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Abstract. SMPT (for Satisfiability Modulo Petri Net) is a model
checker for reachability problems in Petri nets. It started as a portfolio of
methods to experiment with symbolic model checking, and was designed
to be easily extended. Some distinctive features are its ability to benefit
from structural reductions and to generate verdict certificates. Our tool
is quite mature and performed well compared to other state-of-the-art
tools in the Model Checking Contest.
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1 Introduction

SMPT is an open source model checker designed to answer reachability queries
on generalized Petri nets, meaning that we do not impose any restrictions on
the marking of places or the weight on the arcs. We can in particular handle
unbounded nets. We also support a generalized notion of reachability properties,
in the sense that we can check if it is possible to reach a marking that satisfies a
combination of linear constraints between places. This is more expressive than
the reachability of a single marking and corresponds to the class of formulas used
in the reachability category of the Model Checking Contest (MCC), a yearly
competition of formal verification tools for concurrent systems [7,27].

The tool name is an acronym that stands for Satisfiability Modulo Petri
Net. This choice underlines the fact that, for most of the new features we imple-
mented, SMPT acts as a front-end to a SMT solver; but also that it adds specific
knowledge from Petri net theory, such as invariants, use of structural properties,
etc.

The design of SMPT reflects the two main phases during its development
process. The tool was initially developed as a testbed for symbolic model check-
ing algorithms that can take advantage of structural reductions (see e.g. [2,3]).
This explains why it includes many “reference” implementations of fundamental
reachability algorithms, tailored for Petri nets, such as Bounded Model Checking
(BMC) [8,17,22] or k-induction [31]. It also includes new verification methods,
such as adaptations of Property Directed Reachability (PDR) [15,16] for Petri
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nets [6]. One of our goal is to efficiently compare different algorithms, on a level
playing field, with the the ability to switch on or off optimizations. This moti-
vates our choice to build a tool that is highly customizable and easily extensible.

In a second phase, since 2021, we worked to make SMPT more mature, with
the goal to improve its interoperability, and with the addition of new verification
methods that handle problems where symbolic methods are not the best suited.
We discuss the portfolio approach implemented in SMPT in Sect. 3. This sec-
ond set of objectives is carried by our participation in the last two editions of
the MCC [25,26], where we obtained a 100% confidence level (meaning SMPT
never returned an erroneous verdict). With this last evolution, we believe that
SMPT left its status of prototype to become a tool that can be useful to other
researchers. This is what motivates the present paper.

There are other tools that perform similar tasks. We provide a brief compari-
son of SMPT with two of them in Sect. 5, ITS-TooOLS [32,33] and TAPAAL [19].
All tools have in common their participation in the MCC and the use of sym-
bolic techniques. They also share common input formats for nets and formulas.
We can offer two reasons for users to use SMPT instead of—or more logically
in addition to—these tools. First, SMPT takes advantage of a new approach,
called polyhedral reduction [2,3], to accelerate the verification of reachability
properties. This approach can be extremely effective in some cases where other
methods do not scale. We describe this notion in Sect.2. Another interesting
feature of SMPT is the ability to return a verdict certificate. When a property
is invariant, we can return a “proof” that can be checked independently by a
SMT solver.

2 Technical Background

We briefly review some theoretical notions related to our work. We assume basic
knowledge of Petri net theory [30]. In the following, we use P for the set of places
of anet N. A marking, m, is a mapping associating a non-negative integer, m(p),
to every place p in P. SMPT supports the verification of safety properties over
the reachable markings of a marked Petri net (N, mg). Properties, F, are defined
as a Boolean combination of literals of the form a ~ 3, where ~ is a comparison
operator (one of =, < or >) and «, (3 are linear expressions involving constants
or places in P. For instance, (p+ ¢ > r) V (p < 5) is an example property.

We say that property F is valid at marking m, denoted m |= F, if the ground
formula obtained by substituting places, p, by m(p) is true. As can be expected,
we say that F' is reachable in (N, mg) if there is m reachable such that m = F.
See [2,3,6] for more details. We support two categories of queries: EF F', which is
true only if F' is reachable; and AG F', which is true when F' is an invariant, with
the classic relationship that AGF = —(EF —F). A witness for property EF F’
is a reachable marking such that m | F; it is a counterezample for AG —F.
Examples of properties we can express in this way include: checking if some
transition ¢ is enabled (quasi-liveness); checking if there is a deadlock; checking
whether some linear invariant between places is always true; etc.
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SMPT implements several methods that combine SMT-based techniques
with a new notion, called polyhedral reduction. The idea consists in computing
structural reductions [10,11] of the form (N1, m1) > g (Na2, ms), where (Ny,my)
is the (initial) Petri net we want to analyse; (Na,m2) is a reduced version; and
E is a system of linear equations relating places in N7 and Ny. The goal is
to preserve enough information in F so that we can reconstruct the reachable
markings of (N7, m1) by knowing only those of (N3, ms). Given a starting net,
we can automatically compute a polyhedral reduction using the tool REDUCE,
which is part of TINA [12]. (But obviously there are many irreducible nets.)

Polyhedral reductions are useful in practice. Given a property F; on the
initial net N7, we can build a property F» on Ny [2,3] such that checking F;
on N; (whether it is reachable or an invariant) is equivalent to checking Fy on
N5. We have observed very good speed-ups with this approach, even when we
only have a moderate amount of reductions. This notion is also “compatible”
with symbolic methods. In SMPT, we recast all constraints and relations into
formulas of Quantifier Free Linear Integer Arithmetic (the QF-LIA theory in the
SMT-LIB standard [9]) and pass them to SMT solvers.

Another important notion is that of inductive invariant. We say that R is
an inductive invariant of property F' if it is: (i) valid initially (mo = R); (i)
inductive (if m — m’ and m = R then m’ | R, for all markings m, even
those that are not reachable); and (iii) R D F. Given a pair (F,R) we can
check these three properties automatically using a SMT solver (and with only
one formula in each case). In some conditions, when property F' is an invariant,
SMPT can automatically compute an inductive invariant from F'. This provides
an independent certificate that invariant F' holds.

3 Design and Implementation

SMPT is open-source, under the GNU GPL v3.0 licence, and is freely avail-
able on GitHub (https://github.com/nicolasAmat/SMPT). The repository also
provides examples of nets, formulas, and scripts to experiment with the tool.
SMPT is a Python project of about 4000 lines of code, and is fully typed using
the static type checker mypy. The code is heavily documented (4 500 lines) and
we provide many tracing and debugging options that can help understand its
inner workings. The project is packaged in libraries, and provides abstract classes
to help with future extensions. We describe each library and explain how they
can be extended.

The ptio library defines the main data-structures of the model checker, for
Petri nets (pt . py), reachability formulas (formula.py), and reduction equations
(system.py). It also provides the corresponding parsers, for different formats.

The interface library includes interfaces to external tools and solvers. For
example, we provide an integrated interface to z3 [14] built around the SMT-
LIB format [9]. We can also interface with MINIZINC [29], a solver based on
constraint programming techniques, and with a random state space explorer,
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WALK, distributed with the TINA toolbox. New tools can be added by imple-
menting the abstract class Solver (solver.py).

The exec library provides a concurrent “jobs scheduler” that helps run multiple
verification tasks in parallel and manage their interactions.

The checker library is the core of our tool. It includes a portfolio of meth-
ods intended to be executed in parallel. All methods implement an abstract
class (abstractchecker.py) which describes the abstract method prove. We
currently support the following eight methods:

(1) Induction: a basic method that checks if a property is an inductive invari-
ant (see Sect.2). This property is “easy” to check, even though interesting
properties are seldom inductive. It is also useful to check verdict certificates.

(2) BMC: Bounded Model Checking [13] is an iterative method to explore the
state space of systems by unrolling their transitions. This method is only
useful for finding counterexamples.

(3) k-induction: [31] is an extension of BMC that can also prove invariants.

(4) PDR: Property Directed Reachability [15,16], also known as IC3, is a
method to strengthen a property that is not inductive, into an inductive
one. This method can return a verdict certificate. We provide three differ-
ent methods of increasing complexity [6] (one for coverability and two for
general reachability).

(5) State Equation: is a method for checking that a property is true for all
“potentially reachable markings” (solution of the state equation). This is a
semi-decision method, found in many portfolio tools, that can easily check for
invariants. We implement a refined version [32,33] that can over-approximate
the result with the help of trap constraints [20] and other structural infor-
mation, such as NUPN specifications [21].

(6) Random Walk: relies on simulation tools to quickly find counterexamples.
It is also found in many tools that participate in the MCC [27]. We currently
use WALK, distributed with the TINA toolbox, but we are developing a new
tool to take advantage of polyhedral reductions.

(7) Constraint Programming: is a method specific to SMPT in the case
where nets are “fully reducible” (the reduced net has only one marking). In
this case, reachable markings are exactly the solution of the reduction equa-
tions (F) and verdicts are computed by solving linear system of equations.

(8) Enumeration: performs an exhaustive exploration of the state space and
relies on the TINA model checker. It can be used as a fail-safe, or to check
the reliability of our results.

4 Commands, Basic Usage and Installation

SMPT requires Python version 3.7 or higher. The easiest method for experi-
menting with the tool is to directly run the smpt module as a script, using a



Model Checking with SMPT 449

command such as python3 -m smpt. Our repository includes a script to simplify
the installation of the tool and all its dependencies. It is also possible to find disk
images with a running installation in the MCC website and in artifacts archived
on Zenodo [4,5]. As usual, option --help returns an abridged description of all
the available options. We list some of them below, grouped by usage.

Input Formats. We accept Petri nets described using the Petri Net Markup
Language (PNML) [23] and can also support colored Petri nets (using option
--colored) by using and external unfolder [18]. For methods that rely on
polyhedral reductions, it is possible to automatically compute the reduc-
tion (--auto-reduce) or to provide a pre-computed version (with option
--reduced-net <path>). It is also possible to save a copy of the reduced net
with the option --save-reduced-net <path>.

Verification Methods. We support the verification of three predefined classes
of safety properties: deadlock detection (--deadlock), which is self-descriptive;
quasi-liveness (--quasi-liveness t), to check if it is possible to fire transition
t; and reachability (--reachability p), to check if there is a reachable marking
where place p is marked (it has at least one token). It is also possible to check
the reachability of several places, at once, by passing a comma-separated list of
names, --reachability pi,...,pn; and similarly for liveness. Finally, SMPT
supports properties expressed using the MCC property language [28], an XML
format encoding the class of formulas described in Sect. 2. Several properties can
be checked at once.

Output Format. Results are printed in the text format required by the MCC,
which is of the form FORMULA <id> (TRUE/FALSE). There are also options to
output more information: --debug to print the SMT-LIB input/output code
exchanged with the SMT solver; --show-techniques, to return the meth-
ods that successfully computed a verdict; --show-time, to print the execu-
tion time per property; --show-reduction-ratio, to get the reduction ratio;
--show-model, to print the counterexample if it exists; --check-proof, to check
verdict certificates (when we have one); --export-proof, to export verdict cer-
tificates (inductive invariants, traces leading to counterexamples, etc.).

Tweaking Options. We provide a set of options to control the behaviour of our
verification jobs scheduler. We can add a timeout, globally (--global-timeout
<int>) or per property (--timeout <int>). We can also restrict the choice
of verification methods (--methods <method_1> .... <method_n>). Finally,
option --mcc puts the tool in “competition mode”.

5 Comparison with Other Tools

We report on some results obtained by SMPT, ITS-TooLs [32,33], and
TAPAAL [19] during the 2022 edition of the MCC [26]. We created a public
repository [1] containing the scripts used to generate the statistics and oracles
for the 2022 edition of the Model Checking Contest for the Reachability category.
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SMPT provides a default competition mode that implements a basic strat-
egy that should be effective in the conditions of the MCC. Basically, we start
by running the Random Walk and State Equation methods in parallel with a
timeout of 120s, on all formulas, in order to catch easy counterexamples and
invariants as quickly as possible. Then we run more demanding methods: BMC,
k-induction, PDR, etc. The rationale is that queries used in the reachability
competition are randomly generated and usually exhibit a bias towards “coun-
terexamples” (CEX), meaning false AG properties or true EF ones. Also, when
the formula is an invariant (INV), for instance a “true AG property”, it can often
be decided with the State Equation method.

Our tool is quite mature. It achieved a perfect reliability score (all answers
are correct) and ranked at the third position, behind TAPAAL and ITS-TooLs.
We display the results in a Venn diagram where we make a distinction between
CEX and INV properties. There is a total of 50187 answered queries (with
almost 60% CEX). We observe that a vast majority of these queries (41 006) are
computed by all tools, and can be considered “easy”. Conversely, we have 9181
difficult queries, solved by only one or two tools (Fig. 1).

CEX (easy) I:I CEX l:‘ INV (easy) ’ INV ‘ ITSf;lé(l)()Ls
‘ (CEX 558/INV 203)

TAPAAL (48 042) 24757 4660 16249 237‘6 o
(347 / 721)
ITS (45846) 3348 1492
SMPT (45 643) 2135 2502

Fig. 1. Comparison of tools on all computed queries

We also provide a bar chart where we distinguish between easy/difficult, and
CEX/INV queries. We observe that, while SMPT ranks last in the number of
unique queries, it behaves quite well with invariants (INV); which is the category
we target with our most sophisticated methods. Overall, we observe that SMPT
performs well compared to other state-of-the-art tools in the Model Checking
Contest and that it is a sensible choice when we try to check invariants.

6 Future Work

Work on SMPT is still ongoing. At the moment, we concentrate on methods
to quickly discover counterexamples. The idea is to combine polyhedral reduc-
tions and random exploration in order to find counterexamples directly in the
reduced net. We also plan to improve our use of the “state equation” method,
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in particular by identifying new classes of Petri nets for which all potentially
reachable markings are indeed reachable. A problem we already started to study
in a different setting [24].
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