section, we introduce the basic notions of exterior differential calculus. For 
a much more exhaustive presentation, the interested reader is referred to Cartan’s 
book [2] or to Bryant et al. [1]. 

6.2.1 Linear and Differential Forms 

A linear form (or 1-form) on .E = R
n is a linear mapping from E to . R: 

. ω : ξ ∈ R
n �→ 〈ω, ξ 〉 =

n∑
i=1

ωiξi .

The set of linear forms on E is the dual .E∗ of E. Basic examples of linear forms 
are the projection .πi : ξ �→ ξi , which, to any vector, associated its i-th coordinate. 
These form a basis for . E∗ in the sense that any form . ω can be decomposed as 

.ω =
n∑

i=1

ωiπi.
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In what follows, we are specifically interested in differential forms. Consider a 
smooth manifold M of dimension .n ≥ 1 and for . p ∈ M; let .TpM denote its tangent 
space at the point p. A differential 1-form on M . , ω, is a map defined on M such 
that for every .p ∈ M , .ω(p) is a 1-form on the tangent space .TpM to M at p with, 

say, .〈ω(p), ξ 〉 =
n∑

i=1

ωi(p)ξi), where the coefficient .ωi(p) depends smoothly on p. 

A local coordinate system at p provides .TpM with a coordinate system as well. If 
M is a n-dimensional manifold, then .TpM is a copy of . Rn, and the projection maps 
.πi : TpM → R, which associate with a tangent vector . ξ its i-th coordinate . ξi , will 
be denoted by . dpi . 

As a simple example of a differential 1-form, we may, for any smooth mapping 
V from E to . R, consider the differential form dV defined at any point p by 

. dV (p) =
n∑

i=1

∂V

∂pi

(p)dpi,

so that 

. dV (p) : ξ �→ 〈dV (p), ξ 〉 =
n∑

i=1

∂V

∂pi

(p)ξi .

Of course, this form is extremely specific, for the following reason. Consider the 
hypersurface (that is the .(n − 1)-dimensional submanifold) .N ⊂ M defined by 

. N = {p ∈ M | V (p) = a},

where a is a constant. Then for any .p ∈ N , the form .dV (p) or any form . ω(p) =
λ(p)dV (p) (proportional to .dV (p)) vanishes on the tangent space .TpN : 

. ∀ p ∈ N, ∀ ξ ∈ TpN, 〈ω(p), ξ 〉 = 0.

This is exactly the integration problem: starting from some given differential form 
.ω(p), when is it possible to find a hypersurface N such that, for any . p ∈ N , the  
restriction of .ω(p) to .TpN is zero? Such a submanifold will be called an integrating 
submanifold or an integral element for . ω. 

One point must, however, be emphasized. When . ω is proportional to some total 
differential dV , the submanifold N can be found of (maximum) dimension .n − 1. 
But of course, life is not always that easy. Starting from an arbitrary form, it is in 
general impossible to find such an integrating submanifold of dimension .n − 1.



142 N. Djitte and M. Ndiaye

6.2.2 Exterior k-form 

Before addressing the integration problem in detail, we must generalize our basic 
concept. 

Definition 6.2.1 An exterior k-form is a mapping .ω : Ek → R that is:

• Multilinear, that is, linear with respect to each component
• Antisymmetric, that is, the sign is changed when two vectors are permuted �

Note that if .k = 1, we are back to the definition of linear forms. 

Consider, for instance, the case .k = 2. A 2-form is defined by a matrix: 

. ω(ξ, η) =
n∑

i,j=1

ωi,j ξiηj = ξ ′�η.

Additional restrictions are usually imposed upon the matrix . �. A standard one is 
symmetric, i.e., .� = �′. In exterior differential calculus, on the contrary, since 
one considers exterior forms, antisymmetry is imposed. This gives .� = −�′, i.e., 
.ωi,j = −ωj,i for all . i, j . Hence, 

. ω(ξ, η) =
n∑

i<j

ωi,j (ξiηj − ξjηi).

Another case of interest is .k = n, where n is the dimension of the space E. Then the 
space of exterior n-forms is of dimension one and includes the determinant. That is, 
any n-form . ω is collinear to the determinant: 

. ω(ξ1, · · · , ξn) = λ det(ξ1, · · · , ξn).

Some well-known properties of the determinant are in fact due exclusively to 
multilinearity together with antisymmetry and can thus be generalized to forms of 
any order. For instance, take any k-form . ω, and take k vectors .(ξ1, · · · , ξk) that are 
not linearly independent; then .ω(ξ1, · · · , ξk) = 0. An important consequence is 
that, for any .k > n, any exterior k-form must be zero. 

6.2.3 Exterior Product 

The set of exterior forms on M is an algebra, on which the multiplication, called the 
exterior product, is formally defined as follows: 

Definition 6.2.2 Let . α be a k-form and . β be an l-form; then .α∧β is the .(k+l)-form 
such that:
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. α∧β(ξ1, · · · , ξk+l )=
∑
σ

1

k!l! (−1)sign(σ )α(ξσ(1), · · · , ξσ(k))β(ξσ(k+1), · · · , ξσ(k+l)),

where the sum is over all permutations . σ of .{1, · · · , k + l}. �

This formula may seem complex. Note, however, that it satisfies two basic require-
ments: .α ∧ β is multilinear and antisymmetry. To grasp the intuition, consider the 
case of two linear forms .(k = l = 1). Then 

. α ∧ β(ξ, η) = α(ξ)β(η) − α(η)β(ξ).

Obviously, this is the simplest exterior 2-form related to . α and . β and satisfies the two 
requirements above. A few consequences of this definition must be kept in mind:

• If w is linear (or of odd order), then .w ∧ w = 0. More generally, let . ω1 · · · , ωs

be 1-forms. If the forms are linearly dependent, then .ω ∧ · · · ∧ ωs = 0.
• If . ω is a two-form (or a form of even order), .ω ∧ ω need not to be zero.
• For any k-form . ω, .(ω)k = ω ∧ ω · · · ∧ ω is a ks-form. In particular, .(ω)s = 0 as 

soon as .ks > n.
• Any k-form can be decomposed into exterior product of 1-forms. If . ω is a k-form, 

then 

.ω =
∑
σ

= ωσ(1),··· ,σ (k)dpσ(1) · · · σ(k), (6.4) 

where the sum is over all ordered maps .σ : {1, · · · , k} → {1, · · · , n}. 

6.2.4 Differential Forms and Exterior Differentiation 

A differential k-form is, for every .p ∈ M , an exterior k-form .ω(p) on .(TpM)k , 
depending smoothly on p. Exterior differentiation sends differential k-forms into 
differentials .(k + 1)-forms. We first define it on 1-forms. For this, set 

. ω(p) =
n∑

j=1

ωj (p)dpj .

To define the exterior differential of . ω, we may first remark that the .ωj (p) are 
standard functions from M to . R. As such, they admit differentials: 

.dωj (p) =
n∑

i=1

∂wj

∂pi

dpi.
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Then the exterior differential .dω(p) of . ω is the differential 2-form defined by 

. dω(p) =
n∑

j=1

dωj (p) ∧ dpj (6.5)

=
n∑

i,j=1

∂wj

∂pi

dpi ∧ dpj

=
n∑

i<j

(
∂wj

∂pi

− ∂wi

∂pj

)
dpi ∧ dpj .

Generally, if 

. ω =
∑

i1<i2<...<ik

ωi1,...,ik dpi1 ∧ . . . ∧ dpik

is a k-form, then . dω is the .(k + 1)-form defined by 

.dω =
∑

i1<i2<...<ik

dωi1,...,ik ∧ dpi1 ∧ . . . ∧ dpik . (6.6) 

Note that this formula guarantees that .dω(p) is bilinear and antisymmetric. 

Proposition 6.2.1 Exterior differentiation is a linear operation, and it satisfies the 
following product formula: if . α is a differential p-form and . β is a differential q-
form, we have 

.d[α + β] = dα + dβ; . (6.7) 

d[α ∧ β] =  dα ∧ β + (−1)p α ∧ dβ. (6.8)

�


6.2.5 Pullback 

Let .ϕ : Rm → R
n be a smooth mapping. To any smooth function .f : Rn → R, we  

can associate the function .ϕ∗(f ) := f oϕ, which is a smooth function on . Rm. 
Similarly to df , which is a differential 1-form on . Rn, we associate . ϕ∗(df ) :=

d(f oϕ), which is a differential 1-form on . Rm, called the pullback of df . More  
generally, we have the following: 

Definition 6.2.3 Let . ω be a p-form on . R
n. The pullback of . ω w.r.t. . ϕ is the p-form 

.ϕ∗(ω) on .Rm defined by 

.(ϕ∗ω)(p).(v1, . . . , vp) = ω(ϕ(p)).(dϕ(p)v1, . . . , dϕ(p)vp), (6.9)
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for all .p ∈ R
m and .(v1, . . . , vp) ∈ (TpR

m)p. By convention, if .p = 0, then the 
formula (6.9) is reduced to 

.ϕ∗f (x) = f (ϕ(x)). (6.10) 

Finally, we note that the pullback is natural with respect to exterior product and 
exterior differentiation in the following sense. 

Proposition 6.2.2 With the preceding definition, we have 

.ϕ∗(α ∧ β) = ϕ∗(α) ∧ ϕ∗(β); . (6.11) 

ϕ∗(dω) = dϕ∗(ω). (6.12)

�


6.2.6 Poincaré Theorem 

The construction detailed above has strong implications for the resolution of the 
type of equations we are interested in. Let us start with a simple problem: what are 
the conditions for a given exterior form . ω to be the tangent form of some twice 
continuously differentiable function V ? An immediate, necessary condition is given 
by the following result: 

Theorem 6.2.1 Let U be an open subset of . Rn and . ω be an exterior form on U . 
Assume there exists a twice continuously differentiable function V such that . ω(p) =
dV (p). Then 

. dω = 0.

Proof Just note that 

.dω =
∑
i<j

( ∂2V

∂xi∂xj

− ∂2V

∂xj ∂xi

)
dpi ∧ dpj = 0.

�

This proposition admits a converse, due to Poincaré, that requires some topological 
condition upon U . We have the following result. 

Theorem 6.2.2 (Poincaré) Let . ω be a differential k-form on U such that .dω = 0. 
Assume that U is convex. Then, there exists a differential .(k − 1)-form on U , say . α, 
such that 

. ω = dα.

Proof See Bryant et al. [1]. �
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Corollary 6.2.1 Let U be a nonempty convex subset of . Rn, and let .ω1, · · · , ωn be 
given differentiable functions on U . There exists a differentiable function V on U 
such that 

. ωi = ∂V

∂pi

, i = 1, · · · , n,

if and only if 

. 
∂ωi

∂pj

= ∂ωj

∂pi

.

Proof Define .ω(p) :=
n∑

i=1

ωidpi and apply Theorem 6.2.2. �


6.2.7 Darboux Theorem 

Poincaré theorem provides necessary and sufficient conditions for a differential 1-
form to be a total differential. In this case, the integration problem is straightforward, 
as illustrated above. But, at the same time, these conditions are very strong. We now 
generalize this result, by giving necessary and sufficient conditions for a differential 
1-form to be a linear combination of k tangent forms. In this case, the integration 
problem can be solved, but only with an integration manifold of dimension at least 
.n − k. 

Proposition 6.2.3 Let U be an open subset of . Rn and . ω be an exterior form on U . 
Assume there exist twice continuously differentiable functions . V i and functions . λi , 
.1 ≤ i ≤ k, such that 

. ω(p) =
k∑

i=1

λi(p)dV i(p), ∀p ∈ U.

Then, 

. ω ∧ (dω)k = 0.

This simple necessary condition admits an important converse. 

Theorem 6.2.3 (Darboux) Let . ω be a linear form defined on some neighbourhood 
. U0 of p. Let .k ≥ 1 be such that: 

.ω ∧ (dω)k−1 �= 0, ∀p ∈ U0;
ω ∧ (dω)k = 0, ∀p ∈ U0. �
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Then there exists a neighbourhood .U1 of p and 2k functions . V i and . λi , 
.1 ≤ i ≤ k, such that: 

1. The . V i are linearly independent. 
2. None of the . λi vanishes on . U1. 
3. 

. ω(p) =
k∑

i=1

λi(p)dV i(p), ∀p ∈ U1.

Proof See Bryant et al. [1]. �

Before ending this section, let us give some applications of Darboux theorem. In 
demand theory, many problems take one of the following forms: Given a smooth 
vector function .x : Rn → R

n, a natural number .k ≥ 1: 

Q1. When is it possible to find scalar functions .V 1, · · · , V k and .λ1, · · · , λk such 
that 

.x(p) =
k∑

i=1

λi(p)∇V i(p)? (6.13) 

Q2. Can we choose in the decomposition (6.13) the . V i convex and the . λi positive? 
Q3. Can we require that .V i and . λi satisfy some additional equations of the 

following type: 

. 
j(p, λi(p),∇V i(p)) = 0, 1 ≤ j ≤ m?

where the .
j are prescribed given functions. 

For Q1., if .k = 1 and . λ1 is a constant function, then the answer follows from 
Poincaré theorem. If . λ1 is not constant, then this is Frobenius theorem, and it 
requires . ω to satisfy the so-called Frobenius condition: 

. ω ∧ dω �= 0,

where . ω is the differential form given by 

. ω(p) :=
k∑

i=1

xi(p)dpi.

Still for Q1., in the general case, this is an application of Darboux theorem, and the 
conditions are
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. ω ∧ (dω)k−1 �= 0;
ω ∧ (dω)k = 0.

Ekeland and Chiappori [6] studied Q2. in the framework of demand theory. In fact, 
they give a positive answer in the case where .k = n. 

Motivated by the work of Ekeland and Chiappori [6], still in the framework of 
demand theory, Ekeland and Djitte [10] investigated the case .k ≤ n, and they got a 
positive answer provided that the differential form . ω satisfies the Darboux condition 

. ω ∧ (dω)k−1 �= 0;
ω ∧ (dω)k = 0

and the Slutsky symmetry condition, that is, the Jacobian matrix 

.Dpx(p) :=
(

∂ xi

∂pj

(p)

)
(6.14) 

is a sum of a symmetric definite positive matrix S and a matrix . Rk of rank k. 

6.3 Exterior Differential System 

We now present the key result upon which our approach relies. This theorem, due 
to Cartan and Kähler, solves the following general problem. 

Given a certain family of differential forms (not necessarily 1-form, nor even 
of the same degree), a point . p̄, and an integer .m ≥ 1, can one find some m-
dimensional submanifold M containing . p̄ and on which all the given forms vanish 
on the tangent space .Tp̄M? 

6.3.1 Introductive Examples 

Cauchy–Lipschitz Theorem Let us start from a simple version of our problem, 
namely the Cauchy–Lipschitz Theorem for ordinary differential equations. It states 
that, given a point .p̄ ∈ R

n and a . C1 function f , defined from some neighbourhood 
U of . p̄ into .Rn−1, there exist some .ε > 0 and a . C1 function .ϕ : (−ε, ε) → U such 
that: 

.

⎧⎪⎪⎨
⎪⎪⎩

dϕ

dt
(t) = f (ϕ(t)), ∀ t ∈ (−ε, ε)

ϕ(0) = p̄.

(6.15)
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It follows that .
dϕ

dt
(0) = f (p̄). If .f (p̄) = 0, the solution is trivially, .ϕ(t) = p̄ for 

all t . So, we assume that .f (p̄) does not vanish. 
This theorem can be rephrased in a geometric way. Consider the graph M of . ϕ: 

. M := {(t, ϕ(t)) : t ∈ (−ε, ε)},

which is a 1-dimensional submanifold of .(−ε, ε) × U . Let us introduce the 1-forms 
. ωi defined by 

.ωi := f i(p)dt − dpi, 1 ≤ i ≤ n. (6.16) 

Clearly, . ϕ solves the differential equation (6.15) if and only if the . ωi all vanish on 
M . More precisely, substituting .pi = ϕi(t) into formula (6.16) yields the pullbacks: 

. ϕ∗ωi =
[
f i(ϕ(t)) − dϕi

dt
(t)

]
dt,

which vanish if and only if . ϕ solves the differential equation (6.15). So the Cauchy– 
Lipschitz theorem tells us how to find a 1-dimensional submanifold of .R × R

n on 
which certain 1-forms vanish. 

First-Order Partial Differential Equations Consider the following partial differ-
ential equations of order one, with unknown function u of variables x1, · · ·  , xn: 

.F

(
x1, . . . , xn,

∂u

∂x1
, . . . ,

∂u

∂xn

)
= 0, (6.17) 

where F is a C∞ function defined on an open subset U of R2n+1. We denote by M0 
the submanifold of U defined by 

. M0 := {(x1, · · · , xn, u, p1, · · · , pn) ∈ U : F(x1, · · · , xn, u, p1, · · · , pn) = 0}.
(6.18) 

Let us associate to Eq. (6.17) the exterior differential system generated by the 0-form 
F , the 1-forms 

.dF =
n∑

i=1

∂F

∂xi

dxi + ∂F

∂u
du +

n∑
i=1

∂F

∂pi

dpi . (6.19) 

ω = du − 
n∑

i=1 

pidxi, (6.20) 

and the 2-form
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.dω = −
n∑

i=1

dpi ∧ dxi . (6.21) 

Now, the geometric point of view is to find a submanifold M of R2n+1 of dimension 
n for which all the above forms vanish. 

6.3.2 The General Problem 

The Cauchy–Lipschitz theorem deals with 1-forms, while the first-order partial 
differential equations deal with 0-form, 1-forms, and 2-form. By extension, the 
general problem can formally be stated as follows. 

Definition 6.3.4 Let . ωk , .1 ≤ k ≤ K , be differential forms on an open subset of 
. R

n, and .M ⊂ R
n a submanifold. M is called an integral submanifold of the exterior 

differential system: 

.ω1 = 0, . . . , ωK = 0 (6.22) 

if the pullbacks of the . ωk to M all vanish, that is, if 

.ωk(p)(ξ1, · · · , ξdk ) = 0, 1 ≤ k ≤ K, (6.23) 

whenever .p ∈ M , . ωk has degree . dk , and .ξ i ∈ TpM for .1 ≤ i ≤ dk . 
Given .p̄ ∈ R

n, the Cartan–Kähler theorem will give necessary and sufficient 
conditions for the existence of an integral manifold containing . p̄. Necessary 
conditions are easy to find. Assume that an integration manifold M containing . p̄
exists, and let m be its dimension. Then the tangent space at . p̄, denoted by . TpM , is  
an m-dimensional space, and all the .ωk(p) must vanish on .TpM , because of (6.23). 
Any subspace .E ⊂ TpM with this property will be called an integral element of 
system (6.22) at . p̄. The set of all  m-dimensional integral elements at . p̄ will be 
denoted by 

. Gm
p̄ =

{
E | E ⊂ Tp̄M and dimE = m,

ω1(p̄), . . . , ωK(p̄) all vanish on E.

}

So the first necessary condition follows: 

.Gm
p̄ �= ∅. (6.24) 

To get a second one, let us ask a strange question: have we written all the equations? 
In other words, does the system: 

.ω1 = 0, . . . , ωK = 0 (6.25)
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exhibit all the relevant information? The answer may be no. To see this, recall that 
M is a submanifold of . Rn. Denote by .ϕM : M → R

n the standard embedding 
.ϕM(x) = x for all .x ∈ M . Then M is an integral manifold of the system (6.22) if 

.ϕ∗
Mω1 = 0, . . . , ϕ∗

MωK = 0. (6.26) 

But we know that exterior differentiation is natural with respect to pullbacks, that 
is, that d commutes with . ϕ∗

M . So  (6.26) implies that 

.ϕ∗
M(dω1) = 0, . . . , ϕ∗

M(dωK) = 0. (6.27) 

In other words, M is also an integral manifold of the larger system: 

.

{
ω1 = 0, . . . , ωK = 0;
dω1 = 0, . . . , dωK = 0,

(6.28) 

which is different from (6.22). If integral elements of (6.28) are different from 
those of (6.22), it is not clear which ones we should be working with. To resolve 
this quandary, we shall assume that the systems (6.22) and (6.28) have the same 
integral elements. In other words, the second equations in (6.28) must be algebraic 
consequences of the first ones. The precise statement for this is as follows: 

Definition 6.3.5 The family .{ωk, 1 ≤ k ≤ K} is said to generate a differential 
ideal if there are forms .{αk

j , 1 ≤ k, j ≤ K} such that: 

.∀ k, dωk =
K∑

j=1

αk
j ∧ ωj . (6.29) 

Our second necessary condition is that the . ωk , .1 ≤ k ≤ K , must generate a 
differential ideal. If this is the case, we say that the exterior differential system is 
closed. 

Note that if the given family .{ωk, 1 ≤ k ≤ K} does not satisfy this condition, the 
enlarged family .{ωk, dωk, 1 ≤ k ≤ K} certainly will (because .d(dω)) = 0). So the 
condition that the system is closed can be understood as saying that the enlargement 
procedure has already taken place. 

Unfortunately, conditions (6.24) and (6.29) are not sufficient. We give two 
counterexamples to show that an additional condition is needed:

• A first counterexample. Consider two functions f and g from .Rn−1 into itself, 
with .f (0) = g(0) = v �= 0 and .f (p) �= g(p) for .p �= 0. Define . αk and . βk , 
.1 ≤ k ≤ n − 1, by  

.αk(p, t) = f k(p)dt − dpk;
βk(p, t) = gk(p)dt − dpk
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and consider the exterior differential system in . Rn: 

. αk = 0, 1 ≤ k ≤ n − 1;
βk = 0, 1 ≤ k ≤ n − 1.

The . αk and . βk generate a differential ideal, and there is an integral element at 
0, namely the line carried by . (1, v), so .G1(0) �= ∅. However, finding an integral 
manifold of the initial system containing 0 amounts to finding a common solution 
of the two Cauchy problems: 

.
dp

dt
= f (p), p(0) = 0, . (6.30) 

dp 
dt 

= g(p), p(0) = 0, (6.31) 

which does not exist in general. The problem, clearly, is that the equality . f (p) =
g(p) holds only at .p = 0. So we need a regularity condition that will exclude 
such situations, which guarantees that the required equality holds true at ordinary, 
a concept we now formally define.

• A second counterexample. Let us work in . R2, and let us find all functions . f =
f (x, y) that can be written as 

.f (x, y) = u(x) + v(y). (6.32) 

It is well known that a necessary and sufficient condition for such a decompo-
sition to be possible, at least for smooth function f , is that the cross derivative 
vanishes: 

.
∂2f

∂x∂y
≡ 0. (6.33) 

Consider the exterior differential system in . R4 = (x, y, u, v)

.

⎧⎪⎪⎨
⎪⎪⎩

du + dv − ∂f

∂x
dx − ∂f

∂y
dy = 0,

du ∧ dx = 0,

dv ∧ dy = 0.

(6.34) 

Any 2-dimensional integral submanifold M of this system will be the graph of 
a pair of functions .(u, v) that solve the problem, provided only that it is not 
vertical, that is, that neither dx nor dy vanishes on M . Let us try to find such 
an integral submanifold. The system is obviously closed. We then look for non-
vertical integral elements, at .(x, y, u, v) ∈ R

4 say. They are defined by a set of 
linear equations:
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. du = A1dx + B1dy,

dv = A2dx + B2dy.

Plugging into the system, we get 

. B1 = 0, A2 = 0, A1 = ∂f

∂x
(x, y), B2 = ∂f

∂y
(x, y).

So there is an integral element. However, there is no 2-dimensional integral 
submanifold, unless (6.33) is satisfied. 

6.3.3 The Regularity Condition

• If all the ωk are 1-forms, the regularity condition is clear enough: the dimension 
of the space spanned by the ωk (p) should be constant on a neighbourhood of p̄ 
(which is not the case in the first counterexample).

• If some of the ωk have higher degree, the regularity condition is more compli-
cated. It is expressed as follows. Let p̄ ∈ Rn; from now, we work on the tangent 
space V := TpR

n. Let  E ⊂ V be an m-dimensional integral element at p̄. Let  
ᾱ1, · · ·  , ᾱn be a basis of the dual V ∗ such that 

. E = {ζ ∈ V | < ζ, ᾱi >= 0 ∀ i ≥ m + 1}.

For n′ ≤ n, denote by I (n′, d)  the set of all ordered subsets of {1, · · ·  , n′} with 
d elements. Denote by dk , the degree of ωk . For every k, writing ωk (p) in the ᾱi 
basis, we get 

.ωk(p̄) =
∑

I∈I (n,dk)

Ck
I ᾱi1 ∧ . . . ∧ ᾱidk

. (6.35) 

In this summation, it is understood that I = {i1, · · ·  , idk
}. Since ωk ( p̄) vanishes 

on E, each monomial must contain some ᾱi with i ≥ m + 1. Let us single out 
the monomials containing one such term only. Regrouping and writing, we get 

.ωk(p̄) =
∑

J∈I (m,dk−1)

β̄k
J ∧ ᾱj1 ∧ . . . ∧ ᾱjdk−1 + R, (6.36) 

where βk 
J is a linear combination of the ᾱi for i ≥ m + 1, and all the monomials 

in the remainder R contain ᾱi ∧ ᾱj for some i >  j  ≥ m+1. Define an increasing 
sequence of linear subspaces H ∗

0 ⊂ H ∗
1 ⊂ . . .  ⊂ H ∗

m ⊂ V ∗ of V ∗ by
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. H ∗
m = span{ β̄k

J |1 ≤ k ≤ K, J ∈ I(m, dk − 1)};
H ∗

m−1 = span{ β̄k
J |1 ≤ k ≤ K, J ∈ I(m − 1, dk − 1)};

H ∗
0 = span{ β̄k

J |1 ≤ k ≤ K, J ∈ I(0, dk − 1)}.

The later subspace is just the linear space generated by those of the ωk ( p̄) 
that happen to be 1-forms. We define an increasing sequence of integers 0 ≤ 
c0( p̄, E) ≤ . . .  ≤ cm( p̄, E) ≤ n by 

. ci(p̄, E) = dimH ∗
i , ∀ i = 1, . . . , m.

We are finally able to express Cartan’s regularity condition. Denote by ¶m (Rn ) 
the set of all m-dimensional subspaces of Rn with the standard (Grassmannian) 
topology. It is known to be a manifold of dimension m(n − m). Denote by Gm 

the set of all (p, E) such that E is an m-dimensional integral element at p. Note  
that Gm is a subset of Rn × ¶m (Rn ). 

Definition 6.3.6 Let ( p̄, Ē) ∈ Gm. We say that ( p̄, Ē) is ordinary if there is some 
neighbourhood U of ( p̄, Ē) in Rn × ¶m (Rn ) such that Gm ∩ U is a submanifold of 
co-dimension 

. c0(p̄, Ē) + . . . + cm−1(p̄, Ē).

If all the ωk are 1-form, denote by d(p) the dimension of the space spanned by the 
ωk (p). Then ci(p, E) = d(p) for every i, and ( p̄, Ē) is ordinary if Gm ∩ U is a 
submanifold of co-dimension md( p̄) in Rn × ¶m (Rn ). This implies that, for every 
p in a neighbourhood of p̄, the set of  E ∈ Gm (p) (m-dimensional integral element 
at p) has co-dimension md( p̄) in Rn × ¶m (Rn ). It can be seen directly to have co-
dimension md(p). So  d(p) = d(  ̄p) in a neighbourhood of p̄. This is exactly the 
regularity condition we would like to have for 1-forms. 

In the general case, if ( p̄, Ē) is ordinary, the numbers ci will also be locally 
constant on a neighbourhood of U of ( p̄, Ē), that is, 

. ci(p,E) = ci(p̄, Ē) = ci ∀ p ∈ U.

The nonnegative numbers 

. s0 = c0

si = ci − ci−1, 1 ≤ i < m

sm = n − m − cm−1

are called the Cartan characters. We shall use them later.
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6.3.4 The Main Theorem 

We are now in a position to state the Cartan–Kähler theorem. Recall that a real-
valued function on .Rn is called analytic if its Taylor series at every point is 
absolutely convergent. 

Theorem 6.3.4 (Cartan–Kähler) Consider the exterior differential system: 

.ωk = 0, 1 ≤ k ≤ K. (6.37) 

Assume that the . ωk are real analytic and that they generate a differential ideal. Let 
. p̄ be a point and . Ē be an integral element at . p̄ such that .(p̄, Ē) is ordinary. Then 
there is a real analytic integral manifold M , containing . p̄ such that 

.Tp̄M = Ē. (6.38) 

Remark 6.3.1 Nothing should come as a surprise in this statement, except the real 
analyticity. It comes from the generality of the Cartan–Kähler theorem. Indeed, 
every system of partial differential equations, linear or not, can be written as an 
exterior differential system, and there is a famous example, due to Hans Lewy, of a 
system of two first-order nonhomogeneous linear partial differential equations (with 
nonconstant coefficients) for two unknown functions , which has no solution if the 
right-hand side is .C∞ but not analytic. 

Let us mention the question of uniqueness. There is no uniqueness in the Caratn– 
Kähler theorem: there may be infinitely many analytic integral manifolds going 
through the point . p̄ and having E as a tangent space at . p̄. However, the theorem 
describes in a precise way the set 

. TU =
{
M | M is an integral manifold and there exists

(p,E) ∈ U such that p ∈ M and TpM = E

}
,

where U is a suitable chosen neighbourhood of .(p̄, Ē). Each M in . TU is completely 
determined by the (arbitrary) choice of . sm analytic functions of m variables, the . sm
being the Cartan character. �

Let us illustrate the Cartan–Kähler theorem with an example. 

6.3.5 An Example 

Let us go back to the second counterexample. There is only one integral element 
at every point . a ∈ R

4, so .G2
a is a point in .¶2(R4) that has dimension 4. So its co-

dimension is 4. Let us compute the Cartan characters. For this, let . Ē be the integral 
element at a point .ā = (x̄, ȳ, ū, v̄) ∈ R

4, and define the 1-forms .ᾱ1, · · · , ᾱ4 as 
follows:
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. ᾱ1 = dx,

ᾱ2 = dy,

ᾱ3 = du − A1dx,

ᾱ4 = dv − A2dy.

These 1-forms define a basis of the tangent space of .(TāR
4)∗. Furthermore, we have 

that 

. Ē = {ξ ∈ R
4 | 〈ξ, ᾱi〉 = 0, i = 3, 4}.

Plugging the . ᾱi in the system (6.34), it follows that 

. ω1 = ᾱ3 + ᾱ4,

ω2 = ᾱ3 ∧ ᾱ1,

ω3 = ᾱ4 ∧ ᾱ2.

So 

. H ∗
0 = span{ᾱ3 + ᾱ4}, c0(ā, Ē) = 1,

H ∗
1 = {0}span{ᾱ3, ᾱ4}, c1(ā, Ē) = 2.

Hence, .c0 + c1 = 1 + 2 = 3 �= 4, which is the co-dimension of . G2. Therefore, 
.(ā, Ē) is not ordinary. 

6.4 Main Result: Douglas Problem 

We now come back to Douglas’ problem described in the introduction. To apply 
our approach to this problem, let us take .n = 1. So, given an analytic function 
.F : R×R → R, we are looking for a Lagrangian .L : R×R → R of class . C2 such 
that the solutions of the second-order differential equation: 

.
d2x

dt2 = F

(
x,

dx

dt

)
, t ∈ (−ε, ε) (6.39) 

correspond to those of the Euler–Lagrange equation corresponding to L: 

.
d

dt

∂L

∂y

(
x,

dx

dt

)
− ∂L

∂x

(
x,

dx

dt

)
= 0 t ∈ (−ε, ε), (6.40)
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for some positive real number . ε. In other words, given an analytic function . F :
R × R → R, can we find .L : R2 × R → R such that L solves the following partial 
differential equation: 

.
∂2L

∂x∂y
(x, y)y + ∂2L

∂y2
(x, y)F (x, y) − ∂L

∂x
(x, y) = 0? (6.41) 

We now describe the basic strategy used throughout the proof. Consider the space 

. E = {(x, y, u, v, q, r)} = R
6,

where .u, v, q, and r will later be interpreted as .
∂L

∂x
,

∂L

∂y
,

∂2L

∂y2 , and .
∂2L

∂x∂y
, 

respectively. 

Remark 6.4.2 Clearly, if a solution exists, then the system 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂x
(x, y) = u;

∂L

∂y
(x, y) = v;

∂2L

∂y2 (x, y) = q;

∂2L

∂x∂y
(x, y) = r

(6.42) 

defines a 2-dimensional manifold S in E included in the 5-dimensional manifold M 
defined by 

.ry + F(x, y)q − u = 0. (6.43) 

Conversely, assume that we have found the functions . u = u(x, y), v =
v(x, y), q = q(x, y), and .r = r(x, y) such that:

• For every .(x, y) holds .(x, y, u(x, y), v(x, y), q(x, y), r(x, y)) ∈ M .
• .d(udx + vdy) = du ∧ dx + dv ∧ dy = 0.
• .dv − rdx − qdy = 0. �

Then by Theorem 6.2.2, there exists the function .L = L(x, y) of class . C2 such that 

.u = ∂L

∂x
(x, y), v = ∂L

∂y
(x, y), q = ∂2L

∂y2 (x, y), r = ∂2L

∂x∂y
(x, y)
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and 

. 
∂2L

∂x∂y
(x, y)y + ∂2L

∂y2
(x, y)F (x, y) − ∂L

∂x
(x, y) = 0.

In the language of Sect. 6.3, we are looking for a 2-dimensional integral submanifold 
in M of the exteriors differential system: 

.

⎧
⎨
⎩

ω1 := du ∧ dx + dv ∧ dy = 0,

ω2 := dv − rdx − qdy = 0,

ω3 := dr ∧ dx + dq ∧ dy = 0.

(6.44) 

Finally, the solution must be parametrized by .(x, y). The formal translation of that 
is 

.dx ∧ dy �= 0. (6.45) 

From Remark 6.4.2, we have the following result: 

Lemma 6.4.1 Any integral manifold of this system is the graph of a map: 

. (x, y) �→ (u, v, q, r),

where the functions .u, v, q, and r satisfy Eq. (6.43). 

We now prove the following theorems. 

Theorem 6.4.5 Assume that the function F is analytic. Let .(x̄, ȳ, ū, v̄, q̄, r̄) be a 
point of M such that .F(x̄, ȳ) �= 0. Then there exists a real analytic 2-dimensional 
integral manifold N containing the point .(x̄, ȳ). 

Proof It is obvious from the system (6.44) that the differential forms . ωi, i = 1, 2, 3
generate a differential ideal. The proof is in two steps: 

Step 1: Finding integral elements. We linearize .u, v, q, and r (as functions of .(x, y)) 
around .(x̄, ȳ) by setting: 

. dv = V1dx + V2dy,

dq = Q1dx + Q2dy,

dr = R1dx + R2dy.

Solving the linearized system is equivalent to finding all the . Vi,Qi, Ri, i =
1, 2, that satisfy the system (6.44) and (6.45), plus Eq. (6.43) expressing that 
.(x, y, u, v, q, r) remains on the manifold M .
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Substituting .du, dv, dq, and dr in the system (6.44) and differentiating (6.43), 
we get 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ȳR2 + F(x̄, ȳ)Q2 = −q̄
∂F

∂y
(x̄, ȳ),

V1 = r̄ ,

V2 = q̄,

Q1 − R2 = 0.

(6.46) 

Note that all these equations are linearly independent. So, the set of integral elements 
has co-dimension 4 in the Grassmannian. 

Step 2: Cartan’s test. Set 

. ᾱ1 = dx,

ᾱ2 = dy,

ᾱ3 = dv − V1dx − V2dy,

ᾱ4 = dq − Q1dx − Q2dy,

ᾱ5 = dr − R1dx − R2dy,

where the .Vi,Qi , and . Ri satisfy (6.46). Note that because of (6.43), (6.44) and 
relations of (6.46), we have  

. ω1 = [ȳᾱ5 + F(x̄, ȳ)ᾱ4] ∧ ᾱ1 + ᾱ3 ∧ ᾱ2,

ω2 = ᾱ3,

ω3 = ᾱ5 ∧ ᾱ1 + ᾱ4 ∧ ᾱ2.

We then apply the Cartan procedure, as described in Sect. 6.3. We have  

. H ∗
0 = Span {ᾱ3},

H ∗
1 = Span {ᾱ3, ȳᾱ5 + F(x̄, ȳ)ᾱ4, ᾱ5}.

Hence, .c0 = 1, c1 = 3. So .C := c0 + c1 = 1 + 3 = 4. Which is exactly the 
co-dimension of the set of integral elements in the Grassmannian .G2(M). There the 
exterior differential system (6.44) passes the Cartan test. So the conclusion follows 
from Cartan–Kähler theorem. �

Theorem 6.4.6 Let .F : R × R → R be a real analytic function. Let . (x̄, ȳ) ∈ R

2

such that .F(x̄, ȳ) �= 0. Then, there exist an open subset of . R2 containing .(x̄, ȳ) and 
a real analytic function .L : U → R such that 

.
∂2L

∂x∂y
(x, y)y + ∂2L

∂y2 (x, y)F (x, y) − ∂L

∂x
(x, y) = 0 ∀(x, y) ∈ U. (6.47)
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Proof The proof follows from Theorem 6.4.5 and Lemma 6.4.1. �

Corollary 6.4.2 Let .F : R × R → R be a real analytic function and . (x̄, ȳ) ∈ R

2

such that .F(x̄, ȳ) �= 0. Then, there exists a real analytic function . L : R × R →
R, a positive real number . ε such that any solution of the second-order differential 
equation: 

.
d2x

dt2 = F
(
x,

dx

dt

)
, t ∈ (−ε, ε), (6.48) 

corresponds to that of the Euler–Lagrange equation corresponding to L: 

.
d

dt

∂L

∂y

(
x,

dx

dt

)
− ∂L

∂x

(
x,

dx

dt

)
= 0 t ∈ (−ε, ε). (6.49) 

Furthermore, if .
∂2F

∂y2 (x, y) �= 0 for all .(x, y) ∈ U , then Eqs. (6.48) and (6.49) have 

the same solutions. �

Proof The proof follows from Theorem 6.4.6 and the chain rule for derivation. �
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Chapter 7 
Existence of Local and Maximal Mild 
Solutions for Some Non-autonomous 
Functional Differential Equation with 
Finite Delay 

Khalil Ezzinbi, Bila Adolphe Kyelem, and Stanislas Ouaro 

Abstract This chapter is devoted to the study of the existence results of local 
and maximal solutions on the one hand and the existence and uniqueness results 
of mild solutions on the second hand, for the non-autonomous evolution equation 

with finite delay .
d

dt
u(t) = A(t)u(t) + f (t, ut ), t ∈ [0, T ], subjected to the initial 

datum .u0 = φ, where .T > 0 is some positive constant. The unbounded operators 
associated to the non-autonomous system are assumed to be stable family that 
generates .C0-semigroups, while the nonlinear part is supposed to be continuous. 
Using some boundedness assumptions on the delayed nonlinear continuous part, 
we prove the local existence of solution that blows up at the finite time. Under some 
Lipschitz condition on the nonlinear term, we establish the existence and uniqueness 
of mild solution. Finally, an example of reaction–diffusion non-autonomous partial 
functional differential equations is used to illustrate our theoretical obtained results. 

Keywords Non-autonomous equation · Evolution system · Delayed differential 
equations · Local solution · Mild solution · Maximal solution 
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7.1 Introduction 

The main purpose of this chapter is to outline the existence results of local and 
maximal solutions for the following class of non-autonomous partial functional 
differential equations with finite delay 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
u(t) = A(t)u(t) + f (t, ut ), t ∈ [0, T ]

u(θ) = ϕ(θ), θ ∈ [−r, 0],
(7.1) 

where .f : R+ × C → X is a continuous function with value in the Banach space 
denoted by X. .A(t) : D(A(t)) ⊆ X → X is a closed linear operator and generates a 
.C0-semigroup. . C is the space of continuous functions from .[−r, 0] to X, which will 
be defined later. Also, we denote by . ut for .t ∈ [0, T ], the historic function defined 
on .[−r, 0] by 

. ut (θ) = u(t + θ) for θ ∈ [−r, 0],

where u is a function from .[−r, T ] into X. 
Following the work done in [17], we make some sufficient conditions on the 

following family .{−A(t) : 0 ≤ t ≤ T } of closed linear operators to obtain the 
existence of the associated evolution system .{U(t, s) : 0 ≤ s ≤ t ≤ T }, which 
is used to express the mild solution of (7.1). Observe that the evolution system 
introduced for the first time in 1974 by Howland in [13] remains an important tool 
in the study of the quantitative and qualitative results for some non-autonomous 
evolution equations. 

For more information related to some non-autonomous evolution equations, 
one can see the book of Friedman in [8] in which he imposed that the family 
.{A(t) : 0 ≤ t ≤ T } of linear operators verifies the following conditions: 
.(B1) The domain .D(A(t)) of the closed linear operator .A(t) is dense in X and is 

also independent of .t ∈ [0, T ]. 
.(B2) For each .t ∈ [0, T ], the resolvent .R(λ,A(t)) exists for all . λ with .Reλ ≤ 0, 

and there exists .K > 0 such that .‖R(λ,A(t))‖ ≤ K

(|λ| + 1)
. 

.(B3) There exists .0 < δ ≤ 1 and .K > 0 such that . ‖(A(t) − A(s))A−1(r)‖ ≤
K|t − s|δ for all .t, s, r ∈ [0, T ]. 

Under those assumptions, he showed that the family .{A(t) : 0 ≤ t ≤ T } generates 
a unique linear evolution system .{U(t, s) : 0 ≤ s ≤ t ≤ T }. Moreover, there exists 
a family of bounded linear operators .{R(t, μ) : 0 ≤ μ ≤ t ≤ T } with . ‖R(t, μ)‖ ≤
K|t − μ|δ−1 such that .U(t, s) has the following representation:
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. U(t, s) = e−(t−s)A(t) +
∫ t

s

e−(t−ξ)A(ξ)R(ξ, s)dξ,

where .e−τA(t) denotes the analytic semigroup having the infinitesimal generator 
.−A(t). 

Observe that the study of the problem (7.1) has many interactions in applied 
sciences. The delayed non-autonomous models are naturally appeared in many 
branches of biological modelling for the first time. For details, they have been used 
to describe the quantitative and qualitative behaviours of dynamic infection diseases 
such primary infection, drug therapy, and immune response. For more information, 
the reader can see [4, 16] and the related references therein. The delayed terms 
can also be seen in the study of chemosynthesis models, circadian rhythms, 
epidemiology, the respiratory system, tumour growth, and statistical analysis of 
ecological data of many biological species. For more lightening related to those 
cases, we direct the reader to the works done in [3, 5, 18, 19, 22]. 

Also, one can mention that the study of non-autonomous abstract evolution 
equations was the subject of many works, and among others, we cite explicitly 
[2, 7, 10, 12, 17]. Besides, in the autonomous case where .A(t) = A, the  
problem (7.1) has been the subject of various quantitative and qualitative studies 
(see [11, 21]). 

In the similar setting, Acquistapace and Terreni in [1] proved some regularity 
results for the following non-autonomous evolution equation without delay in a 
Banach space E, under the so-called classical Kato–Tanabe assumptions: 

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′(t) − A(t)u(t) = f (t), t ∈ [0, T ]

u(0) = x

x ∈ E, f ∈ C([0, T ];E) prescribed,

(7.2) 

where for each .t ∈ [0, T ], the operator .A(t) is assumed to generate an analytic 
semigroup on E, and the domain .D(A(t)) of .A(t) varies with .t ∈ [0, T ] and is not 
necessarily dense in E. It is important to note that the case of variable domains was 
first studied by Kato in [15]. 

As we are concerned, it is to assume that the domain .D(A(t)) of the operator 
.A(t) is time-independent, and for each .t ∈ [0, T ], the operator .A(t) generates only 
a .C0-semigroup not necessarily an analytic semigroup. Consequently, it is worth in 
our case to work following the arguments developed by Pazy in [17] to study some 
non-autonomous evolution equations in the hyperbolic case. 

This chapter is organized as follows: in Sect. 7.2, we recall some preliminaries 
that will play an important role in the study of the problems such as (7.1). In  
Sect. 7.3, the local and maximal existence of mild solution of Eq. (7.1) is proved. 
The last section is devoted to applying our theoretical results to the study of 
some example of non-autonomous partial functional differential equations of the 
form (7.1).
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7.2 Preliminary 

Let us denote by .(X, ‖.‖) the Banach space X endowed with the norm . ‖.‖. For  
the convenience, we assume that there exists a Banach space Y densely and 
continuously embedded in X. The space .C = C([−r, 0];X) endowed with the 
uniform norm topology 

. ‖φ‖C = sup
−r≤θ≤0

‖φ(θ)‖

is a Banach space. 
We also make the following definitions given in [17] that will be used in this 

chapter. 

Definition 7.2.1 Let .{S(t)}t≥0 be a .C0-semigroup, and let A be its infinitesimal 
generator. A subspace Y of X is said to be A-admissible if it is an invariant subspace 
of .{S(t)}t≥0, and the restriction of .{S(t)}t≥0 to Y is a .C0-semigroup in Y (i.e., it is 
strongly continuous in the norm .‖.‖Y ). 	

Definition 7.2.2 Let X be a Banach space. A family .{A(t)}t∈[0,T ] of infinitesimal 
generators of .C0-semigroups on X is said to be stable if there are constants . M ≥ 1
and . ω (called the stability constants) such that 

.(ω,+∞[⊂ ρ(A(t)) for t ∈ [0, T ] (7.3) 

and 

.

∥
∥
∥

k∏

j=1

R(λ;A(tj ))

∥
∥
∥ ≤ M(λ − ω)−k for λ > ω (7.4) 

and any sequence .0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T , . k = 1, 2, · · ·
Here, .ρ(A(t)) is the resolvent set of the operator .A(t), and .R(λ;A(t)) defines 

the resolvent operator associated to .A(t) at the point . λ. 	

Observe that the stability of a family .{A(t)}t∈[0,T ] of infinitesimal generators of .C0-
semigroups on X is preserved when we replace the norm in X by an equivalent 
norm. 

In [17], the existence and uniqueness of evolution system associated to the 
family of the unbounded operators .{A(t)}t∈[0,T ] are obtained under the following 
assumptions: 

.(H1) .{A(t)}t∈[0,T ] is a stable family with the stability constants .M,ω. 

.(H2) .Y ⊂ X is .A(t)-admissible for .t ∈ [0, T ], and the family .{Ã(t)}t∈[0,T ] of parts 
.Ã(t) of .A(t) in Y is a stable family in Y with the stability constants .M̃, ω̃. 

.(H3) For .t ∈ [0, T ], .Y ⊂ D(A(t)), .A(t) is a bounded operator from Y into X and 
.t 
→ A(t) is continuous in the space of bounded linear operators from Y into 
X denoted by .L(Y,X) equipped with the uniform norm topology .‖.‖L(Y,X).
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Proposition 7.2.1 ([17]) Let .{A(t)}t∈[0,T ] be the infinitesimal generator of 
a .C0-semigroup .{St (s)}s≥0 on X. If the family .{A(t)}t∈[0,T ] satisfies the 
conditions .(H1), .(H2), and .(H3), then there exists a unique evolution system 
.{U(t, s) : 0 ≤ s ≤ t ≤ T } in X verifying: 

.(E1) . ‖U(t, s)‖ ≤ Meω(t−s) for 0 ≤ s ≤ t ≤ T ;

.(E2) . 
∂+
∂t

U(t, s)v |t=s= A(s)v for v ∈ Y, 0 ≤ s ≤ t ≤ T ;
.(E3) . 

∂
∂s

U(t, s)v = −U(t, s)A(s)v for v ∈ Y, 0 ≤ s ≤ t ≤ T .

Proposition 7.2.2 ([17]) The evolution system of linear operator . {U(t, s) : 0 ≤ s

.≤ t ≤ T } generated by the family .{A(t)}t∈[0,T ] satisfies the following properties: 

.(a) .U(t, s) ∈ L(X), the space of bounded linear transformations on X, whenever 
.0 ≤ s ≤ t ≤ T , and for all .x ∈ X, the mapping .(t, s) 
→ U(t, s)x is 
continuous. 

.(b) .U(t, s)U(s, μ) = U(t, μ) for .0 ≤ μ ≤ s ≤ t ≤ T . 
.(c) .U(t, t) = I . 

.(d) .
∂

∂t
U(t, s) = A(t)U(t, s), for .s < t . 

.(e) .
∂

∂s
U(t, s) = −U(t, s)A(s), for .s < t . 	


Now, we can give the notion of solutions that will be studied in this chapter. 

Definition 7.2.3 Let .φ ∈ C. A continuous function .u : [−r, T ] → X is called a 
mild solution of Eq. (7.1) associated to . φ if: 

.

⎧
⎪⎪⎨

⎪⎪⎩

u(t) = U(t, s)u(0) +
∫ t

0
U(t, s)f (s, us)ds for t ∈ [0, T ]

u0 = φ on [−r, 0].
(7.5) 

For the study of Eq. (7.1), we will make the following assumptions that give us some 
sufficient conditions to obtain the local and maximal solutions: 

.(C1) The domain .D(A(t)) = D is independent of .t ∈ [0, T ]. 
In this case, we define on D a norm .‖.‖Y by 

.‖y‖Y = ‖y‖ + ‖A(0)y‖ for all y ∈ D = Y. (7.6) 

Using the closedness of .A(0), then .Y = (D, ‖.‖Y ) is a Banach space. 
.(C2) The application .t 
→ A(t)x for all .x ∈ D is continuously differentiable 

on . R
+. 

To prove the local and maximal existence of mild solution of (7.1), we need 
the following compactness hypothesis. 

.(C3) The evolution system verifies the following property: 

.U(t, s) is compact for t > s.
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Remark 7.2.1 It is well-known that the operator .A(0) ∈ L(Y,X). Using the fact 
that the family .{A(t)}t∈[0,T ] has the common closed domain, the closed graph 
theorem gives that .A(t) ∈ L(Y,X). If the application .t 
→ A(t)x is continuously 
differentiable on .[0, T ], then this condition leads to . sup

t∈[0,T ]
‖A(t)‖L(Y,X) < +∞ via 

the principle of uniform boundedness. 	

Now, we are able to make our first result that is the local and maximal existence of 
mild solutions to the problem (7.1). 

7.3 Existence of Local and Maximal Mild Solutions 

Often in this chapter, .u(., φ) denotes the mild solution associated to the initial data 
. φ, and we simply denote it by u if there is no confusion. Let us give the first existence 
result. 

Theorem 7.3.1 Let .{A(t)}t∈[0,T ] be a stable family of infinitesimal generators of 
.C0-semigroups on X, and assume that the conditions .(C1), .(C2), and .(C3) hold. 
Moreover, suppose that the function .f : [0, T ] × O → X is continuous where . O is 
an open subset of . C. Then, for all .φ ∈ C, there exists at least a local mild solution 
.u(., φ) associated to (7.1). 	

Proof The proof will essentially be based on the Schauder’s fixed-point theorem. 
Let us consider .φ ∈ O. Using the fact that . O is an open set on . C and the continuity 
of the function .f : [0, a] × O → X with .a ∈ (0, T ), then there exist some positive 

constants . γ1 and . γ2 such that . Bγ1(φ) =
{
ψ ∈ C :

∥
∥
∥φ − ψ

∥
∥
∥
C

≤ γ1

}
⊂ O

and .‖f (t, ψ)‖ ≤ γ2 for all .(t, ψ) ∈ [0, γ1] × Bγ1(φ). Consider the function 
.z ∈ C([−r, a];X) be defined by 

. z(t) =
⎧
⎨

⎩

U(t, 0)φ(0) for t ∈ [0, a]

φ(t) for t ∈ [−r, 0].

From definition of z, it follows that .zt ∈ C. 
For some fixed positive constant . γ with .γ < γ1, one can choose . bφ ∈ (0, γ )

such that 

. Mγ2

∫ bφ

0
eωsds ≤ γ

and 

.

∥
∥
∥zt − φ

∥
∥
∥
C

≤ γ1 − γ for all t ∈ [0, bφ]. (7.7)
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Let us set 

. Kφ =
{
y ∈ C([−r, bφ];X) : y0 = φ ‖yt − φ‖C ≤ γ1 for all t ∈ [0, bφ]

}

provided with the uniform norm topology. It is clear that the restriction of z on 
.[−r, bφ] belongs to . Kφ and .Kφ �= ∅. Moreover, . Kφ is closed, bounded, and convex 
subset of .C([−r, bφ];X). 

Now, consider the mapping .T : Kφ → C([−r, bφ];X) defined by 

. (Ty)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

U(t, 0)φ(0) +
∫ t

0
U(t, s)f (s, ys)ds for t ∈ [0, bφ]

φ(t) for t ∈ [−r, 0].

First, we have to prove that .T(Kφ) ⊂ Kφ . Since for all .y ∈ Kφ , one has that . s 
→
U(t, s)f (s, ys) is continuous on .[0, t] with .t ∈ [0, bφ], then .Ty ∈ C([−r, bφ];X). 
Setting .u = Ty and .h = u − z, we obtain for .t ∈ [0, bφ] via (7.7), 

. ‖ut − φ‖C = ‖ht + zt − φ‖C
≤ ‖ht‖C + ‖zt − φ‖C
≤ ‖ht‖C + γ1 − γ.

Also, we can write 

. h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0
U(t, s)f (s, ys)ds for t ∈ [0, bφ]

0 for t ∈ [−r, 0].
Hence, 

. ‖h(t)‖ = ‖
∫ t

0
U(t, s)f (s, ys)ds‖

≤
∫ t

0
‖U(t, s)f (s, ys)‖ds

≤
∫ t

0
‖U(t, s)‖‖f (s, ys)‖ds

≤ Mγ2

∫ bφ

0
eωsds ≤ γ.

Since for all .s ∈ [−r, 0], .h(s) = 0, one can see that for all . t ∈ [0, bφ]

.‖ht‖C = sup
θ∈[−r,0]

‖h(t + θ)‖ ≤ sup
s∈[0,bφ ]

‖h(s)‖ ≤ γ.
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Consequently, 

. ‖(Ty)t − φ‖C = ‖ut − φ‖C ≤ ‖ht‖C + γ1 − γ

≤ γ + γ1 − γ = γ1.

Also, the definition of . T gives for all .y ∈ Kφ , .(Ty)0 = φ. So  

. T(Kφ) ⊂ Kφ.

Let us show that the family .{(T)(y) : y ∈ Kφ} is equicontinuous. Let .y ∈ Kφ , 
.t1, t2 ∈ [0, bφ] with .t1 < t2. Then, 

. (Ty)(t2) − (Ty)(t1) = U(t2, 0)φ(0) +
∫ t2

0
U(t2, s)f (s, ys)ds

−
(
U(t1, 0)φ(0) +

∫ t1

0
U(t1, s)f (s, ys)ds

)

=
(
U(t2, 0)φ(0) − U(t1, 0)φ(0)

)

+
∫ t1

0

(
U(t2, s) − U(t1, s)

)
f (s, ys)ds

+
∫ t2

t1

U(t2, s)f (s, ys)ds.

On the one hand, for any .0 < ε < t1, it follows 

.

∥
∥
∥

∫ t1

0

(
U(t2, s) − U(t1, s)

)
f (s, ys)ds

∥
∥
∥

=
∥
∥
∥

∫ t1−ε

0

(
U(t2, s) − U(t1, s)

)
f (s, ys)ds

∥
∥
∥

+
∥
∥
∥

∫ t1

t1−ε

(
U(t2, s) − U(t1, s)

)
f (s, ys)ds

∥
∥
∥

≤
∥
∥
∥

(
U(t2, t1 − ε) − U(t1, t1 − ε)

) ∫ t1−ε

0
U(t1 − ε, s)f (s, ys)ds

∥
∥
∥

+
∥
∥
∥

∫ t1

t1−ε

(
U(t2, s) − U(t1, s)

)
f (s, ys)ds

∥
∥
∥

≤
∥
∥
∥

(
U(t2, t1 − ε) − U(t1, t1 − ε)

) ∫ t1−ε

0
U(t1 − ε, s)f (s, ys)ds

∥
∥
∥

+Mγ2

[ ∫ ε

0
eωsds +

∫ t2−t1+ε

t2−t1

eωsds
]
.
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We can also note that .
{ ∫ t1−ε

0
U(t1 − ε, s)f (s, ys)ds : y ∈ Kφ

}
is uniformly 

bounded. On the other hand, 

. 

∥
∥
∥

∫ t2

t1

U(t2, s)f (s, zs)ds

∥
∥
∥ ≤

∫ t2

t1

∥
∥
∥U(t2, s)f (s, ys)

∥
∥
∥ds

≤ Mγ2

∫ t2

t1

eω(t2−s)ds

= Mγ2

∫ t2−t1

0
eωsds.

Consequently, 

. 

∥
∥
∥

(
Ty)(t2) − (Ty)(t1)

)∥
∥
∥ ≤

∥
∥
∥

(
U(t2, 0)φ(0)−U(t1, 0)φ(0)

)∥
∥
∥+Mγ2

∫ t2−t1

0
eωsds

+
∥
∥
∥

(
U(t2, t1 − ε) − U(t1, t1 − ε))

×
∫ t1−ε

0
U(t1 − ε, s)f (s, ys)ds

)∥
∥
∥

+Mγ2

[ ∫ ε

0
eωsds +

∫ t2−t1+ε

t2−t1

eωsds
]
.

Using the fact that the compactness of .U(t, s) for .t > s implies the continuity of 
.U(t, s) in the uniform norm topology, then it follows that the family . {(T)(y) : y ∈
Kφ} is equicontinuous. 

To end the proof, we have to show that the set .T(Kφ) is compact. The collection 
.T(Kφ) is equicontinuous; therefore, it remains to prove via Arzela–Ascoli theorem 
that the set .{(Ty)(t) : y ∈ Kφ} is precompact in X-norm for some fixed .t ∈ [0, bφ]. 
The precompactness of the set .{(Ty)(t) : y ∈ Kφ} is a consequence of the fact that 
.{(Ty)(t) − U(t, 0)φ(0) : y ∈ Kφ} is a precompact set. Let .0 < ε < t , and then 

.

∫ t

0
U(t, s)f (s, ys)ds =

∫ t−ε

0
U(t, s)f (s, ys)ds +

∫ t

t−ε

U(t, s)f (s, ys)ds

= U(t, t − ε)

∫ t−ε

0
U(t − ε, s)f (s, ys)ds

+
∫ t

t−ε

U(t, s)f (s, ys)ds.
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One can write for all .y ∈ Kφ , 

. 

∥
∥
∥

∫ t

t−ε

U(t, s)f (s, ys)ds

∥
∥
∥ ≤

∫ t

t−ε

∥
∥
∥U(t, s)f (s, ys)

∥
∥
∥ds

≤ Mγ2

∫ t

t−ε

eω(t−s)ds

= Mγ2

∫ ε

0
eωsds

≤ αε,

where .α > 0 is some constant real number. Also, using the fact that 

.

{ ∫ t−ε

0
U(t − ε, s)f (s, ys)ds : y ∈ Kφ

}
is uniformly bounded and the 

operator .U(t, t − ε) is compact, then one can find a compact subset . Wε of X such 
that 

. U(t, t − ε)
{ ∫ t−ε

0
U(t, s)f (s, ys)ds : y ∈ Kφ

}
⊂ Wε.

Hence, for each .t ∈ [0, bφ], .
{
(Ty)(t) − U(t, 0)φ(0) : y ∈ Kφ

}
is totally bounded 

and the set .{(Ty)(t) : y ∈ Kφ} is precompact in X-norm. 
To finish, let us prove that the application . T is continuous on . Kφ . For this aim, 

let .ε > 0 be given. Since the application .f : [0, bφ] × Bγ1(φ) → X is continuous, 

then there exists .δ > 0 such that for all .y1, y2 ∈ Kφ , .
∥
∥
∥y1 − y2

∥
∥
∥
C

≤ δ implies 

.

∥
∥
∥f (s, y1

s ) − f (s, y2
s )

∥
∥
∥ < ε. So, for all .t ∈ [0, bφ], 

. 

∥
∥
∥(Ty1)(t) − (Ty2)(t)

∥
∥
∥ ≤

∫ t

0

∥
∥
∥U(t, s)

∥
∥
∥

∥
∥
∥f (s, y1

s ) − f (s, y2
s )

∥
∥
∥ds

≤ εM

∫ t

0
eωsds,

which yields the continuity of . T on . Kφ . 
The conditions of Schauder’s fixed-point theorem are satisfied for the application 

. T on . Kφ . Consequently, the function . T has a fixed point .y = u on . Kφ , which solves 
the problem (7.1) on .[−r, bφ]. 	

Now, we have to prove that a mild solution to (7.1) can be defined on its maximal 
interval .[−r, T ] of existence. 
Theorem 7.3.2 Let .{A(t)}t∈[0,T ] be a stable family of infinitesimal generators of 
.C0-semigroups on X, and assume that the conditions .(C1), .(C2) and .(C3) hold.
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Furthermore, suppose that .f : R+ × C → X is a continuous function and takes 
bounded sets of .[0,+∞) × C into bounded sets of X. Then, Eq. (7.1) has at least 
one mild solution .y(., φ) on the maximal interval .[0, bφ). Moreover, either . bφ = T

or .bφ < T and . lim
t→b−

φ

‖y(t, φ)‖ = +∞. 	


Proof Using Theorem 7.3.1, then we have the existence of mild solution .y(., φ) that 
is defined on .[−r, b1]. Moreover, one can extend the solution .y(., φ) to the interval 
.[−r, b2] with .b1 < b2. To do this, we consider the following equation: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
u(t) = A(t)u(t) + f (t, ut ) for t ∈ [b1, b2]

ub1 = yb1(., φ).

(7.8) 

To prove that Eq. (7.8) has a mild solution, we consider the operator . T defined on 

. Kb2(φ) =
{
u ∈ C([−r, b2];X) : ub1 = yb1 ‖ut−yb1‖C ≤ γ1 for all t ∈ [b1, b2]

}
,

as follows: 

. T(u)(t) = U(t, b1)y(b1, φ) +
∫ t

b1

U(t, s)f (s, us)ds for t ∈ [b1, b2].

Using the similar argument, one obtains that . T verifies the Schauder’s fixed-point 
theorem that solves Eq. (7.8). This solution gives a mild solution u of (7.8) on 
.[−r, b2] that is an extension of .y(., φ). Proceeding inductively, the solution . y(., φ)

is continuously extended to a maximal interval .[−r, bφ). 
Assume that .bφ < T and the conclusion of Theorem 7.3.2 is false. Then, there 

exists some constant .R > 0 such that . lim
t→bφ

‖y(t, φ)‖ < R. 

Also, since .f : R+ × C → X is a continuous function and takes bounded sets 
of .[0,+∞) × C into bounded sets of X, then there exists a positive constant . δ such 
that 

. 

∥
∥
∥f (t, yt (., φ)

∥
∥
∥ ≤ δ, for all t ∈ [0, bφ).

Let .t0 ∈ (0, bφ) be fixed and .y : [t0, bφ) → X be the restriction of .y(., φ) to .[t0, bφ). 
Consider .t0 ≤ t1 ≤ t2 < bφ and .0 < ε < t0. One can use the fact that .U(t, s) is 
strongly continuous to obtain a positive constant . η1 such that 

.

∥
∥
∥(U(t2, 0) − U(t1, 0))y(0)

∥
∥
∥ < ε, for |t2 − t1| ≤ η1.
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Moreover, 

. 

∥
∥
∥y(t2) − y(t1)

∥
∥
∥ ≤

∥
∥
∥(U(t2, 0) − U(t1, 0))y(0)

∥
∥
∥ +

∥
∥
∥

∫ t1

0
[U(t2, s)

−U(t1, s)]f (s, ys)ds

∥
∥
∥

+
∥
∥
∥

∫ t2

t1

U(t2, s)f (s, ys)ds

∥
∥
∥.

Otherwise, 

. 

∫ t1

0
[U(t2, s) − U(t1, s)]f (s, ys)ds =

[
U(t2, t1) − I

] ∫ t1

0
U(t1, s)f (s, ys)ds.

Let us set 

. Sbφ =
{ ∫ t

0
U(t, s)f (s, ys)ds : t ∈ [0, bφ)

}
.

Obviously, we can observe that the application .F : [0, bφ) → X defined by 

. F(t) =
∫ t

0
U(t, s)f (s, ys)ds

is continuous on the interval .[0, bφ). Moreover, for all .t ∈ [0, bφ), 

. 

∥
∥
∥F(t)

∥
∥
∥ ≤ Mδ

∫ t

0
eω(t−s)ds = Mδ

∫ t

0
eωsds

≤ Mδ

∫ bφ

0
eωsds.

Therefore, .F(t) is bounded in the X-norm in the neighbourhood of . bφ . Hence, there 
exists .0 < τ < t0 such that .F(t) is bounded for all .t ∈ (bφ − τ, bφ). Also,  F is 
continuous on the compact set .[0, bφ − τ ]. Then, .F([0, bφ − τ ]) is the compact set 
of X. It follows that the set .Sbφ is included in a compact subset . � of the Banach 
space X. Using Banach–Steinhaus theorem, one claims the existence of a positive 
constant . η2 verifying 

. sup
x∈�

∥
∥
∥[U(t2, t1) − I ]x

∥
∥
∥ < ε for |t1 − t2| ≤ η2.

Moreover,
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. 

∥
∥
∥

∫ t2

t1

U(t2, s)f (s, ys)

∥
∥
∥ds ≤ Mδ

∫ t2

t1

eω(t2−s)ds

≤ Mδ

∫ t2−t1

0
eωsds

≤ (t2 − t1)δM max{1, eω(t2−t1)}.

Hence, taking .η = inf{η1, η2, ε} such that for all .t1, t2 ∈ [0, bφ) with .|t2 − t1| < η, 
it follows 

. ‖y(t2) − y(t2)‖ < (2ε + εδM max{1, eω(t2−t1)}).

Therefore, using similar argument, we can conclude that 

. lim|t1−t2|→0

∥
∥
∥y(t2) − y(t2)

∥
∥
∥ = 0.

Hence, u is uniformly continuous on .[t0, bφ). Consequently, . lim
t→bφ

y(t, φ) exists. Let 

define .y(bφ, φ) := lim
t→bφ

y(t, bφ). Then, the function .� : [−r, bφ] → X defined by 

. �(t) =
⎧
⎨

⎩

y(t, φ) if t < bφ

y(bφ, φ) if t = bφ

extends y. This contradicts the existence of the maximal interval .[−r, bφ), and the 
proof is complete. 	

In order to obtain the existence and uniqueness of mild solution, we have to take 
the nonlinear term of the problem (7.1) to be Lipschitz function with respect to its 
second argument. Moreover, in the rest of this chapter, to prove the existence of 
global solution, we will assume that: 

.(H) .A(t) is defined for each .t ≥ 0, and .{A(t)}t≥0 is a stable family of infinitesimal 
generators of .C0-semigroups on X with stability constants .M,ω. 

Theorem 7.3.3 Assume that the conditions . (H), .(C1), and .(C2) hold. Furthermore, 
suppose that .f : R+ × C → X is a continuous function and verifies the following 
condition: for all .t ≥ 0, 

.

∥
∥
∥f (t, φ) − f (t, ψ)

∥
∥
∥ ≤ L

∥
∥
∥φ − ψ

∥
∥
∥
C
, ∀φ,ψ ∈ C (7.9) 

when .L > 0 is some positive constant. Then, Eq. (7.1) has a unique mild solution 
.y(., φ) on .[−r,+∞). 	
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Proof Let .a > 0 and .Ma = C([0, a];X) be the space of continuous functions from 
.[0, a] to X endowed with the uniform norm topology. Let us set for . φ ∈ C

. K(φ) = {z ∈ Ma : z(0) = φ(0)} .

For .z ∈ K(φ), we introduce the extension . z̃ of z on .[−r, a] by 

. z̃(t) =
⎧
⎨

⎩

z(t) for t ∈ [0, a]

φ(t) for t ∈ [−r, 0].

Let . T be a mapping defined on .K(φ) by 

. T(z)(t) = U(t, 0)φ(0) +
∫ t

0
U(t, s)f (s, z̃s)ds for t ∈ [0, a].

Consider .z ∈ K(φ), .t1, t ∈ [0, a] with .t1 < t . Then 

. T(z)(t) − T(z)(t1) = U(t, 0)φ(0) +
∫ t

0
U(t, s)f (s, z̃s)ds

−
(
U(t1, 0)φ(0) +

∫ t1

0
U(t1, s)f (s, z̃s)ds

)

=
(
U(t, 0)φ(0) − U(t1, 0)φ(0)

)

+
∫ t1

0

(
U(t, s) − U(t1, s)

)
f (s, z̃s)ds

+
∫ t

t1

U(t, s)f (s, z̃s)ds.

Immediately, 

. 

(
U(t, 0)φ(0) − U(t1, 0)φ(0)

)
→ 0 as t → t1 in X-norm

since .(t, 0) 
→ U(t, 0)φ(0) is continuous. 
Also, since f is continuous and verifies (7.9), then 

. sup
s∈[0,t]

‖f (s, z̃s)‖ ≤ L sup
s∈[0,t]

‖z̃s − φ‖ + sup
s∈[0,t]

‖f (s, φ)‖ < R,

where .R > 0 is some positive constant. Therefore, for each .ε > 0 and .ε ≤ t1 ≤ t ,
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. 

∥
∥
∥

∫ t1

0

(
U(t, s) − U(t1, s)

)
f (s, z̃s)ds

∥
∥
∥

≤
∥
∥
∥

∫ t1−ε

0

(
U(t, s) − U(t1, s)

)
f (s, z̃s)ds

∥
∥
∥

+
∥
∥
∥

∫ t1

t1−ε

(
U(t, s) − U(t1, s)

)
f (s, z̃s)ds

∥
∥
∥

≤
∥
∥
∥(U(t, t1 − ε) − U(t1, t1 − ε))

∫ t1−ε

0
U(t1 − ε, s)f (s, z̃s)ds

∥
∥
∥

+
∥
∥
∥

∫ t1

t1−ε

(
U(t, s) − U(t1, s)

)
f (s, z̃s)ds

∥
∥
∥

≤
∥
∥
∥(U(t, t1 − ε) − U(t1, t1 − ε))

∫ t1−ε

0
U(t1 − ε, s)f (s, z̃s)ds

∥
∥
∥

+MR
[ ∫ ε

0
eωsds +

∫ t−t1+ε

t−t1

eωsds
]
.

Since . ε is arbitrary chosen, then 

. 

∫ t1

0

(
U(t, s) − U(t1, s)

)
f (s, z̃s)ds → 0, as t → t1.

Also, we have 

. 

∥
∥
∥

∫ t

t1

U(t, s)f (s, z̃s)ds

∥
∥
∥ ≤

∫ t

t1

∥
∥
∥U(t, s)f (s, z̃s)

∥
∥
∥ds

≤ RM

∫ t

t1

eω(t−s)ds

= RM

∫ t−t1

0
eωsds.

Then, 

. 

∫ t

t1

U(t, s)f (s, z̃s)ds → 0, as t → t1.

Consequently, 

.T(z)(t) − T(z)(t1) → 0 as t → t1 and a ≥ t > t1.
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Using a similar argument, one obtains that for .t1, t ∈ [0, a] with . t1 > t

. T(z)(t1) − T(z)(t) → 0 as t → t1.

Hence, .𝒯(z) ∈ K(φ) for all .z ∈ K(φ). 
Now let show that .T(z) is a strict contraction on .K(φ). For that, let z, .u ∈ K(φ), 

and .t ∈ [0, a]. 

. 

(
T(z)(t) − T(u)(t)

)
=

∫ t

0
U(t, s)

[
f (s, z̃s) − f (s, ũs)

]
ds.

Then, we can write 

. 

∥
∥
∥(T(z)(t) − T(u)(t))

∥
∥
∥ ≤

∫ t

0

∥
∥
∥U(t, s)[f (s, z̃s) − f (s, ũs)]

∥
∥
∥ds.

. 

∥
∥
∥(T(z)(t) − T(u)(t))

∥
∥
∥ ≤ ML

∫ t

0
eω(t−s)

∥
∥
∥z̃s − ũs

∥
∥
∥
C
ds.

Since .z̃(θ) − ũ(θ) = 0 for all .θ ∈ [−r, 0], then 

. 

∥
∥
∥z̃s − ũs

∥
∥
∥
C

≤ sup
0≤τ≤s

∥
∥
∥z(τ ) − u(τ)

∥
∥
∥.

So, 

. 

∥
∥
∥T(z)(t) − T(u)(t)

∥
∥
∥ ≤

(
ML

∫ t

0
eωsds

)∥
∥
∥z − u

∥
∥
∥

C
,

where .
∥
∥
∥z − u

∥
∥
∥

C
denotes the supremum norm in .C([0, a];X). One can choose a 

small enough such that 

. 

(
ML

∫ a

0
eωsds

)
< 1.

Then, . T is a strict contraction on .K(φ). Therefore, . T has a unique fixed point u 
that is the unique mild solution of Eq. (7.1) on .[0, a]. Moreover, one can extend the 
solution u to .[a, 2a]. Therefore, we consider the following equation: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
z(t) = A(t)z(t) + f (t, zt ) for t ∈ [a, 2a]

za = ua.

(7.10)
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To show that Eq. (7.10) has a unique mild solution, we consider the operator . Ta

defined on .Ka(φ) = {z ∈ C([a, 2a];X) : z(a) = u(a)} by 

. Ta(z)(t) = U(t, a)u(a) +
∫ t

a

U(t, s)f (s, z̃s)ds for t ∈ [a, 2a],

where the function . z̃ is defined by 

. z̃(t) =
⎧
⎨

⎩

z(t) for t ∈ [a, 2a]

u(t) for t ≤ a.

Using the similar argument, one obtains that . Ta is a strict contraction on . [a, 2a]
that gives a unique mild solution of (7.10) on .[a, 2a] that is an extension of u. 
Proceeding inductively, the solution u is uniquely and continuously extended to 
.[na, (n + 1)a] for all .n ≥ 1. Finally, we obtain that Eq. (7.1) has a unique mild 
solution on .[−r,+∞). 	


7.4 Application 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u(t, x) = α(t)

∂2

∂x2
u(t, x) + β(t)

∫ 0

−r

u(t + θ, x) sin
(
u(t + θ, x)

)
dθ,

t ≥ 0, x ∈ [0, π ],

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(θ, x) = φ0(θ, x), θ ∈ [−r, 0],
(7.11) 

where β : R+ → R is a bounded continuous function and α : R+ → R∗+ is a 
bounded continuously differentiable function. The given function φ0 : [−r, 0] ×  
[0, π ] → R will be specified later. 

In order to write the system (7.11) in an abstract form, we introduce the space 
X = L2([0, π ]; R). Let  A be the operator defined on X by 

.

⎧
⎨

⎩

D(A) = H 2((0, π);R) ∩ H 1
0 ((0, π);R),

Ay = y′′, y ∈ D(A).
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Let us note A(t) the operator defined on X as follows: 

. A(t)y = α(t)Ay = α(t)y′′.

Its domain D(A(t)) is independent of t ∈ [0, T ] and is given by 

. D(A(t)) = {y ∈ X : y, y′ are absolutely continuous y′′ ∈ X, y(0) = y(π) = 0}.

Consequently, the assumption (C1) is verified. 
We equipped a subspace D = D(A(t)) with the graph norm 

. 

∥
∥
∥x

∥
∥
∥

Y
=

∥
∥
∥x

∥
∥
∥ +

∥
∥
∥A(0)x

∥
∥
∥ for every x ∈ Y = D,

which is a Banach space. Also, since t 
→ α(t) is continuously differentiable on 
R

+, then t 
→ A(t)y = α(t)A is continuously differentiable on R+. Hence, the 
condition (C2) is satisfied. 

Note also that Ay = y′′ for y ∈ D(A). In [20], it is well-known that A generates 
an analytic semigroup (T (t))t∈R+ on X. Moreover, T (t)  is compact on X for all 
t >  0. Furthermore, the operator A has a discrete spectrum, and the eigenvalues 
are {−n2 : n ∈ N∗} with the corresponding normalized eigenvectors zn(ξ) =√

2 
π sin(nξ). Thus for y ∈ D(A) = D, there holds 

. Ay =
+∞∑

n=1

−n2(y, zn)zn,

. A(t)y =
+∞∑

n=1

(−α(t)n2)(y, zn)zn,

where (., .) is the usual inner product on X. It is clear that the common domain of 
A(t), t ≥ 0, coincides with that of the operator A. In the one hand, we have 

. D = Y = D(A(t)) = X, A(t) is closed and R
+ ⊂ ρ(A(t)) ∀t ∈ [0, T ].

In the other hand, it is well-known that for all λ >  0 such that R(λ, A) exists,
∥
∥
∥R(λ, A)

∥
∥
∥ ≤ 

1 

λ 
. Consequently, 

.

∥
∥
∥R(λ,A(t))

∥
∥
∥ =

∥
∥
∥

1

α(t)
R(

λ

α(t)
, A)

∥
∥
∥

≤ 1

α(t)

α(t)

λ
≤ 1

λ
.
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Hence, using Hille–Yosida theorem, one obtains that {A(t)}t≥0 is a family of 
generators of C0-semigroups {St (s)}s≥0 on X. 

Therefore, for all t ≥ 0, there exists ω = 0 such that 

.(0,+∞) ⊂ ρ(A(t)), ∀λ > 0. (7.12) 

Better, it is obvious that 

.

∥
∥
∥

k∏

j=1

R(λ;A(tj ))

∥
∥
∥
L(X)

≤ 1

λk
for λ > 0 (7.13) 

and any finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤  tk < +∞, j = 1, 2, · · ·  
Consequently, one claims via Definition 2.1, p.130 of [17] that {A(t)}t≥0 is a 

stable family. 
It remains to show that the assumption (C3) is insured. Following the work done 

in [9], it suffices to prove that 

. for each t ∈ [0, T ], and some λ ∈ ρ(A(t)), the resolvent

R(λ,A(t)) is a compact operator.

Since for all λ >  0, 

. R(λ,A(t)) =
(
λ − α(t)A

)−1 = 1

α(t)

( λ

α(t)
− A

)−1

and 

. 

( λ

α(t)
− A

)−1 =
∫ +∞

0
e
− λ

α(t)
s
T (s)ds

with {T (s)}s≥0 compact, then
(

λ 
α(t) − A

)−1 
is compact. Consequently, the operator 

U(t,  s), t >  s, is a compact operator. 
To complete the abstract form of Eq. (7.11), let us define the initial data function 

φ ∈ C = C([−r, 0]; X) by 

. φ(θ)(x) = φ0(θ, x) for all (θ, x) ∈ [−r, 0] × [0, π ].

Moreover, let us define the following function f : R+ × C → X 

.f (t, ψ)(x) = β(t)

∫ 0

−r

ψ(θ)(x) sin
(
ψ(θ)(x)

)
dθ for all x ∈ [0, π ] and ψ ∈ C.
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Using the above notations and setting v(t)(x) = u(t, x), Eq. (7.11) can be written 
as the following abstract form: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
v(t) = A(t)v(t) + f (t, vt ), t ≥ 0,

v(θ) = φ(θ), θ ∈ [−r, 0].
(7.14) 

Proposition 7.4.3 The function f is continuous onR+×C → X and takes bounded 
sets of R+ × C into bounded sets of X. 	

Proof For all (t, ψ) ∈ R+ × C, one has for all x ∈ [0, π ] 

. 

∣
∣
∣f (t, ψ)(x)

∣
∣
∣ =

∣
∣
∣β(t)

∫ 0

−r

ψ(θ)(x) sin
(
ψ(θ)(x)

)
dθ

∣
∣
∣

≤ |β(t)|
∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣dθ.

Using Hölder inequality, we can write 

. 

∣
∣
∣f (t, ψ)(x)

∣
∣
∣ ≤ |β(t)|

∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣dθ

≤ |β(t)|
( ∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣
2
dθ

) 1
2
( ∫ 0

−r

∣
∣
∣1

∣
∣
∣
2
dθ

) 1
2

= r
1
2 |β(t)|

( ∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣
2
dθ

) 1
2
.

Consequently, 

. 

∫ π

0

∣
∣
∣f (t, ψ)(x)

∣
∣
∣
2
dx ≤ r|β(t)|2

∫ π

0

∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣
2
dθdx

≤ r|β(t)|2
∫ 0

−r

( ∫ π

0

∣
∣
∣ψ(θ)(x)

∣
∣
∣
2
dx

)
dθ

≤ r|β(t)|2
∫ 0

−r

∥
∥
∥ψ(θ)

∥
∥
∥
2
dθ

≤ r2|β(t)|2
∥
∥
∥ψ

∥
∥
∥
2

C
.

So, 

.

∥
∥
∥f (t, ψ)

∥
∥
∥ ≤ r|β(t)|

∥
∥
∥ψ

∥
∥
∥
C

< +∞,
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for all (t, ψ) in the bounded set of R+ ×C since β is continuous on R+. Therefore, 
f takes the bounded sets of R+ × C into bounded sets of X. 

Now, let us show that f is continuous on R+ ×C. Let  (tn)n be a sequence of R+ 

such that lim 
n→+∞ 

tn = t . Then, for each φ ∈ C, 

. 

∣
∣
∣f (tn, ψ)(x) − f (t, ψ)(x)

∣
∣
∣ =

∣
∣
∣(β(tn) − β(t))

∫ 0

−r

ψ(θ)(x) sin
(
ψ(θ)(x)

)
dθ

∣
∣
∣

≤
∣
∣
∣β(tn) − β(t)

∣
∣
∣

∣
∣
∣

∫ 0

−r

ψ(θ)(x) sin
(
ψ(θ)(x)

)
dθ

∣
∣
∣

≤
∣
∣
∣β(tn) − β(t)

∣
∣
∣

∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣dθ

≤
∣
∣
∣β(tn) − β(t)

∣
∣
∣

( ∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣
2
dθ

) 1
2
( ∫ 0

−r

∣
∣
∣1

∣
∣
∣
2
dθ

) 1
2

≤
∣
∣
∣β(tn) − β(t)

∣
∣
∣r

1
2

( ∫ 0

−r

∣
∣
∣ψ(θ)(x)

∣
∣
∣
2
dθ

) 1
2
.

Thus, 

. 

∥
∥
∥f (tn, ψ) − f (t, ψ)

∥
∥
∥ ≤

∣
∣
∣β(tn) − β(t)

∣
∣
∣r

∥
∥
∥ψ

∥
∥
∥
C
.

Since β is continuous on R+, then 

. lim
n→+∞ f (tn, ψ) = f (t, ψ) in X-norm.

Also, let (ψn)n∈N be a sequence of C such that lim 
n→+∞ 

ψn = ψ . Then, for t ∈ R+, 

.

∣
∣
∣f (t, ψn)(x)−f (t, ψ)(x)

∣
∣
∣ ≤

∣
∣
∣β(t)

∫ 0

−r

(
ψn(θ)(x) − ψ(θ)(x)

)
sin

(
ψn(θ)(x)

)
dθ

∣
∣
∣

+
∣
∣
∣β(t)

∫ 0

−r

ψ(θ)(x)
(
sin

(
ψn(θ)(x)

)
− sin

(
ψ(θ)(x)

))
dθ

∣
∣
∣

≤
∣
∣
∣β(t)

∣
∣
∣

( ∫ 0

−r

∣
∣
∣ψn(θ)(x) − ψ(θ)(x)

∣
∣
∣
2
dθ

) 1
2
( ∫ 0

−r

∣
∣
∣1

∣
∣
∣
2
dθ

) 1
2

+
∣
∣
∣β(t)

∣
∣
∣

( ∫ 0

−r

∣
∣
∣1

∣
∣
∣
2
dθ

) 1
2
( ∫ 0

−r

∣
∣
∣ψ(θ)(x)

[
sin

(
ψn(θ)(x)

)

− sin
(
ψ(θ)(x)

)]∣
∣
∣
2
dθ

) 1
2
.
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Therefore, 

. 

∥
∥
∥f (t, ψn) − f (t, ψ)

∥
∥
∥ ≤

∣
∣
∣β(t)

∣
∣
∣r

∥
∥
∥ψn − ψ

∥
∥
∥ + r

∣
∣
∣β(t)

∣
∣
∣

∥
∥
∥ψ

∥
∥
∥

∥
∥
∥ sin

(
ψn

)
− sin

(
ψ

)∥
∥
∥.

Since the function sin is continuous on R, then 

. lim
n→+∞ f (t, ψn) = f (t, ψ) in X-norm. 	


Consequently, the existence of the local and maximal mild solution for the 
problem (7.11) is proved. 
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Chapter 8 
Existence, Regularity, and Stability in the 
.α-Norm for Some Neutral Partial 
Functional Differential Equations in 
Fading Memory Spaces 

Khalil Ezzinbi, Bila Adolphe Kyelem, and Stanislas Ouaro 

Abstract The aim of this chapter is to study the regularity and the stability in the .α-
norm for neutral partial functional differential equations in fading memory spaces. 
We assume that a linear part is densely defined and generates an analytic semigroup. 
The delayed part is assumed to be Lipschitzian. For illustration, we provide an 
example for some reaction–diffusion equation involving infinite delay. 

Keywords Analytic semigroup · Neutral partial functional differential 
equations · .α-norm · Stability · Fading memory space 

8.1 Introduction 

Let .(X, |.|) be a Banach space, .(ℒ(X), |.|ℒ) be the space of bounded linear 
operators on X, and . α be a constant such that .0 < α < 1. The aim of this chapter 
is to study the stability results of the following class of neutral partial functional 
differential equations in the .α-norm in fading memory spaces 
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.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (ut ) for t ≥ 0,

u0 = φ ∈ Bα,

(8.1) 

where .f : Bα → X is a continuous function and .A : D(A) ⊆ X → X is a linear 
operator such that .(−A) generates an analytic semigroup .(T (t))t≥0 on the Banach 
space X. .D(A) is the domain of the operator A. We also denote .R(A) the range of 
the operator A. For .0 < α < 1, . Aα denotes the fractional power of A, and the space 
. Xα will be defined later. The initial function . φ belongs to a Banach space . Bα of 
functions mapping .(−∞, 0] into . Xα and satisfying some axioms to be introduced 
later. . D is a bounded linear operator defined on . Bα with values in X as follows: 

.D(φ) = φ(0) −D0(φ) forφ ∈ Bα, (8.2) 

where . D0 is also a bounded linear operator defined on . Bα with values in X. 
We denote by . ut for .t ∈ R

+ the historic function defined on .(−∞, 0] by 

. ut (θ) = u(t + θ) for all θ ≤ 0,

where u is a function from . R into . Xα . 
The existence results of neutral partial functional differential equations with 

delay are an important subject studied by many authors (see [1, 3, 5, 6, 8, 11, 20] 
and the references therein). One of the qualitative behaviours of solutions of neutral 
partial functional differential equations with delay developed in many works is the 
stability (see [2, 4, 7, 9, 10, 15, 21, 22] and the references therein). 

One of the most important qualitative results of the functional partial differential 
equations is the stability, extensively studied by many authors. A mechanical or an 
electrical device can be constructed to a level of perfect accuracy that is restricted 
by technical, economic, or environmental constraints. What happens to the expected 
result if the construction is a little off specifications? Does output remain near design 
values? How sensitive is the design to variations in fabrication parameters? Stability 
theory gives some answers to these and similar questions. 

Adimy and Ezzinbi in [4] established the stability results in the .α-norm for the 
problem of neutral type of the form 

. 

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (ut ) for t ≥ 0,

u0 = φ ∈ Cα,

where .f : R × Cα → X is a continuous function and .A : D(A) ⊆ X → X is a 
linear operator;
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.ut for .t ∈ R is the historic function defined on .[−r, 0] with .r > 0 by . ut (θ) =
u(t + θ) for .θ ∈ [−r, 0], where u is a continuous function from . R into . Xα; . Cα =
C([−r, 0];D(Aα)) is the space of continuous functions from .[−r, 0] into . D(Aα)

provided with the uniform norm topology, . D is a bounded linear operator from 
.C = C([−r, 0];X) into X defined by 

. D(φ) = φ(0) −D0(φ) forφ ∈ C,

where the operator . D0 is given by 

. D0(φ) =
∫ 0

−r

dη(θ)φ(θ) forφ ∈ C,

and .η : [−r, 0] → ℒ(X) is of bounded variation and non-atomic at zero, that is, 
there exists a continuous nondecreasing function .δ : [0, r] → [0,+∞) such that 
.δ(0) = 0 and 

. 

∣
∣
∣
∣

∫ 0

−s

dη(θ)φ(θ)

∣
∣
∣
∣ ≤ δ(s) |φ|C for φ ∈ C and s ∈ [0, r].

In our work, we study the stability results of Eq. (8.1) following the results 
obtained in [2, 4, 7, 9, 10, 21]. 

To get some stability results in the uniform fading memory spaces, we make use 
of the spectral theory of linear operators, the fractional power operators, and the 
linear semigroup theory (see [13, 19]). 

The organization of this chapter is as follows: In Sect. 8.2, we introduce some 
preliminary results on analytic semigroups, fractional powers of operator, and 
axiomatic phase space adapted to the fractional norm space for infinite delay. In 
Sect. 8.3, the existence and uniqueness of strict solutions is established. In Sect. 8.4, 
we are concerned with the smoothness results of the solutions. In Sect. 8.5, we  
investigate the stability near an equilibrium by using the linearized principle. In the 
last section, an example is provided to illustrate the applications of the main results 
of this chapter. 

8.2 Analytic Semigroup, Fractional Power of Its Generator, 
and Partial Functional Differential Equations 

Throughout this chapter, we assume the following: 

.(H1) .(−A) is the infinitesimal generator of an analytic semigroup of linear 
operators .{T (t)}t≥0 on a Banach space X. Without loss of generality, we suppose 
that .0 ∈ ρ(A); otherwise, instead of A, we take  .A − δI , where . δ is chosen such 
that .0 ∈ ρ(A − δI ) and where .ρ(A) is the resolvent set of A.
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It is well-known that .|T (t)x| ≤ Meωt |x| for all .t ≥ 0, .x ∈ X, where .M ≥ 1 and 
.ω ∈ R. 

For all .0 < α < 1, we define (see [19]) the operator .A−α by 

. A−αx = 1

	(α)

∫ +∞

0
tα−1T (t)xdt for all x ∈ X,

where .	(α) denotes the well-known gamma function at the point . α. The operator 
.A−α is bijective, and the operator . Aα is defined by 

. Aα = (A−α)−1.

We denote by .D(Aα) the domain of the operator . Aα . Then, .D(Aα) endowed with 
the norm .|x|α = |Aαx| for all .x ∈ D(Aα) is a Banach space [19]. We denote it by 
. Xα . Moreover, we recall the following known results. 

Theorem 8.2.1 ([19], p.69–75) Let .0 < α < 1, and assume that .(H1) holds. 
Then: 

(a) .T (t) : X → D(Aα) for each .t > 0 and .α ≥ 0. 
(b) For all .x ∈ D(Aα), .T (t)Aαx = AαT (t)x. 
(c) For each .t > 0, the linear operator .AαT (t) is bounded and . |AαT (t)x| ≤

Mαt−αeωt |x|, where .Mα is a positive real constant. 
(d) For .0 < α ≤ 1 and .x ∈ D(Aα), .|T (t)x − x| ≤ Nαtα|Aαx|, for  .t > 0, where 

. Nα is a positive real constant. 
(e) For .0 < α < β < 1, .Xβ ↪→ Xα . 

From now on, we use an axiomatic definition of the phase space . B that was first 
introduced by Hale and Kato in [16]. We assume that . B is the normed space of 
functions mapping .(−∞, 0] into X and satisfying the following axioms: 

(A) There exist a positive constant N , a locally bounded continuous function 
.M(.) on .[0,+∞), and a continuous function .K(.) on .[0,+∞), such that if 
.u : (−∞, a] → X is continuous on .[ξ, a] with .uξ ∈ B for some .ξ < a where 
.0 < a, then for all .t ∈ [ξ, a]: 
(i) .ut ∈ B. 
(ii) .t → ut is continuous on .[ξ, a]. 
(iii) .N |u(t)| ≤ |ut |B ≤ K(t − ξ) sup

ξ≤s≤t

|u(s)| + M(t − ξ)|uξ |B. 

(B) . B is a Banach space. 

Lemma 8.2.1 ([7]) Let .C00 be the space of continuous functions mapping . (−∞, 0]
into X with compact supports and .Ca

00 be the subspace of functions in .C00 with 
supports included in .[−a, 0] endowed with the uniform norm topology. Then 
.Ca
00 ↪→ B. �	
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Let 

. Bα = {φ ∈ B : φ(θ) ∈ D(Aα) for θ ≤ 0 and Aαφ ∈ B} .

and provide . Bα with the following norm: 

. |φ|Bα = |Aαφ|B for φ ∈ Bα.

We also assume that 

.(H2) .A−αφ ∈ B for all .φ ∈ B, where the function .A−αφ is defined by 

. (A−αφ)(θ) = A−α(φ(θ)) for θ ≤ 0

and 

.(H3) .K(0)|D0| < 1. 

Lemma 8.2.2 ([7]) Assume that .(H1) and .(H2) hold. Then, . Bα is a Banach space 
and satisfies the axiom . (A). �	

For regularity results in the Banach space X, consider the following problem: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (t) for t ≥ 0,

u0 = φ.

(8.3) 

Definition 8.2.1 Let .φ ∈ B. A function .u : (−∞, a] → X is called a mild solution 
of Eq. (8.3) associated to . φ if 

. 

⎧
⎪⎪⎨

⎪⎪⎩

D(ut ) = T (t)D(u0) +
∫ t

0
T (t − s)f (s)ds for t ∈ [0, a]

u0 = φ.

Definition 8.2.2 Let .φ ∈ B. A function .u : (−∞, a] → X is called a strict solution 
of Eq. (8.3) associated to . φ if 

. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t 
−→ D(ut ) is continuously differentiable on [0, a]

D(ut ) ∈ D(A) for t ≥ 0

u(t) satisfies the system (8.3) for t ≥ 0. 

We have the following important result.
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Theorem 8.2.2 Let .u0 = φ, .D(φ) ∈ D(A), and .f ∈ C1([0, a];X). The existence 
of a mild solution u of (8.3) on .[0, a] implies the existence of a strict solution of 
(8.3) on .[0, a]. �	
Proof Let u be a mild solution of (8.3). Then, 

.D(ut ) = T (t)D(u0) +
∫ t

0
T (t − s)f (s)ds for t ∈ [0, a]. (8.4) 

Show that .t 
→ D(ut ) is continuously differentiable. We need to only examine the 
second term of the right-hand side of (8.4), which will be denoted by . v(t). It is well-
known that .T (t − s) = − ∂

∂s
(T (t − s))(−A)−1 since .(−A) generates the analytic 

semigroup .(T (t))t≥0. Hence, 

. v(t) = −
∫ t

0

∂

∂s
(T (t − s))(−A)−1f (s)ds

=
[
−(T (t − s))(−A)−1f (s)

]t

0
+
∫ t

0
T (t − s)(−A)−1f ′(s)ds

= −(−A)−1f (t) + T (t)(−A)−1f (0) +
∫ t

0
T (t − s)(−A)−1f ′(s)ds.

Since . lim
h→0

[∫ t

0

T (t + h − s) − T (t−s)

h
(−A)−1f ′(s)ds + 1

h

∫ t+h

t

T (t−s)(−A)−1

f ′(s)ds
] = (−A)−1f ′(t) +

∫ t

0
T (t − s)f ′(s)ds, it is easy to see that 

.
d

dt
v(t) = T (t)f (0) +

∫ t

0
T (t − s)f ′(s)ds. (8.5) 

Using Eq. (8.5) and the fact that .f ∈ C1([0, a];X) and the semigroup . (T (t))t≥0
is analytic, then .t 
→ d

dt
v(t) is continuous. Consequently, .t 
→ D(ut ) is 

continuously differentiable on .t ∈ [0, a]. 
Now, let us show that .D(ut ) ∈ D(A). Since .T (t)D(φ) ∈ D(A), it remains to 

prove that .v(t) ∈ D(A). We use the relation (8.5) in order to obtain 

. 
d

dt
v(t) = T (t)f (0) +

∫ t

0
T (t − s)f ′(s)ds

= −Av(t) + f (t).

Thus, .Av(t) = − d

dt
v(t) + f (t) exists and .v(t) ∈ D(A).
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To finish, let us prove that u verifies (8.3). Using  (8.4), one can write 

. 
d

dt
(D(ut )) = T ′(t)D(φ) +

∫ t

0

∂

∂s
(T (t − s))f (s)ds + f (t)

= −AT (t)D(φ) − A

∫ t

0
T (t − s)f (s)ds + f (t)

= −A

[

T (t)D(φ) +
∫ t

0
T (t − s)f (s)ds

]

+ f (t)

= −AD(ut ) + f (t).

�	

8.3 Existence and Uniqueness of Strict Solutions 

Now, we give the notions of solutions that will be studied in our work. 

Definition 8.3.1 Let .φ ∈ Bα . A function .u : (−∞, +∞) → Xα is called a mild 
solution of Eq. (8.1) associated to . φ if: 

(i) . D(ut ) = T (t)D(φ) +
∫ t

0
T (t − s)f (us)ds for t ≥ 0.

(ii) .u0 = φ.
�	

Definition 8.3.2 Let .φ ∈ Bα . A function .u : (−∞,+∞) → Xα is called a strict 
solution of Eq. (8.1) associated to . φ if: 

(i) .t 
−→ D(ut ) is continuously differentiable on .[0,+∞). 
(ii) .D(ut ) ∈ D(A) for .t ≥ 0. 
(iii) .u(t) satisfies the system (8.1) for .t ≥ 0.

�	
Often in this chapter, .ut (., φ) and .ut (φ) denote the mild solution associated to 

the initial data . φ, and we simply denote it by . ut if there is no confusion. 
We assume that there exists .k > 0 such that 

.(H4) .|f (φ1) − f (φ2)| ≤ k|φ1 − φ2|Bα for all . φ1, .φ2 ∈ Bα . 

Theorem 8.3.1 ([14]) Assume that .(H1), .(H2), .(H3), and .(H4) hold. Then, for each 
.φ ∈ Bα , there exists a unique mild solution of Eq. (8.1) that is defined for .t ≥ 0. 

Lemma 8.3.1 Assume that .(H1), .(H2), and .(H3) hold. Let .φ ∈ Bα and . h ∈
C(R+;Xα) such that .D(φ) = h(0). Then, there exists a unique continuous function 
x on . R+ that solves the following problem:
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.

⎧
⎨

⎩

D(xt ) = h(t) for t ≥ 0,

x(t) = φ(t) for t ∈ (−∞, 0].
(8.6) 

Moreover, there exist two functions a and b in .L∞
loc(R

+;R+) such that 

.|xt |Bα ≤ a(t)|φ|Bα + b(t) sup
0≤s≤t

|h(s)|α for t ≥ 0. (8.7) 

Proof We define for .p > 0 the space 

. W = {x ∈ C([0, p];Xα) : x(0) = φ(0)}

endowed with the uniform norm topology. For .x ∈ W , we define its extension . x̃ on 
. R− by 

. x̃(t) =
⎧
⎨

⎩

x(t) for t ∈ [0, p]

φ(t) for t ∈ (−∞, 0].

Using axiom (A), one can see that .t 
→ x̃t is continuous from .[0, p] to . Bα . Let  
us define the function . K on W by 

. (K(x))(t) = D0(x̃t ) + h(t) for t ≥ 0.

One must show that . K has a unique fixed point on W . Since .h ∈ C(R+;Xα), then 
.h ∈ C([0, p];Xα). Moreover, .h(0) = D(φ) = φ(0) −D0(φ). It follows  that  

. K(W) ⊂ W.

We can also write for .x, y ∈ W with their respective extensions . x̃ and . ỹ associated 
to . φ

. |(K(x) −K(y))(t)|α ≤ |D0||x̃t − ỹt |Bα

≤ |D0|K(t) sup
0≤s≤t

|x(s) − y(s)|α

≤ |D0|K(t)|x − y|W .

Choosing .p > 0 small enough, one obtains that . K is a strict contraction. 
Consequently, (8.6) has a unique solution x on .(−∞, p].
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It follows for .s ∈ [0, p] that 

. |xs |Bα ≤ K(s) sup
0≤τ≤s

|x(τ)|α + M(s)|φ|Bα

≤ K(s)
(
|D0| sup

0≤τ≤s

|xτ |Bα + sup
0≤τ≤s

|h(τ)|α
)

+ M(s)|φ|Bα

≤ Kp|D0| sup
0≤τ≤s

|xτ |Bα + Kp sup
0≤τ≤s

|h(τ)|α + Mp|φ|Bα ,

where .Kp = sup
s∈[0,p]

K(s) and .Mp = sup
s∈[0,p]

M(s). 

Therefore, 

. sup
0≤s≤t

|xs |Bα ≤ sup
0≤s≤t

{
Kp|D0| sup

0≤τ≤s

|xτ |Bα + Kp sup
0≤τ≤s

|h(τ)|α + Mp|φ|Bα

}

≤ Kp|D0| sup
0≤s≤t

|xs |Bα + Kp sup
0≤s≤t

|h(s)|α + Mp|φ|Bα .

Thus, for .p > 0 small enough and using .(H3), one can write for .t ∈ [0, p], 

. sup
0≤s≤t

|xs |Bα ≤ Kp

1 − Kp|D0| sup
0≤s≤t

|h(s)|α + Mp

1 − Kp|D0| |φ|Bα .

As a consequence, we have the existence of .a, b ∈ L∞
loc([0, p];R+) such that 

. |xt |Bα ≤ a(t)|φ|Bα + b(t) sup
0≤s≤t

|h(s)|α, for t ∈ [0, p].

Now, to extend the solution x on .[p, 2p], we consider the space 

. W1 = {u ∈ C([p, 2p];Xα) : u(p) = x(p)}

endowed with the uniform norm topology and the following problem: 

. ̃u(t) =
⎧
⎨

⎩

u(t) for t ∈ [p, 2p],

x(t) for t ∈ (−∞, p].

We define the function . K1 on . W1 by 

. (K1(u))(t) = D0(ũt ) + h(t), for t ∈ [p, 2p].

Using the same arguments as above, we show that . K1 is a strict contraction on . W1. 
That leads to the existence of a unique solution u of (8.6) on .(−∞, 2p], and u is the 
extension of x on .(−∞, 2p].
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Also, we have to extend .a, b on .[p, 2p]. Therefore, let .s ∈ [p, 2p]. Then, one 
can write 

. |xs |Bα
≤ K(s − p) sup

p≤τ≤s
|x(τ)|α + M(s − p)

∣
∣xp

∣
∣
Bα

≤ Kp sup
p≤τ≤s

|x(τ)|α + Mp

∣
∣xp

∣
∣
Bα

≤ Kp sup
p≤τ≤s

{|D0| |xτ |Bα
+ |h(τ)|α

}+ Mp

∣
∣xp

∣
∣
Bα

.

Therefore, for each .t ∈ [p, 2p] such that .s ≤ t , we have  

. sup
p≤s≤t

|xs |Bα
≤ sup

p≤s≤t

{

Kp sup
p≤τ≤s

{|D0| |xτ |Bα
+ |h(τ)|α

}+ Mp

∣
∣xp

∣
∣
Bα

}

≤ Kp |D0| sup
p≤s≤t

|xτ |Bα
+ Kp sup

p≤s≤t
|h(τ)|α + Mp

∣
∣xp

∣
∣
Bα

.

Thus, for .t ∈ [p, 2p], 

. |xt |Bα
≤ Kp

1 − Kp |D0| sup
p≤s≤t

|h(s)|α + Mp

1 − Kp |D0|
∣
∣xp

∣
∣
Bα

.

Since .p ∈ [0, p], one can write 

. |xp|Bα ≤ a(p)|φ|Bα + b(p) sup
0≤s≤p

|h(s)|α.

Consequently, 

. |xt |Bα
≤ Kp

1 − Kp |D0| sup
p≤s≤t

|h(s)|α + Mp

1 − Kp |D0|
∣
∣xp

∣
∣
Bα

≤ Kp

1 − Kp |D0| sup
p≤s≤t

|h(s)|α + Mpa(p)

1 − Kp |D0| |φ|Bα

+ Mpb(p)

1 − Kp |D0| sup
0≤s≤p

|h(s)|α

≤ Mpa(p)

1 − Kp |D0| |φ|Bα
+ max

{ Kp

1 − Kp |D0| ,
Mpb(p)

1 − Kp |D0|
}

sup
0≤s≤p

|h(s)|α

+max
{ Kp

1 − Kp |D0| ,
Mpb(p)

1 − Kp |D0|
}

sup
p≤s≤t

|h(s)|α

≤ Mpa(p)

1 − Kp |D0| |φ|Bα
+ 2max

{ Kp

1 − Kp |D0| ,
Mpb(p)

1 − Kp |D0|
}

sup
0≤s≤t

|h(s)|α .
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Thus, for all .t ∈ [p, 2p], 

. |xt |Bα
≤ a1(t) |φ|Bα

+ b1(t) sup
0≤s≤t

|h(s)|α ,

where . a1 can be seen as the extension of a on .[0, 2p] and . b1 the extension of b on 
.[0, 2p]. It is exactly to say there exist .a, b ∈ L∞

loc([0, 2p];R+) such that 

. |xt |Bα ≤ a(t)|φ|Bα + b(t) sup
0≤s≤t

|h(s)|α, for t ∈ [0, 2p].

Inductively, one can show the existence of an extension u of x on . [np, (n + 1)p]
and the extension .anp of a, .bnp of b on .[np, (n + 1)p]. Finally, the solution x is 
unique and continuous defined on . R+. Also, the functions .a ∈ L∞

loc(R
+;R+) and 

.b ∈ L∞
loc(R

+;R+) are well-defined. �	
We have the following result. 

Theorem 8.3.2 ([14]) Assume that .(H1), .(H2), .(H3), and .(H4) hold. Let u and v 
be two mild solutions of Eq. (8.1) on . R, respectively, associated to the initial data . φ

and . ψ . Then, for any .a > 0, there exists .l(a) > 0 such that 

.|ut (φ) − vt (ψ)|Bα ≤ l(a)|φ − ψ |Bα for t ∈ [0, a]. (8.8) 

For the regularity of the mild solution, we suppose that . B satisfies the following 
axiom: 

.(B1) If .(φn)n≥0 is a Cauchy sequence in . B and converges compactly to . φ in 
.(−∞, 0], then .φ ∈ B and .|φn − φ|B → 0 as .n → +∞. 

Now, we can claim the existence and uniqueness of strict solution for Eq. (8.1). 

Theorem 8.3.3 Assume that .(H1), .(H2), .(H3), and .(H4) hold. Furthermore, 
assume that . B satisfies axiom: .(B1) .f : Bα → X is continuously differentiable 
with . f ′ locally Lipschitz continuous. Let .φ ∈ Bα be such that 

. φ′ ∈ Bα, D(φ) ∈ D(A) and D(φ′) = −AD(φ) + f (φ).

Then, the mild solution u of the problem (8.1) is a strict solution of the problem 
(8.1). �	
Proof Let .p > 0 and u be the mild solution of the problem (8.1) associated to . φ. 
We consider the following problem: 

.

⎧
⎪⎪⎨

⎪⎪⎩

D(wt ) = T (t)D(φ′) +
∫ t

0
T (t − s)f ′(us)wsds, for t ∈ [0, p]

w0 = φ′
(8.9)
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and .z ∈ C((−∞, p];Xα) defined by 

.z(t) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(0) +
∫ t

0
w(s)ds, for t ∈ [0, p]

φ(t) for t ≤ 0.

(8.10) 

Then (8.9) has a unique mild and continuous solution w on .(−∞, p]. Also, one 
can recall the following lemma that plays an important role in the proof of this 
current theorem. 

Lemma 8.3.2 ([7]) The function z defined above verifies 

.zt = φ +
∫ t

0
wsds, for t ∈ [0, p]. (8.11) 

Note that our objective is to show that .u = z on .[0, p]. Using  (8.9), we get 

.

∫ t

0
D(ws)ds =

∫ t

0
T (t −s)D(φ′)ds +

∫ t

0

∫ s

0
T (s −τ)f ′(uτ )wτdτds. (8.12) 

For .t ∈ [0, p], we have  

.
d

dt

∫ t

0
T (t − s)f (zs)ds = T (t)f (φ) +

∫ t

0
T (t − s)f ′(zs)wsds. (8.13) 

Consequently, 

. 

∫ t

0
T (s)f (φ)ds =

∫ t

0
T (t − s)f (zs)ds −

∫ t

0

∫ s

0
T (s − τ)f ′(zτ )wτdτds.

(8.14) 
Using Eq. (8.11), it follows that 

. D(zt ) = D(φ) +
∫ t

0
T (t − s)

(
− AD(φ) + f (φ)

)
ds

+
∫ t

0

∫ s

0
T (s − τ)f ′(uτ )wτdτds

= T (t)D(φ) +
∫ t

0
T (s)f (φ)ds +

∫ t

0

∫ s

0
T (s − τ)f ′(uτ )wτdτds.

Using Eq. (8.14), we have  

. D(zt ) = T (t)D(φ) +
∫ t

0
T (t − s)f (zs)ds

+
∫ t

0

∫ s

0
T (s − τ)

(
f ′(uτ ) − f ′(zτ )

)
wτdτds. (8.15)
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Therefore, 

. D(ut − zt ) =
∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

∫ s

0
T (s − τ)

(
f ′(uτ ) − f ′(zτ )

)
wτdτds. (8.16) 

By Fubini’s theorem, we get that 

. D(ut − zt ) =
∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

( ∫ t−s

0
T (τ)dτ

)(
f ′(us) − f ′(zs)

)
wsds. (8.17) 

Then, we put for .t ∈ [0, p], 

. h(t) =
∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

( ∫ t−s

0
T (τ)dτ

)(
f ′(us) − f ′(zs)

)
wsds,

to obtain for some positive constants k and . C1, 

. |h(t)|α =
∣
∣
∣

∫ t

0
T (t − s)

(
f (us) − f (zs)

)
ds

−
∫ t

0

( ∫ t−s

0
T (τ)dτ

)(
f ′(us) − f ′(zs)

)
wsds

∣
∣
∣
α

≤
∫ t

0

∣
∣
∣T (t − s)

(
f (us) − f (zs)

)∣
∣
∣
α
ds

+
∫ t

0

∫ t−s

0

∣
∣
∣T (τ)(f ′(us) − f ′(zs))ws

∣
∣
∣
α
dτds

≤ kMα

∫ t

0

eω(t−s)

(t − s)α
|us − zs |Bαds

+C1Mα

∫ t

0

( ∫ t−s

0

eωτ

τα
dτ
)
|us − zs |Bαds.

One can write for . ω > 0

.

∫ t−s

0

eωτ

τα
dτ ≤ eω(t−s)

∫ t−s

0

1

τα
dτ

≤ eω(t−s)
[ 1

1 − α

1

τα−1

]t−s

0
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≤ eω(t−s) t − s 
1 − α 

1 

(t − s)α 

≤ eω(t−s) p 
1 − α 

1 

(t − s)α . 

Therefore, 

. |h(t)|α ≤ kMα

∫ t

0

eω(t−s)

(t − s)α
|us − zs |Bαds + C1pMα

1 − α

∫ t

0

eω(t−s)

(t − s)α
|us − zs |Bαds.

Moreover, since for all .θ ∈ (−∞, 0], .u(θ) = z(θ), then one has for all .s ∈ [0, t], 

. |us − zs |Bα ≤ max
0≤τ≤t

∣
∣
∣u(τ) − z(τ )

∣
∣
∣
α
.

Thus, 

. |h(t)|α ≤
(
kMα + C1pMα

1 − α

)( ∫ p

0

eωτ

τα
dτ
)

max
0≤τ≤p

∣
∣
∣u(τ) − z(τ )

∣
∣
∣
α
.

Using Lemma 8.3.1, one obtains 

. |ut − zt |Bα ≤
(
kMα + C1pMα

1 − α

)( ∫ p

0

eωτ

τα
dτ
)

max
0≤τ≤p

∣
∣
∣u(τ) − z(τ )

∣
∣
∣
α
.

One can choose .p > 0 small enough such that 

. 

(
kMα + C1pMα

1 − α

)( ∫ p

0

eωτ

τα
dτ
)

< 1.

It follows that .u = z in .(−∞, p] and that leads to u continuously differentiable 
on .[0, p] with respect to the .α-norm. In order to extend the solution to .[p, 2p], we  
consider the following problems: 

. 

⎧
⎪⎪⎨

⎪⎪⎩

D(wt ) = T (t − p)D(u′
p) +

∫ t

p

T (t − s)f ′(us)wsds for t ∈ [p, 2p]

wp = u′
p,

and .z̃ ∈ C((−∞, 2p];Xα) defined by 

.z̃(t) =

⎧
⎪⎪⎨

⎪⎪⎩

up(0) +
∫ t

p

w(s)ds for t ∈ [p, 2p]

z(t) for t ≤ p.
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Using the same technique, one obtains that .u = z̃ on .(−∞, 2p]. Proceeding 
inductively, solution u is uniquely extended to .[np, (n + 1)p] for all .n ∈ N

∗ with 
respect to the .α-norm. Since .Xα ↪→ X, one obtains that .u ∈ C1([0,+∞); X). 
Finally, using Theorem 8.2.2 , u is the strict solution defined on . R. �	

8.4 Smoothness Results of the Operator Solution 

Let .K : D(K) ⊆ Y → Y be a closed linear operator with dense domain .D(K) in a 
Banach space Y . We denote by .σ(K) the spectrum of K . 

Definition 8.4.1 The essential spectrum .σess(K) of K is the set of all .λ ∈ C such 
that at least one of the following relations holds: 

(i) The range .Im(λI − K) is not closed. 
(ii) The generalized eigenspace .Mλ(K) =

⋃

n≥0

ker(λI − K)n of . λ is infinite-

dimensional. 
(iii) . λ is a limit of .σ(K), that is, .λ ∈ σ(K) − {λ}.

�	
The essential radius denoted by .ress(K) is given by 

. ress(K) = sup {|λ| : λ ∈ σess(K)} .

Definition 8.4.2 The spectral bound .s(A) of the linear operator A is defined as 

. s(A) = sup {Reλ : λ ∈ σ(A)} .

Definition 8.4.3 The type of the linear operator .(T (t))t≥0 is defined by 

. ω0(T ) = inf

{

ω ∈ R : sup
t≥0

{
e−ωt |T (t)| < ∞}

}

.

In the sequel, we recall the . χ measure of noncompactness, which will be used 
in the next to analyse the spectral properties of semigroup solution. The . χ measure 
of noncompactness for a bounded set H of a Banach space Y with the norm .|.|Y is 
defined by 

. χ(H) = inf {ε > 0 : H has a finite cover of diameter < ε} .

The following results are some basic properties of the . χ measure of noncompact-
ness.
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Lemma 8.4.1 ([17]) Let . A1 and . A2 be bounded sets of a Banach space Y . Then: 

(i) .χ(A1) ≤ dia(A1), where .dia(A1) = sup
x,y∈A1

|x − y|. 
(ii) .χ(A1) = 0 if and only if . A1 is relatively compact in Y . 
(iii) .χ(A1

⋃
A2) = max {χ(A1), χ(A2)}. 

(iv) .χ(λA1) = |λ|χ(A1), .λ ∈ R, where .λA1 = {λx : x ∈ A1}. 
(v) .χ(A1 +A2) ≤ χ(A1)+χ(A2), where .A1 +A2 = {x + y : x ∈ A1, y ∈ A2}. 
(vi) .χ(A1) ≤ χ(A2) if .A1 ⊆ A2. 

Definition 8.4.4 The essential norm of a bounded linear operator K on Y is defined 
by 

. |K|ess = inf {M ≥ 0 : χ(K(B)) ≤ Mχ(B) for any bounded set B in Y } .

Let .V = (V (t))t≥0 be a .c0-semigroup on a Banach space Y . 

Definition 8.4.5 The essential growth .ωess(V ) of .(V (t))t≥0 is defined by 

. ωess(V ) = inf

{

ω ∈ R : sup
t≥0

e−ωt |V (t)|ess < ∞
}

.

Theorem 8.4.1 ([7]) The essential growth bound of .(V (t))t≥0 is given by 

.ωess(V ) = lim
t→+∞

1

t
log |V (t)|ess = inf

t>0

1

t
log |V (t)|ess . (8.18) 

Moreover, 

.ress(V (t)) = exp(tωess(V )), for t ≥ 0. (8.19) 

Assume now that: 

.(H5) The semigroup .(T (t))t≥0 is compact for .t > 0. 

Theorem 8.4.2 Assume that .(H1), .(H2), .(H3), .(H4), and .(H5) hold. Then, the 
solution .u(., φ) of Eq. (8.1) is decomposed as follows: 

. ut (., φ) = 𝒰(t)φ + 𝒲(t)φ, for t ≥ 0,

where .𝒲(t) is a compact operator on . Bα , for each .t > 0, and .𝒰(t) is the semigroup 
solution of the following equation: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(xt ) = −AD(xt ) for t ≥ 0,

x0 = φ ∈ Bα.

(8.20)
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Proof Let .𝒰(t) be defined by 

.(𝒰(t)φ)(θ) =
⎧
⎨

⎩

φ(t + θ) for t + θ ≤ 0

v(t + θ) for t + θ ≥ 0,
(8.21) 

where v is a unique solution of the problem 

.

⎧
⎨

⎩

D(vt ) = T (t)D(φ) for t ≥ 0

v(t) = φ(t) for t ≤ 0.
(8.22) 

We can write .𝒲(t)φ = wt(., φ) = ut (., φ) − 𝒰(t)φ = ut (., φ) − vt (., φ). Then, 

. D(𝒲(t)φ) = D(ut (., φ)) −D(vt (., φ)) =
∫ t

0
T (t − s)f (us)ds.

Consequently, 

.

⎧
⎪⎪⎨

⎪⎪⎩

D(wt ) = h(t, φ) =
∫ t

0
T (t − s)f (us)ds for t ≥ 0,

w0 = 0 for t ≤ 0.

(8.23) 

Let .{φk}k≥0 be a bounded sequence in . Bα . We will show that the family . {h(., φk) :
k ≥ 0} is equicontinuous and bounded on .C([0, σ ];Xα), for any .σ > 0 fixed. For 
all .0 < α < β < 1, there exists a positive constant C such that 

. |Aβh(t, φk)| = |Aβ

∫ t

0
T (t − s)f (us(., φk))ds|

≤
∫ t

0
|AβT (t − s)f (us(., φk))|ds

≤ MβC

∫ t

0

eωs

sβ
ds,

for every .k ≥ 0. 
Using the compactness of the operator .A−β : X → Xα , we get that the set 

.{h(t, φk) : k ≥ 0} is relatively compact in . Xα for each .t ≥ 0. Now, let us prove the 
equicontinuity of the family .{h(., φk) : k ≥ 0} in the .α-norm. For this purpose, let 
.t > t0 ≥ 0. Then,
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. Aαh(t, φk) − Aαh(t0, φk) =
∫ t

0
AαT (t − s)f (us)ds −

∫ t0

0
AαT (t0 − s)f (us)ds

=
∫ t0

0
Aα[T (t − s) − T (t0 − s)]f (us)ds

+
∫ t

t0

AαT (t − s)f (us)ds

= [T (t − t0) − I ]
∫ t0

0
AαT (t0 − s)f (us)ds

+
∫ t

t0

AαT (t − s)f (us)ds.

We obtain that 

. 

∣
∣
∣
∣

∫ t

t0

AαT (t − s)f (us)ds

∣
∣
∣
∣ ≤ Mαk

∫ t

t0

eωs

sα
ds → 0 as t → t0 uniformly in φk.

Moreover, since .{Aα

∫ t0

0
T (t0−s)f (us(., φk))ds : k ≥ 0} is relatively compact 

in X, then there is a compact set . 	 in X such that 

. 

∫ t0

0
AαT (t0 − s)f (us(., φk))ds ⊂ 	 for all φk.

It is well-known by the Banach–Steinhaus theorem that 

. lim
t→t0

sup
x∈	

|(T (t − t0) − I )x| = 0.

Thus, 

. lim
t→t0

|h(t, φk) − h(t0, φk)|α = 0 uniformly in φk.

Using the same argument, we also obtain for .t0 > t , 

. lim
t→t0

|h(t, φk) − h(t0, φk)|α = 0 uniformly in φk.

Therefore, the family .{h(., φk) : k ≥ 0} is relatively compact on . C([0, σ ];Xα)

for each .σ > 0. Then, there exists a subsequence .{φk : k ≥ 0} such that . h(t, φk)

converges as .k → +∞ uniformly on .[0, σ ] to some function .h(t) with respect to 
the .α-norm. Let . wk

t be the solution of problem (8.23) with the initial data .φ = φk . 
Then, 

.D(w
j
t − wk

t ) = h(t, φj ) − h(t, φk).
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Using Lemma 8.3.1, we obtain 

. |wj
t − wk

t |Bα ≤ b(t) sup
0≤s≤t

|h(t, φj ) − h(t, φk)|α,

which implies that .{wk
t }k≥0 = {wt(., φk)}k≥0 is a Cauchy sequence in . Bα . 

Therefore, .𝒲(t) is compact in . Bα . �	
Definition 8.4.6 . D is said to be stable if the zero solution of the difference system 

. 

⎧
⎨

⎩

D(xt ) = 0 for t ≥ 0,

x0(t) = φ(t) for t ≤ 0

is exponentially stable. �	
Now, we give the definitions of fading memory spaces that will be used later on. 

For .φ ∈ B, .t ≥ 0 and .θ ≤ 0, we define the following: 

.[S(t)φ](θ) =
⎧
⎨

⎩

φ(0) if t + θ ≥ 0,

φ(t + θ) if t + θ < 0.
(8.24) 

Then, .{S(t)}t≥0 is a strongly continuous semigroup on . B. We set  

. S0(t) = S(t)/B0, where B0 = {φ ∈ B : φ(0) = 0} .

Definition 8.4.7 [7] We say that . B is a uniform fading memory space if the 
following conditions hold: 

(i) If a uniformly bounded sequence .(φn)n∈N in .C00 converges to a function . φ
compactly on .(−∞, 0], then . φ is in . B and .|φn − φ|B → 0 as .n → +∞. 

(ii) .|S0(t)|B → 0 as .t → +∞. �	
Lemma 8.4.2 ([7]) If . B is a uniform fading memory space, then K and M can be 
chosen such that K is bounded on . R+ and .M(t) → 0 as .t → +∞. �	
Lemma 8.4.3 If . B is a uniform fading memory space, then . Bα is a uniform fading 
memory space. �	
Proof Let .(φn)n∈N in .C00 be a uniformly bounded sequence that converges to a 
function . φ compactly on .(−∞, 0]. Then . φ is in . B and .|φn − φ|B → 0 as . n → +∞
since . B is a uniform fading memory space. Using .(H2), one can write . A−αφ ∈ B
since .φ ∈ B. .A−αφ ∈ B leads to the existence of .A−αφ(θ). We know that 
.R(A−α) = D(Aα). For this reason, .

∣
∣A−αφ(θ)

∣
∣
α
is well-defined. The fact that . A−α

is bounded linear operator implies .|φ(θ)|α exists. Therefore, .φ(θ) ∈ D(Aα) for all 
.θ ≤ 0. Also,  

.
∣
∣A−αAαφ

∣
∣
B = |φ|B < ∞.
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Using again the boundedness of .A−α , one obtains the existence of .|Aαφ|B. Thus, 
.Aαφ ∈ B. Hence, we establish that .φ ∈ Bα . Moreover, 

. |φn − φ|B = ∣∣A−αAα(φn − φ)
∣
∣
B → 0 as n → +∞.

Since .A−α is a bounded linear operator, one obtains 

. 
∣
∣Aα(φn − φ)

∣
∣
B = |φn − φ|Bα

→ 0 as n → +∞.

Consequently, the condition . (i) of Definition 8.4.7 is satisfied. 
Now, we have to show that the condition .(ii) of Definition 8.4.7 is verified. In 

order to do this, we use the fact that .A−α is a bounded linear operator and . B is a 
uniform fading memory space to write 

. |S0(t)|B = ∣∣A−αAαS0(t)
∣
∣
B → 0 as t → +∞

and 

. |S0(t)|Bα
→ 0 as t → +∞.

Hence, the condition .(ii) is satisfied. Finally, . Bα is a uniform fading memory space. 
�	

Now, we have to prove that .𝒰(t) is exponentially stable. It is known that .𝒰(t) in 
Theorem 8.4.2 is defined by 

. (𝒰(t)φ)(θ) =
⎧
⎨

⎩

φ(t + θ) for t + θ ≤ 0

v(t + θ) for t + θ ≥ 0,

where v is a unique solution for the same initial data . φ of the following problem: 

. 

⎧
⎨

⎩

D(vt ) = T (t)D(φ) for t ≥ 0

v(t) = φ(t) for t ≤ 0.

Using the superposition principle of solutions of linear systems, we have 

. v(t) = x(t) + y(t) for t ∈ R,

where 

.

⎧
⎨

⎩

D(xt ) = 0 for t ≥ 0,

x(t) = φ(t) for t ≤ 0
(8.25)



8 Existence, Regularity, and Stability in the .α-Norm for Some Neutral Partial. . . 205

and 

.

⎧
⎨

⎩

D(yt ) = T (t)D(φ) for t ≥ 0,

y(t) = 0 for t ≤ 0.
(8.26) 

Now, let .K∞ = sup
s≥0

K(s). We have the following result. 

Theorem 8.4.3 Assume that .(H1), .(H2), and .(H3) hold. Moreover, suppose that 
. Bα is a uniform fading memory space, . D is stable, the semigroup .{T (t)}t≥0 is 
exponentially stable, and .K∞|D0| < 1. Then, the semigroup solution . {𝒰(t)}t≥0
defined in Theorem 8.4.2 is exponentially stable. �	
Proof Since y verifies problem (8.26) and . Bα is a uniform fading memory space, 
then, using Axiom (A)-(iii), one can write for . t ≥ s ≥ ε > 0

. |ys |Bα ≤ K(ε) sup
s−ε≤τ≤s

|y(τ)|α + M(ε)|ys−ε |Bα

≤ K(ε)|D0| sup
s−ε≤τ≤s

|yτ |Bα + K(ε) sup
s−ε≤τ≤s

|T (τ)D(φ)|α + M(ε)|ys−ε |Bα

≤ K(ε)|D0| sup
s−ε≤τ≤s

|yτ |Bα + K(ε) sup
s−ε≤τ≤s

|T (τ)D(φ)|α
+M(ε) sup

s−ε≤τ≤s
|yτ |Bα .

Therefore, taking .ε > 0 such that .s − ε ≥ t − 2ε ≥ 0, then 

. |ys |Bα ≤ K(ε)|D0| sup
t−2ε≤τ≤s

|yτ |Bα + K(ε) sup
t−2ε≤τ≤s

|T (τ)D(φ)|α

+M(ε) sup
t−2ε≤τ≤s

|yτ |Bα .

Now, one can write 

. sup
t−2ε≤s≤t

|ys |Bα ≤ sup
t−2ε≤s≤t

{
K∞|D0| sup

t−2ε≤τ≤s

|yτ |Bα

+K∞ sup
t−2ε≤τ≤s

|T (τ)D(φ)|α + M(ε) sup
t−2ε≤τ≤s

|yτ |Bα

}

≤ K∞|D0| sup
t−2ε≤s≤t

|ys |Bα + K∞ sup
t−2ε≤s≤t

|T (s)D(φ)|α

+M(ε) sup
t−2ε≤s≤t

|ys |Bα .
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Since .M(ε) → 0 as .ε → +∞, then we choose . ε big enough such that . 0 <

1 − K∞|D0| − M(ε). We obtain that 

. |yt |Bα ≤ K∞
(
1 − K∞|D0| − M(ε)

) sup
t−2ε≤s≤t

|T (s)D(φ)|α.

Since .{T (t)}t≥0 is exponentially stable, then there exist positive constants . α′ and 
. β ′ such that .|yt |Bα ≤ β ′e−α′t for all .t ≥ 0. 

Since . D is stable, then .xt (φ) → 0 as .t → +∞. On the other hand, we have 

. 𝒰(t)φ = xt (φ) + yt (φ).

Then, it follows that .𝒰(t) → 0 as .t → 0 and .{𝒰(t)}t≥0 is exponentially stable. �	
In the sequel, we give the following. 

Theorem 8.4.4 Assume that there exists .r > 0 such that the elements .φ ∈ Bα are 
continuous from .[−r, 0] to . Xα . If  .D(φ) = φ(0) − qφ(−r) for all .φ ∈ Bα with 
.0 < q < 1 and . Bα a uniform fading memory space, then . D is stable. �	
Proof Since .D(xt ) = 0 and .x0 = φ, then for all .t ∈ [0, r], we have  . x(t) =
qx(t − r). Therefore, 

. |x(t)|α ≤ q|φ(t − r)|α.

Also, for all .t ∈ [r, 2r], 

. |x(t, φ)|α ≤ q2|φ(t − 2r)|α.

Inductively, for all .t ∈ [(n − 1)r, nr], we have  

. |x(t, φ)|α ≤ qn|φ(t − nr)|α;

since .t ∈ [(n − 1)r, nr], then .t − nr ∈ [−r, 0]. Furthermore, . Bα is assumed to be 
the space of functions from .(−∞, 0] to . Xα that are continuous on .[−r, 0]. Thus, for 
all .t ∈ [(n − 1)r, nr], 

. |x(t, φ)|α ≤ qn sup
−r≤s≤0

|φ(s)|α,

for all .φ ∈ Bα . 
Thus, there exist .α = − ln(q)

r
> 0 and .C > 0 such that 

.|x(t, φ)|α ≤ qn sup
−r≤s≤0

|φ(s)|α

≤ Ce−αt .



8 Existence, Regularity, and Stability in the .α-Norm for Some Neutral Partial. . . 207

Hence, for all .φ ∈ Bα , 

. lim
t→+∞ x(t, φ) = 0.

Now, let .φ ∈ Bα such that .|φ|Bα ≤ 1. 
Using again Axiom (A)-(iii) and the fact that . Bα is a uniform fading memory 

space, we have for . t ≥ s ≥ ε > 0

. |xs(., φ)|Bα ≤ K(ε) sup
s−ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

≤ K∞ sup
s−ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα .

Choosing .ε > 0 such that .s − ε ≥ t − 2ε ≥ 0, we have  

. |xs(., φ)|Bα ≤ K∞ sup
s−ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

≤ K∞ sup
t−2ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

≤ sup
t−2ε≤s≤t

{
K∞ sup

t−2ε≤τ≤s

|x(τ, φ)|α + M(ε)|xs−ε(., φ)|Bα

}

≤ K∞ sup
t−2ε≤s≤t

|x(s, φ)|α + M(ε) sup
t−2ε≤s≤t

|xs(., φ)|Bα .

Thus, 

. sup
t−2ε≤s≤t

|xs(., φ)|Bα ≤ K∞ sup
t−2ε≤s≤t

|x(s, φ)|α + M(ε) sup
t−2ε≤s≤t

|xs(., φ)|Bα .

Since .M(ε) → 0 as .ε → +∞, then we can choose . ε big enough such that 
.0 < 1 − M(ε). Therefore, 

. |xt (., φ)|Bα ≤ K∞
(1 − M(ε))

sup
t−2ε≤s≤t

|x(s, φ)|α, for all φ ∈ Bα with |φ|Bα ≤ 1.

Thus, .xt (., φ) → 0 as .t → +∞ whenever .φ ∈ Bα and .|φ|Bα ≤ 1. Hence, . D is 
stable. �	
Example 8.4.1 Let . γ be a real number, .1 ≤ p < +∞, and .r > 0. We define 
the space .Cr × L

p
γ that consists of measurable functions .ϕ : (−∞, 0] → X that 

are continuous on .[−r, 0] such that .eγ θ |ϕ(θ)|p is measurable on .(−∞, −r]. Let us 
provide the space .Cr × L

p
γ with the following norm: 

. |ϕ|B = sup
−r≤θ≤0

|ϕ(θ)| +
∫ −r

−∞
eγ θ |ϕ(θ)|pdθ.

.(Cr × L
p
γ , |.|B) is a normed linear space satisfying Axioms (A) and (B).
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Corollary 8.4.1 Suppose that assumptions .(H1), .(H2), and .(H3) hold, and there 
exists a positive constant r such that all .φ ∈ Bα imply that . φ is continuous on 
.[−r, 0] with values in . Xα . Moreover, suppose that . Bα is a uniform fading memory 
space, .D(φ) = φ(0) − qφ(−r) for all .φ ∈ Bα , the semigroup .{T (t)}t≥0 is 
exponentially stable, and .K∞|D0| < 1. Then, the semigroup solution . {𝒰(t)}t≥0
defined in Theorem 8.4.2 is exponentially stable. �	

8.5 Linearized Stability of Solutions 

Coming back to the operator .U(t) for .t ≥ 0 defined on . Bα by 

. U(t)(φ) = ut (., φ),

where .ut (., φ) is the unique mild solution of the problem (8.1) for the initial 
condition .φ ∈ Bα , it is proved that the following result holds. 

Proposition 8.5.1 ([4]) The family .(U(t))t≥0 is a nonlinear strongly continuous 
semigroup on . Bα , that is: 

(i) .U(0) = I . 
(ii) .U(t + s) = U(t)U(s), for .t, s ≥ 0. 
(iii) For all .φ ∈ Bα , .U(t)(φ) is a continuous function of .t ≥ 0 with values in . Bα . 
(iv) For .t ≥ 0, .U(t) is continuous from . Bα to . Bα . 
(v) .(U(t))t≥0 satisfies the following translation property, for .t ≥ 0 and .θ ≤ 0: 

.(U(t))(θ) =
⎧
⎨

⎩

(U(t + θ)(φ))(0), if t + θ ≥ 0,

φ(t + θ) if t + θ ≤ 0.
(8.27) 

It is now interesting to investigate the stability results of the equilibriums of 
the problem (8.1). Recalling that equilibrium means a constant solution . u∗ of the 
problem (8.1). To preserve the generality, we can suppose that .u∗ = 0. 

Now, let us assume that: 

.(H6) .f : Bα → X is differentiable at zero. 

It is well-known that the linearized problem associated to problem (8.1) is given by 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(yt ) = −AD(yt ) + L(yt ), for t ≥ 0,

y0 = φ ∈ Bα,

(8.28) 

with .L = f ′(0).
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Let .(V (t))t≥0 be the semigroup solution on . Bα associated to the problem (8.28). 

Theorem 8.5.1 Assume that .(H1), .(H2),.(H3), .(H4), and .(H6) hold. Then, for every 
.t > 0, the derivative of .U(t) is .V (t). �	
Proof Let .t ≥ 0 be fixed and .φ ∈ Bα . One has 

. D
[
U(t)φ − V (t)φ

]
=
∫ t

0
T (t − s)

[
f (U(s)(φ)) − L(V (s)(φ))

]
ds.

Let us set 

. wt = U(t)(φ) − V (t)(φ)

and 

. h(t) =
∫ t

0
T (t − s)

[
f (U(s)(φ)) − L(V (s)(φ))

]
ds.

Then, we can write 

. h(t) =
∫ t

0
T (t − s)

[
f (U(s)(φ)) − f (V (s)(φ))

]
ds

+
∫ t

0
T (t − s)

[
f (V (s)(φ)) − L(V (s)(φ))

]
ds.

Using Lemma 8.3.1, we obtain 

. |wt |Bα ≤ b(t) sup
0≤s≤t

|h(s)|α, for t ∈ [0, T ].

Moreover, 

. |h(t)|α ≤ kMα

∫ t

0

eω(t−s)

(t − s)α
|ws |Bαds

+ Mα

∫ t

0

eω(t−s)

(t − s)α

∣
∣
∣f (V (s)(φ)) − L(V (s)(φ))

∣
∣
∣ds.

Using the fact that f is differentiable at zero with differential L at zero, we can state 
that for all .ε > 0, there exists .η > 0 such that 

.Mα

∫ t

0

eω(t−s)

(t − s)α

∣
∣
∣f (V (s)(φ)) − L(V (s)(φ))

∣
∣
∣ds ≤ ε|φ|Bα

∀φ ∈ Bα with |φ|Bα < η.
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Note that .w0 = 0, so we can  write  

. |ws |Bα ≤ sup
0≤τ≤t

|w(τ)|α ≤ |wt |Bα , for s ∈ [0, t].

Therefore, for .t ∈ [0, T ], 

. sup
0≤s≤t

|h(s)|α ≤ ε|φ|Bα + kMα

( ∫ t

0

eωs

sα
ds
)
|wt |Bα

≤ ε|φ|Bα + kMα

( ∫ T

0

eωs

sα
ds
)
|wt |Bα .

We can choose .T > 0 small enough such that .kMαb(T )
( ∫ T

0

eωs

sα
ds
)

< 1. 

Consequently, for all .|φ|Bα < η, 

. |wt |Bα ≤ b(T )

1 − kMαb(T )
( ∫ T

0
eωs

sα ds
)ε|φ|Bα .

Thus, .U(t) is differentiable at zero for all .t ∈ [0, T ] with .dφU(t)(0) = V (t). 
Proceeding by steps, one can prove that .dφU(t)(0) = V (t), for all .t > 0. �	
Theorem 8.5.2 Assume that .(H1), .(H2), .(H3), .(H4), and .(H6) hold. If the zero 
equilibrium of .(V (t))t≥0 is exponentially stable, then the zero equilibrium of 
.(U(t))t≥0 is locally exponentially stable, which means that there exist .η > 0, .β > 0, 
and .C ≥ 1 such that for .t ≥ 0, 

. |U(t)(φ)|Bα ≤ Ce−βt |φ|Bα for all φ ∈ Bα with |φ|Bα ≤ η.

Moreover, if . Bα can be decomposed as .Bα = B1α ⊕ B2α , where . Bi
α are V -invariant 

subspaces of . Bα and . B1α a finite-dimensional with 

. ω0 = lim
h→+∞

1

h
log
∣
∣
∣V (h)/B2α

∣
∣
∣
α

and 

. inf{|λ| : λ ∈ σ(V (t)/B1α)} > eω0t ,

then the zero equilibrium of .(U(t))t≥0 is not stable, in the sense that there exist 
.ε > 0, a sequence .(φn)n∈N converging to 0, and a sequence .(tn)n∈N of positive real 
numbers such that .|U(tn)φn|α > ε. �	

The proof of this theorem is based on the Theorem 8.5.1 and the following 
theorem.



8 Existence, Regularity, and Stability in the .α-Norm for Some Neutral Partial. . . 211

Theorem 8.5.3 ([12]) Let .(W(t))t≥0 be a nonlinear strongly continuous semigroup 
on the subset . � of a Banach space .(X; ||.||). Assume that .x0 ∈ � is an equilibrium 
of .(W(t))t≥0 such that .W(t) is differentiable at . x0 for each .t ≥ 0 with . Z(t)

the derivative of .W(t) at . x0. Then, .(Z(t)t≥0 is a strongly nonlinear continuous 
semigroup of bounded linear operators on X, and if the zero equilibrium of 
.(Z(t))t≥0 is exponentially stable, then the equilibrium . x0 of .(W(t))t≥0 is locally 
exponentially stable. Moreover, if X can be decomposed as .X = X1 ⊕ X2, where 
. Xi are Z-invariant subspaces of X, . X1 a finite-dimensional with 

. ω = lim
h→+∞

1

h
log
∣
∣
∣|Z(h)/X2|

∣
∣
∣

and 

. inf{|λ| : λ ∈ σ(Z(t)/X1)} > eωt ,

then the zero equilibrium of .(W(t))t≥0 is not stable, in the sense that there exist 
.ε > 0, a sequence .(φn)n∈N converging to 0, and a sequence .(tn)n∈N of positive real 
numbers such that 

. |W(tn)φn|α > ε.

Lemma 8.5.1 ([19], Corollary 1.2, page 43) Let . � be a continuous and right 
differentiable function on .[a, b). If the right derivative function .d+� is continuous 
on .[a, b), then . � is continuously differentiable on .[a, b). �	

Now, we make some sufficient conditions on . B in order to determine 
.(AV ,D(AV )), the generator of the semigroup .(V (t))t≥0. So, we assume the 
following axiom: 

(C): Let .(φn)n≥0 be a sequence in . B such that .φn → 0 as .n → +∞ in . B; then, 
.φn(θ) → 0 as .n → +∞ for all .θ ≤ 0. 

We can state the following result. 

Theorem 8.5.4 Assume that .(H1), .(H2), .(H3), .(H4), and .(H6) hold. Moreover, 
suppose that . B satisfies axioms . (A), . (B), and . (C). If . B is a subspace of the space of 
continuous functions from .(−∞, 0] into X, then .(AV ,D(AV )) is given by 

. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D(AV ) =
{
φ ∈ Bα : φ′ ∈ Bα, D(φ) ∈ D(A) and

D(φ′) = −AD(φ) + L(φ)
}
,

AV φ = φ′ for φ ∈ D(AV ).

Proof Let B be the infinitesimal generator of the semigroup .(V (t))t≥0 on . Bα and 
.φ ∈ D(B). Then, one can write
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. 

⎧
⎪⎪⎨

⎪⎪⎩

lim
t→0+

1

t
(V (t)φ − φ) = ψ exists in Bα,

Bφ = ψ.

Using axiom (C), one obtains 

. lim
t→0+

1

t
(φ(t + θ) − φ(θ)) = ψ(θ) for θ ∈ (−∞, 0).

It follows that the right derivative .d+φ exists on .(−∞, 0) and is equal to . ψ . The  
fact that each function in . Bα is continuous on .(−∞, 0] leads to .d+φ continuous on 
.(−∞, 0). 

Using Lemma 8.5.1, we deduce that the function . φ is continuously differentiable 
and .φ′ = ψ on .(−∞, 0). Moreover, 

. lim
θ→0

d+φ(θ) = ψ(0),

which implies that the function . φ is continuously differentiable from .(−∞, 0] to 
. Xα and .φ′ = ψ on .(−∞, 0]. 

We have 

. 
1

t
(T (t)D(φ) −⇐φ)) = 1

t
D(V (t)φ − φ) − 1

t

∫ t

0
T (t − s)L(V (s)φ)ds.

It is well-known that 

. lim
t→0

1

t

∫ t

0
T (t − s)L(V (s)φ)ds = L(φ)

in X-norm and 

. lim
t→0

1

t
D(V (t)φ − φ) = D(φ′)

in .α-norm. The fact that .Xα ↪→ X implies 

. lim
t→0

1

t
D(V (t)φ − φ) = D(φ′)

in X-norm. Consequently, 

.D(φ) ∈ D(A) and lim
t→0

1

t
(T (t)D(φ) −⇐φ)) = AD(φ)
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in X-norm. It follows that 

. 

⎧
⎪⎨

⎪⎩

D(B) ⊆
{
φ ∈ Bα : φ′ ∈ Bα, D(φ) ∈ D(A) and D(φ′) = −AD(φ) + L(φ)

}
,

B(φ) = φ′.

Conversely, let .φ ∈ Bα be such that 

. φ′ ∈ Bα, D(φ) ∈ D(A) and D(φ′) = −AD(φ) + L(φ).

Since .t → T (t)φ is continuously differentiable from . R+ to . Xα , then .φ ∈ D(B). 
�	

Now, let us study the spectral of the linear equation. We assume that . Bα satisfies 
the following axiom: 

(D) There exists a constant .ν ∈ R such that for every .x ∈ X and .λ ∈ C with 
.�(λ) > ν, one has 

. ελ ⊗ x ∈ Bα and sup
|x|≤1

|ελ ⊗ x| < ∞,

where .(ελ ⊗ x)(θ) = eλθx for .θ ≤ 0. 

For .λ ∈ C such that .�(λ) > ν, we define the linear operator .�(λ) by 

. 

⎧
⎪⎨

⎪⎩

D(�(λ)) =
{
x ∈ Xα : D(eλ.x) ∈ D(A) and AD(eλ.x) − L(eλ.x) ∈ Xα

}
,

�(λ) = λD(eλ.I ) + AD(eλ.I ) − L(eλ.I ).

Let .(AV ,D(AV )) be the infinitesimal generator of the semigroup .(V (t))t≥0 and 
.σp(AV ) be the point spectrum of . AV . 

Theorem 8.5.5 Assume that .(H1), .(H2), .(H3), .(H4), and .(H6) hold. Assume 
furthermore that the axioms . (A), . (B), . (C), and .(D) are satisfied. Let .λ ∈ C with 
.�(λ) > ν. If  . Bα is a uniform fading memory space and . D is stable, then the 
following are equivalent: 

(i) .λ ∈ σp(AV ). 
(ii) .ker�(λ) �= {0}.

�	
Proof Let .λ ∈ σp(AV ) with .�(λ) > ν. Then, there exists .φ ∈ D(AV ), .φ �= 0, with 
.AV φ = λφ. That leads to 

. lim
t→0

1

t
(V (t)φ − φ) = λφ
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and 

. lim
t→0

1

t
D(V (t)φ − φ)(0) = λD(φ(0)).

Since for all .t > 0, 

. 
1

t
(T (t)D(φ(0)) −⇐φ(0))) = 1

t
D(V (t)φ − φ)(0) − 1

t

∫ t

0
T (t − s)L(V (s)φ)ds,

then letting t goes to 0, and one obtains 

.D(φ(0)) ∈ D(A) and − AD(φ(0)) = λD(φ(0)) − l(φ). (8.29) 

Moreover, using the spectral mapping (Theorem . 2.4 in [18]), we have 

. eλt ∈ σp(V (t)) and V (t)φ = eλtφ for all t > 0.

Letting .t > 0 and .θ ≤ 0 such that .t + θ ≥ 0, the translation property of the 
semigroup solution leads to 

. (V (t)φ)(θ) = (V (t + θ)φ)(0) = eλtφ(θ) = eλ(t+θ)φ(0).

Thus, .φ(θ) = eλθφ(0) for .θ ≥ 0. Since .φ �= 0, using  (8.29), it follows that 
.D(φ(0)) ∈ ker�(λ). 

Conversely, if . φ verifies all conditions of Theorem 8.3.3, then .AV φ = φ′. Taking 
.x ∈ D(A) such that .x �= 0 and .�(λ)x = 0, then the function .ελ ⊗ x satisfies all 
conditions of Theorem 8.3.3, and we deduce that 

. AV (ελ ⊗ x) = λ(ελ ⊗ x).

�	
Now, let 

. ν0 = inf{ν ∈ R : such that (D) is satisfied}.

Lemma 8.5.2 ([18]) If . B is a uniform fading memory space, then .ν0 < 0. �	
Definition 8.5.1 .λ ∈ C is a characteristic value of Eq. (8.28) if 

. �(λ) > ν0 and ker�(λ) �= {0}.

Let 

.s′(AV ) = sup{�(λ) : λ ∈ σ(AV ) − σess(AV )}.
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It is well-known that .σ(AV ) − σess(AV ) contains a finite number of eigenvalues of 
. AV . Consequently, the stability of .(V (t))t≥0 is completely determined by .s′(AV ). 

Theorem 8.5.6 Assume that .(H1), .(H2), .(H3), .(H4), .(H5), and .(H6) hold. Further-
more, assume that the axioms . (A), . (B), . (C), and .(D) are satisfied. If . B is a uniform 
fading memory space and . D is stable, then the following holds: 

(i) If .s′(AV ) < 0, then .(V (t))t≥0 is exponentially stable. 
(ii) If .s′(AV ) = 0, then there exists .φ ∈ Bα such that .|V (t)φ|Bα = |φ|Bα . 
(iii) If .s′(AV ) > 0, then there exists .φ ∈ Bα such that . lim

t→+∞ |V (t)φ|Bα = +∞.

�	
We deduce the following stability result in the nonlinear case, from Theo-

rem 8.5.2. 

Theorem 8.5.7 Assume that .(H1), .(H2), .(H3), .(H4), .(H5), and .(H6) hold. Further-
more, assume that the axioms . (A), . (B), . (C), and .(D) are satisfied. If . B is a uniform 
fading memory space and . D is stable, then the following holds: 

(i) If .s′(AV ) < 0, then the zero equilibrium of .(U(t))t≥0 is locally exponentially 
stable. 

(ii) If .s′(AV ) > 0, then the zero equilibrium of .(U(t))t≥0 is unstable.
�	

8.6 Application 

To apply the theoretical results of this chapter, we consider the following nonlinear 
system with infinite delay: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
v(t, ξ) − qv(t − r, ξ)

]
= ∂2

∂ξ2

[
v(t, ξ) − qv(t − r, ξ)

]

+b ∂
∂ξ

[
v(t, ξ) − qv(t − r, ξ)

]

+c

∫ 0

−∞
g(θ, v(t + θ, ξ))dθ for t ≥ 0 and ξ ∈ [0, π ]

v(t, 0) − qv(t − r, 0) = v(t, π) − qv(t − r, π) = 0 for t ≥ 0

v(θ, ξ) = ψ(θ, ξ) for θ ∈ (−∞, 0] and ξ ∈ [0, π ],

(8.30) 

where .g : (−∞, 0] × R → R is a function and .c ∈ R
∗+, .b ∈ R. q is a 

positive constant such that .|q| < 1. .H : R2 → R is a Lipschitz continuous with 
.H(0, 0) = 0. The initial data . ψ will be precised in the next.
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In order to write system (8.30) in an abstract form, we introduce the space . X =
L2((0, π);R). Let  A be the operator defined on X by 

. 

⎧
⎨

⎩

D(A) = H 2((0, π);R) ∩ H 1
0 ((0, π);R),

Ay = −y′′ for y ∈ D(A).

Then, .(−A) generates an analytic semigroup .(T (t))t≥0 on X. Moreover, . T (t)

is compact on X for every .t > 0. The spectrum .σ(−A) is equal to the point 
spectrum .Pσ(−A) and is given by .σ(−A) = {−n2 : n ≥ 1

}
, and the associated 

eigenfunctions .(φn)n≥1 are given by .φn =
√

2
π
sin(nx) for .x ∈ [0, π ]; the associated 

analytic semigroup is explicitly given by 

. T (t)y =
∞∑

n=1

e−n2t (y, φn) φn for t ≥ 0 and y ∈ X,

where .(., .) is an inner product on X. 

Lemma 8.6.1 ([21]) If .α = 1
2 , then 

. Ay =
+∞∑

n=1

n2(y, φn)φn for y ∈ D(A),

. A
1
2 y =

+∞∑

n=1

n(y, φn)φn for y ∈ X,

. A
1
2 T (t)y =

+∞∑

n=1

ne−n2t (y, φn)φn for y ∈ X,

. A− 1
2 y =

+∞∑

n=1

(1

n

)
(y, φn)φn for y ∈ X,

and 

. A− 1
2 T (t)y =

+∞∑

n=1

(1

n

)
e−n2t (y, φn)φn for y ∈ X.

There exists .M ≥ 1 (see [21]) such that for .t ≥ 0, . |T (t)| ≤ Meωt for some − 1 <

ω < 0.
Then, the semigroup .{T (t)}t≥0 is exponentially stable.
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Note also that (see [21]) there exists .M 1
2

≥ 0 such that 

. |A 1
2 T (t)| ≤ M 1

2
t−

1
2 eωt for each t > 0.

Therefore, hypotheses .(H1) and .(H5) are satisfied. 

Lemma 8.6.2 ([7]) If .m ∈ D(A
1
2 ), then m is absolutely continuous, . ∂

∂x
m ∈ X. 

Moreover, there exist positive constants . N0 and . M0 such that 

. N0|A 1
2 m|X ≤ | ∂

∂x
m|X ≤ M0|A 1

2 m|X.

Let .γ > 0. We consider the following phase space 

. B = Cγ =
{

φ ∈ C((−∞, 0];X) : lim
θ→−∞ eγ θ |φ(θ)| exists in X

}

provided with the following norm: 

. |φ|Cγ = sup
θ≤0

eγ θ |φ(θ)|X for φ ∈ Cγ .

According to [7], . B satisfies Axioms (A), (B) and is a uniform fading memory space. 
Moreover, it is well-known that .K(t) = 1 for every .t ∈ R

+ and .M(t) = e−γ t for 
.t ∈ R

+. Therefore, the norm in . B 1
2
is given (see [7]) by 

. |φ|B 1
2

= sup
θ≤0

eγ θ |A 1
2 φ(θ)|X.

One can write ( see, [21], p.144) 

.

∫ π

0

(
φ(θ)(ξ)

)2
dξ ≤ |A 1

2 φ(θ)|2X =
∫ π

0

( ∂

∂ξ
φ(θ)(ξ)

)2
dξ. (8.31) 

Next, we assume the following. 

.(H7) For .θ ≤ 0 and .ζ1, ζ2 ∈ R, .|g(θ, ζ1)−g(θ, ζ2)| ≤ s(θ)|ζ1−ζ2|, .g(θ, 0) = 0, 
.
∂
∂ζ

g(θ, 0) �= 0, where s is some nonnegative function that verifies 

. 

∫ 0

−∞
e−2γ θ s(θ) < ∞.

Let .f1, f2, and f be defined on . B 1
2
by
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. f1(φ)(ξ) = c

∫ 0

−∞
g(θ, φ(θ)(ξ))dθ for ξ ∈ [0, π ],

. f2(φ)(ξ) = b
∂

∂ξ

[
φ(0)(ξ) − qφ(−r)(ξ)

]
for ξ ∈ [0, π ],

and 

. f (φ)(ξ) = f1(φ)(ξ) + f2(φ)(ξ) for ξ ∈ [0, π ].

Proposition 8.6.1 For each .φ ∈ B 1
2
, .f (φ) ∈ L2((0, π);R), and f is continuous 

on . B 1
2
. �	

Proof Let .φ ∈ B 1
2
. Since for all .ξ ∈ [0, π ] and for all .θ ∈ (−∞, 0], we have  

. |g(θ, ξ)| ≤ s(θ)|ξ | + |g(θ, 0)|
= s(θ)|ξ |,

then for all .ξ ∈ [0, π ], 

. |f1(φ)(ξ)| ≤ c

∫ 0

−∞
|s(θ)| |φ(θ)(ξ)|dθ.

Let us set 

. B(ξ) =
∫ 0

−∞
|s(θ)||φ(θ)(ξ)|dθ for ξ ∈ [0, π ].

Using H. ̈older inequality, one can write 

. B(ξ) =
∫ 0

−∞
e−2γ θ |s(θ)||φ(θ)(ξ)|e2γ θdθ

≤
(∫ 0

−∞
|e−2γ θ s(θ)|2dθ

) 1
2
(∫ 0

−∞
|φ(θ)(ξ)e2γ θ |2dθ

) 1
2

.

Then, using the above inequality and the inequality (8.31), 

.

∫ π

0
|B(ξ)|2dξ ≤

∫ π

0

((∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)( ∫ 0

−∞
|φ(θ)(ξ)e2γ θ |2dθ

))

dξ

=
∫ π

0

(

|e−2γ.s|2
L2(R−)

∫ 0

−∞
|φ(θ)(ξ)e2γ θ |2dθ

)

dξ
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≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

e2γ θ

∫ π 

0 
|φ(θ)(ξ)|2dξ

)

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

e2γ θ

∫ π 

0 
| ∂ 
∂ξ 

φ(θ)(ξ)|2dξ

)

dθ

)

= |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

e2γ θ | ∂ 
∂ξ 

φ(θ)|2 
L2([0,π ];R)

)

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(

sup 
θ≤0 

e2γ θ | ∂ 
∂ξ 

φ(θ)|2 
L2([0,π ];R)

)

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ

(
sup 
θ≤0 

e2γ θ |A 
1 
2 φ(θ)|2 

L2([0,π ];R)

)
dθ

)

≤ |e−2γ.  s|2 
L2(R−)

(∫ 0 

−∞ 
e2γ θ |φ|2 B 1 

2 

dθ

)

≤ |e−2γ.  s|2 
L2(R−)

|φ|2 B 1 
2

∫ 0 

−∞ 
e2γ θ  dθ 

< ∞. 

Also, we refer to Minkowski inequality to obtain 

.

∫ π

0
|f2(φ)(ξ)|2dξ =

∫ π

0

∣
∣
∣

∂

∂ξ

[
φ(0)(ξ) − qφ(−r)(ξ)

]∣
∣
∣
2
dξ

≤
∫ π

0

∣
∣
∣

∂

∂ξ
φ(0)(ξ)

∣
∣
∣
2
dξ +

∫ π

0

∣
∣
∣q

∂

∂ξ
φ(−r)(ξ)

∣
∣
∣
2
dξ

+2
( ∫ π

0

∣
∣
∣

∂

∂ξ
φ(0)(ξ)

∣
∣
∣
2
dξ
) 1

2
( ∫ π

0

∣
∣
∣q

∂

∂ξ
φ(−r)(ξ)

∣
∣
∣
2
dξ
) 1

2

≤
∣
∣
∣A

1
2 φ(0)

∣
∣
∣
2

L2([0,π ];R)
+ q2

∣
∣
∣A

1
2 φ(−r)

∣
∣
∣
2

L2([0,π ];R)

+2q
∣
∣
∣A

1
2 φ(0)

∣
∣
∣
L2([0,π ];R)

∣
∣
∣A

1
2 φ(−r)

∣
∣
∣
L2([0,π ];R)

≤ sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
2

L2([0,π ];R)

+q2e2γ r sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
2

L2([0,π ];R)

+2q sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
L2([0,π ];R)

e2γ r

× sup
θ≤0

e2γ θ
∣
∣
∣A

1
2 φ(θ)

∣
∣
∣
L2([0,π ];R)
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≤ sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 φ(θ)

∣
∣
∣
2 

L2([0,π ];R) 

+q2e2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 φ(θ)

∣
∣
∣
2 

L2([0,π ];R) 

+2qe2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 φ(θ)

∣
∣
∣
2 

L2([0,π ];R) 

< ∞. 

We conclude that .f (φ) = (f1 + f2)(φ) ∈ L2([0, π ];R) for all .φ ∈ B 1
2
. 

Let us show that f is continuous. For this purpose, let .(φn)n∈N be a sequence in 
. B 1

2
and .φ ∈ B 1

2
such that .φn → φ in . B 1

2
as .n → +∞. Then 

. 

(
f1(φn) − f1(φ)

)
(ξ) = c

∫ 0

−∞
g(θ, φn(θ)(ξ))dθ − c

∫ 0

−∞
g(θ, φ(θ)(ξ))dθ

= c

∫ 0

−∞

[
g(θ, φn(θ)(ξ)) − g(θ, φ(θ)(ξ))

]
dθ,

and we obtain that 

. |(f1(φn) − f1(φ))(ξ)| ≤ c

∫ 0

−∞
|s(θ)| |φn(θ)(ξ) − φ(θ)(ξ))|dθ.

Let us set  for all .ξ ∈ [0, π ], 

. Jn(ξ) = c

∫ 0

−∞
|s(θ)|

∣
∣
∣φn(θ)(ξ) − φ(θ)(ξ)

∣
∣
∣dθ.

Then 

. |Jn(ξ)| ≤ c

∫ 0

−∞
e−2γ θ |s(θ)|

∣
∣
∣φn(θ)(ξ) − φ(θ)(ξ)

∣
∣
∣e

2γ θdθ

≤ c

(∫ 0

−∞

∣
∣
∣e

−2γ θ s(θ)

∣
∣
∣
2
dθ

) 1
2
(∫ 0

−∞

∣
∣
∣

(
φn(θ)(ξ) − φ(θ)(ξ)

)
e2γ θ

∣
∣
∣
2
dθ

) 1
2

,

which leads to 

.

∫ π

0
|Jn(ξ)|2dξ ≤ |c|2|e−2γ.s|2

L2(R−)

∫ 0

−∞

(

e2γ θ e2γ θ

∫ π

0

∣
∣
∣φn(θ)(ξ)

− φ(θ)(ξ)

∣
∣
∣
2
dξ

)

dθ
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≤ |c|2|e−2γ.  s|2 
L2(R−)

∫ 0 

−∞

(

e2γ θ  e2γ θ

∫ π 

0

∣
∣
∣

∂ 
∂ξ 

φn(θ)(ξ) 

− 
∂ 
∂ξ 

φ(θ)(ξ)

∣
∣
∣
2 
dξ

)

dθ 

≤ |c|2|e−2γ.  s|2 
L2(R−)

∫ 0 

−∞ 
e2γ θ

(

sup 
θ≤0 

e2γ θ

∫ π 

0

∣
∣
∣

∂ 
∂ξ 

φn(θ)(ξ) 

− 
∂ 
∂ξ 

φ(θ)(ξ)

∣
∣
∣
2 
dξ

)

dθ 

≤ |c|2|e−2γ.  s|2 
L2(R−)

∫ 0 

−∞ 
e2γ θ

(
sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2 (φn(θ) 

−φ(θ))

∣
∣
∣
2 

L2([0,π ];R)

)
dθ 

≤ |c|2
∣
∣
∣e

−2γ.  s
∣
∣
∣
2 

L2(R−)

∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2

∫ 0 

−∞ 
e2γ θ  dθ. 

Since .φn → φ in . B 1
2
, then .

∫ π

0
|Jn(ξ)|2dξ → 0 as .n → +∞. Therefore, . f1 is 

continuous. Moreover, 

.

∫ π

0

∣
∣
∣f2

(
φn(ξ) − φ(ξ)

)∣
∣
∣
2
dξ =

∫ π

0

∣
∣
∣

∂

∂ξ

[(
φn(0) − φ(0)

)
(ξ)

−q
(
φn(−r) − φ(−r)

)
(ξ)
]∣
∣
∣
2
dξ

≤
∫ π

0

∣
∣
∣

∂

∂ξ

(
φn(0)(ξ) − φ(0)(ξ)

)∣
∣
∣
2
dξ

+
∫ π

0

∣
∣
∣q

∂

∂ξ

(
φn(−r)(ξ) − φ(−r)(ξ)

)∣
∣
∣
2
dξ

+2
( ∫ π

0

∣
∣
∣

∂

∂ξ

(
φn(0)(ξ) − φ(0)(ξ)

)∣
∣
∣
2
dξ
) 1

2

×
( ∫ π

0

∣
∣
∣q

∂

∂ξ

(
φn(−r)(ξ) − φ(−r)(ξ)

)∣
∣
∣
2
dξ
) 1

2

≤
∣
∣
∣A

1
2

(
φn(0) − φ(0)

)∣
∣
∣
2

L2([0,π ];R)

+q2
∣
∣
∣A

1
2

(
φn(−r) − φ(−r)

)∣
∣
∣
2

L2([0,π ];R)
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+2q
∣
∣
∣A 

1 
2

(
φn(0) − φ(0)

)∣
∣
∣
L2([0,π ];R)

∣
∣
∣A 

1 
2 

×
(
φn(−r) − φ(−r)

)∣
∣
∣
L2([0,π ];R) 

≤ sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
2 

L2([0,π ];R) 

+q2e2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
2 

L2([0,π ];R) 

+2q sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
L2([0,π ];R) 

×e2γ r  sup 
θ≤0 

e2γ θ
∣
∣
∣A 

1 
2

(
φn(θ) − φ(θ)

)∣
∣
∣
L2([0,π ];R) 

≤
∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2 

+ q2e2γ r
∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2 

+2qe2γ r
∣
∣
∣φn − φ

∣
∣
∣
2 

B 1 
2 

. 

Using the fact that .φn → φ in . B 1
2
as .n → +∞, we obtain that . 

∫ π

0

∣
∣
∣f2

(
φn(ξ) −

φ(ξ)
)∣
∣
∣
2
dξ → 0 when .n → +∞. 

Hence, .f (φn) → f (φ) in .L2([0, π ];R) as .n → +∞ and the proof is complete. 
�	

Let 

. 

⎧
⎨

⎩

u(t)(x) = v(t, x) for t ≥ 0 and x ∈ [0, π ],

u0(θ)(x) = ψ(θ, x) for θ ∈ (−∞, 0] and x ∈ [0, π ].

We need the following result to prove that .(H3) is satisfied. 

Proposition 8.6.2 Assume that .(H7) holds. Then, f is Lipschitzian. 

Proof We have to show that . f1 and . f2 are Lipschitz functions. So, let . φ and . ψ be 
in . B 1

2
. Then, for .ξ ∈ [0, π ], one has 

. (f1(φ) − f1(ψ))(ξ) = c

∫ 0

−∞

[
g(θ, φ(θ)(ξ)) − g(θ, ψ(θ)(ξ))

]
dθ for ξ ∈ [0, π ].

Note that using H. ̈older inequality, one can write
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. | (f1(φ) − f1(ψ)) (ξ)| ≤ |c|
∫ 0

−∞

∣
∣
∣g(θ, φ(θ)(ξ)) − g(θ, ψ(θ)(ξ))

∣
∣
∣dθ

≤ c

∫ 0

−∞
|s(θ)|

∣
∣
∣φ(θ)(ξ) − ψ(θ)(ξ)

∣
∣
∣dθ

= c

∫ 0

−∞
e−2γ θ |s(θ)| e2γ θ

∣
∣
∣φ(θ)(ξ) − ψ(θ)(ξ)

∣
∣
∣dθ

≤ c

(∫ 0

−∞
|e−2γ θ s(θ)|2dθ

) 1
2
(∫ 0

−∞
e4γ θ

∣
∣
∣φ(θ)(ξ)

− ψ(θ)(ξ)

∣
∣
∣
2
dθ

) 1
2

.

Therefore, 

. |f1(φ)(ξ) − f1(ψ)(ξ)|2 ≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)( ∫ 0

−∞
e4γ θ

∣
∣
∣φ(θ)(ξ)

− ψ(θ)(ξ)

∣
∣
∣
2
dθ
)
,

for which we deduce that 

.

∫ π

0
|f1(φ)(ξ) − f1(ψ)(ξ)|2dξ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)
×
∫ 0

−∞
e4γ θ

(∫ π

0
|φ(θ)(ξ) − ψ(θ)(ξ)|2 dξ

)

dθ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)

×
∫ 0

−∞
e2γ θ

(

sup
θ≤0

e2γ θ

∫ π

0

∣
∣
∣
∣

∂

∂ξ
φ(θ)(ξ) − ∂

∂ξ
ψ(θ)(ξ)

∣
∣
∣
∣

2

dξ

)

dθ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)

×
∫ 0

−∞
e2γ θ

⎛

⎝sup
θ≤0

eγ θ

√
∫ π

0

∣
∣
∣
∣

∂

∂ξ
φ(θ)(ξ) − ∂

∂ξ
ψ(θ)(ξ)

∣
∣
∣
∣

2

dξ

⎞

⎠

2

dθ

≤ |c|2
( ∫ 0

−∞
|e−2γ θ s(θ)|2dθ

)
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×
∫ 0 

−∞ 
e2γ θ

(

sup 
θ≤0 

eγ θ |A 
1 
2 (φ(θ) − ψ(θ))|L2([0,π ];R)

)2 

dθ 

≤ |c|2
( ∫ 0 

−∞ 
|e−2γ θ  s(θ)|2dθ

) ∫ 0 

−∞ 
e2γ θ  |φ − ψ |2 B 1 

2 

dθ 

≤ 
|c|2 
2γ

∣
∣
∣e

−2γ.  s
∣
∣
∣
2 

L2(R−)

∣
∣
∣φ − ψ

∣
∣
∣
2 

B 1 
2 

. 

Finally, we obtain that 

. |f1(φ) − f2(ψ)|L2([0,π ];R) ≤ k′ |φ − ψ |B 1
2

for φ,ψ ∈ B 1
2
,

where 

. k′ = |c|√
2γ

(∫ 0

−∞
|e−2γ θ s(θ)|2dθ

) 1
2

.

Moreover, 

. 

∣
∣
∣f1(φ) − f2(ψ)

∣
∣
∣
2

L2([0,π ];R)
≤
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

+ q2e2γ r
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

+ 2qe2γ r
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

≤ k′′
∣
∣
∣φ − ψ

∣
∣
∣
2

B 1
2

.

Therefore, f is Lipschitzian and .(H4) is satisfied. �	
Let us define the operators . D and . D0 on . B 1

2
by 

. (D(φ)(ξ)) = φ(0)(ξ) − qφ(−r)(ξ) for all ξ ∈ [0, π ]

and 

. (D0(φ))(ξ) = qφ(−r)(ξ) for all ξ ∈ [0, π ].

Then, .D(φ) = φ(0) −D0(φ). 

Proposition 8.6.3 . D ∈ L(B 1
2
;X). �	

Proof Let .φ ∈ B 1
2
. Then, .D0(φ)(ξ) = qφ(−r)(ξ) for all .ξ ∈ [0, π ]. We can write 

.

∫ π

0
|D0(φ)(ξ)|2dξ =

∫ π

0
q2|φ(−r)(ξ)|2dξ
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= q2e2γ r  e−2γ r

∫ π 

0 
|φ(−r)(ξ)|2 

= q2e2γ r  e−2γ r

∫ π 

0 
| ∂ 
∂ξ 

φ(−r)(ξ)|2 

≤ q2e2γ r  sup 
θ≤0 

e2γ θ |A 
1 
2 φ(θ)|2 

L2([0,π ];R) 

= q2e2γ r |φ|2 B 1 
2 

. 

Hence, .D0 ∈ L(B 1
2
;X). It is obvious that .φ(0) ∈ L(B 1

2
;X). Therefore, we can 

conclude that .D ∈ L(B 1
2
;X) and the proof is complete. �	

Since .0 < q < 1, then . D is stable and .|D0| < 1. Thus, hypothesis .(H3) is 
satisfied. 

Now, let . ϕ be defined by .ϕ(θ)(ξ) = ψ(θ, ξ) for all .θ ∈ (−∞, 0] and .ξ ∈ [0, π ]. 
We make the following additional assumption. 

.(H8) .ϕ(θ) ∈ D(A
1
2 ) for all .θ ≤ 0, with 

. sup
θ≤0

eγ θ

√
∫ π

0

(
∂

∂ξ
ψ(θ, ξ)

)2

dξ < ∞

and 

. lim
θ→θ0

∫ π

0

(
∂

∂ξ
ψ(θ, ξ) − ∂

∂ξ
ψ(θ0, ξ)

)2

dξ = 0 for all θ0 ≤ 0.

Remark that .(H8) implies .ϕ ∈ B 1
2
. Then, Eq. (8.30) can be written as follows: 

.

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
D(ut ) = −AD(ut ) + f (ut ) for t ≥ 0,

u0 = ϕ.

(8.32) 

Consequently, we obtain the existence and uniqueness of a mild solution of prob-
lem (8.32). Furthermore, it is clear that . f1 and . f2 are continuously differentiable and 
their differential functions are given for .φ,ψ ∈ B 1

2
and .ξ ∈ [0, π ] by 

. f ′
1(φ)(ψ)(ξ) = c

∫ 0

−∞
∂

∂ζ
g(θ, φ(θ)(ξ))ψ(θ)(ξ)dθ

and 

.f ′
2(φ)(ψ)(ξ) = b

∂

∂ξ

[
ψ(0)(ξ) − qψ(−r)(ξ)

]
for ξ ∈ [0, π ].
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Let .v0 = ψ ∈ B 1
2
such that: 

(a) .v0(0, .) − qv0(−r, .) ∈ H 2(0, π) ∩ H 1
0 (0, π) and .

∂v0
∂θ

∈ B 1
2
. 

(b) . 
∂v0(0, ξ)

∂θ
− q

∂v0(−r, ξ)

∂θ
= ∂2

∂ξ2

[
v0(0, ξ) − qv0(−r, ξ)

]
+ b

∂

∂ξ

[
v0(0, ξ) −

qv0(−r, ξ)
]

+ c

∫ 0

−∞
g(θ, v0(θ, ξ))dθ for and ξ ∈ [0, π ]. 

We deduce that 

. ψ ∈ B 1
2
, ψ ′ ∈ B 1

2
, D(ψ) ∈ D(A) , and D(ψ ′) = −AD(ψ) + f (ψ).

Then, problem (8.32) has a unique strict solution for every .φ ∈ B 1
2
. 

Now, we can see that .f = f1 + f2 is continuously differentiable, and zero is a 
solution of (8.30), ,i.e., .f (0) = 0. The differential of f in 0 is given for . φ,ψ ∈ B 1

2
and .ξ ∈ [0, π ] by 

. L(ψ)(ξ) = f ′(0)(ψ)(ξ) = c

∫ 0

−∞
∂

∂ζ
g(θ, 0)ψ(θ)(ξ)dθ

+ b
∂

∂ξ

[
ψ(0)(ξ) − qψ(−r)(ξ)

]
.

Consequently, the linearized equation of (8.30) can be written as follows: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

[
v(t, ξ) − qv(t − r, ξ)

]
= ∂2

∂ξ2

[
v(t, ξ) − qv(t − r, ξ)

]

+b ∂
∂ξ

[
v(t, ξ) − qv(t − r, ξ)

]
+ c

∫ 0

−∞
p(θ)v(t + θ, ξ)dθ for t ≥ 0 and ξ ∈ [0, π ]

v(t, 0) − qv(t − r, 0) = v(t, π) − v(t − r, π) = 0 for t ≥ 0

v(θ, ξ) = ψ(θ, ξ) for θ ∈ (−∞, 0] and ξ ∈ [0, π ],
(8.33) 

where .p = ∂
∂ζ

g(., 0) : (−∞, 0] → R is a continuous and measurable function. 
We state the main result of the stability of the solutions. 

Theorem 8.6.1 Assume that .(H7) and .(H8) hold. Furthermore, suppose that 

.0 < c

∫ 0

−∞
|p(θ)|dθ <

(

1 + b2

4

)

(1 − q). (8.34) 

Then, the semigroup solution of (8.33) is exponentially stable. �	
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The proof of Theorem 8.6.1 makes use of this following lemma. 

Lemma 8.6.3 ([4]) The spectrum .σ(Ã) of the operator .Ã = ∂2

∂ξ2
+ b

∂

∂ξ
is equal 

to the point spectrum .Pσ(Ã) = {−n2 − b2

4
: n ∈ N

∗}. �	
Proof of Theorem 8.6.1 The exponential stability of (8.33) is obtained when 
.s′(Ã) < 0, which is true only if 

. sup
{
�(λ) : λ ∈ σ(Ã) − σess(Ã) and �(λ) > −γ

}
< 0.

Moreover, the characteristic equation is given by 

. 

⎧
⎪⎪⎨

⎪⎪⎩

�(λ) > −γ, f ∈ D(A), f �= 0

λ(1 − qe−λr )f − (1 − qe−λr )(f ′′ + bf ′) − c
( ∫ 0

−∞
p(θ)eλθdθ

)
f = 0,

(8.35) 
which leads to 

. λ − c

1 − qe−λr

∫ 0

−∞
p(θ)eλθdθ ∈ σp

(
∂2

∂ξ2
+ b

∂

∂ξ

)

.

Since 

. σp

(
∂2

∂ξ2
+ b

∂

∂ξ

)

= Pσ(Ã) = {−n2 − b2

4
: n ∈ N

∗},

then the characteristic equation (8.35) becomes 

.

⎧
⎪⎪⎨

⎪⎪⎩

�(λn) > −γ,

λn = c

1 − qe−λnr

∫ 0

−∞
p(θ)eλnθdθ − n2 − b2

4
for some n ∈ N

∗.
(8.36) 

Let .kn = n + b2

4
. Then, using (8.36), we obtain that 

.(λn + kn)(1 − qe−λnr ) = c

∫ 0

−∞
p(θ)eλnθdθ.
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Therefore, 

. |λn + kn||1 − qe−λnr | = |c
∫ 0

−∞
p(θ)eλnθdθ |

≤ c

∫ 0

−∞
|p(θ)|e�(λnθ)dθ.

We have also 

. |λn + kn| ≥
√

(�(λn) + kn)2

and 

. 

∣
∣
∣1 − qe−λnr

∣
∣
∣ ≥

∣
∣
∣|1| − |qe−λnr |

∣
∣
∣ = |1 − qe−�(λnr)|.

It follows that 

. 
√

(�(λn) + kn)2
∣
∣
∣1 − qe−�(λnr)

∣
∣
∣ ≤ c

∫ 0

−∞
|p(θ)|e�(λnθ)dθ.

Now, assume that .�(λn) ≥ 0. Then, 

. 

∣
∣
∣1 − qe−�(λnr)

∣
∣
∣ ≥ (1 − q).

Consequently, 

. (1 − q)
[
�(λn) + kn

]
≤ c

∫ 0

−∞
|p(θ)|dθ.

Finally, since .(1 − q)�(λn), we obtain 

. (1 − q)kn ≤ c

∫ 0

−∞
|p(θ)|dθ.

Taking .n = 1, we obtain a contraction with condition (8.34). That leads to .�(λ) < 0. 
�	

References 

1. M. Adimy, K. Ezzinbi, A class of linear partial neutral functional differential equations with 
nondense domains. J. Differ. Equ., 147, 285–332 (1998) 

2. M. Adimy, K. Ezzinbi, Existence and linearized stability for partial neutral functional 
differential equations with nondense domains. Differ. Equ. Dyn. Syst. 7, 371–417 (1999)



8 Existence, Regularity, and Stability in the .α-Norm for Some Neutral Partial. . . 229 

3. M. Adimy, K. Ezzinbi, Strict solutions of nonlinear hyperbolic neutral differential equations. 
Appl. Math. Lett. 12, 107–112 (1999) 

4. M. Adimy, K. Ezzinbi, Existence and stability in the α-norm for some partial functional 
differential equations of neutral type. Ann. Mate. Pura ed Appl. 185(3), 437–460 (2006) 

5. M. Adimy, H. Bouzahir, K. Ezzinbi, Local existence for a class of partial neutral functional 
differential equations with infinite delay. Differ. Equ. Dyn. Syst. 12(3–4), 353–370 (2004) 

6. C. Avramescu, A fixed point theorem for multivalued mappings. Electron. J. Qual. Theory 
Differ. Equ. 2004(17), 1–10 (2004) 

7. R. Benkhalti, K. Ezzinbi, Existence and stability in the α-norm for some partial functional 
differential equations with infinite delay. Differ. Integral Equ. 19(5), 545–572 (2006) 

8. H. Bouzahir, On neutral functional differential equations with infinite delay. Fixed Point 
Theory 6(1), 11–24 (2005) 

9. T. Burton, Stability and Periodic Solutions of Ordinary Differential Equations and Functional 
Differential Equations (Academic Press, San Diego, 1985), pp. 197–308 

10. M.A. Cruz, J.K. Hale, Stability of functional differential equations of neutral type. J. Differ. 
Equ. 7, 334–355 (1970) 

11. R. Datko, Linear autonomous neutral differential equations in a Banach space. J. Differ. Equ. 
25, 258–274 (1977) 

12. W. Desch, W. Schappacher, Linearized stability for nonlinear semigroup, in Differential 
Equations in Banach Spaces, ed. by A. Favini, E. Obrecht. Lecture Notes, vol. 1223 (Springer, 
Berlin, 1986) 

13. K. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate 
Texts in Mathematics, vol. 194 (Springer, Berlin, 2001) 

14. K. Ezzinbi, B.A. Kyelem, S. Ouaro, Periodicity in α-Norm for partial functional differential 
equations in fading memory spaces. Nonlinear Anal. Theory Methods Appl. 97, 30–54 (2014) 

15. J.K. Hale, Asymptotic Behavior of Dissipative Systems (American Mathematical Society, 
Providence, 1988) 

16. J. Hale, J. Kato, Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21, 
11–41 (1978) 

17. V. Lakshmikantham, S. Leela, Differential and Integral Inequalities, vol. 1 (Academic, New  
York, 1969) 

18. T. Naito, J.S. Shin, S. Murakami, The generator of the solution semigroup for the general linear 
functional differential equation. Bull. Univ. Electro-Commun. 11(1), 29–36 (1998) 

19. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations 
(Springer, New-York, 1993) 

20. C.C. Travis, G.F. Webb, Partial differential equations with deviating arguments in the time 
variable. J. Math. Anal. Appl. 56, 397–409 (1976) 

21. C.C. Travis, G.F. Webb, Existence, stability and compactness in α-norm for partial functional 
differential equations. Trans. Am. Math. Soc. 240, 129–143 (1978) 

22. J. Wu, H. Xia, Self-sustained oscillations in a ring array of coupled lossless transmission lines. 
J. Differ. Equ. 124, 247–278 (1996)



Chapter 9 
Pseudo-almost Periodic Solutions of Class 
r in the .α-Norm Under the Light of 
Measure Theory 

Issa Zabsonre, Abdel Hamid Gamal Nsangou, Moussa El-KhalilL Kpoumiè, 
and Salifou Mboutngam 

Abstract We consider the existence of weak solutions for discrete nonlinear 
problems. The proof of the main result is based on a minimization method. 

Keywords Discrete nonlinear problems · Minimization method · Anti-periodic 

9.1 Introduction 

In this chapter, we present a new approach dealing with weighted pseudo-almost 
periodic functions and their applications in evolution equations and partial func-
tional differential equations. Here we use the measure theory to define an ergodic 
function, and we investigate many interesting properties of such functions. Weighted 
pseudo-almost periodic functions started recently and becomes an interesting field 
in dynamical systems. We can refer to [2–4] and the bibliography therein. 

In this chapter, we study the existence and uniqueness of .α − (μ, ν)-pseudo-
almost periodic solutions of class r for the following partial functional differential 
equation 

.u′(t) = −Au(t) + L(ut ) + f (t) for t ∈ R, (9.1) 
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where .−A : D(A) → X is the infinitesimal generator of a compact analytic 
semigroup of uniformly bounded linear operators on a Banach space X, . Cα =
C([−r, 0],D(Aα)), .0 < α < 1, denotes the space of continuous functions 
from .[−r, 0] into .D(Aα), and .Aα is the fractional .α-power of A. This operator 
.(Aα,D(Aα)) will be described later, and 

. ‖ϕ‖Cα = ‖Aαϕ‖C([−r,0],X).

For .t ≥ 0, and .u ∈ C([−r, a],D(Aα)), r > 0 and . ut denotes the history function 
of . Cα defined by 

. ut (θ) = u(t + θ) for − r ≤ θ ≤ 0.

L is a bounded linear operator from .Cα into X, and .f : R → X is a continuous 
function. 

Some recent contributions concerning pseudo-almost periodic solutions for 
abstract differential equations similar to Eq. (9.1) have been made. For example in 
[2], the authors have shown if the inhomogeneous term f depends only on variable 
t and it is a pseudo-almost periodic function, then Eq. (9.1) has a unique pseudo-
almost periodic solution. In [4], the authors have proven if .f : R × X0 → X is a 
suitable continuous function, where .X0 = D(A), the problem 

. x′(t) = Ax(t) + f (t, x(t)), t ∈ R

has a unique pseudo-almost periodic solution, while in [3] the authors have 
treated the existence of almost periodic solutions for a class of partial neutral 
functional differential equations defined by a linear operator of Hille–Yosida type 
with non-dense domain. In [1], the authors studied the existence and uniqueness 
of pseudo-almost periodic solutions for a first-order abstract functional differential 
equation with a linear part dominated by a Hille–Yosida type operator with a non-
dense domain. 

In [7], the authors introduce some new classes of functions called weighted 
pseudo-almost periodic functions, which implement in a natural fashion the clas-
sical pseudo-almost periodic functions due to Zhang [13–15]. Properties of these 
weighted pseudo-almost periodic functions are discussed, including a composition 
result for weighted pseudo-almost periodic functions. The results obtained are 
subsequently utilized to study the existence and uniqueness of a weighted pseudo-
almost periodic solution to the heat equation with Dirichlet conditions. 

In [6], the authors present a new approach to study weighted pseudo-almost 
periodic functions using the measure theory. They present a new concept of 
weighted ergodic functions that is more general than the classical one. Then they 
establish many interesting results on the functional space of such functions like 
completeness and composition theorems. The theory of their work generalizes the 
classical results on weighted pseudo-almost periodic functions.
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The aim of this chapter is to prove the existence of .(μ, ν)-pseudo-almost periodic 
solutions of Eq. (9.1) when the delay is distributed on .[−r, 0]. Our approach is 
based on the spectral decomposition of the phase space developed in [4] and a new  
approach developed in [6]. 

This chapter is organized as follows: in Sect. 9.2, we recall some preliminary 
results about analytic semigroups, and fractional power associated to its generator 
will be used throughout this chapter. In Sect. 9.3, we recall some preliminary results 
on spectral decomposition. In Sect. 9.4, we recall some preliminary results on 
.(μ, ν)-pseudo-almost periodic functions and neutral partial functional differential 
equations that will be used in this chapter. In Sect. 9.5, we give some properties of 
.(μ, ν)-pseudo-almost periodic functions of class r . In Sect. 9.6, we discuss the main 
result of this chapter. Using the strict contraction principle, we show the existence 
and uniqueness of .(μ, ν)-pseudo-almost periodic solution of class r for Eq. (9.1). 
Last section is devoted to some applications arising in population dynamics. 

9.2 Analytic Semigroup 

Let .(X, ‖.‖) be a Banach space and . α be a constant such that .0 < α < 1 and . −A

be the infinitesimal generator of a bounded analytic semigroup of linear operator 
.(T (t))t≥0 on X. We assume without loss of generality that .0 ∈ ρ(A). Note that 
if the assumption .0 ∈ ρ(A) is not satisfied, one can substitute the operator A by 
the operator .(A − σI) with . σ large enough such that .0 ∈ ρ(A − σI). This allows 
us to define the fractional power .Aα for .0 < α < 1, as a closed linear invertible 
operator with domain .D(Aα) dense in X. The closeness of .Aα implies that .D(Aα), 
endowed with the graph norm of . Aα , .|x| = ‖x‖ + ‖Aαx‖, is a Banach space. Since 
.Aα is invertible, its graph norm . |.| is equivalent to the norm .|x|α = ‖Aαx‖. Thus, 
.D(Aα), equipped with the norm . |.|α , is a Banach space, which we denote by . Xα . 
For .0 < β ≤ α < 1, the imbedding .Xα ↪→ Xβ is compact if the resolvent operator 
of A is compact. Also, the following properties are well known. 

Proposition 9.1 ([10]) Let .0 < α < 1. Assume that the operator .−A is the 
infinitesimal generator of an analytic semigroup .(T (t))t≥0 on the Banach space 
X satisfying .0 ∈ ρ(A). Then we have: 

(i) .T (t) : X → D(Aα) for every .t > 0. 
(ii) .T (t)Aαx = AαT (t)x for every .x ∈ D(Aα) and .t ≥ 0. 
(iii) For every .t > 0, .AαT (t) is bounded on X, and there exist .Mα > 0 and . ω > 0

such that 

. ‖AαT (t)‖ ≤ Mαe−ωt t−α for t > 0.

(iv) If .0 < α ≤ β < 1, .D(Aβ) ↪→ D(Aα). 
(v) There exists .Nα > 0 such that 

.‖(T (t) − I )A−α‖ ≤ Nαtα for t > 0.
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Recall that .A−α is given by the following formula: 

. A−α = 1

�(δ)

∫ +∞

0
tα−1T (t)dt,

where the integral converges in the uniform operator topology for every . α > 0.

Consequently, if .T (t) is compact for each .t > 0, then .A−α is compact. 

9.3 Spectral Decomposition 

To Eq. (9.1), we associate the following initial value problem: 

.

⎧⎪⎪⎨
⎪⎪⎩

d

dt
u(t) = −Au(t) + L(ut ) + f (t) for t ≥ 0

u0 = ϕ ∈ Cα,

(9.2) 

where .f : R+ → X is a continuous function. 
For each .t ≥ 0, we define the linear operator .U(t) on . Cα by 

. U(t)ϕ = vt (., ϕ),

where .v(., ϕ) is the solution of the following homogeneous equation: 

. 

⎧⎪⎪⎨
⎪⎪⎩

d

dt
v(t) = −Av(t) + L(vt ) for t ≥ 0

v0 = ϕ ∈ Cα.

Proposition 9.2 ([3]) Let .AU defined on . Cα by 

. 

⎧⎪⎪⎨
⎪⎪⎩

D(AU) =
{
ϕ ∈ Cα, ϕ′ ∈ Cα, ϕ(0) ∈ D(A),

ϕ(0)′ ∈ D(A) and ϕ(0)′ = −Aϕ(0) + L(ϕ)
}

AUϕ = ϕ′ for ϕ ∈ D(AU).

Then .AU is the infinitesimal generator of the semigroup .(U(t))t≥0 on . Cα . 

Let .〈X0〉 be the space defined by 

.〈X0〉 = {X0c : c ∈ X},
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where the function .X0c is defined by 

. (X0c)(θ) =
⎧⎨
⎩

0 if θ ∈ [−r, 0[,

c if θ = 0.

Consider the extension .AU defined on .Cα ⊕ 〈X0〉 by 

. 

{
D(ÃU) =

{
ϕ ∈ C1([−r, 0];Xα) : ϕ(0) ∈ D(A) and ϕ(0)′ ∈ D(A)

}
ÃUϕ = ϕ′ + X0(Aϕ(0) + L(ϕ) − ϕ(0)′).

We make the following assertion: 

.(H0) The operator .−A is the infinitesimal generator of an analytic semigroup 
.(T (t))t≥0 on the Banach space X and satisfies .0 ∈ ρ(A). 

Lemma 9.1 ([4]) Assume that .(H0) holds. Then, .ÃU satisfies the Hille–Yosida 
condition on .Cα ⊕ 〈X0〉; there exist .M̃ ≥ 0, ω̃ ∈ R such that . ]ω̃,+∞[⊂ ρ(ÃU)

and 

. |(λI − ÃU)−n| ≤ M̃

(λ − ω̃)n
for n ∈ N and λ > ω̃.

Now, we can state the variation of constants formula associated to Eq. (9.2). 

Theorem 9.1 ([3]) Assume that .(H0) holds. Then for all .ϕ ∈ Cα, the solution u of 
Eq. (9.2) is given by the following variation of constants formula 

. ut = U(t)ϕ + lim
λ→+∞

∫ t

0
U(t − s)B̃λ(X0f (s))ds for t ≥ 0,

.where B̃λ = λ(λI − ÃU)−1. 

Definition 9.1 We say that a semigroup .(U(t))t≥0 is hyperbolic if 

. σ(AU) ∩ iR = Ø.

For the sequel, we make the following assumption: 

.(H1) .T (t) is compact on .D(A) for every .t > 0. 

We get the following result on the spectral decomposition of the phase space . Cα . 

Proposition 9.3 ([3]) Assume that .(H0) and .(H1) hold. If the semigroup . (U(t))t≥0
is hyperbolic, then the space . Cα is decomposed as a direct sum 

.Cα = S ⊕ U
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of two .U(t) invariant closed subspaces S and U such that the restriction of 
.(U(t))t≥0 on U is a group, and there exist positive constants . M and . ω such that 

. |U(t)ϕ|Cα ≤ Me−ωt |ϕ|Cα for t ≥ 0 and ϕ ∈ S

|U(t)ϕ|Cα ≤ Meωt |ϕ|Cα for t ≤ 0 and ϕ ∈ U,

where S and U are called, respectively, the stable and unstable spaces, and . �s and 
. �u denote, respectively, the projection operator on S and U . 

9.4 (μ, ν)-Pseudo-almost Periodic Functions 

In this section, we recall some properties about .μ-pseudo-almost periodic functions. 
The notion of .μ-pseudo-almost periodicity is a generalization of the pseudo-almost 
periodicity introduced by Zhang [13–15]; it is also a generalization of weighted 
pseudo- almost periodicity given by Diagana [7]. Let .BC(R;Xα) be the space of 
all bounded and continuous functions from . R to .Xα equipped with the uniform 
topology norm. 

We denote by . ℬ the Lebesgue .σ -field of . R and by . M the set of all positive 
measures . μ on . ℬ satisfying .μ(R) = +∞ and .μ([a, b]) < ∞, for all . a, b ∈ R (a ≤
b). 

Definition 9.2 A bounded continuous function .φ : R → X is called almost 
periodic if for each .ε > 0, there exists a relatively dense subset of . R denoted by 
.K(ε, φ,X) such that .|φ(t + τ) − φ(t)| < ε for all .(t, τ ) ∈ R × K(ε, φ,X). 

We denote by .AP(R;X) the space of all such functions. 

Definition 9.3 Let .X1 and .X2 be two Banach spaces. A bounded continuous 
function .φ : R × X1 → X2 is called almost periodic in .t ∈ R uniformly in 
.x ∈ X1 if for each .ε > 0 and all compact .K ⊂ X1, there exists a relatively dense 
subset of . R denoted by .K(ε, φ,K) such that .|φ(t + τ, x) − φ(t, x)| < ε for all 
.t ∈ R, x ∈ K, τ ∈ K(ε, φ,K). 

We denote by .AP(R × X1;X2) the space of all such functions. 
The next lemma is also a characterization of almost periodic functions. 

Lemma 9.2 ([12]) A function .φ ∈ C(R, X) is almost periodic if and only if the 
space of functions .{φτ : τ ∈ R}, where .(φτ )(t) = φ(t + τ) is relatively compact in 
.BC(R;X). 

In the sequel, we recall some preliminary results concerning the .α − (μ, ν)-pseudo-
almost periodic functions.
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.ℰ(R;Xα,μ, ν) stands for the space of functions 

. ℰ(R;Xα,μ, ν) =
{
u ∈ BC(R;Xα) : lim

τ→+∞
1

ν([−τ, τ ])
∫ +τ

−τ

|u(t)|αdμ(t) = 0
}
.

To study delayed differential equations for which the history belongs to 
.C([−r, 0];Xα), we need to introduce the space 

. ℰ(R;Xα,μ, ν, r) =
{
u ∈ BC(R;Xα) : lim

τ→+∞
1

ν([−τ, τ ])

×
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|u(θ)|α

)
dμ(t) = 0

}
.

In addition to the above-mentioned spaces, we consider the following spaces: 

. ℰ(R × Xα,μ, ν) =
{
u ∈ BC(R × Xα;Xα) : lim

τ→+∞
1

ν([−τ, τ ])

×
∫ +τ

−τ

|u(t, x)|αdμ(t) = 0
}
,

. ℰ(R × Xα,μ, ν, r) =
{
u ∈ BC(R × Xα;Xα) : lim

τ→+∞
1

ν([−τ, τ ])

×
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|u(θ, x)|α

)
dμ(t) = 0

}
,

where in both cases the limit (as .τ → +∞) is uniform in compact subset of . Xα . 
In view of previous definitions, it is clear that the space .ℰ(R;Xα,μ, ν, r) is 

continuously embedded in .ℰ(R;Xα,μ, ν). 
On the other hand, one can observe that a .ρ-weighted pseudo-almost periodic 

function is .μ-pseudo- almost periodic, where the measure . μ is absolutely contin-
uous with respect to the Lebesgue measure, and its Radon–Nikodym derivative is 
. ρ: 

. dμ(t) = ρ(t)dt,

and . ν is the usual Lebesgue measure on . R, i.e., .ν([−τ, τ ]) = 2τ for all .τ ≥ 0. 

Example ([6]) Let . ρ be a nonnegative .ℬ-measurable function. Denote by . μ the 
positive measure defined by 

.μ(A) =
∫

A

ρ(t)dt, for A ∈ ℬ, (9.3)
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where dt denotes the Lebesgue measure on . R. The function . ρ, which occurs in 
Eq. (9.3), is called the Radon–Nikodym derivative of . μ with respect to the Lebesgue 
measure on . R. 

From .μ, ν ∈ M, we formulate the following hypothesis: 

.(H2) Let .μ, ν ∈ M be such that .lim sup
τ→+∞

μ([−τ, τ ])
ν([−τ, τ ]) = δ < ∞. 

We have the following result. 

Lemma 9.3 Assume .(H2) holds, and let .f ∈ BC(R;Xα). Then . f ∈
ℰ(R;Xα,μ, ν) if and only if for any .ε > 0, 

. lim
τ→+∞

μ(Mτ,ε(f ))

ν([−τ, τ ] = 0,

where 

. Mτ,ε(f ) = {t ∈ [−τ, τ ] : |f (t)|α ≥ ε}.

Proof Suppose that .f ∈ ℰ(R;Xα,μ, ν). Then 

. 
1

ν([−τ, τ ])
∫ +τ

−τ

|f (t)|αdμ(t) = 1

ν([−τ, τ ])
∫

Mτ,ε(f )

|f (t)|αdμ(t)

+ 1

ν([−τ, τ ])
∫

[−τ,τ ]\Mτ,ε(f )

|f (t)|αdμ(t)

≥ 1

ν([−τ, τ ])
∫

Mτ,ε(f )

|f (t)|αdμ(t)

≥ εμ(Mτ,ε(f ))

ν([−τ, τ ]) .

Consequently, 

. lim
τ→+∞

μ(Mτ,ε(f ))

ν([−τ, τ ] = 0.

Suppose that .f ∈ BC(R;Xα) such that for any .ε > 0, 

. lim
τ→+∞

μ(Mτ,ε(f ))

ν([−τ, τ ] = 0.

We can assume .|f (t)|α ≤ N for all . t ∈ R. Using . (H2), we have
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. 
1

ν([−τ, τ ])
∫ +τ

−τ

|f (t)|αdμ(t) = 1

ν([−τ, τ ])
∫

Mτ,ε(f )

|f (t)|αdμ(t)

+ 1

ν([−τ, τ ])
∫

[−τ,τ ]\Mτ,ε(f )

|f (t)|αdμ(t)

≤ N

ν([−τ, τ ])
∫

Mτ,ε(f )

dμ(t)

+ 1

ν([−τ, τ ])
∫

[−τ,τ ]\Mτ,ε(f )

|f (t)|αdμ(t)

≤ N

ν([−τ, τ ])
∫

Mτ,ε(f )

dμ(t)

+ ε

ν([−τ, τ ])
∫

[−τ,τ ]
dμ(t)

≤ N

ν([−τ, τ ])μ(Mτ,ε(f )) + εμ([−τ, τ ])
ν([−τ, τ ]) ,

which implies that 

. lim
τ→+∞

1

ν([−τ, τ ])
∫ +τ

−τ

|f (t)|αdμ(t) ≤ δε for any ε > 0.

Therefore, .f ∈ ℰ(R;Xα,μ, ν). �
Definition 9.4 Let .μ, ν ∈ M. A bounded continuous function .φ : R → Xα is 
called .(μ, ν)-pseudo-almost periodic if .φ = φ1 + φ2, where .φ1 ∈ AP(R, Xα) and 
.φ2 ∈ ℰ(R;Xα,μ, ν). 

We denote by .PAP(R;Xα,μ, ν) the space of all such functions. 

Definition 9.5 Let .μ, ν ∈ M. A bounded continuous function . φ : R × Xα → X

is called uniformly .(μ, ν)-pseudo-almost periodic if .φ = φ1 + φ2, where . φ1 ∈
AP(R × Xα;Xα) and .φ2 ∈ ℰ(R × Xα,μ, ν). 

We denote by .PAP(R × Xα,μ, ν) the space of all such functions. 

Definition 9.6 Let .μ, ν ∈ M. A bounded continuous function . φ : R → Xα

is called .(μ, ν)-pseudo-almost periodic of class r if .φ = φ1 + φ2, where . φ1 ∈
AP(R; Xα) and .φ2 ∈ ℰ(R;Xα,μ, ν, r). 

We denote by .PAP(R;Xα,μ, ν, r) the space of all such functions. 

Definition 9.7 Let .μ, ν ∈ M. A bounded continuous function . φ : R × Xα → Xα

is called uniformly .(μ, ν)-pseudo-almost periodic of class r if .φ = φ1 + φ2, where 
.φ1 ∈ AP(R × Xα;Xα) and .φ2 ∈ ℰ(R × Xα,μ, ν, r). 

We denote by .PAP(R × Xα,μ, ν, r) the space of all such functions.
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9.5 Properties of (μ, ν)-Pseudo-almost Periodic Functions of 
Class r 

Lemma 9.4 Assume that (H2) holds. The space ℰ(R; Xα,μ, ν, r)  endowed with 
the uniform topology norm is a Banach space. 

Proof We can see that ℰ(R; Xα,μ, ν, r)  is a vector subspace of BC(R; Xα). 
To complete the proof, it is enough to prove that ℰ(R; Xα,μ, ν, r)  is closed in 
BC(R; Xα). Let (zn)n be a sequence in ℰ(R; Xα,μ, ν, r)  such that limn→+∞ zn = 
z uniformly in R. From  ν(R) = +∞, it follows ν([−τ, τ ]) >  0 for  τ sufficiently 
large. Let ‖z‖∞,α = sup 

t∈R 
|z(t)|α and n0 ∈ N such that for all n ≥ n0, ‖zn − z‖∞,α < 

ε. Let  n ≥ n0; then we have 

. 
1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|z(θ)|α

)
dμ(t)

≤ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|zn(θ) − z(θ)|α

)
dμ(t)

+ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|zn(θ)|α

)
dμ(t)

≤ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup
t∈R

|zn(t) − z(t)|α
)
dμ(t)

+ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|zn(θ)|α

)
dμ(t)

≤ ‖zn − z‖∞,α × μ([−τ, τ ])
ν([−τ, τ ])

+ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|zn(θ)|α

)
dμ(t).

We deduce that 

. lim sup
τ→+∞

1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|z(θ)|α

)
dμ(t) ≤ δε for any ε > 0.

�
From the definition of PAP(R; Xα,μ, ν, r), we deduce the following result. 

Proposition 9.4 Assume that (H2) holds, and let μ, ν ∈ M. The space 
PAP(R; Xα,μ, ν, r)  endowed with the uniform topology norm is a Banach space. 

Next result is a characterization of α − (μ, ν)-ergodic functions of class r .
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Theorem 9.2 Assume that (H2) holds, and let μ, ν ∈ M and I be a bounded 
interval (eventually I = Ø). Assume that f ∈ BC(R, Xα). Then the following 
assertions are equivalent: 

(i) f ∈ ℰ(R, Xα, μ, ν, r). 

(ii) lim 
τ→+∞ 

1 

ν([−τ, τ ] \ I )

∫
[−τ,τ ]\I

(
sup 

θ∈[t−r,t] 
|f (θ)|α

)
dμ(t) = 0. 

(iii) For any ε >  0, lim 
τ→+∞ 

μ
({

t ∈ [−τ, τ ] \  I : sup 
θ∈[t−r,t] 

|f (θ)|α > ε
})

ν([−τ, τ ] \  I )
= 0. 

Proof (i) ⇔ (ii) Denote by A = ν(I ), B =
∫

I

(
sup 

θ∈[t−r,t] 
|f (θ)|α

)
dμ(t). We have  

A and B ∈ R, since the interval I is bounded and the function f is bounded and 
continuous. For τ >  0 such that I ⊂ [−τ, τ ] and ν([−τ, τ ] \  I )  >  0, we have 

. 
1

ν([−τ, τ ] \ I )

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t)

= 1

ν([−τ, τ ]) − A

[ ∫
[−τ,τ ]

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) − B

]

= ν([−τ, τ ])
ν([−τ, τ ]) − A

[ 1

ν([−r, r])
∫

[−τ,τ ]

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) − B

ν([−τ, τ ])
]
.

From the above equalities and the fact that ν(R) = +∞, we deduce that (ii) is 
equivalent to 

. lim
τ→+∞

1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) = 0,

that is (i). 
(iii) ⇒ (ii) Denote by Aε 

τ and Bε 
τ the following sets 

. Aε
τ =

{
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (θ)|α > ε

}
and

Bε
τ =

{
t ∈ [−τ, τ ] \ I ) : sup

θ∈[t−r,t]
|f (θ)|α ≤ ε

}
.

Assume that (iii) holds, that is 

. lim
τ→+∞

μ(Aε
τ )

ν([−τ, τ ] \ I )
= 0. (9.4) 

From the equality
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. 

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) =

∫
Aε

τ

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t)

+
∫

Bε
τ

(
sup

θ∈[t−r,t]
|f (θ)|

)
dμ(t),

we deduce that for τ sufficiently large 

. 
1

ν([−τ, τ ] \ I )

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) ≤ ‖f ‖∞,α

μ(Aε
τ )

ν([−τ, τ ] \ I )

+ε
μ(Bε

τ )

ν([−τ, τ ] \ I )
.

By using (H2), it follows that 

. lim
τ→+∞

1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) ≤ δε, for any ε > 0,

and consequently (ii) holds. 
(ii) ⇒ (iii) Assume that (ii) holds. From the following inequality 

. 

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) ≥

∫
Aε

τ

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t)

1

ν([−τ, τ ] \ I )

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) ≥ ε

μ(Aε
τ )

ν([−τ, τ ] \ I )

1

εν([−τ, τ ] \ I )

∫
[−τ,τ ]\I

(
sup

θ∈[t−r,t]
|f (θ)|α

)
dμ(t) ≥ μ(Aε

τ )

ν([−τ, τ ] \ I )
,

for τ sufficiently large, we obtain Eq. (9.4), that is, iii). �
From μ ∈ M, we formulate the following hypotheses: 

(H3) For all a, b, and c ∈ R, such that 0 ≤ a <  b  ≤ c, there exist δ0 and α0 > 0 
such that 

. |δ| ≥ δ0 ⇒ μ(a + δ, b + δ) ≥ α0μ(δ, c + δ).

(H4) For all τ ∈ R, there exist β >  0 and a bounded interval I such that 

. μ({a + τ : a ∈ A} ≤ βμ(A) when A ∈ ℬ satisfies A ∩ I = Ø.

We have the following results due to [6]. 

Lemma 9.5 ([6]) Hypothesis (H4) implies (H3).
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Proposition 9.5 ([5, 8]) μ, ν ∈ M satisfy (H3) and f ∈ PAP(R; X, μ, ν) be such 
that 

. f = g + h,

where g ∈ AP(R, X)  and h ∈ ℰ(R, X,μ, ν). Then 

. {g(t), t ∈ R} ⊂ {f (t), t ∈ R} (the closure of the range of f).

Corollary 9.1 ([8]) Assume that (H3) holds. Then the decomposition of a (μ, ν)-
pseudo-almost periodic function in the form f = g + φ, where g ∈ AP(R; X) and 
φ ∈ ℰ(R; X, μ, ν) is unique. 

The following corollary is a consequence of Theorem 9.2. 

Proposition 9.6 Let μ, ν ∈ M. Assume (H3) holds. Then the decomposition of a 
α − (μ, ν)-pseudo-almost periodic function φ = φ1 + φ2, where φ1 ∈ AP(R; Xα) 
and φ2 ∈ ℰ(R; Xα,μ, ν, r), is unique. 

Proof In fact, since as a consequence of Corollary 9.1, the decomposition of a 
(μ, ν)-pseudo-almost periodic function φ = φ1 + φ2, where φ1 ∈ AP(R; Xα) and 
φ2 ∈ ℰ(R; Xα,μ, ν), is unique. Since PAP(R; Xα,μ, ν)  ⊂ PAP(R; X, μ, ν) 
and PAP(R; Xα,μ, ν, r)  ⊂ PAP(R;Xα,μ, ν), we get the desired result. �
Definition 9.8 Let μ1, μ2 ∈ M. We say that μ1 is equivalent to μ2, denoting this 
as μ1 ∼ μ2 if there exist constants α and β >  0 and a bounded interval I (eventually 
I = Ø) such that 

. αμ1(A) ≤ μ2(A) ≤ βμ1(A), when A ∈ ℬ satisfies A ∩ I = Ø.

From [6] ∼ is a binary equivalence relation on M. The equivalence class of a 
given measure μ ∈ M will then be denoted by 

. cl(μ) = {� ∈ M : μ ∼ � }.

Theorem 9.3 Let μ1, μ2, ν1, ν2 ∈ M. If  μ1 ∼ μ2 and ν1 ∼ ν2, then 
PAP(R; Xα,μ1, ν1, r)  = PAP(R; Xα,μ2, ν2, r). 

Proof Since μ1 ∼ μ2 and ν1 ∼ ν2, there exist some constants α1, α2, β1, β2 > 
0, and a bounded interval I (eventually I = Ø) such that α1μ1(A) ≤ μ2(A) ≤ 
β1μ1(A) and α2ν1(A) ≤ ν2(A) ≤ β2ν1(A) for each A ∈ ℬ satisfies A ∩ I = Ø 
i.e., 

.
1

β2ν1(A)
≤ 1

ν2(A)
≤ 1

α2ν1(A)
.
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Since μ1 ∼ μ2 and ℬ is the Lebesgue σ -field, we obtain for τ sufficiently large 
that 

. 

α1μ1

({
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (θ)|α > ε

})

β2ν1([−τ, τ ] \ I )

≤
μ2

({
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (θ)|α > ε

})

ν2([−τ, τ ] \ I )

≤
β1μ1

({
t ∈ [−τ, τ ] \ I : sup

θ∈[t−r,t]
|f (θ)|α > ε

})

α2ν1([−τ, τ ] \ I )
.

By using Theorem 9.2, we deduce that ℰ(R, Xα, μ1, ν1, r)  = ℰ(R, Xα, μ2, ν2, r). 
From the definition of a (μ, ν)-pseudo-almost periodic function, we deduce that 
PAP(R; Xα,μ1, ν1, r)  = PAP(R; Xα,μ2, ν2, r). �

Let μ, ν ∈ M. We denote by 

. cl(μ, ν) = {�1,�2 ∈ M : μ ∼ �2 and ν ∼ �2}.

In what follows, we prove some preliminary results concerning the composition 
of (μ, ν)-pseudo-almost periodic functions of class r . 

Theorem 9.4 Let μ, ν ∈ M, φ ∈ PAP(R × Xα,μ, ν, r), and h ∈ 
PAP(R; Xα,μ, ν, r). Assume that there exists a function Lφ : R → [0,+∞[ 
such that 

. |φ(t, x1) − φ(t, x2)| ≤ Lφ(t)|x1 − x2|α for t ∈ R and for x1, x2 ∈ Xα.

(9.5) 
If 

. lim sup
τ→+∞

1

ν([−τ, τ ])
∫ τ

−τ

(
sup

θ∈[t−r,t]
Lφ(θ)

)
dμ(t) < ∞ and

lim
τ→+∞

1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
Lφ(θ)

)
ξ(t)dμ(t) = 0 (9.6) 

for each ξ ∈ ℰ(R, R, μ, ν), then the function t → φ(t,  h(t))  belongs to 
PAP(R;Xα,μ, ν, r). 

Proof Assume that φ = φ1+φ2, h  = h1+h2, where φ1 ∈ AP(R×Xα; Xα), φ2 ∈ 
ℰ(R × Xα,μ, ν, r)  and h1 ∈ AP(R;Xα), h2 ∈ ℰ(R;Xα,μ, ν, r). Consider the 
following decomposition: 

.φ(t, h(t)) = φ1(t, h1(t)) + [φ(t, h(t)) − φ(t, h1(t))] + φ2(t, h1(t)).
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Since h1 ∈ AP(R; Xα), Lemma 9.2 implies that the set K = {h1τ : τ ∈ R} is 
relatively compact in BC(R, Xα). Consequently, since φ1 ∈ AP(R×Xα; Xα), then 
for all ε >  0, there exists a relatively dense subset of R denoted by K(ε, φ1,K)  such 
that |φ(t  + τ, x) − φ(t,  x)|α < ε  for all t ∈ R, x  ∈ K, τ ∈ K(ε, φ1,K). It follows 
that φ1(., h1(.)) ∈ AP(R; Xα). It remains to prove that both φ(., h(.)) − φ(.,  h1(.)) 
and φ2(., h1(.)) belong to ℰ(R; Xα,μ, ν, r). Consequently, using inequality (9.5), 
it follows that 

. 

μ
({

t ∈ [−τ, τ ] : sup
θ∈[t−r,t]

|φ(θ, h(θ)) − φ(θ, h1(θ))|α > ε
})

ν([−τ, τ ])

≤
μ

({
t ∈ [−τ, τ ] : sup

θ∈[t−r,t]
(Lφ(θ)|h2(θ)|α) > ε

})

ν([−τ, τ ])

≤
μ

({
t ∈ [−τ, τ ] :

(
sup

θ∈[t−r,t]
Lφ(θ)

)(
sup

θ∈[t−r,t]
|h2(θ)|α

)
> ε

})

ν([−τ, τ ]) .

Since h2 is (μ, ν)-ergodic of class r , Theorem 9.2 and Eq. (9.6) yield that for the 
above-mentioned ε, we have  

. lim
τ→+∞

μ
({

t ∈ [−τ, τ ] :
(

sup
θ∈[t−r,t]

Lφ(θ)
)(

sup
θ∈[t−r,t]

|h2(θ)|α
)

> ε
})

ν([−τ, τ ]) = 0,

and then we obtain 

. lim
τ→+∞

μ
({

t ∈ [−τ, τ ] : sup
θ∈[t−r,t]

|φ(θ, h(θ)) − φ(θ, h1(θ))|α > ε
})

ν([−τ, τ ]) = 0.

(9.7) 
By Theorem 9.2, Eq. (9.7) shows that t �→ φ(t,  h(t))−φ(t,  h1(t)) is (μ, ν)-ergodic 
of class r . 

Now to complete the proof, it is enough to prove that t �→ φ2(t, h(t)) is 
(μ, ν)-ergodic of class r . Since φ2 is uniformly continuous on the compact set 
K = {h1(t) : t ∈ R} with respect to the second variable x, we deduce that for 
given ε >  0, there exists δ >  0 such that, for all t ∈ R, ξ1 and ξ2 ∈ K , one has 

. |ξ1 − ξ2| ≤ δ ⇒ |φ2(t, ξ1) − φ2(t, ξ2)|α ≤ ε.

Therefore, there exist n(ε) and {zi}n(ε) 
i=1 ⊂ K , such that 

.K ⊂
n(ε)⋃
i=1

Bδ(zi, δ),
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and then 

. ‖φ2(t, h1(t))‖ ≤ ε +
n(ε)∑

1

‖φ2(t, zi)‖.

Since 

. ∀i ∈ {1, . . . , n(ε)}, lim
τ→+∞

1

ν([−τ, τ ])
∫ τ

−τ

(
sup

θ∈[t−r,t]
|φ2(θ, zi)|α

)
dμ(t) = 0,

we deduce that 

. ∀ε > 0, lim sup
τ→+∞

1

ν([−τ, τ ])
∫ τ

−τ

(
sup

θ∈[t−r,t]
|φ2(θ, h1(t))|α

)
dμ(t) ≤ εδ,

which implies 

. lim
τ→+∞

1

ν([−τ, τ ])
∫ τ

−τ

(
sup

θ∈[t−r,t]
|φ2(θ, h1(θ))|α

)
dμ(t) = 0.

Consequently, t �→ φ2(t, h(t)) is (μ, ν)-ergodic of class r . �
For μ ∈ M and δ ∈ R, we denote μδ the positive measure on (R,ℬ) defined by 

.μδ(A) = μ([a + δ : a ∈ A]). (9.8) 

Lemma 9.6 ([6]) Let μ ∈ M satisfy (H4). Then the measures μ and μδ are 
equivalent for all δ ∈ R. 

Lemma 9.7 ([6]) (H4) implies 

. for all σ > 0 lim sup
τ→+∞

μ([−τ − σ, τ + σ ])
μ([−τ, τ ]) < +∞.

We have the following result. 

Theorem 9.5 Assume that (H4) holds. Let μ, ν ∈ M and φ ∈ PAP(R; Xα,μ, ν, r); 
then the function t → φt belongs to PAP(Cα,μ, ν, r). 

Proof Assume that φ = g + h, where g ∈ AP(R; Xα) and h ∈ ℰ(R; Xα,μ, ν, r). 
Then we can see that φt = gt + ht , and gt is almost periodic. Let us denote by 

. Mδ(τ) = 1

νδ([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμδ(t),

where μδ and νδ are the positive measures defined by Eq. (9.8). By using  
Lemma 9.6, it follows that μδ and μ are equivalent and νδ and ν are also equivalent.
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Then by using Theorem 9.3, we have ℰ(R; Xα,μδ, νδ, r)  = ℰ(R; Xα,μ, ν, r); 
therefore, h ∈ ℰ(R; X, μδ, νδ, r), that is, 

. lim
τ→+∞ Mδ(τ) = 0, for all δ ∈ R.

On the other hand, for r >  0, we have 

. 
1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]

[
sup

ξ∈[−r,0]
|h(θ + ξ)|α

])
dμ(t)

≤ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−2r,t]
|h(θ)|α

)
dμ(t)

≤ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−2r,t−r]
|h(θ)|α + sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t)

≤ 1

ν([−τ, τ ])
∫ +τ−r

−τ−r

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t + r)

+ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t)

≤ 1

ν([−τ, τ ])
∫ +τ+r

−τ−r

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t + r)

+ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t)

≤
[ν([−τ − r, τ + r])

ν([−τ, τ ])
]

× 1

ν([−τ − r, τ + r]
∫ +τ+r

−τ−r

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t + r)

+ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t).

Consequently, 

.
1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]

[
sup

ξ∈[−r,0]
|h(θ + ξ)|α

])
dμ(t)

≤
[ν([−τ − r, τ + r])

ν([−τ, τ ])
]

× Mr(τ + r)

+ 1

ν([−τ, τ ])
∫ +τ

−τ

(
sup

θ∈[t−r,t]
|h(θ)|α

)
dμ(t),
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which shows using Lemmas 9.6 and 9.7 that φt belongs to PAP(Cα,μ, ν, r). Thus, 
we obtain the desired result. �
Lemma 9.8 ([8]) Let μ, ν ∈ M satisfy (H4). Then PAP(R, X,μ, ν)  is invariant 
by translation, that is, f ∈ PAP(R, X,μ, ν)  implies fγ ∈ PAP(R, X,μ, ν)  for 
all γ ∈ R. 

Corollary 9.2 Let μ, ν ∈ M satisfy (H4). Then PAP(R, X,μ, ν, r)  is invariant 
by translation, that is, f ∈ PAP(R, X,μ, ν, r)  implies fγ ∈ PAP(R, X,μ, ν, r)  
for all γ ∈ R. 

Proof It suffices to prove that ℰ(R, X,μ, ν, r)  is invariant by translation. Let f ∈ 
ℰ(R, X,μ, ν,∞) and F t (θ) = sup 

θ∈[t−r,t] 
|f (θ)|. Then F t ∈ ℰ(R, R, μ, ν), but since 

ℰ(R, R, μ, ν)  is invariant by translation, it follows that 

. lim
τ→+∞

1

ν([−τ, τ ])
∫ τ

−τ

F t (θ + γ )dμ(t) = lim
τ→+∞

1

ν([−τ, τ ])
∫ τ

−τ

sup
θ∈[t−r,t]

|f (θ + γ )|dμ(t) = 0,

which implies that f (. + γ )  ∈ PAP(R, X,μ, ν, r). �

9.6 (μ, ν)-Pseudo-almost Periodic Solutions of Class r 

In what follows, we will be looking at the existence of bounded integral solutions 
of class r of Eq. (9.1). 

Proposition 9.7 [3] Assume that .(H0) and .(H1) hold and the semigroup . (U(t))t≥0
is hyperbolic. If f is bounded on . R, then there exists a unique bounded solution u 
of Eq. (9.1) on . R, given by 

. ut = lim
λ→+∞

∫ t

−∞
Us(t − s)�s(B̃λX0f (s))ds

+ lim
λ→+∞

∫ t

+∞
Uu(t − s)�u(B̃λX0f (s))ds for t ∈ R,

where .B̃λ = λ(λI − AU)−1 for .λ > ω̃, and . �s and . �u are the projections of . Cα

onto the stable and unstable subspaces, respectively. 

Proposition 9.8 Let .h ∈ AP(R;X) and . � be the mapping defined for .t ∈ R by 

. �h(t) =
[

lim
λ→+∞

∫ t

−∞
Us(t − s)�s(B̃λX0h(s))ds

+ lim
λ→+∞

∫ t

+∞
Uu(t − s)�u(B̃λX0h(s))ds

]
(0).

Then .�h ∈ AP(R, Xα).
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Proof We can see that .�h ∈ BC(R;Xα). In fact, 

. |�h(t)|α ≤ lim
λ→+∞

∫ t

−∞
|Us(t − s)�s(B̃λX0h(s))|αds

+ lim
λ→+∞

∫ +∞

t

|Uu(t − s)�u(B̃λX0h(s))|αds
]
(0)

≤ lim
λ→+∞

∫ t

−∞
‖Aα

UUs(t − s)�s(B̃λX0h(s))‖ds

+ lim
λ→+∞

∫ +∞

t

‖Aα
UUu(t − s)�u(B̃λX0h(s))‖ds

]
(0)

≤ MM̃

∫ t

−∞
e−ω(t−s)

(t − s)α
|�s | ‖h(s)‖ds

+MM̃

∫ +∞

t

eω(t−s)

(s − t)α
|�u| ‖h(s)‖ds

≤ MM̃

∫ t

−∞
e−ω(t−s)

(t − s)α
|�s | ‖h(s)‖ds

+MM̃

∫ +∞

t

eω(t−s)

(s − t)α
|�u| ‖h(s)‖ds

≤ MM̃

∫ t

−∞
e−ω(t−s)

(t − s)α
|�s | ‖h(s)‖ds

+MM̃

∫ +∞

t

e−ω(s−t)

(s − t)α
|�u| ‖h(s)‖ds

≤ 2K‖h‖∞
ω1−α

∫ +∞

0
e−ss−αds = 2K‖h‖∞�(1 − α)

ω1−α
< ∞,

where .K = max(MM̃|�s |,MM̃|�u|). Since h is an almost periodic function, then 
the set of functions .{hτ : δ ∈ R}, hτ (t) = h(t + τ), is precompact in .BC(R;X). 
On the other hand, we have 

.(�h)τ (t) = (�h)(t + τ)

=
[

lim
λ→+∞

∫ t+τ

−∞
Us(t + τ − s)�s(B̃λX0h(s))ds

+ lim
λ→+∞

∫ t+τ

+∞
Uu(t + τ − s)�u(B̃λX0h(s))ds

]

=
[

lim
λ→+∞

∫ t

−∞
Us(t − s)�s(B̃λX0h(s + τ))ds
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+ lim 
λ→+∞

∫ t 

+∞ 
Uu (t − s)�u (B̃λX0h(s + τ))ds

]

=
[

lim 
λ→+∞

∫ t 

−∞ 
Us (t − s)�s (B̃λX0hτ (s))ds 

+ lim 
λ→+∞

∫ t 

+∞ 
Uu (t − s)�u (B̃λX0hτ (s))ds

]

= (�hτ )(t) for all t ∈ R. 

Thus .(�h)τ = (�hτ ), which implies that .{(�h)δ : δ ∈ R} is relatively compact in 
.BC(R;Xα) since . � is continuous from .BC(R;Xα) into .BC(R;Xα). Thus, . �h ∈
AP(R, Xα). �
Theorem 9.6 Let .μ, ν ∈ M satisfy .(H4) and .g ∈ ℰ(R;X,μ, ν, r). Then . �g ∈
ℰ(R;Xα,μ, ν, r). 

Proof In fact, for .τ > 0, we get 

.

∫ τ

−τ

(
sup

θ∈[t−r,t]
|�g(θ)|α

)
dμ(t)

≤
∫ τ

−τ

(
sup

θ∈[t−r,t]

[
lim

λ→+∞

∫ θ

−∞
|Us(θ − s)�s(B̃λX0g(s))|αds

+ lim
λ→+∞

∫ +∞

θ

|Uu(θ − s)�u(B̃λX0g(s))|αds
]
(0)

)
dμ(t)

≤
∫ τ

−τ

(
sup

θ∈[t−r,t]

[
lim

λ→+∞

∫ θ

−∞
‖Aα

UUs(θ − s)�s(B̃λX0g(s))‖ds

+ lim
λ→+∞

∫ +∞

θ

‖Aα
UUu(θ − s)�u(B̃λX0g(s))‖ds

]
(0)

)
dμ(t)

≤ MM̃

∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ θ

−∞
e−ω(θ−s)

(θ − s)α
|�s | |g(s)|ds

)
dμ(t)

+ MM̃

∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

θ

eω(θ−s)

(s − θ)α
|�u| |g(s)|ds

)
dμ(t)

≤ K
[ ∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ θ

−∞
e−ω(θ−s)

(θ − s)α
|g(s)|ds

)
dμ(t)

+
∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

θ

eω(θ−s)

(s − θ)α
|g(s)|ds

)
dμ(t)

]
,
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where .K = max(MM̃|�s |,MM̃|�u|). On the one hand, using Fubini’s theorem, 
we have 

. 

∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ θ

−∞
e−ω(θ−s)

(θ − s)α
|g(s)|ds

)
dμ(t)

≤
∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

0

e−ωs

sα
|g(θ − s)|ds

)
dμ(t)

≤
∫ +∞

0

e−ωs

sα

(
sup

θ∈[t−r,t]

∫ τ

−τ

|g(θ − s)|dμ(t)
)
ds.

By the Lebesgue dominated convergence theorem and by using Corollary 9.2, it  
follows that 

. lim
τ→+∞

∫ +∞

0

e−ωs

sα

1

ν([−τ, τ ])
(

sup
θ∈[t−r,t]

∫ τ

−τ

|g(θ − s)|dμ(t)
)
ds = 0.

On the other hand by Fubini’s theorem, we also have 

. 

∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

θ

eω(θ−s)

(s − θ)α
|g(s)|ds

)
dμ(t)

≤
∫ τ

−τ

(
sup

θ∈[t−r,t]

∫ +∞

0

e−ωs

sα
|g(s + θ)|ds

)
dμ(t)

≤
∫ +∞

0

e−ωs

sα

(
sup

θ∈[t−r,t]

∫ τ

−τ

|g(s + θ)|dμ(t)
)
ds.

Reasoning like above, it follows that 

. lim
τ→+∞

∫ +∞

0

e−ωs

sα

(
sup

θ∈[t−r,t]

∫ τ

−τ

|g(s + θ)|dμ(t)
)
ds = 0.

Consequently, 

. lim
τ→+∞

1

ν([−τ, τ ])
∫ τ

−τ

(
sup

θ∈[t−r,t]
|(�g)(θ)|α

)
dμ(t) = 0.

Thus, we obtain the desired result. �
For the existence of .(μ, ν)-pseudo-almost periodic solution of class r , we make  

the following assumption. 

.(H5) .f : R → X is in .cl(μ, ν)-pseudo-almost periodic of class r .
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Proposition 9.9 Assume .(H0), .(H1), .(H3), and .(H5) hold. Then Eq. (9.1) has a 
unique .α − cl(μ, ν)-pseudo-almost periodic solution of class r . 

Proof Since f is a .(μ, ν)-pseudo-almost periodic function, f has a decomposition 
.f = f1 + f2, where .f1 ∈ AP(R;X) and .f2 ∈ ℰ(R;X,μ, ν, r). Using  
Propositions 9.7, 9.8 and Theorem 9.6, we get the desired result. �
Our next objective is to show the existence of .(μ, ν)-pseudo-almost periodic 
solutions of class r for the following problem: 

.u′(t) = −Au(t) + L(ut ) + f (t, ut ) for t ∈ R, (9.9) 

where .f : R × Cα → X is continuous. 
For the sequel, we make the following assumption. 

.(H6) Let .μ, ν ∈ M and .f : R × Cα → X .cl(μ, ν)-pseudo-almost periodic of 
class r such that there exists a positive constant .Lf such that 

. ‖f (t, ϕ1) − f (t, ϕ2)‖ ≤ Lf ‖ϕ1 − ϕ2‖Cα for all t ∈ R and ϕ1, ϕ2 ∈ Cα,

and .Lf satisfies (9.6). 

Theorem 9.7 Assume .(H0), .(H1), .(H2), .(H3), and .(H6) hold. If 

. 
2KLf �(1 − α)

ω1−α
< 1,

then Eq. (9.9) has a unique .α − cl(μ, ν)-pseudo-almost periodic solution of class r . 

Proof Let x be a function in .PAP(R;X,μ, ν, r), and from Theorem 9.5, the  
function .t → xt belongs to .PAP(Cα,μ, r). Hence, Theorem 9.4 implies that the 
function .g(.) := f (., x.) is in .PAP(R;X,μ, r). Consider the mapping 

. H : PAP(R;Xα,μ, ν, r) → PAP(R;Xα,μ, ν, r)

defined for .t ∈ R by 

. (Hx)(t) =
[

lim
λ→+∞

∫ t

−∞
Us(t − s)�s(B̃λX0f (s, xs))ds

+ lim
λ→+∞

∫ t

+∞
Uu(t − s)�u(B̃λX0f (s, xs))ds

]
(0).

From Propositions 9.7, 9.8 and taking into account Theorem 9.6, it suffices now 
to show that the operator . H has a unique fixed point in .PAP(R;Xα,μ, r). Let  
.x1, x2 ∈ PAP(R;Xα,μ, ν, r). Then we have
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. | Hx1(t) − Hx2(t)|α ≤
∣∣∣ lim
λ→+∞

∫ t

−∞
Us(t − s)�s(B̃λX0[f ((s, x1s))

−f ((s, x1s))]ds

∣∣∣
α

+
∣∣∣ lim
λ→+∞

∫ t

+∞
Us(t − s)�u(B̃λX0[f ((s, x2s))

−f ((s, x2s))]ds

∣∣∣
α

≤ KLf

( ∫ t

−∞
e−ω(t−s)

(t − s)α
|x1s − x2s |ds

+
∫ +∞

t

e−ω(s−t)

(s − t)α
|x1s − x2s |ds

)

≤ KLf

( ∫ t

−∞
e−ω(t−s)

(t − s)α
ds

+
∫ +∞

t

e−ω(s−t))

(s − t)α
ds

)
|x1 − x2|

≤ KLf

( 1

ω1−α

∫ +∞

0

e−s

sα
ds

+ 1

ω1−α

∫ +∞

0

e−s

sα
ds

)
|x1 − x2|

≤ 2KLf

ω1−α

( ∫ +∞

0
e−ss−αds

)
|x1 − x2|

≤ 2KLf �(1 − α)

ω1−α
|x1 − x2|.

This means that . H is a strict contraction. Thus by Banach’s fixed point theorem, . H
has a unique fixed point u in .PAP(R;X,μ, ν, r). We conclude that Eq. (9.9) has 
one and only one .cl(μ, ν)-pseudo-almost periodic solution of class r . �

9.7 Application 

For illustration, we propose to study the existence of solutions for the following 
model:
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. 

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂t
z(t, x) = ∂2

∂x2
z(t, x) +

∫ 0

−r

G(θ)z(t + θ, x)dθ − cos t − 1√
2

cos(
√

2t)

+ arctan(t) + h
(
t,

∂

∂x
z(t + θ, x)

)
for t ∈ R and x ∈ [0, π ]

z(t, 0) = z(t, π) = 0 for t ∈ R,

(9.10) 

where .G : [−r, 0] → R is a continuous function and .h : R × R → R is Lipschitz 
continuous with respect to the second argument. To rewrite equation (9.10) in the 
abstract form, we introduce the space .X = L2([0, π ];R) vanishing at 0 and . π , 
equipped with the . L2 norm that is to say for all .x ∈ X, 

. ‖x‖L2 =
( ∫ π

0
|x(s)|2ds

) 1
2
.

Let .A : X → X be defined by 

. 

{
D(A) = H 2(0, π) ∩ H 1

0 (0, π)

Ay = y′′.

Then the spectrum .σ(A) of A equals to the point spectrum .σp(A) and is given by 

. σ(A) = σp(A) = {−n2 : n ≥ 1},

and the associated eigenfunctions .(en)n≥1 are given by 

. en(s) =
√

2

π
sin(ns), s ∈ [0, π ].

Then the operator is computed by 

. Ay =
+∞∑
n=1

n2(y, en)en, y ∈ D(A).

For each .y ∈ D(A
1
2 ) = {y ∈ X :

+∞∑
n=1

n(y, en)en ∈ X}, the operator .A
1
2 is given by 

.A
1
2 y =

+∞∑
n=1

n(y, en)en, y ∈ D(A).
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Lemma 9.9 ([11]) If .y ∈ D(A
1
2 ), then y is absolutely continuous, .y′ ∈ X, and 

.|y′| = |A 1
2 y|. 

It is well known that .−A is the generator of a compact analytic semigroup . (T (t))t≥0
on X that is given by 

. T (t)x =
+∞∑
n=1

e−n2t (x, en)en, x ∈ X.

Then .(H0) and .(H1) are satisfied. Here we choose .α = 1

2
. 

We define .f : R × C 1
2

→ X and .L : C 1
2

→ X as follows: 

. f (t, ϕ)(x) = − cos t − 1√
2

cos(
√

2t) + arctan(t)

+h
(
t,

∂

∂x
ϕ(θ, x)

)
for x ∈ [0, π ] and t ∈ R,

L(ϕ)(x) =
∫ 0

−r

G(θ)ϕ(θ, x))dθ for − r ≤ θ ≤ 0 and x ∈ [0, π ].

Let us pose .v(t) = z(t, x). Then Eq. (9.10) takes the following abstract form: 

.v′(t) = Av(t) + L(vt ) + f (t, vt ) for t ∈ R. (9.11) 

Consider the measures . μ and . ν where its Radon–Nikodym derivatives are, respec-
tively, .ρ1, ρ2 : R → R defined by 

. ρ1(t) =
⎧⎨
⎩

1 for t > 0

et for t ≤ 0

and 

. ρ2(t) = |t | for t ∈ R,

i.e., .dμ(t) = ρ1(t)dt and .dν(t) = ρ2(t)dt where dt denotes the Lebesgue measure 
on . R and 

. μ(A) =
∫

A

ρ1(t)dt for ν(A) =
∫

A

ρ2(t)dt for A ∈ ℬ.

From [6], .μ, ν ∈ M, and .μ, ν satisfy Hypothesis .(H4).
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We have 

. lim sup
τ→+∞

μ([−τ, τ ])
ν([−τ, τ ]) = lim sup

τ→+∞

∫ 0

−τ

etdt +
∫ τ

0
dt

2
∫ τ

0
tdt

= lim sup
τ→+∞

1 − e−τ + τ

τ 2
= 0 < ∞,

which implies that .(H2) is satisfied. 

Since .A
1
2

(
−cos t − 1√

2
cos(

√
2t)

)
= sin t +sin(

√
2t) and . t → sin t +sin(

√
2t)

belongs to .AP(R, X), it follows that .t →
(

− cos t − 1√
2

cos(
√

2t)
)

belongs to 

.AP(R, X 1
2
). On the other hand, we have the following: 

. 
1

ν([−τ, τ ])
∫ +τ

−τ

sup
θ∈[t−r,t]

| arctan(θ)| 1
2
dt = 1

ν([−τ, τ ])

×
∫ +τ

−τ

sup
θ∈[t−r,t]

|A 1
2 arctan(θ)|dt

= 1

ν([−τ, τ ])
∫ +τ

−τ

sup
θ∈[t−r,t]

( 1

1 + θ2

)
dt

≤ μ([−τ, τ ])
ν([−τ, τ ]) → 0 as τ → +∞.

It follows that .t �→ arctan t is .(μ, ν)-ergodic of class r; consequently, f is uniformly 
.(μ, ν)-pseudo-almost periodic of class r . Moreover, L is a bounded linear operator 
from .C 1

2
to X. 

Let k be the Lipschitz constant of h; then for every .ϕ1, ϕ2 ∈ C 1
2

and . t ≥ 0, we  
have 

.‖f (t, ϕ1)(x) − f (t, ϕ2)(x)‖ =
( ∫ π

0

[
h
(
θ,

∂

∂x
ϕ1(θ, x)

)

−h
(
t,

∂

∂x
ϕ1(t, x)

)]2
dx

) 1
2

≤ Lh

[ ∫ π

0

( ∂

∂x
ϕ1(θ, x) − ∂

∂x
ϕ2(θ, x)

)2
dx

] 1
2
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≤ Lh sup
−r≤θ≤0

[ ∫ π 

0

( ∂ 
∂x 

ϕ1(θ, x) 

− 
∂ 
∂x 

ϕ2(θ, x)
)2 

dx
] 1 

2 

≤ Lh‖ϕ1 − ϕ2‖Cα . 

Consequently, we conclude that f is Lipschitz continuous and .cl(μ, ν)-pseudo-
almost periodic of class r . 

Lemma 9.10 ([9]) If .
∫ 0

−r

|G(θ)|dθ < 1, then the semigroup .(U(t))t≥0 is hyper-

bolic. 

For example, let us pose .G(θ) = θ2 − 1

(θ2 + 1)2 for .θ ∈ [−r, 0]. Then we can see that 

. 

∫ 0

−r

|G(θ)|dθ =
∫ 0

−r

∣∣∣ θ2 − 1

(θ2 + 1)2

∣∣∣dθ =
[ θ

θ2 + 1

]0

−r
= r

r2 + 1
< 1 if r < 1

and 

. 

∫ 0

−r

|G(θ)|dθ =
∫ 0

−r

∣∣∣ θ2 − 1

(θ2 + 1)2

∣∣∣dθ =
∫ −1

−r

θ2 − 1

(θ2 + 1)2 dθ +
∫ 0

−1

−θ2 + 1

(θ2 + 1)2 dθ

= 1 − r

r2 + 1
< 1 if r ≥ 1.

By Proposition 9.7, we deduce the following result. 

Theorem 9.8 Under the above assumptions, if .Lip(h) is small enough, then 
Eq. (9.11) has a unique .cl(μ, ν)-pseudo-almost periodic solution v of class r . 

Acknowledgments The authors would like to thank the referees for a careful reading and several 
constructive comments and making some useful corrections that have improved the presentation 
of the paper. 
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Chapter 10 
Global Stability for a Delay SIR 
Epidemic Model with General Incidence 
Function, Observers Design 

Aboudramane Guiro, Dramane Ouedraogo, and Harouna Ouedraogo 

Abstract In (Connell McCuskey, Nonlinear Anal RWA 11:3106–3109, 2010), the 
authors presented an SIR model of disease transmission with delay in a particular 
nonlinear incidence. In their work, they showed the global stability of the endemic 
equilibrium for the reproduction number . R0 is greater than one. In this chapter, we 
reviewed on the same model with delay in general incidence function. The global 
stability of the endemic equilibrium is studied for .R0 > 1 by using a Lyapunov 
functional. With supposed well-known parameters, we built simple observer and a 
high-gain observer using a canonical controller form. Then, we proposed nonlinear 
auxilary dynamical systems which are used for the implementation. Numerical 
simulations are included in order to test the behaviour and the performance of the 
given observers. 

Keywords Epidemic model · SIR · Delays · Global stability · Lyapunov 
function · Reproduction number · General incidence function · Observability · 
Observer · High gain 

10.1 Introduction 

In the modelling of the dynamics of infectious diseases such as dengue [7] and 
chikungunya [14], a common model structure involves dividing the population into 
three classes: susceptible, infectious, and recovered individuals. In this chapter, 
we consider an SIR model of disease transmission in [4]. In this chapter, it is a 
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refinement of hypothesis and a genraralization of earlier models based on incidence 

function .
βSIτ

1 + αIτ

. The model in [4] keeps pointing out the saturation in the force of 

infection by using the general incidence function .f (S, Iτ ). 
In [4], a detailed analysis of the current model is presented. It is shown that 

if the basic reproduction number .R0 is less or equal to one, then the disease-
free equilibrium is globally asymptotically stable. If .R0 > 1, then the endemic 
equilibrium is globally asymptotically stable, without any further conditions on the 
parameters. 

Our approach is to use here a Lyapunov functional similar to those used in [5, 6, 
16] for various mass action types. 

In this chapter, we show that when .R0 > 1, the endemic equilibrium is globally 
asymptotically stable by using a suitable Lyapunov functional. 

Now by considering the system 

.ẋ = g1(x) (10.1) 

and assuming that (1) is a good model of the system under consideration, when it is 
possible to get the value of the state at some time . t0, then it is possible to compute 
.x(t) for all .t ≥ t0 by integrating the differential equation with the initial condition 
.x(t0). Unfortunately, it is often not possible to measure the whole state at a given 
time, and therefore, it is not possible to integrate the differential equation because 
one does not know an initial condition. One can only have a partial information of 
the state, and this partial information is precisely given by .y(t) the output of the 
system. Therefore, we shall show how to use this partial information .y(t) with the 
given model in order to have a dynamical estimate .x̂(t) of the real unknown state 
variable .x(t). This estimate will be produced by an auxiliary dynamical system 
that uses the information .y(t) given by the system (10.4). This auxiliary dynamical 
system form is 

. ˙̂x = g2(x̂, y). (10.2) 

The estimated error is .e(t) = x̂(t) − x(t) and satisfies the following equation given 
by 

.ė = g2(x̂, y) − g1(x). (10.3) 

.e(t) = x(t) − x̂(t) → 0 when .t → +∞, regardless of initial conditions of system 
(10.1) and system (10.2). A dynamical system (10.2) satisfying these conditions is 
called an observer for system (10.1). When the convergence of .x̂(t) towards . x(t)

is exponential, the system (10.1) is an exponential observer. More precisely, system 
(10.2) is an exponential observer for system (10.1) if there exists .λ > 0 such that, 
for all .t ≥ 0 and for initial conditions .(x(0), x̂(0)), the corresponding solutions of 
(10.1) and (10.2) satisfy .‖x̂(t)−x(t)‖ ≤ exp(−λt)‖x̂(0)−x(0)‖. In this condition, 
a good estimate of the real unmeasured state is rapidly obtained. One must notice 
that the observer is not linked to the choice of initial condition of the observer.
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The use of observer theory in biological system is scarce; however, some authors 
have reviewed on that (see Ngom et al. [15]; Guiro et al. [10]). In [15], an observer 
has been constructed for a stage-structured discrete-time fishery model that exhibits 
an unknown recruitment function. In [10], a stage-structured continuous model 
is considered, and it is assumed that only the last class (mature individuals) is 
harvested. So, in this present work, we use control theory (observability theory) to 
construct an estimator (observer) for the system (10.4) when the measured (output) 
variable is the infectious population, i.e., .y(t) = I (t). 

In this chapter, we construct a so-called simple observer as opposed to Gauthier– 
Kupka-type observers [1, 8, 9] who require an extension by continuity of compact 
space at the risk of the explosion of the system. The observer constructed here is 
quite simple and is a copy of the original system augmented by a corrective term 
that gives satisfactory results for the estimation of the states. 

This chapter is organized as follows: The model description and basic results 
are given in Sect. 10.2. In Sect. 10.3, the basic reproduction number and equi-
libria are presented. Section 10.4 contains the local and global stabilities of the 
free-equilibrium point; in this part, we also study the global stability of the 
endemic equilibrium. Section 10.5 introduces methods for designing an observer. 
Section 10.6 is devoted to numerical simulation. Finally, in Sect. 10.7, we give  
conclusions. 

10.2 Model Presentation 

In this model, the population is divided into susceptible, infectious, and recovered 
classes with sizes S, I , and R, respectively. Recruitment of new individuals is into 
the susceptible class, at a constant rate B. The death rates for the classes are . μ1, . μ2, 
and . μ3, respectively. The average time spent in class I before recovery is . 1/γ . For  
biological reasons, we assume that .μ1 ≤ μ2 + γ ; that is, removal of infectives is at 
least as fast as removal of susceptibles. Transmission of the disease is done through 
vectors that undergo fast dynamics and a fixed latent period . τ . In order to avoid 
excessive use of parameters (t , .t − τ ), we use the following convention: .S = S(t), 
.I = I (t), and .Iτ = I (t − τ); then, we generalize the problem from [4] as follows:  

.

⎧
⎪⎨

⎪⎩

Ṡ = B − μ1S − βSIτ

1 + αIτ

,

İ = βSIτ

1 + αIτ

− (μ2 + γ )I,

(10.4) 

and 

. Ṙ = γ I − μ3R.

Our aim is to study the same system with general incidence function .f (S, Iτ ).
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Fig. 10.1 The compartmental diagram for the SIR model 

As general as possible, the incidence function f must satisfy technical condi-
tions. Thus, we assume that: 

H1 f is non-negative . C1 functions on the non-negative quadrant. 
H2 For all .(S, I ) ∈ R

2+, .f (S, 0) = f (0, I ) = 0. 

Remark 10.2.1 f is an incidence function that explains the contact between two 
species. Therefore, H2 is a natural assumption that means that if there is not a new 
infection when there is not an infectious human or a susceptible human. 

Let us denote by . f1 and . f2 the partial derivatives of f with respect to the first 
(S) and second (I ) variables. Using the same notations, the model is given by the 
following system (Fig. 10.1): 

.

⎧
⎨

⎩

Ṡ = B − μ1S − f (S, Iτ ),

İ = f (S, Iτ ) − (μ2 + γ )I,

(10.5) 

and 

.Ṙ = γ I − μ3R. (10.6) 

Since R does not appear in the equations for . Ṡ and . İ , it is sufficient to analyse the 
behaviour of solutions to (10.5). 

We assume that system (10.5) holds with given initial conditions 

. S(0) ∈ R+ and I (θ) = φ(θ) for θ ∈ [−τ, 0],

where .φ ∈ C([−τ, 0],R+), the space of continuous functions from .[−τ, 0] to . R+.
�	

Theorem 10.2.1 The positive orthant 

. {(S, I, R) ∈ R
3 : S ≥ 0, I ≥ 0, R ≥ 0}

is positively invariant for system (10.5). �	
To prove Theorem 10.2.1, we need the following lemma.
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Lemma 10.2.1 ([3]) Let .L : Rn → R be a differentiable function, and let .a ∈ R. 
Let .X(x) be the vector field, and let G be the closed set . G = {x ∈ R

n : L(x) ≤
a} such that .∇L(x) �= 0 for all .x ∈ L−1(a) = {x ∈ R

n : L(x) = a}. If . <
X(x),∇L(x) >≤ 0 for all .x ∈ L−1(a), then the set G is positively invariant. �	
Proof of Theorem 10.2.1 Let 

.x = (S, I, R). (10.7) 

We will prove that .{S ≥ 0} is positively invariant. So, let 

. L(x) = −S.

L is differentiable, and 

. ∇L(x) = (−1, 0, 0) �= 0 for all x ∈ L−1(0) = {x ∈ R
3/L(x) = 0}.

The vector field on .{S = 0} is 

.X(x) =
⎛

⎝
B

−(μ2 + γ )I

−μ3R

⎞

⎠ . (10.8) 

Then .< X(x),∇L(x) >= −B < 0. This proves that .{S ≥ 0} is positively invariant. 
Similarly, we prove that .{I ≥ 0}, .{R ≥ 0} are positively invariant. 

Then .{(S, I, R) ∈ R
3 : S ≥ 0, I ≥ 0 R ≥ 0} is positively invariant for system 

(10.5). �	
Therefore, the model is mathematically well-posed and epidemiologically rea-

sonable since all the variables remain non-negative for all .t > 0. �	
Theorem 10.2.2 Any solution .(S, I, R) of system (10.5)–(10.6) with the initial 
conditions satisfies 

. lim sup
t→+∞

(S(t) + I (t) + R(t)) ≤ B

μ
, where μ = min{μ1, μ2, μ3}.

�	
Proof With .N(t) = S(t) + I (t) + R(t). 

Adding the two equations of (10.5) and (10.6), we get 

. Ṅ(t) = B − μ1S − μ2I − μ3R

≤ B − μN(t). (10.9)
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According to [2], it follows that 

.N(t) ≤ B

μ
+ (N(0) − B

μ
)e−μt . (10.10) 

Thus, as .t → +∞, .N(t) ≤ B

μ
. �	

10.3 Basic Reproduction Number and Equilibria 

The disease-free equilibrium is given by 

.E0 = (S0, I 0, R0) =
(

B

μ1
, 0, 0

)

. (10.11) 

Proposition 10.3.1 The basic reproduction number for model system (10.5) is  
defined by 

. R0 = f2(S
0, 0)

μ2 + γ
.

The basic reproduction number . R0 represents the average number of new cases 
generated by a single infected individual in a completely susceptible population. 

Proof Note that in this case the disease-free equilibrium 

. E0 = (S0, I 0, R0) =
(

B

μ1
, 0, 0

)

and 

. A = f2(S
0, 0) − (μ2 + γ ).

Hence, .M = f2(S
0, 0), .D = μ2 + γ , and 

.R0 = MD−1 = f2(S
0, 0)

μ2 + γ
.

�	
Now, let us study the behaviour of system (10.5) with respect to . R0. 

Theorem 10.3.3 

(i) If .R0 ≤ 1, then model (10.5) has a disease-free equilibrium . E0. 
(ii) If .R0 > 1, then model (10.5) has an endemic equilibrium.

�	
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Proof Let .E = (S, I, R) be an equilibrium point of system (10.5). 
Using the second equations of (10.5), we have 

. f (S, I ) = (μ2 + γ )I ;

therefore, we have 

. 
f (S, I )

I
= μ2 + γ.

Let 

. 	(I) =
f (S0 − (μ2 + γ )I

μ1
, I )

I
− (μ2 + γ )

. lim
I→0+ 	(I) = f2 − (μ2 + γ ),

. lim
I→0+ 	(I) = (μ2 + γ )(R0 − 1),

and we also have .	(Ī ) = −(μ2 + γ ) with .Ī = S0μ1

μ2 + γ
. When . R0 ≤ 1, we have  

. lim
I→0+ 	(I) ≤ 0; thus, there is not any .I ∗ > 0 such that .	(I ∗) = 0. So system  

(10.5) has a free-disease equilibrium . E0. 
When . R0 > 1, we have . lim

I→0+ 	(I) ≥ 0, so there exists .I ∗ ∈]0, Ī [. This implies 

that system (10.5) has an endemic equilibrium point . E∗. �	

10.4 Stability of Equilibria 

10.4.1 Stability of the Disease-Free Equilibrium 

In this section, we study the local and global behaviours of the disease-free 
equilibrium. 

Theorem 10.4.4 Disease-free equilibrium . E0 is locally asymptotically stable if 
.R0 ≤ 1. �	
Proof The characteristic equation of linear system of (10.5) at .E0 gives the 
following equation:
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. (−μ3 − λ)
[
(−μ1 − f1(S

0, 0) − λ)(f2(S
0, 0) − (μ2 + γ ) − λ)

+f1(S
0, 0)f2(S

0, 0)
]

= 0. (10.12) 

We can see that any solution . λ of equation (10.12) is negative.  
Indeed, the equation (10.12) has negative root .λ = −μ3, and other roots are 

given by 

. (−μ1 − f1(S
0, 0) − λ)(f2(S

0, 0) − (μ2 + γ ) − λ) + f1(S
0, 0)f2(S

0, 0) = 0.

(10.13) 
By developing (10.13), we get 

. λ2 + (μ1 + f1(S
0, 0) − f2(S

0, 0) + μ2 + γ )λ − μ1f2(S
0, 0) + μ1(μ2 + γ )

+ f1(S
0, 0)(μ2 + γ ) = 0. (10.14) 

Since .R0 ≤ 1, we obtain 

. μ1 + f1(S
0, 0) − f2(S

0, 0) + μ2 + γ > 0.

Therefore, by the Routh–Hurwitz criterion, all the roots of equation (10.14) have the  
negative real parts. This shows that equilibrium . E0 is locally asymptotically stable. 
This completes the proof. �	
H3 For all .(S, I ) ∈ R

2, .f (S, Iτ ) ≤ f2(S
0, 0)I . 

Theorem 10.4.5 Disease-free equilibrium is globally asymptotically stable if 
.R0 ≤ 1. �	
Proof The proof is based on comparison theorem [13]. Note that the equations of 
infected components in system (10.5) can be expressed as 

.İ ≤
(

f2(S
0, 0) − (μ2 + γ )

)

I. (10.15) 

So, we deduce that the constant .f2(S
0, 0) − (μ2 + γ ) is negative since .R0 ≤ 1. 

Thus, .I (t) → 0 as .t → ∞ for the system (10.15). Consequently, by a standard 
comparison theorem [13], .I (t) → 0 as .t → ∞, and substituting .I = 0 into system 
(10.5), .S → S0 as .t → ∞. 

Thus,.(S, I, R) → (S0, 0, 0) as .t → ∞ for .R0 ≤ 1. Therefore, . E0 is globally 
asymptotically stable if .R0 ≤ 1. �	
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10.4.2 Global Stability of the Endemic Equilibrium 

In this section, we study the global dynamics for .R0 > 1 by using some technical 
conditions. We recall that the endemic equilibrium . E∗ exists if and only if .R0 > 1. 
So let: 

H4: .∀(S, I ) ∈ R
2+,

I

I ∗ ≤ S

S∗ ≤ f (S, Iτ )

f (S∗, I ∗)
. 

Remark 10.4.2 Assumption H4 can be seen as a technical assumption to have 

.
dV

dt
≤ 0 and biologically correct because at the endemic equilibrium .S∗ > 0, 

.I ∗ > 0, and .f (S∗, I ∗) > 0. �	
Theorem 10.4.6 If .R0 > 1, the endemic equilibrium . E∗ is globally asymptotically 
stable. �	
Proof Evaluating both sides of (10.5) at . E∗, we have  

.B = μ1S
∗ + f (S∗, I ∗) (10.16) 

and 

.f (S∗, I ∗) = (μ2 + γ )I ∗, (10.17) 

which will be used as substitutions in the calculations below. 
Let 

. g(x) = x − 1 − ln x

and 

. Vs(t) = g(
S(t)

S∗ )

VI (t) = g(
I (t)

I ∗ ) (10.18)

V+(t) =
∫ τ

0
g(

I (t − s)

I ∗ )ds.

We study the behaviour of the Lyapunov functional 

.V (t) = S∗

f (S∗, I ∗)
Vs(t) + I ∗

f (S∗, I ∗)
VI (t) + V+(t). (10.19) 

We note that .g : R>0 → R≥0 has the strict global minimum .g(1) = 0. Thus, 

.V (t) ≥ 0 ∀t ≥ 0 with equality if and only if .
S(t)

S∗ = 1, .
I (t)

I ∗ = 1, and . 
I (t − s)

I ∗ = 1

for all .s ∈ [0, τ ].
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By Theorem 10.2.2, solutions are bounded above and bounded away from zero 
for large time. Without loss of generality, we may assume that the solution in 
question satisfies these bounds for all .t ≥ 0. Thus, .V (t) is defined for all .t ≥ 0. 

For clarity, the derivatives of . Vs , . VI , and .V+ will be calculated separately and 

then combined to obtain .
dV

dt
. 

. 
dVs

dt
= 1

S∗

(

1 − S∗

S

)
dS

dt

= 1

S∗

(

1 − S∗

S

)

(B − μ1S − f (S, Iτ )).

Using (10.16) to replace B, we have  

. 
dVs

dt
= 1

S∗

(

1 − S∗

S

)

(μ1(S
∗ − S) + (f (S∗, I ∗) − f (S, Iτ )))

= − μ1

SS∗ (S − S∗)2 + f (S∗, I ∗)
S∗

(

1 − S∗

S

)(

1 − f (S, Iτ )

f (S∗, I ∗)

)

.

Let 

. x = S

S∗ , y = I

I ∗ and z = Iτ

I ∗ .

Additionally, let 

. F(z) = f (S, I ∗z)
f (S∗, I ∗)

= f (S, Iτ )

f (S∗, I ∗)
.

Then we may write 

.
dVs

dt
= −μ1

(S − S∗)2

SS∗ + f (S∗, I ∗)
S∗

(

1 − 1

x
− F(z) + F(z)

x

)

. (10.20) 

Next, we calculate .
dVI

dt
. 

.
dVI

dt
= 1

I ∗

(

1 − I ∗

I

)
dI

dt

= 1

I ∗

(

1 − I ∗

I

)

(f (S, Iτ ) − (μ2 + γ )I)

= 1

I ∗

(

1 − I ∗

I

)(

f (S∗, I ∗) f (S, Iτ )

f (S∗, I ∗)
− (μ2 + γ )I ∗ I

I ∗

)

.
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Using (10.17) to replace .(μ2 + γ )I ∗, we have  

. 
dVI

dt
= f (S∗, I ∗)

I ∗

(

1 − I ∗

I

)(
f (S, Iτ )

f (S∗, I ∗)
− I

I ∗

)

= f (S∗, I ∗)
I ∗

(

1 − y − F(z)

y
+ F(z)

)

. (10.21) 

The derivative of .V+(t) is calculated as follows: 

. 
dV+
dt

= d

dt

∫ τ

0
g

(
I (t − s)

I ∗

)

ds

=
∫ τ

0

d

dt
g

(
I (t − s)

I ∗

)

ds

=
∫ τ

0
− d

ds
g

(
I (t − s)

I ∗

)

ds

= g

(
I (t)

I ∗

)

− g

(
I (t − τ)

I ∗

)

= g(y) − g(z)

= y − z + ln(z) − ln(y). (10.22) 

Combining Eqs. (10.20)–(10.22), multiplying appropriately by coefficients deter-
mined by (10.19), we obtain 

. 
dV

dt
= −μ1

(S − S∗)2

SS∗ + 2 − 1

x
+ F(z)

x
− F(z)

y
− z + ln(z) − ln(y).

By adding and subtracting the quantity .ln x, .ln(
F (z)

y
), and .ln(

F (z)

x
), we obtain 

. 
dV

dt
= −μ1

(S − S∗)2

SS∗ − g

(
1

x

)

− g

(
F(z)

y

)

− g(z) + g

(
F(z)

x

)

.

By using H4 and the fact that the function g is monotone (decreasing and increasing) 
on each side of point 1 and minimized at this point 1, we get 

. g

(
F(z)

x

)

≤ g

(
F(z)

y

)

.

Thus, .
dV

dt
≤ 0. By Theorem 5.3.1 of [12], solutions limit to M , the largest invariant 

subset of .{dV

dt
= 0}.
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We note that .
dV

dt
= 0 if and only if .x = y = z = 1. In particular, this requires 

that for any solution in M we have .S(t) = S∗ and .I (t) = I ∗ for all t , and so M 
consists of the single point . E∗. Thus we see that all solutions limit to the endemic 
equilibrium. . E∗ is globally asymptotically stable. �	

10.5 Observer Design 

This section is devoted to observers construction, so we consider a dynamical model 
described by 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = B − μ1x1(t) − f

(

x1(t), X2(t − τ)

)

,

Ẋ2(t) = f

(

x1(t), X2(t − τ)

)

− (μ2 + γ )X2(t),

ẋ3(t) = γX2(t) − μ3x3(t),

(10.23) 

where: 

.x1(t) = S = the susceptible 

.X2(t) = I = the infected 

.x3(t) = R = the recovered 

and .f (x1, X2) = x1X2, the mass action. We construct two observers, a simple one 
and the high-gain one, and we compare them with respect to their convergence. 

10.5.1 A Simple Observer for an SIR Epidemic Model 

Let us consider system (10.23). The compact set 

. D = {(S, I, R) ∈ R
3 : S ≥ 0, I ≥ 0, R ≥ 0}

is positively invariant set under the flow of the system (10.23). 
Let .y(t) = X2(t) = I be the measurable variable that is the output. A simple 

candidate observer for system (10.23) on the set  D is given by 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂x1(t) = B − μ1x̂1(t) − f

(

x̂1(t), X̂2(t − τ)

)

,

˙̂
X2(t) = f

(

x̂1(t), X̂2(t − τ)

)

− (μ2 + γ )X̂2(t) + L1(y − X̂2),

˙̂x3(t) = γ X̂2(t) − μ3x̂3(t).

(10.24)
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This system (10.24) is simply a copy of system (10.23) plus a corrective term given 
by .L1(y − X̂2). The parameter . L1 is a positive constant that will be chosen in order 
to ensure the convergence of estimation error. 

We will denote .x(t) =
(

x1(t), X2(t)

)

the state vector of the system (10.23) 

and .x̂(t) =
(

x̂1(t), X̂2(t)

)

the state vector of the candidate observer (10.24). The 

estimation error is .e(t) =
(

e1(t), e2(t)

)

= x(t) − x̂(t). 

Let us make the following assumptions: 
H5: 

. 

∫ 1

0
f1(se(t) + x̂)ds > 0 and

∫ 1

0
f2(se(t) + x̂)ds > 0.

Proposition 10.5.2 The system governed by (10.24) is an exponential observer for 
system (10.23) for . L1 satisfying 

. L1 > max

( ∫ 1

0
f2(se(t) + x̂)ds − (μ2 + γ ); 0

)

,

i.e., there exists a positive real number . λ such that for all initial conditions 

.

(

x̂(0), x(0)

)

∈ D × D, one has .|x̂(t) − x(t)| ≤ e−λt |x̂(0) − x(0)|. �	

Proof The estimation error .e(t) =
(

e1(t), e2(t)

)

= x(t)−x̂(t) obeys the following 

differential equation: 

.ė = Ade + F(x) − F(x̂), (10.25) 

where 

. Ad =
(−μ1 0

0 −μ2 − γ − L1

)

, F (x) =

⎛

⎜
⎜
⎝

−f

(

x1(t), X2(t − τ)

)

f

(

x1(t), X2(t − τ)

)

⎞

⎟
⎟
⎠ .

Let us consider the following candidate Lyapunov function for the error equa-
tion(10.25): 

.V (e) = eT P e where P =
⎛

⎜
⎝

1

2μ1
0

0
1

2(μ2 + γ + L1)

⎞

⎟
⎠ ;
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we can write 

. F(x) − F(x̂) =
∫ 1

0

∂F

∂x
(sx + (1 − s)x̂)dse = R(x̂)e.

The explicit expression of the matrix .R(x̂) is 

. R(e, x̂) =
(

r11 r12

r21 r22

)

,

where 

. r11 = −
∫ 1

0
f1(se(t) + x̂)ds, r12 = −

∫ 1

0
f2(se(t) + x̂)ds,

. r21 =
∫ 1

0
f1(se(t) + x̂)ds, r22 =

∫ 1

0
f2(se(t) + x̂)ds.

Therefore, .ė = (Ad + R(x̂))e, and then the derivative of .V (e) with respect to time 
along the solutions of the estimation error equation is 

. V̇ (e) = eT

(

PAd + AT
d P + PR(x̂) + R(x̂)T P

)

e.

. V̇ (e) = eT

(
�11 �12

�21 �22

)

e,

where: 

. �11 = −1 − 1

μ1

∫ 1

0
f1(se(t) + x̂)ds

. �12 = − 1

2μ1

∫ 1

0
f2(se(t) + x̂)ds + 1

2(μ2 + γ + L1)

∫ 1

0
f1(se(t) + x̂)ds

. �21 = 1

2(μ2 + γ + L1)

∫ 1

0
f1(se(t) + x̂)ds − 1

2μ1

∫ 1

0
f2(se(t) + x̂)ds

. �22 = −1 + 1

μ2 + γ + L1

∫ 1

0
f2(se(t) + x̂)ds

so 

.V̇ (e) = (�11e1 + �21e2)e1 + (�12e1 + �22e2)e2

=
(

− 1 − 1

μ1

∫ 1

0
f1(se(t) + x̂)ds

)

e2
1
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+
(

1 

2(μ2 + γ + L1)

∫ 1 

0 
f1(se(t) + x̂)ds − 

1 

2μ1

∫ 1 

0 
f2(se(t) + x̂)ds

)

e1e2 

+
(

− 
1 

2μ1

∫ 1 

0 
f2(se(t) + x̂)ds + 1 

2(μ2 + γ + L1)

∫ 1 

0 
f1(se(t) + x̂)ds

)

e1e2 

+
(

− 1 + 1 

μ2 + γ + L1

∫ 1 

0 
f2(se(t) + x̂)ds

)

e2 
2 

=
(

− 1 − 
1 

μ1

∫ 1 

0 
f1(se(t) + x̂)ds

)

e2 
1 

+
(

1 

(μ2 + γ + L1)

∫ 1 

0 
f1(se(t) + x̂)ds − 

1 

μ1

∫ 1 

0 
f2(se(t) + x̂)ds

)

e1e2 

+
(

− 1 + 1 

μ2 + γ + L1

∫ 1 

0 
f2(se(t) + x̂)ds

)

e2 
2 

−V̇ (e)  =
(

1 + 
1 

μ1

∫ 1 

0 
f1(se(t) + x̂)ds

)

×
(

e2 
1 + 

− 1 

(μ2 + γ + L1)

∫ 1 

0 
f1(se(t) + x̂)ds + 

1 

μ1

∫ 1 

0 
f2(se(t) + x̂)ds 

1 + 
1 

μ1

∫ 1 

0 
f1(se(t) + x̂)ds 

e1e2 

+ 
1 − 1 

μ2 + γ + L1

∫ 1 

0 
f2(se(t) + x̂)ds 

1 + 
1 

μ1

∫ 1 

0 
f1(se(t) + x̂)ds 

e2 
2

)

. 

Let 

. l1 = (1 + 1

μ1

∫ 1

0
f1(se(t) + x̂)ds),

. l2 =
− 1

(μ2 + γ + L1)

∫ 1

0
f1(se(t) + x̂)ds + 1

μ1

∫ 1

0
f2(se(t) + x̂)ds

1 + 1

μ1

∫ 1
0 f1(se(t) + x̂)ds

,

and 

.l3 =
1 − 1

μ2 + γ + L1

∫ 1

0
f2(se(t) + x̂)ds

1 + 1

μ1

∫ 1

0
f1(se(t) + x̂)ds

.
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The derivative of .V (e) can be seen as a quadratic form in . ei . Applying the Gauss– 
Lagrange reduction to this quadratic form leads to 

. − V̇ (e) = l1

(

e2
1 + l2e1e2 + l3e

2
2

)

= l1

(

(e1 + 1

2
l2e2)

2 − (
1

2
l2e2)

2 + l3e
2
2

)

= l1

(

(e1 + 1

2
l2e2)

2 + (−1

4
l2
2 + l3)e

2
2

)

,

where . l1, . l2, and . l3 are functions of the parameters. 
Taking into account the conditions on . L1, we can argue that the . V̇ is negative 

definite, and this ends the proof. �	

10.5.2 High-Gain Observer for an SIR Epidemic Model 

Here, we construct a high-gain observer for system (10.23) using the techniques 

developed in [8, 9]. We denote by .x(t) =
(

x1(t), X2(t)

)

the state vector of the 

system (10.23). Let g be the vector field defining the dynamics of the system (10.23) 
and h be the output function, that is, .y(t) = h(x(t)) = X2(t), and 

. g =
⎛

⎝
B − μ1x1(t) − f (x1(t), X2(t − τ))

f (x1(t), X2(t − τ)) − (μ2 + γ )X2(t)

⎞

⎠ .

To construct a high-gain observer for (10.23), one has to perform a change of 
coordinates in order to write the system in a simpler form. Usually, this is done 
by using the output function together with its time derivative. 

Let . 	 be the function .	 : D → R
3 defined as follows: 

. 	(x) =
(

h(x)

Lgh(x)

)

,

where . Lg denotes the Lie derivative operator with respect to the vector field g. Thus 

.	(x) =
⎛

⎝
X2(t)

f (x1(t), X2(t − τ)) − (μ2 + γ )X2(t).

⎞

⎠ .
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The Jacobian of . 	 can be written: 

. 
d	

dx
=

(
0 1

f1(x1, X2(t − τ) f2(x1, X2(t − τ)) − (μ2 + γ )

)

.

The determinant of .
d	

dx
can be expressed by 

. �(x1;X2) = −f1(x1;X2(t − τ)).

The Jacobian .
d	

dx
is nonsingular in the region . D̊, and moreover, .	(x)is one-to-one 

from . D̊ in . 	(D̊). So the map . 	 is a diffeomorphism from . D̊ to .	(D̊). This implies 
that the system (10.23) with the output .y(t) = X2(t) is observable. In the news 
coordinates defined by .(z1, z2)

T = z = 	(x) = (h(x), Lgh(x))T , our system can 
be written in the canonical form as follows: 

.

⎧
⎪⎪⎨

⎪⎪⎩

ż(t) =
(

0 1

0 0

)

z(t) +
(

0


(z(t))

)

y(t) = z1(t) = (0, 1)z(t)

, (10.26) 

where: .A =
(

0 1
0 0

)

; .C = (0, 1) and 

. 
(z) = L2
gh(	−1(z)) = L2

gh(x) = ψ(x).

The function .ψ(x) is smooth (it is a polynomial function of .x = (x1;X2) on the 
compact set D). Hence, it is globally Lipschitz on D. Therefore, it can be extended 
by . ψ̃ , a Lipschitz function on . R2 that satisfies .ψ̃(x) = ψ(x), for all .x ∈ D. Doing 
as before, we define . 
̃ the Lipschitz prolongation of the function . 
. So we have the  
following system (10.27) defined on the whole space . R2. The restriction of system 
(10.27) to the domain D is the system (10.26): 

.

⎧
⎪⎪⎨

⎪⎪⎩

ż = Az +
(

0


̃(z)

)

,

y = Cz.

(10.27) 

According to [8], an exponential (high-gain) observer for system (10.27) is given by 

. ˙̃z = Az̃ +
(

0

̃(z)

)

− S−1
θ CT (y − Cz̃), (10.28)
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where .S(θ) is the solution of .−θSθ − AT Sθ − SθA
T + CT C = 0 and . θ is large 

enough. 
Here, 

. S(θ) =

⎛

⎜
⎜
⎝

1

θ
− 1

θ2

− 1

θ2

2

θ3

⎞

⎟
⎟
⎠ .

This observer is particularly simple since it is only a copy of system (10.27), 
together with a corrective term depending on . θ . For more details of the proof, we 
refer to [8, 9]. 

An observer for the original system (10.23) can then be written by 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃z = Az̃ +
(

0


̃(z̃)

)

− S−1
θ CT (y − Cz̃)

x̂(t) = 	−1(z(t)).

(10.29) 

Or more simply, a high-gain observer for the original system (10.23) can be given 
by 

. ˙̂x = f̃ (x̂) +
[
d	

dx

]−1

x=x̂

× S−1
θ CT (y − h(x̂)). (10.30) 

The expression of observer system is 

. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂x1 = B − μ1x̂1(t) − f (x̂1(t), X̂2(t − τ)) − 1

f1(x̂1(t), X̂2(t − τ))
×

[θ2(f2(x̂1(t), X̂2(t − τ)) − μ2 − γ ) − θ3](X2 − X̂2)
˙̂
X2 = f (x̂1(t), X̂2(t − τ)) − (μ2 + γ )X2(t) + θ2(X2 − X̂2).

(10.31) 
However, the set D that is positively invariant for system (10.23) is not necessary 

positively invariant for the observer (10.30), and .	(D) is not positively invariant for 
the observer (10.28). 

Therefore, the expressions .
[d	

dx

]−1
x=x̂

and .	−1(z(t)) are not well-defined in 

general. 
If there exists . 	̃ a prolongation of the diffeomorphism . 	 to the whole space . R2, 

that is, . 	̃ is a diffeomorphism from . R2 to . R2 whose restriction to . D̊ is . 	, then it 
will be sufficient to replace . 	 by . 	̃ in (10.29) and (10.30) and so all the expressions 
will be well-defined. �	
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10.6 Numerical Simulation and Comments 

In this section, we expose the computation work that supports our study. In this 
computation, the function f is chosen as follows: .f (x1, X2) = x1X2 (mass action). 
. x1 represents the state of the susceptible state and . X2 the infectious one. In this part, 
we have simulated systems (10.5), (10.24), (10.31) using the parameters given in 
the table below. The results of the simulations are presented in Figs. 10.2 and 10.3 
and illustrate the evolutions of the original state variables and the estimated states 
given by the high-gain observer and simple observer (Table 10.1). 

Fig. 10.2 The temporal evolution of the number of susceptible persons (red line) given by (10.4) 
its estimate (blue line) delivered by the high-gain observer given by (10.31) and its estimate (black 
line) delivered by the simple observer given by (10.24)
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Fig. 10.3 The temporal evolution of the number of infectious persons (red line) given by (10.4) 
its estimate (blue line) delivered by the high-gain observer given by (10.31) and its estimate (black 
line) delivered by the simple observer given by (10.24) 

Table 10.1 Parameters 
values of the model 

Symbols Values Sources 

B 20 Estimated 

.μ1 0.1 Estimated 

.μ2 0.003 Estimated 

.γ 0.0000027 Estimated 

.θ 2 Estimated 

10.7 Conclusion 

In this chapter, an SIR epidemic model with delay in the general incidence function 
is derived. In one hand, the global behaviour of the model system was studied. 
We proved that, if .R0 ≤ 1 holds, then the disease-free equilibrium is globally
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asymptotically stable, which implies that the disease fades out from the population. 
If .R0 > 1, then there exists a unique endemic equilibrium that is globally 
asymptotically stable, and this implies that the disease will persist in the population. 
In the second part of this chapter, we deal with state identification, which is 
called nonlinear observer design. We just supposed that the infectious population 
is measured and gave an algorithm that allows to estimate the unmeasured states 
(.S(t) and .R(t)) that are the susceptibles and the recovered. We construct two 
kinds of observers, a simple one and the so-called high-gain observer. With both 
observers, we reconstruct the unmeasured states. We corroborate the convergence 
of our observers with numerical simulation. For that, we present the curves when 
.R0 ≤ 1 and .R0 > 1. 
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Chapter 11 
Threshold Parameters of Stochastic SIR 
and SIRS Epidemic Models with Delay 
and Nonlinear Incidence 

Ali Traoré 

Abstract In this chapter, we study stochastic SIR and SIRS epidemic models with 
delay. A nonlinear incidence function that includes some special incidence rates is 

also considered. Two thresholds . RS
0 and . R̃S

0 of the two models are derived by using 
the nonnegative semimartingale convergence theorem. The disease goes extinct 

when the value of .RS
0 is below 1, and it prevails when .R̃S

0 value is above 1 for 
any size of the white noise. The comparison between the two thresholds is made. 

Keywords Delays · Stochastic SIR model · Nonlinear incidence · Extinction · 
Persistence in mean 

11.1 Introduction 

The use of mathematical model for understanding the infectious disease dynamics is 
well-established. An SIR (Susceptible, Infected, Removed) epidemic model is often 
used to describe the prevalence of the disease in a population. The deterministic and 
stochastic models are applied to capture the propagation of the epidemic depending 
on the appropriate circumstances [1–3]. The transformation of a deterministic 
model into a stochastic model has been analysed by many authors [4–7]. The 
approach of that modelling random fluctuation consists of introducing parameter 
perturbations in the ordinary differential equations. The noise is introduced by 
replacing the model parameters by the fixed parameters plus an amplitude randomly 
fluctuation. In general, the parameters have great variability depending on the errors 
in the observed and measured data. The noise is hence introduced when some 
variables cannot be measured, and there is a lack of knowledge to illustrate the 
presence of random environment. Recently, Yang et al. [8] introduced a stochastic 
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perturbation into an SIR epidemic model with saturated incidence and investigated 
their dynamics according to the basic reproduction number. In [9], Zhao extended 
the work of Yang et al. by establishing a method to obtain the threshold values of 
the system in [8, 10]. Liu et al. [11] studied the equilibria of the following model: 

. 

⎧
⎨

⎩

dS(t) = (
� − μS(t) − βe−μτS(t)G(I (t − τ))

)
dt + σ1S(t)dB1(t),

dI (t) = (
βe−μτS(t)G(I (t − τ)) − (μ + γ + α)I (t)

)
dt + σ2I (t)dB2(t),

(11.1) 

where .S(t) and .I (t) denote the number of susceptible individuals to the disease 
and the number of infective individuals, respectively. . � is the recruitment rate 
of the population, . μ represents the natural death rate of the population, . β is 
the transmission rate between compartments S and I , . γ is the recovered rate of 
infectious individuals, . α is the disease-caused death rate of infectious individuals, 
.τ ≥ 0 is the incubation time, and .βe−μτS(t)G(I (t − τ)) is the force of infection. 
The term .e−μτ denotes the survival of vector population in which the time taken 
to become infectious is . τ . .B1(t) and .B2(t) are mutually independent standard 
Brownian motions defined on the probability space .

(
�,F, P

)
with a filtration 

.{Ft }t≥0, and . σ1 and . σ2 denote the intensities of the white noise. The parameters 
are all supposed to be positive. The initial conditions of system (11.1) are set as 
follows: 

.

⎧
⎨

⎩

S(θ) = ϕ1(θ), I (θ) = ϕ2(θ),

ϕi(θ) ≥ 0, θ ∈ [−τ, 0], i = 1, 2,

(ϕ1, ϕ2) ∈ C,

(11.2) 

where C denotes the Banach space .C([−τ, 0]; R2+) of continuous functions map-
ping .[−τ, 0] into . R2+. The threshold value of the epidemic is an important concept 
in mathematical epidemiology and is also important when studying properties of 
the extinction time [12]. However, in [11], the authors did not accurately point out 
the threshold whose value can completely determine the dynamics of the considered 
model. In this chapter, we derive the threshold parameters of system (11.1) and the 
threshold parameters of its corresponding SIRS epidemic model. 

We organize the remainder of this chapter as follows. We establish the threshold 
parameter of model (11.1) that will allow the disease to fade out exponentially 
in Sect. 11.2. In Sect. 11.3, we derive the threshold parameter of model (11.1) for  
the disease being persistent in mean. In Sect. 11.4, we extend the model (11.1) 
to a stochastic SIRS epidemic model, and by using the method stated in previous 
sections, we establish the threshold parameters. In Sect. 11.5, this chapter ends with 
a conclusion.



11 Threshold Parameters of Stochastic SIR and SIRS Epidemic Models with. . . 283

11.2 Extinction of the Epidemic Model (11.1) 

Liu et al. [11] have shown that the model (11.1) admits a unique positive solution 
.(S(t), I (t)) on .t > 0 and that this solution remains in .R2+ with probability one. We 
now focus on establishing the threshold of (11.1). We assume that the function G is 
continuous on .[0,∞) and is a twice differentiable function satisfying the following 
hypotheses: 

.(H1) .G(I) ≥ 0 with equality if and only if .I = 0. 

.(H2) .G
′
(I ) ≥ 0. 

.(H3) .G
′′
(I ) ≤ 0. 

Remark 11.2.1 From biological view, the three hypotheses are reasonable: 

– Hypothesis .(H1) means that if there are no infectives, then obviously there is no 
disease transmission. 

– Hypothesis .(H2) expresses the fact that increasing the number of the infective 
hosts increases the chance for the occurrence of new infections. 

– Hypothesis .(H3) describes the fact that susceptible individuals take measures to 
reduce contagion if the epidemics breaks out. 

We first start by preparing some previous results. 

Lemma 11.2.1 (See [13]) Let .U(t) and .W(t) be two continuous adapted increas-
ing processes on .t ≥ 0 with .U(0) = W(0) = 0 a.s. Let .M(t) be a real-value 
continuous local martingale with .M(0) = 0 a.s. Let . X0 be a nonnegative .F0-
measurable random variable such that .EX0 < ∞. Define . X(t) = X0 + U(t) −
W(t) + M(t) for all .t ≥ 0. If  .X(t) is nonnegative, then . lim

t→∞ U(t) < ∞ implies 

. lim
t→∞ W(t) < ∞, . lim

t→∞ X(t) < ∞, and .−∞ < lim
t→∞ M(t) < ∞ hold with 

probability one. �	
Lemma 11.2.2 (See [14]) Let .M(t), t ≥ 0, be a local martingale vanishing at time 
0 and define 

. ρM(t) :=
∫ t

0

d
〈
M,M

〉
(s)

(1 + s)2 , t ≥ 0,

where .
〈
M,M

〉
(t) is Meyer’s angle bracket process. Then . lim

t→∞
M(t)

t
= 0 a.s. 

provided that . lim
t→∞ ρM(t) < ∞. �	

We now start the study of the model (11.1). 

Lemma 11.2.3 Assume that .(S(t), I (t)) be the solution of system (11.1) with initial 
value given by (11.2), and then 

. lim sup
t→∞

(S(t) + I (t)) < ∞, a.s.
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Proof From (11.1), we get 

. d(S(t) + I (t)) = (� − μ(S(t) + I (t)) − (γ + α)I + σ1SdB1(t) + σ2IdB2(t).

(11.3) 
The solution of Eq. (11.3) satisfies the following inequality: 

. S(t) + I (t) = �

μ
+

(

S(0) + I (0) − �

μ

)

e−μt

− (α + γ )

∫ t

0
e−μ(t−s)I (s)ds + M(t),

≤ �

μ
+

(

S(0) + I (0) − �

μ

)

e−μt + M(t),

where .M(t) = σ1

∫ t

0
e−μ(t−k)S(k)dB1(k) + σ2

∫ t

0
e−μ(t−k)I (k)dB2(k) is a con-

tinuous local martingale with .M(0) = 0 a.s. 
Define .X(t) = X(0) + U(t) − W(t) + M(t), with .X(0) = S(0) + I (0), . U(t) =

�

μ
(1 − e−μt ), and .W(t) = (S(0) + I (0))(1 − e−μt ) for all .t ≥ 0. 

It follows that .S(t) + I (t) ≤ X(t) a.s. Moreover, .U(t) and .W(t) are continuous 
adapted increasing processes on .t ≥ 0 with .U(0) = W(0) = 0. In addition, . X(t)

is clearly nonnegative and . lim
t→∞ U(t) = �

μ
< ∞. Then, from Lemma 11.2.1, we  

deduce that . lim
t→∞ X(t) < ∞, which implies .lim sup

t→∞
(S(t) + I (t)) < ∞. �	

Lemma 11.2.4 Assume that .(S(t), I (t)) be the solution of system (11.1) with initial 
value given by (11.2); then 

. lim
t→∞

1

t

∫ t

0
σ1S(ξ)dB1(ξ) = 0 a.s; lim

t→∞
1

t

∫ t

0
σ2I (ξ)dB2(ξ) = 0 a.s.

�	
Proof Let denote 

. M1(t) = σ1

∫ t

0
S(ξ)dB1(ξ); M2(t) = σ2

∫ t

0
I (ξ)dB2(ξ).

Compute that .
〈
M1,M1

〉
(t) = σ 2

1

∫ t

0
S2(ξ)dξ and .

〈
M2,M2

〉
(t) = σ 2

2

∫ t

0
I 2(ξ)dξ . 

Then, . lim
t→∞ ρM1(t) = lim

t→∞ σ 2
1

∫ t

0

S2(ξ)dξ

(1 + ξ)2 ≤ σ 2
1 sup

t≥0
{S2(t)}, and from 

Lemma 11.2.3, we get .σ 2
1 sup

t≥0
{S2(t)} < ∞. Thus, . lim

t→∞ ρM1(t) < ∞, and by
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Lemma 11.2.2, it follows that . lim
t→∞

M1(t)

t
= 0 a.s. By the same technique, we 

prove that . lim
t→∞

M2(t)

t
= 0 a.s. 

In the remaining part of this chapter, we set .
〈
y(t)

〉 = 1

t

∫ t

0
y(s)ds. 

Theorem 11.2.1 Let .(S(t), I (t)) be the solution of system (11.1) with initial value 
given by (11.2). Let define 

. RS
0 = 1

μ + γ + α

(
β�G

′
(0)

e−μτ

μ
− σ 2

2

2

)
.

If .RS
0 < 1, then 

. lim sup
t→∞

ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) < 0 a.s.

�	
In addition, 

. lim
t→∞

〈
S(t)

〉 = �

μ
. (11.4) 

Proof By summing the two equations of (11.1) and integrating, we get 

. 
S(t) + I (t) − S(0) − I (0)

t
− M1(t)

t
− M2(t)

t

= � − μ
〈
S(t)

〉 − (μ + γ + α)
〈
I (t)

〉
.

Therefore, 

. 
〈
S(t)

〉 = 1

μ

[
�+ M1(t)

t
+ M2(t)

t
− S(t) + I (t) − S(0) − I (0)

t
−(μ+γ +α)

〈
I (t)

〉]
.

(11.5) 
On the other hand, applying Itô’s formula to the second equation of (11.1) yields 

. d ln(I (t)) =
[

βe−μτS(t)
G(I (t − τ))

I (t)
−

(

μ + γ + α + σ 2
2

2

)]

dt + σ2dB2(t).

(11.6) 
If assumption H2 holds, then 

.d ln(I (t)) ≤ [
βG

′
(0)e−μτS(t) −

(

μ + γ + α + σ 2
2

2

)
]
dt + σ2dB2(t),
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and by integration, we get 

.
ln(I (t)) − ln(I (0))

t
≤ βG

′
(0)e−μτ

〈
S(t)

〉−
(

μ+γ +α+σ 2
2

2

)

+σ2B2(t)

t
. (11.7) 

Substituting (11.5) into (11.7), we obtain 

. 
ln I (t)

t
≤ β�G

′
(0)

e−μτ

μ
− σ 2

2

2
− (μ + γ + α) + βG

′
(0)

e−μτ

μ

[M1(t)

t
+ M2(t)

t

−(μ + γ + α)
〈
I (t)

〉 − S(t) + I (t) − S(0) − I (0)

t

]

+σ2B2(t)

t
+ ln I (0)

t
. (11.8) 

From inequality (11.8), we derive 

. 
ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) + βG
′
(0)

e−μτ

μ

[M1(t)

t
+ M2(t)

t

− (μ + γ + α)
〈
I (t)

〉 − S(t) + I (t) − S(0) − I (0)

t

]

+ σ2B2(t)

t
+ ln I (0)

t
.

(11.9) 

Further, from the law of large number, we have 

. lim
t→∞

B2(t)

t
= 0. (11.10) 

Moreover, 

. lim
t→∞

[M1(t)

t
+ M2(t)

t
− S(t) + I (t) − S(0) − I (0)

t

]
= 0, (11.11) 

due to Lemmas 11.2.3 and 11.2.4. 
In view of (11.10) and (11.11), taking the limit superior on both sides of (11.8), 

if .RS
0 < 1 and by the fact that .I (t) > 0, we get 

. lim sup
t→∞

ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) < 0 a.s.,

which implies that 

. lim
t→∞ I (t) = 0 a.s. (11.12)
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We now verify (11.4). From (11.5), (11.11), and (11.12), we obtain 

. lim
t→∞

〈
S(t)

〉 = �

μ
a.s.

This completes the proof. �	

11.3 Persistence in Mean of the Epidemic Model (11.1) 

In this section, we derive a sufficient condition for the persistence in mean of the 
epidemic model (11.1). For that, we start by defining the notion of persistence in 
mean. 

Definition 11.3.1 ([10]) System (11.1) is said to be persistence in the mean if 

. lim inf
t→∞

〈
I (t)

〉
> 0 a.s.

�	
The following previous results will be used to attend our goal. 

Proposition 11.3.1 ([15]) .G
′
(I ) ≤ G(I)

I
. �	

Lemma 11.3.1 (See [16]) Let .f ∈ C([0,∞), (0,∞)). If there exist positive 
constants . λ0 and . λ such that 

. ln f (t) ≥ λt − λ0

∫ t

0
f (s)ds + F(t), a.s.

for all .t ≥ 0, where .F ∈ C[[0,∞), (−∞,∞)] and . lim
t→∞

F(t)

t
= 0 a.s., 

then 

. lim inf
t→∞

〈
f (t)

〉 ≥ λ

λ0
a.s.

�	
Lemma 11.3.2 (See [16]) Let .f ∈ C([0,∞), (0,∞)). If there exist positive 
constants . λ0, . λ such that 

. ln f (t) ≤ λt − λ0

∫ t

0
f (s)ds + F(t), a.s.

for all .t ≥ 0, where .F ∈ C([0,∞), (−∞,∞)) and . lim
t→∞

F(t)

t
= 0 a.s.,
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then 

. lim sup
t→∞

〈
f (t)

〉 ≤ λ

λ0
a.s.

�	
We now state the result of this section as follows. 

Theorem 11.3.1 Let .(S(t), I (t)) be the solution of system (11.1) with initial value 
given by (11.2). Define 

. R̃S

0 = 1

μ + γ + α

(
β�G

′
(

�

μ

)
e−μτ

μ
− σ 2

2

2

)
.

If .R̃S

0 > 1, then 

. lim inf
t→∞

〈
I (t)

〉 ≥ μeμτ

βG
′
(

�

μ

) (R̃S

0 − 1) a.s, lim sup
t→∞

〈
I (t)

〉 ≤ μeμτ

βG
′
(0)

(RS
0 − 1) a.s.

�	
Proof From (11.6) and by using Proposition 11.3.1, we obtain 

. d ln(I (t)) ≥
[

βe−μτS(t)G
′
(I ) −

(

μ + γ + α + σ 2
2

2

)]

dt + σ2dB2(t).

Note that .S ≤ �

μ
, and if condition .(H3) is satisfied, then 

. d ln(I (t)) ≥
[

βG
′
(

�

μ

)

e−μτS(t) −
(

μ + γ + α + σ 2
2

2

)]

dt + σ2dB2(t),

which yields after integration 

. 
ln(I (t))

t
≥ βG

′(�

μ

)
e−μτ

〈
S(t)

〉 − (
μ + γ + α + σ 2

2

2

) + ln(I (0))

t
+ σ2B2(t)

t
.

(11.13) 
By substituting (11.5) into (11.13), we get 

.
ln I (t)

t
≥ β�G

′(�

μ

)e−μτ

μ
− σ 2

2

2
− (μ + γ + α) + βG

′
(

�

μ

)
e−μτ

μ

[M1(t)

t

+M2(t)

t
− (μ + γ + α)

〈
I (t)

〉 − S(t) + I (t) − S(0) − I (0)

t

]

+σ2B2(t)

t
+ ln I (0)

t
.
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This inequality can be rewritten as 

. 
ln I (t)

t
≥ (μ + γ + α)(R̃S

0 − 1) − βG
′
(

�

μ

)
e−μτ

μ
(μ + γ + α)

〈
I (t)

〉 + F(t)

t
,

where 

. F(t) = βG
′
(

�

μ

)
e−μτ

μ

[
M1(t) + M2(t) − S(t) − I (t) + S(0) + I (0)

]

+ σ2B2(t) + ln I (0).

From Lemma 11.3.1, we have  

. lim inf
t→∞

〈
I (t)

〉 ≥ μeμτ

βG
′(�

μ

)
(R̃S

0 − 1).

On the other hand, inequality (11.9) can be rewritten as 

. 
ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) − βG
′
(0)

e−μτ

μ
(μ + γ + α)

〈
I (t)

〉 + F(t)

t
.

Therefore, from Lemma 11.3.2, we derive 

. lim sup
t→∞

〈
I (t)

〉 ≤ μeμτ

βG
′
(0)

(RS
0 − 1).

This completed the proof. �	
Remark 11.3.1 The value .RS

0 < 1 will lead to the extinction of the epidemic, while 

the value .R̃S

0 > 1 will lead to the disease prevailing. We have .RS
0 ≥ R̃S

0 with equality 
if the incidence function .G(I) = I , that is, when the mass action incidence function 
is considered. �	

11.4 The Threshold of the Stochastic SIRS Epidemic Model 

Now, we will study an extension of the model (11.1). We are not interested on 
the existence of the unique positive solution for the considered model since it can 
be proved by the standard process (see [5, 11]). We consider that the recovered 
individuals lose immunity and return to the susceptible class at rate . ε, and then 
(11.1) takes the form
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. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t) = (
� − μS(t) − βe−μτS(t)G(I (t − τ)) + εR(t)

)
dt + σ1S(t)dB1(t),

dI (t) = (
βe−μτS(t)G(I (t − τ)) − (μ + γ + α)I (t)

)
dt + σ2I (t)dB2(t),

dR(t) = (
γ I (t) − (μ + ε)R(t)

)
dt + σ3R(t)dB3(t).

(11.14) 

By summing the three equations of (11.14) and after integration, we get 

. 
S(t) + I (t) + R(t) − S(0) − I (0) − R(0)

t
− M1(t)

t
− M2(t)

t
− M3(t)

t
= �

−μ
〈
S(t)

〉 − (μ + γ + α)
〈
I (t)

〉 − μ
〈
R(t)

〉
,

(11.15) 

where .M3(t) = σ3

∫ t

0
R(ξ)dB3(ξ). 

Moreover, from the last equation of (11.14), we obtain 

.
〈
R(t)

〉 = 1

μ + ε

[

γ
〈
I (t)

〉 − R(t) − R(0)

t
+ M3(t)

t

]

. (11.16) 

We state the following result. 

Theorem 11.4.1 Let .(S(t), I (t), R(t)) be the solution of system (11.14) with 
positive initial value. 

(1) If .RS
0 < 1, then . lim sup

t→∞
ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) < 0 a.s.

(2) If .R̃S

0 > 1, then 

. lim sup
t→∞

〈
I (t)

〉 ≤ (μ + γ + α)eμτ

βG
′
(0)

(μ + γ + α

μ
+ γ

μ + ε

) (RS
0 − 1) a.s,

and .lim inf
t→∞

〈
I (t)

〉 ≥ (μ + γ + α)eμτ

βG
′(�

μ

)(μ + γ + α

μ
+ γ

μ + ε

) (R̃S

0 − 1) a.s.

�	
Proof Equation (11.15) shows that 

. 
〈
S(t)

〉 = 1

μ

[
� + M1(t)

t
+ M2(t)

t
+ M3(t)

t

−S(t) + I (t) + R(t) − S(0) − I (0) − R(0)

t

−(μ + γ + α)
〈
I (t)

〉 − μ
〈
R(t)

〉]
. (11.17)
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Plugging (11.16) into (11.17) gives  

. 
〈
S(t)

〉 = 1

μ

[
� + M1(t)

t
+ M2(t)

t
+ ε

μ + ε

M3(t)

t

−S(t) + I (t) − S(0) − I (0)

t
− (μ + γ + α + γμ

μ + ε
)
〈
I (t)

〉

− ε

μ + ε

R(t) − R(0)

t

]
. (11.18) 

Since the second equations of systems (11.1) and (11.14) are the same, then 
equations (11.7) and (11.13) are also satisfied for system (11.14). 

Replacing .
〈
S(t)

〉
by its expression in (11.7) gives  

. 
ln I (t)

t
≤ β�G

′
(0)

e−μτ

μ
− σ 2

2

2
− (μ + γ + α) + βG

′
(0)

e−μτ

μ

[M1(t)

t
+ M2(t)

t

+ ε

μ + ε

M3(t)

t
− (μ + γ + α + γμ

μ + ε
)
〈
I (t)

〉

−S(t) + I (t) − S(0) − I (0)

t
− ε

μ + ε

R(t) − R(0)

t

]

+σ2B2(t)

t
+ ln I (0)

t
.

That is 

. 
ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) + βG
′
(0)

e−μτ

μ

[M1(t)

t
+ M2(t)

t
+ ε

μ + ε

M3(t)

t

−(μ + γ + α + γμ

μ + ε
)
〈
I (t)

〉 − S(t) + I (t) − S(0) − I (0)

t

− ε

μ + ε

R(t) − R(0)

t

]
+ σ2B2(t)

t
+ ln I (0)

t
.

(11.19) 

As in Sect. 11.2, taking the limit superior on both sides of (11.19) yields 

. lim sup
t→∞

ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) < 0 a.s.,

which completes the result 1). 
Replacing .

〈
S(t)

〉
in inequality (11.13) gives
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. 
ln I (t)

t
≥ β�G

′
(
�

μ
)
e−μτ

μ
− σ 2

2

2
− (μ + γ + α) + βG

′
(0)

e−μτ

μ

[M1(t)

t
+ M2(t)

t

+ ε

μ + ε

M3(t)

t
− (μ + γ + α + γμ

μ + ε
)
〈
I (t)

〉

−S(t) + I (t) − S(0) − I (0)

t
− ε

μ + ε

R(t) − R(0)

t

]

+σ2B2(t)

t
+ ln I (0)

t
,

which is equivalent to 

. 
ln I (t)

t
≥ (μ + γ + α)(R̃S

0 − 1) − βG
′
(

�

μ

)
e−μτ

μ

(

μ + γ + α + γμ

μ + ε

)
〈
I (t)

〉

+E(t)

t
,

where 

. E(t) = βG
′
(

�

μ

)
e−μτ

μ

[
M1(t) + M2(t) + ε

μ + ε
M3(t) − S(t) − I (t)

+S(0) + I (0) − ε

μ + ε
(R(t) − R(0))

]
+ σ2B2(t) + ln I (0).

From Lemma 11.3.1, we obtain 

. lim inf
t→∞

〈
I (t)

〉 ≥ (μ + γ + α)eμτ

βG
′
(

�

μ

)(μ + γ + α

μ
+ γ

μ + ε

) (R̃S

0 − 1).

Inequality (11.19) shows that 

. 
ln I (t)

t
≤ (μ + γ + α)(RS

0 − 1) − βG
′
(0)

e−μτ

μ

(

μ + γ + α + γμ

μ + ε

)
〈
I (t)

〉

+E(t)

t
.

Using Lemma 11.3.2, we get 

. lim sup
t→∞

〈
I (t)

〉 ≤ (μ + γ + α)eμτ

βG
′
(0)

(μ + γ + α

μ
+ γ

μ + ε

) (RS
0 − 1) a.s.

This completed the proof. �	
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11.5 Conclusion 

In this chapter, we considered two stochastic delayed SIR and SIRS epidemic 
models. For both models, a nonlinear incidence function that includes some special 
incidence rates is considered. We established sufficient conditions for extinction and 
persistence in the mean of the epidemic for each model. The thresholds that allow 
extinction and persistence are obtained. We found that, for each epidemic model, 
these thresholds are equal when the mass action incidence function is considered, 
that is when .G(I) = I . 
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Chapter 12 
Weak Solutions for Nonlinear 
Boltzmann–Poisson System Modelling 
Electron–Electron Interactions 

Mohamed Lazhar Tayeb 

Abstract The existence of weak solutions of an initial boundary-value problem of 
a Boltzmann–Poisson model is studied. A dynamics describing electron–electron 
and electron–impurity interactions is considered. A fixed-point procedure is used to 
construct a weak solution for a regularized system, using the compactness properties 
of dynamics. Useful uniform estimates are established and used to carry out the 
proof of existence of the unregularized system. 

Keywords Kinetic transport equations · Semiconductors · Entropy dissipation · 
Velocity-averaging lemma · Free energy 

12.1 Introduction 

Our aim is to analyse the existence of solutions for a nonlinear Boltzmann–Poisson 
system. Let .f ≡ f (t, x, v) be a distribution function depending on the time variable 
t and the phase variable, .(x, v), belonging to a domain .� = ω × R

d , where the 
dimension .d ∈ {1, 2, 3} and . ω is a bounded subset of . R

d . The dynamics of collisions 
we considered in the present analysis takes into account the electron–impurity and 
electron–electron interactions [16]. Electron–impurity interactions are elastic, given 
by 

.Q0(f )(v) =
∫

Sd−1
σ0(v, |v|w)(f (|v|w) − f (v))dw, (12.1) 

where .Sd−1 is the unit sphere of .Rd and . σ0 is the cross-section of electron– 
impurity collisions, assumed to satisfy the detailed balance principle detailed later 
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on. Electron–electron interactions are trilinear, preserve mass, momentum, and 
kinetic energy, and satisfy the Pauli exclusion principle: 

. Q1(f )(v) =
∫
R3d

σ1(v, v1, v
′, v′

1)δ(v + v1 − v′ − v′
1)δ(|v|2 + |v1|2 − |v′|2 − |v′

1|2)

× [
f ′f ′

1(1 − f )(1 − f1) − ff1(1 − f ′)(1 − f ′
1)

]
dv1dv′dv′

1,

(12.2) 

where 

. f = f (v), f1 = f (v1), f ′ = f (v′), f ′
1 = f (v′

1),

and . δ is Dirac distribution. We notice that the presence of the product term . δ(v +
v1 − v′ − v′

1)δ(|v|2 + |v1|2 − |v′|2 − |v′
1|2) means that the first and second momenta 

(in velocity) are conserved during collisions. Indeed, if v and . v1 are the velocities 
of two particles before collisions and . v′ and . v′

1 their post-collisional velocities, then 
the conservation can be expressed by the following relation: 

.

⎧⎨
⎩

v + v1 = v′ + v′
1,

|v|2 + |v1|2 = |v′|2 + |v′
1|2

. (12.3) 

Using (12.3), we have 

.v′ = v − (v − v1 · w)w, v′
1 = v1 + (v − v1 · w)w, (12.4) 

where w belongs to .Sd−1 and .(v − v1) · w) is the inner product between .v − v1 and 
. w. The function . σ1 is the cross-section associated with electron–electron collisions, 
depending on .|v − v1| and .(v − v1 · w) [31]. By writing 

. σ1(v, v1, v
′, v′

1) := B(v − v1, w),

we can rewrite .Q1 as follows: 

. Q1(f )(v) =
∫ ∫

Rd×Sd−1
B(v − v1, w)

[
f ′f ′

1(1 − f )(1 − f1)

−ff1(1 − f ′)(1 − f ′
1)

]
dv1dw,

where .v, v1, v′, and . v′
1 satisfy (12.4) [31, 45].
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The transport equation satisfied by the distribution function f is the following 
Boltzmann equation: 

.∂tf + v · ∇xf + E · ∇vf = (Q0 + Q1)(f ) = Q(f ). (12.5) 

The electrostatic field is self-consistent solving the Poisson equation 

.

⎧⎨
⎩

E = −∇x�,

−�x� = 	 =
∫
Rd

f dv
. (12.6) 

We assume that the initial value of f is given, its boundary satisfies the condition 
of specular reflection on the boundary .∂� = ∂ω ×R

d , and the potential . � satisfies 
the Dirichlet condition: 

.f (t = 0, x, v) = f0(x, v). (12.7) 

f (t,  x,  ̄v) = f (t, x, v), (x, v) ∈ ∂�, . (12.8)

�(t, x) = �0(t, x), x ∈ ∂ω, (12.9) 

where .v̄ = v − 2(v · n(x))n(x) and .n(x) is the unit normal vector to .∂ω at the 
position x. 

12.1.1 Assumptions and Notations 

We assume that the cross-section . σ0 of electron–impurity collisions satisfies the 
detailed balance principle [13, 14, 16]: 

. (H1)

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ σ0(v, |v|w) = σ0(|v|w, v), ∀(v,w) ∈ R
d × Sd−1,

∫
Sd−1

σ0(v, |v|w)dw ≤ C0, ∀v ∈ R
d ,

and the cross-section B of electron–electron collisions satisfies 

.(H2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B ∈ L1(Rd × Sd−1),

B(z,w) depends only on |z| and |(z · w)|,

lim|z|→0
B(z,w) = 0, lim|(z·w)|→0

B(z,w) = 0,

∀R > 0, |z| 	 1,

∫
|v−z|≤R

∫
Sd−1

B(v,w)dwdv = o(1 + |z|2).
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The initial data . f0 and the boundary data . �0 satisfy 

. (H3)

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ f0 ≤ 1,

∫
�

(1 + |v|2)f0(x, v)dxdv < +∞,

�0 ≥ 0, �0 ∈ L∞
loc(R

+; W 2,∞(ω)) and ∂t�0 ∈ L∞
loc(R

+; L∞(ω)).

In all the sequel, .f, f1, f ′, and .f ′
1 denote, respectively, the functions 

.f (v), f (v1), f (v′), and .f (v′
1). 

The phase space and the incoming and outgoing parts are denoted by 

. 

� = ω × R
d , 
 = ∂ω × R

d ,


± = {(x, v) ∈ �/ ± v · n(x) > 0},
dσx is the elementary measure on the surface ∂ω.

The charge and current densities and the kinetic and potential energies stand as 

.

	(t, x) =
∫
Rd

f dv, j (t, x) =
∫
Rd

vf (t, x, v)dv,

K(t) =
∫

�

|v|2f (t, x, v)dxdv, V (t) =
∫

ω

	(t, x)�(t, x)dx.
(12.10) 

By extending the boundary data . �0 in a harmonic way on . ω̄ (denoted also .�0): 

. E0 = −∇x�0, − ��0 = 0,

we can rewrite our Boltzmann–Poisson system as follows: 

. (BP )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v · ∇xf + (E + E0) · ∇vf = (Q0 + Q1)(f ) = Q(f ),

E = −∇x�,

−�x� = 	 =
∫
Rd

f dv,

f (t = 0, x, v) = f0(x, v),

f (t, x, v̄) = f (t, x, v), (x, v) ∈ ∂�,

�(t, x) = 0, x ∈ ∂ω,

where 

.v̄ = v − 2(v · n(x))n(x),
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Q0(f )(v) =
∫

Sd−1 
σ0(v, |v|w)(f (|v|w) − f (v))dw, 

Q1(f )(v) =
∫
Rd×Sd−1 

B(v − v1, w)[f ′f ′
1(1 − f )(1 − f1) 

−ff1(1 − f ′)(1 − f ′
1)]dv1dw. 

Our main result is the following: 

Theorem 12.1.1 Assume that .d ≤ 3 and (H1). −(H3) are satisfied. Then, the 
Boltzmann–Poisson system (BP) has a weak solution .(f,E) satisfying 

. 

f ∈ L∞(R+; L1 ∩ L∞(�)), 0 ≤ f ≤ 1, ‖f (t)‖L1(�) = ‖f0‖L1(�), a.e.

E ∈ L∞
loc(R

+; [W 1, d+2
d (ω)]d),

t �→
∫

�

|v|2f (t, x, v)dxdv+
∫

ω

|E(t, x)|2dx +2
∫

ω

	(t, x)ϕ0(x, t)dx ∈ L∞
loc(R

+).

The analysis of the existence of solution is detailed as follows. The next section 
is devoted to the properties of the collision operators .Q0 and .Q1 (Sect. 12.2). Then, 
we recall some basic properties of the Vlasov equation posed on the free space 
with a given and regular potential. These properties are useful to apply to the 
penalization method due to S. Mischler [49] constructs a solution satisfying the 
specular reflection boundary condition, giving a solution of our Boltzmann equation 
with prescribed potential. In Section 12.4.2, useful uniform estimates on .	, j and 
K are proved. These estimates are enough to prove the stability results obtained by 
P.-L. Lions [45], based on the fact that .Q1 is a pseudo-differential operator and a 
velocity-averaging lemma (Sect. 12.4). Section 12.6 is devoted to the proof of the 
existence for the coupled setting. 

12.2 Properties of the Dynamics 

12.2.1 Continuity of Q0 

Lemma 12.2.1 The operator Q0 is continuous on Lp (Rd ) for all p ∈ [1,∞]. ��
Proof of Lemma 12.2.1 This result is based on the co-area formula [32]. Let us 
consider the function ε : Rd �→ R+ ∈ C2(Rd ) with a finite number of critical 
points. By denoting dSr the unit surface: 

.Sr := {v ∈ R
d/ε(v) = r}
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and N(r)  := {v ∈ Rd /ε(v) = r}, then 

. N(r) =
∫

{v/ε(v)=r}
dNr(v) and dNr(v) = dSr(v)

|∇vε(v)| ,

and if f ∈ L1(Rd ), then 

.

∫
Rd

f dv =
∫ +∞

0

{∫
{v∈Rd / ε(v)=r}

f (v)dNr

}
dr. (12.11) 

As a consequence, f ∈ L∞(Rd ) implies for almost every R >  0, f|SR ∈ 
L∞(SR, dNR) and 

.‖f|SR
‖L∞(SR) ≤ ‖f ‖L∞(Rd ). (12.12) 

By denoting 

.χ0(v) =
∫

Sd−1
σ0(v, |v|w)dw, (12.13) 

we can rewrite Q0 as follows: 

. Q0(f )(v) =
∫

Sd−1
σ0(v, |v|w)f (|v|w)dw − χ0(v)f (v).

Using the assumption (H1) and the fact that χ0 is bounded, we get the continuity of 
Q0 on L∞. Indeed, 

. 0 ≤ χ0(v) ≤ C0 and ‖Q0(f )‖L∞(Rd ) ≤ 2C0‖f ‖L∞(Rd ).

By the same argument, using the co-area formula (12.11), we can prove the 
continuity of Q0 on L1(Rd ) : 

. 

∫
Rd

|Q0(f )|dv ≤ 2‖χ0‖L∞‖f ‖L1 .

The continuity of Q0 on Lp is deduced using interpolation argument due to M. 
Riesz-Thorin and Marcinkiewicz (see [18], page 77).
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12.2.2 Entropy Inequalities and Invariants of Collisions 

Lemma 12.2.2 

. 

∫
Rd

Q0(f )gdv = −1

2

∫
Rd×Sd−1

σ0(v, |v|w)(f (|v|w) − f (v))(g(|v|w) − g(v))dvdw,

∫
Rd

Q1(f )gdv = −1

4

∫
R2d×Sd−1

B(v − v1, w)[g′ + g′
1 − g − g1]

{f ′f ′
1(1 − f )(1 − f1) − ff1(1 − f ′)(1 − f ′

1)}dvdv1dw,

where v′ = v − (v − v1.w)w and v′
1 = v1 + (v − v1.w)w. In particular: 

Lemma 12.2.3 H-theorem 
For all increasing function H , 

. 

∫
Rd

Q0(f )H(f )dv ≤ 0,

∫
Rd

Q1(f )Log
f

1 − f
dv ≤ 0, ∀ f ∈]0, 1[.

Lemma 12.2.4 Invariants of collision and equilibrium state 

.

∫
Rd

Q0(f )

(
1

g(|v|2)
)

dv = 0 (12.14) 

and 

.

∫
Rd

Q1(f )

⎛
⎝ 1

v

|v|2

⎞
⎠ dv = 0. (12.15) 

Moreover, 

.(Q0 + Q1)(f ) = 0 ⇔ ∃ μ, T / f (v) = 1

1 + exp |v|2/2−μ(x,t)
T (x,t)

. (12.16) 

12.3 Free-Space Vlasov Equation 

Some basic results related to the Vlasov equation for .(x, v) ∈ R
2d (12.17) are used 

to construct a solution satisfying the reflexion boundary condition. To do this, we
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expect some estimates on the trace of the solution of the Vlasov equation to give a 
sense of all solution satisfying (12.8). 

Let .E ∈ L1
loc(R

d × R
+), .λ ∈ L∞

loc(R
2d × R

+), and .G ∈ L∞
loc(R

2d × R
+). We  

consider 

.�Ef +λf = ∂tf +v.∇xf +E.∇vf +λ(x, v, t)f = G, (x, v) ∈ R
2d . (12.17) 

Definition 12.3.1 We say that a function .f ∈ L1
loc(R

2d × R
+) is a weak solution 

of (12.17)–(12.7) if for all . ψ ∈ C1
c(R

2d × R
+),

.

∫
R+×R2d

{f �Eψ − λψ) + Gψ} +
∫
R2d

f0ψ(0, x, v) = 0. (12.18) 

We notice that the concept of weak solution is related to the sense we give to 
its trace on the boundary, which depends on the regularity of its coefficients. Such 
a problem was studied for example of the case of free transport (.E = 0), for the 
netronics (.E = 0 and .v ∈ Sd−1) by V.I. Agoshkov [2], M. Cessenat [22], L. 
Arkeryd, C. Cercignani [4] and few years ago by S. Mischler in the context of the 
Boltzmann equation. The case of Lipschitz force field was analysed by C. Bardos 
[7] and N. B. Abdallah [12] using the characteristics: .z = (x, v) and . Z = (X, V )

satisfying 

.

⎧⎨
⎩

dZ

ds
(s; t, z) = (V (s; t, z), E(t,X(s; t, z))),

Z(t; t, z) = z.
(12.19) 

This implies that the solution of (12.17)–(12.7) is given by: 

Theorem 12.3.2 ((Existence) [7, 49]) Let .p ∈ [1,∞], .f0 ∈ Lp(R2d), . E ∈
W 1,∞(Rd × [0, T ]), .G ∈ L1

loc(R
+; Lp(R2d)), and .λ ∈ L

p
loc(R

2d ×R
+) . Then the 

solution of (12.17)–(12.7) reads as 

.

f (t, z) = f0(Z(0; t, z))exp

{
−

∫ t

0
λ(s, Z(s; t, z))ds

}

+
∫ t

0
G(s, Z(s; t, z))exp

{
−

∫ t

s

λ(s′, Z(s′; t, z))ds′
}

ds

(12.20) 

and satisfies the weak maximum principle 

. G ≥ 0 & f0 ≥ 0, which implies f (t, x, v) ≥ 0. (12.21) 

Moreover, .λ ∈ L∞(Rd × [0, T ]) and .λ ≥ λ0; then .f ∈ L∞(0, T ; Lp(R2d)) and 

. sup
s∈[0,t]

‖f (s)‖Lp(R2d ) ≤ ‖f0‖Lp(R2d )e
−λ0t +

∫ t

0
‖G(s)‖Lp(R2d )e

−λ0(t−s)ds.

(12.22)
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12.3.1 Renormalized Solution 

This concept of solution also called weak–weak solution is introduced to give a 
sense for PDEs presenting coefficients without enough regularity [24, 25]. It consists 
in considering an equation satisfied only by some .β(f ) for a class of functions . β, 
generally, in .W

1,∞
loc . The definition of renormalized solution for the Vlasov equation 

is given by: 

Definition 12.3.2 Let .f ∈ L1
loc(R

2d × R
+). We say  f is a renormalized solution 

for the initial value problem (12.17)–(12.7) if for all .β ∈ W 1,∞(R), the function is 
a weak solution of 

. 

⎧⎨
⎩

�Eβ(f ) = β ′(f )(G − λf ),

β(f )(t = 0) = β(f0).

We notice that we need to deal with this concept of solution if the regularity of f 
and E is not enough to deal with .E · ∇vψf in .L1

loc. The functions .β ∈ L∞
loc and 

.E ∈ L1
loc. This is enough to define .E · ∇vψβ(f ). S. Mischler explained twenty 

years ago the relation with weak and weak–weak solution for a Boltzmann equation 
associated with a quadratic collision operator [50]. 

Theorem 12.3.3 ([49]) 

1. Let .p ∈ [1,∞[. 
Let .f ∈ L∞

loc(R
+; L

p
loc(R

2d)) be a solution of (12.17)–(12.7). Then, for all 
.t ∈ [0, T ], .f (t, .) ∈ L

p
loc(R

2d) and 

. f ∈ C(R+; L1
loc(R

2d))

and for all open and regular subsets . O of . R2d , the trace of . γf is the unique 
function 

. γf ∈ L1
loc(∂O, (v.n(x))2dσxdvds)

satisfying the following Green formula: 

.

∫ t1

t0

∫
O
{f (�Eψ − λψ) + Gψ}dxdvdt

=
[∫

O
f (t, .)ψ

]t1

t0

+
∫ t1

t0

∫
∂O

γf ψ(v.n(x))dσxdvdt

(12.23) 

for all .t0, t1, for all .ψ ∈ D(R2d × R
+) such that .ψ = 0 on .
0 × R

+, . (
0 =

 ∩ {v · n(x) = 0}).
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2. Let .p = +∞. 
Let .f ∈ L∞

loc(R
2d × R

+), a weak solution of (12.17)–(12.7). Then .f (t, .) is 
defined for all t , and . γf is given by the formula (12.23) and satisfies 

. f ∈ C(R+; La
loc) ∀a < ∞ and γf ∈ L∞

loc(∂� × R
+, dσxdvdt).

(12.24) 
Moreover, (12.23) is satisfied for all .ψ ∈ D(�̄ × R

+). 

12.3.2 Penalization Method 

We consider a force field E defined on .ω × [0, T ]. We will denote, in the sequel, by 
. Ē its extension by zero outside .ω̄ × [0, T ]. Now, we shall explain how we construct 
a solution for the Vlasov equation satisfying the specular reflection boundary 
condition (12.8) in the sense of the following definition: 

Definition 12.3.3 A function .f ∈ L1
loc(� × R

+) is said to be a weak solution of 
(12.17)–(12.7)–(12.8) if  

.

∫
R+×�

{f (�Eψ − λψ) + Gψ}dxdvdt +
∫

�

f0ψ(0, x, v)dxdv = 0, (12.25) 

for all .ψ ∈ C1
c(�̄ × R

+) and .ψ(t, x, v̄) = ψ(t, x, v) sur .
− × R
+. ��

The method of construction of a weak solution, in the sense of the previous 
definition, consists in using the free-space equation with a “strong force field” 
tending to confine in . �c. To do this, we define a function .δ ∈ W 2,∞(Rd), which is 
equal, on a neighbourhood . V of . ∂�, to the distance .d(x) = dist (x, ∂�) and that 
.d(x) ≥ δ0 > 0 outside . V. Let .δ(x) = d(x)χ{x∈�c}; .δ(x) := dist (x, �̄) sur . V. The  
vector .n(x) = ∇xd(x) does not vanish on a neighbourhood .W of . ∂�. We define, 
for all .x ∈ W, the projection .�x on .〈n(x)〉⊥ by 

. ∀ v ∈ R
d , v = (n(x) · v)n(x) + �xv et n(x) · �xv = 0,

and we extend .�x arbitrarily outside . W. 
Let .ϕ ∈ D(Rd × R

+), .supp(ϕ) ⊂ �̄ × R
+, θ ∈ D(R+), θ(0) = 0, and 

.� ∈ D(Rd). We consider the set of functions .ψ ∈ D(R2d × R
+) such that: 

.ψ(x, v, t) = ϕ(x, t)θ((v.n(x))2)�(�xv). (12.26) 

Using density argument 12.3.3, the previous definition is equivalent with: 

Lemma 12.3.5 ([49]) A function .f ∈ L1
loc(�×R

+) is a solution of (12.17)–(12.7)– 
(12.8) if
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. 

∫
R+×�

{f (�Eψ − λψ) + Gψ}dxdvdt +
∫

�

f0ψ(t, x, v)dxdv = 0

for all function satisfying (12.26). ��
The existence result of weak solution is given by: 

Theorem 12.3.4 Let .p ∈ [1,∞], .f0 ∈ Lp(�), .G ∈ L1(0, T ; Lp(�)), . E ∈
L1(0, T ; W 1,p′

(ω)), and .λ ∈ Lp′
(�). Then, (12.17)–(12.7): 

. f ∈ L∞(R+; L∞(�)) ∩ C(R+; Lp(�)),∀p ∈ [1,∞[.

If .λ ≥ λ0, a. e., then 

. sup
s∈[0,t]

‖f (s)‖Lp(�) ≤ ‖f0‖Lp(�)e
−λ0t +

∫ t

0
‖G(s)‖Lp(�)e

−λ0(t−s)ds (12.27) 

for .(p, q, r) such that .1/p + 1/q = 1/s ≤ 1, .r = p(1 − 1/q), . E ∈
L1(0, T ; Lq(ω)), and for all compact subset .K ⊂ ∂� × [0, T ], the function f 
has a trace 

. γf ∈ Lr(K; |v.n(x)|dσxdvds).

Moreover, there exists a constant .C(K, r, ‖E‖L1(0,T ; Lq(ω))) such that 

. ‖γf ‖Lr(K; |v.n(x)|dσxdvds) ≤ C(K, r, ‖E‖L1(0,T ; Lq(ω))).

Proof The proof is based on the idea introduced in [25] and used in [49]. 

We define the force field E by 

.Eε = Ē − δ(x)

ε
n(x). (12.28) 

.Eε ∈ L∞
loc(R

+; W
1,p′
loc (Rd)). An application of the previous results (Theo-

rem 12.3.2) implies 

. sup
s∈[0,T ]

‖f ε(t)‖L∞(R2d ) ≤ C(T , ‖f0‖L∞(R2d ), ‖G‖L1(0,T ; L∞(R2d )).

By passing to the limit in the Green formula satisfied by the solution of the free-
space Vlasov equation with the following family test functions: .ψ ∈ D(� × R

+), 
satisfying 

.ψε = ϕθε� = ϕ(x, t)θ

(
(v · n(x))2 + δ2(x)

ε

)
�(�xv),
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where .ϕ, θ , and . � are defined in (12.26), we get 

. 

∫
R2d×R+

f ε
{
θε�(∂tϕ + v.∇xϕ − λϕ) + ϕ�(v · ∇xθε + Eε · ∇vθε)

}

+
∫
R2d×R+

{
ϕθε(v · ∇x� + Eε · ∇v�) + Gϕθε�

}
dxdvdt = 0.

By remarking that .δ(x) = 0 on . ω, we infer that 

. 

f εθε = f εθχω(x)
∗
⇀ f θχω(x) in L∞,

v · ∇xθε + Eε · ∇vθε = v · ∇x

[
(v · n(x))2

]
θ ′

(
(v · n(x))2 + δ2(x)

ε

)
+ E · ∇vθε,

and

Eε · ∇v� = (E − δ(x)

ε
n(x)) · ∇v (�(�xv)) = E · [�x[∇�](�xv)],

leading to 

. 

∫
R2d×R+

f {θ�(∂tϕ + v · ∇xϕ − λϕ) + ϕ�(v · ∇xθ + E · ∇vθ)}

+
∫
R2d×R+

{ϕθ(v · ∇x� + E · ∇v�) + Gϕθ�} dxdvdt = 0,

which is equivalent to 

. 

∫
R2d×R+

{f (∂tψ + v · ∇xψ + E · ∇vψ − λψ) + Gψ} dxdvdt = 0

for all . ψ satisfying (12.26). Then, f is a weak solution of 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Ef + λf = G, (x, v) ∈ �,

f (t = 0) = f0,

f (t, x, v̄) = f (t, x, v), (x, v) ∈ 
−,

where .v̄ = v − 2(v · n(x))n(x).
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12.4 Equation of Boltzmann with Specular Reflection 
Boundary Condition 

This section is devoted to the existence and uniqueness of a weak solution of the 
Boltzmann equation satisfying the reflection boundary condition (12.8), given by 
this formulation 

.

∫
�×R+

{f �Eψ + Q(f )ψ}dxdvdt +
∫

�

f0(x, v)ψ(0, x, v)dxdv = 0 (12.29) 

for all .ψ ∈ C1
c(R

2d × R
+) and satisfying (12.26). 

12.4.1 Existence of a Weak Solution 

Theorem 12.4.5 Let E ∈ L1 
loc(R

+; W 1,∞(ω)). Then (12.17) has a weak solution 
satisfying 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f ∈ L∞(R+; L1 ∩ L∞(�)) ∩ C(R+; Lp(�)), ∀p ∈]1,+∞[,

0 ≤ f ≤ 1,

‖f (t)‖L1(�) = ‖f0‖L1(�).

(12.30) 

Furthermore, its trace γf on 
×]0, T [ satisfies: 
For all p, q ∈]1,∞[, 1/p + 1/q = 1/s ≤ 1, r  = p(1 − 1/q) ≥ 2 and for all 

compact subset K ⊂ 
 × [0, T ], we have 

. 

γf ∈ L∞(
 × R
+, dσxdvds) ∩ Lr(K; |v.n(x)|dσxdvds)

‖γf ‖Lr(K; |v.n(x)|dσxdvds) ≤ C(K, r, ‖E‖L1(0,T ; Lq(ω))).

Proof of Theorem 12.4.5 We define, for all f , its extension f̄ by 

. f̄ (t, x, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 si f < 0,

f (t, x, v) si 0 ≤ f ≤ 1,

1 si f > 1.

We also define the function F on [0, 1]4 as 

.F(x1, x2, x3, x4) = x3x4(1 − x1)(1 − x2) − x1x2(1 − x3)(1 − x4).
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We have 

. sup
i

‖∂xi
F‖L∞(0,1) = 2.

For all f and g, 

. |f̄ − ḡ| ≤ |f − g|

and 

. |Q(f̄ ) − Q(ḡ)| ≤ (
8‖B‖L1(Rd×Sd−1)

) |f̄ − ḡ|,

where C0 depends only on (H1). 
Now assume that E ∈ W 1,∞(ω × [0, T  ]), and for all f , we define τ(f  )  is the 

weak solution of the following transport equation: 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Eτ(f ) = (∂t + v · ∇x + E · ∇v)τ (f ) = Q(f̄ ), (x, v) ∈ �,

τ(f )(t, x, v̄) = τ(f )(t, x, v), (x, v) ∈ 
−,

τ (f )(t = 0) = f̄0 (≡ f0).

(12.31) 

The proof consists in proving that τ has a fixed point. Indeed, let τ(f  )  and τ(g)  
be two weak solutions of (12.31) with the same initial data f0. The difference h = 
τ(f  )  − τ(g)  is a solution of 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�Eh = Q(f̄ ) − Q(ḡ), (x, v) ∈ �

h(x, v, 0) = 0,

h(x, v̄, t) = h(x, v, t), (x, v) ∈ 
−,

and 

. sup
s∈[0,t]

‖h(s)‖Lp(�) ≤
∫ t

0
‖Q(f̄ ) − Q(ḡ)(s)‖Lp(�)ds ≤ Ct sup

s∈[0,t]
‖(f −g)(s)‖Lp(�),

where C depends only on the cross-section B. 
As a consequence, τ has a fixed point in L∞(0, t0; L1(�)) for t0 < 1/C. The  

constant C is independent of t . Then, we can construct a fixed solution on a sequence 
of intervals [tn, tn+1[ with tn+1 − tn < 1/C with an initial data f (t  = tn) = f (tn) 
(in a weak sense). With this procedure, we can construct a weak solution on [0, T ] 
for all T >  0.
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We also remark that the solution of the Vlasov equation satisfying the specular 
reflection boundary condition on ∂� is a weak limit (in Lp (]0, T [×�)) of gε, 
the weak solution of the same equation defined on hole space associated with the 
confinement force field (12.28), which satisfies the weak maximum principle. 

The operator Q satisfies 

. − C max(f, 0) ≤ −Cf̄ ≤ Q(f̄ );

then, ϕ(f ) = f − max(f, 0); thus 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�E(ϕ(f )) = ϕ′(f )�E(f ) = �E(f )(1 − χ{f ≥0})

≥ −C max(f, 0)(1 − χ{f ≥0}) ≡ 0,

ϕ(f )(x, v̄, t) = ϕ(f )(x, v, t), (x, v) ∈ 
−,

ϕ(f )(t = 0) = 0,

Implying that ϕ(f ) ≥ 0, and f ≥ 0. Furthermore, 

. Q(f̄ ) ≤ C(1 − f̄ ) ≤ C(1 − min(1, f ))

so 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�E(min(1, f ) − f ) = �E(f )(χ{f ≥1} − 1)

≥ C(1 − min(1, f ))(χ{f ≥1} − 1) ≡ 0,

ϕ(f )(x, v̄, t) = ϕ(f )(x, v, t), (x, v) ∈ 
−,

min(1, f ) − f (t = 0) = 0.

So, 

. max(f, 0) ≤ f ≤ min(1, f ) a. e. 0 ≤ f ≤ 1.

To prove that the solution of the Boltzmann equation belongs to C([0, T  ]; Lp (R2d )). 
We can proceed as in [49]. Indeed, f (= τ(f  ))  is a weak solution of a 

Vlasov equation with a force field E ∈ L1 
loc(R

+; W 1,∞(ω)) and a source term 
G = Q(f ) ∈ L∞(� × R+). This implies using [49] (Theorem 4) that 

.f ∈ C(R+; La
loc(�)) ∀a < +∞,
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and its trace γf is well defined by the Green formula and satisfies 

. γf ∈ L∞(
 × R
+; dσxdvds).

If O is a smooth open subset of R2d and K is a compact subset of ∂O × R+
t , if  

we denote L a,b 
loc := La 

loc(R
+; Lb 

loc(�)), then for all p, q ∈ [1,+∞[ such that 
1/p + 1/q = 1/s ≤ 1 and r = p(1 − 1/q) we have 

. ‖f ‖Lr(K; (v.n(x))2dσxdvds) ≤ CK(1 + ‖E‖L1
loc(R

+; Lq(ω))‖f ‖L
∞,p
loc

+CK‖Q(f )‖1/r

L
1,s
loc

‖f ‖1−1/r

L
∞,p
loc

.

The uniform bound 0 ≤ f ≤ 1 and the L1-estimate (verified later on) lead for all p 
and p′ such that 1/p + 1/p′ = 1, 

. 

‖f ‖L
∞,p
loc

≤ ‖f ‖1/p

L
∞,1
loc

‖f ‖1/p′
L

∞,∞
loc

≤ ‖f0‖1/p

L1 ,

‖Q(f )‖Ls
loc

≤ C(s)‖Q(f )‖L∞
loc

≤ C(‖B‖L1 , s),

. ‖γf ‖Lr(K; (v.n(x))2dσxdvds) ≤ CK(1 + ‖E‖
L

1,q
loc

)‖f0‖1/p

L1 + CK,r,s‖f0‖1/p(1−1/r)

L1 ,

and if r ≥ 2, Lr 
loc(K; (v.n(x))2dσxdvds) ↪→ L r/2 

loc (K; |v.n(x)|dσxdvds), then 

. 

⎧⎪⎨
⎪⎩

γf ∈ Lr(K; |v.n(x)|dσxdvds) ∀r < +∞
and

‖γf ‖Lr(K; |v.n(x)|dσxdvds) ≤ C(K, r, ‖E‖
L

1,q
loc

, s, p, q).

The L1-estimate is the well-known consequence of the mass conservation 
property. 

Lemma 12.4.6 For all ξ ∈ C1 
c(ω̄ × R+), the charge and current densities 	 and j 

satisfy 

. 

∫
ω×R+

[	(t, x)∂t ξ(t, x) + j (t, x) · ∇xξ(t, x)]dxdt +
∫

�

f0(x, v)ξ(0, x)dxdv = 0.

(12.32) 
As a consequence, 

.∂t	 + ∇x · j = 0, in D′(R∗+ × ω). (12.33)

��
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Proof of Lemma 12.4.6 The proof is a consequence of the mass conservation 
property of the collision operator: 

. 

∫
Q(f )dv = 0.

12.4.2 Energy Estimate 

We shall establish a control on the charge and current densities and the kinetic 
energies depending on the force field E. 

Lemma 12.4.7 Let .E ∈ L1
loc(R

+; Ld+2(ω)). The Boltzmann equation has a weak 
solution satisfying 

.‖	(t)‖
L

d+2
d (ω)

≤ CT K(t)
d

d+2 , (12.34) 

.‖j (t)‖
L

d+2
d+1 (ω)

≤ CT K(t)
d+1
d+2 , (12.35) 

. sup
t∈[0,T ]

{
‖	(t)‖

L
d+2
d (ω)

+ K(t)

}
≤ CT (1 +

∫ T

0
‖E(s)‖d+2

Ld+2(ω)
ds). (12.36) 

Moreover, . sup
t∈[0,T ]

f (t) belongs to a weakly compact subset of .L1(�). ��

Proof of Lemma 12.4.7 The proof is based on truncation idea used by Horst [40]. 
We detail this idea for the (12.34). We start by writing the density as follows: 

. 	(x, t) =
∫

|v|≤R

f dv +
∫

|v|≥R

f dv.

This implies 

. |	(x, t)| ≤ CRd‖f ‖L∞ + 1

R2

∫
Rd

|v|2f dv.

By taking .R =
[∫

Rd

|v|2f (t)dv/C‖f ‖L∞
]1/d+2

, we get 

.‖	(t)‖
L

d+2
d (ω)

≤ CT K(t)
d

d+2 .
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To prove (12.36), we remark that if we multiply the Boltzmann equation by .|v|2 and 
integrate by parts using the properties of the collision operator, we obtain 

. [K(s)]t0 =
∫ t

0

∫
ω

j (x, s).E(x, s)dxds.

If .E ∈ L∞(ω), 

. K(t) ≤ K(0) +
∫ t

0
‖j (s)‖L1(ω)‖E(s)‖L∞(ω)ds,

≤ K(0) +
∫ t

0
(‖f0‖L1 + K(s))‖E(s)‖L∞(ω)ds

≤ C exp(

∫ t

0
‖E(s)‖L∞(ω)ds),

and if .E ∈ Ld+2(ω), using the Hölder’s inequality, we infer that 

. K(t) ≤ K(0) +
∫ t

0
‖j‖

L
d+2
d+1 (ω)

‖E(s)‖Ld+2(ω)ds.

. K(t) ≤ C

{
1 +

∫ t

0
K(s)

d+1
d+2 ‖E(s)‖Ld+2(ω)ds

}
.

Using the Young’s inequality (.ab ≤ ap/p + bq/q, a, b ≥ 0, .1/p + 1/q = 1) with 

.a = K(s)
d+1
d+2 and .b = ‖E(s)‖Ld+2 , we get 

. K(t) ≤ C

(
1 + d + 1

d + 2

∫ t

0
K(s)ds + 1

d + 2

∫ t

0
‖E(s)‖d+2

Ld+2(ω)
ds

)
.

The Gronwall lemma gives 

. sup
s∈[0,t]

K(s) ≤ C

(
1 +

∫ t

0
‖E(s)‖d+2

Ld+2(ω)
ds

)
et ,

which ends the proof of (12.36). ��
As a consequence of this lemma, we have . sup

t∈[0,T ]
f (t) belongs to a weak compact 

subset .L1(�). Indeed, 

.∀x ∈]0, 1[, x|log x| ≤ 2
√

x
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implies 

.

∫
�

f |Logf |(t)dxdv =
∫

f <e−|v|2
f |Logf | +

∫
e−|v|2≤f ≤1

f |Logf |

≤ sup
t≤T

{∫
�

[2e−|v|2/2 + |v|2f (t)]dxdv

}
≤ CT .

(12.37) 

Moreover, 

. sup
t≤T

∫
ω

∫
|v|2>R

f dxdv ≤ 1

R

{
sup
t≤T

∫
�

|v|2f (t)dxdv

}
≤ CT

R
.

With these two inequalities, we verify that .sup
t≤T

f (t) satisfies the assumptions of 

Dunford–Pettis theorem [18], which completes the proof of the Lemma. ��

12.5 Stability Results 

Let 

. T := ∂t + v · ∇x

and the set 

. F = {f ∈ L∞(R+; L1(�) / 0 ≤ f ≤ 1, K ∈ L∞
loc,

Tf ∈ weakly compact subset of L1}.

We would like to prove that .Q(Fα) := {Q0(f ) + Q1(f ), f ∈ Fα} belongs to a 
weakly compact subset of .L1(�×]0, T [). This property is trivial for the operator 
. Q0. Let us detail for the nonlinear part. 

12.5.1 L1-weak Precompacity Q1(F
α ) 

We rewrite .Q1(f ) as follows: 

.Q1(f ) =
∫
Rd×Sd−1

B(v − v1, w)
{
(1 − f )f ′f ′

1 − f ′f ′
1f1

+ ff1f
′ + ff1f

′
1 − ff1

}
dv1dw

= (1 − f )L1(f, f ) − L2(f ) + f L3(f, f ) + f L4(f, f ) − f L5(f ),
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where 

. 

L1(f, g) =
∫
Rd×Sd−1

B(v − v1, w)f ′g′
1dv1dw, L2(f ) =

∫
Rd×Sd−1

B(v − v1, w)f ′f ′
1f1dv1dw,

L3(f, g) =
∫
Rd×Sd−1

B(v − v1, w)f1g
′dv1dw, L4(f, g) =

∫
Rd×Sd−1

B(v − v1, w)f1g
′
1dv1dw,

L5(f ) =
∫
Rd×Sd−1

B(v − v1, w)f1dv1dw = (A ∗v1 f )(v),

and 

. A(z) =
∫

Sd−1
B(z,w)dw.

To simplify the notations, we denote by .a := ‖A‖L1(Rd ), and we define 

.

⎧⎨
⎩

Fα
i = {Li(f, f ), f ∈ Fα}, i ∈ {1, 3, 4, 5}

Fα
2 = {L2(f ), f ∈ Fα}.

(12.38) 

The property of stability of .Q1 is given by: 

Theorem 12.5.6 The set .{Q1(f ), f ∈ Fα} is weakly relatively compact in 
.L1(]0, T [×�). 

The proof of this theorem consists in proving that the sets .Fα
i satisfy the 

assumptions of the Dunford–Pettis theorem [18]. This will be the subject of the 
following lemmata. We begin by . L5. 

Lemma 12.5.8 The set .{f L5(f ), f ∈ Fα} is weakly relatively compact in 
.L1(]0, T [×�). ��
Proof of Lemma 12.5.8 Let .f ∈ Fα . We have  

.

⎧⎨
⎩

0 ≤ L5(f ) ≤ a,

‖L5(f )(t)‖L1(�) = a‖f (t)‖L1(�).

(12.39) 

The set .Fα
5 is bounded in .L∞(0, T ; L1 ∩ L∞(�)). We define the function 

.ϕ(t) := t (Logt)+ = t sup(0, Logt). (12.40) 

The function . ϕ is increasing and satisfies 

.ϕ(t) ≥ 0, lim
t→+∞

ϕ(t)

t
= +∞,
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. ∀t > 0, �(t) ≤ aϕ

(
t

a

)
+ t |Loga|,

and 

. 

∫
�

ϕ(L5(f )) ≤ a

∫
�

�(L5(f )/a) + ‖L5(f )‖L1(�)|Loga|.

Using the convexity of . ϕ and the Jensen inequality with .dμ = B(v − v1, w)dwdv1

a
, 

we get 

. 

∫
�

ϕ(L5(f )) ≤
∫

�

L5(ϕ(f ))+a|Loga|‖f ‖L1(�).

We deduce, thanks to (12.37) and (12.39), that 

.∀t ≤ T ,

∫
�

ϕ(L5(f ))(t) ≤ a{‖ϕ(f )‖L1 + |Loga|‖f ‖L1} ≤ CT , (12.41) 

leading to: .ϕ(L5(f )) is bounded in .L∞(0, T ; L1(�)), and to conclude that . L5(f )

is in a weakly compact subset, we shall prove 

. lim
R→+∞

{
sup

0≤t≤T

∫
ω

∫
|v|≥R

L5(f )(t)dxdv

}
= 0. (12.42) 

Indeed, 

. 

∫
ω

∫
|v|≥R

L5(f )(t) ≤
∫

ω

dx

∫
|v|≥R

dv

∫
|v1|≥R/2

A(v − v1)f (v1)dv1

+
∫

ω

dx

∫
|v|≥R

dv

∫
|v1|<R/2

A(v − v1)f (v1)dv1

≤ 4aK(t)

R2 +
∫

�

∫
|v−v1|≥R/2

A(v − v1)f (v1)dxdvdv1

≤ 4aK(t)

R2
+ ‖f (t)‖L1

∫
|z|≥R/2

A(z)dz,

which implies (12.42) due to the fact that . A ∈ L1(Rd).

We proceed in the same manner for .f L5(f ) using the uniform bound .f ∈ [0, 1]. 
We have 

.0 ≤ f L5(f ) ≤ L5(f ) ≤ a. (12.43)
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Lemma 12.4.7 implies 

. 

∫
�

[ϕ(f L5(f )) + (1 + |v|2)f L5(f )]dxdv ≤ CT

(
1 +

∫ T

0
‖E(s)‖d+2

Ld+2(ω)
ds

)
,

(12.44) 
which leads to 

. lim
R→+∞

{
sup

0≤t≤T

∫
ω

∫
|v|≥R

f L5(f )dxdv

}
= 0. (12.45) 

Moreover, the set .{f L5(f ), f ∈ Fα} is bounded in .L∞(0, T ; L1(�)) and weakly 
relatively compact in .L1(]0, T [×�) faible. ��
Lemma 12.5.9 The set .{f L1(f, f ), f ∈ Fα} belongs to a weakly compact subset 
of .L1(�×]0, T [). ��
Proof of Lemma 12.5.9 Let .f ∈ Fα; we have . ∀ t ∈]0, T [,

. 

0 ≤ L1(f, f )(t) ≤ a,

∫
�

L1(f, f )(t)dxdv ≤
∫

�

A(v − v1)f1dxdvdv1 ≤ a‖f (t)‖L1(�),

. 

∫
�

|v|2L1(f, f )dxdv =
∫

�

∫
Rd×Sd−1

B(v − v1, w)|v|2f ′f ′
1dwdv1dxdv.

Using the new coordinates: .(v, v1) �→ (v′, v′
1), we get 

. 

∫
�

|v|2L1(f, f )dxdv =
∫

�

∫
Rd×Sd−1

B(v − v1, w)|v′|2ff1dwdv1dxdv

≤
∫

�

∫
Rd

A(v − v1)(|v|2 + |v1|2)ff1dv1dxdv

≤ 2
∫

�

∫
Rd

A(v − v1)|v|2ff1dv1dxdv ≤ 2aK(t).

The properties of the function . ϕ given in (12.40) lead to 

.

∫
�

ϕ(L1(f, f )) ≤ a

∫
�

ϕ

(
L1(f, f )

a

)
+ ‖L1(f, f )‖L1(�)|Loga|. (12.46) 

The Jensen inequality (with .dμ = B(v−v1,w)dwdv1
a

) gives  

.ϕ

(
L1(f, f )

a

)
≤

∫
Rd×Sd−1

ϕ(f ′f ′
1)dμ. (12.47)
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Using again the coordinates ( .(v, v1) �→ (v′, v′
1), we obtain 

. 

a

∫
�

ϕ

(
L1(f, f )

a

)
≤ a

∫
�

∫
Rd×Sd−1

ϕ(ff1)dμdvdx

≤
∫

�

∫
Rd

A(v − v1)ϕ(ff1)dv1dvdx.

The monotony of . ϕ implies that 

. a

∫
�

ϕ

(
L1(f, f )

a

)
≤

∫
�

∫
Rd

A(v − v1)ϕ(f )dv1dvdx ≤ a‖ϕ(f )‖L1(�),

and (12.46) becomes 

. 

∫
�

ϕ(L1(f, f )) ≤ a{‖ϕ(f )‖L1 + |Loga|‖f ‖L1} ≤ CT (1 +
∫ T

0
‖E(t)‖d+2

Ld+2(ω)
dt)

and 

. sup
t∈[0,T ]

∫
�

{(1 + |v|2)L1(f, f ) + ϕ(L1(f, f ))}(t) ≤ CT (1 +
∫ T

0
‖E(t)‖d+2

Ld+2(ω)
dt).

(12.48) 
This implies that the set .{L1(f, f ), f ∈ Fα} is a weakly relatively compact in 
. L1(�×]0, T [).

Also, this inequality is satisfied by f .f L1(f, f ), because .f ∈ [0, 1] and . ϕ is 
increasing, then the set .{f L1(f, f ), f ∈ Fα} is a weakly relatively compact of 
.L1(�×]0, T [), and it satisfies 

. sup
t∈[0,T ]

∫
�

{(1 + |v|2)f L1(f, f ) + ϕ(f L1(f, f ))}(t) ≤ CT (1 +
∫ T

0
‖E(t)‖d+2

Ld+2(ω)
dt),

where the constant .CT depends only on the time T . ��
Proof of Theorem 12.5.6 Conclusion: The sets .Fα

1 and .Fα
5 are relatively compact 

in .L1(�×]0, T [). To extend this property to .Fα
2 , F α

3 , and . Fα
4 , we remark that, for 

all .f ∈ Fα , 

. 0 ≤ L2(f ) ≤ L5(f ), 0 ≤ Li(f, f ) ≤ L5(f ), i = 3, 4.

This implies that these quantities are bounded in .L∞(0, T ; L1 ∩ L∞(�)). The  
function . ϕ given in (12.40) is increasing, and the inequalities (12.41) and (12.45) 
are satisfied by .L2(f ), L3(f, f ), and .L4(f, f ). Then, the weak compacity of 
.Fα

2 , F α
3 , and .Fα

4 is in .L1(�×]0, T [)). The compacity of .f L3(f, f ) and . f L4(f, f )

is immediate because .f ∈ [0, 1] and . ϕ is increasing. ��
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It remains to prove that .Q1(F
α) is closed for topology .σ(L1, L∞) ; it is equivalent 

to proving that if .(fn)n is a sequence of .Fα weakly converge towards f , then for all 
. ψ ∈ D(� × R

+)

. lim
n→∞

∫
�×R+

Q1(fn)ψdxdvdt =
∫

�×R+
Q1(f )ψdxdvdt. (12.49) 

To do this, we need a velocity-averaging argument. 

12.5.2 Velocity-Averaging Lemma 

We consider the operator .T = ∂t + v · ∇x . 

Theorem 12.5.7 ([28]) Let .f ∈ C([0, T ],D′(R2d)), .f ∈ L
p
loc([0, T ] × R

2d), and 

.T(f ) ∈ Wα,p(0, T ; W
α,p
loc (Rd

x ; W
β,p
loc (Rd

v ))), with .p ∈]1,∞[, α > −1 and . β ∈
R. Assume that .f (0) ∈ L

p
loc(R

2d). Then, there exists .s(p, α, β, d) > 0 such that, 
for all .ψ ∈ D(Rd

v ), 

. Mψ(f ) :=
∫
Rd

f ψdv ∈ Ws,p(0, T ; W
s,p
loc (Rd)).

Therefore, for .R > 0, there exists .R′ > 0 such that 

.

‖Mψ(f )‖Ws,p(]0,T [×BR) ≤ C{ψ, ‖f ‖Lp([0,T ]×BR′×BR′ ),

‖f (0)‖Lp(BR′×BR′ ), ‖Tf ‖Wα,p([0,T ]×BR′ ; Wβ,p(BR′ )}.
(12.50) 

The idea of the proof of this theorem in the case (.α = 0, .β = −1, and 
. p = 2) is given in [17]. We can prove a compacity .L2(ω×]0, T [) of the sequence 
.
∫
Rd f nψ(t, x, v)dv, where . f n is a weak solution of 

.∂tf
n + v · ∇xf

n = Q(f n) − En · ∇vf
n, (t, x, v) ∈ R

∗+ × ω. (12.51) 

We assume that 

.

⎧⎨
⎩

‖En‖L2([0,T ]×ω) ≤ CT .

Q(f n) ∈ L∞(R+; L1 ∩ L∞(�)).

(12.52) 

The compactness of . fn is described by: 

Lemma 12.5.10 Let .ψ ∈ D(�̄ × [0, T [), and . f n is a weak solution of (12.51). 
We assume that (12.52) is satisfied; then, .Mn

ψ = ∫
Rd f nψ(x, v, t)dv is relatively 

compact in .L2(ω×]0, T [). ��
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Proof of Lemma 12.5.10 This lemma is a consequence of the result of regularity on 
the evolutionary equations. The first part of the proof is given in [17] for the case of 
a function .ψ := ψ(v). We resume the same analysis for a function .ψ := ψ(x, v, t), 
and we satisfy that the hypothesis (12.52) is sufficient to deduce (12.53). 

Let .gn = f nψ . Then . gn is a weak solution of 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T(gn) = Sn = Q(f n)ψ + Ēn.∇vψf n − f nT(ψ) − ∇v.(ψf nĒn)

:= Sn
1 + ∇v.S

n
2 , in D′(]0, T [×ω),

gn(0) = f0ψ.

The term .Sn ∈ L2(0, T ; H−1(�)). Under the assumption of Theorem 12.5.7 with 
.α = 0, β = −1, and .p = 2. 

We denote .Fα
x (gn) the Fourier transform of x of . gn; then 

. Fα
x (gn)(t, ξ, v) = Fα

x (f0ψ)(ξ, v)e−i(v·ξ)t +
∫ t

0
Fα

x (Sn
1 )(s, ξ, v)e−i(v·ξ)(t−s)ds

+
∫ t

0
∇v · [Fα

x (Sn
2 )](s, ξ, v)e−i(v.·ξ)(t−s)ds.

We integrate this equation with respect to v, we denote by .Fα
x,v the transformation 

with respect to .(x, v) and .Mn
ψ := ∫

Rd gndv, and we have 

. Fα
x (Mn

ψ)(t, ξ) = Fα
x,v(f0ψ)(ξ, tξ) +

∫ t

0
Fα

x,v(S
n)(ξ, (t − s)ξ, s)ds.

By using the Holder inequality, 

. 

∫ T

0
|Fα

x (Mn
ψ)(t, ξ)|2dt ≤ 2

∫ T

0
|Fα

x,v(f0ψ)(ξ, tξ)|2dt

+2T

∫ T

0

∫ T

0
|Fα

x,v(S
n)(ξ, tξ, s)|2dtds,

and with the change (.t �→ t |ξ |), the previous inequality becomes 

.

∫ T

0
|Fα

x (Mn
ψ)(t, ξ)|2dt

≤ 2
∫ T

0
|Fα

x,v(f0ψ)(ξ, t
ξ

|ξ | )|
2 dt

|ξ | + 2T

∫ T

0

∫ T

0
|Fα

x,v(S
n)

(
ξ, t

ξ

|ξ | , s
)

|2 dt

|ξ |ds.
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Then 

. 

∫ T

0

∫
Rd

|ξ ||Fα
x (Mn

ψ)(ξ, t)|2 ≤ 2
∫
R2d

|(I − �η)
d/2Fα

x,v(f0ψ)(ξ, η)|2dηdξ

+2T

∫ T

0

∫
R2d

|(I − �η)
d/2Fα

x,v(S
n)(ξ, η, s)|2dηdξds

≤ 2(‖f0ψ‖2
L2 + T ‖Sn‖L2(0,T ; L2(ω; H−1(Rd ))))

∫
|ψ(v)|2(1 + |v|2)ddv

≤ Cψ(1 + ‖En‖L2(]0,T [×ω)).

So, 

.‖Mn
ψ‖L2(0,T ; H 1/2(ω)) ≤ CT (1 + ‖En‖L2(ω)) ≤ CT . (12.53) 

Otherwise, 

. 
d

dt
Mn

ψ = d

dt

(∫
Rd

f nψdv

)

=
∫
Rd

(Q(f n) − En∇vf
n − v.∇xf

n)ψdv +
∫
Rd

f n∂tψdv

=
∫
Rd

Q(f n)ψdv + En.

∫
Rd

f n(∇vψ)dv

+
∫
Rd

f n(v.∇xψ)dv − ∇x.

∫
Rd

f nψvdv +
∫
Rd

f n∂tψdv.

Taking into account the uniform bound .f n ∈ [0, 1] and the estimate (12.53), we 
obtain 

.

∥∥∥∥ d

dt
Mn

ψ

∥∥∥∥
L2(0,T ; H−1/2(ω))

≤ CT , (12.54) 

where .CT depends only on T , .‖En‖L2(0,T ; L2(ω)), and . ψ . 
Estimates, (12.53) and (12.54), imply that .(Mn

ψ)n is relatively compact in 

.L2(0, T ; L2(ω)). 

Remark 12.5.1 The regularity of the function . ψ introduced in the previous theorem 
is not optimal to get the compactness of .Mn

ψ in .Lp(ω×]0, T [), (p < +∞). Indeed, 
by the same proof, we use the transformation into .(t, x), and we can prove that 
.Mn

ψ ∈ H 1/4(ω×]0, T [) for all .ψ ∈ C1
c(�̄ × [0, T [) and that .f n satisfy (12.51). 

Therefore, 

. ‖Mn
ψ‖H 1/4(ω×]0,T [) ≤ CT (1 + ‖En‖L2(0,T ; L2(ω))) ≤ CT ,

where the constant .CT depends only on T and . ψ .
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We also remark that if in the previous proof .ψ := ψ(v) and it has a compact 
support, then the .L∞(Rd) regularity is enough to obtain the result of the lemma. 
Indeed, several other forms of this lemma are given in [28], where the function . ψ is 
chosen in different spaces. We quote other lemma who writes the average compacity 
in . L1. ��
Lemma 12.5.11 ([24]) Let . gn and .Gn be two sequences weakly compact in 
.L1

loc(R
+; L1(R2d)) and satisfying 

. Tgn = Gn in D′(R+∗ × R
2d).

We assume that .supp(gn) ⊂ [α, T − α] × R
d
x × BR, .α > 0. Then, for all function 

.ψ ∈ L∞(R+∗ ; R
2d), we have .

∫
Rd ψgndv belongs to a compact of . L1(]0, T [×R

2d).

Consequently: 

(i) If K a compact of .[0, T ] × R
2d , . gn and . Gn belong to a weakly compact of L 

.L1(K), for all .ψ ∈ L∞(]0, T [×R
2d) with compact support, and the sequence 

.
∫
Rd gnψdv is in a compact of .L1

loc(]0, T [×R
d). 

(ii) Therefore, if the sequence . gn is in a weak compact of .L1(]0, T [×R
2d), then for 

all .ψ ∈ L∞(]0, T [×R
2d) with compact support, the sequence .

∫
Rd gnψdv is in 

a compact of .L1(]0, T [×R
d). ��

These lemmas are used in the following subsection. 

12.5.3 L1-compactness of L5(fn) 

Lemma 12.5.12 Let (fn) be a sequence of Fα , such that fn ⇀ f  in L p 
loc weak. 

Then 

. L5(fn) −→ L5(f ) L1(0, T ; L1
loc(�)) strong

and 

.fnL5(fn) ⇀ f L5(f ) L1(R2d×]0, T [) weak. ��
Proof The sequence (L5(fn))n is bounded in L∞(0, T ; L1(�)), and it is weakly 
relatively compact in L1(�×]0, T [). Let  θR ∈ D(BR), a localizing function; Aε ∈ 
D(Rd ) such that ‖A − Aε‖L1 ≤ ε. Then, 

.L5(fn − f )(v) =
∫
Rd

(fn − f )(v1)(A − Aε)(v − v1)dv1

+
∫
Rd

(fn − f )(v1)Aε(v − v1)dv1

= [(fn − f ) ∗v (A − Aε)](v) + [(fn − f ) ∗v Aε](v).
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We have 

. ‖(fn − f ) ∗v (A − Aε)‖L1(�×]0,T [) ≤ ‖fn − f ‖L1‖A − Aε‖L1(Rd ) ≤ CT ε

and 

. 

∫
Rd

(fn − f )(v1)Aε(v − v1)dv1θR(v) =
∫
Rd

(fn − f )(v1)ψR(v, v1)dv1

∈ C∞(Rd
v ; H 1/4(ω × [0, T ]))

or
∫
Rd (fn − f )(v1)ψR(v, v1)dv1 is relatively compact in L2(�×]0, T [) because 

ψR ∈ D(R2d ). This implies that for all ε >  0, we have 

. lim
n→+∞

∫
�×]0,T [

|
∫
Rd

(fn − f )(v1)Aε(v − v1)dv1θR(v)|dxdvdt = 0.

By passing to the limit on ε, we obtain L5(fn) converge towards L5(f ) in 
L1(0, T ; L1 

loc(�)). 
By using this lemma, we prove the stability of f L5(f ). By using the parity of A, 

we write 

. 

∫
R2d×]0,T [

fnL5(fn)ψdxdvdt =
∫

supp(ψ)

fn(v)gn(v)dxdvdt,

where 

. gn(v) =
∫
Rd

(A − Aε)(v − v1)fn(v1)ψ(v1)dv1 +
∫
Rd

Aε(v − v1)fn(v1)ψ(v1)dv1.

The first term converges immediately towards (‖A − Aε‖L1 ≤ ε). The second term 
is bounded in L∞(�×]0, T [), and by using the previous lemma, it is in a compact 
of L1 

loc(�×[0, T ])); its norm depends only on ‖E‖L2(ω×[0,T ]), ‖A‖L1 , and ψ . This  
is enough to deduce the weak convergence of fnL5(fn) to f L5(f ). ��
After that, we study L1, L2, L3, and L4. We define the following operators T and T̃ : 

. 

T ϕ(z) =
∫

Sd−1
B(z,w)ϕ(z − (z.w)w)dw,

T̃ ϕ(z) =
∫

Sd−1
B(z,w)ϕ((z.w)w)dw.

We begin by analysing the operator L1; using the averaging lemma, we prove the 
result of compacity of the sequence L1(fn, fn) for all fn ∈ Fα (Lemma 12.5.13).
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Then, we prove the L1- compacity of L1(fn, fn), which will be enough to obtain 
the compactness of L3 and L4 (Lemma 12.5.15) and the weak compactness of L2. 

12.5.4 Compactness of L1(fn, fn) 

Lemma 12.5.13 Let (fn)n be a sequence of functions of Fα , and f is weak limit. 
Then, for all function ψ ∈ D(�̄ × [0, T ]), 

.

∫
Rd

L1(fn, fn)ψdv −→
∫
Rd

L1(f, f )ψdv in L1(ω × [0, T ]). (12.55) 

Proof of Lemma 12.5.13 Let supp(ψ) ⊂ K × ω̄ × [0, T ], 

. 

∫
Rd

L1(f, f )ψdv =
∫

K×Rd
v1

f (v)f (v1)a(v, v1)dvdv1,

where 

. a(x, v, v1, t) =
∫

Sd−1
B(v − v1, w)ψ(v1 + (v − v1.w)w)dw.

We assume that the cross-section is regular (C∞), and the function a ∈ 
C∞(supp(ψ) × Rd 

v1 
). We define 

. A(x, v1, t) =
∫

K

f (v)a(x, v, v1, t)dv, An(x, v1, t) =
∫

K

fn(v)a(x, v, v1, t)dv.

Under the assumption (H2), the function A ∈ L∞
loc(R

+; L1 ∩ L∞(�)), and by 
using the previous lemma, the sequence An belongs to C∞(Rd 

v1
; H 1/4(ω×]0, T [) 

bounded, and it depends on ‖E‖L2(ω×[0,T ]), 

. 

∫
K

(L1(fn, fn) − L1(f, f ))ψdv =
∫
Rd

(An − A)(x, v1, t)fn(v1)dv1

+
∫
Rd

(fn − f )(v1)A(x, v1, t)dv1.

(12.56) 

Let R >  0, BR = B(0, R)  

.

∣∣∣∣
∫
Rd

(An − A)(x, v1, t)fn(v1)dv1

∣∣∣∣ ≤ ‖An − A‖L1(BR)

+2
∫

{|v1|>R}×K

|a(x, v, v1, t)|dvdv1;
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then 

. lim
n→∞

∥∥∥∥
∫
Rd

(An − A)(v1)fn(v1)dv1

∥∥∥∥
L1(ω×[0,T ])

≤ lim
n→∞ ‖An − A‖L1(BR×ω×[0,T ]) + 2

∫
{|v1|>R}×supp(ψ)

|a(x, v, v1, t)|dvdv1.

For fixed R, the sequence An is regular and uniformly bounded; then it converges 
strongly towards A in L1(BR × ω × [0, T ]). Otherwise, 

. lim
R→∞

∫
|v1|>R

∫
supp(ψ)

|a(x, v, v1, t)|dvdv1 ≤ CK,ψ lim
R→∞

∫
{|z|≥R}

A(z,w)dw = 0.

(12.57) 
For the last term (12.56), we take θR := θR(v) ∈ D(BR) 

. 

∫
Rd

(fn − f )(v1)A(x, v1, t)dv1 =
∫
Rd

(fn − f )(v1)A(x, v1, t)θR(v1)dv1

+
∫
Rd

(fn −f )(v1)A(x, v1, t)(1−θR(v1))dv1.

The convergence in L1(ω×]0, T [) of
∫
Rd (fn − f )(v1)A(x, v1, t)θR(v1)dv1 is a 

consequence of the averaging lemma (theorem 12.5.7), and the last term
∫
Rd (fn − 

f )(v1)A(x, v1, t)(1 − θR(v1))dv1 is the same as (12.57). ��

12.5.5 L1-Compactness of L1(fn, fn) 

Theorem 12.5.8 Let (fn) be a sequence in F and f its weak limit. Then 

.L1(fn, fn) −→ L1(f, f ) in L1(�×]0, T [). (12.58)

��
The proof of this theorem is divided into three steps. In the first step, we 

regularize the sequence fn and the cross-section B. These two regularizations allow 
us to prove the result of the theorem by using the compactness lemmas. 

First Step: Regularization of the Sequence 
Let M >  0 be a fixed real, ϕ ∈ D(Rd ), 0  ≤ ϕ ≤ 1, ϕ ≡ 1 in  B(0, 1) and 
ϕM = ϕ( . 

M ). 
Let 

.f M
n = fnϕM(v).
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This step consists in showing that 

.L1(f
M
n , f M

n ) −→ L1(f
M, f M) in L1

loc(�×]0, T [). (12.59) 

Indeed, 

.

L1(fn, fn) − L1(f, f ) = (L1(fn, fn) − L1(f
M
n , f M

n ))

+(L1(f
M
n , f M

n ) − L1(f
M, f M)) + (L1(f

M, f M) − L1(f, f )).

(12.60) 

The first term of the right-hand side of (12.60) satisfies 

. 

∫ T

0

∫
�

|L1(fn, fn) − L1(f
M
n , f M

n )|dxdvdt

=
∫ T

0
dt

∫
ω

dx

∫
R2d×Sd−1

dvdv1dwB(v − v1, w)fn(v
′)fn(v

′
1)(1 − ϕM(v′)ϕM(v′

1))

≤
∫ T

0
dt

∫
ω

dx

∫
R2d×Sd−1

dvdv1dwB(v − v1, w)fn(v)fn(v1)(1 − ϕM(v)ϕM(v1))

≤ 1

M2

∫ T

0
dt

∫
ω

dx

∫
R2d

dvdv1|v||v1|A(v − v1)fn(v)fn(v1)

≤ 4

M2

∫ T

0
dt

∫
ω

dx

∫
R2d

dvdv1|v|2A(v − v1)fn(v)fn(v1) ≤ sup
t∈[0,T ]

4aK(t)

M2 .

The third term is the remainder of a convergent integral: 

. 

∫ T

0

∫
�

|L1(f
M, f M) − L1(f, f )|dxdvdt

=
∫ T

0
dt

∫
ω

dx

∫
R2d×Sd−1

dwdvdv1B(v − v1, w)ff1(1 − ϕM(v)ϕM(v1))

≤ a

∫ T

0

∫
ω

∫
|v|>M

f dxdvdt = O(1/M).

Corollary 1 

. 

∫
Rd

f M
n ψdv −→

∫
Rd

f Mψdv in Lp(ω×]0, T [)

for all ψ ∈ L∞(Rd 
v ), p ∈ [1,∞[.
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Second Step: Regularization of the Cross-Section 
Now, we remark that we need only B values for v − v1 such that |v′|, |v′

1| ≤  CM 
(C is a constant ). Then, we assume that B = ϕ(|z|, |(z.w)|/|z|), where ϕ(r, t)is 
set to [0,∞[×[0, 1] and ϕ(r, t) = 0 for  r 	 1, uniformly for t ∈ [0, 1]. Let  
ϕε ∈ D+(]0,∞[×]0, 1[) and Bε = ϕε(|z|, |(z.w)|/|z|). We have  

. Bε → B in L1(Rd × Sd−1).

Let 

. Lε
1(f, g) =

∫
Rd×Sd−1

Bε(v − v1, w)f ′f ′
1dwdv1;

then (12.59) à :  

.Lε
1(f

M
n , f M

n ) −→ Lε
1(f

M, f M) in L1(�×]0, T [). (12.61) 

Indeed, 

. L1(f
M
n , f M

n ) − L1(f
M, f M) = (L1(f

M
n , f M

n ) − Lε
1(f

M
n , f M

n ))

+ (Lε
1(f

M
n , f M

n ) − Lε
1(f

M, f M)) + (Lε
1(f

M, f M) − L1(f
M, f M)).

The functions f M 
n and f M have a compact support subset of ω̄ × B̄(0,M). Then, 

it is clear that L1(f M 
n , f  M 

n ) − Lε 
1(f M 

n , f  M 
n ) and Lε 

1(f M , f  M ) − L1(f M , f  M ) 
are bounded in L1(�×]0, T [) par CM‖Bε − B‖L1(Rd×Sd−1). This implies the 
equivalence between (12.59) and (12.61). 

To simplify the notations, we omit the parameters ε and M , and we assume that 
the sequence (fn) ∈ Fα with a support subset of ω̄ × B̄(0,M)) and satisfies the 
previous corollary. We also assume that the cross-section B ∈ D(Rd × Sd−1). 

Third Step: Regularization in Velocity 

We regularize L1(fn, fn) by 	δ = 
1 

δd
	( 

. 
δ 
), where 	 ∈ D(Rd ), 	 ≥ 0, and

∫
Rd

	dv = 1. 
Let 

. Lδ
1(fn, fn) = L1(fn, fn) ∗v 	δ.

Explaining this formula, we have 

.

Lδ
1(fn, fn)(x, v∗, t) =

∫
R2d

∫
Sd−1

dwB(v − v1, w)fn(v
′)fn(v

′
1)	δ(v∗ − v)dvdv1

=
∫
R2d

∫
Sd−1

dwB(v − v1, w)fn(v)fn(v1)	δ(v∗ − v′)dvdv1

=
∫
R2d

fn(v)fn(v1)ϕδ(v∗, v, v1)dvdv1
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with 

. ϕδ(v∗, v, v1) =
∫

Sd−1
dwB(v − v1, w)	δ(v∗ − v + (v − v1.w)w) ∈ D(R3d).

For δ >  0, the sequences fn and Lδ 
1(fn, fn) have a compact support subset of 

ω̄ × B̄(0,M); the function ϕδ is regular, and it has a compact support; then the 
averaging lemma implies that 

. Lδ
1(fn, fn) −→ Lδ

1(f, f ) = L1(f, f ) ∗v 	δ

in Lp (ω×]0, T [) strongly for p ∈ [1,∞[. 
We write 

. 

L1(fn, fn) − L1(f, f ) = (L1(fn, fn) − Lδ
1(fn, fn)) + (Lδ

1(fn, fn) − Lδ
1(f, f ))

+(Lδ
1(f, f ) − L1(f, f )).

We notice that it is sufficient to prove that: L1 (fn, fn)−Lδ 
1 (fn, fn) and Lδ 

1(f, f )− 
L1(f, f ) converge towards zero in L1(0, T [×�) as δ goes to zero (uniformly on n). 

Proof of Theorem 12.5.8: Conclusion The functions L1 (fn, fn) and L1(f, f ) 
have supports subset of ω × B(0,M). This is enough to prove the convergence in 
L2(]0, T [×�). Using the Plancherel formula, one can write 

. 
∥∥(

Lδ
1 − L1

)
(fn, fn)

∥∥2
L2(]0,T [×�)

= 1

(2π)d

∫ T

0
dt

∫
ω

dx

×
∫
Rd

dξ
∣∣Fα

v [L1 (fn, fn)]
∣∣2

(1 − 	̂(δξ))2;

finally, we have 	̂ is bounded, and it is sufficient to check that 

. lim
R→∞ sup

n≥1

∫ T

0
dt

∫
ω

dx

∫
|ξ |≥R

dξ
∣∣Fα

v [L1 (fn, fn)]
∣∣2 = 0.

This estimate is a consequence of the pseudo-differential regularity result of the 
operator L1 given by: 

Theorem 12.5.9 (P.L. Lions [47]) Let B ∈ C∞ (
R

d × Sd−1
)
, f  ∈ L2 

v , and g ∈ 
L1 

v . We assume that B satisfies the assumption (H2). Then, 

.L1(f, g)(v) =
∫
Rd×Sd−1

B (v − v1, w) f (v − (v − v1 · w)w)

×g (v1 + (v − v1 · w)w) dv1dw
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is in H(d−1)/2
(
R

d
)
and satisfies 

. ‖L1(f, g)‖H(d−1)/2(Rd
v )

≤ C‖f ‖L2(Rd
v )

‖g‖L1(Rd
v )

,

where the constant C is independent of f and g. In particular, for all s ∈ R, the  

operators T and T̂ are bounded in Hs+ d−1 
2

(
R

d
)
. ��

Remark 12.5.2 

1. The sequence f M 
n is bounded in L∞ (

0, T;; L1 ∩ L∞(�)
)
; the previous theorem 

allows us to deduce that 

. L1

(
f M

n , f M
n

)
is unif ormly bounded with respect to n in

L∞ (
]0, T [ × ωi; H(d−1)/2

(
R

d
))

.

This implies the estimate (64). 
2. The result of the previous theorem is based on an equivalent form of L1. Indeed, 

with the relation v = v′ + (
v′

1 − v′ − w
)
w, we have  

. 

∫
Rd

L1(f, f )ϕ(v)dv =
∫ {∫

Sd−1×Rd

f ′B(v − v1, w)ϕ

×(v′ + (v′
1 − v′.w)w)dwdv′

}
f ′

1dv′
1;

replacing (v, v1) �→ (v′, v′
1), the previous expression becomes 

. 

∫
Rd

L1(f, f )ϕ(v)dv =
∫ {∫

Sd−1×Rd

f (v)B(v − v1, w)ϕ

×(v − (v − v1.w)w)dwdv

}
f (v1)dv1,

and if we denote by τhψ := ψ(. − h), we get 

. 

∫
Rd

L1(f, f )ϕ(v)dv =
∫
Rd

f (v)

{∫
Rd

f (v1)[(τ−v1 ◦ T̃ ◦ τv1)ϕ](v)dv1

}
dv,

=
∫
Rd

f (v)L̃f (ϕ)(v)dv =
∫
Rd

f (v)L̃ϕ(f )(v)dv

with 

.(L̃θf )(x) =
∫
Rd

θ(z)[(τ−z ◦ T̃ ◦ τz)f ](x)dz.
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3. For all ψ ∈ D(� × [0, T ]), the sequences L1 (ψ, fn) and L1 (fn, ψ) converge, 
respectively, towards L1(ψ, f ) and L1(f, ψ) in L1 

loc(]0, T [×�). Therefore, for 
all f ∈ Fα , the sequences L1 (f, fn) and L1 (fn, f  ) converge towards L1(f, f ) 
in L1 

loc (]0, T  [×�) strongly. �
Lemma 12.5.14 Let ψ ∈ D([0, T  ] × �), θ ∈ L∞(]0, T [×�). Then 

. 

∫
Rd

L1 (ψ, fn) θ →
∫
Rd

L1(ψ, f )θ

and 

. 

∫
Rd

L1 (fn, ψ) θ →
∫
Rd

L1(f, ψ)θ

in L1(]0, T [×ω). ��
Proof of Lemma 12.5.14 The proof is the same for both cases. We shall detail only 
the first case. We assume that supp( ψ)  is a subset of a compact [0, T ] ×  ̄ω × K , 
then 

. 

∫
Rd

L1(ψ, fn − f )θdv =
∫
Rd

(f − fn)(v1)g(v1)dv1

with 

. g(v1) =
∫

K×Sd−1
B(v − v1, w)ψ(v)θ(v − (v − v1.w)w)dwdv,

the function g is in L∞(�×]0, T [), and then
∫
Rd (fn − f )gdv  converges towards 

zero in L1(�×]0, T [) strongly. ��
With the previous remark, we can deduce the stability of L2, L3, and L4. 

12.5.6 Analysis of L2, L3, and  L4 

Lemma 12.5.15 For all ψ ∈ D(�̄ × [0, T ]), i ∈ {3, 4}, and fn ∈ Fα , 

. 

∫
Rd

Li(fn, fn)ψdv −→
∫
Rd

Li(f, f )ψdv in L1(ω×]0, T [).

Then, for i ∈ {3, 4}, fnLi(fn, fn) converges in L1(�×]0, T [) weakly towards 
f Li(f, f ). ��
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Proof of Lemma 12.5.15 By writing L3 and L4, 

. 

L3(f, f )(v) =
∫
Rd

f (v1)[(τ−v1 ◦ T ◦ τv1)f ]dv1,

L4(f, f )(v) =
∫
Rd

f (v1)[(τ−v1 ◦ T̃ ◦ τv1)f ](v)dv1.

This is equivalent to L3(f, f ) = L̃f f and L4(f, f ) = Lf f with 

. (Lθf )(x) =
∫
Rd

θ(z)[(τ−z ◦ T ◦ τz)f ](x)dz,

(L̃θf )(x) =
∫
Rd

θ(z)[(τ−z ◦ T̃ ◦ τz)f ](x)dz.

Let ψ ∈ D, and by using the coordinates (v, v) �→ (v′, v′
1), we check that 

.

∫
Rd

L3(f, g)ψdv =
∫
Rd

g(v)L1(ψ, f )dv (12.62) 

and 

.

∫
Rd

L4(f, g)ψdv =
∫
Rd

g(v)L1(f, ψ)dv. (12.63) 

Let us detail the proof for L3. The proof of L4 is exactly the same. Indeed, we 
deduce from (12.62) that 

. 

∫
Rd

[L3(fn, fn)−L3(f, f )]ψdv =
∫
Rd

L1(ψ, fn − f )fn +
∫
Rd

L1(ψ, f )(fn −f ).

(12.64) 
We insert the function f M 

n , 

.

∫ T

0
dt

∫
ω

dx

∣∣∣∣
∫
Rd

L1(ψ, fn − f )fndv

∣∣∣∣

≤
∫ T

0
dt

∫
�

∣∣∣L1(ψ, fn − f )(fn − f M
n )

∣∣∣ dxdv +
∫ T

0
dt

∫
ω

dx

×
∫

|v|≤M

dv|L1(ψ, fn − f )|
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≤ Cψ

∫ T 

0 
dt

∫
ω 

dx

∫
|v|≥M 

fn +
∫ T 

0 
dt

∫
ω 

dx

∫
|v|≤M 

dv|L1(ψ, fn − f )| 

≤ 
CψT 
M2 sup 

t∈[0,T ] 
K(t) + ‖L1(ψ, fn − f )‖L1 

loc(�×]0,T [). 

Let f ε ∈ D such that ‖f ε − f ‖L1 ≤ ε, 

. 

∫
Rd

L1(ψ, f )(fn − f ) =
∫
Rd

L1(ψ, f ε)(fn − f ) +
∫
Rd

L1(ψ, f − f ε)(fn − f ),

(12.65) 
L1(ψ, f ε ) is regular, and then the convergence of the first term of (12.65) in  
L1(ω×]0, T [) is a consequence of the averaging lemma. The second term is 
equivalent to C‖f − f ε‖L1(�×]0,T [). 

To obtain the convergence of fnL3(fn, fn), we write 

. 

∫ T

0

∫
�

fnL3(fn, fn)ψdxdvdt =
∫ T

0

∫
�

L1(fnψ, fn)fndxdvdt.

The sequence (fn) is bounded in L∞, and L1(fnψ, fn) converges in L1(�×]0, T [)). 
Then, 

. 

∫ ∫ ∫
fnL1(fnψ, fn)dxdvdt →

∫ ∫ ∫
f L1(f ψ, f )dxdvdt.

This ends the proof of Lemma 12.5.15. ��
For the trilinear term L2, we have  

. 

∫
Rd

L2(f )ϕ(v)dv =
∫
Rd

f (v)

{∫
Rd×Sd−1

B(v − v1, w)f (v′)f (v′
1)ϕ(v1)dv1dw

}
dv.

The expression between the square brackets is similar to L1(f, f ) by changing the 
operator T by Tϕ : 

. Tϕψ(z) =
∫

Sd−1
ϕ(z + (z.w)w)B(z,w)ψ((z.w)w)dw.

Then, for all fn ∈ Fα , 

. 

∫ T

0

∫
�

(L2(fn) − L2(f ))ψdxdvdt −→ 0 ∀ψ ∈ D.

This completes the proof of the stability result (12.49). ��
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Remark 12.5.3 The previous stability results are dependent only on estimates of 
lemma (12.4.7) that will be essential for the study of the existence of a weak solution 
of the self-consistent problem. �

12.6 The Boltzmann–Poisson System 

12.6.1 Main Result 

Theorem 12.6.10 We assume that d ≤ 3. Then, under the assumptions (H1)−(H3), 
the Boltzmann–Poisson system (BP)1 has a weak solution (f, E) such that 

.

f ∈ L∞(R+; L1 ∩ L∞(�)), 0 ≤ f ≤ 1, ‖f (t)‖L1(�) = ‖f0‖L1(�), p.p.

E ∈ L∞
loc(R

+; [W 1, d+2
d (ω)]d),

∫
�

|v|2f (t, x, v)dxdv +
∫

ω

|E(t, x)|2dx + 2
∫

ω

	(t, x)ϕ0(t, x)dx ∈ L∞
loc(R

+).

��
To show the existence of a solution of the Boltzmann–Poisson system, we use 

a fixed-point procedure. E ∈ L2 
loc(R

+; W 1,∞), and f (E)  is a solution of the 
Boltzmann equation. This solution is uniformly bounded in L∞(R+; L1∩L∞(�)); 
its density 	(E) = ∫

Rd f (E)dv  is bounded in L∞(R+; L 
d+2 
d (�)). The solution of 

Poisson equation: −�x�(E) = 	(E) in L∞(0, T ; W 2, d+2 
d (ω)). Then, the new 

value of the electric field E∗ = −∇x�(E) is in L∞(0, T ; W 1, d+2 
d (ω)) and not 

necessarily in W 1,∞. A possible solution to this difficulty is to regularize the Poisson 
equation in order to get more regularity for the electric field. 

12.6.2 The Modified Boltzmann–Poisson System 

We consider the following modified Boltzmann–Poisson system: 

Theorem 12.6.11 Assume that (H1). −(H3) hold. Then, the system

1 see page 298. 
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. (BP ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf
ε +v.∇xf

ε + (Eε +E0).∇vf
ε = (Q0 +Q1)(f

ε) = Q(f ε),

Eε = −∇x�
ε,

−(1 − ε�x)
2�x�

ε = 	ε =
∫
Rd

f εdv,

f ε(x, v, t = 0) = f0(x, v),

f ε(x, v̄, t) = f ε(x, v, t), (x, v) ∈ 
−,

�ε(x, t) = ��ε = �2�ε = 0, x ∈ ∂ω,

where .v̄ = v − 2(v.n(x))n(x) has a weak solution .(f ε, Eε) satisfying 

.

f ε ∈ L∞
loc(R

+, L1 ∩ L∞(�)), 0 ≤ f ≤ 1, ‖f (t)‖L1(�) = ‖f0‖L1(�), p.p.

Eε ∈ L∞
loc(R

+, [W 5,r0(ω)]d), r0 = (d+2)2

(d+2)2−1
.

��
To prove this theorem, we use a second regularization of the electric field by 

considering 

. ξα(x, t) = 1

αd+1 ξ

(
x

α
,

t

α

)
,

where .ξ ∈ D(R+ × ω), ξ ≥ 0, and . 
∫
R+×ω

ξdxdt = 1.

We define 

. Fα = ξα ∗ (Ē + Ē0),

where . Ē and . Ē0 are, respectively, the extensions by zero outside .[0, T ] × ω of E 
and . E0 and . ∗ is the convolution with respect to the variable .(t, x). 

We consider the following Boltzmann–Poisson system:
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. (BP ε
α )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf + v · ∇xf + Fα · ∇vf = (Q0 + Q1)(f ) = Q(f ),

E = −∇x�,

−(1 − ε�x)
2�x� = 	 =

∫
Rd

f dv,

f (x, v, t = 0) = f0(x, v),

f (x, v̄, t) = f (x, v, t), (x, v) ∈ 
−

�(x, t) = �� = �2� = 0, x ∈ ∂ω.

Theorem 12.6.12 The system (.BP ε
α ) has a weak .(f ε

α , Eε
α) satisfying 

. 

f ε
α ∈ L∞

loc(R
+; L1 ∩ L∞(�)), 0 ≤ f ε

α ≤ 1, ‖f ε
α (t)‖L1(�) = ‖f0‖L1(�),

Eε
α ∈ L∞

loc(R
+; [W 5, d+2

d (ω)]d),

	ε
α ∈ L∞

loc(R
+; L

d+2
d (ω)), jε

α ∈ L∞
loc(R

+; [Ld+2
d+1 (ω)]d).

Moreover, .‖Eε
α‖

L∞(0,T ; [W 5, d+2
d (ω)]d )

, .‖	ε
α‖

L∞(0,T ; L
d+2
d (ω))

, and 

.‖jε
α‖

L∞(0,T ;[L d+2
d+1 (ω)]d )

are uniformly bounded with a uniform bound independent 

of the parameter .α. ��
The proof of this result uses several lemmata. 
We define 

. 

� : L2(0, T ; [W 4,r0(ω)]d) −→ L2(0, T ; [W 4,r0(ω)]d)

E �−→ E∗,

where . r0 is given by Theorem 12.6.11 and . E∗ is defined as follows. 
We regularize .E + E0 by . ξα; we define .fα(E) as the unique solution of the 

Boltzmann equation associated with . Fα . 
Then, we consider the modified Poisson equation 

.

⎧⎪⎪⎨
⎪⎪⎩

−(1 − ε�)2��ε
α = 	α(E) =

∫
Rd

fα(E)dv,

�ε
α = ��ε

α = �2�ε
α = 0, x ∈ ∂ω,

(12.66) 

and finally, we take .�(E) = E∗ := −∇x�
ε
α.
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The proof of the previous theorem consists of proving that . � has a fixed point. 
We start with the following result on elliptic operators. 

Lemma 12.6.16 ([1, 12]) Let .	 ∈ Lr(ω), .r ∈]1,+∞[, m ∈ IN. Then, the solution 
of 

. 

⎧⎨
⎩

−(1 − ε�x)
2m�x� = 	,

�(x, t) = �x� = · · · = �2m
x � = 0, x ∈ ∂ω,

belongs to .W 4m+2,r (ω) and satisfies 

.‖�ε‖W 4m+2,r (ω) ≤ C(r, ε)‖	‖Lr(ω) (12.67) 

.‖�ε‖W 2,r (ω) ≤ C(r)‖	‖Lr(ω), (12.68) 

where .C(r) is independent of . ε. Moreover, if .	 ≥ 0, then .�ε ≥ 0. ��
Now, we shall prove the existence of a weak solution of . (BP ε

α ).

Lemma 12.6.17 Let .T > 0. Then, there exists .C(ε) dependent on T and . ε, such  
that 

.‖E∗(t)‖W 5,r0 (ω) ≤ C(ε)(1 + ‖E(s)‖L2(0,T ; W 4,r0 (ω))
1/2. (12.69)

��
Proof of Lemma 12.6.17 Let .r ∈]1, d+2

d
], .E0 ∈ L2(0, T ; Ld+2(ω)), and . E ∈

L2(0, T ; W 4,r0(ω)). Then, for .t ≤ T , .	α(E(t)) ∈ Lr(ω) and 

. ‖E∗(t)‖W 5,r ≤ C(r, ε)‖	(E(t))‖Lr(ω).

By applying the .Lp-interpolation properties and Lemma 12.4.7, we get 

. ‖E∗(t)‖W 5,r ≤ C(r, ε)‖	0‖β

L1(ω)

{
1 +

∫ T

0
‖Fα(s)‖Ld+2(ω)ds

}(1−β)(d+2)

,

where . β vérifiant . 1
r

= β + (1−β)d
d+2 . 

We remark that the choice .r = r0 gives .(1−β)(d +2) = 1/2. As a consequence, 
the previous estimate becomes 

.

‖E∗(t)‖W 5,r0 ≤ C(ε)

{
1 +

∫ T

0
‖Fα(s)‖Ld+2(ω)ds

}1/2

≤ C(ε)
{

1 + √
T ‖E + E0‖L2(0,T ; Ld+2(ω))

}1/2
.
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The fact that .E0 belongs to .L2
loc(R

+; Ld+2(ω)) and the fact that .W 4,r0 is 
continuously embedded in .Ld+2(ω) for .d ≤ 3 lead to 

. ‖E∗(t)‖W 5,r0 ≤ C(ε)
{

1 + ‖E‖L2(0,T ; W 4,r0 (ω))

}1/2
,

where .C(ε) depends only on . ε and T . 
As a consequence, there exists .R > 0 such that .B̄R of .L2(0, T ; [W 4,r0(ω)]d) is 

invariant by . �. Indeed, .W 5,r0(ω) ↪→ W 4,r0(ω), 

. ‖E∗(t)‖2
W 4,r0

≤ C(ε)
{

1 + ‖E(s)‖L2(0,T ; [W 4,r0 (ω)]d )

}
,

and .�(B̄r ) ⊂ B̄R for all R such that .R2 = C(ε)(1 + R). ��
Lemma 12.6.18 .�(B̄R) is a precompact subset of .L2(0, T ; [W 4,r0(ω)]d). ��
Proof of Lemma 12.6.18 This lemma is a consequence of the compactness results 
of evolution operators used to prove Lemme 12.5.10. Let . En a sequence in . B̄R . The  
previous inequality gives 

.�(En) is bouneded in L2(0, T ; [W 5,r0(ω)]d). (12.70) 

Lemma 12.4.7 implies that .	α(En) (respectively, .jα(En))2 are uniformly bounded in 

.L∞(0, T ; L
d+2
d (ω)) (respectively, in .L∞(0, T ; L

d+2
d+1 (ω))). One can deduce using 

. ∂t	α(En) + ∇x · jα(En) = 0

that .∂t	α(En) is bounded in .L∞(0, T ; W−1,r0(ω)) (since .r0 < d+2
d+1 ) and . ∂t�(En)

is the solution of 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t�(En) = −∇xψ,

−(1 − ε�x)
2�xψ = ∂t	α(En),

ψ = �ψ = �2ψ = 0 x ∈ ∂ω.

Then 

.∂t�(En) est bornée dans L∞(0, T ; [W 4,r0(ω)]d). (12.71) 

The uniform bounds (12.70) and (12.71) imply that .�(B̄R) is precompact in 
.L2(0, T ; [W 4,r0(ω)]d). ��

2 .	α(En) = ∫
Rd fα(En)dv and . jα(En) = ∫

Rd vfα(En)dv.
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Lemma 12.6.19 . � is continuous. ��
Proof of Lemma 12.6.19 Let .En a sequence in .B̄R converging towards E in 
.L2(0, T , [W 4,r0 ]d) strongly. Let .Fα(En) the regularization of .En + E0 by . ξα . We  
consider .fα(En) the solution of the Boltzmann equation associated with .Fα(En); 
.	α(En) = ∫

Rd fα(En)dv and .E∗
n = �(En). 

The subset .�(B̄R) is precompact. There exists a sub-sequence, also denoted 
.E∗

n that converges towards .E∗ ∈ B̄R . To prove the convergence of .(�(En))n, it  
is sufficient to verify that . E∗ = �(E).

The sequence .fα(En) is uniformly bounded, .0 ≤ fα(En) ≤ 1, and .	α(En) is 

bounded in .L∞(0, T ; L
d+2
d (ω)). 

Let . fα and . 	α be their limits, respectively : 

. fα(En)
∗
⇀ fα in L∞(0, T ; L∞(�)),

	α(En) ⇀ 	α in L2(0, T ; L
d+2
d (ω)).

The sequence .(Fα(En))n is bounded in .L2(0, T ; Ld+2(�)). One can deduce that 
the assumptions of Lemma 12.4.7 are satisfied. The properties of compactness of 
the collision operator Q imply: there exists a sub-sequence .(fα(En))n such that 

. Q(fα(En)) ⇀ Q(fα) in L1(�×]0, T [) weakly.

Moreover, 

. Fα(En) −→ Fα = ξα ∗ (Ē + Ē0) in L2(0, T ; Ld+2(ω)) strong.

We can pass to the limit in the Green formula (12.29) for all . ψ ∈ C1
c(]0, T [×�̄)

satisfying (12.26): 

. 

∫ T

0

∫
�

(∂tψ + v∇xψ + Fα.∇vψ)fα +
∫ T

0

∫
�

Q(fα)ψ +
∫

�

f0ψ(t = 0)dxdv = 0.

By passing to the limit in the modified Poisson equation, we get . E∗ verifies 

. 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E∗ = −∇x�
∗,

(1 − ε�)2��∗ = 	α,

�∗ = ��∗ = �2� = 0, x ∈ ∂ω.

To prove that .	α = ∫
fαdv, we remark that .fα(En) belongs to a compact subset of 

.L1(0, T ; L1(�)) − weak; the density .	α(En) is bounded in .L∞(0, T ; L
d+2
d (ω)), 

and for all .ψ ∈ D(]0, T [×ω),
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. lim
n→∞

∫ T

0

∫
ω

[
	α(En) −

∫
Rd

fαdv

]
ψ(t, x)dxdt = lim

n→∞ 〈fα(En) − f,ψ〉L1,L∞ = 0.

The sequence .fα(En) converges to . fα in . L1 weakly, and its limit in . D′ of . 	α(En)

is equal to .
∫

fαdv. Then, .E∗ = �(E). ��
Proof of Theorem 12.6.12 As a conclusion, the application . � verifies the assump-
tions of the Schauder fixed-point theorem. This yields the existence of .Eε

α ∈ B̄R . In  
addition, it satisfies (12.69). The estimates on the charge density . 	ε

α and the current 
. jε
α (due to Lemma 12.4.7) are uniformly bounded with respect to R and depend only 

on . ε and T . ��
Remark 12.6.4 We proved the existence of a weak solution (local in time: on .[0, T ]) 
of the modified Boltzmann–Poisson system. To prove a global solution in time, we 
consider a sequence of intervals .In = [n, n + 1] to extend the solution on .In+1 by a 
solution associated with an initial data .f = f (t = n) (in a weak sense). . �
Proof of Theorem 12.6.11 Now, we can proceed to the proof of Theorem 12.6.11 
by considering a sequence of weak solutions of (.BP ε

α ) .(f ε
α , 	ε

α, jε
α, Eε

α)α belonging 
to .(BP ε

α ). Up to the extraction of a sub-sequence, there exists .fα, 	α, jα, Eα such 
that : 

. 

f ε
α

∗
⇀ f ε ∈ L∞

loc(R
+; L1 ∩ L∞(�)),

	ε
α ⇀ 	ε ∈ L∞

loc(R
+; L

d+2
d (ω)),

jε
α ⇀ jε ∈ L∞

loc(R
+; [Ld+2

d+1 (ω)]d).

The parameter . ε is fixed. .Eε
α is bounded in .L∞

loc(R
+, [W 5,r0(ω)]d), and .∂tE

ε
α is 

bounded in .L∞
loc(R

+; [W 4, d+2
d+1 (ω)]d); we can deduce 

. 

Eε
α ⇀ Eε in L∞

loc(R
+, [W 5,r0(ω)]d) weakly,

Eε
α −→ Eε in L2(0, T , [W 4,r0(ω)]d) strongly.

Furthermore, .(	ε, Eε) verifies 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Eε = −∇x�
ε,

−(1 − ε�x)
2�x�

ε = 	ε,

�ε = �x�
ε = �2

x�
ε = 0, x ∈ ∂ω.
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Then, 

. Eε ∈ L∞
loc(R

+; [W 5, d+2
d (ω)]d).

By passing to the limit in . D′ on the continuity equation .∂t	
ε
α +∇x ·jε

α = 0, implying 
.∂t	

ε + ∇x · jε = 0, 

. ∂tE ∈ L∞
loc(R

+; [W 4, d+2
d+1 (ω)]d)

and 

. Eε ∈ [W 1,∞(ω×]0, T [)]d .

The strong convergence in .L2(]0, T [×ω) of . Eε
α towards E and . Fε

α to .Eε + E0 and 
the compactness properties of Q yield: the weak limit . f ε of . f ε

α verifies the formula 
(12.29): 

. 

∫ T

0

∫
�

[(∂tψ + v · ∇xψ + (Eε + E0) · ∇vψ)f ε + Q(f ε)ψ] +
∫

�

f0ψ(0, x, v) = 0

for all . ψ belonging to .D([0, T ] × R
2d) and satisfying (12.26). 

Furthermore, . f ε
α belongs to a weakly compact subset of .L1(]0, T [×�). Note that 

one can easily prove that . 	ε
α converges in . D′ towards .	ε = ∫

Rd f εdv. In conclusion, 
the limit .(f ε, Eε) is a weak solution of (.BP ε). ��

12.6.3 Unmodified Boltzmann–Poisson System 

Let .(f ε, Eε) be a weak solution (.BP ε). The estimates on . f ε are uniform. It remains 
to provide estimates independent of . ε, giving compactness for an .Eε. This estimate 

can be obtained if we have a uniform . 	ε in .L
d+2
d . To do this, we propose to establish 

a uniform kinetic energy. Using Lemma 12.4.7, we obtain a .Lp-estimate on the 
density. 

Let 

. 

Kε(t) =
∫

�

|v|2f ε(t, x, v)dxdv, V ε(t) =
∫

ω

	ε(t, x)�ε(t, x)dx,

Eε(t) = Kε(t) + V ε(t) + 2
∫

ω

	ε(t, x)�0(t, x)dx.

The energy . Eε verifies the following lemma.
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Lemma 12.6.20 . Kε, . V ε, and . Eε belong to .W
1,1
loc (R+). Moreover, 

.Kε(0) =
∫

�

|v|2f0dxdv, V ε(0) =
∫

�

f0(x, v)�ε(0, x)dxdv (12.72) 

.Eε(0) = Kε(0) + V ε(0) + 2
∫

�

f0(x, v)�0(0, x)dxdv (12.73) 

.
d

dt
Kε(t) = 2

∫
ω

jε · (Eε + E0)dx (12.74) 

.
d

dt
V ε(t) = 2

∫
ω

	ε(t, x)∂t�
ε(t, x)dx = 2

∫
ω

jε · ∇x�
εdx (12.75) 

.
[
Eε

]t
0 = 2

∫ t

0

∫
ω

	ε(s, x)∂t�0(s, x)dxds. (12.76)

��
Proof of Lemma 12.6.20 Let .ψ = |v|2χR(v)χω̄(x)h(t), where .h ∈ C1

c([0, T [) and 
. χR is defined by 

. χR(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if |v| ≤ R,

0 if |v| ≥ R,

R + 1 − |v| if R ≤ |v| ≤ R + 1.

The function .χR is uniformly bounded in .W 1,∞ and converges to 1 a.e., and its 
gradient converges towards zero. The Green formula is 

. 

∫ t

0

∫
�

|v|2f εχR(v)
dh

ds
+

∫ t

0

∫
�

|v|2f ε∇vχR(v) · (Eε + E0)h(s)

+2
∫ t

0

∫
�

v.(Eε + E0)f
εχRh(s) =

∫ t

0

∫
�

Q(f ε)|v|2χR(v)h(s)

+
∫ t

0

∫
∂�

|v|2f εχR(v)h(t)(v · n(x)) − h(0)

∫
�

|v|2f0χR(v). (12.77) 

. f ε verifies the specular reflection condition (in the weak sense ). So that, 

.

∫ t

0

∫
∂�

|v|2f εχR(v)h(t)(v · n(x)) = 0.
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By passing to the limit .(R → +∞) and using the properties of Q, we obtain 

. 

∫ t

0

d

ds

{∫
�

|v|2f ε(s)

}
h(s)ds = 2

∫ t

0

[∫
ω

jε · (Eε + E0)(s, x)d

]
h(s)ds

for all . h ∈ D(R+∗ ).

Or also 

. 
d

dt
Kε(t) = 2

∫
ω

jε · (Eε + E0)dx in D′(]0,∞[).

The second term belongs to .L1
loc(]0,+∞[), leading to: .Kε ∈ C(R+), and by passing 

to the limit on R in (12.77), we get 

. K(0) =
∫

�

|v|2f0dxdv

and 

.Kε(t) = K(0) + 2
∫ t

0

∫
ω

jε · (Eε + E0)dxds. (12.78) 

Furthermore, 

. 

2
∫ t

0

∫
ω

jε · (Eε + E0)dxds = −2
∫ t

0

∫
ω

jε · ∇x(�
ε + �0)dxds

= −2
∫ t

0

∫
ω

∂t	
ε(�ε + �0)dxds

= 2
∫ t

0

∫
ω

	ε(∂t�
ε + ∂t�0)dxds

+2

[∫
ω

	ε(�0 + �ε)dx

]0

t

.

By passing to the limit .(R → ∞) with a test function .ψR = χR(v)�ε(t, x)h(t), we  
get 

. 
d

dt
V ε(t) =

∫
ω

	ε(t, x)
∂�ε

∂t
(t, x)dx +

∫
ω

jε · ∇x�
ε(t, x)dx ∈ L1

loc(]0,+∞[).

As a consequence, .V ε(0) = ∫
ω

f0(x, v)�ε(0, x)dx, and thanks to the modified 
Poisson equation (12.66) that 

.V ε(t) =
∫

ω

‖(1 − ε�)∇(�ε(t))‖2dx.
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Moreover, the continuity equation leads to 

. 

dV ε

dt
(t) = 2

∫
ω

(1 − ε�)∇�ε · (1 − ε�)∇∂t�
εdx

= 2
∫

ω

	ε(t, x)∂t�
ε(t, x)dx = 2

∫
ω

jε · ∇x�
εdx.

Identity (12.78) becomes 

. 

∫ t

0

∫
ω

jε · (Eε +E0)(s, x) = [V ε(s)]0
t +

∫ t

0

∫
ω

	ε∂tϕ0(s, x)dxds +
[∫

ω

	εϕ0dx

]0

t

.

Finally, 

. Kε(t) + V ε(t) = K(0) + V ε(0) + 2
∫ t

0

∫
ω

	ε∂tϕ0dx + 2

[∫
ω

	εϕ0dx

]0

t

and 

. 
[
Eε

]t
0 = 2

∫ t

0

∫
ω

	ε∂tϕ0(s, x)dxds.

Lemma 12.6.21 There exists . CT such that 

. Kε(t) ≤ CT , ∀ε ≤ 1.

Proof of Lemma 12.6.21 By applying (12.76), we have 

. 

Eε(t) ≤ Eε(0) + 2
∫ t

0

∫
ω

	ε(s, x)∂tϕ0(s, x)dxds

≤ CT

(
1 +

∫ T

0
‖	ε(t)‖L1(ω)‖∂tϕ0(t)‖L∞(ω)dt

)
.

Using (H3), the energy . Eε is uniformly bounded in .C([0, T ]). 
As a consequence, 

Lemma 12.6.22 . (	ε, jε,�ε) satisfies:

1. . 	ε is uniformly bounded in .L∞(0, T ; L
d+2
d (ω)). 

2. . jε is uniformly bounded in .L∞(0, T ; [Ld+2
d+1 (ω)]d). 

3. . �ε is uniformly bounded in .L∞(0, T ; W 2, d+2
d (ω)). 

4. .∂t�
ε is uniformly bounded in .L∞(0, T ; W 1, d+2

d+1 (ω)). ��
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Proof of Lemma 12.6.22 . i) and .ii) are a consequence of Lemma (12.4.7), by 
replacing K by . Kε. The property .iii) is a consequence (12.67), and .iv) can 
be deduced from .∂t	

ε + ∇x · jε = 0, which implies a uniform bound .∂t	
ε in 

.L∞(0, T ; W−1, d+2
d+1 (ω)). ��

Using this lemma, we can extract a sub-sequence satisfying 

. f ε ∗
⇀ f in L∞(0, T ; L∞(�)) |v|2f ε ∗

⇀ F in L∞(0, T ; Mb(�)),

	ε ⇀ 	 in L∞(0, T ; L
d+2
d (ω)), jε ⇀ j, in L∞(0, T ; [Ld+2

d+1 (ω)]d),

Eε ⇀ E in L∞(0, T ; [W 1, d+2
d (ω)]d),

and 

. Eε −→ E in L∞(0, T ; [Ld+2
d (ω)]d).

Moreover, we have: 

Lemma 12.6.23 The functions F , . 	, and j are: 

1. .F = |v|2f . 
2. . 	 =

∫
Rd

f dv.

3. .j =
∫
Rd

vf dv. ��
Proof of Lemma 12.6.23 The proof can be carried out by passing to the limit in the 
weak formulation using a test function Soit .ψ ∈ D, leading to 

. 

∫
|v|2f εψ −→ 〈F,ψ〉D′,D.

Using the fact that .|v|2ψ ∈ D and .f ε ∗
⇀ f , then 

. 

∫
|v|2f εψ −→ 〈f, |v|2ψ〉 = 〈|v|2f,ψ〉,

which implies that .F = |v|2f ∈ L∞(0, T ; Mb(�)). Moreover, .|v|2f ε is 
uniformly bounded in .L∞

loc and then . F ∈ Mb ∩ L∞
loc = L1 ∩ L∞

loc.

(ii) Let . ψ ∈ D(ω̄ × [0, T ]),

.

∫ T

0

∫
ω

(	ε −
∫
Rd

f dv)ψdxdvdt =
∫ T

0

∫
�

(f ε − f )ψdxdvdt.dxdv.
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The function .ψ ∈ L∞(�×]0, T [) and .f ε ⇀ f in .L1-weak. 

. 	 =
∫
Rd

f dv.

(iii) 

. 

∣∣∣∣
∫ T

0

∫
ω

(jε −
∫
Rd

vf dv)ψdxdv

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫
ω

∫
|v|≤R

(vf ε − vf )ψdxdvdt

∣∣∣∣

+Cψ
R

∫ T

0
(Kε(t) + K(t))dt

≤ |〈f ε − f, vχ|v|≤R(v)ψ(x, t)〉L1,L∞| + C
R

.

We pass to the limit in the first term of the right-hand side for a fixed R using the 
weak convergence of . f ε. Then, we let R going to infinity, and we obtain iii). ��
Lemma 12.6.24 The weak limit .(f,E) is a solution of the Boltzmann–Poisson 
system (BP). ��
Proof of Lemma 12.6.24 Let .ψ ∈ D and satisfy (12.26). Then, 

. 

∫ T

0

∫
�

f ε[∂tψ + v.∇xψ + (Eε + E0).∇vψ]dxdvdt

+
∫ T

0

∫
�

Q(f ε)ψdxdvdt +
∫

�

f0ψ(x, v, 0) = 0.

The convergence of the first integral is a consequence of the weak convergence of 

. f ε and the strong convergence of . Eε. Moreover, .W 1, d+2
d (ω) ↪→ Ld+2(ω) giving 

. Eε is bounded in .L2(0, T ; Ld+2(ω)). As a consequence, Lemma (12.4.7) implies 

. 

∫ T

0

∫
�

Q(f ε)ψdxdvdt −→
∫ T

0

∫
�

Q(f )ψdxdvdt.

Finally, f is a weak solution of the Boltzmann equation associated with E 
and satisfies (12.7) and (12.8). It remains to justify that it is a gradient of the 
potential, solution of the Poisson equation. Indeed, .�ε is uniformly bounded in 

.L∞(0, T ; W 1, d+2
d (ω)), solution of 

.

∫
ω

(1 − ε�)∇�ε(x, t)(1 − ε�)∇θ(x)dx =
∫

ω

	ε(t, x)θ(x)dx
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for a.e. .t ∈]0, T [ and all .θ ∈ D(ω). By passing to the limit on . ε, we deduce that . �
verifies 

. 

∫
ω

∇�ε(x, t)∇θ(x)dx =
∫

ω

	(x, t)θ(x)dx,

and this means that . � is the solution of the homogeneous Dirichlet problem . −�� =
	 in . D′. To finish, the weak convergence of . f ε and the strong convergence of . Eε

prove, by passing to the limit in (12.76), that 

. E(t) =
∫

�

|v|2f (x, v, t)dxdv +
∫

ω

|E(t, x)|2dx

+2
∫

ω

	(x, t)�(t, x)dx ∈ L∞
loc(R

+).
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