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1 Introduction 

This chapter introduces the technology Non-Intrusive Load Monitoring, a method for 
detecting individual devices from an overall signal. Non-Intrusive Load Monitoring 
is the research area and technology behind the third word in Smart Meter Inclusive. 
Using a smart meter as a basis and recognizing devices from the power profile is not a 
new idea but is now a common practice in Non-Intrusive Load Monitoring. However, 
the approach to creating such a measurement system that classifies appliances in real-
time and visualizes the results directly on the same hardware has not been existing 
yet. Smart Meter Inclusive wants to leave the data where it originates, namely with 
the customer. This book chapter provides a general overview of non-intrusive load 
monitoring to be able to understand the basics and approaches for such a Smart Meter 
Inclusive. 

2 Efficient Energy Monitoring Through Non-intrusive 
Load Monitoring 

One of the most important issues of our time is environmental protection. Everyone 
owns more and more electronic appliances; politicians rely on electric vehicles; 
energy consumption continues to rise. Of course, this is compensated for by ever 
more efficient devices. Washing machines and dryers use significantly less energy 
today than ten years ago. However, this energy efficiency alone is no longer sufficient.
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One approach to address this seemingly endless increase in energy demand is to 
use consumers more efficiently (Hoyo-Montaño et al. 2016; Luca et al. 2015). A 
possible idea of the implementation is to make the customer’s consumption more 
transparent to be able to show him the resulting potential savings. This transparency 
opens a new problem. How do you measure the consumption of individual devices? 
And is it a sensible concept to install more and more power meters? Each of these 
devices consumes energy itself. But in order to identify all consumers with this 
concept, each consumer must be equipped with its own electricity meter. Power 
meters are not cheap. In order to evaluate the data, they have to be synchronized 
first. Some devices may be installed permanently and inaccessible. Therefore, it is 
difficult to add a power meter after the fact. And finally, power meters themselves 
are new consumers. 

Developments for more efficient consumption monitoring in electronic networks 
began at MIT in the USA in the 1990s (Hart 1989). A basic physical principle is 
that the power of consumers that are running at the same time can be superimposed. 
Hart postulated at that time that electronic consumers could be divided into different 
main categories. He also found through recording that various devices have very 
individual behavior. Hart’s conclusion was that a kind of reengineering could take 
place here. So instead of installing an electricity meter in front of each individual 
consumer, only one meter is required at the entrance to the electronic network. This 
central meter allows the measurement of the superimposed total consumption of all 
devices. These individual devices are calculated out of the total consumption with 
the help of various signal processing and artificial intelligence methods. A kind of 
inverse superposition takes place. 

Another motivation for monitoring and detecting consumers can be found under 
the keyword Ambient Assisted Living (AAL) (Bucci et al. 2021; Ruano et al. 
2019; Klein et al. 2013). Here, Non-Intrusive Load Monitoring (NILM) can help 
monitoring the health status of older people. For the most part, AAL relies on sensors 
of all kinds, from direct vital signs sensors in smartwatches to indirectly incorporated 
accelerometers in smartphones. Usually, these sensors have to be carried actively on 
the body and therefore require a certain tolerance of the wearer. NILM enables an 
indirect insight into the everyday behavior via appliance recognition without inter-
vening on the freedom of the person or forcing a change in behavior. It is not neces-
sary to procure several expensive sensors for this, but every household appliance 
automatically assumes the role of such a sensor. 

2.1 Load Disaggregation and Other Terms 

When Hart began his work in this area of research, he coined the name Nonintru-
sive Appliance Load Monitoring (NIALM) from the title of his publication of the 
same name (Hart 1992). Over the years, other terms and forms of writing derived 
from them have been established, but they can all be used synonymously. The most 
common representatives of these are Nonintrusive as well as Non-Intrusive Load



Smart Meters Improved by NILM 31

Monitoring (NILM) or Nonintrusive as well as Non-Intrusive Appliance Load Moni-
toring (NIALM). Another abbreviation is NALM, where the non-intrusive is abbrevi-
ated to just one letter. Energy or load disaggregation is also quite common. Disaggre-
gation derives from the idea that the aggregated performance i.e. the resulting total 
performance of all devices, is measured at a central measuring point. Mathematically, 
the aggregated power can be expressed as Eq. 1. 

Ptot  (t) :=
∑

i=1 

(Pi (t))
N + e(t) (1) 

The N individual loads are described by Pi(t), and an additional disturbance term 
e(t) is added, which describes both the noise and possibly unidentifiable loads. So, 
disaggregation is the inversion of this aggregated signal into its consumer signals. 

In this book, we mainly use the notation most commonly used today, Non-Intrusive 
Load Monitoring, and the abbreviation NILM. 

2.2 Intrusive Versus Non-intrusive 

One point that inevitably gets stuck when examining the name of the research area is 
non-intrusive. So the question arises of what intrusive and non-intrusive mean. The 
two terms refer to the measuring principle. Intrusive means that a measuring device 
is on the electronic network, while non-intrusive represents a black box measuring 
method. 

The simplest example of an intrusive measurement is through a plug-in power 
meter. This measuring device is attached between the actual socket and the appliance. 
It also creates a load drop itself, although usually relatively small. However, it requires 
an intervention in the network structure since it has to be connected in between. In the 
case of a non-intrusive measurement, measurements are taken outside of the network 
to be analyzed. The current measuring methods for NILM use the physical principle 
that every current also induces a magnetic field. This means that the sensors can 
easily be retrofitted around the individual current phases. 

Both measurement methods, intrusive and non-intrusive, can be found. They are 
summarized under the term Appliance Load Monitoring (AML) (Hart 1992). Intru-
sive monitoring of appliances is the classic example that everyone immediately has 
in mind. Each device to be monitored has its power meter. The problem with this 
measurement method is that the power meters are expensive to purchase and install. 
Furthermore, the recorded data must be combined to be able to evaluate them. On the 
other hand, there is the non-contact monitoring of devices by measuring at a central 
point in the network. The non-intrusive method is significantly cheaper to install and 
easier to retrofit. The problem with this approach is that only the aggregated signal 
is available due to the central measurement. The load disaggregation must therefore 
be implemented in software using various algorithms from signal processing and 
artificial intelligence.
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2.3 Process Chain of Non-intrusive Load Monitoring 

Over the years, a standard procedure for the implementation of NILM has been 
established, which can be found again and again in this or a slightly modified form. 
These individual components of the processing chain ensure that the complex NILM 
problem is broken down into more manageable sub-problems. The structure for 
event-driven NILM approaches is shown as an example. 

• Data Acquisition (current and voltage) 
• Preprocessing (filtering, but also conversion to common formats like P&Q, 

Harmonics, …) 
• Feature Extraction (steady-state features, transient-state features) 
• Event Detection 
• Classification 
• Monitoring (depending on the objectives, can be approximation of consumption 

or detection of anomalies, …). 

The individual steps are described in more detail below. 

Data Acquisition 

Data acquisition involves measuring a signal. Current and voltage can be measured 
here, but also the power itself can form the input signal using a power meter. An 
important parameter related to data acquisition is the sampling rate. In this case, 
sampling below 1 Hz is referred to as a low sampling rate, while high-frequency 
sampling in the context of NILM is in the range of > 1 kHz to the MHz range 
(Zhuang et al. 2018). 

Preprocessing 

In the preprocessing stage, the recorded signals are subjected to an initial adjustment. 
If necessary, digital filtering can take place here. Signal conversions, such as power 
calculations, also count as preprocessing in this sense. The signal is converted into a 
form that can be used for event detection and feature extraction. 

Feature Extraction 

Depending on the objective, a feature is obtained from the preprocessed signal. This 
feature can later be used for classification. A wide variety of methods are used here, 
which can deliver one-to-multidimensional features. A simple example is the power 
values P&Q per period. Other examples are the harmonics or V-I-trajectories. 

Another distinction in feature extraction is the question of the signal section to 
be used for extraction. There are Steady State Features (SSF) and Transient State 
Features (TSF). With the SSF, the signal change before and after an event is compared. 
The SSF is particularly suitable for low-dimensional features. TSFs, in turn, cover an 
entire signal section, from the beginning of the occurring signal change of an event 
to the transition when the signal again assumes a quasi-stable state. By considering 
this dynamic change, TSF delivers multidimensional features.
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Event Detection 

In event detection, an algorithm is applied to the recorded signal to detect when an 
appliance has changed its state. The bandwidth for such methods ranges from simple 
threshold detectors to complex methods such as wavelet transforms. 

Classification 

Once events are detected, they can be examined more closely. An attempt is made to 
identify the appliance causing the event. Any classification method from the field of 
machine learning can be used to solve this problem. Not included in the representation 
of this process chain is the fact that such a classification method must be learned 
beforehand. 

Monitoring 

In monitoring, the goal is crucial. Once it is clear which information the NILM 
processing chain should deliver, these results can be combined with the knowledge 
gained so far. The motivations for NILM listed at the beginning, energy reduction and 
ambient assisted living, alone indicate how broadly monitoring is to be understood. 

2.4 Appliance Categories 

From the outside, some appliances look similar, while others are fundamentally 
different. This can also be observed inside. While two different toasters have a simpli-
fied internal structure consisting of a heating element and are therefore similar, they 
can be distinguished from a fan, for example, by a completely different type of elec-
tronic consumer in the signal curve. Many different appliances have been analyzed 
in research on NILM. The division into four basic categories of electronic devices 
has become established in the literature on NILM (Abubakar et al. 2015; Hart  1992; 
Zeifman and Roth 2011; Zoha et al. 2012), which are presented in Table 1.

These appliances are further divided into event-based and eventless appliances. 
An event is a transition from one state to the next or the turning on or off. Event-based 
appliances include Type I and II devices. Eventless devices are Type III and IV. On 
the consumption side, changes in the status of the latter two device types cannot 
usually be recognized or clearly defined. 

2.5 Event-Driven Versus Eventless Approach 

There are two approaches to solving the problem of detecting devices within the 
framework of NILM. As already described, one way is to search for events in the 
incoming signal. This path requires a suitable event detection method, which must 
be adapted to the respective situation in the network. The approach of wanting to
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Table 1 Appliance categories 

Category Description Typical examples 

Type I: on–off-devices Simple devices that can only be 
switched on and off 

Lamps, toasters 

Type II: finite state 
machine 

Devices that can assume a 
countable number of states and 
whose state changes usually 
follow a fixed program 

Washing machines, 
dishwashers, coffee machines 

Type III: various power 
devices 

Devices that do not know any 
fixed states, the performance 
changes fluently 

Drilling machine 

Type IV: permanent 
consumer 

Devices that are switched on 
permanently or for a very long 
time 

Steady light, satellite receiver

recognize devices without an event usually amounts to an algorithm based on a 
Hidden Markov Model. Both approaches have their areas of application. 

Event-Driven Approach 

In the event-driven approach, an event detection method is used. It aims to identify 
events that are occurring as precisely as possible. Events are changes in the signal 
in the classic sense, which lead from one steady-state to another. How well such an 
algorithm can work depends on the device constellation within an electronic network. 
There are very power-intensive consumers, as well as small consumers. If there are 
only large consumers in a network that are to be recognized, there is a good chance 
for the algorithm to produce good results. It is the same in a network in which only 
small consumers appear. Two problematic quantities limit the result. On the one 
hand, there is the strength of the noise in the network; on the other hand, there is the 
power difference of the smallest event change. If the background noise is already 
greater than the smallest event, it is not detectable with certainty. The same problem 
also comes into play when large and small consumers are together network. Small 
events then threaten to be lost in the dynamic behavior of large devices. 

There are different approaches to implementing event detection algorithms. 
These approaches range from threshold-based methods and statistical tests to neural 
networks (Held et al. 2018b; Lu and Li 2020; Wild et al. 2015; Yang et al. 2020). 

The F1 score can be used to validate the quality of such an event detection 
algorithm. This is based on the key figures of a binary classifier. 

Another key figure is true negative, which is not determined in this specific 
problem. 

The three values of Table 2 are used to calculate precision (Eq. 2) and recall 
(Eq. 3): 

precision  := T P  

T P  + FP  
(2)
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Table 2 Key figures of a 
binary classifier 

True positive (TP) Events detected by the event detector that 
were correct 

False positive (FP) Events detected by the event detector that 
were wrong 

False negative (FN)  Events that were not recognized by the 
event detector 

recall  := T P  

T P  + FN  
(3) 

The value precision indicates how exactly all events that actually occurred were 
recognized. In contrast, recall expresses how high the correct detection was for all 
events detected by the event detector. 

Both, precision and recall, give a value between 0 and 1 for the quality of the 
event detector. With the F1 score, there is another value that combines these two in 
a common quality criterion. The F1 score (Eq. 4) is the harmonic mean of recall and 
precision. 

F1 := 2 · precision  · recall  
precision  + recall  

= T P  

T P  + 1 2 (FP  + FN  ) 
(4) 

With the help of the F1 score, the quality of the event detector can be expressed 
in just one number, which is advantageous for comparability and optimization. 

Eventless Approach 

With the eventless approach, a different strategy is followed than paying attention to 
individual abrupt changes in the signal. Algorithms based on factorial Hidden Markov 
Models (fHMM) (Ghahramani and Jordan 1995) are used here. These models use 
previously determined probabilities to estimate which devices are involved in the 
current overall signal and in what form. 

The Hidden Markov Models (HMM), on which the fHMM is based, are state 
machines that are not directly accessible. However, it is known from which state Si 
into which other states Sj can go (transition) and with what probability this occurs. 
This results in the transition matrix A. The observable outputs of the HMM Yt at 
the time t are called emissions, whereby the transition from the respective state S to 
the emission Y is described by the emission matrix B. Yt shows an observation of a 
predefined value set O := [O1; O2; …;  OM]. Since the states Si cannot be observed 
directly, they are referred to as hidden states. An example of HMM can be seen in 
Fig. 1.

The fHMM in turn is a combination of many such HMMs. It is assumed that 
the individual HMMs are independent of each other. This results in an observable 
emission Yt for a time t and a resulting state vector St with S := [S(1), S(2), …,  S(N)]. 
Transferred to NILM, each of the N devices is in a state St (i) at any point in time
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Fig. 1 Hidden Markov Model

and Yt is the metric to be observed, e.g. the overall performance of the network. An 
exemplary representation can be seen in Fig. 2.

An electronic network in which all consumers are known is required. Consumer 
status may vary. A separate HMM describes which states a consumer can assume. For 
this description, each device must first be examined for the number of possible states. 
This is followed by the development of a suitable statistical model for each device. 
In the fHMM, the individual HMMs are then combined into a common model. 

The problems arising from the use of fHMMs are the creation of the individual 
HMMs for the devices. For this purpose, the transition matrix and the emission 
matrix are calculated in a training phase. If only little is known about the devices, 
state estimation methods can be used (Egarter et al. 2015). The identification of the 
individual states within the framework of the classification is often solved with the 
Viterbi algorithm (Yang et al. 2021). 

Use of Both Approaches 

The eventless approach is particularly suitable for devices with very slow state 
changes. In addition, only a low sampling frequency is required for this, since the 
state changes do not have to be specifically detected. The eventless approach relies 
on probability to find the combination of devices that cause the current overall perfor-
mance. However, if several devices of the same or similar type are to be kept apart, 
the fHMM approach is not suitable for keeping them apart. In this case, an event-
driven approach with a high sampling rate is advantageous because it separates event 
detection from classification. A special algorithm can thus deal with the issue of 
precise device recognition, which in this case will lead to more precise results. 

The eventless approach is suitable for appliances of types I, II, and IV. Since 
devices of type IV have no or only very rare events, it is difficult to recognize them 
with the event detection method. Additional boundary conditions would have to be 
inserted for this. With the eventless approach, appliances of type IV can simply be
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Fig. 2 Factorial Hidden Markov Model

taken into account, like all other devices. However, in the form presented here, both 
approaches have problems with type III. Varying performances cannot be assigned to 
a state with certainty and are probably only partially recognizable with the eventless 
approach, especially in a dynamic phase.
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3 Measurement Systems 

In many works on NILM, Smart Meter recordings are used as the data source. Again, a 
lot of the research work is based on recorded data sets and focuses on the development 
of algorithms. In other research work, special hardware solutions are developed in-
house. This section deals with the different sensors and measurement hardware. In 
addition, a few existing and publicly accessible datasets are presented. 

3.1 Sensors for Non-intrusive Load Monitoring 

Non-intrusive load monitoring begins with a measurement signal. This signal is 
measured by sensors. Classically, NILM measuring devices rely on a contactless 
measuring method. Various current measurement methods are presented below, 
which can be found in smart meters and NILM measuring devices. 

Shunt Resistor 

The simplest measuring principle to measure the electric current is a shunt resistor. 
The shunt resistor is installed in series in the current path. The electrical current can 
then be measured as voltage VS through the contact points using Ohm’s law and the 
defined resistance RS . The basic measuring principle is shown in Fig. 3.

For the measurement, the existing network must be interrupted at one point in 
order to be able to use the resistor. It should be noted that RS must be as small as 
possible here so that the influence on the existing network is as small as possible and 
the total resistance can be neglected alongside the actual consumers RL. Then Eq. 5 
applies to the current measurement accordingly. 

i (t) = 
VS(t) 

RS 
(5) 

The current is calculated with sufficient accuracy using an amplifier circuit and 
an evaluation circuit. This measuring principle can be found in part in smart meters. 
It works with both direct current and alternating current. 

Current Transformer 

The folding coil current transformers are based on a measuring principle of induc-
tion of current-carrying conductors. Two coils are wound on a ferromagnetic core. 
The primary side is the input side with the current-carrying conductor that is to be 
measured. On the output side, the secondary side, there is a defined number of turns 
and the outlets of the measuring line. In Fig. 4 this measuring principle is shown 
schematically.

If the number of turns N1 and N2 is known, the unknown primary current IP can 
be measured via the secondary current IS . Then Eq. 6 applies.
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Fig. 3 Current measurement 
principle with a shunt 
resistor

Fig. 4 Current measurement 
principle with a current 
transformer

IP = 
N2 

N1 
· IS (6)
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Fig. 5 Current measurement 
principle with a Rogowski 
coil 

The electrical input current can be easily determined by means of an evaluation 
circuit on the secondary side. The relationship between the input and output sides 
is usually given in the datasheet about the current ranges. With some current trans-
formers, such as a folding transformer, the core can be opened and thus fitted around 
a conductor. This conductor is then only passed through the core once and thus has 
the number of turns N1 = 1. 

Rogowski Coil 

The Rogowski coil can also be used to measure current. This is an annular air-core 
coil without a metal core, as shown in Fig. 5. The coil is passed through a ring and 
wound back around the ring. The beginning and the end of the ring are not tightly 
closed. If the ring ends are placed close enough together, the inhomogeneity of the 
magnetic field can be neglected. 

The Rogowski coil is placed as a ring around a current-carrying conductor. The 
current-carrying conductor has a magnetic field in which the Rogowski coil is now 
located. Due to the magnetic coupling, the Rogowski coil experiences self-induction. 
A voltage can be measured at the open ends of the Rogowski coil. This voltage can 
be directly related to the current i(t) to be determined by means of an amplification 
and evaluation circuit. The measuring principle using the Rogowski coil only works 
with alternating current, since the change in current induces the voltage. 

Hall Sensors 

Another way to measure the current without contact is with a Hall sensor. Here, the 
Hall effect is used. The basic measurement principle is shown in Fig. 6.

The current-carrying conductor to be examined with the current IM is led through 
a ferromagnetic core. This core has an air gap in which the Hall probe is located. 
The flow of current IM generates a magnetic field in the core, which penetrates
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Fig. 6 Current measurement principle with a Hall sensor

vertically through the Hall probe. A known current IH flows through the Hall probe 
itself. The Hall effect generates a Lorentz force FL. This Lorentz force separates the 
charge carriers in the Hall probe. This creates an electrical field proportional to the 
magnetic field, which can be measured as a Hall voltage VH . Because the dimensions 
of the core, the air gap, the material of the Hall probe, and the current through the 
Hall probe are known, the current IM can be calculated using the measured voltage 
VH . 

Comparison 

Each measurement method has its advantages and disadvantages. Shunt resistors, 
for example, are very cheap and have a simple circuit design. However, they can 
only be introduced into the current path and cannot be attached without contact with 
a conductor. The various measuring methods also work with different degrees of 
accuracy. A study from 2016 (Leferink et al. 2016) was able to show that, depending 
on the type and behavior of the electronic consumers, various measurement methods 
sometimes show massive differences in the measurement results. The Rogowski coils, 
in particular, sometimes showed considerable deviations when there were rapid load 
changes. Again, this effect turned out to be a positive property for event detection 
and classification in the context of NILM in Held et al. (2020), especially when it 
comes to distinguishing between very similar devices. 

3.2 Measurement Hardware 

Developing your hardware is a very time-consuming process and is therefore not 
always the first choice. Depending on the goal of your research, the focus can only 
be on developing algorithms or on setting up an entire NILM measurement system. 
Many therefore work with public data sets, which meanwhile abound. Works that 
rely on in-house measurements either try to use existing solutions or develop specific 
hardware to meet their own needs.
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Smart Meter Based Data Acquisition 

Developing your hardware is often expensive, time-consuming, and may not even 
be the focus of research work. A direct connection to a Smart Meter is used in 
many publications. From a pragmatic point of view, one day every household will 
be equipped with a smart meter. Many Smart Meters have different interfaces. This 
means that the measurement data can be accessed directly. One advantage is that 
there is no need to develop and calibrate your measuring unit. A disadvantage may 
be the low sampling rate. While the energy companies receive the measured values 
at intervals of several minutes to one hour (Adabi et al. 2016; Liang et al. 2019), the 
measured value can be queried directly on the device via interfaces such as Modbus, 
sometimes with a frequency of a few minutes to around 1 Hz (Bousbiat et al. 2020; 
Raiker et al. 2018). Furthermore, the output format cannot be freely selected. A 
Smart Meter provides performance values, not voltage and current. Accordingly, the 
possibilities in terms of feature extraction are limited. However, for use cases in which 
such low sampling and the power values are sufficient, Smart Meters offer a simple 
and stable option as a basis for data acquisition. In some cases, the smart meters are 
supplemented by other elements such as openHAB for data logging and evaluation 
(Bousbiat et al. 2020). The development of a NILM measuring system based on Smart 
Meters has a few limitations as well as decisive advantages. The hardware already 
exists, no calibration of the sensors is required, and the downstream hardware or 
software can be kept very simple. It is therefore also understandable why this path 
is followed in many research projects. 

Self-developed Hardware for Data Acquisition 

Smart Meters are a real alternative for data collection. However, if special questions 
require a high sampling rate, for example, or if the goal in an industrial context 
is to take a closer look at several machine systems, Smart Meter-based hardware 
approaches may no longer be so suitable. There are attempts to carry out a disaggre-
gation with low sampling rates (Liang et al. 2019). However, it could also be shown 
that different devices cannot be distinguished with slowly sampled signals, while 
they can be distinguished without any problems with a higher sampling rate (Adabi 
et al. 2016). Furthermore, the features to be used have a significant impact on which 
sampling frequency is required (Dinesh et al. 2016; Zeifman and Roth 2011). In 
the case of in-house developments, a distinction can be made between FPGA-based 
solutions (Barbero et al. 2020; Cardenas et al. 2016; Trung et al. 2012) and those 
with microcontrollers (Shiddieqy et al. 2021; Yaemprayoon et al. 2016). In addition 
to the goal of developing a real-time NILM solution, there are also pure data loggers 
(Kolter and Johnson 2011). The data loggers in particular are needed to be able to 
record new data sets for algorithm development. Here, the disaggregation takes place 
separately from the hardware.
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3.3 Public NILM Datasets 

Developing your hardware is a separate topic that can take a lot of time and effort. 
Since there is no development hardware for NILM to buy, you have to develop it 
yourself. Using Smart Meters, there is already an almost generic way to produce 
your measurement data, but setting up your measurement scenario is also a very 
time-consuming undertaking. In the meantime, there are many different data sets in 
the research field, which cover a wide variety of goals. Some of them were developed 
in the laboratory, others are recordings from real households. The data sets differ, 
among other things, in the sampling frequency, the signal form, the length of the 
sequence, and the devices used. Pereira and Nunes (2018) provide a large overview 
of many data sets. A distinction can also be made between datasets recorded in 
households and datasets generated under laboratory conditions. Representatives for 
household datasets are REDD (Kolter and Johnson 2011), BLUED (Anderson et al. 
2012), UK-DALE (Kelly and Knottenbelt 2015) and ECO (Beckel et al. 2014). 
Representatives for laboratory datasets are WHITED (Kahl et al. 2016), COOLL 
(Picon et al. 2016), PLAID (Gao et al. 2014). A problem with existing datasets was 
that often only single device measurements or aggregated measurements are available 
in the datasets. The dataset HELD1 (Held et al. 2018a), which was also generated 
under laboratory conditions, was developed to combine training and test sequences in 
a common dataset. Another particular dataset is HELD2 (Weißhaar et al. 2020). Only 
the individual measurements have been included here. The aggregated datasets were 
generated synthetically from the individual measurements under defined conditions. 
HELD2 is the first simulation data set for NILM. 

4 Feature Extraction for the Appliance Classification 

Good device recognition results can only be achieved later with well-prepared 
features. Therefore, feature extraction with its many possibilities is a topic that should 
not be neglected. 

4.1 Steady State and Transient State 

The goal of NILM is to detect devices and their states in a current or power signal. 
Various more general information can be recognized in the signals. In the event-
based approach, two phases in the signal can be distinguished concerning a device, 
the steady-state, and the transient state. 

The steady-state describes the state in which the signal behaves quasi-statically, 
i.e. does not experience any state change. Applied to a simple device, this is either the 
on or off state. The transient state designates the period in which the signal changes
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before it has passed from one steady-state to the other. The concepts of steady-state 
and transient state are elementary for event-based feature extraction since the entire 
signal is not processed here, but event-centric sections are processed. 

4.2 Extraction of Features in NILM 

Hart started with admittance as a signal form (Hart 1992), but has already described 
several other suitable signal forms that can be used for processing in NILM. With the 
features themselves, a basic distinction is made between steady-state features and 
transient state features. Steady State Features are formed by comparing two Steady 
States. In the simplest case, the signal curve is subtracted from one another over 
a defined time window before a transient state with the same time window after 
the transient state. The difference then forms a possible steady-state feature. The 
transient features simply use the temporal signal range during the transient state. 

The literature provides many different options for choosing the appropriate 
feature. Zhang and Zhu (2019) compared various steady-state features and transient 
state features. The active power P and the reactive power Q are given here as the 
simplest form, which can be found in numerous publications. A promising feature 
is the V-I-trajectory over a signal period. It provides a strong separability of devices. 
Other options are the harmonics of the current signal, which can be calculated using 
Fast Fourier Transform, and the waveform of the current signal itself. In the transient 
state features area, the instantaneous power and the instantaneous current waveform 
are listed as possible options. The S-Transform (Martins et al. 2012) offers another 
transient state feature. In the area of the steady-state features, there are also the 
wavelet transform (Zoha et al. 2012) and eigenvalues (Liang et al. 2010). 

In addition to the classic features, which are ultimately based on the current and 
voltage signal, there are further investigations that involve additional sensors. Here, 
for example, the temperature (Morán et al. 2020) can be found as an additional signal. 
Light intensity, acceleration sensors, acoustic sensors, and other environmental 
sensors are described in Bergés et al. (2010) as possible additions. 

For the selection of a suitable feature or feature set, the question remains whether 
the computing intensity plays a role, what data is available, whether the hardware can 
be expanded, whether additional sensors can be installed, and how these different 
sources can be combined. In general, only the steady-state features remain when 
using low sampling. The transient states are often short and meaningful information 
content requires a high sampling rate. This in turn means higher demands on the 
hardware, because high sampling rates also mean more data to be processed. In 
many different works, the classic features have given good results. Depending on the 
question, other sensors could provide useful support.
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5 Frequency Invariant Transformation of Periodic Signals 

Frequency Invariant Transformation of Periodic Signals (FIT-PS) (Held et al. 2016, 
2019a) is an algorithm developed for NILM. FIT-PS can be applied to discretely 
sampled periodic signals. The idea behind FIT-PS is to generate a multi-dimensional 
signal out of a one-dimensional signal. This makes it possible to detect changes in the 
signal at specific points in time over a period of time. The motivation for the FIT-PS 
transform is that sampled voltage signals are always subject to a certain scatter in the 
period duration since the mains frequency f0 is not constant. As a result, the number 
of sampling points per period is not always the same. This also results in a slight 
difference within a period from other periods at the time the sample was drawn. 
So, the signal has a certain frequency dependency. Using FIT-PS this frequency 
dependence is eliminated by interpolation and each period has a constant number of 
sampling points. 

The FIT-PS transform can be described as follows: 

F I  T  P  S  : RL → RK ·N 

Here, L represents the length of the discretely sampled signal. The parameter K 
represents the number of periods of the transformed signal, and the parameter N 
represents the number of sampling points per period in the transformed signal. The 
degree of freedom of the parameter n makes it possible to choose the dimensionality 
of the transformed signal yourself within certain limits. Only the sampling rate of 
the original signal defines the limit of how large N can be chosen considering the 
Nyquist–Shannon sampling theorem. 

The FIT-PS transform according to the algorithm is performed in several consec-
utive steps. First, a resampling takes place, in which the original signal is gradually 
converted into a signal with newly calculated sampling points Eq. 7. 

Resampling : Sorg → SR (7) 

First, the trigger signal used to determine the period changes is defined. With 
NILM, the voltage is selected as the trigger signal. In a normal power grid, it is 
assumed that the voltage signal has a sinusoidal curve and that there is a clear point 
in time for the period change. First, the time stamp of the beginning of the period 
is determined by linear interpolation. The same happens with the time of the end of 
the period. N − 1 equidistantly calculated points in time are defined between these 
time stamps. This results in exactly N points in time for each period. At each point in 
time, the interpolated sample point is calculated using the closest sample points from 
the original signal. This results in an N-valued vector per voltage period. Equation 8 
shows the kth period vector extracted from the resampling signal SR. 

Pk := (matrix(SR[k · N + 1]@SR[k · N + 2]@.@.@.SR[(k + 1) · N ])), 

k ∈ {0, . . . ,  K − 1}
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Pk := 

⎛ 

⎜⎜⎜⎝ 

SR[k · N + 1] 
SR[k · N + 2] 

... 

SR[(k + 1) · N ] 

⎞ 

⎟⎟⎟⎠, k ∈ {0, . . . ,  K − 1} (8) 

Each vector Pk is appended as a row vector to the transformed voltage signal, so 
the FIT-PS signal in Eq. 9 results in a matrix. 

SF I  T  P  S  :=
(
matrix

(
P ′
1@P ′

2@.@.@.@P ′
k@P ′

k+1@.@..
))

SF I  T  P  S  := 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

P ′
1 

P ′
2 
... 

P ′
k 

P ′
k+1 
... 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

(9) 

In Fig. 7 the transformation of the original signal Sorg into the resampling signal 
form SR is sketched. 

In the next step, the same interpolation is applied to the current signal at the previ-
ously determined times. This also results in a vector of length N for the current signal,

Fig. 7 Frequency-invariant resampling of the original signal 
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Fig. 8 Signal in FIT-PS representation 

which is appended to the transformed current signal as a line vector. In Fig. 8 this 
transformed signal matrix can be seen as a three-dimensional FIT-PS representation. 

Another form of representation is a heat map, as can be found in Held et al. (2019a), 
where the amplitude of the signal determines the color. The resulting, transformed 
signals now correspond to a fundamental frequency that corresponds exactly to the 
ideal mains frequency f0. This means that relatively the same points in time within 
the different periods can now be compared directly. This makes it also possible, 
for example, to use algorithms from image processing. Likewise, phase changes in 
the signal are visible. Another special feature of the FIT-PS algorithm is that it can 
also be used for upsampling and downsampling. The resampling frequency can be 
determined by selecting the N parameter. This has advantages, for example, when 
different data sets are to be combined and compared, as shown in Held et al. (2019b). 

6 Artificial Intelligence for Appliance Classification 

Artificial intelligence plays one of the central roles at NILM. There are approaches 
in which the overall signal is evaluated, and the event detection and classification 
are carried out together. Other approaches assume the recognized events and only 
examine the relevant signal sections for their current consumers. When detecting
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appliances using artificial intelligence, a distinction can be made between supervised 
and unsupervised learning approaches. 

6.1 Supervised Learning 

Supervised learning requires training and test data. A special machine learning 
problem is solved here by training a machine learning model with existing data. 
There are many publications that use simple machine learning methods, but also 
achieve good results with them. These simple classification methods include k 
Nearest Neighbors (kNN), Support Vector Machine (SVM), Decision Tree, Naive 
Bayes, and Random Forest (Gurbuz et al. 2021; Lin and Tsai 2011; Weißhaar et al. 
2018). These simple classification methods are suitable as good comparison values 
for more complex machine learning models. Problem-solving using neural networks 
is en vogue these days. Accordingly, there is many research work about it. All types 
of neural networks can be found, such as back propagation neural networks, recur-
rent neural networks (RNN), convolutional neural networks (CNN), as well as more 
advanced forms such as long short-term memory (LSTM) and others (Ciancetta et al. 
2021; Held et al.  2019a; Le et al.  2016; Wang and Yin 2017). Techniques such as 
transfer learning (Devlin and Hayes 2019; D’Incecco et al. 2020; Zhou et al. 2021) 
are also taken into account in research, which can significantly accelerate the learning 
process. A problem in the context of NILM is the lack of data, which makes it difficult 
to train deep neural networks with good results and reduces the risk of overfitting. A 
possible solution is the use of data augmentation (Rafiq et al. 2021). 

Both the simple machine learning algorithms and the neural networks deliver 
good results in the problems they examine. This is mostly because they are trained 
on a specific problem. The limits of the supervised learning approach come to light 
when it comes to problems such as newly added devices. Here the area of supervised 
learning must be left and looked in the direction of unsupervised learning. 

6.2 Unsupervised Learning 

Unsupervised learning takes a completely different perspective on device detection. 
In this case, it is assumed that much to all information about the electronic network 
and consumers is missing. Accordingly, strategies have to be applied to piecewise 
decompose the present overall signal and to identify consumers contained therein. 
In an overview of unsupervised learning in the context of NILM, Bonfigli et al. 
(2015) offers the idea of carrying out this device detection in two steps. In the first 
step, individual loads are detected. This detection is still completely detached from 
a specific device assignment. The second step is clustering, in which the previously 
identified loads are assigned to a common source. This source then ultimately corre-
sponds to a device. The first step is pursued using various fHMM-based approaches.
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The second step of actual device assignment is done here either using various forms 
of matrix factorization or a genetic k-means clustering method. The approaches 
based on fHMMs are all eventless. However, there are also event-based unsuper-
vised learning approaches that require as little prior knowledge as possible. Kamoto 
et al. (2017) use a Competitive Agglomeration (CA) algorithm in their work. This 
clustering method starts with a too high number of possible clusters and optimizes 
this number. The advantage over many other clustering methods is that no a priori 
knowledge of the number of devices is required. The feature sequences are previ-
ously extracted from the overall signal by an event detector and then entered into 
the CA. In the next step, the ON and OFF clusters that belong together are identified 
so that simple Type I appliances can be modeled from them. From the cluster pairs 
found in this way, the device is then recognized in the overall signal. With the help 
of these detected devices, the last step is to check whether the overall performance 
can now be reconstructed from these individual device performances. A limitation 
of Kamoto et al.’s (2017) method compared to the approaches described in Bonfigli 
et al. (2015) is that it is generally assumed here that everything can be put together 
from simple devices. Each switch-on event is converted to the same switch-off event. 
A problem could arise with finite state machines, which allow transitions between 
the individual states so that they no longer run back in the same order. Likewise, 
Type III Various Power devices are not included in this approach. In a direct compar-
ison, the CA-based approach of Kamoto et al. (2017) performs better overall than 
fHMM approaches when evaluating part of the REDD dataset, according to their 
investigation. 

6.3 Semi-supervised and Online Learning 

Compared to supervised learning approaches, unsupervised learning approaches are 
more generic. In supervised learning, a model is always optimized for a specific 
problem. This model is then complete. Subsequent addition or removal of a device 
will result in the model having to be retrained. Unsupervised learning approaches 
start from scratch and develop a model that is as suitable as possible in an existing 
environment. In order to be able to tackle the real problems with NILM in the future, 
one approach could be to develop methods that are less based on batch learning 
and involve more online learning. A parallel structure is conceivable here. A trained 
model performs the classification. Another model uses the incoming features to 
check whether the current clusters are still correct or whether a new cluster has 
to be established due to an added device. This newly defined cluster must then be 
integrated into the classification model via an update process, and existing clusters 
must be modified if necessary. 

Semi-supervised and online learning approaches can already be found in various 
works. Egarter et al. (2015) describes an approach based on fHMM with particle 
filtering. In the presentation of the algorithm, there is also a description of how
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this algorithm can be supplemented with online learning. In Salem and Sayed-
Mouchaweh (2020), a semi-supervised online learning approach based on a condi-
tional HMM (CHMM) and the Expectation Maximization (EM) algorithm is pursued, 
in which an existing model is improved with continuous classifications. 

7 Conclusion 

This chapter gave an overview of Non-Intrusive Load Monitoring (NILM). The 
overall performance is measured at a central node within an electronic network. 
This overall signal is then broken down into its components using various algo-
rithms, and the power is assigned to the consumers. This process is called disag-
gregation. The realization of NILM can be done with many methods. A standard 
processing chain was presented. Following this process chain, one of the first ques-
tions is how the measurement data is acquired. The measurement data are further 
processed, and various features can be extracted. Depending on the sampling rate 
of the measurement signal, low or high-frequency features must be paired with suit-
able event detection methods and classification methods. A fundamental distinction 
is made between event-based and eventless approaches. The eventless concept is 
usually based on factorial Hidden Markov Models. Various measurement principles 
were introduced which are suitable for a non-intrusive measurement. In addition to 
different approaches to the measurement hardware, publicly accessible data sets for 
NILM were presented. Various used feature extraction methods for event detection 
and classification have been shown. Additionally, the Frequency Invariant Trans-
formation of Periodic Signals (FIT-PS) algorithm, developed for NILM, has been 
explained. Different artificial intelligence approaches for NILM were presented, 
divided into supervised and unsupervised learning. Finally, semi-supervised and 
online learning approaches with example implementations in NILM were shown. 
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