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Preface

This volume contains the papers presented at the 25th Symposium on Formal Methods
(FM 2023), organized by the Institute for Software Engineering and Programming
Languages, University of Liibeck, and held at the University of Liibeck, Germany
during March 6-10, 2023. In addition, these proceedings contain 7 papers selected by
the Program Committee of the Industry Day (I-Day@FM 2023). FM 2023 was orga-
nized under the auspices of Formal Methods Europe (FME), an independent associa-
tion whose aim is to stimulate the use of, and research on, formal methods for software
development. It has been over 35 years since the first VDM symposium in 1987
brought together researchers with the common goal of creating methods to produce
high-quality software based on rigor and reason. Since then the diversity and com-
plexity of computer technology has changed enormously and the formal methods
community has stepped up to the challenges those changes brought by adapting,
generalizing, and improving the models and analysis techniques that were the focus of
that first symposium. The papers in this proceedings reflect this progress, and
demonstrate how formal methods have been successfully applied in many different
application areas and domains including software, cyber-physical systems and inte-
grated computer-based systems.

To establish the program of FM 2023, we assembled a Program Committee
(PC) which included 43 internationally renowned scientists. We sought submissions in
five categories: regular papers, long tool papers, case study papers, short papers and
tool demonstration papers. And, for the first time for FM, we ran a double-blind review
process. We received 95 paper submissions from authors in 29 different countries: 75
regular paper submissions, 8 long tool paper submissions and four each of case study,
short and tool demo submissions. Each submission went through a rigorous review
process in which the papers were reviewed by at least three PC members. Following a
two-week discussion phase, we selected 28 papers for presentation during the sym-
posium and inclusion into these proceedings: 18 regular, 5 long tool, 3 case study,
1 short and 1 tool demo, with the overall acceptance rate of 29%. Accepted papers were
invited for review by the Artifact Evaluation committee, chaired by Matthias Volk,
which gave out reproducibility and availability badges. This year, FM 2023 featured a
special session on “Formal Methods Meets AI” which focused on formal and rigorous
modeling and analysis techniques to ensure the safety, robustness and trustworthiness
of Al-based systems. We thank Benedikt Bollig, Daniel Neider, and Ozgiir Ozcep for
chairing this track. This year, FME awarded the 3rd Lucas Prize for a Highly Influential
Paper published in an FM symposium.

The symposium featured an FM luminary talk by Jeannette Wing (Columbia
University, Data Science Institute, USA) and three keynotes by Laura Kovacs (Vienna
University of Technology, Institute of Logic and Computation, Austria), Harald Ruess
(fortiss GmbH, Germany) and Nils Jansen (Radboud University Nijmegen, Department
of Software Science, The Netherlands). We hereby thank these invited speakers for
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having accepted our invitation. The program also featured three workshops, four
tutorials and presentation of four journal-first papers. We are grateful to all involved in
FM 2023, in particular, the FME board members for their constant support, the PC
members and sub-reviewers for their accurate and timely reviewing, all authors for their
submissions, and all attendees of the symposium for their participation. We also thank
all the other committees (I-Day, Doctoral Symposium, Journal First Track, Workshops,
and Tutorials), listed on the following pages, and the excellent local organization and
publicity teams. We are very grateful to our sponsors: AWS, Dréiger, Huawei, fortiss,
UniTransferKlinik Liibeck and Universitit zu Liibeck. Finally, we thank Springer for
publishing these proceedings in their FM subline and we acknowledge the support from
EasyChair in assisting us in managing the complete process from submissions to these
proceedings to the program.

January 2023 Marsha Chechik
Joost-Pieter Katoen
Martin Leucker
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Symbolic Computation in Automated Program
Reasoning

Laura Kovacs®™)
TU Wien, Vienna, Austria
laura.kovacs@tuwien.ac.at

Abstract. We describe applications of symbolic computation towards automat-
ing the formal analysis of while-programs implementing polynomial arithmetic.
We combine methods from static analysis, symbolic summation and computer
algebra to derive polynomial loop invariants, yielding a finite representation of all
polynomial equations that are valid before and after each loop execution. While
deriving polynomial invariants is in general undecidable, we identify classes
of loops for which we automatically can solve the problem of invariant syn-
thesis. We further generalize our work to the analysis of probabilistic program
loops. Doing so, we compute higher-order statistical moments over (random) pro-
gram variables, inferring this way quantitative invariants of probabilistic program
loops. Our results yield computer-aided solutions in support of formal software
verification, compiler optimization, and probabilistic reasoning.

Keywords: Symbolic computation - Formal methods - Loop analysis -
Algebraic recurrences - Probabilistic reasoning

1 Introduction

The long list of software failures over the past years calls for serious concerns in our
digital society, imposing bad reputations and huge economic burdens on organizations,
industries and governments. Improving software reliability is not enough anymore,
ensuring software reliability is mandatory. The area of formal methods, in particular
automated reasoning, addresses this demand, by providing rigorous mathematical argu-
ments proving that the software has no errors. Yet, there are theoretical results showing
that there is no “one” formal approach that can be used for every software error, in
every technology. Existing solutions therefore exploit combinations of domain-specific
software challenges by means of various kinds of reasoning based on deductive verifi-
cation [9, 10], model checking [5,23], abstract interpretation [8], theorem proving [21],
and related areas, bringing technology breakthroughs in formal verification [2,7]. Dur-
ing the recent years, automated reasoning has become the back-bone of formal verifi-
cation [6,20].

In this invited article, we focus on symbolic computation approaches easing auto-
mated reasoning about computer programs implementing loops with polynomial arith-
metic and possibly probabilistic updates. The key ingredient of these approaches comes
with novel combinations of computer mathematics and computational logic, enabling

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 3-9, 2023.
https://doi.org/10.1007/978-3-031-27481-7_1
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the design of new techniques towards precisely capturing the meaning of program
loops. We advocate the confluence of computer algebra and automated deduction
towards loop analysis, by developing and joining the best practices in (i) recurrence
equations, symbolic summation and polynomial ideal theory from computer algebra
with (ii) program structure detection, decision procedures and probabilistic reasoning
from automated deduction. We believe a tight confluence between computer algebra and
automated deduction turns symbolic computation into a powerful approach for automat-
ing reasoning about program loops, closely relating our intentions to the definition of
symbolic computation as “the algorithmic solution of problems dealing with symbolic
objects” [4].

The algorithmic solutions described in this invited article establish interactions
between computer algebra and automated deduction for automating reasoning about
program correctness. Importantly,

— we enhance automated deduction techniques with computer algebra insights, for
example to derive loop properties that summarize/explain the functional behaviour
of program loops (Sect. 2);

— we extend computer algebra methods by automated deduction approaches, for exam-
ple by detecting and eliminating algebraic operations in program loops that cannot
be handled by symbolic summation methods (Sect. 3);

— we design hybrid approaches complementing computer algebra and automated
deduction, for example using statistical moments to enable exact inferences in prob-
abilistic programs (Sect. 4);

— we develop cross-fertilizing techniques combining the computational power of com-
puter algebra and automated deduction, yielding efficient reasoning engines in sup-
port of formal analysis an verification of program loops (Sects. 2—4).

2 Symbolic Computation in Inductive Invariant Synthesis

We first present our work advancing the state-of- 1 assume
the-art in synthesizing program properties, such as (3k)(k > 1Az =2F)
loop invariants. Such properties imply the absence 2 wi=1y:=0;
of program errors at intermediate program steps and 3 while (z < 2) do
are thus critical in ensuring software reliability. 4 T oi=2% 2
We motivate and illustrate our work for invari- 5 yi=1/2%y+1;
ant synthesis using the C-like imperative program of ¢ enddo
Fig. 1 over integer-valued program variables z, v, z. ; assert

The expected behaviour of Fig. 1 is specified using
program assertions in the first-order fragment of
non-linear (polynomial) arithmetic: pre-condition
in line 1 using the assume construct, and post-
condition in line 7 using assert. Figure | satisfies
its requirements. Yet, formally proving its correctness is challenging: it requires “sum-
marizing” the behavior of the program lines 2—-6 by formulating program properties,
such as loop invariants, that hold at an arbitrary loop iteration. While it is relatively
easy to argue that z < z is a loop invariant of Fig. 1, this property is a necessary but

(y—2)xz24+2=0

Fig. 1. Invariant synthesis for poly-
nomial loops.
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not sufficient condition to establish correctness of Fig. 1. In addition to x < z, one also
need loop invariants relating the values of x and y at arbitrary loop iterations. In our
work [12, 18], we instrument automated deduction in program analysis with algebraic
solutions and infer inductive loop invariants as polynomial relations among loop vari-
ables. For example, in the case of Fig. 1, our work derives x x y — 2% x + 2 = 0 as
an inductive loop invariant. With this additional loop invariant at hand, correctness of

Fig. 1 can formally be proven.

The main steps of our work towards polynomial invariant synthesis are summarized
as follows:

I1 We consider the loop language L as the language defined by the symbols used in the
program loop under analysis;

12 We extend £ with a fresh new variable n, denoting the loop counter. As such, we
have n > 0;

I3 We translate loop updates into algebraic recurrence equations over n, by considering
loop variables as algebraic sequences over n. As such, the loop semantics is precisely
captured by a system of algebraic recurrences over n;

14 We apply symbolic summation to derive closed form solutions of loop variables as
functions of n and some initial values. These closed forms hold at an arbitrary loop
iteration n, and hence are valid loop invariants over £ extended with n;

IS We eliminate n from the derived closed form solutions, obtaining this way inductive
invariants in the original loop language L.

While steps (I1)—(IS) yield a general, recurrence-based approach towards precisely
capturing loop semantics, its genericity comes with the costs of being undecidable. For
example, even when considering loops with only polynomial updates, the recurrences
in step (I4) yield linear recurrences with polynomial coefficients, called P-finite recur-
rences, which do not always yield closed form solutions [16]. In fact, it turns out that
deriving (strongest) polynomial invariants of loops with arbitrary polynomial updates is
in general undecidable [11]. To circumvent undecidability issues, we impose structural
constraints over the loops we consider in steps (I1)—(I5). Namely, we define so-called
P-solvable loops [18] which are polynomial program loops whose arithmetic can be
described by linear recurrences with constant coefficients, i.e. C-finite recurrences. As
a result, closed form solutions of loop variables can always be computed in step (I4).
Moreover, whenever the resulting closed form solutions are algebraically dependent, in
step (IS) we derive a finite representation of all polynomial invariant equalities of the
loop. To this end, in step (I5) we use Grobner basis computation tailored to P-solvable
loop analysis and derive Grobner bases of polynomial invariant ideals of P-solvable
loops [18,22].

In summary, we provide an algorithmic solution towards deriving all polynomial
invariants of P-solvable loops, by strengthening automated deduction in loop analysis
with C-finite recurrence solving and Grobner basis computation. A crucial step in our
work comes with the structural analysis of loops: we define the class of P-solvable
loops for which generating all polynomial invariants is decidable [14]. Our framework
is automated in the Aligator software package [13,17] and generalized to restricted
classes of P-finite recurrences [14].
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3 Symbolic Computation in Unsolvable Loops

While enhancing automated deduction with computer algebra methods yields algo-
rithmic solutions towards invariant synthesis, our approach in Sect.2 is limited to
P-solvable loops. Addressing the syntactic restrictions of C-finite recurrences, in
our recent work [1] we extend algebra-based loop analysis by automated deduction
approaches based on program transformations, allowing us to derive loop invariants
of loops that are not P-solvable. We refer to loops that are not P-solvable simply as
unsolvable loops. The crux in handling unsolvable loops comes with applying program
analysis to compute the set of loop variables whose loop updates do not yield C-finite
recurrences in the loop counters. We call these variables defective. Intuitively speaking,
defective variables are loop variables violating the structural constraints of P-solvable
loops. Defective variables do not generally admit closed-form solutions, hindering thus
the application of step (I4) in Sect. 2.

In a nutshell, we proceed as follows. Given an unsolvable loop, we complement
step (I4) from Sect.2 with a polynomial-time algorithm to derive the set of defec-
tive loop variables. We synthesize polynomial transformations among defective loop
variables in order to eliminate reasoning about defective loop variables and translate,
whenever possible, an unsolvable loop into a P-solvable loop whose invariants can be
computed. While an unsolvable loop and its P-solvable loop version are not equivalent
in terms of operational semantics, loop invariants of the derived P-solvable loop are also
loop invariants of the original unsolvable loops. As such, our polynomial transforma-
tions over unsolvable loops yield an algorithmic solution towards inferring invariants
of unsolvable loops.

We illustrate the benefit of our approach on

a:=-=2;b:=3;y :=0;
the unsolvable loop of Fig.2'. While the poly-

1

3 while (true) do
nomial update of y yields a C-finite recurrence 4 a:=2%a+ b2
as in Fig. 1, note that the variable b depends on 5 b:=2x%b— b2
itself in a non-linear manner (i.e. dependency 6 y:=1/2xy+1;
upon b?). As such, the sequence capturing the 7 end do

values of b at arbitrary loop iterations is not a C-

finite sequence, implying also that the update of  Fig, 2. Invariants of unsolvable loops.
a in Fig. 2 does not yield a C-finite recurrence.

Hence, variables a and b are defective variables as they are “responsible” for Fig.2
being unsolvable. Nevertheless, by considering the polynomial relation a + b, note that
a(n+1)+b(n+1) = 2xa(n)+2xb(n), where a(n), b(n) respectively denote the val-
ues of a, b at loop iteration n. We therefore introduce a new loop variable x to denote
a + b, yielding thus the C-finite sequence z(n + 1) = 2 % x(n) which gives a valid
polynomial relation among the values of variables a and b at arbitrary loop iterations
n. With such a transformation, the unsolvable loop body of Fig. 2 is translated into the
P-solvable loop body of Fig. 1, where the initial values of x and y are respectively 1
and 0, as in Fig. 1. Hence, we reduced the problem of inferring invariants of the unsolv-
able loop of Fig. 2 into the problem of deriving invariants for Fig. 1 and the approach of
Sect. 2 can further be applied. As a result, by substituting a + b for = in the inductive

! As we focus now only on invariant synthesis, we set true to be the loop condition of Fig. 2.
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1 x:=0; 1 x:=0;
2 while (true) do 2 while (true) do
3 r:=x—1[12]z+1; 3 r:=2*xx—1[12]2*%xx+1;
4 enddo 4 end do
(a) (b)

Fig. 3. Probabilistic polynomial programs.

loop invariant z * y — 2 % x + 2 = 0 of Fig. 1, we obtain the inductive loop invariant
(a+b)xy—2x(a+b)+2=0 for Fig. 2.

In summary and as illustrated above, polynomial transformations over defective
variables enlarge the class of loops for which inductive loop invariants can be derived
by means of algebraic recurrence solving. Based on the structural analysis of unsolvable
loops with defective variables, in [1] we give an algorithmic solutions for computing all
polynomial combinations (up to an a priori given polynomial degree) of defective vari-
ables, such that the derived polynomial combinations satisfy C-finite recurrences. With
such polynomial transformations, unsolvable loops can be translated into P-solvable
ones, from which polynomial loop invariants can be inferred as discussed in Sect. 2.
With our work being implemented in the Polar tool [1,19], we thus strengthen com-
puter algebra methods with polynomial program transformations over defective vari-
ables. Our approach may automate compiler optimization steps, by translating complex
unsolvable loops into simpler P-solvable ones.

4 Symbolic Computation in Probabilistic Reasoning

We finally argue that synergies between computer algebra and automated deduction
yield further interesting applications of symbolic computation in emerging fields of
automated reasoning. In particular, in this section we focus on the analysis of probabilis-
tic programs that allow drawing random values from predefined probability distribution.
As such, instead of treating program variables as having a certain value, program vari-
ables in probabilistic programs need to be treated as probabilistic distributions. Com-
pared to the results of Sects. 2-3, this means that, in the presence of probabilistic pro-
gram loops, we cannot consider values of program variables at arbitrary loop iterations,
but need to reason about the probabilistic value distributions of variables at arbitrary
loop iterations.

Despite the intrinsic hardness of reasoning about general probabilistic pro-
grams [15], we believe that symbolic computation is a powerful workhorse for
analysing quantitative aspects of probabilistic programs. In particular, in the setting
of probabilistic program loops, we advocate the use of so-called moment-based recur-
rences to lift algebraic recurrences over statistical moments of probabilistic loop vari-
ables [3,19]. By exploiting closure properties of statistical moments, moment-based
recurrences express probabilistic loop semantics as algebraic recurrences over higher-
order moments of the value distribution of program variables, allowing us, for example,
to reason about expected values of (blocks of) program variables at arbitrary iteration.
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By combining the P-solvable loop constraints of Sect. 2 with moment-based reason-
ing, we define the class of so-called Prob-solvable loops. Figure 3 lists two examples
of Prob-solvable loops, where the updates to variable z are probabilistic updates. For
example, in Fig. 3(a), the variable x is updated by  — 1 with probability 1/2 and by
x+1 with probability 1-1/2, that is with probability 1/2. Essentially, Prob-solvable loops
admit C-finite recurrences over the statistical moments of loop variables, and thus the
resulting moment-based recurrences always admit closed-form solutions representing
(moment-based) loop invariants.

Given the probabilistic nature of Prob-solvable loop variables, reasoning about hi-
gher-order moments is essential. Essentially, the more we know about the higher-order
statistical moments of random variables, the better can we characterize the functional
behaviour of Prob-solvable loop. For example, the expected values of the random vari-
able x in both Fig. 3(a) and Fig. 3(b) are 0. Yet, Fig. 3(a) and Fig. 3(b) are clearly imple-
menting different stochastic processes. This difference is already witnessed when com-
puting, for example, the second-order moments of x, yielding the statistical variances
of x. Namely, the variance of x at an arbitrary loop iteration n of Fig.3(a) is given
by the closed-form expression 47”, whereas the variance of x at an arbitrary loop itera-
tion n of Fig.3(b) is n. Hence, probability distributions of z in Fig. 3(a) and Fig. 3(b)
are different, and this difference can be detected fully automatically by comparing the
higher-order moments of x.

Our results from [3, 19] prove that higher-order moments of Prob-solvable loop vari-
ables always exits. Our work is fully automated in the Polar tool, providing an algo-
rithmic solutions towards probabilistic loop reasoning by means of statistical analysis,
recurrence solving and moment-based invariant inference.
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Abstract. Traditional engineering is coming to a junction from embed-
ded systems to embodied actors, and with assuring the beneficial and
robust behavior of dynamic federations of situation-aware, intent-driven,
explorative, ever-evolving, and increasingly autonomous actors in uncer-
tain and largely unpredictable real-world contexts. In our quest for a
meaningful deployment of embodied actors in our societal fabric we are
deriving central design challenges. A particular emphasis thereby is put
on the role of formal methods for designing embodied systems in which
we actually may put our trust.

Keywords: Formal methods - Advanced systems engineering - Al

1 Introduction

A new generation of increasingly autonomous and self-learning systems is about
to be deployed into all kinds of aspects of everyday life. This machinery, which we
call embodied actors, is used beyond mere automation and assistance to humans,
as manufacturing robots make way for autonomous machine workers, business
and administrative services are performed by autonomous virtual organizations,
and processes and value chains in both material and virtual worlds are executed
by federations of autonomous machine actors. A main driver for the development
of embodied actors lies in their ubiquitous disruptive potential, as autonomic and
unsupervised learning capabilities are widely believed to be the key technological
base for initiating and driving the next economic and societal phase shift.
Embodied actors are not a distant Al-ish fiction, as purpose-built technical
machinery might be hand-crafted with currently available software technology.
But only at very high cost and sometimes with unknown risks, as we do not yet
have a mature science and technology to support the engineering of embodied
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systems in which we may put our trust. Failing to deploy embodied actors in a
meaningful manner, therefore, can all too easily and quickly turn dystopian.

We clearly face serious social, economic, legislative, jurisdictional, and engi-
neering challenges when deploying embodied actors to the real world, and sound
sociopolitical and legal conditions and frameworks must be created for embody-
ing autonomously acting machines in essential real-world processes and struc-
tures.

1. How can we assure that increasingly autonomous embodied actors behave
beneficially? That is, they function as intended and they behave, by-and-large,
in accordance with widely accepted higher-level societal goals and norms.

2. How can we assure that self-evolving embodied actors are robust across their
whole life cycle? That is, they are dependable, safe, and predictable (up to
quantified tolerances) in uncertain and largely unpredictable environments.

Traditionally, the field of systems engineering tackles these kinds of questions for
assuring purposeful and acceptable technical systems. Engineering of software-
intensive systems, however, has so far mainly been concerned with relatively
small-scale, centralized, determinate, non-evolving, automated, and task-specific
embedded and cyber-physical systems, which are operating in well-defined and
largely predictable operating environments.

In Sect. 2 we review recent developments on assurance-driven embedded sys-
tems, and in Sect.3 we take a look at some of the current challenges and
approaches for assuring embedded systems with learning-enabled components.
Then, in Sect.4 we characterize the new generation of embodied actors as the
basis for deriving, in Sect. 5, essential rigorous design challenges for a meaning-
ful deployment of these increasingly autonomous and self-learning machines into
our societal fabric. We conclude with some final remarks in Sect. 6.

It is our hope that this high-level description of embodied actors together
with urgent design challenges can stimulate researchers from the formal methods
community to develop and evaluate rigorous methods for constructing, analyz-
ing, and assuring embodied actors, and, possibly, also better understand machine
intelligence.

2 Embedded Systems

Ensuring dependable and safe control of embedded and cyber-physical systems
involves a rather complex interaction of uncertain sensing, discrete/probabilistic
computation, physical motion, and real-time combination with other systems
(including humans) [30,41]. Model-based engineering (MBE), in particular, is
a systematic and widely used approach for tackling these embedded systems
challenges in industrial engineering [51]. Formal methods are used, on a case-
by-case basis, in every phase of MBE for supporting requirement specification,
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Fig. 1. MILS architectural design strategy and assurance case pattern. (Color figure
online)

design, validation, and verification. Stylized requirements language for embed-
ded systems such as EARS [44,45] are successfully used, coverage-based test
case generation is supported by automated theorem proving, and autocoding,
that is, the generation of production-quality code from executable models, is
common practice in developing industrial embedded systems. Likewise, correct-
by-construction synthesis of programmable logic control code (in TEC 61131-3)
from declarative, real-time specifications has been integrated into an industrial
design process for embedded control systems [13].

Consider, for example, the MILS architectural design strategy in Fig. 1.! The
objective of MILS [7,54] is to provide an environment for the design, analysis,
verification, compositional implementation and certification of scalable, interop-
erable, and affordable trustworthy security architectures based on formal meth-
ods for specifying safety, security, and performance requirements, for the archi-
tectural design, for autocoding components from models, and for configuring and
faithfully implementing the model-based communication structure on a (dis-
tributed) separation kernel for resource sharing. The design steps depicted in
Fig. 1 heavily rely on constraint solving based on SMT [23] or EFSMT [9,24],
the extension of SMT to exists-forall quantified constraints. Transformational
architectural patterns, for example, support automated safety and security co-
design [19,20,35], autocoding from executable models in Autofocus [1] or any
industrial MBE tool chain such as Matlab or Lustre, code synthesis from tem-
poral specifications [10], optimized design space exploration, configuration and
deployment compilation [25,26], and, say, verifying partitioning properties for
an integrated modular avionics kernel [32].

The explicit assurance case (see, for example, [59]) pattern in Fig. 1 for the
MILS architectural design strategy is constructed in a compositional manner
from assurance cases of individual components such as the configuration com-
piler, which needs to implement given policies such as topological separation
of high-security components, and the separation kernel, which needs to satisfy
the given protection profile (SKPP) [42]. This kind of assurance needs to be

! See also: www.d-mils.org.
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provided, modulo possible instantiation, only once for each component (green).
Moreover, the assurance argument for the MILS design strategy (blue) encodes
design knowledge that may also be reused across different applications. Thus,
when using the MILS design strategy for building a specific secure applica-
tion one may concentrate (orange) on providing safety, security, and perfor-
mance requirements, a logical architecture, which is detailed enough for enabling
autocoding or component synthesis, and evidence as generated from formal ver-
ification, both static and dynamic, as well as traditional testing methods.

Finally, the modular creation of assurance cases [4,8] is coordinated through
the Evidential Toolbus [18], which supports rigorous workflows, including the
generation of claims along with supporting evidence, and the maintenance of
claims and evidence in the face of change. In this way, verification supports the
evolutionary nature of design, where new requirements are added, old ones are
revised, and designs themselves are improved, modified, and adapted.

3 Embedded Systems with AI/ML

Embedded systems increasingly contain learning-enabled components. In auto-
mated driving scenarios, for instance, artificial neural networks (ANN) are often
used for perception and for constructing a faithful model of the operating envi-
ronment, and behavior generation may be based on, say, techniques of reinforce-
ment learning. The inherent multitude of sources of entangled uncertainty for
these kinds of learning-enabled components is particularly challenging [57], and
the consequences of accumulated uncertainties are profound. For instance, ANNs
are usually not robust with unseen inputs, as there is also quite some uncertainty
in their behavior for even small input changes [16]. The main question therefore
is if learning-enabled technologies such as ANNs can be engineered in a rigor-
ous manner as to be able to be integrated in safety-related embedded systems
applications.

Our initial response at fortiss to this challenge has been the neural network
dependability kit (NNDK) [12].2 It is based on a novel set of dependability metrics
for ANNs [14,15], establishing maximum resilience bounds [16], and the runtime
monitoring of neuron activation patterns for determining the trustworthiness of
some ANN functional behavior [17]. Figure 2 demonstrates how these techniques
are combined in a structured design approach for arguing given safety require-
ments for ANN components. NNDK has been applied in a number of real-world
use cases, including Level-3 autonomous driving components [11], the detection
of diabetic retinopathy, and monitoring of traffic flows in tunnels [61]. NNDK,
however, is restricted to the analysis of ANN components only, and as such it
needs to be integrated into a larger safety engineering framework for supporting
more complex systems with learning-enabled components.

We first notice that the basic assumptions of traditional safety engineering, as
outlined in Sect. 2, no longer pertain to Al-based systems. First, with increased

2 https:/ /www.fortiss.org/ergebnisse/software/nndk.
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autonomy, a fallback mechanism to a human is often not possible anymore. Con-
sider, for example, an emergency braking system which needs to perform with-
out any human intervention, as the required reaction times is well below the
capabilities of human beings. Second, Al systems make their own knowledge-
based judgments and decisions. While added flexibility, resilience, elasticity, and
robustness of Al systems are clearly important, the gains in these dimensions
come at the loss of testability due to the admittance of nondeterminism due to
uncertainty (below a measure of 1). This disadvantage is costly because system-
atic testing and simulation are still the single most used technique for verifying
the correct functioning of software-intensive systems. Third, Al-based systems
increasingly need to cope with operating environments in which comprehensive
monitoring and controlling is impossible and in which unpredictable events may
occur. In fact, Al systems are mainly used for situations where the full details of
the operating context can not be known in advance. Risk estimation is therefore
difficult to perform for Al systems using conventional techniques. Fourth, it is
very hard, if not impossible, to correctly and completely specify the intended
behavior of an Al-enabled, and possibly continually changing, system [60].

For all these reasons, well-established and successful safety standards for
software-intensive systems, including DO 178C and ISO 26262, cannot readily
be applied to Al systems (see [57] for an in-depth discussion). Indeed, these
safety standards barely heed autonomy and the particularly advanced software
technologies for system autonomy.

The recent VDE-AR-E 2842-61 takes up the challenge of dependable and
safe embedded systems with at least some autonomous/cognitive functional-
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ity [53]. These guidelines are based on a model-centered structured approach
and lifecycle. One of the distinguishing features of the VDE-AR-E 2842-61 is
that it recognizes the many sources of uncertainty of Al-enabled systems and
the need for quantifying and managing related uncertainties below acceptable
levels. Other recent developments for assuring systems with learning-enabled
components include, say, requirements for explicit safety cases [36], AMLAS [33]
for integrating safety case patterns, VerifAl [66], a toolkit for the formal design
and analysis of systems that include AI/ML components, and model-centered
assurance techniques for autonomous systems based on safety monitors [34].

4 Embodied Actors

We illustrate the main characteristics of embodied actors by means of a robotic
co-pilot whom we envision to act as a companion to a pilot in a single-pilot
cockpit.? Such a robotic co-pilot needs to be more like a human co-pilot than
a conventional flight management system or functionally automated autopilot.
In particular, the robot companion needs to perform heterogeneous and comple-
mentary tasks, including radio communications, interpreting weather data and
making route adjustments, pilot monitoring tasks, shared tasks (flaps, gear),
ground taxi, and communication with the cabin-crew (emergency evacuation).
The robotic co-pilot also needs to integrate these tasks to accomplish a safe
flight, it needs to base its decisions and actions on an overall situational assess-
ment. In case something goes wrong, the robot companion needs to find effective
explanations based on fault diagnosis, and it needs to engage in an effective res-
olution process with the (human) pilot, based on a model of the pilot’s beliefs.
In extreme situations, for instance, if there is smoke in the cockpit, the robotic
co-pilot might need to take over control.* In these rare cases, the robotic co-
pilot must now also cope with inconsistencies (for example, in sensor readings)
based on flight laws, training procedures, models of the physical environment,
and unforeseen situations without the possibility of a structured hand-over to
the human pilot.

The envisioned robotic co-pilot is a particular instance of a larger class of
embodied actors. Personal companions for supporting and taking over tedious
household chores and for assisting with tax declarations, including the com-
munication with tax authorities, and suggesting new possibilities based on our
intents are an old dream. Embodied companions are also designated to assist,
say, truck drivers, ship captains, caregivers, investors, administrators, managers,
workers, farmers, lawyers, medical doctors, and, in fact, everybody. Potential
benefits include increased safety, reliability, efficiency, affordability, and previ-
ously unattainable capabilities.

3 This use case draws on J. Rushby’s presentation at the FOMLAS workshop at ETAPS
2018.
4 http://understandingaf447.com /extras/18-4_minutes__23_seconds_EN.pdf..
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Embedded Systems‘ Embodied Actors ‘

Architecture centralized federated
Behavior determinate largely unpredictable
Context well-defined uncertain/unknown
Maintenance managed update self-learning
Requirement dependability trustworthiness
Human control yes increasingly no

Fig. 3. Embedded systems vs. embodied actors.

Characteristics. Embodied systems, in general, are comprised of federations of
collaborating actors, they operate in largely unpredictable environments, phys-
ical or not, and they recognize their operating environment through sensors.
Moreover, they are informed about the intentions of other actors in their respec-
tive and immediate operating environments; they take non-trivial decisions based
on reasoning, they influence their environment, including other actors, via actu-
ators; they interact and cooperate with the elements of their operating environ-
ment, they influence elements in their environment to better meet own goals; and
they show a certain behavior based on skills; and they learn new and improved
behavior during operation and through interactions. In summary, embodied
actors are characterized as being:

1. Cognitive, in that actions are based on situational awareness, model-building,
and planning.

2. Intent-driven, in that actions are based on capturing actors’ intents, tasks,
and goals.

3. Federated, in that actions of decentralized actors are coordinated in a collabo-
rative manner between stakeholders and on an intentional level to accomplish
joint tasks or missions.

4. Autonomous, in that actions are increasingly determined by an actor’s, or fed-
erations of actors’, own knowledge, beliefs, intents, preferences, and choices.

5. Self-learning, in that actions are adapted and improved through experience,
exploration, and reasoning, both inductive and deductive, of a situated actor.

Based on these characteristics, Fig. 3 illustrates characteristic differences between
traditional embedded systems (with or without AI/ML components) and embod-
ied actors.

Trustworthiness. We might be willing to put our trust into embodied actors
which are, as a necessary condition, demonstrably beneficial and robust (see
Sect. 1). That is, we might be willing to be vulnerable to the actions of such
machine actors on the basis of the expectation that it will perform a particular
action important to the us, irrespective of our ability to monitor or control the
machine (see also [46]).

Assuring the trustworthiness of embodied actors, however, is quite a chal-
lenge, as embodied actors learn continually and they adapt and optimize their
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behavior based on experience and targeted exploration; they need to be robust,
possibly employing a never-give-up strategy, in the presence of inaccuracies,
uncertainty, and errors in their world models (“known unknown”) and also in
the presence of non-modeled phenomena (“unknown unknown”); they increas-
ingly lack the fallback to a responsible human being; they offer a variety of new
attack surfaces due to data-driven programming; they exhibit largely unpre-
dictable and emergent behavior due to data-driven programming; and they can
not be certified as current certification regimes require the system’s behavior
and its intended operating context to be fully specified and verified prior to
commissioning.

5 Design Challenges

Based on the characteristics of embodied actors as outlined in the Sect. 4 we are
now deriving all-important and inter-woven design challenges for developing,
deploying, and operating beneficial and robust embodied actors (see Fig.4; an
in-depth discussion is included in [56]).

5.1 Robust AI/ML

Despite technological advances that have led to the proliferation of machine
learning (ML) algorithms there still is the question of the level of trust that we
can put on these systems. More robust machine learning techniques are needed
(cmp. [64]) which work in uncertain and largely unpredictable environments,
which can make timely and confident decisions, whose results are understand-
able and explainable to a human operator, which are resilient to erroneous inputs
and targeted attacks, which can process ever-increasing amounts of data from
decentralized and heterogeneous data sources, but which can also extract use-
ful insights from small amounts of data and sparse rewards without significant
compromises in confidentiality and privacy in federated multi-actor settings.
There is, of course, a flurry of developments on a new generation of robust
ATI/ML algorithms, including, say, integrated logical neural networks [55] with
logic and neural structures as projections, resource-efficient neuromorphic com-
putation, and privacy-preserving machine learning based on federated machine
learning. Verification of (the results of) machine learning algorithms, in par-
ticular, has been a field day for formal verification [62]. Symbolic approaches,
however, usually do not scale sufficiently, are often restricted to static (non-
learning) networks, and there usually is a certain lack of useful requirements for
learning-enabled components in support of safety assurance cases.

5.2 Human-Centered AI/ML

The overarching goal is in achieving a sufficient mutual understanding of state
and intent of both humans and machine as to optimally blend their competences
in jointly acting towards overarching objectives, while respecting privacy [43,60].
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Fig. 4. Tracing characteristics to design challenges.
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The challenge here is to model human behavior interactions and to provide
the appropriate uncertainty characteristics related to the largely unpredictable
behavior of humans under unforeseen circumstances. Moreover, as individual
spheres of control may overlap arbitrarily, there is a pronounced need for orches-
trating these processes such that they jointly serve, say, not only a single human,
but can best-possibly multi-task in serving arbitrarily large groups at the same
time despite uncorrelated requests and uncoordinated missions.

5.3 Cognitive Architectures

Cognitive architectures [49] create programs for realizing all kinds of cognitive
functionality [37,47,48]. Soar [39], for instance is a modular cognitive architec-
ture for integrating (System 1) fast, sub-symbolic capabilities for performing
intuitive, automated tasks that we as humans can do instinctively with (Sys-
tem 2) slow, logic-based capabilities for performing tasks that require conscious
decision in the face of incomplete and uncertain knowledge [6]. With a similar
motivation in mind, neurosymbolic programming proposes integrated frameworks
which have neural, logical, and probabilistic methods as special cases. Probabilis-
tic programming provides yet another framework in which basic components of
cognitive architectures are represented in a unified and elegant fashion [40,52]. If
knowledge is expressed as programs, learning is expressed as programming [58]
Moreover, knowledge encoded as probabilistic programs is directly amenable to
well-defined formal concepts of program induction, construction, and analysis [3].

An obvious question is if and how structural principles of cognitive architec-
tures are aiding in the design of embodied systems and their assurance? Cogni-
tive architectures and theories from psychology, such as cue theory [5,38], may
serve as the basis and inspiration for designing novel control regimes for embod-
ied actors capable of coping with epistemic uncertainty by cautiously exploring
and navigating the unknown unknown. In this way, careful terrain exploration
is approached by minimizing surprises based on active inference — that is,
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maintaining a model and its predictions through action to change the sensory
inputs to minimize prediction error indirectly — and the free energy principle [28]
or, alternatively, by maximizing predictive information [2].

5.4 Uncertainty Quantification

There is aleatoric and epistemic uncertainty all around Al-ish systems [22,57].
Now, the challenge of uncertainty quantification is to systematically and continu-
ally reduce uncertainty to acceptable level, as the basis for trustworthy and (up to
tolerable quantities) predictable embodied systems. This is accomplished by (for
details see [57]) (1) identifying all relevant sources of uncertainty, (2) adequately
quantifying and estimating uncertainty, (3) understanding how uncertainty prop-
agates, forward and inverse, along chains of computations, (4) reducing overall
uncertainty below acceptable levels, and (5) managing incremental change of
uncertainty. The problem of (forward) uncertainty propagation, for instance, is
to characterise the distribution of y = F'(z) for a system model F' and an input
distribution for x, where distributions may, as usually, be represented by its
moments or in terms of polynomial chaos (Wiener) expansion. In this way one
may explore the design space, optimize the system under performance, assess
its robustness with respect to uncertainty and its reliability, and perform sen-
sitivity analysis [65]. Uncertainty quantification approaches in engineering have
been designed, for example, to demonstrate that, with high probability, a real-
valued response function of a given physical system does not exceed a given
safety threshold [50]. What seems to be completely missing, however, is a com-
prehensive set of formal techniques for the rigorous and compositional design of
systems based on uncertainty quantification.

5.5 Self-integration

Intent-driven formation of purposeful federations of embodied actors requires
individual actors to be open to collaborate with others, while still operating
as self-sufficient individually purposeful systems. Formation of these federations
therefore is based on self-integration, which seeks out other systems to support
to meet their local and global intents and goals, which cannot be accomplished
on their own.

The formation of intent-driven and trustworthy federations of actors is a
challenging endeavor indeed, as trust certainly is not modular. We therefore need
to come up with suitable architectural principles and composition operators for
constructing assured (systems of) embodied actors from a set of heterogeneous,
and possibly untrusted, constituent actors.

Since embodied systems are acting in the real world with their wickerwork of
societal norms, rules and laws, smart, that is software-based, contracts are a cen-
tral concept towards intent-driven dynamic federations of embodfied actors. In
this way, trustworthy self-integration of federations of embodied actors might be
approached by means of smart contracts based on collections of identified intents,
goals, and plans. These considerations on smart contracts and self-integration
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point to a multitude of serious formal specification and verification challenges:
How do we formally specify smart contracts based on recognized intents and
goals? What is the right framework for negotiating contracts? In particular, can
we use basic principles of mechanism design for synthesizing goal-oriented con-
tracts? How can we formally verify smart contracts? How can we provide check-
able evidence of the conclusion or breach of contract? How to incentivize/penalize
embodied actors as to ensure beneficial behavior? It is also open to discussion
if such federations can/should be deployed in social contexts without an orches-
trating higher instance.

5.6 Analysis

Analysis of embodied actors is particularly challenging for their openness, adap-
tivity, situatedness, and largely unpredictable behavior. Embodied actors also
have the possibility of autonomously acting in regulated sectors such as health-
care, finance, insurance, accounting, or retail. As such they need to comply with
applicable regulations and national law. These compliance checks need to be
automated, but only what is formalized can be automated. It is therefore crucial,
and non-trivial, to formalize applicable regulations in formal policy languages.
Embodied actors are also expected to be resilient to common and possibly also
new kinds of breakdowns and malicious attacks, the risk of unintended harm
to humans, machinery and the environment is demonstrably below acceptable
levels, and identified confidentiality, integrity, and availability requirements are
satisfied. Other requirements include transparency demonstrable fairness of deci-
sions, inverse privacy, and contextual integrity.

Non-determinate systems are usually considered to be untestable, because
of the overwhelming and open-ended number of cases to be considered, and
formal verification of a static snapshot of such a system seems to be largely
useless in such a dynamic environment, unless verification results can contin-
ually be kept in sync with the evolution of the system. Runtime analysis [66]
therefore is an essential element for analyzing embodied actors, as it may handle
the multitude of sources for uncertainty, stringent real-time requirements, and
continually changing conditions. Runtime analysis is also an essential element
of the never-give-up failure detection, isolation, and recovery (FDIR) cycle of
embodied actors.

Architectural design principles for monitoring increasingly autonomous sys-
tems are needed to ensure that monitoring does not perturb the system (at
least, not too much) [21,31]. Run-time monitoring may also be used for mea-
suring uncertainties of, say, input-output behavior of learning-enabled compo-
nents [17]. Moreover, there is not yet a systematic understanding of what kind of
analysis can be achieved at design time, how the design process can contribute
to safe and correct operation of the embodied system at run time, and how the
design-time and run-time analysis techniques can inter-operate effectively.

The distributed and dynamic nature of federations of embodied actors and
their goals is particularly challenging for run-time analysis. A run-time moni-
toring framework for embodied actors must also support reasoning under uncer-
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tainty, and also partially observable systems with nondeterministic and proba-
bilistic behavior. Run-time monitoring of typical hyper-properties [27], including
information flow, transparency, and privacy are of particular interest.

5.7 Assurance

How can we be assured that an embodied actor indeed is worth of the trust
we may put in it? We hypothesize that rigorous and continual assurance argu-
ments and their interweaving with system evolvement play a key role in sat-
isfactorily answering this question. This kind of assurance-driven design is
based on constructing and maintaining explicit assurance cases, which are com-
pelling, comprehensive, evidence-based defensible, and valid justification of com-
pliance [29,59,63].

We have already seen such an assurance case for the MILS architectural
design pattern in Fig. 1. The challenge now is to construct convincing assurance
patterns for embodied actors and their underlying cognitive architectures (see
Sect. 5.3); for example, for blackboard architectures for integrating slow and
fast cognitive capabilities. Now, evidence is obtained both from static analysis
(testing, model checking, theorem proving) but also during operation from run-
time analysis (see Sect.5.6).

Major assurance challenges for embodied actors include (1) rigorous assur-
ance case patterns with efficient, easily verifiable arguments for capturing trust-
worthiness requirements (2) rigorous and compositional operators on assurance
cases, (3) generation of semantically coherent evidence, for example, based on
runtime analysis, and validation throughout the lifecycle, (4) rigorous mech-
anisms of continual assurance for synchronizing assurance cases with system
evolvement (5) and measures of confidence in assurance arguments as the basis
for, say, suggesting stronger arguments.

Explicit assurance cases, in particular, open new possibilities of assurance-
driven operation for dependable and safe exploration of embodied actors in
largely unknown operating contexts based on relevant information from an assur-
ance case. If there is only weak evidence on the fact that the traffic light in front
of the ego car is green, for example, then the ego car might want to increase her
assurance by strengthen this case, say, by means of moving closing and initiating
additional sensor activity. In this way, rigorous assurance cases can be instru-
mental in online behavioral self-adaptation and for determining safe behavior
when operating in uncertain contexts.

6 Conclusion

We have been arguing that traditional safety and dependability engineering is
coming to a climacteric from embedded systems to embodied actors, and with
assuring the trustworthiness of a new generation of dynamic federations of situa-
tionally aware, intent-driven, explorative, ever-evolving, largely non-predictable,
and increasingly autonomous embodied systems in uncertain, complex, and
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unpredictable real-world contexts. Solving the corresponding design challenges
for assured embodied actors will require synergistic innovations in formal meth-
ods and model-based engineering, architectures for autonomously acting sys-
tems, and core AI/ML algorithms.

In particular, we have been emphasizing that the presented design challenges
are yet another great opportunity for formal methods themselves, because the
assurance of embodied actors needs to be largely automated, and rigorous mod-
els are a prerequisite to automation. Embedding (embodying?) formal methods
into automated engineering and change cycles should also create virtuous cycles
for immediately judging the effectiveness of applied formal methods and as a
playground for accelerating their future development.

We should also be prepared for future embodied actors which are equipped
with substantial self-engineering capabilities, including experience-driven func-
tional updates, zero-touch repair and maintenance capabilities, and the possibil-
ity of by-need-augmentation of sensing, cognitive, and acting capabilities. More-
over, future embodied actors may also perform their own risk analysis and define
their own mitigation strategies based on their own understanding of socially
acceptable behavior.
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1 Synopsis: Robust and Dependable Artificial Intelligence

Artificial intelligence (Al) is a disruptive force. Most major technology companies
employ or develop Al, and with growing applications in fields like healthcare [37],
transportation [48,68], game playing [51], finance [9], or robotics in general [44], it
is entering our everyday lives. We can expect that our societal and technological
involvement with Al will only intensify in the future. Such tight interaction with
AT requires serious safety and correctness considerations. Recently, the field of
safety in Al has triggered a vast amount of research with several seminal works
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Abstract. This talk highlights our vision of foundational and
application-driven research toward safety, dependability, and correctness
in artificial intelligence (AI). We take a broad stance on AI that com-
bines formal methods, machine learning, and control theory. As part of
this research line, we study problems inspired by autonomous systems,
planning in robotics, and industrial applications. We consider reinforce-
ment learning (RL) as a specific machine learning technique for decision-
making under uncertainty. RL generally learns to behave optimally via
trial and error. Consequently, and despite its massive success in the past
years, RL lacks mechanisms to ensure safe and correct behavior. Formal
methods, in particular formal verification, is a research area that pro-
vides formal guarantees of a system’s correctness and safety based on
rigorous methods and precise specifications. Yet, fundamental challenges
have obstructed the effective application of verification to reinforcement
learning. Our main objective is to devise novel, data-driven verification
methods that tightly integrate with RL. In particular, we develop tech-
niques that address real-world challenges to the safety of AI systems
in general: Scalability, expressiveness, and robustness against the uncer-
tainty that occurs when operating in the real world. The overall goal is
to advance the real-world deployment of reinforcement learning.

defining their view on this area [4,25,58,61].

Can Formal Verification Help to Ensure AI Safety? The area of formal
methods offers structured and rigorous ways to reason about the correctness
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of a system. Techniques range from model learning [66], over testing [36], to
formal verification [24]. As an example for the application of verification in Al,
solving techniques like SAT or SMT [11] help to assess the robustness of neural
networks [30,33,41]. A specific verification technique is model checking [10,19].
For a fixed system model, a plethora of methods assert the system’s correctness
regarding formal specifications. The rigor of model checking suggests it is natural
to employ model checking to prove the correctness of Al systems.

We focus on a specific branch of Al, namely decision-making under uncer-
tainty [45]. Intelligent AT agents typically operate in unknown or unpredictable
environments, coping with contextual changes at runtime or incompleteness of
information. This unpredictability leads to the problem that the outcome of deci-
sions made by an agent is uncertain. Reinforcement learning (RL) [64] agents
make decisions under uncertainty via the exploration of potentially unknown
environments. The area of safe RL [2,27] aims to restrict the behavior of an
agent with respect to safety, or with respect to more general correctness con-
straints.

Several shortcomings towards the potential deployment of RL in critical envi-
ronments remain. Specifically, we identify the following three main challenges to
the state-of-the-art in formal verification and its application for safe RL:

— Scalability to high-dimensional problems,
— Providing correctness guarantees in continuous spaces, and
— effective handling of uncertainty.

Indeed, common approaches and case studies for safe RL employ idealized
settings with a low number of dimensions that contribute to a problem. Most
approaches assume discretized state spaces instead of realistic continuous set-
tings. Currently employed simplistic notions of uncertainty may lead to incorrect
behavior, and RL agents are often trained without any notion of safe behavior
under uncertainty [72]. Finally, standard safety notions cannot express sophisti-
cated task or correctness specifications.

The state-of-the-art leaves the aforementioned three challenges largely unad-
dressed. Our approaches to fundamentally overcome these restrictions employ
a particularly tight integration of verification and learning. We see the data-
driven nature not as a threat to effective and rigorous verification, but embrace
the inherent access to state-of-the-art machine learning and exploit its flexibility.

Finally, to demonstrate the practical applicability of our work, we use the
QComp [31] and Arch-Comp [1] competitions, and for more Al-related bench-
marks, the OpenAl gym [53] and Google Deepmind’s Al Safety Gridworlds [47].
Towards industrial demonstrators, we use, for instance, case studies from pre-
dictive maintenance, such as [42].

How to Make Intelligent Decisions Under Uncertainty? Various types
and applications of uncertainty play a central role in our research. Uncertainty
has been “largely related to the lack of predictability of some major events or
stakes, or a lack of data” [5]. To name a few, there is uncertainty (1) in techno-
logical, social, environmental, or financial factors in the business literature [60],
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(2) about sensor imprecisions and lossy communication channels in robotics [65],
and (3) about the expected responses of a human operator in decision support
systems [45]. The level of uncertainty affects the capabilities of Al systems that
have to make decisions [3,45]. In particular, for strict safety requirements, deci-
sions must be verifiably robust against uncertainty. Such considerations require
precise knowledge about the nature of uncertainty.

Model checking for Al systems necessitates dedicated models. Markov deci-
sion processes (MDPs) capture sequential decision-making problems for agents
operating in uncertain environments [57]. Sensor limitations may lead to partial
observability of the system’s current state, giving rise to partially observable
Markov decision processes (POMDPs) [40]. While mature model checking tools
like PRISM [46], Storm [22], or Uppaal [21] provide efficient synthesis or verifica-
tion methods for MDPs, the situation is different for POMDPs. Policy synthesis
for POMDPs is a hard problem, both from the theoretical and the practical per-
spective [50]. For infinite- or indefinite-horizon problems, computing an optimal
policy is undecidable [49]. Optimal action choices depend on the whole observa-
tion history, requiring an infinite amount of memory.

If precise probabilities are not known, uncertainty models employ so-called
uncertainty sets of probabilities. Uncertain MDPs (uMDPs) use, for exam-
ple, probability intervals or likelihood functions [23,28,52,56,69-71,73]. Similar
extensions exist for uPOMDPs, where uncertainty also affects the observation
model [12,13,20,34,62].

A Motivating Example: Spacecraft Motion Planning. Consider a space-
craft motion planning system which serves as decision support for a human
operator [26,32]. This system delivers advice on switching to a different orbit or
avoiding close encounters with other objects in space. The spacecraft orbits the
earth along a set of predefined natural motion trajectories (NMTs) [43]. While
the spacecraft follows its current NMT, it does not consume fuel. We introduced
the underlying uncertain POMDP model in [20]. The figure to the right depicts
three models that differ only in the level of uncertainty (low, medium, high).
Black spheres are the objects, and the colored lines depict NMTs. The thick red
line indicates a trajectory of the spacecraft including orbit switches along the
NMTs. A policy requires robustness against uncertainty, and memory to predict
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Fig. 1. Robust spacecraft motion planning.
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the location of the spacecraft based on its past trajectory (Fig. 1). The figure
shows that more uncertainty causes less-informed decisions, as policies need to
be more conservative.

2 Research Highlights

In the following, we discuss a number of results that are in line with the afore-
mentioned research challenges to combining formal verification, Al systems, and
reinforcement learning.

2.1 Reliable Neural Network Controllers for Autonomous Agents

Summary. These results are part of the publications [16-18]. Machine learning
methods typically train recurrent neural networks (RNN) to effectively repre-
sent POMDP policies that can efficiently process sequential data. However, it
is hard to verify whether the POMDP driven by such RNN-based policies sat-
isfies safety constraints, for instance, given by temporal logic specifications. We
propose a novel method that combines techniques from machine learning with
the field of formal methods: training an RNN-based policy and automatically
extracting a so-called finite-state controller (FSC) from the RNN. Such FSCs
offer a convenient way to verify temporal logic constraints. Implemented on a
POMDP, they induce a Markov chain. Probabilistic verification methods can
efficiently check whether this induced Markov chain satisfies a temporal logic
specification. Our method exploits this diagnostic information from verification
to either adjust the complexity of the extracted FSC or improve the policy by
performing focused retraining of the RNN. We synthesize policies that satisfy
temporal logic specifications for POMDPs with up to millions of states, three
orders of magnitude larger than comparable approaches.

Generating sequences
of data using MDP M

Concrete model
POMDP M
Specification ¢

Diagnostics on Critical information
induced behavior o . for network retraining
Verification Entropy el aaos » Training Data
test

Increase

precision
FSC Ex- RNN-based
traction policy

Fig. 2. Summary flowchart of the RNN-based refinement loop.
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Our Approach: Learning and Verification. We combine the effectiveness of
RNN-based representations from machine learning with the provable guarantees
that are at the heart of formal verification. In a nutshell, we train RNN-based
policy representations from sequences of data, to find candidate policies that
might ensure an agent satisfies a temporal logic specification.

The central technical problem is: How to close the loop between training
an RNN-based policy and efficiently verifying for a candidate policy? First,
FSCs [39,54] encode memory in a finite automata-style fashion. For an FSC
and a POMDP, formal verification methods like model checking are able to
efficiently compute the probability of satisfying a specification [10]. We tightly
integrate formal verification and machine learning towards three key steps: (1)
extracting an FSC from an RNN-based policy, (2) verifying this candidate FSC
for the POMDP against a temporal logic specification, and (3) if needed, either
refining the FSC or generating more training data for the RNN. For an overview,
see Fig. 2.

2.2 Learning Uncertainty Models

Summary. This result is part of the publication [63]. In data-driven appli-
cations, deriving precise probabilities from (limited) data introduces statistical
errors that may lead to unexpected or undesirable outcomes. Consequently, we
aim to learn uncertain MDPs (uMDPs) that use so-called uncertainty sets in
the transitions, accounting for such limited data. Efficient implementations in
tools like PRISM compute robust policies for uMDPs that provably adhere to
formal specifications, like safety constraints, under the worst-case instance in the
uncertainty set. We continuously learn the transition probabilities of an MDP in
a robust anytime-learning approach that combines a dedicated Bayesian infer-
ence scheme with the computation of robust policies. In particular, our method
(1) approximates probabilities as intervals, (2) adapts to new data that may be
inconsistent with an intermediate model, and (3) may be stopped at any time
to compute a robust policy on the uMDP that faithfully captures the data so
far. Similarly, our method is capable of adapting to changes in the environment.
We show the effectiveness of our approach and compare it to robust policies
computed on uMDPs learned by the UCRL2 reinforcement learning algorithm.

Our Approach: Learning an MDP from Data. We propose an iterative
learning method that uses uMDPs as intermediate models and is able to adapt
to new data which may be inconsistent with prior assumptions. The Bayesian
anytime-learning approach employs intervals with linearly updating conjugate
priors [67], and can iteratively improve upon a uMDP that approximates the
true MDP we wish to learn. The key features of our learning method are:

— An anytime approach. At any time, we may stop the learning and compute
a robust policy for the uMDP that the process has yielded thus far, together
with the worst-case performance of this policy against a given specification.
This performance may not be satisfactory, e. g., the worst-case probability to
reach a set of critical states may be below a certain threshold. We continue
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learning towards a new uMDP that more faithfully captures the true MDP
due to the inclusion of further data. Thereby, we ensure that the robust policy
gradually gets closer to the optimal policy for the true MDP.

— Specification-driven. Our method features the possibility to learn in a task-
aware fashion, that is, to learn transitions that matter for a given specification.
In particular, for reachability or expected reward (temporal logic) specifica-
tions that require a certain set of target states to be reached, we only learn
and update transitions along paths toward these states. Transitions outside
those paths do not affect the satisfaction of the specification.

— Adaptive to changing environment dynamics. When using linearly updating
intervals, our approach is adaptive to changing environment dynamics. That
is, if during the learning process the probability distributions of the underlying
MDP change, our method can easily adapt and learns these new distributions.

2.3 Robust Control for Dynamical Systems Under Uncertainty

Summary. These results are part of the publications in [6-8]. We provide proba-
bly correct controllers for dynamical systems that operate in noisy environments,
where the uncertainty can be both aleatoric and epistemic. In particular, we
consider environments where stochastic disturbances in the environment are not
necessarily Gaussian, and external uncertainty may be caused by factors such as
uncertain system parameters. In our work, no explicit representation of a noise
distribution is necessary, but we only assume sampling access to the environ-
ment. Using the so-called scenario approach, we provide probabilistic guarantees
on reach-avoid properties, that is, safely reaching a target while avoiding unsafe
regions of the state space. At the heart of our approach is an abstraction of the
dynamical system into an uncertain MDP. We show that a robust policy for
this finite-state model carries guarantees on the performance of the analogous
controller in the dynamical system.

Our Approach: Probabilities Are Not Enough. We consider stochastic
dynamical models with continuous state and action spaces, under aleatoric and
epistemic uncertainty. More precisely, aleatoric uncertainty captures natural ran-
domness (i.e., stochasticity) in the outcome of transitions, while epistemic uncer-
tainty is in particular modeled by parameters that are not precisely known [59].

— PAC guarantees on abstractions. We show that both probabilities and nonde-
terminism can be captured in the probability intervals of an uncertain MDP.
We use sampling methods from scenario optimization [14] and show that,
with a predefined confidence probability, the uncertain MDP correctly cap-
tures both aleatoric and epistemic uncertainty.

— Correct-by-construction. For the uncertain MDP, we compute a robust optimal
policy that maximizes the worst-case probability of satisfying the reach-avoid
specification. This policy is automatically translated to a provably-correct
feedback controller for the original, continuous model ‘on the fly’. This means
that, by construction, the PAC guarantees on the uncertain MDP carry over
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to the satisfaction of the specification for the continuous model, thus solving
the problem stated above.

— Contributions. We develop the first abstraction-based, formal controller syn-
thesis method that simultaneously captures epistemic and aleatoric uncer-
tainty for continuous-state/action models. We provide results on the PAC-
correctness of obtained uncertain MDP abstractions, and guarantees on the
synthesized controllers for a reach-avoid specification.

2.4 Safe Deep Reinforcement Learning

Summary. These results are part of the publications in [15,29,35,38,55]. A
common approach to safe reinforcement learning is to employ a so-called shield
that forces an RL agent to select only safe actions. However, for adoption in
various applications, one must look beyond enforcing safety and also ensure
the applicability of RL with good performance. We extend the applicability of
shields via tight integration with state-of-the-art deep RL, and provide an exten-
sive, empirical study in challenging, sparse-reward environments under partial
observability. We show that a carefully integrated shield ensures safety and can
improve the convergence rate and final performance of RL agents. We further-
more show that a shield can be used to bootstrap state-of-the-art RL agents:
they remain safe after initial learning in a shielded setting, allowing us to disable
a potentially too-conservative shield eventually.

Our Approach: Shielding in Deep Reinforcement Learning. Our study
demonstrates the following effects of shielding in a partially observable setting.

— Shield construction: We discuss several approaches to effectively construct
and compute a shield in environments that exhibit various sources of uncer-
tainty.

— Safety during learning: Exploration is only safe when the RL agent is provided
with a shield. Without the shield, the agent makes unsafe choices even if it has
access to the state estimation. Even an unshielded trained agent still behaves
unsafe sometimes.

— RL convergence rate: A shield not only ensures safety, but may also sig-
nificantly improve the convergence rate of modern RL agents by avoiding
spending time to learn unsafe actions. Other knowledge interfaces like state
estimators do help to a lesser extent.

— Bootstrapping: Due to the improved convergence rate, shields are a way to
bootstrap RL algorithms, even if they are overly restrictive. RL agents can
learn to mimic the shield by slowly disabling the shield.

— Tool support: We provide an open source tool called COOL-MC! that features
a tied integration between state-of-the-art RL in OpenAl gym [53] and the
Storm model checker [22].

! Available at https://github.com/LAVA-LAB/COOL-MC.
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