
Marsha Chechik
Joost-Pieter Katoen
Martin Leucker (Eds.)

25th International Symposium, FM 2023 
Lübeck, Germany, March 6–10, 2023 
Proceedings

Formal MethodsLN
CS

 1
40

00
Fo

rm
al

 M
et

ho
ds



Lecture Notes in Computer Science 14000

Formal Methods
Subline of Lecture Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Marieke Huisman, University of Twente, The Netherlands

André Platzer, Karlsruhe Institute of Technology, Germany, and Carnegie Mellon

University, PA, USA

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558


Marsha Chechik • Joost-Pieter Katoen •

Martin Leucker
Editors

Formal Methods
25th International Symposium, FM 2023
Lübeck, Germany, March 6–10, 2023
Proceedings

123



Editors
Marsha Chechik
University of Toronto
Toronto, ON, Canada

Joost-Pieter Katoen
RWTH Aachen University
Aachen, Germany

Martin Leucker
University of Lübeck
Lübeck, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-27480-0 ISBN 978-3-031-27481-7 (eBook)
https://doi.org/10.1007/978-3-031-27481-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6301-3517
https://orcid.org/0000-0002-6143-1926
https://orcid.org/0000-0002-3696-9222
https://doi.org/10.1007/978-3-031-27481-7


Preface

This volume contains the papers presented at the 25th Symposium on Formal Methods
(FM 2023), organized by the Institute for Software Engineering and Programming
Languages, University of Lübeck, and held at the University of Lübeck, Germany
during March 6–10, 2023. In addition, these proceedings contain 7 papers selected by
the Program Committee of the Industry Day (I-Day@FM 2023). FM 2023 was orga-
nized under the auspices of Formal Methods Europe (FME), an independent associa-
tion whose aim is to stimulate the use of, and research on, formal methods for software
development. It has been over 35 years since the first VDM symposium in 1987
brought together researchers with the common goal of creating methods to produce
high-quality software based on rigor and reason. Since then the diversity and com-
plexity of computer technology has changed enormously and the formal methods
community has stepped up to the challenges those changes brought by adapting,
generalizing, and improving the models and analysis techniques that were the focus of
that first symposium. The papers in this proceedings reflect this progress, and
demonstrate how formal methods have been successfully applied in many different
application areas and domains including software, cyber-physical systems and inte-
grated computer-based systems.

To establish the program of FM 2023, we assembled a Program Committee
(PC) which included 43 internationally renowned scientists. We sought submissions in
five categories: regular papers, long tool papers, case study papers, short papers and
tool demonstration papers. And, for the first time for FM, we ran a double-blind review
process. We received 95 paper submissions from authors in 29 different countries: 75
regular paper submissions, 8 long tool paper submissions and four each of case study,
short and tool demo submissions. Each submission went through a rigorous review
process in which the papers were reviewed by at least three PC members. Following a
two-week discussion phase, we selected 28 papers for presentation during the sym-
posium and inclusion into these proceedings: 18 regular, 5 long tool, 3 case study,
1 short and 1 tool demo, with the overall acceptance rate of 29%. Accepted papers were
invited for review by the Artifact Evaluation committee, chaired by Matthias Volk,
which gave out reproducibility and availability badges. This year, FM 2023 featured a
special session on “Formal Methods Meets AI” which focused on formal and rigorous
modeling and analysis techniques to ensure the safety, robustness and trustworthiness
of AI-based systems. We thank Benedikt Bollig, Daniel Neider, and Özgür Özcep for
chairing this track. This year, FME awarded the 3rd Lucas Prize for a Highly Influential
Paper published in an FM symposium.

The symposium featured an FM luminary talk by Jeannette Wing (Columbia
University, Data Science Institute, USA) and three keynotes by Laura Kovács (Vienna
University of Technology, Institute of Logic and Computation, Austria), Harald Ruess
(fortiss GmbH, Germany) and Nils Jansen (Radboud University Nijmegen, Department
of Software Science, The Netherlands). We hereby thank these invited speakers for



having accepted our invitation. The program also featured three workshops, four
tutorials and presentation of four journal-first papers. We are grateful to all involved in
FM 2023, in particular, the FME board members for their constant support, the PC
members and sub-reviewers for their accurate and timely reviewing, all authors for their
submissions, and all attendees of the symposium for their participation. We also thank
all the other committees (I-Day, Doctoral Symposium, Journal First Track, Workshops,
and Tutorials), listed on the following pages, and the excellent local organization and
publicity teams. We are very grateful to our sponsors: AWS, Dräger, Huawei, fortiss,
UniTransferKlinik Lübeck and Universität zu Lübeck. Finally, we thank Springer for
publishing these proceedings in their FM subline and we acknowledge the support from
EasyChair in assisting us in managing the complete process from submissions to these
proceedings to the program.

January 2023 Marsha Chechik
Joost-Pieter Katoen

Martin Leucker

vi Preface



Organization

Program Committee

Dalal Alrajeh Imperial College London, UK
Luís Soares Barbosa University of Minho, Portugal
Ezio Bartocci TU Wien, Austria
Nikolaj Bjørner Microsoft Research, USA
Sandrine Blazy University of Rennes 1 - IRISA, France
Benedikt Bollig LSV, ENS Cachan, CNRS, France
Borzoo Bonakdarpour Michigan State University, USA
Pablo Castro National University of Río Cuarto, Argentina
Ana Cavalcanti University of York, UK
Milan Ceska Brno University of Technology, Czech Republic
Marsha Chechik University of Toronto, Canada
Nancy Day University of Waterloo, Canada
Bernd Fischer Stellenbosch University, South Africa
Adrian Francalanza University of Malta, Malta
Arie Gurfinkel University of Waterloo, Canada
Ichiro Hasuo National Institute of Informatics, Japan
Keijo Heljanko University of Helsinki, Finland
Holger Hermanns Saarland University, Germany
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle TU Darmstadt, Germany
Peter Höfner Australian National University, Australia
Einar Broch Johnsen University of Oslo, Norway
Sebastian Junges Radboud University, The Netherlands
Joost-Pieter Katoen RWTH Aachen University, Germany
Martin Leucker University of Lübeck, Germany
Yi Li Nanyang Technological University, Singapore
Lei Ma University of Alberta, Canada
Mieke Massink CNR-ISTI, Italy
Christoph Matheja Technical University of Denmark (DTU), Denmark
Annabelle McIver Macquarie University, Australia
Claudio Menghi McMaster University, Canada
Daniel Neider TU Dortmund, Germany
Jan Peleska University of Bremen, Germany
André Platzer Karlsruhe Institute of Technology, Germany
Baishakhi Ray Columbia University, USA
Jan Oliver Ringert Bauhaus University Weimar, Germany
Cristina Seceleanu Mälardalen University, Sweden
Marjan Sirjani Mälardalen University, Sweden



Paola Spoletini Kennesaw State University, USA
Jun Sun Singapore University, Singapore
Emilio Tuosto Gran Sasso Science Institute, Italy
Matthias Volk University of Twente, The Netherlands
Ou Wei Thales, Canada
Mike Whalen Amazon Web Services, USA
Naijun Zhan Chinese Academy of Sciences, China
Özgür Özcep University of Lübeck, Germany

FME Board

Ana Cavalcanti (Chair) University of York, UK
Nico Plat (Treasurer) University of Twente, The Netherlands
Lars-Henrik Eriksson

(Secretary)
Uppsala University, Sweden

Maurice ter Beek
(Conferences)

CNR-ISTI, Italy

Einar Broch Johnsen
(Communication)

University of Oslo, Norway

Organization Committee

General Chair

Martin Leucker University of Lübeck, Germany

PC Chairs

Marsha Chechik University of Toronto, Canada
Joost-Pieter Katoen RWTH Aachen University, Germany

AE Chair

Matthias Volk University of Twente, The Netherlands

Workshop Chairs

Esfandiar Mohammadi University of Lübeck, Germany
Volker Stolz Western Norway, University of Applied Science,

Norway

Tutorial Chairs

Martin Sachenbacher University of Lübeck, Germany
Cesar Sanchez IMDEA Software Institute, Spain

Publicity Chair

Violet Ka I Pun Western Norway, University of Applied Science,
Norway

viii Organization



Exhibition Chairs

Marieke Huisman University of Twente, The Netherlands
Einar Broch Johnsen University of Oslo, Norway
Tim Suthau University of Lübeck, Germany

Industry Day Chairs

Chih-Hong Cheng Fraunhofer IKS, Germany
Ralf Huuck Logilica, Australia
Grigore Rosu University of Illinois, USA
Tim Suthau University of Lübeck, Germany
Oksana Tkachuk Amazon Web Services, USA
Alexander Weiss Accemic, Germany

Financial Chair

Maria Ernst University of Lübeck, Germany

Local Organization Chair

Martin Mildner University of Lübeck, Germany

Doctoral Symposium Chairs

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Ralf Möller University of Lübeck, Germany

FM Meets AI Track Chairs

Benedikt Bollig ENS Paris-Saclay, France
Daniel Neider MPI SWS, Germany
Özgür Özcep University of Lübeck, Germany

Journal First Committee

Maurice ter Beek CNR-ISTI, Italy
Eerke Boiten De Montfort University, UK
Manfred Broy Technical University of Munich, Germany
Cliff Jones Newcastle University, UK

Artifact Evaluation Committee

Roman Andriushchenko Brno University of Technology, Czech Republic
César Cornejo Universidad Nacional de Rio Cuarto, Argentina
Federico Formica McMaster University, Canada
Ritam Ganguly Michigan State University, USA
Lutz Klinkenberg RWTH Aachen University, Germany
Anik Momtaz Michigan State University, USA
Luciano Putruele Universidad Nacional de Rio Cuarto, Argentina

Organization ix



Marco Scaletta Technische Universität Darmstadt, Germany
Soaibuzzaman

Soaibuzzaman
Bauhaus University Weimar, Germany

Gerard Tabone University of Malta, Malta
Matthias Volk University of Twente, The Netherlands
Yiming Xu Australia National University, Australia

Journal-First Presentations

1. Debbi, H.: A debugging game for probabilistic models. Formal Aspects Comput. 34
(2022). https://doi.org/10.1145/3536429

2. Ferrando, A., et al.: Bridging the gap between single- and multi-model predictive
runtime verification. Formal Methods Syst. Des. 59 (2022). https://doi.org/10.1007/
s10703-022-00395-7

3. Coughlin, N., Smith, G.: Compositional noninterference on hardware weak memory
models. Sci. Comput. Program. 217 (2022). https://doi.org/10.1016/j.scico.2022.
102779

4. Gleirscher, M., et al.: Verified synthesis of optimal safety controllers for
human-robot collaboration. Sci. Comput. Program. 218 (2022). https://doi.org/10.
1016/j.scico.2022.102809

Additional Reviewers

An, Jie
Andriushchenko, Roman
Attala, Ziggy
Backeman, Peter
Badings, Thom
Balu, Balahari Vignesh
Bartolo Burlò, Christian
Basile, Davide
Baxter, James
Bengolea, Valeria
Betarte, Gustavo
Brieger, Marvin
Brix, Christopher
Bubel, Richard
Cai, Simin
Cassano, Valentin
Ciancia, Vincenzo
Cordwell, Katherine
Coto, Alex
Demasi, Ramiro
Dillmann, Stefan
Doan, Nguyen Anh Vu

Eberhart, Clovis
Enea, Constantin
Farzan, Azadeh
Fesefeldt, Ira
Filipovikj, Predrag
Foster, Simon
Ganguly, Ritam
Gleirscher, Mario
Grätz, Lukas
Gu, Rong
Herd, Benjamin
Heydari Tabar, Asmae
Hsu, Tzu-Han
Inverso, Omar
Kabra, Aditi
Kamburjan, Eduard
Klinkenberg, Lutz
Kobayashi, Tsutomu
Latella, Diego
Laurent, Jonathan
Le, Nham
Leander, Björn

x Organization

https://doi.org/10.1145/3536429
https://doi.org/10.1007/s10703-022-00395-7
https://doi.org/10.1007/s10703-022-00395-7
https://doi.org/10.1016/j.scico.2022.102779
https://doi.org/10.1016/j.scico.2022.102779
https://doi.org/10.1016/j.scico.2022.102809
https://doi.org/10.1016/j.scico.2022.102809


Leemhuis, Mena
Lengal, Ondrej
Lluch Lafuente, Alberto
Lopez Pombo, Carlos Gustavo
Lopez-Miguel, Ignacio D.
Luo, Weilin
Marksteiner, Stefan
Mauro, Jacopo
Mitsch, Stefan
Moezkarimi, Zahra
Momtaz, Anik
Moradi, Fereidoun
Morgan, Carroll
Nesterini, Eleonora
Neufeld, Emery
Noah Abou El Wafa
Noll, Thomas
Pontiggia, Francesco
Putruele, Luciano
Qi, Xiaodong
Quatmann, Tim
Regis, Germán
Sachtleben, Robert
Sakar, Ömer
Sales, Emerson
Salimi, Maghsood

Scalas, Alceste
Scaletta, Marco
Schlatte, Rudolf
Schmidtke, Hedda Rahel
Schmitt, Anna
Schupp, Stefan
Seferis, Emmanouil
Stolz, Volker
Su, Yusen
Suilen, Marnix
Tabone, Gerard
Theodorou, Konstantinos
Tokas, Shukun
Vaandrager, Frits
Vandin, Andrea
Vazquez, Gricel
Visconti, Ennio
Waga, Masaki
Wang, Shuling
Windsor, Matt
Wu, Xiuheng
Xuereb, Jasmine
Yadav, Drishti
Yan, Rongjie
Zhang, Zhenya
Zhao, Hengjun

Organization xi



Contents

Keynotes

Symbolic Computation in Automated Program Reasoning . . . . . . . . . . . . . . . 3
Laura Kovács

The Next Big Thing: From Embedded Systems to Embodied Actors . . . . . . . . 10
Harald Ruess

Intelligent and Dependable Decision-Making Under Uncertainty . . . . . . . . . . . 26
Nils Jansen

SAT/SMT

A Coq Formalization of Lebesgue Induction Principle and Tonelli’s
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Sylvie Boldo, François Clément, Vincent Martin, Micaela Mayero,
and Houda Mouhcine

Railway Scheduling Using Boolean Satisfiability Modulo Simulations . . . . . . . 56
Tomáš Kolárik and Stefan Ratschan

SMT Sampling via Model-Guided Approximation . . . . . . . . . . . . . . . . . . . . . 74
Matan I. Peled, Bat-Chen Rothenberg, and Shachar Itzhaky

Efficient SMT-Based Network Fault Tolerance Verification . . . . . . . . . . . . . . 92
Yu Liu, Pavle Subotic, Emmanuel Letier, Sergey Mechtaev,
and Abhik Roychoudhury

Verification I

Formalising the Prevention of Microarchitectural Timing Channels
by Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Robert Sison, Scott Buckley, Toby Murray, Gerwin Klein,
and Gernot Heiser

Can We Communicate? Using Dynamic Logic to Verify Team Automata . . . . 122
Maurice H. ter Beek, Guillermina Cledou, Rolf Hennicker,
and José Proença



The ScalaFix Equation Solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Gianluca Amato and Francesca Scozzari

HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic . . . . . . . 160
Huanhuan Sheng, Alexander Bentkamp, and Bohua Zhan

Quantitative Verification

symQV: Automated Symbolic Verification of Quantum Programs . . . . . . . . . 181
Fabian Bauer-Marquart, Stefan Leue, and Christian Schilling

PFL: A Probabilistic Logic for Fault Trees. . . . . . . . . . . . . . . . . . . . . . . . . . 199
Stefano M. Nicoletti, Milan Lopuhaä-Zwakenberg, E. Moritz Hahn,
and Mariëlle Stoelinga

Energy Büchi Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Sven Dziadek, Uli Fahrenberg, and Philipp Schlehuber-Caissier

QMaude: Quantitative Specification and Verification in Rewriting Logic . . . . . 240
Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, and Alberto Verdejo

Concurrency and Memory Models

Minimisation of Spatial Models Using Branching Bisimilarity . . . . . . . . . . . . 263
Vincenzo Ciancia, Jan Friso Groote, Diego Latella, Mieke Massink,
and Erik P. de Vink

Reasoning About Promises in Weak Memory Models with Event
Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Heike Wehrheim, Lara Bargmann, and Brijesh Dongol

A Fine-Grained Semantics for Arrays and Pointers Under Weak Memory
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Robert J. Colvin

VeyMont: Parallelising Verified Programs Instead of Verifying Parallel
Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Petra van den Bos and Sung-Shik Jongmans

Verification 2

Verifying Functional Correctness Properties at the Level of Java Bytecode. . . . 343
Marco Paganoni and Carlo A. Furia

xiv Contents



Abstract Alloy Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Jan Oliver Ringert and Allison Sullivan

Monitoring the Internet Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
David Basin, Daniel Stefan Dietiker, Srđan Krstić,
Yvonne-Anne Pignolet, Martin Raszyk, Joshua Schneider,
and Arshavir Ter-Gabrielyan

Word Equations in Synergy with Regular Constraints . . . . . . . . . . . . . . . . . . 403
František Blahoudek, Yu-Fang Chen, David Chocholatý,
Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Juraj Síč

Formal Methods in AI

Verifying Feedforward Neural Networks for Classification in Isabelle/HOL . . . 427
Achim D. Brucker and Amy Stell

SMPT: A Testbed for Reachability Methods in Generalized Petri Nets. . . . . . . 445
Nicolas Amat and Silvano Dal Zilio

The Octatope Abstract Domain for Verification of Neural Networks . . . . . . . . 454
Stanley Bak, Taylor Dohmen, K. Subramani, Ashutosh Trivedi,
Alvaro Velasquez, and Piotr Wojciechowski

Program Semantics and Verification Technique for AI-Centred Programs. . . . . 473
Fortunat Rajaona, Ioana Boureanu, Vadim Malvone,
and Francesco Belardinelli

Safety and Reliability

Tableaux for Realizability of Safety Specifications . . . . . . . . . . . . . . . . . . . . 495
Montserrat Hermo, Paqui Lucio, and César Sánchez

A Decision Diagram Operation for Reachability . . . . . . . . . . . . . . . . . . . . . . 514
Sebastiaan Brand, Thomas Bäck, and Alfons Laarman

Formal Modelling of Safety Architecture for Responsibility-Aware
Autonomous Vehicle via Event-B Refinement . . . . . . . . . . . . . . . . . . . . . . . 533

Tsutomu Kobayashi, Martin Bondu, and Fuyuki Ishikawa

A Runtime Environment for Contract Automata . . . . . . . . . . . . . . . . . . . . . . 550
Davide Basile and Maurice H. ter Beek

Contents xv



Industry Day

Formal and Executable Semantics of the Ethereum Virtual Machine
in Dafny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Franck Cassez, Joanne Fuller, Milad K. Ghale, David J. Pearce,
and Horacio M. A. Quiles

Shifting Left for Early Detection of Machine-Learning Bugs . . . . . . . . . . . . . 584
Ben Liblit, Linghui Luo, Alejandro Molina, Rajdeep Mukherjee,
Zachary Patterson, Goran Piskachev, Martin Schäf, Omer Tripp,
and Willem Visser

A Systematic Approach to Automotive Security . . . . . . . . . . . . . . . . . . . . . . 598
Masoud Ebrahimi, Stefan Marksteiner, Dejan Ničković, Roderick Bloem,
David Schögler, Philipp Eisner, Samuel Sprung, Thomas Schober,
Sebastian Chlup, Christoph Schmittner, and Sandra König

Specification-Guided Critical Scenario Identification for Automated
Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Adam Molin, Edgar A. Aguilar, Dejan Ničković, Mengjia Zhu,
Alberto Bemporad, and Hasan Esen

Runtime Monitoring for Out-of-Distribution Detection in Object Detection
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

Vahid Hashemi, Jan Křetínskỳ, Sabine Rieder, and Jessica Schmidt

Backdoor Mitigation in Deep Neural Networks via Strategic Retraining . . . . . . 635
Akshay Dhonthi, Ernst Moritz Hahn, and Vahid Hashemi

veriFIRE: Verifying an Industrial, Learning-Based Wildfire
Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

Guy Amir, Ziv Freund, Guy Katz, Elad Mandelbaum, and Idan Refaeli

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

xvi Contents



Keynotes



Symbolic Computation in Automated Program
Reasoning

Laura Kovács(B)

TU Wien, Vienna, Austria
laura.kovacs@tuwien.ac.at

Abstract. We describe applications of symbolic computation towards automat-
ing the formal analysis of while-programs implementing polynomial arithmetic.
We combine methods from static analysis, symbolic summation and computer
algebra to derive polynomial loop invariants, yielding a finite representation of all
polynomial equations that are valid before and after each loop execution. While
deriving polynomial invariants is in general undecidable, we identify classes
of loops for which we automatically can solve the problem of invariant syn-
thesis. We further generalize our work to the analysis of probabilistic program
loops. Doing so, we compute higher-order statistical moments over (random) pro-
gram variables, inferring this way quantitative invariants of probabilistic program
loops. Our results yield computer-aided solutions in support of formal software
verification, compiler optimization, and probabilistic reasoning.

Keywords: Symbolic computation · Formal methods · Loop analysis ·
Algebraic recurrences · Probabilistic reasoning

1 Introduction

The long list of software failures over the past years calls for serious concerns in our
digital society, imposing bad reputations and huge economic burdens on organizations,
industries and governments. Improving software reliability is not enough anymore,
ensuring software reliability is mandatory. The area of formal methods, in particular
automated reasoning, addresses this demand, by providing rigorous mathematical argu-
ments proving that the software has no errors. Yet, there are theoretical results showing
that there is no “one” formal approach that can be used for every software error, in
every technology. Existing solutions therefore exploit combinations of domain-specific
software challenges by means of various kinds of reasoning based on deductive verifi-
cation [9,10], model checking [5,23], abstract interpretation [8], theorem proving [21],
and related areas, bringing technology breakthroughs in formal verification [2,7]. Dur-
ing the recent years, automated reasoning has become the back-bone of formal verifi-
cation [6,20].

In this invited article, we focus on symbolic computation approaches easing auto-
mated reasoning about computer programs implementing loops with polynomial arith-
metic and possibly probabilistic updates. The key ingredient of these approaches comes
with novel combinations of computer mathematics and computational logic, enabling
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 3–9, 2023.
https://doi.org/10.1007/978-3-031-27481-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_1


4 L. Kovács

the design of new techniques towards precisely capturing the meaning of program
loops. We advocate the confluence of computer algebra and automated deduction
towards loop analysis, by developing and joining the best practices in (i) recurrence
equations, symbolic summation and polynomial ideal theory from computer algebra
with (ii) program structure detection, decision procedures and probabilistic reasoning
from automated deduction. We believe a tight confluence between computer algebra and
automated deduction turns symbolic computation into a powerful approach for automat-
ing reasoning about program loops, closely relating our intentions to the definition of
symbolic computation as “the algorithmic solution of problems dealing with symbolic
objects” [4].

The algorithmic solutions described in this invited article establish interactions
between computer algebra and automated deduction for automating reasoning about
program correctness. Importantly,

– we enhance automated deduction techniques with computer algebra insights, for
example to derive loop properties that summarize/explain the functional behaviour
of program loops (Sect. 2);

– we extend computer algebra methods by automated deduction approaches, for exam-
ple by detecting and eliminating algebraic operations in program loops that cannot
be handled by symbolic summation methods (Sect. 3);

– we design hybrid approaches complementing computer algebra and automated
deduction, for example using statistical moments to enable exact inferences in prob-
abilistic programs (Sect. 4);

– we develop cross-fertilizing techniques combining the computational power of com-
puter algebra and automated deduction, yielding efficient reasoning engines in sup-
port of formal analysis an verification of program loops (Sects. 2–4).

2 Symbolic Computation in Inductive Invariant Synthesis

We first present our work advancing the state-of-

Fig. 1. Invariant synthesis for poly-
nomial loops.

the-art in synthesizing program properties, such as
loop invariants. Such properties imply the absence
of program errors at intermediate program steps and
are thus critical in ensuring software reliability.

We motivate and illustrate our work for invari-
ant synthesis using the C-like imperative program of
Fig. 1 over integer-valued program variables x, y, z.
The expected behaviour of Fig. 1 is specified using
program assertions in the first-order fragment of
non-linear (polynomial) arithmetic: pre-condition
in line 1 using the assume construct, and post-
condition in line 7 using assert. Figure 1 satisfies
its requirements. Yet, formally proving its correctness is challenging: it requires “sum-
marizing” the behavior of the program lines 2–6 by formulating program properties,
such as loop invariants, that hold at an arbitrary loop iteration. While it is relatively
easy to argue that x ≤ z is a loop invariant of Fig. 1, this property is a necessary but



Symbolic Computation in Automated Program Reasoning 5

not sufficient condition to establish correctness of Fig. 1. In addition to x ≤ z, one also
need loop invariants relating the values of x and y at arbitrary loop iterations. In our
work [12,18], we instrument automated deduction in program analysis with algebraic
solutions and infer inductive loop invariants as polynomial relations among loop vari-
ables. For example, in the case of Fig. 1, our work derives x ∗ y − 2 ∗ x + 2 = 0 as
an inductive loop invariant. With this additional loop invariant at hand, correctness of
Fig. 1 can formally be proven.

The main steps of our work towards polynomial invariant synthesis are summarized
as follows:
I1 We consider the loop language L as the language defined by the symbols used in the

program loop under analysis;
I2 We extend L with a fresh new variable n, denoting the loop counter. As such, we

have n ≥ 0;
I3 We translate loop updates into algebraic recurrence equations over n, by considering

loop variables as algebraic sequences over n. As such, the loop semantics is precisely
captured by a system of algebraic recurrences over n;

I4 We apply symbolic summation to derive closed form solutions of loop variables as
functions of n and some initial values. These closed forms hold at an arbitrary loop
iteration n, and hence are valid loop invariants over L extended with n;

I5 We eliminate n from the derived closed form solutions, obtaining this way inductive
invariants in the original loop language L.

While steps (I1)–(I5) yield a general, recurrence-based approach towards precisely
capturing loop semantics, its genericity comes with the costs of being undecidable. For
example, even when considering loops with only polynomial updates, the recurrences
in step (I4) yield linear recurrences with polynomial coefficients, called P-finite recur-
rences, which do not always yield closed form solutions [16]. In fact, it turns out that
deriving (strongest) polynomial invariants of loops with arbitrary polynomial updates is
in general undecidable [11]. To circumvent undecidability issues, we impose structural
constraints over the loops we consider in steps (I1)–(I5). Namely, we define so-called
P-solvable loops [18] which are polynomial program loops whose arithmetic can be
described by linear recurrences with constant coefficients, i.e. C-finite recurrences. As
a result, closed form solutions of loop variables can always be computed in step (I4).
Moreover, whenever the resulting closed form solutions are algebraically dependent, in
step (I5) we derive a finite representation of all polynomial invariant equalities of the
loop. To this end, in step (I5) we use Gröbner basis computation tailored to P-solvable
loop analysis and derive Gröbner bases of polynomial invariant ideals of P-solvable
loops [18,22].

In summary, we provide an algorithmic solution towards deriving all polynomial
invariants of P-solvable loops, by strengthening automated deduction in loop analysis
with C-finite recurrence solving and Gröbner basis computation. A crucial step in our
work comes with the structural analysis of loops: we define the class of P-solvable
loops for which generating all polynomial invariants is decidable [14]. Our framework
is automated in the Aligator software package [13,17] and generalized to restricted
classes of P-finite recurrences [14].



6 L. Kovács

3 Symbolic Computation in Unsolvable Loops

While enhancing automated deduction with computer algebra methods yields algo-
rithmic solutions towards invariant synthesis, our approach in Sect. 2 is limited to
P-solvable loops. Addressing the syntactic restrictions of C-finite recurrences, in
our recent work [1] we extend algebra-based loop analysis by automated deduction
approaches based on program transformations, allowing us to derive loop invariants
of loops that are not P-solvable. We refer to loops that are not P-solvable simply as
unsolvable loops. The crux in handling unsolvable loops comes with applying program
analysis to compute the set of loop variables whose loop updates do not yield C-finite
recurrences in the loop counters. We call these variables defective. Intuitively speaking,
defective variables are loop variables violating the structural constraints of P-solvable
loops. Defective variables do not generally admit closed-form solutions, hindering thus
the application of step (I4) in Sect. 2.

In a nutshell, we proceed as follows. Given an unsolvable loop, we complement
step (I4) from Sect. 2 with a polynomial-time algorithm to derive the set of defec-
tive loop variables. We synthesize polynomial transformations among defective loop
variables in order to eliminate reasoning about defective loop variables and translate,
whenever possible, an unsolvable loop into a P-solvable loop whose invariants can be
computed. While an unsolvable loop and its P-solvable loop version are not equivalent
in terms of operational semantics, loop invariants of the derived P-solvable loop are also
loop invariants of the original unsolvable loops. As such, our polynomial transforma-
tions over unsolvable loops yield an algorithmic solution towards inferring invariants
of unsolvable loops.

We illustrate the benefit of our approach on

Fig. 2. Invariants of unsolvable loops.

the unsolvable loop of Fig. 21. While the poly-
nomial update of y yields a C-finite recurrence
as in Fig. 1, note that the variable b depends on
itself in a non-linear manner (i.e. dependency
upon b2). As such, the sequence capturing the
values of b at arbitrary loop iterations is not a C-
finite sequence, implying also that the update of
a in Fig. 2 does not yield a C-finite recurrence.
Hence, variables a and b are defective variables as they are “responsible” for Fig. 2
being unsolvable. Nevertheless, by considering the polynomial relation a+ b, note that
a(n+1)+b(n+1) = 2∗a(n)+2∗b(n), where a(n), b(n) respectively denote the val-
ues of a, b at loop iteration n. We therefore introduce a new loop variable x to denote
a + b, yielding thus the C-finite sequence x(n + 1) = 2 ∗ x(n) which gives a valid
polynomial relation among the values of variables a and b at arbitrary loop iterations
n. With such a transformation, the unsolvable loop body of Fig. 2 is translated into the
P-solvable loop body of Fig. 1, where the initial values of x and y are respectively 1
and 0, as in Fig. 1. Hence, we reduced the problem of inferring invariants of the unsolv-
able loop of Fig. 2 into the problem of deriving invariants for Fig. 1 and the approach of
Sect. 2 can further be applied. As a result, by substituting a + b for x in the inductive

1 As we focus now only on invariant synthesis, we set true to be the loop condition of Fig. 2.



Symbolic Computation in Automated Program Reasoning 7

Fig. 3. Probabilistic polynomial programs.

loop invariant x ∗ y − 2 ∗ x + 2 = 0 of Fig. 1, we obtain the inductive loop invariant
(a+ b) ∗ y − 2 ∗ (a+ b) + 2 = 0 for Fig. 2.

In summary and as illustrated above, polynomial transformations over defective
variables enlarge the class of loops for which inductive loop invariants can be derived
by means of algebraic recurrence solving. Based on the structural analysis of unsolvable
loops with defective variables, in [1] we give an algorithmic solutions for computing all
polynomial combinations (up to an a priori given polynomial degree) of defective vari-
ables, such that the derived polynomial combinations satisfy C-finite recurrences. With
such polynomial transformations, unsolvable loops can be translated into P-solvable
ones, from which polynomial loop invariants can be inferred as discussed in Sect. 2.
With our work being implemented in the Polar tool [1,19], we thus strengthen com-
puter algebra methods with polynomial program transformations over defective vari-
ables. Our approach may automate compiler optimization steps, by translating complex
unsolvable loops into simpler P-solvable ones.

4 Symbolic Computation in Probabilistic Reasoning

We finally argue that synergies between computer algebra and automated deduction
yield further interesting applications of symbolic computation in emerging fields of
automated reasoning. In particular, in this section we focus on the analysis of probabilis-
tic programs that allow drawing random values from predefined probability distribution.
As such, instead of treating program variables as having a certain value, program vari-
ables in probabilistic programs need to be treated as probabilistic distributions. Com-
pared to the results of Sects. 2–3, this means that, in the presence of probabilistic pro-
gram loops, we cannot consider values of program variables at arbitrary loop iterations,
but need to reason about the probabilistic value distributions of variables at arbitrary
loop iterations.

Despite the intrinsic hardness of reasoning about general probabilistic pro-
grams [15], we believe that symbolic computation is a powerful workhorse for
analysing quantitative aspects of probabilistic programs. In particular, in the setting
of probabilistic program loops, we advocate the use of so-called moment-based recur-
rences to lift algebraic recurrences over statistical moments of probabilistic loop vari-
ables [3,19]. By exploiting closure properties of statistical moments, moment-based
recurrences express probabilistic loop semantics as algebraic recurrences over higher-
order moments of the value distribution of program variables, allowing us, for example,
to reason about expected values of (blocks of) program variables at arbitrary iteration.



8 L. Kovács

By combining the P-solvable loop constraints of Sect. 2 with moment-based reason-
ing, we define the class of so-called Prob-solvable loops. Figure 3 lists two examples
of Prob-solvable loops, where the updates to variable x are probabilistic updates. For
example, in Fig. 3(a), the variable x is updated by x − 1 with probability 1/2 and by
x+1 with probability 1-1/2, that is with probability 1/2. Essentially, Prob-solvable loops
admit C-finite recurrences over the statistical moments of loop variables, and thus the
resulting moment-based recurrences always admit closed-form solutions representing
(moment-based) loop invariants.

Given the probabilistic nature of Prob-solvable loop variables, reasoning about hi-
gher-order moments is essential. Essentially, the more we know about the higher-order
statistical moments of random variables, the better can we characterize the functional
behaviour of Prob-solvable loop. For example, the expected values of the random vari-
able x in both Fig. 3(a) and Fig. 3(b) are 0. Yet, Fig. 3(a) and Fig. 3(b) are clearly imple-
menting different stochastic processes. This difference is already witnessed when com-
puting, for example, the second-order moments of x, yielding the statistical variances
of x. Namely, the variance of x at an arbitrary loop iteration n of Fig. 3(a) is given
by the closed-form expression 4n

3 , whereas the variance of x at an arbitrary loop itera-
tion n of Fig. 3(b) is n. Hence, probability distributions of x in Fig. 3(a) and Fig. 3(b)
are different, and this difference can be detected fully automatically by comparing the
higher-order moments of x.

Our results from [3,19] prove that higher-order moments of Prob-solvable loop vari-
ables always exits. Our work is fully automated in the Polar tool, providing an algo-
rithmic solutions towards probabilistic loop reasoning by means of statistical analysis,
recurrence solving and moment-based invariant inference.

Acknowledgments. The work described in this talk is based on joint works with a number of
authors, including Daneshvar Amrollahi (TU Wien alumni), Ezio Bartocci (TU Wien), Andreas
Humenberger (TU Wien alumni), Maximillian Jaroschek (TU Wien alumni), Tudor Jebelean
(RISC-Linz), George Kenison (TU Wien), Marcel Moosbrugger (TU Wien), and Miroslav
Stankovic (TU Wien).

The author acknowledges funding and support from the ERC Consolidator Grant 2020
ARTIST 101002685, the ProbInG grant of the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT19018], the Austrian FWF project W1255-N23, and the SecInt Doctoral College
funded by TU Wien.

References

1. Amrollahi, D., Bartocci, E., Kenison, G., Kovács, L., Moosbrugger, M., Stankovic, M.: Solv-
ing invariant generation for unsolvable loops. In: Singh, G., Urban, C. (eds.) SAS 2022.
LNCS, vol. 13790, pp. 19–43. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
22308-2 3

2. Ball, T., Rajamani, S.: The SLAM project: debugging system software via static analysis. In:
POPL, pp. 1–3 (2002)

3. Bartocci, E., Kovács, L., Stankovič, M.: Automatic generation of moment-based invariants
for prob-solvable loops. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 255–276. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-
3 15

https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-31784-3_15


Symbolic Computation in Automated Program Reasoning 9

4. Buchberger, B.: Symbolic computation (an editorial). J. Symbolic Comput. 1(1), 1–6 (1985)
5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using

branching-time temporal logic. In: Logic of Programs, pp. 52–71 (1981)
6. Cook, B.: Formal reasoning about the security of amazon web services. In: Chockler, H.,

Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 3

7. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond safety. In: CAV, pp. 415–418
(2006)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

9. Floyd, R.W.: Assigning meanings to programs. J. Math. Aspects Comput. Sci. 19, 19–37
(1967)

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

11. Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: On strongest algebraic program invari-
ants. J. ACM (2019). To appear

12. Humenberger, A., Jaroschek, M., Kovács, L.: Automated generation of non-linear loop
invariants utilizing hypergeometric sequences. In: ISSAC, pp. 221–228 (2017)

13. Humenberger, A., Jaroschek, M., Kovács, L.: Aligator.jl – a julia package for loop invariant
generation. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018.
LNCS (LNAI), vol. 11006, pp. 111–117. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96812-4 10

14. Humenberger, A., Jaroschek, M., Kovács, L.: Invariant generation for multi-path loops with
polynomial assignments. In: VMCAI 2018. LNCS, vol. 10747, pp. 226–246. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73721-8 11

15. Kaminski, B.L., Katoen, J.P., Matheja, C.: On the hardness of analyzing probabilistic pro-
grams. Acta Informatica 56(3), 255–285 (2019). https://doi.org/10.1007/s00236-018-0321-
1

16. Kauers, M., Zimmermann, B.: Computing the algebraic relations of c-finite sequences and
multisequences. J. Symbolic Comput. 43(11), 787–803 (2008)

17. Kovács, L.: Aligator: a mathematica package for invariant generation (system description).
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 275–282. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7 22

18. Kovács, L.: Reasoning algebraically about p-solvable loops. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 18

19. Moosbrugger, M., Stankovic, M., Bartocci, E., Kovács, L.: This is the moment for proba-
bilistic loops. ACM Program. Lang. 6(OOPSLA2), 1497–1525 (2022)

20. O’Hearn, P.W.: Continuous reasoning: scaling the impact of formal methods. In: LICS, pp.
13–25 (2018)

21. Robinson, J.A., Voronkov A. (eds.): Handbook of Automated Reasoning (in 2 volumes).
Elsevier, MIT Press; Amsterdam, Cambridge (2001)

22. Rodrı́guez-Carbonell, E., Kapur, D: Automatic generation of polynomial loop invariants:
algebraic foundations. In: ISSAC, pp. 266–273 (2004)

23. Sifakis, J.: A unified approach for studying the properties of transition systems. Theor. Com-
put. Sci. 18, 227–258 (1982)

https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96812-4_10
https://doi.org/10.1007/978-3-319-96812-4_10
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.1007/978-3-540-78800-3_18
https://doi.org/10.1007/978-3-540-78800-3_18


The Next Big Thing: From Embedded
Systems to Embodied Actors

Harald Ruess(B)

fortiss - Research Institute of the Free State of Bavaria, Munich, Germany

ruess@fortiss.org

Abstract. Traditional engineering is coming to a junction from embed-
ded systems to embodied actors, and with assuring the beneficial and
robust behavior of dynamic federations of situation-aware, intent-driven,
explorative, ever-evolving, and increasingly autonomous actors in uncer-
tain and largely unpredictable real-world contexts. In our quest for a
meaningful deployment of embodied actors in our societal fabric we are
deriving central design challenges. A particular emphasis thereby is put
on the role of formal methods for designing embodied systems in which
we actually may put our trust.

Keywords: Formal methods · Advanced systems engineering · AI

1 Introduction

A new generation of increasingly autonomous and self-learning systems is about
to be deployed into all kinds of aspects of everyday life. This machinery, which we
call embodied actors, is used beyond mere automation and assistance to humans,
as manufacturing robots make way for autonomous machine workers, business
and administrative services are performed by autonomous virtual organizations,
and processes and value chains in both material and virtual worlds are executed
by federations of autonomous machine actors. A main driver for the development
of embodied actors lies in their ubiquitous disruptive potential, as autonomic and
unsupervised learning capabilities are widely believed to be the key technological
base for initiating and driving the next economic and societal phase shift.

Embodied actors are not a distant AI-ish fiction, as purpose-built technical
machinery might be hand-crafted with currently available software technology.
But only at very high cost and sometimes with unknown risks, as we do not yet
have a mature science and technology to support the engineering of embodied

This research has been supported by the BMWK-funded project Embodied Intelligence
- The Next Big Thing, and by the Bavarian Ministry of Economics in the context of
the fortiss AI Center. It also draws on the results, extensive discussions and construc-
tive feedback to earlier versions by Manfred Broy (TU Munich), John Rushby (SRI),
Natarajan Shankar (SRI), Henrik Putzer (fortiss), and Chihhong Cheng (fortissian).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 10–25, 2023.
https://doi.org/10.1007/978-3-031-27481-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_2&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_2


From Embedded to Embodied 11

systems in which we may put our trust. Failing to deploy embodied actors in a
meaningful manner, therefore, can all too easily and quickly turn dystopian.

We clearly face serious social, economic, legislative, jurisdictional, and engi-
neering challenges when deploying embodied actors to the real world, and sound
sociopolitical and legal conditions and frameworks must be created for embody-
ing autonomously acting machines in essential real-world processes and struc-
tures.

1. How can we assure that increasingly autonomous embodied actors behave
beneficially? That is, they function as intended and they behave, by-and-large,
in accordance with widely accepted higher-level societal goals and norms.

2. How can we assure that self-evolving embodied actors are robust across their
whole life cycle? That is, they are dependable, safe, and predictable (up to
quantified tolerances) in uncertain and largely unpredictable environments.

Traditionally, the field of systems engineering tackles these kinds of questions for
assuring purposeful and acceptable technical systems. Engineering of software-
intensive systems, however, has so far mainly been concerned with relatively
small-scale, centralized, determinate, non-evolving, automated, and task-specific
embedded and cyber-physical systems, which are operating in well-defined and
largely predictable operating environments.

In Sect. 2 we review recent developments on assurance-driven embedded sys-
tems, and in Sect. 3 we take a look at some of the current challenges and
approaches for assuring embedded systems with learning-enabled components.
Then, in Sect. 4 we characterize the new generation of embodied actors as the
basis for deriving, in Sect. 5, essential rigorous design challenges for a meaning-
ful deployment of these increasingly autonomous and self-learning machines into
our societal fabric. We conclude with some final remarks in Sect. 6.

It is our hope that this high-level description of embodied actors together
with urgent design challenges can stimulate researchers from the formal methods
community to develop and evaluate rigorous methods for constructing, analyz-
ing, and assuring embodied actors, and, possibly, also better understand machine
intelligence.

2 Embedded Systems

Ensuring dependable and safe control of embedded and cyber-physical systems
involves a rather complex interaction of uncertain sensing, discrete/probabilistic
computation, physical motion, and real-time combination with other systems
(including humans) [30,41]. Model-based engineering (MBE), in particular, is
a systematic and widely used approach for tackling these embedded systems
challenges in industrial engineering [51]. Formal methods are used, on a case-
by-case basis, in every phase of MBE for supporting requirement specification,



12 H. Ruess

Fig. 1. MILS architectural design strategy and assurance case pattern. (Color figure
online)

design, validation, and verification. Stylized requirements language for embed-
ded systems such as EARS [44,45] are successfully used, coverage-based test
case generation is supported by automated theorem proving, and autocoding,
that is, the generation of production-quality code from executable models, is
common practice in developing industrial embedded systems. Likewise, correct-
by-construction synthesis of programmable logic control code (in IEC 61131-3)
from declarative, real-time specifications has been integrated into an industrial
design process for embedded control systems [13].

Consider, for example, the MILS architectural design strategy in Fig. 1.1 The
objective of MILS [7,54] is to provide an environment for the design, analysis,
verification, compositional implementation and certification of scalable, interop-
erable, and affordable trustworthy security architectures based on formal meth-
ods for specifying safety, security, and performance requirements, for the archi-
tectural design, for autocoding components from models, and for configuring and
faithfully implementing the model-based communication structure on a (dis-
tributed) separation kernel for resource sharing. The design steps depicted in
Fig. 1 heavily rely on constraint solving based on SMT [23] or EFSMT [9,24],
the extension of SMT to exists-forall quantified constraints. Transformational
architectural patterns, for example, support automated safety and security co-
design [19,20,35], autocoding from executable models in Autofocus [1] or any
industrial MBE tool chain such as Matlab or Lustre, code synthesis from tem-
poral specifications [10], optimized design space exploration, configuration and
deployment compilation [25,26], and, say, verifying partitioning properties for
an integrated modular avionics kernel [32].

The explicit assurance case (see, for example, [59]) pattern in Fig. 1 for the
MILS architectural design strategy is constructed in a compositional manner
from assurance cases of individual components such as the configuration com-
piler, which needs to implement given policies such as topological separation
of high-security components, and the separation kernel, which needs to satisfy
the given protection profile (SKPP) [42]. This kind of assurance needs to be

1 See also: www.d-mils.org.

www.d-mils.org


From Embedded to Embodied 13

provided, modulo possible instantiation, only once for each component (green).
Moreover, the assurance argument for the MILS design strategy (blue) encodes
design knowledge that may also be reused across different applications. Thus,
when using the MILS design strategy for building a specific secure applica-
tion one may concentrate (orange) on providing safety, security, and perfor-
mance requirements, a logical architecture, which is detailed enough for enabling
autocoding or component synthesis, and evidence as generated from formal ver-
ification, both static and dynamic, as well as traditional testing methods.

Finally, the modular creation of assurance cases [4,8] is coordinated through
the Evidential Toolbus [18], which supports rigorous workflows, including the
generation of claims along with supporting evidence, and the maintenance of
claims and evidence in the face of change. In this way, verification supports the
evolutionary nature of design, where new requirements are added, old ones are
revised, and designs themselves are improved, modified, and adapted.

3 Embedded Systems with AI/ML

Embedded systems increasingly contain learning-enabled components. In auto-
mated driving scenarios, for instance, artificial neural networks (ANN) are often
used for perception and for constructing a faithful model of the operating envi-
ronment, and behavior generation may be based on, say, techniques of reinforce-
ment learning. The inherent multitude of sources of entangled uncertainty for
these kinds of learning-enabled components is particularly challenging [57], and
the consequences of accumulated uncertainties are profound. For instance, ANNs
are usually not robust with unseen inputs, as there is also quite some uncertainty
in their behavior for even small input changes [16]. The main question therefore
is if learning-enabled technologies such as ANNs can be engineered in a rigor-
ous manner as to be able to be integrated in safety-related embedded systems
applications.

Our initial response at fortiss to this challenge has been the neural network
dependability kit (NNDK) [12].2 It is based on a novel set of dependability metrics
for ANNs [14,15], establishing maximum resilience bounds [16], and the runtime
monitoring of neuron activation patterns for determining the trustworthiness of
some ANN functional behavior [17]. Figure 2 demonstrates how these techniques
are combined in a structured design approach for arguing given safety require-
ments for ANN components. NNDK has been applied in a number of real-world
use cases, including Level-3 autonomous driving components [11], the detection
of diabetic retinopathy, and monitoring of traffic flows in tunnels [61]. NNDK,
however, is restricted to the analysis of ANN components only, and as such it
needs to be integrated into a larger safety engineering framework for supporting
more complex systems with learning-enabled components.

We first notice that the basic assumptions of traditional safety engineering, as
outlined in Sect. 2, no longer pertain to AI-based systems. First, with increased

2 https://www.fortiss.org/ergebnisse/software/nndk.

https://www.fortiss.org/ergebnisse/software/nndk


14 H. Ruess

Fig. 2. Neural network dependability kit.

autonomy, a fallback mechanism to a human is often not possible anymore. Con-
sider, for example, an emergency braking system which needs to perform with-
out any human intervention, as the required reaction times is well below the
capabilities of human beings. Second, AI systems make their own knowledge-
based judgments and decisions. While added flexibility, resilience, elasticity, and
robustness of AI systems are clearly important, the gains in these dimensions
come at the loss of testability due to the admittance of nondeterminism due to
uncertainty (below a measure of 1). This disadvantage is costly because system-
atic testing and simulation are still the single most used technique for verifying
the correct functioning of software-intensive systems. Third, AI-based systems
increasingly need to cope with operating environments in which comprehensive
monitoring and controlling is impossible and in which unpredictable events may
occur. In fact, AI systems are mainly used for situations where the full details of
the operating context can not be known in advance. Risk estimation is therefore
difficult to perform for AI systems using conventional techniques. Fourth, it is
very hard, if not impossible, to correctly and completely specify the intended
behavior of an AI-enabled, and possibly continually changing, system [60].

For all these reasons, well-established and successful safety standards for
software-intensive systems, including DO 178C and ISO 26262, cannot readily
be applied to AI systems (see [57] for an in-depth discussion). Indeed, these
safety standards barely heed autonomy and the particularly advanced software
technologies for system autonomy.

The recent VDE-AR-E 2842-61 takes up the challenge of dependable and
safe embedded systems with at least some autonomous/cognitive functional-



From Embedded to Embodied 15

ity [53]. These guidelines are based on a model-centered structured approach
and lifecycle. One of the distinguishing features of the VDE-AR-E 2842-61 is
that it recognizes the many sources of uncertainty of AI-enabled systems and
the need for quantifying and managing related uncertainties below acceptable
levels. Other recent developments for assuring systems with learning-enabled
components include, say, requirements for explicit safety cases [36], AMLAS [33]
for integrating safety case patterns, VerifAI [66], a toolkit for the formal design
and analysis of systems that include AI/ML components, and model-centered
assurance techniques for autonomous systems based on safety monitors [34].

4 Embodied Actors

We illustrate the main characteristics of embodied actors by means of a robotic
co-pilot whom we envision to act as a companion to a pilot in a single-pilot
cockpit.3 Such a robotic co-pilot needs to be more like a human co-pilot than
a conventional flight management system or functionally automated autopilot.
In particular, the robot companion needs to perform heterogeneous and comple-
mentary tasks, including radio communications, interpreting weather data and
making route adjustments, pilot monitoring tasks, shared tasks (flaps, gear),
ground taxi, and communication with the cabin-crew (emergency evacuation).
The robotic co-pilot also needs to integrate these tasks to accomplish a safe
flight, it needs to base its decisions and actions on an overall situational assess-
ment. In case something goes wrong, the robot companion needs to find effective
explanations based on fault diagnosis, and it needs to engage in an effective res-
olution process with the (human) pilot, based on a model of the pilot’s beliefs.
In extreme situations, for instance, if there is smoke in the cockpit, the robotic
co-pilot might need to take over control.4 In these rare cases, the robotic co-
pilot must now also cope with inconsistencies (for example, in sensor readings)
based on flight laws, training procedures, models of the physical environment,
and unforeseen situations without the possibility of a structured hand-over to
the human pilot.

The envisioned robotic co-pilot is a particular instance of a larger class of
embodied actors. Personal companions for supporting and taking over tedious
household chores and for assisting with tax declarations, including the com-
munication with tax authorities, and suggesting new possibilities based on our
intents are an old dream. Embodied companions are also designated to assist,
say, truck drivers, ship captains, caregivers, investors, administrators, managers,
workers, farmers, lawyers, medical doctors, and, in fact, everybody. Potential
benefits include increased safety, reliability, efficiency, affordability, and previ-
ously unattainable capabilities.

3 This use case draws on J. Rushby’s presentation at the FoMLAS workshop at ETAPS
2018.

4 http://understandingaf447.com/extras/18-4 minutes 23 seconds EN.pdf..

http://understandingaf447.com/extras/18-4_minutes__23_seconds_EN.pdf.


16 H. Ruess

Fig. 3. Embedded systems vs. embodied actors.

Characteristics. Embodied systems, in general, are comprised of federations of
collaborating actors, they operate in largely unpredictable environments, phys-
ical or not, and they recognize their operating environment through sensors.
Moreover, they are informed about the intentions of other actors in their respec-
tive and immediate operating environments; they take non-trivial decisions based
on reasoning, they influence their environment, including other actors, via actu-
ators; they interact and cooperate with the elements of their operating environ-
ment, they influence elements in their environment to better meet own goals; and
they show a certain behavior based on skills; and they learn new and improved
behavior during operation and through interactions. In summary, embodied
actors are characterized as being:

1. Cognitive, in that actions are based on situational awareness, model-building,
and planning.

2. Intent-driven, in that actions are based on capturing actors’ intents, tasks,
and goals.

3. Federated, in that actions of decentralized actors are coordinated in a collabo-
rative manner between stakeholders and on an intentional level to accomplish
joint tasks or missions.

4. Autonomous, in that actions are increasingly determined by an actor’s, or fed-
erations of actors’, own knowledge, beliefs, intents, preferences, and choices.

5. Self-learning, in that actions are adapted and improved through experience,
exploration, and reasoning, both inductive and deductive, of a situated actor.

Based on these characteristics, Fig. 3 illustrates characteristic differences between
traditional embedded systems (with or without AI/ML components) and embod-
ied actors.

Trustworthiness. We might be willing to put our trust into embodied actors
which are, as a necessary condition, demonstrably beneficial and robust (see
Sect. 1). That is, we might be willing to be vulnerable to the actions of such
machine actors on the basis of the expectation that it will perform a particular
action important to the us, irrespective of our ability to monitor or control the
machine (see also [46]).

Assuring the trustworthiness of embodied actors, however, is quite a chal-
lenge, as embodied actors learn continually and they adapt and optimize their



From Embedded to Embodied 17

behavior based on experience and targeted exploration; they need to be robust,
possibly employing a never-give-up strategy, in the presence of inaccuracies,
uncertainty, and errors in their world models (“known unknown”) and also in
the presence of non-modeled phenomena (“unknown unknown”); they increas-
ingly lack the fallback to a responsible human being; they offer a variety of new
attack surfaces due to data-driven programming; they exhibit largely unpre-
dictable and emergent behavior due to data-driven programming; and they can
not be certified as current certification regimes require the system’s behavior
and its intended operating context to be fully specified and verified prior to
commissioning.

5 Design Challenges

Based on the characteristics of embodied actors as outlined in the Sect. 4 we are
now deriving all-important and inter-woven design challenges for developing,
deploying, and operating beneficial and robust embodied actors (see Fig. 4; an
in-depth discussion is included in [56]).

5.1 Robust AI/ML

Despite technological advances that have led to the proliferation of machine
learning (ML) algorithms there still is the question of the level of trust that we
can put on these systems. More robust machine learning techniques are needed
(cmp. [64]) which work in uncertain and largely unpredictable environments,
which can make timely and confident decisions, whose results are understand-
able and explainable to a human operator, which are resilient to erroneous inputs
and targeted attacks, which can process ever-increasing amounts of data from
decentralized and heterogeneous data sources, but which can also extract use-
ful insights from small amounts of data and sparse rewards without significant
compromises in confidentiality and privacy in federated multi-actor settings.

There is, of course, a flurry of developments on a new generation of robust
AI/ML algorithms, including, say, integrated logical neural networks [55] with
logic and neural structures as projections, resource-efficient neuromorphic com-
putation, and privacy-preserving machine learning based on federated machine
learning. Verification of (the results of) machine learning algorithms, in par-
ticular, has been a field day for formal verification [62]. Symbolic approaches,
however, usually do not scale sufficiently, are often restricted to static (non-
learning) networks, and there usually is a certain lack of useful requirements for
learning-enabled components in support of safety assurance cases.

5.2 Human-Centered AI/ML

The overarching goal is in achieving a sufficient mutual understanding of state
and intent of both humans and machine as to optimally blend their competences
in jointly acting towards overarching objectives, while respecting privacy [43,60].



18 H. Ruess

Fig. 4. Tracing characteristics to design challenges.

The challenge here is to model human behavior interactions and to provide
the appropriate uncertainty characteristics related to the largely unpredictable
behavior of humans under unforeseen circumstances. Moreover, as individual
spheres of control may overlap arbitrarily, there is a pronounced need for orches-
trating these processes such that they jointly serve, say, not only a single human,
but can best-possibly multi-task in serving arbitrarily large groups at the same
time despite uncorrelated requests and uncoordinated missions.

5.3 Cognitive Architectures

Cognitive architectures [49] create programs for realizing all kinds of cognitive
functionality [37,47,48]. Soar [39], for instance is a modular cognitive architec-
ture for integrating (System 1) fast, sub-symbolic capabilities for performing
intuitive, automated tasks that we as humans can do instinctively with (Sys-
tem 2) slow, logic-based capabilities for performing tasks that require conscious
decision in the face of incomplete and uncertain knowledge [6]. With a similar
motivation in mind, neurosymbolic programming proposes integrated frameworks
which have neural, logical, and probabilistic methods as special cases. Probabilis-
tic programming provides yet another framework in which basic components of
cognitive architectures are represented in a unified and elegant fashion [40,52]. If
knowledge is expressed as programs, learning is expressed as programming [58]
Moreover, knowledge encoded as probabilistic programs is directly amenable to
well-defined formal concepts of program induction, construction, and analysis [3].

An obvious question is if and how structural principles of cognitive architec-
tures are aiding in the design of embodied systems and their assurance? Cogni-
tive architectures and theories from psychology, such as cue theory [5,38], may
serve as the basis and inspiration for designing novel control regimes for embod-
ied actors capable of coping with epistemic uncertainty by cautiously exploring
and navigating the unknown unknown. In this way, careful terrain exploration
is approached by minimizing surprises based on active inference — that is,



From Embedded to Embodied 19

maintaining a model and its predictions through action to change the sensory
inputs to minimize prediction error indirectly — and the free energy principle [28]
or, alternatively, by maximizing predictive information [2].

5.4 Uncertainty Quantification

There is aleatoric and epistemic uncertainty all around AI-ish systems [22,57].
Now, the challenge of uncertainty quantification is to systematically and continu-
ally reduce uncertainty to acceptable level, as the basis for trustworthy and (up to
tolerable quantities) predictable embodied systems. This is accomplished by (for
details see [57]) (1) identifying all relevant sources of uncertainty, (2) adequately
quantifying and estimating uncertainty, (3) understanding how uncertainty prop-
agates, forward and inverse, along chains of computations, (4) reducing overall
uncertainty below acceptable levels, and (5) managing incremental change of
uncertainty. The problem of (forward) uncertainty propagation, for instance, is
to characterise the distribution of y = F (x) for a system model F and an input
distribution for x, where distributions may, as usually, be represented by its
moments or in terms of polynomial chaos (Wiener) expansion. In this way one
may explore the design space, optimize the system under performance, assess
its robustness with respect to uncertainty and its reliability, and perform sen-
sitivity analysis [65]. Uncertainty quantification approaches in engineering have
been designed, for example, to demonstrate that, with high probability, a real-
valued response function of a given physical system does not exceed a given
safety threshold [50]. What seems to be completely missing, however, is a com-
prehensive set of formal techniques for the rigorous and compositional design of
systems based on uncertainty quantification.

5.5 Self-integration

Intent-driven formation of purposeful federations of embodied actors requires
individual actors to be open to collaborate with others, while still operating
as self-sufficient individually purposeful systems. Formation of these federations
therefore is based on self-integration, which seeks out other systems to support
to meet their local and global intents and goals, which cannot be accomplished
on their own.

The formation of intent-driven and trustworthy federations of actors is a
challenging endeavor indeed, as trust certainly is not modular. We therefore need
to come up with suitable architectural principles and composition operators for
constructing assured (systems of) embodied actors from a set of heterogeneous,
and possibly untrusted, constituent actors.

Since embodied systems are acting in the real world with their wickerwork of
societal norms, rules and laws, smart, that is software-based, contracts are a cen-
tral concept towards intent-driven dynamic federations of embodfied actors. In
this way, trustworthy self-integration of federations of embodied actors might be
approached by means of smart contracts based on collections of identified intents,
goals, and plans. These considerations on smart contracts and self-integration



20 H. Ruess

point to a multitude of serious formal specification and verification challenges:
How do we formally specify smart contracts based on recognized intents and
goals? What is the right framework for negotiating contracts? In particular, can
we use basic principles of mechanism design for synthesizing goal-oriented con-
tracts? How can we formally verify smart contracts? How can we provide check-
able evidence of the conclusion or breach of contract? How to incentivize/penalize
embodied actors as to ensure beneficial behavior? It is also open to discussion
if such federations can/should be deployed in social contexts without an orches-
trating higher instance.

5.6 Analysis

Analysis of embodied actors is particularly challenging for their openness, adap-
tivity, situatedness, and largely unpredictable behavior. Embodied actors also
have the possibility of autonomously acting in regulated sectors such as health-
care, finance, insurance, accounting, or retail. As such they need to comply with
applicable regulations and national law. These compliance checks need to be
automated, but only what is formalized can be automated. It is therefore crucial,
and non-trivial, to formalize applicable regulations in formal policy languages.
Embodied actors are also expected to be resilient to common and possibly also
new kinds of breakdowns and malicious attacks, the risk of unintended harm
to humans, machinery and the environment is demonstrably below acceptable
levels, and identified confidentiality, integrity, and availability requirements are
satisfied. Other requirements include transparency demonstrable fairness of deci-
sions, inverse privacy, and contextual integrity.

Non-determinate systems are usually considered to be untestable, because
of the overwhelming and open-ended number of cases to be considered, and
formal verification of a static snapshot of such a system seems to be largely
useless in such a dynamic environment, unless verification results can contin-
ually be kept in sync with the evolution of the system. Runtime analysis [66]
therefore is an essential element for analyzing embodied actors, as it may handle
the multitude of sources for uncertainty, stringent real-time requirements, and
continually changing conditions. Runtime analysis is also an essential element
of the never-give-up failure detection, isolation, and recovery (FDIR) cycle of
embodied actors.

Architectural design principles for monitoring increasingly autonomous sys-
tems are needed to ensure that monitoring does not perturb the system (at
least, not too much) [21,31]. Run-time monitoring may also be used for mea-
suring uncertainties of, say, input-output behavior of learning-enabled compo-
nents [17]. Moreover, there is not yet a systematic understanding of what kind of
analysis can be achieved at design time, how the design process can contribute
to safe and correct operation of the embodied system at run time, and how the
design-time and run-time analysis techniques can inter-operate effectively.

The distributed and dynamic nature of federations of embodied actors and
their goals is particularly challenging for run-time analysis. A run-time moni-
toring framework for embodied actors must also support reasoning under uncer-



From Embedded to Embodied 21

tainty, and also partially observable systems with nondeterministic and proba-
bilistic behavior. Run-time monitoring of typical hyper-properties [27], including
information flow, transparency, and privacy are of particular interest.

5.7 Assurance

How can we be assured that an embodied actor indeed is worth of the trust
we may put in it? We hypothesize that rigorous and continual assurance argu-
ments and their interweaving with system evolvement play a key rôle in sat-
isfactorily answering this question. This kind of assurance-driven design is
based on constructing and maintaining explicit assurance cases, which are com-
pelling, comprehensive, evidence-based defensible, and valid justification of com-
pliance [29,59,63].

We have already seen such an assurance case for the MILS architectural
design pattern in Fig. 1. The challenge now is to construct convincing assurance
patterns for embodied actors and their underlying cognitive architectures (see
Sect. 5.3); for example, for blackboard architectures for integrating slow and
fast cognitive capabilities. Now, evidence is obtained both from static analysis
(testing, model checking, theorem proving) but also during operation from run-
time analysis (see Sect. 5.6).

Major assurance challenges for embodied actors include (1) rigorous assur-
ance case patterns with efficient, easily verifiable arguments for capturing trust-
worthiness requirements (2) rigorous and compositional operators on assurance
cases, (3) generation of semantically coherent evidence, for example, based on
runtime analysis, and validation throughout the lifecycle, (4) rigorous mech-
anisms of continual assurance for synchronizing assurance cases with system
evolvement (5) and measures of confidence in assurance arguments as the basis
for, say, suggesting stronger arguments.

Explicit assurance cases, in particular, open new possibilities of assurance-
driven operation for dependable and safe exploration of embodied actors in
largely unknown operating contexts based on relevant information from an assur-
ance case. If there is only weak evidence on the fact that the traffic light in front
of the ego car is green, for example, then the ego car might want to increase her
assurance by strengthen this case, say, by means of moving closing and initiating
additional sensor activity. In this way, rigorous assurance cases can be instru-
mental in online behavioral self-adaptation and for determining safe behavior
when operating in uncertain contexts.

6 Conclusion

We have been arguing that traditional safety and dependability engineering is
coming to a climacteric from embedded systems to embodied actors, and with
assuring the trustworthiness of a new generation of dynamic federations of situa-
tionally aware, intent-driven, explorative, ever-evolving, largely non-predictable,
and increasingly autonomous embodied systems in uncertain, complex, and



22 H. Ruess

unpredictable real-world contexts. Solving the corresponding design challenges
for assured embodied actors will require synergistic innovations in formal meth-
ods and model-based engineering, architectures for autonomously acting sys-
tems, and core AI/ML algorithms.

In particular, we have been emphasizing that the presented design challenges
are yet another great opportunity for formal methods themselves, because the
assurance of embodied actors needs to be largely automated, and rigorous mod-
els are a prerequisite to automation. Embedding (embodying?) formal methods
into automated engineering and change cycles should also create virtuous cycles
for immediately judging the effectiveness of applied formal methods and as a
playground for accelerating their future development.

We should also be prepared for future embodied actors which are equipped
with substantial self-engineering capabilities, including experience-driven func-
tional updates, zero-touch repair and maintenance capabilities, and the possibil-
ity of by-need-augmentation of sensing, cognitive, and acting capabilities. More-
over, future embodied actors may also perform their own risk analysis and define
their own mitigation strategies based on their own understanding of socially
acceptable behavior.

References

1. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS3: tooling
concepts for seamless, model-based development of embedded systems. MoDELS
1508, 19–26 (2015)

2. Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E.: Predictive information
and explorative behavior of autonomous robots. Eur. Phys. J. B 63(3), 329–339
(2008). https://doi.org/10.1140/epjb/e2008-00175-0

3. Barthe, G., Katoen, J.P., Silva, A.: Foundations of Probabilistic Programming.
Cambridge University Press, Cambridge (2020)

4. Beyene, T.A., Carlan, C.: CyberGSN: a semi-formal language for specifying safety
cases. In: 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 63–66. IEEE (2021)

5. Björkman, M.: Internal cue theory: calibration and resolution of confidence in
general knowledge. Organ. Behav. Hum. Decis. Process. 58(3), 386–405 (1994)

6. Booch, G., et al.: Thinking fast and slow in AI. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, pp. 15042–15046 (2021)

7. Bytschkow, D., Quilbeuf, J., Igna, G., Ruess, H.: Distributed MILS architectural
approach for secure smart grids. In: Cuellar, J. (ed.) SmartGridSec 2014. LNCS,
vol. 8448, pp. 16–29. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10329-7 2

8. Cârlan, C., Beyene, T.A., Ruess, H.: Integrated formal methods for constructing
assurance cases. In: 2016 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pp. 221–228. IEEE (2016)

9. Cheng, C.H., Bensalem, S., Ruess, H., Shankar, N., Tiwari, A.: EFSMT: a logical
framework for the design of cyber-physical systems. Cyber-Phys. Syst. Architec-
tures Design Methodologies (CPSArch) (2014)

https://doi.org/10.1140/epjb/e2008-00175-0
https://doi.org/10.1007/978-3-319-10329-7_2
https://doi.org/10.1007/978-3-319-10329-7_2


From Embedded to Embodied 23

10. Cheng, C.-H., Hamza, Y., Ruess, H.: Structural synthesis for GXW specifications.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 95–117.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 6

11. Cheng, C.H., Huang, C.H., Brunner, T., Hashemi, V.: Towards safety verification of
direct perception neural networks. In: 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1640–1643. IEEE (2020)

12. Cheng, C.H., Huang, C.H., Nührenberg, G.: NN-Dependability-Kit: engineer-
ing neural networks for safety-critical autonomous driving systems. In: 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.
1–6. IEEE (2019)

13. Cheng, C.-H., Huang, C.-H., Ruess, H., Stattelmann, S.: G4LTL-ST: automatic
generation of PLC programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 541–549. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 36

14. Cheng, C.H., Huang, C.H., Ruess, H., Yasuoka, H., et al.: Towards dependability
metrics for neural networks. In: 2018 16th ACM/IEEE International Conference
on Formal Methods and Models for System Design (MEMOCODE), pp. 1–4. IEEE
(2018)

15. Cheng, C.-H., Huang, C.-H., Yasuoka, H.: Quantitative projection coverage for
testing ML-enabled autonomous systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 126–142. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 8

16. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

17. Cheng, C.H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. In: 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 300–303. IEEE (2019)

18. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the evidential
tool bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 275–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 18

19. Dantas, Y.G., Nigam, V.: Automating safety and security co-design through
semantically-rich architectural patterns. arXiv preprint arXiv:2201.10563 (2022)

20. Dantas, Y.G., Nigam, V., Ruess, H.: Security engineering for ISO 21434. arXiv
preprint arXiv:2012.15080 (2020)

21. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: SOTER: a run-
time assurance framework for programming safe robotics systems. In: 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 138–150. IEEE (2019)

22. Dietterich, T.G.: Steps toward robust artificial intelligence. AI Mag. 38(3), 3–24
(2017)

23. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

24. Dutertre, B.: Solving exists/forall problems with Yices. In: Workshop on satisfia-
bility modulo theories (2015)

25. Eder, J., Bahya, A., Voss, S., Ipatiov, A., Khalil, M.: From deployment to platform
exploration: automatic synthesis of distributed automotive hardware architectures.

https://doi.org/10.1007/978-3-319-41528-4_6
https://doi.org/10.1007/978-3-319-08867-9_36
https://doi.org/10.1007/978-3-319-08867-9_36
https://doi.org/10.1007/978-3-030-01090-4_8
https://doi.org/10.1007/978-3-030-01090-4_8
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-35873-9_18
http://arxiv.org/abs/2201.10563
http://arxiv.org/abs/2012.15080
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49


24 H. Ruess

In: Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, pp. 438–446 (2018)

26. Eder, J., Voss, S.: Usable design space exploration in AutoFOCUS3. In:
EduSymp/OSS4MDE@ MoDELS, pp. 51–58 (2016)

27. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Methods Syst. Des. 54(3), 336–363 (2019)

28. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci.
11(2), 127–138 (2010)

29. Gade, D., Deshpande, D.S.: A literature review on assurance driven software design.
Int. J. Adv. Res. Comput. Commun. Eng. 4(9) (2015)

30. Geisberger, E., Broy, M.: AgendaCPS: Integrierte Forschungsagenda Cyber-
Physical Systems, vol. 1. Springer-Verlag, Cham (2012)

31. Goodloe, A.E., Pike, L.: Monitoring distributed real-time systems: a survey and
future directions. Technical report (2010)

32. Ha, V., Rangarajan, M., Cofer, D., Rue, H., Duterte, B.: Feature-based decomposi-
tion of inductive proofs applied to real-time avionics software: an experience report.
In: Proceedings of the 26th International Conference on Software Engineering, pp.
304–313. IEEE (2004)

33. Hawkins, R., Paterson, C., Picardi, C., Jia, Y., Calinescu, R., Habli, I.: Guidance on
the assurance of machine learning in autonomous systems (amlas). arXiv preprint
arXiv:2102.01564 (2021)

34. Jha, S., Rushby, J., Shankar, N.: Model-centered assurance for autonomous sys-
tems. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP
2020. LNCS, vol. 12234, pp. 228–243. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-54549-9 15

35. Kondeva, A., Nigam, V., Ruess, H., Carlan, C.: On computer-aided techniques
for supporting safety and security co-engineering. In: 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 346–
353. IEEE (2019)

36. Koopman, P.: Key ideas: UL 4600 safety standard for autonomous vehicles (2022)
37. Kotseruba, I., Gonzalez, O.J.A., Tsotsos, J.K.: A review of 40 years of cognitive

architecture research: focus on perception, attention, learning and applications.
arXiv preprint arXiv:1610.08602 pp. 1–74 (2016)

38. Laibson, D.: A cue-theory of consumption. Q. J. Econ. 116(1), 81–119 (2001)
39. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2019)
40. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning

through probabilistic program induction. Science 350(6266), 1332–1338 (2015)
41. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical

Systems Approach. MIT Press, Cambridge (2016)
42. Levin, T.E., Nguyen, T.D., Irvine, C.E.: Separation kernel protection profile revis-

ited: choices and rationale. Technical report Naval Postgraduate School, Monterey,
CA (2010)

43. Liu, Y., Shen, H.: Human centric machine learning: A human machine collabora-
tion. Technical Report, ISSN Print: 2699–1217, ISSN: 2700–2977, fortiss Whitepa-
per (2021)

44. Lúcio, L., Rahman, S., Cheng, C.-H., Mavin, A.: Just formal enough? automated
analysis of EARS requirements. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM
2017. LNCS, vol. 10227, pp. 427–434. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57288-8 31

http://arxiv.org/abs/2102.01564
https://doi.org/10.1007/978-3-030-54549-9_15
https://doi.org/10.1007/978-3-030-54549-9_15
http://arxiv.org/abs/1610.08602
https://doi.org/10.1007/978-3-319-57288-8_31
https://doi.org/10.1007/978-3-319-57288-8_31


From Embedded to Embodied 25

45. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to require-
ments syntax (ears). In: 2009 17th IEEE International Requirements Engineering
Conference, pp. 317–322. IEEE (2009)

46. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational
trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

47. Metzler, T., Shea, K., et al.: Taxonomy of cognitive functions. In: DS 68–7:
Proceedings of the 18th International Conference on Engineering Design (ICED
11), Impacting Society through Engineering Design, Vol. 7: Human Behaviour in
Design, Lyngby/Copenhagen, Denmark, 15.-19.08. 2011, pp. 330–341 (2011)

48. Nancy, A., Balamurugan, D.M., Vijaykumar, S.: A comparative analysis of cogni-
tive architecture. Int. J. Adv. Res. Trends Eng. Technol. (IJARTET) 3, 152–155
(2016)

49. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge
(1994)

50. Owhadi, H., Scovel, C., Sullivan, T.J., McKerns, M., Ortiz, M.: Optimal uncer-
tainty quantification. Siam Rev. 55(2), 271–345 (2013)

51. Pohl, K., Hönninger, H., Achatz, R., Broy, M.: Model-Based Engineering of Embed-
ded Systems: The SPES 2020 Methodology. Springer, Cham (2012)

52. Potapov, A.: A step from probabilistic programming to cognitive architectures.
arXiv preprint arXiv:1605.01180 (2016)

53. Putzer, H.J., Rueß, H., Koch, J.: Trustworthy AI-based systems with VDE-AR-E
2842–61 (2021)

54. Quilbeuf, J., Igna, G., Bytschkow, D., Ruess, H.: Security policies for distributed
systems. arXiv preprint arXiv:1310.3723 (2013)

55. Riegel, R., et al.: Logical neural networks. arXiv preprint arXiv:2006.13155 (2020)
56. Ruess, H.: Systems challenges for trustworthy embodied systems. arXiv preprint

arXiv:2201.03413 (2022)
57. Rueß, H., Burton, S.: Safe AI- How is this possible? arXiv preprint

arXiv:2201.10436 (2022)
58. Rule, J.S.: The child as hacker: building more human-like models of learning. Ph.D.

thesis, Massachusetts Institute of Technology (2020)
59. Rushby, J., Bloomfield, R.: Assessing confidence with assurance 2.0. arXiv preprint

arXiv:2205.04522 (2022)
60. Russell, S.: Artificial intelligence and the problem of control. Perspect. Digit.

Humanism, p. 19 (2022)
61. Sahu, A., Vállez, N., Rodŕıguez-Bobada, R., Alhaddad, M., Moured, O.,

Neugschwandtner, G.: Applications of the neural network dependability kit in real-
world environments. arXiv preprint arXiv:2012.09602 (2020)

62. Seshia, S.A., Sadigh, D., Sastry, S.S.: Toward verified artificial intelligence. Com-
mun. ACM 65(7), 46–55 (2022)

63. Shankar, N., et al.: Descert: design for certification. arXiv preprint
arXiv:2203.15178 (2022)

64. Stoica, I., et al.: A berkeley view of systems challenges for AI. arXiv preprint
arXiv:1712.05855 (2017)

65. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab.
Eng. Syst. Saf. 93(7), 964–979 (2008)

66. Torfah, H., Junges, S., Fremont, D.J., Seshia, S.A.: Formal analysis of AI-based
autonomy: from modeling to runtime assurance. In: Feng, L., Fisman, D. (eds.)
RV 2021. LNCS, vol. 12974, pp. 311–330. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-88494-9 19

http://arxiv.org/abs/1605.01180
http://arxiv.org/abs/1310.3723
http://arxiv.org/abs/2006.13155
http://arxiv.org/abs/2201.03413
http://arxiv.org/abs/2201.10436
http://arxiv.org/abs/2205.04522
http://arxiv.org/abs/2012.09602
http://arxiv.org/abs/2203.15178
http://arxiv.org/abs/1712.05855
https://doi.org/10.1007/978-3-030-88494-9_19
https://doi.org/10.1007/978-3-030-88494-9_19


Intelligent and Dependable
Decision-Making Under Uncertainty

Nils Jansen(B)

Radboud University Nijmegen, Nijmegen, The Netherlands

nilsjansen123@gmail.com

Abstract. This talk highlights our vision of foundational and
application-driven research toward safety, dependability, and correctness
in artificial intelligence (AI). We take a broad stance on AI that com-
bines formal methods, machine learning, and control theory. As part of
this research line, we study problems inspired by autonomous systems,
planning in robotics, and industrial applications. We consider reinforce-
ment learning (RL) as a specific machine learning technique for decision-
making under uncertainty. RL generally learns to behave optimally via
trial and error. Consequently, and despite its massive success in the past
years, RL lacks mechanisms to ensure safe and correct behavior. Formal
methods, in particular formal verification, is a research area that pro-
vides formal guarantees of a system’s correctness and safety based on
rigorous methods and precise specifications. Yet, fundamental challenges
have obstructed the effective application of verification to reinforcement
learning. Our main objective is to devise novel, data-driven verification
methods that tightly integrate with RL. In particular, we develop tech-
niques that address real-world challenges to the safety of AI systems
in general: Scalability, expressiveness, and robustness against the uncer-
tainty that occurs when operating in the real world. The overall goal is
to advance the real-world deployment of reinforcement learning.

1 Synopsis: Robust and Dependable Artificial Intelligence

Artificial intelligence (AI) is a disruptive force. Most major technology companies
employ or develop AI, and with growing applications in fields like healthcare [37],
transportation [48,68], game playing [51], finance [9], or robotics in general [44], it
is entering our everyday lives. We can expect that our societal and technological
involvement with AI will only intensify in the future. Such tight interaction with
AI requires serious safety and correctness considerations. Recently, the field of
safety in AI has triggered a vast amount of research with several seminal works
defining their view on this area [4,25,58,61].

Can Formal Verification Help to Ensure AI Safety? The area of formal
methods offers structured and rigorous ways to reason about the correctness

N. Jansen—This work was supported by the ERC Starting Grant 101077178 (DEUCE).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 26–36, 2023.
https://doi.org/10.1007/978-3-031-27481-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_3&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_3


Intelligent and Dependable Decision-Making Under Uncertainty 27

of a system. Techniques range from model learning [66], over testing [36], to
formal verification [24]. As an example for the application of verification in AI,
solving techniques like SAT or SMT [11] help to assess the robustness of neural
networks [30,33,41]. A specific verification technique is model checking [10,19].
For a fixed system model, a plethora of methods assert the system’s correctness
regarding formal specifications. The rigor of model checking suggests it is natural
to employ model checking to prove the correctness of AI systems.

We focus on a specific branch of AI, namely decision-making under uncer-
tainty [45]. Intelligent AI agents typically operate in unknown or unpredictable
environments, coping with contextual changes at runtime or incompleteness of
information. This unpredictability leads to the problem that the outcome of deci-
sions made by an agent is uncertain. Reinforcement learning (RL) [64] agents
make decisions under uncertainty via the exploration of potentially unknown
environments. The area of safe RL [2,27] aims to restrict the behavior of an
agent with respect to safety, or with respect to more general correctness con-
straints.

Several shortcomings towards the potential deployment of RL in critical envi-
ronments remain. Specifically, we identify the following three main challenges to
the state-of-the-art in formal verification and its application for safe RL:

– Scalability to high-dimensional problems,
– Providing correctness guarantees in continuous spaces, and
– effective handling of uncertainty.

Indeed, common approaches and case studies for safe RL employ idealized
settings with a low number of dimensions that contribute to a problem. Most
approaches assume discretized state spaces instead of realistic continuous set-
tings. Currently employed simplistic notions of uncertainty may lead to incorrect
behavior, and RL agents are often trained without any notion of safe behavior
under uncertainty [72]. Finally, standard safety notions cannot express sophisti-
cated task or correctness specifications.

The state-of-the-art leaves the aforementioned three challenges largely unad-
dressed. Our approaches to fundamentally overcome these restrictions employ
a particularly tight integration of verification and learning. We see the data-
driven nature not as a threat to effective and rigorous verification, but embrace
the inherent access to state-of-the-art machine learning and exploit its flexibility.

Finally, to demonstrate the practical applicability of our work, we use the
QComp [31] and Arch-Comp [1] competitions, and for more AI-related bench-
marks, the OpenAI gym [53] and Google Deepmind’s AI Safety Gridworlds [47].
Towards industrial demonstrators, we use, for instance, case studies from pre-
dictive maintenance, such as [42].

How to Make Intelligent Decisions Under Uncertainty? Various types
and applications of uncertainty play a central role in our research. Uncertainty
has been “largely related to the lack of predictability of some major events or
stakes, or a lack of data” [5]. To name a few, there is uncertainty (1) in techno-
logical, social, environmental, or financial factors in the business literature [60],



28 N. Jansen

(2) about sensor imprecisions and lossy communication channels in robotics [65],
and (3) about the expected responses of a human operator in decision support
systems [45]. The level of uncertainty affects the capabilities of AI systems that
have to make decisions [3,45]. In particular, for strict safety requirements, deci-
sions must be verifiably robust against uncertainty. Such considerations require
precise knowledge about the nature of uncertainty.

Model checking for AI systems necessitates dedicated models. Markov deci-
sion processes (MDPs) capture sequential decision-making problems for agents
operating in uncertain environments [57]. Sensor limitations may lead to partial
observability of the system’s current state, giving rise to partially observable
Markov decision processes (POMDPs) [40]. While mature model checking tools
like PRISM [46], Storm [22], or Uppaal [21] provide efficient synthesis or verifica-
tion methods for MDPs, the situation is different for POMDPs. Policy synthesis
for POMDPs is a hard problem, both from the theoretical and the practical per-
spective [50]. For infinite- or indefinite-horizon problems, computing an optimal
policy is undecidable [49]. Optimal action choices depend on the whole observa-
tion history, requiring an infinite amount of memory.

If precise probabilities are not known, uncertainty models employ so-called
uncertainty sets of probabilities. Uncertain MDPs (uMDPs) use, for exam-
ple, probability intervals or likelihood functions [23,28,52,56,69–71,73]. Similar
extensions exist for uPOMDPs, where uncertainty also affects the observation
model [12,13,20,34,62].

A Motivating Example: Spacecraft Motion Planning. Consider a space-
craft motion planning system which serves as decision support for a human
operator [26,32]. This system delivers advice on switching to a different orbit or
avoiding close encounters with other objects in space. The spacecraft orbits the
earth along a set of predefined natural motion trajectories (NMTs) [43]. While
the spacecraft follows its current NMT, it does not consume fuel. We introduced
the underlying uncertain POMDP model in [20]. The figure to the right depicts
three models that differ only in the level of uncertainty (low, medium, high).
Black spheres are the objects, and the colored lines depict NMTs. The thick red
line indicates a trajectory of the spacecraft including orbit switches along the
NMTs. A policy requires robustness against uncertainty, and memory to predict

Fig. 1. Robust spacecraft motion planning.



Intelligent and Dependable Decision-Making Under Uncertainty 29

the location of the spacecraft based on its past trajectory (Fig. 1). The figure
shows that more uncertainty causes less-informed decisions, as policies need to
be more conservative.

2 Research Highlights

In the following, we discuss a number of results that are in line with the afore-
mentioned research challenges to combining formal verification, AI systems, and
reinforcement learning.

2.1 Reliable Neural Network Controllers for Autonomous Agents

Summary. These results are part of the publications [16–18]. Machine learning
methods typically train recurrent neural networks (RNN) to effectively repre-
sent POMDP policies that can efficiently process sequential data. However, it
is hard to verify whether the POMDP driven by such RNN-based policies sat-
isfies safety constraints, for instance, given by temporal logic specifications. We
propose a novel method that combines techniques from machine learning with
the field of formal methods: training an RNN-based policy and automatically
extracting a so-called finite-state controller (FSC) from the RNN. Such FSCs
offer a convenient way to verify temporal logic constraints. Implemented on a
POMDP, they induce a Markov chain. Probabilistic verification methods can
efficiently check whether this induced Markov chain satisfies a temporal logic
specification. Our method exploits this diagnostic information from verification
to either adjust the complexity of the extracted FSC or improve the policy by
performing focused retraining of the RNN. We synthesize policies that satisfy
temporal logic specifications for POMDPs with up to millions of states, three
orders of magnitude larger than comparable approaches.

Fig. 2. Summary flowchart of the RNN-based refinement loop.



30 N. Jansen

Our Approach: Learning and Verification. We combine the effectiveness of
RNN-based representations from machine learning with the provable guarantees
that are at the heart of formal verification. In a nutshell, we train RNN-based
policy representations from sequences of data, to find candidate policies that
might ensure an agent satisfies a temporal logic specification.

The central technical problem is: How to close the loop between training
an RNN-based policy and efficiently verifying for a candidate policy? First,
FSCs [39,54] encode memory in a finite automata-style fashion. For an FSC
and a POMDP, formal verification methods like model checking are able to
efficiently compute the probability of satisfying a specification [10]. We tightly
integrate formal verification and machine learning towards three key steps: (1)
extracting an FSC from an RNN-based policy, (2) verifying this candidate FSC
for the POMDP against a temporal logic specification, and (3) if needed, either
refining the FSC or generating more training data for the RNN. For an overview,
see Fig. 2.

2.2 Learning Uncertainty Models

Summary. This result is part of the publication [63]. In data-driven appli-
cations, deriving precise probabilities from (limited) data introduces statistical
errors that may lead to unexpected or undesirable outcomes. Consequently, we
aim to learn uncertain MDPs (uMDPs) that use so-called uncertainty sets in
the transitions, accounting for such limited data. Efficient implementations in
tools like PRISM compute robust policies for uMDPs that provably adhere to
formal specifications, like safety constraints, under the worst-case instance in the
uncertainty set. We continuously learn the transition probabilities of an MDP in
a robust anytime-learning approach that combines a dedicated Bayesian infer-
ence scheme with the computation of robust policies. In particular, our method
(1) approximates probabilities as intervals, (2) adapts to new data that may be
inconsistent with an intermediate model, and (3) may be stopped at any time
to compute a robust policy on the uMDP that faithfully captures the data so
far. Similarly, our method is capable of adapting to changes in the environment.
We show the effectiveness of our approach and compare it to robust policies
computed on uMDPs learned by the UCRL2 reinforcement learning algorithm.

Our Approach: Learning an MDP from Data. We propose an iterative
learning method that uses uMDPs as intermediate models and is able to adapt
to new data which may be inconsistent with prior assumptions. The Bayesian
anytime-learning approach employs intervals with linearly updating conjugate
priors [67], and can iteratively improve upon a uMDP that approximates the
true MDP we wish to learn. The key features of our learning method are:

– An anytime approach. At any time, we may stop the learning and compute
a robust policy for the uMDP that the process has yielded thus far, together
with the worst-case performance of this policy against a given specification.
This performance may not be satisfactory, e. g., the worst-case probability to
reach a set of critical states may be below a certain threshold. We continue



Intelligent and Dependable Decision-Making Under Uncertainty 31

learning towards a new uMDP that more faithfully captures the true MDP
due to the inclusion of further data. Thereby, we ensure that the robust policy
gradually gets closer to the optimal policy for the true MDP.

– Specification-driven. Our method features the possibility to learn in a task-
aware fashion, that is, to learn transitions that matter for a given specification.
In particular, for reachability or expected reward (temporal logic) specifica-
tions that require a certain set of target states to be reached, we only learn
and update transitions along paths toward these states. Transitions outside
those paths do not affect the satisfaction of the specification.

– Adaptive to changing environment dynamics. When using linearly updating
intervals, our approach is adaptive to changing environment dynamics. That
is, if during the learning process the probability distributions of the underlying
MDP change, our method can easily adapt and learns these new distributions.

2.3 Robust Control for Dynamical Systems Under Uncertainty

Summary. These results are part of the publications in [6–8]. We provide proba-
bly correct controllers for dynamical systems that operate in noisy environments,
where the uncertainty can be both aleatoric and epistemic. In particular, we
consider environments where stochastic disturbances in the environment are not
necessarily Gaussian, and external uncertainty may be caused by factors such as
uncertain system parameters. In our work, no explicit representation of a noise
distribution is necessary, but we only assume sampling access to the environ-
ment. Using the so-called scenario approach, we provide probabilistic guarantees
on reach-avoid properties, that is, safely reaching a target while avoiding unsafe
regions of the state space. At the heart of our approach is an abstraction of the
dynamical system into an uncertain MDP. We show that a robust policy for
this finite-state model carries guarantees on the performance of the analogous
controller in the dynamical system.

Our Approach: Probabilities Are Not Enough. We consider stochastic
dynamical models with continuous state and action spaces, under aleatoric and
epistemic uncertainty. More precisely, aleatoric uncertainty captures natural ran-
domness (i.e., stochasticity) in the outcome of transitions, while epistemic uncer-
tainty is in particular modeled by parameters that are not precisely known [59].

– PAC guarantees on abstractions. We show that both probabilities and nonde-
terminism can be captured in the probability intervals of an uncertain MDP.
We use sampling methods from scenario optimization [14] and show that,
with a predefined confidence probability, the uncertain MDP correctly cap-
tures both aleatoric and epistemic uncertainty.

– Correct-by-construction. For the uncertain MDP, we compute a robust optimal
policy that maximizes the worst-case probability of satisfying the reach-avoid
specification. This policy is automatically translated to a provably-correct
feedback controller for the original, continuous model ‘on the fly’. This means
that, by construction, the PAC guarantees on the uncertain MDP carry over



32 N. Jansen

to the satisfaction of the specification for the continuous model, thus solving
the problem stated above.

– Contributions. We develop the first abstraction-based, formal controller syn-
thesis method that simultaneously captures epistemic and aleatoric uncer-
tainty for continuous-state/action models. We provide results on the PAC-
correctness of obtained uncertain MDP abstractions, and guarantees on the
synthesized controllers for a reach-avoid specification.

2.4 Safe Deep Reinforcement Learning

Summary. These results are part of the publications in [15,29,35,38,55]. A
common approach to safe reinforcement learning is to employ a so-called shield
that forces an RL agent to select only safe actions. However, for adoption in
various applications, one must look beyond enforcing safety and also ensure
the applicability of RL with good performance. We extend the applicability of
shields via tight integration with state-of-the-art deep RL, and provide an exten-
sive, empirical study in challenging, sparse-reward environments under partial
observability. We show that a carefully integrated shield ensures safety and can
improve the convergence rate and final performance of RL agents. We further-
more show that a shield can be used to bootstrap state-of-the-art RL agents:
they remain safe after initial learning in a shielded setting, allowing us to disable
a potentially too-conservative shield eventually.

Our Approach: Shielding in Deep Reinforcement Learning. Our study
demonstrates the following effects of shielding in a partially observable setting.

– Shield construction: We discuss several approaches to effectively construct
and compute a shield in environments that exhibit various sources of uncer-
tainty.

– Safety during learning: Exploration is only safe when the RL agent is provided
with a shield. Without the shield, the agent makes unsafe choices even if it has
access to the state estimation. Even an unshielded trained agent still behaves
unsafe sometimes.

– RL convergence rate: A shield not only ensures safety, but may also sig-
nificantly improve the convergence rate of modern RL agents by avoiding
spending time to learn unsafe actions. Other knowledge interfaces like state
estimators do help to a lesser extent.

– Bootstrapping: Due to the improved convergence rate, shields are a way to
bootstrap RL algorithms, even if they are overly restrictive. RL agents can
learn to mimic the shield by slowly disabling the shield.

– Tool support: We provide an open source tool called COOL-MC1 that features
a tied integration between state-of-the-art RL in OpenAI gym [53] and the
Storm model checker [22].

1 Available at https://github.com/LAVA-LAB/COOL-MC.

https://github.com/LAVA-LAB/COOL-MC


Intelligent and Dependable Decision-Making Under Uncertainty 33

Acknowledgements. The approaches presented in this talk are the results of fruitful
and enjoyable collaborations with a number of co-authors, in particular: Alessandro
Abate, Thom S. Badings, Bernd Becker, Roderick Bloem, Steven Carr, Murat Cubuk-
tepe, Dennis Gross, Sebastian Junges, Joost-Pieter Katoen, Bettina Könighofer, David
Parker, Guillermo A. Pérez, Hasan A. Poonawala, Licio Romao, Sanjit Seshia, Alex
Serban, Thiago D. Simão, Mariëlle Stoelinga, Marnix Suilen, Ufuk Topcu, and Ralf
Wimmer.

References

1. Abate, A., et al.: ARCH-COMP18 category report: stochastic modelling. In:
ARCH@ADHS. EPiC Series in Computing, vol. 54, pp. 71–103. EasyChair (2018)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: AAAI. AAAI Press (2018)

3. Amato, C.: Decision-making under uncertainty in multi-agent and multi-robot sys-
tems: planning and learning. In: IJCAI, pp. 5662–5666. ijcai.org (2018)

4. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. CoRR abs/1606.06565 (2016)

5. Argote, L.: Input uncertainty and organizational coordination in hospital emer-
gency units. Adm. Sci. Q., 420–434 (1982)

6. Badings, T.S., Abate, A., Jansen, N., Parker, D., Poonawala, H.A., Stoelinga, M.:
Sampling-based robust control of autonomous systems with non-Gaussian noise.
In: AAAI (2022). To appear

7. Badings, T.S., Romano, L., Abate, A., Jansen, N.: Probabilities are not enough:
Formal controller synthesis for stochastic dynamical models with epistemic uncer-
tainty. In: AAAI (2023)

8. Badings, T.S., et al.: Robust control for dynamical systems with non-gaussian noise
via formal abstractions. J. Artif. Intell. Res. (2023)

9. Bahrammirzaee, A.: A comparative survey of artificial intelligence applications in
finance: artificial neural networks, expert system and hybrid intelligent systems.
Neural Comput. Appl. 19(8), 1165–1195 (2010). https://doi.org/10.1007/s00521-
010-0362-z

10. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

12. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under
uncertainty. In: ICRA, pp. 723–730. IEEE (2011)

13. Burns, B., Brock, O.: Sampling-based motion planning with sensing uncertainty.
In: ICRA, pp. 3313–3318. IEEE (2007)

14. Campi, M.C., Garatti, S.: Introduction to the scenario approach. SIAM (2018)
15. Carr, S., Jansen, N., Junges, S., Topcu, U.: Safe reinforcement learning via shielding

under partial observability. In: AAAI (2023)
16. Carr, S., Jansen, N., Topcu, U.: Verifiable RNN-based policies for POMDPs under

temporal logic constraints. In: IJCAI, pp. 4121–4127. ijcai.org (2020)
17. Carr, S., Jansen, N., Topcu, U.: Task-aware verifiable RNN-based policies for par-

tially observable Markov decision processes. J. Artif. Intell. Res. 72, 819–847 (2021)

https://doi.org/10.1007/s00521-010-0362-z
https://doi.org/10.1007/s00521-010-0362-z


34 N. Jansen

18. Carr, S., Jansen, N., Wimmer, R., Serban, A.C., Becker, B., Topcu, U.:
Counterexample-guided strategy improvement for POMDPs using recurrent neural
networks. In: IJCAI, pp. 5532–5539. ijcai.org (2019)

19. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking,
vol. 10. Springer, Cham (2018)

20. Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., Topcu, U.: Robust
finite-state controllers for uncertain POMDPs. In: AAAI, pp. 11792–11800. AAAI
Press (2021)

21. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

22. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS,
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 31

23. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Decision
problems for interval Markov chains. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide,
C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 274–285. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21254-3 21

24. Drechsler, R.: Advanced Formal Verification. Kluwer Academic Publishers, Dor-
drecht (2004)

25. Freedman, R.G., Zilberstein, S.: Safety in AI-HRI: challenges complementing user
experience quality. In: AAAI Fall Symposium Series (2016)

26. Frey, G.R., Petersen, C.D., Leve, F.A., Kolmanovsky, I.V., Girard, A.R.: Con-
strained spacecraft relative motion planning exploiting periodic natural motion
trajectories and invariance. J. Guid. Control. Dyn. 40(12), 3100–3115 (2017)

27. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

28. Givan, R., Leach, S., Dean, T.: Bounded-parameter Markov decision processes.
Artif. Intell. 122(1–2), 71–109 (2000)

29. Gross, D., Jansen, N., Junges, S., Pérez, G.A.: COOL-MC: a comprehensive tool
for reinforcement learning and model checking. In: Dong, W., Talpin, J.P. (eds.)
SETTA 2022. LNCS, vol. 13649, pp. 41–49. Springer, Cham (2022)

30. Gross, D., Jansen, N., Pérez, G.A., Raaijmakers, S.: Robustness verification for
classifier ensembles. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 271–287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 15

31. Hahn, E.M., et al.: The 2019 comparison of tools for the analysis of quantitative
formal models. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 69–92. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17502-3 5

32. Hobbs, K.L., Feron, E.M.: A taxonomy for aerospace collision avoidance with impli-
cations for automation in space traffic management. In: AIAA Scitech 2020 Forum,
p. 0877 (2020)

33. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

34. Itoh, H., Nakamura, K.: Partially observable Markov decision processes with impre-
cise parameters. Artif. Intell. 171(8), 453–490 (2007)

https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-21254-3_21
https://doi.org/10.1007/978-3-030-59152-6_15
https://doi.org/10.1007/978-3-030-59152-6_15
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-319-63387-9_1


Intelligent and Dependable Decision-Making Under Uncertainty 35

35. Jansen, N., Könighofer, B., Junges, S., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields (invited paper). In: CONCUR. LIPIcs, vol. 171,
pp. 1–16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

36. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37(5), 649–678 (2011)

37. Jiang, F., et al.: Artificial intelligence in healthcare: past, present and future. Stroke
Vasc. Neurol. 2(4) (2017)

38. Junges, S., Jansen, N., Seshia, S.A.: Enforcing almost-sure reachability in
POMDPs. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
602–625. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 28

39. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis.
In: UAI, pp. 519–529. AUAI Press (2018)

40. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

41. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

42. Kerkkamp, D., Bukhsh, Z.A., Zhang, Y., Jansen, N.: Grouping of maintenance
actions with deep reinforcement learning and graph convolutional networks. In:
ICAART (2022). To Appear

43. Kim, S.C., Shepperd, S.W., Norris, H.L., Goldberg, H.R., Wallace, M.S.: Mission
design and trajectory analysis for inspection of a host spacecraft by a microsatellite.
In: 2007 IEEE Aerospace Conference, pp. 1–23. IEEE (2007)

44. Klingspor, V., Demiris, J., Kaiser, M.: Human-robot communication and machine
learning. Appl. Artif. Intell. 11(7), 719–746 (1997)

45. Kochenderfer, M.J.: Decision Making Under Uncertainty: Theory and Application.
MIT press, Cambridge (2015)

46. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

47. Leike, J., et al.: AI safety gridworlds. arXiv preprint arXiv:1711.09883 (2017)
48. Levinson, J., et al.: Towards fully autonomous driving: Systems and algorithms.

In: Intelligent Vehicles Symposium, pp. 163–168. IEEE (2011)
49. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning

and infinite-horizon partially observable Markov decision problems. In: AAAI. pp.
541–548. AAAI Press (1999)

50. Meuleau, N., Peshkin, L., Kim, K.E., Kaelbling, L.P.: Learning finite-state con-
trollers for partially observable environments. In: UAI, pp. 427–436. Morgan Kauf-
mann (1999)

51. Mnih, V., et al.: Playing atari with deep reinforcement learning. CoRR
abs/1312.5602 (2013)

52. Nilim, A., El Ghaoui, L.: Robust control of Markov decision processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780–798 (2005)

53. OpenAI Gym: (2018). http://gymlibrary.dev/
54. Poupart, P., Boutilier, C.: Bounded finite state controllers. In: Advances in Neural

Information Processing Systems, pp. 823–830 (2004)
55. Pranger, S., Könighofer, B., Tappler, M., Deixelberger, M., Jansen, N., Bloem, R.:

Adaptive shielding under uncertainty. In: ACC, pp. 3467–3474. IEEE (2021)

https://doi.org/10.1007/978-3-030-81688-9_28
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://arxiv.org/abs/1711.09883
http://gymlibrary.dev/


36 N. Jansen

56. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8 35

57. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons, Hoboken (1994)

58. Russell, S.J., Dewey, D., Tegmark, M.: Research priorities for robust and beneficial
artificial intelligence. CoRR abs/1602.03506 (2016)

59. Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applica-
tions, vol. 12. Siam, New Delhi (2013)

60. Sniazhko, S.: Uncertainty in decision-making: a review of the international business
literature. Cogent Bus. Manage. 6(1), 1650692 (2019)

61. Stoica, I., et al.: A Berkeley view of systems challenges for AI. CoRR
abs/1712.05855 (2017)

62. Suilen, M., Jansen, N., Cubuktepe, M., Topcu, U.: Robust policy synthesis for
uncertain POMDPs via convex optimization. In: IJCAI, pp. 4113–4120. ijcai.org
(2020)

63. Suilen, M., Simão, T.D., Parker, D., Jansen, N.: Robust anytime learning of Markov
decision processes. In: NeurIPS (2022)

64. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

65. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cam-
bridge (2005)

66. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017)
67. Walter, G., Augustin, T.: Imprecision and prior-data conflict in generalized

Bayesian inference. J. Stat. Theor. Pract. 3(1), 255–271 (2009)
68. Wang, F.: Toward a revolution in transportation operations: AI for complex sys-

tems. IEEE Intell. Syst. 23(6), 8–13 (2008)
69. Wiesemann, W., Kuhn, D., Rustem, B.: Robust Markov decision processes. Math.

Oper. Res. 38(1), 153–183 (2013)
70. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision

processes with temporal logic specifications. In: CDC, pp. 3372–3379. IEEE (2012)
71. Xu, H., Mannor, S.: Distributionally robust Markov decision processes. Math.

Oper. Res. 37(2), 288–300 (2012)
72. Zhang, J., Cheung, B., Finn, C., Levine, S., Jayaraman, D.: Cautious adaptation for

reinforcement learning in safety-critical settings. In: ICML. Proceedings of Machine
Learning Research, vol. 119, pp. 11055–11065. PMLR (2020)

73. Zhao, X., Calinescu, R., Gerasimou, S., Robu, V., Flynn, D.: Interval change-
point detection for runtime probabilistic model checking. In: 35th IEEE/ACM
International Conference on Automated Software Engineering. York (2020)

https://doi.org/10.1007/978-3-642-39799-8_35


SAT/SMT



A Coq Formalization of Lebesgue
Induction Principle and Tonelli’s

Theorem

Sylvie Boldo1(B) , François Clément2,3, Vincent Martin4, Micaela Mayero5,
and Houda Mouhcine1,2,3,5

1 Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria,
Laboratoire Méthodes Formelles, 91190 Gif-sur-Yvette, France

sylvie.boldo@inria.fr
2 Inria, 2 rue Simone Iff, 75589 Paris, France

3 CERMICS, École des Ponts, 77455 Marne-la-Vallée, France
4 Université de technologie de Compiègne, LMAC, 60203 Compiègne, France

5 LIPN, Université Paris 13 - USPN, CNRS UMR 7030, 93430 Villetaneuse, France

Abstract. Lebesgue integration is a well-known mathematical tool,
used for instance in probability theory, real analysis, and numerical math-
ematics. Thus, its formalization in a proof assistant is to be designed
to fit different goals and projects. Once the Lebesgue integral is for-
mally defined and the first lemmas are proved, the question of the
convenience of the formalization naturally arises. To check it, a use-
ful extension is Tonelli’s theorem, stating that the (double) integral of
a nonnegative measurable function of two variables can be computed by
iterated integrals, and allowing to switch the order of integration. This
article describes the formal definition and proof in Coq of product sigma-
algebras, product measures and their uniqueness, the construction of iter-
ated integrals, up to Tonelli’s theorem. We also advertise the Lebesgue
induction principle provided by an inductive type for nonnegative mea-
surable functions.

Keywords: Formal proof · Coq · Measure theory · Lebesgue
integration · Tonelli’s theorem

1 Introduction

This work deals with the Coq1 formalization of the Lebesgue induction principle
and Tonelli’s theorem as a direct continuation of previous work [2]. Our long-
term objective is to formally prove in Coq scientific computing programs and
the correctness of parts of a C++ library, such as FreeFEM++2 or XLiFE++,3

1 https://coq.inria.fr/.
2 https://freefem.org/.
3 https://uma.ensta-paris.fr/soft/XLiFE++/.

This work was partly supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 Research and Innovation Programme - Grant Agree-
ment n◦810367.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 39–55, 2023.
https://doi.org/10.1007/978-3-031-27481-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_4&domain=pdf
http://orcid.org/0000-0002-1970-3019
https://coq.inria.fr/
https://freefem.org/
https://uma.ensta-paris.fr/soft/XLiFE++/
https://doi.org/10.1007/978-3-031-27481-7_4


40 S. Boldo et al.

that implements the Finite Element Method (FEM), a widely used method for
numerically solving Partial Differential Equations (PDEs) arising in different
domains like engineering and mathematical modeling. With this work, we carry
on with our goal of providing a Coq library usable by scientific computing people.
It started with the first development of a real numbers library [18], and then with
the first complete formalization and proof of a numerical program [3] (a C pro-
gram for the approximated resolution of the wave equation). More recently, the
Lax–Milgram theorem [1] (for the resolution of a class of PDEs), then Lebesgue
integration of nonnegative measurable functions [2], and Bochner integration [4]
(a generalization for functions taking their values in a Banach space).

The proof of Tonelli’s theorem is the natural next step. And, as a side result,
it also allows us to validate our previous developments and in particular our
formalization choices for the definitions and results about the Lebesgue integral.
For example, as we work in Coq, the question arises of whether to use classical or
intuitionistic real analysis. Following [2], we decided to be completely classical.

The Lebesgue induction principle is a proof technique for properties about
nonnegative measurable functions, and usually involves the integral. It reflects
the three construction steps followed by Henri Lebesgue to build his integral [15].
The property is first established for indicator functions, then for nonnegative
simple functions by checking that the property is compatible with positive linear
operations, and finally for all nonnegative measurable functions by checking that
it is compatible with the supremum. This is an important asset for the proof of
Tonelli’s theorem, and we provide it as a byproduct of an inductive type.

Tonelli’s theorem provides a convenient way to ease the computation of mul-
tiple integrals by stating their equality with iterated integrals, each in a sin-
gle dimension. Tonelli’s theorem applies to nonnegative measurable functions.
A similar result, Fubini’s theorem, applies to integrable functions with an arbi-
trary sign, or even taking their values in a Banach space when using the Bochner
integral. This article focuses on the case of nonnegative functions, and we only
address the case of functions of two variables, as it is common in mathematics.

We aim to the construction of the full formal proof in Coq of Tonelli’s theo-
rem, stating that the (double) integral of a nonnegative measurable function of
two variables can be computed by iterated integrals, and allowing to switch the
order of integration. It can be expressed in a mathematical setting as follows.

Theorem 1: Tonelli

Let (X1, Σ1, μ1) and (X2, Σ2, μ2) be measure spaces. Assume that μ1 and μ2

are σ-finite. Let f ∈ M+(X1 × X2, Σ1 ⊗ Σ2). Then, we have

(
∀x1 ∈ X1, fx1 ∈ M+(X2, Σ2)

)
∧

∫

X2

fx1 dμ2 ∈ M+(X1, Σ1), (1)

(
∀x2 ∈ X2, fx2 ∈ M+(X1, Σ1)

)
∧

∫

X1

fx2 dμ1 ∈ M+(X2, Σ2), (2)
∫

X1×X2

f d(μ1 ⊗ μ2) =
∫

X1

(∫

X2

fx1 dμ2

)
dμ1 =

∫

X2

(∫

X1

fx2 dμ1

)
dμ2.



A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 41

The notations are specified in the remainder of this paper. Just note that
many measures, including the Lebesgue measure, are σ-finite (defined in Sect. 4),
M+ denotes the set of nonnegative measurable functions (see Sect. 2.2), and fx1

and fx2 are partial applications of f (see Sect. 5.1). Notice also that the proper-
ties (1) and (2) ensure the existence of all simple integrals, while the existence
of the double integral is granted by the assumption on the function f .

The mathematical definitions and proofs are taken from textbooks [8,12,17].
The Coq code is available at (mainly in files Tonelli.v, LInt p.v and Mp.v)

https://lipn.univ-paris13.fr/coq-num-analysis/tree/Tonelli.1.0/Lebesgue

where the tag Tonelli.1.0 corresponds to the code of this article. An Opam
package, coq-num-analysis, is also available.4

Tonelli’s theorem is known enough and useful enough to have been formalized
before our work in several proof assistants. It has been done in PVS in the PVS-
NASA library5 by Lester, probably as a follow-up of [16]. Some Fubini-like results
are available in HOL Light [13]. More recently, Tonelli’s theorem was formalized
in Mizar by Endou [11]. The formalizations nearest to ours are in Isabelle/HOL
and Lean. Hölzl and Heller defined binary and iterated product measure before
Fubini’s theorem [14]. It relies on Isabelle type classes and locales. A more recent
work6 extends it to the Bochner integral. In Lean, van Doorn defines the product
of measures and properties of the product space towards Tonelli and Fubini’s
theorems in a way similar to ours, but for the Bochner integral [20]. He also
provides a similar Lebesgue induction principle, but to our knowledge, our app-
roach of getting it from an inductive type is new. A recent work in Coq has
been developed for probability theory.7 Many definitions are similar to ours, but
in a simpler setting where measures are finite. Fubini’s theorem also appeared
in math-comp/analysis8 after the submission of this article. This formalization
relies on the math-comp/analysis hierarchy of classes. First, this hierarchy is not
compatible with the canonical structures of Coquelicot we used to prove the
Lax–Milgram theorem [1]. Second, the depth of this hierarchy involves many
abstractions for the unfamiliar user to process.

For a comparison of the Lebesgue integral in various proof assistants, we refer
the reader to [2,20], and we refer to [6] for a wider comparison of real analysis
in proof assistants.

We think Coq is the most suitable tool for our goal: to prove properties on
the FEM algorithm and program, including floating point errors. Coq indeed
provides both libraries and results for the mathematical part [1,2] and the Flocq
library for floating-point arithmetic [7]. We are not aware of another proof assis-
tant able to address these two issues together.

4 https://coq.inria.fr/opam/www/.
5 https://github.com/nasa/pvslib/blob/master/measure integration/fubini tonelli.

pvs.
6 https://isabelle.in.tum.de/library/HOL/HOL-Analysis/Bochner Integration.html.
7 https://github.com/jtassarotti/coq-proba/.
8 https://github.com/math-comp/analysis/blob/master/theories/lebesgue integral.v.

https://lipn.univ-paris13.fr/coq-num-analysis/tree/Tonelli.1.0/Lebesgue
https://coq.inria.fr/opam/www/
https://github.com/nasa/pvslib/blob/master/measure_integration/fubini_tonelli.pvs
https://github.com/nasa/pvslib/blob/master/measure_integration/fubini_tonelli.pvs
https://isabelle.in.tum.de/library/HOL/HOL-Analysis/Bochner_Integration.html
https://github.com/jtassarotti/coq-proba/
https://github.com/math-comp/analysis/blob/master/theories/lebesgue_integral.v


42 S. Boldo et al.

This paper is organized as follows. Section 2 summarizes the prerequisites
and the main concepts of measure and integration theories developed in previ-
ous works. The formalization of the Lebesgue induction principle is detailed in
Sect. 3. Section 4 describes the building of the product measure, and Sect. 5 is
devoted to the building of the iterated integrals and the full proof of Tonelli’s
theorem. Finally, Sect. 6 concludes and provides directions for future work.

2 Prerequisites

Our formalizations and proofs are conducted in Coq. In this section, we present
the necessary prerequisites and libraries for our developments.

2.1 The Coquelicot Library, R and Logic

The Coquelicot9 library [5] is a conservative extension of the standard Coq library
of real numbers [10,18] supplying basic results in real analysis. It is a classical
library, and a salient feature is that it provides total functions, e.g. for limit,
derivative, and (Riemann) integral. This is consistent with classical logic, and it
means a natural way to write mathematical formulas and theorem statements.
The library also provides a formalization of the extended real numbers R :=
R ∪ {−∞,+∞} equipped, among other operations, with Rbar_lub for the least-
upper bound of subsets, and Sup_seq for the supremum of sequences.

As in the Coquelicot library, we use the full classical logic: total order on real
numbers, propositional and functional extensionality axioms, excluded middle
and choice axioms. We rely on the same axioms detailed in [2, Section 2].

2.2 Lebesgue Integration Theory

The theory of integration is commonly built upon measure theory (e.g. see [9]):
first, the measurability of subsets is defined, and then a measure associates a
nonnegative number in R+ to each measurable subset; second, the measurability
of functions is defined, and then the integral associates a nonnegative number
in R+ to each nonnegative measurable function. The following summarizes what
we need from [2].

Measurable Subsets. A measurable space (X,Σ) consists of a set X, and a
σ-algebra Σ collecting all measurable subsets. A σ-algebra is closed under most
set operations, such as complement, (countable) union and intersection. It can
be generated as the closure of a collection of subsets with respect to some of the
set operations. In our Coq developments, the generators on X : Type are typically
denoted genX : (X → Prop) → Prop, and a subset A : X → Prop belongs to the σ-
algebra generated by genX when the inductive property measurable genX A holds.

When the set X has a topological structure, it is convenient to use its Borel
σ-algebra that is generated by all the open subsets. The Borel σ-algebra of R can
also be generated by the right closed rays ([a,∞]), denoted in Coq by gen_Rbar.
9 https://gitlab.inria.fr/coquelicot/coquelicot/.

https://gitlab.inria.fr/coquelicot/coquelicot/


A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 43

Given two measurable spaces (X1, Σ1) and (X2, Σ2), the product σ-algebra
on X1 × X2 is the one generated by the products of measurable subsets of X1

and X2. Some details are provided in Sect. 4 where it is a major ingredient.

Measure. A measure space (X,Σ, μ) contains an additional measure μ: a func-
tion Σ → R that is nonnegative, homogeneous (μ(∅) = 0), and σ-additive. In
Coq, a measure is a record collecting the function μ and its three properties. In
Sect. 4, we rely on the properties of continuity from below and from above. For
all sequences (An)n∈N ∈ Σ, they respectively state for any measure μ that when
the sequence is nondecreasing, μ

(⋃
n∈N An

)
= limn→∞ μ(An) = supn∈N μ(An),

and when it is nonincreasing and one of the subsets is of finite measure, then we
have μ

(⋂
n∈N An

)
= infn∈N μ(An). Note also that the monotonicity of measures

allows to replace the limit of a nondecreasing sequence by its supremum.

Measurable Functions. Given two measurable spaces (X,Σ) and (Y, T ), a
function f : X → Y is said measurable when the preimage of every measurable
subset is measurable:10

Definition measurable_fun (f : X → Y) : Prop :=
∀ B, measurable genY B → measurable genX (fun x ⇒ B (f x)).

When Y := R, and usually T is its Borel σ-algebra, we simply say that
the function is Σ-measurable, and we use the predicate measurable_fun_Rbar

corresponding to genY := gen_Rbar. We denote the set of nonnegative measurable
functions M+(X,Σ). The “(X,Σ)” annotation may be dropped when there is
no possible confusion. Among other operations, M+ is closed under nonnegative
scalar multiplication, addition, and supremum. In Coq, we use the predicate
Mplus genX : (X → R ) → Prop that gathers nonnegativity and measurability, and
Mplus_seq genX : (N→ X → R ) → Prop for sequences of functions in M+.

Simple functions are functions whose image has finite cardinality. The set of
nonnegative measurable simple functions is denoted SF+(X,Σ). In Coq, sim-
ple functions are canonically represented by their strictly sorted list of val-
ues, and we use the predicate SFplus genX : (X → R ) → Prop. Given f ∈ M+,
mk_adapted_seq provides an adapted sequence for f , i.e. a nondecreasing sequence
(ϕn)n∈N in SF+ such that f = limn→∞ ϕn = supn∈N ϕn.

The set of measurable indicator functions is denoted IF(X,Σ). Note that
an indicator function 1A is measurable whenever its support subset A belongs
to Σ. Simple functions in SF+ are nonnegative linear combinations of indicator
functions.

Lebesgue Integral. The construction of the Lebesgue integral in M+ operates
in three steps. The first stage is to integrate indicator functions in IF by taking
the measure of their support. Then, the second stage extends the integral to
simple functions in SF+ by positive linearity. And finally, the third stage extends
it again to measurable functions in M+ by taking the supremum. In the end,

10 Note that we often rely on the Section mechanism of Coq for “hiding” some argu-
ments, here genX and genY (see https://coq.inria.fr/refman/language/core/sections.
html).

https://coq.inria.fr/refman/language/core/sections.html
https://coq.inria.fr/refman/language/core/sections.html


44 S. Boldo et al.

the integral of a function f ∈ M+ is defined as the supremum of the integrals
of all simple functions in SF+ smaller than f and formalized in [2] by

Definition LInt_p (f : X → R ) : R :=
Rbar_lub (fun z ⇒ ∃(phi : X → R) (Hphi : SF genX phi),
nonneg phi ∧ (∀ x, phi x �R f x) ∧ LInt_SFp mu phi Hphi = z).

The proof of Tonelli’s theorem relies on several properties of the integral
in M+, such as monotonicity, positive linearity, σ-additivity, and the Beppo Levi
(monotone convergence) theorem. The latter states the compatibility with the
supremum: for all nondecreasing sequences (fn)n∈N ∈ M+, the limit limn→∞ fn

(which actually equals supn∈N fn) is also in M+, and the integral-limit exchange
formula holds,

∫
supn∈N fn dμ = supn∈N

∫
fn dμ (see [2, Section 7.2]).

3 Lebesgue Induction Principle

Let (X,Σ) be a measurable space. The properties of the function spaces M+,
SF+ and IF recalled in Sect. 2.2 suggest to represent nonnegative measurable
functions by an inductive type. Indeed, functions in M+ are the supremum of
simple functions in SF+, which are themselves positive linear combinations of
indicator functions in IF . Moreover, the associated structural induction prin-
ciple is a common proof technique for several results in Lebesgue integration
theory, among which is Tonelli’s theorem as noted in [20].

In addition to Mplus recalled in Sect. 2.2, we now define the inductive type

Inductive Mp : (X → R ) → Prop :=
| Mp_charac : ∀ A, measurable genX A → Mp (charac A)
| Mp_scal : ∀ a f, 0 � a → Mp f → Mp (fun x ⇒ a ∗R f x)
| Mp_plus : ∀ f g, Mp f → Mp g → Mp (fun x ⇒ f x +R g x)
| Mp_sup : ∀ f, incr_fun_seq f → (∀ n, Mp (f n)) →

Mp (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

where charac A stands for the characteristic function of A (denoted 1A), and
incr_fun_seq f stands for the property ∀ x n, Rbar_le (f n x) (f (S n) x). In
other words, Mp is the closure of measurable characteristic functions under posi-
tive linear combination and increasing supremum.

We also have an inductive type for SF+ denoted by SFp, whose constructors
are essentially the same as the first three of Mp. Several inductive types equivalent
to Mp are defined in order to split the proof steps, for instance one is built over SFp.
They are not given here for the sake of simplicity and brevity.

The important point is then the correctness of this definition, compared to
the existing one. The only delicate part is to obtain the correctness result for
simple functions, stated as Lemma SFp_correct : ∀f, SFp f ↔ SFplus gen f.

For that, from a simple function represented by a list of values of size n + 1,
we need to construct a smaller simple function associated to a sublist of size n.
The tricky needed result is the following:



A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 45

Fig. 1. Illustration of Lemma SF_aux_cons. The value v2 taken by the simple function f
(on the left) is replaced in g (on the right) by the value v1 (in red). (Color figure online)

Lemma SF_aux_cons :
∀ (f : X → R) v1 v2 l, nonneg f → SF_aux genX f (v1 :: v2 :: l) →
let g x := f x + (v1 − v2) ∗ charac (fun t ⇒ f t = v2) x in

nonneg g ∧ SF_aux genX g (v1 :: l).

Given f ∈ SF+ and its associated canonical list �, the lemma builds a new g
in SF+ canonically associated with the list � deprived of some item v2. This
means that on the nonempty subset f−1({v2}), g must take one of the remaining
values, v1 as shown in Fig. 1, which also provides the property g � f .

More precisely, let us assume that f is of the form
∑

v∈{v1,v2}∪� v ×1f−1({v})
with v1 < v2 and v1, v2 	∈ �. Then, by setting g := f + (v1 − v2) × 1f−1({v2}),
one has g =

∑
v∈{v1}∪� v × 1f−1({v}). Thus, g belongs to SF+ with a smaller

list of values, and f = g + (v2 − v1) × 1f−1({v2}) with v2 − v1 ≥ 0. This is
tricky for two reasons. First, we cannot set g to zero on f−1({v2}) (as zero
may be a new value, defeating the point of reducing the size of the value list);
thus, the initial list must contain at least two values. Second, by proceeding the
other way around and setting g to v2 on f−1({v1}), we cannot write f as the
sum of g and a nonnegative value times an indicator function, as needed by the
constructor SFp_scal, similar to Mp_scal.

Now, we have all the ingredients to check that the definition of Mp is satis-
factory, that is to say that Mp represents M+ as Mplus already does:

Lemma Mp_correct : ∀f, Mp f ↔ Mplus genX f.

The proof is mainly based on inductions, the construction of adapted sequences
mk_adapted_seq (see Sect. 2.2), and the previous lemma.

This gives us for free the following induction lemma corresponding to Mp:

Mp_ind : ∀ P : (E → R ) → Prop,
(∀ A, measurable gen A → P (charac A)) →
(∀ a f, 0 � a → Mp f → P f → P (fun x ⇒ a ∗R f x)) →
(∀ f g, Mp f → P f → Mp g → P g → P (fun x ⇒ f x +R g x)) →
(∀ f, incr_fun_seq f → (∀ n, Mp (f n)) →

(∀ n, P (f n)) → P (fun x ⇒ Sup_seq (fun n ⇒ f n x))) →
∀ f, Mp f → P f.



46 S. Boldo et al.

This lemma can be stated informally as

Lemma 2: Lebesgue induction principle

Let P be a predicate on functions X → R. Assume that P holds on IF ,
and that it is compatible on M+ with positive linear operations and with
the supremum of nondecreasing sequences:

∀A, A ∈ Σ ⇒ P (1A), (3)
∀a ∈ R+, ∀f ∈ M+, P (f) ⇒ P (af), (4)

∀f, g ∈ M+, P (f) ∧ P (g) ⇒ P (f + g), (5)

∀(fn)n∈N ∈ M+, (∀n ∈ N, fn � fn+1 ∧ P (fn)) ⇒ P

(
sup
n∈N

fn

)
. (6)

Then, P holds on M+.

There are a few alternative statements of the Lebesgue induction principle.
For instance, we choose to have a in R and not in R in (4), as it makes an
equivalent, but simpler to use lemma. Moreover, as noted in the Lean source
code,11 it is possible to sharpen the premises of the constructors. For instance,
it may be sufficient to have in (5) simple functions that do not share the same
image value, except 0, or with disjoint supports.

4 Product Measure on a Product Space

In this section, we build the product measure for the measurable subsets of a
product space. This allows us to integrate on such a product space in Sect. 5.

Given two measure spaces (X1, Σ1, μ1) and (X2, Σ2, μ2), a product measure
on (X1 × X2, Σ1 ⊗ Σ2) induced by μ1 and μ2 is a measure μ defined on the
product σ-algebra Σ1 ⊗ Σ2 (defined in Sect. 4.1) satisfying the box property :

∀A1 ∈ Σ1, ∀A2 ∈ Σ2, μ(A1 × A2) = μ1(A1)μ2(A2). (7)

To ensure the existence and uniqueness of such a product measure, we assume
that μ1 and μ2 are σ-finite, i.e. that the full sets X1 and X2 are nondecreasing
unions of subsets of finite measure (see a detailed definition in Sect. 4.3).

A candidate product measure is first built in three steps, see Fig. 2. Firstly,
X1-sections (or “vertical” cuttings) of subsets are proved to be Σ2-measurable.
Then, the measure of sections is proved to be Σ1-measurable. The candidate
is the integral of the measure of sections. Then, this candidate is proved to
be a product measure, and the product measure is guaranteed to be unique.
The main argument for this construction is the monotone class theorem, whose
intricate proof is not detailed here (e.g. see [9, Sec 1.6], and Sect. 4.3 for a quick
presentation). It is used twice: for the measurability of the measure of sections,
and for the uniqueness of the product measure.
11 https://leanprover-community.github.io/mathlib docs/measure theory/integral/

lebesgue.html#measurable.ennreal induction.

https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/lebesgue.html#measurable.ennreal_induction
https://leanprover-community.github.io/mathlib_docs/measure_theory/integral/lebesgue.html#measurable.ennreal_induction


A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 47

Fig. 2. Flowchart for the construction of the product measure. The fill colors refer to
sections: 4.1 in brown , 4.2 in yellow , 4.3 in green , and 4.4 in blue . Dashed lines
denote the use of the listed proof arguments, that were developed for the present work.
(Color figure online)

The definition of the product σ-algebra is first reviewed in Sect. 4.1. Then,
Sect. 4.2 is dedicated to sections, and Sect. 4.3 to the measure of sections. Finally,
the existence and uniqueness of the product measure is in Sect. 4.4.

4.1 Product σ-Algebra

Let us detail the notion of product σ-algebra that was introduced in [2]. Given
two measurable spaces (X1, Σ1) and (X2, Σ2), the product σ-algebra on X1×X2

is the σ-algebra Σ1 ⊗ Σ2 generated by the products of measurable subsets:

Σ1 ⊗ Σ2 := σ-algebra generated by Σ1×Σ2 := {A1 × A2 | A1 ∈ Σ1 ∧ A2 ∈ Σ2}.

Given generators genX1 and genX2 for Σ1 and Σ2, the generator Σ1×Σ2 is denoted
in Coq by Product_Sigma_algebra genX1 genX2. It is proved in [2, Sect. 4.3] that
Σ1⊗Σ2 is also the σ-algebra generated by gen(Σ1)∪{X1}×gen(Σ2)∪{X2}. This
generator is denoted in Coq by Gen_Product genX1 genX2, and simply by genX1xX2

in the sequel. Symmetrically, genX2xX1 represents Gen_Product genX2 genX1.

4.2 Section of Subset

The notion of section consists in keeping one of the variables fixed (see Fig. 3).
Given a subset A of X1 × X2 and a point x1 ∈ X1, the X1-section of A at x1 is
the subset of X2 defined by sx1(A) := {x2 ∈ X2 | (x1, x2) ∈ A}.

Definition section (x1 : X1) (A : X1 ∗ X2 → Prop) (x2 : X2) : Prop := A (x1, x2).

Sections commute with most set operations. For example, they are compat-
ible with the empty set (sx1(∅) = ∅), the complement (sx1(A

c) = sx1(A)c),
countable union and intersection, and are monotone. Sections also satisfy the
following box property: for all subsets A1 ⊆ X1, A2 ⊆ X2, and point x1 ∈ X1,

x1 ∈ A1 ⇒ sx1(A1 × A2) = A2 and x1 	∈ A1 ⇒ sx1(A1 × A2) = ∅. (8)



48 S. Boldo et al.

Fig. 3. X1-sections of a subset A of X1 × X2 at points x1 and y1.

Then, we prove that, if a subset A is Σ1⊗Σ2-measurable, then its X1-sections
at any point in X1 are Σ2-measurable. As measurability is an inductive type,
the proof is a simple induction on the hypothesis.

Lemma section_measurable :
∀ A x1, measurable genX1xX2 A → measurable genX2 (section x1 A).

4.3 Measurability of Measure of Section

As sections are measurable (see Sect. 4.2), one can take their measure. In
Sect. 4.4, the product measure is defined as the integral of the measure of sec-
tions, but before that, we have to prove nonnegativity and measurability of these
functions. More precisely, that for all Σ1⊗Σ2-measurable subsets A, the function
(x1 
→ μ2(sx1(A))) belongs to M+(X1, Σ1).

The nonnegativity property directly follows from that of measures. The proof
of measurability goes in two stages: firstly when the measure μ2 is assumed to
be finite (i.e. when μ2(X2) is finite), and then in the more general σ-finite case.
The first stage is quite high-level; it relies on the monotone class theorem. The
second stage extends the first one by means of restricted measures.

The measure of sections is represented in Coq by the total function

Definition meas_section (A : X1 ∗ X2 → Prop) (x1 : X1) : R :=
muX2 (section x1 A).

Then, the first stage of the proof is stated in Coq as

Lemma meas_section_Mplus_finite : ∀A, is_finite_measure muX2 →
measurable genX1xX2 A → Mplus genX1 (meas_section A).

Let S be the set of measurable subsets satisfying the property to prove,

S :=
{
A ∈ Σ1 ⊗ Σ2 |

(
x1 
−→ μ2(sx1(A))

)
∈ M+(X1, Σ1)

}
.

It suffices to show that Σ1 ⊗ Σ2 ⊆ S. Firstly, S is proved to contain the gener-
ator Σ := Σ1×Σ2 of Σ1 ⊗ Σ2 (see Sect. 4.1). Then, it is proved to contain the



A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 49

algebra of sets generated by Σ (i.e. the closure of Σ under complement and finite
union). Then, S is also proved to be a monotone class, i.e. closed under mono-
tone countable union and intersection. This step uses the finiteness assumption
on μ2, and continuity from below and from above (see Sect. 2.2). And finally,
we conclude by applying the following corollary of the monotone class theorem
(with X := X1 ∗ X2, P := S, and genX := Σ) which states that if a monotone class
contains the smallest algebra of sets containing genX, then it also contains the
smallest σ-algebra containing genX.

Theorem monotone_class_Prop :
∀ P : (X → Prop) → Prop, is_Monotone_class P →
Incl (Algebra genX) P → Incl (Sigma_algebra genX) P.

Note that Incl denotes the inclusion of subsets of the power set of X.

In the second stage, the measure μ2 is supposed to be σ-finite. Thus, there
exists a nondecreasing sequence (Bn)n∈N ∈ Σ2 such that X2 =

⋃
n∈N Bn,

and μ2(Bn) is finite for all n ∈ N. Then, for each n ∈ N, the restricted mea-
sure μn

2 := (A2 ∈ Σ2 
−→ μ2(A2 ∩ Bn) ∈ R+) is proved to be a finite measure.
Thus, the previous result applies,

∀A ∈ Σ1 ⊗ Σ2, (x1 
−→ μn
2 (sx1(A))) ∈ M+(X1, Σ1).

Moreover, from the properties of sections (see Sect. 4.2) and from the continuity
from below of μ2, for all A ∈ Σ1 ⊗ Σ2 and x1 ∈ X1, we have

μ2(sx1(A)) = μ2

(
⋃

n∈N

sx1(A) ∩ Bn

)

= sup
n∈N

μn
2 (sx1(A)).

Finally, the closedness of M+(X1, Σ1) under supremum (see Sect. 2.2) concludes
the proof. Thus, the lemma in the σ-finite case holds,

Lemma meas_section_Mplus_sigma_finite :
∀ A, is_sigma_finite_measure muX2 →
measurable genX1xX2 A → Mplus genX1 (meas_section A).

Note that from (8), the measure of the section of a box reads

∀A1 ∈ Σ1, ∀A2 ∈ Σ2, (x1 
−→ μ2(sx1(A1 × A2))) = μ2(A2)1A1 . (9)

4.4 Existence and Uniqueness of the Product Measure

As the measures of sections belong to M+ (see Sect. 4.3), one can take their
integral. The candidate product measure is the function defined on the product
σ-algebra Σ1 ⊗ Σ2 (see Sect. 4.1) by (μ1 ⊗ μ2)(A) :=

∫
X1

μ2(sx1(A)) dμ1,

Definition meas_prod_meas (A : X1 ∗ X2 → Prop) : R :=
LInt_p muX1 (meas_section muX2 A).



50 S. Boldo et al.

We easily deduce that this candidate function is both nonnegative and equal
to zero on the empty set. The σ-additivity property is obtained by means of the
σ-additivity of the integral (see Sect. 2.2), and of the measure μ2. This proves
that the candidate is a measure, and that we can instantiate the record defining
the product measure meas_prod as an object of type measure (see Sect. 2.2), so
all the proved results on measures are available.

Moreover, Eq. (9), and the positive linearity of the integral ensure the box
property (7), thus making meas_prod a product measure.

Product measures are proved to keep the finiteness, or σ-finiteness, property
of the initial measures μ1 and μ2. Then, the proof of the uniqueness of the
product measure follows exactly the same path as for the measurability of the
measure of sections (see Sect. 4.3). Firstly, when the measures μ1 and μ2 are
finite, we introduce two (finite) product measures m and m̃ induced by μ1 and μ2,
i.e. both satisfying (7). The set S def.= {A ∈ Σ1 ⊗ Σ2 |m(A) = m̃(A)} is proved
to contain Σ1 ⊗ Σ2 using monotone_class_Prop, which shows uniqueness. Then,
the result is extended to σ-finite measures by means of restricted measures.

5 Tonelli’s Theorem

With the product measure built in Sect. 4, we can now consider integration on
a product space. As in Sect. 4, we assume that the measures are σ-finite, which
ensures the existence and uniqueness of the product measure.

This section addresses the proof of Tonelli’s theorem that allows to compute
a double integral on a product space by integrating successively with respect
to each variable, either way. Besides the following formulas, the theorem also
states measurability properties that ensure the legitimacy of all integrals (see
Theorem 1):

∫

X1×X2

f d(μ1 ⊗ μ2) =
∫

X1

(∫

X2

f dμ2

)
dμ1 (10)

=
∫

X2

(∫

X1

f dμ1

)
dμ2. (11)

Similarly to the process used in Sect. 4, the iterated integral (right-hand side
of (10)) is built in three steps, see Fig. 4. Firstly, X1-sections of functions are
proved to be Σ2-measurable. Then, the integral (in X2) of sections of functions is
proved to be Σ1-measurable. And the iterated integral is the integral (in X1) of
the integral (in X2) of the sections of functions. Finally, Formula (10) is proved,
and then (11) is deduced from the latter by a swap of variables relying both on
a change of measure and on the uniqueness of the product measure. The main
argument for this proof is the Lebesgue induction principle (see Sect. 3). It is
used twice: for the measurability of the integral of sections of functions together
with the first Tonelli formula, and for the change-of-measure formula.

Section 5.1 is dedicated to sections of functions, and Sect. 5.2 to the iterated
integral and the proof of the first formula of Tonelli’s theorem. Finally, the full
proof of Tonelli’s theorem is obtained in Sect. 5.3.



A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 51

Fig. 4. Flowchart for the construction of the iterated integrals on a product space. The
fill colors refer to sections: 5.1 in yellow , 5.2 in green , and 5.3 in blue . Dashed lines
denote the use of the listed proof arguments, that were developed for the present work.
(Color figure online)

5.1 Section of Function

Similarly to Sect. 4.2, given a numeric function f : X1 × X2 → R and x1 ∈ X1,
the X1-section of f at x1 is the partial application fx1 := (x2 
→ f(x1, x2)).

Definition section_fun (x1 : X1) (f : X1 ∗ X2 → R ) (x2 : X2) : R := f (x1, x2).

From the measurability of sections of subsets, we deduce that, if f belongs
to M+(X1 × X2, Σ1 ⊗ Σ2), then its X1-sections are in M+(X2, Σ2).

Lemma section_fun_Mplus :
∀ f x1, Mplus genX1xX2 f → Mplus genX2 (section_fun x1 f).

Symmetrically, for all x2 ∈ X2, we introduce the X2-section of f at x2, the
partial application with respect to the second variable, fx2 := (x1 
→ f(x1, x2)).

5.2 Iterated Integral and the First Formula of Tonelli’s Theorem

As sections of functions are nonnegative and Σ2-measurable (see Sect. 5.1), one
can take their integral (in X2). For all functions f ∈ M+(X1 × X2, Σ1 ⊗ Σ2),
we define If :=

(
x1 
−→

∫
X2

fx1 dμ2

)
,

Definition LInt_p_section_fun (f : X1 ∗ X2 → R ) x1 : R :=
LInt_p muX2 (section_fun x1 f).

The iterated integral corresponds to integrating once more (in X1), but one
must first establish that If ∈ M+(X1, Σ1). The nonnegativity result directly
follows from the monotonicity of the integral (see Sect. 2.2). The general mea-
surability result and the first Tonelli formula (10), are proved by means of the
Lebesgue induction principle of Sect. 3.



52 S. Boldo et al.

The function I := (f 
→ If ) is shown monotone and positive linear. For
all x1 ∈ X1, we have I1A

(x1) = μ2(sx1(A)). And from the Beppo Levi (mono-
tone convergence) theorem (see Sect. 2.2), the function I commutes with the
supremum: for all nondecreasing sequence (fn)n∈N in M+(X1 × X2, Σ1 ⊗ Σ2),
Isupn∈N fn

= supn∈N Ifn
.

Let P0 f := Mplus genX1 (LInt_p_section_fun f) be the predicate of the non-
negativity and measurability of If , of type (X1 ∗ X2 → R ) → Prop. Then, previous
formulas and closedness properties of M+ (see Sect. 2.2) provide the compat-
ibility of P0 with indicator functions, positive linearity, and the supremum of
nondecreasing sequences. For instance, we have

Lemma LInt_p_section_fun_measurable_plus :
∀ f g, Mplus genX1xX2 f → Mplus genX1xX2 g →
P0 f → P0 g → P0 (fun x ⇒ f x +R g x).

Let us now define the predicate P of the existence of the iterated integral
(granted by P0) and the validity of the first Tonelli formula of (10):

Let P (f : X1 ∗ X2 → R ) : Prop :=
P0 f ∧ LInt_p meas_prod f = LInt_p muX1 (LInt_p_section_fun f).

where meas_prod is the product measure defined in Sect. 4.4. Again, the com-
patibility of P with indicator functions, positive linearity, and the supremum is
easily obtained from the previous results. For instance, we have

Lemma LInt_p_section_fun_meas_prod_Sup_seq :
∀ f, incr_fun_seq f → Mplus_seq genX1xX2 f →

(∀ n, P (f n)) → P (fun x ⇒ Sup_seq (fun n ⇒ f n x)).

Now, the first part of Tonelli’s theorem (10) can be stated in Coq as

Lemma Tonelli_aux1 : ∀f, Mplus genX1xX2 f →
Mplus genX1 (LInt_p_section_fun f) ∧
LInt_p meas_prod f = LInt_p muX1 (LInt_p_section_fun f).

Its proof is a direct application of the Lebesgue induction principle (see Sect. 3)
with the predicate P, as all the premises are already shown.

5.3 Change of Measure, Second Formula, and Tonelli’s Theorem

There is no doubt that the second formula (11) can be proved using the same path
as the first claim: use sections with respect to the second variable, define Jf (see
Fig. 4), prove Jf ∈ M+ and the equality by the Lebesgue induction principle.
This would be easy, but pretty long and redundant. Instead, we have exploited
the “symmetry” between the right-hand sides of both formulas. The first idea is
a simple exchange of the roles of the two variables that expresses the previous
result for functions of type X2 ∗ X1 → R . And then, the difficult part is a change
of measure that brings back to the target type X1 ∗ X2 → R .

The change of measure is an application of the concept of image measure (e.g.
see [9, Sect. 2.6]), also called pushforward measure as the measure is transported
between σ-algebras, here from Σ2 ⊗ Σ1 to Σ1 ⊗ Σ2.



A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 53

Change of Measure. Let (X,Σ) and (Y, T ) be measurable spaces. Let h :
X → Y be a function and Mh be a proof of its measurability. Let μ be a measure
on (X,Σ). The image measure of μ by h is the measure on (Y, T ) defined
by h#μ := μ ◦ h−1, and denoted in Coq by meas_image h Mh mu. The proof that it
is indeed a measure directly follows from the measure properties of μ, and Mh.

Now, given g ∈ M+(Y, T ), the compatibility of measurability with the com-
position of functions provides g ◦ h ∈ M+(X,Σ), and one has the change-of-
measure formula:

∫
Y

g d(h#μ) =
∫

X
g ◦ h dμ.

Lemma LInt_p_change_meas : ∀g, Mplus genY g →
LInt_p (meas_image h Mh mu) g = LInt_p mu (fun x ⇒ g (h x)).

The proof follows the Lebesgue induction principle with the predicate P corre-
sponding to the formula. Again, the compatibility of P with indicator functions,
positive linearity, and the supremum follows from properties of the integral, such
as positive linearity and the Beppo Levi (monotone convergence) theorem.

Swap and Second Formula. Using Sect. 4.4, let μ12 := μ1⊗μ2 be the product
measure on the product space (X1 × X2, Σ1 ⊗ Σ2) induced by μ1 and μ2. In
Coq, muX1xX2 := meas_prod muX1 muX2. Symmetrically, let μ21 := μ2 ⊗ μ1 be the
product measure on (X2×X1, Σ2⊗Σ1). In Coq, muX2xX1 := meas_prod muX2 muX1.
Let h := (x2, x1) 
→ (x1, x2) be the swap of variables. The image measure h#μ21

is also proved to be a product measure on (X1 × X2, Σ1 ⊗ Σ2) induced by μ1

and μ2. In Coq, meas_prod_swap := meas_image h Mh muX2xX1.
Now, let f ∈ M+(X1×X2, Σ1⊗Σ2). One has f ◦h ∈ M+(X2×X1, Σ2⊗Σ1),

and using the section with respect to the second variable (see Sect. 5.1),

∀x2 ∈ X2, fx2 := (x1 
−→ f(x1, x2)) = (x1 
−→ f ◦h(x2, x1)) = (f ◦h)x2 . (12)

We then deduce
∫

X1×X2

f dμ12
(a)
=

∫

X1×X2

f d(h#μ21)
(b)
=

∫

X2×X1

f ◦ h dμ21

(c)
=

∫

X2

(∫

X1

(f ◦ h)x2 dμ1

)
dμ2

(d)
=

∫

X2

(∫

X1

fx2 dμ1

)
dμ2.

The uniqueness of the product measure of Sect. 4.4 yields h#μ21 = μ12, thus
gives (a). The above change-of-measure formula gives (b). The first formula of
Tonelli’s theorem (10) applied to X2×X1 gives (c), and Eq. (12) gives (d). With
swap f denoting f ◦ h, the second part of Tonelli’s theorem (11) is

Lemma Tonelli_aux2 : ∀f, Mplus genX1xX2 f →
Mplus genX2 (LInt_p_section_fun muX1 (swap f)) ∧
LInt_p meas_prod_swap f = LInt_p muX2 (LInt_p_section_fun muX1 (swap f)).

Statement of Tonelli’s Theorem. Finally, assuming that X1 and X2 are non-
empty and that μ1 and μ2 are σ-finite measures, we have (a more comprehensive
theorem legitimating of all integrals is also provided as Theorem Tonelli):



54 S. Boldo et al.

Lemma Tonelli_formulas : ∀f, Mplus genX1xX2 f →
LInt_p muX1xX2 f = LInt_p muX1 (LInt_p_section_fun muX2 f) ∧
LInt_p muX1xX2 f = LInt_p muX2 (LInt_p_section_fun muX1 (swap f)).

6 Conclusion and Perspectives

This paper is devoted to the full formal proof of Tonelli’s theorem. An original
point is the definition of nonnegative measurable functions as an inductive type.
It is proved equivalent to the usual mathematical definition, and leads to a useful
induction scheme. Although the Lebesgue induction principle is present in other
works such as [20], we have not seen its construction from an inductive type in
the literature.

To achieve this proof, we have also formalized in Coq generic results and
constructions such as the monotone class theorem, restricted measures, image
measures, and a change-of-measure formula for the integral. The latter, combined
with a swap of variables, has prevented redundancies in our proofs.

This work confirms that the library we are developing, in line with the choices
of the Coquelicot library, is rather comprehensive and usable. First, this work
has resulted in few additions in the core of the library, except for the inductive
definition for M+ (related to the needed Lebesgue induction principle). Second,
both Coq and the library seem easy to learn, as one author was a Coq novice at
the beginning of this work.

After Tonelli’s theorem on nonnegative measurable functions, the natural
extension is to prove Fubini’s theorem. It provides the same formulas for inte-
grable functions with an arbitrary sign, or taking their values in a Banach space
when using the Bochner integral [4]. We can also take inspiration from [20], in
particular for the “marginal integral” to handle finitary Cartesian products.

Our long-term purpose is to formally prove the correctness of parts of a
library implementing the Finite Element Method, which is used to compute
approximated solutions of Partial Differential Equations (PDEs). We already
formalized the Lax–Milgram theorem [1], one of the key ingredients to numer-
ically solve PDEs, and we need to build suitable Hilbert functional spaces on
which to apply it. The target candidates are the Sobolev spaces, such as H1,
which represents square-integrable functions with square-integrable first deriva-
tives. Of course, this will involve the formalization of the Lp Lebesgue spaces as
complete normed vector spaces, and parts of the distribution theory [19].

References

1. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: A Coq formal proof
of the Lax–Milgram theorem. In: Proceedings of the 6th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs (CPP 2017), pp. 79–89.
Association for Computing Machinery, New York (2017). https://hal.inria.fr/hal-
01391578/

2. Boldo, S., Clément, F., Faissole, F., Martin, V., Mayero, M.: A Coq formalization of
Lebesgue integration of nonnegative functions. J. Autom. Reason. 66(2), 175–213
(2021). https://hal.inria.fr/hal-03471095/

https://hal.inria.fr/hal-01391578/
https://hal.inria.fr/hal-01391578/
https://hal.inria.fr/hal-03471095/


A Coq Formalization of Lebesgue Induction Principle and Tonelli’s Theorem 55

3. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
J. Autom. Reason. 50(4), 423–456 (2013). https://hal.inria.fr/hal-00649240/

4. Boldo, S., Clément, F., Leclerc, L.: A Coq formalization of the Bochner integral
(2022). https://hal.inria.fr/hal-03516749/

5. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015). https://hal.inria.fr/hal-
00860648/

6. Boldo, S., Lelay, C., Melquiond, G.: Formalization of real analysis: a survey of
proof assistants and libraries. Math. Struct. Comput. Sci. 26(7), 1196–1233 (2016).
https://hal.inria.fr/hal-00806920/

7. Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algo-
rithms in Coq. In: Proceedings of the IEEE 20th Symposium on Computer Arith-
metic (ARITH-20), pp. 243–252. IEEE (2011). https://doi.org/10.1109/ARITH.
2011.40

8. Clément, F., Martin, V.: Lebesgue integration. Detailed proofs to be formalized in
Coq. Research Report RR-9386, Inria, Paris (2021). Version 2. https://hal.inria.
fr/hal-03105815v2

9. Cohn, D.L.: Measure Theory, 2nd edn. Birkhäuser, New York (2013). https://doi.
org/10.1007/978-1-4614-6956-8

10. The Coq reference manual. https://coq.inria.fr/refman/
11. Endou, N.: Fubini’s theorem. Formaliz. Math. 27(1), 67–74 (2019). https://doi.

org/10.2478/forma-2019-0007
12. Gallouët, T., Herbin, R.: Mesure, intégration, probabilités. Ellipses Edition Mar-

keting (2013). https://hal.science/hal-01283567/. In French
13. Harrison, J.: The HOL light theory of Euclidean space. J. Autom. Reason. 50(2),

173–190 (2013). https://doi.org/10.1007/s10817-012-9250-9
14. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van

Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 135–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22863-6 12

15. Lebesgue, H.L.: Leçons sur l’intégration et la recherche des fonctions primitives
professées au Collège de France. Cambridge University Press, Cambridge (2009).
Reprint of the 1904 original [Gauthier-Villars, Paris]. https://doi.org/10.1017/
CBO9780511701825. In French

16. Lester, D.R.: Topology in PVS: continuous mathematics with applications. In:
Proceedings of the 2nd Workshop on Automated Formal Methods (AFM 2007),
pp. 11–20 (2007). https://doi.org/10.1145/1345169.1345171

17. Maisonneuve, F.: Mathématiques 2 : Intégration, transformations, intégrales et
applications - Cours et exercices. Presses de l’École des Mines (2014). In French

18. Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et
numérique. Université Paris VI, Thèse de doctorat (2001). https://www-lipn.univ-
paris13.fr/∼mayero/publis/these-mayero.ps.gz. In French

19. Schwartz, L.: Théorie des Distributions, 2nd edn. Hermann, Paris (1966). 1st edi-
tion in 1950–1951. In French

20. van Doorn, F.: Formalized Haar measure. In: Cohen, L., Kaliszyk, C. (eds.) Pro-
ceedings of the 12th International Conference on Interactive Theorem Proving.
LIPIcs, vol. 193, pp. 18:1–18:17. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik (2021). https://doi.org/10.4230/LIPIcs.ITP.2021.18

https://hal.inria.fr/hal-00649240/
https://hal.inria.fr/hal-03516749/
https://hal.inria.fr/hal-00860648/
https://hal.inria.fr/hal-00860648/
https://hal.inria.fr/hal-00806920/
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1109/ARITH.2011.40
https://hal.inria.fr/hal-03105815v2
https://hal.inria.fr/hal-03105815v2
https://doi.org/10.1007/978-1-4614-6956-8
https://doi.org/10.1007/978-1-4614-6956-8
https://coq.inria.fr/refman/
https://doi.org/10.2478/forma-2019-0007
https://doi.org/10.2478/forma-2019-0007
https://hal.science/hal-01283567/
https://doi.org/10.1007/s10817-012-9250-9
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1017/CBO9780511701825
https://doi.org/10.1017/CBO9780511701825
https://doi.org/10.1145/1345169.1345171
https://www-lipn.univ-paris13.fr/~mayero/publis/these-mayero.ps.gz
https://www-lipn.univ-paris13.fr/~mayero/publis/these-mayero.ps.gz
https://doi.org/10.4230/LIPIcs.ITP.2021.18


Railway Scheduling Using Boolean
Satisfiability Modulo Simulations

Tomáš Kolárik1(B) and Stefan Ratschan2

1 Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czechia

kolarto5@fit.cvut.cz
2 Institute of Computer Science,

The Czech Academy of Sciences, Prague, Czechia

stefan.ratschan@cs.cas.cz

Abstract. Railway scheduling is a problem that exhibits both non-
trivial discrete and continuous behavior. In this paper, we model this
problem using a combination of SAT and ordinary differential equations
(SAT modulo ODE). In addition, we adapt our existing method for solv-
ing such problems in such a way that the resulting solver is competitive
with methods based on dedicated railway simulators while being more
general and extensible.

1 Introduction

Existing benchmark problems for SAT modulo ODE [5, 6] do not exhibit com-
plex discrete state space. In this paper, we develop a benchmark problem that
combines a non-trivial propositional part with differential equations. Moreover,
we apply and improve a corresponding algorithm [9] that tightly integrates SAT
and numeric simulations of differential equations. The resulting tool is available
online [11].

The benchmark problem comes from the domain of railway scheduling, and is
inspired by an approach to railway design capacity analysis [13], that combines
a SAT solver with a railway simulator. The authors of that approach, referring
to SAT modulo non-linear real arithmetic, “found these solvers insufficiently
scalable for real-world problem sizes”. Our experiments show that it indeed
is possible to realistically handle continuous dynamics in the railway domain
directly by SAT modulo theory solvers. A major difficulty lies in modeling the
fact that trains sometimes have to switch to a deceleration phase to obey velocity
limits. Here, it is non-trivial to predict when such a switch must happen when
modeling dynamics based on differential equations.

We are not aware of any other approach to railway scheduling based on SAT
modulo theories with realistic modeling of continuous dynamics. The mentioned
approach [13] solves the problem of design capacity analysis, a different, but
related problem. The main differences are:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 56–73, 2023.
https://doi.org/10.1007/978-3-031-27481-7_5

https://doi.org/10.5281/zenodo.7351881
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_5&domain=pdf
http://orcid.org/0000-0002-7207-5197
http://orcid.org/0000-0003-1710-1513
https://doi.org/10.1007/978-3-031-27481-7_5


Railway Scheduling Using Boolean Satisfiability Modulo Simulations 57

– Instead of an ad-hoc combination of SAT and a simulator, we model the
problem in a precisely defined Satisfiability Modulo Theories language [9]. As
a result, numeric (e.g. timing) constraints can appear throughout a formula.

– Our model allows rich timing constraints, including their Boolean combina-
tions. Consequently, trains are allowed to keep waiting in stations, or before
entering the network, even in cases when their routes do not collide with
the other trains. Hence, our model may exhibit more nondeterminism which
makes the scheduling problem more difficult.

– The dynamics of trains is an integral, but modifiable part of the model,
instead of being hidden in a simulator.

Both approaches have different strong and weak aspects of the run-time perfor-
mance.

As in the case of any formal model of real-world problems, also here, we
abstract from certain aspects of the problem domain. Our model does not take
into account railway policies, signaling principles, and the like, as Luteberget et
al. [13] do. Especially we do not claim ETCS (European Train Control System)
compatibility of our model, meaning that it may be less suitable for railway
systems based on signal interlocking. However, not all railways use such a mech-
anism, for example urban railways may leave the responsibility to the driver.

Railway route planning can also be viewed as a multi-agent path finding
problem [16], where trains are viewed as agents. However, in this area, usually
much simpler models of continuous behavior are used [1]. On the other hand, the
resulting plans are often minimized wrt. a given parameter, for example, sum of
lengths of the agents’ paths, while we do not optimize at all.

Of course, many other approaches dedicated to railway scheduling exist.
Some support only limited precision, or work only under certain assumptions,
for example, fixed routes, or not taking into account limited track capacity. Some
use networks that were transformed from a microscopic level to an aggregated,
macroscopic level [17]. Also, probabilistic methods exist [18, 8].

There are approaches that are quite accurate, but still ignore some constraints
that we take into account. For example, not all combinations of possible train
paths are considered [19], or bi-directional tracks are replaced by pairs of one-
directional tracks, and simpler train dynamics is used [7].

The paper is structured as follows. We start with an explanation of the
problem area in Sect. 2. We briefly describe the used theory in Sect. 3, and present
encoding of the problem as a formula of that theory in Sect. 4. The algorithm
we use to solve the problem follows in Sect. 5. Finally, in Sect. 6, we analyze the
behavior of our approach and of [13] on selected case studies. Some parts of the
study are omitted due to lack of space, but are available in an extended version
of the paper [10].

2 Problem Overview

This section describes the overall problem and introduces related keywords. We
start with an illustrative example.



58 T. Kolárik and S. Ratschan

2.1 Example

In Fig. 1, one can see a model of a rail network with three trains. We distinguish
the model itself and the required constraints on trains.

Fig. 1. An example of a rail network graph with trains (Color figure online)

The model consists of a graph of the network, and of abstracted trains. Each
train is described by its physical properties, for example length, velocity limit,
etc. The red train is a freight train, longer and slower than the other, passenger
trains. For illustrative reasons, the boundary nodes of the graph are distinguished
from the others. The thicker an edge is, the faster railroad it represents. Nodes
that model stations are labeled with a number. To support modeling of railway
junctions, nodes of the graph have two sides, illustrated by black and blue colors
in the figure. In order to avoid physically impossible (e.g. too sharp) turns, a train
has to visit both sides when transferring via such a double-sided node.

Constraints. Examples of constraints, that the trains in the figure might be
required to satisfy, are:

– The blue train must start from the boundary A, and has no further require-
ments on visiting nodes.

– The green train must start from A, and is in addition required to visit node 3,
where it will stop. Eventually, the train must continue to node D afterwards.

– The red train must start at D and exit at A, with no other required visits.
– Possible orderings of the trains: the blue train must start before the green

train; the red train starts before the green train approaches node 1.
– Possible timings of the trains: the red train must arrive at A within 10 min

after entering; the green train must wait at node 3 for at least 2 min.

The result of the search is a plan that demonstrates how the trains can move
through the network while satisfying the given constraints and with no collisions
of trains.



Railway Scheduling Using Boolean Satisfiability Modulo Simulations 59

2.2 General Problem Statement

The task is to find a plan for a given set of trains and a railway network (viewed
as a graph) such that all specified places are visited, meeting all timing and
ordering constraints, and with no collisions of trains.

We assume that each train can only enter the network at a boundary, and
that at the beginning of the whole search, there are no trains present in the
network. Also, trains are not allowed to reverse their direction.

2.3 Railway Model

Infrastructure. An infrastructure (or a network) is modeled using a graph of
vertices called nodes and edges called segments. Each segment has a length and
a velocity limit. Only a single train is allowed inside a segment and the chosen
next segment where the train currently aims to. A node that is not boundary
either may or may not allow stopping, where nodes that allow stopping model
stations. The fact that a train shall stop at a node is not modeled explicitly,
but by temporarily setting the velocity limit of the train’s chosen next segment
(which the other trains are not allowed to enter) to zero. After stopping, trains
may wait in stations for a limited time, or may not.

As explained in the example (Sect. 2.1), the graph is a double-vertex
graph [14], which is commonly used for modeling railways with junctions [17].

We assume that each segment is at least as long as the longest train (Fig. 1
violates this property). The model directly supports infrastructures with cycles
and looping of trains, in contrast with [13] where this needs an extra effort.

Train. A train T has an acceleration and a deceleration rate, a velocity limit,
and a length. The dynamics of trains is deterministic—each train drives at the
maximum possible speed, which, however, depends on discrete decisions—the
choice of segments on the train’s way, and where to stop. Such a model already
allows meaningful experiments, but can be easily extended.

2.4 Constraints

Connection Constraints. A connection is a mapping of a train to a non-empty
list of nodes that must be visited in the given order. For instance, Tgreen �→ (A, 3)
is the connection of the green train from the example. The user must specify
exactly one connection for each train. The list can contain boundary nodes too,
but only as the first or the last element. The first element of the list indeed must
be a boundary node. Trains always stop at the listed nodes that model stations,
and never stop at any other stations.

The starting node is the first node in the list. A connection may have several
ending nodes—any boundary node terminating a path following the given con-
nection. For example, in Fig. 1, given a connection list (A, 2), A is the starting
node and C,D are two possible ending nodes, but for connection list (A, 2,D),
D is the only ending node. We call segments incident with the starting node
starting segments, and segments incident with an ending node ending segments.



60 T. Kolárik and S. Ratschan

Schedule Constraints. Schedule constraints are optional constraints that com-
pare the time when a train either arrives at or departs from a node. In the
following, we will denote by arrival(T,N) (or departure(T,N)) the time when
train T arrives at (or departs from) node N . To allow both variants in a for-
mula, we will write visit(T,N), possibly distinguishing several occurrences by
indices (visit1(T1, N1), visit2(T2, N2), etc.). Schedule constraints assume that all
mentioned visits are the consequence of some connection constraint.

We allow two types of schedule constraints, ordering, and timing constraints.
An ordering enforces two visits to happen in a given order. It has the form

visit1(T1, N1) ◦ visit2(T2, N2), (1)

where ◦ is one of {<,≤}. A relative timing enforces a time constraint on a
transfer, that is, on the time from one visit to another. It has the form

transfer(visit1(T1, N1), visit2(T2, N2)) ◦ ξ, (2)

where transfer(v1, v2) := v2 − v1, ◦ ∈ {<,≤, >,≥}, and ξ ∈ Q≥0. We support
absolute timings, as well, but they are omitted here. In the case of [13], the only
supported timing constraints are transfer(arrival(T1, N1), arrival(T2, N2)) < ξ.

3 Theory Description

For encoding our problem, we use a Satisfiability Modulo Theories (SMT) [15]
language. For this, we use a theory for reasoning about ordinary differential
equations (ODEs) that we introduced earlier [9]. In this section, we provide
an informal summary of this theory.

In addition to variables ranging over the real numbers, together with the
usual operations on them, the theory allows variables ranging over real functions
[0, τ ] → R, that we call functional variables. Here τ ∈ R≥0. Functional variables
can be constrained by differential constraints of the form ẋ = η with x being
a functional variable and η a term containing functional and real variables; by
invariants that have to hold over the whole interval [0, τ ], and by real-valued
constraints that restrict the initial value init or final value final of a functional
variable. For example, the formula init(x ) = 0 ∧ ẋ = x ∧ x ≤ 10 restricts the
initial value of the functional variable x to zero, restricts its evolution over time
by the differential equation ẋ = x , and restricts x to functions for which the
upper bound τ of the time interval is such that the invariant x ≤ 10 holds over
the whole interval.

Since this theory is undecidable [3], we also introduced an alternative seman-
tics that approximates the mathematical semantics using floating-point num-
bers [4] and simulations of ODEs (i.e. numeric integrations). Using this seman-
tics, the theory is not only decidable in the theoretical sense, but also efficiently
decidable for formulas of the type occurring in this paper. We will use this
semantics in the algorithm in Sect. 5 and in all our experiments in Sect. 6.

In contrast to the original semantics [9], where simulations could be termi-
nated before violation of an invariant, here we always continue simulations until



Railway Scheduling Using Boolean Satisfiability Modulo Simulations 61

an invariant is violated. As a consequence the length of each interval [0, τ ] is
completely determined and all nondeterminism in the model described below
will stem from discrete decisions.

4 Encoding and Formalization

In this section, we present an encoding of the planning problem from Sect. 2
as a formula in the theory described in Sect. 3. All of the presented formulas
are generated automatically, from user input in the form of a preprocessing
language [12]. The user input consists of specification of an infrastructure and
of trains, and of connections and schedule constraints.

We unroll the planning problem in a similar way as in bounded model check-
ing (BMC) [2]. Unrolling ranges over discrete steps 0, 1, . . . , J . A variable x spe-
cific to a discrete step j has the form x[j]. All trains are modeled synchronously,
meaning that every discrete step j corresponds to the same global moment in
time. Functional variables specific to one and the same discrete step will have
the same length τ [j] of integration, from which we get global time by defining
real variables t[j] s.t. t[0] = 0 and for all j > 0, t[j] = t[j−1] + τ [j−1]. In the case
of [13], the planner considers longer units for unrolling where a step may consist
of movements over several segments, and within such a step all deterministic
discrete constraints are handled by the simulator.

We use one-hot encoding for some Boolean variables for increased readabil-
ity. Moreover, we improve readability by using an abbreviation ite (cond , a, b)
for

(
(cond ⇒ a) ∧ (¬cond ⇒ b)

)
.

4.1 Railway Model

We only present the most significant constraints that are necessary for under-
standing the principles of the model. See the extended version of the paper [10]
for more details.

Train. A train T ∈ T is defined by fixed constants T.A, T.B, T.Vmax , and T.L
that represent the properties of the train (acceleration, deceleration, velocity
limit and length); T is just a prefix of the constant names, representing an iden-
tifier of the train. In a similar way, the state of each train is described by a set of
variables, distinguished by a discrete step j. The most important variables are:

– Booleans: T.mode [j], mode ∈ M = {idle, steady , acc, brake} (steady means
the train does not accelerate, but in mode idle, in addition, it has zero veloc-
ity); T.away [j], T.enter [j] and T.finished [j] (whether the train is currently
outside the graph, whether it is entering, and whether it already finished);
and T.pos S [j], pos ∈P = {back , front ,next}, for a segment S ∈S (the train’s
back and front being in S; whether S is selected as the next segment).

– Reals: T.a[j] (acceleration/deceleration rate); T.dmax
[j] (remaining distance

to the end of the current segments, either with the back or the front of the
train, i.e., for segments S where T.back S [j] or T.front S [j] holds); T.vmax

[j]



62 T. Kolárik and S. Ratschan

Fig. 2. Possible train trajectories and their limits

(velocity limit of the current segments and the train itself); and T.next vmax
[j]

(velocity limit of the selected next segment S, for which T.next S [j] holds).
– Functional variables: T.d [j], init(T.d [j]) = 0 (relative distance traveled from

the start of unrolling step j), and T.v [j] (current velocity). The functional
variables range over

[
0, τ [j]

]
, where a timeout τ [j] < ρ, with the constant ρ

user-defined, must hold. This allows decisions on when to enter the network
or when to leave the current station to happen in certain intervals—if the
timeout is too short, the number of necessary discrete steps may be too high;
if it is too long, a plan where trains stay idle for too long may be returned.

Result. The resulting plan is represented by the global variables t[j] and the
variables T.idle [j], T.front S [j] and T.finished [j], for all trains T , segments S
and discrete steps j. All other variables are either auxiliary or are completely
determined by the plan and the model described in this subsection.

Dynamic Phenomena

Mode conditions. Unlike in capacity analysis [13], where behavior is determin-
istic, as soon as routes have been chosen, here continuous dynamics depends on
each train’s mode, where a train can choose to stay idle in stations, or before
entering the network. Each train T is always in exactly one dynamic mode, and
according to this mode, an appropriate (constant) acceleration rate is set:

(
(T.idle [j] ∨ T.steady [j]) ⇔ T.a[j] = 0

)

∧
(
T.acc[j] ⇔ T.a[j] = T.A

)
∧

(
T.brake [j] ⇔ T.a[j] = −T.B

)
.

(3)

There are also other restrictions, like that braking is not possible if the veloc-
ity is already zero, or that steady mode is not allowed if acceleration is possible.



Railway Scheduling Using Boolean Satisfiability Modulo Simulations 63

Dynamics. We model the dynamics of trains using the basic laws of motion, but
it is possible to extend the model such that it exhibits more complex phenomena.
Figure 2 illustrates how the resulting trajectories of functional variables can look
like (T is omitted from the variable names). Both functions v and d are limited by
a corresponding dashed line, a constant vmax

[·] in the case of the function v , and
a distance limit in the case of d , either in the form of a straight line, representing
dmax

[·], or a curve, that stands for the function brake d [·] that is about to be
discussed further. The limit vmax

[j+2] is equivalent to next vmax
[j].

Since trains are modeled synchronously, the dynamics of the trains is repre-
sented mainly by one system of ODEs—for each train T , and discrete step j:

T.ḋ [j] = T.v [j] ∧ T.v̇ [j] = T.a[j]

∧ T.d [j] ≤ T.dmax
[j] ∧ T.v [j] ∈

[
0, T.vmax

[j]
]
.

(4)

The first row of the formula shows particular ODEs, and the second the invari-
ants. Thus, each integration ends when a distance limit or a velocity limit is
exceeded, or when the timeout is reached, which was explained in the descrip-
tion of functional variables.

For the definition of the variables T.αmax
[j], α ∈ {d , v}, we use auxiliary vari-

ables T.pos αmax
[j], pos ∈ P which correspond to the limits of the current and

the next segments, as mentioned in the description of the real variables. More-
over, T.min αmax

[j] := min{T.back αmax
[j], T.front αmax

[j]}. Then, the distance
limit is defined by T.dmax

[j] = T.min dmax
[j] and the velocity limit as

ite
(
init(T.v [j]) ≥ T.next vmax

[j],

T.vmax
[j] = min{T.Vmax , T.min vmax

[j]},

T.vmax
[j] = min{T.Vmax , T.min vmax

[j], T.next vmax
[j]}

)
,

(5)

where T.next vmax
[j] is used to ensure correctness of braking prediction.

Braking prediction. In Fig. 2, within stage j, one can see that the function d is
limited by a yet unexplained function brake d [j]. Such a function is necessary
for prediction of the moment when a train has to start braking to obey the
velocity limit of the next segment—in cases when T.v [j] > T.next vmax

[j] (if the
train is not already braking). The main idea is to compute the braking trajectory
backward from the point where the train enters the next segment, synchronously
with the actual forward dynamics. Details follow.

The prediction depends on the relation init(T.v [j]) ◦ T.next vmax
[j], where

◦ ∈ {=, >}. First, let us assume that init(T.v [j]) = T.next vmax
[j]. To make

T.v [j] > T.next vmax
[j] happen eventually, T.acc[j] must hold. Such a case would

correspond to Fig. 2, if next vmax
[j] was in the place of the separator λ. Since

T.a[j] from Formula 4 is a constant (due to Formula 3), the ratio between the
length (in time) of the acceleration phase and the braking phase is fixed. Since the
temporal relationship between the two phases is not yet clear, we use independent
time axes, writing

dvA
dtA

= T.A,
dvB
dtB

= −T.B, (6)



64 T. Kolárik and S. Ratschan

where vA and vB corresponds to T.v [j] and T.v [j+1], resp., and tA and tB corre-
sponds to τ [j] and τ [j+1], resp. To determine the time to switch from acceleration
to braking, it would be possible to compute the braking trajectory backward in
time starting at the position corresponding to T.front dmax

[j], and with the
velocity corresponding to T.next vmax

[j]. However, it is not clear how far back-
ward such a backward braking trajectory has to be computed, and moreover,
even after its computation, it is non-trivial to ensure that at the switching time,
both position and velocity of the train are identical to a corresponding point on
the backward braking trajectory. To get around these complications, we not only
reverse, but also scale the time axis of the braking process using the relationship

tB = −T.A

T.B
· tA. (7)

As a result, we have a common time axis tA, along which the derivative of the
velocity of the braking train is identical to the derivative of the velocity of the
accelerating train:

dvB
dtA

=
dvB
dtB

dtB
dtA

= −dvB
dtB

T.A

T.B
= T.B · T.A

T.B
=

dvA
dtA

. (8)

As a consequence, both velocities will be identical at all time if starting from the
same initial value. Under this assumption, we can compute both the acceleration
phase and the backward braking trajectory synchronously along the same time
axis, ensuring identical speed at all times. Such an approach can be generalized
for more complicated systems of ODEs (e.g. with T.v [j] other than a linear
function), if such a relationship between the time axes is available.

Based on Formula 8, it suffices to switch from acceleration to braking at
the point when the corresponding positions are identical. This results in a syn-
chronous braking prediction with ODEs and an invariant of the form

ite
(
T.acc[j], T. ˙brake d

[j]
= −T.A

T.B
· T.v [j], T. ˙brake d

[j]
= 0

)

∧
(
¬T.brake [j] ⇒ T.d [j] ≤ T.brake d [j]

) (9)

where the coefficient −T.A
T.B implements the mentioned scaling also for the pre-

diction of the position of the train.
If init(T.v [j]) > T.next vmax

[j], the part of the braking phase with T.v [j+1] ∈[
T.next vmax

[j], init(T.v [j])
]

must be precomputed asynchronously. In the figure,
this corresponds to the part from the end of stage j +1 to the separator λ (back-
wards). Such an asynchronous prediction uses the functional variables back d
and back v , starting from

init(T.back d [j]) = T.front dmax
[j] ∧ init(T.back v [j]) = T.next vmax

[j], (10)

with a flow defined by the following ODEs and invariants:

T. ˙back d
[j]

= −T.back v [j] ∧ T. ˙back v
[j]

= T.B

∧ T.back d [j] ≥ 0 ∧ T.back v [j] ≤ init(T.v [j]).
(11)



Railway Scheduling Using Boolean Satisfiability Modulo Simulations 65

These functional variables are the only ones that may have a different length τ
of integration than the other variables (which are synchronous). The reached
position serves for the consecutive synchronous part:

init(T.brake d [j]) = final(T.back d [j]), (12)

and Formula 9 becomes computable then. This works even in cases when
T.steady [j] holds, where T.brake d [j] just serves as a constant upper bound on
T.d [j], based on the value from Formula 12.

If T.vmax
[j] had been reached before the start of the braking phase, there just

would be an additional phase in the steady mode between the phases j and j +1
in the figure.

Positional Constraints. In the following, we use train T ∈ T and the relation
S1 →T S2 for segments S1, S2 ∈ S to denote that segment S2 is adjacent to
segment S1 on a path that obeys the connection constraints of train T . In fact,
this relation enforces the connection constraints completely if T.finished [J] (at
the final step J) holds. The relation is used only within the preprocessing stage
when generating the formula.

For each segment S1, the possible next segments are defined s.t.

¬T.idle [j] ⇒
(
T.front S [j]

1 ⇒
∨

S2∈S,S1→TS2

T.next S [j]
2

)
. (13)

Away conditions distinguish the cases when a train already entered the network,
or is outside of it. The decision variable enter triggers a starting segment:

T.enter [j] ⇒
∨

S∈T.Start

(
¬T.back S [j] ∧ T.front S [j]

)
, (14)

where T.Start is the set of starting segments of the train T . To denote that
a train is entirely outside the network, we use

T.away [j] ⇔ ¬
( ∨

S∈S
T.back S [j] ∨

∨

S∈S
T.front S [j]

)
. (15)

The variable finished is triggered within the transfer constraints when reaching
a boundary in Formula 18 below. Once the variable is activated, it implies that
at least the front of the train is already outside of the network:

T.finished [j] ⇒ ¬
∨

S∈S
T.front S [j]. (16)

Trains that are leaving the network remain in the steady mode, until they get
away entirely and become idle.

Transfer constraints control transferring of a train to a next segment when the
end of one of the current segments is reached (even when stopping). We denote



66 T. Kolárik and S. Ratschan

Fig. 3. A conflicting plan of two consecutive trains with no stops

the fact that the back or front of train T reaches the end of segment S1 ∈ S by
T.pos exceed S [j]

1 , pos ∈ {back , front}, which allows the train to move into S2:

¬T.idle [j] ⇒
∧

S2∈S,S1→TS2

(
(T.pos1 S [j]

1 ∧ T.pos2 S [j]
2 ) ⇒

ite(T.pos1 exceed S [j]
1 , T.pos1 S [j+1]

2 , T.pos1 S [j+1]
1 )

)
(17)

where pos1 ∈ {back , front}, pos2 = Δ(pos1), Δ = {back �→ front , front �→ next}.
When a train exceeds a segment S ∈ S that is boundary, the train is claimed

as finished based on the front of the train:

T.front S [j] ⇒ ite(T.front exceed S [j], T.finished [j+1], T.front S [j+1]), (18)

and it is claimed as away based on its back:

T.back S [j] ⇒ ite(T.back exceed S [j], T.away [j+1], T.back S [j+1]). (19)

Mutual exclusion conditions prevent trains from collisions. For each train T1 and
for all segments S, all the mutual exclusion conditions are jointly defined as

∧

pos1,pos2∈P

∧

T2∈T ,T2 �=T1

¬
(
T1.pos1 S [j] ∧ T2.pos2 S [j]

)
. (20)

Thus, we require the segments adjacent to the current front segment to be free
(because next ∈ P)—while it is whole sections in the case of [13], as a con-
sequence of signal interlocking. As a result, tighter plans are possible in our
case, but the algorithm may also be forced to resolve more violations of mutual
exclusion conditions. Figure 3 illustrates a situation where train A is followed by
train B that enters as soon as train A leaves node 2. Since the segment 2–3 is
long, train B will reach node 1 sooner than train A leaves node 3, resulting in
a conflict at segment 2–3 that is claimed by train B as the next segment.

Initial Conditions. At the beginning, each train stands still, either is away or
starts its journey, and is not finished. And some train has to enter:

∧

T∈T

(
init(T.v [0]) = 0 ∧ (T.enter [0] ∨ T.away [0]) ∧ ¬T.finished [0]

)

∧
∨

T∈T
T.enter [0].

(21)



Railway Scheduling Using Boolean Satisfiability Modulo Simulations 67

Final Conditions. In order to satisfy the connection constraints of trains com-
pletely, we require the trains to have finished moving through the network at
the final unrolling step J :

∧

T∈T
(T.finished [J] ∧ T.away [J]). (22)

4.2 Schedule Constraints

Schedule formulas enforce schedule constraints and their Boolean combinations.
Orderings and timings described in Sect. 2.4 are translated into particular con-
straints related to visiting nodes at discrete steps. To encode such a visit related
to train T ∈ T , node N ∈ N , where N represents the set of nodes of the
network, and discrete step j, we use auxiliary Boolean variables T.visit N [j],
visit ∈ {arrive, depart}, defined s.t.

T.arrive N [j] ⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⊥, if j = 0, else∨
S,S→TN T.front S [j−1]

∧ T.finished [j], if N ∈ T.End , otherwise
∨

S,N→TS

(
¬T.front S [j−1] ∧ T.front S [j]

)

∧ ¬T.enter [j];

T.depart N [j] ⇔

⎧
⎨

⎩

T.enter [j], if N = T.Start , else
⊥, if j = 0 ∨ N ∈ T.End , otherwise∨

S,N→TS T.front S [j] ∧ T.acc[j] ∧ init(T.v[j]) = 0,

(23)

where N →T S and S →T N means incidence of the node N and segment S ∈ S
within the train T ’s connection, in the corresponding direction; T.Start is the
starting node of train T , and T.End is the set of the train’s ending nodes.

Ordering. Formula 1 enforces visit1 to happen before visit2 (◦ ∈ {<,≤}). This
requires to forbid visit2 to take place before visit1, and to make sure that visit2
implies that visit1 already happened:

J∧

k=0

(
T1.visit1 N [k]

1 ⇒
K(k)∧

l=0

¬T2.visit2 N [l]
2

)

∧
J∧

l=0

(
T2.visit2 N [l]

2 ⇒
L(l)∨

k=0

T1.visit1 N [k]
1

)
,

(24)

where K(k) = k, L(l) = l − 1 if ◦ is <, and K(k) = k − 1, L(l) = l if ◦ is ≤.

Relative Timing. In the first place, it is necessary to guarantee that the cor-
responding time condition holds in cases when all the corresponding visits are
active. In cases where ◦ ∈ {<,≤}, similarly to orderings, we also make sure that



68 T. Kolárik and S. Ratschan

violation of the timing implies that the corresponding visits did already happen.
So Formula 2 translates to

J∧

j=0

(
T1.visit1 N [j]

1 ⇒
(
ψj ∧

J∧

k=j

(
T2.visit2 N [k]

2 ⇒ (t[k] − t[j]) ◦ ξ
)))

; (25)

ψj ⇔
{


, if ◦ ∈ {>,≥};
∧J

k=j

(
¬

(
(t[k] − t[j]) ◦ ξ

)
⇒

∨k−1
l=j T2.visit2 N [l]

2

)
, if ◦ ∈ {<,≤}. (26)

Since timings support both lower and upper bounds, and since Boolean com-
binations are allowed, it is possible to define interval boundaries, and more.

Recall that the variables t [j] only depend on the lengths τ [j] of integrations,
so the timing constraints are checked at the end of each integration.

5 Algorithm

We solve the benchmark problem using an improvement of an SMT solver we
introduced earlier [9]. The solver is based on DPLL with conflict-driven clause
learning (CDCL), but improves the original naive lazy offline approach to a lazy
online approach with exhaustive theory propagation [15] to support efficient
handling of both Boolean and theory constraints. The rest of this section requires
basic knowledge of SAT and SMT solving [15, 10] .

Our theory solver is based on the floating-point simulation semantics of the
theory described in Sect. 3. It uses equalities with only a single variable on one
of their two sides and differential constraints as inference rules [9] that may
assign values to the corresponding isolated variables. For example, if the values
of t[j−1] and τ [j−1] in t[j] = t[j−1] + τ [j−1] are already fixed, then we can infer
the value of t[j]. In a similar way, if the initial value of T.v [j] and the value of
T.a[j] is fixed, then we can use T.v̇ [j] = T.a[j] to infer the value of the functional
variable T.v [j]. All other constraints are numerically evaluated as soon as all
their variables have assigned values. This is not complete in general, but suffices
to eventually decide the problems necessary for solving the planning problems
described in this article.

Atomic predicates form vertices of a directed dependency graph, where
an edge means that the source vertex is an inference rule that may assign a value
to a floating-point variable that is shared with the target vertex. Inference rules
corresponding to vertices with no input edges are initial inference rules.

Theory propagation. We perform exhaustive theory propagation, along with con-
sistency checks, because all inference rules are based on floating-point arithmetic,
which is cheap1. Constraints that are currently not evaluable cannot be propa-
gated nor checked for consistency, though.
1 Simulations of ODEs are actually not that cheap, but we currently do not have

evidence that postponing them within theory propagation would be beneficial.



Railway Scheduling Using Boolean Satisfiability Modulo Simulations 69

Decision heuristics. In the case of formulas with a structure similar to a BMC
unrolling, each consecutive step depends on the values from the previous one.
Thus, a suitable strategy, called BMC strategy, is to first decide Booleans that
correspond to the lower steps.

In our case, it is often useful to prefer deciding inference rules that can be
used, for example, initial inference rules, or those that depend on the already
evaluated ones, based on the dependency graph. Then, the inference rule allows
theory propagation, which may then enable consistency checks. Thus, within
the same discrete step, we prefer initial inference rules, then the other inference
rules, then other predicates, and lastly pure Booleans.

In the case of railway scheduling, we designed a strategy that is specific to the
given task. We modified the BMC strategy s.t. the Booleans T.enter [j], T.idle [j],
and T.next S [j] are additionally set to the highest decision priority within each
step j, in the listed order. Here we first set T.enter [j] to 
 and T.idle [j] to ⊥
to prefer that the trains finish as soon as possible. We first set T.next S [j] to ⊥
to avoid activation of a segment before being unit-propagated using Formula 13.

6 Experimental Part

In Sects. 1, 2 and 4, we mentioned differences of our model and algorithm
compared to an approach that is based on dedicated railway simulations [13].
Although we support a richer set of schedule constraints, here we stick to case
studies that can be handled by both approaches. Still, we omit numerical com-
parisons (e.g. the absolute run-times) here, since the respective tools solve differ-
ent problems and a thorough discussion is needed—details can be found in the
extended version of the paper [10]. Especially, our model is not based on signal
interlocking and exhibits more nondeterminism (e.g., we allow the trains to wait
in stations and before entering the network). Hence, we focus on a qualitative
analysis of the behavior of the tools.

We use our model from Sect. 4 and our implementation [11] of the algorithm
from Sect. 5, and the railperfcheck tool [13]. We focus on case studies where it
is not trivial to decide whether a plan that meets both ordering and timing
constraints exists. For this, we generalized the experiments named Gen in [13],
where all the other experiments, in contrast, exhibit easily satisfiable schedule
constraints, which should not be challenging for approaches that are based on
SAT solving.

Specification. We use a serial-parallel network for our experiments—a track with
NS serially connected groups of NP identical parallel tracks with a station. See
an example in Fig. 4. For our experiments, we will assume NS = NP . We use
trains T = {T1, . . . , TNT

} with acceleration rate A = 2, deceleration rate B = 1,
velocity limit Vmax = 40 and length L = 50. Each train is assigned to connection
list (start , end), which only contains the boundary nodes. As a result, multiple
paths are possible (NNS

P , at most) for each train. Also, the trains are not allowed
to stop at any station, but just drive through, once they enter the network. In



70 T. Kolárik and S. Ratschan

Fig. 4. An example of a serial-parallel infrastructure, with NS = 2 and NP = 3

the case of [13], it is not possible to force the trains not to stop at stations and to
make them drive consecutively after each other, due to signal interlocking [10].
However, this fact does not affect the analysis provided in this section.

In our case, we selected the number of unrollings J manually for each par-
ticular experiment—high enough to allow all the trains to finish (i.e., to satisfy
Formula 22). Such a parameter is not needed in the case of railperfcheck.

We present two scenarios, last and all , that are defined as follows:

– last : the last train TNT
must satisfy a relative timing, and the other trains Ti

just enter in a given order:

timing(TNT
, bnd) ∧

∧

i<NT

(
enterbefore(Ti, Ti+1) ∧ earlyafter (Ti+1, Ti)

)
, (27)

– all : each particular train Ti must satisfy a relative timing:
∧

i

(
timing(Ti, bnd) ∧

(
enterfirst(Ti) ∨

∨

j �=i

(
enterbefore(Tj , Ti) ∧ earlyafter (Ti, Tj)

)))
,

(28)

where Ti, Tj ∈ T , and with

– timing(T, bnd) ⇔ transfer(departure(T, start), arrival(T, end)) < bnd ,
– enterbefore(T1, T2) ⇔ departure(T1, start) < departure(T2, start),
– earlyafter (T1, T2) ⇔ departure(T1, start) ≤ arrival(T2, end1), and
– enterfirst(T ) ⇔ departure(T, start) = 0,

where end1 is the joint node E1 in the figure. The purpose of earlyafter along
with enterbefore is to avoid long gaps between two consecutive trains, to reduce
the amount of nondeterminism of waiting of the trains. In the case of railperf-
check, this is not necessary since waiting is deterministic. Note that in scenario
last , trains are fully ordered, while in scenario all , they are not ordered at all.

Each case study is parametrized by a scenario, variables NT , NS ∈ {1, 2, 3, 4},
and a timing upper bound bnd ∈ {101, 102, 103}. In our case, additionally, ρ = 30
(timeout for functional variables in Sect. 4.1), and J = Γ(NT ), with Γ = {1 �→
45, 2 �→ 80, 3 �→ 115, 4 �→ 150}. In the case of [13], J is incrementally increased
up to 2 · NT .

Both scenarios last and all are equivalent in cases with only one train (NT =
1). These are the cases named Gen in [13].



Railway Scheduling Using Boolean Satisfiability Modulo Simulations 71

Results. The results of all the specified case studies are as follows:

– unsat when bnd ≤ 102: cases with lower timing upper bound are unsatisfiable,
that is, it is impossible for the trains to finish within this time bound,

– sat when bnd = 103: plans with high timing upper bound do exist.

To give a basic idea on the run-times of particular experiments in the case of our
approach, the satisfiable cases do not exceed 4 min and the unsatisfiable cases
usually do not exceed 2 h.

Discussion. First, we compare the scenarios last and all . In the satisfiable cases,
run-times of both scenarios are similar. In the unsatisfiable cases, the run-time of
scenario all is generally longer than that of last , because the trains are unordered
and all their permutations are tried, a significant effort with multiple trains. On
the other hand, to detect that the relative timing of the last train in scenario last
is unfeasible, all the preceding trains have to be simulated first, regardless the
timing. Depending on the value of bnd , it is not certain which part will dominate
the run-time—simulations of the preceding trains, or of the last train.

Next, we investigate the behavior of our tool and the tool railperfcheck [13].
We start with railperfcheck. Recall that it handles mutual exclusion conditions
using signal interlocking, which is efficient for networks that do use signals.
Moreover, they do simulations in lazy offline fashion, that is, only after a full
propositional assignment was found. This is especially efficient in the presented
satisfiable cases. However, within the unsatisfiable cases, it is entirely insensitive
to the value of bnd , because only the overall simulation is checked, indepen-
dently from whether it satisfies the timing or not. In this way, early detection of
unsatisfiability is not possible, and all NNS

P choices of paths are always examined.
In our case, the value of bnd has significant impact on pruning the searched

state space—Formula 26 ensures termination of all search attempts where it is
already obvious that the timing cannot be satisfied. As a result, with growing size
of the network and the set of trains, unsatisfiability is detected more efficiently
by our more sophisticated algorithm. Consequently, if the timing upper bound
is low (bnd = 101), scenario all is always faster than scenario last in our case,
because the unfeasible timing of the train that enters first in the case of scenario
all can be detected sooner than that in the case of scenario last , where the train
that must satisfy the timing is the last one (as discussed above). For example,
the run-time of our tool in the cases with NT = NS = 3, bnd = 101 was 1 s and
38 s in the case of scenario all and last , respectively, while with bnd = 102, it
was approximately 15 min in both cases.

When multiple trains drive consecutively, our method suffers from a number
of mutual exclusion conflicts (Formula 20). For example, in the case of the conflict
captured in Fig. 3, we resolve it by backtracking the whole situation and seeking
another plan where train B enters later. The tool railperfcheck prevents such
a conflict implicitly within the simulator—by stopping train B at node 1 (if
there is a signal) until the conflicting section becomes free. If the signal was not
there, such a plan of two consecutive trains would not even be considered.



72 T. Kolárik and S. Ratschan

7 Conclusion

We presented a formalization of a low-level railway scheduling problem, where
the dynamics of trains is described by differential equations, and where rich tim-
ing and ordering constraints are supported. We analyzed the behavior of our
approach compared to an existing method on selected case studies, and identi-
fied strong and weak aspects of the run-time performance. We demonstrated that
despite the complexity of our model, the resulting problems can be solved suc-
cessfully within a SAT modulo theory framework. This opens the possibility of
applying such techniques to further application domains with similar complexity.

Acknowledgements. The work of Stefan Ratschan was supported by the project
GA21-09458S of the Czech Science Foundation GA ČR and institutional sup-
port RVO:67985807. The work of Tomáš Kolárik was supported by CTU project
SGS20/211/OHK3/3T/18.

References

1. Andreychuk, A., Yakovlev, K., Surynek, P., Atzmon, D., Stern, R.: Multi-agent
pathfinding with continuous time. Artif. Intell. 305, 103662 (2022). https://doi.
org/10.1016/j.artint.2022.103662

2. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, chap. 14, pp. 457–481. IOS Press
(2009). https://doi.org/10.3233/978-1-58603-929-5-457

3. Bournez, O., Campagnolo, M.L.: A survey on continuous time computations. In:
Cooper, S., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 383–423.
Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5 17

4. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: 22nd IEEE Symposium on Computer
Arithmetic, pp. 160–167. IEEE (2015), https://doi.org/10.1109/ARITH.2015.26

5. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT Modulo ODE
for hybrid systems analysis by combining different enclosure methods. In: Barthe,
G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6 13

6. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

7. Haehn, R., Ábrahám, E., Nießen, N.: Freight train scheduling in railway systems.
In: Hermanns, H. (ed.) MMB 2020. LNCS, vol. 12040, pp. 225–241. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43024-5 14

8. Haehn, R., Ábrahám, E., Nießen, N.: Symbolic simulation of railway timetables
under consideration of stochastic dependencies. In: Abate, A., Marin, A. (eds.)
QEST 2021. LNCS, vol. 12846, pp. 257–275. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85172-9 14

9. Kolárik, T., Ratschan, S.: SAT modulo differential equation simulations. In:
Ahrendt, W., Wehrheim, H. (eds.) TAP 2020. LNCS, vol. 12165, pp. 80–99.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50995-8 5

https://doi.org/10.1016/j.artint.2022.103662
https://doi.org/10.1016/j.artint.2022.103662
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/978-0-387-68546-5_17
https://doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1007/978-3-642-24690-6_13
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-030-43024-5_14
https://doi.org/10.1007/978-3-030-85172-9_14
https://doi.org/10.1007/978-3-030-85172-9_14
https://doi.org/10.1007/978-3-030-50995-8_5


Railway Scheduling Using Boolean Satisfiability Modulo Simulations 73

10. Kolárik, T., Ratschan, S.: Railway scheduling using Boolean satisfiability mod-
ulo simulations (2022). https://arxiv.org/abs/2212.05382. Extended version of the
paper

11. Kolárik, T.: UN/SOT (UN/SAT modulo ODES Not SOT) (2020). https://gitlab.
com/Tomaqa/unsot

12. Kolárik, T.: UN/SOT preprocessing language (2022). https://gitlab.com/Tomaqa/
unsot/-/blob/master/doc/lang/preprocess.pdf

13. Luteberget, B., Claessen, K., Johansen, C., Steffen, M.: SAT modulo discrete
event simulation applied to railway design capacity analysis. Formal Methods Syst.
Design 57(2), 211–245 (2021). https://doi.org/10.1007/s10703-021-00368-2

14. Montigel, M.: Formal representation of track topologies by double vertex graphs.
In: Proceedings of Railcomp 92 held in Washington DC, Computers in Railways
3, vol. 2. Computational Mechanics Publications (1992)

15. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM (JACM) 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859

16. Salerno, M., E-Mart́ın, Y., Fuentetaja, R., Gragera, A., Pozanco, A., Borrajo, D.:
Train route planning as a multi-agent path finding problem. In: Alba, E., et al.
(eds.) CAEPIA 2021. LNCS (LNAI), vol. 12882, pp. 237–246. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-85713-4 23

17. Schlechte, T., Borndörfer, R., Erol, B., Graffagnino, T., Swarat, E.: Micro-macro
transformation of railway networks. J. Rail Transp. Plann. Manage. 1(1), 38–48
(2011). https://doi.org/10.1016/j.jrtpm.2011.09.001

18. Schwanhäußer, W.: Die Bemessung der Pufferzeiten im Fahrplangefüge der
Eisenbahn. Ph.D. thesis (1974). https://www.via.rwth-aachen.de/downloads/
Dissertation Schwanhaeusser 2te Auflage Text.pdf

19. Weiß, R., Opitz, J., Nachtigall, K.: A novel approach to strategic planning of rail
freight transport. In: Helber, S., et al. (eds.) Operations Research Proceedings
2012. ORP, pp. 463–468. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-00795-3 69

https://arxiv.org/abs/2212.05382
https://gitlab.com/Tomaqa/unsot
https://gitlab.com/Tomaqa/unsot
https://gitlab.com/Tomaqa/unsot/-/blob/master/doc/lang/preprocess.pdf
https://gitlab.com/Tomaqa/unsot/-/blob/master/doc/lang/preprocess.pdf
https://doi.org/10.1007/s10703-021-00368-2
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/978-3-030-85713-4_23
https://doi.org/10.1016/j.jrtpm.2011.09.001
https://www.via.rwth-aachen.de/downloads/Dissertation_Schwanhaeusser_2te_Auflage_Text.pdf
https://www.via.rwth-aachen.de/downloads/Dissertation_Schwanhaeusser_2te_Auflage_Text.pdf
https://doi.org/10.1007/978-3-319-00795-3_69
https://doi.org/10.1007/978-3-319-00795-3_69


SMT Sampling via Model-Guided
Approximation

Matan I. Peled , Bat-Chen Rothenberg(B) , and Shachar Itzhaky

Technion—Israel Institute of Technology, Haifa, Israel
{mip,batg,shachari}@cs.technion.ac.il

Abstract. We investigate the domain of satisfiable formulas in satisfi-
ability modulo theories (SMT), in particular, automatic generation of a
multitude of satisfying assignments to such formulas. Despite the long
and successful history of SMT in model checking and formal verification,
this aspect is relatively under-explored. Prior work exists for generating
such assignments, or samples, for Boolean formulas and for quantifier-
free first-order formulas involving bit-vectors, arrays, and uninterpreted
functions (QF_AUFBV). We propose a new approach that is suitable for
a theory T of integer arithmetic and to T with arrays and uninterpreted
functions. The approach involves reducing the general sampling problem
to a simpler instance of sampling from a set of independent intervals,
which can be done efficiently. Such reduction is carried out by expand-
ing a single model—a seed—using top-down propagation of constraints
along the original first-order formula.

Keywords: SMT sampling · Under-approximation · SMT ·
Satisfiability modulo theories · Model-guided approximation

1 Introduction

Satisfiability Modulo Theories (SMT) formulas are the centerpiece of many
modern-day algorithms for the testing and verification of hardware and soft-
ware systems. In constrained-random verification (CRV) [34]—one of the most
popular methods for hardware testing in the industry—the functional model
and verification scenarios of a hardware design are translated into an SMT for-
mula. In software verification [12,22,24], SMT formulas are used to express safety
requirements extracted from the code.

The problem of SMT solving has been widely investigated, and many solvers
are available [3,11,14,32]. These tools can determine satisfiability and return
a (single) model if it exists. However, there are use cases in which multiple,
sometimes multitudes of, such models are needed. For example, in CRV, solu-
tions of the formula represent stimuli for the design under test, and multiple and

This work is supported by the Israeli Science Foundation Grant No. 243/19 and the
Binational Science Foundation (NSF-BSF) Grant No. 2018675.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 74–91, 2023.
https://doi.org/10.1007/978-3-031-27481-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_6&domain=pdf
http://orcid.org/0000-0001-8899-3235
http://orcid.org/0000-0001-8345-7273
http://orcid.org/0000-0002-7276-7644
https://doi.org/10.1007/978-3-031-27481-7_6


SMT Sampling via Model-Guided Approximation 75

diverse solutions increase the likelihood of discovering bugs [34]. In the context
of software verification, a solution of the formula often represents an input caus-
ing a safety violation, along with the buggy execution of the program for that
input [12,24]. Obtaining multiple such solutions provides additional insight into
the bug in question, which may help guide the debugging process.

This paper is concerned with the SMT sampling problem, i.e., efficiently
generating multiple random solutions for an SMT formula with good coverage
of the solution space. The naïve solution of enumerating models using a solver
often becomes too expensive in practice, and most solvers tend to return similar
models in successive invocations. Notably, while the problem of SAT sampling
has been successfully established with techniques such as Markov Chain Monte-
Carlo (MCMC) [26,27] and universal hashing [18,30,31], the history of the same
problem applied to SMT formulas is shorter [15,16]. When considering propo-
sitional formulas or formulas over bit-vector theories, a reduction from SMT
sampling to SAT sampling is possible. However, it was shown in [15] that such
an approach is significantly less efficient than sampling at the SMT level directly.
Furthermore, when considering formulas over infinite domains, such as the inte-
gers or the reals, a reduction to SAT is not even an option.

This paper presents a novel algorithm for sampling SMT formulas in the
theory of linear integer arithmetic enhanced with (possibly non-linear) multi-
plication, denoted TMIA. We also present an extension to integer arrays and
uninterpreted functions. The extended theory is denoted TAUFMIA. Our app-
roach is epoch-based [15]: it operates in a series of rounds, called epochs, where
in each epoch a seed m, which is a random model of the formula, is generated
using an off-the-shelf solver. This model is then extended to a large set of models
of similar nature, in a cost-effective manner.

The novelty of our approach lies in the algorithm for extending the model m
and in the representation of the set of models returned in each epoch. This algo-
rithm relies on the novel notion of model-guided approximation (MGA), which
we introduce. MGA uses a model m of a formula ϕ to derive a simpler formula,
ϕ′, s.t. m |= ϕ′ and ϕ′ underapproximates ϕ. The rationale is that using m dur-
ing the underapproximation process can help guide it towards solutions that are
similar to m, and avoid parts of the search space which are devoid of solutions.

Our sampling algorithm uses MGA in every epoch to convert a TMIA-formula
ϕ into a fomrula ϕ′ in a theory of intervals, TIC. In TIC, formulae are restricted
to a conjunction of constraints of the form x ≥ c or x ≤ c, where x is a variable
and c is a constant. The underapproximation is done using a rule-based app-
roach, which propagates constraints in a top-down fashion along the abstract
syntax tree (AST) of the formula. Obtaining a set of concrete solutions from ϕ′

is straightforward: by repeatedly sampling all variables from within their bound-
aries. Note that the underapproximation property of MGA ensures that every
point within these intervals is necessarily a model of ϕ.

The ability of our algorithm to represent the set of solutions at each epoch
symbolically in the form of an interval formula ϕ′ has several advantages. First,
it allows blocking all previously seen solutions by conjoining ϕ with ¬ϕ′. Such



76 M. I. Peled et al.

blocking is often feasible since the size of ϕ′ is proportional to the number of
variables (rather than the size of the solution set, which can be large or even
infinite). On top of that, the interval formula itself can be returned instead of a
concrete set of solutions, which can give added value to the user. For example,
in the scenario where solutions of the formula represent inputs that cause a bug
in a program, knowing that every x in a certain range causes the bug can be
helpful for debugging.

Our algorithm does not aim to provide formal guarantees regarding uniform
sampling nor coverage. This is in contrast to some prior work on SAT sampling [9,
18,31], but similar to prior work on SMT sampling [15,16]. We believe that the
ability to adjust the sampling method towards an application-specific goal, as
opposed to a universal metric, is more important than approximating a uniform
distribution, since the purpose of sampling varies by use case. Our algorithm
therefore allows to control the sampling heuristic via two parameters: the choice
of the initial seed, and the sampling of each interval formula. Here, too, the use
of intervals have the advantage of being a convenient representation, in which it
is easy to apply diverse sampling heuristics such as uniform or even exhaustive
sampling (if the space is finite).

We have implemented our algorithm in an open-source tool, MeGASam-
pler1. In order to compare it with state-of-the-art sampler SMTSampler [15],
we have also implemented an adaptation of their algorithm (originally designed
for the theory of bit-vectors with arrays and uninterpreted functions) to integers.
We provide an experimental evaluation of their method and ours on a large set
of benchmarks from SMT-LIB. Our results show that MeGASampler signif-
icantly improves state-of-the-art in terms of both the number of solutions and
their quality, as measured in [15].

To sum up, our main contributions are:

1. Define the problem of Model-Guided Approximation (MGA) for pairs of first-
order theories T and T ′.

2. Present an algorithm for computing MGA of an integer theory onto the theory
of intervals, with support for arrays and uninterpreted functions. On top of
this, we implement an epoch-based procedure for sampling formulas in the
source theory.

3. Implement the algorithm in an open-source sampling tool, MeGASampler,
and evaluate it against an integer-based variant of the state-of-the-art sam-
pling tool, SMTSampler, on a large set of SMT-LIB benchmarks.

1.1 Motivating Example

As an introductory example, consider the integer formula:

ϕ : (x − 5y ≤ 7) ∧ (x ≥ 0)

MeGASampler begins its first epoch by consulting an off-the-shelf
SMT solver; let us assume that the solver returned that m = {x �→ 12, y �→ 2}
1 Available at: https://github.com/chaosite/MeGASampler.

https://github.com/chaosite/MeGASampler


SMT Sampling via Model-Guided Approximation 77

Fig. 1. Annotated syntax tree of (x − 5y ≤ 7) ∧ (x ≥ 0) with model {x �→ 12, y �→ 2}

is a valid solution to ϕ. To get more solutions from this seed solution, we can
under-approximate ϕ with an interval formula ϕ′, which is easier to sample. In
Fig. 1, we see how this is done.

Figure 1 shows an annotated syntax tree of ϕ: to the left side of each node is
its value per the model m; to the right, we show the bound for this term. Solid
outlines indicate that the inequalities are taken directly from the formula, as is
the case for the root nodes. Bounds with dotted outlines are an inferred under-
approximation. Bounds are propagated in a top-down manner until the leaf
nodes (integer variables) are reached. For example, the value “5” written below
the addition node represents the amount of “slack” to be distributed among child
nodes, as illustrated by the dashed arrows. By gathering the constraints on the
leaves (shown with thick borders) we obtain ϕ′ = x ≤ 15∧ y ≥ 2∧ x ≥ 0, which
represents the set of intervals {x ∈ [0, 15] , y ∈ [2,∞]}. Note that, any solution
that satisfies ϕ′ also satisfies ϕ. Sampling these intervals is then straight-forward:
we can choose any value for x and y in the intervals and it will be a valid solution
to ϕ. This example is discussed in further detail in Sect. 4.1.

2 Preliminaries

A first-order theory T consists of: a set of variables, each mapped to a concrete
domain; a set of logical symbols (such as ∧, ¬); a set of non-logical symbols (such
as +, −, <), each with an arity and a sort, called the signature of T , denoted
Σ(T ); a grammar G(T ); a fixed interpretation for the symbols of the signature.
In addition, a theory may admit uninterpreted function and predicate symbols,
which appear in G(T ) but do not have fixed interpretations. These symbols are
not considered to be part of Σ(T ).

The set of logical symbols is a subset of {∧,∨,¬} and their interpretation is
fixed across all theories to be the standard one. Note that, the interpretation of
the non-logical symbols of the signature is also fixed, but depends on the theory.

A structure m consists of a domain, an interpretation of the symbols in the
signature and an assignment of domain elements to all variables of the formula.

In the following sections, we will use TLIA—the standard theory of linear
integer arithmetic; TMIA, which extends TLIA by allowing variable multiplication
(but not division); and TIC, which restricts TLIA to conjunctions of inequalities



78 M. I. Peled et al.

of the form v ≤ Z, v ≥ Z (and strong variants with <, >). We also consider
extended theories that additionally admit uninterpreted functions and arrays,
TAUFMIA and TAUFIC.

3 Model-Guided Approximation

In this section, we define the problem of model-guided approximation (MGA).
Consider a formula ϕ in a theory T , and a model m of ϕ. ϕ can be seen as a
representation of the set of structures satisfying it, Models(ϕ) � {m | m |= ϕ}.
Model-guided approximation aims to find a subset M ⊆ Models(ϕ), which con-
tains m, and can be represented using a formula ϕ′ that is better than ϕ for
some criteria. For example, for the purpose of sampling discussed in this paper,
ϕ′ should be easier to sample than ϕ. Alternatively, one can think of other goals,
such as making ϕ′ human-readable or easier to solve than ϕ.

To make sure ϕ′ is more suitable than ϕ in the criteria, ϕ′ is limited to a
theory T ′. The theory T ′ can be chosen a-priori based on the criteria, and can
be considered to be a part of the problem. Intuitively, T ′ restricts T by adding
syntactic limitations to the way formulas are built, but does not change the
semantics of operations. Formally, the restriction relation is defined as follows:

Definition 1 (Theory restriction). A theory T ′ restricts T , denoted T ′ � T ,
if:

– The language of the grammar of T ′ is a subset of the language of the grammar
of T . That is, every T ′-formula is also a T -formula. Note that this requires,
in particular, that Σ(T ′) ⊆ Σ(T ).

– The set of variables and uninterpreted function symbols (if any) as well as
their mapped domains are identical in T and T ′.

– Every symbol σ ∈ Σ(T ′) (which also belongs to Σ(T )) has the same fixed
interpretation in both theories.

Example 1. The theory TIC, described in Sect. 2, restricts both theories TLIA
and TMIA, which are also described there. The common interpreted symbols,
<, ≤, >, ≥, and all integer concepts, have the same interpretations, and any
TIC-formula is also a TLIA-formula, as well as a TMIA-formula.

Definition 2 (Entailment). Semantic entailment is defined as a binary rela-
tion ⇒ over formulas such that ϕ ⇒ ψ iff for every structure m, if m |= ϕ then
m |= ψ.

That is all well and good when referring to formulas of the same theory. In
the presence of multiple theories, the situation is a bit more subtle. Let ϕ be a
T ′-formula, ψ a T -formula, and T ′ � T . For a T ′-structure m, we denote mT

its extension to T, naturally obtained by filling in any symbols that are not
assigned in m with their fixed interpretations according to T (all uninterpreted
symbols are already assigned interpretations in m, as follows from the previous
definitions). This allows for a slightly adjusted definition of ⇒, namely:



SMT Sampling via Model-Guided Approximation 79

Definition 3 (�-Entailment). For ϕ,ψ as above, ϕ ⇒ ψ iff for every T ′-
structure m, if m |= ϕ then mT |= ψ.

To formally define model-guided approximation, we begin with the notion of
m-approximation:

Definition 4. Let ϕ be a formula in a theory T and m be a model of ϕ. A
formula ϕ′ is called an m-approximation of ϕ (in T ′) if ϕ′ belongs to a theory
T ′ s.t. T ′ � T , m |= ϕ′ and ϕ′ ⇒ ϕ.

An m-approximation has the following properties, which will be of use for us
later on:

Proposition 1 (m-approximation transitivity). If ϕ′′ is an m-approxima
tion of ϕ′ in T ′′ and ϕ′ is an m-approximation of ϕ in T ′, then ϕ′′ is an m-
approximation of ϕ in T ′′.

Proposition 2 (m-approximation conjunction closure). If ϕ′
1 is an m-

approximation of ϕ1 in T ′ and ϕ′
2 is an m-approximation of ϕ2 in T ′, then

ϕ′
1 ∧ ϕ′

2 is an m-approximation of ϕ1 ∧ ϕ2 in T ′.

The problem of model-guided approximation (MGA) with respect to two the-
ories T, T ′ s.t. T ′ � T is now defined as: given a formula ϕ in T and a model
m of ϕ, find an m-approximation of ϕ in T ′. In the sequel, we will often use
the abbreviated phrase “model approximation” instead of the full “model-guided
approximation”, which is a mouthful.

4 Solving the MGA Problem

In this section, we focus on how to solve the model approximation problem with
respect to T and T ′. For the remainder of this section, we fix ϕ and m to be the
inputs of the problem (ϕ is a formula in T , m is a model of ϕ).

A useful first step in solving this problem is via a reduction to the special case
where ϕ is a product term, i.e., a conjunction of literals. We refer to this case
as the product model-guided approximation (PMGA) problem. Such a reduction
is useful since it simplifies the problem without depending on the particular T
and T ′ in question.

In the literature, a product term P s.t. P ⇒ ϕ is called an implicant of ϕ. For
our purposes, we add the notion of an m-implicant of ϕ, which is an implicant
of ϕ that is satisfied by m. Thus, by definition, an m-implicant of ϕ is an m-
approximation of ϕ in T , which is a product term. Since m-approximation is
transitive (Proposition 1), reducing the MGA problem of ϕ and m to a PMGA
problem can be done by simply replacing ϕ with one of its m-implicants. We
explain how to extract an m-implicant of ϕ in the appendix [36].

In the following, we focus on two instances of the PMGA problem and present
specialized algorithms for them.



80 M. I. Peled et al.

Fig. 2. Rules for strengthening (transforming) integer terms to interval terms

4.1 Approximating the Theory of Linear Integer Arithmetic
with Non-Linear Multiplication Using the Theory of Intervals

The first instance we present a solution for is computing the PMGA problem for
T = TMIA and T ′ = TIC. That is, given a product term P in TMIA and a model
m of P , our goal is to find a formula ϕ′ in TIC s.t. ϕ′ is an m-approximation of P .
To do that, for each literal l in P , we find an m-approximation of l, denoted ξ′

(note that ξ′ is not necessarily a literal). Then, we conjoin all ξ′s back together
to form the formula ϕ′. From Proposition 2, ϕ′ that is created this way is indeed
an m-approximation of P .

In order to find an m-approximation for a TMIA literal l, we use a rule-
based approach. Figure 2 shows inference rules to transform TMIA literals into
TIC formulas. We assume, without loss of generality, that literals have the form
t ≤ c where c is a constant and t has no constant terms (addends). Integer
inequalities can always be normalized to this form. In rule 1, addition is modeled
by proportionally dividing the “slack” between the value of the constant and
the value of the left-hand side in m among the variables. For example, given
x1 + x2 + x3 ≤ 11 and a model m = {x1 �→ 1, x2 �→ 2, x3 �→ 3}, we are
distributing 11−6 amongst three variables, and can approximate that x1 ≤ 1+2,
x2 ≤ 2+2, and x3 ≤ 3+1. Multiplication by a constant (rule 3) is fairly simple,
and is done by dividing the right-hand side of the constraint by the constant,
only taking care to adjust for negative constants correctly. With multiplication
of variables, we only use the calculated sign of the result to provide a range
in which the sign is consistent with the model, shown in rules 2 and 4. If the
product is positive, then factors are allowed to expand toward zero, and if it is
negative—away from zero. For example, if we have a constraint x1 · x2 ≤ −42
and a model m = {x1 �→ 5, x2 �→ −9}, then from rule 4 we get x1 ≥ 5, x2 ≤ −9.

The rules as shown in Fig. 2 follow some conventions to aid readability. All
formulas are assumed to be in canonical form: all the variables are on the left-
hand side with only a constant, c, on the right-hand side, and inequalities are
normalized into less-than forms, i.e., x ≥ c ⇒ −x ≤ −c. ti denotes terms in
the formula (not always literals). �ti� is the matching values per the model m.
sign(x) gives the sign of x, i.e., x

|x| .

Example 2. As a demonstration of the application of these rules, recall Fig. 1.
In the addition node, we demonstrate the usage of rule 1. The amount of “slack”



SMT Sampling via Model-Guided Approximation 81

Fig. 3. Grammars for theories used

to be shared between the child nodes is c − ∑
i �ti� = 7 − 12 + 10 = 5, as noted

in the value below the node. 5 cannot be evenly divided into two parts, therefore
Portion assigns 3 to the first child and 2 to the other. This gives x ≤ 15 and
−5y ≤ −8. The multiplication node in this example represents multiplication by
constant −5, therefore rule 3 is applied. The constant is negative, so the operator
is reversed, and since 
8/5� is 2, we obtain y ≥ 2.

4.2 Adding Arrays and Uninterpreted Functions

In this section, we solve the PMGA problem of P and m with respect to two
integer theories with arrays and uninterpreted functions, TAUFMIA and TAUFIC.
The theory of arrays, uninterpreted functions, and linear integer arithmetic with
multiplication, TAUFMIA, is defined via the grammar shown in Fig. 3a, where Z
is an integer constant, v is an int variable symbol, a is an array variable symbol,
and fi are uninterpreted function symbols �∈ Σ(TMIA).2

Integer variables are mapped to the Z domain, array variables are mapped
to the Z → Z domain (both the indices and the values are integers), and func-
tion symbols are also mapped to the Z → Z domain (both the argument and
the return value are integers). Except for the variable and function symbols,
all symbols are interpreted using the standard interpretation. Specifically, the
interpretation of select(s, i) intuitively means querying the value of array s in
index i, and the interpretation of store(s, i, e) intuitively means returning a fresh
array which results from cloning s and then storing the value of e in index i.
We refer to terms of the form fi(_), select(_,_), and store(_,_,_) as function
application, select, and store terms, resp.

To under-approximate formulas in TAUFMIA, we use the theory TAUFIC as
shown in Fig. 3b, which allows for intervals over integer variables, function call
terms, and select terms where the first argument is an array variable.

For now, let us ignore the presence of literals of the form s = s or s �= s in T
(that is, assume the input formula contains no array comparison). This is done
for simplification of presentation; later we will show how to lift this restriction.
For similar reasons, since a function application term f(i) is handled similarly
to the select term select(f, i), we assume, without loss of generality, that only
the former are present. We consider the exact identification of such terms to be
an implementation detail.
2 The arity of functions is restricted to 1 for simplicity of presentation; an extension

of our algorithm to functions with arbitrary arity is straightforward.



82 M. I. Peled et al.

The derivation of an m-approximation for P (a product term in TAUFMIA)
in TAUFIC now proceeds in multiple stages (explained below): – Elimination of
select-store; – Atomic grounding; – Applying the PMGA procedure for TMIA
and TIC (Sect. 4.1); – Un-grounding the resulting formula.

To ease the presentation of the rest of the section, we introduce a few nota-
tions. Since several stages make use of syntactic replacement, we use t � ϕ to
denote that the term t appears syntactically as a sub-term in the formula ϕ; and
ϕ�t ←↩ t′� for the formula obtained by syntactically replacing every occurrence
t � ϕ with t′.

The first stage is a preprocessing step in which we use the model m to remove
all select-store sub-terms (i.e., terms of the form select(store(_),_)) from P : For
every literal l ∈ P s.t. there exists t = select(store(s, ti, te), tj) � l, we remove
l from P , construct an equivalent formula ϕl without select-store sub-terms (as
shown below), find an m-implicant Pl of ϕl using the method described in the
appendix [36], and conjoin P with Pl. The formula ϕl is constructed recursively.
Initially ϕl is:

(
(ti = tj) ∧ l�t ←↩ te�

) ∨ (
(ti �= tj) ∧ l�t ←↩ select(s, tj)�

)

Then, the term select(s, tj) is recursively replaced likewise, as long as s is a store.
The second stage is the grounding procedure, whose purpose is to connect the
semantics of TAUFMIA formulas with that of TMIA, with the aim of reducing the
problem.

We define an injective grounding function t �→ vt over terms of TAUFMIA that
assigns to any term t of sort S a unique variable symbol vt of sort S. Given a
formula ϕ ∈ TAUFMIA, we define its atomic grounding ϕ̃ that is obtained from
ϕ by (syntactically) replacing every select-term t � ϕ with vt.

Similarly, we define atomic grounding on structures, for structures of
TAUFMIA. A structure m̃ is obtained from a TAUFMIA-structure m by eli-
sion of all array interpretations and introduction of appropriate interpretations
m̃[vt] = m[t]. Clearly, doing that for every possible t will lead to infinite struc-
tures; therefore, atomic grounding of structures is always done with respect to
some set S of terms, such that vt is assigned only for t ∈ S. We denote this by
m

S�→ m̃. In particular, having received an input formula ϕ, we fix S to be the
set of all select-terms occurring in ϕ.

It is worth noting that the mapping ϕ �→ ϕ̃ is readily invertible, while m �→
m̃—not necessarily. For example, the model m̃� = 〈i �→ 0, j �→ 0, vselect(a,i) �→
1, vselect(a,j) �→ 2〉 has no model m such that m̃ = m̃�; because any m̃ that maps
i and j to the same value must also map vselect(a,i) and vselect(a,j) to the same
value.

The process of generating an m-approximation of ϕ ∈ TAUFMIA is as follows:
first, construct ϕ̃ and m̃. Subject to the language restrictions above, ϕ̃ ∈ TMIA.
Then, generate an m̃-approximation of ϕ̃ as a new formula ϕ̃′ ∈ TIC. Finally,
construct the corresponding ϕ′ ∈ TAUFIC of which ϕ̃′ is an atomic grounding.
We will now show that ϕ′ is indeed an m-approximation of the original ϕ.



SMT Sampling via Model-Guided Approximation 83

Lemma 1 (grounding fidelity). Given ϕ,m over a theory with arrays, m
S�→

m̃, for some S that contains (at least) all select-terms occurring in ϕ. Then
m |= ϕ ⇐⇒ m̃ |= ϕ̃.

Proof. In the appendix [36].

Based on the lemma and the correctness of the TMIA model-based approxi-
mation procedure of Sect. 4.1, we can now establish a correct approximation of
TAUFMIA, based on the stages above. From the lemma, m̃ |= ϕ̃, and since ϕ̃′ is
an m̃-approximation of ϕ̃, it follows that m̃ |= ϕ̃′. Recall that the variables of
ϕ̃′ are (a subset of) the variables of ϕ̃ and as a consequence, the select-terms
occurring in ϕ′ also occur in ϕ, hence are contained in S. We can therefore apply
the lemma in the opposite direction, and obtain m |= ϕ′.

The second property that ϕ′ must satisfy is that ϕ′ ⇒ ϕ. The proof is very
similar: let m′ |= ϕ′ be some model of it, and construct m̃′. From the lemma,
m̃′ |= ϕ̃′. Again, ϕ̃′ under-approximates ϕ̃, hence m̃′ |= ϕ̃; thus from the lemma,
m′ |= ϕ.

The astute reader may observe that the procedure above, while fulfilling the
requirements for being a model-based approximation in TAUFIC, is somewhat
unsatisfying because TAUFIC formulas are not as easy to sample as TIC. Sampling
the individual array elements independently from their corresponding intervals
may lead to clashes; e.g., if i, j, select(a, i), and select(a, j) are all constrained
to some interval [c, d], then an assignment of i = j and select(a, i) �= select(a, j)
is inconsistent and does not yield a valid structure. One possible course of action
is to detect clashes as soon as they occur and restart the sampling procedure.
But this may lead to a large number of false flags and wasted computations,
which was the whole point of a sampling algorithm to avoid in the first place. A
better alternative would be to adjust the construction of ϕ ∈ TAUFIC in a way
that avoids these clashes.

To do that, we first create two sets of literals, L= and L�=, which constrain
the indices to a fixed aliasing configuration, namely the one exhibited by m.

L�= = {t1 �= t2 | ∃a. select(a, t1), select(a, t2) � P ∧ m[t1] �= m[t2]}
L= = {t1 = t2, select(a, t1) = select(a, t2) |

∃a.select(a, t1), select(a, t2) � P ∧ m[t1] = m[t2]}

Adding these literals to P will make sure that the same array accesses that
are aliased in m are aliased in any model of ϕ′, and no others.

Finally, we handle array equality a1 = a2 (and its negation) via a similar
preprocessing. Since the details are somewhat technical, they are deferred to the
appendix [36].

5 Sampling Using Model-Guided Approximation

In this section, we present an algorithm, MeGASample, for sampling TMIA and
TAUFMIA formulas, using model-guided approximation to the theories TIC and



84 M. I. Peled et al.

Fig. 4. Workflow of the MeGASample sampling procedure

TAUFIC, respectively. An outline of the algorithm is presented in Fig. 4. Similar
to [15], the sampling process is epoch-based : it obtains an initial model with the
help of a solver, and then utilizes it to create a set of distinct models in an
efficient manner. This process is repeated iteratively, where each such iteration
is called an epoch. The initial model of each epoch is called the seed of the epoch.

As a preliminary step, the input formula ϕ is transformed into negation nor-
mal form (NNF). Then, the epoch loop begins, collecting models in the set
M (initialized to ∅). First, the seed of the epoch, m, is obtained using a
GetSeed procedure. Then, model-guided approximation takes place. As discussed
in Sect. 4, the first step is to find a product term P that is an m-implicant of
ϕNNF (and ϕ) in ComputeImplicant. Then, the procedure PMGA that is appro-
priate to the current theory is used to obtain ϕ′, an m-approximation of P (and
ϕ). Finally, in Sample intervals, the interval formula ϕ′ (which is either in TIC
or TAUFIC) is repeatedly sampled, and samples are saved in M ′. Note that, the
m-approximation property guarantees that every model of ϕ′ is also a model of
ϕ. Therefore, all models in M ′ are output if they were not seen before (i.e., not
in M), and the set M is updated accordingly. In addition, the m-approximations
ϕ′ are accumulated for future use by GetSeed.

We suggest two variants for the GetSeed procedure. The first, following [15],
picks a random assignment and chooses the model of ϕ that is closest to it using
a MAX-SMT query. The second, avoids a costly MAX-SMT query and uses SMT
instead, but only after discrading all models of ϕ′ by adding ¬ϕ′ to the formula.
Unlike the random-based variant, constraints are accumulated between different
calls to the solver, to enable blocking based on the entire history of epochs. Both
variants aim at increasing the diversity of the seeds and covering new areas of
the solution space.

With regard to Sample Intervals, for T ′ = TIC this procedure can be real-
ized by repeatedly drawing a value at random from within the lower and higher
bounds of each variable. For T ′ = TAUFIC, things get a little more compli-
cated since we need to also sample array elements constrained by an interval. As
already mentioned in Sect. 4.2, clashes may occur between terms that are not
syntactically identical but refer to the same array element (are aliased). How-
ever, we have already shown that with the addition of equality and inequality
constraints we can eliminate aliasing a-priori. We therefore use the TIC sampling
procedure also for TAUFIC.

The suggested implementations for GetSeed and Sample Intervals are suit-
able for the general case, where we have no information as to the form of the
solution space nor the goal of sampling. However, we believe that for a particular



SMT Sampling via Model-Guided Approximation 85

application such additional insight will be available and can be incorporated into
these procedures in order to guide the search towards the more useful solutions.
We leave this to future work.

6 Evaluation

We have developed MeGASampler as an open-source sampling tool based on
the Z3 solver [32]. In this section, we empirically evaluate MeGASampler with
either blocking or random initial assignments, and compare it against a variant
of state-of-the-art sampler SMTSampler [15] which was ported from bit-vector
logic to integer logic. The latter was constructed by modifying the original imple-
mentation as follows. SMTSampler is built upon three operations: transforming
a seed into a set of satisfying conditions, finding similar solutions by negating
one of these conditions, and combining the resulting solutions to generate solu-
tion candidates. Porting to a different logic requires translating these operations
to fit that logic. For bit-vectors, SMTSampler used conditions of the form “bit
i in vector v is set”, and combined solutions by applying a bitwise or operation
to mutated values. For the integer domain, we treated the entire assignment as
a condition, i.e., “integer x is equal to value n”, and used addition as the integer
analogue for combining mutations.

We performed tests on benchmarks from SMT-LIB [4], using the problems
in logics QF_LIA, QF_NIA3, and QF_ALIA. Some of the benchmarks repre-
sent real-world problems, including formulas used for software verification, e.g.,
from the AProVE [20] and VeryMax [6] termination analysis tools. Other
benchmarks are synthetic, designed to stress SMT solvers.

Benchmarks deemed inappropriate for the evaluation were discarded, includ-
ing those marked as unsatisfiable or unknown and benchmarks for which at least
100 samples were not gathered by any tested technique. As we are not evalu-
ating SMT solvers, benchmarks for which finding a single solution took over
one minute were also discarded. After applying these criteria, we followed the
methodology of [15] and randomly selected 15 benchmark files as a representa-
tive sample of each directory, in order to keep the experiments tractable. We
consider this reasonable as benchmarks from the same directory tend to be sim-
ilar in nature. In total, our evaluation set consisted of 28 benchmark directories
(420 files), 4 in QF_NIA, 1 in QF_ALIA, and the rest in QF_LIA.

As noted in previous work [15], the number of unique solutions generated
is an incomplete metric, which may not represent the samples’ coverage of the
solution space. The authors proposed an alternative metric, which measures
coverage statistics of the internal nodes of the abstract syntax tree (AST) of the
(bit-vector) formula: each node of sort Bool represents 1 bit, and each node of sort
bit-vector represents 64 bits. Each such bit is considered covered if it has received
both 1 and 0 among the set of samples. The coverage metric is then the ratio
of covered bits to total bits. The intuition being that if one were to synthesize
3 The “interesting” operation in TNIA is multiplication; most benchmarks in this direc-

tory are actually in TMIA, which is supported by MeGASampler.



86 M. I. Peled et al.

Table 1. Results (averaged) over the benchmarks

Benchmarks vars depth Coverage (%) Epochs #SMT Unique solutions
MeGA MeGAb SMTint MeGA MeGAb SMTint SMTint MeGA MeGAb SMTint

QF_ALIA/qlock2 484 233 87.90 20.40 26.25 3 2 2 23 12332 14877 20
QF_LIA/CAV2009-slacked 55 5 98.36 66.11 89.87 143 646 247 6746 1647400 1915995 633047
QF_LIA/CAV2009 26 5 67.38 95.08 79.98 184 996 1585 20793 2201716 3788132 1075097
QF_LIA/bofill-sched-random 780 6 99.84 83.95 76.00 628 927 4 196 627 927 112
QF_LIA/bofill-sched-real 576 6 99.94 91.95 81.74 689 1159 3 580 688 1158 249
QF_LIA/convert 768 1339 30.61 27.71 80.24 7 6 2 65 90635 76671 53
QF_LIA/dillig 31 25 42.20 97.70 53.57 133 1164 769 10551 1729099 3983851 455503
QF_LIA/pb2010 5842 5 75.64 71.85 51.37 30099 107 42907 128875 53 214 27
QF_LIA/prime-cone 10 5 96.89 63.86 97.00 2705 9313 39360 155484 13658385 3906854 613784
QF_LIA/slacks 61 5 99.11 69.50 85.75 135 205 383 11005 1923319 2245506 335504
QF_NIA/20170427-VeryMax 181 13 86.09 54.47 53.99 13 506 2 30 81822 1563188 18698
QF_NIA/AProVE 40 6 97.87 71.57 77.17 714 6016 10053 73190 6478901 6982253 1394814
QF_NIA/leipzig 92 2 59.55 74.50 54.22 20 1305 3 64 96843 1189523 1207

a circuit that takes as inputs assignments to the variables of the formula and
produces a Boolean output of True or False indicating whether the formula is
satisfied, then the coverage metric would be equivalent to the coverage of internal
wires in this circuit, when exercised by the generated solutions. Therefore, this
metric serves as a good proxy to coverage for formulas that encode hardware
systems, e.g., in CRV [34], and a good proxy to path coverage for formulas that
encode software systems, e.g., in bounded model checking [12].

We have ported this metric from bit-vector logic to integer logic by consider-
ing only the lower 64 bits of each arbitrary-size integer. Note that the maximum
score using this metric is not necessarily 100%, because, naturally, some bits are
restricted by the input formula and can only take one of the values. Therefore,
we have normalized it and calculated it instead as the ratio of covered bits to
total bits covered by at least one of the methods in the evaluation.

All experiments were run on a 64-core (128-thread) AMD EPYC 7742 based
server with 512GiB of memory. Each execution utilized a single core, until either
a time limit of 15min was reached, or 25M unique samples were generated.

6.1 Results

Table 1 shows the results of the executions, broken down by origin directory. For
each directory of benchmarks, the columns, averaged over the benchmarks in that
directory, are as follows: Number of variables, depth of the formula AST, the
computed coverage metric, number of epochs, number of calls to the solver (only
shown for SMTint, for MeGA and MeGAb it is exactly the number of epochs),
and number of unique solutions. Columns titled MeGA report measurements
for the random-based MeGASampler, MeGAb the blocking MeGASampler,
and SMTint is SMTSampler retrofitted for the integer domain. Bold indicates
the highest value in each rubric. Results are aggregated per top-level directory;
for a more detailed breakdown, see the appendix [36].

MeGASampler consistently produces more samples than SMTint. More-
over, the blocking technique is shown to be overall effective for increasing the
number of unique solutions. Blocking does incur some overhead, which is why in



SMT Sampling via Model-Guided Approximation 87

Fig. 5. A comparison of the number of samples and coverage generated by MeGASam-
pler, relative to those from SMTSampler. The plots show ratios per single bench-
mark, in ascending order, comparing each of two variants of MeGASampler to SMT-
Sampler.

some cases the non-blocking variant was able to produce more samples within
the time frame. MeGASampler also improves the coverage when considering
the averages per collection of 15 benchmarks. Here, blocking produces lower cov-
erage even when it produces more samples, because, while producing intervals
that are disjoint in successive epochs, it utilizes less randomization than the
MAX-SMT-based version.

The benchmarks in the qlock2 and convert categories were difficult to solve
(possibly due to the large AST depth), reflected in the low number of epochs for
all methods shown. Remarkably, MeGA manages to extract tens of thousands of
samples from a single-digit number of seeds for these benchmarks, compared to
tens of SMTint. Surprisingly, for convert it is SMTint that manages to achieve
the greatest coverage, despite a low number of unique solutions, suggesting that
it moved further away from the seed using mutations.

For the two bofill categories, we see that for both MeGA variants the
number of samples is about the number of epochs, meaning that MGA failed to
generalize the seeds obtained from the solver. In SMTint the number of epochs is
very small and the number of solutions obtained is lower than the number of calls
made to the solver, i.e., its seed expansion attempts were mostly unsuccessful.
One takeaway is that there are examples where generalization does not work
well but solving the formula isn’t difficult, so maximizing the number of epochs
is a good strategy. There were several categories where the number of epochs
was significantly larger in MeGAb compared to the other two; we ascribe this
result to the cost of MAX-SMT calls, which aren’t utilized by MeGAb.

For a deeper look into the performance of the method, we perform a case-by-
case comparison between both variants of MeGASampler and SMTSampler.
We compute the ratio between the number of samples generated by MeGA or
MeGAb on each benchmark to SMTint; then plot the results in descending order
on a logarithmic scale, on the same axis, as shown in Fig. 5. We show the same
for a “virtual best” where the maximal value is compared with the baseline. The
same process is repeated for the coverage metric that was described earlier. Since
coverage is a percentage metric, we plot the difference on a linear scale.

In number of samples, the result of MeGAb are similar to those of the virtual
best and support the previous conclusion that blocking is good for increasing the
sample volume. We also see that for coverage, the race is largely inconclusive,
but that the virtual best still offers significant improvement over the baseline.



88 M. I. Peled et al.

Limitations of the Evaluation. There are some notable limitations to the
presented methodology. SMTSampler was not designed to work on integers,
and the modification may not be suitable or optimal. There are several param-
eters controlling sampling behaviors, e.g., mutation depth in SMTSampler or
maximum number of samples per epoch in MeGASampler. Different selections
for these parameters, as well as other experimental parameters such as time limit
and inputs, may impact the results.

There may be other coverage metrics for estimating quality of samples, or
other metrics that better characterize good sampling for particular uses. How-
ever, we do not believe that there is any single metric that would be good for
all applications. As future work, we plan to design an MGA-based goal-aware
sampling algorithm that guides the exploration towards better solutions for a
specific purpose.

7 Related Work

There is a rich line of work on Markov-Chain Monte-Carlo (MCMC) sampling
techniques in the statistics and operations research community [5,21,23,29,
35,37,38,40]. These techniques were used for sampling propositional formulas
in [26,27]. Additional algorithms for sampling propositional formulas are based
on syntactic mutations [17], random walks [41], recursive search [19], knowledge
compilation [39], adaptation of SAT solvers and model counters [1,2,33], and
universal hashing [9,18,30,31].

The problem of sampling for arbitrary SMT formulae was, however, much
less explored. A prominent exception is SMTSampler [15], which samples for-
mulas at the SMT level. Like MeGASampler, SMTSampler is epoch-based.
However, their way of extending a single model to a set of models relies on
syntactic mutations and their combination. Another difference is that SMT-
Sampler was designed for formulas in the theory of bit-vectors with arrays
and uninterpreted functions. In our experiments, we implemented a version of
their algorithm for the TMIA and TAUFMIA theories and compared it empirically
against MeGASampler. A follow-up work on SMT sampling is GuidedSam-
pler [16], which is a variant of [15] that allows providing a problem-specific
coverage metric and aims to optimize it.

The theory of intervals, TIC, has been used for approximation in abstract
interpretation since the very beginning [13]. However, the use of intervals in
that context is for over-approximation, while ours is for under-approximation.
Intervals have also been used in [25] to improve the efficiency of solving bit-vector
formulas, and in [10], to approximate path constraints for concolic testing. The
work of [7] uses fuzzing techniques on SMT formulas to increase their efficiency
for fuzzing-related instances, and also makes use of intervals. Other methods of
approximation were used to improve SMT solving [8,42]. However, to the best
of our knowledge, this is the first work to use approximation for SMT sampling.

The notion of Model-Based Projection (MBP) [28] has some common ground
with the notion of Model-Guided Approximation (MGA) (Sect. 3), but there



SMT Sampling via Model-Guided Approximation 89

are also some significant differences between the two; see discussion in the
appendix [36].

8 Conclusion

We have shed some new light on the intriguing problem of sampling from the set
of satisfying assignments for an SMT formula, by offering an alternative to the
existing stochastic mutation-based approach. The reduction to an intermediate
theory, such as the interval theories TIC, TAUFIC that we used in our proof of
concept and evaluation, sidesteps the need for intensive generate-and-test cycles,
as model-guided approximation is guaranteed to be an underapproximation of
the input formula from which we can freely sample without having to check, and
possibly discard, some of the generated assignments. In a sense, model-guided
approximation “squeezes the most” out of each seed. Our evaluation shows that
the new approach indeed improves the performance of SMT sampling in practice.

Acknowledgements. The authors would like to thank Profs. Orna Grumberg and
Ofer Strichman for their valuable input and contributions to this work. We would
additionally like to thank the anonymous reviewers for their time and effort.

References

1. Achlioptas, D., Hammoudeh, Z.S., Theodoropoulos, P.: Fast sampling of perfectly
uniform satisfying assignments. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 135–147. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8_9

2. Agbaria, S., Carmi, D., Cohen, O., Korchemny, D., Lifshits, M., Nadel, A.: SAT-
based semiformal verification of hardware. In: Formal Methods in Computer Aided
Design, pp. 25–32 (2010)

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

4. Barrett, C.W., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2021). https://smtlib.cs.uiowa.edu

5. Baumert, S., Ghate, A., Kiatsupaibul, S., Shen, Y., Smith, R.L., Zabinsky, Z.B.:
Discrete hit-and-run for sampling points from arbitrary distributions over subsets
of integer hyperrectangles. Oper. Res. 57(3), 727–739 (2009)

6. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodríguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: Legay, A.,
Margaria, T. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, pp. 99–117. Springer, Berlin, Heidelberg (2017)

7. Borzacchiello, L., Coppa, E., Demetrescu, C.: Fuzzing symbolic expressions. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
(2021). https://doi.org/10.1109/icse43902.2021.00071

8. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71209-1_28

https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-319-94144-8_9
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://smtlib.cs.uiowa.edu
https://doi.org/10.1109/icse43902.2021.00071
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28


90 M. I. Peled et al.

9. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform gen-
erator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 608–623. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8_40

10. Choi, J., Jang, J., Han, C., Cha, S.K.: Grey-box concolic testing on binary code. In:
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 736–747. IEEE (2019)

11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. Lecture Notes in Computer Science, pp. 93–107.
Springer, Cham (2013)

12. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: Proceedings of the Design Automation
Conference, pp. 368–371. IEEE (2003)

13. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, pp. 106–
130. Dunod, Paris, France (1976)

14. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_49

15. Dutra, R., Bachrach, J., Sen, K.: SMTSampler: efficient stimulus generation
from complex SMT constraints. In: 2018 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1–8 (2018). https://doi.org/10.1145/
3240765.3240848

16. Dutra, R., Bachrach, J., Sen, K.: Guidedsampler: coverage-guided sampling of SMT
solutions. In: 2019 Formal Methods in Computer Aided Design (FMCAD), pp.
203–211 (2019). https://doi.org/10.23919/FMCAD.2019.8894251

17. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions
for testing. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (eds.) Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, 27 May–03 June 2018, pp. 549–559. ACM (2018). https://
doi.org/10.1145/3180155.3180248

18. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and project: discrete
sampling with universal hashing. In: NIPS, pp. 2085–2093 (2013)

19. Ermon, S., Gomes, C.P., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. arXiv preprint arXiv:1210.4861 (2012)

20. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination
proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25979-
4_15

21. Glynn, P.W., Iglehart, D.L.: Importance sampling for stochastic simulations.
Manag. Sci. 35(11), 1367–1392 (1989)

22. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: CAV (2015)

23. Hastings, W.K.: Monte carlo sampling methods using markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

24. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_2

https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1145/3240765.3240848
https://doi.org/10.1145/3240765.3240848
https://doi.org/10.23919/FMCAD.2019.8894251
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/3180155.3180248
http://arxiv.org/abs/1210.4861
https://doi.org/10.1007/978-3-540-25979-4_15
https://doi.org/10.1007/978-3-540-25979-4_15
https://doi.org/10.1007/978-3-642-39799-8_2


SMT Sampling via Model-Guided Approximation 91

25. Huang, H., Yao, P., Wu, R., Shi, Q., Zhang, C.: Pangolin: incremental hybrid
fuzzing with polyhedral path abstraction. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 1613–1627. IEEE (2020)

26. Kitchen, N.: Markov Chain Monte Carlo Stimulus Generation for Constrained
Random Simulation. Ph.D. thesis, University of California, Berkeley, USA (2010).
http://www.escholarship.org/uc/item/6gp3z1t0

27. Kitchen, N., Kuehlmann, A.: Stimulus generation for constrained random simula-
tion. In: Gielen, G.G.E. (ed.) 2007 International Conference on Computer-Aided
Design, ICCAD 2007, San Jose, CA, USA, 5–8 November 2007, pp. 258–265. IEEE
Computer Society (2007). https://doi.org/10.1109/ICCAD.2007.4397275

28. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016)

29. Liu, J.S.: Metropolized independent sampling with comparisons to rejection sam-
pling and importance sampling. Stat. Comput. 6(2), 113–119 (1996)

30. Meel, K.S.: Sampling techniques for Boolean satisfiability. CoRR abs/1404.6682
(2014). http://arxiv.org/abs/1404.6682

31. Meel, K.S., et al.: Constrained sampling and counting: Universal hashing meets sat
solving. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence
(2016)

32. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

33. Nadel, A.: Generating diverse solutions in SAT. In: Sakallah, K.A., Simon, L. (eds.)
SAT 2011. LNCS, vol. 6695, pp. 287–301. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21581-0_23

34. Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verifi-
cation. AI Mag. 28(33), 13–13 (2007)

35. Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. ACM Trans.
Comput. Theory 5(3), 11:1–11:33 (2013)

36. Peled, M., Rothenberg, B.C., Itzhaky, S.: SMT sampling via model-guided approx-
imation. CoRR (arXiv) (2022)

37. van Ravenzwaaij, D., Cassey, P., Brown, S.D.: A simple introduction to Markov
chain monte-Carlo sampling. Psychon. Bull. Rev. 25(1), 143–154 (2018)

38. Shapiro, A.: Monte Carlo sampling methods, stochastic programming, vol. 10, pp.
353–425. Elsevier (2003)

39. Sharma, S., Gupta, R., Roy, S., Meel, K.S.: Knowledge compilation meets uniform
sampling. In: LPAR, pp. 620–636 (2018)

40. Tokdar, S.T., Kass, R.E.: Importance sampling: a review. WIREs Comput. Stat.
2(1), 54–60 (2010)

41. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: exploiting random
walk strategies. In: AAAI, Vol. 4, pp. 670–676 (2004)

42. Yao, P., Shi, Q., Huang, H., Zhang, C.: Fast bit-vector satisfiability. In: Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 38–50 (2020)

http://www.escholarship.org/uc/item/6gp3z1t0
https://doi.org/10.1109/ICCAD.2007.4397275
http://arxiv.org/abs/1404.6682
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-21581-0_23
https://doi.org/10.1007/978-3-642-21581-0_23


Efficient SMT-Based Network Fault
Tolerance Verification

Yu Liu1, Pavle Subotic2 , Emmanuel Letier3 , Sergey Mechtaev3(B) ,
and Abhik Roychoudhury1

1 National University of Singapore, Queenstown, Singapore
{liuyu,abhik}@comp.nus.edu.sg

2 Microsoft, Beograd, Serbia
pavlesubotic@microsoft.com

3 University College London, London, UK
{e.letier,s.mechtaev}@ucl.ac.uk

Abstract. Network control planes are highly sophisticated, resulting in
networks that are difficult and error-prone to configure. Although several
network verification tools have been developed to assist network opera-
tors, they are limited and inefficient in handling fault-tolerance policies.
In this paper, we propose a novel SMT encoding to speed up control plane
fault tolerance verification by pruning failed topologies. This encoding
exploits the observation that the verifier has to check failures only for the
links lying on a set of best paths which can be computed by a recursive
algorithm. We implemented our technique in Minesweeper, a state-of-
the-art SMT-based verifier. Our evaluation shows that the new encoding
speeds up verification by the factor of 3.1–26.9X.

1 Introduction

Correctly configuring modern computer networks is hard due to their size and
complexity. The total lines of the low-level network configuration code may reach
millions [6]. To alleviate network operators’ burden, automatic control plane
verifiers [1,4,16] have been proposed. These tools take network configurations
as input and analyze them to gauge the possible routing behaviours. Then, they
answer questions such as whether router A computes a route to router B, i.e.
reachability policy, or whether router A computes a route to router B regardless
of any number of failed links, i.e. fault-tolerance reachability policy.

SMT-based network verifiers have been successfully employed on large scale
industrial networks [8,9]. These tools encode the network verification problem
in logic and rely on the SMT solver to check the encoded property. For these
verifiers, fault-tolerant policies are particularly challenging. SMT-based veri-
fiers are inefficient in checking fault-tolerance policies, because their algorithms
do not scale to the number of possible failed topologies, which combinatori-
ally grows with the number of failed links. For example, a widely-used verifier
Minesweeper [4] encodes all possible failed topologies using SMT constraints.

To address the combinatorial explosion of the failed topologies, we propose
an SMT encoding that prunes the space of topologies by eliminating those that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 92–100, 2023.
https://doi.org/10.1007/978-3-031-27481-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_7&domain=pdf
http://orcid.org/0000-0002-6536-3932
http://orcid.org/0000-0002-8935-343X
http://orcid.org/0000-0001-6088-4993
http://orcid.org/0000-0002-7127-1137
https://doi.org/10.1007/978-3-031-27481-7_7


Efficient SMT-Based Network Fault Tolerance Verification 93

Fig. 1. Topologies pruned by recursive best path optimization.

are guaranteed not to change the verification result. We refer to this encod-
ing as recursive best path optimization (RBP). Our SMT encoding represents
information about best paths using logical constraints, and applies cardinality
constraints to control the number of network failures. This proposed encod-
ing significantly improves performance of fault tolerance verification in similar
tools [4].

We have implemented our proposed approach as the open source tool1 Trail-
blazer, a variant of Minesweeper with the RBP encoding. We have evaluated
Trailblazer on three benchmarks from the zoo topology [14] and a network
from Rocketfuel [17]. The results show that Trailblazer is 3.1–26.9X faster than
Minesweeper, while being able to verify the same policies. Our contributions are
listed as the following:

– A novel SMT encoding for optimising network fault tolerance verification.
– A comprehensive evaluation of Trailblazer on widely-used benchmarks.

2 Motivation

Let V be the nodes of a network, and E ⊆ V ×V be its edges. The SMT-based
verifier Minesweeper encodes the network fault-tolerance verification problem
under k link failures into the formula ψ ∧ ξk ∧ ¬π, where ψ encodes network
behaviour, π is the property of interest, and ξk encodes that the number of
failed links, controlled by the pseudo-boolean variables failede, is bound by k:

ξk � Σe∈Efailede ≤ k (1)

If an SMT solver determines that the formula is unsatisfiable, the policy holds
on all possible network topologies with at most k link failures.
1 https://github.com/rainLiuplus/trailblazer.

https://github.com/rainLiuplus/trailblazer


94 Y. Liu et al.

Consider an example network in Fig. 1, in which each router forwards traf-
fic via the shortest path. For example, the router v1 reaches the router v5 via
the path e5e3 (Fig. 1a). Assume that our goal is to verify the fault tolerance
property that v1 reaches v5 under two link failures. Since the network consists
of seven edges, there are C(7,2) = 21 possible failure topologies. Thus, an SMT
solver implicitly checks the property for the 21 failed topologies, and this number
quickly grows with the size of the network.

Our key observation is that a more efficient encoding that takes into account
the best path semantics of the network protocol can assist SMT solver in checking
the fault tolerance property. Observe that since e5e3 is the shortest path, if the
failures occur in any edges except e5 and e3, the reachability from v1 to v5 is not
affected. Therefore, all the failed topologies in which both e5 are e3 are up can be
pruned. An example of such a topology is given Fig. 1b. Moreover, significantly
more topologies can be pruned if we analyze the new best paths that appear
after an edge on the previous best paths fails. Assume that e5 fails. Then, e5e3
no longer exists, and the network computes a new best path from v1 to v5, e.g.
e1e2 (Fig. 1c). Then, we need to only consider all single-edge failures for this
failed topology. Similar to the previous case, the topologies whose dropped links
are not in {e1, e2} can be pruned. Thus, the topologies whose two dropped links
are in {(e5, e6), (e5, e7), (e5, e3), (e5, e4)} can be pruned. An example is given in
Fig. 1d. The link e2 can be handled similarly. Totally, this optimisation prunes
17 of 21 topologies. We refer to this optimisation as RBP.

We apply RBP by adding stronger constraints ξk. Instead of the formula 1,
we encode network semantics under link failures it as

ξk � failede5 → AtLeast(1, {failede1 , failede2}) ∧ ...

where failede5 → AtLeast(1, {failede1 , failede2}) states that if e5 fails, the second
failed link should be on the new best path (Fig. 1d). This is repeated recursively
for all edges on the best paths up to a configurable depth d. This encoding
significantly optimises constraint solving as shown in Sect. 4.

3 Trailblazer

In this section, we first provide background on network verification, then discuss
the details of Trailblazer.

3.1 Background

For a node v and a destination node dst , a network protocol computes the
forwarding path(s) FPv, a set of sequences of edges for forwarding traffic to dst .
We denote the set of forwarding paths of all nodes to dst as FP � {FPv|v ∈ V }.
A network policy is a predicate φ over FP. For example, Reachabilityv(FP)
states that FPv is not empty. To verify a policy is to check if φ(FP) holds. A
failed link in the network topology changes the forwarding paths. So, to verify a
policy φ under k failed links, we need to check φ on C(|E|, k) failed topologies.



Efficient SMT-Based Network Fault Tolerance Verification 95

Table 1. Common network policies

Predicate (φ) Policy Description

Reachabilityv FPv �= ∅ Traffic v → dst can reach dst

Waypoint(v,w) w ∈ nodes(FPv) Traffic v → dst traverses node w

Isolationv FPv = ∅ Traffic v → dst cannot reach dst

Balancev |FPv| ≥ 2 Mutiple paths for traffic v → dst

Four common network policies are reachability, waypoint, isolation and bal-
ance shown in Table 1. Note that the balance policy is the only one that deals
with sets of best paths.

Minesweeper is an SMT-based network verifier, which reduces the verifica-
tion problem to an SMT problem. Minesweeper’s encoding given in Sect. 2 is
described in more details in Sects. 3–5 of their paper [4].

3.2 Our Approach

Trailblazer improves the SMT encoding of Minesweeper using additional con-
straints that capture network semantics under failures, and optimises the encod-
ing using cardinality constraints. The key intuition of our optimisation is that
failed links outside of the best path do not affect the network semantics. To
capture this intuition, we add extra constraint λL to restrict the failure model:

λL � Σe∈Lfailede ≥ 1 (2)

where L is the set of links in the best path. The encoding of the failure model
now becomes:

ξk � Σe∈Efailede ≤ k ∧ λL (3)

We first acquire the best paths corresponding to all failure topologies by
leveraging Batfish [9]. After obtaining this mapping, we encode them to SMT
formulas. RBP works by recursively dropping a link in the best path, then treat-
ing the current network with one failed link as new network and compute the
new best path on it. We encode these recursive best paths as formulas. For exam-
ple, if the dropped link is e′ and the corresponding best path is L′, then they
should be encoded as failede′ → λL′ . Similarly, if another edge e′′ fails in L′ and
the new best path is L′′, the encoding should be failede′ → failede′′ → λL′′ . The
encoding could be interpreted as: if e′ is broken and e′′ is broken, the remained
broken links can only be in L′′. Let Ef be the set of failed links and L be the
corresponding best path of the topology with Ef dropped. The constraint for
restricting the failure model under Ef and L is:

∧

e∈Ef

failede → λL (4)

This constraint states that if all links in Ef are down, then there is at least one
link should be dropped in its corresponding best path L.



96 Y. Liu et al.

Fig. 2. Verification time of Minesweeper and Trailblazer for k=2, d=1.

Fig. 3. Speedup for the two optimisations in isolation.

To efficiently encode the failure model, we applied cardinality constraints [2]
instead of the integer inequalities used by Minesweeper. Cardinality constraints
efficiently place a bound on the number of literals within a given set that can be
assigned True. So, given the constraints in Eq. (1) and Eq. (2) where failede is
replaced with a boolean binary variable, they are naturally meet the semantics
of AtMost and AtLeast constraints, respectively.

4 Evaluation

We conducted experiments on three networks selected from topology zoo [14]:
Bics, Columbus and USCarrier, and the network AS1755 from Rocketfuel [17].
Bics consists of 33 routers and 48 links; Columbus has 70 routers and 85 links;
USCarrier includes 158 routers and 189 links; AS1755 has 87 routers and 322
links. Each network from topology zoo has two types of network configuration,
OSPF and BGP. We collect test policies by using Config2Spec’s sampler [7],
which infers policies from a data plane. We inferred four kinds of policies: reach-
ability, waypoint, isolation and balance (see Sect. 3.1 for details). The policies
that never hold were filtered out using the trimmer of Config2Spec. We consid-
ered four failure models where k ∈ [1..4], representing there are at most 1, 2, 3 or
4 failed links respectively. We ran experiments on a machine with 64 GB RAM
and 56 virtual cores with 2.00 GHz. We cross-checked the verification outputs of
Trailblazer and Minesweeper; their verification results were all consistent.

To compare Trailblazer with the vanilla Minesweeper and identify how the
proposed techniques contribute to its results, we compared three configurations
of Trailblazer: Comb0 with no optimization (original Minesweeper), Comb1
with recursive best path optimization, and Comb2 with recursive best path



Efficient SMT-Based Network Fault Tolerance Verification 97

Fig. 4. Trailblazer’s performance depending on failed links and recursion depth.

optimization + cardinality constraints (Sect. 3.2). We run the three combina-
tions on BICS, Columbus and USCarrier under the failure model k=2 with the
recursion depth d=1. Comb0 and Comb2 in Fig. 2 shows the verification time
of Minesweeper and Trailblazer. The time is averaged over all policies. The ‘O’
and ‘B’ inside brackets denote OSPF and BGP respectively. The average verifi-
cation time of Minesweeper for OSPF networks is ranged from 4.71 s to 71.63 s,
for BGP networks is 13.65 s–185.53 s. Trailblazer takes 0.53 s–7.25 s for OSPF
networks and 3.64 s–29.91 s for BGP networks. Overall, Trailblazer is faster than
Minesweeper by the factor of 3.75–9.88X.

To evaluate the effectiveness of RBP and cardinality constraints in isola-
tion, we compared Comb0 with Comb1 and Comb1 with Comb2. The results
are shown in Fig. 3, where B,C,U represents BICS, Columbus, USCarrier respec-
tively; O and B denote OSPF and BGP. RBP results in speedup from 3.78X
to 6.31X. By using cardinality constraints, the verifier is accelerated by 0.92X–
2.14X as shown in Fig. 3(b).

To investigate how Trailblazer’s performance vary with number of failed links
and recursion depth, we conducted two sets of experiments. First, we set the
tested failure models as k=2,3,4 and recursion depth d=1. The results of an
experiment with Columbus and Bics are shown in Fig. 4b. All sampled Columbus’
policies are pre-pruned when k=4. The speedup ranges from 3.14X to 15.92X.
Verification is accelerated the most when k=3, while it is improved the least
when k=4. We speculate that when k is large, the policy tends not to hold, and
thus it is easier for the solver to find a solution, thus it will benefit less from the
pruned search space. Second, we set the failure model to k=3,4 and recursion
depths to d=0,1,2. We use USCarrier and AS1755 as the experimental networks.
The results shown in Fig. 4a demonstrate that d=1 is the optimal recursion
depth in USCarrier networks, with the highest speedup reaching 26.94x, while
AS1755 has the best performance at d=2. We speculate that the performance
will not keep increasing as d increases, since increasing the depth also increases
the overhead for computing the best paths.



98 Y. Liu et al.

5 Related Work

Minesweeper [4] is an SMT-based network verifier, which reduces the verification
problem to an SMT problem. Trailblazer significantly improves the performance
of Minesweeper without sacrificing its generality. Batfish [9] is a control plane
simulator, which simulates control plane execution, generates a data plane and
analyses the data plane. In respect to fault-tolerance policies, Batfish enumerates
every failed topology, an approach that doesn’t scale in practice. Plankton [16]
models different routing protocols by simple path vector protocol [12]. It uses
an explicit model checker, Spin [13], to thoroughly explore the possible network
states to check whether there exists a state that violates the queried policy.
For fault-tolerance, it checks the policies by naive enumeration, which nega-
tively affects its performance. Plankton implementation is not publicly available.
ARC [10] models the network as a graph. It performs verification by standard
graph algorithms which are ensured to be polynomial. As a result scales for fault-
tolerance policies. However, it is incapable of representing some common network
features, including BGP local preferences and communities. Tiramisu [1] is an
improved version of ARC. It can support richer network features. However, it
trades the scope of its application for verification efficiency e.g. it does not ver-
ify properties such as the loop freedom and cannot compute counter-examples.
Netdice [18] is a probabilistic verifier which can prune the failed topologies when
verifying iBGP networks. Our technique performs similar pruning decisions via
an SMT encoding, and it is more general e.g., supports eBGP networks. Surg-
eries [15] and Bonsai [5] both exploits structural symmetry of network to acceler-
ate verification for network. They achieve good performance when networks are
highly symmetrical, but none of them can verify properties pertaining to when
network failures may occur. Origami [11] targets on fault-tolerance verification,
but it focuses on symmetrical networks and only reasons about reachability poli-
cies. MonoSAT [3] is an SMT solver that is efficient at solving problems involving
monotonic theories. The reachability policy is monotonic with respect to links
since removing a link can decrease the network’s reachability but cannot increase
it. The same applies to the isolation policy. However, other policies like waypoint
and balance are not monotonic, so MonoSAT is unable to verify them efficiently.

6 Conclusion

In this paper, we proposed an SMT encoding that significantly accelerates the
verification of network fault tolerance properties by pruning the space of topolo-
gies that are guaranteed not to change the verification result. We implemented
this new encoding in the open source tool Trailblazer, a variant of the state-
of-the-art verifier Minesweeper with the optimised encoding. Our evaluation
shows that Trailblazer significantly improves verification performance compared
to Minesweeper, with the highest speedups reaching 26.9X.



Efficient SMT-Based Network Fault Tolerance Verification 99

References

1. Abhashkumar, A., Gember-Jacobson, A., Akella, A.: Tiramisu: fast multilayer net-
work verification. In: 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2020), pp. 201–219 (2020)

2. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A Parametric
approach for smaller and better encodings of cardinality constraints. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40627-0 9

3. Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT modulo monotonic theories. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

4. Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A general approach to network
configuration verification. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 155–168 (2017)

5. Beckett, R., Gupta, A., Mahajan, R., Walker, D.: Control plane compression. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, pp. 476–489 (2018)

6. Beckett, R., Gupta, A., Mahajan, R., Walker, D.: Abstract interpretation of dis-
tributed network control planes. Proc. ACM Program. Lang. 4(POPL), 1–27 (2019)

7. Birkner, R., Drachsler-Cohen, D., Vanbever, L., Vechev, M.: Config2spec: mining
network specifications from network configurations. In: 17th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 20), pp. 969–984
(2020)

8. Backes, J., et al.: Reachability analysis for AWS-based networks. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 231–241. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 14

9. Fogel, A., et al.: A general approach to network configuration analysis. In:
12th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 15), pp. 469–483 (2015)

10. Gember-Jacobson, A., Viswanathan, R., Akella, A., Mahajan, R.: Fast control
plane analysis using an abstract representation. In: Proceedings of the 2016 ACM
SIGCOMM Conference, pp. 300–313 (2016)

11. Giannarakis, N., Beckett, R., Mahajan, R., Walker, D.: Efficient verification of net-
work fault tolerance via counterexample-guided refinement. In: Dillig, I., Tasiran, S.
(eds.) CAV 2019. LNCS, vol. 11562, pp. 305–323. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25543-5 18

12. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE/ACM Trans. Netw. 10(2), 232–243 (2002)

13. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

14. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

15. Plotkin, G.D., Bjørner, N., Lopes, N.P., Rybalchenko, A., Varghese, G.: Scaling
network verification using symmetry and surgery. ACM SIGPLAN Not. 51(1),
69–83 (2016)

16. Prabhu, S., Chou, K.Y., Kheradmand, A., Godfrey, B., Caesar, M.: Plank-
ton: scalable network configuration verification through model checking. In:
17th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 20), pp. 953–967 (2020)

https://doi.org/10.1007/978-3-642-40627-0_9
https://doi.org/10.1007/978-3-642-40627-0_9
https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.1007/978-3-030-25543-5_18
https://doi.org/10.1007/978-3-030-25543-5_18


100 Y. Liu et al.

17. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocketfuel.
ACM SIGCOMM Comput. Commun. Rev. 32(4), 133–145 (2002)

18. Steffen, S., Gehr, T., Tsankov, P., Vanbever, L., Vechev, M.: Probabilistic verifi-
cation of network configurations. In: Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, pp. 750–764
(2020)



Verification I



Formalising the Prevention
of Microarchitectural Timing Channels

by Operating Systems

Robert Sison1,2(B) , Scott Buckley2 , Toby Murray1 , Gerwin Klein2,3 ,
and Gernot Heiser2

1 The University of Melbourne, Melbourne, Australia
{robert.sison,toby.murray}@unimelb.edu.au

2 UNSW Sydney, Sydney, Australia
{s.buckley,kleing,gernot}@unsw.edu.au

3 Proofcraft, Sydney, Australia

Abstract. Microarchitectural timing channels are a well-known mecha-
nism for information leakage. Time protection has recently been demon-
strated as an operating-system mechanism able to prevent them. How-
ever, established theories of information-flow security are insufficient for
verifying time protection, which must distinguish between (legal) overt
and (illegal) covert flows. We provide a machine-checked formalisation of
time protection via a dynamic, observer-relative, intransitive nonleakage
property over a careful model of the state elements that cause timing
channels. We instantiate and prove our property over a generic model
of OS interaction with its users, demonstrating for the first time the
feasibility of proving time protection for OS implementations.

1 Introduction

Microarchitectural timing channels present a major attack vector on informa-
tion security [12], with the Spectre attacks demonstrating that even seemingly
innocuous code can be subverted into a Trojan that leaks secrets via such
channels [20]. Ge et al. recently introduced time protection mechanisms to pre-
vent microarchitectural channels, experimentally demonstrating their effective-
ness [11] on a modified version of the seL4 operating system (OS) microker-
nel [19].

While seL4 comes with an extensive body of formal proofs, including infor-
mation-flow enforcement and freedom from storage channels [24], these proofs
do not consider properties about timing channels; the same is true for other OS
security proofs [2,8,21]. Work that does consider timing does not extend to the
full OS [4] or assumes mechanisms that are too expensive in practice [3].

Reasoning about timing channels is challenging, as timing is a non-functional
property and hardware details that affect timing are intentionally unspecified to
enable optimisations. While the correctness of time protection can, in principle,
be reduced to functional properties [15], to date there is not even a precise
formulation of the security property it is meant to enforce.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 103–121, 2023.
https://doi.org/10.1007/978-3-031-27481-7_8

https://doi.org/10.5281/zenodo.7340167
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_8&domain=pdf
http://orcid.org/0000-0003-0313-9764
http://orcid.org/0000-0001-8810-9323
http://orcid.org/0000-0002-8271-0289
http://orcid.org/0000-0001-8883-0559
http://orcid.org/0000-0002-7069-0831
https://doi.org/10.1007/978-3-031-27481-7_8


104 R. Sison et al.

Fig. 1. Restriction of information flow allowed from domain A to B to occur only via
the channel indicated by the dotted lines, i.e. not from any shaded regions.

Stating and verifying such a property faces two core challenges. Firstly, the
complexity of microarchitectural state requires abstraction to make formal rea-
soning feasible, while retaining sufficient precision to allow proving a meaningful
isolation property. Secondly, time protection is, by its nature, an asymmetric
property: A (trusted) security domain, e.g. a downgrader, may have the right to
communicate with another domain, but this overt information flow must hap-
pen in the absence of any covert information flow (through timing channels).
This point is explained later in Sect. 4.1.

To address the first challenge we formalise (Sect. 3) an abstraction of the state
elements related to temporal flows and their interaction with time, which distin-
guishes overt memory state from covert microarchitectural state. The abstraction
separates that covert state according to the applicable elimination mechanisms
(spatial or temporal partitioning), as proposed by Heiser et al. [15,16] and based
on a minimally-augmented hardware–software contract [13].

We address the second challenge (Sect. 4) by formalising a dynamic and
observer-relative intransitive nonleakage property. This property generalises the
one used for seL4 by Murray et al. [24,25] (Fig. 1a), to enforce elimination of
flows via microarchitectural state (Fig. 1b). We find that this requires a form of
policy channel specification, which allows arbitrary spatial precision, i.e. to spec-
ify from where flows can occur. The natural formalisation of such specifications
also supports arbitrary temporal precision, i.e. dynamic policy on when flows can
occur, as depicted by Fig. 1c. The observation relation specifying policy channels
from a running domain A, as well as the granularity of steps between observation
points, are then both relative to the observer domain B.

Finally, we instantiate and prove (Sect. 5) our property over a generic model
of OS interaction with a formalisation of the threat scenario presented in Sect. 2.
In doing so, we demonstrate the first formal approach to capture a precise, fine-
grained, time-protection property, even in the presence of the greater spatial and
temporal precision of the policy channel specifications it enables.



Formalising the Prevention of Microarch. Timing Channels by OSes 105

All our results are formalised and machine checked using the Isabelle/HOL
interactive proof assistant [26] and are provided as supplement material [5].

2 Threat Scenario

We adopt the threat scenario of Heiser et al. [15]: A spy in one security domain
attempts to obtain information from a sender in a different domain in violation
of the system’s security policy. We assume the defender’s worst-case scenario
where the sender is a Trojan that deliberately attempts to leak information, i.e.
a covert channel. If we can prevent this information flow, we implicitly rule out
inadvertent leaks (i.e. side channels).

Specifically we are looking at leakage through microarchitectural timing chan-
nels [12]. These result from microarchitectural state, i.e. hardware state hidden
by the hardware–software contract (i.e. instruction-set architecture) but affected
by program execution. This includes caches and other hardware features whose
state depends on execution history, such as branch predictors and prefetchers.

We assume that the spy has access to an independent time source. The spy
observes the speed of its own progress, looking for variance in execution speed
that cannot be explained by any information to which it already has access (i.e.
its own state). This includes the latency of memory accesses [14,27,28,36], the
latency of system calls operating on deterministic user state [11], or preemption
periods resulting from interrupts [11].

Such latency variations can be the result of the sender’s manipulation of
microarchitectural state, which can happen through accessing memory in specific
patterns, executing system calls with specific arguments, or initiating input-
output (I/O) operations that result in interrupts at a time chosen by the sender.

Importantly, covert channels must be precluded even where overt channels
are permitted. For example, consider an off-the-shelf web browser consisting
of hundreds of thousands of lines of code; it handles secret information (e.g.
passwords supplied by the user) but cannot be trusted to keep it secret. The
web browser runs in security domain H. It communicates with the outside world
via an untrusted network interface, running in domain L. The system’s security
policy requires that H can only communicate with L (and thus the outside
world) via a trusted encryption/filter server, acting as a downgrader, running
in domain D. While there is an overt channel H � D � L, the system must
prevent H from using a timing channel that bypasses D. In addition, the system
should prevent covert channels between H and D, even when an overt channel
is permitted, and likewise between D and L, as otherwise D might unwittingly
act as a courier for covert channel information between H and L.1

We use the term policy channel to refer to information flow that is explic-
itly permitted by the system’s security policy and represented by OS protection

1 Ensuring that it does not act as a courier requires very sophisticated reasoning
about D, e.g. proving that it obeys constant-time programming discipline [1,6].



106 R. Sison et al.

state, such as access control lists, or capabilities [10]; for example, seL4 uses
the latter. Time protection then becomes the requirement that a confidentiality
property is enforced, which prevents any information flow other than through
policy channels. We propose such a policy in Sect. 4.

Reasoning about time protection requires a system model that makes timing
channels explicit, by including microarchitectural state. The challenge is to keep
this model sufficiently abstract to apply to a wide class of real processors, yet
precise enough to allow reasoning about timing channels and their prevention.
We present such a model in Sect. 3. In Sect. 5 we present an OS security model,
parameterised over OS-specific features and processor-specific implementation
details, using our model of microarchitectural state to prove enforcement of a
time protection property; we hope it will serve as a roadmap for proving the
effectiveness of time protection implementations (e.g. Ge et al. [11] for seL4).

3 Modelling Channels by Elimination Strategy

As observed in Sect. 2, we need a model of microarchitectural state. This must
be sufficiently precise to support reasoning about the absence of channels that
exploit it, while abstracting away as many implementation details as possible, so
it can apply to a large class of real processors. We defer to Sect. 5 a description of
our full state model, depicted in Fig. 3b; here, we explain the philosophy behind
its microarchitectural and other timing-affecting elements.

Heiser et al. [15] observe that, to implement time protection, the OS only
needs to know how microarchitectural state can be partitioned between security
domains. Partitioning can either be spatial, where the OS can force a domain to
only access a specific part of the state, or temporal, where state is exclusively
owned by one partition at a time, and reset to a defined state when the OS
hands ownership to another partition. Implementing time protection is possible
if the hardware–software contract ensures that microarchitectural state can be
partitioned either spatially or temporally, where the latter comes down to the
OS being given a mechanism to reset (flush) that state.

For simplicity, we refer to state that can be spatially partitioned as partition-
able, while state that can be temporally partitioned we call flushable.

To reason about how usermode execution may affect such state, we assume
that this happens exclusively through referencing memory (data or instruc-
tion) addresses. This matches typical real hardware, for which any state directly
accessed by programs is architected and explicitly context-switched by the OS;
for such hardware, microarchitectural state can only be accessed indirectly via
addresses. Note that programs (including the OS) can only issue virtual addresses.

3.1 Flushable Microarchitectural State

For our purposes it is not necessary to distinguish between different parts of
flushable state (e.g. caches vs. branch-predictor state vs. prefetcher state), even
if the hardware provides different mechanisms for flushing different parts of it.



Formalising the Prevention of Microarch. Timing Channels by OSes 107

We only need to deal with the complete collection of such state, and treat the
sum of flushing mechanisms as a single operation.

Furthermore, it does not matter whether issuing distinct addresses affects
different parts of microarchitectural state (as with caches) or causes different
changes in the same state (as with state machines used in prefetchers). All that
matters is capturing which state might be affected; for that we can make the
worst-case assumption that each address in a domain maps to potentially differ-
ent state, but some address in a different domain may map to the same state.

Thus we model flushable state (flst) as a simple function from address to
boolean, representing whether a state referred by a particular address is cur-
rently affected – the entire flst is considered observable to the currently executing
program. We model OS and user operations to modify flst in an under-defined
way, assuming that secrets of the currently running domain can be stored in flst.

In the absence of flushing, our confidentiality property will not hold for this
configuration, as secrets are being transmitted through flst. We therefore need
to show that the OS performs the flush when switching domains, but also that
any changes made to flst during the domain switch (during which the OS must
issue addresses) have a deterministic effect on flst: After the flush, the OS must
only issue addresses in a sequence that is not affected by user secrets.

3.2 Partitionable Microarchitectural State

Partitionable state generally exists outside the processor core (typically caches
other than the on-core first-level cache). Such state is accessed by physi-
cal address, meaning it has undergone address translation by the memory-
management unit (MMU). Partitioning may use explicit hardware mechanisms,
or may be achieved by the OS restricting the address mapping so that addresses
from different partitions access disjoint cache state (this is referred to as page
colouring [11,17,22]). This assumes that the OS understands how collisions may
occur, which is realistic for contemporary hardware.

We model partitionable state (pst) as a function from address to boolean,
similarly to flst. We do not explicitly model how cache collisions occur between
addresses, instead we assume that the OS has set up the memory map to prevent
collisions between partitions. By modeling both user and OS operations to only
access memory visible to the present domain, we can show that no secrets are
imprinted on the pst in a way that is visible to another domain.

However, the above assumptions break down if the OS accesses the same
memory locations while operating on behalf of different user domains. This is
unavoidable, as the OS must access memory while performing a domain switch,
meaning that it is impossible to completely partition the OS’s memory accesses.
We call such non-partitionable memory shared OS memory, and its accesses may
potentially leak secrets via their corresponding pst impacts.

We model this leak by parameterising our model over the set of all addresses
in the shared OS memory in union with all addresses that collide with them. We
then allow a user domain to affect the pst of that set, alongside pst corresponding
to its own memory. This forces, at the time of domain switch, a flush of the pst



108 R. Sison et al.

for the shared OS addresses and their collisions, to ensure that they convey no
secrets from the previously executing domain to the next one. The mechanism
used, and cost incurred, for this flush depends on what the architecture offers.

3.3 Interrupts and Other Directly Observed Impacts on Time

We have thus far encoded the spy’s ability to make time-related observations via
variations in memory access latency as direct user observations of flst and pst, as
these are the primary channels through which execution time can vary. However,
some leaks can happen through observation of the real-time clock, which are not
directly related to shared microarchitecture.

Interrupts are inherently non-deterministic (their arrival depends on the envi-
ronment beyond the control of the OS). This can be used as a channel [11]: a
domain initiates an I/O operation such that the interrupt indicating completion
arrives while another domain is executing. The time the OS takes to handle the
interrupt can be observed as a gap in execution by the preempted domain.

Time protection prevents this channel by partitioning interrupts between
domains, masking off any interrupts not belonging to the current domain. The
preemption-timer interrupt, which causes a domain switch, is not subject to
this masking; the rest we call user interrupts. We will model hardware masking
of user interrupts by asserting that they can only arise during user execution
depending on the state of devices belonging to the current domain (Sect. 5.2).

Our model enforces the following timing properties of interrupt arrivals:

– Timer interrupts arrive at a fixed interval, aside from delays described below.
– User execution will continue until halted either by the timer interrupt arriving

at its fixed-interval time, or by a user interrupt arriving before that.
– There is a worst-case execution time (WCET) for handling an interrupt.

Handling a user interrupt may then delay the arrival of a timer interrupt by
an amount of time up to that WCET after its fixed-interval time.

As interrupt-related leaks are always via accurate observation of the time,
we now turn to how we model time to be treated as observable by our property.

We model time as a numeric field of the state, tm, which we consider to be
observable only by the currently-running domain; others are only able to observe
at what point in the schedule the OS resides currently, but not tm directly.

Rather than modelling any automatic progression of time, we bake it in man-
ually as the following assumptions to our under-defined user and OS operations:

– Flushing the flst will take some amount of time that depends only on the
original flst state, up to some predefined WCET.

– Partially flushing the pst (for shared OS memory) takes an amount of time
that depends only on the part of pst being flushed, up to a predefined WCET.

– Interrupt-handling OS operations obey a predefined WCET (as just noted).
– The OS can perform a padding operation that will progress time to a speci-

fied value, without changing any other state (by decrementing a register-held
counter in a tight loop, or possibly using hardware support [34]).



Formalising the Prevention of Microarch. Timing Channels by OSes 109

Our domain-switch operation performs the following tasks:

1. a partial flush of OS shared memory addresses in pst;
2. a full flush of the flst;
3. changing the currently running domain over to the next domain, according

to the deterministic schedule (see Sect. 4);
4. padding to the end of the allocated time.

We know that the padding at the end of this operation will always get us to
a predetermined time, as we calculate the end-of-switch time to account for the
WCETs for flst and pst flushes, as well as accounting for a potentially late start
due to the handling of a user interrupt before domain-switch. At the start of such
a domain-switch, as well as at many points in the middle of these operations,
the tm field contains secrets from the domain who just executed. However, these
secrets are removed when we pad time to a predetermined value.

The actual amount of time allocated to each domain, as well as the sequence
of domains scheduled to execute, is completely predetermined; it is not possible
to influence how long each timeslice will be, or which domain will execute next.
This is implemented via an appropriately adapted scheduler oracle [24], whose
details we relegate to the Isabelle/HOL supplement material [5].

4 Formalising Time Protection

What does time protection mean formally, and why are previous security def-
initions [25], used to state absence of storage channels in OSes, insufficient
to express it? In this section we answer these questions by formalising a new
dynamic and observer-relative intransitive nonleakage property.

Let domain be the set of security domains ranged over by u, v, w, etc.
Following Murray et al. [24,25], we distinguish user domains, which include one
or more user-mode processes, from the scheduler domain, which represents the
parts of the OS responsible for scheduling the execution of user-mode processes.
Therefore let sched ∈ domain be the distinguished scheduling domain. At any
time, a single domain is running, called the current domain: execution proceeds
in a sequence of steps in which sched is interleaved between other domains (to
choose the next domain that is to execute after the arrival of a timer interrupt).

Let state be the type of system states, s, t, etc. Then dom s denotes the
current domain in state s. The part of the system state observable to domain u
in state s is defined by an equivalence relation u∼, such that this part of the state is
equal between states s and t iff s

u∼ t. The state of the scheduling domain includes
which domain is currently running, hence: s sched∼ t =⇒ dom s = dom t [25].

Information-flow security requires that for all domains u, for each step of
execution, u only learns information it is supposed to. If time protection holds,
what information is domain u allowed to learn? As in prior work [24,25] we
prove deterministic scheduling. Therefore, at all times, all domains are assumed
to know which domain is the current domain, i.e. all information given by sched∼ .
Domain u is also allowed to learn everything it can observe (equivalently, already



110 R. Sison et al.

knows), i.e. all information given by u∼. Finally, it is also allowed to learn certain
information communicated to it by the current domain in that execution step.

4.1 State-Dependent Policy Channels

One of our key insights is that according to time protection, what constitutes
this “certain information” depends on whether u is the current domain, i.e. time
protection is an asymmetric property. Specifically, when u is not the current
domain, time protection says that at most it is allowed to learn the information
communicated by the current domain via overt channels (those allowed by the
current protection state); but none via covert channels (including microarchitec-
tural state). This is strictly less than all information observable by the current
domain, given by dom s∼ where s is the state from which the step occurred, because
dom s∼ necessarily includes microarchitectural state visible to the current domain
(e.g. its caches influencing its execution speed as captured in our model by tm).

Thus, departing from prior nonleakage properties, for two domains v and u

let
|v �u|∼ be a state equivalence relation that defines the part of the state whose

contents domain v is allowed to send to domain u on an execution step. If v is

allowed to send no information to u, then
|v �u|∼ is the trivial relation that holds

for all states. As we demonstrate later in Sect. 5, this formulation is sufficiently
general to specify dynamic policies, since the part of the state via which domain
v is allowed to communicate with u can depend on the state itself. We call

|v �u|∼
a policy channel, as it defines the allowed channel from v to u.

With these definitions we can define our top-level security property as follows.
For now, the argument u to each of obs-reachable u s and obs-Step u can be
ignored (we will explain its meaning directly, in Sect. 4.2); the former can be
read as saying that state s is reachable via a finite number of steps of the latter.

Definition 1 (Observer-relative big-step confidentiality).

obs-confidentiality u �
∀s t. obs-reachable u s ∧ obs-reachable u t −→

s
sched∼ t −→ s

|dom s�u|∼ t −→ s
u∼ t −→

(∀s′ t′. (s, s′) ∈ obs-Step u ∧ (t, t′) ∈ obs-Step u −→ s′ u∼ t′)

This definition says that an arbitrary observer domain u, on an execution
step, is allowed to learn the scheduler state (sched∼ ), the information that the

current domain is allowed to send it via the policy channel (
|dom s�u|∼ ), and

anything it knew or could have observed already ( u∼), by saying that if two
initial, reachable states s and t agree on this information, then u’s view of the
states s′ and t′ reached after a single step must be identical: s′ u∼ t′.



Formalising the Prevention of Microarch. Timing Channels by OSes 111

User Kernel User Kernel

v ~> u

v

As seen
by

u

w

v ~/> u v ~/> u

v ~/> w v ~> w

v calls send(v,u) v calls send(v,w)

Fig. 2. Observer-relative state transition system model.

4.2 Policy-Dependent State Observability

What constitutes an execution step? Our second major observation is that, for
time protection, the answer depends on which domain is observing the execution.

Figure 2 provides an illustration of this phenomenon. It depicts (top row) a
single timeslice of domain v (the current domain), in which it performs two con-
secutive system calls. First it makes a system call to communicate with domain u,
and then subsequently to communicate with domain w. For each system call, a
user-mode step occurs in which v first computes the data it wishes to commu-
nicate (e.g. the system call arguments), followed by an OS step in which the
OS carries out the system call (i.e. puts into effect the communication). For
simplicity, assume the protection state authorises both system calls.

Let us consider what each domain u and w is allowed to observe and when.
From u’s point of view (middle row of Fig. 2), since v communicates with it,
it implicitly learns that this communication has occurred. Thus it observes the
occurrence of the second step (the first OS step) that v makes. However what v
does before that step occurs should remain opaque: e.g. the precise number of
user-mode state changes required to compute the system call arguments should
not be revealed to u (though it can of course infer what the system call arguments
must have been, and so those are observable to it).

From w’s point of view (bottom row of Fig. 2), all of this activity is opaque:
the precise number of execution steps that v performs prior to the OS step that
carries out the communication from v to w should remain hidden to w. Indeed
from w’s point of view, v performs a single execution step from the beginning of
its timeslice up to the OS step that performs the v-to-w communication.

Thus execution steps are very much in the eye of the beholder. Our time
protection formalisation captures this idea as follows. We require the existence of
an underlying small-step transition system that defines the system’s behaviour.
From this we construct for each domain u its observer-relative, big-step transition
system that defines u’s view of the system’s execution by coalescing together
consecutive small-steps between states that are unobservable to u. Which states

are observable to u is naturally captured in the policy channel specification
|v �u|∼ :



112 R. Sison et al.

Fig. 3. Generic OS on which we model enforcement of time protection.

When s
|dom s�u|∼ t such that this relation is non-trivial (i.e. the current domain

is allowed to communicate with u), then state s is observable to domain u.
This explains why Definition 1 takes the observer domain u as an argument.

This definition is defined against a set of big-step transition systems, one for each
domain u, that defines u’s view of the underlying system’s small-step transition
system. The state reachability predicate is also parameterised by the observ-
ing domain u: obs-reachable u s means that state s is reachable in u’s big-step
transition system. Similarly for the step relation: obs-Step u is the set of state
transitions in the big-step transition system that represents u’s view.

Our confidentiality property (Definition 1) is a generalisation of the one used
for the seL4 microkernel [24,25], which is an intransitive nonleakage property
that confines the allowed information flows to those according to a static (possi-
bly intransitive) information flow policy “�”: v � u holds iff the policy permits
information to flow directly from domain v (while v is the current domain) to
domain u. Our property generalises theirs in that (1) fixing our policy chan-

nel relation
|dom s�u|∼ to be dom s∼ whenever dom s � u and the universal set

otherwise, and (2) fixing all big-step transition systems to be the same for all
observers u, results in their property (confidentiality-u, p9 of Murray et al. [24]).

5 System Model of OS-Enforced Time Protection

We have thus far presented an explanation of how to model covert state (Sect. 3)
and a confidentiality property capable of distinguishing between overt and covert
state (Sect. 4), both as needed to express and model time protection.

Here we apply these principles to demonstrate that, regardless of the set of
system calls supported by the OS and the architecture that it runs on, an OS
designer now has the means to prove formally that an OS implementation for
any given architecture enforces time protection, as long as the designer: (1) can



Formalising the Prevention of Microarch. Timing Channels by OSes 113

prove that each of its system call handling routines permits only information flow
via policy channels that exclude microarchitecture, (2) has proved or can reliably
assume the functionality of certain architectural features key to time protection,
and (3) has reliably measured and bounded the WCETs of the above.

5.1 Model Overview and Property

We achieve this level of generality with a model (Fig. 3) that abstracts the essen-
tial elements of OS-enforced time protection over the following parameters:

1. an OS-specific set of system calls, their implementations, and specifications
of their policy channels that can depend on arguments and protection state;

2. architecture-specific implementations of
(a) an interrupt handling routine and
(b) a domain switch routine that occurs on timer interrupt;

3. the WCETs of all of the above; and
4. the types of memory addresses addr , domain IDs domain, IRQ-generating

device state device, syscall arguments args, and protection state prot .

Over this model, we instantiate our property so that Definition 1 expresses
that the OS enforces time protection, in the sense that information only ever
flows to a given user domain from the current domain’s overt state elements
(like a system call’s arguments and relevant memory) as specified by some pol-
icy channel, and not ever via any covert state elements (like microarchitecture
and user-configured device interrupts) that impact timing. Importantly, time
(tm) and microarchitectural state that could influence memory access time (the
entire flst, and the relevant pst partition) are always considered observable to
the current domain, so our property ensures the absence of timing channels as
directly observed after domain switch, and from subsequent variations in mem-
ory access latency, respectively. Formally, we then prove that Definition 1 holds
at all times as seen by every possible user domain:

Theorem 1 (OS model enforces confidentiality with time protection).

∀u. obs-confidentiality u

Our model and its proofs are mechanised in about 7.9K lines of Isabelle/HOL
proof script, of which about 2.1K lines are the adaptations described in Sect. 4
of prior mechanised theory [24,25,29] – all are provided as supplement mate-
rial [5], whose documentation includes a detailed guide between their features as
described in this paper and their corresponding proof script formalisations. The
mechanisation also includes an instantiation of our generic model, for a pair of
system calls with tightly specified policy channels, to ensure it is nontrivial.

We now describe the requirements our generic model imposes on an OS and
its configuration that make it possible to prove that it enforces time protection.
In particular, we believe that any OS that implements time protection, such as
that of Ge et al. [11] for seL4, can satisfy all these requirements.



114 R. Sison et al.

5.2 User Steps

The user-step model captures requirements on the memory subsystem and device
hardware and their adequate configuration by the OS to ensure the partitioning
between domains of (i) memory, through address mappings; (ii) caches, through
colouring ; and (iii) user-configured interrupts, through masking.

It also captures assumptions about the spy and sender: They can choose when
to make a syscall and with which argument values, but cannot directly modify
the OS protection state; furthermore, they can program their devices to cause
interrupts. Thus, we model the reason for OS entry, system call arguments, and
device state in the state fields event, args, and devs respectively (see Fig. 3b) and
specify the user step as free to choose them in a manner dependent on the state
accessible to the currently running domain. In contrast, we model protection
state with field prot but disallow the user step from modifying it.

Memory and Cache Partitioning. We partition both memory and pst by
security domain, assuming a mapping addr-domain :: addr ⇒ domain. We con-
sider the parts of mem that belong to some domain u to be the input addresses
where addr-domain a = u, and the same for pst.

User steps are restricted to those that do not read from or write to any part
of mem that does not belong to the executing domain u. A similar restriction is
enforced for pst, except that we do allow user steps to modify parts of the pst
outside of u’s domain if they are in the shared OS address set. While in reality
OS memory will only be affected by system calls, allowing user modification of
shared OS memory is a sound over-approximation that simplifies our model.

We implement these restrictions by “quarantining” a transition: we mask off
any state that should not be accessed, perform the transition on this modified
state, and then return the masked-off data to the output state. A transition that
does not read or write outside of its domain will not be modified by quarantining.
This process is similar to prior models of OS memory protection [9].

In reality, this kind of memory protection is implemented by the OS correctly
configuring the MMU and is covered by typical integrity proofs [32]. Cache parti-
tioning might be implemented via colouring. Shared OS memory is, by definition,
not partitioned.

Interrupt and Device Partitioning. We partition interrupts by domain, via
partitioning devices by domain. The state field devs abstracts the states of a set of
devices, each assigned to some domain by a parameter device-domain :: device ⇒
domain. Note it is this assignment of ownership, and not the device type we
abstract over, that matters for our model; furthermore, we assume that separate
devices do not communicate with each other.

We abstract interactions with devices via mostly-arbitrary modifications to
the devs field, specifying that user steps (as well as interrupt-handling and syscall
steps) can only access or modify the device subset belonging to the currently exe-
cuting domain. Further, we model the user as being able to choose the event indi-
cating the reason for entry into the OS to be set to UserInterrupt or TimerInterrupt



Formalising the Prevention of Microarch. Timing Channels by OSes 115

in a manner dependent on that device subset. This model allows us to reason
about users interacting with devices outside of the observability points between
transitions, and allows for interrupts to be raised at any point during a user’s
execution, and for their details and timing to be influenceable only by that user.

– If a TimerInterrupt has caused the end of execution, then the time must be at
some ideal timer interrupt point, or possibly delayed by up to the interrupt-
handling WCET. At this point we will perform a domain-switch.

– If execution was ended by a user interrupt or a syscall, the time must be
strictly before the ideal timer interrupt point. At this point we will perform
the syscall or handle the user interrupt.

In a real-world OS, we expect the interrupt partitioning abstraction to be
implemented via the masking of interrupts associated with non-running domains,
where any two partitions have a disjoint set of unmasked interrupts, with the
OS switching the mask when switching partitions. The timing constraints result
from the timer inevitably arriving, resulting in a domain switch.

5.3 OS Steps

The OS-step model captures requirements on domain switch (triggered by
a deterministic timer interrupt), syscall handling, and handling of unmasked
user interrupts, each indicated by the event field of the state taking the value
TimerInterrupt, Syscall, or UserInterrupt respectively at OS entry.

Domain Switch. The domain-switch step contains the most concretely defined
semantics of any step in our model. Once the appropriate interrupt has arrived,
the domain-switch step will pass execution on to another security domain, and
will execute some security measures to prevent leaks through microarchitectural
state. The specific semantics of this step are as follows.

1. Partially flush the pst: flush all addresses conflicting with shared OS memory;
time bounded by w1.

2. Flush the flst: set the entire flst to a predefined value; time bounded by w2.
3. Change the domain: update the dom field of the state according to the sched-

ule oracle; time bounded by w3.
4. Pad the execution time to make the overall latency constant.

If T0 is the ideal time for the timer interrupt to occur, w0 the WCET of
handling another interrupt (i.e. the maximum time by which the timer interrupt
may be delayed), and w3 includes any operations for handling the timer interrupt
that are not related to time protection (such as saving processor state), then
Step (4) defers further execution until time T0 + w0 + w1 + w2 + w3.

The result of this padding is that nothing a domain can influence will change
the exact time when execution is passed to the next domain. The new domain
will also begin execution with an empty flst, and a pst partition that is unchanged
apart from the shared OS addresses and its collisions, which have been flushed.



116 R. Sison et al.

These same operations can be performed in a real-world OS, using mostly
hardware-provided primitives to perform flushing (e.g. the RISC-V temporal
fence instruction fence.t developed by Wistoff et al. [34,35]) and a busy loop
for padding, as was done by Ge et al. for seL4 [11], if no time padding primitive
is provided by the hardware (e.g. the fence.t of the latter work by Wistoff
et al. [35], which delays until a configurable cspad number of cycles after the
timer interrupt arrival). Confidence in WCET bounds for OS functionality can be
gained by conducting analyses such as those done for seL4 by Sewell et al. [30,31].

Syscall Handling and Policy Channels. We model system call handling as
consisting of (1) a decode phase that determines whether the requested operation
is permitted by the protection state, and if so, (2) a commit of the requested oper-
ation. Moreover, policy channels (the allowed information to be transmitted) for
system calls are specified via a parameter commit-channels of the form mem rel,
thereby excluding any covert parts of the state by construction. Whether a sys-
tem call transmits information to domain u, and what information it may trans-
mit, depend on which system call was made (i.e. the system call arguments args),
and whether it is authorised (i.e. the protection state prot). These together form
the policy-determining state fields that, with commit-channels, are used to define
|dom s�u|∼ . Specifically

|dom s�u|∼ is defined so that (a) the commit-channels infor-
mation is revealed to u only when args and prot imply that u is the recipient of the
system call and the system call is authorised, and (b) args and prot themselves
are allowed to be revealed to u only under these same conditions.

Thus when a domain makes a system call, other domains can learn about it
only when that system call is authorised, in which case only the recipient of the
syscall gets to learn about its occurrence, and all they can learn is the intended
information transmitted by the syscall.

To prove this, we impose on the user-supplied parameters the proof obliga-
tions: (1) an integrity property enforcing the decode phase should only inspect,
not change, any of policy-determining state fields; and (2) a confidentiality prop-
erty on the commit phase enforcing it obeys the policy induced by these fields,
i.e. that any changes to state accessible to the observing domain u flow only via
locations specified by

|dom s�u|∼ .
We provide an example instantiation of the parameters that we prove meets

these obligations: a simple model of capability-based access control over a broad-
cast/subscribe pair of system calls for one-way messaging between domains.

User Interrupt Handling. We underspecify interrupt-handling operations in
our model: We model the timer interrupt, but no specific operations in response
to user interrupts. We assume that in response to a user interrupt, the OS will
perform some action that may modify parts of the user state – this matches
microkernels, like seL4, that relegate interrupt handling to user domains.

Consequently, we model the user interrupt very similarly to the user step
operation: We specify that only the appropriate parts of mem and pst can be



Formalising the Prevention of Microarch. Timing Channels by OSes 117

read or modified, limit modifications to devs to those belonging to the currently
domain, and do not allow modifications to the prot state.

5.4 Proof Approach

Bringing all of this together, we define a small-step transition system alternating
(Fig. 3a) between user steps restricted as described in Sect. 5.2 and OS steps
as described in Sect. 5.3; this forms the basis for the observer-relative big-step
systems upon which our security property is stated (Theorem 1).

For each of these big steps, our proof approach depends on whether the policy
permits information to flow from the current domain to the observer u. Consider
u’s observation of each of its big-step transitions, as in Definition 1.

If u is the current domain or the policy allows a flow from the current domain

to u, then it has visibility via s
u∼ t or s

|dom s�u|∼ t (resp.) to all of the parts
of the state that influence the details of this transition. In these cases, we have
enough information to prove that the same transition function f is used, giving:

s′ = fs ∧ t′ = ft

For big steps produced by f like these we prove that the confidentiality property
expressed by Theorem 1 holds directly using bisimulation: we can prove that a
version of the relation at each point sn

u∼ tn is preserved to sn+1
u∼ tn+1 by

any of the small steps of f or their constituent parts (excepting instances where
equivalence is broken temporarily but later restored, e.g. tm made deterministic
by padding) and therefore that the goal s′ u∼ t′ holds.

However, when u is not the current domain and the policy does not allow a
flow from the current domain to u, because s

u∼ t and s
|dom s�u|∼ t do not give

enough information about the operations performed, we may have two poten-
tially different transition functions f and f ′. Moreover, it may not be possible to
prove a bisimulation over the small steps because f and f ′ may be made up of
differing numbers of these steps. Thus, for the small steps that make up f and f ′

and their constituent parts we prove instead an integrity property: that they can
change nothing observable to u. This allows us to proceed by showing at each
point that sn

u∼ sn+1 holds. Eventually, through transitivity of the equivalence
relation, we show s

u∼ s′ and t
u∼ t′. Since we already have s

u∼ t, we are able to
obtain s′ u∼ t′ by using transitivity and symmetry of the equivalence.

6 Related Work

Prior proofs of confidentiality for OSes [8,21,24] have generally focused only
on covert flows via storage channels (memory and registers), ignoring time and
microarchitectural state.

Barthe et al. presented formal proofs of the elimination of cache channels
by flushing the complete cache hierarchy on a context switch [3], an expen-
sive approach that also does not deal with other microarchitectural state.



118 R. Sison et al.

The same group verified stealth memory [18], where the OS reserves some pages
and all their cache aliases for cryptographic applications [4]; this protects against
side-channel attacks but cannot prevent a Trojan leaking through non-stealth
memory. To our knowledge, no prior formalisation of OS security concurrently
deals with both partitionable and flushable state, as required by time protection.

Liu et al. [23] prove a property they call temporal isolation for an extension of
the mCertiKOS kernel with real-time scheduling. Despite its name, their prop-
erty does not rule out timing channels between domains. Rather it focuses on
the scheduler, proving that the behaviour of one domain cannot interfere with
the scheduling of another (e.g. by preventing it from missing a deadline). This
work might be combined with our approach in future to extend ours beyond the
confines of simple deterministic domain scheduling.

Our security property (Definition 1) allows for specifying dynamic policies, in
which the information allowed to be released on a step depends on the current
state. The state-dependent specification of allowed information release is also
present in prior information flow models [25,33] and proofs [8,21,24] for OSes
and we expect policies from prior work, including the recent work of Li et al. [21],
should be expressible in our framework. Unlike our property, however, none of
these prior works allow for defining certain states as being observable to some
observers but not others, which we argued in Sect. 4.2 is crucial for a precise
statement of time protection with dynamic policies.

The use of two distinct phases to model system call handling, first establishing
preconditions that then guarantee that the call can succeed, was used in EROS [7]
and adopted by seL4 [19].

7 Conclusions

We have presented a fully machine-checked formalisation of time protection and
its enforcement by an operating system that is generic enough to be adapted to
any individual OS implementation on any architecture that provides the neces-
sary hardware support. By proving our time protection property relative to the
requirements formalised by our OS model, we provide a roadmap for such future
OS verification efforts.

This work demonstrates for the first time the feasibility of formal proof of
the elimination of microarchitectural timing channels between users by the oper-
ating system they are running on. We hope this work helps to raise the level of
assurance and responsibility taken by OSes to protect the confidentiality of their
users, while serving to clarify what must be asked of the architectures that will
make their implementation possible.

Acknowledgements. We thank our anonymous reviewers, as well as Johannes Åman
Pohjola for his feedback on our manuscript. This paper describes research that was co-
funded by the Australian Research Council (ARC Project ID DP190103743).



Formalising the Prevention of Microarch. Timing Channels by OSes 119

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verify-
ing constant-time implementations. In: USENIX Security Symposium, pp. 53–70
(2016)

2. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In: Butler, M., Schulte, W. (eds.)
FM 2011. LNCS, vol. 6664, pp. 231–245. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21437-0_19

3. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Cache-leakage resilient OS iso-
lation in an idealized model of virtualization. In: Proceedings of the 25th IEEE
Computer Security Foundations Symposium, pp. 186–197. IEEE (2012)

4. Barthe, G., Betarte, G., Campo, J.D., Luna, C.D., Pichardie, D.: System-level
non-interference for constant-time cryptography. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, 3–7 November 2014, pp. 1267–1279. ACM (2014). https://doi.org/10.1145/
2660267.2660283

5. Buckley, S., Sison, R., Klein, G.: An Isabelle/HOL formalisation of microarchi-
tectural timing channel prevention by operating systems - VM artifact and proof
release (2022). https://zenodo.org/record/7340166

6. Cauligi, S., et al.: Constant-time foundations for the new spectre era. In: Pro-
ceedings of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK, 15–20 June 2020,
pp. 913–926. ACM (2020). https://doi.org/10.1145/3385412.3385970

7. Chen, H., Shapiro, J.S.: Using build-integrated static checking to preserve correct-
ness invariants. In: Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS 2004, Washington, DC, USA, 25–29 October 2004,
pp. 288–297. ACM (2004). https://doi.org/10.1145/1030083.1030122

8. Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow security
for C and assembly programs. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 648–664 (2016)

9. Daum, M., Billing, N., Klein, G.: Concerned with the unprivileged: user programs
in kernel refinement. Formal Aspects Comput. 26(6), 1205–1229 (2014). https://
trustworthy.systems/publications/nicta_full_text/7114.pdf

10. Dennis, J.B., Van Horn, E.C.: Programming semantics for multiprogrammed com-
putations. Commun. ACM 9, 143–155 (1966)

11. Ge, Q., Yarom, Y., Chothia, T., Heiser, G.: Time protection: the missing OS
abstraction. In: EuroSys Conference. ACM, Dresden (2019). https://trustworthy.
systems/publications/full_text/Ge_YCH_19.pdf

12. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8, 1–
27 (2018). https://trustworthy.systems/publications/full_text/Ge_YCH_18.pdf

13. Ge, Q., Yarom, Y., Heiser, G.: No security without time protection: we need a new
hardware-software contract. In: Asia-Pacific Workshop on Systems (APSys). ACM
SIGOPS, Korea (2018). https://trustworthy.systems/publications/full_text/Ge_
YH_18.pdf

14. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: Proceedings of the IEEE Symposium on Security
and Privacy, pp. 490–505. IEEE, Oakland (2011)

https://doi.org/10.1007/978-3-642-21437-0_19
https://doi.org/10.1007/978-3-642-21437-0_19
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2660267.2660283
https://zenodo.org/record/7340166
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/1030083.1030122
https://trustworthy.systems/publications/nicta_full_text/7114.pdf
https://trustworthy.systems/publications/nicta_full_text/7114.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_18.pdf
https://trustworthy.systems/publications/full_text/Ge_YH_18.pdf
https://trustworthy.systems/publications/full_text/Ge_YH_18.pdf


120 R. Sison et al.

15. Heiser, G., Klein, G., Murray, T.: Can we prove time protection? In: Workshop
on Hot Topics in Operating Systems (HotOS), pp. 23–29. ACM, Bertinoro (2019).
https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf

16. Heiser, G., Murray, T., Klein, G.: Towards provable timing-channel prevention.
ACM Oper. Syst. Rev. 54, 1–7 (2020). https://trustworthy.systems/publications/
full_text/Heiser_MK_20.pdf

17. Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-indexed caches.
ACM Trans. Comput. Syst. 10, 338–359 (1992)

18. Kim, T., Peinado, M., Mainar-Ruiz, G.: StealthMem: system-level protection
against cache-based side channel attacks in the cloud. In: Proceedings of the 21st
USENIX Security Symposium, pp. 189–204. USENIX, Bellevue (2012)

19. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: ACM Symposium
on Operating Systems Principles, pp. 207–220. ACM, Big Sky (2009). https://
trustworthy.systems/publications/nicta_full_text/1852.pdf

20. Kocher, P., et al.: Spectre attacks: exploiting speculative execution [abridged ver-
sion]. Commun. ACM 63, 93–101 (2020)

21. Li, S.W., Li, X., Gu, R., Nieh, J., Hui, J.Z.: A secure and formally verified Linux
KVM hypervisor. In: IEEE Security and Privacy (2021)

22. Liedtke, J., Härtig, H., Hohmuth, M.: OS-controlled cache predictability for real-
time systems. In: IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 213–223. IEEE, Montreal (1997)

23. Liu, M., et al.: Virtual timeline: a formal abstraction for verifying preemptive
schedulers with temporal isolation. Proc. ACM Program. Lang. 4(POPL), 1–31
(2019)

24. Murray, T., et al.: seL4: from general purpose to a proof of information flow enforce-
ment. In: IEEE Symposium on Security and Privacy, pp. 415–429. IEEE, San Fran-
cisco (2013). https://trustworthy.systems/publications/nicta_full_text/6464.pdf

25. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference
for operating system kernels. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012.
LNCS, vol. 7679, pp. 126–142. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-35308-6_12, https://trustworthy.systems/publications/nicta_
full_text/6004.pdf

26. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45949-9

27. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_1

28. Percival, C.: Cache missing for fun and profit. In: BSDCan 2005, Ottawa, CA
(2005). http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf

29. seL4 microkernel code and proofs. https://github.com/seL4/
30. Sewell, T., Kam, F., Heiser, G.: Complete, high-assurance determination of loop

bounds and infeasible paths for WCET analysis. In: IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), Vienna, Austria (2016).
https://trustworthy.systems/publications/nicta_full_text/9118.pdf

31. Sewell, T., Kam, F., Heiser, G.: High-assurance timing analysis for a high-assurance
real-time OS. Real-Time Syst. 53, 812–853 (2017). https://trustworthy.systems/
publications/full_text/Sewell_KH_17.pdf

32. Sewell, T., Winwood, S., Gammie, P., Murray, T., Andronick, J., Klein,
G.: seL4 enforces integrity. In: van Eekelen, M., Geuvers, H., Schmaltz, J.,

https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf
https://trustworthy.systems/publications/full_text/Heiser_MK_20.pdf
https://trustworthy.systems/publications/full_text/Heiser_MK_20.pdf
https://trustworthy.systems/publications/nicta_full_text/1852.pdf
https://trustworthy.systems/publications/nicta_full_text/1852.pdf
https://trustworthy.systems/publications/nicta_full_text/6464.pdf
https://doi.org/10.1007/978-3-642-35308-6_12
https://doi.org/10.1007/978-3-642-35308-6_12
https://trustworthy.systems/publications/nicta_full_text/6004.pdf
https://trustworthy.systems/publications/nicta_full_text/6004.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/11605805_1
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf
https://github.com/seL4/
https://trustworthy.systems/publications/nicta_full_text/9118.pdf
https://trustworthy.systems/publications/full_text/Sewell_KH_17.pdf
https://trustworthy.systems/publications/full_text/Sewell_KH_17.pdf


Formalising the Prevention of Microarch. Timing Channels by OSes 121

Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 325–340. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22863-6_24, https://trustworthy.
systems/publications/nicta_full_text/4709.pdf

33. Sun, J., Long, X., Zhao, Y.: A verified capability-based model for information flow
security with dynamic policies. IEEE Access 6, 16395–16407 (2018)

34. Wistoff, N., Schneider, M., Gürkaynak, F., Benini, L., Heiser, G.: Microarchi-
tectural timing channels and their prevention on an open-source 64-bit RISC-V
core. In: Design, Automation and Test in Europe (DATE). IEEE, Virtual (2021).
https://trustworthy.systems/publications/full_text/Wistoff_SGBH_21.pdf

35. Wistoff, N., Schneider, M., Gürkaynak, F., Heiser, G., Benini, L.: Systematic pre-
vention of on-core timing channels by full temporal partitioning. IEEE Trans. Com-
put. (2023, to appear). https://trustworthy.systems/publications/papers/Wistoff_
SGHB_23.pdf

36. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Security Symposium, pp.
719–732. USENIX, San Diego (2014)

https://doi.org/10.1007/978-3-642-22863-6_24
https://trustworthy.systems/publications/nicta_full_text/4709.pdf
https://trustworthy.systems/publications/nicta_full_text/4709.pdf
https://trustworthy.systems/publications/full_text/Wistoff_SGBH_21.pdf
https://trustworthy.systems/publications/papers/Wistoff_SGHB_23.pdf
https://trustworthy.systems/publications/papers/Wistoff_SGHB_23.pdf


Can We Communicate? Using Dynamic
Logic to Verify Team Automata

Maurice H. ter Beek1(B) , Guillermina Cledou2 , Rolf Hennicker3,
and José Proença4(B)

1 ISTI-CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 INESC TEC & Univ. Minho, Braga, Portugal
mgc@inesctec.pt

3 Ludwig-Maximilians-Universität München,
Munich, Germany

4 Polytechnic Institute of Porto, Porto, Portugal
pro@isep.ipp.pt

Abstract. Team automata describe networks of automata with input
and output actions, extended with synchronisation policies guiding how
many interacting components can synchronise on a shared input/output
action. Given such a team automaton, we can reason over communica-
tion properties such as receptiveness (sent messages must be received) and
responsiveness (pending receives must be satisfied). Previous work focused
on how to identify these communication properties. However, automat-
ically verifying these properties is non-trivial, as it may involve travers-
ing networks of interacting automata with large state spaces. This paper
investigates (1) how to characterise communication properties for team
automata (and subsumed models) using test-free propositional dynamic
logic, and (2) how to use this characterisation to verify communication
properties by model checking. A prototype tool supports the theory, using
a transformation to interact with the mCRL2 tool for model checking.

1 Introduction

In automata-based models of Systems of Systems (SoS) that communicate via
shared actions, it is of paramount importance to guarantee safe communication,
i.e. absence of failures such as message loss (typically of output not received as
input, thus violating so called receptiveness) or indefinite waiting (typically for
input that never arrives, thus violating so called responsiveness). This requires
knowledge of the adopted communication policy that defines when and which
actions are executed (synchronously) and by how many system components.
Team automata, originally introduced as an extension of I/O automata [15,39]
in the context of computer supported cooperative work (CSCW) to model group-
ware systems [30], were formalised as a theoretical framework for studying syn-
chronisation policies in system models [12,14]. They proved useful also for cap-
turing access control and other security protocols [11,17]. Their distinguishing
feature is the variety of synchronisation policies which, in principle, allow any
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 122–141, 2023.
https://doi.org/10.1007/978-3-031-27481-7_9

https://doi.org/10.5281/zenodo.7338440
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_9&domain=pdf
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0003-0006-6440
http://orcid.org/0000-0003-0971-8919
https://doi.org/10.1007/978-3-031-27481-7_9


Can We Communicate? Using Dynamic Logic to Verify Team Automata 123

Fig. 1. The three component automata constituting the Race system

number of interacting (component) automata to participate in the synchronised
execution of a shared communicating action, either as a sender or as a receiver.

Emblematic synchronisation types were defined to systematise the synchro-
nisation policies realisable in team automata [8] (e.g. multi-cast, broadcast,
master-worker) in terms of explicit intervals for the number of sending and
receiving components that can participate in a synchronisation. In extended
team automata (ETA) [13], synchronisation type specifications (STS) separately
assign a synchronisation type to each communicating action. STS uniquely deter-
mine a team and induce communication requirements that the team should sat-
isfy. Generic procedures to derive requirements for receptiveness and responsive-
ness for each synchronisation type were developed, and communication-safety
of ETA was defined in terms of compliance with such requirements. A team
automaton is called compliant with a set of communication requirements if in
each of its reachable states, the requirements are met (i.e. communication is
safe); if the required communication cannot occur immediately, but only after
some arbitrary other actions have been executed, the team automaton is called
weakly compliant (akin to weak compatibility [7,34] or agreement of lazy request
actions [5]).

Motivating Example. We illustrate the state-of-the-art as schematised in the
upper row of Fig. 2. Consider a system (S), called Race, to model competitions of
two runner components R1 and R2 under the control of a third component Ctrl.
The behaviour of the components is modelled by the component automata (CA)
AR1,AR2, and ACtrl in Fig. 1. Both runners have the same behaviour: AR1=AR2.
Each runner starts in the initial state 0, indicated by �, in which she is able to
receive a start signal (input?). Upon reception, she performs the (internal) action
run and when she reaches the finish line she sends the finish signal (output!),
after which she is ready for another competition. The controller’s task is to start
the runners and receive their finish signals. We want to combine these CA in
a team such that the controller starts both runners at once, but each runner
separately sends her finish signal to the controller upon reaching the finish line.

To this aim, ETA use synchronisation type specifications (st) to determine the
number of senders and receivers allowed to participate in a communication, thus
restricting the behaviour of system Race (given by a labelled transition system
lts(S) which contains arbitrary synchronisations of shared actions of the three
CA). We specify ([1, 1], [2, 2]) for action start and ([1, 1], [1, 1]) for finish such
that start occurs only as a synchronisation involving exactly one component for
which it is an output action and exactly two for which it is an input action,
while finish occurs in a one-to-one fashion.



124 M. H. ter Beek et al.

Fig. 2. Overview of this paper; the top row concerns previous work [8,13]

In the team’s initial state (0, 0, 0), the controller is in its local state 0 where
it can only make progress if its start signal is received by a runner. This induces
a receptiveness requirement. The ETA eta(S, st) generated over S by the STS st
is compliant with this requirement if other team component(s) synchronise by
receiving start as input in accordance with the synchronisation type of start ,
which is the case. There are other receptiveness and also responsiveness require-
ments. Requirements and compliance of ETA are called weak if the other com-
ponent(s) may perform intermediate actions before the requirement is satisfied.

Related Work and Challenges. Communication safety (mainly receptiveness)
and related notions of compatibility have been widely studied to (semantically)
characterise communication properties [2,8,9,13,20,21,23–26,28,29,35–38], in
particular for automata-based system models, but typically limited to pairs of
automata or networks with binary, peer-to-peer communication [6,23,28,35–38].
An extension to multi-component communications was first investigated in [24]
and then in [8,9,13], where the notion of responsiveness was introduced. Only
a few approaches come with tool support [1,3,7,9,18,27], based on algorithms
following the semantic compatibility definitions. The purely semantic nature of
communication properties is a serious burden in practice, making it challenging
to prove properties in concrete cases: one has to go through all reachable states
of a team automaton and check compliance for all requirements at each state.

Contribution. In this paper, we pursue a different approach by providing a log-
ical characterisation of communication properties, which we believe is interest-
ing by itself, and which has the advantage that it can be checked using available
model-checking tools. Our results complete Fig. 2 with three main contributions.

First, after presenting the necessary background on team automata and
dynamic logic in Sect. 2, we demonstrate in Sect. 3 that (weak) receptiveness
and (weak) responsiveness can be characterised (logically) by dynamic logic for-
mulas (w)rcpFrm and (w)rspFrm, resp., summarised as cpFrm. These results,
formulated in Theorems 1 and 2, pave the way for automatically checking these
communication properties with tooling available for dynamic logic. Proofs of
these results are included in a companion paper [10]. To the best of our knowl-
edge, we are the first to provide a logical characterisation of the communication
properties of receptiveness and responsiveness.



Can We Communicate? Using Dynamic Logic to Verify Team Automata 125

Second, in Sect. 4, we present a transformation (ε) of component automata,
systems and ETA into mCRL2 [22] processes and of the characterising dynamic
logic formulas cpFrm into μ-calculus formulas. The latter is straightforward,
whereas the former makes use of mCRL2’s allow operator to suitably restrict the
number of multi-action synchronisations such that the semantics of systems of
component automata is preserved (up to renaming).

Third, Sect. 4 introduces the open-source prototype tool we developed to
perform the transformation into mCRL2 processes and to automatically check
communication properties with the model-checking facilities offered by mCRL2,
which outputs the result of the formula as well as a witness or counterexample.

2 Background on Team Automata and Dynamic Logic

This section summarises the basic notions of (extended) team automata (ETA)
following [13], but additionally considering internal actions, and of dynamic logic.

2.1 Component Automata and Systems

A labelled transition system (LTS) is a tuple L=(Q, q0, Σ,E) such that Q is a
finite set of states, q0 ∈ Q is the initial state, Σ is a finite set of labels, and
E ⊆ Q × Σ × Q is a transition relation.

Notation. Given an LTS L, we write q
a−→L q′, or shortly q

a−→ q′, to denote
(q, a, q′) ∈ E. Similarly, we write q

a−→L to denote that a is enabled in L at state q,
i.e. there exists q′ ∈ Q such that q

a−→ q′. For Γ ⊆ Σ, we write q
Γ−→∗ q′ if there

exist q
a1−→ q1

a2−→ · · · an−−→ q′ for some n ≥ 0 and a1, . . . , an ∈ Γ . A state q ∈ Q is
reachable by Γ if q0

Γ−→∗ q, it is reachable if q0
Σ−→∗ q. The set of reachable states

of L is denoted by R(L).
A component automaton (CA) is an LTS A=(Q, q0, Σ,E) such that Σ =

Σ?�Σ!�Στ is a set of action labels split into disjoint sets Σ? of input actions, Σ!

of output actions, and Στ of internal actions. For easier readability, in graphical
representations input actions will be shown with suffix “?”, output actions with
suffix “ !”, and internal actions just by their name.

Example 1. Examples of component automata are shown in Fig. 1 of Sect. 1. For
i = 1, 2, the action labels of ARi are ΣRi = Σ?

Ri � Σ!
Ri � Στ

Ri, where Σ?
Ri = {start},

Σ!
Ri = {finish}, Στ

Ri = {run}. The action labels of ACtrl are ΣCtrl = Σ?
Ctrl �Σ!

Ctrl �
Στ

Ctrl where Σ?
Ctrl = {finish}, Σ!

Ctrl = {start}, Στ
Ctrl = ∅. �

A system is a pair S=(N , (An)n∈N ), with N a finite, nonempty set of com-
ponent names and (An)n∈N an N -indexed family of CA An =(Qn , q0,n , Σn , En).

Example 2. The race system of Sect. 1 is Race = (NRace, (An)n∈NRace
), with

NRace = {R1,R2,Ctrl} and the CA AR1,AR2, and ACtrl from Example 1. �

Any system S = (N , (An)n∈N ) induces an LTS defined by lts(S) = (Q, q0, Λ(S),
E(S)), where Q =

∏
n∈N Qn is the set of system states, q0 = (q0,n)n∈N is the



126 M. H. ter Beek et al.

initial system state, Λ(S) is the set of system labels, and E(S) is the set of system
transitions. Each system state q ∈ Q is an N -indexed family (qn)n∈N of local
component states qn ∈ Qn . The definitions of Λ(S) and E(S) follow below, after
the intermediate notion of system action.

System Actions Σ. The set of system actions Σ =
⋃

n∈N Σn determines
actions that will be part of system labels. Within Σ we identify Σ• =

⋃
n∈N Σ?

n∩
⋃

n∈N Σ!
n as the set of communicating actions. Hence, an action a ∈ Σ is com-

municating if it occurs in (at least) one set Σn of action labels as an input action
and in (at least) one set Σm of action labels as an output action. The system
is closed if all non-communicating actions are internal component actions. For
ease of presentation, we assume in this paper that systems are closed.

Example 3. The system actions of the race system are ΣRace = {start ,finish, run}
and its communicating actions are Σ•

Race = {start ,finish}. �

System Labels Λ(S). We use system labels to indicate which components par-
ticipate (simultaneously) in the execution of a system action. There are two
kinds of system labels. In a system label of the form (out, a, in), out represents
the set of senders of outputs and in the set of receivers of inputs that synchronise
on the action a ∈ Σ•. Either out or in can be empty, but not both. A system
label of the form (n, a) indicates that component n executes an internal action
a ∈ Στ

n . Formally, the set Λ(S) of system labels of S is defined as follows:

Λ(S) = { (out, a, in) | ∅ �= (out ∪ in) ⊆ N , ∀n∈out · a ∈ Σ!
n , ∀n∈in · a ∈ Σ?

n }
∪ { (n, a) | n ∈ N , a ∈ Στ

n }
Note that Λ(S) depends only on N and the sets Σn of action labels for each
n ∈ N . As a notational convention, if out = {n} is a singleton, we write (n, a, in)
instead of ({n}, a, in), and similarly for singleton sets in.

Example 4. The set of system labels of the race system is given by

Λ(Race) = {(out, start , in) | ∅ �= (out ∪ in), out ⊆ {Ctrl}, in ⊆ {R1,R2}},
∪ {(out,finish, in) | ∅ �= (out ∪ in), out ⊆ {R1,R2}, in ⊆ {Ctrl}},
∪ {(R1, run), (R2, run)}.

�

System Transitions E(S). System labels provide an appropriate means to
describe which components in a system execute, possibly together, a computation
step, i.e. a system transition. Formally, a system transition t ∈ E(S) has the form
(qn)n∈N

λ−→lts(S) (q′
n)n∈N such that λ ∈ Λ(S) and

– either λ = (out, a, in) and:
• qn

a−→An
q′
n for all n ∈ out ∪ in and

• qm = q′
m for all m ∈ N\(out ∪ in);



Can We Communicate? Using Dynamic Logic to Verify Team Automata 127

– or λ = (n, a), a ∈ Στ
n is an internal action of some component n ∈ N , and:

• qn
a−→An

q′
n and

• qm = q′
m for all m ∈ N\{n}.

We write Λ and E instead of Λ(S) and E(S), resp., if S is clear from the context.
Surely, at most those components that are in a local state in which action a is
locally enabled can participate in a system transition for a. Since, by definition
of system labels, (out ∪ in) �= ∅, at least one component participates in any
system transition. Given a system transition t = q

λ−→lts(S) q′, we write t.λ for λ.

Example 5. Examples of system transitions of the race system are

(0, 0, 0)
(Ctrl,start,∅)−−−−−−−−→ (0, 0, 1), (0, 0, 0)

(Ctrl,start,{R1,R2})−−−−−−−−−−−−→ (1, 1, 1),

(2, 2, 1)
({R1,R2},finish,Ctrl)−−−−−−−−−−−−−→ (0, 0, 2), (2, 2, 1)

(R1,finish,Ctrl)−−−−−−−−−→ (0, 2, 2), and

(1, 1, 1)
(R1,run)−−−−−→ (2, 1, 1).

The LTS of the race system, denoted by lts(Race), contains all possible system
transitions. It can be computed by our tool as shown in Sect. 4.

Note that not all system transitions are really meaningful. For instance, the
first transition should not happen, since the controller is supposed to start both
runners simultaneously. We also want to reject the third transition, since in our
application runners should finish individually. These transitions will be discarded
based on synchronisation restrictions for teams considered in the following. �

2.2 Team Automata

Synchronisation types specify which synchronisations between components are
admissible in a particular system S. A synchronisation type (O , I )∈ Intv×Intv is
a pair of intervals O and I which determine the number of outputs and inputs
that can participate in a communication. Each interval has the form [min,max ]
with min ∈ N and max ∈ N ∪ {∗} where ∗ denotes 0 or more participants. We
write x ∈ [min,max ] if min ≤x ≤max and x ∈ [min, ∗] if x ≥ min.

A synchronisation type specification (STS) over S is a function st : Σ• →
Intv×Intv that assigns to any communicating action a an individual synchroni-
sation type st(a). We say that a system label λ = (out, a, in) satisfies st(a) =
(O , I ), written λ |= st(a), if |out| ∈ O ∧|in| ∈ I . Each synchronisation type spec-
ification st generates the following subsets Λ(S, st) of system labels and E(S, st)
of corresponding system transitions.

Λ(S, st) = {λ ∈ Λ | λ = (out, a, in) ⇒ λ |= st(a) }
E(S, st) = { t ∈ E | t.λ ∈ Λ(S, st) }

Thus, for communicating actions, the set of system transitions is restricted to
those transitions whose labels respect the synchronisation type of their commu-
nicating action. For internal actions no restriction is applied, since an internal
action of a component can always be executed when it is locally enabled.



128 M. H. ter Beek et al.

Components interacting in accordance with an STS st over a system S are
seen as a team whose behaviour is represented by the (extended) team automaton
(ETA) eta(S, st) generated over S by st and defined by the LTS

eta(S, st) = (Q, q0, Λ(S, st), E(S, st)).

We write Λ(st) and E(st) instead of Λ(S, st) and E(S, st), resp., if S is clear
from the context, and assume Λ(st) �= ∅. Labels in Λ(st) are called team labels
and transitions in E(st) are called team transitions.

Example 6. Recall the race system and its system labels and transitions. We
require both runners to start simultaneously and to finish individually by using
the STS stRace defined by start �→ ([1, 1], [2, 2]) and finish �→ ([1, 1], [1, 1]).
Then the team labels of the ETA eta(Race, stRace) are given by Λ(stRace) =
{ (Ctrl, start , {R1,R2}), (R1,finish,Ctrl), (R2,finish,Ctrl), (R1, run), (R2, run) }.
Example transitions are

(0, 0, 0)
(Ctrl,start,{R1,R2})−−−−−−−−−−−−→ (1, 1, 1)

(R1,run)−−−−−→ (2, 1, 1)
(R1,finish,Ctrl)−−−−−−−−−→ (0, 1, 2).

The full team automaton is computed by our tool, cf. [10, Appendix A]. �

2.3 Dynamic Logic

We use a (test-free) propositional dynamic logic over a finite set A �= ∅ of atomic
actions [32]. The set Act(A) of structured actions over A is given by the grammar

α := a | α;α | α + α | α∗ (actions)

with a∈A, sequential composition ;, nondeterministic choice +, and iteration ∗.

Abbreviations. If A = {a1, . . . , an}, we write some for the structured action
a1 + · · · + an. Given a nonempty subset of A denoted by B with elements
{b1, . . . , bm}, we write B for the structured action b1 + · · · + bm.

The set Frm(A) of formulas over A is defined by the grammar

ϕ := true | ¬ϕ | ϕ ∨ ϕ | 〈α〉 ϕ (formulas)

where α ∈ Act(A). Formula 〈α〉 ϕ expresses that at the current state it is possible
to execute α such that ϕ holds in the next state. The difference to Hennessy–
Milner logic [33] is that actions used as modalities in modal operators can be
structured actions, including iteration. This additional power will be crucial to
express our communication requirements later on in terms of logic formulas.

Abbreviations. We use the usual abbreviations like false, ϕ ∧ ϕ′, ϕ → ϕ′,
and the modal box operator [α]ϕ which stands for ¬ 〈α〉 ¬ϕ and expresses that
whenever in the current state α is executed, then ϕ holds afterwards. For a finite
index set I, we write

∨
i∈I to denote the generalised ‘∨’, where

∨
i∈∅

ψi = false
(likewise

∧
i∈∅

ψi = true).



Can We Communicate? Using Dynamic Logic to Verify Team Automata 129

Given a set A of atomic actions, we use LTS over A for the semantic interpre-
tation of formulas. Let L=(Q, q0,A, E) be an LTS. First we extend the transition
relation of L to structured actions in Act(A) defined inductively by:

q
α1+α2−−−−→L q′ if q

α1−→L q′ or q
α2−→L q′,

q
α1;α2−−−−→L q′ if there exists q̂ ∈ Q such that q

α1−→L q̂ and q̂
α2−→L q′,

q
α∗
−−→L q′ if q = q′ or there exists q̂ ∈ Q such that q

α−→L q̂ and q̂
α∗
−−→L q′.

We write q
α−→L if there exists q′ such that q

α−→L q′.
The satisfaction of a formula ϕ ∈ Frm(A) by an LTS L=(Q, q0,A, E) at a

state q ∈ Q, written L, q |= ϕ, is inductively defined as follows:
L, q |= true,
L, q |= ¬ϕ if not L, q |= ϕ,
L, q |= ϕ1 ∨ ϕ2 if L, q |= ϕ1 or L, q |= ϕ2,
L, q |= 〈α〉 ϕ if there exists q′ ∈ Q such that q

α−→L q′ and L, q′ |= ϕ.

For instance, enabledness q
α−→L is expressed by L, q |= 〈α〉 true.

L satisfies a formula ϕ ∈ Frm(A), written L |= ϕ, if L, q0 |= ϕ. Hence, for
the satisfaction of a formula by an LTS the non-reachable states are irrelevant.

We deviate from the classical semantics [32], since we use LTS with initial
states as models to interpret satisfaction of formulas. This is because we are
interested in the formulation of properties of (concurrently running) components,
i.e. of process structures. In particular, we can express safety properties (e.g.
[some∗]ϕ) and some kinds of liveness properties (e.g. [some∗] 〈some∗; a〉 ϕ).

3 Logical Characterisations of Communication Properties

In this section, we first focus on the property of receptiveness for team automata,
which has been studied before for other automata formalisms mainly in the con-
text of peer-to-peer communication; cf. Introduction. In Sect. 3.1, we summarise
the concepts of receptiveness and weak receptiveness and in Sect. 3.2 we show
that both notions can be characterised by dynamic logic formulas. Then we turn
to (weak) responsiveness, summarising the underlying ideas in Sect. 3.3 and pro-
viding logical characterisations in Sect. 3.4. The results form the theoretical basis
for automatic checks of communication properties in Sect. 4.

We assume a given system S=(N , (An)n∈N ) of CA with lts(S)=(Q, q0, Λ,E),
an STS st, and the generated ETA eta(S, st) = (Q, q0, Λ(S, st), E(S, st)).

3.1 Team Receptiveness

The idea of receptiveness for eta(S, st) is as follows. Whenever, in a reachable
state q of eta(S, st), a group {An | n ∈ out} of CA with ∅ �= out ⊆ N is (locally)
enabled to perform an output action a, i.e. ∀n∈out · a ∈ Σ!

n and qn
a−→An

, so that
(1) the number of CA in out fits the number of allowed senders according to



130 M. H. ter Beek et al.

the synchronisation type st(a) = (O , I ), i.e. |out| ∈ O , and (2) the CA need at
least one receiver to join the communication, i.e. 0 /∈ I , we get a receptiveness
requirement, denoted by rcp(out, a)@q. If out = {n}, we write rcp(n, a)@q for
rcp({n}, a)@q.

Example 7. In the initial state (0, 0, 0) of the race team, there is a receptiveness
requirement of the controller who wants to start the competition, expressed by
rcp(Ctrl, start)@(0, 0, 0). Later on, when the first runner is in state 2, it wants
to send finish which leads to three receptiveness requirements:

rcp(R1,finish)@(2, 1, 1), rcp(R1,finish)@(2, 2, 1), rcp(R1,finish)@(2, 0, 2).
Similarly, when the second runner is in state 2, we get:

rcp(R2,finish)@(1, 2, 1), rcp(R2,finish)@(2, 2, 1), rcp(R2,finish)@(0, 2, 2). �

ETA eta(S, st) is compliant with a receptiveness requirement rcp(out, a)@q
if the group of components (with names in out) can find partners in the team
which synchronise with the group by taking (receiving) a as input. If recep-
tion is immediate, we talk about receptiveness; if the other components may
still perform some intermediate actions before accepting a, we talk about weak
receptiveness. Formally, (weak) compliance and (weak) receptiveness are defined
as follows: The ETA eta(S, st) is compliant with rcp(out, a)@q if

∃in · q
(out,a,in)−−−−−→eta(S,st)

The ETA eta(S, st) is weakly compliant with rcp(out, a)@q if

∃in · q
(Λ(st)\out)

∗ ; (out,a,in)−−−−−−−−−−−−−→eta(S,st)

where Λ(st)\out denotes the set of team labels in which no component of out
participates. Formally, Λ(st)\out={(out′, a, in)∈Λ(st) | (out′ ∪ in) ∩ out = ∅} ∪
{(n, a) ∈ Λ(st) | n /∈ out}. Obviously, compliance implies weak compliance.

Definition 1 ((weak) receptiveness). The ETA eta(S, st) is (weakly)
receptive if for all reachable states q ∈ R(eta(S, st)), the ETA eta(S, st) is
(weakly) compliant with all receptiveness requirements rcp(out, a)@q established
for q.

3.2 Logical Characterisations of Receptiveness

Receptiveness notions are of purely semantic nature. To prove receptiveness in
concrete cases may be rather cumbersome since one has to go through all reach-
able states q of a team automaton and check compliance for all receptiveness
requirements at q. Therefore we are interested in a syntactic, logical characteri-
sation of receptiveness such that checks can be automated. It turns out that our
version of dynamic logic is well suited to express receptiveness.



Can We Communicate? Using Dynamic Logic to Verify Team Automata 131

Example 8. Recall the receptiveness requirement rcp(Ctrl, start)@(0, 0, 0) from
Example 7. Being a receptiveness requirement implies that the output action
start is enabled at the local state 0 of the controller, i.e. 0 start−−−→ACtrl

. This
is equivalent to the fact that in lts(Race) (cf. Example 5) the system label
(Ctrl, start , ∅) is enabled at system state (0, 0, 0), i.e. (0, 0, 0) start−−−→lts(Race).
Logically, this is equivalent to lts(Race), (0, 0, 0) |= 〈(Ctrl, start , ∅)〉 true.
Under this condition, we must prove there is a team transition in

the ETA eta(Race, stRace) of the form (0, 0, 0)
(Ctrl,start,in)−−−−−−−−→eta(Race,stRace) q′.

This means there is an in so that (Ctrl, start , in) is a team label and
eta(Race, stRace), (0, 0, 0) |= 〈(Ctrl, start , in)〉 true. The latter is equivalent to
lts(Race), (0, 0, 0) |= 〈(Ctrl, start , in)〉 true since, for team labels, system tran-
sitions and team transitions coincide. To check that eta(Race, stRace) satis-
fies the (only) receptiveness requirement at state (0, 0, 0) it thus suffices (and
it is also necessary) to show that there is an in with (Ctrl, start , in) being a
team label such that the following holds (which is true for in = {R1,R2}):
lts(Race), (0, 0, 0) |= 〈(Ctrl, start , ∅)〉 true → 〈(Ctrl, start , in)〉 true. �

This example illustrates a key insight in our approach: we cannot capture
requests for communication on team level but must consider system transitions
with system labels which are not team labels, e.g. (Ctrl, start , ∅).

Our general approach to characterise receptiveness properties is as follows.
Given system labels Λ(S) and synchronisation type specification st the “recep-
tiveness formula” rcpFrm ∈ Frm(Λ) defined below expresses that all receptive-
ness requirements are fulfilled in any reachable state of the team eta(S, st):

rcpReq = {(out, a, ∅) ∈ Λ | |out| ∈ O , 0 /∈ I for st(a) = (O , I )}
InCom(out, a) = {in ⊆ N | (out, a, in) ∈ Λ(st)}

rcpFrm = [Λ(st)∗]
∧

(out,a,∅)∈rcpReq
( 〈(out, a, ∅)〉 true → ∨

in∈InCom(out,a) 〈(out, a, in)〉 true
)

Here rcpReq is the set of system labels which correspond to receptiveness require-
ments (when enabled in a reachable state of the ETA, cf. Lemma 1); and
InCom(out, a) is the set of subsets in ⊆ N of component names which comple-
ment a given out ⊆ N and a ∈ Σ• to a team label in Λ(st) (for potential commu-
nication). Observe that (1) rcpReq∩Λ(st) = ∅ since 0 /∈ I for any st(a) = (O , I );
(2) [Λ(st)∗] ranges over all reachable states of the team eta(S, st), since Λ(st)
is the finite set of team labels that denote the non-deterministic choice of these
actions; and (3) the implication in rcpFrm is in Frm(Λ) and not in Frm(Λ(st))
since rcpReq ∩ Λ(st) = ∅ and (out, a, ∅) ∈ rcpReq .

Similarly, a “weak receptiveness formula” wrcpFrm ∈ Frm(Λ) is defined as:

wrcpFrm = [Λ(st)∗]
∧

(out,a,∅)∈rcpReq
(〈(out, a, ∅)〉 true → ∨

in∈InCom(out,a)

〈
(Λ(st)\out)∗; (out, a, in)

〉
true

)



132 M. H. ter Beek et al.

Example 9. ForRace, rcpReq = {(Ctrl, start , ∅),(R1,finish, ∅),(R2,finish, ∅)},
InCom(Ctrl, start) = {{R1,R2}}, InCom(Ri,finish) = {{Ctrl}}, for i = 1, 2, and
rcpFrm=[Λ(stRace)∗]

( 〈(Ctrl, start , ∅)〉 true → 〈(Ctrl, start , {R1,R2})〉 true
∧ 〈(R1,finish, ∅)〉 true → 〈(R1,finish,Ctrl)〉 true
∧ 〈(R2,finish, ∅)〉 true → 〈(R2,finish,Ctrl)〉 true

)
.

This receptiveness formula is satisfied by the LTS of the Race system. For
the check we use the tool described in Sect. 4. Together with Theorem 1 below
this implies that the ETA eta(Race, stRace) is receptive. �

The next lemma provides a characterisation of receptiveness requirements in
terms of the set rcpReq and logical satisfaction (used for the proof of Theorem 1).

Lemma 1. For all q ∈ R(eta(S, st)) it holds: rcp(out, a)@q is a receptiveness
requirement iff (out, a, ∅) ∈ rcpReq and lts(S), q |= 〈(out, a, ∅)〉 true.

The proof of Theorem 1 uses also the facts stated in the following two lemmas.

Lemma 2. For all ϕ ∈ Frm(Λ):{
lts(S) |= [Λ(st)∗]ϕ

}
iff

{
lts(S), q |= ϕ for all q ∈ R(eta(S, st))

}
.

Lemma 3. For all q∈R(eta(S, st)) and α∈Act(Λ(st)) :
q

α−→lts(S) iff q
α−→eta(S,st).1

Theorem 1. (1) eta(S, st) is receptive iff lts(S) |= rcpFrm and
(2) eta(S, st) is weakly receptive iff lts(S) |= wrcpFrm.

Remark 1. Checks of lts(S) |= rcpFrm (wrcpFrm, resp.) can be optimised if we
use instead of the full LTS of S the usually much smaller sub-LTS lts(S)opt ⊆
lts(S) constructed as follows: the set of transitions of lts(S)opt consists of the

transitions of eta(S, st) to which we add all transitions q
(out,a,∅)−−−−−−→lts(S) q′ with

(out, a, ∅) ∈ rcpReq . These transitions, which do not belong to eta(S, st), are
needed to capture receptiveness requirements. �

3.3 Team Responsiveness

For input actions, one can formulate responsiveness requirements with the intu-
ition that enabled inputs should be served by appropriate outputs. The expres-
sion rsp(in, a)@q is a responsiveness requirement if q ∈ R(eta(S, st)), for all
n ∈ in we have a ∈ Σ?

n and qn
a−→An

, and |in| ∈ I , 0 /∈ O for st(a) = (O , I ).

The ETA eta(S, st) is compliant with rsp(in, a)@q if ∃out · q (out,a,in)−−−−−→eta(S,st) . It

is weakly compliant with rsp(in, a)@q if ∃out · q
(Λ(st)\in)

∗ ; (out,a,in)−−−−−−−−−−−−−→eta(S,st), where
st(Λ)\in = {(out, a, in′) ∈ st(Λ) | (out ∪ in′) ∩ in = ∅} ∪ {(n, a) ∈ st(Λ) | n /∈ in}
denotes the set of team labels in which no component of in participates.

1 This follows because for team labels system transitions and team transitions coincide.



Can We Communicate? Using Dynamic Logic to Verify Team Automata 133

Unlike output actions, the selection of an input action of a component is not
controlled by the component but by the environment, i.e. there is an external
choice. If, for a choice of enabled inputs {a1, . . . , an}, only one of them can
be supplied with a corresponding output of the environment this suffices to
guarantee progress of components waiting for input.

Definition 2 ((weak) responsiveness). The ETA eta(S, st) is (weakly)
responsive if for all reachable states q ∈ R(eta(S, st)), either there is no respon-
siveness requirement at q or there is a responsiveness requirement rsp(in, a)@q
established for q such that the ETA eta(S, st) is (weakly) compliant with it.

Example 10. In the initial state (0, 0, 0) of the race team, there is a respon-
siveness requirement of the two runners who want to be started, expressed by
rsp({R1,R2}, start)@(0, 0, 0). The ETA eta(Race, stRace) is compliant with this
requirement. When the controller is in state 1, there are responsiveness require-
ments rsp(Ctrl,finish)@(q1,q2,1) for any q1, q2 ∈ {1, 2}. Only in state (2, 2, 1)
this requirement is immediately fulfilled; in all other cases, at least one run must
happen before a finish is sent. Then eta(Race, stRace) is weakly compliant. There
are four more responsiveness requirements when the controller is in state 2. �

3.4 Logical Characterisations of Responsiveness

We now define a logical characterisation of responsiveness by the “responsiveness
formula” rspFrm ∈ Frm(Λ) below, for a given Λ(S) and STS st as above.

rspReq = {(∅, a, in) ∈ Λ | |in| ∈ I , 0 /∈ O for st(a) = (O , I )}
OutCom(a, in) = {out ⊆ N | (out, a, in) ∈ Λ(st)}

rspFrm = [Λ(st)∗]
((∨

(∅,a,in)∈rspReq 〈(∅, a, in)〉 true
) →

(∨
(∅,a,in)∈rspReq

∨
out∈OutCom(a,in) 〈(out, a, in)〉 true

))

where rspReq is the set of system labels which correspond to responsiveness
requirements (when enabled in a reachable state of the ETA eta(S, st)); and
OutCom(a, in) is the set of subsets out ⊆ N of component names which com-
plement a given in ⊆ N and a ∈ Σ• to a team label in Λ(st) (for potential
communication). Note that the left side of the implication in rspFrm is true iff
there is a responsiveness requirement for a, in at the current state q. Otherwise
rspFrm holds anyway at q in accordance with the notion of responsiveness.

Similarly, a “weak responsiveness formula” wrspFrm ∈ Frm(Λ) is defined as:

wrspFrm = [Λ(st)∗]
((∨

(∅,a,in)∈rspReq 〈(∅, a, in)〉 true
) →

(∨
(∅,a,in)∈rspReq

∨
out∈OutCom(a,in)

〈
st(Λ)\in)∗; (out, a, in)

〉
true

))



134 M. H. ter Beek et al.

Example 11. For Race, rspReq = {(∅, start , {R1,R2}), (∅,finish,Ctrl)}, Out-
Com(start , {R1,R2}) = {{Ctrl}}, OutCom(finish,Ctrl) = {{R1}, {R2}}, and
wrspFrm = [Λ(stRace)∗]

(〈(∅, start , {R1,R2})〉 true ∨ 〈(∅,finish,Ctrl)〉 true
) →(〈(Ctrl, start , {R1,R2})〉 true ∨

〈((R1, run) + (R2, run))∗; (R1,finish,Ctrl)〉 true ∨
〈((R1, run) + (R2, run))∗; (R2,finish,Ctrl)〉 true

)

Note that Λ(stRace)\{R1,R2}=∅ and Λ(stRace)\Ctrl={(R1, run), (R2, run)}.
The weak responsiveness formula is satisfied by the LTS of the Race system.

For the check we use the tool described in Sect. 4. Together with Theorem 2,
this implies that the eta(Race, stRace) is weakly responsive. �

Lemma 4. For all q ∈ R(eta(S, st)) it holds: rsp(in, a)@q is a responsiveness
requirement iff (∅, a, in) ∈ rspReq and lts(S), q |= 〈(∅, a, in)〉 true.

Theorem 2. (1) eta(S, st) is responsive iff lts(S) |= rspFrm and
(2) eta(S, st) is weakly responsive iff lts(S) |= wrspFrm.

4 Model Checking Communication Properties

In this section we show, underpinned by our running example, how to transform
CA, systems and ETA into mCRL2 processes as well as dynamic logic formu-
las, characterising communication properties, into μ-calculus formulas. We also
justify briefly the correctness of these transformations and the soundness and
completeness of our verification approach. Then we present the tool support
that we developed (1) to perform the transformations and (2) to automatically
check communication properties through the model-checking facilities offered by
the mCRL2 toolset (https://www.mcrl2.org/) [22], similarly to how mCRL2 was
used earlier to verify automata composed hierarchically [40].

An mCRL2 model is expressed in an elementary process language, where
actions (and possibly data types) as well as processes are defined, and (for our
purpose) the initial process is given in the following standard concurrent form:

allow( { a, a_1|...|a_n, ... }, proc_1 || ... || proc_n );

This is a parallel composition of sequential processes proc_i , with interleaving
and multi-party synchronisation specified explicitly by allow . This restriction
operator forbids some actions, to constrain interaction and prune the state space,
by listing those allowed to occur in allow : so action a is interleaved and, similar
to synchronisation of actions a and ā yielding τ in CCS, actions a_i are syn-
chronised, resulting in a multi-action a_1|...|a_n ; all other actions are blocked.

To explain our transformation, along the lines of Fig. 2, we assume given a
system S=(N , (An)n∈N ) and a synchronisation type specification st.

Transformation of CA. First, we transform each CA An into an mCRL2
process ε(An), cf. Fig. 1(a). The transformation is defined and implemented in
a straightforward way based on the idea that an LTS L can be represented
by a process expression P, i.e. the LTS semantics of P is L. In our context, the

https://www.mcrl2.org/


Can We Communicate? Using Dynamic Logic to Verify Team Automata 135

representation of the An is a bit more involved since we want to represent shared
actions of different CA by different actions of their mCRL2 processes (later
to be synchronised by multi-actions). Therefore we apply a renaming ρ which
renames each action a of each An to the mCRL2 action n_a of ε(An). Then the
LTS semantics of mCRL2 processes (defined by SOS rules in [31, Def. 15.2.10])
applied to ε(An) provides an LTS lts(ε(An)). (We ignore aspects of data and time
included in mCRL2). Next we note that lts(ε(An)) is a reachable LTS which is,
up to renaming w.r.t. ρ, isomorphic to the reachable part of An, i.e. to the LTS
obtained by restricting the state space of An to reachable states. For instance, the
CA AR1 from Fig. 1(a) is transformed into the mCRL2 process proc R1(s:Int)

below. Its actions are R1_start , R1_run , and R1_finish , a parameter s (an
integer) holds the state, summation ( + ) represents non-deterministic choice,
and R1(0) is its initial state. The actions are renamed as explained above.

act R1_start, R1_run, R1_finish;

proc R1(s:Int) =

( s == 0 ) → ( R1_start . R1(1) ) +

( s == 1 ) → ( R1_run . R1(2) ) +

( s == 2 ) → ( R1_finish . R1(0) );

init R1(0);

Transformation of System S. System S is transformed into an mCRL2 pro-
cess ε(S) as follows. Any system label (out, a, in) is represented by the multi-
action which synchronises all mCRL2 actions o_a with o ∈out with all mCRL2
actions i_a with i ∈ in. Any system label (n, a) for internal actions is represented
by n_a . Then we construct the parallel composition of all mCRL2 processes
ε(An) restricted to (multi-)actions that represent system labels. The restriction
is realised by mCRL2’s allow operator. By this construction the LTS semantics
lts(ε(S)) is, up to the renaming of system labels, isomorphic to the reachable
part of lts(S). As non-reachable states are irrelevant for the satisfaction of for-
mulas, this provides the basis for verifying our communication properties with
mCRL2. For instance, the Race system is represented by this mCRL2 process:

act R1_start, R2_start, Ctrl_start, R1_run, R2_run, Ctrl_run, ...;

proc R1(s:Int) = ...;

R2(s:Int) = ...;

Ctrl(s:Int) = ...;

init allow ({R1_start, R1_finish, R1_run, R2_start, R2_finish, R2_run

Ctrl_start, Ctrl_finish, Ctrl_start|R1_start, Ctrl_start|R2_start,

R1_start|R2_start, Ctrl_start|R1_start|R2_start, ...},

R1(0) || R2(0) || Ctrl(0)).

Thus we block multi-actions, like R1_start|Ctrl_finish and R1_run|R2_run ,
which do not correspond to system labels, by using the allow operator. In total
there are 16 allowed multi-actions. The system’s LTS can be computed by our
tool.



136 M. H. ter Beek et al.

We can also represent the ETA generated by the STS st over S if
we further restrict the allowed actions to those whose corresponding sys-
tem labels satisfy st. In our example, this would mean that we allow
only the mCRL2 actions Ctrl_start|R1_start|R2_start , R1_finish|Ctrl_finish ,
R2_finish|Ctrl_finish , R1_run , and R2_run . Note that the representation of ETA
is not used for verification of communication properties (see below). It is, how-
ever, useful for the graphical animation of ETA.

Transformation of Communication Formulas. We characterised (weak)
receptiveness and (weak) responsiveness in Sects. 3.4 and 3.2 by formulas
(w)rcpFrm and (w)rspFrm, resp. To automatically verify these formulas, we
transform them into mCRL2’s μ-calculus by the renaming of system labels
explained above and by syntactic conversion of operators, e.g. ∧ to && , ∨ to
|| , and some to true . We write <a+b+c>ψ instead of <a>ψ||<b>ψ||<c>ψ for
compactness. The receptiveness formula rcpFrm of our example is transformed
into:

[(Ctrl_start|R1_start|R2_start + R1_finish|Ctrl_finish +

R2_finish|Ctrl_finish + R2_run + R1_run)*]

(((<R1_finish> true) => (<R1_finish|Ctrl_finish> true)) &&

((<R2_finish> true) => (<R2_finish|Ctrl_finish> true)) &&

((<Ctrl_start> true) => (<Ctrl_start|R1_start|R2_start> true)))

Note that for the transformation of communication properties the given STS
st is crucial. Indeed, the structured action used in the modal box operator refers
exactly to those actions which correspond to the system labels satisfying the
synchronisation type and hence to the team labels.

Verifying Communication Properties in mCRL2. As shown in Theorems
1 and 2 the validity of the logic formulas cpFrm characterising communication
properties must be checked over the LTS of system S. According to our semantics
preserving transformation of system S into the process ε(S), checking validity
of cpFrm in lts(S) is equivalent to checking the transformed version ε(cpFrm)
over lts(ε(S)). But the latter is exactly how satisfaction of formulas is defined for
mCRL2 processes and therefore our verification approach is sound and complete.

Implementation. An open-source prototype was implemented, which can be
executed online at https://github.com/arcalab/team-a. It is written in Scala,
compiled into JavaScript via Scala.js, and uses Scala and JavaScript libraries and
external tools like the mCRL2 model checker. Most final code is in JavaScript
running in an Internet browser (client-side), while the external tools are executed
remotely (server-side). It is also possible to compile and run the server locally.

The screenshot in Fig. 3 depicts some of the available widgets, using our run-
ning Race example. More complete screenshots can be found in [10, Appendix A].
The input team automaton is specified in widget 1 , where S defines the sys-
tem composed of 2 runners and 1 controller, and STS specifies the synchronisa-
tion types. The remaining widgets provide analysis of the ETA: 3 outputs the
encoded mCRL2 model and formulas being evaluated; 2 outputs both the result
of the formula and a counterexample or a witness — in this case stating that this

https://github.com/arcalab/team-a


Can We Communicate? Using Dynamic Logic to Verify Team Automata 137

ETA is not responsive with a counterexample; and 4 and 5 depict the com-
posed ETA and the individual component automata, resp. Note that widget 2

also reports that Race is weakly responsive, as described in Sect. 3.4, producing
a witness that matches the ETA diagram (cf. Fig. 5 in [10, Appendix A]).

Fig. 3. Screenshot of some of the widgets in the ETA tools available online

A Note on Optimisation. Our approach can be further optimised to reduce
the model’s size. For example, as mentioned in Remark 1, the mCRL2 pro-
cess representing system S can be replaced by one that allows a smaller set
of multi-actions corresponding to team labels from the ETA (eta(S, st)) only,
but enriched with (out, a, ∅) labels (when proving (weak) receptiveness) or with
(∅, a, in) (when proving (weak) responsiveness). Furthermore, all internal actions
could be replaced by a single non-synchronising action (e.g. τ), which may, how-
ever, lead to less readable counterexamples. Using these optimisations, one could
check for receptiveness or responsiveness of our Race example using a model that
allows only 7 multi-actions instead of 16. In general, this reduction depends on
(1) the number of shared actions, (2) the degree of flexibility of the synchroni-
sation policies, and (3) the number of internal actions.

5 Conclusions and Future Work

We provide the first logical characterisation of communication properties of team
automata in the form of (weak) receptiveness and (weak) responsiveness. I.e., we
logically characterise whether all messages that can be sent can also be received,
and that components waiting to receive some input message will get one. This
provides the basis for an automated verification approach of communication
properties of team automata. A prototype tool, available at https://github.com/
arcalab/team-a, realises this automated verification, performed by mCRL2 [22].

https://github.com/arcalab/team-a
https://github.com/arcalab/team-a


138 M. H. ter Beek et al.

Our results also apply to related automata-based models that interact
through shared input and output actions, since many such models are sub-
sumed by team automata, like I/O automata [15] but also a special type of
Petri nets [16]. Moreover, we believe that our results can be adjusted to capture
variants of compatibility like the “optimistic” approach proposed for interface
automata [38].

Future work concerns generalising our logical characterisation and the tool to
deal with variability and family-based compatibility checking for featured team
automata [9], as well as a more comprehensive validation of our tool with larger
case studies, to better identify limitations and optimisations of our approach.
Furthermore, it could be interesting to adapt the framework from [4] to study
the relation between a specification given as team automata and its implemen-
tation. Finally, an orthogonal approach is presented [19], where correct protocol
composition is defined in terms of so-called ‘assertions’ akin to pre- and post-
conditions instead of synchronisation on common actions. Apparently not all
resulting compositions are characterisable as team automata synchronisations
(and vice versa), but the precise difference in synchronising behaviour between
the two approaches remains to be studied.

Acknowledgments. Ter Beek received funding from the MIUR PRIN 2017FTXR7S
project IT MaTTerS (Methods and Tools for Trustworthy Smart Systems) and PRIN
2020TL3X8X project T-LADIES (Typeful Language Adaptation for Dynamic, Inter-
acting and Evolving Systems). Proença was partially supported by National Funds
through FCT/MCTES (Portuguese Foundation for Science and Technology), within
the CISTER Unit (UIDP/UIDB/04234/2020) and the IBEX project (PTDC/CCI-
COM/4280/2021); also by national funds through FCT and European funds through
EU ECSEL JU, within project VALU3S (ECSEL/0016/2019 - JU grant nr. 876852) –
The JU receives support from the EU’s Horizon 2020 research and innovation pro-
gramme and Austria, Czech Republic, Germany, Ireland, Italy, Portugal, Spain, Swe-
den, Turkey. Disclaimer: This document reflects only the authors’ view and the Com-
mission is not responsible for any use that may be made of the information it contains.

References

1. Adler, B.T., et al.: Ticc: a tool for interface compatibility and composition. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 59–62. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817963_8

2. Bartoletti, M., Cimoli, T., Zunino, R.: Compliance in behavioural contracts: a brief
survey. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming Languages
with Applications to Biology and Security. LNCS, vol. 9465, pp. 103–121. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25527-9_9

3. Basile, D., ter Beek, M.H.: Contract automata library. Sci. Comput. Program. 221
(2022). https://doi.org/10.1016/j.scico.2022.102841

4. Basile, D., ter Beek, M.H.: A runtime environment for contract automata. In:
Chechik, M., et al. (eds.) FM 2023. LNCS, vol. 14000, pp. 550–567. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-27481-7_31

https://doi.org/10.1007/11817963_8
https://doi.org/10.1007/978-3-319-25527-9_9
https://doi.org/10.1016/j.scico.2022.102841
https://doi.org/10.1007/978-3-031-27481-7_31


Can We Communicate? Using Dynamic Logic to Verify Team Automata 139

5. Basile, D., et al.: Controller synthesis of service contracts with variability. Sci.
Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.102344

6. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Logical Methods Comput. Sci. 12(4:6), 1–51 (2016). https://doi.
org/10.2168/LMCS-12(4:6)2016

7. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2_15

8. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communication require-
ments for team automata. In: Jacquet, J.-M., Massink, M. (eds.) COORDINA-
TION 2017. LNCS, vol. 10319, pp. 256–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59746-1_14

9. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Featured team automata.
In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp.
483–502. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_26

10. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can we Communicate?
Using dynamic logic to verify team automata (extended version). Technical report,
Zenodo (2022). https://doi.org/10.5281/zenodo.7418074

11. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Team automata for spatial
access control. In: Prinz, W., Jarke, M., Rogers, Y., Schmidt, K., Wulf, V. (eds.)
ECSCW 2001, pp. 59–78. Springer, Dordrecht (2001). https://doi.org/10.1007/0-
306-48019-0_4

12. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team
automata for groupware systems. Comput. Support. Coop. Work 12(1), 21–69
(2003). https://doi.org/10.1023/A:1022407907596

13. ter Beek, M.H., Hennicker, R., Kleijn, J.: Compositionality of safe communication
in systems of team automata. In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC
2020. LNCS, vol. 12545, pp. 200–220. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64276-1_11

14. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2_22

15. ter Beek, M.H., Kleijn, J.: Modularity for teams of I/O automata. Inf. Process.
Lett. 95(5), 487–495 (2005). https://doi.org/10.1016/j.ipl.2005.05.012

16. ter Beek, M.H., Kleijn, J.: Vector team automata. Theor. Comput. Sci. 429, 21–29
(2012). https://doi.org/10.1016/j.tcs.2011.12.020

17. ter Beek, M.H., Lenzini, G., Petrocchi, M.: Team automata for security: a survey.
Electron. Notes Theor. Comput. Sci. 128(5), 105–119 (2005). https://doi.org/10.
1016/j.entcs.2004.11.044

18. Beyer, D., et al.: CHIC: Checking Interface Compatibility (2007). https://ptolemy.
berkeley.edu/projects/embedded/research/chic

19. Bocchi, L., Orchard, D., Voinea, A.L.: A theory of composing protocols. Art
Sci. Eng. Program. 7(2), 6:1–6:76 (2023). https://doi.org/10.22152/programming-
journal.org/2023/7/6

20. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol.
3324, pp. 15–28. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
31811-8_2

21. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-030-90870-6_26
https://doi.org/10.5281/zenodo.7418074
https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1007/0-306-48019-0_4
https://doi.org/10.1023/A:1022407907596
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-030-64276-1_11
https://doi.org/10.1007/978-3-540-45236-2_22
https://doi.org/10.1016/j.ipl.2005.05.012
https://doi.org/10.1016/j.tcs.2011.12.020
https://doi.org/10.1016/j.entcs.2004.11.044
https://doi.org/10.1016/j.entcs.2004.11.044
https://ptolemy.berkeley.edu/projects/embedded/research/chic
https://ptolemy.berkeley.edu/projects/embedded/research/chic
https://doi.org/10.22152/programming-journal.org/2023/7/6
https://doi.org/10.22152/programming-journal.org/2023/7/6
https://doi.org/10.1007/978-3-540-31811-8_2
https://doi.org/10.1007/978-3-540-31811-8_2
https://doi.org/10.1145/322374.322380


140 M. H. ter Beek et al.

22. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1_2

23. Carmona, J., Cortadella, J.: Input/output compatibility of reactive systems. In:
Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–
377. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36126-X_22

24. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor.
Comput. Sci. 484, 1–15 (2013). https://doi.org/10.1016/j.tcs.2013.03.006

25. Carrez, C., Fantechi, A., Najm, E.: Behavioural contracts for a sound assembly
of components. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS,
vol. 2767, pp. 111–126. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39979-7_8

26. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 19:1–19:61 (2009). https://doi.org/10.
1145/1538917.1538920

27. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdziński, M., Mang, F.Y.C.:
Interface compatibility checking for software modules. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 428–441. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0_35

28. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE),
pp. 109–120. ACM (2001). https://doi.org/10.1145/503209.503226

29. Durán, F., Ouederni, M., Salaün, G.: A generic framework for n-protocol compat-
ibility checking. Sci. Comput. Program. 77(7–8), 870–886 (2012). https://doi.org/
10.1016/j.scico.2011.03.009

30. Ellis, C.A.: Team automata for groupware systems. In: Proceedings of the 1st Inter-
national ACM SIGGROUP Conference on Supporting Group Work (GROUP), pp.
415–424. ACM (1997). https://doi.org/10.1145/266838.267363

31. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

32. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT
Press, Cambridge (2000). https://doi.org/10.7551/mitpress/2516.001.0001

33. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_79

34. Hennicker, R., Bidoit, M.: Compatibility properties of synchronously and asyn-
chronously communicating components. Logical Methods Comput. Sci. 14(1), 1–31
(2018). https://doi.org/10.23638/LMCS-14(1:1)2018

35. Hennicker, R., Bidoit, M., Dang, T.-S.: On synchronous and asynchronous com-
patibility of communicating components. In: Lluch Lafuente, A., Proença, J. (eds.)
COORDINATION 2016. LNCS, vol. 9686, pp. 138–156. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39519-7_9

36. Hennicker, R., Knapp, A.: Moving from interface theories to assembly theories.
Acta Inf. 52(2–3), 235–268 (2015). https://doi.org/10.1007/s00236-015-0220-7

37. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_6

38. Lüttgen, G., Vogler, W., Fendrich, S.: Richer interface automata with optimistic
and pessimistic compatibility. Acta Inf. 52(4–5), 305–336 (2015). https://doi.org/
10.1007/s00236-014-0211-0

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/3-540-36126-X_22
https://doi.org/10.1016/j.tcs.2013.03.006
https://doi.org/10.1007/978-3-540-39979-7_8
https://doi.org/10.1007/978-3-540-39979-7_8
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1007/3-540-45657-0_35
https://doi.org/10.1145/503209.503226
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1145/266838.267363
https://doi.org/10.7551/mitpress/2516.001.0001
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.23638/LMCS-14(1:1)2018
https://doi.org/10.1007/978-3-319-39519-7_9
https://doi.org/10.1007/s00236-015-0220-7
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1007/s00236-014-0211-0
https://doi.org/10.1007/s00236-014-0211-0


Can We Communicate? Using Dynamic Logic to Verify Team Automata 141

39. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2(3), 219–246 (1989). https://ir.cwi.nl/pub/18164

40. Proença, J., Madeira, A.: Taming hierarchical connectors. In: Hojjat, H., Massink,
M. (eds.) FSEN 2019. LNCS, vol. 11761, pp. 186–193. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31517-7_13

https://ir.cwi.nl/pub/18164
https://doi.org/10.1007/978-3-030-31517-7_13


The ScalaFix Equation Solver

Gianluca Amato and Francesca Scozzari(B)

Laboratory of Computational Logic and AI,
Department of Economic Studies,

University of Chieti–Pescara,
Pescara, Italy

{gianluca.amato,francesca.scozzari}@unich.it

Abstract. We present ScalaFix, a modular library for solving equa-
tion systems by iterative methods. ScalaFix implements several solvers,
involving iteration strategies from plain Kleene’s iteration to more com-
plex ones based on a hierarchical ordering of the unknowns. It works
with finite and infinite equation systems and supports widening, nar-
rowing and warrowing operators. It also allows intertwining ascending
and descending chains and other advanced techniques such as localized
widening.

Keywords: Static analysis · Equation systems · Iterative methods ·
Widening · Narrowing

1 Introduction

One of the most common approaches for performing static analysis of software,
used for both simple data-flow analysis and more complex analysis based on
abstract interpretation, is to setup a set of equations over some partially ordered
set. The solutions of this equation system form the result of the analysis.

These equation systems are generally solved by iterative methods, based on
some variant of the Knaster-Tarski theorem. This is immediate when the partial
order on the values of the unknowns has a small finite height, but becomes
difficult when the height is large or, worse, the partial order does not satisfy the
ascending chain condition. In this case, some way of accelerating iterations is
needed, such as a widening/narrowing [13] or warrowing [8].

The ScalaFix library strives to be a general solver for these kind of equa-
tion system, in the spirit of modularization of static analyzers presented in [19].
It implements several iterative algorithms for solving equations (both with a
finite or infinite number of unknowns) and it has a convenient interface which
is designed for the Scala programming language. Scala combines functional and
object-oriented programming in a single high-level language which runs on the
Java Virtual Machine (JVM). The library may also be used, with some dif-
ficulties, from other languages which run on the JVM, such as Java itself. A
better interface for other languages is planned for a later version. The source
code of ScalaFix is available on https://github.com/jandom-devel/ScalaFix
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 142–159, 2023.
https://doi.org/10.1007/978-3-031-27481-7_10

https://doi.org/10.5281/zenodo.7339947
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_10&domain=pdf
http://orcid.org/0000-0002-6214-5198
http://orcid.org/0000-0002-2105-4855
https://github.com/jandom-devel/ScalaFix
https://doi.org/10.1007/978-3-031-27481-7_10


The ScalaFix Equation Solver 143

(in this paper we present the release 0.10), while the compiled code is on
the Sonatype OSSRH (OSS Repository Hosting) https://oss.sonatype.org/ with
group it.unich.scalafix and artifact scalafix.

In this paper we present the structure of the ScalaFix library and we show
some examples of its use. The main application target for such a library is to
be a backend for a static analyzer (it is currently in use by the Jandom static
analyzer [2]).

In all the code fragments appearing in this paper we assume the following
import statements:

import it.unich.scalafix.{finite, infinite, *}
import it.unich.scalafix.finite.*
import it.unich.scalafix.graphs.*
import it.unich.scalafix.highlevel.*
import it.unich.scalafix.utils.Relation

In many examples we will also use the PPL (Parma Polyhedra Library) [10]
trough the JPPL bindings. These are simpler and more natural to use than the
default Java bindings provided by the PPL. The source code for JPPL is available
on https://github.com/jandom-devel/JPPL, while the compiled code is on the
Sonatype repository https://s01.oss.sonatype.org/ with group it.unich.jppl
and artifact jppl.

All the examples in this paper are available with full code in the GitHub
repository https://github.com/jandom-devel/ScalaFixExamples.

2 Equation Systems

The main concept of ScalaFix is the equation system. It comes in two flavors:
either with a finite number of unknowns or with a possibly infinite number of
unknowns. The main difference between the two flavors is that, in the first case,
we are generally interested in solving the system for all the unknowns, while in
the second case we are only interested in solving for a single unknown.

Each equation system is characterized by a type U for the unknowns and a
type V for the values assumed by the unknowns. As assignment is a function
from unknowns to values. The different solvers of ScalaFix take an assignment
as the input, perform several iterative steps, and produce a new assignment
as the solution of the equation system. The body of an equation system is the
cornerstone of all the iterative algorithms: it takes an initial assignment and
returns a new assignment obtained by computing all the right hand sides of the
equation system. In the Scala language, we have:

type Assignment[-U, +V] = U => V
type Body[U, V] = Assignment[U, V] => Assignment[U, V]

where [-U, +V] means that the assignment type is covariant in V and contravari-
ant in U.

It is important not to be misled by the type of Body. Given the variables
body: Body[U, V] and rho: Assignment[U, V], we have that body(rho) is
a function, hence no real computation starts until this is applied to a specific
unknown u: U, as in body(rho)(u).

https://oss.sonatype.org/
https://github.com/jandom-devel/JPPL
https://s01.oss.sonatype.org/
https://github.com/jandom-devel/ScalaFixExamples


144 G. Amato and F. Scozzari

2.1 Infinite Equation Systems

For example, consider the following equations defining the Fibonacci sequence:

x0 = x1 = 1 xi+2 = xi + xi+1

This may be encoded in ScalaFix as follows:

val body: Body[Int, BigInt] =
(rho: Assignment[Int, BigInt]) =>

(u: Int) =>
if u <= 1 then 1 else rho(u-1) + rho(u-2)

Note that, although many type declarations might be avoided thanks to the
Scala type inference, we have decided here to be more verbose since we think it
is helpful to the reader.

The body must be packed into an EquationSystem before being handed over
to a solver:

val eqs = EquationSystem(body)

Since the number of unknowns is infinite, we use the infinite.WorkListSolver
for computing a solution. The worklist solver needs three parameters: an equation
system, an initial assignment and the set of the unknowns for which we want
to get a partial solution. For example, if we want to known the sixth Fibonacci
number we use:

infinite.WorkListSolver(eqs)(Assignment(1), Set(6))

where Assignment(1) is the assignment which maps every unknown to 1 and
Set(6) is the singleton set {6}.

The output is an assignment which maps 6 to the 6th Fibonacci num-
ber. Morevoer, since in order to determine x6 we also need to solve for the
unknowns from x0 to x5, the resulting assignment also contains the values for
these unknowns:

[ 0 -> 1, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 5, 5 -> 8, 6 -> 13 ]

Another solver for infinite equation systems implemented in ScalaFix is the
PriorityWorkListSolver, where the unknown to be updated is chosen, among
those in the worklist, according to priorities which are dynamically generated.

In the general case there is no guarantee of convergence: this should be
assured from the specific theory used to analyze the equation system under
consideration.

2.2 Finite Equation Systems

The solvers in the infinite package work for equation systems with a possibly
infinite number of unknowns. If the number of unknowns is finite, it is possible
to use a FiniteEquationSystem instead, which allows to use different solvers
specifically tailored for this case.

A finite equation system is characterized, besides its body, also by:



The ScalaFix Equation Solver 145

– the set of all the unknowns;
– the influence relation between the unknowns;
– a subset of all the unknowns, called the input unknowns.

While the set of all the unknowns is an obvious information, the other two param-
eters deserve an explanation. The influence relation determines the dependencies
between unknowns. If the unknown x is used in the right hand side of the equa-
tion defining y, then we say that x influences y. When x is recomputed and its
value changes, all the unknowns influenced by x should be recomputed as well.

Note that not all the solvers actually need the influence relation. For exam-
ple, it is not used by KleeneSolver, which performs a parallel update of all
the unknowns, and by RoundRobinSolver, which repeatedly updates all the
unknowns one at a time. On the contrary, it is used by those solvers which
avoid to recompute an unknown when it is not strictly necessary, such as
WorkListSolver. In the case of infinite equation systems, the influence rela-
tion is computed dynamically during the evaluation of the body when needed,
while for finite equation systems we require the influence relation to be provided
statically.

The set of input unknowns is used to compute a depth-first ordering of the
unknowns in the equation system. This allows to determine the set of unknowns
where widening should be applied to ensure convergence and the default hierar-
chical ordering [11] for the HierachicalOrderingSolver.

We may turn the Fibonacci example into a finite equation system by restrict-
ing the number of unknowns, as follows:

val eqs = FiniteEquationSystem(
body,
infl = Relation( (i: Int) => Set(i-1, i-2) ),
unknowns = 0 to 10,
inputUnknowns = Set(0, 1) )

Then we may solve the equation system, for example with:

finite.WorkListSolver(eqs)(Assignment(1))

Here we do not need to specify the set of wanted unknowns, since we assume we
are interested in solving the entire equation system and find the fixpoint for all
the unknowns.

2.3 A Use Case for Static Analysis

We show a use case involving the Parma Polyhedra Library trough the Java
binding provided by JPPL. Consider the example program loop and its corre-
sponding equation system over the interval domain in Fig. 1. We first define the
body of the equation system using the interval abstract domain DoubleBox from
PPL as follows:



146 G. Amato and F. Scozzari

Fig. 1. The example program loop. The symbols ∨, ∧ and + are respectively the lub,
the glb and the sum on the domain of intervals.

val body = (rho: Int => DoubleBox) => {
case 0 => DoubleBox.from(/* constraint system {i=0} */ )
case 1 => rho(0).clone().upperBound(rho(3))
case 2 => rho(1).clone().refineWith(/* constraint i<=10 */ )
case 3 => rho(2).clone().affineImage(0, /* expression i+1 */ )

}

We can now construct a finite equation system as follows:

val eqs = FiniteEquationSystem[Int, DoubleBox](
body,
inputUnknowns = Set(0),
unknowns = 0 to 3,
infl = Relation(0 -> 1, 1 -> 2, 2 -> 3, 3 -> 1) )

where unknowns correspond to the program points 0, 1, 2, 3 in Fig. 1 and infl
defines the dependency relations between the equations. For instance, 0 -> 1
means that any change in the value of x0 requires recomputation of x1. We can
now solve the equation system with:

finite.WorkListSolver(eqs)(Assignment(DoubleBox.empty(1)))

whose solution is:

[0 -> i in 0, 1 -> i in [0, 11], 2 -> i in [0, 10], 3 -> i in [1, 11]]

where 2 -> i in [0, 10] means that in the program point 2 the value of i is
in the interval [0, 10].

2.4 Infinite Equation Systems and Static Analysis

While finite equation systems are well-suited for intra-procedural analysis, infi-
nite equation systems may be used for inter-procedural analysis, by including an
abstraction of the call-stack as part of the unknowns.

Consider, for example, the following code:



The ScalaFix Equation Solver 147

function incr(a) {
[1] b = a+1
[2] return b
[3]
}

i = j = 0
[4] j = incr(i)
[5] i = incr(j)
[6]

A possible approach for the analysis of this program consists in defining an
equation system whose unknowns are pairs (p, c) where p is a program point
and c is an abstraction of the call-stack, such as (but not limited to) an abstract
representation of the values of the formal parameters.

Assuming to work with the interval domain, this is an excerpt of the equation
system which describes the incr function:

val body: Body[(Int, DoubleBox), DoubleBox] = (rho) =>
case (1, c) => c.clone().addSpaceDimensionAndEmbed(1)
case (2, c) => rho((1, c)).clone()

.affineImage(1, /* expression a+1 */ )
case (3, c) => rho((2, c))

When the function incr is called in the context c, the value of the variables
at program point 1 is obtained by enlarging the input, provided in c, with a
new unconstrained dimension representing the variable b. The equation for the
return statement, i.e., the unknown (3, c), is a no-op: in the general case, we
might decide to remove those dimensions corresponding to the local variables
not returned by the function.

The following are the equations for the main program:

case (4, c) => DoubleBox.from(/* constraints {i=j=0} */ )
case (5, c) =>

val call_context = rho((4, c)).clone()
.removeSpaceDimensions(Array(1))

val return_context = rho((3, call_context))
val result = /* combine rho((4, c)) and return_context */
result

case (6, c) =>
/* similar to code for (5, c) */

The interesting point is the equation for the program point (5, c). Here we:

1. determine the abstract calling context by projecting the abstract value of the
program point 4 on the actual parameters of the function call (variable i in
this case);

2. take the abstract return context of the function incr, when invoked with the
previously computed calling context;



148 G. Amato and F. Scozzari

3. combine the information at program point 4 and the return context to get the
final best possible approximation of the value of variables at program point
5.

A theoretical discussion on the last step, as well as on alternative abstractions
of the call-stack, is available in [21].

The reason why infinite equation systems are useful for inter-procedural anal-
ysis is that we cannot know in advance the contexts we will use for evaluating
the incr function. In this example ScalaFix uses the intervals [0, 0] and [1, 1].
Note that, in more complex cases, some kind of widening operator should be
applied on calling contexts to avoid generating an infinite number of them.

3 Widening, Narrowing and Warrowing

ScalaFix supports the use of widenings, narrowings [14] and warrowings [8].
These operators are commonly used to combine the values of the last two itera-
tions into a new value, in order to accelerate or ensure the convergence. In this
paper, and in the ScalaFix jargon, they are generally called combos. Combos
are implemented at the level of an equation system, and therefore work with
every fixpoint solver. Mathematically, a combo over a set V is a binary function
� : V × V → V . In ScalaFix we have that:

type Combo[V] = (V, V) => V

Applying a combo � to an unknown xi means replacing the equation xi = e
with xi = xi � e. Typically, a combo is applied to a selection of unknowns,
generally the loop heads in the graph generated by the unknowns and their
influence relation. Potentially, we might want to use different combos for differ-
ent unknowns. Therefore, when using combos in ScalaFix, we need to specify
a ComboAssignment, i.e., a partial function which maps each unknown to the
combo we want to use for it (if any). Continuing the example in Sect. 2.3, we
may define a combo using the standard widening for intervals [12]:

val widening = Combo[DoubleBox]( (x: DoubleBox, y: DoubleBox) =>
y.clone().upperBound(x).widening(x) )

val comboAssignment = ComboAssignment(widening).restrict(Set(1))

where restrict(Set(1)) means that we apply the widening to the unknown 1
only. We now equip the equation system with the widening:

val eqsWithWidening = eqs.withCombos(comboAssignment)

The equation system can be solved as before:

finite.WorkListSolver(eqsWithWidening)(Assignment(DoubleBox.empty(1)))

ScalaFix also implements general techniques enhancing widenings and nar-
rowings such as delayed widening.



The ScalaFix Equation Solver 149

3.1 Automatic Determination of Combo Points

Instead of manually specifying the set of unknowns where combos should be
applied, we may let ScalaFix determine this set automatically. Each finite
equation system induces a dependency graph whose nodes are the unknowns
and such that there is an edge (x, y) iff x influences y. We may build a depth-
first ordering of this graph using

val ordering = DFOrdering(eqs)

whose result for the example program loop is:
UnknownOrdering( 0 (1) 2 3 )

Here the parenthesis denotes loop head nodes, i.e., nodes which are the target of
retreating edges. In order to ensure convergence, it is enough to apply widenings
to these nodes. This may be done with the restrict method used above, using
the graph ordering as a parameter:

val comboAssignment = ComboAssignment(widening).restrict(ordering)

Then, everything proceeds as in the previous example.

4 Equation Systems Based on Hyper-Graphs

In the equation system shown above, the right-hand side of equations are
black boxes. This is generally fine, but in some cases exposing some structure
allows optimizations which are not possible otherwise. This is especially true for
unknowns such as x1 in Fig. 1 which correspond to join nodes of a flow chart.

ScalaFix allows to define a body for an equation system in a way that makes
manifest the individual contributions of the edges of the flow chart. Consider
again the equations in Fig. 1. For the sake of clarity, in Fig. 2 we depict the
control-flow graph of the program. Note that the edge i=0 has no source: this
is fine since ScalaFix supports hyper-graphs, where each edge may have many
(possibly none) sources and a single target. Hyper-graphs are needed for inter-
procedural analysis [19]. Edges enter and loop correspond to the two edges
entering the join node in Fig. 1, i.e., to the contributions x0 and x3 in the
equation x1 = x0 ∨ x3.

We need to associate to each edge an action, i.e., a function that takes an
assignment and returns the contribution of that edge to the new value of the
target unknown.

type EdgeAction[U, V, E] = Assignment[U, V] => E => V

For our example equation system we have:
val edgeAction = (rho: Assignment[Int, DoubleBox]) => {

case "i=0" => DoubleBox.from(/* constraint system {i=0} */ )
case "enter" => rho(0)
case "i<=10" => rho(1).clone().refineWith(/* constraint i<=10 */ )
case "i=i+1" => rho(2).clone().affineImage(0, /* expression i+1 */ )
case "loop" => rho(3)

}



150 G. Amato and F. Scozzari

Fig. 2. The graph corresponding to the equation system in Fig. 1.

The actions for the edges should be packed together with fields describing the
structure of the graph into a GraphBody:

val graphBody = GraphBody[Int, P, String](
sources = Relation(

"enter" -> 0, "i<=10" -> 1, "i=i+1" -> 2, "loop" -> 3),
target = Map(

"i=0" -> 0, "enter" -> 1, "i<=10" -> 2, "i=i+1" -> 3, "loop" -> 1),
ingoing = Relation(

0 -> "i=0", 1 -> "enter", 1 -> "loop", 2 -> "i<=10", 3 -> "i=i+1"),
outgoing = Relation(

0 -> "enter", 1 -> "i<=10", 2 -> "i=i+1", 3 -> "loop"),
edgeAction = edgeAction,
combiner = (x, y) => x.clone().upperBound(y),
unknowns = 0 to 3 )

The body is automatically reconstructed in ScalaFix by combining all the
contributions from the incoming edges with the specified operation combiner,
which in our example is simply the upper bound operator of the abstract domain.
Finally, the body is used to build a graph-based equation system:

val eqs = GraphEquationSystem(
initialGraph = graphBody,
inputUnknowns = Set(0) )

Since a GraphEquationSystem is a subclass of FiniteEquationSystem, we may
use eqs exactly as the equation systems in the previous sections.

Note that the way we provide to GraphBody the structure of the graph is
not particularly elegant: there is a lot of redundancy among the parameters
sources, target, ingoing and outgoing. However, ScalaFix has been prin-
cipally designed to be used as a backend for a static analyzer. In this context,
it is likely that the analyzer has already built the control-flow graph internally.
Since the four parameters above are just functions from edges (or nodes) to set
of nodes (or edges), it is easy for a static analyzer to build a very thin layer
providing these parameters.



The ScalaFix Equation Solver 151

Fig. 3. The example program nested.

The ScalaFix library also provide a different API for building graphs (the
GraphBodyBuilder class) which is easier to use for simple experiments but is
not described in this paper.

4.1 Localized Widening

The definition of an equation system based on hyper-graphs allows us to use
localized widening [7]. Consider the program nested in Fig. 3 and the corre-
sponding system of equations. Let graphBody be the description of the graph in
Fig. 3, as depicted in Fig. 4. We can build, as in the previous section, a graph
equation system as follows:

val eqs = GraphEquationSystem(
initialGraph = graphBody,
inputUnknowns = Set(0) )

and define the widening:

val widening = Combo[DoubleBox]((x: DoubleBox, y: DoubleBox) =>
y.clone().upperBound(x).widening(x))

Now using DFOrdering we can recover the depth-first ordering of the set of
unknowns:

val ordering = DFOrdering(eqs)



152 G. Amato and F. Scozzari

Fig. 4. The graph corresponding to the equation system in Fig. 3.

which is ( 0 (1) 3 2 4 (5) 8 9 6 7 ), where (1) and (5) are the loop head
nodes. We can apply localized widening to these nodes as follows:

val widenings = ComboAssignment(widening).restrict(ordering)
val eqsWithWidening = eqs.withLocalizedCombos(widenings, ordering)
val solutionAscending =

WorkListSolver(eqsWithWidening)(Assignment(DoubleBox.empty(2)))

where the last line computes the solution for the ascending chain. We can now
start a descending phase using the narrowing defined in [12]:

val narrowing = Combo[DoubleBox]((x: DoubleBox, y: DoubleBox) =>
y.clone().intersection(x).CC76Narrowing(x))

val narrowings = ComboAssignment(narrowing).restrict(ordering)
val eqsWithNarrowing = eqs.withCombos(narrowings)
WorkListSolver(eqsWithNarrowing)(solutionAscending)

In the solution for the program point 3 we have that i in [10, 11), which
cannot be computed without the localized widening.

5 A High-Level Interface

The interface shown above, where the user builds an equation system, decides
where to apply widening/narrowing and calls the solver with appropriate param-



The ScalaFix Equation Solver 153

eters, is rather low-level. For example, if one wants to solve an equation system
using the classical approach based on an ascending chain with widening followed
by a descending chain with narrowing, this procedure must be repeated for both
phases, as done in the previous section.

Albeit this allows an extreme flexibility, if we just want to solve an equa-
tion system following a standard approach, ScalaFix provides a high-level API
which simplifies this task. It is enough to call the generic FiniteFixpointSolver
with a bunch of parameters which specify how we want to solve the equation
system. For example, the analysis shown in Sect. 4.1 may be implemented more
easily as follows:

val params = Parameters[Int, DoubleBox](
solver = Solver.WorkListSolver,
start = Assignment(DoubleBox.empty(2)),
comboLocation = ComboLocation.Loop,
comboScope = ComboScope.Localized,
comboStrategy = ComboStrategy.TwoPhases,
restartStrategy = RestartStrategy.None,
widenings = ComboAssignment(widening),
narrowings = ComboAssignment(narrowing) )

FiniteFixpointSolver(eqs, params)

The possible choices for the above parameters are:

– solver: one of the following fixpoint solvers:
• KleeneSolver: updates all the unknowns in parallel;
• RoundRobinSolver: updates one unknown at a time, following a fixed

ordering;
• WorkListSolver: updates one unknown at a time, taken from a queue

containing only the unknowns which might produce a different result
w.r.t. the previous iteration;

• PriorityWorkListSolver: it is similar to the WorkListSolver, but the
order in which unknowns are extracted from the queue depends on an
ordering of the unknowns;

• HierarchicalOrderingSolver: updates the unknowns following a hier-
archical ordering (see [11]).

For the PriorityWorkListSolver and HierarchicalOrderingSolver, the
ordering is based on the depth first traversal of the equation system.

– comboLocation: None does not use combos; All puts combos at each
unknown; Loop places combos only at loop heads (which are automatically
computed).

– comboScope: Standard or Localized, for standard or localized widening
respectively.

– comboStrategy: OnlyWidening uses widening operators with no descending
phase; TwoPhases uses the standard two phases widening/narrowing app-
roach; Warrowing strictly intertwines ascending and descending steps in a
single warrowing operator;



154 G. Amato and F. Scozzari

– restartStrategy: either None or Restarting for disabling or enabling the
restarting policy which replaces part of the current assignment with the
initial assignment, in order to improve precision [8] (only useful for the
PriorityWorklistSolver).

The high level API also needs some extra information on the analysis domain.
This may be provided to ScalaFix in the form of a given instance (the Scala
equivalent of a type class) of the type Domain. This instance implicitly provides
the partial ordering relation and the upper bound operator for a given type. This
is a fragment of the Domain instance for DoubleBox:

given DoubleBoxDomain: Domain[DoubleBox] with
def lteq(x: DoubleBox, y: DoubleBox): Boolean = y.contains(x)
def upperBound(x: DoubleBox, y: DoubleBox): DoubleBox =

x.clone().upperBound(y)

6 Performance

In this section we present some benchmarks showing the performance of the
ScalaFix library. Obviously, different equation solvers will have different per-
formances, but comparing different methods for solving equation systems is not
in the scope of this paper. What we want to show is the overhead which is caused
by using the ScalaFix library instead of an ad-hoc equation solver.

6.1 A Simple Benchmark Using the PPL

Consider the equation system E given by the following equations on P(Z):

x0 = (xN−1 ∩ {v | v ≤ l}) ∪ {0}
xi+1 = {v + 1 | v ∈ xi}

(1)

We solve E with N = 100 and l = 2,000 using the following methods:

1. an ad-hoc implementation of the round-robin solver, using arrays as the data
structure for assignments (array);

2. an ad-hoc implementation of the round-robin solver, using hash tables as the
data structure for assignments (hash);

3. the round-robin solver of ScalaFix (scalafix).

For each method, we used both the DoubleBox and CPolyedron domains of the
PPL, with or without widening at each unknown. In ScalaFix widenings are
added to E using the .withCombos method, while in the custom solvers they
are inlined inside the solvers.

Benchmarking programs running on the JVM is not an easy task, since a lot
of factors may impact the execution speed, such as just in time compilation and
garbage collection. We have used the JMH (Java Microbenchmark Harness) to
perform the benchmarks, using 5 forks, each fork composed of 5 iterations for



The ScalaFix Equation Solver 155

Table 1. Benchmarks results (operations/s) with 99% confidence intervals.

Benchmarks Array Hash Scalafix

Box without combos 54.364 ± 6.725 55.180 ± 6.318 54.941 ± 7.395
Box with combos 246.072 ± 36.047 261.492 ± 36.443 261.707 ± 35.318
Polyhedra without combos 14.334 ± 2.232 14.994 ± 1.759 15.081 ± 1.515
Polyhedra with combos 85.590 ± 17.383 90.507 ± 13.428 85.638 ± 16.541
Reaching definitions 15946.052 ± 64.141 15298.415 ± 134.841 15301.827 ± 59.145

warming up the JVM and 5 iterations for collecting the results. On top of this,
we have tried to reduce the effect of automatic CPU performance scaling by
disabling Turbo Boost and setting a fixed clock for the CPU, low enough not to
overheat the processor. In particular, the results have been obtained on a Intel
Core i2500K clocked at 1.6GHz.

The results are shown in Table 1, and are expressed in operations per second
(i.e., the number of times the equation system is solved per second) with a 99%
confidence interval.

The benchmarks show that the difference between the three solvers is negli-
gible, since the cost of executing the DoubleBox and CPolyhedron operations is
much larger than the overhead of the fixpoint solvers.

6.2 Reaching Definitions

The second benchmark contains different implementations of an equation sys-
tem for reaching definition analysis of a three-address code program from [1, p.
626], whose code is in Fig. 5. As before, we have executed the benchmark com-
paring the ScalaFix solver to an ad-hoc implementation of the round-robin
solver, using arrays and hash tables. The results show that even in this case the
difference between the solvers is negligible.

The experiments suggest that the overhead of using ScalaFix is very lim-
ited, almost zero.

7 Related Work

Most available static analyzers, both for industrial or academic applications,
implement their custom procedure for solving equation systems. We believe
that the use of ScalaFix could help developers in experimenting with different
and state-of-the-art solvers. Also, they could contribute, by implementing new
techniques that would be immediately reusable by the community. Moreover,
the developers would benefit from all the experiments and development efforts
behind the library. Actually, one of the major difficulty in the development of
ScalaFix has been to choose the correct abstractions to put widening, nar-
rowing, warrowing, localized techniques, equation systems, assignments, solvers,
etc. . . inside a common API.



156 G. Amato and F. Scozzari

Fig. 5. Reaching definition benchmark.

To the best of our knowledge, ScalaFix is the only general purpose library
for solving equation systems for static analysis which is currently available.

We are aware of only another proposal in the past with the library Fixpoint
[20]. This library is unmaintained for more than nine years now and the subver-
sion repository for the source code is not accessible. In general, while Fixpoint
and ScalaFix share the same general goal, there are many differences:

– Fixpoint was written in OCaml, while ScalaFix is written in Scala for the
Java Virtual Machine.

– The structure of Fixpoint was more monolithic than that of ScalaFix:
the Fixpoint.manager type encapsulates almost all the information needed
to solve an equation system, from the position of widenings to the action of
the hyper-edges. In ScalaFix we give different responsibilities to different
classes.

– Fixpoint had additional modules implementing some techniques for solv-
ing fixpoint equations, namely, guided static analysis [17] and widening with
threshold [23]. Implementation of these techniques is a planned improvements
for ScalaFix.

– ScalaFix implements many state-of-the-art techniques recently proposed,
such as localized widening, warrowing and restarting.

– ScalaFix implements general solvers for infinite equation systems, suitable
for the analysis of inter-procedural programs.

Since the source code of Fixpoint is no more available, neither a more detailed
comparison nor a performance evaluation has been possible.

Another library for solving fixpoint equations, with a different purpose, is
Killdall (https://compcert.org/doc-1.6/html/Kildall.html), written for the Coq
proof assistant, and part of the CompCert project [22]. Killdall implements the

https://compcert.org/doc-1.6/html/Kildall.html


The ScalaFix Equation Solver 157

same algorithm as the PriorityWorklistSolver for finite equation systems in
ScalaFix, using the depth-first ordering of the equation system for deciding
priorities. However, Killdall does not implement any of the additional features
of ScalaFix such as combos (Kildall does not have any support for widening
or narrowing), infinite equation systems or alternative solvers. But here the goal
is to provide a mechanized verification of program analyses, which can be used
to equip the CompCert C compiler, being a challenge to implement and reason
upon data structures in a purely functional setting such as Coq.

Finally, FPSolve [15] is a library for solving systems of polynomial equations
over a semi-ring. While in particular cases it is possible to recast data-flow equa-
tions as equations over a semi-ring, this does not hold in general. Therefore the
applicability of FPSolve as a general procedure for solving data-flow equations
is limited.

8 Conclusion

We have shown some features of the ScalaFix library. There are other features
of ScalaFix which are not presented here, such as:

– support for observing the behaviour of the solvers with the listener class
FixpointSolverTracer which can be used for debugging and computing met-
rics, and also for fine-tuning the analysis domain using statistical approaches
(see for instance [3,6]);

– support for restarting : a policy which, under certain conditions, replaces part
of the current assignment with the initial assignment, in order to improve
precision [8];

– implementation of other equation solvers from the literature, such as solvers
based on hierarchical ordering and priority worklists.

ScalaFix is the only general purpose library implementing advanced tech-
niques such as localized widening and restarting. In the near future, we plan to
enhance ScalaFix along several directions:

– develop a thin interface layer to make ScalaFix easier to use by other JVM
based languages;

– implement more techniques such as guided abstract interpretation [17], looka-
head widening [16] or the improved handling of descending chains in [18];

– implement equation systems with side-effects [9] and for different paradigms
[4,5].

We have shown in Sect. 6 that the overhead of using ScalaFix instead of
re-implementing an ad-hoc solver is negligible. A big effort has been provided
to design the ScalaFix API to be as flexible as possible for the need of very
different analyzers, and in the choice of the data structures both for equation
systems and graphs to allow the implementation of many speed-up features,
depending on the kind of equation systems used.



158 G. Amato and F. Scozzari

References

1. Aho, A.V., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools, 1st
edn. Addison Wesley, Boston (1986)

2. Amato, G., Di Nardo Di Maio, S., Scozzari, F.: Numerical static analysis with
Soot. In: Proceedings of the ACM SIGPLAN International Workshop on State of
the Art in Java Program Analysis, SOAP 2013. ACM, New York (2013). https://
doi.org/10.1145/2487568.2487571

3. Amato, G., Parton, M., Scozzari, F.: A tool which mines partial execution traces
to improve static analysis. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol.
6418, pp. 475–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16612-9_37

4. Amato, G., Scozzari, F.: Optimality in goal-dependent analysis of sharing.
Theory Pract. Logic Program. 9(5), 617–689 (2009). https://doi.org/10.1017/
S1471068409990111

5. Amato, G., Scozzari, F.: Observational completeness on abstract interpretation.
Fund. Inform. 106(2–4), 149–173 (2011). https://doi.org/10.3233/FI-2011-381

6. Amato, G., Scozzari, F.: Random: R-based analyzer for numerical domains. In:
Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 375–382.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_29

7. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: Logozzo, F., Fäh-
ndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 25–42. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38856-9_4

8. Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: Efficiently intertwining
widening and narrowing. Sci. Comput. Program. 120, 1–24 (2016). https://doi.
org/10.1016/j.scico.2015.12.005

9. Apinis, K., Seidl, H., Vojdani, V.: Side-effecting constraint systems: a swiss army
knife for program analysis. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS,
vol. 7705, pp. 157–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35182-2_12

10. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

11. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Bjørner,
D., Broy, M., Pottosin, I.V. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0039704

12. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Dunod,
Paris, France, pp. 106–130 (1976)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM Press, New York (1977). https://doi.
org/10.1145/512950.512973

14. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55844-6_142

https://doi.org/10.1145/2487568.2487571
https://doi.org/10.1145/2487568.2487571
https://doi.org/10.1007/978-3-642-16612-9_37
https://doi.org/10.1007/978-3-642-16612-9_37
https://doi.org/10.1017/S1471068409990111
https://doi.org/10.1017/S1471068409990111
https://doi.org/10.3233/FI-2011-381
https://doi.org/10.1007/978-3-642-28717-6_29
https://doi.org/10.1007/978-3-642-38856-9_4
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1016/j.scico.2015.12.005
https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/BFb0039704
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/3-540-55844-6_142
https://doi.org/10.1007/3-540-55844-6_142


The ScalaFix Equation Solver 159

15. Esparza, J., Luttenberger, M., Schlund, M.: FPsolve: a generic solver for fixpoint
equations over semirings. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol.
8587, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08846-
4_1

16. Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006). https://doi.org/
10.1007/11817963_41

17. Gopan, D., Reps, T.: Guided static analysis. In: Nielson, H.R., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74061-2_22

18. Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 198–213. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33125-1_15

19. Jeannet, B.: Some experience on the software engineering of abstract interpreta-
tion tools. Electron. Notes Theor. Comput. Sci. 267(2), 29–42 (2010). https://doi.
org/10.1016/j.entcs.2010.09.016. https://www.sciencedirect.com/science/article/
pii/. S1571066110001453, Proceedings of the Tools for Automatic Program Anal-
ysiS (TAPAS)

20. Jeannet, B.: Fixpoint (2012). http://pop-art.inrialpes.fr/people/bjeannet/
bjeannet-forge/fixpoint/

21. Jeannet, B., Serwe, W.: Abstracting call-stacks for interprocedural verification of
imperative programs. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST
2004. LNCS, vol. 3116, pp. 258–273. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27815-3_22

22. Kästner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.: Clos-
ing the gap - the formally verified optimizing compiler CompCert. In: Developments
in System Safety Engineering: Proceedings of the Twenty-fifth Safety-Critical Sys-
tems Symposium, SSS 2017, pp. 163–180. Safety-Critical Systems Club (2017)

23. Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with thresholds for pro-
grams with complex control graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 492–502. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24372-1_38

https://doi.org/10.1007/978-3-319-08846-4_1
https://doi.org/10.1007/978-3-319-08846-4_1
https://doi.org/10.1007/11817963_41
https://doi.org/10.1007/11817963_41
https://doi.org/10.1007/978-3-540-74061-2_22
https://doi.org/10.1007/978-3-540-74061-2_22
https://doi.org/10.1007/978-3-642-33125-1_15
https://doi.org/10.1016/j.entcs.2010.09.016
https://doi.org/10.1016/j.entcs.2010.09.016
https://www.sciencedirect.com/science/article/pii/
https://www.sciencedirect.com/science/article/pii/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/
https://doi.org/10.1007/978-3-540-27815-3_22
https://doi.org/10.1007/978-3-540-27815-3_22
https://doi.org/10.1007/978-3-642-24372-1_38
https://doi.org/10.1007/978-3-642-24372-1_38


HHLPy: Practical Verification of Hybrid
Systems Using Hoare Logic

Huanhuan Sheng1,2, Alexander Bentkamp1, and Bohua Zhan1,2(B)

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences,

Beijing, China
{shenghh,bentkamp,bzhan}@ios.ac.cn

2 University of Chinese Academy of Sciences,
Beijing, China

Abstract. We present a tool for verification of hybrid systems expressed
in the sequential fragment of HCSP (Hybrid Communicating Sequen-
tial Processes). The tool permits annotating HCSP programs with pre-
and postconditions, invariants, and proof rules for reasoning about ordi-
nary differential equations. Verification conditions are generated from the
annotations following the rules of a Hoare logic for hybrid systems. We
designed labeling and highlighting mechanisms to distinguish and visu-
alize different verification conditions. The tool is implemented in Python
and has a web-based user interface. We evaluated the effectiveness of the
tool on translations of Simulink/Stateflow models and on KeYmaera X
benchmarks.

Keywords: Hybrid systems · Hoare logic · Formal verification

1 Introduction

Hybrid systems refer to systems that have both continuous and discrete behav-
iors. They occur in diverse areas of science and engineering, ranging from trans-
portation and spaceflight, to robots and medical devices. Hence, verifying that
hybrid systems meet certain specifications is an important problem. Apart from
methods such as monitoring and model checking, theorem proving is one of the
major approaches to verifying hybrid systems.

There is a substantial amount of previous work on verification of hybrid
systems based on theorem proving. One major framework is Platzer’s differ-
ential dynamic logic (dL) [23,25], and the associated KeYmaera/KeYmaera X
prover [9,26]. Recently, a Hoare logic has been introduced for dL and imple-
mented within the Isabelle proof assistant [21]. We review these works in detail
in Sect. 8 of this paper.

Another approach is to model hybrid systems using HCSP (Hybrid CSP)
[13,33], an extension of CSP (Communicating Sequential Processes) to include
continuous evolution. Its semantics of continuous evolution is deterministic, so it
can be used naturally for capturing Simulink/Stateflow models. A hybrid Hoare
logic has been developed for HCSP, and is implemented in Isabelle [29]. However,
practical application of the tool is complicated by its steep learning curve. To use
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 160–178, 2023.
https://doi.org/10.1007/978-3-031-27481-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_11&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_11


HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 161

this tool, the user need to be familiar with the Isabelle proof assistant, as well as
manually applying a set of Hoare logic rules which are themselves very complex.
This is in stark contrast to KeYmaera X, which allows users to verify hybrid
programs by choosing menu actions and offers highly specialized automation.

This paper introduces HHLPy1, a tool for verification of the sequential part
of HCSP with a friendly graphical user interface. Compared to [29], we simplify
the Hoare logic rules, and add more rules for reasoning about the behavior of
differential equations. These latter rules are closely related to that in dL, but due
to the semantic differences of HCSP, we adapted some of the rules and proved
our rules to be sound (Sect. 3).

Our Hoare logic rules are in a sufficiently simple form that automatic verifi-
cation condition generation is possible. We design such a procedure to compute
verification conditions (VCs) from a given annotated HCSP program (Sect. 4).
We express VCs as a set of conditions, splitting up VCs that are conjunctions
as much as possible. We use labels to distinguish between different VCs, so that
users can choose solvers (currently either Z3 [19] or Wolfram Engine [30]) for
each VC individually and such choices are maintained through minor changes
on the code (Sect. 5).

To visualize to the user where each VC originates from, a highlighting mech-
anism highlights the set of code fragments in the annotated program that con-
tributed to generating the VC (Sect. 6).

We implemented the tool using Python and JavaScript and evaluated it on
Simulink/Stateflow models and on KeYmaera X benchmarks (Sect. 7). We trans-
lated two Simulink/Stateflow models using the toolchain developed by Zou et
al. [34,35] and verified them in our tool. Due to differences in the semantics of
dL and HCSP, we translated each KeYmaera X benchmark by hand, trying to
maintain semantic equivalence as much as possible. In this way, we succeeded to
use our tool to solve most of the verification problems in the basic and nonlinear
KeYmaera X benchmarks.

2 Preliminaries

In this section, we present the sequential fragment of HCSP, with an informal
explanation of its semantics. We further give an overview of the existing toolchain
on translation of Simulink/Stateflow models into HCSP.

2.1 Sequential Fragment of HCSP

Hybrid CSP (HCSP), introduced in [13,33], is an extension of Hoare’s Com-
municating Sequential Processes to include continuous evolution. It can model
communicating processes running in parallel, where each process may have both
continuous and discrete behavior. In this paper, we focus on the sequential frag-
ment of HCSP, consisting of the following commands:

1 The tool is available at https://github.com/bzhan/mars/tree/master/hhlpy.

https://github.com/bzhan/mars/tree/master/hhlpy


162 H. Sheng et al.

S, T ::= skip | x := e | x := ∗ (B) | S;T | if B then S else T | S ++T | S∗
| 〈ẋ = e&D〉

The program state is a mapping from variables to reals. skip leaves the state
unchanged. x := e assigns the value of expression e to variable x. x := ∗ (B) is
nondeterministic assignment of some value satisfying condition B to x. S;T and
if B then S else T are regular sequential composition and conditional. S ++T
is a nondeterministic choice between S and T . S∗ runs S a nondeterministic
number of times (including zero).

The ordinary differential equation (ODE) command 〈ẋ = e&D〉 specifies
continuous evolution in HCSP. It makes the vector of variables x evolve accord-
ing to ODE ẋ = e until the domain D becomes false. If D is false from the start,
the ODE is skipped. In contrast to dL, where continuous evolution may stop at
any point within the specified domain, in HCSP it always deterministically con-
tinues up to the boundary. In this paper, we assume D is given by a polynomial
inequality of the form p(x) < 0, so it represents an open set in Rn.

We assume in this paper that all expressions appearing in an HCSP program
(as well as in annotations to be discussed later) are polynomials, and hence
continuity conditions are trivially satisfied.

For a formal treatment of semantics of HCSP (including communication and
parallel composition), we refer to Zhan et al. [32, Chapter 6].

2.2 Translation from Simulink/Stateflow

The HCSP language is located at the center of a toolchain that also includes
translation from Simulink/Stateflow models, simulation and code generation [2].
The original translation algorithms from Simulink [35] and Stateflow [34] pro-
duce HCSP programs that involve communication between parallel processes.
However, more recent methods by Xu et al. [31] and Guo et al. [11] produce
sequential HCSP programs. We use these translation methods for verification of
Simulink/Stateflow models in Sect. 7.

3 Proof Rules of Hoare Logic for Hybrid Systems

In this section, we present the Hoare logic that forms the basis of our verification
tool. The Hoare triple for partial correctness, written as {P}c{Q}, means starting
from a state satisfying assertion P , any terminating execution of c reaches a
state satisfying assertion Q. The Hoare rules for ordinary commands (except
ODEs) are standard and are presented in the Appendix of the full version of the
paper [28].

Hence, we focus on the Hoare rules for ODEs. These rules are mostly adapted
from rules for dL, as given in [25,27]. Due to the difference in semantics between
HCSP and dL, several of the rules take on different forms. We do not aim to
present a minimal set of rules, instead providing users a wide range of choices.



HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 163

3.1 Proof Rules Based on Invariants

In order to state proof rules based on invariants of ODEs, we require an addi-
tional kind of judgments, called invariant triples.

Definition 1 (Invariant Triple). Let P and Q be predicates on the variables
of an ODE ẋ = e. Let γ : [0, T ] → Rn be a solution of the ODE such that
γ(t) satisfies P for all t ∈ [0, T ] and such that γ(0) satisfies Q. If for all such
solutions γ, γ(t) satisfies Q for all t ∈ [0, T ], then we say that Q is an invariant
of ODE ẋ = e under domain P , written as

�P �〈ẋ = e〉�Q�

Differential Weakening. The differential weakening rule (dW) reduces a
Hoare triple goal to an invariant triple, incorporating the domain condition.

�D�〈ẋ = e〉�I� ∂D ∧ I → Q
dW

{(D → I) ∧ (¬D → Q)}〈ẋ = e& D〉{Q}

Here, D is the closure of D, and ∂D is the boundary set of D. Note that the rule
is in the form that allows us to derive a precondition from any postcondition.
The precondition (D → I)∧(¬D → Q) corresponds to the two cases for the state
before ODE: if the state satisfies domain D, then it should satisfy the invariant.
Otherwise it should satisfy the postcondition Q directly. Two special cases of
the rule, for I set to true and false, provide further intuition. They correspond
to cases where no invariant is needed, and where the starting state is known to
satisfy ¬D.

∂D → Q
dWT

{¬D → Q}〈ẋ = e& D〉{Q}
dWF

{¬D ∧ Q}〈ẋ = e&D〉{Q}

Proof (of the (dW) rule). Given starting state x, we divide into two cases based
on whether x satisfies domain D. If x satisfies D, then there exists a solution
γ : [0, T ] → Rn, such that γ(t) satisfies D for t ∈ [0, T ) and γ(T ) satisfies ¬D,
and we wish to show that γ(T ) satisfies Q. By the continuity of γ, we get that
γ(t) satisfies D for t ∈ [0, T ]. Moreover, since D → I holds in the precondition,
we get that γ(0) satisfies I as well. Then from �D�〈ẋ = e〉�I�, we get that γ(t)
satisfies I for t ∈ [0, T ]. From ∂D ∧ I → Q and the fact that γ(T ) satisfies I and
∂D, we get that γ(T ) satisfies Q, as desired.

If x does not satisfy D, then the ODE is not executed, and we wish to show
that x satisfies Q. Since ¬D → Q holds in the precondition, we get that x
satisfies Q, as desired.

Differential Invariant. The differential invariant rule (dI) is essentially the
same as that in dL. It concludes invariants from computation of Lie derivatives.

P → ḟ = 0
dI=

�P �〈ẋ = e〉�f = 0�



164 H. Sheng et al.

Here ḟ denotes the Lie derivative of f under the differential equation ẋ = e.
The corresponding rules for inequality and disequality are as follows, where �
denotes either > or ≥.

P → ḟ ≥ 0
dI�

�P �〈ẋ = e〉�f � 0�

P → ḟ = 0
dI�=

�P �〈ẋ = e〉�f 	= 0�

Differential Cut. The differential cut rule (dC) inserts an intermediate invari-
ant to be proved, and afterwards permits the use of this invariant to show further
invariants. In contrast to dL, it is not possible to record previously proved invari-
ants as conjuncts in the domain of ODE commands. Instead we place them in
the premise of the invariant triple. Indeed this is the primary motivation for
introducing the concept of invariant triples.

�P �〈ẋ = e〉�Q1� �P ∧ Q1�〈ẋ = e〉�Q2� dC
�P �〈ẋ = e〉�Q1 ∧ Q2�

The (dC) rule can be used multiple times to show conjunction of more than
two invariants. For example, if we wish to show three invariants Q1, Q2, Q3

in that order, first apply the (dC) rule with Q1 and Q2 to obtain �P �〈ẋ =
e〉�Q1 ∧ Q2�, then apply the (dC) rule again to obtain the conclusion.

Differential Ghost. The differential ghost rule (dG) adds new variables sat-
isfying some differential equations to help prove the Hoare triple of the original
differential equations.

�D�〈ẋ = e, ẏ = f(x,y)〉�I� ∂D ∧ I → Q
dG

{(D → ∃y. I) ∧ (¬D → Q)}〈ẋ = e &D〉{Q}

Here, y are fresh variables that do not occur in 〈ẋ = e& D〉 or Q, and f(x,y)
satisfies the Lipschitz condition.

Barrier Certificate. The barrier certificate rule (bc) concludes invariants from
the definition of barrier certificate.

P ∧ f = 0 → ḟ > 0
bc

�P �〈ẋ = e〉�f � 0�

Darboux. The Darboux rule (dbx) exploits properties of Darboux invariants,
which are inspired by Darboux polynomials. Darboux equality and inequality
rules are as follows.

P → ḟ = gf
dbx=

�P �〈ẋ = e〉�f = 0�

P → ḟ ≥ gf
dbx�

�P �〈ẋ = e〉�f � 0�

3.2 Solution Rule

The solution rule offers another way to conclude Hoare triples directly, inde-
pendent of using the (dW) or (dG) rule followed by proving invariants. In the
rule below, e is linear in x, and u(t,x) is the unique solution to the differential



HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 165

equation ẋ = e with symbolic initial value x (that is, du(t,x)
dt = e(u(t,x)) and

u(0,x) = x). Let P ′(x) denote the following predicate on the starting state x:

∀t > 0. (∀0 ≤ τ < t.D(u(τ,x))) ∧ ¬D(u(t,x)) → Q(u(t,x)).

The solution rule for Hoare triples (sln) is:

sln
{(D → P ′) ∧ (¬D → Q)}〈ẋ = e &D〉{Q}

4 Verification Condition Generation

The VC generation procedure operates on annotated sequential HCSP programs.
For ODEs, there are two kinds of annotations: ghost variable (gvar) and invariant
annotations (ode inv):

gvar ::= ghost z (ż = f(x, z))
ode inv ::= [I] | [I] {dbx g} | [I] {bc}

Here, ‘ghost z (ż = f(x, z))’ denotes a ghost variable z following the ODE
ż = f(x, z), where f must be linear in z to ensure global Lipschitz condition. The
annotation [I] denotes showing invariant I using the (dI) rule. The annotation
[I] {dbx g} denotes showing an invariant using the (dbx) rule, with g being the
optional cofactor. The annotation [I] {bc} denotes using the (bc) rule.

The syntax for annotated sequential HCSP programs is:

S, T ::= skip | x := e | x := ∗(B) | S; T | if B then S else T |
S ++ T | S∗ invariant [I1] . . . [In] |
〈ẋ = e &D〉 invariant gvar1 . . . gvark, ode inv1 . . . ode invn |
〈ẋ = e &D〉 solution

The only addition to the syntax of HCSP is that each loop is followed by a
list of invariants I1, . . . , In, and each ODE is either followed by a list of ghost
variable declarations and a list of invariant annotations, each of which specify
an invariant to be proved using one of (dI), (dbx), or (bc) rules, or followed by
the annotation “solution” to indicate that the (sln) rule is to be used.

To generate the necessary VCs for a given Hoare triple, we devised a proce-
dure using weakest preconditions [3,4]. To be able to refer to preconditions and
VCs individually, we consider sets of conditions instead of composing predicates
by ∧.

Given a Hoare triple {P1 ∧ · · · ∧Pm}S{Q1 ∧ · · · ∧Qn} to verify, we define the
set of all VCs to be

VC({P1 ∧ · · · ∧ Pm}S{Q1 ∧ · · · ∧ Qn}) =
{P1 ∧ · · · ∧ Pm → R | R ∈ pre(S, {Q1, . . . , Qn})} ∪ (pre)

{P̃1 ∧ · · · ∧ P̃m̃ → R | R ∈ vc(S, {Q1, . . . , Qn})} (vc)



166 H. Sheng et al.

where P̃1, . . . , P̃m̃ is the subset of the preconditions P1, . . . , Pm whose variables
are never reassigned in S, and the functions pre and vc are defined below.

Given an annotated program S and a set {Q1, . . . , Qn} of postconditions,
we denote the set of derived preconditions as pre(S, {Q1, . . . , Qn}), defined as
follows.

pre(S, {Q1, . . . , Qn}) = pre(S, Q1) ∪ · · · ∪ pre(S, Qn) (pre-multi)
pre(skip, Q) = Q (pre-skip)
pre(x := e,Q) = Q[e/x] (pre-assn)
pre(S; T , Q) = pre(S,pre(T , Q)) (pre-seq)
pre(if B1 then S1 else · · · if Bn−1 then Sn−1 else Sn, Q) =

{¬(B1 ∨ · · · ∨ Bi−1) ∧ Bi → P | P ∈ pre(Si, Q), 1 ≤ i ≤ n − 1} ∪ (pre-if)
{¬(B1 ∨ · · · ∨ Bn−1) → P | P ∈ pre(Sn, Q)} (pre-else)

pre(S1 ++ · · · ++Sn, Q) = pre(S1, Q) ∪ · · · ∪ pre(Sn, Q) (pre-choice)
pre(x := ∗ (B), Q) = B[y/x] → Q[y/x] for a fresh variable y (pre-nassn)
pre(S∗ invariant [I1] . . . [In], Q) = {Ij | 1 ≤ j ≤ n} (pre-loop)
pre(〈ẋ = e& D〉 invariant gvar1 . . . gvark, ode inv1 . . . ode invn, Q) =

Pskip ∪ Pinit

pre(〈ẋ = e& D〉 solution) = Pskip ∪ Psln

where

Pskip = {¬D → Q} (pre-dWG-skip)
Pinit = {D → ∃z1, . . . , zk. I1 ∧ · · · ∧ In} if k > 0 (pre-dG-init)
Pinit = {D → Ij , | 1 ≤ j ≤ n} otherwise (pre-dW-init)
Psln = {D → (∀t > 0. (∀0 ≤ τ < t.D(u(τ,x))) ∧

¬D(u(t,x)) → Q(u(t,x)))} (pre-sln)

where z1, . . . , zk are the ghost variables provided in gvar1 . . . gvark, and I1, . . . , In
are the invariants provided in ode inv1, . . . , ode invn. If the user chooses the (sln)
rule, we verify that e is linear in x and compute the unique solution u(τ,x) to
the ODE with symbolic initial value x.

Given an annotated program S and a set {Q1 . . . , Qn} of postconditions, we
denote the set of internal VCs as vc(S, {Q1, . . . , Qn}), defined as follows.

vc(S, {Q1, . . . , Qn}) = vc(S, Q1) ∪ · · · ∪ vc(S, Qn) (vc-multi)
vc(skip, Q) = ∅ (vc-skip)
vc(x := e,Q) = ∅ (vc-assn)
vc(S; T , Q) = vc(S,pre(T , Q)) ∪ vc(T , Q) (vc-seq)
vc(if B1 then S1 else if · · · else if Bn−1 then Sn−1 else Sn, Q) =

vc(S1, Q) ∪ · · · ∪ vc(Sn, Q) (vc-ite)
vc(S1 ++ · · · ++Sn, Q) = vc(S1, Q) ∪ · · · ∪ vc(Sn, Q) (vc-choice)
vc(x := ∗ (B), Q) = ∅ (vc-nassn)
vc(S∗ invariant [I1] . . . [In], Q) =

vc(S, {I1, . . . , In}) ∪ (vc-loop-body)
{(I1 ∧ · · · ∧ In) → Q} ∪ (vc-loop-exit)
{(I1 ∧ · · · ∧ In) → P | P ∈ pre(S, {I1, . . . , In})} (vc-loop-maintain)

vc(〈ẋ = e& D〉 invariant gvar1 . . . gvarm, ode inv1 . . . ode invn, Q) = Cexec ∪ CdC

vc(〈ẋ = e& D〉 solution, Q) = ∅



HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 167

where we set Cexec = ∅ if the only invariant is false, or else

Cexec = {I1 ∧ · · · ∧ In ∧ ∂D → Q} (vc-dWG-exec)
CdC = {I1 ∧ · · · ∧ Ij−1 → R | R ∈ vc(〈ẋ = e& D〉, ode invj , Q),

1 ≤ j ≤ n} (vc-dC)

Here, I1, . . . , In are the invariants provided in ode inv1, . . . , ode invn. If no invari-
ants are specified, we set a single invariant I1 = true by default. We write
vc(〈ẋ = e &D〉, ode invj , Q) for the VC generated from annotation ode invj ,
defined as follows.

vc(〈ẋ = e& D〉, [true], Q) = ∅ (vc-true)
vc(〈ẋ = e& D〉, [false], Q) = ∅ (vc-false)
vc(〈ẋ = e& D〉, [f = 0], Q) = {D → ḟ = 0} (vc-dI1)
vc(〈ẋ = e& D〉, [f � 0], Q) = {D → ḟ ≥ 0} (vc-dI2)
vc(〈ẋ = e& D〉, [f 	= 0], Q) = {D → ḟ = 0} (vc-dI3)
vc(〈ẋ = e& D〉, [f = 0] {dbx g}, Q) = {D → ḟ = gf} (vc-dbx1)
vc(〈ẋ = e& D〉, [f � 0] {dbx g}, Q) = {D → ḟ ≥ gf} (vc-dbx2)
vc(〈ẋ = e& D〉, [f � 0] {bc}, Q) = {D ∧ f = 0 → ḟ > 0} (vc-bc)

All Lie derivatives are computed with respect to ẋ = e and the equations given
in gvar1 . . . gvarm. For the (dbx) rule, if no cofactor g is provided, we attempt
to compute the cofactor automatically. Specifically, in the case of an equality
invariant, this reduces to simplifying ḟ/f into polynomial form. In the case of
an inequality invariant, we attempt to find a polynomial quotient of ḟ and f
with a non-negative remainder.

Theorem 1. A Hoare triple {P1 ∧ · · · ∧ Pm}T {Q1 ∧ · · · ∧ Qn} holds if all con-
ditions in VC({P1 ∧ · · · ∧ Pm}T {Q1 ∧ · · · ∧ Qn}) hold.

Proof. We give the full proof in [28, Appendix B]. In short, we proceed by struc-
tural induction on T . The difficult case is when T is an ODE. If the ODE is
annotated to use the solution rule, we use the VC stemming from the precondi-
tion (pre-sln). Otherwise, we employ the (dG) rule or the (dW) rule depending
on if ghost variables are specified. The VCs stemming from (pre-dWG-skip) and
(pre-dW-init) or (pre-dG-init) show that the rule (dW) or (dG) is applicable. The
condition (vc-dWG-exec) discharges the right premise of the (dW) or (dG) rule.

For the left premise �D�〈ẋ = e, ẏ = f(x,y)〉�I1 ∧ · · · ∧ Ik�, (without y if
using the (dW) rule), we repeatedly apply the (dC) rule to isolate each invariant
Ii. For each step �D ∧ I1 ∧ · · · ∧ Ii−1�〈ẋ = e, ẏ = f(x,y)〉�Ii�, depending on the
rule specified in the annotation, we apply the (dI) rule, (dbx) rule or (bc) rule,
using the corresponding VCs as premises. ��

5 Labels

VCs generated by the procedure in Sect. 4 will be proved using Z3 or Wolfram
Engine. In this section, we introduce a labeling mechanism to store which solver



168 H. Sheng et al.

is used for each VC, in a way that is robust to minor modifications of the program
or its annotations.

As indicated in Sect. 4, the generation of a VC starts from a postcondition
or invariant and proceeds bottom up through the program. We call the post-
condition or invariant at the beginning of this process the conclusion assertion
of the VC. We associate each VC to its conclusion assertion. Labels are used to
distinguish between multiple VCs from the same conclusion assertion. They can
arise for the following reasons:

– Loop and ODE invariants produce VCs for showing that they initially hold
and for showing that they are maintained by the loop or ODE.

– If-then-else and nondeterministic choice produce multiple preconditions, at
least one for each branch.2

– Each ODE produces preconditions for both the case when the domain D holds
initially, and for when D does not hold.

A label consists of two parts: a category label and a branch label. The cat-
egory label is either empty or one of “init”, “maintain”, “init all”. The branch
label is a list, separated by “.”, of either “skip”, “exec”, or n(b) where n is a
positive integer and b is a branch label itself. We write n instead of n() when
the inner branch label is empty.

Category Labels. Category labels use “init” (“init all”) and “maintain” to
distinguish between VCs with loop or ODE invariants as conclusion assertions.
For loops, the VCs for showing the invariant holds initially are labeled “init”,
and the VCs that result from showing the invariant is maintained by the loop
are labeled “maintain” (when there are nested loops or ODEs in the loop body,
multiple VCs are computed in the loop body, this applies only to those with the
invariant as conclusion assertion).

For an ODE, the VC coming from (pre-dW-init) (resp. (pre-dG-init)) are
labeled “init” (resp. “init all”). The VCs coming from (vc-dC), for showing each
invariant is maintained during evolution, are labeled “maintain”.

The category label is empty in all other cases.

Branch Labels. Branch labels help to distinguish VCs generated by executing
different branches of programs.

The positive integer n handles branches created by ‘if B then S1 else S2’ or
‘S1 ++S2’. Each value of n (starting from 1) corresponds to one branch. Sequence
labels b.b are used for sequences of such commands. For example, the branches for
‘S1 ++S2;S3 ++S4’ have labels 1.1, 1.2, 2.1 and 2.2. Nested labels n(b) are used
for nested commands. For example, the branches for if B then S1 ++S2 else S3

have labels 1(1), 1(2) and 2, corresponding to S1, S2 and S3, respectively.

2 A large program consisting of multiple if-then-else commands can lead to an unde-
sired blow up of the number of VCs. For example, a program constructed by ten
if-then-else commands as sequential components results in more than 210 VCs.



HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 169

The labels “skip” and “exec” are used for branches of the ODE. The branch
where the initial state does not satisfy domain D is labeled “skip”. The other
branch, where the ODE is executed, is labeled “exec”. They come from applying
the rules (vc-dWG-skip) and (vc-dWG-exec), respectively.

Example 1. This example illustrates assignments, nondeterministic choice, and
loops.

{x ≤ 0}
x := −x;
(x := x + 1 ++x := x + 2)∗

invariant [x ≥ 0];
x := x + 1

{x ≥ 1}
The computation starts at postcondition x ≥ 1. Applying (pre-assn) and (vc-
loop-exit), we get the VC x ≥ 0 → x + 1 ≥ 1. Applying (pre-loop), the loop’s
precondition is x ≥ 0. The whole program’s precondition is −x ≥ 0 by applying
(pre-assn) again. The loop body yields the preconditions x+1 ≥ 0 and x+2 ≥ 0
by (pre-choice) and (pre-assn). Then we get x ≥ 0 → x + 1 ≥ 0 and x ≥ 0 →
x + 2 ≥ 0 by applying (vc-loop-maintain). The overall VCs and their labels are:

VC Conclusion assertion Label

x ≤ 0 → −x ≥ 0 x ≥ 0 (inv) init

x ≥ 0 → x + 1 ≥ 1 x ≥ 1 (post) ε

x ≥ 0 → x + 1 ≥ 0 x ≥ 0 (inv) maintain 1

x ≥ 0 → x + 2 ≥ 0 x ≥ 0 (inv) maintain 2

With conclusion assertions and labels, we can store the solver (default Z3) for
each VC and reuse the solver despite of minor modifications of code. For example,
if we choose Wolfram Engine to prove x ≤ 0 → −x ≥ 0, “init: wolfram” will
be annotated after the invariant x ≥ 0. If we then change the second line from
x := −x into x := −2 ∗ x, resulting in a different VC x ≤ 0 → −2 ∗ x ≥ 0, the
solver of the VC is still Wolfram Engine.

Example 2. This example illustrates non-deterministic assignments and ODEs
(#4 of KeYmaera X’s basic benchmarks):

{x ≥ 0}
x := x + 1; t := ∗ (t ≥ 0);
〈ṫ = −1, ẋ = 2& t > 0〉 invariant [x ≥ 1]

{x ≥ 1}

The computation of pre starts at postcondition x ≥ 1. By (pre-dWG-skip) and
(pre-dW-init), the ODE’s preconditions are ¬t > 0 → x ≥ 1 and t > 0 →
x ≥ 1. By (pre-nassn) and (pre-assn), the whole program’s preconditions are



170 H. Sheng et al.

t1 ≥ 0 → t1 > 0 → x ≥ 1 and t1 ≥ 0 → ¬t1 > 0 → x + 1 ≥ 1. The VCs
x ≥ 1 ∧ t = 0 → x ≥ 1 and t ≥ 0 → 2 ≥ 0 come from (vc-dWG-exec) and
(vc-dI2), respectively. The overall list of VCs is:

VC Conclusion assertion Label

x ≥ 0 → t1 ≥ 0 → t1 > 0 → x + 1 ≥ 1 x ≥ 1 (inv) init

x ≥ 0 → t1 ≥ 0 → ¬t1 > 0 → x + 1 ≥ 1 x ≥ 1 (post) skip

x ≥ 1 ∧ t = 0 → x ≥ 1 x ≥ 1 (post) exec

t ≥ 0 → 2 ≥ 0 x ≥ 1 (inv) maintain

Example 3. Finally, we consider an example with multiple ghost variables (#18
of KeYmaera X’s basic benchmarks):

{x ≥ 0}
t := ∗ (t ≥ 0); 〈ẋ = x, ṫ = −1& t > 0〉
invariant ghost y (ẏ = −y) ghost z (ż = z/2)

[xy ≥ 0] [yz2 = 1]
{x ≥ 0}

VC Conclusion assertion Label

x ≥ 0 → t1 ≥ 0 → t1 > 0 → ∃y z. xy ≥ 0 ∧ yz2 = 1 invariants init all

x ≥ 0 → t1 ≥ 0 → ¬t1 > 0 → x ≥ 0 x ≥ 0 (post) skip

xy ≥ 0 ∧ yz2 = 1 ∧ t = 0 → x ≥ 0 x ≥ 0 (post) exec

t ≥ 0 → x · (−y) + xy ≥ 0 xy ≥ 0 (inv) maintain

xy ≥ 0 → t ≥ 0 → yz(z/2) + (y(z/2) + (−y)z)z = 0 yz2 = 1 (inv) maintain

The first VC comes from (pre-dG-init). The remaining VCs are similar to Exam-
ple 2, except that there is one VC for maintaining each invariant. When verifying
the second invariant, the (dC) rule allows us to assume the first invariant.

6 Highlighting

In this section, we explain the highlighting mechanism we devised to help the user
understand how each VC is derived from the program. Essentially, when the user
hovers over a VC, we highlight all parts of the program that contribute to the
computation of the VC, including commands, assertions and domain constraints.

We highlight any assertion that contributes to the VC. In particular, invari-
ants of an ODE that are already proved will be highlighted when proving the
next invariant because they are added as assumptions in (vc-dC). Preconditions



HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 171

Fig. 1. Highlighting for the four VCs in Example 1

Fig. 2. Highlighting for the two of the VCs in Example 2

whose variables are never reassigned will be highlighted because they are added
as assumptions in (vc).

Domain constraints of ODEs will be highlighted if they are used in the VC
(e.g. the domain constraint D in the VC generated by (vc-dWG-exec)).

Atomic commands are highlighted if they are traversed during VC generation.
ODE commands are highlighted for VCs computed by (vc-dC) or (pre-sln). For if-
then-else and nondeterministic choice, only the branch that is actually traversed
during VC generation will be considered for highlighting.

Figure 1 and 2 show the highlighting for some the VCs from Examples 1
and 2.

7 Implementation and Evaluation

In this section, we present the implementation of HHLPy and evaluate it on
Simulink/Stateflow models and on KeYmaera X benchmarks. All verified exam-
ples are available online, coming with the tool.



172 H. Sheng et al.

7.1 Implementation

Figure 3 shows the architecture of the tool. The user inputs HCSP programs and
annotations in the editor (the HCSP programs can also come from translation of
Simulink/Stateflow models). The core HHLPy engine then parses the input and
generates VCs. The user interface displays the VCs and allows users to choose
a solver for each VC. The solver will be invoked, with the results displayed to
the user interface. The backend of HHLPy is implemented in Python, and the
graphical user interface is implemented using JavaScript. A screenshot of the
user interface is shown in Fig. 4.

Fig. 3. Architecture of HHLPy

Fig. 4. Screenshot of user interface. The left panel (1) shows a list of example files.
The middle panel (2) is the editor area, where user can edit the program and add
annotations either directly as text or by clicking on buttons. The right panel (3) shows
the VCs. When hovering over each VC, the relevant part of the code is highlighted.

7.2 Evaluation on Simulink/Stateflow Models

To illustrate the use of our tool as part of an existing toolchain to verify cor-
rectness of Simulink/Stateflow models, we show two example models, one from
Simulink and one from Stateflow.



HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 173

Cruise Control System. The first example is a cruise control system of an
automotive vehicle [14]. The system stabilizes the speed of a vehicle around
some desired speed (15 m/s in our case) using a PI controller. The PI controller
adjusts the control force according to the difference between actual speed and
desired speed as well as its integral. The vehicle follows its physical dynamics.
The Simulink models are presented in [28, Appendix C].

We first applied the approach by Xu et al. [31] to translate the Simulink mod-
els into an HCSP program. In the program, the controller and vehicle dynamics
are combined into a single ODE. Given the initial speed v = 14 and initial
integral value I = 700 of the controller, which are close to the stable point
(v = 15, I = 750), we want to verify that the speed remains in the interval
[13.5, 16.5].

To verify the Hoare triple, we annotated the ODE and loop with the invariant
1.3 ∗ (I − 750)2 − 198 ∗ (I − 750) ∗ (v − 15) + 12192 ∗ (v − 15)2 ≤ 5542, and used
(dI) rule to prove the ODE invariant. The invariant was derived following the
standard theory for analyzing linear dynamical systems. The annotated HCSP
program is illustrated below. The tool generated seven VCs, and Z3 can prove
all of them.

1 pre [v == 14][I == 700];

2

3 t := 0;

4 tick := 0;

5 tt := 0;

6

7 {
8 {tt dot = 1, I dot = (15 − v) ∗ 40, v dot = ((15 − v) ∗ 600 + I − v ∗ 50) ∗ 0.001 & tt < 1}
9 invariant [1.3∗(I−750)ˆ2 − 198 ∗ (I−750)∗(v−15)+12192∗(v−15)ˆ2<=5542];

10 t := t + tt;

11 tick := tick + 1;

12 tt := 0;

13 }∗
14 invariant [1.3∗(I−750)ˆ2 − 198 ∗ (I−750)∗(v−15)+12192∗(v−15)ˆ2<=5542];

15 post [v >= 13.5][v <= 16.5];

Sawtooth Wave. The sawtooth wave is a Stateflow model generating a signal
that alternates between increasing from 0 to 1 and decreasing from 1 to 0. It
illustrates functionality in Stateflow such as hierarchical states and specifying
ODEs in a state. The Stateflow model is presented in [28, Appendix C]. The
signal x follows the ODE ẋ = y, with y switching between 1 and −1 per unit
time. We want to verify that every time y switches, x is still between 0 and 1.

We translated the Stateflow model into an HCSP program with the approach
by Guo et al. [11] (code shown in [28, Appendix C]). To verify the program, the
loop is annotated with four invariants (mostly having to do with the relationship
between Stateflow locations and value of variable x), and the ODE is annotated
with “solution”. A total of 62 VCs are generated and proved to be true by Z3.



174 H. Sheng et al.

7.3 Evaluation on Benchmarks from KeYmaera X

We also evaluated our tool on the basic and nonlinear benchmarks3 from KeY-
maera X. We first translated the examples from dL to HCSP manually, trying
to maintain semantic equivalence as much as possible. Due to the differences
between dL and HCSP, some examples can not be translated into HCSP pro-
grams. We annotated the programs with invariants and proof rules, mostly fol-
lowing the existing proofs in KeYmaera X.

Given the annotations, HHLPy can verify 50 out of 60 examples in the basic
benchmarks. In comparison, KeYmaera X solves 58 examples in the scripted
mode (with detailed proof scripts), and 55 examples in the hints mode (with
invariants annotated in the model) [17]. Of the ten unsolved examples, we are
unable to translate eight of them to HCSP due to use of dL-specific constructs;
one is non-polynomial; and the last one makes use of invariants containing old
versions of variables. For the nonlinear benchmarks, HHLPy can verify 103 out
of 141 examples (compared to 108 in the scripted mode and 95 in the hints mode
for KeYmaera X [17]). Most of the unsolved ones are because we are unable to
find the invariants or their VCs cannot be proved in reasonable time by Z3 or
Wolfram Engine. Specifically, HHLPy can verify 9 examples which KeYmaera X
cannot verify in hints mode, while KeYmaera X can verify one example in hints
mode that HHLPy cannot verify. For this one example, we have not found the
invariants or specific rules, while KeYmaera X verifies it using a general ODE
rule.

In the 153 examples solvable by HHLPy, the user only needs to add annota-
tions including loop/ODE invariants and ODE rules; just a couple of annotations
are needed per problem. For some problems, it is necessary to switch the backend
solver from the default Z3 to Wolfram Engine. After this, HHLPy can finish the
proof automatically. These experiments show that our tool can be used to solve
a wide range of examples from existing benchmarks with little manual effort.
Moreover, from the evaluation on the benchmarks we note that there are some
VCs that Z3 can solve but Wolfram Engine cannot, and vice versa, showing
the two solvers have complementary advantages. Generally speaking, Z3 han-
dles complex boolean structures better, while Wolfram Engine has advantages
in expressions containing many decimal numbers.

8 Related Work

Differential dynamic logic (dL) [23,25] models hybrid systems by extending
dynamic logic with continuous evolution. Reasoning rules about continuous evo-
lution include differential invariants, differential weakening, differential cut, and
differential ghosts. The rules are stated in the form of a uniform substitution
calculus [24], and they are complete [27]. Differential dynamic logic has been

3 The benchmarks are available at https://github.com/LS-Lab/KeYmaeraX-projects/
tree/master/benchmarks.

https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks
https://github.com/LS-Lab/KeYmaeraX-projects/tree/master/benchmarks


HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 175

implemented in KeYmaera [26] and KeYmaera X [9], whose user interfaces dis-
play current subgoals in sequent calculus form and allow users to point and click
to construct proofs. The Bellerophon language allows users to perform proofs
using a tactic language [8]. The KeYmaera X tool produces proofs that can
be independently checked in Isabelle and Coq [1]. Liebrenz et al. developed a
method to translate Simulink models to dL and to verify them in KeYmaera
X [16].

Huerta y Munive and Struth represented dL programs using Kleene algebras,
and built verification components for hybrid systems in Isabelle/HOL [21,22].
Foster et al. proposed Hoare logic rules and refinement calculi for hybrid pro-
grams [7] and extended the verification components in Isabelle/HOL [6], e.g.,
with syntax translation to obtain more user-friendly modeling and specifica-
tion languages and with proof automation using Eisbach. Huerta y Munive and
Struth also described formalization of solutions to affine and linear systems of
ODEs, with applications to verifying correctness of such systems [20].

Both of the above series of works focused on hybrid programs modeled using
dL. As discussed in Sect. 2 and 3, the semantics of continuous evolution is dif-
ferent from that in dL; hence the proof rules need to be adapted, resulting in
particular to significant changes to differential weakening and differential cut
rules. In addition, compared to KeYmaera X in scripted mode, HHLPy can fin-
ish the verification automatically once programs are annotated with loop/ODE
invariants and ODE rules. Compared to KeYmaera X in hints mode, HHLPy
shows the VCs that cannot be proved, and highlights the set of code fragments
that contribute to generating the VCs, which help users to debug programs and
annotations.

Goncharov and Neves introduced the HybCore language for hybrid com-
putation [10]. Similarly to HCSP, HybCore defines deterministic semantics for
domain constraints of ODE. The connection with Moggi’s work on computational
effects [18] potentially aids reasoning and verification in HybCore. However,
concrete verification methods remain future work.

Compared to the previous version of hybrid Hoare logic [29], we focus only on
the sequential fragment of HCSP, resulting in much simpler rules that permits
automatic VC generation. On the other hand, we consider a full set of reasoning
rules for ODEs in parallel with dL, rather than only the invariant rule in [29].

The design of our tool is similar to many other (semi-)automatic program
verification tools, such as Dafny [15], VeriFast [12], and Why3 [5], in that anno-
tations are inserted into the program code. Our work differs from these tools
firstly in being able to handle hybrid programs. Moreover, we designed detailed
labeling and highlighting mechanisms to improve robustness of the annotations
and help visualization. These improvements are not limited to hybrid programs,
and can potentially be incorporated into other program verification tools as well.

9 Conclusion

We presented HHLPy, a tool for verification of hybrid programs written in the
sequential fragment of HCSP. The backend of the tool implements a Hoare logic



176 H. Sheng et al.

that includes rules for reasoning about continuous evolution adapted from dL.
We also designed labeling and highlighting mechanisms to improve user interac-
tion. We demonstrated the capabilities of the tool on HCSP programs translated
from Simulink/Stateflow models and on KeYmaera X benchmarks.

We leave extension of the deduction system to handle communication, inter-
rupts, and parallel composition to future work. On the side of implementation
and applications, we intend to further extend the tool to be able to handle
non-polynomial ODEs and invariants and permit interactive proofs of VCs.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under grant No. 62032024, 62002351, and a Chinese Academy of Sci-
ences President’s International Fellowship for Postdoctoral Researchers under grant
No. 2021PT0015.

References

1. Bohrer, R., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differ-
ential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Conference on Certified
Programs and Proofs (CPP 2017), pp. 208–221. ACM (2017)

2. Chen, M., et al.: MARS: a toolchain for modelling, analysis and verification of
hybrid systems. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably
Correct Systems. NMSSE, pp. 39–58. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48628-4 3

3. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

4. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
5. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,

M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

6. Foster, S., Huerta y Munive, J.J., Gleirscher, M., Struth, G.: Hybrid systems veri-
fication with Isabelle/HOL: simpler syntax, better models, faster proofs. In: Huis-
man, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 367–386.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6 20

7. Foster, S., Huerta y Munive, J.J., Struth, G.: Differential Hoare logics and refine-
ment calculi for hybrid systems with Isabelle/HOL. In: Fahrenberg, U., Jipsen, P.,
Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 169–186. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-43520-2 11

8. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 207–224. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0 14

9. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

10. Goncharov, S., Neves, R.: An adequate while-language for hybrid computation. In:
Komendantskaya, E. (ed.) International Symposium on Principles and Practice of
Programming Languages (PPDP 2019), pp. 11:1–11:15. ACM (2019)

https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-319-48628-4_3
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-030-90870-6_20
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36


HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic 177

11. Guo, P., Zhan, B., Xu, X., Wang, S., Sun, W.: Translating a large subset of State-
flow to hybrid CSP with code optimization. J. Syst. Archit. 130, 102665 (2022)

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

13. Jifeng, H.: From CSP to hybrid systems, pp. 171–189. Prentice Hall International
(UK) Ltd., GBR (1994)

14. Kekatos, N.: Verifying a cruise control system using Simulink and SpaceEx. CoRR
abs/2101.00102 (2021)

15. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

16. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in Simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM
2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02450-5 6

17. Mitsch, S., Jin, X., Zhan, B., Wang, S., Zhan, N.: ARCH-COMP21 category report:
hybrid systems theorem proving. In: Frehse, G., Althoff, M. (eds.) International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH
2021). EPiC Series in Computing, vol. 80, pp. 120–132. EasyChair (2021)

18. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Huerta y Munive, J.J.: Affine systems of ODEs in Isabelle/HOL for hybrid-program
verification. In: de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp.
77–92. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58768-0 5

21. Huerta y Munive, J.J., Struth, G.: Verifying hybrid systems with modal Kleene
algebra. In: Desharnais, J., Guttmann, W., Joosten, S. (eds.) RAMiCS 2018. LNCS,
vol. 11194, pp. 225–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02149-8 14

22. Huerta y Munive, J.J., Struth, G.: Predicate transformer semantics for hybrid
systems. J. Autom. Reason. 66(1), 93–139 (2021). https://doi.org/10.1007/s10817-
021-09607-x

23. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

24. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reason. 59(2), 219–265 (2017). https://doi.org/10.1007/s10817-016-
9385-1

25. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

26. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

27. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. J. ACM
67(1), 6:1–6:66 (2020)

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-030-02450-5_6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-58768-0_5
https://doi.org/10.1007/978-3-030-02149-8_14
https://doi.org/10.1007/978-3-030-02149-8_14
https://doi.org/10.1007/s10817-021-09607-x
https://doi.org/10.1007/s10817-021-09607-x
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15


178 H. Sheng et al.

28. Sheng, H., Bentkamp, A., Zhan, B.: HHLPy: practical verification of hybrid systems
using Hoare logic (full paper). CoRR abs/2210.17163 (2022). https://doi.org/10.
48550/arXiv.2210.17163

29. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 25

30. Wolfram Research Inc.: Wolfram Engine, Version 13.1, Champaign, IL (2022).
https://www.wolfram.com/engine

31. Xu, X., Zhan, B., Wang, S., Talpin, J.P., Zhan, N.: A denotational semantics of
Simulink with higher-order UTP. J. Log. Algebraic Methods Program. 130, 100809
(2023)

32. Zhan, N., Wang, S., Zhao, H.: Formal Verification of Simulink/Stateflow Diagrams.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47016-0

33. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020972

34. Zou, L., Zhan, N., Wang, S., Fränzle, M.: Formal verification of Simulink/State-
flow diagrams. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS,
vol. 9364, pp. 464–481. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24953-7 33

35. Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S.: Verifying Simulink diagrams
via a hybrid Hoare logic prover. In: Ernst, R., Sokolsky, O. (eds.) International
Conference on Embedded Software, (EMSOFT 2013), pp. 9:1–9:10. IEEE (2013)

https://doi.org/10.48550/arXiv.2210.17163
https://doi.org/10.48550/arXiv.2210.17163
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25
https://www.wolfram.com/engine
https://doi.org/10.1007/978-3-319-47016-0
https://doi.org/10.1007/BFb0020972
https://doi.org/10.1007/978-3-319-24953-7_33
https://doi.org/10.1007/978-3-319-24953-7_33


Quantitative Verification



symQV: Automated Symbolic Verification
of Quantum Programs

Fabian Bauer-Marquart1(B) , Stefan Leue1 , and Christian Schilling2

1 University of Konstanz, Konstanz, Germany
fabian@bauer-marquart.com, stefan.leue@uni-konstanz.de

2 Aalborg University, Aalborg, Denmark
christianms@cs.aau.dk

Abstract. We present symQV, a symbolic execution framework for writ-
ing and verifying quantum computations in the quantum circuit model.
symQV can automatically verify that a quantum program complies with a
first-order specification. We formally introduce a symbolic quantum pro-
gram model. This allows to encode the verification problem in an SMT
formula, which can then be checked with a δ-complete decision proce-
dure. We also propose an abstraction technique to speed up the verifi-
cation process. Experimental results show that the abstraction improves
symQV’s scalability by an order of magnitude to quantum programs with
24 qubits (a 224-dimensional state space).

Keywords: Quantum computing · Formal verification · Symbolic
execution · Abstraction

1 Introduction

Quantum computing bears great potential in increasing the scalability of prob-
lem solving in many areas such as optimization [15,25], database search [19],
cryptography [36], quantum dynamics simulation [10], satisfiability problems [8],
and machine learning [23]. Recently, quantum computing has gained momentum
with applications in safety-critical domains such as traffic flow [18], aircraft load
[38], logistics [2], and medical diagnostics [21]. Furthermore, quantum simulation
[1,11,37] and quantum computers in the cloud [22] are now available.

As with classical programs, detecting bugs in quantum programs is a crucial
problem. For classical programs, there exist powerful formal verification tech-
niques to automatically verify that the programs comply with a formal specifi-
cation [12]. State-of-the-art verifiers, e.g., for C programs [6,7,27] perform veri-
fication symbolically : The developer marks specific program inputs as symbolic
so that the verifier knows to use these as the “search space.” The verifier then
proves that all possible inputs to the program comply with the specification.

F. Bauer-Marquart—The work was done while the first author was employed at the
University of Konstanz.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 181–198, 2023.
https://doi.org/10.1007/978-3-031-27481-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_12&domain=pdf
http://orcid.org/0000-0001-9312-1706
http://orcid.org/0000-0002-4259-624X
http://orcid.org/0000-0003-3658-1065
https://doi.org/10.1007/978-3-031-27481-7_12


182 F. Bauer-Marquart et al.

For quantum programs, this level of automation is not yet available. In this
work, we aim to bridge this gap. Existing approaches to quantum program anal-
ysis can be categorized in three directions:

Interactive Proof Assistants: Several approaches [9,20,29,30,33] propose
using interactive proof assistants to verify quantum programs. These works pro-
vide a large set of deductions but require familiarity with proof assistants such
as Coq [5] or Isabelle/HOL [32], competence in proof-writing, and many hours of
manual programming work to conduct the verification. These techniques are not
fully automatic, which would be crucial for keeping pace with the development
of quantum algorithms [24].

Automated Quantum Compiler Verification: Amy [3] proposes an effi-
cient path-sum framework that performs fully automated equivalence checking
of a quantum program against a simpler version of the same program, as well as
against path-sums that the author uses as specification. The approach is appli-
cable to quantum programs written with quantum gates from the Clifford+T
group. Shi et al. [35] use an SMT (satisfiability modulo theories) solver to verify
a quantum compiler via equivalence checking. These approaches do not handle
general formal specifications.

Quantum Assertion Checking: Li et al. [28] verify assertions during quantum
program run-time via projections. Yu and Palsberg [39] use an abstraction to
verify assertions on quantum programs with up to 300 qubits, but the approach is
restricted to programs where inputs are fixed to a specific value. This is a severe
drawback, as essential quantum algorithms such as teleportation, the quantum
Fourier transform [31], or Grover’s diffusion operator [19] require arbitrarily-
valued inputs.

In summary, despite the significance of ensuring specification compliance in
quantum software engineering, there is still a lack of practical, automated tools
for the purpose of symbolic quantum verification of general formal specifications.
Existing tools either:

– require a high amount of manual programming,
– restrict the type of quantum program, e.g., support only a subset of quantum

gates or only measurement-free quantum programs,
– do not work symbolically, requiring to fix the inputs to the program, or
– do not support the checking of formal specifications written in first-order

logic, which is the standard for classical software verification.

In this paper, we introduce symQV, a framework for writing and verifying
quantum programs in the quantum circuit model. To the best of our knowl-
edge, symQV is the first tool that allows automated “push-button” verification of
quantum programs where the programs are executed symbolically. In symbolic
execution, a program is not executed with a predetermined input value. Instead,
it is executed with the complete range of possible input values. In contrast to
the classical case, where the number of possible input values is bounded by the
RAM architecture, the range of input values to a quantum program is infinite.



symQV: Automated Symbolic Verification of Quantum Programs 183

symQV’s automation and high-level workflow are similar to classical verifica-
tion frameworks such as CPAchecker [6]: quantum developers only need to write
a quantum program (using a Cirq-like [11] syntax) and a first-order logic speci-
fication that expresses the desired program output. Then, compliance with this
specification is automatically verified based on SMT technology. If the quantum
program does not satisfy the specification, the user obtains a counterexample
that aids in locating errors in the program.

A major obstacle in practice is that quantum program simulators require
exponential memory in the number of qubits. This is because simulators run-
ning on classical computers need to utilize a matrix to represent the state of a
quantum mechanical system. This matrix doubles in size with every qubit that
is added to the computation [31], which naturally carries over to verifying quan-
tum programs. We show that in many practical cases this exponential matrix
representation can be avoided. In addition, we propose an abstraction (or over-
approximation) [13] that makes our technique more scalable without harming
verification soundness.

We evaluate our approach symQV on essential quantum algorithms and sub-
routines. These include teleportation, QFT, [31], Grover’s diffusion operator [19],
and quantum phase estimation [36]. We demonstrate that symQV efficiently ver-
ifies quantum programs with up to 24 symbolic input qubits (a 224-dimensional
state space), showing its potential to be used as a general-purpose verifier by
developers of quantum programs. To put this number into perspective: state-of-
the-art quantum computers currently offer one error-corrected qubit [26].

The main contributions of this paper can be summarized as follows. First,
we introduce a symbolic quantum program model to express quantum programs
and safety specifications in our verification framework. Second, we provide an
encoding of the quantum program model in SMT and show that this encod-
ing is sound and complete. We use this encoding to automatically verify formal
specifications written in first-order logic. Third, we introduce a sound abstrac-
tion technique, which improves the verification time by one order of magnitude.
Finally, we evaluate our implementation symQV on several quantum programs
with up to 24 qubits.

2 Background

This section briefly introduces the concepts of quantum computing used in this
paper. For detailed explanations, we refer to Nielsen and Chuang [31].

The qubit is the basic unit of quantum information. A single qubit can be in
the ground state |0〉 (“ket zero”) or in the excited state |1〉 (“ket one”). In general,
however, a qubit is in a superposition of both computational basis states, written
as |q〉 = α |0〉 + β |1〉. The amplitudes α, β ∈ C characterize a qubit, with |α|2
and |β|2 being the probability of the qubit to be in either state. Therefore, their
values are restricted such that |α|2 + |β|2 = 1. Qubits are often written as two-
dimensional vectors:



184 F. Bauer-Marquart et al.

|0〉 ≡
[
1
0

]
, |1〉 ≡

[
0
1

]
, |q〉 ≡

[
α
β

]
.

The qubit states span a two-dimensional Hilbert space H2 = {α |0〉 + β |1〉},
a complete complex vector space where the inner product is defined. When we
combine n qubits, the system’s state vector |ψ〉 spans the tensor product of
Hilbert spaces H2n =

⊗n
i=1 H(i)

2 , and |ψ〉 is a 2n-dimensional vector.
Quantum logic gates are the building blocks of quantum programs and trans-

form a quantum state into a new quantum state. They are characterized by
unitary matrices U that transform quantum state vectors. Common quantum
gates, shown in Fig. 1, include X (Not), Z (phase-flip), H (Hadamard), UCX

(controlled-Not), and UCZ (controlled phase-flip).

Fig. 1. Circuit diagrams and matrices of some common quantum gates. For the con-
trolled gates UCX and UCZ , the dot (•) marks the control qubit.

Fig. 2. A qubit |q〉 visualized on the
Bloch sphere.

The state of a qubit can alternatively be
described with polar coordinates,

|q〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 ,

where φ and θ correspond to angles that
describe a point on the unit sphere, known
as the Bloch sphere (see Fig. 2), with |0〉
being the north pole and |1〉 being the south
pole. For instance, the gates X and Z per-
form a 180◦ rotation around the x and z
axes, respectively, while H maps ground
state |0〉 to |+〉 = 1√

2
(|0〉 + |1〉) at the

equator.



symQV: Automated Symbolic Verification of Quantum Programs 185

2.1 Entanglement

Quantum entanglement is an important concept of quantum mechanics. It occurs
if the state of one qubit cannot be characterized independently of the state of
another qubit, including when the qubits are separated over a large distance.
Two-qubit states with perfect correlation are called the Bell states. An example
for such a state is |φ+〉 = 1√

2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) , where the first and second

qubit are always guaranteed to be either both 0 or both 1 after measurement.

2.2 Quantum Measurement

Measuring a single qubit |ψ〉 = α |0〉 + β |1〉 converts it into a classical bit: 0
with probability |α|2 and 1 with probability |β|2. In circuit notation, a measure-

ment is denoted as (the double stroke indicates a classical wire).
Because there are two statistical outcomes, 0 and 1, there exists one measure-

ment operator (a non-unitary matrix) for each: M0 =
[
1 0
0 0

]
and M1 =

[
0 0
0 1

]
.

The measurement operators irreversibly change the quantum state, which influ-
ences subsequent computations. Because of the statistical nature of quantum
measurement, simulation tools (and also symQV) need to branch out into two
execution paths, with a probability value associated with each of the paths.

2.3 Running Example: Teleportation

Quantum teleportation (TP) is an example of a quantum program with symbolic
inputs; here, Alice wants to send a qubit |ψ〉 to Bob. There exists no quantum
communication channel in this problem setting, but Alice and Bob each have
one qubit of an entangled qubit pair |φ+〉. This is used to send (teleport) Alice’s
qubit to Bob: First, Alice uses a CNOT and H gate to entangle her two qubits
with each other. Then, after measuring both, she sends the measurement results
via a classical communication channel to Bob, who finally retrieves |ψ〉 using
two controlled gates, UCX and UCZ . The circuit diagram is shown in Fig. 3.

This example motivates the importance of symbolic verification: we want to
verify that teleportation is successful for any quantum state and, hence, need to
represent the input state symbolically.

3 The symQV Quantum Program Model

We introduce the quantum program model MQ as an SMT-compatible symbolic
representation of the general quantum circuit model [31]. The quantum program
model, unlike the standard state-vector representation used in simulators, can
represent operations on qubits as direct mappings in SMT instead of matrices.
Only when necessary, for example when qubits become entangled, do we con-
struct the state vector for this specific subset of qubits.



186 F. Bauer-Marquart et al.

Fig. 3. Quantum teleportation circuit, adapted from [31]. The double line indicates a
classical wire. Here, it simulates a communication channel.

The main benefit of the quantum program model is that it allows reasoning
about quantum programs whose inputs are symbolic and therefore not fixed to a
certain value. Thus we can use the model to perform formal verification against
all possible inputs, i.e., the entire infinite Hilbert space. Furthermore, the quan-
tum program model allows us to handle quantum programs with parametrized
gates, which add another (infinite) dimension to the problem.

We give a high-level, bottom-up presentation of the quantum program model.
At the end of the presentation we exemplify the encoding of the quantum tele-
portation program in Sect. 3.1 (the complete SMT formula is shown in Sect. A.4
of the supplementary material [4]). First, we need symbolic encodings for qubits,
computations, and measurements. For convenience, we encode both the ampli-
tudes and the phases into the qubit’s SMT representation, allowing computations
to work on either.

Encoding 1 (Qubit). We encode a complex number as a pair z := (zR, zI)
with zR, zI ∈ R. Using this representation, we encode a qubit as a 4-tuple1

|q〉 := (α, β, φ, θ), α, φ, θ ∈ R, β ∈ C.

We combine both the amplitude and phase representation because we need to
restrict the valuations of the variables using the following constraints:

α = cos
θ

2
∧ βR = cosφ · sin θ

2
∧ βI = sinφ · sin θ

2
, (1)

which constrains the qubit’s degrees of freedom to |α|2 + |β|2 = 1, and

0 ≤ θ ≤ π ∧ 0 ≤ φ < 2π ∧ θ = 0 ⇒ φ = 0 ∧ θ = π ⇒ φ = 0, (2)

which constrains the angles’ values to their respective periods.

Encoding 1 constrains a qubit’s degree of freedom via its phases (Eq. (2)).
This is because directly encoding the sphere equation |α|2+|β|2 = 1 requires two

1 We choose α to be real because the global phase [31] has no observable consequences.



symQV: Automated Symbolic Verification of Quantum Programs 187

nested square operations, which are challenging for state-of-the-art SMT solvers
(we evaluated Z3 [14] and dReal [17]).

The main motivation for our quantum program model is that we are often
not required to build the whole (2n-dimensional) state vector. Standard (unitary)
quantum gates can be conveniently realized by a direct mapping on the SMT
level, which we first define in an abstract way and instantiate later:

Definition 1 (Direct mapping). We encode a unitary gate as a bijection U :
Hk

2 → Hk
2 called direct mapping, where k is the number of modified qubits.

Direct mappings allow us to express the effect of a quantum gate without
explicitly constructing the matrix representation, unlike in standard quantum
simulators. We concretize the notion of the direct mapping (Definition 1) with
the following encodings of the most common quantum logic gates [31]:

Encoding 2.1 (Basic single-qubit gates). The identity, X, Z, and H gates
are encoded as the following mappings:

I

([
α
β

])
:=

[
α
β

]
, X

([
α
β

])
:=

[
β
α

]
, Z

([
α
β

])
:=

[
α

−β

]
, H

([
α
β

])
:=

[
α+β√

2
α−β√

2

]
.

We extend the encoding of the identity gate to take a variable number of
arguments, such that I(|q0〉 , . . . , |qk〉) = (|q0〉 , . . . , |qk〉) for any k.

The gates in Encoding 2.1 are used to modify the amplitudes of a qubit.
The next encoding includes gates that modify a qubit’s phases without directly
affecting its amplitudes.

Encoding 2.2 (Phase gates). The phase gates RX and RZ perform parame-
trized rotations around the x and z axes, respectively. The mappings use the
phase angles:

RX(θ′)(φ, θ) := (φ, θ + θ′), RZ(φ′)(φ, θ) := (φ + φ′, θ).

Encoding 2.3 (SWAP gate). The mapping of the SWAP gate applied to
qubits |q0〉 and |q1〉 is

SWAP(|q0〉, |q1〉) := (|q1〉 , |q0〉).
In cases where it is not possible to express a quantum gate as a unitary map-

ping, such as entangling gates, we resort to the standard matrix representation.
The matrix is then applied to a quantum state vector via matrix multiplication.

Encoding 3 (Gate matrix). We encode a quantum gate as a 2k×2k (complex)
matrix U , where k is the number of modified qubits. We further require that U
is reversible (cf. Sect. 2).

Encoding 4 (Matrix multiplication). For an m × n matrix A and an n × p
matrix B, the result of the matrix multiplication A · B, an m × p matrix C, is
encoded via the identities

∧m
i=1

∧p
j=1 ci,j =

∑n
k=1 ai,kbk,j.



188 F. Bauer-Marquart et al.

There are benefits when encoding a gate via a direct mapping instead of a
matrix, which we now illustrate with an example:

Example 1. Recall that the SWAP gate can be encoded via a direct mapping
(Encoding 2.3), i.e., we can compute

SWAP(|q0〉, |q1〉) = (|q1〉, |q0〉)

in one step. This is not the case for the matrix encoding:

SWAP(|q0〉 ⊗ |q1〉) =

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

[
α0

β0

]
⊗

[
α1

β1

]
=

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

α0α1

α0β1

β0α1

β0β1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

α0α1

β0α1

α0β1

β0β1

⎤
⎥⎥⎦

= |q1〉 ⊗ |q0〉 .

Here we observe that the matrix representation is verbose. It needs 4 multiplica-
tions per tensor product and 16 multiplications only for computing the result of
the matrix multiplication. Note that the number of operations increases exponen-
tially with the number of qubits, illustrating the benefit of the direct mapping.
We give a further example of a direct mapping in Sect. A.1 of the supplementary
material [4].

Measurement, the only non-reversible operation in our encodings, assigns 0
or 1 to a qubit with a certain probability. For a state s consisting of a single
qubit |q〉 = α |0〉 + β |1〉, there are two possible subsequent states: s′(0) = |0〉
and s′(1) = |1〉. The probabilities p(x) that state x occurs are

p(0) = |α|2, p(1) = |β|2.

Therefore, for every quantum measurement taking place in MQ, in the case of
non-zero probabilities p(0) and p(1), there are two possible successor states, one
per measurement outcome.

Encoding 5 (Quantum measurement). We encode the measurement opera-
tors by applying the standard measurement matrices (cf. Sect. 2) to Encodings 3
to 4.

For entangled quantum states, qubits can no longer be characterized individ-
ually [31]. Therefore, our encoding cannot use the direct-mapping strategy from
Definition 1 and we fall back to a vector representation of the quantum state.

Definition 2 (Modeling a quantum state). We define a vector data struc-
ture to represent an n-qubit quantum state |ψ〉. This structure holds (cf. Sect. 2)
2n (symbolic) complex numbers

|ψ〉 := (α1, α2, · · · , α2n).



symQV: Automated Symbolic Verification of Quantum Programs 189

Encoding 6 (Tensor product of matrices). For an m × n matrix A and a
p × q matrix B, the tensor product A ⊗ B, an (mp)× (nq) matrix C, is encoded
via equalities

∧m
i=1

∧p
k=1

∧n
j=1

∧q
l=1 cik,jl = ai,j · bk,l.

The following encoding is needed for gate matrices that only apply to a subset
of the qubits in the system. This is achieved by taking a tensor product with the
identity matrix I.

Encoding 7 (Applying gates to a subset of qubits). For a quantum state
|ψ〉 over n + 1 qubits and a quantum gate U over qubits |qi〉 to |qj〉 where 0 ≤
i < j ≤ n, the next state is

|ψ′〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I⊗i−1 ⊗ U ⊗ I⊗n−j |ψ〉 if 0 < i, j < n,

U ⊗ I⊗n−j |ψ〉 if 0 = i, j < n,

I⊗i−1 ⊗ U |ψ〉 if 0 < i, j = n,

U |ψ〉 if 0 = i, j = n.

Having assigned a logic representation to qubits, quantum gates, and quan-
tum measurement, we can combine them to define the quantum program model.

Definition 3 (Quantum program model). A quantum program model is a
5-tuple

MQ := (Q, S,→, Θ, V0) (3)

where

– Q is a set of n (symbolic) qubits {|q0〉 , . . . , |qn−1〉},
– S is a sequence of m (symbolic) states (s0, . . . , sm−1),
– → is a sequence of m − 1 state operations (→1, . . . ,→m−1),
– Θ is a set of (symbolic) parameters, and
– V0 is the qubit initializer sequence.

The qubits of Q are symbolic unless an initial valuation (assignment of a
subset of qubits with concrete values) is provided in V0. The initial state is
s0 = (|q0,0〉 , . . . , |q0,n−1〉) and all following states si ∈ S (0 < i < m) again
consist of symbolic qubits (|qi,0〉 , . . . , |qi,n−1〉). Every state operation →i is either

– a direct mapping (Definition 1); or
– a unitary matrix (Encoding 3); or
– a quantum measurement (Encoding 5).

We define the shorthand

si−1 →i si =

{
→i (si−1) = si →i is a direct mapping,

→i ·⊗n−1
j=0 |q(i−1,j)〉 =

⊗n−1
j=0 |q(i,j)〉 →i is a matrix,

and tie the states and operations together via
∧m−1

i=1 si−1 →i si.



190 F. Bauer-Marquart et al.

A state operation can also be a quantum measurement M . When state si−1 is
measured, two possible subsequent states are created: si(0) and si(1) (Sect. 2.2).
Additionally, we allow measurement of k qubits at the same time for a bit vector
x ∈ {0, 1}k such that Mx is the combined measurement.

The set Θ contains symbolic, real-valued variables that are used to param-
eterize state operations, e.g., rotations. The sequence V0 = (Ψ0, . . . , Ψn−1) con-
tains sets of initial valuations Ψi ⊆ H2 (possibly singleton sets in case of a
concrete valuation). The initial valuations are asserted to the initial qubits via∧n−1

i=0 |qi〉 ∈ Ψi.

Before we give an example, we note that the quantum program model MQ
is equivalent to the traditional presentation of quantum computing.

Theorem 1 (Equivalence). The quantum program model MQ (Definition 3)
and the quantum circuit model [31] are equivalent.

The proof for Theorem 1 is given in Sect. A.4 of the supplementary material
[4].

3.1 Running Example: Quantum Program Model of Teleportation

Now that we have defined the quantum program model, we formalize our running
example, teleportation, as MQ = (Q, S,→, ∅, V0), where

Q = {|q0〉, |q1〉, |q2〉},

S = (s0, s1, s2, s3, s4),
→ = (UCX(|q0〉, |q1〉),H(|q0〉),M(|q0〉, |q1〉), UCX(|q1〉, |q2〉), UCZ(|q0〉, |q2〉),
V0 = (H2, {|φ+〉}).
Note that valuations V0 are symbolic, so each input qubit can assume any

state in the Hilbert space.

Next we provide a high-level encoding of this quantum program model in
SMT. The complete SMT formula is shown in Sect. A of the supplementary
material [4].

We begin by encoding the first state s0, which contains the three input qubits
|q0,0〉, |q0,1〉, |q0,2〉. The first operation s0 →1 s1 is encoded as |q1,0〉 ⊗ |q1,1〉 =
UCX |q0,0〉 ⊗ |q0,1〉, with s1 containing the qubits |q1,0〉, |q1,1〉, |q1,2〉 that encode
the result of this operation. The remaining states and state operations are
encoded as follows (we have omitted identity operations for the sake of brevity),
with all entries connected with a conjunction:

We observe that the measurement step from s2 to s3 results in the creation of
4 possible execution paths, one per measurement outcome (00, 01, 10, 11). Also,
recall that all the symbols and operators used in the encoding above, such as
the tensor product (⊗), gates (H, UCX , UCZ), measurements (M0, M1), and
Hilbert space (H2), carry the meanings we assigned to them in Encodings 1 to
7.



symQV: Automated Symbolic Verification of Quantum Programs 191

State Operation

s2 = (|q2,0〉, |q2,1〉, |q2,2〉) |q2,0〉 = H |q1,0〉
s3(00) = (|q3,0(00)〉, |q3,1(00)〉, |q3,2(00)〉) |q3,0(00)〉 = M0 |q2,0〉, |q3,1(00)〉 = M0 |q2,1〉
s3(01) = (|q3,0(01)〉, |q3,1(01)〉, |q3,2(01)〉) |q3,0(01)〉 = M0 |q2,0〉, |q3,1(01)〉 = M1 |q2,1〉
s3(10) = (|q3,0(10)〉, |q3,1(10)〉, |q3,2(10)〉) |q3,0(10)〉 = M1 |q2,0〉, |q3,1(10)〉 = M0 |q2,1〉
s3(11) = (|q3,0(11)〉, |q3,1(11)〉, |q3,2(11)〉) |q3,0(11)〉 = M1 |q2,0〉, |q3,1(11)〉 = M1 |q2,1〉
s4(x) = (|q4,0(x)〉, |q4,1(x)〉, |q4,2(x)〉) |q4,1(x)〉 ⊗ |q4,2(x)〉 = UCX |q3,1(x)〉 ⊗ |q3,2(x)〉

(x ∈ {00, 01, 10, 11})
s5(x) = (|q5,0(x)〉, |q5,1(x)〉, |q5,2(x)〉) |q5,0(x)〉 ⊗ |q5,2(x)〉 = UCZ |q4,0(x)〉 ⊗ |q4,2(x)〉
Initial valuation |q0,0〉 ∈ H2, |q0,1〉 ⊗ |q0,2〉 ∈ {|φ+〉}

4 The symQV Verification Algorithm

Our symQV algorithm takes as input a quantum program model MQ defined in
Sect. 3 and a formal specification in the form of a first-order formula ϕ. From
that, symQV generates an SMT encoding (which we also write MQ with a slight
abuse of notation) as described in the previous section. Finally, this encoding
together with the negated specification is asserted in a query to an SMT solver.

Theorem 2 (Soundness and completeness of the encoding). Given a
quantum program model with encoding MQ and a specification ϕ, we have that
the program satisfies ϕ if and only if MQ ∧ ¬ϕ is unsatisfiable.

Proof. This follows from the one-to-one correspondence of the quantum program
model MQ and the standard quantum circuit model [31] shown in Theorem 1.
The formula is satisfiable if and only if there is an execution that violates the
specification.

The formula MQ falls into the theory of nonlinear real arithmetic with
trigonometric expressions, for which checking satisfiability is undecidable [34].
Yet, the δ-relaxation of this problem is decidable [16]. That is why we use the
δ-satisfiability framework from [17], which is implemented in dReal2. If the com-
bined formula MQ ∧ ¬ϕ is found to be δ-Sat, either it is indeed satisfiable (i.e.,
a counterexample has been found), or it is unsatisfiable (i.e., the program com-
plies with the specification) but a δ-perturbation on its numerical terms would
satisfy the formula. The parameter δ is user-controllable, and we show in the
evaluation that the δ-Sat case for correct programs does not occur in practice
for reasonable values of δ.

While the δ-relaxation must sacrifice completeness, it preserves soundness: If
the formula is found to be unsatisfiable (Unsat), then the quantum program is
indeed correct with respect to ϕ.

Theorem 3 (Soundness preservation). Let MQ be the encoding of a quan-
tum program model and ϕ be a specification. Assume that a δ-satisfiability solver
returns Unsat for the formula MQ ∧ ¬ϕ. Then the quantum program is correct.
2 Available at https://github.com/dreal/dreal4.

https://github.com/dreal/dreal4


192 F. Bauer-Marquart et al.

Proof. This follows from Theorem 2 and [17].

4.1 Running Example: Verification of Teleportation

Coming up with the right specifications for quantum programs is not trivial.
Conveniently, as symQV maps all building blocks of quantum programs into an
SMT representation, we have access to the full set of logic operators.

We want our specification to express that teleportation has been successful,
i.e., qubit |q0〉 has moved to where qubit |q2〉 was at the beginning (compare the
right-hand side of Fig. 3).

(|q5,2〉 = |q0,0〉)

This, however, is not the full specification. We need to disallow operations cross-
ing the line between the first two qubits and the last one, which only becomes
possible after measurement, where the classical communication channel can be
used (cf. Sect. 2.3). Therefore, we add an additional constraint that forbids state
operations where these qubits appear together:

ϕ = (|q5,2〉 = |q0,0〉) ∧ ¬∃0 ≤ i ≤ 2: →i (|qi,0〉, |qi,2〉) ∨ →i (|qi,1〉, |qi,2〉)

Performing the verification is “push-button,” i.e., only requires writing the
quantum program model and the specification. The corresponding Python code
given in Sect. A.3 of the supplementary material [4] demonstrates that a user
does not have to provide any proof steps as in previous works based on proof
assistants.

4.2 The symQV Over-Approximation

Fig. 4. The over-approximation visu-
alized for a single qubit.

Encoding 1 puts trigonometric functions
into the SMT formula, which are compu-
tationally expensive. This can also be later
seen in the evaluation. Therefore, we intro-
duce an over-approximation of the Hilbert
space to make the verification task more
efficient. This is achieved via relaxing the
qubit’s degrees of freedom from the unit
sphere to the unit box, visualized in Fig. 4.

Encoding 8 (Over-approximation). We remove the constraints in Eq. (2)
from Encoding 1 and add the following constraint over the qubit’s degrees of
freedom:

−1 ≤ α ≤ 1 ∧ −1 ≤ βR ≤ 1 ∧ −1 ≤ βI ≤ 1. (4)



symQV: Automated Symbolic Verification of Quantum Programs 193

Table 1. Benchmark quantum programs for evaluating our verification procedure.
“Input” describes the input space to the quantum programs and “Parametrized”
expresses whether there are parametrized gates in the quantum program.

Program Description Depth Input Parametrized

Toffoli Toffoli Gate 5 Bit vector No
TP Quantum Teleportation Circuit 6 Infinite No
ADD-8 8-bit Quantum Adder 48 Bit vector No
QFT-n n-Qubit Quantum Fourier Transform O(n2) Bit vector No
QPE-n n-Bit Quantum Phase Estimation O(n2) Concrete Yes
GDO-n n-Qubit Grover Diffusion Operator O(n) Infinite No

5 Evaluation

This section presents our experimental evaluation, demonstrating symQV’s effec-
tiveness in verifying several (correct) quantum programs that have symbolic
inputs or symbolically parametrized quantum gates.

5.1 Implementation

symQV3 is implemented as a Python library interfacing with dReal [17] using
about 5000 lines of code. The symQV Python API allows users to specify the
quantum program using a syntax inspired by Cirq [11]. The specification can be
written using one of two formats:

– State vector: One can specify assertions on any of the 2n vector entries.
– Qubits: One can specify assertions on any of the n qubits.

The logic assertions use an SMT-LIB2-compatible Python API and support
specifications expressing relationships between program inputs and outputs as
well as intermediate states.

5.2 Benchmark Problems and Setup

An overview of the benchmark problems is given in Table 1. Further descriptions,
including the specifications, are given in Sect. A.3 of the supplementary material
[4].

We compare our tool (“symQV”) against quantum simulation (“Simulation”),
basic SMT solving based on linear algebra (“Basic SMT”), and symQV without
over-approximation (“symQV (exact)”).

– Simulation is implemented in Qiskit [1]. The technique enumerates all possible
inputs to the quantum program and then compares the outputs with the

3 Available for download at https://doi.org/10.5281/zenodo.7400321.

https://doi.org/10.5281/zenodo.7400321


194 F. Bauer-Marquart et al.

specification. We can only use this technique for a finite input space, i.e., for
concrete and bit-vector inputs, but neither for symbolic qubits with the entire
Hilbert space H2 as input space, nor for parametrized gates.

– Basic SMT is basic SMT solving using vectors and matrices, but not using
direct mappings (Definition 1).

– symQV (exact) is a modification of symQV where all over-approximation capa-
bilities are removed, ending up with a technique that performs exact model-
ing, even when unnecessary (see Sect. 4.2).

We do not compare against the proof-assistant approaches [9,20,29,30,33]
(cf. Sect. 1) because a comparison of run-times between an automated method,
as implemented in symQV, and a semi-automated method relying on manual
input is not meaningful. We also do not compare against [3] because it neither
supports the full gate set nor formal logic specifications.

The experiments use the value δ = 10−4. We also compare the run-time of
symQV for different precision levels δ.

All experiments are carried out on a workstation with an AMD Ryzen
ThreadRipper 3960X @ 3.8GHz × 24 cores processor and 256GB RAM. The
machine runs Ubuntu 20.04.3 LTS and each result is the average of 10 runs.

5.3 Results

We summarize our results in Table 2. symQV (exact) is best for quantum pro-
grams with concrete inputs or a small qubit count (TP and ADD-8); the over-
approximation of symQV yields no speed-up for these instances. Simulation per-
forms best for verifying combinatorial problems, i.e., for the quantum Fourier
transform (QFT). Here, it can still feasibly enumerate a 12-qubit state space.
Interestingly, Basic SMT scales best among the SMT-based procedures here;
this is explained by the high amount of controlled operations, for which the
mapping-based approach of symQV is inferior.

symQV offers a dramatic performance increase for quantum programs with
symbolic inputs, i.e., quantum phase estimation (QPE) and Grover’s diffusion
operator (GDO). This highlights the advantage of over-approximation for this
family of quantum programs. Recall that simulation is not possible for both QPE
and GDO, as that would require enumerating infinitely many inputs.

The precision value δ = 10−4 was sufficient for all benchmarks in our eval-
uation. To investigate scalability in this parameter, Table 3 compares the run-
times for different values for GDO with 12, 15, and 18 qubits, respectively. For
the higher qubit counts, the run-time increases significantly when we lower δ to
10−6, but then remains relatively stable when further tightening precision.

Overall, symQV is the strongest for quantum programs with infinite input
space, i.e., programs where the (symbolic) input qubits can span the complete
Hilbert space. Likewise, for programs that use parametrized quantum gates
dependent on a symbolic parameter, symQV is the most effective.



symQV: Automated Symbolic Verification of Quantum Programs 195

Table 2. Runtime comparison results for the benchmark problems described in Table 1.
“Simulation” stands for simulation and enumeration of all cases. “Basic SMT” is SMT
solving with full state and matrix construction. “symQV (exact)” is symQV where
over-approximations have been removed. “symQV” (this work) utilizes a sound over-
approximation. “N/A” instances cannot be solved by simulation due to infinite state
space. “out of memory” cases exceeded the available memory, and “timeout” cases
exceed the 12-h time limit.

Benchmark Simulation Basic SMT symQV (exact) symQV

Toffoli 0.02 s 11.1 s 1.3 s 0.4 s
TP N/A 44.8 s 21.6 s 31.0 s
ADD-8 6.1 h out of memory 7.6 s 7.8 s
QFT-3 0.005 s 12.8 s 5.8 s 1.0 s
QFT-5 0.03 s 17.6 min 2.6 min 26.4 s
QFT-10 1.5 s 1.2 h 10.9 h 1.6 h
QFT-12 14.0 s 4.0 h timeout 7.4 h
QPE-3 N/A 19.2 s 34.0 s 8.7 s
QPE-5 N/A 18.2 min 42.3 min 3.9 min
GDO-5 N/A timeout 9.2 s 1.3 s
GDO-10 N/A timeout 3.2 min 17.0 s
GDO-12 N/A timeout 14.2 min 20.2 s
GDO-15 N/A timeout 2.9 h 1.0 min
GDO-18 N/A timeout timeout 4.9 min
GDO-20 N/A timeout timeout 17.1 min
GDO-22 N/A timeout timeout 1.1 h
GDO-24 N/A timeout timeout 4.2 h

6 Discussion

Symbolic execution and formal verification scale exponentially for the quantum
case, as is the case for classical software. That is to be expected: firstly, the simu-
lation of quantum programs on classical hardware already takes exponential time
and space due to the matrix representation of quantum mechanics, and secondly
because the state space grows with every input variable added to the program.
Nonetheless, we have shown how to keep this exponential blow-up under control
by introducing mappings and over-approximations. In our evaluation, we sym-
bolically executed quantum programs with up to 24 qubits. In comparison, even
(concrete) quantum simulation for concrete inputs stops being feasible at around
30 qubits, requiring petabytes of main memory. In conclusion, symQV is most
effective for unknown inputs to the quantum programs or unknown parameters
of quantum gates that therefore cannot be tested.



196 F. Bauer-Marquart et al.

Table 3. symQV run-time results for different precision values δ.

Delta GDO-12 GDO-15 GDO-18

10−4 20.2 s 1.0 min 4.9 min
10−6 20.5 s 28.0 min 33.1 min
10−8 20.8 s 49.4 min 58.7 min
10−10 21.1 s 52.3 min 1.2 h

7 Conclusion

We introduced symQV, a symbolic verification technique that leverages over-
approximation to make automated verification of quantum programs feasible.
We formalized quantum program semantics in SMT and proposed a sound over-
approximation that allows scaling to realistic program sizes. Thanks to the
symbolic nature of our approach, we can analyze quantum programs with infi-
nite input space, which is beyond the capabilities of quantum simulation. We
demonstrate these achievements by formally verifying multiple quantum pro-
grams against their specifications within a modest time frame.

In this paper, we focused on formalizing the mathematical foundations to
model quantum programs, define specifications, and prove their specification
compliance. We intend this to be the first step in a larger, fully automated quan-
tum verification framework, including counterexample-guided refinement. In the
future, we will investigate strategies that allow us to verify hybrid programs that
perform classical and quantum computations.

Acknowledgments. This research was partly supported by DIREC - Digital Research
Centre Denmark and the Villum Investigator Grant S4OS.

References

1. Abraham, F.N., et al.: Qiskit: an open-source framework for quantum computing
(2017). https://github.com/Qiskit

2. Ajagekar, A., Humble, T., You, F.: Quantum computing based hybrid solu-
tion strategies for large-scale discrete-continuous optimization problems. Comput.
Chem. Eng. 132 (2020). https://doi.org/10.1016/j.compchemeng.2019.106630

3. Amy, M.: Towards large-scale functional verification of universal quantum circuits.
In: QPL. EPTCS, vol. 287, pp. 1–21 (2018). https://doi.org/10.4204/EPTCS.287.1

4. Bauer-Marquart, F., Leue, S., Schilling, C.: symQV: automated symbolic verifi-
cation of quantum programs. CoRR, abs/2212.02267 (2022). https://doi.org/10.
48550/arXiv.2212.02267

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. TTCS. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-662-07964-5

6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.

https://github.com/Qiskit
https://doi.org/10.1016/j.compchemeng.2019.106630
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.48550/arXiv.2212.02267
https://doi.org/10.48550/arXiv.2212.02267
https://doi.org/10.1007/978-3-662-07964-5


symQV: Automated Symbolic Verification of Quantum Programs 197

184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: OSDI, vol. 8,
pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf

8. Centrone, F., Kumar, N., Diamanti, E., Kerenidis, I.: Experimental demonstration
of quantum advantage for NP verification with limited information. Nat. Commun.
12(1), 850 (2021). https://doi.org/10.1038/s41467-021-21119-1

9. Chareton, C., Bardin, S., Bobot, F., Perrelle, V., Valiron, B.: An automated deduc-
tive verification framework for circuit-building quantum programs. In: Yoshida, N.
(ed.) ESOP 2021. LNCS, vol. 12648, pp. 148–177. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-72019-3_6

10. Childs, A.M., Maslov, D., Nam, Y.S., Ross, N.J., Su, Y.: Toward the first quantum
simulation with quantum speedup. Proc. Natl. Acad. Sci. U.S.A. 115(38), 9456–
9461 (2018). https://doi.org/10.1073/pnas.1801723115

11. Cirq Developers. Cirq (2021). See full list of authors on Github: https://github.
com/quantumlib/Cirq/graphs/contributors

12. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977). https://doi.org/10.1145/512950.512973

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

15. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv preprint (2014). https://doi.org/10.48550/arXiv.1411.4028

16. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3_23

17. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

18. Goddard, P., Mniszewski, S., Neukart, F., Pakin, S., Reinhardt, S.: How will
early quantum computing benefit computational methods? In: Proceedings of
the SIAM Annual Meeting (2017). https://sinews.siam.org/Details-Page/how-
will-early-quantum-computing-benefit-computational-methods

19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC,
pp. 212–219. ACM (1996). https://doi.org/10.1145/237814.237866

20. Hietala, K., Rand, R., Hung, S., Li, L., Hicks, M.: Proving quantum programs cor-
rect. In: ITP, Dagstuhl, Germany. LIPIcs, vol. 193, pp. 21:1–21:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ITP.
2021.21

21. Houssein, E.H., Abohashima, Z., Elhoseny, M., Mohamed, W.M.: Hybrid quantum
convolutional neural networks model for COVID-19 prediction using chest X-ray
images. CoRR (2021). https://arxiv.org/abs/2102.06535

22. IBM. IBM’s roadmap for scaling quantum technology (2020). https://research.ibm.
com/blog/ibm-quantum-roadmap

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1038/s41467-021-21119-1
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1073/pnas.1801723115
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-38574-2_14
https://sinews.siam.org/Details-Page/how-will-early-quantum-computing-benefit-computational-methods
https://sinews.siam.org/Details-Page/how-will-early-quantum-computing-benefit-computational-methods
https://doi.org/10.1145/237814.237866
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://arxiv.org/abs/2102.06535
https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap


198 F. Bauer-Marquart et al.

23. Jerbi, S., Fiderer, L.J., Nautrup, H.P., Kübler, J.M., Briegel, H.J., Dunjko, V.:
Quantum machine learning beyond kernel methods. CoRR (2021). https://arxiv.
org/abs/2110.13162

24. Jordan, S.: Quantum algorithm zoo (2021). https://quantumalgorithmzoo.org
25. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.

Phys. Rev. E 58(5) (1998). https://doi.org/10.1103/PhysRevE.58.5355
26. Krinner, S., et al.: Realizing repeated quantum error correction in a distance-three

surface code. Nature 605(7911), 669–674 (2022). https://doi.org/10.1038/s41586-
022-04566-8

27. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

28. Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Projection-based runtime
assertions for testing and debugging quantum programs. Proc. ACM Program.
Lang. 4(OOPSLA), 150:1–150:29 (2020). https://doi.org/10.1145/3428218

29. Liu, J., et al.: Formal verification of quantum algorithms using quantum Hoare
logic. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 187–207.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_12

30. Liu, S., et al.: Q|SI〉: a quantum programming environment. In: Jones, C., Wang,
J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid Systems. LNCS, vol.
11180, pp. 133–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01461-2_8

31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press (2016). https://doi.org/
10.1017/CBO9780511976667. ISBN 978-1-10-700217-3

32. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

33. Rand, R., Paykin, J., Zdancewic, S.: QWIRE practice: formal verification of quan-
tum circuits in Coq. In: QPL. EPTCS, vol. 266, pp. 119–132 (2017). https://doi.
org/10.4204/EPTCS.266.8

34. Richardson, D.: Some undecidable problems involving elementary functions of
a real variable. J. Symb. Log. 33(4), 514–520 (1968). https://doi.org/10.2307/
2271358

35. Shi, Y., et al.: CertiQ: a mostly-automated verification of a realistic quantum
compiler. arXiv preprint (2019). https://doi.org/10.48550/arXiv.1908.08963

36. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

37. Svore, K.M., et al.: Q#: enabling scalable quantum computing and development
with a high-level DSL. In: RWDSL, pp. 7:1–7:10. ACM (2018). https://doi.org/10.
1145/3183895.3183901

38. Traversa, F.L.: Aircraft loading optimization: MemComputing the 5th Airbus prob-
lem. CoRR, abs/1903.08189 (2019). http://arxiv.org/abs/1903.08189

39. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: PLDI, pp. 542–558.
ACM (2021). https://doi.org/10.1145/3453483.3454061

https://arxiv.org/abs/2110.13162
https://arxiv.org/abs/2110.13162
https://quantumalgorithmzoo.org
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3428218
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.2307/2271358
https://doi.org/10.2307/2271358
https://doi.org/10.48550/arXiv.1908.08963
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
http://arxiv.org/abs/1903.08189
https://doi.org/10.1145/3453483.3454061


PFL: A Probabilistic Logic for Fault Trees

Stefano M. Nicoletti1(B) , Milan Lopuhaä-Zwakenberg1 ,
E. Moritz Hahn1 , and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{s.m.nicoletti,m.a.lopuhaa,e.m.hahn,m.i.a.stoelinga}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. Safety-critical infrastructures must operate in a safe and reli-
able way. Fault tree analysis is a widespread method used for risk assess-
ment of these systems: fault trees (FTs) are required by, e.g., the Fed-
eral Aviation Administration and the Nuclear Regulatory Commission.
In spite of their popularity, little work has been done on formulating
structural queries about fts and analyzing these, e.g., when evaluating
potential scenarios, and to give practitioners instruments to formulate
queries on fts in an understandable yet powerful way. In this paper, we
aim to fill this gap by extending BFL [37], a logic that reasons about
Boolean fts. To do so, we introduce a Probabilistic Fault tree Logic
(PFL). PFL is a simple, yet expressive logic that supports easier for-
mulation of complex scenarios and specification of FT properties that
comprise probabilities. Alongside PFL, we present LangPFL, a domain
specific language to further ease property specification. We showcase PFL
and LangPFL by applying them to a COVID-19 related FT and to a FT
for an oil/gas pipeline. Finally, we present theory and model checking
algorithms based on binary decision diagrams (BDDs).

1 Introduction

Our self-driving cars, power plants, oil/gas refineries and transportation systems
must operate in a safe and reliable way. Risk assessment is a key activity to iden-
tify, analyze and prioritize the risk in a system, and come up with (cost-)effective
countermeasures. Fault tree analysis (FTA) [43,45] is a widespread formalism to
support risk assessment. FTA is applied to many safety-critical systems and
the use of fault trees is required, e.g., by the Federal Aviation Administration
(FAA), the Nuclear Regulatory Commission (NRC), in the ISO 26262 standard
[28] for autonomous driving and for software development in aerospace systems.
A fault tree (ft) models how component failures arise and propagate through
the system, eventually leading to system level failures. Leaves in a ft represent

This work was partially funded by the NWO grant NWA.1160.18.238 (PrimaVera),
and the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 101008233, and the ERC Consolidator
Grant 864075 (CAESAR).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 199–221, 2023.
https://doi.org/10.1007/978-3-031-27481-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_13&domain=pdf
http://orcid.org/0000-0001-5522-4798
http://orcid.org/0000-0001-5687-854X
http://orcid.org/0000-0002-9348-7684
http://orcid.org/0000-0001-6793-8165
https://doi.org/10.1007/978-3-031-27481-7_13


200 S. M. Nicoletti et al.

basic events (bes), i.e. elements of the tree that do not need further refine-
ment. Once these fail, the failure is propagated through the intermediate events
(ies) via gates, to eventually reach the top level event (TLE), which symbol-
izes system failure. In the (sub)tree represented in Fig. 1, the tle—Medium
Corrosion—is refined by an AND-gate (MeC ). For MeC to fail, water must
be present, i.e., the With Water (WW ) BE must fail, and there must be at
least one acid medium in the pipes, i.e., Acid Medium (AcM ) has to happen.

Fig. 1. ft excerpt
from Fig. 3.

This last OR-gate is further refined with three BEs: for it
to fail, at least one of its three children needs to fail. This
means that either Hydrogen sulfide (H2S) or Oxygen (O2 )
or Carbon dioxide (CO2 ) must be present. Fault tree anal-
ysis supports qualitative and quantitative analysis. Quali-
tative analysis aims at pointing out root causes and critical
paths in the system. One can identify the minimal cut sets
(mcss) of a ft, i.e. minimal sets of bes that, when failed,
cause the system to fail. One can also identify minimal path
sets (mpss), i.e. minimal sets of bes that - when opera-
tional - guarantee that the system will remain operational.
Quantitative analysis allows to compute relevant depend-
ability metrics, such as the system reliability, availability
and mean time to failure. A formal background on fts is given in Sect. 2.

Probabilistic Fault Tree Logic. In spite of their popularity, little work has
been done on formulating structural queries about fts and analyzing these,
e.g., when evaluating potential scenarios, and to give practitioners instruments
to formulate queries on fts in an understandable yet powerful way. Usually,
fts are translated to stochastic models and existing logics specify properties
on these, rather than on elements of fts. Our previous work [37] presents a
logic to reason about static fts when bes have Boolean values. The present
work aims to extend that framework by devising a probabilistic logic for fts,
called PFL, where one could easily reason about fts also taking probabilities
into account. To further meet the need for usability - that we uncovered through
interviews with a domain expert [36] - we present a domain specific language
for PFL, LangPFL, and showcase property specification with both on two case
studies, one with a COVID-19 ft, and one with an oil/gas pipeline ft.

Model Checking. In this paper, we provide model checking algorithms that
extend our work in [37]. While we build from algorithms from [37], we require
extensions for formulae in which probabilities come into play. We introduce novel
algorithms which can decide 1. whether a single probability assignment to all
BEs of a ft satisfies a formula; 2. whether a formula is satisfied for all pos-
sible probability assignments to BEs and 3. in which regions of the parameter
space the considered formula holds. Building on our previous work, all three
algorithms are based on construction and manipulation of binary decision dia-
grams (bdds). This translation to BDDs constitutes a formal ground to address
these procedures in a uniform way, while integrating novel work presented in this
paper with previous algorithms.



PFL: A Probabilistic Logic for Fault Trees 201

Related Work. Numerous logics describe properties of state-transition systems,
such as labelled transition systems (LTSs) and Markov models, e.g., CTL [14],
LTL [40], and their variants for Markov models, PCTL [26] and PLTL [38].
State-transition systems are usually not written by hand, but are the result
of the semantics of high-level description mechanisms, such as AADL [9], the
hardware description language VHDL [19] or model description languages such
as JANI [11] or PRISM [33]. Consequently, these logics are not used to reason
about the structure of such models (e.g. the placement of circuit elements in
a VHDL model or the structure of modules in a PRISM model), but on the
temporal behaviour of the underlying state-transition system. Similarly, related
work on model checking on fts [6,8,46,47] exhibits significant differences: these
works perform model checking by referring to states in the underlying stochastic
models, and properties are formulated in terms of these stochastic logics, not
in terms of events in the given ft. In [48], the author provides a formulation
of Pandora, a logic for the qualitative analysis of temporal fts. In spite of
the use of logic to capture properties of fts, [48] focuses on the analysis of
time, introducing gates that are different from the ones considered in this work:
the Priority-AND-gate (PAND), the Simultaneous-AND-gate (SAND), and the
Priority-OR gate (POR). In PFL we do not (yet) consider time and we focus on
AND, OR and VOT-gates. Furthermore, [48] focuses more on the algorithmic
part of FTA while leaving out any formalization of fts or the logic defined upon.
In [25] the authors investigate how FTA results can be linked to software safety
requirements by proposing the same system model for both. They introduce a
duration calculus based on discrete time interval logic (ITL) [34] to give fts
formal semantics. Our work, on the other hand, adopts standard semantics for
fts and develops a logic to specify probabilistic properties on fts. Furthermore,
we do not address timed behaviours while [25] disregards probabilistic analysis
on fts. In previous work [37] we presented BFL, a logic on fts that however
reasons about fts only in Boolean terms. We take this framework and develop
a logic that extends BFL with probabilities. Literature related to fts, property
specification languages, bdds and parametric model checking is referenced and
contextualized in Sect. 2, Sect. 5, Sect. 6.1 and Sect. 6.5.

Contributions. To summarize, in this work:
1. We develop PFL, a probabilistic logic to reason about fts.
2. We present a domain specific language for PFL, LangPFL, to further ease

property specification.
3. We showcase the potential of PFL and LangPFL by applying them to a

medium-sized COVID-19 related example and to a large-sized case study
of an oil/gas pipeline.

4. We provide model checking algorithms to check properties defined in PFL.
5. We provide the theory and an algorithm to solve problems where the

probabilities of bes are parametric.



202 S. M. Nicoletti et al.

Structure of the Paper. Section 2 covers background on fts, Sect. 3 describes
PFL, Sect. 4 shows the application of PFL to case studies, Sect. 5 introduces
LangPFL, Sect. 6 presents algorithms and Sect. 7 concludes our work.

2 Fault Trees: Background

Developed in the early ’60s [21], fts are directed acyclic graphs (dags) that
model how low-level failures can propagate and cause a system-level failure. The
overall failure of a system is captured by a top level event (tle), that is refined
through the use of gates. fts come with different gate types. For the purposes
of our paper and in order to create a modular and functional framework, we will
focus on static fault trees, featuring OR-gates, AND-gates and VOT(k/N)-gates:
we foresee support for dynamic gates as a possible future extension (see Sect.
7). For a low-level failure to propagate, at least one child of an OR-gate has to
fail, all the children of an AND-gate must fail, and at least k out of N children
must fail for a VOT(k/N)-gate to fail. When gates can no longer be refined,
we reach the basic events (bes) which are the leaves of the tree. fts enable
both qualitative and quantitative analyses. On the qualitative side, minimal cut
sets (mcss) and minimal path sets (mpss) highlight root causes of failures and
critical paths in the system. mcss are minimal sets of events that - when failed
- cause the failure of the tle. mpss are minimal sets of events that - when
remaining operational - guarantee that the tle will remain operational.

Definition 1 (Fault Tree). A Fault Tree is a tuple T = (E, A, t) where (E, A)
is a rooted directed acyclic graph (E are the vertices, called events) and t is a
map E → {AND, OR, BE} such that t(e) = BE iff e is a leaf.

We denote the top event by etop, and the set of children of an event e by ch(e) =
{e′ | (e, e′) ∈ A}. Slightly abusing notation, we denote the set of basic events, e
with t(e) = BE, as BE, whose elements we enumerate BE = {e1, . . . , en}. We also
define the set of intermediate events IE = E\BE. The behaviour of a ft T can
be rigorously expressed through its structure function [43] - ΦT: if we assume
the convention that a be has value 1 if failed and 0 if operational, the structure
function indicates the status of the tle given the status of all the n bes of T,
given by a Boolean vector b = (b1, . . . , bn). Such a boolean vector can also be
regarded as a subset of be, allowing us to interpret statements such as b′ ⊂ b .

Definition 2 (Structure Function). The structure function of an FT T is a
function ΦT : B

n × E → B defined recursively by

ΦT(b , e) =

⎧
⎪⎨

⎪⎩

bi if e = ei ∈ BE
∨

e′∈ch(e) ΦT(b , e′) if t(e) = OR
∧

e′∈ch(e) ΦT(b , e′) if t(e) = AND

Thus, for each set of bes we can identify its characteristic vector b. One can
extend Definition 2 by allowing gates derived from AND- and OR-gates, e.g.,
voting gates, where a gate with t(e) = VOT(k/N) fails if at least k of its children
fail, i.e.



PFL: A Probabilistic Logic for Fault Trees 203

∑

e′∈ch(e)

ΦT(b , e′) ≥ k

We can also define the classical notions of minimal cut sets and minimal path
sets [43]. A cut set is any set of basic events that causes the tle to occur,
i.e., for which the structure function evaluates to 1. A path set is any set of
basic events that does not cause the tle to occur, i.e., for which the structure
function evaluates to 0.

Definition 3. A status vector b is a cut set (CS) for e ∈ E of a given tree T iff
ΦT(b , e) = 1. A minimal cut set (MCS) is a cut set of which no subset is a cut
set: b is a MCS for e ∈ E of T if ΦT(b , e) = 1 ∧ ∀b′ ⊂ b , ΦT(b , e) = 0.

Definition 4. A status vector b is a path set (PS) for e ∈ E of a given tree T
iff ΦT(b , e) = 0. A minimal path set (MPS) is a path set of which no subset is
a path set: b is a MPS for e ∈ E of T if ΦT(b , e) = 0 ∧ ∀b′ ⊂ b , ΦT(b , e) = 1.

3 A Probabilistic Logic to Reason About FTs

3.1 Syntax

Our logic PFL consists of three syntactical layers represented by φ, ψ and ξ
respectively. To refer to layer-two or layer-three formulae indistinctly we write θ
and χ is a generic formula in PFL. Layer-one is Boolean and we indicate atomic
formulae with the letter e. Each atomic formula represent an element of a given
ft, it being an ie or a be. Furthermore, in layer-one we have the possibility to
arbitrarily set the value of one atom e in complex formulae either to 0 or to 1 by
writing φ[e �→ 0] and φ[e �→ 1]. Note that φ[e �→ 0] is not equivalent to φ ∧ ¬e:
for φ = ¬e, we have (¬e)[e �→ 0] = true while (¬e) ∧ ¬e does not necessarily
equal true. Moreover, we have operators to check for mpss and mcss for a given
layer-one formula. The second layer allows us to reason about probabilities and
their bounds. We can check whether the probability of a given layer-one formula
(potentially conditioned by another one) respects a certain threshold. We can
set the value of one atom e in complex formulae to an arbitrary probability value
p. We can also check if two layer-one formulae (e.g., two intermediate events)
are stochastically independent. Formulae in φ and ψ can be rewritten with the
usual negation and conjunction. Finally, the third layer allows us to return the
probability value for a given layer-one formula, possibly mapping atoms to an
arbitrary probability value p. Note that, for all three layers, we usually assign
values to e ∈ BE. We can however assign values to ies if 1. e is a module [20],
i.e., all paths between descendants of e and the rest of the ft pass through e
2. and none of the descendants of e are present in the formula. If so, we prune
that (sub)ft and treat occurring ies as bes.

φ ::= e | ¬φ | φ ∧ φ | φ[e �→ 0] | φ[e �→ 1] | MCS(φ)
ψ ::= ¬ψ | ψ ∧ ψ | Pr

��p
(φ | φ) | ψ[e �→ q] | IDP(φ, φ)

ξ ::= Pr(φ | φ) | ξ[e �→ q]

where �	 ∈ {<, ≤, =, ≥, >}.



204 S. M. Nicoletti et al.

Syntactic sugar. We let Xn be the set of layer-n formulae and we define the
following derived operators, where formulae θ are in the set of layer-one or layer-
two formulae, i.e., such that θ ∈ X1 ∪ X2:

θ1 ∨ θ2 ::=¬(¬θ1 ∧ ¬θ2) θ1 �⇔ θ2 ::= ¬(θ1 ⇔ θ2)
θ1 ⇒ θ2 ::=¬(θ1 ∧ ¬θ2) mps(φ) ::= mcs(¬φ)
θ1 ⇔ θ2 ::=(θ1 ⇒ θ2) ∧ (θ2 ⇒ θ1) SUP(e) ::= IDP(e, etop)

Vot
��k

(φ1, . . . , φN ) ::=
∨

U⊆{1,...,N}
|U |��k

(
∧

u∈U

φu

)

∧
⎛

⎝
∧

u∈{1,...,N}\U

¬φu

⎞

⎠ with k ≤ N

where mps checks for minimal path sets of a given formula and SUP checks if
an element e is superfluous, i.e., if it is independent w.r.t. the tle.

3.2 Semantics
The semantics for our logic is structured according to the three syntactic layers.
For the first layer of PFL, formulae are evaluated on a Boolean status vector b
and on a tree T. Atomic formulae e are satisfied by b and T if the structure
function in Definition 2 returns 1 with these b and e as input. Formally:

b ,T |= e iff ΦT(b , e) = 1

b ,T |= ¬φ iff b ,T �|= φ

b ,T |= φ ∧ φ′ iff b ,T |= φ and b ,T |= φ′

b ,T |= φ[ei �→ 0] iff b′ ,T |= φ with b′ = (b′
1, . . . , b′

n) where
b′

i = 0 and for j �= i we have b′
j = bj

b ,T |= φ[ei �→ 1] iff b′ ,T |= φ with b′ = (b′
1, . . . , b′

n) where
b′

i = 1 and b′
j = bj for j �= i

b ,T |= MCS(φ) iff b ,T |= φ ∧ (¬∃b′. b′ ⊂ b ∧ b′,T |= φ)

With �φ�T we denote the satisfaction set of vectors for φ, i.e., the set of all
b that satisfy φ given T. Semantics for the second and third layer require the
introduction of probabilities. If we consider the function ΦT : B

n ×E → B, we can
devise an extension such that ΦT : B

n ×X1 → B, where X1 is the set of layer-one
formulae (note that E ⊆ X1). With a slight abuse of notation, ΦT will now return
1 whenever the input Boolean vector satisfies the input layer-one formula. With
φ ∈ X1, we lift the structure function to Φ∗

T : Dist(Bn) × X1 → [0, 1], where Dist
expresses a set of probability distributions, in a standard fashion, i.e.,

Φ∗
T(μ, φ) =

∑
{μ(b ) | b ∈ B

n for which ΦT(b , φ) = 1}

We further convert each probabilistic status vector ρ ∈ [0, 1]n to a distribution
μρ ∈ Dist(Bn):

μρ (b1, . . . , bk) =
k∏

i=1

(bi × ρi + (1 − bi) × (1 − ρi))



PFL: A Probabilistic Logic for Fault Trees 205

We can then define semantics for the second syntactic layer as follows1:
ρ ,T |= ¬ψ iff ρ ,T �|= ψ

ρ ,T |= ψ ∧ ψ′ iff ρ ,T |= ψ and ρ ,T |= ψ′

ρ ,T |= Pr
��p

(φ | φ′) iff Φ∗
T(μρ , φ ∧ φ′)/Φ∗

T(μρ , φ′) �	 p

ρ ,T |= ψ[ei �→ q] iff ρ [ρi �→ q],T |= ψ

ρ ,T |= IDP(φ, φ′) iff Φ∗
T(μρ , φ ∧ φ′) = Φ∗

T(μρ , φ) · Φ∗
T(μρ , φ′)

Finally, to define semantics for the third layer we let Valρ ,T : X3 → [0, 1] define
an evaluation function of layer-three formulae in X3:

Valρ ,T(Pr(φ | φ′)) = Φ∗
T(μρ , φ ∧ φ′)/Φ∗

T(μρ , φ′)
Valρ ,T(ξ[ei �→ q]) = Valρ [ρi �→q],T(ξ)

Furthermore we write T |= θ, meaning ∀ρ . ρ , T |= θ.

4 Case Study: Examples

We showcase the potential of our logic by presenting two case studies: a COVID-
19 related ft [3,37] and the ft for an oil/gas pipeline [50].

4.1 COVID-19 FT

Fig. 2. COVID-19 ft.

The tle represents
a COVID-19 infected
worker on site, abbre-
viated IWoS . As shown
in Fig. 2, the ft con-
siders events in sev-
eral categories: COVID-
19 pathogens and reser-
voirs (i.e., germs and
objects carrying the
virus); their mode of
transmissions; the pres-
ence of susceptible
hosts, infected objects
and workers; physi-
cal contacts as well
as human errors. Note
that Fig. 2 contains
several repeated basic
events (marked with
a dashed border): IT ,
PP, H1 and IW . This
1 When considering conditional probabilities in layer-two and layer-three formulae, we

disregard the case in which Φ∗
T(μρ , φ′) = 0.



206 S. M. Nicoletti et al.

tle IWoS is refined via an AND-gate with three children. Thus, for the TLE
to occur the following must happen: COVID pathogens/COVID infected objects
must exist, there has to be a susceptible host and COVID pathogens must be
transmitted in some way to this host. These events are captured by corresponding
subtrees: the purplepurple OR-gate CP/R refines the existence of COVID pathogens/-
COVID infected objects, the OR-gate MoT in tealteal refines modes of transmission
and the AND-gate SH in orangeorange details the presence of a susceptible host.
Properties. Following, we specify some properties using natural language and
present the corresponding PFL formulae:
1) What are all the mcss for the modes of transmission that include errors in

objects and surfaces disinfection? �MCS(MoT ) ∧ H4 ∧ H5 �T;
2) Is the probability of TLE smaller than 0.03, if physical proximity occurred?

Pr≤0.03(IWoS)[PP �→ 1];
3) Assume that the probability of an infected worker on the team equals 0.25.

How does that affect the probability of TLE? Pr(IWoS)[IW �→ 0.25];
4) Assume that both COVID-19 pathogens and a vulnerable worker exist. Does

this imply that P (IWoS) ≥ 0.15? Pr=1(CP) ∧ Pr=1(VW ) ⇒ Pr≥0.15(IWoS).

4.2 Oil/Gas Pipeline FT

Fig. 3. Oil/gas pipeline ft.



PFL: A Probabilistic Logic for Fault Trees 207

The tle represents the failure of an oil/gas pipeline, abbreviated O/GPF . As
shown in Fig. 3, the ft considers events in several categories: failures like rup-
tures and punctures; third party interference; different kinds of corrosion; incor-
rect performance of some operations (e.g., maintenance); unreasonable design
choices; as well as defects on pipes. Figure 3 contains several repeated basic
events (again, marked with a dashed border): WW , H2S , O2 , CO2 and IAC .
Furthermore, multiple sub-trees are referenced/repeated in different places: those
are marked using labelled triangles. The tle O/GPF is refined via an OR-gate
with two children, in blueblue. Thus, for the TLE to occur either a rupture or a
puncture must happen. These two events are captured by corresponding sub-
trees. The rupturerupture subtree (top-right of Fig. 3) is refined by an OR-gate with
six children: the greengreen OR-gate TPI refines possible interference by third par-
ties; the violetviolet OR-gate Cor refines modes of pipes corrosion; the yellowyellow sub-
tree B refines modes in which pipes could be defective; the dove graydove gray OR-gate
IO details possible incorrect operations; the lime greenlime green OR-gate UD details
unreasonable design choices; and the pinkpink OR-gate GH refines possible geolog-
ical hazards. Similarly, the puncturepuncture subtree (bottom of Fig. 3) is refined by an
OR-gate with two children: the orangeorange OR-gate CoT refines modes in which
corrosion can make pipes thinner—with a detailed subtree in light bluelight blue refining
medium corrosion; and the OR-gate DoP in yellowyellow that refines modes in which
pipes could be defective.

Properties. We specify some properties using natural language and present the
corresponding PFL formulae:

1) What are all the mpss for pipes rupture that include the absence of water
as a corrosive medium, H2S , O2 and CO2 ? �MPS(Rup) ∧ ¬WW ∧ ¬H2S∧
¬O2 ∧ ¬CO2 �T;

2) Assume that H2S shows up in the pipes with 0.25% probability. What is
the probability of pipes corrosion, if corrosion happens with water with 2%
probability and that pressure surges with 1% probability? Pr(Cor)[H2S �→
0.0025, WW �→ 0.02, PS �→ 0.01];

3) Assume that the probability of pipes corrosion with acid is equal to 0.005.
Assume also that pipes present defects in their construction material with
0.2% probability. Is the probability of TLE happening lower than 1.2%?
Pr≤0.012 (O/GPF)[AcM �→ 0.005, MaD �→ 0.02].

5 LangPFL: A Domain Specific Language for PFL

Design of LangPFL. To ease usability of PFL, we present LangPFL, a Domain
Specific Language (DSL) to specify properties in PFL. The need for a simple
way to specify properties involving probability on ft was uncovered via inter-
views with a domain expert from industry [36]. Defining languages and tools for
properties and requirements specification is common practice: in [17] the authors
capture high-level requirements for a steam boiler system in a human readable



208 S. M. Nicoletti et al.

Table 1. Properties in natural language, PFL and LangPFL.

Natural Language Property in PFL LangPFL

What are all the mcss for the modes of
transmission that include errors in
objects and surfaces disinfection?

�MCS(MoT) ∧ H4 ∧ H5�T

assume:
computeall:

mcs[MoT] and
H4 and H5

Is the probability of TLE smaller than
0.03, if physical proximity occurred? Pr

≤0.03
(IWoS)[PP �→ 1]

assume:
setp PP = 1

check:
P[IWoS] ≤ 0.03

Assume that the probability of an
infected worker on the team equals 0.25.

How does that affect the probability
of TLE?

Pr(IWoS)[IW �→ 0.25]

assume:
setp IW = 0.25

compute:
P[IWoS]

Assume that both COVID-19 pathogens
and a vulnerable worker exist. Does this

imply that P (IWoS) ≥ 0.15?

Pr
=1

(CP) ∧ Pr
=1

(VW)

⇒ Pr
≥0.15

(IWoS)

assume:
setp CP = 1
setp VW = 1

check:
P[IWoS] ≥ 0.15

What are all the mpss for pipes rupture
that include the absence of water as a
corrosive medium, H2S ,O2 and CO2?

�MPS(Rup) ∧ ¬WW∧
¬H2S ∧ ¬O2 ∧ ¬CO2 �T

assume:
computeall:

mps [Rup] and
not WW and
not H2S
and not O2
and not CO2

Assume that H2S shows up in the pipes
with 0.25% probability. What is the

probability of pipes corrosion, if
corrosion happens with water with
2% probability and that pressure

surges with 1% probability?

Pr(Cor)[H2S �→ 0.0025,

WW �→ 0.02, PS �→ 0.01]

assume:
setp H2S = 0.0025
setp WW = 0.02
setp PS = 0.01

compute:
P[Cor]

Assume that the probability of pipes
corrosion with acid is equal to 0.005.

Assume also that pipes present defects in
their construction material with 0.2%

probability. Is the probability of
TLE lower than 1.2%?

Pr
≤0.012

(O/GPF)[AcM

�→ 0.005, MaD �→ 0.02]

assume:
setp AcM = 0.005
setp MaD = 0.02

check:
P[O/GPF]≤0.012

form by presenting SADL, a controlled English requirements capturing language,
alongside its tool suite ASSERT. Other controlled natural languages for knowl-
edge representation include Processable English (PENG) [49], Controlled English
to Logic Translation (CELT) [39] and Computer Processable Language (CPL)
[13]. LangPFL is inspired by these languages for their ease of use and close prox-
imity to natural language. Finally, another notable example is FRETish [15], a
structured natural language capturing Linear Temporal Logic (LTL). FRETish
was developed at NASA and is supported by the FRET tool [23]. Other than for
its usability, FRETish inspired us with the clear way in which the scope, condi-
tions and component of specified properties are clearly separated from desired
behaviours on timing and responses. LangPFL expresses only a fragment of PFL:



PFL: A Probabilistic Logic for Fault Trees 209

most notably, nesting of formulae is disallowed. By doing so, we retain most of the
expressiveness of PFL while making property specification easier. In LangPFL,
ft elements are referred to with their label and each operator in PFL has a
counterpart in the DSL: Boolean operators, not, and, or, impl . . .; setting the
value of ft elements to Boolean or probability values, set, setp; mcss and
mpss, MCS[. . .], MPS[. . .]; operators to check (conditional) probability thresh-
olds/compute (conditional) probability values, P[. . . | . . .] �	 . . .,P[. . . | . . .]; and
to check for independence between ft elements IDP[. . . , . . .].

LangPFL Templates. Properties can be specified in LangPFL by utilizing opera-
tors inside structured templates. Assumptions on the status of ft elements can
be specified under the assume keyword. These assumptions will be automat-
ically integrated in the translated formula accordingly, e.g., set or setp will be
translated with the according operators to set evidence, while other assumptions
will be the antecedent of an implication. A second keyword separates specified
formulae from the assumptions and dictates the desired result: compute and
computeall compute and return desired values, i.e., probability values and lists
of mcss/mpss respectively, while check establishes if a specified property holds.

Case studies. In Table 1 we showcase the properties specified in Sect. 4 and
their respective translation in LangPFL.

6 Model Checking Algorithms

Layer-One Formulae. With PFL extending previous work [37], algorithms to
compute satisfiability of layer-one formulae remain unchanged. In particular,
it is possible to model check PFL over a ft and a Boolean vector b when
considering layer-one formulae. Furthermore, we can collect all Boolean vectors
b such that b , T |= φ. As noted in [37], checking if b , T |= φ holds is trivial
if φ is a layer-one formula that does not contain an MCS or MPS operator. In
that case, we can simply substitute the values of b in φ and see if the Boolean
expression evaluates to true. This also works to check whether ρ , T |= θ holds
for a probabilistic vector ρ , a tree-shaped ft and a layer-two/three formula
θ without operators for MCS or MPS. In this case, values can be computed
following usual probability laws. For the other cases, the computation becomes
more complex, and procedures involving binary decision diagrams (bdds) are
necessary. Algorithms for the Boolean scenarios are described in Appendix A.3
and Appendix A.4 respectively.

Layer-Two/Three Formulae. When reasoning about satisfiability of second
layer formulae, algorithms present differences. As such, we present three novel
algorithms for PFL: 1. Given a vector ρ , a ft T and a formula ψ, check if
ρ , T |= ψ (Sect. 6.4), 2. Given T and ψ, compute regions of the parameter space
where T |= ψ (Sect. 6.5), 3. Given a ft T and a formula ψ, check whether T |= ψ
for all ρ (Sect. 6.6). In continuity with previous work, all three algorithms are
based on bdds: first, ft elements that appear in a given layer-one formula
are identified. Then, bdds for these elements are selectively constructed (see



210 S. M. Nicoletti et al.

Algorithm 5) and stored to reduce computation time. Finally, these bdds are
manipulated and equipped with probabilities (see Algorithm 1) to reflect the
semantics of the operators in PFL. Probability values in layer-three formulae are
computed with slight variations on layer-two algorithms (see Sect. 6.4). As in
standard FTA [43], we assume that bes fail independently. A brief overview of
each algorithm is given in Sect. 6.4, Sect. 6.5 and Sect. 6.6 respectively.

6.1 (Reduced Ordered) Binary Decision Diagrams

bdds are directed acyclic graphs (dags) that compactly represent Boolean
functions [2] by reducing redundancy. Depending on variable’s ordering, bdd’s
size can grow linearly in the number of variables and at worst exponentially.
In practice, bdds are heavily used, including in ft analysis [4,42] and in their
security-related counterpart, attack trees (ats) [12]. Formally, a bdd is a rooted
dag Bf that represents a Boolean function f : B

n → B over variables Vars =
{xi}n

i=1. Each nonleaf w has two outgoing arrows, labeled 0 and 1, and a label
Lab(w) ∈ Vars; furthermore, each leaf has a label 0 or 1. Given a b in B

n, the
BDD is used to compute f(b) as follows: starting from the top, upon arriving at a
node w with Lab(w) = xi, one takes the 0-edge if bi = 0 and the 1-edge if bi = 1.
The label of the leaf one ends up in, is then equal to f(b). A function f can be
represented by multiple BDDs, but has a unique reduced ordered representative,
or ROBDD [5,10], where the xi occur in ascending order, and the BDD is reduced
as much as possible by removing irrelevant nodes and merging duplicates. This
is formally defined below; we let Low(w) (resp. High(w)) be the endpoint of w’s
0-edge (resp. 1-edge) and let RB be the bdd root.

Definition 5 (Reduced Ordered Binary Decision Diagram
((RO)BDD)). Let Vars be a set. A BDD over Vars is a tuple B = (W, A,
Lab, u) where (W, A) is a rooted directed acyclic graph, and Lab : W → Vars 

{0, 1}, u : A → {0, 1} are maps such that: 1. Every nonleaf w has exactly two
outgoing edges a, a′ with u(a) �= u(a′), and Lab(w) ∈ Vars; 2. Every leaf w has
Lab(w) ∈ {0, 1}. 3. Vars are equipped with a total order, Bf is thus defined over
a pair 〈Vars, <〉; 4. the variable of a node is of lower order than its children, that
is: ∀ w ∈ Wn . Lab(w) < Lab(Low(w)), Lab(High(w)); 5. the children of nonleaf
nodes are distinct nodes; 6. nodes are uniquely determined by their label, low
child and high child.

6.2 Translating FTs/Formulae to BDDs

Translations. We shortly sketch the idea of translating a layer-one formula
and a (sub)tree to bdds. As mentioned, to translate formulae to bdds, ft
elements that appear in a given formula are identified. Then, bdds representing
these elements are selectively constructed and stored to reduce computation
time. Finally, operations on these bdds are performed to reflect semantics of
the operators in PFL.



PFL: A Probabilistic Logic for Fault Trees 211

Translating FTs to BDDs. As a first step, a translation from fts to bdds is
needed [37]. These bdds represent exactly the structure function of (sub)trees.
In the following, we assume Vars = V ∪̇ V′, where the set of variables V = BE and
the set of primed variables V′ = {e′|e ∈ BE} (used for the bdd translation of the
mcs operator, see Appendix A.2). Furthermore, we keep VarB : BDD → Vars
to be a function that returns variables occurring in a bdd [37]. Then, our
translation function ΨFT : E → BDD takes elements of a ft as input and maps
them to bdds. For an exact definition of ΨFT see Appendix A.1.

Translating Formulae. With bdds for fts, the next step consists in manip-
ulating them to mirror PFL operators in layer-one. I.e., given ΨFT and a ft T,
for every PFL formula φ in the set of PFL layer-one formulae X1 there exists
a translation to bdds BT : X1 → BDD in Algorithm 5 (see Appendix A.2).
The implementation of this procedure abides the dynamic programming stan-
dards: by caching, we would reuse the translation of (sub)trees and (sub)formulae
between different analyses without recomputing them each time anew.

6.3 Equipping BDDs with Probabilities

Algorithm 1. Obtain Φ∗
T(μx , φ) for BT(φ).

Input: ft T, formula φ
Output: function Φ∗

T(μx , φ) : [0, 1]n → [0, 1]
where x1, . . . , xn ∈ x are function parameters
Method:
BT(φ) ← Algorithm 5(T, φ)
poly(BT(φ)) ← value(RBT(φ)), where:

- value(wi �∈ Wt) = (1 − xi) · value(Low(wi))
+xi · value(High(wi))

- value(�) = 1 and value(⊥) = 0
return poly(BT(φ))

Once we obtain bdds for
fts/φ-formulae, we can con-
struct a function Φ∗

T(μx , φ)
from [0, 1]n to [0, 1] that com-
putes the probability value of
φ given probability values in
x , where x can be substituted
with any ρ . Algorithm 1 shows
this procedure: first, we com-
pute BT(φ) via Algorithm 5,
we then obtain a polynomial
poly(BT(φ)) representing BT(φ)
via value(RBT(φ)), where value(wi �∈ Wt) = (1 − xi) · value(Low(wi)) + xi ·
value(High(wi)), value(�) = 1 and value(⊥) = 0. x1, . . . , xn ∈ x are param-
eters of the constructed function and can be substituted in poly(BT(φ)) with
values from an arbitrary ρ to compute the overall probability value of the bdd
for ft/φ-formula.

6.4 Algorithm 2: Model Checking PFL over a FT and a ρ

Overview. Given a specific vector ρ , a ft T and a PFL layer-two formula ψ, we
want to check if ρ , T |= ψ. To do so, if we come across a layer-one formula φ we
translate it to a bdd, we equip the resulting bdd with probabilities obtained
from ρ and we compute whether the resulting value respects the threshold set
in the given layer-two formula ψ. Boolean connectives are resolved as usual and
independence is checked according to probability laws once the value for the
respective bdd is computed. For the corresponding layer-three formulae ξ, we



212 S. M. Nicoletti et al.

would simply return the value computed from the bdd instead of comparing it
to the given layer-two threshold.

Algorithm 2. This algorithm shows a procedure to check if ρ , T |= ψ, given ρ , T
and ψ. Boolean connectives are handled as usual via case distinction. In the same
way, probability values in ρ are replaced by mappings in ψ, if any. For Pr��p(φ |
φ′), we compute the bddBT(φn) for each φn of the respective layer-one formulae
via Algorithm 1. Finally, we compute the conditional probability P (φ | φ′). If the
returned value respects the threshold set in ψ we return True, False otherwise.
For IDP we follow an analogous procedure: we compute probability values of
needed layer-one inner formulae and we return True if they are stochastically
independent. An algorithm for layer-three formulae ξ would simply return the
conditional probability value for Pr(φ | φ′), after potentially modifying ρ and
computing P (BT(φn)).

Example. Let us consider the subtree in Fig. 1 and a vector with probability val-
ues for WW , H2S , O2 and CO2 respectively: ρ = (0.002, 0.001, 0.0015, 0.002).
Suppose we want to know if P (MeC ) is lower or equal to 0.0001, assuming
the scenario where P (H2S) = 0.0023 and P (WW ) = 0.015, i.e., formally with
ψ = Pr≤0.0001(MeC )[H2S �→ 0.0023, WW �→ 0.015]. First, ρ would be modified
as per the new assignments in ψ: ρ = (0.015, 0.0023, 0.0015, 0.002). Then, Algo-
rithm 2 is called again with the modified ρ and the bdd BT(MeC ) for MeC is
constructed (see Fig. 4). The value for the bdd is computed via Algorithm 1.
The result (0.000087) is lower than the threshold in ψ, the formula is satisfied
and the algorithm returns True.

Algorithm 2. Check if ρ , T |= ψ, given ρ , T and ψ.
Input: prob. vector ρ , ft T, formula ψ
Output: True iff ρ ,T |= ψ, False otherwise.
Method:
if ψ = ¬ψ′ then return not(Algorithm 2(ρ ,T, ψ′))
else if ψ = ψ′ ∧ ψ′′ then return Algorithm 2(ρ ,T, ψ′) and Algorithm 2(ρ ,T, ψ′′)
else if ψ = Pr��p(φ | φ′) then

P(BT(φ)),P(BT(φ′)) ← Algorithm 1(T, φ)(ρ ), Algorithm 1(T, φ′)(ρ )
P(φ | φ′) = P(BT(φ))·P(BT(φ′))

P(BT(φ′))
return P(φ | φ′) �� p

else if ψ = ψ′[ei �→ q] then return Algorithm 2(ρ [ρi �→ q],T, ψ′)
else if ψ = IDP(φ, φ′) then

P(BT(φ)),P(BT(φ′)),P(BT(φ ∧ φ′)) ← Algorithm 1(T, φ)(ρ ), Algorithm 1(T, φ′)(ρ ),
Algorithm 1(T, φ ∧ φ′)(ρ )
return P(BT(φ)) · P(BT(φ′)) = P(BT(φ ∧ φ′))

end if



PFL: A Probabilistic Logic for Fault Trees 213

6.5 Algorithm 3: Computing regions where ψ-formulae are satisfied

Overview. Given a FT T and a layer-two formula ψ, we want

Fig. 4. bdd for
Fig. 1.

to find the region Syes in [0, 1]n of all ρ that satisfy ψ. Typi-
cally, such a region is defined by large polynomials, and there-
fore difficult to describe analytically. Instead, we provide an
algorithm that approximates this region up to a given level
of precision. Such an approximation is given in the definition
below: it consists of a region Syes where ψ is known to hold, a
region Sno where ψ does not hold, and the remainder Smaybe
is of limited volume.

Definition 6. Let T be a FT, let ε ∈ (0, 1], and let ψ be a layer-two formula. A
ε-partition for ψ is a partition (Syes, Sno, Smaybe) of [0, 1]n such that: 1. ρ , T |= ψ
for all ρ ∈ Syes; 2. ρ , T �|= ψ for all ρ ∈ Sno; 3. Vol(Smaybe) ≤ ε, where Vol
denotes n-dimensional volume.

Algorithm 3. Given T , find ε-partition for Pr≥p(φ|φ′).
Input: FT T , formulae φ, φ′, reals p, ε ∈ (0, 1].
Output: ε-partition (Syes, Sno, Smaybe) for Pr≥p(φ|φ′).
Method:
Bmaybe ← {[0, 1]n}; Vmaybe ← 1; Syes, Sno ← ∅

while Vmaybe > ε do
Pick B =

∏n

i=1[li, ui] from Bmaybe with maximal volume
Bmaybe ← Bmaybe \ {B}
Vmaybe ← Vmaybe − Vol(B)
Btest ←

{∏n

i=1 Ii

∣
∣ ∀i.Ii ∈ {[li,

li+ui
2 ], [ li+ui

2 , ui]}
}

for each B′ =
∏n

i=1[l′
i, u′

i] ∈ Btest do
A ← {ρ ∈ [0, 1]n | ∀i.ρi ∈ {l′

i, u′
i}}

pmin ← minρ ∈A
Algorithm 1(T,φ∧φ′)(ρ )

Algorithm 1(T,φ)(ρ )

pmax ← maxρ ∈A
Algorithm 1(T,φ∧φ′)(ρ )

Algorithm 1(T,φ)(ρ )
if p ≤ pmin then Syes ← Syes ∪ B′

else if p > pmax then Sno ← Sno ∪ B′

else Bmaybe ← Bmaybe ∪ {B′}; Vmaybe = Vmaybe + Vol(B′)
end if

end for
end while
Smaybe ← ⋃

Bmaybe
return (Syes, Sno, Smaybe)

Algorithm 3. An algorithm finding a ε-partition for formulae of the form ψ =
Pr≥p(φ|φ′) is given in Algorithm 3; it works as follows. We have a set Bmaybe
of candidate hypercubes, which starts as the singleton {[0, 1]n}. One by one, we
take hypercubes B from Bmaybe, and divide them into 2n smaller hypercubes.
For each of the smaller hypercubes B′, we check whether ρ , T |= ψ for all ψ ∈ B′;
if so, we add B′ to Syes. If ρ , T �|= ψ for all ψ ∈ B′, we add B′ to Sno. If neither is
true, then we add B′ to Bmaybe, so that later it is split up again. The algorithm



214 S. M. Nicoletti et al.

stops when the joint volume of all hypercubes in Bmaybe is at most ε. Algorithm
3 has the argument ε to ensure that it terminates, as one can go on partitioning
hypercubes indefinitely. The algorithm can easily be adapted to other stopping
conditions, such as a maximal number of hypercubes. Literature in the area of
parametric model checking explored this technique, also w.r.t. Markov decision
processes (MDPs) [18,22,24,30,31]. However, we leverage the specific situation
presented here to devise a less generic but more convenient algorithm. In fact,
to check ∀ρ ∈ B′.ρ , T |= ψ, we use Theorem 1 (proof in Appendix B.1), which
says that the minimum of Φ∗

T(ρ ,φ∧φ′)
Φ∗

T(ρ ,φ′)

(
computed as Algorithm1(T,φ∧φ′)(ρ )

Algorithm1(T,φ)(ρ )

)
on

B′ is attained at one of its vertices. This means that we only need to check
whether ρ , T |= ψ for the set A of vertices of B′. The same holds for checking
∀ρ ∈ B′.ρ , T �|= ψ.

Theorem 1. Let φ, φ′ be layer-one formulae, and let B ⊆ [0, 1]n be a hyperrect-
angle. Then Φ∗

T(ρ ,φ∧φ′)
Φ∗

T(ρ ,φ′) attains its minimum and maximum (as a function of ρ )
at one of the vertices of B.

So far, we have assumed ψ = Pr≥p(φ|φ′). Formulae of the form Pr=p(φ|φ′) and
IDP(φ, φ′) generally define hypersurfaces in [0, 1]n rather than regions; these can
be approximated by considering the set Smaybe of a ε-partition, which forms an
open neighborhood of the actual hypersurface. Furthermore, one finds regions
for ¬ψ and ψ ∧ ψ′ by considering complements and intersections, respectively.

6.6 Algorithm 4: Checking PFL ψ-formulae over a FT for all ρ

Overview. Given a ft T a layer-two formula ψ, we want to check if T |= ψ for
all ρ . In this section we discuss two different approaches to answer this question,
one derived from Algorithm 3 and one employing SAT solving.

Algorithm 4. Leveraging Algorithm 3, one could check whether T |= ψ for all ρ
by checking the parameter space in order to show that the negated formula ¬ψ
is unsatisfiable. If, on the other hand, we manage to find a candidate hypercube
B′ from Bmaybe such that ∀ρ ∈ B′.ρ , T |= ¬ψ then we can exhibit a region
that serves as a counterexample for our initial question. This procedure would
be bound to approximate to a given level of precision, as previously discussed.

The second possibility is to resort to SMT solving. Again, our aim is to check
if the negation of the given formula is unsatisfiable. First, we translate each of the
inner φn layer-one formulae (e.g., inside Pr��p(φ | φ′) or IDP(φ, φ′) operators)
to bdds, to then obtain representations of these bdds as polynomials (see
Algorithm 1). By comparing these to bounds set in Pr��p(φ | φ′) operators or
to the semantics of IDP(φ, φ′), one can represent the original negated formula
¬ψ via (in)equalities between polynomials. We then use already available SMT
solvers - such as SMT-RAT [16] - as a black box to handle such an encoding.
If the input representation is satisfiable, the SMT solver returns an assignment
of variables to values, i.e., a counterexample probability vector for our original
question.



PFL: A Probabilistic Logic for Fault Trees 215

7 Conclusion and Future Work

Conclusion. We presented PFL, a probabilistic logic for fts that enables the
construction of complex queries that capture many relevant scenarios. Further-
more, we introduced LangPFL, a domain specific language for PFL to ease prop-
erty specification. We showcased their usefulness with an application of PFL and
LangPFL to a COVID19-related ft and to a ft for an oil/gas pipeline. Speci-
fied properties can then be checked via the model checking algorithms, that we
presented alongside relevant theorems.
Future Work. Our work opens several relevant perspectives for future research.
First, it would be interesting to extend PFL to consider timed behaviours to
further extend quantitative analysis capabilities. Secondly, it would be possible to
extend PFL in order to consider dynamic gates in fts. This further validates our
first point: to handle dynamic gates in dynamic fts it would be very natural to
have a logic that can express temporal properties, moving more in the direction of
LTL [40] or CTL [14] or their timed variants TLTL [41] and TCTL [1]. Moreover,
it is foreseeable to extend the proposed framework to security variants of fts,
attack trees (ats) [7,12,27,44], and to their combinations, e.g., attack-fault trees
(AFTs) [32]. Another relevant area is concerned with automatic inference of fts:
further research could explore inference on PFL formulae, e.g. based on genetic
algorithms [29] or dedicated methods [35]. Lastly, developing an implementation
of this logic could further propel usability of PFL and LangPFL by providing
hands-on feedback from domain experts acquainted with FTA.

A Appendix: Algorithms and Additional Definitions
for Layer One Formulae

Following, operations between bdds are represented by bold operands e.g.,
∧, ∨. Algorithms to conduct these operations on bdds can be found in [2,5].
Given a set of variables V = {v1, . . . , vn}, existential quantification (needed to
translate part of the semantics of MCS operator) can be defined as follows:
∃v.B = Restrict(B, v, 0) ∨ Restrict(B, v, 1); ∃V.B = ∃v1.∃v2. . . . ∃vn.B.

A.1 Translating FTs to BDDs
ΨFT is defined as follows:
Definition 7. The translation function of a FT T is a function ΨFTT : E → BDD
that takes as input an element e ∈ E. With e′ ∈ ch(e), we can define ΨFTT :

ΨFTT(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B(e) if e ∈ BE
∨

ΨFTT(e′) if e ∈ IE and t(e) = OR
∧

ΨFTT(e′) if e ∈ IE and t(e) = AND
∨

n1,...,nk

n1<...<nk

k∧

i=1
ΨFTT(e′

ni
) if e ∈ IE and t(e)=VOT(k/N)

where B(v) is a BDD with a single node in which Low(v) = 0 and High(v) = 1.



216 S. M. Nicoletti et al.

A.2 Algorithm 5: Translating FTs/Formulae to BDDs

Following, the recursion scheme taken from [37] to translate fts and layer one
formulae is presented.

Algorithm 5. Given φ and T, compute BT(φ)
Input: ft T, formula φ
Output: BT(φ)
Method: Compute BT(φ) according to the recursion scheme below. Store
intermediate results BT(· · ·) and ΨFTT(· · ·) in a cache in case they are used
several times.

Recursion scheme:
BT(e) : ΨF TT(e)
BT(¬φ) : ¬(BT(φ))
BT(φ ∧ φ′) : BT(φ) ∧ BT(φ′)
BT(φ[ei �→ 0]) : Restrict(BT(φ), ei, 0)
BT(φ[ei �→ 1]) : Restrict(BT(φ), ei, 1)
BT(MCS(φ)) : BT(φ) ∧ (¬∃V′.BT(V′ ⊂ V)∧

BT(φ)[V � V′]) where:

BT(V′ ⊂ V) ≡ BT(
∧

k

v′
k ⇒ vk)∧

BT(
∨

k

v′
k �= vk)

where BT(φ)[V � V′] indicates the bdd BT(φ) in which every variable vk ∈ V
is renamed to its primed v′

k ∈ V′.

A.3 Algorithm 6: Model Checking PFL over a FT and a b

Overview. As per [37], given a specific vector b, a ft T and a layer one formula
φ, this algorithm showcases how to check if b , T |= φ. To do so, we translate the
given formula to a bdd and then we walk down the bdd from the root node
following truth assignments given in the specific vector b .

Algorithm 6. Algorithm 6 shows an algorithm to check whether b , T |= φ, given
a status vector b , a ft T and a formula φ. A bdd for the formula φ is computed
with regard to the structure function of the given ft T i.e., we compute BT(φ)
as per Algorithm 5. Subsequently, the algorithm walks down the bdd following
the Boolean assignments given in b : if the i-th element of b is set to 0 then the
next node in the path will be given by Low(wi), if it is set to 1 then the next
node will be High(wi). When the algorithm reaches a terminal node it returns
True if its value is one - i.e., if b , T |= φ - and False otherwise.



PFL: A Probabilistic Logic for Fault Trees 217

Algorithm 6. Check if b , T |= φ, given b, T and φ.
Input: boolean vector b, ft T and a formula φ
Output: True iff b,T |= φ, False otherwise.
Method: compute BT(φ)
Starting from bdd root,
while current node wi of BT(φ) �∈ Wt do:

if bi ∈ b = 0 then:
wi = Low(wi)

else if bi ∈ b = 1 then:
wi = High(wi)

end if
end while
if wi = 0 then:

return False
else if wi = 1 then:

return True
end if

A.4 Algorithm 7: Computing all Satisfying Vectors

Overview. Given a ft T and a formula φ, we now want to compute all vectors b
such that b , T |= φ. In this scenario no Boolean vector is given. Thus, we need to
construct the bdd for the given formula and then collect every path that leads
to the terminal 1 to compute all satisfying vectors �b �T for the given formula.

Algorithm 7. To achieve the desired outcome we will construct the bdd BT(φ)
for the given formula following Algorithm 5. Then, the algorithm will walk down
the bdd and store all the paths that lead to the terminal node 1. These paths
represent all the status vectors that satisfy our formula φ. The value for the
elements of each vector is set to 0 or 1 if the stored path follows respectively
the low or high edge of the collected elements of the bdd. After computing the
bdd for a given φ, AllSat [2] will achieve the desired outcome. This algorithm
returns exactly all the satisfying assignments for a given bdd, i.e., in our case,
all the Boolean vectors that satisfy our formula.

B Appendix: Proofs

B.1 Proof for Theorem 1

Proof. For a layer one formula φ and ρ ∈ B, one can express

Φ∗
T(μρ , φ) =

∑

b∈B
n :

ΦT (b,φ)=1

n∏

i=1
ρbi

i (1 − ρi)1−bi . (1)



218 S. M. Nicoletti et al.

This is a polynomial in the n variables ρi. Each summand has degree 1 in each
ρi, hence Φ∗

T(μρ , φ) can be written as

Φ∗
T(μρ , φ) =

∑

w∈{0,1}n

ch
w

n∏

i=1
ρwi

i (2)

for some constants ch
w ∈ R. Now fix an i, and let φ, φ′ be two Boolean formulae;

then we can write Φ∗
T(μρ ,φ∧φ′)
Φ∗

T(μρ ,φ′) = Aρi+B
Cρi+D for some polynomials A, B, C, D in the

variables ρ1, . . . , ρi−1, ρi+1, . . . , ρn. In particular, we have

∂

∂ρi

Φ∗
T(μρ , φ ∧ φ′)
Φ∗
T(μρ , φ′) = AD − BC

(Cρi + D)2 . (3)

The sign of this partial derivative does not depend on the value of ρi. In par-
ticular, when all other ρi′ are fixed, this expression is maximized on an interval
when ρi is at one of the boundary points of that interval.

Now let us return to the setting of the Theorem; we will prove it for the
maximum only as the minimum is proved analogously. Let Let B =

∏
i[li, ui]

and let ρ ∈ ∏
i[l

−1
i , l+i ]; our aim is to find a vertex ρ ′ such that Φ∗

T(μρ ,φ∧φ′)
Φ∗

T(μρ ,φ′) ≤
Φ∗

T(μρ ′ ,φ∧φ′)
Φ∗

T(μρ ′ ,φ′) . To do so, we construct a sequence ρ 0, ρ 1, . . . , ρ n with the following
properties:

1. ρ 0 = ρ ;
2. Φ∗

T(μρ i
,φ∧φ′)

Φ∗
T(μρ i

,φ′) ≤ Φ∗
T(μρ i+1 ,φ∧φ′)
Φ∗

T(μρ i+1 ,φ′) for i < n;
3. ρi,i′ ∈ {li′ , ui′} for i′ ≤ i ≤ n.

This ensures that ρ ′ := ρ n has the required property. We define each ρ i from
ρ i−1 as follows: define ρ −

i , ρ +
i ∈ [li, ui] by

ρ •
i,i′ =

⎧
⎪⎨

⎪⎩

li, if • = − and i′ = i,

ui, if • = + and i′ = i,

ρi−1,i′ , if i′ �= i.

By the discussion following (3), one has Φ∗
T(μρ i

,φ∧φ′)
Φ∗

T(μρ i
,φ′) ≤ max

{
Φ∗

T(μρ
−
i+1

,φ∧φ′)

Φ∗
T(μρ

−
i+1

,φ′) ,
Φ∗

T(μρ
+
i+1

,φ∧φ′)

Φ∗
T(μρ

+
i+1

,φ′)

}

. Take ρ i+1 ∈ {ρ −
i+1, ρ +

i+1} to maximize

Φ∗
T(μρ i+1 ,φ∧φ′)
Φ∗

T(μρ i+1 ,φ′) , then this satisfies conditions 1–3 above.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)



PFL: A Probabilistic Logic for Fault Trees 219

2. Andersen, H.R.: An introduction to binary decision diagrams. Lecture notes, avail-
able online, IT University of Copenhagen, p. 5 (1997)

3. Bakeli, T., Hafidi, A.A., et al.: COVID-19 infection risk management during con-
struction activities: an approach based on fault tree analysis (FTA). J. Emerg.
Manage. 18(7), 161–176 (2020)

4. Basgöze, D., Volk, M., Katoen, J., Khan, S., Stoelinga, M.: BDDs strike back -
efficient analysis of static and dynamic fault trees. In: Deshmukh, J.V., Havelund,
K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 713–732. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06773-0_38

5. Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-4471-4129-7

6. Bieber, P., Castel, C., Seguin, C.: Combination of fault tree analysis and model
checking for safety assessment of complex system. In: Bondavalli, A., Thevenod-
Fosse, P. (eds.) EDCC 2002. LNCS, vol. 2485, pp. 19–31. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36080-8_3

7. Bobbio, A., Egidi, L., Terruggia, R.: A methodology for qualitative/quantitative
analysis of weighted attack trees. IFAC Proc. Vol. 46(22), 133–138 (2013). https://
doi.org/10.3182/20130904-3-UK-4041.00007

8. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using
input/output interactive Markov chains. In: DSN, pp. 708–717. IEEE Computer
Society (2007). https://doi.org/10.1109/DSN.2007.37

9. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5), 754–775 (2011). https://doi.org/10.1093/comjnl/bxq024

10. Brace, K., Rudell, R., Bryant, R.: Efficient implementation of a BDD package. In:
27th ACM/IEEE Design Automation Conference, pp. 40–45 (1990). https://doi.
org/10.1109/DAC.1990.114826

11. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5_9

12. Budde, C.E., Stoelinga, M.: Efficient algorithms for quantitative attack tree anal-
ysis. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pp.
1–15 (2021). https://doi.org/10.1109/CSF51468.2021.00041

13. Clark, P., Harrison, P., Jenkins, T., Thompson, J.A., Wojcik, R.H., et al.: Acquir-
ing and using world knowledge using a restricted subset of English. In: Flairs
Conference, pp. 506–511 (2005)

14. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

15. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A compo-
sitional proof framework for FRETish requirements. In: Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
68–81 (2022)

16. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open
source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver,
S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24318-4_26

https://doi.org/10.1007/978-3-031-06773-0_38
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1007/3-540-36080-8_3
https://doi.org/10.3182/20130904-3-UK-4041.00007
https://doi.org/10.3182/20130904-3-UK-4041.00007
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1109/DAC.1990.114826
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1109/CSF51468.2021.00041
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26


220 S. M. Nicoletti et al.

17. Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements capture and analy-
sis in ASSERT (TM). In: 2017 IEEE 25th International Requirements Engineering
Conference (RE), pp. 283–291. IEEE (2017)

18. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Convex optimiza-
tion for parameter synthesis in MDPs. IEEE Trans. Autom. Control 67, 6333–6348
(2021)

19. Déharbe, D., Shankar, S., Clarke, E.M.: Model checking VHDL with CV. In:
Gopalakrishnan, G., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 508–
514. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49519-3_33

20. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE
Trans. Reliab. 45(3), 422–425 (1996)

21. Ericson, C.A.: Fault tree analysis. In: System Safety Conference, vol. 1, pp. 1–9
(1999)

22. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric
Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_18

23. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ-
2020). No. ARC-E-DAA-TN77785 (2020)

24. Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20398-5_12

25. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require-
ments. IEEE Trans. Software Eng. 24(7), 573–584 (1998)

26. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

27. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0_9

28. International Standardization Organization: ISO/DIS 26262: Road vehicles, func-
tional safety (2018). https://www.iso.org/standard/68383.html

29. Jimenez-Roa, L., Heskes, T., Tinga, T., Stoelinga, M.: Automatic inference of fault
tree models via multi-objective evolutionary algorithms. IEEE Trans. Dependable
Secure Comput., 1–12 (2021). https://doi.org/10.1109/TDSC.2022.3203805

30. Junges, S., et al.: Parameter synthesis for Markov models. arXiv preprint
arXiv:1903.07993 (2019)

31. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 31–45
(2016)

32. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: Proceedings of the 18th IEEE International Symposium on High
Assurance Systems Engineering (HASE 2017), pp. 25–32. HASE, IEEE, USA
(2017). https://doi.org/10.1109/HASE.2017.12

33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

https://doi.org/10.1007/3-540-49519-3_33
https://doi.org/10.1007/978-3-030-01090-4_18
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/978-3-642-20398-5_12
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://www.iso.org/standard/68383.html
https://doi.org/10.1109/TDSC.2022.3203805
http://arxiv.org/abs/1903.07993
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47


PFL: A Probabilistic Logic for Fault Trees 221

34. Moszkowski, B.: A temporal logic for multi-level reasoning about hardware. Tech-
nical report, STANFORD UNIV CA (1982)

35. Nauta, M., Bucur, D., Stoelinga, M.: LIFT: learning fault trees from observational
data. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 306–
322. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_19

36. Nicoletti, S., Hahn, E., Stoelinga, M.: A logic to reason about fault trees.
Interview Report. https://www.utwente.nl/en/eemcs/fmt/research/files/ft-logic-
interview-domain-expert.pdf

37. Nicoletti, S., Hahn, E., Stoelinga, M.: BFL: a logic to reason about fault trees.
In: (DSN), pp. 441–452. IEEE/EUCA (2022). https://doi.org/10.1109/DSN53405.
2022.00051

38. Ognjanovic, Z.: Discrete linear-time probabilistic logics: completeness, decidability
and complexity. J. Log. Comput. 16(2), 257–285 (2006). https://doi.org/10.1093/
logcom/exi077

39. Pease, A., Murray, W.: An English to logic translator for ontology-based knowledge
representation languages. In: 2003 Proceedings of the International Conference
on Natural Language Processing and Knowledge Engineering, pp. 777–783. IEEE
(2003)

40. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

41. Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D.
thesis, Facultés universitaires Notre-Dame de la Paix, Namur (1999)

42. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3),
203–211 (1993). https://doi.org/10.1016/0951-8320(93)90060-C

43. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015). https://doi.
org/10.1016/j.cosrev.2015.03.001

44. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
45. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:

Fault tree handbook with aerospace applications. Prepared for NASA Office of
Safety and Mission Assurance (2002)

46. Thums, A., Schellhorn, G.: Model checking FTA. In: Araki, K., Gnesi, S., Man-
drioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 739–757. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_40

47. Volk, M., Junges, S., Katoen, J.: Fast dynamic fault tree analysis by model checking
techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018). https://doi.org/10.
1109/TII.2017.2710316

48. Walker, M.D.: Pandora: a logic for the qualitative analysis of temporal fault trees.
Ph.D. thesis, The University of Hull (2009)

49. White, C., Schwitter, R.: An update on PENG light. In: Proceedings of the Aus-
tralasian Language Technology Association Workshop 2009, pp. 80–88 (2009)

50. Yuhua, D., Datao, Y.: Estimation of failure probability of oil and gas transmission
pipelines by fuzzy fault tree analysis. J. Loss Prev. Process Ind. 18(2), 83–88 (2005)

https://doi.org/10.1007/978-3-319-99154-2_19
https://www.utwente.nl/en/eemcs/fmt/research/files/ft-logic-interview-domain-expert.pdf
https://www.utwente.nl/en/eemcs/fmt/research/files/ft-logic-interview-domain-expert.pdf
https://doi.org/10.1109/DSN53405.2022.00051
https://doi.org/10.1109/DSN53405.2022.00051
https://doi.org/10.1093/logcom/exi077
https://doi.org/10.1093/logcom/exi077
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0951-8320(93)90060-C
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1007/978-3-540-45236-2_40
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1109/TII.2017.2710316


Energy Büchi Problems

Sven Dziadek , Uli Fahrenberg(B) , and Philipp Schlehuber-Caissier

EPITA Research Laboratory (LRE), Paris, France

uli@lrde.epita.fr

Abstract. We show how to efficiently solve energy Büchi problems in
finite weighted automata and in one-clock weighted timed automata.
Solving the former problem is our main contribution and is handled by a
modified version of Bellman-Ford interleaved with Couvreur’s algorithm.
The latter problem is handled via a reduction to the former relying on
the corner-point abstraction. All our algorithms are freely available and
implemented in a tool based on the open-source platforms TChecker
and Spot.

Keywords: Weighted timed automaton · Weighted automaton ·
Energy problem · Generalized Büchi acceptance · Energy constraints

1 Introduction

Energy problems in weighted (timed) automata pose the question whether there
exist infinite runs in which the accumulated weights always stay positive. Since
their introduction in [7], much research has gone into different variants of these
problems, for example energy games [12,16,27], energy parity games [11], robust
energy problems [2], etc., and into their application in embedded systems [17,
19], satellite control [5,25], and other areas. Nevertheless, many basic questions
remain open and implementations are somewhat lacking.

The above results discuss looping automata [28], i.e., ω-automata in which all
states are accepting. In practice, looping automata do not suffice because they
cannot express all liveness properties. For model checking, formal properties
(e.g., in LTL) are commonly translated into (generalized) Büchi automata [9]
that provide a simple model for the larger class of ω-regular languages.

In this work, we extend energy problems with transition-based generalized
Büchi conditions and treat them for weighted automata as well as weighted timed
automata with precisely one clock. On weighted automata we show that they are
effectively decidable using a combination of a modified Bellman-Ford algorithm
with Couvreur’s algorithm. For weighted timed automata we show that one can
use the corner-point abstraction to translate the problem to weighted (untimed)
automata.

Partially funded by ANR project Ticktac (ANR-18-CE40-0015).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 222–239, 2023.
https://doi.org/10.1007/978-3-031-27481-7_14

https://doi.org/10.5281/zenodo.7351426
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_14&domain=pdf
http://orcid.org/0000-0001-6767-7751
http://orcid.org/0000-0001-9094-7625
http://orcid.org/0000-0002-6611-9659
https://doi.org/10.1007/978-3-031-27481-7_14


Energy Büchi Problems 223

Fig. 1. Satellite example: two representations of the base circuit. (a) as weighted timed
automaton A; (b) as a (finite) weighted automaton.

For looping automata, the above problems have been solved in [7]. (This
paper also treats energy games and so-called universal energy problems, both of
which are of no concern to us here.) While we can re-use some of the methods of
[7] for our Büchi-enriched case, our extension is by no means trivial. First, in the
setting of [7] it suffices to find any reachable and energy positive loop; now, our
algorithm must consider that such loops might not be accepting in themselves
but give access to new parts of the automaton which are. Secondly, [7] mostly
treat the energy problem with unlimited upper bound, whereas we consider that
energy has a (“weak”) upper bound beyond which it cannot increase. [7] claim
that the weak-upper-bound problem can be solved by slight modifications to
their solution of the unbounded problem; but this is not the case. For example,
the typical Bellman-Ford detection of positive cycles might not work when the
energy levels attained in the previous step are already equal to the upper bound.

As a second contribution, we have implemented all of our algorithms in
a tool based on the open-source platforms TChecker1 [22] and Spot2 [13] to
solve generalized energy Büchi problems for one-clock weighted timed automata.
We first employ TChecker to compute the zone graph and then use this to
construct the corner-point abstraction. This in turn is a weighted (untimed)
generalized Büchi automaton, in which we also may apply a variant of Alur
and Dill’s Zeno-exclusion technique [1]. Finally, our main algorithm to solve
generalized energy Büchi problems on weighted finite automata is imple-
mented using a fork of Spot. Our software is available at https://github.com/
PhilippSchlehuberCaissier/wspot.

In our approach to solve the latter problem, we do not fully separate the
energy and Büchi conditions (contrary to, for example, [11] who reduce energy
parity games to energy games). We first determine the strongly connected com-
ponents (SCCs) of the unweighted automaton. Then we degeneralize each Büchi
accepting SCC one by one, using the standard counting construction [20]. Finally,
we apply a modified Bellman-Ford algorithm to search for energy feasible lassos
that start on the main graph and loop in the SCC traversing the remaining
Büchi condition.

Running example 1. To clarify notation and put the concepts into context, we
introduce a small running example. A satellite in low-earth orbit has a rotation

1 See https://github.com/ticktac-project/tchecker.
2 See https://spot.lrde.epita.fr/.

https://github.com/PhilippSchlehuberCaissier/wspot
https://github.com/PhilippSchlehuberCaissier/wspot
https://github.com/ticktac-project/tchecker
https://spot.lrde.epita.fr/


224 S. Dziadek et al.

Fig. 2. Weighted timed automaton A1 for satellite with work module.

time of about 90 min, 40% of which are spent in earth shadow. Measuring time
in minutes and (electrical) energy in unspecified “energy units”, we may thus
model its simplified base electrical system as shown in Fig. 1a.

This is a weighted timed automaton (the formalism will be introduced in
Sect. 3) with one clock, x, and two locations. The clock is used to model time,
which progresses with a constant rate but can be reset on transitions. The initial
location on the left (modeling earth shadow) is only active as long as x ≤ 35,
and given that x is initially zero, this means that the model may stay here for
at most 35 min. Staying in this location consumes 10 energy units per minute,
corresponding to the satellite’s base consumption.

After 35 min the model transitions to the “sun” location on the right, where
it can stay for at most 55 min and the solar panels produce 50 energy units per
minute, from which the base consumption has to be subtracted. Note that the
transitions can only be taken if the clock shows exactly 35 (resp. 55) minutes;
the clock is reset to zero after the transition, as denoted by x ← 0. This ensures
that the satellite stays exactly 35 min in the shadow and 55 min in the sun,
roughly consistent with the “physical” model.

Figure 1b shows a translation of the automaton of Fig. 1a to a weighted
untimed automaton. State 1 corresponds to the “shadow” location, transitions
are annotated with the corresponding weights, the rate of the location multi-
plied by the time spent in it. In Sect. 3 we will show how to obtain a weighted
automaton from a weighted timed automaton with precisely one clock.

One may now pose the following question: for a given battery capacity b and
an initial charge c, is it possible for the satellite to function indefinitely without
ever running out of energy? It is clear that for c < 350 or b < 350, the answer is
no: the satellite will run out of battery before ever leaving Earth’s shadow; for
b ≥ 350 and c ≥ 350, it will indeed never run out of energy.

Now assume that the satellite also has some work to do: once in a while it
must, for example, send some collected data to earth. Given that we can only
handle weighted automata with precisely one clock (see Sect. 3), we model the
combined system as in Fig. 2. That is, work (modeled by the leftmost location)
takes 5 min and costs an extra 10 energy units per minute. The dot on the
outgoing transition of the work state marks a (transition-based) Büchi condition
which forces us to see the transition infinitely often in order for the run to
be accepted. As a consequence, all accepting runs also visit the “work” state
indefinitely often, consistent with the demand to send data once in a while. In
order to model the system within the constraints of our modeling formalism, we
must make two simplifying assumptions, both unrealistic but conservative:



Energy Büchi Problems 225

– work occurs during earth shadow;
– work prolongs earth shadow time.

The reason for the second property is that the clock x is reset to 0 when entering
the work state; otherwise we would not be able to model that it lasts 5 min
without introducing a second clock. It is clear how further work modules may
be added in a similar way, each with their own accepting color.

We will come back to this example later and, in particular, argue that the
above assumptions are indeed conservative in the sense that any behavior admit-
ted in our model is also present in a more realistic model which we will introduce.

2 Energy Büchi Problems in Finite Weighted Automata

We now define energy Büchi problems in finite weighted automata and show
how they may be solved. The similar setting for weighted timed automata will
be introduced in Sect. 3.

Definition 1 (WBA). A weighted (transition-based, generalized) Büchi
automaton (WBA) is a structure A = (M, S, s0, T ) consisting of a finite set
of colors M, a set of states S with initial state s0 ∈ S, and a set of transitions
T ⊆ S × 2M × R × S.

A transition t = (s,M,w, s′) ∈ T in a WBA is thus annotated by a set of
colors M and a real weight w, denoted by s

w−→M s′; to save ink, we may omit
any or all of w and M from transitions and M from WBAs. The automaton A is
finite if S and T ⊆ S×2M×Z×S are finite (thus finite implies integer-weighted).

A run in a WBA is a finite or infinite sequence ρ = s1 → s2 → · · · . We write
first(ρ) = s1 for its starting state and, if ρ is finite, last(ρ) for its final state.
Concatenation ρ1ρ2 of runs is the usual partial operation defined if ρ1 is finite
and last(ρ1) = first(ρ2). Also iteration ρn of finite runs is defined as usual, for
first(ρ) = last(ρ), and ρω = inj limn→∞ ρn denotes infinite iteration.

For c, b ∈ N3 and a run ρ = s1
w1−−→ s2

w2−−→ · · · , the (c, b)-accumulated weights
of ρ are the elements of the finite or infinite sequence weightsc↓b(ρ) = (e1, e2, . . . )
defined by e1 = min(b, c) and ei+1 = min(b, ei+wi). Hence the transition weights
are accumulated, starting with c, but only up to the maximum bound b; increases
above b are discarded. We call c the initial credit and b the weak upper bound.

Running example 2. In Fig. 1b, and choosing c = 360 and b = 750, we have
a single infinite run ρ = 1 −350−−−→ 2 2200−−−→ 1 −350−−−→ 2 2200−−−→ 1 −350−−−→ · · · , with
weightsc↓b(ρ) = (360, 10, 750, 400, 750, . . . ).

A run ρ as above is said to be (c, b)-feasible if weightsc↓b(ρ)i ≥ 0 for all indices
i, that is, the accumulated weights of all prefixes are non-negative. (This is the
case for the example run above.)

3 Natural numbers include 0.



226 S. Dziadek et al.

An infinite run ρ = s1 →M1 s2 →M2 · · · is Büchi accepted if all colors in M
are seen infinitely often along ρ, that is, for all m ∈ M and any index i ∈ N,
there exists j > i such that m ∈ Mj .

We fix a weak upper bound b ∈ N for the rest of the paper and write c-feasible
instead of (c, b)-feasible.

Definition 2. The energy Büchi problem for a finite WBA A and initial credit
c ∈ N is to ask whether there exists a Büchi accepted c-feasible run in A.

Energy problems for finite weighted automata without Büchi conditions,
asking for the existence of any c-feasible run, have been introduced in [7] and
extended to multiple weight dimensions in [16] where they are related to vector
addition systems and Petri nets. We extend them to (transition-based general-
ized) Büchi conditions here but do not consider an extension to multiple weight
dimensions.

Degeneralization. As a first step to solving energy problems for finite WBAs,
we show that the standard counting construction which transforms generalized
Büchi automata into simple Büchi automata with only one color, see for example
[20], also applies in our weighted setting. To see that, let A = (M, S, s0, T )
be a (generalized) WBA, write M = {m1, . . . ,mk}, and define another WBA
Ā = (M̄, S̄, s̄0, T̄ ) as follows:

M̄ = {ma} S̄ = S × {1, . . . , k} s̄0 = (s0, 1)

T̄ =
{
((s, i), ∅, w, (s′, i))

∣
∣ (s,M,w, s′) ∈ T,mi /∈ M

}

∪ {
((s, i), ∅, w, (s′, i + 1))

∣
∣ i 
= k, (s,M,w, s′) ∈ T,mi ∈ M

}

∪ {
((s, k), {ma}, w, (s′, 1))

∣
∣ (s,M,w, s′) ∈ T,mk ∈ M

}

That is, we split the states of A into levels {1, . . . , k}. At level i, the same
transitions exist as in A, except those colored with mi; seeing such a transition
puts us into level i + 1, or 1 if i = k. In the latter case, the transition in Ā is
colored by its only color ma. Intuitively, this preserves the language as we are
sure that all colors of the original automaton A have been seen:

Lemma 3. For any c ∈ N, A admits a Büchi accepted c-feasible run iff Ā does.

Reduction to Lassos. An infinite run ρ in A is a lasso if ρ = γ1γ
ω
2 for finite

runs γ1 and γ2. The following lemma shows that it suffices to search for lassos
in order to solve energy Büchi problems.

Lemma 4. For any c ∈ N, A admits a Büchi accepted c-feasible infinite run iff
it admits a Büchi accepted c-feasible lasso.

Hence our energy Büchi problem may be solved by searching for Büchi
accepted c-feasible lassos. We detail how to do this in Sect. 4, here we just sum
up the complexity result which we prove at the end of Sect. 4.

Theorem 5. Energy Büchi problems for finite WBA are decidable in polynomial
time.



Energy Büchi Problems 227

3 Energy Büchi Problems for Weighted Timed Automata

We now extend our setting to weighted timed automata. Let X be a finite set of
clocks. We denote by Φ(X) the set of clock constraints ϕ on X, defined by the
grammar ϕ ::= x �� k | ϕ1 ∧ ϕ2 with x ∈ X, k ∈ N, and �� ∈ {≤, <,≥, >,=}.
A clock valuation on X is a function v : X → R≥0. The clock valuation v0
is given by v0(x) = 0 for all x ∈ X, and for v : X → R≥0, d ∈ R≥0, and
R : X → (N ∪ {⊥}), we define the delay v + d and reset v[R] by

(v + d)(x) = v(x) + d, v[R](x) =

{
v(x) if R(x) = ⊥,

R(x) otherwise.

Note that in v[R] we allow clocks to be reset to arbitrary non-negative integers
instead of only 0 which is assumed in most of the literature. It is known [24] that
this does not change expressivity, but it adds notational convenience. A clock
valuation v satisfies clock constraint ϕ, denoted v |= ϕ, if ϕ evaluates to true
with x replaced by v(x) for all x ∈ X.

Definition 6 (WTBA). A weighted timed (transition-based, generalized)
Büchi automaton (WTBA) is a structure A = (M, Q, q0,X, I, E, r) consisting
of a finite set of colors M, a finite set of locations Q with initial location q0 ∈ Q,
a finite set of clocks X, location invariants I : Q → Φ(X), a finite set of edges
E ⊆ Q × 2M × Φ(X) × (N ∪ {⊥})X × Q, and location weight-rates r : Q → Z.

As before, we may omit M from the signature and colors from edges if
they are not necessary in the context. Note that the edges carry no weights
here, which would correspond to discrete weight updates. In a WTBA, only
locations are weighted by a rate. Even without Büchi conditions, the approach
laid out here would not work for weighted edges. This was already noted in [7];
instead it requires different methods which are developed in [6] (see also [14,15]).
There, one-clock weighted timed automata (with edge weights) are translated to
finite automata weighted with so-called energy functions instead of integers. We
believe that our extension to Büchi conditions should also work in this extended
setting, but leave the details to future work.

The semantics of a WTBA A as above is the (infinite) WBA �A� =
(M, S, s0, T ) given by S = {(q, v) ∈ Q × RX

≥0

∣
∣ v |= I(q)} and s0 = (q0, v0).

Transitions in T are of the following two types:

– delays (q, v) w−→d
∅(q, v+d) for all (q, v) ∈ S and d ∈ R≥0 for which v+d′ |= I(q)

for all d′ ∈ [0, d], with w = r(q)d; 4

– switches (q, v) 0−→0
M (q′, v′) for all e = (q,M, g,R, q′) ∈ E for which v |= g,

v′ = v[R] and v′ |= I(q′).

Each state in �A� corresponds to a tuple containing a location in A and a
clock valuation X → R≥0. This allows to keep track of the discrete state as well

4 Here we annotate transitions with the time d which passes; we only need this to
exclude Zeno runs below and will otherwise omit the annotation.



228 S. Dziadek et al.

Fig. 3. Satellite example. (a) work module W ; (b) product B1 = A ‖ W

as the evolution of the clocks. By abuse of notation, we will sometimes write
(q, v) ∈ �A� instead of (q, v) ∈ S, for S as defined above.

We may now pose energy Büchi problems also for WTBAs, but we wish to
exclude infinite runs in which time is bounded, so-called Zeno runs. Formally
an infinite run (q0, v0) →d1 (q1, v1) →d2 · · · is Zeno if

∑
di is finite: Zeno runs

admit infinitely many steps in finite time and are hence considered unrealistic
from a modeling point of view [1,21].

Definition 7. The energy Büchi problem for a WTBA A and initial credit
c ∈ N is to ask if there exists a Büchi accepted c-feasible non-Zeno run in �A�.

We continue our running example; but to do so properly, we need to intro-
duce products of WTBAs. Let Ai = (Mi, Qi, q

i
0,Xi, Ii, Ei, ri), for i ∈ {1, 2}, be

WTBAs. Their product is the WTBA A1 ‖ A2 = (M, Q, q0,X, I, E, r) with

M = M1 ∪ M2, Q = Q1 × Q2, q0 = (q10 , q
2
0), X = X1 ∪ X2,

I((q1, q2)) = I(q1) ∧ I(q2), r((q1, q2)) = r(q1) + r(q2),

E =
{
((q1, q2),M, g,R, (q′

1, q2))
∣
∣ (q1,M, g,R, q′

1) ∈ E1

}

∪ {
((q1, q2),M, g,R, (q1, q′

2))
∣
∣ (q2,M, g,R, q′

2) ∈ E2

}
.

Running example 3. Let A be the basic WTBA of Fig. 1a and A1 the combina-
tion of A with the work module of Fig. 2. Now, instead of building A1 as we
have done, a principled way of constructing a model for the satellite-with-work-
module would be to first model the work module W and then form the product
A ‖ W . We show such a work module and the resulting product B1 in Fig. 3.

As expected, W expresses that work takes 5 min and costs 10 energy units
per minute, and the Büchi condition enforces that work is executed infinitely
often. The product B1 models the shadow-sun cycle together with the fact that
work may be executed at any time, and contrary to our “unrealistic” model A1

of Fig. 2, work does not prolong earth shadow time.
Now B1 has two clocks, and we will see below that our constructions can

handle only one. This is the reason for our “unrealistic” model A1, and we can
now state precisely in which sense it is conservative: if �A1� admits a Büchi



Energy Büchi Problems 229

accepted c-feasible non-Zeno run, then so does �B1�. For a proof of this fact, one
notes that any infinite run ρ in �A1� may be translated to an infinite run ρ̄ in
�B1� by adjusting the clock valuation by 5 whenever the work module is visited.

Bounding Clocks. As a first step to solve energy Büchi problems for WTBAs,
we show that we may assume that the clocks in any WTBA A are bounded
above by some N ∈ N, i.e., such that v(x) ≤ N for all (q, v) ∈ �A� and x ∈ X.
This is shown for reachability in [3]; the following lemma extends it to Büchi
acceptance.

Lemma 8. Let A = (M, Q, q0,X, I, E, r) be a WTBA and c ∈ N. Let N the
maximum constant appearing in any invariant I(q), for q ∈ Q, or in any guard
g, for (q,M, g,R, q′) ∈ E. There is a WTBA Ā = (M, Q, q0,X, Ī, Ē, r) such that

1. v(x) ≤ N + 2 for all x ∈ X and (q, v) ∈ �Ā�, and
2. there exists a c-feasible Büchi accepted run in �A� iff such exists in �Ā�.

Corner-Point Abstraction. We now restrict to WTBAs with only one clock
and show how to translate these into finite untimed WBAs using the corner-
point abstraction. This abstraction may be defined for any number of clocks,
but it is shown in [8] that the energy problem is undecidable for weighted timed
automata with four clocks or more; for two or three clocks the problem is open.

Let A = (M, Q, q0,X, I, E, r) be a WTBA with X = {x} a singleton. Using
Lemma 8 we may assume that x is bounded by some N ∈ N, i.e., such that
v(x) ≤ N for all (q, v) ∈ �A�.

Let C be the set of all constants which occur in invariants I(q) or guards g
or resets R of edges (q,M, g,R, q′) in A, and write C ∪ {N} = {a1, . . . , an+1}
with ordering 0 ≤ a1 < · · · < an+1. The corner-point regions [3,23] of A are the
subsets {ai}, for i = 1, . . . , n + 1, [ai, ai+1[, and ]ai, ai+1], for i = 1, . . . , n, of
R≥0; that is, points, left-open, and right-open intervals on {a1, . . . , an+1}.

These are equivalent to clock constraints x = ai, ai ≤ x < ai+1, and ai <
x ≤ ai+1, respectively, defining a notion of implication r ⇒ ϕ for r a corner-point
region and ϕ ∈ Φ({x}).

The corner-point abstraction of A is the finite WBA cpa(A) = (M ∪
{mz}, S, s0, T ), where mz /∈ M is a new color, S = {(q, r) | q ∈ Q, r corner-point
region of A, r ⇒ I(q)}, s0 = (q0, {0}), and transitions in T are of the following
types:

– delays (q, {ai}) 0−→∅ (q, [ai, ai+1[), (q, [ai, ai+1[)
w−→{mz} (q, ]ai, ai+1]) with w =

r(q)(ai+1 − ai), and (q, ]ai, ai+1])
0−→∅ (q, ai+1);

– switches (q, r) 0−→M (q′, r) for e = (q,M, g, (x �→ ⊥), q′) ∈ E with r ⇒ g and
(q, r) 0−→M (q′, {k}) for e = (q,M, g, (x �→ k), q′) ∈ E with r ⇒ g.

The new color mz is used to rule out Zeno runs, see [1] for a similar con-
struction: any Büchi accepted infinite run in cpa(A) must have infinitely many
time-increasing delay transitions (q, [ai, ai+1[)

w−→{mz} (q, ]ai, ai+1]).



230 S. Dziadek et al.

Fig. 4. Corner-point abstraction of base module of Fig. 1a.

Theorem 9. Let A be a one-clock WTBA and c ∈ N.

1. If there is a non-Zeno Büchi accepted c-feasible run in �A�, then there is a
Büchi accepted c-feasible run in cpa(A).

2. If there is a Büchi accepted c-feasible run in cpa(A), then there is a non-Zeno
Büchi accepted (c + ε)-feasible run in �A� for any ε > 0.

The so-called infimum energy condition [7] in the second part above, replacing
c with c + ε, is necessary in the presence of strict constraints x < c or x > c in
A. The proof maps runs in A to runs in cpa(A) by pushing delays to endpoints
of corner-point regions, ignoring strictness of constraints, and this has to be
repaired by introducing the infimum condition.

Running example 4. We construct the corner-point abstraction of the base mod-
ule A of Fig. 1a. Its constants are {0, 35, 55}, yielding the following corner point
regions:

{0}, [0, 35[, ]0, 35], {35}, [35, 55[, ]35, 55], {55}
The corner-point abstraction of A now looks as in Fig. 4, with the states cor-
responding to the “shadow” location in the top row; the colored transitions
correspond to the ones in which time elapses. Note that this WBA is equivalent
to the one in Fig. 1b.

Using the corner-point abstraction, we may now solve energy Büchi problems
for one-clock WTBAs by translating them into finite WBAs and applying the
algorithms of Sect. 2 and the forthcoming Sect. 4.

4 Implementation

We now describe our algorithm to solve energy Büchi problems for finite
WBA; all of this has been implemented and is available at https://github.com/
PhilippSchlehuberCaissier/wspot.

We have seen in Sect. 2 that this problem is equivalent to the search for Büchi
accepted c-feasible lassos. By definition, a lasso ρ = γ1γ

ω
2 consists of two parts,

the lasso prefix γ1 (possibly empty, only traversed once) and the lasso cycle γ2
(repeated indefinitely). In order for ρ to be Büchi accepted and c-feasible, both
the prefix γ1 and the cycle γ2 must be c-feasible, however only the cycle needs
to be Büchi accepted.

https://github.com/PhilippSchlehuberCaissier/wspot
https://github.com/PhilippSchlehuberCaissier/wspot


Energy Büchi Problems 231

Algorithm 1 ABWnisossaldetpeccaihcüBdnfiotmhtiroglA
Input: weak upper bound b
1: function BüchiEnergy(graph G, initial credit c)
2: E ← FindMaxE(G,G.initial state, c) // E : S → , mapping states to energy
3: SCCs ← Couvreur(G) // Find all SCCs
4: for all scc ∈ SCCs do
5: GS , backedges ← degeneralize(scc)
6: for all t = src

w−→ dst ∈ backedges do
7: E′ ← FindMaxE(GS , dst , E[dst]) // t.dst is in G and GS...
8: e′ ← min(b, E′[src] + w) // ...(see Fig. 5b)
9: if E[dst ] ≤ e′ then
10: return ReportLoop()
11: else // Second iteration (see Fig. 5a)
12: E′′ ← FindMaxE(GS , dst , e′)
13: if e′ ≤ min(b, E′′[src] + w) then
14: return ReportLoop()
15: return ReportNoLoop()

Finding Lassos. The overall procedure to find lassos is described in Algo-
rithum 1. It is based on two steps. In step one we compute all energy-optimal
paths starting at the initial state of the automaton with initial credit c. This
step is done on the original WBA, and we do not take into account the colors.
Optimal paths found in this step will serve as lasso prefixes.

The second step is done individually for each Büchi accepting SCC. The
Couvreur algorithm ignores the weights, and we can use the version distributed
by Spot. We then degeneralize the accepting SCCs one by one, as described
in Sect. 2; recall that this creates one copy of the SCC, which we call a level,
per color. The first level roots the degeneralization in the original automaton;
transitions leading back from the last to the first level are called back-edges.
These back-edges play a crucial role as they are the only colored transitions in
the degeneralized SCC and represent the accepting transitions.

Hence any Büchi accepting cycle in the degeneralization needs to contain at
least one such back-edge, and we can therefore focus our attention on these. We
proceed to check for each back-edge whether we can embed it in a c-feasible cycle
within the degeneralized SCC. To this end, we compute the energy-optimal paths
starting at the destination of the current back-edge (by construction a state in
the first level) with an initial credit corresponding to its maximal prefix energy
(as found in the first step). By comparing the energy of the source state of the
back-edge e while taking into account its weight, one can determine whether
there exists a c-feasible cycle containing e. If this is the case, then we have found
a c-feasible lasso cycle, and by concatenating it with the prefix found in the
first step, we can construct a lasso. Note that we might have to check the loop
a second time (using the energy level calculated in the first iteration as initial
credit), see Example 10. If the answer is negative, we continue with the next
back-edge in the SCC or with the next SCC once all back-edges exhausted.

Example 10. Figure 5a shows an automaton where we have to compute maximal
energy levels twice (lines 11–14 in Algorithum 1): with b = 30 and c = 0, the



232 S. Dziadek et al.

Fig. 5. Left: WBA (also used in Example 10); right: degeneralization of one SCC
(states named originalstate, level).

prefix energy of state 1 is 30, while its optimal energy on the cycle is 20, despite
it being part of a energy-positive loop. Hence we cannot conclude that we have
found an accepting lasso after the first iteration, but need to run the algorithm
once more with an initial credit of 20.

Finding Energy Optimal Paths. We now discuss how to find energy opti-
mal paths. The problem is equivalent (but inverse) to finding shortest paths
in weighted graphs. This may be done using the well-known Bellman-Ford algo-
rithm [4,18], which breaks with an error if it finds negative loops. In our inverted
problem, we are seeking to maximize energy, so positive loops are accepted and
even desired. To take into account this particularity, we modify the Bellman-
Ford algorithm to invert the weight handling and to be able to handle positive
loops. The modified Bellman-Ford algorithm is given in Algorithum 2.

The standard algorithm computes shortest paths by relaxing the distance
approximation until the solution is found. One round relaxes all edges and the
algorithm makes as many rounds as there are nodes. Inverting the algorithm
is easy: the relaxation is done if the new weight is higher than the old weight;
additionally the new weight has to be higher than 0 and is bounded from above
by the weak upper bound.

The second modification to Bellman-Ford is the handling of positive loops.
This part is a bit more involved, especially if one strives for an efficient algorithm.
We could run Bellman-Ford until it reaches a fixed point, however this can
significantly impact performance as shown in the following example.

Example 11. Consider the automaton shown in Fig. 6. Here one round of
Bellman-Ford only increases the energy level by 1 at the rightmost state already
reached and possibly reaches the state to its right once the weak upper bound
attained. This means that we need to run (N + 1) · b rounds of Bellman-Ford
to reach a fixed point. Ideally we would like the upper bound to have no influ-
ence on the runtime. To this end we introduce the function PumpAll, which
sets the energy level of all states on positive loops detected by the last round of



Energy Büchi Problems 233

Fig. 6. WBA for Example 11

Bellman-Ford to the achievable maximum. This way, instead of needing b rounds
of Bellman-Ford to attain the maximal energy, we only need one plus a call to
PumpAll.

Before continuing, we make the following observation. This stage will be
called from Algorithm 1 that recognizes loops necessary to fulfill the Büchi con-
dition. Here, we only need to check reachability. Therefore, the only reason to
form a loop is to gain energy, implying that we are only interested in simple
energy positive loops, i.e., loops where every state appears at most once. If we
set the optimal reachable weight in simple loops, then nested loops are updated
by Bellman-Ford in the usual way afterwards.

To improve the runtime of our algorithm, we exploit that Bellman-Ford can
detect positive cycles and handle these cycles specifically. Note however that
contrary to a statement in [7], we cannot simply set all energy levels on a positive
loop to b: in the example of Fig. 5a, starting in state 2 with an initial credit of 10,
the energy level in state 1 will increase with every round of Bellman-Ford but
never above 20 = b − 10.

In order to have an algorithm whose complexity is independent of b, we
instead compute the fixed point from above. We first make the following obser-
vation.

Lemma 12. In energy positive loops, there exists at least one state on the loop
that can attain the maximal energy b.

Proof. Since the loop is energy positive we can increase the energy level at any
specific node by cycling through the loop. This can be repeated until a fixed
point is reached. This fixed point is only reached when at one of the states
the accumulated weight reaches b (or surpasses b but is restricted to b). As the
increase of energy with every cycle is a strictly monotone operation, the fixed
point will be reached and no alternation is possible. ��

If we knew the precise state that attains maximal energy, we could set its
energy to b and loop through the cycle once while propagating the energy, causing
every state on the loop to obtain its maximal energy. However, not knowing
which state will effectively attain b, we start with any state on the loop, set
its energy to b and propagate the energy along the loop until a fixed point is
reached. This is the case after traversing the loop at most twice. This is done by
the function PumpLoop.



234 S. Dziadek et al.

Algorithm 2 Modified Bellman-Ford
Shared Variables: E,P

Modified Bellman-Ford algorithm
1: function modBF(weighted graph G)
2: for n ∈ {1, . . . , |S|} do
3: for all t = s

w−→ s′ ∈ T do
4: e′ ← min(E(s) + w, b)
5: if E[s′] < e′ and e′ ≥ 0 then
6: E[s′] ← e′

7: P [s′] ← t // P : S → T , mapping states to best incoming transition

Helper function assigning the optimal energy to all states on the energy positive
loop containing state s

8: function PumpLoop(weighted graph G, state s)
9: for all s′ ∈ Loop(s) do // Loop returns the states on the loop of s ...
10: E[s′] ← −1 // Special value to detect fixed point
11: E[P [s].src] ← b
12: while � do // Loops at most twice
13: for all s′ ∈ Loop(s) do // ... in forward order
14: t ← P [s′]
15: e′ ← min(b, E[t.src] + t.w)
16: if e′ = E[t.dst] then
17: Mark loop (and postfix) as done
18: return // fixed point reached
19: E[t.dst] ← e′

Helper function, pumping all energy positive loops induced by P
20: function PumpAll(weighted graph G)
21: for all states s that changed their weight do
22: t = P [s]
23: if min(b, E[t.src] + t.w) > E[s] then
24: s′ ← s // s can be either on the cycle or in a postfix of one
25: repeat // Go through it backwards to find a state on the cycle
26: s′.mark ← �
27: s′ ← t.src
28: until s′ already marked
29: PumpLoop(G, s′) // Pump it

Function computing the optimal energy for each state
30: function FindMaxE(graph G, start state s0, initial credit c)
31: Init(s0, c) // initialize values in E to −∞ and E(s0) = c
32: while not fixedpoint(E) do // Iteratively search for loops, then pump them
33: modBF(G)
34: PumpAll(G)
35: return copyOf(E)



Energy Büchi Problems 235

Lemma 13. PumpLoop calculates the desired fixed point after at most two
cycles through the loop.

Proof. In Algorithum 2, lines 9 and 10 ensure that the fixed point check in line 16
does not detect false positives. After setting an arbitrary state’s energy to b, the
algorithm cycles through the states in the loop in forward order.

Consider w.l.o.g. the positive cycle γ = s1
w1−−→ s2

w2−−→ · · · wN−1−−−−→ sN with
s1 = sN . By Lemma 12 we know that there exists at least one state sj with
0 ≤ j < N whose maximal energy equals b. Before the first energy propagating
traversal of the cycle we set the energy of s1 to b. Two cases present themselves.
If j = 0, then energy is correctly propagated and we reach a fixed point after
one traversal. In the second case, the energy attainable by s1 is strictly smaller
than b. Propagating from this energy level will over-approximate the energies
reached by the states s0 through sj−1 on the cycle, but only until state sj is
reached which actually attains b. As energy is bounded, the energy levels of state
sj and its successors sj+1, . . . , sN are correctly calculated. This means that after
traversing the cycle sj

wj−−→ · · · wN−1−−−−→ sN
w1−−→ s2

w2−−→ · · · wj−1−−−→ sj , all energy
levels on the cycle are correctly calculated and this is guaranteed to happen
before traversing the original cycle twice.

The corresponding fixed point condition is detected by line 16 which will stop
the iteration. Note that we actually need to check for changes in the energy level
on line 16, and not whether some state attained energy b, as we at this point
cannot know whether this energy was reached due to over-approximation. ��

Note that the pseudocode shown here is a simplification, as our implemen-
tation contains some further optimizations. Namely, we implement an early exit
in modBF if we detect that a fixed point is reached, and we keep track of states
which have seen an update to their energy, as this allows to perform certain
operations selectively.

Algorithm Complexity. We are now able to conclude our discussion from
Sect. 2 and show that energy Büchi problems for finite WBA are decidable in
polynomial time.

Proof (of Theorem 5). For our decision procedure, the search for strongly con-
nected components can be done in polynomial time. Our modified Bellman-Ford
algorithm also has polynomial complexity. It is called once at the beginning and
once for every back-edge of every strongly connected component. Given that the
number of such back-edges is bounded by the number of edges, we conclude that
our overall algorithm has polynomial complexity. ��



236 S. Dziadek et al.

Fig. 7. Base circuit

Fig. 8. Work module #i

Table 1. Benchmark results. From left
to right: Number of work modules, Num-
ber of states in cpa, time needed to com-
pute cpa, time needed to solve energy
Büchi problem. Benchmarks done on an
ASUS G14, Ryzen 4800H CPU with
16Gb RAM.

#mod #states to cpa [s] sol [s]

1 25 0.01 0.00

3 90 0.03 0.02

5 293 0.06 0.24

7 1012 0.19 3.24

9 3759 0.89 59.52

10 7377 1.87 261.38

11 14582 4.37 1194.81

5 Benchmarks

We employ our running example to build a scalable benchmark case. For model-
ing convenience we use products of WTBAs as introduced above extended with
standard sender/receiver synchronization via channels. The additional labels s!
and s? are used for synchronization. Edges with s! can always be taken and emit
the signal s; edges with s? can only be taken if a signal s is currently emitted.
This modeling allows multiple work modules to start working at the same time.

As before, we use a base circuit with two states, see Fig. 7. Work module
#i, see Fig. 8, uses 10 energy units while working and spends exactly i time
units in the work state. We then combine these models with the specification
that time must pass and that every work module is activated infinitely often.
All the presented instances are schedulable. Table 1 presents the results of our
benchmark, showing that the presented approach scales fairly well. We note that
most of the time for solving the energy Büchi problem (last column) is spent in
our Python implementation of our modified Bellman-Ford algorithm. In fact the
total runtime is (at least for #mod ≥ 5) directly proportional to the number
of times lines 4 to 7 of ModBF in Algorithum 2 are executed. Therefore, the
implementation could greatly benefit from a direct integration into Spot and
using its C++ engine.

6 Conclusion

We have shown how to efficiently solve energy Büchi problems, both in
finite weighted (transition-based generalized) Büchi automata and in one-clock
weighted timed Büchi automata. We have implemented all our algorithms in a
tool based on TChecker and Spot. Solving the latter problem is done by using the
corner-point abstraction to translate the weighted timed Büchi automaton to a



Energy Büchi Problems 237

finite weighted Büchi automaton; the former problem is handled by interleaving
a modified version of the Bellman-Ford algorithm with Couvreur’s algorithm.

Our tool is able to handle some interesting examples, but the restriction
to one-clock weighted timed Büchi automata without weights on edges does
impose some constraints on modeling. We believe that trying to lift the one-
clock restriction is unrealistic; but weighted edges (without Büchi conditions)
have been treated in [6], and we suspect that their approach should also be
viable here. (See [10] for a related approach.) In passing we should like to argue
that, as shown by our running example, the modeling constraints imposed by
only having one clock may be somewhat circumvented by careful modeling.

Also adopting our approach to the unlimited energy problem, without weak
upper bound, should not pose any problems. In fact, setting b = ∞ will facilitate
the algorithm, as maximal energy levels of nodes on positive loops can directly
be set to ∞ (making PumpLoop obsolete), and also the second iteration in
Algorithm 1 can be dropped.

Further, we strongly believe that our idea of investigating whether a back-
edge can be embedded in an energy positive cycle is not restricted to (general-
ized) Büchi acceptance. In fact, the same methods should be applicable to, for
example, parity acceptance conditions without losing the polynomial runtime.

As a last remark, it is known that multiple clocks, multiple weight dimen-
sions, and even turning the weak upper bound into a strict one which may not
be exceeded, rapidly leads to undecidability results, see [7,8,16,26], and we are
wondering whether some of these may be sharpened when using Büchi condi-
tions.

Acknowledgments. We are grateful to Alexandre Duret-Lutz, Nicolas Markey and
Ocan Sankur for fruitful discussions on the subjects of this paper.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1007/BFb0031987

2. Bacci, G., Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Reynier, P.-A.:
Optimal and robust controller synthesis using energy timed automata with uncer-
tainty. Form. Asp. Comput. 33(1), 3–25 (2020). https://doi.org/10.1007/s00165-
020-00521-4

3. Behrmann, G., et al.: Minimum-cost reachability for priced time automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45351-
2 15

4. Bellman, R.: On a routing problem. Quart. Appl. Math. 16(1), 87–90 (1958).
https://doi.org/10.1090/qam/102435

5. Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.:
Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzgerald, J.S., Heit-
meyer, C.L., Gnesi, S., Philippou, A. (eds.) FM, vol. 9995, pp. 559–576. LNCS,
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 34

https://doi.org/10.1007/BFb0031987
https://doi.org/10.1007/s00165-020-00521-4
https://doi.org/10.1007/s00165-020-00521-4
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1090/qam/102435
https://doi.org/10.1007/978-3-319-48989-6_34


238 S. Dziadek et al.

6. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with
observers under energy constraints. In: Proceedings of the 13th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, pp. 61–70 (2010).
https://doi.org/10.1145/1755952.1755963

7. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85778-5 4

8. Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound-constrained runs in weighted
timed automata. Perform. Eval. 73, 91–109 (2014). https://doi.org/10.1016/j.peva.
2013.11.002

9. Büchi, J.R.: Symposium on decision problems: on a decision method in restricted
second order arithmetic. In: Studies in Logic and the Foundations of Mathematics,
vol. 44, pp. 1–11. Elsevier (1966). https://doi.org/10.1016/S0049-237X(09)70564-
6

10. Cachera, D., Fahrenberg, U., Legay, A.: An ω-algebra for real-time energy prob-
lems. Log. Methods Comput. Sci. 15(2) (2019). https://lmcs.episciences.org/5507

11. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60
(2012). https://doi.org/10.1016/j.tcs.2012.07.038

12. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean-payoff
and energy games. In: Lodaya, K., Mahajan, M. (eds.), FSTTCS, vol. 8, pp. 505–
516. LIPIcs (2010). https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505

13. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

14. Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: An algebraic approach to energy
problems I: ∗-continuous Kleene ω-algebras. Acta Cyb. 23(1), 203–228 (2017).
https://doi.org/10.14232/actacyb.23.1.2017.13

15. Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: An algebraic approach to energy
problems II: the algebra of energy functions. Acta Cyb. 23(1), 229–268 (2017).
https://doi.org/10.14232/actacyb.23.1.2017.14

16. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp.
95–115. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23283-1 9

17. Falk, H., Hammond, K., Larsen, K.G., Lisper, B., Petters, S.M.: Code-level tim-
ing analysis of embedded software: emsoft’12 invited talk session outline. In: Pro-
ceedings of the Tenth ACM International Conference on Embedded Software, pp.
163–164 (2012). https://doi.org/10.1145/2380356.2380386

18. Ford, L.R.: Network Flow Theory. RAND Corporation, Santa Monica, CA (1956)
19. Frehse, G., Larsen, K.G., Mikučionis, M., Nielsen, B.: Monitoring dynamical signals

while testing timed aspects of a system. In: Wolff, B., Zäıdi, F. (eds.) ICTSS 2011.
LNCS, vol. 7019, pp. 115–130. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24580-0 9

20. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 6

21. Srivathsan, B., Herbreteau, F.: Coarse abstractions make Zeno behaviours difficult
to detect. Log. Methods Comput. Sci. 9(1) (2013). https://lmcs.episciences.org/
882

https://doi.org/10.1145/1755952.1755963
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1007/978-3-540-85778-5_4
https://doi.org/10.1016/j.peva.2013.11.002
https://doi.org/10.1016/j.peva.2013.11.002
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1016/S0049-237X(09)70564-6
https://lmcs.episciences.org/5507
https://doi.org/10.1016/j.tcs.2012.07.038
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.14232/actacyb.23.1.2017.13
https://doi.org/10.14232/actacyb.23.1.2017.14
https://doi.org/10.1007/978-3-642-23283-1_9
https://doi.org/10.1145/2380356.2380386
https://doi.org/10.1007/978-3-642-24580-0_9
https://doi.org/10.1007/978-3-642-24580-0_9
https://doi.org/10.1007/3-540-44585-4_6
https://lmcs.episciences.org/882
https://lmcs.episciences.org/882


Energy Büchi Problems 239

22. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. Inf. Comput. 251, 67–90 (2016). https://doi.org/10.1016/j.ic.2016.07.
004

23. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with
one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS,
vol. 3170, pp. 387–401. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-28644-8 25

24. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Trans. 1(1–2), 134–152 (1997). https://doi.org/10.1007/s100090050010

25. Mikučionis, M., et al.: Schedulability analysis using Uppaal: Herschel-Planck case
study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 175–
190. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16561-0 21

26. Quaas, K.: On the interval-bound problem for weighted timed automata. In: Dediu,
A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 452–
464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-3 36

27. Velner, Y., Chatterjee, K., Doyen, L., Henzinger, T.A., Rabinovich, A., Raskin,
J.F.: The complexity of multi-mean-payoff and multi-energy games. Inf. Comput.
241, 177–196 (2015). https://doi.org/10.1016/j.ic.2015.03.001

28. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths.
In: FOCS, pp. 185–194. IEEE Computer Society (1983). https://doi.org/10.1109/
SFCS.1983.51

https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-16561-0_21
https://doi.org/10.1007/978-3-642-21254-3_36
https://doi.org/10.1016/j.ic.2015.03.001
https://doi.org/10.1109/SFCS.1983.51
https://doi.org/10.1109/SFCS.1983.51


QMaude: Quantitative Specification
and Verification in Rewriting Logic

Rubén Rubio(B) , Narciso Mart́ı-Oliet , Isabel Pita ,
and Alberto Verdejo

Facultad de Informática,
Universidad Complutense de Madrid, Madrid, Spain
{rubenrub,narciso,ipandreu,jalberto}@ucm.es

Abstract. In formal verification, qualitative and quantitative aspects
are both relevant, and high-level formalisms are convenient to naturally
specify the systems under study and their properties. In this paper, we
present a framework for describing probabilistic models on top of nonde-
terministic specifications in the highly-expressive language Maude, based
on rewriting logic. Quantitative properties can be checked and calculated
on them using both probabilistic and statistical methods with external
tools like PRISM, Storm, MultiVeSta, and custom implementations as
backends. At the same time, the underlying nondeterministic system
can be verified using the qualitative model-checking and deductive tools
already available in Maude.

1 Introduction

Quantitative aspects like probability, time, and cost are relevant in the formal
verification of computational systems in addition to purely qualitative correct-
ness properties. High-level specification languages are convenient to construct
natural, modular and easily-understandable models describing both aspects of
the systems behavior. However, broad spectrum tools combining high-level spec-
ification with quantitative and qualitative verification are rare.

Maude [13,14] is a highly-expressive specification and programming lan-
guage and high-performance [23] rewriting engine based on rewriting logic [35],
already used for many interesting applications [21,24,33,36,40,52]. Specifica-
tions in Maude describe the states of the target system by terms in an equa-
tional theory, while change is represented by the nondeterministic application of
local rewrite rules. Nondeterminism can be controlled, if desired, with a strat-
egy language recently introduced in Maude 3 [19,44]. These specifications are
executable and several verification and analysis tools are available like a builtin
LTL model checker [20], an interactive theorem prover [15], a declarative debug-
ger [39], and several others [3,18,49]. In previous works, we have extended the
Maude model checker to strategy-controlled models [46] and to additional logics
like CTL, CTL*, and μ-calculus through external tools [48]. This work follows
the same interoperability-based approach.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 240–259, 2023.
https://doi.org/10.1007/978-3-031-27481-7_15

https://doi.org/10.5281/zenodo.7339536
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_15&domain=pdf
http://orcid.org/0000-0003-2983-3404
http://orcid.org/0000-0002-6576-762X
http://orcid.org/0000-0003-4915-5452
http://orcid.org/0000-0002-7374-3214
https://doi.org/10.1007/978-3-031-27481-7_15


QMaude: Quantitative Specification and Verification in Rewriting Logic 241

Fig. 1. Schema of the layered specification and verification approach.

In this paper, we present a framework for extending Maude specifications
with probabilities and turn them into probabilistic models, which can be model
checked and simulated using standard probabilistic and statistical techniques
through the umaudemc tool [45]. Several alternative methods are offered for spec-
ifying probabilities, from selecting successors uniformly at random to program-
ming arbitrarily-complex memoryful strategies in a probabilistic extension of
the Maude strategy language. On these specifications, the pcheck command
of umaudemc allows calculating transient and steady-state probabilities, check-
ing and calculating the probabilities of LTL, PCTL*, and TCTL formulas, and
computing expected values of arbitrary functions on the states. PRISM [31] and
Storm [16] are used as silent backends to perform the quantitative analysis on
the models generated from the rewriting and probabilistic specifications. On
these same specifications, the scheck command of umaudemc allows estimating
quantitative temporal queries by Monte Carlo simulations. While scheck is a
self-contained statistical model checker, its simulators can alternatively be used
with MultiVeSta [51] via the mvmaude interface [42]. Moreover, the functional-
ity of umaudemc is exposed as a Python library so that the quantitative models
can be explored and verified programatically. Figure 1 summarizes the architec-
ture of the proposed framework: probabilistic models are constructed by adding
probabilities on top of a rewriting logic specification, and both probabilistic and
statistical methods can be used to analyze them.

The paper is organized as follows. After the preliminaries in Sect. 2, the speci-
fication of probabilities on Maude models is explained in Sect. 3, and Sects. 4 and
5 respectively describe the support for probabilistic and statistical model check-
ing on them. Section 6 discusses the implementation and Sect. 7 briefly explains
two case studies. Finally, Sects. 8 and 9 discuss performance and related work,
and Sect. 10 concludes the paper. Source code, documentation, and examples
can be found at maude.ucm.es/qmaude and GitHub [42,45].

2 Preliminaries

We assume that the reader is familiar with the basic terminology of model check-
ing, probability theory, and statistics. However, we recall the definition of the

https://maude.ucm.es/qmaude


242 R. Rubio et al.

three main probabilistic structures in this context, namely discrete-time Markov
chains (DTMC), Markov decision processes (MDP), and continuous-time Markov
chains (CTMC). A DTMC is a tuple (S, P, P0) where the successors of every
state in S are subjected to a probabilistic distribution P : S × S → [0, 1], with∑

s′∈S P (s, s′) = 1 for all s ∈ S, and P0 : S → [0, 1] with
∑

s∈S P0(s) = 1 is a
probability distribution on the initial states. In this paper, we will assume a single
initial state s0 so that P0(s0) = 1 and P0(s) = 0 for all other s. Markov deci-
sion processes combine nondeterministic and probabilistic behavior, by allowing
the nondeterministic choice of an action followed by the probabilistic determi-
nation of its outcome. Formally, an MDP is a tuple (S,A, P, P0) where P is now
P : S × A × S → [0, 1] such that

∑
s′∈S P (s, a, s′) = 1 for all s ∈ S and a ∈ A.

A CTMC is a tuple (S,R, P0) where the transitions between states are fired at
delays modeled by exponential distributions of rates R : S × S → [0,∞). In
practice, they can be seen as DTMCs with P (s, s′) = R(s, s′) /

∑
r∈S R(s, r)

that stay 1 /
∑

r∈S R(s, r) units of time in s.
Probabilistic model checking [8,9,30] is a bunch of analytical methods on

these structures for calculating probabilities, expected values of functions, and
checking properties expressed in classical and probabilistic temporal logics like
PCTL [26]. On the other hand, statistical model checking [1] estimates quan-
titative values of the models using Monte Carlo simulations. PRISM [31] and
Storm [16] are well-known model checkers taking DTMC, MDP, and CTMC
specifications as input, whereas MultiVeSta [51] is a statistical model checker
that operates on user-defined simulators.

Rewriting Logic and Maude. As mentioned in the introduction, rewriting
logic [35] is a high-level formalism based on term rewriting for the specification of
concurrent and nondeterministic systems. Maude [13,14] is its reference imple-
mentation and includes multiple features to execute and analyze its programs.
Specifications in Maude are organized in modules: functional modules for describ-
ing the state terms in an equational logic, system modules for adding nondeter-
ministic rewrite rules on top of them, and strategy modules to describe strate-
gies that control their application. For example, the following functional module
INTERVAL specifies intervals of integer numbers [n,m] = {k ∈ Z : n ≤ k ≤ m},
lists of those, and two auxiliary operations.

fmod INTERVAL is

protecting INT . *** builtin module

sorts Interval List . subsort Interval < List .

op [_,_] : Int Int -> Interval [ctor] . *** constructor

op __ : List List -> List [ctor assoc frozen] .

op mid : Int Int -> Int . op even : Int Int -> Bool .

vars N M : Int . eq mid(M,N) = (N + M) quo 2 .

eq even(M, N) = 2 divides (N - M + 1) .

endfm

Operators are introduced with op, variables with var, and equations with eq.
Operators may take attributes, like assoc to tell that they are associative or
frozen to prevent rules for being applied on proper subterms.



QMaude: Quantitative Specification and Verification in Rewriting Logic 243

On top of this functional module, in the KNUTH-YAO system module below, we
add some rules to specify a nondeterministic version of the well-known Knuth-
Yao procedure for simulating a fair dice with a fair coin [29]. Rules and condi-
tional rules start with rl and crl, respectively.

mod KNUTH-YAO is

including INTERVAL .

vars N M : Nat . vars I J : Interval . var L : List .

crl [head] : [M,N] => [M,mid(M,N)] if M < N .

crl [tail] : [M,N] => [mid(M,N) + 1,N]

if M < N /\ even(M,N) .

crl [tail] : [M,N] => [M,N] [mid(M,N) + 1,N]

if M < N /\ not even(M,N) .

rl [head] : I J => J . rl [tail] : I J => I . *** go back

endm

The first head-labeled rule discards the upper half of the interval, whose midpoint
is calculated by the auxiliary function mid. The first two rules labeled with tail
do the same with the lower half. However, if the length of the interval is odd, this
half will be actually larger, so the original interval is kept to allow undoing the
unfair division with the last head and tail rules. We will specify probabilities
on top of this model in the following sections.

Moreover, to control the nondeterministic application of rules at will, strate-
gies can be specified using the Maude strategy language. Section 3 describes it
along with the probabilistic extension proposed in this paper to quantify and
not only restrict this nondeterminism.

Maude specifications can be executed with several commands like rewrite
and search, and a builtin model checker is available for LTL properties [20].
Atomic propositions are defined as terms of sort Prop and their satisfaction is
established by equations on a predefined operator |=. For example, the following
lines declare a proposition result that holds on singleton intervals.

op result : -> Prop [ctor] .

eq [N,N] |= result = true .

eq L |= result = false [owise] . *** otherwise

Formally, the associated Kripke structure is K = (TΣ/E ,→1
R, t0, TΣ,Prop, LΠ),

where TΣ/E is the initial algebra of the equational theory, →1
R is the one-step

rule application relation, t0 ∈ TΣ/E is an initial state, the atomic propositions
are ground terms of sort Prop, and LΠ is induced by the equational evaluation
of |= terms.1 More information about Maude can be found in its manual [13].

In recent works, we have added model-checking support via external tools
for CTL, CTL*, and μ-calculus, and for strategy-controlled systems [48]. These
external backends are internally used by a unified interface umaudemc that we
have extended here for probabilistic models.
1 When the system is controlled by a strategy, the Kripke structure is refined as

explained in [46,48].



244 R. Rubio et al.

3 Quantitative Specification on Top of Maude

Rewriting logic specifications are essentially nondeterministic, but probabilistic
models can be obtained by quantifying this nondeterminism. Following the sep-
aration of concerns principle, we present a framework for specifying probabilities
on top of the rewriting logic specification. Multiple alternative methods are pro-
vided to turn the original rewrite graph into a DTMC, an MDP, a CTMC, or
a simulable random process. The probability assignment methods are the fol-
lowing, enunciated in terms of labeled transition systems S = (S,A,R) since
they can be applied to both strategy-free and strategy-controlled Maude speci-
fications. Each method is given a name and may take some arguments between
parentheses. The prefixes mdp- and ctmc- can be added to a method identifier
to derive the corresponding structures, when applicable.

In the simplest case, weight-based local probability assigners specify a weight
function W : S × A × S → [0,∞) on the transitions of the model. Probabilities
are computed by normalizing the weights, either globally or by action for MDPs,

P (s, s′) =
∑

a∈A W (s, a, s′)
∑

(s,a,r)∈R W (s, a, r)
P (s, a, s′) =

W (s, a, s′)
∑

(s,a,r)∈R W (s, a, r)

For deriving continuous-time Markov chains, we identify weights and firing rates,
i.e. R(s, s′) =

∑
a∈A W (s, a, s′). The weight function W can be specified with

the following alternative methods:

– uniform assigns the same weight to every successor of a state by taking W
as the constant function of value 1.

– metadata reads the weights of transitions from annotations in the source file,
since rule statements can take a free-text metadata "w" attribute. These
annotations can be numeric literals or Maude terms depending on the vari-
ables of the rule.

– term(e) evaluates a Maude term e of sort Nat or Float on every transition
to compute the value of W . Every occurrence of the variables L and R will be
instantiated with the left and right-hand side of the transition, respectively.
The variable A will be substituted by the label of the applied rule.

Similarly, the uaction(a1=w1, ..., an=wn) method takes a mapping of
weights for every action of the model (omitted actions are given weight 1), but
proceeds in two stages. First, the probability is distributed among the actions
according to their weights, and then probabilities are shared equally among the
successors of every action. Fixed probabilities can be assigned instead of weights
with a.p=w instead of a=w. No mdp-uaction method makes sense in this case.

Finally, non-local assignments can be specified with the strategy method
using a probabilistic extension of the Maude strategy language [19]. The main
building block of the standard strategy language is the selective application of
a rule, which can be invoked by its label with some optional constraints like
an initial substitution for its variables. Moreover, tests match P s.t. C let
equational conditions be checked on the term being rewritten, and strategies



QMaude: Quantitative Specification and Verification in Rewriting Logic 245

are combined with several operators like concatenation α;β, nondeterministic
choice α|β, iteration α*, conditionals α ?β : γ, subterm selection operators, and
recursive definitions. More on the standard strategy language, its syntax and
semantics can be found at [13,19,47]. Our probabilistic extension provides three
additional operators:

– choice(w1 : α1, . . ., wn : αn) is a quantified version of the nondeter-
ministic choice α1| · · · |αn. Strategies are selected according to their weights
wk, which are Maude terms of sort Nat or Float that may contain variables.

– sample X := π(t1, . . ., tn) in α samples a probability distribution with
parameters t1 to tn into the variable X of sort Float that can be used in
α. Like with the weights in choice, the parameters are instantiated in the
current variable context and reduced to obtain numbers.

– matchrew P s.t. C with weight w by x1 using α1, . . ., xn using αn

chooses one of the matches of the pattern P in the current term satisfying the
condition C according to their weights w, instantiated with the matching vari-
ables. Then, the subterms bound to x1, . . . , xn are rewritten with strategies
α1, . . . , αn, respectively. This is a quantified version of the matchrew operator
of the standard strategy language.

The sample operator is usually applied on continuous distributions for simulat-
ing delays, clocks, etc. Hence, discrete models cannot be derived from strategies
containing this operator, which is intended for statistical simulation. On the
contrary, strategies with choice and the quantified matchrew can yield either
DTMCs or MDPs depending on whether all nondeterministic choices are quan-
tified or not. Because of this automated detection of nondeterminism, there is no
mdp-strategy method, but ctmc-strategy can be used to derive CTMC from
suitable strategies.

4 Probabilistic Model Checking

Probabilistic Maude models specified as in the previous section can be analyzed
using probabilistic model-checking techniques through the pcheck command of
our umaudemc tool, which uses the PRISM [31] and Storm [16] model checkers
as alternative backends.

umaudemc pcheck 〈Maude file〉 〈initial term〉 〈formula〉 [〈strategy〉]
[--assign 〈method〉] [--steps] [--reward 〈term〉]

In addition to the input data of the rewriting model, the pcheck subcommand
should also be given a probabilistic assignment method among those described
in Sect. 3 with the --assign option. The uniform method will be used if this
option is omitted. The strategy argument is compulsory when the strategy
assignment method is used, but optional when other methods are selected. For
these other methods, the strategy should be a standard strategy to control rewrit-
ing and probabilities are then assigned on the strategy-controlled graph.



246 R. Rubio et al.

The input formula should be an LTL, CTL, TCTL, or PCTL* property,
or one of @steady and @transient(n) to calculate steady-state and transient
probabilities, respectively. The syntax of temporal formulae is an extension of the
LTL module of the standard Maude LTL model checker with the path quantifiers
A and E of CTL, optional step or time bounds from TCTL, and the probabilistic
operator P of PCTL.

ϕ ::= p | True | False | � ϕ | ϕ /\ ϕ | ϕ \/ ϕ | <> b? ϕ | []b? ϕ | ϕ U b? ϕ

| A ϕ | E ϕ | P b ϕ

b ::= [n, n] | > n | >= n | < n | <= n b? ::= ε | b

The formula should meet the syntactic constraints of the corresponding logic.
Let us illustrate the specification of probabilistic models in Maude and the

usage of the tool with the Knuth-Yao procedure [29] for simulating a fair dice
with a fair coin, already introduced in Sect. 2. Remember that the state is mod-
eled by an integer interval [m, n] that we iteratively reduce to its lower half
if heads are obtained or the upper half if tails are obtained, as specified by the
head and tail rules. In case the division is not fair, the part that is given more
probability is marked with its parent to allow backtracking for balancing the
probabilities. Even though this specification can be applied to any interval [m,
n], it only computes a uniform distribution when the interval size is 3, 6, a power
of 2, or other combinations, but it can be adapted to work in general.

Since exactly two rules can be applied on any term, uniform probabilities are
enough to model a fair coin. This can be checked by inspecting the corresponding
DTMC produced by the graph subcommand of umaudemc. The algorithm stops
when a singleton interval is reached, so we can compute steady-state probabilities
to obtain those of the results. The outcome is the expected one.

$ umaudemc pcheck knuthYao6 [1,6] @steady --fraction

1/6 [1,1]

...

1/6 [6,6]

We can change the probabilities and consider an unfair coin that gives a head
60% of the times by passing uaction(head=3, tail=2) to the --assign option.
And by using the probabilistic strategy language we can model more complex
probabilities. For example, we can describe a coin that gets damaged on every
throw and loses a 10% of the probability of obtaining a head until it drops below
25%. This is described by the following recursive strategy bias that uses the
choice operator to select head or tail, and then calls itself recursively with the
new value of the probability for heads. Strategy definitions are introduced with
sd in strategy modules.

smod KNUTH-YAO-STRAT is

protecting KNUTH-YAO .

var F : Float .

sd bias(F) := choice(F : head , 1.0 - F : tail)

? bias(if F > 0.25 then 0.9 * F else F fi) : idle .

endsm



QMaude: Quantitative Specification and Verification in Rewriting Logic 247

If neither head nor tail can be applied, the execution jumps to the negative
branch of the conditional (idle) and finishes. Steady-state probabilities are cal-
culated in the same way.

$ umaudemc pcheck knuthYao6 [1,6] @steady \

’bias (0.5)’ --assign strategy

0.2047221502318105 [2,2] ...

Moreover, by defining atomic propositions we can also check temporal proper-
ties on this specification. Remember that we have defined an atomic proposition
result that holds on singleton intervals. The formula � result does not hold
in absolute terms due to backtraking, as we can see with the qualitative check
command of umaudemc (the counterexample is omitted).

$ umaudemc check knuthYao6 [1,6] ’<> result ’

The property is not satisfied in the initial state ...

However, the formula has probability 1 with uniform probabilities, and we can
also calculate the expected number of steps until this proposition holds with the
--steps option.

$ umaudemc pcheck knuthYao6 [1,6] ’<> result ’

Result: 1.0

$ umaudemc pcheck knuthYao6 [1,6] ’<> result ’ --steps

Result: 3.666666667

For any reachability formula, the expected value of a reward on the states can
be calculated with the --reward option followed by a Maude term of numerical
sort with a single variable to be replaced by the state term. The flag --steps is
equivalent to --reward 1. For further details, see maude.ucm.es/qmaude or [45].

5 Statistical Model Checking

In addition to the probabilistic techniques in the previous section, Maude spec-
ifications can be simulated to estimate their quantitative properties using the
Monte Carlo method. This approach is necessary when dealing with infinite-
state systems or real-valued variables, and in particular, when using the sample
strategy operator that samples continuous probability distributions.

The scheck command of the umaudemc tool implements a statistical model
checker for the previously described probabilistic models:

umaudemc scheck 〈Maude file〉 〈initial term〉 〈QuaTEx file〉
[〈strategy〉] [--assign 〈method〉]

This command receives the same input data as pcheck, except that the formula
is replaced by the path of a QuaTEx or MultiQuaTEx file. These files spec-
ify quantitative temporal expressions that conduct the simulation to obtain a
numerical result. They may contain expressions of the form s.rval(s) with s
being "steps" for the number of elapsed steps, "time" for the elapsed time cal-
culated as in a CTMC, or any other string representing a numerical or Boolean

https://maude.ucm.es/qmaude


248 R. Rubio et al.

Maude term with a single variable to be instantiated with the current term.
For example, the following query calculates the expected number of steps until
a result is obtained, by returning steps when result first holds and recurring
with the next symbol # when it does not.

ResultSteps () = if (s.rval ("S |= result ") == 1)

then s.rval ("steps ") else #ResultTime () fi ;

eval E[ ResultSteps () ] ;

Given a confidence level α, values are estimated by sequentially running batches
of simulations until the radius of the confidence interval derived from the accu-
mulated sample becomes smaller than a given upper bound δ. This is sometimes
called Chow-Robbins test in the literature [38]. The example above can be eval-
uated with the following command, where -d 0.05 fixes the maximum radius δ.
Several other parameters are available to configure the simulation, like the con-
fidence level α (-a) or the number of parallel simulation threads (-j).

$ umaudemc scheck knuthYao6 [1,6] knuthYao6.quatex -d 0.05

Number of simulations = 2640

μ = 3.665151515151515 σ = 1.3052483817864313

r = 0.04981252104845361

The result is a confidence interval [μ−r, μ+r] that includes the value obtained by
probabilistic model checking in Sect. 4. More complex queries can be specified,
as explained in the manual of the umaudemc tool [45].

The probability assignment methods supported by the simulator are those
of Sects. 3 and 4, except the mdp- variants since MDPs do not make sense in
this case. The ctmc- prefix is without effect since the time observation is always
computed as in a CTMC for weight-based methods. In addition, a few other
assignment methods are supported:

– step, which identifies the steps of the simulation with complete executions of
a given probabilistic strategy, which is repeated forever.

– strategy-fast, where steps are the rewrites within the strategy execution,
like in the strategy method. However, strategy-fast is executed in a more
efficient local way by assuming that the strategy never fails, because failures
may discard past steps according to the semantics of the strategy language.

– pmaude, a legacy method for simulating PMaude specifications [2].

Alternatively, a custom simulator is available for the statistical model checker
MultiVeSta [51] with support for the same probability assignment methods [42].
Moreover, probabilistic strategies can be simulated with the srewrite method
of the maude Python library [43].

6 Implementation

The umaudemc tool [45] is a Python-based interface to multiple external and
builtin verification backends for Maude specifications, introduced in [48] for
model checking qualitative branching-time properties. This tool obtains the



QMaude: Quantitative Specification and Verification in Rewriting Logic 249

rewrite graphs for the input model through the maude Python library [41,43],
which provides all the resources for evaluating weights, rewards, atomic propo-
sitions, and so on. The new quantitative commands pcheck and scheck share
great part of the infrastructure with the qualitative tools and between them.
The probabilistic pcheck command proceeds by obtaining the rewrite graph for
the given initial term from Maude, applying the selected probability assignment
method on it to obtain a DTMC, MDP, or CTMC, and passing this low-level
model to the external backend to obtain the desired result. When using Storm
through its Python bindings, StormPy, the model is directly built in memory
and the communication is done through that library. Otherwise, umaudemc writes
a PRISM module file, executes PRISM or Storm, and parses their answers.
Most assignment methods simply decorate the graphs obtained from the maude
Python library with the probabilities computed according to their definitions.
However, other methods like metadata require information not exposed by the
maude library like matching substitutions, so the probabilistic model is built from
scratch in Python. In the case of the non-local strategy assignment method, the
strategy is first compiled to an intermediate language and then executed with a
custom implementation for constructing the probabilistic model. For other meth-
ods, strategies are directly passed to Maude to restrict rewriting in the standard
way. Temporal formulae are input in a Maude-based syntax that is translated
to the PRISM property language, and their atomic propositions are evaluated
on the states. Reward terms are also instantiated on every state and reduced
equationally to obtain a number. The intermediate PRISM file can be obtained
with the graph subcommand of umaudemc by passing --format prism. Output
in the JANI format [12] is also available with --format jani for interoperability
with other tools. Visual graphs in the GraphViz’s DOT format can be generated
too.

The implementation of scheck is partitioned into a generic statistical model-
checking engine and a collection of simulators adapted to the different assignment
methods. These simulators are defined as Python classes exposing a simple inter-
face that allows starting the simulation, performing a single step, and calculating
observations on the current state. Simulators share most of their implementa-
tion with the pcheck component, but probabilities are assigned here on the fly,
without expanding the whole state space. Observations on states are strings rep-
resenting Maude terms with a single variable, which are parsed with the maude
Python library, instantiated with the current state, and reduced to obtain a
numerical or Boolean result. Since each observation term is usually evaluated
multiple times, they are cached for efficiency once parsed.

The generic component of the statistical model checker estimates quantita-
tive temporal expressions by running several executions of the chosen simulator.
Every single simulation yields a value for each eval statement in the QuaTEx
source file, which are separately aggregated into a sum and a sum of squares
for easily computing the mean and standard deviation of the samples obtained
so far. QuaTEx expressions are translated to Python and statically compiled
to bytecode, and they drive the simulation process that executes new steps as



250 R. Rubio et al.

required by their # operators until they compute a final value. When a block of
simulations is completed, scheck computes the current confidence level with the
Student’s t-distribution to decide whether more simulations are needed. Multi-
ple processes can be used to parallelize the executions in a block. The size of
this block, the target confidence level, the radius of the confidence interval, the
number of parallel jobs, and other simulation parameters are configurable. The
mvmaude bridge to MultiVeSta shares the simulators with scheck, but this sec-
ond part is done within that tool. The functionality of the pcheck and scheck
commands can also be accessed programatically by using umaudemc as a Python
library.

7 Case Studies

The framework presented in this paper has been used to specify several exam-
ples, like the probabilistic programming language Prob, population protocols
and chemical reaction networks, and the Bounded Retransmission Protocol [22].
Here we briefly describe two of them to illustrate the approach and tools.

7.1 The Probabilistic Language Prob

With this example we aim to show the flexibility of Maude for describing high-
level specifications that can be easily extended with probabilities. Prob [25] is a
probabilistic programming language including, along with the typical imperative
programming constructs, statements like x ∼ π where a variable x is said to
follow a probabilistic distribution π. Programs are described in Maude with
syntax that closely mimics the original language:

op _return_ : ProbStmt FTuple -> ProbProgram [ctor] .

op _:=_ : FVar FExpr -> ProbStmt [ctor prec 20] .

op _∼_ : FVar FDistribution -> ProbStmt [ctor prec 20] .

op _;_ : ProbStmt ProbStmt -> ProbStmt [ctor assoc] .

op while_do_done : BoolExpr ProbStmt -> ProbStmt [ctor] .

Their semantics are expressed using small-step operational semantics rules, in
an execution context < p |σ > combining a program p and a variable context σ.

rl [step] : < FV := F ; S return R | VM > =>

< S return R | VM[FV / instantiate(F, VM)] > .

The operational rule for the probabilistic assignment is defined with a free vari-
able F for the sampled value, which makes the rule not (directly) executable,

rl [sample] : < FV ∼ FD ; S return R | VM > =>

< S return R | VM[FV / F] > [nonexec] .

that a strategy will fill according to the probabilistic distribution of choice.

csd sample(bernoulli(F), VM) := choice(

FC : sample[B <- true], (1.0 - FC) : sample[B <- false])

if FC := instantiate(F, VM) .

sd sample(exponential(F), VM) :=

sample FC := exp(instantiate(F, VM)) in sample[F <- FC] .



QMaude: Quantitative Specification and Verification in Rewriting Logic 251

Notice that we use choice instead of sample for the Bernoulli distribution in
order not to lose the ability of using probabilistic model checking when only this
distribution appears. Finally, the step of the operational semantics is defined by
the strategy sstep that either executes a classical statement with the step rule
or a probabilistic one with the matchrew.

sd sstep := step | matchrew X s.t. < FV ∼ D ; S return R

| VM > := X by X using sample(D, VM) .

Let us illustrate the specification with a very simple example from [25] that
returns a pair of variables following a Bernoulli distribution.

c1 ∼ bernoulli (0.5) ; c2 ∼ bernoulli (0.5) return (c1 ; c2)

Using the pcheck command of umaudemc, since only discrete distributions are
present, we can calculate the steady-state probabilities of this program and hence
its possible outcomes.

$ umaudemc pcheck prob -lang -examples ’start(ex1a)’ \

@steady run --assign strategy

0.25 solution (1.0 ; 1.0)

0.25 solution (1.0 ; 0.0)

0.25 solution (0.0 ; 1.0)

0.25 solution (0.0 ; 0.0)

where ex1a is the program above, start turns it into an execution pair with
an empty variable context, and run is a strategy that repeatedly calls sstep.
This example becomes more interesting if the statement observe(c1 or c2)
is inserted after the assignments, since the observe operator of Prob discards
all executions that do not satisfy the given Boolean expression. We handle dis-
carded executions by rewriting them to the special state discarded that allows
recovering the conditional probabilities of the legitimate values. In the case of
the extended example, the steady-state probabilities will coincide with the com-
mand above except that solution(0.0 ; 0.0) will be replaced by discarded.
A simple automated calculation yields that the first three solutions have proba-
bility 1/3 each. Prob programs can also be simulated with the scheck command,
even when continuous distributions are sampled. The complete source code for
the example with further explanations is available at [22].

7.2 Head-of-Line Blocking and HTTP/3

The Hypertext Transfer Protocol is the well-known application layer protocol of
the World Wide Web. Its first version was standardized in 1996 and superseded
one year later by HTTP/1.1, which introduced the possibility to reuse a con-
nection for downloading multiple resources sequentially, avoiding the expensive
establishment of additional TCP connections. This performance improvement
has been further developed with the new standards HTTP/2 [27] in 2015 and
HTTP/3 [28] in 2022. HTTP/2 added stream multiplexing for delivering multi-
ple resources concurrently using the same connection. However, it suffers from



252 R. Rubio et al.

Fig. 2. Number of packages until the first and last packages have been received.

the head-of-line blocking problem, i.e. a delay in the transmission of one of the
streams will affect all other resources due to the ordered delivery of messages
of the TCP protocol. For that reason, HTTP/3 replaces TCP by an alternative
transport protocol named QUIC on top of the more lightweight UDP that lets
each data stream progress independently.

We have written abstract simplified specifications of both HTTP/2 and
HTTP/3 to estimate and compare the mean delay for the arrival of the first and
last package in a connection with multiple streams between a server and a client.
Using Maude’s support for object-oriented specifications, we have described the
communication nodes, channels, and logical streams as objects that exchange
messages. In particular, the transmission through the channel is governed by two
rules channel-ok and channel-loss that give way or lose a package through
it. We have then used the assignment method uaction(channel-loss.p=p) to
indicate that the probability of losing a package is p. Finally, we have run the
scheck command of umaudemc to calculate the expected value of two QuaTEx
expressions that evaluate the number of package trips when the first and last
stream have been fully transmitted. The result for both protocol versions in a
fixed setting with 5 streams consisting of 10 chunks each and different loss prob-
abilities is shown in Fig. 2. We can see that the complete delivery of the first
package is faster with HTTP/3, as expected since streams can progress indepen-
dently, while there is no significant difference for the last package. The complete
example is at [22].

8 Evaluation

For evaluating the performance of the pcheck command, we have measured
how much of the execution time corresponds to the generation of the rule-based
model by Maude, the assignment of probabilities, and the algorithms of the
model-checking backends. Since Maude is a Turing-complete programming lan-
guage, its quota essentially depends on the particular specification, and then
the generation of the probabilistic model takes linear time on the number of
transitions. The Python profiler on the pcheck commands of the example col-
lection shows that umaudemc introduces a constant delay of 100–150 ms plus the



QMaude: Quantitative Specification and Verification in Rewriting Logic 253

Table 1. Execution time and number of simulations for multiple examples.

scheck mvmaude MultiVeSta

Time Runs Time Runs Time Runs

Hancke-Kuhn [5] 3 m 29 s 64530 2 m 47 s* 46350* 40m 16 s* 46380*

RANDAO [6] 16 h 58 m 27900 17 h 3 m 28080 17 h 52 m 28080

Dice (pmaude) 1.06 s 2524 8.23 s 2556 71.83 s 2470

Dice (uniform) 947.7 ms 2468 8 s 2470 – –

Dice (step) 961.52 ms 2468 7.85 s 2470 – –

rewriting model execution. In the whole test suite, the percentage of time spent
in the external backend is 97.58% when using PRISM (in client mode with Nail-
gun), 62.65% when using the command-line connection to Storm, and 42.52%
when calling Storm through StormPy. However, in the latter case, the generation
of the probabilistic graph from the Maude model does not take the remaining
percentage but the 18.93% of the execution time, the rest being fixed startup
delays. Moreover, by comparing global execution times, the best performance is
obtained with the Storm backend connected through its Python bindings. The
command-line connection to Storm is only 13.56% slower, while PRISM is 14.31
times slower. These differences increase with the size of the problem.2

For evaluating the scheck command, we consider multiple published PMaude
specifications. Even though the pmaude assignment method is not the original
contribution of this paper, we leverage on it to do a fair comparison with the
statistical model checker MultiVeSta [51].3 Since mvmaude [42] uses MultiVeSta
with the statistical simulators of scheck, the comparison of its execution times
with those of the scheck command informs about the performance of the statis-
tical model-checking engine of scheck, while the comparison with MultiVeSta
using its builtin PMaude simulator gives information about the performance
of the simulators themselves. Moreover, we have translated the simple dice roll
example included in the MultiVeSta distribution to the genuine QMaude assign-
ment methods uniform and step, using in the latter case a strategy with a
choice combinator giving the same probability to every outcome. Table 1 shows
the execution time and number of simulations under the different tools.

We observe that our simulator for the pmaude method is significantly more
efficient than the one in MultiVeSta. The difference is less noticeable in the
RANRAO example where the execution of the model within Maude takes almost
the whole simulation time. The most likely reason is that our simulators are
connected to Maude through the maude Python library while MultiVeSta spawns
a new Maude process for each simulation run and communicates with it via text

2 The results and the scripts to reproduce them are available at maude.ucm.es/
qmaude.

3 PVesta is not included in the comparison because its actual convergence criterion
differs from the one explained in its paper [2] and used by MultiVeSta and scheck.

https://maude.ucm.es/qmaude
https://maude.ucm.es/qmaude


254 R. Rubio et al.

input/output. Moreover, in those results marked with an asterisk, MultiVeSta
does not reach the requested confidence level and stops prematurely due to
an integer overflow bug. Looking at the dice example with the uniform and
step methods, we see that their performance is similar or slightly better than
pmaude. mvmaude takes more time than the scheck command, so the generic
model-checking engine of umaudemc seems to be more efficient.

9 Related Work

The closest to our proposal is PMaude [2], a probabilistic extension of Maude
based on the notion of probabilistic rewrite theory. Its rules are extended with
additional variables that are sampled from probabilistic distributions, whose
parameters may depend on the matching substitution. However, unquantified
nondeterminism still remains in the choice of the rule and the position where
it is applied, so the Monte Carlo method cannot be directly used. Users need
to check that a single rewrite is possible at each step, for which a restricted
actor-based framework with sampled message delays was originally proposed.
The authors of PMaude also introduced the QuaTEx language and the sta-
tistical model checker VeStA, which was continued to the more general tools
PVesta [4] and MultiVeSta [51]. Our approach differs in several aspects from
PMaude: (1) PMaude only supports statistical simulation while we can derive
discrete structures for probabilistic model checking as in Sect. 4, (2) our proba-
bility assignment methods are applied on top of a nondeterministic specification
that can directly be verified with the standard qualitative tools, but rules and
probabilities are entangled in PMaude and a manual transformation is required
for qualitative verification, and (3) unquantified nondeterminism is avoided by
construction or detected with most of our probability assignment methods and
tools are offered to examine the resulting models, though in PMaude the user
must manually reason about the absence of nondeterminism. Moreover, we think
that our methods for specifying probabilities are simpler and more intuitive.

Strategies have already been used for quantifying nondeterminism in
PSMaude [10], an extension of PMaude that provides specific syntax to quantify
the choice of rules, matching positions, and substitutions, and allows checking
PCTL properties. Our probabilistic strategy language pursues the same idea,
although it is more expressive and able to describe memoryful probabilistic
assignments. Moreover, our choice operator already appeared in an extension
of the pioneer strategy language ELAN [11] and in the graph-rewriting strategy
language Porgy [7]. Real-Time Maude [37] is also a related rewriting-logic-based
tool for the formal specification and analysis of real-time systems.

Various tools allow specifying probabilistic models as low-level discrete struc-
tures or simulators, like PRISM [31], Storm [16], MATLAB [34], and R’s
markovchain package [53]. Probabilistic programming languages like Prob [25],
Stan [32], and PyMC [50] combine probabilistic distributions with the typical
constructs of programming languages, and are mainly focused on statistical infer-
ence.



QMaude: Quantitative Specification and Verification in Rewriting Logic 255

10 Conclusions

We have presented a toolset for specifying probabilistic models on top of rewrit-
ing logic and verifying them using both probabilistic and statistical techniques
via our own implementations and external tools like PRISM [31], Storm [16], and
MultiVeSta [51]. Probabilities, rewards, and observations complement nondeter-
ministic models written in the Maude language, whose qualitative properties
can still be checked with a mature repertory of verification tools. In particu-
lar, nondeterminism can be quantified by a probabilistic extension of the Maude
strategy language, in which complex assignments can be described with multiple
operators and recursive definitions.

The main advantage of our tool is the layered specification approach that
facilitates checking quantitative and qualitative properties respecting the sepa-
ration of concerns principle [17]. Moreover, both analytic probabilistic and statis-
tical model-checking techniques can be applied on the same specifications. There
are great tools supporting the quantitative analysis of low-level specification of
probabilistic models or simulators, like those we are using as backends. However,
we have not found any general-purpose tool where specifications can be given at
such a high level.

As future work, we consider other methods for assigning probabilities, and
connecting to other verification and visualization tools.

Acknowledgments. Research partially supported by the Spanish AEI through
project ProCode (PID2019-108528RB-C22/AEI/10.13039/501100011033). Rubén
Rubio was partially supported by the Spanish Ministry of Universities through grants
FPU17/02319 and EST21/00536.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1-6:39 (2018). https://doi.org/10.1145/3158668

2. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. In: Cerone, A., Wiklicky, H. (eds.) Proceedings of
the Third Workshop on Quantitative Aspects of Programming Languages, QAPL
2005, Edinburgh, UK, 2–3 April 2005. Electronic Notes in Theoretical Computer
Science, vol. 153, no. 2, pp. 213–239. Elsevier (2006). https://doi.org/10.1016/j.
entcs.2005.10.040

3. Alpuente, M., Ballis, D., Sapiña, J.: Static correction of Maude programs with
assertions. J. Syst. Softw. 153, 64–85 (2019). https://doi.org/10.1016/j.jss.2019.
03.061

4. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

5. Alturki, M.A., Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L.:
Statistical model checking of distance fraud attacks on the Hancke-Kuhn family of
protocols. In: Lie, D., Mannan, M. (eds.) CPS-SPC 2018, pp. 60–71. ACM (2018).
https://doi.org/10.1145/3264888.3264895

https://doi.org/10.1145/3158668
https://doi.org/10.1016/j.entcs.2005.10.040
https://doi.org/10.1016/j.entcs.2005.10.040
https://doi.org/10.1016/j.jss.2019.03.061
https://doi.org/10.1016/j.jss.2019.03.061
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1145/3264888.3264895


256 R. Rubio et al.

6. Alturki, M.A., Roşu, G.: Statistical model checking of RANDAO’s resilience to
pre-computed reveal strategies. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS,
vol. 12232, pp. 337–349. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54994-7 25

7. Andrei, O., Fernández, M., Kirchner, H., Melançon, G., Namet, O., Pinaud, B.:
PORGY: strategy-driven interactive transformation of graphs. In: Echahed, R.
(ed.) Proceedings 6th International Workshop on Computing with Terms and
Graphs, TERMGRAPH 2011, Saarbrücken, Germany, 2nd April 2011. EPTCS,
vol. 48, pp. 54–68 (2011). https://doi.org/10.4204/EPTCS.48.7

8. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 28

9. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
10. Bentea, L., Ölveczky, P.C.: A probabilistic strategy language for probabilistic

rewrite theories and its application to cloud computing. In: Mart́ı-Oliet, N.,
Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 77–94. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37635-1 5

11. Bournez, O., Kirchner, C.: Probabilistic rewrite strategies. applications to ELAN.
In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 252–266. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45610-4 18

12. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168 (2017). https://doi.org/10.1007/978-
3-662-54580-5 9

13. Clavel, M., et al.: Maude Manual v3.2.1 (2022). http://maude.lcc.uma.es/
maude321-manual-html/maude-manual.html

14. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

15. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. J.
Univers. Comput. Sci. 12(11), 1618–1650 (2006). https://doi.org/10.3217/jucs-
012-11-1618

16. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

17. Dijkstra, E.W.: On the Role of Scientific Thought, pp. 60–66. Texts and Mono-
graphs in Computer Science, Springer (1982). https://doi.org/10.1007/978-1-4612-
5695-3 12

18. Durán, F., Rocha, C., Álvarez, J.M.: Tool interoperability in the Maude formal
environment. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS,
vol. 6859, pp. 400–406. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22944-2 30

19. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log.
Algebraic Methods Program. 110, 100497 (2020). https://doi.org/10.1016/j.jlamp.
2019.100497

20. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker.
In: Gadducci, F., Montanari, U. (eds.) Proceedings of the Fourth International
Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, 19–
21 September 2002. Electronic Notes in Theoretical Computer Science, vol. 71, pp.
162–187. Elsevier (2004). https://doi.org/10.1016/S1571-0661(05)82534-4

https://doi.org/10.1007/978-3-030-54994-7_25
https://doi.org/10.1007/978-3-030-54994-7_25
https://doi.org/10.4204/EPTCS.48.7
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-642-37635-1_5
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
http://maude.lcc.uma.es/maude321-manual-html/maude-manual.html
http://maude.lcc.uma.es/maude321-manual-html/maude-manual.html
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.3217/jucs-012-11-1618
https://doi.org/10.3217/jucs-012-11-1618
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-3-642-22944-2_30
https://doi.org/10.1007/978-3-642-22944-2_30
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/S1571-0661(05)82534-4


QMaude: Quantitative Specification and Verification in Rewriting Logic 257

21. Ellison, C., Rosu, G.: An executable formal semantics of C with applications.
In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, 22–28 January 2012, pp. 533–544. ACM (2012). https://doi.
org/10.1145/2103656.2103719

22. FaDoSS: Examples of the Maude strategy language (2022). https://fadoss.github.
io/strat-examples

23. Garavel, H., Tabikh, M.-A., Arrada, I.-S.: Benchmarking implementations of term
rewriting and pattern matching in algebraic, functional, and object-oriented lan-
guages. In: Rusu, V. (ed.) WRLA 2018. LNCS, vol. 11152, pp. 1–25. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99840-4 1

24. González-Burgueño, A., Aparicio-Sánchez, D., Escobar, S., Meadows, C.A.,
Meseguer, J.: Formal verification of the YubiKey and YubiHSM APIs in Maude-
NPA. In: Barthe, G., Sutcliffe, G., Veanes, M. (eds.) LPAR-22. 22nd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Awassa, Ethiopia, 16–21 November 2018. EPiC Series in Computing, vol. 57, pp.
400–417. EasyChair (2018). https://doi.org/10.29007/c4xk

25. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Herbsleb, J.D., Dwyer, M.B. (eds.) FOSE 2014, pp. 167–181. ACM
(2014). https://doi.org/10.1145/2593882.2593900

26. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

27. IETF: Hypertext Transfer Protocol version 2 (HTTP/2). RFC 7540, RFC Editor
(2015). https://www.rfc-editor.org/rfc/rfc7540.txt

28. IETF: HTTP/3. RFC 9114, RFC Editor (2022). https://www.rfc-editor.org/rfc/
rfc9114.txt

29. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number genera-
tion. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent
Results, pp. 357–428. Academic Press (1976)

30. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

31. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

32. Lee, D., Carpenter, B., Li, P., et al.: Stan (2017). https://doi.org/10.5281/zenodo.
1101116

33. Liu, S., Ölveczky, P.C., Zhang, M., Wang, Q., Meseguer, J.: Automatic analysis
of consistency properties of distributed transaction systems in Maude. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 40–57. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 3

34. MathWorks: MATLAB R2022a. The MathWorks Inc., Natick, Massachusetts
(2022)

35. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8),
721–781 (2012). https://doi.org/10.1016/j.jlap.2012.06.003

36. Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.: A systematic approach to uncover
security flaws in GUI logic. In: 2007 IEEE Symposium on Security and Privacy
(S&P 2007), Oakland, California, USA, 20–23 May 2007, pp. 71–85. IEEE Com-
puter Society (2007). https://doi.org/10.1109/SP.2007.6

https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://fadoss.github.io/strat-examples
https://fadoss.github.io/strat-examples
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.29007/c4xk
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/BF01211866
https://www.rfc-editor.org/rfc/rfc7540.txt
https://www.rfc-editor.org/rfc/rfc9114.txt
https://www.rfc-editor.org/rfc/rfc9114.txt
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.5281/zenodo.1101116
https://doi.org/10.5281/zenodo.1101116
https://doi.org/10.1007/978-3-030-17465-1_3
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1109/SP.2007.6


258 R. Rubio et al.

37. Ölveczky, P.C.: Real-time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

38. Pappagallo, A., Massini, A., Tronci, E.: Monte Carlo based statistical model check-
ing of cyber-physical systems: a review. Information 11(12), 588 (2020). https://
doi.org/10.3390/info11120588

39. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. J. Log. Algebraic Methods Program. 81(7–8), 851–
897 (2012). https://doi.org/10.1016/j.jlap.2011.06.004

40. Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verifi-
cation environment for the plan execution interchange language. In: Derrick, J.,
Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4 24

41. Rubio, R.: Language bindings for Maude (2021). https://fadoss.github.io/maude-
bindings

42. Rubio, R.: Maude simulator for MultiVeSta (2021). https://github.com/fadoss/
multivesta-maude

43. Rubio, R.: Maude as a library: an efficient all-purpose programming interface. In:
Bae, K. (ed.) WRLA 2022. LNCS, vol. 13252, pp. 274–294. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-12441-9 14

44. Rubio, R.: An overview of the Maude strategy language and its applications. In:
Bae, K. (ed.) WRLA 2022. LNCS, vol. 13252, pp. 65–84. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-12441-9 4

45. Rubio, R.: Unified Maude model-checking tool (2022). https://github.com/fadoss/
umaudemc

46. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: Model checking strategy-controlled
systems in rewriting logic. Autom. Softw. Eng. 29(1), 1–62 (2021). https://doi.org/
10.1007/s10515-021-00307-9

47. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: The semantics of the Maude
strategy language. Tech. rep. 01/21, Departamento de Sistemas Informáticos y
Computación, Universidad Complutense de Madrid (2021).https://eprints.ucm.es/
67449/

48. Rubio, R., Mart́ı-Oliet, N., Pita, I., Verdejo, A.: Strategies, model checking and
branching-time properties in Maude. J. Log. Algebr. Methods Program. 123,
100700 (2021). https://doi.org/10.1016/j.jlamp.2021.100700

49. Rubio, R., Riesco, A.: Theorem proving for Maude specifications using Lean. In:
Zhang, M., Riesco, A. (eds.) Formal Methods and Software Engineering. ICFEM
2022. LNCS, vol. 13478, pp. 263–280. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-17244-1 16

50. Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in Python
using PyMC3. PeerJ Comput. Sci. 2, e55 (2016). https://doi.org/10.7717/peerj-
cs.55

51. Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete
event simulators. In: Horváth, A., Buchholz, P., Cortellessa, V., Muscariello, L.,
Squillante, M.S. (eds.) 7th International Conference on Performance Evaluation
Methodologies and Tools, ValueTools 2013, Torino, Italy, 10–12 December 2013, pp.
310–315. ICST/ACM (2013). https://doi.org/10.4108/icst.valuetools.2013.254377

https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.3390/info11120588
https://doi.org/10.3390/info11120588
https://doi.org/10.1016/j.jlap.2011.06.004
https://doi.org/10.1007/978-3-642-30729-4_24
https://fadoss.github.io/maude-bindings
https://fadoss.github.io/maude-bindings
https://github.com/fadoss/multivesta-maude
https://github.com/fadoss/multivesta-maude
https://doi.org/10.1007/978-3-031-12441-9_14
https://doi.org/10.1007/978-3-031-12441-9_4
https://github.com/fadoss/umaudemc
https://github.com/fadoss/umaudemc
https://doi.org/10.1007/s10515-021-00307-9
https://doi.org/10.1007/s10515-021-00307-9
https://eprints.ucm.es/67449/
https://eprints.ucm.es/67449/
https://doi.org/10.1016/j.jlamp.2021.100700
https://doi.org/10.1007/978-3-031-17244-1_16
https://doi.org/10.1007/978-3-031-17244-1_16
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.4108/icst.valuetools.2013.254377


QMaude: Quantitative Specification and Verification in Rewriting Logic 259

52. Shankesi, R., AlTurki, M., Sasse, R., Gunter, C.A., Meseguer, J.: Model-checking
DoS amplification for VoIP session initiation. In: Backes, M., Ning, P. (eds.)
ESORICS 2009. LNCS, vol. 5789, pp. 390–405. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04444-1 24

53. Spedicato, G.A.: Discrete time Markov chains with R. R J. 9(2), 84 (2017). https://
doi.org/10.32614/rj-2017-036

https://doi.org/10.1007/978-3-642-04444-1_24
https://doi.org/10.32614/rj-2017-036
https://doi.org/10.32614/rj-2017-036


Concurrency and Memory Models



Minimisation of Spatial Models Using
Branching Bisimilarity

Vincenzo Ciancia1 , Jan Friso Groote2 , Diego Latella1 ,
Mieke Massink1(B) , and Erik P. de Vink2

1 CNR-ISTI, Pisa, Italy
{Vincenzo.Ciancia,Diego.Latella,Mieke.Massink}@cnr.it

2 Eindhoven University of Technology, Eindhoven, The Netherlands
j.f.groote@TUE.nl, evink@win.tue.nl

Abstract. Spatial logic and spatial model checking have great poten-
tial for traditional computer science domains and beyond. Reasoning
about space involves two different conditional reachability modalities: a
forward reachability, similar to that used in temporal logic, and a back-
ward modality representing that a point can be reached from another
point, under certain conditions. Since spatial models can be huge, suit-
able model minimisation techniques are crucial for efficient model check-
ing. An effective minimisation method for the recent notion of spa-
tial Compatible Path (CoPa)-bisimilarity is proposed, and shown to
be correct. The core of our method is the encoding of Closure Mod-
els as Labelled Transition Systems, enabling minimisation algorithms
for branching bisimulation to compute CoPa equivalence classes. Initial
validation via benchmark examples demonstrates a promising speed-up
in model checking of spatial properties for models of realistic size.

Keywords: Spatial minimisation · Closure spaces · Spatial logics ·
Spatial bisimilarity · Branching bisimilarity · Spatial model checking

1 Introduction

Spatial and spatio-temporal model checking have recently been successfully
employed in a variety of application areas, ranging from Collective Adaptive
Systems [14,20] to signals [30], images [5,18,25] and polyhedra [9], just to men-
tion a few. These methods for spatial analysis are enjoying an increasing interest
in computer science and beyond, also in unexpected domains such as medical
imaging [6,8]. Medical images are obtained from diagnostic instruments such as
magnetic resonance images (MRI), computer tomography scans, positron emis-
sion tomography or dermoscopic images. Such images usually consist of millions
of pixels, in 2D, or voxels (volumetric pixels) in 3D images.

Research partially funded by the Italian MUR Projects PRIN 2017FTXR7S, “IT- MaT-
TerS”, PRIN 2020TL3X8X “T-LADIES”, and Next Generation EU - MUR Project
PNRR PRI ECS00000017 “THE - Tuscany Health Ecosystem”. The authors are listed
in alphabetical order; they contributed to this work equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 263–281, 2023.
https://doi.org/10.1007/978-3-031-27481-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_16&domain=pdf
http://orcid.org/0000-0003-1314-0574
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0002-3257-9059
http://orcid.org/0000-0001-5089-002X
http://orcid.org/0000-0001-9514-2260
https://doi.org/10.1007/978-3-031-27481-7_16


264 V. Ciancia et al.

Spatial model checking consists in the automatic verification of properties,
expressed in a suitable spatial logic, on each point of a suitable spatial model.
In [17] the Spatial Logic for Closure Spaces (SLCS) was introduced and further
developed in [18]. Closure spaces, or Čech closure spaces [33], are a generalisation
of topological spaces suitable to model many kinds of spatial objects, ranging
from topological objects in continuous spaces, such as Euclidean spaces, to dis-
crete spatial objects, such as general and regular graphs and adjacency spaces.
The latter are particularly useful to represent images. Closure spaces (CS) and
the sub-class of quasi-discrete closure spaces, QdCSs for short, form a convenient
theoretical framework because of their generality and relative simplicity. A prac-
tical demonstration of this is the tool VoxLogicA, the recently developed spatial
model checker [6–8] that can efficiently check SLCS properties of large images
represented as symmetric quasi-discrete closure models—QdCMs, i.e. models
with QdCSs as underlying spaces.

Fig. 1. Cross section of a dataset element of BrainWeb [4] pat04 MRI at slice
(x, y, z) = (129, 147, 78), (fLTR: axial, coronal, sagittal view): VoxLogicA analysis of
the segmentation of white matter, shown as a green overlay on top of a red overlay
representing the ground truth.

For example, the 3D MRI image of a healthy brain shown in Fig. 1 consists of
circa 12 M voxels (i.e. 256 × 256 × 181) requiring approximately 10 s to analyse
using VoxLogicA on a desktop computer [7].1 Note that VoxLogicA checks such
logical specifications for every point in the model exploiting parallel execution,
memoization, and state-of-the-art imaging libraries [8].

A way to increase the time efficiency of spatial model checking is to exploit
suitable model minimisation algorithms based on spatial bisimilarity. To that
purpose several spatial bisimilarities have been proposed in [13]. In particular,
CoPa-bisimilarity, based on a notion of “path-compatibility” is promising. The
notion of path compatibility essentially requires that two paths, in order to be
compatible, have to be both composed of a (non-empty) sequence of an equal
number of non-empty adjacent “zones”, such that each point in one zone of
one path must be related, by the bisimulation relation, to every point in the
corresponding zone of the other path (see the illustration in Fig. 3b).

In [13], a logical characterisation of CoPa-bisimilarity has been given. More
precisely, Infinitary Compatible Reachability Logic (ICRL) has been defined that
is a modal logic with infinitary conjunction and two modalities, �ζ and �ζ, express-
ing conditional forward and backward reachability, respectively. Given two ICRL

1 Intel Core I9 9900K processor (with 8 cores) and 32 GB of RAM.



Spatial Minimisation 265

formulas Φ1 and Φ2, a point x satisfies �ζΦ1[Φ2] if it satisfies Φ1 or there is a path
from x to a point y along the path satisfying Φ1 and all points from x (included)
to y satisfy Φ2. Similarly for �ζΦ1[Φ2], which is satisfied by x if it satisfies Φ1

or there is a path from a point y satisfying Φ1 to x and all points on the path
from y to x (included) satisfy Φ2.2

This paper includes two original contributions, one of more theoretical nature
and another more practical one.

Theoretical Contribution. Definition and correctness proof of an encoding of
finite Closure Models (CM) in Labelled Transition Systems (LTS), that preserves
CoPa-bisimilarity. More precisely, two points in the input CM are CoPa-bisimilar
if and only if the states they are mapped onto by the encoding are branching
bisimilar [23,24,26]. Thus, given a finite CM, the encoding makes it possible
to effectively compute the minimal model with respect to CoPa-bisimilarity via
the composition of the encoding and a very efficient minimisation algorithm for
branching bisimulation, proposed in [24,26].

Practical Contribution. For a feasibility study and validation of the approach,
we developed a prototype implementation of the encoding, and assembled a
toolchain involving mCRL2 [10], VoxLogicA and GraphLogicA, a prototype spatial
model checker. The latter is a variant of VoxLogicA handling general graphs.
We applied our toolchain to a set of images at various resolutions, in order to
gather insight on the potential gain in computational efficiency of spatial model
checking. We observed a considerable speed-up, especially at larger resolutions,
which suggests interesting directions for future research and applications.

Related Work. Qualitative reasoning about spatial entities [21] has been, and
still is, a very active area of research in which the theory of topology and closure
spaces play a important role. Prominent examples of that area are the region
connection calculi, such as RCC8D. An embedding of the latter in the collective
variant of SLCS was presented recently in [19]. Our work is also inspired by spa-
tial logics (see [3] for an extensive overview), with seminal work dating back by
Tarski and McKinsey in the forties of the previous century. The work on spatial
model checking for logics with reachability originated in [18], which includes a
comparison to the work of Aiello on spatial until operators (see e.g. [1]). In [2],
Aiello envisaged practical applications of topological logics with until to minimi-
sation of images. The present paper builds on and extends that vision. Bisim-
ilarity for spatial logics with reachability is a relatively new subject. In [27], a
bisimulation relation that is correct with respect to SLCS has been presented.
Such definition has not yet been proved complete, and is aimed at characterising

2 Note that, different from the context of classical temporal logics, in the context
of space, and in particular when dealing with notions of directionality (e.g. one
way roads, public area gates), it is important to be able to distinguish between the
concept of “reaching” and that of “being reached”. The interested reader is referred
to [13] for a discussion on the issue.



266 V. Ciancia et al.

the logic including the near operator, therefore, not quotienting up-to reachabil-
ity, as done in the present paper. The papers [9] and [28] introduce bisimulation
relations that characterise spatial logics with reachability in polyhedral models
and in simplicial complexes, respectively. It will be interesting future work to
apply the minimisation techniques we present to such relevant classes of models.

In the Computer Science literature, other kinds of spatial logics have been
proposed that typically describe situations in which modal operators are inter-
preted syntactically against the structure of agents in a process calculus. We refer
to [11,12] for some classical examples. Along the same lines, a recent example
is given in [32], concerning model checking of security aspects in cyber-physical
systems, in a spatial context based on the idea of bigraphical reactive systems
introduced by Milner [29]. A bigraph consists of two graphs: A place graph, i.e.
a forest defined over a set of nodes which is intended to represent entities and
their locality in terms of a containment structure, and a link graph, a hypergraph
composed over the same set of nodes representing arbitrary linking among those
entities. The QdCS models that are the topic of the present paper, instead,
address space from a topological point of view rather than as a containment
structure for spatial entities.

The structure of the paper is as follows. Section 2 recalls relevant concepts and
introduces notation. Section 3 recalls CoPa-bisimilarity for QdCMs. In Sect. 4 the
encoding of finite QdCMs into LTSs is presented, together with the correctness
results. Section 5 briefly describes a feasibility study of the application of the
encoding and related toolchain to a series of examples. All detailed proofs can
be found in [15].

2 Preliminaries

We first introduce some relevant concepts and notation, in particular recalling
an LTS, branching bisimilarity [23,24,26], (quasi-discrete) closure spaces and
closure models and paths therein.

Given a set X, P(X) denotes the powerset of X. For a function f : X → Y ,
A ⊆ X and B ⊆ Y , we let f(A) and f−1(B) be defined as {f(a) | a ∈ A} and
{a | f(a) ∈ B}, respectively. For binary relation R ⊆ X × X, we let R−1 denote
the converse of R and R= denote the reflexive closure of R. The set of natural
numbers is denoted by N. For n,m ∈ N we often use the interval notation [m,n]
denoting the set {ι ∈ N |m ≤ ι ≤ n}, [m,n) denoting the set {ι ∈ N |m ≤ ι < n},
and similarly for (m,n] and (m,n).

In the sequel, branching bisimilarity [23,24,26] of states of LTSs plays a
central role. Below we recall the relevant definitions.

Definition 1 (Labelled Transition System - LTS). A Labelled Transition
System, LTS for short, is a tuple (S, Act,→) where S and Act are non-empty
sets of states, and action labels respectively and relation → ⊆ S × Act × S is
the transition relation.



Spatial Minimisation 267

As usual, we distinguish an action τ ∈ Act that models a “silent move” of
the LTS. Moreover, we call the elements of → transitions, and we write s

α−→ s′

whenever (s, α, s′) ∈ →. A (non-empty, finite) trace in the LTS is a sequence
s0α1s1 . . . sn−1αnsn of states and actions such that n > 0 and si−1

αi−→ si for
i = 1, . . . , n. For such traces, we use the notation s0

α1−→ s1 · · · sn−1
αn−→ sn. In

such a situation, if s = s0, w = α1 · · · αn, and s′ = sn, we have occassion to
write s

w−→ s′, as in the definition of branching bisimilarity which follows.

Definition 2 (Branching bisimilarity – ↔b). Given an LTS S = (S, Act,
→), a symmetric relation B ⊆ S × S is a branching bisimulation for S iff, for
s, t, s′ ∈ S and α ∈ Act, whenever sB t and s

α−→ s′, it holds that: (i) s′ B t

and α = τ , or (ii) sB t̄, s′ B t′ and t
τ∗

−→ t̄, t̄
α−→ t′ for some t̄, t′ ∈ S.

Two states s, t ∈ S are called branching bisimilar in S if sB t for some
branching bisimulation B for S. Notation, s ↔S

b t.

From now on, for readability, we omit the superscript S in ↔S
b , when this does

not cause confusion. Our framework for modelling space is based on the notion
of Čech closure space [33], CS for short, that provides a convenient common
framework for the study of several different kinds of spatial models, including
models of both discrete and continuous space [31]. We briefly recall definitions
and results on CSs, that are relevant for this paper — most of which are borrowed
from [22] (see also [13,18]).

Definition 3 (Closure Space – CS). A closure space is a pair (X, C) where
X is a set (of points) and C : P(X) → P(X) is the closure operator, i.e. a
function satisfying the following axioms: (i) C(∅) = ∅; (ii) A ⊆ C(A) for all
A ⊆ X; and (iii) C(A1 ∪ A2) = C(A1) ∪ C(A2) for all A1, A2 ⊆ X.

It is worth pointing out that CSs are a generalisation of topological spaces.
In fact, the latter coincide with CSs that satisfy the idempotence axiom, i.e.
C(C(A)) = C(A) for all A ⊆ X.

Definition 4 (Quasi-discrete CS – QdCS). A quasi-discrete closure space
is a CS (X, C) such that for each A ⊆ X it holds that C(A) =

⋃
x∈A C({x}).

Given a relation R ⊆ X × X, define the function CR : P(X) → P(X) as follows:
for all A ⊆ X, CR(A) = A ∪ {x ∈ X | ∃a ∈ A s.t. aR x}. It is easy to see that,
for any R, CR satisfies all the axioms of Definition 3 and so (X, CR) is a CS. The
following theorem is a standard result in the theory of CSs [22].

Theorem 1. A CS (X, C) is quasi-discrete if and only if there is a relation
R ⊆ X × X such that C = CR.

The above theorem implies that graphs coincide with QdCSs. We prefer to treat
graphs as QdCSs since in this way we can formulate key definitions at the level
of closure spaces leading to a uniform treatment for graphs and other kinds
of models for space (e.g. topological spaces) [31]. Furthermore, if X is finite,



268 V. Ciancia et al.

any closure space (X, C) is quasi-discrete. In the sequel, we consider only finite
CSs and often refrain from explicitly writing the subscript R in CR, when this
does not cause confusion. Finally, we say that (X, CR) is symmetric iff R is a
symmetric relation. An example of the result of applying the closure operator C
induced by a relation R to a set A is shown in Fig. 2.

(a) (b)

Fig. 2. a: a finite QdCS (X, C); the arrows represent the relation underlying C. The
points of the set A ⊆ X are shown in white, remaining points are shown in black. b:
additional points in C(A) are shown in grey.

In the context of the present paper, paths over CSs play an important role.
Following the tradition in topology, in the theory of CSs paths are defined as
continuous functions from an appropriate index space to the CS at hand. For
finite CSs, it is sufficient to consider bounded, finite, paths.

Definition 5 (Finite path). A finite path in a finite CS (X, C) is a continuous
function π : [0, 	] → X, for some 	 ∈ N, such that π(i + 1) ∈ C({π(i)}) for
i = 0, . . . , 	 − 1. We call 	 the length of π and we denote it by len(π).

For x ∈ X, FPathsF(x) denotes the set of all finite paths π in (X, C) such that
π(0) = x (paths From x). Similarly, FPathsT(x) denotes the set of all finite
paths π in (X, C) such that π(len(π)) = x (paths To x). In the sequel, whenever
we write “path” we mean “finite path”.

Remark 1. It is worth pointing out that the notion of path in a QdCS is similar
to that of a path in a graph or of a trace in an LTS, but it is not the same. In
particular, due to axiom (ii) of closure operator C and the requirement π(i+1) ∈
C(π(i)), paths in CSs allow stuttering; in other words, for QdCS (X, C), x ∈ X,
and path π, it may happen that π(i) = π(i + 1) = x, for i < π(len(π)) even
when (x, x) is not an element of the relation R ⊆ X × X underlying C. This is
different for a path . . . n1n2 . . . in a graph (N,E), where in order for nodes n1

and n2 in N to be adjacent, it is required that (n1, n2) is an element of the edge
relation E. A similar issue arises when comparing paths in QdCSs with traces
in LTSs. In fact, for LTS (S, Act,→), two states s1 and s2 can be adjacent in a
trace · · · s1 α−→ s2 · · · only if (s1, α, s2) ∈ →, and this holds also if s2 = s1.

We assume a set AP of atomic proposition letters is given and introduce the
notion of closure model (CM for short).



Spatial Minimisation 269

Definition 6 (Closure model – CM). A closure model is a tuple M =
(X, C,V), with (X, C) a CS, and V : AP → P(X) the valuation function, assigning
to each p ∈ AP the set of points where p holds.

All definitions for CSs also apply to CMs; thus, a quasi-discrete closure model
(QdCM for short) is a CM M = (X, C,V) where (X, C) is a QdCS. For a closure
model M = (X, C,V) we often write x ∈ M when x ∈ X. Similarly, we speak of
paths in M meaning paths in (X, C).

In the sequel, for a logic L, a formula Φ ∈ L, and a model M = (X, C,V)
we let [[Φ]]ML denote the set {x ∈ X |M, x |=L Φ} of all the points in M that
satisfy Φ, where |=L is the satisfaction relation for L. For the sake of readability,
we refrain from writing the subscript L when this does not cause confusion.

3 CoPa-Bisimilarity for QdCM

In [13] several notions of spatial bisimilarity for closure models have been inves-
tigated. In particular, CM-bisimilarity, and its refinement for QdCMs CMC-
bisimilarity, are a fundamental starting point for the study of spatial bisimilarity
due to their strong links to topo-bisimilarity. On the other hand, they are rather
fine-grained relations for reasoning about general properties of space, since they
are based directly on the closure operator.3 For instance, with reference to the
model of Fig. 3a, where all black points satisfy only atomic proposition b while the
grey ones satisfy only g, the point at the center of the model is not CMC-bisimilar
to any other black point. This is because CMC-bisimilarity is based on the fact
that points reachable “in one step”—i.e. contained in the closure—are taken into
consideration. This, in turn, gives bisimilarity a sort of “counting” power, that
goes against the idea that, for instance, all black points in the model could be
considered spatially equivalent. In fact, they are all black and all can reach black
or grey points. Furthermore, they could be considered equivalent to the black
point of a smaller model consisting of just one black and one grey point mutually
connected—that would, in fact, be a minimal representation of the closure model.

Fig. 3. A model (a); zones in paths (b).

In order to relax “counting” capability of bisimilarity as mentioned, a weaker
notion of bisimulation has been introduced in [13] that is based on paths,
3 Or its dual operator called ‘interior’.



270 V. Ciancia et al.

instead of single closure steps, and on a notion of “compatibility” between rel-
evant paths that essentially requires each of them be composed of a non-empty
sequence of non-empty, adjacent “zones”. More precisely, both paths under con-
sideration in a transfer condition should share the same structure, as follows (see
Fig. 3b):
– both paths are composed by a sequence of (non-empty) “zones”;
– the number of zones should be the same in both paths, but
– the length of “corresponding” zones can be different, as well as the length of

the two paths;
– each point in one zone of a path should be related by the bisimulation to

every point in the corresponding zone of the other path.

This notion of compatibility gives rise to Compatible Path bisimulation, CoPa-
bisimulation, recalled below for QdCMs.
Definition 7 (CoPa-bisimilarity - �M

CoPa). Given QdCS M = (X, C,V), a
symmetric relation B ⊆ X × X is a CoPa-bisimulation for M if, whenever
x1 B x2, the following holds:

1. for all p ∈ AP we have x1 ∈ V(p) if and only if x2 ∈ V(p);
2. for all π1 ∈ FPathsF(x1) such that π1(i1)B x2 for all i1 ∈ [0, len(π1)) there

is π2 ∈ FPathsF(x2) such that the following holds: x1 B π2(i2) for all i2 ∈
[0, len(π2)), and π1(len(π1))B π2(len(π2));

3. for all π1 ∈ FPathsT(x1) such that π1(i1)B x2 for all i1 ∈ (0, len(π1)] there
is π2 ∈ FPathsT(x2) such that the following holds: x1 B π2(i2) for all i2 ∈
(0, len(π2)], and π1(0)B π2(0).

Two points x1, x2 ∈ X are called CoPa-bisimilar in M if x1 B x2 for some
CoPa-bisimulation B for M. Notation, x1 �M

CoPa x2.
It is easy to see that �CMC is strictly stronger than �CoPa; the interested reader
is referred to [13] for details.

We recall the definition of the Infinitary Compatible Reachability Logic (ICRL)
proposed in [13] that provides a logical characterisation of CoPa-bisimilarity.
Definition 8 (Infinitary Compatible Reachability Logic - ICRL).
The abstract language of ICRL is defined by:

Φ ::= p | ¬Φ |
∧

i∈I

Φi | �ζ Φ1[Φ2] | �ζ Φ1[Φ2]

where p ranges over AP and I ranges over a collection of index sets. The satisfac-
tion relation for all QdCMs M, points x ∈ M, and ICRL formulas Φ is defined
recursively on the structure of Φ as follows:

M, x |=ICRL p ⇔ x ∈ V(p)
M, x |=ICRL ¬Φ ⇔ M, x |=ICRL Φ does not hold
M, x |=ICRL

∧
i∈I Φi ⇔ M, x |=IRL Φi for all i ∈ I

M, x |=ICRL
�ζ Φ1[Φ2] ⇔ path π and index 	 exist such that π(0) = x,

M, π(	) |=ICRL Φ1, and M, π(j) |=ICRL Φ2 for j ∈ [0, 	)
M, x |=ICRL

�ζ Φ1[Φ2] ⇔ path π and index 	 exist such that π(	) = x,
M, π(0) |=ICRL Φ1, and M, π(j) |=ICRL Φ2 for j ∈ (0, 	].



Spatial Minimisation 271

Logical equivalence with respect to ICRL is defined as expected.

Definition 9 (ICRL-equivalence - �M
ICRL). For CM M = (X, C,V), the equiv-

alence relation �M
ICRL ⊆ X × X is defined as: x1 �M

ICRL x2 if and only if for all
ICRL formulas Φ, it holds that M, x1 |=ICRL Φ if and only if M, x2 |=ICRL Φ.

The following result establishes the relationship between CoPa-bisimilarity and
ICRL-equivalence [13].

Theorem 2. For every QdCM M it holds that ICRL-equivalence �M
ICRL coincides

with CoPa-bisimilarity �M
CoPa.

In the remainder of the paper, since we are concerned with finite models only,
we confine to the finitary fragment of ICRL, i.e. the fraction where I ranges over
a collection of finite index sets. Furthermore, we will refrain from writing the
superscript M in q�M

CoPa and �M
ICRL, when this will not cause confusion.

In this work, given a QdCM M = (X, CR,V), we aim at running the model
checking algorithm of [18] on the quotient of X with respect to �ICRL. The
remainder of this paper is devoted to explain how to compute such set. It is a
natural question at this point, whether the minimal model exists in the class of
QdCMs. In other words, one needs to show that the set of equivalence classes of
�ICRL can be endowed with a quasi-discrete closure operator, in such a way that
logical truth is preserved and reflected. We do so in Proposition 1 below.

Proposition 1. Given a QdCM M = (X, CR,V), let Xmin be the set of equiv-
alence classes of X modulo �ICRL. Let R′ be the relation {(x, y) ∈ X × X |
y ∈ CR({x})}. Let Rmin be the relation {(α, β) ∈ Xmin × Xmin | ∃x ∈ α.∃y ∈
β.(x, y) ∈ R′}. For each atomic proposition p, let Vmin(p) = {α ∈ Xmin | ∃x ∈
α.x ∈ V(p)}. Let Mmin = (Xmin, CRmin

,Vmin). Then for each x in X and for
each formula Φ, we have M, x |= Φ ⇐⇒ Mmin, [x] |= Φ, where [x] is the
equivalence class of x modulo �ICRL.

4 From QdCMs to Labelled Transition Systems

In this section we show how a finite QdCM can be encoded as an LTS in such a
way that the images of points that are CoPa-bisimilar in the QdCM are mapped
to branching bisimilar states in the LTS and viceversa. A simplification of the
encoding is possible for the special case of QdCMs where the relation underlying
the closure operator is symmetric.

4.1 General Encoding for Finite CMs

The encoding takes a finite QdCM as input and produces an LTS as output. To
illustrate the various steps in the encoding, we use the QdCM in Fig. 4 and its
LTS encoding in Fig. 5 as a running example. Let M = (X, C,V) be a QdCM and
R the binary relation on X that underlies the closure operator C. The output



272 V. Ciancia et al.

LTS(M) = (S, Act,→) of the encoding of M is an LTS where we can identify
two parts, the direct part and the converse part. Roughly speaking, the direct
part corresponds to R, whereas the converse part corresponds to the converse of
R, i.e. R−1. Both parts consist of the same number of states as the number of
points in X.

More specifically, the set of states of the direct part is the set {�x |x ∈ X} ⊂ S,
i.e. for each point in X there is a state in S in LTS(M). We decorate it with
an arrow from left to right to emphasise that it belongs to the direct part.
Moreover, for all x, x′ ∈ X, whenever x′ ∈ C({x}) — i.e. xR= x′ — and x′ �= x,
there is a transition from �x to �x ′ in LTS(M). In particular, if x and x′ satisfy
the same set of atomic proposition letters, i.e. V−1({x}) = V−1({x′}), then an
internal transition �x

τ−→ �x ′, is generated. If, instead, there is a change in the
set of atomic proposition letters satisfied by x′ with respect to those satisfied by
x, then the transition �x

ch−→ �x ′ is generated, where ch signals such a change.
In addition, for each x ∈ X, the actual proposition letters p satisfied by x are
encoded as self-loops �x

p−→ �x.
The set of states of the converse part is the set { �x |x ∈ X} ⊂ S and the

right-to-left arrows witness it. Moreover, for all x, x′ ∈ X, whenever x ∈ C({x′})
— i.e. x (R=)−1 x′ — and x′ �= x, there is a transition from �x ′ to �x in LTS(M).
For what concerns the labels of such transitions in the converse part the same
rules apply as those for the direct part. The encoding of satisfaction of atomic
propositions by self-loops does not need to be repeated in the converse part.

Finally, from each state �x in the direct part there is a transition, labelled
by cv, leading to the corresponding state �x in the converse part, i.e. �x

cv−→ �x
and, similarly, from each state �x in the converse part there is a transition, labelled
by dr, leading to the corresponding state �x in the direct part, i.e. �x

dr−→ �x. The
translation is formalised in Definition 10.

Fig. 4. A finite QdCM

Definition 10 (Encoding Finite CMs into LTSs). Let M = (X, C,V)
be a finite CM. Define labelled transition system LTS(M) as follows. LTS(M) =
(S, Act,→) where: (i) S = {�s | s ∈ X}∪{ �s | s ∈ X}; (ii) Act = AP∪{τ, dr, cv, ch},
where {τ, dr, cv, ch}∩AP = ∅; (iii) the transition relation → contains exactly the
following transitions:

�s
p−→ �s for all p ∈ AP and s ∈ V(p)

�s
cv−→ �s for all s ∈ X

�s
dr−→ �s for all s ∈ X

�s
τ−→ �s ′, �s ′ τ−→ �s if s′ ∈ C({s}) \ {s} and V−1({s}) = V−1({s′})

�s
ch−→ �s ′, �s ′ ch−→ �s if s′ ∈ C({s}) \ {s} and V−1({s}) �= V−1({s′}).



Spatial Minimisation 273

Fig. 5. LTS resulting from the application of the encoding defined in Definition 10 to
the QdCM of Fig. 4.

The following lemma states an interesting property of the output of the encoding.
Such a property turns out to be useful for the proof of the main result, asserting
correctness of the encoding with respect to CoPa-bisimilarity.

Lemma 1. Let M = (X, C,V) be a finite CM. It holds that

�s ↔b �t if and only if �s ↔b �t for all s, t ∈ X.

The proof of Lemma 1 builds on the following technical result.

Lemma 2. Let M = (X, C,V) be a finite CM. It holds that

if �s
τ−→ �s ′ and �s ↔b �s ′, then �s ′ τ−→ �s and �s ↔b �s ′.

The proof of Lemma 2 goes by induction on the depth of a direct state. In general,
for an LTS, silent transitions τ∗

−→ split the state space in τ -strongly connected
components (τ -SCCs): states s and s′ are in the same τ -SCC if both s

τ∗
−→ s′

and s′ τ∗
−→ s. Moreover, in the case of a finite LTS, τ -SCCs are well-ordered; a

τ -SCC C is less than τ -SCC C ′ if s′ τ∗
−→ s for some s′ ∈ C ′, s ∈ C, but not the

other way around. The depth of a state is then defined as the number of τ -SCCs
a path of τ -transitions passes through to reach a so-called bottom τ -SCC.

Below we formulate the main theorem, showing that two points s and t in
the QdCM are CoPa-bisimilar if and only if the corresponding states �s and �t are
branching bisimilar, where the LTS is obtained by applying the encoding defined
in Definition 10.

Theorem 3. Let M = (X, C,V) be a finite CM. Then, for all s, t ∈ X we have

s �CoPa t if and only if �s ↔b �t.

For a proof from left to right one defines a CoPa-bisimulation on M obtained
from branching bisimulation in LTS(M): put s B t if �s ↔b �t for points s, t ∈
X. Lemma 2 is used to reduce the proof of obligation for requirement 3 of
Definition 7 to the case of its requirement 2. A proof right to left is more direct;
a branching bisimulation R defined by having �s R�t and �s R �t in case s �CoPa t.



274 V. Ciancia et al.

Fig. 6. A symmetric finite QdCM

4.2 Optimised Encoding for Symmetric Finite CMs

For symmetric finite CMs a simplified version of the encoding can be given.
Symmetric QdCMs naturally emerge as representations of digital images where
points are related via an adjacency relation as discussed in Sect. 1.

Definition 11 (Encoding Symmetric Finite CMs into LTSs). Let M =
(X, C,V) be a symmetric finite CM. Define LTSsym(M) = (S, Act,→) where:
(i) S = {↔

s | s ∈ X}; (ii) Act = AP ∪ {τ, ch}; (iii) the transition relation →
contains exactly the following transitions:

↔
s

p−→↔
s for all p ∈ AP and s ∈ V(p)

↔
s

τ−→↔
s ′ if s′ ∈ C({s}) \ {s} and V−1({s}) = V−1({s′})

↔
s

ch−→↔
s ′ if s′ ∈ C({s}) and V−1({s}) �= V−1({s′}).

As an example, consider the symmetric finite QdCM of Fig. 6 and its LTS encod-
ing in Fig. 7, obtained with the encoding given in Definition 11. It is easy to see
that a symmetric QdCM with n nodes and t transitions leads to an LTS with n
nodes and t + n transitions.

Theorem 4. Let M = (X, C,V) be a symmetric finite CM. Then, for all s, t ∈
X we have: s �CoPa t if and only if

↔
s ↔b

↔
t .

Fig. 7. LTS resulting from the application of the encoding in Definition 11 to the
symmetric QdCM of Fig. 6.

The 2D maze in Fig. 9a, part of our feasibility study, exemplifies the significance
of CoPa-minimization on images. Each node of the graph represents an area
of interest in the image: exit (green), walls (black), walking areas (white) and
starting points (blue). The three white nodes, as an example, represent three
different kinds of white walking areas: the ones from which neither an exit nor
a starting point can be reached (without crossing walls), the ones from which
a starting point can be reached (but not the exit), and the ones from which a
starting point and the exit can be reached.



Spatial Minimisation 275

5 Feasibility Study

In this section we provide an experimental validation of the theory presented in
the previous sections. In particular, a prototype implementation of the encoding
of Sect. 4 is introduced and applied to two representative benchmark examples.

5.1 Implementation

The encoding of Sect. 4.1 has been implemented as Free and Open Source Soft-
ware, derived from the sources of the spatial model checker GraphLogicA, han-
dling general finite QdCMs, in order to reuse its model loading functionality.

Procedure. The tool converts a spatial model — either an image (e.g. png), or
a general graph written in a simple json format — to an LTS in the aut file
format, which is one of the LTS formats accepted by the mCRL2 tool suite [10].
For images, the optimised encoding described in Sect. 4.2 is used. The resulting
LTS is minimised using the efficient branching bisimulation minimisation algo-
rithm [24] implemented in mCRL2. This last step results in a minimised LTS in
aut format which can be used for spatial model checking with GraphLogicA, after
a simple conversion back to the json format. For measuring the model checking
speed-up, in our toolchain, we use GraphLogicA for checking the minimal model,
and VoxLogicA to check the full model4.

Fig. 8. Monoscope test pattern Philips PM5544

5.2 Experimental Setup

The procedure described above was used to produce the minimised LTSs shown
in Fig. 9b, of the image of a maze of Fig. 9a, and to minimise the classical Philips
5544 monoscope test pattern, shown in Fig. 8. Our tests have been run on
a workstation equipped with an Intel CoreTM i9 9900 K and 32 gb of RAM.

4 Note that VoxLogicA is inherently much faster than GraphLogicA as it is specialised
for images, exploiting state-of-the-art imaging libraries and automatic parallelisa-
tion. This poses a further challenge to the speed-up via minimisation and is the
reason why we use VoxLogicA instead of GraphLogicA for the full model.



276 V. Ciancia et al.

Fig. 9. An image of a 2D maze (9a), its minimal LTS using the general encoding of
Definition 10 (9b - top), and that obtained using the optimised encoding of Definition 11
(9b - bottom). For readability, self-loops labelled by atomic propositions are not shown;
the corresponding states are shown in the colour represented by the omitted label;
symmetric transition pairs are drawn as doubly-headed arrows.

Full data, source code and tools needed to reproduce the experiments can be
found in a Zenodo repository [16].

Test Images. For experimental evaluation, the two images have been rescaled at
various resolutions. The “name” column of Table 1 indicates the vertical resolu-
tion of each image. The maze image is square, therefore the horizontal resolution
coincides with the vertical one. The monoscope has a 16:9 ratio, thus, e.g., the
horizontal resolution of mono-1080 is 1920 pixels.

Logical Specifications. For the maze image, the model checking specification
consists of the computation of three reachability-based formulas, identifying:
1) the white points from which both a blue point and a green point can be
reached (roughly, the white paths connecting blue points to the exit), via the
formula �ζ blue[white] ∧ �ζ green[white]; 2) the blue points from which there is no
white path to the exit (via a similar formula); 3) the blue points from which,
instead, an exit can be reached (again, using reachability). For the monoscope
pattern, the logical specification is more artificial, as it has been designed to
be more demanding in terms of computation time (both model checkers have
linear complexity in the number of sub-formulas). A single property Φ has been
designed, characterising the points from which very specific paths start, crossing
a number of different colours in a specific order, using 16 nested reachability



Spatial Minimisation 277

constraints, in the shape �ζ ′(�ζ ′(�ζ ′(. . .)[green])[cyan])[yellow ], where �ζ ′ φ1[φ2] is
defined as ¬φ1 ∧ �ζ φ1[φ2].

5.3 Results and Discussion

Table 1 reports the results for each test image, for the logical properties specified
in Sect. 5.2. Even though some models are equivalent (for instance, all the min-
imised versions of the maze), we have re-run all the phases of our experiment for
each image, including model checking of the minimal model, as we do not test
for equality of models for each pair of images in our experiment (which would
yield a quadratic number of tests).

The obtained speed-up is noteworthy, especially for large images, as shown
in the right-most column in Table 1. The longer formula used in the monoscope
test demonstrates that minimisation clearly pays off when multiple formulas are
checked on the same model, which is common in formal verification. For the
larger images, the model checking time for the full model is substantially longer
than the sum of the conversion, minimisation, backwards conversion, and model
checking of the minimal model. For the maze example, the minimal model has
the same size (actually, it is byte-by-byte the same file) for each resolution. The
monoscope test, on the other hand, is designed to highlight artifacts in images.
The original image is the one of 1080 pixel height and when downsampled at
various resolutions, some lines disappear (specifically, belonging to the vertical
bars close to the middle of the image), yielding different reachability proper-
ties, and therefore a more varied setup for our tests. We report the times both
excluding and including input/output, for completeness. The intermediate file
size for the aut files may be very large, thus saving and parsing times mask the
effective computation. In perspective, the computation time is more relevant, as
in the future intermediate files will be avoided altogether, by constructing mCRL2
models directly in memory, using its programming interfaces.

As expected, with larger image sizes, the speed-up obtained in model checking
becomes more prominent (again with reference to Table 1 the speed-up of model
checking for the largest image is 22). Large images are particularly relevant in 3D
medical imaging, which will be the subject of future work exploring the potential
impact of bisimulation-based techniques to this novel application domain.

Ongoing work, also taking into account the results presented in [34], is
devoted to translating spatial-logic properties to the language of mCRL2 in order
to use its state-of-the-art model checking techniques to verify spatial properties
of directed graphs, in order to leverage the obtained speed-up even further.



278 V. Ciancia et al.

Table 1. Results. All times are in seconds, rounded to two decimals. In order: conver-
sion time from png to aut, without and with I/O; number of states, transitions, and
aut file size of full model; minimisation time, without and with I/O; number of states
and transitions of minimal model; time to convert the minimal model back to json;
time for model checking the full model with VoxLogicA, and the minimal model with
GraphLogicA; model checking speed-up.

Name Conversion Full model Minimisation Model checking

Time t.w.IO States Transitions Aut file size Time t.w.IO States Trans. t.blck ch. full ch. min Speedup

maze-128 0.34 0.34 16.00 K 142.50 K 2.47 MiB 0.00 0.03 7 21 0.36 0.49 0.39 1.25

maze-256 0.41 0.43 64.00 K 573.00 K 10.35 MiB 0.02 0.12 7 21 0.29 0.46 0.44 1.06

maze-512 0.34 0.78 256.00 K 2.24 M 44.55 MiB 0.08 0.49 7 21 0.30 0.45 0.47 0.97

maze-1024 0.39 1.28 1.00 M 8.99 M 184.34 MiB 0.32 2.06 7 21 0.31 0.51 0.38 1.34

maze-2048 0.46 4.12 4.00 M 35.98 M 793.73 MiB 1.31 8.10 7 21 0.34 0.82 0.41 1.98

maze-4096 0.87 21.91 16.00 M 143.95 M 3.27 GiB 5.37 33.32 7 21 0.33 1.81 0.45 4.01

maze-8192 2.20 173.55 64.00 M 575.91 M 13.63 GiB 21.53 135.45 7 21 0.29 5.34 0.42 12.77

mono-130 0.32 0.38 30.47 K 272.05 K 4.83 MiB 0.01 0.06 155 899 0.29 0.52 0.44 1.17

mono-260 0.31 0.62 121.88 K 1.07 M 20.27 MiB 0.03 0.26 315 1841 0.32 0.54 0.49 1.09

mono-540 0.35 0.90 506.25 K 4.44 M 90.33 MiB 0.16 1.01 460 2766 0.30 0.78 0.51 1.52

mono-1080 0.40 5.00 1.98 M 17.78 M 384.28 MiB 0.62 4.08 945 6965 0.32 1.57 0.57 2.75

mono-2160 0.57 43.87 7.91 M 71.16 M 1.55 GiB 2.45 16.74 945 6965 0.33 4.14 0.64 6.48

mono-4320 1.58 30.72 31.64 M 284.70 M 6.65 GiB 9.88 67.52 945 6965 0.72 14.96 0.65 22.87

6 Conclusions and Future Work

A practical minimisation method has been proposed for CoPa-bisimilarity for
finite quasi-discrete closure models. The latter are a convenient theoretical foun-
dation for spatial model checking. The method relies on an encoding of closure
models onto LTSs such that an existing efficient algorithm for branching bisim-
ilarity can be used to obtain a minimal model. The encoding has been proven
correct, in the sense that two points in the CM are CoPa-bisimilar if and only
if the states they are mapped into by the encoding are branching bisimilar.
Spatial model checking can be performed exploiting the logical characterisation
of CoPa-bisimilarity by the ICRL logic. A feasibility study has been performed
to provide insight in the potential of the minimisation method for its use in
the analysis of, possibly large, 2D images, in preparation of its envisioned use
in spatial model checking in the medical domain. First results confirm that a
very promising speed-up of spatial model checking can be obtained for single
formulas, also for images of huge, but realistic, size. Minimisation also clearly
pays off when multiple formulas are checked on the same model, which is com-
mon in formal verification. In such scenario, the model checking time for the
full model is substantially longer than the sum of the conversion, minimisation,
backwards conversion, and model checking of the minimal model, even in the
current prototype setting.

Future work aims at further optimisations of the representations of the mod-
els, an integration of the toolchain and the visualisation of the results of checking
the minimised model by mapping them back to the original image. The basic
ingredients for such a mapping, i.e. the sets of states in the equivalence classes
of the bisimulation, are readily available using the mCRL2 tool suite [10].



Spatial Minimisation 279

Acknowledgements. We thank the anonymous reviewers for their valuable sugges-
tions for improvement of this work.

References

1. Aiello, M.: Spatial Reasoning: Theory and Practice. Ph.D. thesis, Institute of Logic,
Language and Computation, University of Amsterdam (2002)

2. Aiello, M.: The topo-approach to spatial representation and reasoning. AIIA
NOTIZIE (4) (2003)

3. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-1-4020-5587-4

4. Aubert-Broche, B., Griffin, M., Pike, G., Evans, A., Collins, D.: Twenty new digital
brain phantoms for creation of validation image data bases. IEEE Trans. Med.
Imaging 25(11), 1410–1416 (2006). https://doi.org/10.1109/TMI.2006.883453

5. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial
logics and model checking for medical imaging. Int. J. Softw. Tools Technol. Transf.
22(2), 195–217 (2020). https://doi.org/10.1007/s10009-019-00511-9

6. Belmonte, G., Broccia, G., Ciancia, V., Latella, D., Massink, M.: Feasibility of
spatial model checking for nevus segmentation. In: Bliudze, S., Gnesi, S., Plat, N.,
Semini, L. (eds.) 9th IEEE/ACM International Conference on Formal Methods
in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, 17–21 May 2021,
pp. 1–12. IEEE (2021). https://doi.org/10.1109/FormaliSE52586.2021.00007

7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. LNCS, vol. 11865,
pp. 85–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30985-5 7

8. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: VoxLogicA: a spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 281–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0 16

9. Bezhanishvili, N., Ciancia, V., Gabelaia, D., Grilletti, G., Latella, D., Massink, M.:
Geometric model checking of continuous space. Log. Methods Comput. Sci. 18(4)
(2022). (4:7)2022. https://doi.org/10.46298/lmcs-18, https://lmcs.episciences.org/
10348

10. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A., Willemse, T.A.C.: The mCRL2 toolset for analysing con-
current systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428,
pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 2

11. Caires, L., Cardelli, L.: A spatial logic for concurrency (Part I). Inf. Comput.
186(2), 194–235 (2003). https://doi.org/10.1016/S0890-5401(03)00137-8

12. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients.
In: Wegman, M.N., Reps, T.W. (eds.) POPL 2000, Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston,
Massachusetts, USA, 19–21 January 2000, pp. 365–377. ACM (2000). https://doi.
org/10.1145/325694.325742

13. Ciancia, V., Latella, D., Massink, M., de Vink, E.P.: Back-and-forth in space: on
logics and bisimilarity in closure spaces. In: Jansen, N., Stoelinga, M., van den
Bos, P. (eds.) A Journey from Process Algebra via Timed Automata to Model
Learning. LNCS, vol. 13560, pp. 98–115. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-15629-8 6

https://doi.org/10.1007/978-1-4020-5587-4
https://doi.org/10.1109/TMI.2006.883453
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1109/FormaliSE52586.2021.00007
https://doi.org/10.1007/978-3-030-30985-5_7
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.46298/lmcs-18
https://lmcs.episciences.org/10348
https://lmcs.episciences.org/10348
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1016/S0890-5401(03)00137-8
https://doi.org/10.1145/325694.325742
https://doi.org/10.1145/325694.325742
https://doi.org/10.1007/978-3-031-15629-8_6
https://doi.org/10.1007/978-3-031-15629-8_6


280 V. Ciancia et al.

14. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model checking of vehicular movement in public transport systems. Int.
J. Softw. Tools Technol. Transf. 20(3), 289–311 (2018). https://doi.org/10.1007/
s10009-018-0483-8

15. Ciancia, V., Groote, J.F., Latella, D., Massink, M., de Vink, E.P.: Minimisation
of spatial models using branching bisimilarity (Extended Version) (2022). https://
doi.org/10.32079/ISTI-TR-2022/027, CNR-ISTI Technical report TR-2022-027

16. Ciancia, V., Groote, J.F., Latella, D., Massink, M., de Vink, E.P.: Minimisation of
Spatial Models using Branching Bisimilarity - Validation code and data (2022)

17. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 18

18. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Log. Methods Comput. Sci. 12(4) (2016). https://doi.org/10.2168/
LMCS-12(4:2)2016

19. Ciancia, V., Latella, D., Massink, M.: Embedding RCC8D in the collective spatial
logic CSLCS. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models,
Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol.
11665, pp. 260–277. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21485-2 15

20. Ciancia, V., Latella, D., Massink, M., Paškauskas, R., Vandin, A.: A tool-chain for
statistical spatio-temporal model checking of bike sharing systems. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 657–673. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 46

21. Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: van
Harmelen, F., Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Represen-
tation, Foundations of Artificial Intelligence, vol. 3, pp. 551–596. Elsevier (2008).
https://doi.org/10.1016/S1574-6526(07)03013-1

22. Galton, A.: A generalized topological view of motion in discrete space. Theor.
Comput. Sci. 305(1–3), 111–134 (2003). Elsevier. https://doi.org/10.1016/S0304-
3975(02)00701-6

23. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.
233556

24. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An O(mlogn) algorithm for
computing stuttering equivalence and branching bisimulation. ACM Trans. Com-
put. Log. 18(2), 13:1–13:34 (2017). https://doi.org/10.1145/3060140

25. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Girard, A.,
Sankaranarayanan, S. (eds.) Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, HSCC 2015, Seattle, WA, USA, 14–16
April 2015, pp. 189–198. ACM (2015). https://doi.org/10.1145/2728606.2728633

26. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm
for branching bisimilarity on labelled transition systems. In: TACAS 2020. LNCS,
vol. 12079, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7 1

https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.1007/s10009-018-0483-8
https://doi.org/10.32079/ISTI-TR-2022/027
https://doi.org/10.32079/ISTI-TR-2022/027
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.1007/978-3-662-44602-7_18
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.1007/978-3-030-21485-2_15
https://doi.org/10.1007/978-3-030-21485-2_15
https://doi.org/10.1007/978-3-319-47166-2_46
https://doi.org/10.1016/S1574-6526(07)03013-1
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1016/S0304-3975(02)00701-6
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/3060140
https://doi.org/10.1145/2728606.2728633
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1


Spatial Minimisation 281

27. Linker, S., Papacchini, F., Sevegnani, M.: Analysing spatial properties on neigh-
bourhood spaces. In: Esparza, J., Král’, D. (eds.) 45th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2020, 24–28 August
2020, Prague, Czech Republic. LIPIcs, vol. 170, pp. 66:1–66:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.
2020.66

28. Loreti, M., Quadrini, M.: A spatial logic for a simplicial complex model. CoRR
abs/2105.08708 (2021). https://arxiv.org/abs/2105.08708

29. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

30. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods
Comput. Sci. 14(4) (2018). https://doi.org/10.23638/LMCS-14(4:2)2018

31. Smyth, M.B., Webster, J.: Discrete Spatial Models. In: Aiello, M., Pratt-Hartmann,
I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 713–798. Springer,
Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4 12

32. Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: Ariadne: topology aware
adaptive security for cyber-physical systems. In: Bertolino, A., Canfora, G.,
Elbaum, S.G. (eds.) 37th IEEE/ACM International Conference on Software Engi-
neering, ICSE 2015, Florence, Italy, 16–24 May 2015, vol. 2, pp. 729–732. IEEE
Computer Society (2015). https://doi.org/10.1109/ICSE.2015.234

33. Čech, E.: Topological Spaces. In: Pták, V. (ed.) Topological Spaces, chap. III, pp.
233–394. Publishing House of the Czechoslovak Academy of Sciences/Interscience
Publishers, John Wiley & Sons, Prague/London-New York-Sydney (1966)

34. Zeven, F.: Spatial Model Checking with mCRL2. Master’s thesis, Eindhoven Uni-
versity of Technology (2022)

https://doi.org/10.4230/LIPIcs.MFCS.2020.66
https://doi.org/10.4230/LIPIcs.MFCS.2020.66
https://arxiv.org/abs/2105.08708
https://doi.org/10.23638/LMCS-14(4:2)2018
https://doi.org/10.1007/978-1-4020-5587-4_12
https://doi.org/10.1109/ICSE.2015.234


Reasoning About Promises in Weak
Memory Models with Event Structures

Heike Wehrheim1 , Lara Bargmann1, and Brijesh Dongol2(B)

1 University of Oldenburg, Oldenburg, Germany
2 University of Surrey, Guildford, UK

b.dongol@surrey.ac.uk

Abstract. Modern processors such as ARMv8 and RISC-V allow exe-
cutions in which independent instructions within a process may be
reordered. To cope with such phenomena, so called promising seman-
tics have been developed, which permit threads to read values that have
not yet been written. Each promise is a speculative update that is later
validated (fulfilled) by an actual write. Promising semantics are opera-
tional, providing a pathway for developing proof calculi. In this paper,
we develop an incorrectness-style logic, resulting in a framework for rea-
soning about state reachability. Like incorrectness logic, our assertions
are underapproximating, since the set of all valid promises are not known
at the start of execution. Our logic uses event structures as assertions
to compactly represent the ordering among events such as promised and
fulfilled writes. We prove soundness and completeness of our proof calcu-
lus and demonstrate its applicability by proving reachability properties
of standard weak memory litmus tests.

Keywords: Weak memory models · Promises · Event structures ·
Incorrectness logic

1 Introduction

In recent years, numerous works have looked into semantics for weak memory
models for various hardware architectures or languages, e.g. for x86-TSO [34],
C11 [2,25], Power [33] or ARM [15]. Such semantics typically can be classified
as either being declarative (aka axiomatic) or operational. Operational seman-
tics furthermore can be divided into those following a microarchitectural style
(providing formalizations of the actual hardware architecture) and those trying
to abstract from architectures. Most notably, view-based semantics [13,20,29]
avoid modelling specific hardware components and instead define the semantics
in terms of views of thread on the shared state. Promises [21,23] are employed
in operational semantics as a way of capturing out-of-order writes while still

Wehrheim and Bargmann are supported by DFG-WE2290/14-1. Dongol is supported
by EPSRC grants EP/V038915/1, EP/R032556/1, EP/R025134/2, VeTSS and ARC
Discovery Grant DP190102142.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 282–300, 2023.
https://doi.org/10.1007/978-3-031-27481-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_17&domain=pdf
http://orcid.org/0000-0002-2385-7512
http://orcid.org/0000-0003-0446-3507
https://doi.org/10.1007/978-3-031-27481-7_17


Reasoning About Promises in Weak Memory Models with Event Structures 283

executing operations in thread order. A promise (w.r.t. a value κ and a shared
location x) of a thread τ states that τ will eventually write value κ onto location
x. All promised writes then need to be fulfilled (i.e., justified) in the future of a
program run, but other threads can read from promises before they are fulfilled.

Our interest here is the development and use of Hoare-style [17] structural
proof calculi (and their extensions to concurrency by Owicki and Gries [27]) for
weak memory models. Owicki-Gries-like proof calculi have been proposed by a
number of researchers [10,11,22,40], and have also recently been given for non-
volatile memory [3,31]. Svendsen et al. [35] have developed a separation logic
for promises for the C11 memory model. Wright et al. [40] have developed an
Owicki-Gries proof system for out-of-order writes (as allowed by promises), but
rely on pre-processing via the denotational MRD framework [28].

All of these proposals follow Hoare’s principle of providing safety proofs. In
particular, a Hoare triple

{
p
}
S

{
q
}

describes the fact that an execution of pro-
gram S starting in a state satisfying p is either non-terminating, or terminates
in a state satisfying q (over-approximating the final states). However, for weak
memory models, we often want to prove reachability, i.e. under-approximate the
set of final states, like in the recent proposal of O’Hearn’s incorrectness logic [26].
Here, a triple

[
p
]
S

[
q
]

describes the possibility of program S reaching all states
satisfying q when started in a state satisfying p. A verification technique support-
ing these reachability triples enables one to reason about executions that deviate
from the expected sequentially consistent behaviour of concurrent programs.

Contributions. In this paper, we present a reachability proof calculus for con-
current programs where the semantics of the weak memory model is based on
promises. The specific challenges therein lay in (i) capturing the meaning of
promises as writes which will only happen in the future but can nevertheless
already be read from, and (ii) appropriately describing the required ordering
(and concurrency) between promises and fulfills as fixed by the concurrent pro-
gram under consideration. We address these challenges via the following contri-
butions. (1) We develop a program logic based on assertions which are (flow)
event structures [5,16,39], employing parallel composition of event structure and
synchronization as a means of determining whether all promises read from have
eventually been fulfilled. (2) We extend the theory of flow event structures with
the notion of a flow label to capture the behaviours observed in weak mem-
ory models. (3) We develop the first compositional proof rule for a concurrent
reachability (incorrectness) logic. (4) We prove soundness and completeness of
this novel event-structure based proof calculus. (5) Finally, we demonstrate its
applicability on a number of litmus tests.

Overview. In Sect. 2, we provide a concrete overview via a motivating exam-
ple and in Sect. 3, we present the memory model that we use. Our model is a
simplified (strengthened) version of the ARMv8/RISC-V semantics of Pulte et
al [29]. In Sect. 4, we present an extended theory for event structures (specifically
an extension of flow event structures) that has been designed to enable reason-
ing about relaxed memory models. We describe our reasoning methodology and
provide examples verifying common litmus tests in Sect. 5.



284 H. Wehrheim et al.

Fig. 1. Reachability for load buffering Fig. 2. Load buffering with barriers

2 Motivating Examples

Consider the program in Fig. 1, which describes the load buffering litmus test.
Thread 1 (similarly thread 2) loads the value of y (sim. x) into register a (sim.
b), then updates x (sim. y) to 1. Since there are no dependencies between lines
1 and 2, and similarly between lines 3 and 4, architectures such as ARMv8 and
RISC-V allow the stores in both threads to be reordered with the loads. Thus
the program allows the final outcome a = 1 ∧ b = 1.

This phenomenon is captured by promising semantics by allowing each thread
to “promise” their respective stores, then later fulfilling them. In the mean-
time, other threads may read from promised writes. Our assertions within a
thread reflect this semantics via assertions E which are flow event structures [39].
The events and their partial order reflect program executions, and in particular
describe the various views which threads have on shared state.

The proof outlines (i.e., program texts with assertions) of individual threads
may first of all contain read events for arbitrary promises, i.e. describe the read-
ing of arbitrary values. In Thread 1 of Fig. 1, the pre-assertion of the load only
contains an event for initial writes (labelled ini), yet the load may read the
value 1 for y from a promised write, described by the event labelled rd2(y, 1)
in the post assertion. The semantics generates dependencies if the same register
is used (perhaps indirectly) by a read and a later write. This is captured in
our assertions using the event labelled bar(a, y), causally ordered after rd2(y, 1),
which states that the view of register a is at least that of the read of y. Execution
of line 2 then adds a fulfill event with label ff1(x, 1) to the assertion, which is not
ordered with any other event except ini. Symmetric assertions can be generated
for Thread 2. To obtain an assertion describing the combined execution, we com-
pose the final event structures of both threads to obtain a “postcondition” of the
program. For this, we use parallel composition of event structures, synchronising
read with their corresponding fulfill events. In Fig. 1, both reads are valid since
the promises that these reads rely on can be fulfilled in the composition without
creating cyclic dependencies.



Reasoning About Promises in Weak Memory Models with Event Structures 285

Figure 2 presents a variation of the program in Fig. 1, which includes addi-
tional barriers dmb (fences) between the load and store in each thread, prevent-
ing their reordering. Again we build a proof outline for an execution in which
Thread 1 loads 1 into a, obtaining the assertions shown. Note that here the event
structure contains an additional fence event, fnc, that is ordered after bar(a, y)
and before ff1(x, 1). Similarly, for Thread 2 loading 1 into b, we would obtain a
symmetric set of assertions. Here, the parallel composition of local assertions is
however not interference free (see below): the promises that threads 1 and 2 have
read from cannot be fulfilled in this concurrent program. More detailedly, let E1

and E2 below be the (final) event structures of threads 1 and 2, respectively,
where � arrow denotes ordering and we now give event names together with
labels.

E1: eini : ini � e1 : rd2(y, 1) � e2 : bar(a, y) � e3 : fnc1 � e4 : ff1(x, 1)

E2: fini : ini � f1 : rd1(x, 1) � f2 : bar(b, x) � f3 : fnc2 � f4 : ff2(y, 1)

To reason about the set of reachable final states of the concurrent program, we
again construct the parallel composition of E1 and E2 (denoted E1‖E2):

(eini, fini) : ini

(e1, f4) : ff2(y, 1)

(e4, f1) : ff1(x, 1)

(e1, ∗) : rd2(y, 1) (e2, ∗) : bar(a, y) (e3, ∗) : fnc1 (e4, ∗) : ff1(x, 1)

(∗, f1) : rd1(x, 1) (∗, f2) : bar(b, x) (∗, f3) : fnc2 (∗, f4) : ff2(y, 1)

This composition of event structure is built similar to [16], allowing events
of the parallel composition to be lifted from the sub-components. These are
events of the form (ei, ∗) and (∗, fi). The parallel composition also contains
synchronised read/fulfill events, e.g., (e1, f4) depicts a read synchronised with the
fulfill (write) ff1(y, 1). We inherit order in the composition from the constituent
event structures. Moreover, to prevent the same event occurring more than once
in an “execution” of E1‖E2, we use the conflict relation (zigzagged line). Thus,
the synchronised event (e1, f4) conflicts with both (e1, ∗) and (∗, f4).

The final step in proving is the generation of a valid interference free con-
figuration of the parallel composition, which is a subset of the event structure
satisfying certain conditions, including acyclicity of �, absence of conflicts and
absence of unsynchronised reads (ensuring the fulfillment of all promises read
from). It turns out that for the event structure above, it is impossible to gen-
erate such a configuration. The event (e1, ∗) cannot be included since it is an
unsynchronised read. Therefore, (e1, f4) must be included. However, by the def-
inition of a configuration, this also means that the downclosure of (e1, f4) must
be included, which results in a cycle: (e1, f4) � (e2, ∗) � (e3, ∗) � (e4, f1) �
(∗, f2) � (∗, f3) � (e1, f4). Since E1‖E2 has no interference free configurations,
the proof outline is not valid and in fact, a final state with a = 1 ∧ b = 1 is
unreachable here.



286 H. Wehrheim et al.

3 A Weak Memory Semantics with Promises

We develop a promising semantics inspired by the recent view-based operational
semantics by Pulte et al. [29]. We have reduced architecture-specific details,
allowing us to focus on the interaction between promises and thread views. Our
notion of a promise coincides with earlier works [21,23,29]. Threads can promise
to write certain values on shared locations and other threads can read from this
promise even before the actual write has occurred. All promises however need
to be fulfilled at the end of the program execution.

Syntax. Let x, y ∈ Loc be the set of shared locations, κ ∈ Val the set of values,
τ ∈ Tid the set of thread identifiers and a, b ∈ Reg local registers. Our sequential
language encompasses the following constructs:

rv ::= κ | a st ::= skip | a := loadx | store x rv | a := η | dmb

S ::= st | S;S | asmβ | S + S | S∗

where η ∈ Exp is an arithmetic and β ∈ BExp is a boolean expressions, both
over (local) registers only. We assume S∗ = ∃n ∈ N. Sn, where S0 =̂ skip and
Sn =̂ S;Sn−1. We use abbreviations: whileβ doS = (asmβ;S)∗;asm¬β and
ifβ thenS1 elseS2 = (asmβ;S1) + (asm¬β;S2), where asmβ is a command
that tests whether β holds.

Timestamped State. We let TState be the set of all timestamped states and
Memory the set of all memory states, both of which we make more precise
below. A thread T ∈ Thread is an element of S × TState, a concurrent program
is a mapping T ∈ TPool =̂ Tid → Thread and a concurrent program state is a
pair 〈T ,M〉 ∈ TPool × Memory . We let R(τ), τ ∈ Tid, be the set of registers
occurring in the program of T (τ). We assume R(τ)∩R(τ ′) = ∅ whenever τ �= τ ′.

Threads will make promises for writes at particular timestamps. Timestamps
t ∈ T are natural numbers. We define t 
 t′ =̂ max(t, t′) and generalise this to
sets of timestamps using

⊔
t∈T t, where

⊔
t∈∅ t = 0. A memory is a sequence of

write messages of type Wr =̂ (Loc × Val × Tid) ∪ {ini}, where ini is a special
write message denoting initialisation. The position of a write in the sequence
fixes its timestamp. We assume all variables are initialised with value 0.

We denote a write w =̂ (x, κ, τ) using 〈x := κ〉τ and let w.loc = x,w.val = κ
and w.tid = τ . For a memory M and thread τ ∈ Tid, we let Mτ ⊆ T be the
set of timestamps of entries of τ in M , i.e. {t ∈ T | M(t).tid = τ}. Mτ is used
to determine the promise set of each τ . We write tids(M) to denote the set of
threads with entries in M . New messages w are appended at the end of the
memory, which we write as M ++ w.

A thread state ts ∈ TState consists of the following components: a set of (non-
fulfilled) promises prom ∈ 2T, a coherence view of each location, coh : Loc → T,
the value and view of each register, regs : Reg → Val×T, a read view vread : T,
two write views vwOld , vwNew : T and a condition view vC : T. We write regs(a)
as κ@v and also let va be this view v of register a. Finally, the evaluation of



Reasoning About Promises in Weak Memory Models with Event Structures 287

an expression η with respect to a register assignment regs, �η�regs ∈ Val× T, is
defined as follows:

�κ�regs =̂ κ@0 for κ ∈ Val, �a�regs =̂ regs(a) for a ∈ Reg,

�η1opη2�regs =̂ (κ1�op�κ2)@(v1 
 v2) with �η1�regs = κ1@v1, �η2�regs = κ2@v2

Note that this evaluation is with respect to the register function regs and this
calculates both the value of the expression and the maximal view of the registers
within the expression.

To define the initial state of a program, we let

Mini =̂ 〈ini〉 tsini =̂
[
prom = {}, vread = vwNew = vwOld = vC = 0,
coh = (λx. 0), regs = (λa. 0@0)

]

where tsini is a record initialising the promises to the empty set, each view to
0, the coherence function to a map from locations to timestamp 0, and the
register function to a map from registers to value 0 with timestamp 0. We say
that a program T is locally in its initial state iff for each thread τ , we have
π2(T (τ)) = tsini, where πi projects the ith component of a tuple. Given that T
is in its initial state, the initial concurrent program state is given by 〈T ,Mini〉.

The rules of the operational semantics (except for standard rules for program
constructs) are given in Fig. 3. The two key rules are the Read and Fulfill rule.
Read identifies a timestamp t to read a value for x from such that in between t
and the maximum of read view and coherence of x, there are no further promises
to x in memory M . It updates read view, coherence of x and the view of the
register involved in the load as to ensure preservation of dependencies. Fulfill
fulfills an already made promise (to write κ to x) of a thread at timestamp t,
and to this end has to ensure that views vwNew , vC , coh(x) as well as that of
the value/register are less than t. It removes t from the thread’s promise set
and updates coh(x) and vwOld (as to ensure dependencies with fences). Rule
Promise simply adds an arbitrary new promise at the end of memory. Fence
ensures views vread and vwNew are updated. This rule for instance guarantees
that store operations separated by barriers dmb can only be fulfilled in that
order, i.e. the write of the first store cannot be promised to happen later than
the write of the second store (more precisely, such promises cannot be fulfilled).

Finally, we say that 〈T,M〉 is certifiable (used in Program Step) if there
is some T ′,M ′ such that 〈T,M〉 −→∗

τ 〈T ′,M ′〉 and T ′.prom = ∅. Certifiability
ensures that a concurrent program can only make steps when all promises can
eventually be fulfilled. Like [29], in our semantics, all promise steps can be done
at the beginning without losing any of the reachable states.

4 Event Structures

Event structures [4,5,16,39] are models of concurrent systems which compactly
represent (concurrent) executions. Here, we use flow event structures because of
their ease in defining a compositional parallel composition [16].



288 H. Wehrheim et al.

Fig. 3. Operational semantics (Atomic statement rules)

Notation. Event structures consist of sets of events d, e, f ∈ E. Events will be
labelled with actions which are here specific to our usage and give us information
about program executions:

Actx =̂
⋃

τ∈Tid,κ∈Val

{rdτ (x, κ), ffτ (x, κ)} ∪ {ini} Act fnc =̂
⋃

τ∈Tid

{fncτ}

Acta =̂
⋃

x∈Loc,η∈Exp

{bar(a, x), bar(a, η)} Act tst =̂
⋃

τ∈Tid,β∈BExp

{tstτ (β)}

Actions on a location x can be read actions rdτ (·, ·), fulfill actions ffτ (·, ·) or the
initialization ini. Note that the thread identifier τ in read actions is the id of the
thread having made the promise and in fulfill actions it is the thread executing
the fulfill (and having made the corresponding promise). We let Act rd denote
all read and Actff all fulfill actions. To record loading into register a, we use
so called bar actions bar(a, ·). The action fnc occurs when a dmb statement is
executed and tst·(·) describes the execution of some asm statement.

We often lift notations to sets of locations L ⊆ Loc or sets of registers
R ⊆ Reg. For example, ActL =

⋃
x∈L Actx. The overall set of actions is Act =

ActLoc ∪ ActReg ∪ Act fnc ∪ Act tst.



Reasoning About Promises in Weak Memory Models with Event Structures 289

Definition 1. A location-coloured flow event structure (short: event structure)
E = (E,�,#, Λ, 	) labelled over a set of actions Act consists of a finite set of
events E, an irreflexive flow relation � ⊆ E ×E, a location restriction function
Λ : E × E → 2Loc, a symmetric conflict relation # ⊆ E × E, and a labelling
function 	 : E → Act.

For L ⊆ Loc, we write e
L� f to denote e � f and Λ(e, f) = L. The location

restrictions are employed to reflect the application condition of rule Read within
the event structure: it tells us that there is no write to x ∈ L in between e and
f , where e and f will eventually be mapped to timestamps in memory.

We let Ini be the event structure ({eini}, ∅, ∅, ∅, 	) with 	(eini) = ini. Given
an event structure E = (E,�,#, Λ, 	), we – similarly to actions – define its set
of events labelled with specific actions as Rd(E), Rdτ (E), Rdx

τ (E), Ff(E), Ffτ (E)
and Ffx

τ (E) via the labelling function 	. For an event e labelled with an action
in Actx\{ini}, we let e.loc = x. We slightly abuse notation so that eini.loc = x
for all x. We furthermore define lastα(E), α ∈ Act, to be the last event in flow
order labelled α, i.e., lastα(E) = e if 	(e) = α and for all e′ such that e′ �= e
and 	(e′) = α, we have e′ �+ e. Moreover, lastα(E) = ⊥ if no event labelled α
exists. We lift last to sets of actions by lastA(E) = {lastα(E) | α ∈ Act}. An
event structure E is sequential if all events are flow-ordered: ∀e, e′ ∈ E, e �= e′ :
e �+ e′ ∨ e′ �+ e. We let S be the set of sequential event structures.

An event structure describes (several) concurrent executions in compact
form. One execution is therein given as a configuration.

Definition 2. A configuration C ⊆ E of an event structure E = (E,�,#, Λ, 	)
satisfies the following properties: (1) C is cycle-free: (� ∩(C×C))+ is irreflexive,
(2) C is conflict-free: # ∩ (C × C) = ∅, (3) C is left-closed up to conflicts:
∀d, e ∈ E, if e ∈ C, d � e and d /∈ C, then there exists f ∈ C such that d#f
and f � e.

We let Conf (E) be the set of configurations of E . We identify a configuration
with the (conflict-free) event structure EC which is E restricted to events of C.

Our intention is to use event structures to record information about the
local history of each thread, in particular the promises of other threads which
they have read from. Eventually (i.e., when combining local event structures)
all promises read from need to be fulfilled. This is captured by our notion of
parallel composition which requires fulfills (of a thread τ) to synchronize with
reads from promises of τ . Similary to CCS [24], we model this synchronisation
via complementary actions where rdτ (x, κ) = ffτ (x, κ) and vice versa, and a = a.
Contrary to CCS, the synchronisation does not create internal actions, but keeps
the fulfill labels (as to still see what promise a fulfill belonged to).

We first define the synchronising events of n event structures E1, . . . , En, as
follows, where Ei∗ denotes Ei ∪ {∗}.

sync(E1, . . . , En) =̂

⎧
⎨

⎩

(e1, e2, . . . , en) ∈ E1∗ × E2∗ × · · · × En∗ |
∃i. 	i(ei) ∈ Actff ∧ (∀j �= i. ej �= ∗ ⇒ 	i(ei) = 	j(ej)) ∧

(∃j �= i. ej �= ∗)

⎫
⎬

⎭

∪ {(e1ini, e
2
ini, . . . , e

n
ini)}



290 H. Wehrheim et al.

An event e might also occur unsynchronized in a parallel composition (which
is then written as (∗, . . . , ∗, e, ∗, . . . , ∗).

Note that since we aim to reason about reachability of states (underapprox-
imation), we just need parallel composition for conflict-free event structures,
i.e. for event structures describing a single execution. Thus the Δ-axiom of
Castellani and Zhang [6] which they impose in order to get compositionality
is trivially fulfilled for our application. Next, we still first of all define parallel
composition of arbitrary event structures.

We let ×iS denote the product S × S × . . . S generating a tuple of length i.
If i ≤ 0, we let ×iS = ⊥. Finally, we let ⊥ × S = S × ⊥ = S.

Definition 3 (Parallel composition). Let E1, E2, . . . , En be event struc-
tures for threads τ1, τ2, . . . , τn, respectively. The parallel composition E =
E1||E2|| . . . ||En is the event structure (E,�,#, Λ, 	) with

– E = sync(E1, E2, . . . En) ∪ ( ⋃
i(×i−1{∗}) × (Ei \ {ei

ini}) × (×n−i{∗})
)

– (e1, e2, . . . , en) � (d1, d2, . . . , dn) iff ∃i. ei �i di,
– Λ((e1, e2, . . . , en), (d1, d2, . . . , dn)) =

⋃
i Λ(ei, di),

– (e1, e2, . . . , en)#(d1, d2, . . . , dn) iff
• ∃i. ei#idi, or (inherit conflicts)
• ∃i, j. ei = di ∧ ei �= ∗ ∧ ej �= dj (conflicts on differently paired events),

– Labels:

�(e1, e2, . . . en) =

⎧

⎪

⎨

⎪

⎩

ini if (e1, e2, . . . en) = (e1ini, e
2
ini, . . . e

n
ini)

�(ei) if (e1, e2, . . . en) ∈ sync(E1, E2, . . . En) ∧ �(ei) = ff·(·, ·)
�(ei) if (e1, e2, . . . en) /∈ sync(E1, E2, . . . En) ∧ ei �= ∗

Parallel composition of event structures is used to combine local proof outlines
of threads. This combination is only possible if enough synchronization partners
are available. Event structures E1 to En are synchronizable if πi(sync(E1, . . . , En))
⊇ Rd(Ei), i ∈ {1, . . . , n} (all the reads have a synchronization with a fulfill). The
configuration (describing an execution of the parallel composition of threads)
which we extract from Conf (E1|| . . . ||En) furthermore has to guarantee that no
events from the local proof outlines are lost and that the local assertions make
no contradictory assumptions about the contents of memory.

Definition 4. The event structure EC = (EC ,�C , ∅, ΛC , 	C) corresponding to
a configuration C ∈ Conf (E1|| . . . ||En) is interference free if

1. C is thread-covering: ∀i ∈ {1, . . . , n} : πi(EC) = Ei,
2. C is memory-consistent linearizable: there exists a total order ≺ ⊆

Actx(EC) × Actx(EC) among reads, fulfills and the ini event such that
– �C

+ ∩ (Actx(EC) × Actx(EC)) ⊆ ≺ and

– ∀d, e, f ∈ EC : d
L� f ∧ d ≺ e ≺ f =⇒ e.loc /∈ L,

3. C contains no unsynchronised reads: there is no event in EC of the form
(∗, ∗, . . . , ∗, ei, ∗ . . . , ∗), where ei ∈ Rd(Ei).



Reasoning About Promises in Weak Memory Models with Event Structures 291

Example 1. Consider the two event structures given next (which belong to a
message passing program with barriers, see Sect. 5).

eini : ini e1 : ff1(x, 5)

e2 : fnc1 e3 : ff1(y, 1)
fini : ini

f1 : rd1(f, 1) f2 : bar(a, y)

f3 : bar(b, x)

{x}

Their parallel composition gives the following event structure:

(eini, fini) : ini

(e1, ∗) : ff1(x, 5) (e2, ∗) : fnc1 (e3, ∗) : ff1(y, 1)

(e3, f1) : ff1(y, 1)

(∗, f1) : rd1(y, 1) (∗, f2) : bar(a, y)

(∗, f3) : bar(b, x)

{x}
{x}

This event structure has no interference-free configuration. To satisfy the condi-
tions “thread-covering” and “no unsynchronised reads”, we must include event
(e3, f1). This means the only possible configuration must also include the down-
closure (e1, ∗) and (e2, ∗). However, together with the location restriction {x}
on the edge ((eini, fini), (e3, f1)), the resulting event structure is not memory-
consistent linearizable, since it contains a sequence (eini, fini) � (e1, ∗) �
(e2, ∗) � (e3, f1), where (e1, ∗) corresponds to a fulfilled write on x that is

forbidden by the edge ((eini, fini)
{x}
� (e3, f1)). Conceptually, this means that we

cannot find a memory M which matches the constraints on its contents given in
the event structure.

5 Reasoning

Our overall objective is the design of a proof calculus for reasoning about the
reachability of certain final states of concurrent programs. A concurrent program
state describes the values of registers and shared variables, the contents of mem-
ory and the views of threads. During reasoning, we employ event structures as
assertions in proof outlines. They abstract from the concrete state in neither
giving the exact contents of memory nor the timestamps of thread views.

5.1 Semantics of Assertions

Local assertions in the proof outlines of single threads take the form E , where
E is a conflict-free event structure (i.e., # = ∅). The event structure is conflict-
free because it describes a single execution of the thread (reachability logic). An
assertion for a thread τ can have fence and fulfill events of τ , read events reading
from (promises of) threads τ ′ �= τ as well as bar and test events over registers of
R(τ). The events in E – together with some memory M – allow us to compute the
current views of threads. Figure 4 gives some definitions for calculating views.



292 H. Wehrheim et al.

Fig. 4. Determining the decisive reads and writes prior to an event (E = (E, �, #, Λ, �)
event structure, τ ∈ Tid, a ∈ Reg, x ∈ Loc)

A local assertion of a thread τ defines constraints on the global memory M
(the ordering of writes and their values) as well as the views of τ : An assertion
E describes a set of states �E� = {〈ts,M〉 ∈ (Tid → TState) × Memory |
〈ts,M〉 matches E} where “matches” is defined by conditions (1)–(4) below.
(1) M is consistent with the fulfill and read events of E .
There exists a total mapping ψ : Ff(E) ∪ Rd(E) ∪ {eini} → dom(M) which

1. initializes at zero: the one event eini labelled ini is mapped to 0,
2. is consecutive for every thread τ :

for all e ∈ Ffτ (E), t ∈ T s.t. M(t) = 〈x := κ〉τ , t < ψ(e) and e.loc = x, there
exists d ∈ Ffτ (E) such that ψ(d) = t,

3. preserves content: if ψ(e) = t �= 0 and M(t) = 〈x := κ〉τ , then 	(e) ∈
{ffτ (x, κ), rdτ (x, κ)},

4. preserves flows: ∀e, e′ ∈ dom(M) : e �+
E e′ ⇒ ψ(e) < ψ(e′),

5. and preserves memory constraints:

∀d, e ∈ dom(M), L ⊆ Loc s.t. d
L� e, ∀t ∈ T s.t. ψ(d) < t < ψ(e): M(t).loc �=

d.loc.

The mapping ψ is used to assign timestamps to read and fulfill events. We
therefore will later also talk about the timestamp of an event (depending on such
a mapping). Note that the event structure Ini is consistent with all memories M
(using mapping ψ(eini) = 0).
(2) The open (non-fulfilled) promises of a thread τ are the entries of τ in M
which are not fulfilled, i.e., ts(τ).prom = Mτ \ ψ(Ffτ (E)).
(3) The views of a thread τ are consistent with mapping ψ and M .
Letting ts = ts(τ), a ∈ R(τ) and x ∈ Loc, we have

ts.vC =
⊔

e∈prTstτ (E)
ψ(e) ts.coh(x) =

⊔

e∈Ffx
τ (E)∪prBarx

τ (E)
ψ(e)

ts.vwOld =
⊔

e∈Ffτ (E)
ψ(e) ts.vwNew =

⊔

e∈prFncτ (E)∩
(
Ffτ (E)∪prBarτ (E)

)
ψ(e)

zts.va =
⊔

e∈prBara(E)
ψ(e) ts.vread =

⊔

e∈
(
prFncτ (E)∩Ffτ (E)

)
∪prBarτ (E)

ψ(e)

(4) The values of registers R(τ) of thread τ agree with values in E .



Reasoning About Promises in Weak Memory Models with Event Structures 293

Fig. 5. Example memory M (left) for event structure E (middle) describing an execu-
tion of statements 1, 2 and 3 in thread 1 (right). State ts of thread 1: prom = {9}, vC =
vwNew = coh(z) = 0, va = vb = coh(y) = coh(x) = vwOld = vread = 6, using mapping
ψ : ini �→ 0, ff1(y, 1) �→ 6.

For a ∈ Reg, ts.regs(a) = κ@va with κ = �a�E (where the semantics of a register
a in E is (1) 0 if no bar event for a is in E or (2) the value of a read or fulfill to
x prior to the last bar(a, ·) (on x) or (3) the value of the expression η in a last
bar(a, η)) and va as defined above.

Figure 5 gives an example for the definition of “matches”. On the right hand
side we see the program of thread 1. It first stores 1 to y, then loads the values
of y and x into registers a and b, respectively, and finally stores 3 to z. The event
structure in the middle gives the assertion reached after statement 3, i.e. before
the final store operation. The memory M on the left hand side matches this
event structure: There are promises for the event ini at M(0) as well as for event
ff1(y, 1), so ψ maps ini to 0 and ff1(y, 1) to 6. The colored location restriction
in the event structure furthermore requires not to have any promises to x in
between 0 and 6. As there is one more promise of thread 1 in M , not yet covered
by the event structure, we can derive 1.prom = {9}.

5.2 Proof Rules

Essentially, assertions describe the events which have already happened together
with their orderings plus further constraints. The initial assertion in proof out-
lines is always the event structure Ini. Then, the proof rules successively add
new events to the event structure when e.g. reading from or writing to shared
variables. We however never add events for promises; rather, threads can first
of all assume arbitrary promises of other threads having been made which they
can read from. The overall interference freedom constraint guarantees that these
local assumptions about promises are met at the end.

For adding new events, we use a number of ⊕-operators, detailed in Fig. 6.
The event structures in there are local to threads and describe a single execution
of the thread, hence are conflict-free. The definition of these operators has to
ensure that they capture the dependencies between views as defined by the
operational semantics. For example, rule Fulfill requires (among others) the
timestamp t to be larger than control view vC , hence E⊕ffτ (x, κ) has to introduce
a flow from the last test event to the newly added fulfill event.



294 H. Wehrheim et al.

Fig. 6. Operations for adding events to a conflict-free event structure E = (E, �, Λ, �),
where e /∈ E is a fresh event and Ee = E ∪ {e}, E ′ = (E′, �′, Λ′, �′), E ∩ E′ = ∅)

Figure 7 gives the proof rules for building local proof outlines of threads.
Most of the rules (i.e., PR-Write, PR-WriteR, PR-Fence, PR-Registers
and PR-Assume) just add one new event to the event structure recording the
occurrence of a particular program statement. More complex are the two read
rules: PR-ReadEx is applied for load statements reading from x when the event
structure already contains an event e describing (in the sense of �E�) the entry
in memory to read from; this can be a read, fulfill or the ini event. In this case,
the event structure after the load has to reflect the applicability condition of rule
Read: no entries in memory to x in between t (the timestamp of e in �E�) and
vread 
 coh(x). This is achieved by inserting an additional location restriction x
via the operator rstrx

e (E) to the following (potentially already L-labelled) flows
(thus getting the restriction L ∪ {x}):

{e
L� e′ | e′ ∈ (prFncτ (E) ∩ Ffτ (E)) ∪ prBarτ (E) ∪ Ffx

τ (E)} .

Rule PR-ReadNew on the other hand introduces new read events into an
event structure upon a load statement. The rule can directly introduce an entire
sequence of read events (i.e., add a sequential event structure E ′) as to enable
later reads from memory entries which are prior to the entry of the current read
(described by event e in the rule). This is required for message passing idioms
like in the following program.

Thread 1
1 : store x 5;
2 : dmb;
3 : store y 1;

Thread 2
4 : a := load y;
5 : b := loadx;

Here, due to the fence in Thread 1, Thread 2 – after having read y to be 1 –
can only read x to be 5. When constructing the proof outline for Thread 2, we
need to apply rule PR-ReadNew for the first load giving us



Reasoning About Promises in Weak Memory Models with Event Structures 295

Fig. 7. Local proof rules for a thread τ

ini � rd1(x, 5) � rd1(y, 1) � bar(a, y)

as assertion after statement 4. For the subsequent load we can then apply proof
rule PR-ReadEx. Note that we could also construct a local proof outline having
the load in line 4 read from ini. This would then give us the two event structures of
Example 1 which we, however, have already seen to not allow for an interference
free configuration of their parallel composition.

Finally, we have a proof rule for parallel composition which combines local
event structures when they are synchronisable and the resulting configuration is
interference free.

Parallel

∀i ∈ {1, . . . , n}. [Ini] Si [Ei] E1, . . . , En synchronisable
interference free C ∈ Conf (E1|| . . . ||En)

[Ini] S1|| . . . ||Sn [EC ]

This rule ensures that (1) all synchronization constraints are met (i.e., the
promises that threads want to read from have been made) and (2) there is a
configuration C of the combined event structure which is interference free.

Example 2. Next, we give a complete proof outline for the message passing litmus
test without a barrier in the writing thread. We see that here message passing is
not guaranteed (i.e., reading y to be 1 does not “pass the message” that x is 5
from Thread 1 to 2) and we can actually reach a final state with

(
a = 1 ∧ b = 0

)

(as calculated by �a�E and �b�E taking the value of the last fulfill or ini event
prior to the last bar event on a and b, respectively).



296 H. Wehrheim et al.

Thread 1[
ini

]

1 : store x 5;[
ini � ff1(x, 5)

]

2 : store y 1;⎡

⎢
⎢
⎣ ini

ff1(x, 5)

ff1(y, 1)

⎤

⎥
⎥
⎦

Thread 2[
ini

]

4 : a := load y;[
ini � rd1(y, 1) � bar(a, y)

]

5 : b := loadx;⎡

⎢
⎢
⎣ ini

rd1(y, 1) bar(a, y)

bar(b, x)

{x}
⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣ E : ini

ff1(y, 1) bar(a, y)
bar(b, x)
ff1(x, 5)

{x}
⎤

⎥
⎥
⎦

5.3 Soundness and Completeness

Due to lack of space, we can neither discuss soundness nor completeness of our
proof calculus in some more detail here. Proofs can be found in the extended
version [38].

Soundness requires proving all local proof rules correct plus showing the cor-
rectness of rule Parallel as of Theorem 1 below. It states that whenever we find
an interference free configuration in the parallel composition of synchronizable
event structures in a locally sound proof outline, all thread states and memory
contents matching this configuration are actually reachable by the concurrent
program.

Theorem 1. Let [Ini] Si [Ei], i ∈ {1, . . . , n}, be proof outlines of threads τ1 to
τn such that E1 to En are synchronizable and let T0 be an initial thread pool with
T0(τi) = (Si, tsini) and M0 = Mini.

Then, for every thread pool T with T (τi) = (skip, tsi), interference free con-
figuration C ∈ Conf (E1|| . . . ||En) and memory M such that 〈tsi,M〉 ∈ �EC�,
tids(M) = {τ1, . . . , τn} and tsi.prom = ∅, i ∈ {1, . . . , n}, we have 〈T0,M0〉 −→∗

〈T ,M〉.
Our second main result is the completeness of the proof calculus: whenever

there is an execution of a concurrent program, our proof calculus allows to show
the reachability of its final state. More specifically, for every trace of a concurrent
program we find local proof outlines with synchronizable event structures and
an interference free configuration describing the final state of the trace.

Theorem 2. Let 〈T0,M0〉 −→∗ 〈T ,M〉 be a trace of a concurrent program over
threads τ1, . . . , τn such that T0 is the initial thread pool with T0(τk) = (Sk, tsini),
M0 = Mini and T the final thread pool with T (τk) = (skip, tsk) and tsk.prom =
∅, k ∈ {1, . . . , n}.

Then there are local proof outlines [Ini] Sk [Ek] of threads τk, k ∈ {1, . . . , n},
such that E1 to En are synchronizable and there exists an interference free con-
figuration C ∈ Conf (E1|| . . . ||En) with 〈T ,M〉 ∈ �EC�.



Reasoning About Promises in Weak Memory Models with Event Structures 297

6 Related Work

The first semantics of weak memory models employing promises has been pro-
posed by Kang et al. in 2017 [21] for building an operational semantics which
allows modelling of read-write reordering while at the same time disallows out-
of-thin-air behaviours. Our semantics here is a slightly simplified version of
the promising semantics of ARMv8 given by Pulte et al. [29]. In particular,
like [29] all program traces can be reordered so that the promise steps are all at
the beginning which is a key property required for the soundness of our proof
calculus.

There are already several proposals for program logics for weak memory
e.g. [1,9,10,12–14,22,32,36]. The only one explicitly dealing with promises in
the semantics is the proposal of Svendsen et al. [35]. They develop a safety proof
calculus whereas we are interested in reachability. Their logic furthermore has
to deal with promises occurring at any program step (as they show soundness
with respect to the promising semantics of [21]), whereas we rely on all promises
being made at the beginning.

Partial order models of concurrency have already been used for giving the
semantics of memory models [7,18,19], but not for reasoning. Wright et al [40]
take the approach of using a semantic dependency relation, which is a partial
order generated through an event structure representation of a C/C++ pro-
gram [28], which is a partial order over a thread’s execution. An Owicki-Gries
logic is provided to reason directly over such partial orders. Incorrectness logic as
used for proving reachability properties of sequential programs has been intro-
duced by O’Hearn [26], with a predecessor approach with (almost) the same
principles by de Vries and Koutavas [37]. The first extension of incorrectness
logic to concurrent programs has been proposed by Raad et al. in the form of
an incorrectness separation logic [30] which is however not compositional.

Colvin [8] defines a semantics based on a reordering relation for several
hardware memory models, which is then lifted to a Hoare calculus. This is
then rephrased into a reachability property by defining triples 〈〈p〉〉 s 〈〈q〉〉 =
¬{p} s {¬q}, which states that it is possible for s to reach q if execution starts
in a state satisfying p. Note that this is weaker than O’Hearn’s notion of incom-
pleteness, which states that all states satisfying q are reachable from an execution
starting in a state satisfying p.

7 Conclusion

In this paper, we have proposed a reachability (incorrectness) logic for concurrent
programs running on weak memory models. The reasoning technique is based
on assertions which are event structures abstractly describing the contents of
memory and the views of all threads. We have proven soundness and complete-
ness of the proof calculus, and have demonstrated its applicability by proving
the outcomes of some standard litmus tests to be reachable.



298 H. Wehrheim et al.

Acknowledgements. We thank Christopher Pulte for clarifying one aspect of the
Register rule of ARMv8’s operational semantics to us and Sadegh Dalvandi for initial
discussions on the semantics.

References

1. Alglave, J., Cousot, P.: Ogre and Pythia: an invariance proof method for weak
consistency models. In: Castagna, G., Gordon, A.D. (eds.) POPL, pp. 3–18. ACM
(2017). https://doi.org/10.1145/3009837.3009883

2. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 55–66. ACM (2011). https://
doi.org/10.1145/1926385.1926394

3. Bila, E.V., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: View-based Owicki–
Gries reasoning for persistent x86-TSO. In: ESOP 2022. LNCS, vol. 13240, pp.
234–261. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99336-8 9

4. Boudol, G., Castellani, I.: On the semantics of concurrency: partial orders and
transition systems. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.)
CAAP 1987. LNCS, vol. 249, pp. 123–137. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17660-8 52

5. Boudol, G., Castellani, I.: Flow models of distributed computations: three equiva-
lent semantics for CCS. Inf. Comput. 114(2), 247–314 (1994). https://doi.org/10.
1006/inco.1994.1088

6. Castellani, I., Zhang, G.: Parallel product of event structures. Theor. Comput. Sci.
179(1–2), 203–215 (1997). https://doi.org/10.1016/S0304-3975(96)00104-1

7. Chakraborty, S., Vafeiadis, V.: Grounding thin-air reads with event structures.
Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290383

8. Colvin, R.J.: Parallelized sequential composition and hardware weak memory mod-
els. In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp.
201–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92124-8 12

9. Coughlin, N., Winter, K., Smith, G.: Rely/Guarantee reasoning for multicopy
atomic weak memory models. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.)
FM 2021. LNCS, vol. 13047, pp. 292–310. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90870-6 16

10. Dalvandi, S., Doherty, S., Dongol, B., Wehrheim, H.: Owicki-Gries reasoning for
C11 RAR. In: Hirschfeld, R., Pape, T. (eds.) ECOOP. LIPIcs, vol. 166, pp. 11:1–
11:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPIcs.ECOOP.2020.11

11. Dalvandi, S., Dongol, B., Doherty, S., Wehrheim, H.: Integrating Owicki–Gries
for C11-style memory models into Isabelle/HOL. J. Autom. Reason. 1–31 (2021).
https://doi.org/10.1007/s10817-021-09610-2

12. Doherty, S., Dalvandi, S., Dongol, B., Wehrheim, H.: Unifying operational weak
memory verification: an axiomatic approach. ACM Trans. Comput. Log. 23(4),
27:1–27:39 (2022). https://doi.org/10.1145/3545117

13. Doherty, S., Dongol, B., Wehrheim, H., Derrick, J.: Verifying C11 programs oper-
ationally. In: Hollingsworth, J.K., Keidar, I. (eds.) PPoPP, pp. 355–365. ACM
(2019). https://doi.org/10.1145/3293883.3295702

14. Doko, M., Vafeiadis, V.: A program logic for C11 memory fences. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 413–430. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 20

https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-030-99336-8_9
https://doi.org/10.1007/3-540-17660-8_52
https://doi.org/10.1007/3-540-17660-8_52
https://doi.org/10.1006/inco.1994.1088
https://doi.org/10.1006/inco.1994.1088
https://doi.org/10.1016/S0304-3975(96)00104-1
https://doi.org/10.1145/3290383
https://doi.org/10.1007/978-3-030-92124-8_12
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.1007/s10817-021-09610-2
https://doi.org/10.1145/3545117
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1007/978-3-662-49122-5_20


Reasoning About Promises in Weak Memory Models with Event Structures 299

15. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: Bod́ık, R., Majumdar, R. (eds.) POPL, pp. 608–621. ACM (2016). https://
doi.org/10.1145/2837614.2837615

16. van Glabbeek, R.J., Goltz, U.: Well-behaved flow event structures for parallel com-
position and action refinement. Theor. Comput. Sci. 311(1–3), 463–478 (2004).
https://doi.org/10.1016/j.tcs.2003.10.031

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

18. Jagadeesan, R., Jeffrey, A., Riely, J.: Pomsets with preconditions: a simple model
of relaxed memory. Proc. ACM Program. Lang. 4(OOPSLA), 194:1–194:30 (2020).
https://doi.org/10.1145/3428262

19. Jeffrey, A., Riely, J., Batty, M., Cooksey, S., Kaysin, I., Podkopaev, A.: The
leaky semicolon: compositional semantic dependencies for relaxed-memory con-
currency. Proc. ACM Program. Lang. 6(POPL), 1–30 (2022). https://doi.org/10.
1145/3498716

20. Kaiser, J., Dang, H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for weak
memory: reasoning about release-acquire consistency in iris. In: Müller, P. (ed.)
ECOOP. LIPIcs, vol. 74, pp. 17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

21. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) POPL, pp.
175–189. ACM (2017). https://doi.org/10.1145/3009837.3009850

22. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 25

23. Lee, S., et al.: Promising 2.0: global optimizations in relaxed memory concurrency.
In: Donaldson, A.F., Torlak, E. (eds.) PLDI, pp. 362–376. ACM (2020). https://
doi.org/10.1145/3385412.3386010

24. Milner, R.: Communication and Concurrency. PHI Series in computer science,
Prentice Hall, Hoboken (1989)

25. Nienhuis, K., Memarian, K., Sewell, P.: An operational semantics for C/C++11
concurrency. In: Visser, E., Smaragdakis, Y. (eds.) OOPSLA, pp. 111–128. ACM
(2016). https://doi.org/10.1145/2983990.2983997

26. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Program. Lang. 4(POPL), 10:1–
10:32 (2020). https://doi.org/10.1145/3371078

27. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976)

28. Paviotti, M., Cooksey, S., Paradis, A., Wright, D., Owens, S., Batty, M.: Modular
relaxed dependencies in weak memory concurrency. In: ESOP 2020. LNCS, vol.
12075, pp. 599–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44914-8 22

29. Pulte, C., Pichon-Pharabod, J., Kang, J., Lee, S.H., Hur, C.: Promising-
ARM/RISC-V: a simpler and faster operational concurrency model. In: McKin-
ley, K.S., Fisher, K. (eds.) PLDI, pp. 1–15. ACM (2019). https://doi.org/10.1145/
3314221.3314624

30. Raad, A., Berdine, J., Dreyer, D., O’Hearn, P.W.: Concurrent incorrectness sepa-
ration logic. Proc. ACM Program. Lang. 6(POPL), 1–29 (2022). https://doi.org/
10.1145/3498695

https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1016/j.tcs.2003.10.031
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3498716
https://doi.org/10.1145/3498716
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3498695
https://doi.org/10.1145/3498695


300 H. Wehrheim et al.

31. Raad, A., Lahav, O., Vafeiadis, V.: Persistent Owicki-Gries reasoning: a program
logic for reasoning about persistent programs on Intel-x86. Proc. ACM Program.
Lang. 4(OOPSLA), 151:1–151:28 (2020). https://doi.org/10.1145/3428219

32. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn,
P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15057-9 4

33. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Hall, M.W., Padua, D.A. (eds.) PLDI, pp. 175–186.
ACM (2011). https://doi.org/10.1145/1993498.1993520

34. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010). https://doi.org/10.1145/1785414.1785443

35. Svendsen, K., Pichon-Pharabod, J., Doko, M., Lahav, O., Vafeiadis, V.: A sepa-
ration logic for a promising semantics. In: Ahmed, A. (ed.) ESOP 2018. LNCS,
vol. 10801, pp. 357–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89884-1 13

36. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11 con-
currency. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) OOPSLA, pp. 867–
884. ACM (2013). https://doi.org/10.1145/2509136.2509532

37. de Vries, E., Koutavas, V.: Reverse hoare logic. In: Barthe, G., Pardo, A., Schneider,
G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 155–171. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24690-6 12

38. Wehrheim, H., Bargmann, L., Dongol, B.: Reasoning about promises in weak mem-
ory models with event structures (extended version) (2022). https://doi.org/10.
48550/ARXIV.2211.16330, https://arxiv.org/abs/2211.16330

39. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0013026

40. Wright, D., Batty, M., Dongol, B.: Owicki-Gries reasoning for C11 programs with
relaxed dependencies. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 237–254. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 13

https://doi.org/10.1145/3428219
https://doi.org/10.1007/978-3-642-15057-9_4
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.48550/ARXIV.2211.16330
https://doi.org/10.48550/ARXIV.2211.16330
https://arxiv.org/abs/2211.16330
https://doi.org/10.1007/BFb0013026
https://doi.org/10.1007/978-3-030-90870-6_13
https://doi.org/10.1007/978-3-030-90870-6_13


A Fine-Grained Semantics for Arrays
and Pointers Under Weak Memory Models

Robert J. Colvin(B)

Defence Science and Technology Group and The University of Queensland,
Brisbane, Australia
r.colvin@uq.edu.au

Abstract. Developers of concurrent code for multicore architectures
must navigate weak memory models (wmms) – either directly at the
hardware/assembly level or at a somewhat generalised software level –
making the verification of concurrent code an even more difficult task.
Semantic models based on a system-wide partial-ordering on events have
been developed to define the behaviour of code executing under wmms,
but typically require specialised assertion languages and inference tech-
niques to reason about, and often apply to only rudimentary program-
ming constructs. In this paper we present a generic but versatile abstract
imperative language “IMP+ptr” which includes pointers and arrays, from
which can be built high-level imperative programming constructs for
verifying abstract algorithmic logic, or low-level microassembly for, e.g.,
investigating hardware security vulnerabilities. The base language care-
fully controls the syntax of atomic instructions to allow program-level,
algebraic reasoning about the additional nondeterminism inherent in pro-
grams executing under wmms. We show how arrays of pointers, aliasing,
and linked lists may be affected by wmms, establishing a base from where
we apply pre-existing verification results and techniques for sequential
programs with nested parallelism.

1 Introduction

Weak memory models (hardware or software) define how concurrent code may
be executed, factoring in that processors might execute instructions out of order,
and potential transformations made by the compiler. Such details are typically
hidden from the programmer – an abstraction that held true in the age of single-
core processors – but for low-level systems code operating on multicore proces-
sors the pitfalls must be dealt with. A programmer ideally works with abstract
data structures such as arrays, although in many cases, in particular with C-like
languages, the underlying pointer details may be exposed. As a consequence, for
verification of such code one must deal with fine-grained parallelism within the
structure of otherwise sequential code. As for the programmer, the verifier would
like to expose or abstract from implementation details where appropriate. To this
end we present a minimal abstract language, IMP+ptr, that allows expressions
that include pointers and arrays and which encompasses the behaviours of weak
memory models.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 301–320, 2023.
https://doi.org/10.1007/978-3-031-27481-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_18&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_18


302 R. J. Colvin

We show that, despite being minimal, IMP+ptr can define an imperative lan-
guage (with conditionals and loops) using the typical (Concurrent) Kleene alge-
bra approach in Sect. 2. We then define a more realistic, C-like language with
non-atomic expression evaluation in Sect. 3. This essentially defines behaviour
in terms of the underlying atomic, assembler-level instructions to which the code
will be compiled. In Sect. 4 we consider reordering of instructions according to
weak memory models, based on principles of data dependencies. We show how
this lifts to the program level and facilitates a program-transformation app-
roach to elucidating the effects of weak memory models. In Sect. 5 we use the
language and semantic framework to explore how weak memory models affect
the execution of code involving aliasing, a linked-list implementation of a stack,
and can be extended to explain a wide-spread security vulnerability affecting
many modern processors. All major results have been machine-checked in the
Isabelle theorem prover [40]. The work is motivated towards providing the basis
for tool support for the verification of highly-parallel multicore implementations
of security-critical software such as the seL4 microkernel [30], and for investigat-
ing lower-level considerations relating to microassembly [31,36]. As such, we take
a program transformation (algebraic/refinement-based) approach which allows
existing results and verification techniques for sequential algorithms to be used.

2 A Versatile Language with Fine-Grained Concurrency

Syntax. Below we give the syntax for the language IMP+ptr, which includes
expressions e ∈ Expr, l-values ϕ ∈ LVal (a subset of expressions that represent
objects that are mutable), (atomic) instructions α ∈ Instr, and commands c ∈
Cmd. We assume a set of base values Val and variable identifiers Var. Values
are divided into regular values (integers, booleans, etc.) and locations (set Loc,
corresponding to concrete addresses). In this framework a memory model m ∈
Instr × Instr is a relation on instructions.

e ::= v | x | e1 ⊗ e2 | e1[e2] | ∗e ϕ ::= x | ∗e | ϕ[e]
α ::= �e� | ϕ ← e
c ::= nil | �α | c1

m
; c2 | �i∈I .c[i]

(1)

Expressions e can be base values v ∈ Val, a variable identifier x ∈ Var, some
binary expression e1 ⊗ e2 (all definitions can be generalised to n-ary operators
straightforwardly), an array indexing expression e1[e2], or a dereference expres-
sion ∗e (allowing nested dereferencing, dereferencing of array elements, etc.).
An l-value ϕ is an expression that is either a variable, a dereference expression,
or an array indexing expression (with a variable or dereference at its base), for
instance, x , ∗x , or x [1], but not 2 + 3, etc. An instruction α is a guard �e� or
update ϕ ← e, updating l-value ϕ to the value of e.

The command language is compact but expressive: a command may be the
terminated command, ‘nil’; a sequence of instructions, ‘�α’ (typically it will be
singleton), which are collectively executed as a single step; the parallelized
sequential composition of two commands according to some memory model



A Fine-Grained Semantics for Arrays and Pointers 303

(reordering relation) m, ‘c1
m
; c2’ (described below); or a choice over a set of

commands indexed by some countable type I , ‘�i∈I .c[i]’ (we use B, N, Val and
Var for I ).

A sequence of instructions �α we refer to as an action. We use angled brackets
for constructing sequences 〈a1, a2, . . .〉, with 〈〉 the empty sequence. Typically
actions are singleton sequences of instructions, in which case we omit the angled
brackets, and blur the distinction between actions and instructions.

A parallelized sequential composition, c1
m
; c2, generalises sequential and par-

allel composition, and additionally captures many of the behaviours of weak
memory models, depending on the instantiation of m. If m is the empty relation
then c1

m
; c2 is just normal sequential composition (no reordering), and if m is the

universal set then c1
m
; c2 is just normal parallel composition (any reordering).

We give the foundations of a typical weak memory model in Sect. 4.
The command type �i∈I .c[i] picks some element i of I and behaves as the

command c[i], i.e., c for that element of I . We make the following shorthands for
brevity and readability to cover common cases. Note that when the set I is clear
from context we omit ‘∈ I ’, and where the parameter i is clear from context, we
use c in place of c[i]. Below P(v) is some predicate on v .

�v .c =̂ �v∈Val.c[v ] �n .c =̂ �n∈N.c

�P(v).c =̂ �v∈{v ′|P(v ′)}.c �v1,v2 .c =̂ �v1 . (�v2 .c)

Encoding an Imperative Language in IMP+ptr. Binary choice and iteration
are defined in the typical Kleene-algebra style [33], with the n-fold iteration of
a command c defined inductively as c0 =̂ nil and cn+1 =̂ c; cn , where ‘; ’ is
defined below.

c1 � c2 =̂ �b∈B.(b ? c1 : c2) c∗ =̂ �n .cn (2)

Binary choice is simply a choice over the doubleton set of booleans (we use the
ternary conditional b ? c1 : c2 to distinguish it from the language-level if / then
conditional). Finite iteration c∗ is a choice between all possible unfoldings (to
avoid distraction we do not give infinite iteration in this language but there is no
reason why that cannot be considered). We define conditionals and while loops
as in Kleene Algebra [33], and as above define (strict) sequential composition
and parallel composition by instantiating parallelized sequential composition.

c1; c2 =̂ c1
∅

; c2 if b then c1 else c2 =̂ �b�; c1 � �¬b�; c2
c1 ‖ c2 =̂ c1

univ
; c2 while b do c =̂ (�b�; c)∗; �¬b� (3)

Denotational Semantics as Sets of Traces. We define a denotational seman-
tics for IMP+ptr (in contrast to the small-step operational semantics for a similar
but less expressive language [11]) that interprets commands as sets of traces,
which are sequences of actions (which are themselves sequences of instructions).
The set of traces of c, tr(c), is defined inductively below.

tr(nil) = {〈〉}
tr(�α) = {〈�α〉}

tr(c1
m
; c2) = tr(c1)

m
〈‖ tr(c2)

tr(�i∈I .c[i]) =
⋃

i∈I tr(c[i])
(4)



304 R. J. Colvin

The operator
m
〈‖ interleaves sets of traces according to memory model relation

m. This is defined in terms of m (defined on instructions) where, for instructions

α and β, if (α, β) ∈ m then α
m
〈‖ β = {〈α, β〉, 〈β, α〉}, and α

m
〈‖ β = {〈α, β〉}

otherwise. We define the interleaving of traces t1 and t2 according to m via

a small-step operational semantics, where t1
m
〈‖ t2 α−→ t ′

1

m
〈‖ t ′

2 means that α is a
possible next action of the pair, which evolve to t ′

1 and t ′
2 (the concept is similar to

that in [11] but here defined more straightforwardly directly on traces). Notation
α � t represents concatenation of α on to the front of sequence t , and we write
α

m⇐= β for (α, β) ∈ m, indicating that a “later” instruction β can execute before
“earlier” instruction α.

(α � t1)
m
〈‖ t2 α−→ t1

m
〈‖ t2

∀α ∈ ran t1 • α
m⇐= β

t1
m
〈‖(β � t2)

β−→ t1
m
〈‖ t2

Hence the next instruction of t1 may always proceed, but the next action of
t2 may proceed only if it can reorder with every instruction in t1 according to

m. A full interleaved trace t of t1
m
〈‖ t2 is one where both traces are empty at the

end.
As discussed above, if m is instantiated with the empty relation then the

second rule can never apply (except when t1 is empty), forcing strict ordering,
and if m is instantiated with the universal relation then the precondition of the
second rule always holds, giving any interleaving of actions.

Refinement. Refinement, 
, is defined as usual as reverse-subset inclusion on
traces, i.e., for commands c and d , c
d =̂ tr(d) ⊆ tr(c). Refinement equality,

�, is refinement in both directions. The operators

m
; and

�
are monotonic for

refinement, and the definitions from (3) form a Kleene Algebra [33,34] for finite,
sequential programs straightforwardly, that is, all the usual properties of sequen-
tial composition, conditionals and loops hold, e.g., (c1; c2); c3 
� c1; (c2; c3).
Additionally the exchange law from Concurrent Kleene Algebra [24] holds, i.e.,
(c1; c2) ‖ (d1; d2)
(c1 ‖ d1); (c2 ‖ d2).

State-Based Semantics. As is common for treatments of pointers a state
σ ∈ (Var ∪ Loc) → Val is the combination of a store mapping variable identifiers
to values and a heap mapping locations to values. Special value null (�∈ Loc)
represents a null pointer, and special value free represents a pointer that has not
been allocated; this means that our mapping of locations is total, rather than
partial. The traditional store (Var → Val) and partial heap (Loc �→ Val) can be
retrieved straightforwardly, i.e., store(σ) = Var � σ (σ restricted (in its domain)
to variables) and heap(σ) = Loc � σ −� {free} (σ restricted to locations that do
not map to free). We interpret an instruction α as a relation on states via �α�.

��e�� = { | e〈σ〉 = tt} �ϕ ← e� = λ σ. σ ⊕ {ϕ〈〈σ〉〉 �→ e〈σ〉} (5)

The meaning of a guard instruction �e� is the identity relation on states σ where
the evaluation of e in σ (written e〈σ〉) is True (tt). The meaning of an assignment



A Fine-Grained Semantics for Arrays and Pointers 305

instruction ϕ ← e is the relation (function) where given a pre-state σ the post-
state is σ updated so that the reference to which ϕ resolves (written ϕ〈〈σ〉〉) is
mapped to e〈σ〉. Resolution reduces an LVal to either a variable or a location,
i.e., an element of domσ. We show how array indexing is handled later.

The meaning of actions and traces are defined inductively using relational
composition, and the meaning of a command is the union of the relations for
all of its traces, i.e., �c� =

⋃

�tr(c)�. The interpretation of programs as relations
admits the usual notions of Hoare logic [22], rely/guarantee [27,28], separation
logic [25,44], etc.

Expression Evaluation and Resolving References. Evaluation is defined
over the syntax of expressions, and resolution over the syntax of l-values (1).

v〈σ〉 = v
(e1[e2])〈σ〉 = e1〈σ〉#e2〈σ〉

x〈σ〉 = σ(x ) (e1 ⊗ e2)〈σ〉 = e1〈σ〉 ⊗ e2〈σ〉
∗e〈σ〉 = σ(e〈σ〉)

(6)

x〈〈σ〉〉 = x ∗e〈〈σ〉〉 = e〈σ〉 (7)

Evaluation of a value v is itself, while evaluation of an identifier x is a lookup
of σ. Evaluation of a binary operator expression is straightforward, assuming
that underlying the syntax of the operator has some direct interpretation on
values. An array index expression e1[e2] is evaluated by evaluating the index
(e2) and using that to index into the evaluated array (e1), where a#n returns
the nth element of array value (sequence) a. Evaluating a dereference ∗e requires
evaluating e to a location and then looking up the value at that location. As an
example, assuming σ(x ) = l and σ(l) = 5, then (∗x )〈σ〉 = σ(x〈σ〉) = σ(σ(x )) =
σ(l) = 5. For brevity we leave as undefined the value of a lookup of a location
that is free, but this can be given an abort semantics in the usual way instead.

An l-value ϕ may be “resolved” to either a variable or a pointer in state
σ, written ϕ〈〈σ〉〉 (array index l-values are normalised into ordinary assignments
as described below). Identifiers need no resolution, while resolving a derefer-
ence requires evaluating the dereference expression to a location; in particular,
∗l 〈〈σ〉〉 = l in all states since l is a value. Following from the above and using (5)
∗x 〈〈σ〉〉 = x〈σ〉 = σ(x ) = l , and hence �∗x ← ((∗x ) + 1)� = λ σ. σ ⊕ {l �→ 6}.

Handling Array Index Updates. The simplest approach to including array
updates at the command level is to treat an assignment such as A[1] := 17 as
syntactic sugar for A := A[1] �→17, where the expression A[1] �→17 is the value of
A overridden at index 1 with the value 17. However in terms of fine-grained
atomicity such an assignment both loads and updates the entire array A at
once, which does not correspond with a typical concrete representation of an
array as a contiguous chunk of locations. This becomes an issue for calculating
reordering, where we wish to treat A[1] ← 17 and A[2] ← 27 as independent
assignments, based on syntax. As such we treat A[i ] ← v as its own syntax, not
as a shorthand; we demonstrate the benefit of this in Sect. 4.



306 R. J. Colvin

We retrieve the meaning of the syntax ϕ[e]←v by “normalising” such instruc-
tions, where norm(α) = α except for the following.

norm(ϕ[i ] ← e) = norm(ϕ ← (ϕ[i] �→e)) (8)

Hence norm(A[1][2] ← 17) = norm(A[1] ← A[1][2] �→17) = A ← A[1] �→(A[1])[2]�→17
.

The meaning of instruction α is the meaning of its normalised version in (5).

3 Non-atomic Language

We now use IMP+ptr to encode a language (such as C) that has “non-atomic”
expression evaluation. We break expression evaluation down into sequences of
loads, which are guards of the form �ϕ = v�. Loads represent accessing parts of
the state that can be read in a single step. We first give non-atomic evaluation
of expressions in assignments x := e before generalising x to arbitrary l-values.
Note the distinction that x ← e is an atomic instruction (part of IMP+ptr), but
x := e is a command that may require multiple evaluation steps.

Non-atomic Expression Evaluation. Below we inductively define the eval-
uation of expression e to value v , written e�v . We defer the definitions for
dereference and array indexing expressions until later sections.

v1�v2 =̂ (v1 = v2) ? nil : magic
ϕ�v =̂ �ϕ = v�

(e1 ⊗ e2)�v =̂ �v1⊗v2=v .(e1�v1 ‖ e2�v2)

magic =̂ �i∈∅.nil
e�v?/c[v ] =̂ �v∈V .e�v ; c[v ]

A command e�v is formed from a sequence of loads of the values of the variables,
dereferenced locations, and array indexes required to determine the value of e.
We define ‘magic’ as the command that has no behaviours; this is used to
eliminate infeasible evaluations. Then the evaluation of a value v1 to a value v2
either terminates immediately if v1 = v2 and otherwise has no behaviours, while
the evaluation of ϕ to value v is a load �ϕ = v�. We have generically defined
a binary expression e1 ⊗ e2 to evaluate each subexpression in parallel, where
the result of those evaluations must give v (recall (6)); one can just as easily
define a strict left-to-right evaluation order for specific operators. For notational
convenience we introduce the shorthand e�v?/c[v ] for a nondeterministic choice
over all possible evaluated values v for e, and subsequently used in c[v ].

For example, (x + y)�7 
� �i+j=7.�x = i� ‖ �y = j �
�x = 3� ‖ �y = 4�, that
is, loading 3 and 4 for x and y means the expression x + y can evaluate to 7 (or
any other combination of values for x and y that sum up to 7).

Command Definitions. Non-atomically evaluated versions of assignment,
(repeat) loops, and conditionals may now be given.

x := e =̂ e�v?/x ← v repeat c until b =̂ c; (b�ff ; c)∗; b�tt (9)

if b then c1 else c2 =̂ (b�tt; c1) � (b�ff ; c2) (10)



A Fine-Grained Semantics for Arrays and Pointers 307

An assignment x := e is defined as a nondeterministic choice over all commands
where e evaluates to some value v and then x is updated to v . For instance,
x := y is equal to �v .�y = v�; x ← v , where the value for y is loaded and then
that value is later assigned to x . A conditional command either (non-atomically)
evaluates the condition to tt or ff, followed by the corresponding command (10).
Note that infeasible evaluations always result in no behaviours from a state-
based perspective, i.e., are interpreted as the empty relation. A non-atomically
evaluated “repeat” command (9) is defined similarly to a while loop (3).

Non-atomic Reference Resolution and Assignment. We now generalise
assignments to allow non-atomically resolved l-values on the left-hand side. We
write ϕ↪→ν , analogously to expression evaluation, where ϕ is resolved to a ref-
erence ν ∈ Ref, a further subset of LVal, encompassing identifiers, pointers, or
array indexes.

ν ::= x | ∗l | ν[n] (11)

We define non-atomic resolution inductively over the syntax of l-values. Resolu-
tion of an l-value ϕ to a reference ν, written ϕ↪→ν , is impossible (equal to magic)
except for the following.

x↪→x =̂ nil ∗e ↪→∗l =̂ e�l ϕ[e]↪→ν[n] =̂ ϕ↪→ν ; e�n (12)

This states that a variable immediately resolves to itself (and nothing else), while
dereferenced l-values resolve to locations and array indexing l-values resolve to
array indexing references (cf. (7)). As with expression evaluation we combine
non-atomic resolution into a more useful syntax where the resolved reference is
used within a nondeterministic choice; this pattern is used to define assignment.

ϕ↪→ν?/c[ν] =̂ �ν∈Ref .ϕ↪→ν ; c[ν] ϕ := e =̂ e�v?/ϕ↪→ν?/ν ← v (13)

The straightforward cases collapse immediately, e.g., x := v 
� x ← v , while more
complex assignments expand into loads and a single update, e.g., ∗x := y 
�
�v .�y = v�; (�l .�x = l�; ∗l ← v).

3.1 Structured Arrays

Non-atomic evaluation of an array indexing expression is defined below (non-
atomic array-indexing l-value resolution is covered in (12)).

e1[e2]�v =̂ e1↪→ν?/e2�n?/�ν[n] = v� (14)

Note that evaluating e1[e2] involves resolving e1 to a reference and evaluating e2
to an index. An alternative would be to evaluate e1 directly to an array value,
however, this would compromise the flexibility of calculating which array indexes
are actually accessed, as considered in Sect. 4.

Given variables A and i evaluating A[i ] requires evaluating i to an index,
i.e., A[i ]�v 
� �n .�i = n�; �A[n] = v�, and when used as an l-value we get an
update at that index, e.g., A[i ] := 6 
� �n .�i = n�; A[n] ← 6.



308 R. J. Colvin

3.2 Pointers

Definitions for obtaining and releasing pointers are given below.

∗e�v =̂ e�l?/�∗l = v�
alloc(l) =̂ 〈�∗l = free� , ∗l ← 0〉 dealloc(l) =̂ ∗l ← free
new(x ) =̂ �l .alloc(l); x ← l free(x ) =̂ x�l?/dealloc(l); x ← null

(15)

Non-atomic evaluation for dereference expressions is straightforward (non-atomic
resolution is given in (12)): evaluating ∗e to v involves first evaluating e to
some location l and then checking the value of ∗l is v . (Note than when a
location l is being treated as a variable it is dereferenced (∗l ) and otherwise
behaves as a value.) We define obtaining new and freeing old pointers in IMP+ptr
using the abbreviation �l .c =̂ �l∈Loc.c. A location l may be allocated only
if l is already free, and then l is initialised to 0 (alternatively an arbitrary
value could be chosen). This is given as a composite action so that there is no
possibility of some other process interleaving and allocating l . A new pointer
new(x ) nondeterministically chooses a location l to allocate and updates x to
that location. A location is deallocated by setting it to free, and freeing a pointer
x finds the location l that x points to, deallocates l , and sets x to null.

Note that by treating the heap as a total function with free locations mapped
to the free value means that it is straightforward to encode de/allocating loca-
tions directly at the language (expression) level as simple tests and updates.

3.3 Unstructured Arrays (Arrays of Pointers)

The previous definitions for pointers can be used to define operations on arrays of
contiguous locations, as in C, rather than structured/abstract arrays (Sect. 3.1).
Key to this treatment is an expression type e+e2

1 , where e1 is evaluated to a
location l and e2 to an offset amount n, and then l+n gives a new location via
“pointer arithmetic”. This can be evaluated by simple addition if locations are
represented by natural numbers, but we leave it underspecified to leave open the
possibility for special word sizes, etc. We use the notation e1〈[e2]〉 for a (derefer-
enced) access of an array of pointers in a language such as C (but distinguished
from structured array indexing e1[e2]).

l+n : increment location l by n e1〈[e2]〉 =̂ ∗(e+e2
1 ) (16)

Non-atomic evaluation and resolution of pointer array offsets are covered by pre-
vious definitions. As an example, assuming A points to location l , then A〈[3]〉 :=4
reduces to ∗(l+3)←4. There is scope to abuse an array offset A〈[n]〉, in particular
if n is outside the intended bounds of A, corresponding with the reality of a
language like C; we show this underlies the Meltdown vulnerability in Sect. 5.3.

Below we construct commands for de/allocating a new block of pointers,
formed from primitive assembler-like instructions (allowing reordering analysis).
We assume n ≥ 1 and A ∈ Var, and recall (15). We index pointer arrays from 0.



A Fine-Grained Semantics for Arrays and Pointers 309

chunk(l ,n) =̂ λ i ∈ (0..n − 1). l+i (17)

new(A,n) =̂ �l .flatmap(alloc)(chunk(l ,n)); (A ← l) (18)

free(A,n) =̂ A�l?/flatmap(dealloc)(chunk(l ,n)); A ← null (19)

A “chunk” of n pointers starting from l is a sequence 〈l+0, l+1, . . . , l+n−1〉 where
each location is systematically related to the others via pointer arithmetic (17).
Then a new pointer array is created by allocating every element of a nondeter-
ministically chosen chunk (18), where the flatmap function applies a function to
every element of a list and flattens the result, e.g., flatmap(alloc)(〈l1, l2, . . .〉) =
alloc(l1) � alloc(l2) � . . .. Note that any attempt to allocate an in-use location
results in infeasible behaviour. A block of length n is freed similarly (19), finally
setting A to null (the length of the array could be kept in a special location
within the block itself, and retrieved when deallocating). We have chosen here
to model allocating and freeing a block of pointers as a single atomic action,
abstracting from the implementation details of a function such as C’s calloc,
but if the intention is to verify an implementation of calloc then a detailed,
fine-grained definition can be given instead.

4 Instruction-Level Parallelism

We now use IMP+ptr to consider the behaviour of programs that are executed
according to some weak memory model [1,2,38]. Parallelisation of computa-
tion has been a feature of processors since the 1960s [50,51], used to maximise
throughput for independent instructions; for instance, calculating some arith-
metic value while waiting for the return of an unrelated value from main mem-
ory. The fundamentals of modern hardware and software memory models such
as those of x86 [47], Arm [4], RISC-V [42], Power [46], and C [8] are based on
a “data dependence” relation between actions, and additionally include special
fence/barrier instructions or other features to reimpose order as necessary [19].
For concision we focus on data dependencies below, though the extension to
include fences is straightforward [11,13]. The memory model (instruction rela-
tion) g is defined so that α

g⇐= β if instructions α and β do not modify the
variables the other reads, and do not read the same shared variables.

α
g⇐= β ⇔ wv(α)∩ fv(β) = ∅ ∧ wv(β)∩ fv(α) = ∅ ∧ rsv(α)∩ rsv(β) = ∅ (20)

For an instruction α, wv(α) gives the variables written to (modified) by α,
rv(α) gives the variables read by α, and rsv(α) are the read shared variables
of α. Shared and local variables are treated differently by weak memory models
because shared variables may be modified by other processes. The free variables
of α (fv(α)) are the union of the write and read variables. The relation g is fun-
damental to real memory models, which are typically stronger in relation to the
interaction of branches (guards) and stores. Additions such as fences and other
ordering constraints, as well as “forwarding” (where an earlier instruction can
affect a later one), can be incorporated in our framework similarly to [11,12].

The key property of g is that α
g⇐= β ⇒ �α� o

9 �β� = �β� o
9 �α�, i.e., the

effect of α and β is the same regardless of the order in which they are executed



310 R. J. Colvin

(cf. Hoare’s disjointness constraint for parallel programs [23]). The condition
α

g⇐= β is straightforward for a processor to enforce by checking if any accessed
register or location is written to by an instruction earlier in the pipeline.

We can calculate the free variables of actions composed from store and load
instructions straightforwardly: wv(ν←v) = {ν} and rv(ν←v) = ∅, and wv(�ν =
v�) = ∅ and rv(�ν = v�) = {ν} (in this context we should call them free
references rather than free variables). More specifically we may derive, for the
primitive actions in the non-atomically evaluated language of Sect. 3, wv(x←v) =
rv(�x = v�) = {x}, and wv(∗l ← v) = rv(�∗l = v�) = {∗l }. Array indexing
requires special attention which we address in the next section. These syntactic
definitions are lifted to actions (sequences of instructions), traces (sequences of
actions), and commands (treated as sets of traces) straightforwardly, for instance,
wv(nil) = ∅ and wv(�v .c[v ]) =

⋃

v wv(c[v ]).
We give some indicative examples below, for both the basic instruction types

as well as composed commands such as non-atomically-evaluated assignments.
Assume distinct x , y ,A ∈ Var, with x and y shared and A local, and distinct
locations l , l1, l2 ∈ Loc, where additionally l+1 = l1 and l+2 = l2.

x ← 3 g⇐= ∗l ← 5 ∗x := 3 /g⇐= ∗l ← 5 ∗(l+1) ← 5 g⇐= ∗(l+2) ← 6
x ← 3 g⇐= y ← 4 ∗x := 3 g⇐= y := 4 A〈[1]〉 := 5 g⇐= A〈[2]〉 := 6
x ← 3 g⇐= �∗l = v� �∗l1 = v�

g⇐= �∗l2 = w�
∗x := 3 /g⇐= �∗l = v� ∗x := 3 /g⇐= ∗y := 4

(21)

Note in particular ∗x :=3 /g⇐= ∗l ←5. By the definition of assignment wv(∗x :=3) =
⋃

l′ wv(∗l ′ ← 3) = Loc (while rv(∗x := 3) = {x}). Hence execution of ∗x could
modify any location, including l , and reordering is not legal in this case. We
explore this further in the context of aliasing in Sect. 5.1.

4.1 Reordering and Refinement

We may instantiate parallelized sequential composition with the relation g to
observe its effects on execution order. For instance, since x := 5 g⇐= y := 6, we
have x := 5

g
; y := 6 is refinement equivalent (recall Sect. 2) to x := 5 ‖ y := 6.

More generally, following [11], for any memory model m,

α
m⇐= β ⇒ α

m
; β 
� α ‖ β α /m⇐= β ⇒ α

m
; β 
� α; β (22)

These rules reduce a command involving m into a more familiar sequential or
parallel form, and can be used to derive rules covering more complex structures.

As an example of reordering affecting code involving pointers, consider the
initialisation code x :=null

g
; new(tmp)

g
; x := tmp, executed under memory model

g (as made explicit in the parameter to parallelized sequential composition).
Simple calculations using g⇐= show that the first two commands can be executed
in parallel, but order is enforced by data dependencies for the third. That is,
the program reduces to (x := null ‖ new(tmp)); x := tmp using (22). This is
as expected - there is no reason why a new location cannot be allocated and
assigned to tmp before x is set to null, though the subsequent update of x must
occur strictly later.



A Fine-Grained Semantics for Arrays and Pointers 311

4.2 Array Indexing and Reordering

We now consider what a write and read variable means for array indexing expres-
sions such as A[1] :=5. Clearly the value of A is updated, but only at index 1. In
the spirit of processors wishing to maximise reordering, and in particular to allow
for weak memory model effects to be observable in a program using an abstract
array, we wish to allow A[1] := 5 g⇐= A[2] := 6, i.e., for accesses to separate parts
of the array to be parallelized.

Given a reference ν we define ν� as the set of all subindexes into the reference,
so that, for example, A� = {A,A[1],A[1][1], . . . ,A[2],A[2][1], . . .}, but A[2] �∈
A[1]�. Where before for an expression x , rv(x ) = {x}, we now set rv(x ) = x�

(and similarly for write variables of update instructions). Note that it is not
enough to consider just the exact subindex, as A[1]←v /g⇐= A[1][2]←w , since the
second assignment is modifying a part of the original, just as A← . . . /g⇐= A[1]←3
(since when A is modified directly then also A[1],A[2], etc., are modified).1

Hence wv(A[1] := 1) = A[1]�, and we can derive the following: A[1] := 5 g⇐=
A[2] := 6, A := 〈4, 5, 6〉 /g⇐= r :=A[1], and r := ∗l [1] /g⇐= ∗l := free. As earlier, using
(22) we can derive A[1] := 5

g
; A[2] := 6 
� A[1] := 5 ‖ A[2] := 6, i.e., updates to

distinct parts of the array may occur in parallel. The intention is that it works
just as if we more concretely worked with offsets to some pointer A at the front
of an array. This semantics is justified by appealing to the (underlying) case of
array offsetting, that is, A〈[5]〉 := 1

g
; A〈[2]〉 := 6 
� A〈[5]〉 := 1 ‖ A〈[2]〉 := 6.

If we instead treated A[1] := 5 as syntactic sugar for A :=A[1] �→5, it would be
much less straightforward to syntactically limit the updated index A[1] as the
write variable, particularly in the context of arbitrary expressions being allowed
on the right-hand side of assignments.

5 Applications

We now show how the framework applies to a range of situations and algo-
rithms involving pointer representations, using structured arrays as support. In
all cases we take a program-transformation approach to elucidating behaviours
(rather than directly appealling to states), from where standard techniques can
be applied to establish the desired properties.

5.1 Aliasing and Reordering

Consider two mutating instructions in order, ∗x := 1; ∗y := 2. If x and y point
to the same location then processors will not (observably) reorder them, but
otherwise they may. The key aspect is the implicit locations to which x and y
point; in our framework we can expose them in the syntax of the program.

∗x/l := v =̂ �x = l�; ∗l ← v ∗x := v =̂ �l .∗x/l := v (23)
1 Although ϕ� is infinite it reduces, for the purposes of calculating reordering, to a

pointwise-check wrt. g, i.e., ϕ1
� ∩ϕ2

� = ∅ ⇔ ¬(ϕ1 � ϕ2 ∨ ϕ2 � ϕ1). For x , y ∈ Var
it collapses to x �= y .



312 R. J. Colvin

We define the command ∗x/l := v to be one that covers only the case where x
points to l (and hence we may define the update of pointer x as the choice over
all possible locations for x ). The analysis uses the following properties.

(�v .c[v ]
)

; d 
� (�v .c[v ]; d
) (�v ,u .c[v ,u]

) 
� (�v ,u|v �=u .c[v ,u]

) � (�v .c[v ,v ]

)

The first property states that choice distributes over parallelized sequential com-
position, with a symmetric rule holding for left-distribution. The second property
splits a choice over two values into two cases: where the values are different and
when they are the same.

Simple calculations show that fv(∗x/l := v) = {x , ∗l }, i.e., it reads x and
updates ∗l (however, as before, fv(∗x := v) = {x} ∪ Loc), which allows the
following derivation.

∗x := 1
g
; ∗y := 2


� (�l1 .∗x/l1 := 1
) g
;
(�l2 .∗y/l2 := 2

) 
�
(

�l1,l2 .∗x/l1 := 1
g
; ∗y/l2 := 2

)


�
(

�l1,l2|l1 �=l2 .∗x/l1 := 1
g
; ∗y/l2 := 2

)

�
(

�l .∗x/l := 1
g
; ∗y/l := 2

)

In the first choice, where x and y point to separate locations, the instructions
can be reordered and hence behave as if in parallel, i.e., that choice is equivalent
to �l1,l2|l1 �=l2 .∗x/l1 := 1 ‖ ∗y/l2 := 2. The second case, where x and y are aliases,
results in a dependency where ∗l ← 1 /g⇐= ∗l ← 2. Processors will not reorder
such cases - the aliasing may be deliberate, for instance, where an array offset
has occurred in a 0 case, and so should be updated in the specified order. The
combination expands to �l .(∗x/l := 1 ‖ �y = l�); ∗l ← 2, i.e., the load that
determines y points to l can be interleaved with the mutate of pointer x , but
the final update of l to 2 must occur strictly later.

5.2 Linked Lists and the Treiber Stack

Typically a “linked list” is a collection of “nodes”, which are value/location pairs,
with the “next” pointer of each node pointing to the next node in the list. We can
represent such a node as an array of length two, abbreviating e.val =̂ e[1] and
e.next =̂ e[2] (an alternative is introduce tuple expressions into the syntax). An
immediate consequence of this treatment is that modifications to a node’s value
and next pointer fields can be reordered with each other, since they are distinct
elements of an array. Recalling (15) we define newNode(n, v) =̂ new(n); ∗n :=
〈v , null〉, and freeing a node can be defined analogously. We define n→next as
the usual C abbreviation for ∗n.next (and similarly for n→val).

A well known lock-free [21] implementation of a stack as a linked list is that
of Treiber [45]. A lock-free algorithm provides weaker guarantees of termina-
tion than lock-based implementations, but typically has better performance by
allowing more parallelism between competing threads, in particular, retrying
the modification of shared data if interference is detected, rather than waiting
to obtain a contested lock. In Treiber’s linked-list implementation of a stack the
head of the stack is stored in pointer H (initially null), and an encoding of the



A Fine-Grained Semantics for Arrays and Pointers 313

implementation of push is given below (recall (9)). After initialisation of local
node n it enters a (potentially non-terminating) loop. This comprises repeatedly
loading the current value of H into local h, setting n to point to h, and then,
via a compare-and-swap (cas) primitive, atomically swinging H to the new n
provided H still points to the value loaded into h.

r := cas(x , r1, r2) =̂ (〈�x = r1� , x ← r2〉; r ← tt) � (�x �= r1�; r ← ff)

newNode(n, v)
g
; repeath :=H

g
; n→next := h

g
; r := cas(H , h,n)untilr

The cas instruction can reorder with the assignment n→next := h, because
variable n is local but ∗n is global. That is, without loss of generality, taking the
case where n = ln ,

rv(n→next := h) = {n, h} wv(n→next := h) = ln [2]
�

rv(r := cas(H , h,n)) = {n, h,H } wv(r := cas(H , h,n)) = {H , r}
Because the write variables of the cas do not intersect with the read vari-
ables of n→next := h those instructions may appear to execute in parallel. The
first instruction inside the loop, h := H , reads H and modifies h and therefore
can’t reorder with either of the other two commands. Taking these calculations
together and applying (22), the body of the loop is equal to

h :=H ; (n→next := h ‖ r := cas(H , h,n))

As a result H may be updated to point to the new location (n) before n points
to the rest of the stack, and this will invalidate any invariant-based proof of
correctness. The implementation may address this issue by inserting a fence
between the two commands, or by using a version of cas that includes a fence.
After such modifications, the resulting code can be shown to operate essentially
sequentially, and thus equivalently to the original program under a sequential
consistency interpretation; previous results [10] therefore imply correctness of
the weak-memory version with fences.

5.3 The Meltdown Vulnerability

We show the application of the framework to low-level micro-assembly, and how
to expose the “Meltdown” vulnerability of many micro-processors [36], related
to Spectre [31] and leading to the ongoing discoveries of new variants [43,52].
We give a detailed encoding of a “load” (in x86 assembly, a mov operation) that
exposes several aspects of the micro-architecture: foremost that the value at an
address in main memory is stored in a local register; that value/address pair
is recorded in a cache for faster retrieval later; and a special commit phase of
the operation where the accessed address is checked to be “valid”, i.e., that it
was loaded from an allowed region. We show that the reordering of loads and
commits may lead to the leaking of arbitrary information from main memory.

We define a particular mode of the x86 mov instruction which loads a value
from main memory into a register.

mov r1, [r2+r3] =̂ 〈r1 := r2〈[r3]〉 , c[r+r3
2 ] := tt〉; commit(r+r3

2 ) (24)



314 R. J. Colvin

The typical use of this mode is when register r2 holds the address of the start
of an array, and r3 is an index into the array, with the value at that location
written into r1. As a micro-architectural side-effect that location is also stored
in the cache system, represented by the variable c, a boolean array indexed by
locations; if c[l ] then l has been cached, i.e., accessed by the processor (the value
at r+r3

2 is not necessary for this analysis). Finally a commit micro-operation is
issued, which we leave uninterpreted, but the intended semantics is that if the
accessed location is not “valid” then execution halts and a (memory violation)
exception is thrown, e.g., commit(l) =̂ if l �∈ Valid then throwexc.

To complete the treatment of the micro-assembly we give a memory model
h that defines the interaction of the commit with the other (micro)operations.

α
h⇐= β =̂ α

g⇐= β ∧ α
μ⇐= β (25)

commit(l) /
μ⇐= β ⇔ wsv(β) �= ∅ commit(l1) /

μ⇐= commit(l2) (26)

Relation h extends g (20) to handle the commit instruction type, that is, α
h⇐= β

if data dependencies are respected according to g, and additionally, according

to
μ⇐=, commit instructions block later stores (writes to shared variables) and

commits, but not loads, i.e., α
μ⇐= β aside from (26).

A malicious user, given execution permission on a machine, can access mem-
ory from outside of their user space by exploiting the “cache footprint” of a mov
instruction. This is because although a commit instruction that throws an excep-
tion prevents any access of the values in the local registers, it does not clear the
cache of any locations/values accessed.

Consider the execution of mov r1, [A, n]
h
; mov r2, [D, r1], where registers A

and D are pointers to the start of arrays, and where n can be chosen (by the
malicious user) to be arbitrarily large, i.e., to point outside of the local array
A and into, for instance, kernel space. Using the abbreviation r1

c
:= r2〈[r3]〉 =̂

〈r1 := r2〈[r3]〉 , c[r+r3
2 ] := tt〉 we have r1

c
:=A〈[n]〉 /h⇐= r2

c
:=D〈[r1]〉 (the dependency

on r1 violates g) but commit(A+n) h⇐= r2
c
:=D〈[r1]〉 by μ, hence,

mov r1, [A+n]
h
; mov r2, [D+r1]

=̂ r1
c
:=A〈[n]〉; commit(A+n)

h
; r2

c
:=D〈[r1]〉; commit(D+r1)


� r1
c
:=A〈[n]〉; (commit(A+n) ‖ r2

c
:=D〈[r1]〉); commit(D+r1)


 r1
c
:=A〈[n]〉; r2 c

:=D〈[r1]〉; commit(A+n); commit(D+r1)

For large n the commit(A+n) fails, and throws an exception, as desired. However
it is possible for r2

c
:=D〈[r1]〉 to be executed before the exception is thrown. This

was historically not considered a problem because the value loaded into r2 is
not directly accessible after an exception, however, the malicious user can (via
a “timing attack” [32]) determine that, after initially flushing the cache, element
r1 is the only element of D in the cache, and thus infer the (transient) value



A Fine-Grained Semantics for Arrays and Pointers 315

that r1 held during execution, and thus of the value at location A+n , which is
an arbitrary location in memory. The attacker may then rerun the same code
but this time with input n + 1, and thus read off arbitrary chunks of memory.

The key aspect of this analysis is that it is performed at the relatively
straightforward level of algebraic manipulation, with respect to a specially-
designed memory model that incorporates directly the notion that commit micro-
operations occur in-order with stores but still allow speculative loads. This is in
contrast to reasoning at the low-level of a particular execution semantics and
model of the microarchitectural state. The analysis may both build on top of
earlier results for manipulating programs under weak memory models [11,13] as
well as exploit existing tools and techniques for security analysis [55].

6 Related Work

The work on representations of pointer-based programming and inference sys-
tems is vast, perhaps best exemplified by separation logic [25,44]; we base our
representation of the state on the related Views framework [17]. As such our
framework is compatible with separation-logic based reasoning, although other
semantic interpretations of the atomic instruction types could be employed. One
significant difference with [17] is that we have a ‘total’ heap, where unallocated
locations are mapped to the special value free, supporting program-level con-
struction of relevant commands, e.g., (15), reducing the notational overhead of
the base language and, hence, inference systems. The typical approach is to
include new instruction types which are interpreted only at the semantics level,
however each new instruction type requires specific inference rules and compli-
cates the definition of corresponding memory models.

There are many semantics for weak memory models (e.g., [5,26,29]), and
verification techniques based on those frameworks [18,35,49,53,54,56]. In such
frameworks the nondeterminism and instruction-level parallelism due to weak
behaviours is captured in some global data structure – often a graph or a
partially-ordered multiset of events – and then specialised reasoning techniques
for that data structure are given. This necessitates either the development of
novel assertion languages, techniques and tools, or the adaptation of existing
ones. In contrast our approach is based on that developed in [11], where the par-
allelism is captured in the structure of the program (provided the memory model
is “multicopy atomic”, as with Arm, x86, and RISC-V). This requires an alge-
braic analysis of a program (similar to transformation with process algebras [7])
to elucidate weak behaviours in terms of sequential or parallel composition, or
nondeterministic choice, e.g., (22). A major advantage of this approach is that
subsequently any existing tools and techniques may be applied to the trans-
formed program to establish the desired property (provided they can handle any
resulting nested parallelism, as can, e.g., rely/guarantee). However the language
presented in [11] does not handle pointer-based programming or arrays, nor sup-
port fine-grained control over atomicity, which is necessary for analysing real
code such as the seL4 microkernel [30]. Our introduction of abstract, structured



316 R. J. Colvin

arrays is useful in many applications, e.g., where the implementation detail is
not relevant and the algorithmic logic is important, as we showed by treating
nodes as 2-place arrays (Sect. 5.2) and treating an abstract representation of the
processor cache as a boolean array (Sect. 5.3); as far as we are aware no other
weak memory model semantics incorporates abstract arrays as generically.

7 Conclusion

We have presented a minimal but versatile language that can express pointer-
based code and abstract arrays at different levels of of atomicity, in a way that
supports a program transformation approach to elucidating the effects of weak
memory models. All general properties and examples have been machine-checked
in Isabelle/HOL [40,41]. We demonstrate the utility of the framework by encod-
ing arrays of pointers and linked lists and showing how these programming con-
cepts are influenced by weak memory models, and how this may feed into larger
verification efforts on algorithmic logic, or to investigate microarchitectural vul-
nerabilities [15]. Ultimately the intention is to incorporate weak memory model
effects into the verification of larger software, such as the seL4 microkernel [30],
which must run on a range of modern processors.

Many approaches in the literature [3,26,29] define a graph-based semantics on
global events, and as such require specialised assertion languages and verification
techniques for reasoning. In contrast we capture nondeterminism or parallelism
at the program level. This feeds into a verification effort as follows: taking a
program c that is subject to memory model m (that is, all instances of sequential
composition in c are interpreted as ‘

m
;’), for which property P must be shown

(P may be a rely/guarantee quintuple, a security property, linearizability, etc.),
one transforms c via refinement into some c′, where instances of

m
; have been

replaced by sequential or parallel composition, as appropriate. The program c′

may now be analysed using standard techniques to establish/deny the property
P . In some cases c′ and the sequential interpretation of c will be equivalent, i.e.,
the introduction of m makes no difference to its behaviours (due to, e.g., fences),
and thus if c had been already shown to satisfy P under sequential semantics
then that result can be employed directly to establish P for c under m.

The base language and the encoding of non-atomic expression evaluation is
formulated in the spirit of the concurrent refinement algebra [14,20] and concur-
rent Kleene algebra [24], adapting the reordering framework developed in [11,13].
The semantic model of the heap is based on that of the Views framework [17],
but separate to the trace semantics, with the intention that other models for
concurrent program analysis can be considered [6,9,37,39]. As future work we
will integrate this with information flow analysis [16,48,55] and vulnerability
detection based on pointers and address space manipulation [15].

Acknowledgements. We thank Duong Dinh for help with modelling Meltdown, and
Scott Heiner, Roger Su, Kait Lam, Nicholas Coughlin, Kirsten Winter, Graeme Smith
and the anonymous reviewers for feedback.



A Fine-Grained Semantics for Arrays and Pointers 317

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

2. Alglave, J.: A formal hierarchy of weak memory models. Formal Methods in System
Design 41(2), 178–210 (2012)

3. Alglave, J., Cousot, P.: Ogre and Pythia: an invariance proof method for weak
consistency models. In: POPL 2017, pp. 3–18. ACM, New York (2017)

4. Alglave, J., Deacon, W., Grisenthwaite, R., Hacquard, A., Maranget, L.: Armed
cats: formal concurrency modelling at Arm. ACM Trans. Program. Lang. Syst.
43(2), 1–54 (2021)

5. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

6. Amani, S., Andronick, J., Bortin, M., Lewis, C., Rizkallah, C., Tuong, J.: COM-
PLX: a verification framework for concurrent imperative programs. In: Proceedings
of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2017, pp. 138–150. Association for Computing Machinery, New York (2017)

7. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60(1–3), 109–137 (1984)

8. Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: PLDI 2008, pp. 68–78. ACM (2008)

9. Brookes, S.: A semantics for concurrent separation logic. Theoret. Comput. Sci.
375(1–3), 227–270 (2007)

10. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by sim-
ulation. Electron. Notes Theor. Comput. Sci. 137, 93–110 (2005). Proceedings of
the REFINE 2005 Workshop (REFINE 2005)

11. Colvin, R.J.: Parallelized sequential composition and hardware weak memory mod-
els. In: Calinescu, R., Păsăreanu, C.S. (eds.) SEFM 2021. LNCS, vol. 13085, pp.
201–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92124-8_12

12. Colvin, R.J.: Separation of concerning things: a simpler basis for defining and
programming with the C/C++ memory model (extended version) (2022). https://
arxiv.org/abs/2204.03189

13. Colvin, R.J.: Separation of concerning things: a simpler basis for defining and
programming with the C/C++ memory model. In: Riesco, A., Zhang, M. (eds.)
ICFEM 2022. LNCS, vol. 1347, pp. 71–89. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-17244-1_5

14. Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for a wide-
spectrum language with concurrency. Formal Aspects Comput. 29(5), 853–875
(2017)

15. Colvin, R.J., Winter, K.: An abstract semantics of speculative execution for reason-
ing about security vulnerabilities. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS,
vol. 12233, pp. 323–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54997-8_21

16. Coughlin, N., Winter, K., Smith, G.: Rely/guarantee reasoning for multicopy
atomic weak memory models. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.)
FM 2021. LNCS, vol. 13047, pp. 292–310. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90870-6_16

17. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M., Yang, H.: Views:
compositional reasoning for concurrent programs. SIGPLAN Not. 48(1), 287–300
(2013)

https://doi.org/10.1007/978-3-030-92124-8_12
https://arxiv.org/abs/2204.03189
https://arxiv.org/abs/2204.03189
https://doi.org/10.1007/978-3-031-17244-1_5
https://doi.org/10.1007/978-3-031-17244-1_5
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1007/978-3-030-90870-6_16


318 R. J. Colvin

18. Doherty, S., Dalvandi, S., Dongol, B., Wehrheim, H.: Unifying operational weak
memory verification: an axiomatic approach. ACM Trans. Comput. Logic 23(4),
1–39 (2022)

19. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: ISCA 1990, pp. 15–26. ACM (1990)

20. Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An algebra of
synchronous atomic steps. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 352–369. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6_22

21. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. TOPLAS 12(3), 463–492 (1990)

22. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

23. Hoare, C.A.R.: Towards a theory of parallel programming. In: Operating System
Techniques, pp. 61–71. Academic Press (1972). Proceedings of Seminar at Queen’s
University, Belfast, Northern Ireland, August-September 1971

24. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–
414. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_27

25. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pp. 14–26. ACM Press (2001)

26. Jeffrey, A., Riely, J., Batty, M., Cooksey, S., Kaysin, I., Podkopaev, A.: The leaky
semicolon: compositional semantic dependencies for relaxed-memory concurrency.
Proc. ACM Program. Lang. 6(POPL), 1–30 (2022)

27. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

28. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5, 596–619 (1983)

29. Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising seman-
tics for relaxed-memory concurrency. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pp. 175–189.
ACM, New York (2017)

30. Klein, G., et al.: SeL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP 2009, pp.
207–220. Association for Computing Machinery, New York (2009)

31. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: Security
and Privacy, pp. 1–19. IEEE (2019)

32. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

33. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

34. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Logic 1(1), 60–76 (2000)

35. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6_25

https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25


A Fine-Grained Semantics for Arrays and Pointers 319

36. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: USENIX
Security Symposium (2018)

37. Madiot, J.-M., Pottier, F.: A separation logic for heap space under garbage collec-
tion. Proc. ACM Program. Lang. 6(POPL), 1–28 (2022)

38. Moiseenko, E., Podkopaev, A., Koznov, D.: A survey of programming language
memory models. Program. Comput. Softw. 47(6), 439–456 (2021)

39. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8_16

40. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

41. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Springer, Heidelberg (1994).
https://doi.org/10.1007/BFb0030541

42. Pulte, C., Pichon-Pharabod, J., Kang, J., Lee, S.-H., Hur, C.-K.: Promising-
ARM/RISC-V: a simpler and faster operational concurrency model. In: PLDI 2019,
pp. 1–15. ACM (2019)

43. Ravichandran, J., Na, W.T., Lang, J., Yan, M.: PACMAN: attacking ARM pointer
authentication with speculative execution. In: Proceedings of the 49th Annual
International Symposium on Computer Architecture, ISCA 2022, pp.685–698.
Association for Computing Machinery, New York (2022)

44. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
IEEE Symposium on Logic in Computer Science (LICS), pp. 55–74. IEEE Com-
puter Society (2002)

45. Treiber, R.K.: Systems Programming: coping with Parallelism. RJ5118. Technical
report, IBM Almaden Research Center (1986)

46. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, pp. 175–186.
Association for Computing Machinery, New York (2011)

47. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

48. Smith, G., Coughlin, N., Murray, T.: Value-dependent information-flow security
on weak memory models. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM
2019. LNCS, vol. 11800, pp. 539–555. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30942-8_32

49. Svendsen, K., Pichon-Pharabod, J., Doko, M., Lahav, O., Vafeiadis, V.: A sepa-
ration logic for a promising semantics. In: Ahmed, A. (ed.) ESOP 2018. LNCS,
vol. 10801, pp. 357–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89884-1_13

50. Thornton, J.E.: Parallel operation in the Control Data 6600. In: Proceedings of the
October 27–29, 1964, Fall Joint Computer Conference, Part II: Very High Speed
Computer Systems, AFIPS 1964, pp. 33–40. ACM (1964)

51. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev. 11(1), 25–33 (1967)

52. Trippel, C., Lustig, D., Martonosi, M.: MeltdownPrime and SpectrePrime:
automatically-synthesized attacks exploiting invalidation-based coherence proto-
cols. CoRR, abs/1802.03802 (2018)

53. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak memory with ghosts,
protocols, and separation. SIGPLAN Not. 49(10), 691–707 (2014)

https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13


320 R. J. Colvin

54. Wehrheim, H., Bargmann, L., Dongol, B.: Reasoning about promises in weak mem-
ory models with event structures (extended version). CoRR (2022). https://arxiv.
org/abs/2211.16330

55. Winter, K., Coughlin, N., Smith, G.: Backwards-directed information flow analy-
sis for concurrent programs. In: 2021 IEEE 34th Computer Security Foundations
Symposium (CSF), pp. 1–16 (2021)

56. Wright, D., Batty, M., Dongol, B.: Owicki-Gries reasoning for C11 programs with
relaxed dependencies. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 237–254. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6_13

https://arxiv.org/abs/2211.16330
https://arxiv.org/abs/2211.16330
https://doi.org/10.1007/978-3-030-90870-6_13
https://doi.org/10.1007/978-3-030-90870-6_13


VeyMont: Parallelising Verified Programs
Instead of Verifying Parallel Programs

Petra van den Bos1(B) and Sung-Shik Jongmans2,3

1 Formal Methods and Tools Group, University of Twente,
Enschede, The Netherlands
p.vandenbos@utwente.nl

2 Department of Computer Science, Open University, Heerlen, The Netherlands
3 CWI, Amsterdam, The Netherlands

Abstract. We present VeyMont: a deductive verification tool that aims
to make reasoning about functional correctness and deadlock freedom
of parallel programs (relatively complex) as easy as that of sequential
programs (relatively simple). The novelty of VeyMont is that it “inverts
the workflow”: it supports a new method to parallelise verified programs,
in contrast to existing methods to verify parallel programs. Inspired by
methods for distributed systems, VeyMont targets coarse-grained par-
allelism among threads (i.e., whole-program parallelisation) instead of
fine-grained parallelism among tasks (e.g., loop parallelisation).

1 Introduction

Deductive verification is a classical approach to reason about functional correct-
ness of programs. The idea is to annotate programs with logic assertions about
state. A proof system can subsequently be used to statically check whether or not
annotations are true (i.e., whether or not state dynamically evolves as asserted).

As multicore hardware and multithreaded software have become ubiquitous,
deductive verification has been facing an elusive open problem: the approach is
much harder to apply to parallel programs than to sequential programs. Towards
addressing this issue, in this paper, we present VeyMont. It is a deductive veri-
fication tool that aims to make reasoning about functional correctness and dead-
lock freedom of parallel programs as easy as that of sequential programs. The
novelty of VeyMont is that it “inverts the workflow”: it supports a new method to
parallelise verified programs, in contrast to existing methods to verify par-
allel programs. Unlike traditional model checkers, VeyMont proves properties
generally for all (possibly infinitely many) initial values of variables, instead of
specifically for instances. Unlike parallelising compilers, VeyMont targets coarse-
grained parallelism among threads (i.e., whole-program parallelisation), instead
of fine-grained parallelism among instructions (e.g., loop parallelisation).

Background. In the state-of-the-art on verification of sequential and parallel
programs, typically, proof systems based on (extensions of) Hoare logic [4,21]
and separation logic [40,45] are used to prove properties of annotated programs.
To demonstrate the main concepts, Fig. 1 shows four functionally equivalent
programs to swap the values of variables x and y:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 321–339, 2023.
https://doi.org/10.1007/978-3-031-27481-7_19

https://doi.org/10.5281/zenodo.7410640
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_19&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_19


322 P. van den Bos and S.-S Jongmans

Fig. 1. Example of deductive verification (swapping values)

– Figure 1a shows a sequential program; it uses auxiliary variable z.
The program is annotated with two assertions (in teal), expressed in Hoare
logic: the precondition (top) specifies what must be true before the program
is run; the postcondition (bottom) specifies what will be true after.

– Figure 1c shows a parallel program, with two threads; it uses a barrier b
and auxiliary variables z1 and z2. First, the “left thread” copies x into z1;
next, it waits on b (until the “right thread” has copied y into z2); next, it
copies z2 into x. In parallel, the “right thread” behaves symmetrically. The
barrier is crucial: without it, the threads can prematurely copy z1 and z2.



VeyMont: Parallelising Verified Programs 323

The program is annotated with seven assertions (in teal), expressed in a vari-
ant of separation logic [22,23]: the “global” and “local” pre/postconditions
specify the behaviour of the whole program and of the separate threads; the
barrier contract specifies for every thread what must be true before it passes
the barrier, and what will be true after (i.e., transfer of ownership and data).

– To offer also a more practical perspective, Fig. 1b and Fig. 1d show excerpts of
the same programs, but represented in the input format of VerCors
[9,11], a state-of-the-art deductive verifier. Keywords requires, ensures,
and context indicate preconditions, postconditions, and method invariants,
respectively. For instance, the pre/postconditions in Fig. 1a and Fig. 1c cor-
respond to lines 5–6 in Fig. 1b and lines 47–48 in Fig. 1d. Furthermore, an
assertion of the form Perm(x,q) in Fig. 1d indicates the permission to write
to variable x (q= 1) or to read from it (q < 1). That is, x �→ v in Fig. 1c is
written as the conjunction of Perm(x,1) and x == v in Fig. 1d.
We organised the code in Fig. 1d differently from the code in Fig. 1c, as Ver-
Cors does not support such barriers. Instead we implemented a custom chan-
nel to transfer data/ownership between threads (lines 39–40), using VerCors’s
locking mechanism. The lock invariant (lines 4–8) specifies what is assumed
upon acquiring, and asserted upon releasing, an object’s lock.

Open Problem. Based on Fig. 1, we make two observations:

– Fig. 1a and Fig. 1b show that deductive verification of simple sequential pro-
grams is simple (i.e., relatively little effort to annotate).

– However, Fig. 1c and Fig. 1d show that deductive verification of correspond-
ing parallel programs is surprisingly hard (i.e., relatively big effort).
Moreover, while VerCors automatically checks the truth of the annotations
(advantage relative to pen-and-paper proofs), manually writing these anno-
tations can be burdensome, as seen by comparing Fig. 1c and Fig. 1d. Specif-
ically, the “local” pre/postconditions of the “left thread” in Fig. 1c are more
concise than those for method run in class Thread in Fig. 1d.

Thus, in existing approaches, verification of parallel programs is substantially
more laborious than that of sequential programs; already in theory, using pen and
paper, but—paradoxically—sometimes more so in practice, using tool support.
We illustrate these findings with the simplest non-trivial example we could think
of. This problem is only aggravated as the complexity of the programs increases.

Essentially, the reason why annotations of parallel programs are complicated,
is because synchronisation (of data accesses/mutations) among threads needs to
be specified explicitly with permissions. This is already non-trivial when using
the high-level barrier in Fig. 1c (writing the barrier contract); getting synchro-
nisation among threads right costs even more intellectual effort when we are
forced to implement the custom channels in Fig. 1d using lower-level locks (Ver-
Cors does not have such built-in barriers). In the sequential programs in Fig. 1a
and Fig. 1b, we need not worry about synchronisation among threads at all; this
is the level of simplicity that VeyMont aims to provide (e.g., we added support
in VeyMont to auto-generate permissions, so the user needs not write them).



324 P. van den Bos and S.-S Jongmans

Contributions. Existing methods (e.g., [12,15,22,23,29,39,41,42]) and tools
(e.g. [11,27,52]) for deductive verification of parallel programs have this
workflow:

Step 1: Parallelise a sequential program.
(Or write a parallel program from scratch.)

Step 2: Verify it.

However, step 2 requires significant extra, and non-trivial, annotation effort. As
demonstrated above, this makes deductive verification of parallel programs much
harder than that of sequential programs. To address this issue, we are developing
a new method and tool that have an “inverted workflow”:

Step 1: Verify a sequential-ish program. Step 2: Parallelise it.

The idea behind sequential-ish programs is that they have sequential syntax
and sequential axiomatic semantics (i.e., proof system), but parallel operational
semantics. That is, they look and feel as sequential programs, but they are run
as parallel programs. More concretely, the user uses Hoare logic to annotate
a sequential-ish program Pseq—without worrying about synchronisation—after
which a functionally correct, deadlock-free parallel program Ppar is generated:

– “Functionally correct” means that if the precondition of Pseq holds in the
initial state of Ppar, then the postcondition of Pseq holds in the final state of
Ppar (i.e., functional correctness of Pseq is preserved in Ppar).

– “Deadlock free” means that threads do not get stuck waiting on each other,
e.g. because two threads are both reading from a channel but expect the other
thread to write. No additional manual annotations are needed.

In a previous paper [30], we presented the theoretical foundations of this
new method and its “inverted workflow”, targetting coarse-grained parallelism
among threads (inspired by distributed systems). In this paper, we present the
first deductive verification tool that supports it. The novel contributions are:

1. We designed and implemented VeyMont: it accepts an annotated sequential-
ish program as input and offers a functionally correct, deadlock-free parallel
program in Java as output. Section 2 and Sect. 3 provide an overview of the
workflow and features of VeyMont, by example; Sect. 4 contains details.

2. We evaluated VeyMont along two dimensions. As case studies in applicabil-
ity, we used VeyMont to verify and parallelise sequential-ish versions of dis-
tributed algorithms. As case studies in efficiency, we used VeyMont to produce
parallel programs in Java that have comparable performance to third-party
reference implementations. Section 5 describes our findings.

The artifact for reproducing the experiments of this paper is available at [51].

Related Work. Existing tools for deductive verification of parallel programs
include Frama-C [5], KeY-ABS [20], VeriFast [27], and Gobra [52]. However,
these tools verify parallel programs, whereas VeyMont parallelises verified
programs.



VeyMont: Parallelising Verified Programs 325

Fig. 2. “Inverted workflow” using VeyMont

The “inverted workflow”—verify first, parallelise second—of the method sup-
ported by VeyMont is strongly inspired by the methods of choreographic programs
[17,18] and multiparty session types [24] for construction/analysis of deadlock-
free distributed systems. The idea behind those methods is: first, to implement/
specify distributed systems as choreographies/global types (cf. sequential-ish pro-
grams); second, to generate sets of processes/local types (cf. parallel programs with
threads) that are formally guaranteed to be deadlock-free. Existing tools that sup-
port these methods include Chor [17], Scribble [25] and its dialects [19,35,36,46],
Pabble [37], and ParTypes [34]. However, these tools offer deadlock freedom, but
not functional correctness; VeyMont offers both.

The literature on parallelising compilers that target fine-grained parallelism
among tasks is rich (e.g., loop parallelisation [2,13,16,33,38,49]) and goes back
to the 1970 s [31]. In contrast, VeyMont is a parallelising verifier that targets
coarse-grained parallelism among threads (i.e., whole-program parallelisation).
We discuss the integration of fine-grained parallelism into VeyMont in Sect. 6.

2 Overview of VeyMont – The “Inverted Workflow”

Figure 2 visualises the “inverted workflow” of the method supported by Vey-
Mont.

Step 0: The user writes a sequential-ish program Pseq in VeyMont’s input lan-
guage µPVL (core fragment of VerCors’s language PVL [50]). This is a program-
ming/assertion language that combines object-oriented sequential programs with
Hoare logic assertions (similar to sequential Java, enriched with JML [32]).

For instance, Fig. 3a shows a sequential-ish program in µPVL (cf. Figure 1d).
It is split into two parts: fields s1 and s2 of class SeqProgram define the data
(lines 1–12), while method run defines the sequence of operations (lines 16–
21). The precondition of run is trivial (line 13); the postcondition uses the \old
predicate for the old values of s1.v and s2.v at the start of run (lines 14–15). As
s1.v and s2.v are initialised to x and y (lines 12–13), which are free program
arguments (line 9), all possible initial values of s1.v and s2.v are quantified
over.

Step 1a: VeyMont checks whether or not Pseq has a parallelisable (“par’able”)
structure. This is a set of syntactic conditions, beyond µPVL’s grammar, that
Pseq must meet to be able to generate a grammatical parallel program (step 2).



326 P. van den Bos and S.-S Jongmans

Fig. 3. Example of VeyMont (swapping values)

Step 1b: VeyMont generates annotations for Pseq—in addition to those the user
has written in step 0—to be able to check that it has parallelisable behaviour
(step 1c). This is a set of semantic conditions, encoded as logic assertions, that
Pseq must meet to guarantee that functional correctness of Pseq will be preserved.

Step 1c: VeyMont checks the truth of the annotations in Pseq, using the state-
of-the-art VerCors–Viper–Z3 tool stack [9,11]. If so, Pseq is guaranteed to be
functionally correct (the user’s annotations; step 0), functional correctness is
guaranteed to be preserved through parallelisation (VeyMont’s annotations; step
1b), and parallelisation does not introduce deadlocks.

Step 2: VeyMont generates a parallel program Ppar in Java. Step 1a guaran-
tees that Pseq is parallelisable; steps 1b–1c and the theoretical foundations of
VeyMont guarantee that Ppar is functionally correct and deadlock-free [30].

For instance, Fig. 3b shows an excerpt of the parallel program generated for
the sequential-ish program in Fig. 3a. The idea is to parallelise coarse-grained,
at the level of granularity of top-level fields. For every field f ∈ {s1, s2} of class
SeqProgram in Fig. 3a, there is a corresponding subclass fThread of class Thread



VeyMont: Parallelising Verified Programs 327

Fig. 4. Another example of VeyMont (tic–tac–toe on an arbitrary m×n grid)

in Fig. 3b (which defines a Java thread); this subclass alone is responsible for
managing the data of f and performing its operations in class ParProgram.

fThread has three fields: the Storage that it is responsible for, and Channels
to explicitly transfer data between Storages. Meanwhile, method run of fThread
defines the operations that it needs to perform, derived from method run of class
SeqProgram: if only f occurs in an assignment in run of SeqProgram, then the
assignment is copied into run of fThread, verbatim (e.g., line 17 in Fig. 3a, line
16 in Fig. 3b); alternatively, if also g ∈ {s1, s2} \ {f} occurs in the assignment,
then an explicit data transfer between Storages is introduced (i.e., fThread is
forbidden to use data of gThread directly). Transfers are synchronous: method
read blocks until method write is called, and vice versa. In this way, Channels
are an alternative synchronisation mechanism to the barrier in Fig. 1c.

Generally, explicit data transfers are the only form of synchronisation that
VeyMont needs to introduce to guarantee functional correctness (given step 1c).
Specifically, the values of s1.v and s2.v are swapped in run of ParProgram, just
as asserted by the postcondition of run of SeqProgram. Finally, we note that
ParProgram really is parallel: lines 16 and 25 can be executed simultaneously.

3 Overview of VeyMont – More Features

To demonstrate some more features of µPVL/VeyMont, Fig. 4 shows an excerpt
of another sequential-ish program in µPVL. Two threads—implicitly declared in



328 P. van den Bos and S.-S Jongmans

top-level fields p1 and p2 of class SeqProgram—take turns to simulate a game of
tic–tac–toe on an arbitrary m×n grid (i.e., beyond 3× 3, all possible grid sizes
are quantified over). Each thread has its own copy of the grid; when a move is
made, the active thread informs the passive thread accordingly, so the passive
thread can update its grid to match. In the active thread’s turn, the passive
thread can “think ahead” to ponder its next move. This makes the program
really parallel.

We highlight the noteworthy features, as supported by µPVL/VeyMont:

– Turing completeness: Method run of class SeqProgram shows that µPVL
has if/while-statements. This is actually significant: automatically parallelis-
ing the conditions of if/while-statements, while guaranteeing functional cor-
rectness and deadlock freedom, has been a key challenge in developing Vey-
Mont’s theoretical foundations [30]. It is also a reason why VeyMont needs to
check if a sequential-ish program has parallelisable behaviour in steps 1b–1c.

– Data structures: The fields of class Player show that µPVL/VeyMont has
multidimensional arrays (field grid) and nesting of classes (field move).

– Trusted code: Methods think and play of class Player show that µPVL/
VeyMont has abstract methods: they have a specification (precondition and
postcondition), but no implementation (method body). This allows the user to
integrate external trusted code into parallel programs generated by VeyMont.
If the trusted code truly implements the specification (proved using VeyMont,
or proved using a different tool, or estimated with code reviews, etc.), then
functional correctness and deadlock freedom are guaranteed.

An excerpt of the parallelisation generated by VeyMont appears in Sect.A.

4 Design and Implementation

VeyMont has five main components, each of which enables a (sub)step in Fig. 2.

4.1 Parser (Step 1a)

The first main component of step 1a is a parser for µPVL. It accepts sequential-
ish programs that comply with the grammar in Fig. 5. We split the grammar into
an “external fragment” and an “internal fragment”. The difference is that the
internal fragment supports more complicated assertions, which the user should
never write manually; instead, they are always inserted by VeyMont automati-
cally (step 1b; Sect. 4.4). Regarding the external fragment:

– Basic notation: Let n range over class names, f over field names, m over
method names, and x over variable names. We write �̃ to mean a list of �s.

– Programs, classes, fields, methods, annotations: A program P consists
of a list of classes. A class C consists of a name, a list of fields, and a list
of methods, including a constructor that has the same name as the class. A
method M consists of a list of annotations (contract), a list of variable names



VeyMont: Parallelising Verified Programs 329

Fig. 5. Grammar of µPVL (types omitted for simplicity)

(formal parameters), and an optional list of statements (body). A method
without a body is abstract (for external trusted code). An annotation A is a
precondition, a postcondition, or a method invariant.

– Statements, variables, expressions: A statement S is an assertion, an
assignment, a method call, a conditional choice, or a conditional loop. A
variable X is a variable name, a (qualified) field name, or a (qualified)
array cell. An expression E is a variable, a self reference, a null reference, a
Boolean expression, a primitive value/operation, an object constructor call/
field access/method call, or an array constructor call/cell access. In Boolean
expressions, light grey shading indicates that implication and quantification
can be used only in annotations, assertions, and loop invariants.

Regarding the internal fragment, let q range over “fractions” between 0 (exclu-
sive) and 1 (inclusive). Effectively, the grammar of Boolean expressions in Fig. 5a
is extended to the grammar of permission-based, concurrent separation logic
[12,14] in Fig. 5b to support ownership-like assertions for mutable data. That is,
Perm(X,q) indicates that an annotated piece of code has read permission for
X (if 0<q< 1) or read+write permission (if q= 1); the sum of different frac-
tions for the same variable can never exceed 1. Operators ** and \forall* are
the standard separating conjunction and separating quantification in separation
logic [40,45]. Regarding notation, requires Perm(X1,q1) ** Perm(X2,q2); is
equivalent to requires Perm(X1,q1); requires Perm(X2,q2);.

Remark 1. µPVL is also statically typed, but as type checking is not a contri-
bution of this paper, we omit types to keep the presentation of µPVL concise.

4.2 Linter (Step 1a)

The second main component of step 1a is a linter. It checks if Pseq has a paral-
lelisable structure. This is needed for applying the transformation rules in step
2 (Sect. 4.5). The linter checks the following syntactic conditions:



330 P. van den Bos and S.-S Jongmans

1. Pseq has a class SeqProgram that consists of k fields (f1, . . . , fk), a constructor
(m1), a main method run (m2), and any auxiliary methods (m3, . . . ,ml).
All fields are instances of classes; all methods (except the constructor) are
parameterless and non-recursive. The constructor initialises all fields.

2. For every assignment in m2, . . . ,ml: (a) the left-hand side is of the form fi.X;
(b) at most one field fj occurs in the right-hand side. For instance, s1.x = 5
and s2.y = s1.x + 4 and s1.a.b.c = 5 are fine; s1.x = s1.x + s2.y is not.

3. For every if/while-statement in m2, . . . ,ml: (a) the condition is of the form
E1 && ... && Ek; (b) fi is the only field that occurs in every Ei. For instance,
s1.x == 5 && s2.y == 9 is fine; s1.x + 4 == s2.y is not.

4. For every method call on field fi in m2, . . . ,ml: fi is the only field that occurs
in the arguments. For instance, s1.foo(s1.x) is fine; s1.foo(s2.y) is not.

These syntactic conditions constrain only class SeqProgram (i.e., structural par-
allelisability depends only on SeqProgram). Other classes in Pseq are unrestricted.

Remark 2. In our experience (e.g., Sect. 5), conditions 1–4 are straightforward
to meet. Notably, many potential violations can be fixed using auxiliary fields.
For instance, s1.x = s1.x + s2.y violates condition 2, but it can be rewritten to
s1._y = s2.y; s1.x = s1.x + s1._y, which is functionally equivalent. Similarly,
if (s1.x + 4 == s2.y) { ... } violates condition 3, but it can be rewritten to:

s1._y = s2.y; s2._x = s1.x; if (E1 && E2) { ... }

with E1 = s1.x + 4 == s1._y and E2 = s2._x + 4 == s2.y. (In these exam-
ples, s1._y and s2._x are fresh.) A complete formal characterisation of the
class of sequential-ish programs that can be rewritten in this way, including a
mechanical procedure to automatically perform the necessary rewrites to meet
the conditions, is still an open problem.

Remark 3. The conditions checked by the linter result from our design decision
to target coarse-grained parallelism (i.e., every top-level field of SeqProgram is
turned into a separate thread in step 2; Sect. 4.5) instead of fine-grained (e.g.,
loop parallelisation). We discuss their combination in Sect. 6.

4.3 Annotator (Step 1b)

The main component of step 1b is an annotator. It inserts additional annotations
into the input program to be able to check if Pseq has parallelisable behaviour
(step 1c; Sect. 4.4), in terms of two properties:

i. Alias freedom. For every piece of mutable data in Pseq (object fields and array
cells), VeyMont inserts ownership-like assertions to specify that it cannot be
aliased. As a result, the threads of Ppar will operate on disjoint fragments of
memory, so data races are avoided.



VeyMont: Parallelising Verified Programs 331

Fig. 6. Summary of transformation rules for statements, by example

Example 1. VeyMont amends the constructor of class Storage in Fig. 3:
ensures Perm(v,1) ** Perm(temp ,1);
Storage(int v_init) { ... }

VeyMont amends the methods of class SeqProgram, too:
ensures Bown
SeqProgram(int v) { ... }

context Bown
void run() { ... }

where
Bown = Perm(s1, 1) ** Perm(s2, 1) **

Perm(s1.v, 1) ** Perm(s2.v, 1) **

Perm(s1.temp, 1) ** Perm(s2.temp, 1)

The key idea is to assert write permissions of 1, for all data, everywhere. As the
sum of fractional permissions can never exceed 1, there can be no aliases.

ii. Branch unanimity. For every condition of the form E1 && ... && Ek of
if/while-statements in methods m2, . . . ,ml of class SeqProgram, VeyMont
inserts an assertion of the form E1 == E2 && ... && Ek−1 == Ek (i.e., ∀0≤i<j≤k

Ei == Ej) to specify that, when E1, . . . , Ek are evaluated, they are all equiv-
alent. This implies that the threads of Ppar all choose the same branch.

Example 2. VeyMont amends the while-statement in method run in Fig. 4:
loop_invariant eq_grids(p1, p2);
loop_invariant p1.inPlay == p2.inPlay;
while (p1.inPlay && p2.inPlay) { ... }

Alias freedom and branch unanimity are sufficient to guarantee that functional
correctness is preserved through parallelisation, and that parallelisation does
not introduce deadlocks [30]; we clarify the importance of the latter after having
discussed parallelisation (step 2; Sect. 4.5).

4.4 VerCors (Step 1c)

The main component of step 1c is the VerCors–Viper–Z3 tool stack [9,11] (whose
language, PVL, is a superset of µPVL). To check that Pseq is functionally correct
and has parallelisable behaviour, it verifies the truth of the user’s annotations
(step 0) and VeyMont’s (step 1b).

4.5 Code Generator (Step 2)

The main component of step 2 is a code generator into Java. Non-SeqProgram
classes in Pseq are copied to Ppar, while SeqProgram is parallelised into classes



332 P. van den Bos and S.-S Jongmans

Fig. 7. Example of a sequential-ish program whose parallelisation can deadlock. Vey-
Mont statically detects this and reports an error instead.

f1Thread, . . . , fkThread (each fi is a field of SeqProgram), and class ParProgram
for forking. The methods of each fiThread are derived from methods m2, . . . ,ml

of SeqProgram, by applying the transformations in Fig. 6 to every statement S:

– If S is an assignment, then due to condition 2 of the linter (Sect. 4.2), S
contains the field either of one thread (“store”) or of two threads (“transfer”).
In the former case, S is added to the thread; in the latter case, a write/read
on a Channel are added to the threads. Nothing is added to other threads.

– If S is an if/while-statement, then due to condition 3 of the linter, for every
thread, S contains a corresponding subcondition. An if/while-statement with
exactly that corresponding subcondition is added to every thread.

– If S is a call, then due to condition 4 of the linter, S contains the field of one
thread. S is added to that thread. Nothing is added to other threads.

The theoretical foundations of our method ensure that if steps 1a, 1b, and 1c have
succeeded, then the transformation rules in Fig. 6 indeed result in a functionally
correct, deadlock-free parallel program [30].

Remark 4. To illustrate the importance of branch unanimity (Sect. 4.3) to guar-
antee that parallelisation does not introduce deadlocks, Fig. 7 shows a sequential-
ish program (i.e., the body of method run of class SeqProgram with top-level
fields a and b). This program meets the conditions of the linter, so it has a
parallelisable structure; its parallelisation consists of aThread and bThread.

However, whether or not aThread and bThread can deadlock crucially
depends on the initial values of a.x and b.y (intentionally omitted from Fig. 7):

– If a.x and b.y are initially equal, then branch unanimity is satisfied (no dead-
lock): after the first two assignments, a.x >= a.y and b.x <= b.y are both
true. Subsequently, aThread and bThread both enter their then-branches, so
aThread reads and bThread correspondingly writes.
Thus, VeyMont (step 1c) reports no error when a.x == b.y initially.

– If a.x and b.y are initially unequal, then branch unanimity is violated (dead-
lock): a.x >= a.y and b.x <= b.y are either true and false, or false and true.
In the former case, aThread enters its then-branch, but bThread enters its
else-branch. At this point, aThread and bThread both expect to read, but
neither one of them will write, so they are stuck forever.
Thus, VeyMont (step 1c) reports an error when a.x != b.y initially.



VeyMont: Parallelising Verified Programs 333

We note that VeyMont guarantees deadlock freedom, but not starvation free-
dom: at any point in time, either all threads have terminated, or at least one
thread is still running, modulo exceptions (e.g., division by zero).

5 Evaluation

Applicability. We used VeyMont to verify and parallelise sequential-ish pro-
grams for three classical distributed algorithms, for various numbers of threads n:

– In two-phase commit (2PC) [47], 1 Client and n−1 Servers cooperate to
fulfil a joint query in a distributed database. First, the Client shares the
query with the Servers. Next, the Servers locally run the query and report
success/failure back to the Client. Only if all Servers succeeded will the Client
instruct them to commit, and otherwise to abort. We successfully verified that
the Clients consistently commit, for n ∈ {3, 5, 8, 12, 17}.

– In anonymous election (probabilistic version of Peleg’s algorithm [43] in the
style of Itai and Rodeh [26]), n symmetric threads try to elect a unique leader
among them. The algorithm proceeds in rounds. In every round, every thread
picks a random number from some fixed range (trusted code) and shares it
with every other thread. If there is a unique highest number, then the thread
that picked it declares itself the leader; otherwise, another round ensues. We
verified that a unique leader is elected upon termination, for n ∈ {3, 5, 8}.

– In consensus [6], n symmetric threads try to reach agreement about a
common value. First, the threads share their locally preferred values. Next,
every thread computes the globally preferred value (by majority); this
becomes the common value. The complication is that threads can fail : non-
deterministically (abstract methods), they can share the wrong locally pre-
ferred value and/or compute the wrong globally preferred value. We success-
fully verified that all threads set the right globally preferred value when the
number of failures is at most �n/4�, for n ∈ {3, 5}; this is a classical result.

As a proxy of effort, Fig. 8 shows ratios of numbers of annotations (“spec”)
vs. program elements (“impl”). They are below 1; by comparison, Wolf et al. [52]
recently report ratios of 2.69–3.16 to deductively verify parallel programs using
a tool based on traditional methods. This is first evidence that VeyMont indeed
significantly reduces the annotation burden.

Figure 8 also presents the mean run times (of 30 runs) of VeyMont for step
1c and in total (using: Intel i7-8569U CPU with 4 physical/4 virtual cores at
2.8 GHz; 16 GB memory). We can make two main observations. First, the run
times are dominated by step 1c (actual verification). For instance, step 1c con-
sumes 6.8

8.0 = 85% of the run time for 2PC (n = 3) and as much as 62.2
63.9 = 97%

for 2PC (n = 17). Second, parallelisation itself is relatively cheap. For instance,
it takes less than 1.2 seconds for 2PC (n = 3) and less than 1.7 seconds for 2PC
(n = 17).



334 P. van den Bos and S.-S Jongmans

Fig. 8. Case studies in applicability: ratio of number of annotations vs. program ele-
ments ( spec

impl
) and mean VeyMont run times in seconds (1c, total). Program elements

are: class headers, fields, method headers, and statements.

Efficiency. We compared the performance of VeyMont-generated parallel pro-
grams in Java with third-party reference implementations. Our aim was to study
if the synchronisation mechanism in generated parallel programs is sufficiently
lightweight to be competitive. We use different programs than above, as no third-
party reference implementations were available for 2PC/election/consensus.

We took the following approach. First, we selected two parallel programs from
the CLBG database [1]: binary-trees (parallel tree walk) and k-nucleotide
(parallel pattern matching of molecule sequences against a DNA string). Next,
for each program: (1) we extracted the data sharing patterns among threads in
the CLBG reference implementation and wrote them as a sequential-ish program
in µPVL; (2) we “completed” the sequential-ish program by adding abstract
methods to represent all purely sequential computations; (3) we generated par-
allel programs in Java using VeyMont; (4) we concretised the abstract methods
in Java with trusted sequential CLBG code; (5) we ran the CLBG version and
the VeyMont version to compare performances, using CLBG-standardised input,
with various numbers of threads. We note that we did not prove functional cor-
rectness; this is beyond the scope of these performance comparisons.

We ran the resulting executables on three different machines: Cartesius (Intel
E5-2690 v3 CPU with 16 physical cores), MacBook (Intel i7-8569U CPU with
4 physical/4 virtual cores), and VM [28] (1 virtual core). Figure 9 show our
results as speed-ups of VeyMont versions relative to CLBG versions, computed
as µCLBG

µVeyMont
, where µVeyMont and µCLBG are the mean run times (of 100 runs) of

a VeyMont and a CLBG version; µCLBG
µVeyMont

< 1 means that a VeyMont version
was slower.

We can make two main observations. First, although the VeyMont versions
tend to be somewhat slower than the CLBG versions, the slowdown is gener-
ally less than 10%. We conjecture that there is a substantial class of programs
for which a 10% slowdown is a fine price for better verifiability of functional
correctness and deadlock freedom. Second, different machines exhibit different
performance; a deeper study is needed to understand what exactly causes this.



VeyMont: Parallelising Verified Programs 335

Fig. 9. Case studies in efficiency: the x-axis indicates the number of threads; the y-axis
indicates the speed-up of VeyMont versions relative to CLBG versions.

6 Future Work

We presented VeyMont: a deductive verification tool that aims to make rea-
soning about functional correctness and deadlock freedom of parallel programs
(relatively complex) as easy as that of sequential programs (relatively simple).

Our most-wanted feature for VeyMont is to support parametrisation (e.g.,
election generically for n threads instead of specifically for 3, 5, 8, . . .). However,
parametrised verification is known to be undecidable in general [3,48]. The study
of this topic (e.g., identification of decidable fragments) has become a research
area of its own over the past decade; the book by Bloem et al. gives an extensive
overview [7,8]. Thus, an extension of VeyMont to support parametrisation is
highly non-trivial. It is our main direction for future work.

Other future work pertains to a relaxation of alias freedom and branch una-
nimity in the theoretical foundations of VeyMont [30]. Such a relaxation allows
VeyMont to be more flexible about read/write permissions (e.g., improve support
for read-only shared arrays), but maintaining the same strong guarantees.

Inspired by methods for distributed systems, VeyMont targets coarse-grained
parallelism among threads (i.e., whole-program parallelisation) instead of fine-
grained parallelism among tasks (e.g., loop parallelisation). We are keen to
explore the combination of both approaches. A first step would be to mix Vey-
Mont with the VerCors-based work of Blom et al. [10] on verification of loop
parallelisation. Beyond that, it is interesting to extend VeyMont with comple-
mentary techniques. For instance, Raza et al. [44] developed a technique to infer
dependencies among statements in sequential programs to allow their parallel
execution (like us), but at the level of tasks (unlike us). Their technique and ours
have different strengths: we can split the conditions of if/while-statements across



336 P. van den Bos and S.-S Jongmans

separate threads, which Raza et al. cannot (they assume indivisible conditions);
conversely, Raza et al. can parallelise recursive divide-and-conquer algorithms in
separate tasks, which we cannot (we assume fixed numbers of processes).

Finally, more on the engineering side, we are also keen to investigate to what
extent alternative deductive verification back-ends instead of VerCors can offer
value both to users (e.g., faster verification) and to researchers (i.e., in principle,
any deductive verification tool for sequential programs can be combined with
VeyMont’s method to reason about functional correctness of parallel programs).

A Appendix: Parallelisation of Tic-Tac-Toe

The following listing shows the two threads for top-level fields p1 and p2 in the
parallelisation of the sequential-ish program in Fig. 4, generated by VeyMont
(functionally correct and deadlock-free). We note that p1Thread and p2Thread
have “opposite” behaviour in their methods turn1 and turn2.

1 class p1Thread extends Thread {
2 Player p1;
3 MoveChannel p1_p2;
4 MoveChannel p2_p1;
5

6 p1Thread(int m, int n,
7 MoveChannel p1_p2 ,
8 MoveChannel p2_p1) {
9

10 this.p1 = new Player(m, n, ...);
11 this.p1_p2 = p1_p2;
12 this.p2_p1 = p2_p1;
13 }
14

15 void turn1() {
16 p1.think ();
17 p1.play ();
18 p1_p2.write(p1.move.clone ());
19 }
20

21 void turn2() {
22 p1.think (); // in the background
23 p1.move = p2_p1.read ();
24 p1.play (); // to update
25 }
26

27 public void run() {
28 while(p1.inPlay) {
29 turn1 ();
30 if (p1.inPlay) {
31 turn2 ();
32 } } } }

33 class p2Thread extends Thread {
34 Player p2;
35 MoveChannel p1_p2;
36 MoveChannel p2_p1;
37

38 p2Thread(int m, int n,
39 MoveChannel p1_p2 ,
40 MoveChannel p2_p1) {
41

42 this.p2 = new Player(m, n, ...);
43 this.p1_p2 = p1_p2;
44 this.p2_p1 = p2_p1;
45 }
46

47 void turn1() {
48 p2.think (); // in the background
49 p2.move = p1_p2.read ();
50 p2.play (); // to update
51 }
52

53 void turn2() {
54 p2.think ();
55 p2.play ();
56 p2_p1.write(p2.move.clone ());
57 }
58

59 public void run() {
60 while(p2.inPlay){
61 turn1 ();
62 if (p2.inPlay) {
63 turn2 ();
64 } } } }

The remaining classes that are part of the parallelisation are:

– ParProgram: This class is responsible for creating channels and starting the
threads. It is very similar to class ParProgram in Fig. 3b

– Player, Move: These classes are straightforward Java versions of the µPVL
versions in Fig. 4.



VeyMont: Parallelising Verified Programs 337

References

1. https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
2. Aiken, A., Nicolau, A.: Optimal loop parallelization. In: PLDI, pp. 308–317. ACM

(1988)
3. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent

systems. Inf. Process. Lett. 22(6), 307–309 (1986)
4. Apt, K.R., Olderog, E.-R.: Fifty years of Hoare’s logic. Formal Aspects Comput.

31(6), 751–807 (2019). https://doi.org/10.1007/s00165-019-00501-3
5. Baudin, P., et al.: The dogged pursuit of bug-free C programs: the Frama-C soft-

ware analysis platform. Commun. ACM 64(8), 56–68 (2021)
6. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus

(extended abstract). In: FOCS, pp. 410–415. IEEE Computer Society (1989)
7. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on

Distributed Computing Theory, Morgan & Claypool Publishers, San Rafael (2015)
8. Bloem, R., et al.: Decidability in parameterized verification. SIGACT News 47(2),

53–64 (2016)
9. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification

of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1 7

10. Blom, S., Darabi, S., Huisman, M., Safari, M.: Correct program parallelisations.
Int. J. Softw. Tools Technol. Transf. 23(5), 741–763 (2021). https://doi.org/10.
1007/s10009-020-00601-z

11. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 9

12. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270. ACM (2005)

13. Boulet, P., Darte, A., Silber, G.-A., Vivien, F.: Loop parallelization algorithms:
from parallelism extraction to code generation. Parallel Comput. 24(3–4), 421–
444 (1998)

14. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

15. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1–3), 227–270 (2007)

16. Burke, M., Cytron, R.: Interprocedural dependence analysis and parallelization.
In: SIGPLAN Symposium on Compiler Construction, pp. 162–175. ACM (1986)

17. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274. ACM (2013)

18. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distributed
Comput. 31(1), 51–67 (2018)

19. Castro, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs for
dynamically-instantiated communication structures. PACMPL, 3(POPL), 29:1–
29:30 (2019)

20. Din, C.C., Tapia Tarifa, S.L., Hähnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 14

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://doi.org/10.1007/s00165-019-00501-3
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/s10009-020-00601-z
https://doi.org/10.1007/s10009-020-00601-z
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-319-25423-4_14


338 P. van den Bos and S.-S Jongmans

21. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

22. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 276–296. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19718-5 15

23. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic: now with tool
support! Log. Methods Comput. Sci., 8(2) (2012)

24. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

25. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wasowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

26. Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. In: FOCS, pp.
150–158. IEEE Computer Society (1981)

27. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

28. Jacobs, S., Reynolds, A.: TACAS 22 Artifact Evaluation VM - Ubuntu 20.04 LTS
(2021). https://doi.org/10.5281/zenodo.5562597

29. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

30. Jongmans, S., van den Bos, P.: A predicate transformer for choreographies. In:
ESOP 2022. LNCS, vol. 13240, pp. 520–547. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99336-8 19

31. Lamport, L.: The parallel execution of DO loops. Commun. ACM 17(2), 83–93
(1974)

32. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006)

33. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization
with affine transforms. In: POPL, pp. 201–214. ACM Press (1997)

34. López, H.A., et al.: Protocol-based verification of message-passing parallel pro-
grams. In: OOPSLA, pp. 280–298. ACM (2015)

35. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC, pp.
128–138. ACM (2018)

36. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC, pp. 98–108. ACM (2017)

37. Ng, N., Yoshida, N.: Pabble: parameterised scribble. Serv. Oriented Comput. Appl.
9(3–4), 269–284 (2015)

38. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop paralleliza-
tion. In PLDI, pp. 509–520. ACM (2012)

39. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

40. O’Hearn, P.: Separation logic. Commun. ACM 62(2), 86–95 (2019)
41. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta

Informatica 6, 319–340 (1976)
42. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: an axiomatic

approach. Commun. ACM 19(5), 279–285 (1976)

https://doi.org/10.1007/978-3-642-19718-5_15
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.5281/zenodo.5562597
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19


VeyMont: Parallelising Verified Programs 339

43. Peleg, D.: Time-optimal leader election in general networks. J. Parallel Distrib.
Comput. 8(1), 96–99 (1990)

44. Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation
logic. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00590-9 25

45. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

46. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP, volume 74 of LIPIcs, pp.
24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

47. Skeen, D.: Nonblocking commit protocols. In: SIGMOD Conference, pp. 133–142.
ACM Press (1981)

48. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

49. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic app-
roach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping. In: PLDI, pp. 177–187. ACM (2009)

50. VerCors Wiki. https://github.com/utwente-fmt/vercors/wiki
51. VeyMont Artifact. https://doi.org/10.5281/zenodo.7410640
52. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:

Gobra: modular specification and verification of Go programs. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 367–379. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81685-8 17

https://doi.org/10.1007/978-3-642-00590-9_25
https://github.com/utwente-fmt/vercors/wiki
https://doi.org/10.5281/zenodo.7410640
https://doi.org/10.1007/978-3-030-81685-8_17


Verification 2



Verifying Functional Correctness Properties
at the Level of Java Bytecode

Marco Paganoni(B) and Carlo A. Furia

Software Institute, USI Università della Svizzera italiana,
Lugano, Switzerland

marco.paganoni@usi.ch
https://bugcounting.net/

Abstract. The breakneck evolution of modern programming languages aggra-
vates the development of deductive verification tools, which struggle to timely
and fully support all new language features. To address this challenge, we present
BYTEBACK: a verification technique that works on Java bytecode. Compared to
high-level languages, intermediate representations such as bytecode offer a much
more limited and stable set of features; hence, they may help decouple the verifi-
cation process from changes in the source-level language.

BYTEBACK offers a library to specify functional correctness properties at the
level of the source code, so that the bytecode is only used as an intermediate
representation that the end user does not need to work with. Then, BYTEBACK

reconstructs some of the information about types and expressions that is erased
during compilation into bytecode but is necessary to correctly perform verifica-
tion. Our experiments with an implementation of BYTEBACK demonstrate that
it can successfully verify bytecode compiled from different versions of Java, and
including several modern language features that even state-of-the-art Java veri-
fiers (such as KeY and OpenJML) do not directly support—thus revealing how
BYTEBACK’s approach can help keep up verification technology with language
evolution.

1 Introduction

Modern programming languages are rich in expressive features and evolve regularly,
extending their capabilities with each new version of the language. These characteristics
make them easier to use and ever more powerful, to the ultimate benefit of programmers
using them. On the contrary, they also complicate the development of verification tools:
the more features to support, and the faster a programming language evolves, the harder
it is to keep up-to-date a verification toolchain. Take Java as an example of a widely used
modern language. As we discuss in Sect. 5, no state-of-the-art automated Java verifier
fully supports all features of the language—even for older versions such as Java 8.

In this paper, we pursue the idea of performing formal verification not at the level of
a language’s source code but on an intermediate representation. Our BYTEBACK tech-
nique processes Java bytecode to verify functional (input/output) properties expressed
as pre- and postconditions. By targeting bytecode instead of source code, BYTEBACK

Work partially supported by SNF grant 200021-207919 (LastMile).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 343–363, 2023.
https://doi.org/10.1007/978-3-031-27481-7_20

https://doi.org/10.5281/zenodo.7337205
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_20&domain=pdf
http://orcid.org/0000-0003-1040-3201
https://doi.org/10.1007/978-3-031-27481-7_20


344 M. Paganoni and C. A. Furia

seamlessly supports a wide variety of Java features that are desugared when automati-
cally translated to bytecode by the compiler. It can even verify some programs written
in other programming languages, such as Scala, that also compile to Java bytecode.

Performing functional verification of bytecode entails two main challenges. First,
we need to provide convenient means of expressing the specification to be verified,
as well as any other intermediate annotations. Requiring the user to directly annotate
the bytecode is impractical, and at odds with the goal of expressing the behavior of
the original Java program. BYTEBACK offers a Java library (called BBlib) with cus-
tom annotations and static methods. Users add specifications to the Java source code
by writing Java expressions that call these library methods; BYTEBACK then recovers
the specifications by analyzing BBlib calls in bytecode format. Supporting expressive
contract specifications of the source code is a key novelty of BYTEBACK compared to
other approaches, such as JayHorn [50] and SMACK [49], that also verify intermedi-
ate representations but mostly target implicit, low-level correctness properties (such as
the absence of memory errors) and have only limited support for arbitrary functional
specifications.

Reconstructing some of the information lost during the compilation from source
code to bytecode is the second main challenge tackled by BYTEBACK. To this end, we
define a bespoke static analysis working on Grimp—an alternative representation of
bytecode (offered by the Soot static analysis framework [53]). BYTEBACK’s analysis
connects bytecode instructions to elements of BBlib specification, and generates ver-
ification conditions that encode program correctness. Concretely, BYTEBACK translates
Grimp code and annotations to the Boogie intermediate verification language [5], which
we then use as the interface to a backend SMT solver.

We implemented BYTEBACK in a tool with the same name, which verifies bytecode
annotated with functional specifications expressed using the BBlib library. We verified
40 programs, including classic verification examples (such as sorting algorithms), using
numerous Java features that state-of-the-art functional verification tools do not currently
support. We also verified the implementation of some of the same algorithms in Scala,
thus demonstrating that BYTEBACK can accommodate a variety of source-code level
features by focusing on the verification of an intermediate representation.

A replication package including BYTEBACK’s implementation, and the benchmarks
and examples described in the paper, is available on Zenodo [46].

Fig. 1. Annotated Java methods that compute a numeric summary of int array values.



Verifying Functional Correctness Properties at the Level of Java Bytecode 345

2 Motivating Examples

Figure 1a shows the implementation of a simple Java method summary1, which scans
its input integer array values and returns a numeric summary of its content: it ignores
all negative values, adds 1 to the summary for each element 0, subtracts 1 for each
element 1, and adds any bigger positive elements. The code also embeds some anno-
tations that specify a precondition @Require (“input array values includes no ele-
ment equal to 1”), a postcondition @Ensure (“the returned result is nonnegative”), and
a loop invariant invariant (“local variable result stays nonnegative”). Clearly,
summary1 satisfies this specification; in fact, we can easily verify Fig. 1a’s code
against this specification using modern verifiers for Java (such as KeY, Krakatoa, or
OpenJML)—after expressing the specification using the verifier’s annotation language.

Now consider method summary2 in Fig. 1b. It’s not hard to see that summary2
implements essentially the same behavior as summary1 but using different features
of the Java language: values is a variadic argument (varargs) instead of a plain inte-
ger array; local variable result uses type inference (var) instead of declaring its
type explicitly; the loop is an enhanced for loop (“foreach”); the loop’s body uses a
switch expression with yield instead of nested if/else conditionals. As shown in
Table 5, these features have been added to Java only in recent versions of the language.
As a result, none of the aforementioned Java verifiers that can check the correctness of
summary1 supports all the features used by summary2—even though the methods
are essentially equivalent.

Our verification technique BYTEBACK, which we present in the rest of the paper,
performs verification at the level of Java bytecode. One distinct advantage of this app-
roach is that the Java compiler takes care of desugaring equivalent Java features into
a simpler representation as bytecode instructions. Therefore, BYTEBACK verifies both
variants summary1 and summary2 in Fig. 1 without having to explicitly add support
for each new Java feature. This demonstrates that bytecode-level verification can help
formal verification techniques keep up with rapidly evolving source-level languages.

3 How BYTEBACK Works

Figure 2 overviews how BYTEBACK works, and the toolchain it implements. To verify
a program, the user first annotates its source code with a specification using the func-
tionalities of the BBlib library; Sect. 3.1 outlines this library and how it can be used.
BBlib-annotated source code can be compiled with the Java compiler (or any other
suitable compiler) into bytecode. BYTEBACK uses the Soot static analysis framework
to transform the bytecode into the higher-level Grimp intermediate representation (an
alternative bytecode representation that is syntactically closer to source code and retains
higher-level typing information). As we explain in Sect. 3.2, BYTEBACK performs a
static analysis of Grimp, with the goal of identifying the various program elements and
linking them to their specification—embedded as calls to BBlib methods, and refer-
ences to the annotations. With this information, BYTEBACK can translate program and
annotations into Boogie code, which the Boogie verifier [5] processes to generate veri-
fication conditions, and finally determine whether the program verifies correctly.



346 M. Paganoni and C. A. Furia

Fig. 2. An overview of how BYTEBACK’s verification toolchain works.

Fig. 3. Annotations for Fig. 1’s methods using BBlib’s concrete syntax.

3.1 Specifying Functional Properties

This section describes the main methods and annotations included in the BBlib library,
and how we can use them to express the specification of a Java program.1 Whereas
Fig. 1’s examples use a simplified idiomatic syntax, in this section we follow BBlib’s
concrete syntax; Fig. 3 shows the same annotations with this concrete syntax.

Pre- and Postconditions. The main specification elements of a method m are its pre-
condition and postcondition, encoded by adding annotations @Require(String p)
and @Ensure(String q) just before m’s declaration. Arguments p and q denote
the name of predicates: methods returning boolean that encode the actual pre- and
postconditions. We can annotate m with several @Requires and @Ensures, which
are implicitly conjoined. In Fig. 3’s running example, we name the pre- and postcondi-
tion predicates no_ones and nonnegative.

Predicates. We mark any predicates p with annotation @Predicate, so that BYTE-
BACK can easily track them in the bytecode. For the same reason, a predicate p is defined
in the same class as the method m it specifies. A predicate p is static iff m is, and its
input signature types are the same as m’s; this way, m’s specification can refer to any

1 BBlib is available as a JAR file, and hence any language that is bytecode-compatible with
Java can use its features—as we’ll demonstrate in some of Sect. 4’s examples in Scala.



Verifying Functional Correctness Properties at the Level of Java Bytecode 347

program elements that are visible at m’s interface. Since postconditions usually con-
strain a method’s output, any predicate q used as a postcondition includes an extra input
argument result of the same type as m’s return type (if it is not void). In Fig. 3’s
running example, predicates no_ones and nonnegative are static methods like
summary; the latter includes a second argument int result, which refers to the
integer value returned by summary.

Pure Expressions. A predicate’s body encodes a Boolean expression that should be
exactly expressible in logic. Therefore, it can only include pure (side-effect free) state-
ments, and has to terminate with a single return statement that defines the overall
predicate expression. In practice, this means that predicates can only read the global
program state but cannot modify it. However, pure methods may use local variables and
may call methods that satisfy the same constraints and that we marked as @Pure; this
includes recursive calls. For example, Fig. 3’s predicate no_ones calls pure function
contains.

Table 1. A list of BBlib’s aggregable operators, and the Java or logic operators that they replace.

IN JAVA/LOGIC IN BBLIB

comparison
x < y, x <= y, x == y lt(x, y), lte(x, y), eq(x, y)

x != y, x >= y, x > y neq(x, y), gte(x, y), gt(x, y)

conditionals c ? t : e conditional(c, t, e)

propositional !a, a && b, a || b, a =⇒ b not(a), a & b, a | b, implies(a, b)

quantifiers
∀x : T • P(x) T x = Binding.T(); forall(x, P(x))

∃x : T • P(x) T x = Binding.T(); exists(x, P(x))

Aggregable Expressions. BYTEBACK has no access to the source code, but it should
still be able to recover the pure logic expression encoded by a predicate’s body
after this is translated into bytecode by the compiler. When this is the case, we say
that a source code expression is aggregable—informally, it translates into bytecode
without information loss. Aggregability further constrains what we are allowed to
use in a predicate’s or pure function’s body: i) Only pure expressions are allowed.
ii) Branching statements (conditionals, loops) are not allowed, since they introduce
jumps in the bytecode that may be cumbersome or impossible to render as a sin-
gle logic expression. Instead, BBlib offers method conditional(c, t, e) to
encode conditional expressions—similar to Java ternary expressions c ? t : e but
translated to bytecode without introducing branching. iii) Java’s usual Boolean oper-
ators (!, &&, ||) are not allowed because they are not aggregable: && and || are
short-circuited, and hence they may introduce branching in the bytecode; expres-
sions involving ! may also introduce branching (e.g., x = !y translates to bytecode
like if (y) x = false else x = true). Instead, BBlib offers replacement
methods (not) or lets you use Java’s eager Boolean operators (&, |, ^) that are aggre-
gable. iv) Similarly, comparison operators (<, >, . . . ) may introduce branching in the



348 M. Paganoni and C. A. Furia

bytecode, and hence BBlib offers replacement methods (lt, gt, . . . ) that are aggre-
gable. Table 1 summarizes the main aggregable operators provided by BBlib as static
methods—used either instead of non-aggregable Java methods or to express common
logic operators. Figure 3 uses some of these operators to express the specification in the
running example.

Frame Specifications. A method’s frame is the set of memory locations that the method
may modify. BYTEBACK uses a simple approach to infer the frame of a method m. It
performs a static analysis looking for any heap-modifying statement in m’s Boogie
translation. If it finds any, m’s frame is the whole heap; otherwise, m’s frame is empty.
If this analysis determines that m’s frame is non-empty but m is marked as @Pure or
@Predicate, BYTEBACK reports a verification error. The analysis recursively follows
any method called by m, and is set up so as to be sound but imprecise; for example, if m
calls a method � whose implementation is not available, we conservatively assume that
� may modify the heap. Users can still more finely specify a method’s frame by adding
postconditions that explicitly indicate heap locations that do not change. Supporting
more flexible framing methodologies [18,31,38,40,48,51] in BYTEBACK belongs to
future work. In Fig. 3’s example, BYTEBACK infers that summary’s frame is empty
since its implementation only reads the content of array values.

Other Specification Elements. A method m’s postcondition may include expres-
sions old(e)—which denotes the value of e in m’s pre-state. In addition, BBlib
offers methods for common intra-method specification elements: i) invariant(J)
declares a loop invariant J, and can be placed anywhere in the corresponding loop’s
body. Figure 1 shows the loop invariant specification in the running example. ii) meth-
ods assertion(E) and assumption(E) introduce intermediate assertions (if E
holds continue, otherwise fail) and assumptions (ignore states where E doesn’t hold)
that are useful to further guide the verification process of a method’s implementation.
As usual, the arguments J and E to these specification elements should be pure, aggre-
gable expressions.

3.2 Translating Grimp into Boogie

This section outlines the translation from Grimp—a human-readable representation
of bytecode produced by the Soot framework—to Boogie—a verification language
that combines an expressive program logic with basic procedural constructs (vari-
ables, assignments, procedures). Grimp code represents executable instructions in a
program’s bytecode; in contrast, source-level declarations (such as class or variable
declarations) are implicit in Grimp, but still accessible programmatically through Soot’s
API. Concretely, we present BYTEBACK’s Boogie encoding as a translation T from
Grimp (instructions) and Java (declarations) to Boogie code—even though this transla-
tion is actually implemented without access to Java source code. For clarity, we high-
light Grimp/Java keywords (goto l) with a different color than Boogie keywords
(goto l).

Heap Model. BYTEBACK introduces a simple Boogie model of the heap adapted
from Dafny’s [36]—a state-of-the-art deductive verifier. The heap is a vari-
able #heap : Heap that stores a polymorphic mapping of type Heap =



Verifying Functional Correctness Properties at the Level of Java Bytecode 349

[Reference]〈α〉[Field α] α from references to fields (of generic type α). To
access the heap, BYTEBACK defines

function read〈α〉(h :Heap, r :Reference, f :Field α) returns (α)

that returns the value of field f in the object pointed to by reference r, and

function update〈α〉(h :Heap, r :Reference, f :Field α, v :α) returns (Heap)

that returns an updated heap after setting field r.f to v.

Aggregates. As we explained in Sect. 3.1, a block of code that defines an aggre-
gable expression consists of statements that: i) are pure (do not modify the heap); ii)
are straight-line (no branches); iii) use BBlib’s propositional and comparison oper-
ators (Table 1), or other aggregable user-defined methods. Precisely, take a sequence
s of Grimp instructions that satisfy these constraints. Then, s can be written in
SSA form [4] as a sequence s1 s2 · · · sn+1, n ≥ 0, of statements where each sk,
k ≤ n, is an assignment vk = ek of an aggregable expression ek to a fresh vari-
able vk; and the final sn+1 returns the last vn. Given any such sequence s, BYTE-
BACK builds an overall expression A(s) by recursively replacing each usage of vk

with its unique definition in s. We call A(s) the aggregate of snippet s;2 in a nut-
shell, A(s) is a pure expression equivalent to the one returned by s, which BYTE-
BACK can translate to a Boogie logic expression as we detail below. In Fig. 3’s running
example, no_ones’s body is already in aggregate form, and hence A(no_ones) =
not(contains(values, 1, 0, values.length)). For convenience, we
extend the notation: A(e), where e is any aggregable expression built by a sequence
of statements s, denotes expression e in aggregate form—defined as A(s; return e).

Types. BYTEBACK uses Boogie type int (corresponding to mathematical integers) for
all bytecode integer types int, short, byte, long, and char; Boogie type real
(corresponding to mathematical reals) for floating-point types float and double;
Boogie type bool for type boolean;3 and Boogie type Reference for all bytecode
reference types. Thus, for example, T (int) = int, T (boolean) = bool, and
T (int[]) = Reference.

Declarations. BYTEBACK declares an uninterpreted Boogie type const C : Type for
each class C; and it declares a const C.f : Field T (t) for each field f of C—
where t is f’s static type.4 Similarly, local variables (in implementations of non-pure
methods) translate to Boogie local variables: T (t v) = var v : T (t).

Specification Functions. BYTEBACK translates to Boogie functions any methods anno-
tated with @Pure, which denotes logic functions used in BBlib specifications. Boo-
gie functions that translate specification functions include an extra argument h of type

2 Soot also performs a kind of aggregation of Grimp expressions; however, BYTEBACK’s aggre-
gates are different from Soot’s in general.

3 While pure bytecode uses 0/1 integers to encode Booleans, the Grimp intermediate represen-
tation includes a distinct Boolean type boolean.

4 For simplicity, the presentation assumes that identifier names are unique and the same in byte-
code as in Boogie; in practice, BYTEBACK also takes care of renaming to avoid clashes.



350 M. Paganoni and C. A. Furia

Fig. 4. BYTEBACK’s Boogie encoding of summary’s signature and contains in Fig. 3.

Heap since they cannot directly read global variables. The body S of @Pure meth-
ods has to be aggregable; BYTEBACK first builds the aggregate A(S) expression as
described above, and then translates that into Boogie. Figure 4 shows the Boogie trans-
lation of contains in the running example.

T

⎛
⎝

@Pure
t0 C.p (t1 d1, . . .,tm dm)
{ S }

⎞
⎠ =

function C.p
(h : Heap,d1 : T (t1), . . .,dm : T (tm))
returns T (t0))

{ T (A(S)) }

Methods. BYTEBACK translates to Boogie procedures any other methods (that is, not
annotated with @Pure or @Predicate). An additional extra argument o of type
Reference matches the target of method calls; thus, it is absent in procedures trans-
lating static methods. Methods that return a value (whose return type is not void)
include a return argument named @ret in Boogie, which is also passed to the postcon-
dition predicate. Frame specifications translate to Boogie modifies clauses; BYTE-
BACK infers them as described in Sect. 3.1, and hence they can only be empty (the
modifies clause is omitted) or include the whole heap (modifies #heap). Pre-
conditions and postconditions translate to Boogie requires and ensures clauses as
follows. Given a @Predicate method p, BYTEBACK first builds its aggregate expres-
sion A(p); then, it translates this Grimp expression to a Boogie expression T (A(p));
finally, it replaces p’s formal arguments with the corresponding Boogie formal
arguments d1, . . . ,dm.

T

⎛
⎜⎜⎝

@Require("p")
@Ensure("q")
t0 C.m (t1 d1, . . .,tm dm)
{ B }

⎞
⎟⎟⎠ =

procedure C.m
(o : Reference,d1 : T (t1), . . .,dm : T (tm))
returns (@ret : T (t0))
requires T (A(p))[d1, . . .,dm]
ensures T (A(q))[d1, . . .,dm,@ret]
modifies F(B)

{ T (B) }

Figure 4 shows the Boogie translation of summary’s signature and specification. Why
does BYTEBACK translate postconditions in this way (inlining aggregate specifica-
tion expressions), instead of just using the Boogie functions that translate postcon-
dition predicates—such as nonnegative(values, @result) for summary’s
postcondition? In general, postconditions may use old to refer to an expres-
sion’s value in the pre-state; Boogie offers an old operator, but only accepts
it explicitly in an ensures, not in user-defined functions. Therefore, a post-
condition @Ensure("inc"), where predicate inc is declared as @Predicate



Verifying Functional Correctness Properties at the Level of Java Bytecode 351

Table 2. Boogie translation of read and write of variables in Grimp bytecode.

GRIMP: e BOOGIE: T (e)

v v Local variable read

o.f read(#heap, o, f) Instance field read

C.f read(#heap, type2ref(C), f) Static field read

a[k] array.read(#heap, a, T (k)) : T (T(a[k])) Array read

v = e v := T (e) Local variable write

o.f = e #heap := update(#heap, o, f, T (e)) Instance field write

C.f = e #heap := update(#heap, type2ref(C), f, T (e)) Static field write

a[k] = e #heap := array.update(#heap, a, T (k),T (e)) Array write

boolean inc(){return gt(x, old(x));} can only be translated as
ensures read(#heap,this,C.x) > old(read(#heap,this,C.x))—
not as ensures inc(#heap), since inc’s body may not use old.

Constructors may also have a specification. BYTEBACK translates them like spe-
cial methods that return a fresh (previously unallocated) reference in the heap to the
created object—as specified by an automatically generated postcondition. To this end,
BYTEBACK supplies Boogie procedures new and array.new to create new references,
which translate bytecode instructions new and newarray. Then, actual constructor
calls (invokespecial in bytecode) translate like normal procedure calls—as shown
below.

Expected Types. Expression types in Grimp mirror strictly the bytecode instructions
they correspond to. This may lead to Soot attributing to a Grimp expression e an unnec-
essarily general type t when e is actually only used according to a more specific type
t′. For example, the type of Grimp expression a & b is int according to Soot even if
a and b are of type boolean. To have more specific types in these scenarios, BYTE-
BACK reconstructs the expected type T(e) of any Grimp expression e based on where e
is used. Thus, if e is the right-hand side of an assignment v = e, T(e) is v’s type; if e
is returned by a method m, T(e) is m’s return type according to its signature; if e is the
actual argument in a call to m, T(e) is m’s formal argument type. Therefore, T(a & b)
is boolean as long as a & b is used as a Boolean.

Variable Access. Table 2 summarizes the translation of reading and writing variables
(local, instance, static, and array). Local variables are straightforward, as they also
are local variables in Boogie. Fields of objects in the heap are read and written by
calling predefined Boogie functions read and heap.write introduced earlier in
this section. Unqualified field accesses f translate as qualified accesses this.f on
this—which corresponds to some variable of type Reference in Boogie. The same
functions read and heap.write also work for static field accesses: to this end,
BYTEBACK supplies



352 M. Paganoni and C. A. Furia

Table 3. BYTEBACK translation of branching, Boolean operators and specification elements.

function type2ref(class : Type) returns(Reference)

mapping each class type to a reference to a heap object that stores the static state.
Arrays are also heap objects, but BYTEBACK provides custom functions array.read
and array.update to access these objects by means of an index expression of type
int.

function array.read〈α〉(h : Heap, a : Reference, k : int) returns (α)

As shown in Table 2, BYTEBACK casts (Boogie ‘ : ’ operator) the output of polymor-
phic array.read to array type T(a[k]). This is not necessary for field accesses,
since read’s output type parameter α is constrained by the input f; in contrast,
array.read is only type-generic in the output, and hence usage context determines
the concrete value of α.

Calls. Bytecode offers five call instructions: invokestatic (to call static meth-
ods), invokevirtual (instance methods), invokeinterface (abstract inter-
face calls), invokespecial (constructors and super calls), and, since Java 7,
invokedynamic (lambdas). BYTEBACK translates all such call instructions to Boogie
procedure calls:5

T (invokevirtual o.m(e1, . . . , en)) = call C.m(o, T (e1), . . .,T (en))

5 Thus, BYTEBACK relies on Boogie’s modular semantics of calls: the only effects of calling a
method m are what m’s specification prescribes. This is a standard choice in deductive verifica-
tion, since it supports modularity and is consistent with the Liskov substitution principle [42].



Verifying Functional Correctness Properties at the Level of Java Bytecode 353

As usual, C is m’s class, and o is a reference to an instance of this class. The same
translation works, with obvious adjustments, for the other kinds of call instructions—
except invokedynamic, which BYTEBACK doesn’t currently support. Henceforth,
invoke denotes any of the four supported bytecode call instructions.

Branching. BYTEBACK translates branching instructions (return, goto, and if) into
the corresponding Boogie statements as shown in Table 3a. While Boogie also offers
structured conditionals and loops, BYTEBACK does not use them since bytecode does
not have structured programming constructs.

Literals. BYTEBACK translates any literal � to a Boogie literal according to its expected
type T(�). In particular, T (0) = false and T (1) = true when the expected type of
integer literals 0 and 1 is boolean.

Expressions. Most arithmetic and comparison operators +, -, *, ==, !=, <, <=,
>=, > translate to their Boogie counterparts +,−, *, =, �=,<,≤,≥,> as obvious:
T (a �� b) = T (a) T (��) T (b). The division operator / translates to div or / in Boo-
gie according to whether it represent integer or floating-point division: T (a / b) =
T (a) div T (b) if T(a / b) = int; otherwise T (a / b) = T (a) / T (b).
BYTEBACK introduces and axiomatizes an overloaded Boogie function cmp to trans-
late bytecode operator cmp: T (a cmp b) = cmp(T (a),T (b)) returns 1 if
a > b, -1 if a < b, and 0 if a = b. Table 3b displays how BYTEBACK

translates Grimp Boolean operators to Boogie. Java’s short-circuited operators &&
and || are not listed in the table, as the compiler desugars them into condi-
tional instructions in bytecode; for example, if (a && b) x = 1. . . becomes
if (a == 0) goto end; if (b == 0) goto end; x = 1; end:. . .
in bytecode.

Since boolean is a subtype of int in Soot, the operands of Boolean operator
expressions (e.g., a == b) may have different types (e.g., T(a) = int but T(b) =
boolean—usually when a is used as an integer in other parts of the program). In
these cases, BYTEBACK translates everything using the most general type int, so that
all usages of the operands can be uniformly represented in Boogie (where the bool
and int types are disjoint, as they are in Java).

Call Expressions. Boogie does not allow procedure calls in expressions;6 there-
fore, BYTEBACK saves the call value in a fresh variable, and replaces the call
expression with a read of the variable: given a Grimp expression e, used in state-
ment s, that includes a call invoke o.m() (virtual, static, or interface) to a
method m, BYTEBACK first adds the statements var #r : T (T(invoke o.m));
call #r := T (invoke o.m()) just before s, and then translates e into
T (e[invoke o.m �→ #r])—replacing the call with #r.

Specifications. BYTEBACK recognize BBlib operators and translates them to their
counterparts in Boogie, as shown in Table 3c. Source-code while and for loops
become conditional jumps in bytecode. Using Soot’s static analysis capabilities, BYTE-
BACK identifies any loop in bytecode by its head, backjump, and exit locations. Thus,

6 In contrast, calls to pure methods, translated to Boogie functions, can be directly transliterated
to Boogie (pure) expressions.



354 M. Paganoni and C. A. Furia

a source-code loop while (!c) L; R corresponds to bytecode structured as in
Fig. 5a’s left-hand side, where labels head, back, and exit mark the head, exit,
and backjump locations; c is the loop’s exit condition, B is the loop body, and R
is the code that follows the loop. Any loop invariant J would be declared by a call
invariant(J) to BBlib method invariant inside B. BYTEBACK encodes the
semantics of loop invariants by means of suitable assumptions and assertions, as in
Fig. 5a’s right-hand side; then, it translates the annotated branching code to Boogie as
usual. Figure 5b shows a concrete example of how BYTEBACK encodes loops and invari-
ants; note the aggregation (inlining) of the invariant predicate, which ensures that all its
dependencies are replicated in each assertion and assumption in Boogie.

Fig. 5. BYTEBACK’s encoding of loops and loop invariants.

3.3 Implementation Details

We implemented BYTEBACK in a tool with the same name, written in about 11 thousand
lines of Java code (plus another 52 kLOC of generated code). BYTEBACK’s core uses
the Soot static analysis framework [53] to process the bytecode to be verified, as we
described in Sect. 3.2 at a high level. After analyzing the Grimp bytecode, BYTEBACK

has collected all the information to generate Boogie code; to this end, a visitor pattern
implementation creates a Boogie AST, and then dumps it into a Boogie file.

We developed the Boogie AST library using the metacompilation framework Jast-
Add [23], in combination with JFlex and Beaver7 to parse Boogie source code. This
capability is useful to: i) flexibly generate the heap model (Sect. 3.2) and other Boo-
gie background definitions from a human-readable Boogie template file; ii) perform
some analyses directly on the generated Boogie code (most notably, the frame infer-
ence briefly described in Sect. 3.1).

Features and Limitations. BYTEBACK’s current implementation supports most byte-
code features but not exception handling and invokedynamic (which limits rea-
soning about lambdas); strings are supported as plain objects, which precludes pre-
cisely analyzing their semantics in Java; as we discussed previously, numeric types are

7 JFlex: https://jflex.de/; Beaver: http://beaver.sourceforge.net/.

https://jflex.de/
http://beaver.sourceforge.net/


Verifying Functional Correctness Properties at the Level of Java Bytecode 355

encoded as infinite-precision numbers (integers and reals), which entails that BYTE-
BACK may miss overflow and other numerical errors. Adding support for these fea-
tures is possible in principle, and would require a combination of extending the Boogie
encoding (for example, to include exceptional behavior), BYTEBACK’s static analysis
(for example, to identify the bootstrap methods that dynamically generate targets of
invokedynamic), and BBlib’s features (for example, to support model-based spec-
ifications).

Section 3.1 described the features offered by BYTEBACK’s BBlib specification
library. Its current implementation is sufficient to specify a variety of examples (see
Sect. 4) but lacks advanced features to express complex framing conditions and ghost
code (specification code discarded during compilation), and to flexibly reuse specifi-
cations with inheritance and modularity. Supporting these features belongs to future
work, also because it would require tackling challenges largely orthogonal to the focus
of BYTEBACK.

As we demonstrate in Sect. 4, BBlib’s features can also specify programs writ-
ten in Scala, leveraging its bytecode-level interoperability with Java. However, BBlib
was developed with focus on Java, and hence its practical usability on Scala is more
limited. In particular, the Scala compiler automatically generates features (such as set-
ters and getters for fields) that are implicit in Scala source code; hence, users cannot
directly annotate these features using BBlib. Addressing these limitations is possible,
but would have to cater somewhat to the peculiarities of Scala (or other languages to be
supported).

4 Experiments

In our experiments, we ran BYTEBACK on several examples in order to demonstrate that
it can verify programs with different characteristics, which exercise various features of
the Java programming language (including recent versions), as well as a few programs
written in other languages built on top of Java bytecode.

4.1 Programs

Table 4 lists the 40 programs that we used for our experiments, and their size in non-
empty lines of SOURCE code (LOC), as well as their size after compilation to BYTE-
CODE (also in LOC of the representation returned by javap -c). The sizes include the
annotations in BBlib, which specify the properties to be verified.

The majority of programs (32/40) use various features of Java 8; but we also
included 4 programs using Java 17 features, and 4 Scala programs. The selection
includes relatively simple programs that specifically target language features of Java
(examples 1–16 and 33–35), classic algorithms and procedures (examples 17–27, 36,
and 37–38), and object-oriented features (examples 28–32 and 39–40). Some examples
implement the same algorithm for data structures with different types (e.g., double
and int arrays).

We selected these examples to demonstrate that BYTEBACK can process a variety of
modern Java features, including several that state-of-the-art Java deductive verifiers do



356 M. Paganoni and C. A. Furia

Table 4. Verification experiments performed with BYTEBACK. In each row: the EXPERIMENT’s
name; its source LANGUAGE (and any of Table 5’s features it uses); the ENCODING TIME (sec-
onds) and its percentage directly attributable to BYTEBACK (excluding Soot’s initialization time);
the VERIFICATION TIME (seconds) of running Boogie on the encoding generated by BYTEBACK;
the size (in non-blank lines of code) of the SOURCE code, of the BYTECODE (as printed by
javap -c), and of the BOOGIE code.

# EXPERIMENT LANGUAGE ENCODING VERIFICATION SOURCE BYTECODE BOOGIE

TIME [s] BYTEBACK TIME [s] SIZE [LOC]

1 Array Operations Java 8 2.8 10 % 1.16 36 103 148

2 Boolean Operations Java 8 3.6 9% 1.34 57 85 157

3 Control Flow Java 8 2.8 8% 1.33 74 123 219

4 Enhanced For Java 8 F 2.9 8% 1.25 25 52 107

5 Field Access Java 8 2.8 6% 1.18 29 32 96

6 Floating-Point Operations Java 8 2.9 8% 1.21 37 52 110

7 Instance Field Java 8 3.0 6% 1.15 18 16 98

8 Integer Operations Java 8 3.1 12% 1.45 202 332 250

9 Multiclass Java 8 3.0 8% 1.19 14 14 113

10 Quantifiers Java 8 3.1 6% 1.15 25 28 92

11 Static Field Java 8 4.4 9% 1.82 32 66 146

12 Static Initializer Java 8 3.7 6% 1.63 14 14 91

13 Static Method Calls Java 8 3.0 8% 1.19 32 40 112

14 Switch Java 8 3.1 6% 1.23 23 25 109

15 Unit Java 8 2.9 6% 1.15 13 12 97

16 Virtual Method Calls Java 8 3.0 7% 1.21 31 40 122

17 GCD Java 8 3.0 9% 1.15 41 88 127

18 Insertion Sort double Java 8 2.9 11% 2.53 49 132 147

19 Insertion Sort int Java 8 3.1 11% 1.70 49 131 147

20 Linear Search Java 8 T 2.9 10% 1.14 60 126 164

21 Max double Java 8 3.0 9% 1.15 45 92 92

22 Max int Java 8 2.9 10% 1.16 45 90 126

23 Selection Sort double Java 8 3.1 13% 4.56 87 231 172

24 Selection Sort int Java 8 3.0 12% 3.56 87 230 172

25 Square Sorted Array Java 8 2.9 10% 1.14 54 123 140

26 Sum double Java 8 3.0 8% 1.16 35 70 124

27 Sum int Java 8 2.8 8% 1.14 35 70 124

28 Generic List Java 8 G, T 3.1 9% 1.17 46 68 134

29 Binary Search Java 8 3.1 10% 1.13 51 124 131

30 Comparator Java 8 3.0 10% 1.24 51 30 188

31 Dice Java 8 D 3.0 10% 1.17 41 25 129

32 Counter Java 8 2.9 8% 1.20 33 62 150

33 Pattern matching Java 17 P 3.0 7% 1.14 18 26 105

34 Switch Expressions Java 17 S, Y 2.9 8% 1.16 23 56 135

35 Type Inference Java 17 L 3.0 7% 1.15 29 59 116

36 Summary Java 17 S, Y, F, L, A 3.1 10% 1.23 47 88 137

37 GCD Scala 3 3.5 8% 1.31 46 93 130

38 Linear Search Scala 3 3.4 10% 1.26 69 126 168

39 Comparator Scala 3 3.4 9% 1.42 49 35 237

40 Dice Scala 3 4.5 11% 1.85 38 25 223

Total 133.1 60.89 1 790 3 234 5 585

Average 3.1 9% 1.42 45 81 140



Verifying Functional Correctness Properties at the Level of Java Bytecode 357

not support (as we discuss in Sect. 5). It’s important to stress that we are not comparing
BYTEBACK’s verification capabilities to those of much more mature tools such as KeY,
Krakatoa, and OpenJML. We picked the features in Table 4’s examples specifically to
demonstrate that it’s hard for source-level verifiers to keep up with the plethora of lan-
guage features that are introduced over time—not to solve verification challenges. As
we discuss in Sect. 3, BYTEBACK does not support all used features of Java (in partic-
ular, exceptions) and its specification capabilities (in particular, framing) are currently
limited compared to source-level tools. The experiments only demonstrate our claim
that verification at the level of bytecode has some distinctive advantages for supporting
language evolution, and hence it can complement source-level verification.

4.2 Results

All the experiments ran BYTEBACK on a Fedora 36 GNU/Linux machine with an Intel
i7-7600U CPU (2.8 GHz), running Boogie 2.15.7.0, Z3 4.11.1.0, and Soot 4.3.0. To
account for possible measurement noise, we repeated each experiment 5 times and
report the mean of the wall-clock running times in the 95th percentile.

We ran Boogie with default options—except for programs 4 and 36, where we
enabled option /infer:j, which can infer simple loop invariants. This is useful to
handle these programs’ enhanced for loops: translated to bytecode, a loop such as
for(var v: values) in Fig. 1b introduces an index variable int k to iterate
over array values; however, k does not exist in the source code, and hence one can-
not annotate the loop with a suitable invariant for k and must rely on inferring it.

All the experiments in Table 4 verified successfully without errors. The running time
of BYTEBACK (column ENCODING TIME) is generally short and predictable: 3.1 s per
example on average. This time measures BYTEBACK’s analysis of bytecode and trans-
lation to Boogie; it excludes the compilation time (from Java/Scala to bytecode) and
the running time of Boogie (reported separately in column VERIFICATION TIME). Col-
umn ENCODING BYTEBACK reports the percentage of encoding time after we deduct
Soot’s fixed context initialization time: BYTEBACK’s net average analysis time is a small
fraction of the total (just 0.28 s per example).

The running time of Boogie (column VERIFICATION TIME) on BYTEBACK’s output
is also moderate: 1.4 s per example on average. There are a few outliers: the two variants
of Selection Sort take up to 5 s to verify. This is because Selection Sort’s implementation
calls another method to compute the minimum value in an array range; this introduces
more modular verification work. In contrast, Insertion Sort’s implementation uses two
nested loops, which results in a simpler Boogie program.

If we compare Table 4’s two rightmost columns, we notice that the size of the Boo-
gie code is roughly proportional to the size of the bytecode (Kendall’s τ = 0.46).
Boogie code is about 1.8 times larger, as BYTEBACK’s aggregation process reconstructs
complex higher-level expressions. The size difference is especially pronounced for pro-
grams focusing on object-oriented features (examples 28–32 and 39–40): such features
are desugared in bytecode, but “resurface” in the form of Boogie axioms and functions.

These experiments demonstrate BYTEBACK’s current capabilities. Its Boogie encod-
ing is fairly standard (as mentioned in Sect. 3.2, its heap model is taken from Dafny’s)



358 M. Paganoni and C. A. Furia

but could be optimized for better performance (e.g., improving triggers [15,22,39]) or
for conciseness (e.g., further simplifying type conversions [47]) as needed.

5 Related Work

We summarize related work in the areas most relevant to BYTEBACK: source-level
deductive verifiers for Java, and verifiers that target intermediate representations.

Source-Level Deductive Verifiers for Java. Performing deductive verification of func-
tional properties on a program’s source code is a widespread approach, as that’s where a
specification and other kinds of information are readily available and naturally express-
ible. Among the many source-level verifiers for realistic programming languages—e.g.,
[6,11,12,17,25,30,32,36]—here we focus on KeY [1,2], Krakatoa [41], and Open-
JML [19]: state-of-the-art verifiers for the functional correctness of Java sequential pro-
grams with a high degree of automation.

OpenJML and Krakatoa follow the so-called auto-active approach [37]—where the
verifier generates verification conditions (VCs) and dispatches them to an automated
theorem prover, but the user still indirectly guides the verifier by interactively supplying
annotations. OpenJML generates VCs in SMT-LIB format [7], and dispatches them to
any SMT solver like Z3 [43] or CVC4 [8]. Krakatoa translates the source program into
the WhyML intermediate verification language IVL, and delegates the generation of
VCs to the Why3 system [24]. Using an IVL to generate VCs is an approach pioneered
by Spec# [6] and used nowadays by many systems (including BYTEBACK). KeY is built
on top of an interactive prover for Java dynamic logic [3]—used as its intermediate
representation—but offers features that increase the automation level in practice.

KeY, Krakatoa, and OpenJML all use JML [34] as specification language (more
precisely, different variants/subsets of JML [14]). Despite being applicable to verify
real-world Java code, they also differ in the subset of Java that they support: Table 5
lists several modern features of the Java language and which verifier can analyze them.
We compiled the table by reading the tools’ official documentation and papers, and
by trying out the latest tool versions that are publicly available. It should be clear that
this summary is not a criticism of KeY, Krakatoa, or OpenJML—which are state-of-
the-art, mature tools with proven applicability to complex verification problems—nor
a direct comparison with BYTEBACK. To compile Table 5, we actively looked for Java
recent feature “variants” that may be cumbersome to support at the source-code level,
but are essentially syntactic sugar. Since BYTEBACK easily supports these features by
piggybacking off the compiler’s bytecode translation, this substantiates our claim that
keeping verification tools up to pace with language evolution is practically hard and
time-consuming at the source-code level, but substantially easier at the bytecode level.

The difference in feature support reflects the tools’ intended verification target.
Krakatoa focuses on supporting complex functional specifications of a core sub-
set of Java; thus, it ignores several features that have been available since Java 5
(released in 2002). KeY and OpenJML aim at verifying complex, realistic Java appli-
cations [13,20,26,28]; to this end, they enjoy a broader language support and at least
parse all Java features up until version 8 (released in 2014); however, several widely
used features are still not available for verification with these tools. For example, KeY



Verifying Functional Correctness Properties at the Level of Java Bytecode 359

Table 5. Features of the Java language, and which source-code verifiers support them. For each
FEATURE: the Java major VERSION when it was introduced, an EXAMPLE snippet of code using
the feature, and which Java verifier among Key, Krakatoa, and OpenJML supports (�), partially
supports (�), or does not support (�) the feature.

relies on an external tool to erase generics and replace them with type Object and
suitable casts; OpenJML natively supports generics but not all related features—such
as the diamond operator <>. Since Java switched to a biannual release schedule, the gap
between available language features and verification support has been widening [21].

Verifiers for Intermediate Representations. Approaches targeting the verification of
intermediate representations (IRs) have been introduced in recent years, including Sea-
Horn [27] and SMACK [49] for LLVM bitcode [33], and JayHorn [50] for Java byte-
code. A key difference between BYTEBACK and these tools are the kinds of properties
they are equipped to verify: SMACK, SeaHorn, and JayHorn mainly target low-level
implicit correctness properties (such as the absence of unreachable code, null pointer
dereferences, and out-of-bound accesses); users can still add simple inline assertions,
but there is no support for complex and structured specification elements such as con-
tracts. SeaHorn and JayHorn encode IR instructions into constrained Horn clauses [10],
a logic that can be automatically analyzed with symbolic model-checking techniques.
This is consistent with these tools’ intended usage, as it requires fewer annotations (loop
invariants can often be inferred automatically) but also somewhat restricts the properties
that can be verified in practice. SMACK, like BYTEBACK, translates an IR into Boogie
programs to perform verification; despite these similarities, it mainly targets the verifi-
cation of low-level (e.g., embedded) programs [29,52,54] and properties; it defaults to
bounded verification (full, unbounded verification is only experimentally supported).

Proof-carrying code [45] is another application of verification techniques to IRs.
To ensure a safe execution, compiled programs are distributed with embedded proofs,
which the runtime environment checks before starting execution. Due to the difficulty



360 M. Paganoni and C. A. Furia

of verifying IRs, proof-carrying code was primarily used for restricted properties such
as memory safety. Proof-transformation approaches [9,44] overcome this issue by first
verifying source-level annotated program “as usual”, and then transforming the cor-
rectness proofs into proof-carrying IR code [35]. The BML notation takes a different
approach [16] to directly annotate bytecode with expressive JML-like specifications.

6 Conclusions

We presented BYTEBACK, a technique that formally verifies functional source-code
properties by working on Java bytecode. In our experiments, we verified programs writ-
ten in Java that use recently introduced features that even state-of-the-art verifiers do not
fully support; as well as some programs written in Scala that BYTEBACK can also ana-
lyze after compiling to bytecode. This suggests that our approach can help simplify
keeping up with the evolution of modern programming languages, which regularly add
new expressive features that are substantially simplified by compilation to bytecode.

References

1. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java programs.
In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp. 55–71.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3_4

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive
Software Verification-The KeY Book. LNCS, vol. 10001. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49812-6

3. Ahrendt, W., de Boer, F.S., Grabe, I.: Abstract object creation in dynamic logic. In: Caval-
canti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 612–627. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-05089-3_39

4. Appel, A.W.: Modern Compiler Implementation, 2nd edn. Cambridge University Press,
Cambridge (2002)

5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006). https://doi.org/10.1007/11804192_17

6. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification
and verification: the Spec# experience. Commun. ACM 54(6), 81–91 (2011). https://doi.org/
10.1145/1953122.1953145

7. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB)
(2016). https://www.SMT-LIB.org

8. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_14

9. Barthe, G., Grégoire, B., Pavlova, M.: Preservation of proof obligations from Java to the Java
virtual machine. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 83–99. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-71070-7_7

https://doi.org/10.1007/978-3-319-12154-3_4
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-05089-3_39
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1145/1953122.1953145
https://www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-540-71070-7_7
https://doi.org/10.1007/978-3-540-71070-7_7


Verifying Functional Correctness Properties at the Level of Java Bytecode 361

10. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for program
verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W.
(eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp. 24–51. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23534-9_2

11. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verification system:
verification by translation to recursive functions. In: Proceedings of the 4th Workshop on
Scala, SCALA@ECOOP 2013, Montpellier, France, 2 July 2013, pp. 1:1–1:10. ACM (2013).
https://doi.org/10.1145/2489837.2489838

12. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs. In: Jones,
C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–131. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06410-9_9

13. de Boer, M., de Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Formal specification
and verification of JDK’s identity hash map implementation. In: ter Beek, M.H., Monahan,
R. (eds.) IFM 2022. LNCS, vol. 13274, pp. 45–62. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-07727-2_4

14. Boerman, J., Huisman, M., Joosten, S.: Reasoning about JML: differences between KeY
and OpenJML. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 30–46.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_3

15. Chen, Y.T., Furia, C.A.: Triggerless happy. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 295–311. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-66845-1_19

16. Chrząszcz, J., Huisman, M., Schubert, A.: BML and related tools. In: de Boer, F.S., Bon-
sangue, M.M., Madelaine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 278–297. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04167-9_14

17. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer, S., Nip-
kow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_2

18. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: Local verification of global invariants in
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 480–494. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_42

19. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and Eclipse.
In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Proceedings 1st Workshop on Formal
Integrated Development Environment, F-IDE 2014, Grenoble, France, 6 April 2014. EPTCS,
vol. 149, pp. 79–92 (2014). https://doi.org/10.4204/EPTCS.149.8

20. Cok, D.R.: Java automated deductive verification in practice: lessons from industrial proof-
based projects. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 176–
193. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6_16

21. Cok, D.R.: JML and OpenJML for Java 16. In: Cok, D.R. (ed.) FTfJP 2021: Proceedings of
the 23rd ACM International Workshop on Formal Techniques for Java-like Programs, Virtual
Event, Denmark, 13 July 2021, pp. 65–67. ACM (2021). https://doi.org/10.1145/3464971.
3468417

22. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Reasoning with triggers. In: Lecture Notes
in Computer Science, pp. 22–31. EPiC Series, EasyChair (2012)

23. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler construction. Sci.
Comput. Program. 69(1–3), 14–26 (2007). https://doi.org/10.1016/j.scico.2007.02.003

24. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen, M., Gard-
ner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37036-6_8

25. Furia, C.A., Nordio, M., Polikarpova, N., Tschannen, J.: AutoProof: auto-active functional
verification of object-oriented programs. Int. J. Softw. Tools Technol. Transfer 19(6), 697–
716 (2016)

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/2489837.2489838
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-319-98938-9_3
https://doi.org/10.1007/978-3-319-66845-1_19
https://doi.org/10.1007/978-3-319-66845-1_19
https://doi.org/10.1007/978-3-642-04167-9_14
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-14295-6_42
https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1007/978-3-030-03427-6_16
https://doi.org/10.1145/3464971.3468417
https://doi.org/10.1145/3464971.3468417
https://doi.org/10.1016/j.scico.2007.02.003
https://doi.org/10.1007/978-3-642-37036-6_8


362 M. Paganoni and C. A. Furia

26. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying Open-
JDK’s sort method for generic collections. J. Autom. Reason. 62(1), 93–126 (2019). https://
doi.org/10.1007/s10817-017-9426-4

27. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification framework.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 343–361. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_20

28. Hiep, H.A., Maathuis, O., Bian, J., de Boer, F.S., van Eekelen, M.C.J.D., de Gouw, S.: Ver-
ifying OpenJDK’s LinkedList using KeY. CoRR abs/1911.04195 (2019). https://arxiv.org/
abs/1911.04195

29. Huang, B., Ray, S., Gupta, A., Fung, J.M., Malik, S.: Formal security verification of con-
current firmware in SoCs using instruction-level abstraction for hardware. In: Proceedings
of the 55th Annual Design Automation Conference, DAC 2018, San Francisco, CA, USA,
24–29 June 2018, pp. 91:1–91:6. ACM (2018). https://doi.org/10.1145/3195970.3196055

30. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: a
powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M., Havelund, K.,
Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-20398-5_4

31. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing without
restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
268–283. Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_19

32. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: a soft-
ware analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015). https://doi.org/
10.1007/s00165-014-0326-7

33. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program analysis &
transformation. In: 2nd IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO 2004), San Jose, CA, USA, 20–24 March 2004, pp. 75–88. IEEE Computer
Society (2004). https://doi.org/10.1109/CGO.2004.1281665

34. Leavens, G.T., Schmitt, P.H., Yi, J.: The Java Modeling Language (JML) (NII Shonan meet-
ing 2013-3). NII Shonan Meeting Report 2013 (2013). https://shonan.nii.ac.jp/seminars/016/

35. Lehner, H., Müller, P.: Formal translation of bytecode into BoogiePL. Electron. Notes Theor.
Comput. Sci. 190(1), 35–50 (2007). https://doi.org/10.1016/j.entcs.2007.02.059

36. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–370. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_20

37. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Work-
shop (2010). https://fm.csl.sri.com/UV10/

38. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4_22

39. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program verifiers. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 361–381. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41528-4_20

40. Leino, K.R.M., Schulte, W.: Using history invariants to verify observers. In: De Nicola, R.
(ed.) ESOP 2007. LNCS, vol. 4421, pp. 80–94. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71316-6_7

41. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML. J. Log. Algebraic Methods Program. 58(1–
2), 89–106 (2004). https://doi.org/10.1016/j.jlap.2003.07.006

42. Meyer, B.: Introduction to the Theory of Programming Languages. Prentice Hall, Hoboken
(1990)

https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/978-3-319-21690-4_20
https://arxiv.org/abs/1911.04195
https://arxiv.org/abs/1911.04195
https://doi.org/10.1145/3195970.3196055
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1109/CGO.2004.1281665
https://shonan.nii.ac.jp/seminars/016/
https://doi.org/10.1016/j.entcs.2007.02.059
https://doi.org/10.1007/978-3-642-17511-4_20
https://fm.csl.sri.com/UV10/
https://doi.org/10.1007/978-3-540-24851-4_22
https://doi.org/10.1007/978-3-540-24851-4_22
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-540-71316-6_7
https://doi.org/10.1007/978-3-540-71316-6_7
https://doi.org/10.1016/j.jlap.2003.07.006


Verifying Functional Correctness Properties at the Level of Java Bytecode 363

43. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3_24

44. Müller, P., Nordio, M.: Proof-transforming compilation of programs with abrupt termina-
tion. In: Proceedings of SAVCBS, pp. 39–46. ACM (2007). https://doi.org/10.1145/1292316.
1292321

45. Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D. (eds.) POPL, pp.
106–119. ACM Press (1997). https://doi.org/10.1145/263699.263712

46. Paganoni, M., Furia, C.A.: ByteBack FM 2023 replication package (2022). https://doi.org/
10.5281/zenodo.7337205

47. Pearce, D.J., Utting, M., Groves, L.: Verifying Whiley programs with boogie. J. Autom.
Reason. 1–57 (2022). https://doi.org/10.1007/s10817-022-09619-1

48. Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through semantic
collaboration. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
514–530. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_35

49. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from verifier imple-
mentations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 106–113.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_7

50. Rümmer, P.: JayHorn: a Java model checker. In: Murray, T., Ernst, G. (eds.) Proceedings
of the 21st Workshop on Formal Techniques for Java-like Programs, FTfJP@ECOOP 2019,
London, UK, 15 July 2019, p. 1:1. ACM (2019). https://doi.org/10.1145/3340672.3341113

51. Summers, A.J., Drossopoulou, S., Müller, P.: The need for flexible object invariants. In:
Proceedings of IWACO, pp. 1–9. ACM (2009)

52. Sung, C., Paulsen, B., Wang, C.: CANAL: a cache timing analysis framework via LLVM
transformation. CoRR abs/1807.03329 (2018). https://arxiv.org/abs/1807.03329

53. Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a Java
bytecode optimization framework. In: MacKay, S.A., Johnson, J.H. (eds.) Proceedings of
the 1999 Conference of the Centre for Advanced Studies on Collaborative Research, Mis-
sissauga, Ontario, Canada, 8–11 November 1999, p. 13. IBM (1999). https://dl.acm.org/
citation.cfm?id=782008

54. Zhang, Y., Zuck, L.D.: Formal verification of optimizing compilers. In: Negi, A., Bhatnagar,
R., Parida, L. (eds.) ICDCIT 2018. LNCS, vol. 10722, pp. 50–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-72344-0_3

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1292316.1292321
https://doi.org/10.1145/1292316.1292321
https://doi.org/10.1145/263699.263712
https://doi.org/10.5281/zenodo.7337205
https://doi.org/10.5281/zenodo.7337205
https://doi.org/10.1007/s10817-022-09619-1
https://doi.org/10.1007/978-3-319-06410-9_35
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1145/3340672.3341113
https://arxiv.org/abs/1807.03329
https://dl.acm.org/citation.cfm?id=782008
https://dl.acm.org/citation.cfm?id=782008
https://doi.org/10.1007/978-3-319-72344-0_3


Abstract Alloy Instances

Jan Oliver Ringert1 and Allison Sullivan2(B)

1 Bauhaus-University Weimar, Weimar, Germany
2 The University of Texas at Arlington, Arlington, TX, USA

allison.sullivan@uta.edu

Abstract. Alloy is a textual modeling language for structures and
behaviors of software designs. One of the reasons for Alloy to become
a popular light-weight formal method is its support for automated,
bounded analyses, which is provided through the Analyzer toolset.
The Analyzer provides the means to compute, visualize, and browse
instances that either satisfy a model or violate an assertion. Under-
standing instances for the given analysis often requires much effort and
there is no guarantee on the order or level of information of computed
instances. To help address this, we introduce the concept of abstract
Alloy instances, which abstract information common to all instances,
while preserving information specific to the analysis. Our abstraction is
based on introducing lower and upper bounds for elements that may
appear in Alloy’s instances. We evaluate computation times and sizes of
abstract instances on a set of benchmark Alloy models.

Keywords: Alloy analyzer · Instances · Relational logic · Abstraction

1 Introduction

Alloy [8–10] is a textual modeling language based on relational first-order logic.
Alloy models declaratively express structures and behaviors of software designs.
The Alloy Analyzer [2] provides various analyses for finding instances of Alloy
models. This analysis is automated due to the use of a bounded scope and an
automated translations to SAT solvers, making Alloy a popular light-weight
formal method [10]. Alloy has been used to validate software designs [16,31],
to formalize class diagrams [4,5,12], to test and debug code [6,13], to repair
program states [21,30] and to provide security analysis [1,29].

Simplified, Alloy models consist of signatures, fields, and constraints. Intu-
itively, a signature introduces a set of atoms, a field relates atoms to other atoms,
and constraints define valid configurations – instances – of atoms and their rela-
tions. Most Alloy analyses produce a very large numbers of instances, which
can number in the hundreds or even thousands, even after automatically filter-
ing symmetric instances [28]. These instances are presented to the user in the
order the underlying SAT solver discovers them, which is effectively random. In
the Analyzer, users can iterate over instances one by one, visually inspecting

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 364–382, 2023.
https://doi.org/10.1007/978-3-031-27481-7_21

https://doi.org/10.5281/zenodo.7339931
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_21&domain=pdf
http://orcid.org/0000-0002-3610-3920
http://orcid.org/0000-0001-7400-2218
https://doi.org/10.1007/978-3-031-27481-7_21


Abstract Alloy Instances 365

them for correctness. However, given the size of instances and Alloy’s unordered
enumeration, this inspection process places a high burden on the user [7,14].
Therefore, recent work has looked to address this problem by trying to compute
more informative, e.g., minimal, instances [15], analyzing “why” and “why not”
questions for elements of instances [14], or providing a lightweight order to the
enumeration by allowing the user to preserve or change elements of instances [23].
However, all of these approaches deal with valid, complete Alloy instances. Unfor-
tunately, not everything present in an instance is there to satisfy the explicitly
executed commands. Alloy instances must also satisfy global properties and no
prior work separates the different origins of constraints that influence the shape
of an instance.

To address this, we introduce the concept of abstract Alloy instances, a gener-
alization over concrete Alloy instances that abstract away information common
to all instances, while preserving information specific to a concrete outcome of
the analysis. Our abstraction is based on introducing lower and upper bounds1
for Alloy’s signatures and fields. The lower bound represents atoms and rela-
tions that must be contained in every Alloy instance that concretizes the abstract
instance, while the upper bound captures possible additions of atoms and tuples.
An abstract instance either represents multiple concrete Alloy instances – those
in the upper and lower bounds – or the bounds coincide and the abstract instance
is a concrete instance. Our abstraction of Alloy instances is specific to the anal-
ysis run by the user, e.g., an Alloy run command sampling specific instances or
a check command looking for counterexamples of an assertion.

In this paper, we make the following contributions:

Abstract Instances We introduce abstract instances for Alloy that define lower
and upper bounds that preserve information in the instance related to satis-
fying explicitly executed formulas of a command.

Computing Maximal Abstract Instances We present an algorithm to
generate a maximal abstract Alloy instance, which is an abstract instance
whose bounds maximize the number of concrete instances represented by the
abstract instance.

Evaluation We evaluate different performance aspects related to generating
abstract instances over a broad benchmark of Alloy models. Our results high-
light that there is minor overhead to producing abstract instances, but these
abstract instances successfully reduce the information presented to the user.

Open Source Our open-source implementation and evaluation materials are
available on GitHub [20] and Zenodo [19].

2 Example

To introduce the basics of Alloy and computed instances, consider the model of
a gradebook shown in Fig. 1. The model describes students, professors, classes,
and assignments as well as their relations. Alloy’s main structural elements are
1 The Alloy Analyzer requires analysis scopes as cardinalities for signatures. Our

bounds are refinements of the bounds induced by those scopes, see Sect. 4.



366 J. O. Ringert and A. Sullivan

Fig. 1. Alloy model Gradebook from [15]

Fig. 2. Two concrete counterexamples (a) and (c) for the check command in Fig. 1 and
an abstract instance (b) representing both (a) and (c)

signatures, e.g., signatures Student and Professor, which both inherit from sig-
nature Person (Fig. 1, ll. 1–2). Other signatures in the model are Class and
Assignment (ll. 3–4). These signatures declare fields to express relations between
the instances of signatures (called atoms). As an example, classes have one pro-
fessor as instructor and a set of students as assistants (l. 3). Assignments are
associated with a set of classes and assigned to at least one (some) student (l. 4).
A fact restricts all assignments to be associated with exactly one class (l. 5).

The engineers developing the Alloy model want to make sure that no student
grades their own assignment. They express a grading policy for persons p and
assignments a in a predicate (ll. 6–8) that allows p to grade a iff a belongs to a
class where p is an assistant (l. 7) or an instructor (l. 8). An assertion (ll. 10–
12) quantifies over all persons p and all assignments a and asserts that if p can
grade assignment a according to the policy expressed in the predicate then the
assignment is not assigned to be solved by p.

The Alloy Analyzer allows the engineers to check the validity of the assertion
in a bounded scope (l. 14, for up to 3 atoms of each of the signatures). It turns



Abstract Alloy Instances 367

out that the assertion is not valid and a counterexample is presented to the
engineers. The counterexample in Fig. 2(a) is the one of the instances the Alloy
Analyzer computes. It shows three assignments, two classes, two students, a
professor, and their relations, e.g., Prof0 is the professor of both classes. It is not
easy for the engineers to spot the violation of their assertion, as the engineers
need to try to determine which assignment(s) and grader(s) are relevant to the
violation.

An abstract instance for Fig. 2(a) is shown in Fig. 2(b). Assignment Asgmt2 is
assigned to student Stud1 who is also assistant in class Class0 that the assignment
is associated with, i.e., this student can mark their own assignment. Note that
the abstract instance is much smaller than the concrete instance and focuses
on the reason the assertion is violated, while abstracting away some elements,
e.g., the information that Prof0 is the instructor of the class or that there are
multiple assignments not relevant to the violation. The abstract instance is not
necessarily a complete Alloy instance, but it can be extended to many concrete
instances by adding atoms and their relations. For instance, Fig. 2(c) shows a
different concrete instance that extends the abstract instance.

3 Preliminaries

3.1 Alloy Semantics

We now sketch the semantics of Alloy models as sets of relations. Detailed defi-
nitions can be obtained by the descriptions of language elements in [3,9].

The semantics of Alloy models is defined by a set R of n-ary relations r ∈ R.
Intuitively each signature defines a unary relation and each field defines a relation
of the arity of the field plus one. The domain of an n-ary relation is a subset
of n-ary tuples over a universe UNIV of atoms, i.e., dom(r) ⊆ UNIVn. As an
example, the domain of the relation for signature Student (Fig. 1, l. 2) is a set of
atoms and the relation for field instructor (Fig. 1, l. 3) is a set of pairs of atoms
from relations of signatures Class and Professor. The set R of all relations of an
Alloy model is defined by the declared signatures, fields, and built-in signatures,
e.g., built-in signature Int, whose atoms represent the in-scope integers.

Multiplicities of signatures and fields constrain the valuations of relations,
e.g., the multiplicity one constrains the relation for field instructor (Fig. 1, l. 3)
to include exactly one pair of Class and Professor atoms for every Class atom.
The semantics of facts, predicates, assertions, and expressions are constraints
over the tuples in relations R of the model. As an example, a fact in Fig. 1, l. 5
requires that for every atom in the relation for signature Assignment the relation
for field associated_with contains exactly one tuple.

3.2 Alloy Analyses

The Alloy Analyzer enables automated analyses of Alloy models via run and
check commands. Run commands compute instances satisfying a predicate and
check commands provide instances violating assertions, i.e., counterexamples.



368 J. O. Ringert and A. Sullivan

The analysis of Alloy models by the Alloy Analyzer requires bounds B for
relations R. Every r ∈ R has a lower bound LBB(r) ⊆ dom(r) and an upper
bound UBB(r) ⊆ dom(r) with LBB(r) ⊆ UBB(r) (see [28]). Bounds are derived
from user-defined scopes that determine the maximal numbers of atoms in rela-
tions for all signatures of the model. As an example, the check command in
Fig. 1, l. 14 defines scope 3 setting |UBB(r)| = 3 for all relations r of signatures,
e.g., the relation for signature Student.

We distinguish between two constraints M and C on the relations R of an
Alloy model. M is the constraint defined by the semantics of the model (sig-
natures and facts) and C is the constraint defined by a command (predicate or
assertion). As an example, for the model in Fig. 1, the constraint M expresses the
multiplicities and facts as sketched in Sect. 3.1 and the constraint C expresses
the assertion in Fig. 1, l. 10–12. Thus, we define an Alloy instance as:

Definition 1 (Alloy instance). An instance of an Alloy model is a valuation
I of relations r ∈ R within bounds B that satisfies the constraints M and C
denoted by ∀r ∈ R : LBB(r) ⊆ I(r) ⊆ UBB(r) and I |= M ∧ C.

Note that Definition 1 does not distinguish between run and check commands,
as internally Alloy translates check commands to run commands by negating the
assertion. The Alloy instance is then also called a counterexample.

4 Abstract Alloy Instances

To introduce abstract Alloy instances, we first define a partial order on bounds
B, i.e., pairs of lower and upper bounds for relations R.

Definition 2 (Partial order on bounds). Two bounds B and B′ over rela-
tions R are in a partial order relation � where B′ � B iff ∀r ∈ R : LBB(r) ⊆
LBB′(r) ∧ UBB′(r) ⊆ UBB(r).

The relation � is reflexive, transitive, and antisymmetric (because subset
inclusion ⊆ is a partial order). Intuitively, bound B is greater or equal to bound
B′ if B contains all bounds of B′, i.e., all lower bounds in B are smaller and all
upper bounds are larger.

As an illustration, consider increasing the scope in Fig. 1, l. 14 from 3 to
5. The bounds have identical lower bounds (empty), but the upper bounds are
equal or larger for when increasing scope 3 to scope 5. Typically, bounds for
lower scopes are smaller with respect to � than those obtained for larger scopes.
We may write I � B for instances I where we set LBI(r) = I(r) = UBI(r) for
all r ∈ R. Of note, our partial order on bounds is quite different from the partial
order on instances defined for Aluminum [15]. First, their order does not include
upper bounds, and second, their order is the reverse of ours for lower bounds.

Next, we define abstract instances for Alloy commands.

Definition 3 (Abstract Instance). An abstract instance A for model M ,
command C, and bounds B are bounds A � B s.t. all valuations I in A that
satisfy M also satisfy C, formally ∀Is.t.I � A : (I |= M) ⇒ (I |= C).



Abstract Alloy Instances 369

Fig. 3. Alloy models demonstrating interesting properties of abstract instances

It is important to define I in Definition 3 again as valuations (as before in
Definition 1) rather than Alloy instances. Alloy instances would need to satisfy
both M and C, but for abstract instances the satisfaction of the command
constraints C is only relevant if the model constraints M are satisfied.

By design, abstract instances abstract away the common constraints M of the
model and preserve the reasons for satisfying commands C, i.e., all valid exten-
sions (those satisfying the model) of the lower bounds up to the upper bounds
must satisfy the analyzed command. As an example, consider the abstract
instance in Fig. 2(b) where the lower bound consists of the displayed atoms
and relations and the upper bound is unbounded (B). Any valid extension of
the lower bound, e.g., Fig. 2(a), violates the assertion, as a student grades their
own assignment. We are interested in maximal abstract instance, i.e., an abstract
instance A that is maximal wrt. � (there is no abstract instance A′ with A′ �= A
and A � A′). A maximal abstract instance represents a maximal number of Alloy
instances.

Torlak and Jackson [28] define partial instances for KodKod, which is the tool
used by the Analyzer to translate the Alloy model into a boolean satisfiability
problem, as the lower bounds of the relational problem. The purpose in [28] is to
assist the solver. In contrast, our purpose is to provide information to engineers.
Since our abstract instances contain lower bounds, they have a flavor of partial
instances. However, the lower bounds of an abstract instance A may be smaller
than KodKod’s partial instances as M ensures that all represented instances I
include KodKod’s partial instances. The lower bounds of A may also be larger
than KodKod’s partial instances, if required for instances I to satisfy C.

4.1 Properties of Abstract Instances

We now present six general properties of abstract instances.
First, every concrete instance I from Definition 1 interpreted as bounds is

also an abstract instance (again setting LBI(r) = I(r) = UBI(r)) because
I |= M ∧ C. We say that an abstract instance A represents concrete instance I
iff I � A. Every concrete instance seen as an abstract instance only represents
itself, i.e., for all concrete instances I and I ′ we have I ′ � I ⇒ I ′ = I (by
unfolding the definitions). We are interested in generating abstract instances
that represent many concrete instances.

Second, some maximal abstract instances A are concrete instances, i.e.,
reducing any lower or increasing any upper bound of A would allow for valua-
tions I � A where I |= M but I �|= C. An example is shown in Fig. 3(a) where
the instance consisting of one Professor atom is a maximal abstract instance.



370 J. O. Ringert and A. Sullivan

Third, for a model M , command C, and bounds B, we typically have multi-
ple maximal abstract instances (incomparable wrt. the partial order �). As an
example, the run command of the model in Fig. 3(b) requires that instances
contain at least one atom of type Person. We denote by s and p the rela-
tions defined by signatures Student and Professor. The abstract instances A
(at least one student) and A′ (at least one professor) where |LBA(s)| = 1,
LBA′(s) = ∅, LBA(p) = ∅, |LBA′(p)| = 1, UBA(s) = UBA′(s) = UBB(s), and
UBA(p) = UBA′(p) = UBB(p) are both maximal abstract instances (reducing
any lower bound would not ensure the existence of a Person atom and upper
bounds are already maximal).2

Fourth, concrete instances may be represented by multiple maximal abstract
instances. As an example, consider the model shown in Fig. 3(b) and the concrete
instance consisting of a Student and a Professor atom. This concrete instance
is represented by both of the incomparable abstract instances A (at least one
student) and A′ (at least one professor). This observation means that maximal
abstract instances do not partition the set of instances they represent. There are
however always partitions of the set of concrete instances by abstract instances,
e.g., the trivial one where we treat concrete instances as abstract ones.

Fifth, from Definition 3, we can see that increasing a lower bound or decreas-
ing an upper bound of an abstract instance A (up to upper bounds in B) pre-
serves the abstract instance properties (as the set of valuations I � A becomes
smaller). In contrast, decreasing a lower bound or increasing an upper bound
may allow for new valuations I ′ � A that satisfy M but not C.

Finally, some maximal abstract instances have trivial bounds, e.g., when M
implies C the requirement I |= M ⇒ I |= C from Definition 3 becomes true.
Then all lower bounds of maximal abstract instances A are empty (∀r ∈ R :
LBA(r) = ∅) and all upper bounds correspond to upper bounds in B (∀r ∈
R : UBA(r) = UBB(r)). A common example is where an Alloy user executes an
empty run command to browse arbitrary instances. In this case, our abstraction,
which focuses on the analysis of the command, has nothing to preserve.

5 Computing Abstract Alloy Instances

We have seen in Sect. 4.1 that abstract instances are relatively easy to obtain by
computing concrete instances and translating them into bounds. However, these
abstract instances might not be very informative, as they represent a single
concrete instance. We thus aim to compute maximal abstract instances.

Our algorithm for computing a maximal abstract instance is illustrated in
Algorithm 1. First, a concrete instance I satisfying the model and command
constraints M ∧ C is computed by Alloy’s regular solver shown as a call to
solve(M∧C,B). From this concrete instance we start an iteration that increases
the bounds A (initialized as A ← I) in every iteration of the while loop, i.e.,
A′ � A. This iteration is necessary as upper and lower bounds may depend on
each other. The iteration terminates as lower bounds may only shrink to the
2 We oversimplify the case of inheritance and relations for illustrative purposes, see

our implementation in Sect. 5.1 for a more thorough handling.



Abstract Alloy Instances 371

Algorithm 1. Computation of an abstract instance for model M , command C
and bounds B
1: I ← solve(M ∧ C,B)
2: A ← I
3: A′ ← ∅
4: while A �= A′ do
5: A′ ← A
6: LBA ← minimize(LBA′) down to ∅
7: UBA ← maximize(UBA′) up to UBB

8: end while
9: return A

Algorithm 2. Computation of the check used for minimization in Algorithm 1 for
cand ⊂ LBA′ with bounds A′ andB, modelM , and commandC from Algorithm 1
1: M ′ ← M ∪ sigs4Bounds(cand,UBA′)
2: bounds ← expr4Bounds(cand,UBA′)
3: return (solve(M ′ ∧ bounds ∧ ¬C,B) == UNSAT)

empty set (∅) and upper bounds may grow at most up to B. The algorithm then
returns a maximal abstract instance A (by construction of the bounds).

To minimize and maximize bounds we use Delta Debugging [32]. Delta
Debugging computes minimal subsets of a set that satisfy a check criterion.
We can easily convert our bounds to sets (e.g.,

⋃
r∈R LBA′(r) is a set of atoms

and tuples) and back by tracking Alloy’s type information.
We show our implementation of check(cand) in Algorithm 2. A candidate cand

⊂ ⋃
r∈R LBA′(r) is valid if the abstract instance criterion from Definition 3 is sat-

isfied, i.e., for all I ′ within the bounds of the abstract instance I ′ |= M ⇒ I ′ |= C.
In Algorithm 2 the lower bounds we use for valuations I ′ are cand and the upper
bounds are UBA′ (for maximizing UBA′ check uses cand and LBA′). We encode
these as the constraint bounds (see Sect. 5.1). Finally, to evaluate the abstract
instance criterion, we invoke the solver and convert the universal quantification
over valuations I ′ into an existential one that satisfies M and violates C.

5.1 Encoding of Bounds in Alloy

Ideally, we would like to pass bounds A instead of B to Alloy’s solver Kod-
Kod [28]. However, the bounds used by KodKod are different from the ones
indicated in Definition 1, Definition 2, and Definition 3, e.g., KodKod does not
support inheritance and thus additional relations may be created in the trans-
lation to KodKod. Since our prototype implementation stays on the abstraction
level of Alloy, we encode bounds as additional signatures (sigs4Bounds) and con-
straints (expr4Bounds).

Method sigs4Bounds creates signatures with multiplicity lone extending the
primary signatures3 of the model to represent atoms, e.g., signatures created for
3 Alloy distinguishes between primary and subset signatures where atoms of subset

signatures always also belong to primary signatures.



372 J. O. Ringert and A. Sullivan

Fig. 4. Excerpt of encoding of bounds from Fig. 2 via signatures and constraints

the atoms shown in Fig. 2(a) are declared in Fig. 4, ll. 1–2. Method expr4Bounds
then uses this representation of atoms to express lower bounds by requiring the
existence of the atoms and tuples, e.g., for the lower bound in Fig 2 (b) see
Fig. 4, l. 4. Similarly, tuples are required by lower bounds, e.g., in Fig. 4, l. 5.
Whereas the constraints of lower bounds are local for individual elements, upper
bounds are global in the sense that we must constrain all atoms of a signature,
e.g., Fig. 4, l. 7, and all tuples of a relation at once, e.g., Fig. 4, l. 8. The upper
bound constraints in Fig. 4, ll. 7–8 are an excerpt of upper bounds initialized
from the instance in Fig. 2(a).

The use of a generic minimizer in Algorithm 1, which is unaware of dependen-
cies between tuples and atoms, may lead to cases where a tuple is present in the
lower or upper bounds when one of its atoms is not. In both cases, expr4Bounds
does not generate a constraint for the tuple, i.e., the constraint for the lower
bound is weaker and might fail (the larger cand set with the missing atom will
then be searched) and the constraint for the upper bound might be stronger and
may succeed (the larger set with the additional atom will then also be checked).

Note that our implementation uses APIs of the Alloy Analyzer and does not
explicitly create the syntax shown in Fig. 4. This has two advantages: (1) we do
not need to disambiguate fields with same names and (2) we can also constrain
signatures marked as private, e.g., the signature Ord in Alloy’s ordering module.

5.2 Running Time Complexity

We estimate the running time complexity of the algorithm in terms of Alloy’s
solver calls by Algorithm 1. Minimization and maximization with Delta Debug-
ging has a running time in O(N2). The while loop in Algorithm 1 leads to an
overall time complexity in O(N4) (worst case where every iteration adds/re-
moves only one element). In Algorithm 1, l. 6 N = |LBA′ | with |LBA′ | ≤ |I|.
In Algorithm 1, l. 7 N = |UBA′ | with |UBA′ | ≤ |UBB |. In both cases,
N ≤ ∑

r∈R |dom(R)|. Looking at the structure of Alloy models with signatures
sigs, fields fields and scope maxScope, we have N ∈ O(maxScope · |sigs| +
|fields|·maxScopemaxArity(fields)). Note that the size of I is often much smaller,
but this is not the case for |UBB |.

5.3 Different Upper Bound Kinds

We have defined abstract instances in Definition 3 without any restriction on the
shape of bounds. The running time analysis in Sect. 5.2 shows that restrictions



Abstract Alloy Instances 373

Fig. 5. Abstract instance visualized on top of a concrete instance (UB is unbounded)

on the kind of upper bounds we compute may improve running times. We have
implemented four kinds of upper bounds and briefly describe these here.

Exact. Exact upper bounds are the most natural variant used in Sect. 5. Every
atom and every tuple have to be considered when maximizing the upper bound
of an abstract instance. The number of elements to find a maximal subset for is
in O(maxScope · |sigs| + |fields| · maxScopemaxArity).

Instance or None. The upper bound for each signature and field r ∈ R is as
in the concrete instance UBA(r) = UBI(r) or unrestricted UBA(r) = UBB(r).
The number of elements to find a maximal subset for is in O(|sigs| + |fields|).
Instance. The upper bound is always the instance. There is no call to maximize
in Algorithm 1, l. 7 and UBA remains as initialized from UBI .

None. We do not consider any restriction of the upper bound. There is no call
to maximize in Algorithm 1, l. 7 and UBA is instead treated as UBB .

The latter two bound kinds reduce the overall running time complexity from
O(N4) to O(N2). For the first three kinds an abstract instance always exists
(in the worst case it only represents I); however, kind None is incomplete, i.e.,
some concrete instances require upper bounds (see Fig. 3(a)).

5.4 Implementation and Visualization

We have implemented our work as an extension to the latest stable release of the
Analyzer, version 6.0.0 [2] (our implementation is available from [20]). Impor-
tantly, since we extend the main IDE for Alloy, users can maintain their cur-
rent workflow while gradually exploring the new functionality. Users can access
abstract instances during the standard enumeration process, which occurs in the
VizGUI. When viewing a specific instance, the user is able to select the “Abs”
button which will update the active display to present the associated abstract
instance. The lower bound of the abstract instance is displayed visually in the
main panel, while the upper bound is conveyed textually below.



374 J. O. Ringert and A. Sullivan

Fig. 6. Abstract instance visual-
ized independently of any concrete
instance (UB is unbounded)

Users are given two display options. First,
the “Over Instance” view will highlight the
lower bound of the abstract instance, with
any excluded portion of the Alloy instance
grayed out. As an example, for the Grade-
book model from Fig. 1, Fig. 5 shows a possi-
ble instance using the “Over Instance” visu-
alization. Second, the “Independent” view
which will visualize just the lower bound of
the abstract instance. As an example, Fig. 6
shows the same instance as that in Fig. 5
but with the “Independent” view. In addition,
users can also select which of the four upper
bound kinds from Sect. 5.3 to use. The user
can switch back to the original instance using
the “Orig” button.

6 Evaluation

To evaluate abstract instances, we use a collection of 78 benchmark Alloy models.
We executed all experiments on Ubuntu 22.04 LTS (64 Bit) with an Intel Core
i7-7700 K 4.20 GHz processor and 32 GB RAM. We use Alloy’s default options
and selected MiniSatJNI as SAT solver.

We address the following research questions, where by abstract instance we
always mean maximal abstract instance:

– RQ1: What is the time overhead of generating an abstract instance?
– RQ2: How do the sizes of abstract and concrete instances compare?
– RQ3: As concrete instances are enumerated, what is the diversity of the

underlying abstract instance?
– RQ4: What is the time/size/diversity impact of the upper bound kind?

Table 1. Subjects

Subject #M Avg.S Avg.R #C Avg.C
ARepair 33 4.27 2.91 36 1.10
Book 28 4.46 3.20 34 1.21
Example 17 6.71 7.76 41 2.41

Set Up. To evaluate abstract ins-
tances, we rely on meaningful com-
mands. Therefore, we focus on
two collections of models used to
illustrate how Alloy works: mod-
els from the Alloy textbook [9]
(Book) and models included as
examples in the official Analyzer release (Examples). In addition, we include
models used to evaluate recent automated repair work for Alloy (ARepair)
whose commands execute faulty portions of the model. For each model, we con-
sider every command present; however, we filter out commands that are: (1)
empty (“run {}”), which only execute the facts of the model, (2) commands that
produce no instances and (3) commands that use temporal logic, which is new



Abstract Alloy Instances 375

to Alloy 6 and not currently supported by our implementation. After this filter-
ing, we are left with 28 Book models, 17 Example models, and 33 ARepair
models. For each collection of models, Table 1 gives the following information to
convey the size and number of models in the benchmarks: Column #M shows
the number of models, #Avg_S is the average number of signatures per model,
#Avg_R is the average number of relations per model, #C is the total number
of commands, and #Avg_C is the average number of commands per model. For
each command, we enumerate up to the first 10 instances, with an enumeration
timeout of 10min. For research questions 1–3, we use Exact upper bounds as a
default.

6.1 RQ1: Overhead

Abstract instances are generated from an existing concrete instance that has been
enumerated for a command. To explore the overhead of this process, Fig. 7(a)
depicts a boxplot that shows the distribution of the ratio between the time it
takes to generate the first abstract instance compared to the time to generate the
first concrete instance. A ratio larger than 1 means the abstract instance took
longer to produce than the paired concrete instance. We consider only the time to
the first instance because the Analyzer uses incremental SAT solvers; therefore,
the time to produce the first instance includes all the novel effort to resolve the
executed constraints, while future instances are often quickly produced due to
the ability to reuse previous work. There are 38, 33 and 34 abstract-concrete
instances pairs in the boxplot for ARepair, Book and Example respectively.
Example excludes two commands which timed out generating the first instance.
The first quartile to third quartile ratios range from 2.14 to 4.5 for ARepair,
from 1.84 to 11.81 for Book and from 5.35 to 62.10 for Example.

These results indicate that abstract instances frequently take longer to pro-
duce compared to their paired concrete instance. However, this does not mean
abstract instances have a prohibitive overhead. In particular, finding concrete
instances is quick: all concrete instances are produced in less than .5 s. In com-
parison, 61 of the abstract instances take less than 2 s to produce, while 34
abstract instances take between 2 s and 10 s to produce, which is a slight over-
head but not unreasonable. However, 17 abstract instance take longer than 10 s to
produce, including 5 abstract instances that take longer than one minute. These
5 abstract instances all use a larger scope than the default scope (3) and include
the “ordering” module. In fact, across all three data sets, all but two outliers
capture abstract instances that come from models that uses the “ordering” mod-
ule. While ARepair contains 1 abstract instance that includes the “ordering”
module, Book has 10 and Example has 30, which directly translates into the
increasingly larger ratios observed in Fig. 7(a).

On average, abstract instances have a minor overhead to produce; however,
if the “ordering” module is present, the time overhead quickly increases. The
“ordering” module bloats the time to generate an abstract instance because the
module increases the size of the upper bound since it places an ordering on the
atoms of a signature and all possible orders must be considered.



376 J. O. Ringert and A. Sullivan

ARepair Book Examples

100

101

102

103

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
T
im

e

ARepair Book Examples

0

0.5

1

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
Si
ze

ARepair Book Examples

0.1

0.2

0.3

0.4

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
D
iv
er
si
ty

(a) (b) (c)

Fig. 7. Comparison of abstract instance to concrete instance performance

6.2 RQ2: Size Comparison

Given that abstract instances are meant to refine concrete instances, we expect
that abstract instances are, on average, smaller than concrete instances. To
explore if this holds, Fig. 7(b) depicts a boxplot showing the distribution of
size ratios, which is calculated by taking the size of the abstract instance and
dividing it by the size of the corresponding concrete instance used to produce
the abstract instance. We define the size of a concrete instance as the number
of its atoms and tuples and we define the size of an abstract instance as the
number of atoms and tuples in the lower bound plus the number of relations
constrained in by the upper bound. A ratio of less than 1 means the abstract
instance is smaller than the paired concrete instance. There are 339, 253, and
282 abstract-instance pairs in the boxplot for ARepair, Book and Examples
respectively. The first quartile to third quartile ratios range from 0.31 to 0.58
for ARepair, from 0.31 to 0.67 for Book and from 0.17 to 0.53 for Example.

The results highlight that on average the abstract instance is smaller than
the concrete instance, and often the abstract instance reduces the size by at
least half. Rarely, the abstract instance ends up the same size or larger than the
concrete instance. This occurs just 6, 6, and 1 times for ARepair, Book and
Examples respectively. In the opposite direction, for 30 ARepair instances, the
abstract instance produced is an empty instance. This is expected as all of these
instances are associated with the model “student16” that is under-constrained
due to the student failure to write anything for the predicates. As a result,
when the faulty predicates are run, only the facts of the model are enforced.
The results also highlight that while models that use the “ordering” module will
have longer abstract instance generation times, these models do not consistently
produce larger abstract instances, as Example models has the smallest quartile
1 to quartile 3 range despite having the most models that use “ordering.”

We find that the abstract instance noticeably reduce the size of the con-
crete instance, highlighting that commonly half or more of the information
in an instance is there regardless of the explicitly executed constraints of the
command.



Abstract Alloy Instances 377

6.3 RQ3: Diversity

To gain insight into how many different abstract instances the user will
encounter, Fig. 7(c) depicts a boxplot showing the distribution of diversity ratios,
which is calculated by taking the number of unique abstract instance and divid-
ing it by the number of concrete instances for each command. We include only
those commands that were able to produce 10 concrete instances. A ratio of
less than one means there were fewer unique abstract instances than concrete
instances, with a ratio if 0.1 meaning all 10 concrete instances reduced to the
same abstract instance. There are 33, 21 and 25 commands in the boxplot for
ARepair, Book and Examples respectively. The first quartile to third quartile
ratios range from 0.1 to 0.2 ARepair, from 0.2 to 0.3 Book and from 0.1 to 0.2
Example. The median is equivalent to the 1st quartile for all data sets.

The results demonstrate that ARepair and Example models frequently
produce only 1 or 2 abstract instances for the first 10 instances enumerated.
For both data sets, 17 of their commands produce a single abstract instance. In
contrast, Book models have a little bit more diversity, with only 4 commands
producing a single abstract instance. However, even for Book, no command
produces more than 4 unique abstract instances. Since a user is likely to inspect
the first few instances, but maybe not too many more, our results indicate that
the user is often looking at instances that all satisfy the explicitly executed
commands in the exact same way. Therefore, as future work, we plan to explore
how to directly enumerate unique abstract instances, which will ensure users are
able to quickly view diverse ways the command can be satisfied.

6.4 RQ4: Impact of Upper Bound Kind

As outlined in Sect. 5.3, abstract instances can be calculated with four differ-
ent upper bounds. While Exact is the default, Fig. 8 compares the performance
across all four upper bound kinds. In Fig. 8, E represents Exact, I represents
Instance, IoN represents Instance or None and N represents None. Across the
performance metrics, None consistently represents fewer data points as None
is incomplete for 41 of the commands in the evaluation. For the other three
bounds, there is a minor difference in the number of data points, as some of the
more time expensive upper bound kinds occasionally timeout while enumerating
instances.

Figure 8(a) compares the overhead of each upper bound kind by depicting the
ratio between the time to generate the abstract instance and generate the con-
crete instance. We again look at the time to produce the first instance. There are
103, 105, 105 and 64 abstract-concrete pairs in the boxplot for Exact, Instance,
Instance or None and None respectively. The results in Fig. 8(a) highlights that
on average, Exact is the most expensive upper bound and Instance is the fastest
upper bound, both of which is expected.



378 J. O. Ringert and A. Sullivan

E I IoN N
10−1

100

101

102

103

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
T
im

e

E I IoN N

0

0.5

1

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
Si
ze

E I IoN N

0.2

0.4

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
D
iv
er
si
ty

(a) (b) (c)

Fig. 8. Comparison of performance for different upper bounds

Figure 8(b) compares the size of the abstract instances produced by the dif-
ferent upper bound kinds. We again present size as a ratio of the size of the
abstract instance divided by the size of the corresponding concrete instance.
There are 871, 913, 901, 570 abstract-concrete pairs in the boxplot for Exact,
Instance, Instance or None and None respectively. For Exact, Instance or None
and None, the size performance is very similar. In contrast, Instance consis-
tently produces smaller abstract instances than all other three upper bound
kinds. While the other three produce just 30 empty abstract instances, all for
the “student16” submission, Instance produces 210 abstract instances without
lower bounds. This translates directly into the observed performance difference
in size.

Figure 8(c) compares the diversity of generated abstract instances produced
by the different upper bound kids. We again present diversity as a ratio of the
number of unique abstract instances divided by the number of unique concrete
instances per command that do enumerate 10 concrete instances. There are 77,
86, 83 and 54 commands in the boxplot for Exact, Instance, Instance or None
and None respectively. As Fig. 8(c) shows, the different upper bound kinds have
very similar performance in terms of diversity. Exact upper bounds does produce
slightly more abstract instances on average across the first 10 instance, with all
other upper bounds having a median of 0.1, meaning only one unique abstract
instance, while Exact ’s median is 0.2.

6.5 Threats to Validity

There are two main threats to validity for our results. First, we selected our
benchmark models to eliminate the likelihood of encountering trivial commands.
Therefore, our results may not generalize to other Alloy models which may use
different operators and signature constraints than those that appear in our eval-
uation models. Second, our implementation may have bugs. To mitigate this
threat we have used existing components where possible, e.g., Delta Debug-
ging [32] and Alloy’s APIs and solver (see Sect. 5.1). In addition, we have added



Abstract Alloy Instances 379

assertions and ran our algorithms on all available models. Before Algorithm 1,
l. 4 we check whether solve((M ∪ sigs4Bounds(A)) ∧ expr4Bounds(A) ∧ C,B) is
satisfiable (otherwise expr4Bounds is incorrect as I must be a solution). In Algo-
rithm 2 we check that solve(M ′ ∧ bounds ∧ C,B) is satisfiable, i.e., that there
are instances represented by the candidate.

7 Related Work

Explaining Alloy Instances. Our motivation for developing abstract
instances is to help users understand why a given instance was generated by the
Analyzer for an executed command. There have been two notable efforts related
to helping explain Alloy instances. First, Amalgam is an extension to the Ana-
lyzer, which uses provenance chains to inform the user why a specific tuple does
or does not appear in the scenario [14]. Unlike abstract instances, Amalgam’s
provenance chain includes the facts of the model and thus it is possible for the
provenance chain of a tuple to never reference the explicitly invoked formulas of
the command. Second, recent work [7] explored how presenting novice users with
a combination of instances and non-instances for a command can help the user
understand a modeled constraint. This work uses tailored instances that were
selected for the study and thus does not try to influence an active enumeration.

Instance Enumeration for Alloy. Our technique is closely related to tech-
niques which look to enhance the Analyzer’s instance enumeration process. One
traditional approach is to reduce the number of instances through symmetry
breaking, where the goal is to remove isomorphic instances [11,22]. Beyond sym-
metry breaking, several past projects improve instance enumeration by (1) influ-
encing the order of instances [24,25] and (2) trying to narrow what scenarios are
generated using a specific criteria, e.g., abstract functions [26], minimality [15],
maximality [33], field exhaustiveness [17], and coverage [18,27]. All of these tech-
niques reduce the number of instances that are generated by applying additional
criteria to how any new instance generated must differ from the previous set
of instances. Of these, Aluminium, which enumerates minimal instances, is the
most closely related to our technique. In contrast to abstract instances, Alu-
minium produces complete instances, which can prevent Aluminium from fur-
ther reducing the information presented as there are lower bounds enforced by
the constraints of the model that Aluminum will be required to meet to ensure
the instance satisfies the facts of the model, in addition to the command.

8 Conclusion

This paper introduces the concept of abstract instances for the Alloy modeling
language. These instances serve to remove information in the instance that is not
directly relevant to the executed predicate or assertion invoked by the command.
Our experimental results show that abstract instances can often be produced
with a small overhead but do successfully reduce the information presented to



380 J. O. Ringert and A. Sullivan

the user. In addition, our results reveal that an abstract instances often represent
multiple concrete instances. As future work, we plan to conduct a user study to
evaluate how abstract instances help users understand analysis results, explore
how we can efficiently enumerate unique abstract instances, and extend our
approach to handle Alloy’s new temporal logic extension.

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J.C., Song, D.: Towards a formal
foundation of web security. In: Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, Edinburgh, United Kingdom, 17–19 July 2010,
pp. 290–304. IEEE Computer Society (2010). https://doi.org/10.1109/CSF.2010.
27

2. Alloy: Alloy Tools GitHub. https://github.com/AlloyTools (2022). Accessed 5 2022
3. Alloy 6 Language Reference. https://alloytools.org/spec.html (2022). Accessed 8

2022
4. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-

mation from UML to alloy. Softw. Syst. Model. 9(1), 69–86 (2010). https://doi.
org/10.1007/s10270-008-0110-3

5. Cunha, A., Garis, A., Riesco, D.: Translating between Alloy specifications and
UML class diagrams annotated with OCL. Softw. Syst. Model. 14(1), 5–25 (2013).
https://doi.org/10.1007/s10270-013-0353-5

6. Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid, S.: Korat-API: a frame-
work to enhance Korat to better support testing and reliability techniques. In: SAC
(2018)

7. Dyer, T., Nelson, T., Fisler, K., Krishnamurthi, S.: Applying cognitive principles
to model-finding output: the positive value of negative information. Proc. ACM
Program. Lang. 6(OOPSLA), 1–29 (2022). https://doi.org/10.1145/3527323

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

10. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019). https://doi.org/10.1145/3338843

11. Khurshid, S., Marinov, D., Shlyakhter, I., Jackson, D.: A case for efficient solu-
tion enumeration. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol.
2919, pp. 272–286. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24605-3_21

12. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: class diagrams analysis using alloy
revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 592–607. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24485-8_44

13. Marinov, D., Khurshid, S.: TestEra: a novel framework for automated testing of
Java programs. In: ASE (2001)

14. Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of “why” and
“why not”: enriching scenario exploration with provenance. In: Bodden, E., Schäfer,
W., van Deursen, A., Zisman, A. (eds.) Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
4–8 September 2017, pp. 106–116. ACM (2017). https://doi.org/10.1145/3106237.
3106272

https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1109/CSF.2010.27
https://github.com/AlloyTools
https://alloytools.org/spec.html
https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/s10270-008-0110-3
https://doi.org/10.1007/s10270-013-0353-5
https://doi.org/10.1145/3527323
https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-3-540-24605-3_21
https://doi.org/10.1007/978-3-540-24605-3_21
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1145/3106237.3106272
https://doi.org/10.1145/3106237.3106272


Abstract Alloy Instances 381

15. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: Notkin, D., Cheng, B.H.C.,
Pohl, K. (eds.) 35th International Conference on Software Engineering, ICSE’13,
San Francisco, CA, USA, 18–26 May 2013, pp. 232–241. IEEE Computer Society
(2013). https://doi.org/10.1109/ICSE.2013.6606569

16. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: LISA (2010)

17. Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive testing. In: FSE
(2016)

18. Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: specification-
guided coverage for model finding. In: Havelund, K., Peleska, J., Roscoe, B., de
Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 568–587. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95582-7_34

19. Ringert, J.O., Sullivan, A.K.: Abstract alloy instances artefact (2022). https://doi.
org/10.5281/zenodo.7339931

20. Ringert, J.O., Sullivan, A.K.: Abstract alloy instances code (2022). https://github.
com/jringert/alloy-absinst

21. Samimi, H., Aung, E.D., Millstein, T.: Falling back on executable specifications.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 552–576. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14107-2_26

22. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. In: SAT (2001)

23. Sullivan, A.: Hawkeye: user-guided enumeration of scenarios. In: Jin, Z., Li, X.,
Xiang, J., Mariani, L., Liu, T., Yu, X., Ivaki, N. (eds.) 32nd IEEE International
Symposium on Software Reliability Engineering, ISSRE 2021, Wuhan, China, 25–
28 October 2021, pp. 569–578. IEEE (2021). https://doi.org/10.1109/ISSRE52982.
2021.00064

24. Sullivan, A.: Hawkeye: user guided enumeration of scenarios. In: ISSRE (2021)
25. Sullivan, A., Jovanovic, A.: Reach: refining alloy scenarios by size. In: ISSRE (2022)
26. Sullivan, A., Marinov, D., Khurshid, S.: Solution enumeration abstraction: a model-

ing idiom to enhance a lightweight formal method. In: Ait-Ameur, Y., Qin, S. (eds.)
ICFEM 2019. LNCS, vol. 11852, pp. 336–352. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32409-4_21

27. Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation and
mutation testing for alloy. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017,
pp. 264–275. IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.
31

28. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71209-1_49

29. Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic
hardware-aware exploit synthesis: the CheckMate approach. IEEE Micro 39(3),
84–93 (2019)

30. Nokhbeh Zaeem, R., Khurshid, S.: Contract-based data structure repair using alloy.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 577–598. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14107-2_27

31. Zave, P.: Reasoning about identifier spaces: how to make chord correct. IEEE
Trans. Softw. Eng. 43(12), 1144–1156 (2017). https://doi.org/10.1109/TSE.2017.
2655056

https://doi.org/10.1109/ICSE.2013.6606569
https://doi.org/10.1007/978-3-319-95582-7_34
https://doi.org/10.5281/zenodo.7339931
https://doi.org/10.5281/zenodo.7339931
https://github.com/jringert/alloy-absinst
https://github.com/jringert/alloy-absinst
https://doi.org/10.1007/978-3-642-14107-2_26
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1109/ISSRE52982.2021.00064
https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-642-14107-2_27
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1109/TSE.2017.2655056


382 J. O. Ringert and A. Sullivan

32. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Soft. Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

33. Zhang, C., et al.: Alloymax: bringing maximum satisfaction to relational specifi-
cations. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 155–167. ESEC/FSE 2021, Association for Computing Machinery, New
York, NY, USA (2021)

https://doi.org/10.1109/32.988498


Monitoring the Internet Computer

David Basin1 , Daniel Stefan Dietiker2 , Srđan Krstić1(B) ,
Yvonne-Anne Pignolet2 , Martin Raszyk2 , Joshua Schneider1(B) ,

and Arshavir Ter-Gabrielyan2

1 Department of Computer Science, ETH Zürich, Zurich, Switzerland
{basin,srdan.krstic,joshua.schneider}@inf.ethz.ch

2 DFINITY, Zurich, Switzerland
{danielstefan.dietiker,yvonneanne,martin.raszyk,

arshavir.ter.gabrielyan}@dfinity.org

Abstract. The Internet Computer (IC) is a distributed platform for
Web3 applications, spanning over 1,200 nodes worldwide. We present
results on applying runtime monitoring to the IC. We use the MonPoly
monitor and its expressive policy language with quantifiers over infinite
domains, aggregations, and past and future operators. We formalize com-
plex policies that cover common kinds of production incidents and IC-
specific protocol properties, including malicious behaviors and infrastruc-
ture outages. Using these policies, we evaluate MonPoly’s performance
in a large-scale case study that includes logs from both production and
testing environments. We find, for example, that MonPoly performs well
on testing logs, and that half of our policies applicable to production logs
can be monitored in an online setting. Overall, our policies and IC traces
constitute a new benchmark for first-order temporal logic monitors.

Keywords: Runtime monitoring · Temporal logic · Internet Computer

1 Introduction

In runtime monitoring, a monitor observes a system’s execution, typically
encoded as a sequence of events, checks whether the execution complies with
a policy formalizing the system’s correct behavior, and outputs detected vio-
lations. Online monitors incrementally process an unbounded stream of events
produced by a running system, whereas offline monitors process a finite log.
Good online monitors output timely violations, while good offline monitors pro-
cess the log quickly, i.e., the former have low latency, whereas the latter have
high throughput.

A real-world system’s execution contains complex events, which include arbi-
trary data values. Such systems also require complex checks, for example based
on aggregated values, dependencies between values, and possibly values coming
from events spread over time. It is therefore important that monitors support

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 383–402, 2023.
https://doi.org/10.1007/978-3-031-27481-7_22

https://doi.org/10.5281/zenodo.7340850
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_22&domain=pdf
http://orcid.org/0000-0003-2952-939X
http://orcid.org/0000-0003-2125-2146
http://orcid.org/0000-0001-8314-2589
http://orcid.org/0000-0003-0837-7948
http://orcid.org/0000-0003-3018-2557
http://orcid.org/0000-0001-8253-4513
http://orcid.org/0000-0003-0292-7750
https://doi.org/10.1007/978-3-031-27481-7_22


384 D. Basin et al.

expressive policy languages and complex events. Furthermore, distributed sys-
tems pose additional monitoring challenges as policies may refer to (only partially
ordered) events coming from different distributed components.

While many monitors support expressive policy languages [12,29,30] and
there exist approaches for monitoring distributed systems [9,13,36,39] (Sect. 6),
there is a substantial gap to bridge when applying them in the real world. With a
notable exception [18], current literature has no answers to questions concerning
policy engineering, measuring effectiveness, maintainability, as well as process
organization, roles, and responsibilities in the context of runtime monitoring.

In this paper, we report on our experience in monitoring the Internet Com-
puter (Sect. 2), a complex distributed system that facilitates the governance and
execution of Web3 applications, i.e., applications processing data and financial
assets with decentralized ownership and control of the applications’ data, assets,
and code. The Internet Computer is itself governed by a Web3 application, for
example letting stakeholders vote on the Internet Computer’s configuration and
the addition and replacement of the machines that provide computing power
to the system. The Internet Computer also possesses numerous other features
that are challenging to monitor, both individually and when combined. These
features include a long-lived execution with high event rates, a software archi-
tecture with multiple layers, dynamic configuration, and continuous evolution.
Our case study is the outcome of a collaboration between Internet Computer
developers at Dfinity and researchers in monitoring at ETH Zürich.

Assurance of the Internet Computer’s correct behavior is critical for its stake-
holders as it is a complex system managing financial assets. We show how
runtime monitoring complements system testing and metric-based observabil-
ity, two existing assurance techniques. In particular, our case study shows that
MonPoly [11,12], a state-of-the-art monitor supporting an expressive policy lan-
guage, is well-suited for monitoring logs obtained from system tests. Moreover,
MonPoly can process the event stream from the production system in real time
for some policies, but for other, more complex policies, it incurs a monitoring
backlog. We identify several opportunities for future optimizations and report
on lessons learned.

Overall, we make the following contributions: (1) We formalize a set of policies
that express common symptoms of production incidents in the Internet Com-
puter as well as domain-specific properties of its protocol, including malicious
behaviors and infrastructure outages that the protocol must tolerate (Sect. 3).
(2) We use these policies for a quantitative evaluation of MonPoly’s performance
(Sect. 4) and its applicability in both testing and production scenarios. (3) We
obtain qualitative insights about the integration of runtime monitoring into a
complex production system. In particular, we report on insights on policy engi-
neering and monitoring maintainability (Sect. 5). (4) We publish the artifact [7]
containing the logs, policies, and code used in this case study. It can be used to
benchmark monitors for policy languages that support first-order temporal logic
with aggregations.

We believe that our results are valuable to others applying runtime monitor-
ing in practice (Sect. 7). Our policies formalizing infrastructure outages, although



Monitoring the Internet Computer 385

specific to Internet Computer in their current form, generalize well to other sys-
tems. Moreover, our policies that formalize properties of the Internet Computer’s
protocol may be adapted to other distributed systems with replicated execution
proceeding in rounds.

2 Background

Runtime Monitoring. A runtime monitor [4,25] verifies whether a running sys-
tem satisfies a policy by observing the system’s execution. We now briefly
describe the MonPoly monitor [12], its policy language called metric first-order
temporal logic (MFOTL) [10], and data-parallel monitoring [38].

We fix a set of event names E, an infinite domain D of values, and an infinite
set V of variables such that E, D, and V are pairwise disjoint. Let T be a set of
terms over variables in V. In the case of MonPoly, the domain D contains integers,
floats, and strings, and the constant and function symbols available in terms
provide basic arithmetic operations over integers and floats. For example, x + 4
is a well-formed term. Let Ω be a set of aggregation functions that map multisets
over D to D∪{⊥}. For example, SUM ∈ Ω computes SUM({|1, 1, 3, 4, 4, 5|}) = 18,
but SUM(N) = ⊥ as the result is infinite. Each name r ∈ E has an arity ι(r) ∈ N.
An event r(d1, . . . , dι(r)) is an element of E × D∗ and di ∈ D are its parameters.
Let I be the set of nonempty intervals [a, b) := {x ∈ N | a ≤ x < b}, where a ∈ N

and b ∈ N ∪ {∞}. MFOTL formulas ϕ are defined inductively, where r, x, x̄, t,
t̄, ω, and I range over E, V, V∗, T, T∗, Ω, and I, respectively:

ϕ ::= r(t̄) | t = t | ¬ϕ | ϕ ∨ ϕ | ∃x̄. ϕ | I ϕ | I ϕ | ϕ SI ϕ | ϕ UI ϕ
| x ← ω t; x̄ ϕ | let r(x̄) := ϕ in ϕ

The set fv(ϕ) contains ϕ’s free variables. Formulas of the form r(t̄) are called
predicates and require |t̄| = ι(r). The temporal operators I (previous), I

(next), SI (since), and UI (until) may be nested arbitrarily. The aggregation
operator r ← ω t; ḡ ϕ requires ḡ ∪ fv(t) ⊆ fv(ϕ) and r /∈ fv(ϕ). The let operator
let r(x̄) := ϕ in ψ requires x̄ = fv(ϕ) and it (re)defines ι(r) = |x̄| in ψ. We distin-
guish the let predicates (defined by a let operator) from the input predicates. We
derive other operators: truth � := ∃x. x = x, inequality t1 �= t2 := ¬(t1 = t2),
conjunction ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), and once �I ϕ := � SI ϕ.

A valuation v is a mapping V → D, assigning domain elements to variables.
We write v[x̄ �→ d̄] for the function equal to v, except that the variables x̄ are
mapped to values d̄, where |x̄| = |d̄|. Overloading notation, v is extended to
the domain T, evaluating the term t based on the valuations of fv(t). A trace is
an infinite sequence (τi,Di)i∈N of timestamp (τi ∈ N), database (Di ∈ 2E×D

∗
)

pairs. Timestamps in a trace are monotone (∀i. τi ≤ τi+1) and progressing
(∀τ. ∃i. τ < τi). Databases are finite. Given a trace ρ = (τi,Di)i∈N, we write
ρ[r(x̄) �→ R] for the trace ρ′ = (τ ′

i ,D
′
i)i∈N with τ ′

i = τi and D′
i = Di − {r(d̄) |

d̄ ∈ Dι(r)} ∪ {r(map(v, x̄)) | v ∈ R(i)} for all i ∈ N, where R is a function from
natural numbers to sets of valuations. The function map(f, [d1, . . . , dn]) returns



386 D. Basin et al.

Fig. 1. Semantics of MFOTL

[f(d1), . . . , f(dn)]. The relation v, i |=ρ ϕ (Fig. 1) defines the satisfaction of the
formula ϕ for a valuation v at an index i with respect to the trace ρ.

A runtime monitor like MonPoly monitors an MFOTL policy formula ϕ by
incrementally observing a finite prefix of some execution trace and computing a
set of valuations and indices that satisfy ϕ given the observed prefix. The formula
ϕ typically formalizes the negation of a policy, i.e., a desired system property,
such that each valuation–index pair indicates a violation of the policy.

We distinguish between events and log entries, which are text strings reported
by a running system. For monitoring, a log entry like “[WARN] TLS handshake
failed” is mapped to zero or more events like TLSError() and Log(. . . , WARN, . . . ).
A recent survey [25] overviews existing monitoring tools and their languages.

Target System. The Internet Computer (IC) [40] is a public, blockchain-based
distributed platform for general-purpose Web3 applications (apps), also known
as smart contracts. The IC’s distributed nature and its replication are transpar-
ent to the app developers and users. Users submit their requests and the apps
process them, possibly communicating with other apps, and reply back to the
users.

The machines (nodes) running the IC’s protocol are partitioned into sub-
nets [40] (currently 13–40 nodes), each replicating and executing a set of apps.
Thus, unlike most other blockchain-based platforms, the IC does not employ a
global consensus protocol; instead, nodes participate in consensus only among
their subnet peers. Each subnet maintains its own (small) blockchain instance,
characterized by blocks each occurring at a height (the block’s position in the
chain). Besides the metadata (e.g., timestamps), blocks contain app requests
from users and from apps on other subnets. Each subnet produces blocks at rates
as high as ca. 0.5–1.0 blocks/s. To ensure that consensus is not just fast, but also
trustworthy, each subnet’s nodes are hosted on servers distributed among many
stakeholders, e.g., data center providers from multiple countries and jurisdic-
tions. A special app called registry maintains the IC configuration (e.g., active
nodes and their assignment to subnets) and logs configuration changes.

The IC currently consists of more than 1,200 nodes, hosting ca. 150,000
apps [3]. The IC generates ca. 1,500 log entries per second, i.e., over 400 GB



Monitoring the Internet Computer 387

Fig. 2. Overview of the IC

of logs per day across all nodes. Each node has four layers (Fig. 2): (i) the peer-
to-peer layer reliably disseminates information among nodes; (ii) the consensus
layer validates and orders the requests to the apps; (iii) the message routing
layer delivers those requests to the apps; and (iv) the execution layer runs the
apps.

System Testing and Metrics. The development process of distributed systems
such as the IC involves various kinds of testing. Here we focus on system testing,
i.e., end-to-end testing of the complete system in isolation from the production
environment. In system testing, a new software version, constituting the system
under test (SUT), is deployed over a dedicated testing infrastructure. Requests
are then sent to the SUT via its public interface. Optionally, the SUT is manip-
ulated in a controlled way, modeling effects like network failures or configuration
changes. Finally, the test checks if the SUT responded to all the requests cor-
rectly.

Unlike runtime monitoring, system tests do not check if the sequence of states
that arise during the system execution is correct. Instead, they only check the
system’s final output. Moreover, scenarios covered by system testing are fixed a
priori. These aspects limit the issues that can be potentially detected by system
testing.

Even if the system is well-tested, detecting, e.g., unforeseen real-world attacks
requires observability, i.e., the degree to which the internal state can be deter-
mined based on system’s output [28]. Observability is crucial also for other
requirements that are not covered by system testing: auditing, accounting,
performance assessments, and design feedback [37]. For example, observability
enables engineers to recognize failures and users to confirm whether the system
does what is promised.

In practice, distributed systems typically output additional data, called met-
rics, into an external centralized metrics database [37]. IC’s metrics enable
humans to observe and visualize, e.g., the height of the blockchain or the number
of requests submitted to a subnet. Programmatic rules running atop of the met-
rics database, called alerts, can send notifications, e.g., to the developers of the
IC, whenever the block production rate drops below a threshold value. Metrics
are a lossy representation of the system state as they are locally preprocessed
before being sent. As they do not record the context that has lead to an alert,
developers need other data sources, like logs, to find an alert’s root cause. Fur-
thermore, metrics are typically collected periodically (as defined by the metrics



388 D. Basin et al.

database), which is not suitable for checking the precise temporal evolution of
the system’s state.

3 Policies

In this section, we first describe how we devised new IC policies (Sect. 3.1) and
then present a selection of those policies that we formalized (Sect. 3.2).

3.1 Methodology

Operational concerns were the main driver for the policies we formulated. In
particular, we wanted to ensure that logs are produced consistently, abnormal
node behavior can be detected, and crucial properties of the IC protocol (like
agreement on requests, progress, and recovery from failure [40]) hold. We did
not aim to exhaustively cover all properties of the IC. We focused instead on
aspects that cannot be sufficiently covered by existing system tests and metric-
based alerts. For example, system tests cannot detect malicious behavior in the
production system, and metrics are ill-suited to observe a subnet’s behavior
holistically.

We started with high-level, natural-language specifications based on the exist-
ing logging instrumentation provided by the IC software engineers. In most cases,
however, the logged information was insufficient for monitoring. To bridge this
gap, we proceeded iteratively; each iteration started with a formalization attempt
for a high-level specification. Since this required precise knowledge about which
events are observable from which logs, we consulted with the engineers who
provided insights on the implementation of particular system components and
extended the log messages when necessary. In some cases, the developers con-
cluded that logging the requested events was infeasible, so the affected policies
had to be abandoned (see also Sect. 5).

Next, we performed preliminary monitoring of the policies on sample logs and
analyzed the output. We then triaged each violation, classifying it as (1) a true
bug in the system, (2) an imprecise policy due to insufficient understanding
of the system, or (3) a formalization error, e.g., due to typos or an incorrect
understanding of MFOTL semantics. In some cases, we could not easily triage
the violation. We then contacted the IC software engineers who either provided
insights for improving the policy or, in case of true bugs, submitted bug reports
to IC’s internal issue tracker. To date, more kinds of true bugs have been discov-
ered while developing the preliminary policies than while monitoring their final
version.

3.2 Policy Formulas

Our policies cover three broad categories, which differ in their scope and gen-
erality, and which demonstrate a variety of runtime monitoring use cases. We
present policy formulas for just a few selected policies. These policies showcase



Monitoring the Internet Computer 389

Table 1. Summary of MFOTL-based IC policies

Policy Past Fut Agg Loc Reg Test Prod Ops1 Ops2

clean-logs � – – � � � � 13 11

logging-behavior � � � – � � � 54 1,098

finalized-height � – – – � � – 56 89

finalization-consistency � – – – � � – 16 22

replica-divergence � – – � � � – 16 13

block-validation-latency � � � – � � – 50 229

unauthorized-connections � – – � � � � 22 39

reboot-count � – � – � � � 25 21

the most challenging aspects of formalizing distributed system properties and
justify the required features of MFOTL. The accompanying artifact [7] provides
all formulas.

Table 1 summarizes the IC policies and the characteristics of the MFOTL pol-
icy formulas that formalize them. All formulas contain at least one past-temporal
operator (column Past). There are two formulas with a future operator (Fut),
and three formulas that use aggregations (Agg). Three policies can be monitored
locally (Loc) on each node using only the node’s log entries. All policies depend
on the initial IC configuration obtained using the IC registry app (Reg) and
they can be checked against the testing logs (Test). Finally, four of the policies
can also be checked against the IC’s production log (Prod), whereas the other
policies require debug-level log entries, which are not available in production
in order to decrease the load on the logging infrastructure. We estimated the
complexity of the formulas by counting the numbers of their unary and binary
operators before unfolding the let definitions (Ops1) and after (Ops2).

Common Fragments. Some aspects are shared by all policies, e.g., the poli-
cies restrict the behavior of active nodes only. A subset of policies additionally
requires knowledge about which node belongs to which subnet at any point in
time. As explained earlier, the IC’s configuration can be changed by a voting-
driven governance mechanism and hence we must observe configuration changes
to correctly monitor these policies. We devised the following pattern to express
both the set of currently active nodes n (predicate InIC(n)) and the property
that a node n belongs to a subnet s (predicate InSubnet(n, s)):

InX(p̄) :=
(
(� InX0(p̄)) ∧ ¬�RegistryRemoveX(p̄)

) ∨(¬RegistryRemoveX(p̄) S RegistryAddX(p̄)
)

With X = IC and p̄ = [n], we define the predicate InIC(n) and, with
X = Subnet and p̄ = [n, s], we define the predicate InSubnet(n, s). The InIC(n)
and InIC0(n) predicates determine whether the node n belongs to the IC at the



390 D. Basin et al.

Fig. 3. Examples of policy formulas

current moment and when monitoring originally started, respectively. The pred-
icates InSubnet(n, s) and InSubnet0(n, s) are analogous. The input predicates
prefixed with Registry directly correspond to log entries from the IC registry
app; these events indicate the removal and addition of IC nodes (to a subnet or
the IC). To maintain the predicates, we rely on the IC registry as opposed to
relying on (potentially incorrect) node-local information. For each node n, the
InIC0(n) and InSubnet0(n, s) events are prepended to the log by querying the
registry before monitoring starts.

We use MFOTL’s let to define the InIC and InSubnet predicates. As their
definitions are syntactically encapsulated, it is easy to keep them in sync across
all policies in case input predicates change.

Generic Policies. Our goal here is to detect general signs of system malfunc-
tion.

clean-logs. The log entries produced by IC nodes have different priority levels.
Our clean-logs policy asserts that only warning- and info-level log entries are
allowed, whereas critical- or error -level entries are not. In the IC, these levels
indicate logical errors, violation of assumptions, or similarly severe problems.
The corresponding formula (Fig. 3, top) uses the Log(h, n, s, c, l,m) predicate,
which is satisfied by every log message m emitted by component c running on
node n in subnet s with host name h, where l is the log level. As previously
noted, we ignore decommissioned nodes. We also formulate all policy formulas
to be satisfied whenever the corresponding policy is violated.

logging-behavior. Although clean-logs can detect many problems, it only
produces violations once a fault has already become a failure. In contrast, the



Monitoring the Internet Computer 391

logging-behavior policy aims to detect faults before the failure occurs. We
use the fact that operations are replicated on multiple nodes of a subnet: If the
frequency of the log entries matching the replicated operations deviates on a
relatively small group of nodes within a subnet, this indicates that the nodes are
in an abnormal state that may lead to failure. For each subnet, the policy com-
pares its nodes’ logging frequencies computed over a sliding window [2] against
the median logging frequency over all nodes in the subnet.

This policy formula uses multiple aggregations (count, sum, median, mini-
mum, and maximum) and both past and future temporal operators. We also use
regular expression matching, a recent addition to MonPoly, to select log entries
that belong to a replicated operation. As the typical behavior may change over
time depending on the workload, we incorporate smoothing to avoid false pos-
itives. Specifically, we estimate the typical behavior from multiple overlapping
time intervals. Since log frequencies vary significantly between IC node layers
(Sect. 2), we monitor this policy separately for each layer.

IC Protocol Policies. We summarize some properties of the IC consensus
protocol [14] used in this group of policies. Given a subnet of n nodes, among
which f are faulty (i.e., behaving in a Byzantine way [34]) and the remaining
n−f nodes adhere to the protocol, the condition n ≥ 3f+1 must hold (otherwise,
consensus is not possible [26]). Intuitively, this means that to achieve consensus,
more than 2⁄3 of the subnet nodes must not be faulty, where the lowest tolerated
number of non-faulty nodes is 2f+1. The IC consensus protocol uses the concept
of rounds; out of all the block proposals created by the nodes for round r, exactly
one block is finalized, i.e., irreversibly added to the blockchain at height r.

Violations of the following IC protocol policies indicate software bugs or the
presence of more than f faulty nodes in a subnet.

finalized-height. To ensure that a subnet’s consensus makes progress, this
policy checks that the block at height h+1 in a subnet is finalized by some node
no later than 80 s after the earliest finalization of the block at height h. The
time between finalizations depends on node failures and network conditions. In
practice, the mean time elapsed between two finalized blocks is around 1 s. 80 s
is thus a rather conservative upper bound that allows us to turn a probabilistic
property into a safety property that we can monitor automatically.

The nodes changing their subnet membership require care, as the upper
bound on the time between finalizations may be exceeded, specifically, when
a new node is catching up, e.g., due to a temporary network outage. We there-
fore ignore violations that occur during subnet membership changes. To detect
changing subnets, we over-approximate by comparing the registry’s view of the
subnet membership to the nodes’ own view (as captured by the p2pAddNode and
p2pRemoveNode events from the peer-to-peer communication layer).

The formula illustrates how let operators reduce formula duplication and
improve its structure (Fig. 3, bottom). Specifically, we define the InSubnet predi-
cate as explained above. The predicate Growing on subnets is satisfied if a node in



392 D. Basin et al.

the subnet is not yet aware of another node in the same subnet, while the pred-
icate Shrinking detects when a node still considers another node as part of the
same subnet whereas the registry does not. In both cases, we over-approximate
because the nodes’ local view is not known before one of the two p2p events
has been observed. A subnet is considered to be Changing if it is Growing or
Shrinking.

The condition on the time between finalizations is expressed using a metric
temporal operator in the policy’s formula (Fig. 3, bottom), where the let predi-
cate First(n, s, h, b, v) represents the first finalization (event Finalized) of block b
at height h by some node (specifically node n) in subnet s, running IC software
version v. The S operator asserts that there is such a finalization by node n1 more
than 80 s ago (the interval (80 s,∞) is open), and its subnet must not have been
changing in the meantime. To detect a violation, the policy must additionally
observe a finalization at the next height by node n2.

finalization-consistency. This policy represents the core correctness prop-
erty of the IC consensus protocol: when a node finalizes a block at a given height,
no other node in the same subnet finalizes a different block at the same height.

replica-divergence. This policy expresses a liveness property. Whenever the
replicated state maintained by the nodes is not the same on all nodes in a subnet,
the nodes must eventually detect and overcome this divergence. State divergence
might occur even in absence of malicious behavior, e.g., due to software bugs or
hardware problems. A subnet can overcome a divergence when at least 2f + 1
of its nodes have the same replicated state. The protocol achieves this as nodes
periodically emit shares based on their local replicated state; 2f +1 such shares
are needed for catch-up packages—messages enabling the nodes to restore the
correct state and contribute to the consensus protocol again. In particular, a
catch-up package contains the hash of the correct replicated state, which allows
nodes to detect that they have diverged and obtain the correct state. However,
only shares from 2f + 1 nodes with the same state can be used for a catch-up
package. Hence, if a node’s share contributes to a catch-up package after the node
has diverged, this indicates that the node has since corrected its local state.

Note that system tests always produce finite logs; this enables us
to phrase the policy as a safety property: End() ∧ InSubnet(a, , s) ∧
(¬CupShareProposed(a, s) S Diverged(a, s)). Here, CupShareProposed(a, s) holds
when a catch-up package share is proposed by node a of subnet s. Diverged(a, s)
indicates that a has reported a state divergence (recall that our formulas express
the negation of the required properties). Lastly, End(), which is added by the
preprocessor, is the final event in the stream. Intuitively, the nullary predicate
End() binds the formula to the final time point of the test.

block-validation-latency. This policy formalizes network progress before
finalization is reached. Recall that the IC consensus protocol proceeds in rounds.
In each round, the nodes may create and propose new blocks to their peers via
the P2P layer. When receiving these blocks, the peers declare them validated
if a set of conditions is satisfied; these conditions concern the block’s metadata



Monitoring the Internet Computer 393

Fig. 4. Overview of IC’s monitoring pipeline. Rounded boxes are parties involved in
monitoring, arrows depict data flow, and dotted arrows show initial pipeline steps.

and the app requests, e.g., authentication. Upon validating the block, the node
informs its peers. Progress to the next round is possible only if more than 2⁄3 of
the nodes validate a block. This policy measures the time until a block proposal
created at one node has been validated by more than 2⁄3 of the nodes in the same
subnet; the policy then checks that this time does not exceed a threshold.

unauthorized-connections. IC nodes should receive peer-to-peer connections
only from other nodes within the same subnet. As these connections are secured
by TLS [41], any illicit connection attempt should cause a TLS handshake failure
as the certificate is rejected. This policy states that such failures must not occur
unless the illicitly connecting node and the receiver were members of the same
subnet in the recent past (we set the threshold to 15min), as the nodes may not
have learned yet that they are no longer peers.

Infrastructure Outage. We also consider platform-level aspects of the IC.

reboot-count. Data center problems may be accompanied by frequent server
reboots. This policy identifies problematic data centers, detecting when servers
hosting IC nodes within a data center are rebooted too frequently. For each data
center, the policy counts the number of unplanned (re-)boots within the past
30min; for this purpose, we employ the count aggregation and the � operator. A
violation is emitted if the number of reboots exceeds two, i.e., up to two reboots
are tolerated. Data centers are identified by prefixes of the node’s IPv6 address,
which are available as predicate arguments (Sect. 4).

4 Evaluation

In our evaluation of MonPoly’s performance, we address the following questions:
(Q1) How much time and memory does MonPoly require for monitoring com-
plex policies offline? (Q2) Is MonPoly able to monitor the IC’s production logs
online? (Q3) What are the main performance and scalability factors?



394 D. Basin et al.

Table 2. Evaluation results (median and maximum in parentheses) for offline moni-
toring

Measurement Test – 67 logs Prod – 1 log

Raw log entries 8,059 (860,164) 16,887,502
MiB 15.6 (3,250.3) 57,216.4

Processed log events 1,394 (634,790) 1,553,159
events/s 10.7 (168.1) 143.8
MiB 0.5 (207.2) 713.3

Preprocessor time ms/entry 0.12 (5.61) 0.07 (0.08)
ms/event MiB ms/event MiB

clean-logs 3.20 (145.0) 10 (10) 3.93 11
logging-behavior 2.74 (144.4) 11 (1265) TO TO
unauthorized-connections∗ 3.09 (145.6) 10 (1109) TO TO
reboot-count 2.68 (151.1) 10 (11) 3.54 11
finalized-height∗ 3.93 (138.7) 10 (19) – –
finalization-consistency 2.57 (143.1) 10 (16) – –
replica-divergence 2.80 (145.2) 10 (10) – –
block-validation-latency† 5.04 (143.1) 13 (26) – –

∗ Timeout on 1 log each. † Timeout on 3 logs.

Pipeline. We implemented a monitoring pipeline (Fig. 4) that downloads logs
from the IC’s log server (either from a Test-IC or from production), prepro-
cesses them, and manages MonPoly’s execution. The same pipeline was added
to the IC’s continuous development workflow, alerting IC software engineers
of detected policy violations and providing them with the context required to
reproduce and investigate the underlying problems. The pipeline’s log prepro-
cessor converts log entries into events encoded in MonPoly’s input format. Most
events require simple syntactic manipulations (e.g., extracting parameters with
regular expressions), but some require information about the IC configuration,
e.g., the mapping between node IDs and IP addresses. The preprocessor obtains
this information, as well as the InIC0 and InSubnet0 events (Sect. 3.2), from the
registry.

The top half of Table 2 summarizes basic properties of logs used in our exper-
iments, aggregating data across all logs and, where applicable, policies. The
median is shown as well as the maximum in parentheses. We obtained logs from
the IC’s system tests (Test) as well as a three hour fragment of the production
log (Prod). For repeatability, this step was performed separately from the exper-
iments and the logs were stored as files. The Test logs were collected from 3
runs of every system test in the IC’s hourly and nightly test suites, over a 3-day
period. We only considered successful test runs, as a failed test already requires
an engineer’s attention and monitoring would not add much value. In both Test



Monitoring the Internet Computer 395

and Prod logs, the pipeline’s preprocessor discarded all log entries that cannot
be assigned to an IC node, e.g., messages from systemd.

We approximated the time spent in preprocessing. Since the pipeline trans-
forms log entries on the fly before sending the events to the monitor, we accu-
mulated the time spent in the preprocessing step for each entry (“preprocessor
time”). Due to the logs’ diversity, we normalized this value by dividing it by the
number of log entries; the result is the inverse of throughput.

We instrumented the pipeline to collect performance measurements for offline
monitoring (Q1). Specifically, we obtained the wall-clock time for the combined
execution of pipeline and monitor (“monitoring time”) and the peak resident
set size (“monitoring memory”) of the MonPoly process. Monitoring time was
normalized based on the number of events comprising the input to MonPoly. To
address Q2, we simulated a real-time log stream based on the stored fragment
of the production log, using a replayer [33] that writes the log entries at the
appropriate time to MonPoly’s input. We performed additional experiments to
answer Q3.

We ran at most 13 experiments in parallel on a server with two 3GHz 16-core
AMD EPYC 7302 CPUs, 512 GiB RAM, and an SSD. We used Linux 5.4.0 as
the operating system and the MonPoly Docker image 1.4.2 as the monitor. All
the logs, policies, and code used in our experiments are publicly available [7].

Offline Monitoring. The bottom half of Table 2 shows the aggregated perfor-
mance measurements for offline monitoring, i.e., processing the stored logs as
quickly as the monitor allows. We instantiated the monitoring pipeline separately
for every combination of policy and log (i.e., system test run or the production
fragment). For Test , the table shows the median (and maximum) monitoring
time and memory. Some of the policies are not applicable to production (see
Table 1) and hence are marked with ‘–’. We set a timeout of 30min for Test to
limit the experiments’ duration. It was reached in five runs, which are excluded
from the results, as shown in the table. For Prod, we set a timeout of 4 h (the
length of the Prod fragment plus a safety margin), marked ‘TO’ in the table.

The results for the Test scenario are similar across policies, with few excep-
tions. Both logging-behavior and unauthorized-connections require signif-
icantly more memory on certain inputs, since they store many snapshots of the
InSubnet relation in proportion to the index rate, i.e., the number of indices in
the corresponding trace per unit of real time. The relation’s size depends on the
number of nodes created in the test. The policies perform nontrivial computa-
tions for every event and node, resulting in the timeouts for Prod , which has
ten times more nodes than Test . The timeouts for block-validation-latency
are likely caused by the larger number of subnets (29 compared to maximal 3)
in the corresponding logs; we plan to confirm this in the future. The other two
Test timeouts occurred with the largest log file (3.3 times the size of the next
largest).

Online Monitoring. Long-running systems like the IC are not expected to termi-
nate and hence they produce logs with unbounded streams of events. Therefore,



396 D. Basin et al.

Fig. 5. Replayer latency for online monitoring

online monitoring with low (bounded) latency is a prerequisite for continuous
monitoring. Logging activity may also be bursty, rendering the offline perfor-
mance a bad predictor for the online case. We therefore conducted separate
online monitoring experiments using the Prod data. Specifically, we measured
the latency at the replayer, which was provided with an already processed log.
While this measure is not equivalent to end-to-end latency, it is practically rele-
vant as it indicates how much log data must be buffered by system components
before the monitor.

Figure 5 shows the latency distribution over elapsed time, relative to the
log entries’ time-stamps. For the clean-logs and reboot-count policies, we
observed regular bursts of increased latency. Since the maximum latency does
not grow over time, it would be possible to monitor these policies online in a
production deployment. The bursts are clearly correlated with the index rate as
shown by the thin line drawn on top of the latency distribution.

In contrast, the latency increased steeply after approximately 13min for
logging-behavior, simultaneously with the first index rate burst. The exper-
iment was terminated once a latency of 10min was reached. We do not show
results for the unauthorized-connections policy as it immediately reached
the latency limit. The quickly increasing latency indicates that the time spent
monitoring the events generated within an interval of real time is longer than
the interval itself. This coincides with the timeouts observed in the offline
experiments.

In addition to the above experiments, we parallelized online monitoring of
the Prod fragment using an existing framework [38]. We observed improvements
but were unable to achieve low-latency monitoring for logging-behavior and
unauthorized-connections. We conjecture that the framework’s inability to
reduce the index rate observed by the parallel monitors prevents latency reduc-
tion.

Results. We found that offline monitoring of IC system test logs is possible
using moderate resources: monitoring extends the tests’ runtime by less than



Monitoring the Internet Computer 397

23%,1 while the peak memory usage of MonPoly was 5 GiB (Q1). Low-latency
online monitoring was possible for two applicable policies (Q2). By analyzing this
result, we identified three factors that significantly influence online monitoring
performance, namely, repeating relational computations, future operators, and
eager processing of let expressions (Q3). We believe that the insights from our
case study are helpful to developers of other monitoring tools.

5 Lessons Learned

We now summarize our case study’s qualitative findings on policy engineering
and monitoring maintainability.

Policy Engineering. Introducing runtime monitoring into an existing system is
challenging. Policy engineering is the process of identifying sources of policies,
selecting useful policies, and making them precise and formal. The distinction
between the last two characteristics is crucial: we argue that the former is dif-
ficult to achieve (even using natural language), whereas the latter is relatively
straightforward for runtime monitoring experts, if the policy is already precise.

Colombo and Pace [18] claim that policies should not be defined by devel-
opers, but rather by a quality assurance (QA) team, as the policies address end
users and concern high-level system properties. We agree with this assessment
in part: IC policies were sourced from IC’s formal method engineers who knew
the system and its high-level properties well. However, additional software engi-
neers and researchers were still needed to confirm the semantics of the existing
log entries observed by the monitor and possibly augment logging, for exam-
ple by adding new parameters or new events. Software engineers also had to
evaluate the production impact of such modifications (e.g., due to an increase
in log volume), and on the debugging processes (e.g., due to increased noise).
Such developer insights crucially influenced the final policies. We decided to drop
various drafted policies due to the lack of the required log entries.

Colombo and Pace argue that monitoring policies assured by other engi-
neering techniques (e.g., unit testing) is wasteful. They identify cross-cutting
properties [18] as the most useful policy class. We agree but additional selec-
tion criteria are also relevant. Namely, policies must be effective (i.e., capable
of detecting relevant problems), precise (i.e., producing a low number of false
violations), and actionable (i.e., given a true violation, a developer can debug it).

We found that an iterative process is needed to devise sufficiently precise
policies. Even domain experts can be misguided by their intuition, suggesting
policies that fail to account for corner cases and recent system changes. Natural
language ambiguity is another source of imprecision. Moreover, typos and logical
errors may occur in policy formalizations. In our case study, we experienced all
these issues.

1 Maximum monitoring time (80 min) divided by the longest test (362 min).



398 D. Basin et al.

Finally, we mention some MFOTL policy formula patterns that commonly
appeared in our formalizations. Such patterns implement policies that are intu-
itively and easily expressible in natural language, but cannot be encoded using
a single operator of the policy language. For example, one could expect that
valuations assigning 0 to c satisfy the policy c ← CNT m;n Log(n,m) when
monitoring a trace without any Log events. However, this is not the case accord-
ing to MFOTL’s semantics as Log(n,m) is not satisfiable for any n. Sometimes
it is necessary to report such valuations (typically, for a finite set values of n).
Our formalization of logging-behavior demonstrates a pattern that achieves
this:

c ← SUM c;n
((

(c ← CNT m;n �I Log(n,m)) ∧ InIC(n)
) ∨ (

InIC(n) ∧ c = 0
))

Here, we count the number of log messages c per node n in an interval I. The
result is used to compute the sum of the counts for each node. It is important
to include all known nodes (c.f. InIC), even if they did not log any message m
in that interval. The above encoding achieves this by adding the actual count
to the default of zero (the right disjunct), assigned to all nodes. Other common
policy formula patterns we identified are outer joins [1] and sliding windows [2].

Monitoring Maintainability. As in many software projects, engineers assume
that logs are inspected by humans, and often freely modify the logging state-
ments [16]. We observed that such changes break the monitoring pipeline outright
because the preprocessor fails to process log entries not matching expected pat-
terns. A more challenging problem is that the meaning of a log entry may also
subtly change, for example, when moved to a different location in the control
flow.

To address this, we used system tests that exercise code paths containing
policy-relevant logging statements. The test checks if the preprocessor correctly
processes log entries. However, we believe that for an evolving system, a struc-
tured and type-safe logging interface is necessary to maintain runtime monitor-
ing. Structured logging provides a way of introducing logging statements sys-
tematically at different levels of granularity. Type-safe logging can additionally
detect a mismatch between the log entry format expected by the monitor and
one produced by the logging statements at compile time. Detection of a change
in the semantics of a log entry, however, remains an open problem.

6 Related Work

We first summarize approaches to monitoring distributed systems. Afterwards,
we describe industrial case studies similar to ours that monitor distributed sys-
tems.

A classic result for predicate detection in distributed systems [15] states that
exponentially many interleavings of components’ traces must be checked in the
worst case, which does not scale [27]. Efficient algorithms exist for predicate



Monitoring the Internet Computer 399

classes [36] or under certain assumptions [35,39]. Basin et al. [9] monitor dis-
tributed systems with a centralized monitor by merging all the components’
traces. As in our work, their merged trace has events with same time-stamps
occur in an arbitrary order. They further restrict policies to a logical fragment
where that order does not influence the monitor’s output. Other approaches
focus on distributing the monitor. Bauer and Falcone [13] orchestrate multiple
distributed monitors based on the structure of the input LTL formula, such that
they jointly monitor the input formula with minimal need to exchange knowl-
edge.

Similar approaches hierarchically organize monitors [17], use regular expres-
sions [24], or stream equations [20] as the policy language. None, however,
support an expressive language like MFOTL, with the exception of Schneider
et al. [8,38], whose framework we used in our attempts to reduce monitoring
latency.

Basin et al. [9] monitored Nokia’s data usage policies in three databases run-
ning on different distributed components; they also monitored Google’s network
security policies [6]. El-Hokayem and Falcone [23] monitored traces collected
from 27 distributed smart apartment sensors. Colombo et al. [19] monitored
policies for an online payment service with millions of credit cards. Kane et
al. [31] monitor a controller-area automotive network. Unlike the languages used
in these works, we use a more expressive first-order temporal policy language
with aggregations.

We conducted a systematic literature review, following best practices [32],
to identify and classify monitoring case studies. We collected papers from five
conferences and two journals by matching keywords related to runtime veri-
fication and case studies. This yielded 54 papers that we manually analyzed
to select those 33 papers that use temporal logic as policy languages. Our
finalized-height policy is more complex than any policy we found: it has
a greater number of operators (56) than the next most complex one (44) [21].
Note that without the let operator, the logging-behavior policy would have
required more than 1,000 operators.

7 Conclusion

We have shown how to enrich system testing and metrics with runtime moni-
toring. In our case study, we formalize and monitor complex, non-local, metric
first-order temporal policies of the Internet Computer (IC), a real-world dis-
tributed system. The monitoring pipeline we use is tailored to the IC, but we
believe that its design can serve as blueprint for monitoring other distributed
systems. Some of our policies, although IC-specific in their current form, gen-
eralize well to other systems, specifically, to replicated distributed systems that
execute in rounds. Another contribution to the formal methods community is
our data set, which we publish and which provides a challenging benchmark for
monitors supporting metric first-order temporal policies with aggregations.

As future work, in addition to formalizing other IC policies, we plan to
improve the feedback that monitors provide to engineers. The emerging research



400 D. Basin et al.

area of explanations [5] for monitoring verdicts can aid the process of fault local-
ization, e.g., by visualizing minimal parts of the trace causing a violation. Further
monitor optimizations are required to achieve practical online monitoring of the
IC production deployment by handling high index rates. We conjecture that this
problem is solvable taking inspiration from the algorithms used in signal-based
monitoring [22].

Acknowledgement. We thank the anonymous reviewers for their comments, and
Qijing Yu, Bas van Dijk, and Nikolay Komarevskiy for helping set up this project.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

3. Internet Computer Association. Internet Computer dashboard (2022). https://
dashboard.internetcomputer.org/

4. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

5. Basin, D., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on
lasso words. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
37–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_3

6. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring of temporal specifications. Formal Methods Syst. Des. 49(1),
75–108 (2016). https://doi.org/10.1007/s10703-016-0242-y

7. Basin, D., et al.: Monitoring the Internet Computer (artifact) (2022). https://doi.
org/10.5281/zenodo.7340850

8. Basin, D., Gras, M., Krstić, S., Schneider, J.: Scalable online monitoring of dis-
tributed systems. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol.
12399, pp. 197–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
60508-7_11

9. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: Monitoring data usage in dis-
tributed systems. IEEE Trans. Softw. Eng. 39(10), 1403–1426 (2013)

10. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285
(2015). https://doi.org/10.1007/s10703-015-0222-7

11. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

12. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G.,
Havelund, K. (eds.) International Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CuBES). Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017)

13. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.
48(1–2), 46–93 (2016). https://doi.org/10.1007/s10703-016-0253-8

14. Camenisch, J., Drijvers, M., Hanke, T., Pignolet, Y.-A., Shoup, V., Williams, D.:
Internet Computer consensus. In: Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, PODC 2022, pp. 81–91. ACM, New York
(2022)

https://dashboard.internetcomputer.org/
https://dashboard.internetcomputer.org/
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.5281/zenodo.7340850
https://doi.org/10.5281/zenodo.7340850
https://doi.org/10.1007/978-3-030-60508-7_11
https://doi.org/10.1007/978-3-030-60508-7_11
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1007/s10703-016-0253-8


Monitoring the Internet Computer 401

15. Chase, C.M., Garg, V.K.: Detection of global predicates: techniques and their
limitations. Distrib. Comput. 11(4), 191–201 (1998)

16. Chen, B., Jiang, Z.M.: Characterizing logging practices in Java-based open source
software projects – a replication study in apache software foundation. Empir. Softw.
Eng. 22(1), 330–374 (2017)

17. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods Syst. Des. 49(1), 109–158 (2016). https://doi.org/
10.1007/s10703-016-0251-x

18. Colombo, C., Pace, G.J.: Industrial experiences with runtime verification of finan-
cial transaction systems: lessons learnt and standing challenges. In: Bartocci, E.,
Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 211–
232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_7

19. Colombo, C., Pace, G.J., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods Syst. Des. 41(3), 269–294 (2012). https://doi.
org/10.1007/s10703-012-0142-8

20. Danielsson, L.M., Sánchez, C.: Decentralized stream runtime verification. In:
Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 185–201.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9_11

21. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2_11

22. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23820-3_4

23. El-Hokayem, A., Falcone, Y.: Bringing runtime verification home. In: Colombo,
C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 222–240. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03769-7_13

24. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized
monitoring of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 66–83. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43613-4_5

25. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021).
https://doi.org/10.1007/s10009-021-00609-z

26. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

27. Ganguly, R., et al.: Distributed runtime verification of metric temporal properties
for cross-chain protocols. CoRR, abs/2204.09796 (2022)

28. Gopal, M.: Modern Control System Theory. New Age International (1993)
29. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream

runtime verification. In: Groote, J.F., Larsen, K.G. (eds.) TACAS 2021. LNCS,
vol. 12652, pp. 349–356. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-72013-1_18

30. Havelund, K., Peled, D., Ulus, D.: DejaVu: a monitoring tool for first-order tempo-
ral logic. In: 3rd Workshop on Monitoring and Testing of Cyber-Physical Systems,
MT@CPSWeek 2018, Porto, Portugal, 10 April 2018, pp. 12–13. IEEE (2018)

31. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (ARV) system. In: Bartocci, E., Majum-

https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/978-3-319-75632-5_7
https://doi.org/10.1007/s10703-012-0142-8
https://doi.org/10.1007/s10703-012-0142-8
https://doi.org/10.1007/978-3-030-32079-9_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/978-3-030-03769-7_13
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-030-72013-1_18


402 D. Basin et al.

dar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 102–117. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23820-3_7

32. Kitchenham, B.A., Brereton, P., Budgen, D., Turner, M., Bailey, J., Linkman,
S.G.: Systematic literature reviews in software engineering – a systematic literature
review. Inf. Softw. Technol. 51(1), 7–15 (2009)

33. Krstić, S., Schneider, J.: A benchmark generator for online first-order monitoring.
In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 482–494.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_27

34. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

35. Momtaz, A., Basnet, N., Abbas, H., Bonakdarpour, B.: Predicate monitoring in
distributed cyber-physical systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS,
vol. 12974, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88494-9_1

36. Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed com-
putations. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 420–434. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75142-7_32

37. Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster moni-
toring with Ganglia. In: CLUSTER 2003, p. 289. IEEE Computer Society (2003)

38. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Scalable online first-order
monitoring. Int. J. Softw. Tools Technol. Transfer 23(2), 185–208 (2021). https://
doi.org/10.1007/s10009-021-00607-1

39. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Dis-
trib. Comput. 13(2), 85–98 (2000)

40. The DFINITY Team. The Internet Computer for geeks. Cryptology ePrint Archive,
Paper 2022/087 (2022). https://eprint.iacr.org/2022/087

41. Turner, S.: Transport layer security. IEEE Internet Comput. 18(6), 60–63 (2014)

https://doi.org/10.1007/978-3-319-23820-3_7
https://doi.org/10.1007/978-3-030-60508-7_27
https://doi.org/10.1007/978-3-030-88494-9_1
https://doi.org/10.1007/978-3-030-88494-9_1
https://doi.org/10.1007/978-3-540-75142-7_32
https://doi.org/10.1007/s10009-021-00607-1
https://doi.org/10.1007/s10009-021-00607-1
https://eprint.iacr.org/2022/087


Word Equations in Synergy with Regular
Constraints

Frantǐsek Blahoudek1, Yu-Fang Chen2, David Chocholatý1, Vojtěch Havlena1,
Lukáš Hoĺık1(B), Ondřej Lengál1, and Juraj Śıč1

1 Faculty of Information Technology, Brno University of Technology,
Brno, Czech Republic
holik@fit.vutbr.cz

2 Institute of Information Science, Academia Sinica, Taipei City, Taiwan

Abstract. We argue that in string solving, word equations and regu-
lar constraints are better mixed together than approached separately as
in most current string solvers. We propose a fast algorithm, complete
for the fragment of chain-free constraints, in which word equations and
regular constraints are tightly integrated and exchange information, effi-
ciently pruning the cases generated by each other and limiting possible
combinatorial explosion. The algorithm is based on a novel language-
based characterisation of satisfiability of word equations with regular
constraints. We experimentally show that our prototype implementation
is competitive with the best string solvers and even superior in that it is
the fastest on difficult examples and has the least number of timeouts.

1 Introduction

Solving of string constraints (string solving) has gained a significant traction
in the last two decades, drawing motivation from verification of programs that
manipulate strings. String manipulation is indeed ubiquitous, tricky, and error-
prone. It has been a source of security vulnerabilities, such as cross-site scripting
or SQL injection, that have been occupying top spots in the lists of software
security issues [1–3]; moreover, widely used scripting languages like Python and
PHP rely heavily on strings. Interesting new examples of an intensive use of
critical string operations can also be found, e.g., in reasoning over configuration
files of cloud services [4] or smart contracts [5]. Emergent approaches and tools
for string solving are already numerous, for instance [6–54].

A practical solver must handle a wide range of string operations, ranging
from regular constraints and word equations across string length constraints to
complex functions such as ReplaceAll or integer-string conversions. The solvers
translate most kinds of constraints to a few types of basic string constraints. The
base algorithm then determines the architecture of the string solver and is the
component with the largest impact on its efficiency. The second ingredient of the
efficiency are layers of opportunistic heuristics that are effective on established
benchmarks. Outside the boundaries where the heuristics apply and the core
algorithm must do a heavy lifting, the efficiency may deteriorate.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 403–423, 2023.
https://doi.org/10.1007/978-3-031-27481-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_23&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_23


404 F. Blahoudek et al.

The most essential string constraints, word equations and regular constraints,
are the primary source of difficulty. Their combination is PSPACE-complete
[55,56], decidable by the algorithm of Makanin [57] and Jeż’s recompression [56].
Since it is not known how these general algorithms may be implemented effi-
ciently, string solvers use incomplete algorithms or work only with restricted frag-
ments (e.g. straight-line of [21] or chain-free [21,26], which cover most of existing
practical benchmarks), but even these are still PSPACE-complete (immediately
due to Boolean combinations of regular constraints) and practically hard. Most
of string solvers use base algorithms that resemble Makanin [57] or Nielsen’s [58]
algorithm in which word equations and regular constraints each generate one
level of disjunctive branching, and the two levels multiply. Regular constraints
particularly are considered complex and expensive, and reasoning with them is
sometimes postponed and done only as the last step.

In this work, we propose an algorithm in which regular constraints are not
avoided but tightly integrated with equations, enabling an exchange of informa-
tion between equations and regular constraints that leads to a mutual pruning
of generated disjunctive choices.

For instance, in cases such as zyx = xxz ∧ x ∈ a∗ ∧ y ∈ a+b+ ∧ z ∈ b∗,
attempting to eliminate the equation results in an infinite case split (using, e.g.,
Nielsen’s algorithm [58] or the algorithm of [31]) and it indeed leads to failure
for all solvers we have tried. The regular constraints enforce UNSAT: since the y
on the left contains at least one b, the z on the right must answer with at least
one b (x has only a’s). Then, since the first letter on the left is the b of z, the
first x on the right must be ε. Since x = ε, we are left with zy = z, but the a’s
within the y cannot be matched by the z on the right as z has only b’s.

The ability to infer this kind of information from the regular constraints sys-
tematically is in the core of our algorithm. The algorithm gradually refines the
regular constraints to fit the equation, until an infeasible constraint is generated
(with an empty language) or until a solution is detected. Detecting the existence
of a solution is based on our novel characterisation of satisfiability of a string
constraint: a constraint x1 . . . xm = xm+1 . . . xn ∧∧

x∈X
x ∈ Lang(x), where Lang

assigns regular languages to variables in X, has a solution if the constraint is
stable, that is, the languages of the two sides are equal, Lang(x1) · · · Lang(xm) =
Lang(xm+1) · · · Lang(xn). A refinement of the variable languages is derived from
a special product of the automata for concatenations of the languages on the
left-hand and right-hand sides of the equation. For the case with zyx = xxz
above, the algorithm terminates after 2-refinements (as discussed above, infer-
ring that (1) z ∈ b+ and x = ε, (2) there is no a on the right to match
the a’s in y on the left). The wealth of information in the regular constraints
increases with refinements and prunes branches that would be explored oth-
erwise if the equation was considered alone. The algorithm is hence effective
even for pure equations, as we show experimentally.

Although our algorithm is complete for SAT formulae, in UNSAT cases the
refinement steps may go on forever. We prove that it is, however, guaranteed to
terminate and hence complete for the chain-free fragment [26] (and its subset the
straight-line fragment [21,22]), the largest known decidable fragment of string



Word Equations in Synergy with Regular Constraints 405

constraints that combines equations, regular and transducer constraints, and
length constraints. For this fragment, the equality in the definition of stability
may be replaced by a single inclusion and only one refinement step is sufficient
(the case of single equation generalises to multiple equations where the inclusions
must be chosen according to certain criteria).

We have experimentally shown that on established benchmarks featuring
hard combinations of word equations and regular constraints, our prototype
implementation is competitive with a representative selection of string solvers
(CVC5, Z3, Z3str4, Z3str3RE, Z3-Trau, OSTRICH, Sloth, Retro).
Besides being generally quite fast, it seems to be superior especially on diffi-
cult instances and has the smallest number of timeouts.

Fig. 1. Automata constructions within the refinement. Dashed lines represent ε.

2 Overview

We will first give an informal overview of our algorithm on the following example

xyx = zu ∧ ww = xa ∧ u ∈ (baba)∗a ∧ z ∈ a(ba)∗ (1)

with variables u,w, x, y, z over the alphabet Σ = {a, b}.
Our algorithm works by iteratively refining/pruning the languages in the

regular membership constraints from words that cannot be present in any
solution. We denote the regular constraint for a variable x by Lang(x). In
the example, we have Lang(u) = (baba)∗a, Lang(z) = a(ba)∗ and, implicitly,
Lang(x) = Lang(y) = Lang(w) = Σ∗.

The equation xyx = zu enforces that any solution, an assignment ν of strings
to variables, satisfies that the string s = ν(x) · ν(y) · ν(x) = ν(z) · ν(u) belongs to
the intersection of the concatenations of languages on the left and the right-hand
side of the equation, Lang(x) · Lang(y) · Lang(x) ∩ Lang(z) · Lang(u), as in Eq. (2)
below:

s ∈
x

︷︸︸︷
Σ∗

y
︷︸︸︷
Σ∗

x
︷︸︸︷
Σ∗

=

∩
z

︷ ︸︸ ︷
a(ba)∗

u
︷ ︸︸ ︷
(baba)∗a. (2)

We may thus refine the lan-
guages of x and y by removing
those words that cannot be a
part of any string s in the intersection. The refinement is implemented over



406 F. Blahoudek et al.

finite automata representation of languages, assuming that every Lang(xi) is
represented by the automaton Aut(xi). The main steps of the refinement are
shown in Fig. 1. First, we construct automata for the two sides of the equation:

– Axyx is obtained by concatenating Aut(x), Aut(y), and Aut(x) again. It has
ε-transitions that delimit the borders of occurrences of x and y.

– Azu is obtained by concatenating Aut(z) and Aut(u).

We then combine Axyx with Azu through a synchronous product construction
that preserves ε-transitions into an automaton Axyx ∩ε Azu. Seeing ε as a letter
that delimits variable occurrences, Axyx ∩ε Azu accepts strings αx

1εαyεαx
2 such

that αx
1αyαx

2 ∈ Lang(z)·Lang(u), αx
1 ∈ Lang(x), αy ∈ Lang(y), and αx

2 ∈ Lang(x).
Note that for refining the languages x, y on the left, we do not need to

see the borders between z and u on the right. The ε-transitions can hence be
eliminated from Azu and it can be minimised. In our particular case, this gives
much smaller automaton than the one obtained by connecting Aut(z) and Aut(u)
(representing a(ba)∗ and (baba)∗a, respectively). This is a significant advantage
against algorithms that enumerate alignments of borders of the left and the
right-hand side variables/solved forms [59].

To extract from Axyx ∩ε Azu the new languages for x and y, we decompose
the automata to a disjunction of several automata, which we call noodles. Each
noodle represents a concatenation of languages Lx

1εLyεLx
2 , and is obtained by

choosing one ε-transition separating the first occurrence of x from y (the left
column of red ε-transitions in Fig. 1), one ε-transition separating y from the
second occurrence of x (the right column of blue ε-transitions), removing the
other ε-transitions, and trimming the automaton. We have to split the product
into noodles because some values of x can appear together only with some values
of y, and this relation must be preserved after extracting their languages from
the product (for instance, in Axyx ∩ε Azu in Fig. 1, both first occurences of x
and y can have, among others, values aa and ε, but if x = aa then y must be ε).

Figure 1 shows two noodles, N1 and N2, out of 9 possible noodles from
Axyx ∩ε Azu. We extract the automata for languages Lx

1 , Ly, and Lx
2 (their

initial and final states are the states with incoming and outgoing ε-transitions
in the noodle). The refined language for y is then Lang(y) = Ly. The refined
language for x is obtained by unifying the languages of the first and the second
occurrence of x, Lang(x) = Lx

1 ∩ Lx
2 (by constructing a standard product of the

two automata):

– For N1, the refinement is y ∈ (ba)∗ and x ∈ a (computed as a(ba)∗ ∩ (ba)∗a).
– For N2, the refinement is y ∈ a(ba)∗a and x ∈ ε (computed as (ab)∗ ∩ ε).

The 7 remaining noodles generated from Axyx ∩ε Azu yield x ∈ ∅ and are dis-
carded. Noodles N1 and N2 spawn two disjunctive branches of the computation.

s ∈
w

︷︸︸︷
Σ∗

w
︷︸︸︷
Σ∗

=

∩
x

︷︸︸︷
a

a

a. (3)

For the branch of N1, we use the equation
ww = xa for the next refinement. Using the
newly derived constraint x ∈ a, we obtain Eq.
(3) on the right: Similarly as in the previous step, the refinement deduces that



Word Equations in Synergy with Regular Constraints 407

w ∈ a. At this point, the languages on both sides of all equations match, and so
no more refinement is possible:

x
︷︸︸︷
a

y
︷ ︸︸ ︷
(ba)∗

x
︷︸︸︷
a

=

=

z
︷ ︸︸ ︷
a(ba)∗

u
︷ ︸︸ ︷
(baba)∗a and

w
︷︸︸︷
a

w
︷︸︸︷
a

=

=

x
︷︸︸︷
a

a

a. (4)

One of the main contributions of this paper, and a cornerstone of our algo-
rithm, is a theorem stating that in this state, when language equality holds for
all equations, a solution is guaranteed to exist (see Theorem 1). We can thus
conclude with SAT.

3 Preliminaries

Sets and Strings. We use N to denote the set of natural numbers (including 0).
We fix a finite alphabet Σ of symbols/letters (usually denoted a, b, c, . . .) for the
rest of the paper. A sequence of symbols w = a1 · · · an from Σ is a word or
a string over Σ, with its length n denoted by |w|. The set of all words over
Σ is denoted as Σ∗. The empty word is denoted by ε (ε /∈ Σ), with |ε| = 0.
The concatenation of words u and v is denoted u · v, uv for short (ε is a neutral
element of concatenation). A set of words over Σ is a language, the concatenation
of languages is L1 · L2 = {u · v | u ∈ L1 ∧ v ∈ L2}, L1L2 for short. Bounded
iteration xi, i ∈ N, of a word or a language x is defined by x0 = ε for a word,
x0 = {ε} for a language, and xi+1 = xi · x. Then x∗ =

⋃
i∈N

xi. We often denote
regular languages using regular expressions with the standard notation.

Automata. A (nondeterministic) finite automaton (NFA) over Σ is a tuple A =
(Q,Δ, I, F ) where Q is a finite set of states, Δ is a set of transitions of the form
q−{a}→r with q, r ∈ Q and a ∈ Σ ∪ {ε}, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of final states. A run of A over a word w ∈ Σ∗ is a sequence
p0−{a1}→p1−{a2}→ . . .−{an}→pn where for all 1 ≤ i ≤ n it holds that ai ∈ Σ ∪ {ε},
pi−1−{ai}→pi ∈ Δ, and w = a1 ·a2 · · · an. The run is accepting if p0 ∈ I and pn ∈ F ,
and the language L(A) of A is the set of all words for which A has an accepting
run. A language L is called regular if it is accepted by some NFA. Two NFAs with
the same language are called equivalent. An automaton without ε-transitions is
called ε-free. An automaton with each state belonging to some accepting run
is trimmed. To concatenate languages of two NFAs A = (Q,Δ, I, F ) and A′ =
(Q′,Δ′, I ′, F ′), we construct their ε-concatenation A ◦ε A′ = (Q � Q′,Δ � Δ′ �
{p−{ε}→q | p ∈ F, q ∈ I ′}, I, F ′). To intersect their languages, we construct their ε-
preserving product A∩εA′ = (Q×Q′,Δ×, I×I ′, F ×F ′) where (q, q′)−{a}→(r, r′) ∈
Δ× iff either (1) a ∈ Σ and q−{a}→r ∈ Δ, q′−{a}→r′ ∈ Δ′, or (2) a = ε and either
q′ = r′, q−{ε}→r ∈ Δ or q = r, q′−{ε}→r′ ∈ Δ′.

String Constraints. We focus on the most essential string constraints, Boolean
combinations of atomic string constraints of two types: word equations and reg-
ular constraints. Let X be a set of string variables (denoted u, v, . . . , z), fixed for
the rest of the paper. A word equation is an equation of the form s = t where



408 F. Blahoudek et al.

s and t are (different) string terms, i.e., words from X∗.1 We do not distinguish
between s = t and t = s. A regular constraint is of the form x ∈ L, where x ∈ X

and L is a regular language. A string assignment is a map ν : X → Σ∗. The
assignment is a solution for a word equation s = t if ν(s) = ν(t) where ν(t′)
for a term t′ = x1 . . . xn is defined as ν(x1) · · · ν(xn), and it is a solution for a
regular constraint x ∈ L if ν(x) ∈ L. A solution for a Boolean combination of
atomic constraint is then defined as usual.

4 Stability of String Constraints

The core ingredient of our algorithm, which allows to tightly integrate equations
with regular constraints, is the notion of stability of a string constraint. Stability
of a string constraint is used by our algorithm to indiciate satisfiability.

4.1 Stability of Single-Equation Systems

We will first discuss stability of a single-equation system Φ: s = t ∧ ∧
x∈X

x ∈
LangΦ(x) where LangΦ : X → P(Σ∗) is a language assignment, an assignment of
regular languages to variables. We say that a language assignment Lang refines
LangΦ if Lang(x) ⊆ LangΦ(x) for all x ∈ X. If Lang(x) = ∅ for some x ∈
X, it is infeasible, otherwise it is feasible. For a term u = x1 . . . xn, we define
Lang(u) = Lang(x1) · · · Lang(xn). We say that Lang is strongly stable for Φ if
Lang(s) = Lang(t).

The core result of this work is that the existence of a stable language assign-
ment for Φ implies the existence of a solution, which is formalised below.

Theorem 1. A single-equation system Φ has a feasible strongly stable language
assignment that refines LangΦ, iff it has a solution.

Proof (Sketch of ⇒, the other direction is trivial). Let s = y1 . . . ym and t =
ym+1 . . . yn. Note that a solution cannot be found easily by just taking any words
wi ∈ Lang(xi), for 1 ≤ i ≤ n, such that w1 · · · wm = wm+1 · · · wn. The reason
is that multiple occurrences of the same variable must have the same value.
To construct a solution, we first notice that it is enough to use the shortest
words in the languages of the variables. We can then assume the lengths of
the strings valuating each variable fixed (the smallest lengths in the languages),
which in turn fixes the positions of variables’ occurrences within the sides of the
equation. We then construct the strings in the solution by selecting letters and
propagating them through equalities of opposite positions of the equation sides
and also between different occurrences of the same position in the same variable.
Showing that the process of selecting and propagating letters terminates requires
to show that the sequence of constructed partial solutions is decreasing w.r.t. a
complex well-founded ordering of partial solutions. The full proof may be found
in [60]. 
�
1 Note that terms with letters from Σ, sometimes used in our examples, can be

encoded by replacing each occurrence o of a letter a by a fresh variable xo and a
regular constraint xo ∈ {a}..



Word Equations in Synergy with Regular Constraints 409

Additionally, in the special case of weak equations—i.e., equations s = t
where one of the sides, say t, satisfies the condition that all variables occurring
in t occur in s = t exactly once—the stability condition in Theorem 1 can be
weakened to one-sided language inclusion only: In case t is the term satisfying
the condition, we say that Lang is weakly stable for Φ if Lang(s) ⊆ Lang(t).

Theorem 2. Φ with a weak equation has a feasible weakly stable language
assignment that refines LangΦ iff Φ has a solution.

Note that weak stability allows multiple occurrences of a variable on the left-hand
side of s = t. Intuitively, the multiple occurrences must have the same value, and
having them on the left-hand side of the inclusion forces their synchronisation.
For instance, for Φ: xx = y ∧ x ∈ {a, b} ∧ y ∈ {ab}, the inclusion Lang(xx) ⊆
Lang(y) is satisfied by no feasible refinement Lang of LangΦ, revealing that Φ
has no solution, while Lang(xx) ⊇ Lang(y) is satisfied already by LangΦ itself.

4.2 Stability of Multi-equation Systems

Next, we extend the definition of stability to multi-equation systems, conjunc-
tions of the form Φ: E ∧ ∧

x∈X
x ∈ LangΦ(x) where E :

∧m
i=1 si = ti for m ∈ N.

We assume that every two equations are different, i.e., {si, ti} �= {sj , tj} if i �= j.
We generalise stability in a way that utilises both strong and weak stability of

single equation systems and both Theorem 1 and Theorem 2. Again, we interpret
every equation si = ti as a pair of inclusions and show that it suffices to satisfy
a certain subset of these inclusions in order to obtain a solution. A sufficient
subset of inclusions is defined through the notion of an inclusion graph of E. It
is a directed graph G = (V,E) where vertices V are inclusion constraints of the
form si⊆ ti or ti⊆si, for 1 ≤ i ≤ m, and E ⊆ V × V . An inclusion graph must
satisfy the following conditions:

(IG1) For each si = ti in E, at least one of the nodes si⊆ ti, ti⊆si is in V.
(IG2) If si⊆ ti ∈ V and ti has a variable with multiple occurrences in right-hand

sides of vertices of V , then also ti⊆si ∈ V .
(IG3) (si⊆ ti, sj⊆ tj) ∈ E iff si⊆ ti, sj⊆ tj ∈ V and si and tj share a variable.
(IG4) If si⊆ ti ∈ V lies on a cycle, then also ti⊆si ∈ V.

Note that by (IG3), E is uniquely determined by V . We define that a language
assignment Lang is stable for an inclusion graph G = (V,E) of E if it satisfies
every inclusion in V .

Theorem 3. Let G be an inclusion graph of E. Then there is a feasible language
assignment that refines LangΦ and is stable for G iff Φ has a solution.

The proof of Theorem 3 is in [60]. Intuitively, the set of inclusions needed to
guarantee a solution is specified by the vertices of an inclusion graph. All equa-
tions must contribute with at least one inclusion, by Condition (IG1). Including
only one inclusion corresponds to using weak stability. Including both inclusions



410 F. Blahoudek et al.

corresponds to using strong stability. We will use inclusion graphs in our algo-
rithm to direct propagation of refinements of language assignments. We will wish
to avoid using strong stability when possible since cycles that it creates in the
graph may cause the algorithm to diverge.

Conditions (IG2)–(IG4) specify where weak stability is not enough. Namely,
Condition (IG2) enforces that to use weak stability, multiple occurrences of
a variable can only occur on the left-hand side of an inclusion (as in the def-
inition of weak stability), otherwise strong stability must be used. The edges
defined by Condition (IG3) are used in Condition (IG4). An edge means that
a refinement of the language assignment made to satisfy the inclusion in the
source node may invalidate the inclusion in the target node. Condition (IG4)
covers the case of a cyclic dependency of a variable on itself. A self-loop indi-
cates that a variable occurs on both sides of an equation (breaking the definition
of weak stability). A longer cycle indicates such a cyclic dependency caused by
transitively propagating the inclusion relation.

4.3 Constructing Inclusion Graphs and Chain-Freeness

We now discuss a construction of a suitable inclusion graph. Our algorithm
for solving string constraints will use the graph nodes to gradually refine the
language assignment, propagating information along the graph edges. It is guar-
anteed to terminate when the graph is acyclic. Below, we give an algorithm that
generates an inclusion graph that contains as few inclusions as possible and is
acyclic whenever possible.

The graph is obtained from a simplified version SGE of the splitting graph
of [26], which is the basis of the definition of the chain-free fragment, for which
our algorithm is complete. The nodes of SGE are all inclusions si⊆ ti, ti⊆si, for
1 ≤ i ≤ m, and it has an edge from s⊆ t to s′⊆ t′ if s and t′ each have a different
occurrence of the same variable (the “different” here meaning not the same
position in the same term in the same equation, e.g., for inclusions induced by
the equation u = v, for u, v ∈ X, there will be no edge between u⊆v and v⊆u).

Algorithm 1: incl(E)
Input: Conjunction of string equations E.
Output: An inclusion graph of E.

1 G := SGE; V ′ := ∅;
2 while G has a trivial source SCC ({v}, ∅) do
3 G := G \ {v, dual(v)};
4 V ′ := V ′ ∪ {v};

5 V := V ′∪ the remaining nodes of G;
6 return the inclusion graph with nodes V ;

The algorithm for con-
structing an inclusion graph
from SGE starts by iteratively
removing nodes that are triv-
ial source strongly connected
components (SCCs) from SGE
(trivial means a graph ({v}, ∅)
with no edges, source means
with no edges coming from
outside into the component).
With every removed node v,
the algorithm removes from SGE also the dual node dual(v) (the other inclu-
sion), and it adds v to the inclusion graph. When no trivial source SCCs are
left, that is, the remaining nodes are all reachable from non-trivial SCCs, the
algorithm adds to the inclusion graph all the remaining nodes.



Word Equations in Synergy with Regular Constraints 411

The pseudocode of the algorithm is shown in Algo-
rithm 1. It uses SCC(G) to denote the set of SCCs of G
and G\V to denote the graph obtained from G by remov-
ing the vertices in V together with the adjacent edges.

Example 1. In the picture in the right, we show an exam-
ple of the construction of the inclusion graph G from SGE
for E : z = u ∧ u = v ∧ uvx = x. Edges of SGE are solid
lines, the inclusion graph has both solid and dashed edges.
The inner red boxes are the non-trivial SCCs of SGE. They are enclosed in the
box of nodes that are added on Line 5 of Algorithm 1. The outer-most box
encloses the inclusion graph, including one node added on Line 4. 
�
Theorem 4. For a conjunction of equations E, incl(E) is an inclusion graph
for E with the smallest number of vertices. Moreover, if there exists an acyclic
inclusion graph for E, then incl(E) is acyclic.

In Sect. 5, we will show a satisfiability checking algorithm that guarantees
termination when given an acyclic inclusion graph. Here we prove that the exis-
tence of an acyclic inclusion graph coincides with the chain-free fragment of
string constraints [26], which is the largest known decidable fragment of string
constraints with equations, regular and transducer constraints, and length con-
straints (up to the incomparable fragment of quadratic equations). Chain-free
constraints are defined as those where the simplified splitting graph SGE has no
cycle. The following theorem is proven in [60].

Theorem 5. A multi-equation system Φ is chain-free iff there exists an acyclic
inclusion graph for Φ.

5 Algorithm for Satisfiability Checking

Our algorithm for testing satisfiability of a multi-equation system Φ is based on
Theorem 3. The algorithm first constructs a suitable inclusion graph of E using
Algorithm 1 and then it gradually refines the original language assignment LangΦ

according to the dependencies in the inclusion graph until it either finds a sta-
ble feasible language assignment or concludes that no such language assignment
exists.

A language assignment Lang is in the algorithm represented by an automata
assignment Aut, which assigns to every variable x an ε-free NFA Aut(x) with
L(Aut(x)) = Lang(x). We use Aut(t) for a term t = x1 . . . xn to denote the NFA
Aut(x1)◦ε · · ·◦εAut(xn). In the following text, we identify a language assignment
with the corresponding automata assignment and vice versa.

5.1 Refining Language Assignments by Noodlification

The task of a refinement step is to create a new language assignment that refines
the old one, Lang, and satisfies one of the inclusions previously not satisfied, say



412 F. Blahoudek et al.

s⊆ t. In order for the algorithm to be sound when returning UNSAT, a refinement
step must preserve all existing solutions. It will therefore return a set T of
refinements of Lang that is tight w.r.t. s⊆ t, that is, every solution of s = t under
Lang is also a solution of s = t under some of its refinements in T .

Algorithm 2 computes such a tight set. Line 1 computes the automa-
ton Product , which accepts Lang(s) ∩ Lang(t). In order to be able to extract
new languages for the variables of s from it, Product marks borders between
the variables of s with ε-transitions. That is, when ε is understood as a
special letter, Product accepts the delimited language Lε(Product) of words
w1ε · · · εwn with wi ∈ Lang(xi) for 1 ≤ i ≤ n and w1 · · · wn ∈ Lang(t).
Notice that Aut(t) is on Line 1 minimised. This means removal of ε-
transitions marking the borders of variables’ occurrences, and then minimisation

Algorithm 2: refine(v,Aut)
Input: A vertex v = s⊆ t with s = x1 · · · xn and

t = y1 · · · ym, an automata assignment Aut
Output: A tight refinement of Aut w.r.t. v

1 Product := Aut(s) ∩ε minimise(Aut(t));
2 Noodles := noodlify(Product);
3 T := ∅;
4 for N ∈ Noodles do
5 Aut′ := Aut;
6 for 1 ≤ i ≤ n do
7 Aut′(xi) :=

⋂{N(j) | 1 ≤ j ≤ n, xi = xj};

8 if L(Aut′(s)) = ∅ then continue;
9 T := T ∪ {Aut′};

10 return T ;

by any automata size
reduction method (we
use simulation quotient [61,
62]). Since the prod-
uct is then represent-
ing only the borders of
the variables on the left
(because Aut(s) keeps
the ε-transitions gener-
ated from the concate-
nation with ◦ε), but not
the borders of variables
in t, it does not actu-
ally generate an explicit
representation of possible
alignments of borders of variables’ occurrences.

We then extract from Product a language for each occurrence of a variable in
s. Line 2 divides Product into a set of the so-called noodles, which are sequences
of automata N = N(1), . . . ,N(n) that preserve the delimited language in the
sense that

⋃
N∈Noodles Lε(N(1) ◦ε · · · ◦ε N(n)) = Lε(Product).

Technically, assuming w.l.o.g that Product has a single initial state r0 and
a single final state qn, noodlify(Product) generates one noodle N for each (n−1)-
tuple q1−{ε}→r1, . . . , qn−1−{ε}→rn−1 of transitions that appear, in that order, in an
accepting run of Product (note that every accepting run has n−1 ε-transitions by
construction of Product , since Aut(s) also had n−1 ε-transitions in each accepting
run and minimise(Aut(t)) is ε-free): for each 1 ≤ i ≤ n, N(i) arises by trimming
Product after its initial states were replaced by {ri−1} and final states by {qi}.

The for loop on Line 4 then turns each noodle N into a refined automata
assignment Aut′ in T by unifying/intersecting languages of different occurrences
of the same variable: for each x ∈ X, Aut′(x) is the automata intersection of all
automata N(i) with xi = x. The fact that T is a tight set of refinements (i.e.,
that it preserves all solutions of Aut) follows from that every path of Product
can be found in Noodles and that the use of ε-transitions allows to reconstruct
the NFAs corresponding to the variables.



Word Equations in Synergy with Regular Constraints 413

Example 2. Consider the multi-equation system Φ from Sect. 2 and
the vertex xyx⊆zu of its inclusion graph given in the right. The
construction of the product automaton Product from Algorithm
2 is shown in Fig. 1. The set of noodles noodlify(Product) =
{N1, . . . ,N7} is given in [60] (N1 and N2 are in Fig. 1). On Line 6,
we need to compute intersections of Ni(1)∩Ni(3) for each noodle Ni. These parts
of the noodle correspond to the two occurrences of the same variable x. The
only noodles yielding nonempty languages for x are N1 and N2. The noodle N1

leads to a refinement Aut1 of Aut where L(Aut1(x)) = a (computed as the
intersection of languages N1(1) = a(ba)∗ and N1(3) = (ba)∗a) and L(Aut1(y)) =
(ba)∗. The noodle N2 leads to a refinement Aut2 of Aut where L(Aut2(x)) = ε
(computed as the intersection of languages N2(1) = (ab)∗ and N2(3) = ε) and
L(Aut2(y)) = a(ba)∗a. 
�
Example 3. An example with a non-terminating sequence of refinement steps is
xa = x∧x ∈ a+, explained in detail in [60]. Every i-th step refines Lang(x) to x ∈
ai+1a∗. Note that many similar examples could be handled by simple heuristics
that take into account lengths of strings, already used in other solvers. 
�

5.2 Satisfiability Checking by Refinement Propagation

Algorithm 3: propagate(GE,AutΦ)
Input: Inclusion graph GE = (V, E),

initial automata assignment AutΦ.
Output: SAT if Φ is satisfiable,

UNSAT if Φ is unsatisfiable

1 Branches := 〈(AutΦ, V )〉;
2 while Branches 	= ∅ do
3 (Aut, W ) := Branches.dequeue();
4 if W = ∅ then return SAT ;
5 v = s⊆ t := W.dequeue();
6 if L(Aut(s)) ⊆ L(Aut(t)) then
7 Branches.enqueue((Aut, W ));
8 continue;

9 T := refine(v,Aut);
10 W ′ := W ;
11 foreach (v, u) ∈ E s.t. u 	∈ W do
12 W ′.enqueue(u);
13 foreach Aut′ ∈ T do
14 Branches.enqueue(Aut′, W ′);
15 return UNSAT;

The pseudocode of the satisfi-
ability check of Φ is given in
Algorithm 3. It starts with the
automaton assignment AutΦ cor-
responding to LangΦ, and it uses
graph nodes s⊆ t not satisfied
in the current Aut to refine it,
that is, to replace Aut by some
automaton assignment returned
by refine(s⊆ t,Aut).

The algorithm maintains the
current value of Aut and a work-
list W of nodes for which the
weak-stability condition might be
invalidated, either initially or
since they were affected by some
previous refinement. Nodes are
picked from the worklist, and
if the inclusion at a node is
found not satisfied in the cur-
rent automata assignment Aut,
the node is used to refine it. Stability is detected when W is empty—there
in no potentially unsatisfied inclusion.

Since refine(s⊆ t,Aut) does not return a single language assignment but
a set of language assignments that refine Aut, the computation spawns an inde-
pendent branch for each of them. Algorithm 3 adds the branches for processing in



414 F. Blahoudek et al.

the queue Branches. The branching is disjunctive, meaning stability is returned
when a single branch detects stability. If all branches terminate with an infeasible
assignment, then the algorithm concludes that the constraint is unsatisfiable.

The worklist and the queue of branches are first-in first-out (this is impor-
tant for showing termination in Theorem 8). To minimise the number of refine-
ment steps, the nodes are initially inserted in W in an order compatible with a
topological order of the SCCs.

Example 4. Consider again the multi-equation system Φ from Sect. 2 and the
inclusion graph in Example 2. The initial automata assignment AutΦ is then
given as L(AutΦ(a)) = {a}, L(AutΦ(z)) = a(ba)∗, L(AutΦ(u)) = (baba)∗a, and
L(AutΦ(x)) = L(AutΦ(y)) = L(AutΦ(w)) = Σ∗. The queue Branches on Line 1
of Algorithm 3 is hence initialised as Branches = 〈(AutΦ, 〈xyx⊆zu,ww⊆xa〉)〉.
The computation of the main loop of Algorithm 3 then proceeds as follows.

1st iteration. The dequeued element is (AutΦ, 〈xyx⊆zu,ww⊆xa〉) and v
(dequeued from W ) is xyx⊆zu. The condition on Line 6 is not satisfied,
hence the algorithm calls refine(xyx⊆zu,AutΦ). The refinement yields two
new automata assignments, Aut1,Aut2, which are defined in Example 2. The
queue Branches is hence extended to 〈(Aut1, 〈ww⊆xa〉), (Aut2, 〈ww⊆xa〉)〉.

2nd iteration. The dequeued element is (Aut2, 〈ww⊆xa〉). The condition on
Line 6 is not satisfied since L(Aut2(x)) = {ε} and L(Aut2(w)) = Σ∗. In this
case, refine(ww⊆xa,Aut2) = ∅, hence nothing is added to Branches, i.e.,
Branches = 〈(Aut1, 〈ww⊆xa〉)〉.

3rd iteration. The dequeued element is (Aut1, 〈ww⊆xa〉). The condition on
Line 6 is not satisfied (Σ∗ · Σ∗ �⊆ a · a) and refine(ww⊆xa,Aut1) = {Aut3}
where Aut3 is as Aut1 except that Aut3(w) accepts only a. Branches is then
updated to 〈(Aut3, ∅)〉.

4th iteration. The condition on Line 4 is satisfied and the algorithm returns
SAT. 
�

As stated by Theorem 6 below, the algorithm is sound in the general case (an
answer is always correct). Moreover, Theorems 5 and 7 imply that when Algo-
rithm 1 is used to construct the inclusion graph, we have a complete algorithm
for chain-free constraints.

Theorem 6 (Soundness). If propagate(GE,AutΦ) returns SAT, then Φ is sat-
isfiable, and if propagate(GE,AutΦ) returns UNSAT, Φ is unsatisfiable.

Theorem 7. If GE is acyclic, then propagate(GE,AutΦ) terminates.

5.3 Working with Shortest Words

Algorithm 3 can be improved with a weaker termination condition that takes
into account only shortest words in the languages assigned to variables. Impor-
tantly, this gives us completeness in the SAT case for general constraints, i.e., the
algorithm is always guaranteed to return SAT if a solution exists.



Word Equations in Synergy with Regular Constraints 415

Let Langmin be the language assignment obtained from Lang by assigning to
every x ∈ X the set of shortest words from Lang(x) i.e., Langmin(x) = {w ∈
Lang(x) | ∀u ∈ Lang(x) : |w| ≤ |u|}. Then, for Φ: s = t ∧ ∧

x∈X
x ∈ LangΦ(x), we

say that Lang is strongly min-stable for Φ if Langmin is stable for Φ. Similarly,
Lang is weakly min-stable for Φ if s = t is weak and Langmin(s) ⊆ Lang(t). Note
that for weak min-stability, it is enough to have the min-language only on the left,
which gives a weaker condition. Theorems 1 and 2 hold for min-stability and weak
min-stability, respectively, as well (the proof of the min-versions are in fact a
part of the proof of the Theorems 1 and 2). The min-stability of a multi-equation
system is then defined in the same way as before, different only in that it uses the
min-stability at the nodes instead of stability. Namely, in Algorithm 3, the test
L(Aut(s)) ⊆ L(Aut(t)) on Line 6 is replaced by Lmin(Aut(s)) ⊆ L(Aut(t)). We
call this variant of the algorithm propagatemin . Not only that this new algorithm
is still partially correct, may terminate after less refinements, and uses a cheaper
test to detect termination, but, mainly, it is complete in the SAT case: if there is
a solution, then it is guaranteed to terminate for any system, no matter whether
chain-free or not. Intuitively, the algorithm in a sense explores the words in the
languages of the variables systematically, taking the words ordered by length,
the shortest ones first. Hence, besides that variants of Theorems 6 and 7 with
propagatemin still hold, we also have Theorem 8:

Theorem 8. If Φ is satisfiable, then propagatemin(incl(E),AutΦ) terminates.

6 Experimental Evaluation

We implemented our algorithm in a prototype string solver called Noodler [63]
using Python and a homemade C++ automata library for manipulating NFAs.
We compared the performance of Noodler with a comprehensive selection
of other tools, namely, CVC5 [13] (version 1.0.1), Z3 [15] (version 4.8.14),
Z3str3RE [20], Z3str4 [64], Z3-Trau [34], OSTRICH [23], Sloth [65], and
Retro [48]. In order to have a meaningful comparison with compiled tools
(CVC5, Z3, Z3str3RE, Z3str4, Z3-Trau), the reported time for Noodler
does not contain the startup time of the Python interpreter and the time taken
by loading libraries (this is a constant of around 1.5 s). To be fair, one should
take this into account when considering the time of other interpreted tools,
such as OSTRICH, Sloth (both Java), and Retro (Python). As can be seen
from the results, it would, however, not significantly impact the overall out-
come. The experiments were executed on a workstation with an Intel Core
i5 661 CPU at 3.33 GHz with 16 GiB of RAM running Debian GNU/Linux.
The timeout was set to 60 s.

Benchmarks. We consider the following benchmarks, having removed unsup-
ported formulae (i.e., formulae with length constraints or transducer operations).

– PyEx-Hard ([48], 20,023 formulae): it comes from the PyEx bench-
mark [10], in particular, it is obtained from 967 difficult instances that neither



416 F. Blahoudek et al.

Table 1. Results of experiments. For each benchmark and tool, we give the number of
timeouts (“T/Os”), the total run time (in seconds), and the run time without timeouts
(“time−T/O”). Best values are in bold.

PyEx-Hard (20,023) Kaluza-Hard (897) Str 2 (293) Slog (1,896)

T/Os time time−T/O T/Os time time−T/O T/Os time time−T/O T/Os time time−T/O

Noodler 39 5,266 2,926 0 46 46 3 198 18 0 165 165

Z3 2,802 178,078 9,958 207 15,360 2,940 149 8,955 15 2 332 212

CVC5 112 12,523 5,803 0 55 55 92 5,525 5 0 14 14

Z3str3RE 814 49,744 904 10 622 22 149 8,972 32 55 4,247 947

Z3str4 461 28,114 454 17 1,039 19 154 9,267 27 208 16,508 4,028

Z3-Trau 108 33,551 27,071 0 201 201 10 724 124 5 970 670

OSTRICH 2,979 214,846 36,106 111 14,912 8,252 238 14,497 217 2 13,601 13,481

Sloth 463 371,373 343,593 0 3,195 3,195 N/A 202 24,940 12,820

Retro 3,004 199,107 18,867 148 16,404 7,524 1 299 239 N/A

CVC4 nor Z3 could solve in 10 s. PyEx-Hard then contains 20,023 conjunc-
tions of word equations that Z3’s DPLL(T) algorithm sent to its string theory
solver when trying to solve them.

– Kaluza-Hard (897 formulae): it is obtained from the Kaluza bench-
mark [46] by taking hard formulae from its solution in a similar way for
PyEx-Hard.

– Str 2 ([33], 293 formulae) the original benchmark from [33] contains 600
hand-crafted formulae including word equations and length constraints; the
307 formulae containing length constraints are removed.

– Slog ([35], 1,896 formulae) contains 1,976 formulae obtained from real web
applications using static analysis tools JSA [66] and Stranger [39]. 80 of
these formulae contain transducer operations (e.g., ReplaceAll).

From the benchmarks, only Slog initially contains regular constraints. Note that
an interplay between equations and regular constraints happens in our algorithm
even with pure equations on the input. Refinement of regular constraints is
indeed the only means in which our algorithm accumulates information. Complex
regular constraints are generated by refinement steps from an initial assignment
of Σ∗ for every variable. We also include useful constraints in preprocessing
steps, for instance, the equation z = xay where x and y do not occur elsewhere
is substituted by z ∈ Σ∗aΣ∗.

Results. The results of experiments are given in Table 1. For each benchmark,
we list the number of timeouts (i.e., unsolved formulae), the total run time
(including timeouts), and also the run time on the successfully decided formulae.
The results show that from all tools, Noodler has the lowest number of timeouts
on the aggregation of all benchmarks (42 timeouts in total) and also on each
individual benchmark (except Str 2 where it is the second lowest, 3 against 1).
Furthermore, in all benchmarks except Slog, Noodler is faster than other
tools (and for Slog it is the second). The results for Sloth on Str 2 are
omitted because Sloth was incorrect on this benchmark (the benchmark is not
straight-line) and the results for Retro on Slog are omitted because Retro
does not support regular constraints.



Word Equations in Synergy with Regular Constraints 417

In Fig. 3, we provide scatter plots comparing the run times of Noodler with
the best competitors, CVC5 and Z3str4, on the PyEx-Hard benchmark (scat-
ter plots for the other benchmarks are less interesting and can be found in [60]).
We can see that there is indeed a large number of benchmarks where Noodler
is faster than both competitors (and that the performance of Noodler is more
stable, which may be caused by the heuristics in the other tools not always
working well). Notice that Noodler and CVC5 are on this benchmark comple-
mentary: they have both some timeouts, but each formula is solved by at least
one of the tools.

Moreover, in Fig. 2, we provide a graph showing times needed to solve 1,023
most difficult formulae for the tools on the PyEx-Hard benchmark.

Fig. 2. Times for solving the hardest 1,023
formulae for the tools on PyEx-Hard

Discussion. The results of the exper-
iments show that our algorithm (even
in its prototype implementation in
Python) can beat well established
solvers such as CVC5, Z3, and
Z3str4. In particular, it can solve
more benchmarks, and also the aver-
age time for (successfully) solving
a benchmark is low (as witnessed by
the “time−T/O” column in Table 1).
The scatter plots also show that
it is often complementary to other
solvers.

Fig. 3. The performance of Noodler and other tools on PyEx-Hard. Times are given
in seconds, axes are logarithmic. Dashed lines represent timeouts (60 s).



418 F. Blahoudek et al.

7 Related Work

Our algorithm is an improvement of the automata-based algorithm first proposed
in [30], which is, at least in part, used as the basis of several string solvers, namely,
Norn [26,30,31], Trau [27–29,34], OSTRICH [21–23], and Z3str3RE [20].
The original algorithm first transforms equations to the disjunction of their
solved forms [59] through generating alignments of variable boundaries on the
equation sides (essentially an incomplete version of Makanin’s algorithm). Sec-
ond, it eliminates concatenation from regular constraints by automata splitting.
The algorithm replaces x · y ∈ L by a disjunction of cases x ∈ Lx ∧ y ∈ Ly, one
case for each state of L’s automaton. Each disjunct later entails testing empti-
ness of Lx ∩ Lang(x) and Ly ∩ Lang(y) by the automata product construction.
Trau uses this algorithm within an unsatisfiability check. Trau’s main solu-
tion finding algorithm also performs a step similar to our refinement, though
with languages underapproximated as arithmetic formulae (representing their
Parikh images). Sloth [34] implements a compact version of automata splitting
through alternating automata. OSTRICH has a way of avoiding the variable
boundary alignment for the straight-line formulae, although still uses it outside
of it. Z3str3RE optimises the algorithm of [30] heavily by the use of length-
aware heuristics.

The two levels of disjunctive branching (transformation into solved form and
automata splitting) are costly. For instance, for xyx = zu ∧ z ∈ a(ba)∗ ∧ u ∈
(baba)∗a (a subformula of the example in Sect. 2), there would be 14 align-
ments/solved forms, e.g. those characterised using lengths as follows: (1) |zu| =
0; (2) |y| = |zu|; (3) |x| < |z|, |y| = 0; (4) |xy| < z, |y| > 0; (5) |x| < |z|, |xy| > z;
. . . In the case (5) alone—corresponding to the solved form z = z1z2, u =
u1z1, x = z1, y = z2u1—automata splitting would generate 15 cases from
z1z2 ∈ Lang(z) and u1u2 ∈ Lang(u), each entailing one intersection emptiness
check (the NFAs for z and u have 3 and 5 states respectively). There would be
about a hundred of such cases overall. On the contrary, our algorithm generates
only 9 of equivalent cases, 7 if optimised (see Sect. 2).

Our algorithm has an advantage also over pure automata splitting, irre-
spective of aligning equations. For instance, consider the constraint xyx ∈
L ∧ x ∈ Lang(x) ∧ y ∈ Lang(y). Automata splitting generates a disjunction
of n2 constraints x ∈ Lx ∧ y ∈ Ly, with n being the number of states of the
automaton for L, each constraint with emptiness checks for Lang(x) ∩ Lx and
Lang(y) ∩ Ly. Our algorithm avoids generating much of these cases by inter-
secting with the languages of Lang(x) and Lang(y) early—the construction of
Lang(x) · Lang(y) · Lang(x) prunes much of L’s automaton immediately. For
instance, if L = (ab)∗a+(abcd)∗ (its NFA has 7 states) and Lang(x) = (a + b)∗,
automata splitting explores 72 = 49 cases while our algorithm explores 9 (7 when
optimised) of these cases—it would compute the same product and noodles as
in Sect. 2, essentially ignoring the disjunct (abcd)∗ of L.

Approaches and tools for string solving are numerous and diverse, with
various representations of constraints, algorithms, or sorts of inputs. Many
approaches use automata, e.g., Stranger [39–41], Norn [30,31], OSTRICH



Word Equations in Synergy with Regular Constraints 419

[21–25], Trau [26–29], Sloth [34], Slog [35], Slent [36], Z3str3RE [20],
Retro [48], ABC [42,43], Qzy [47], or BEK [51]. Around word equations are cen-
tered tools such as CVC4/5 [6–12], Z3 [14,15], S3 [32], Kepler22 [33], StrSolve
[37], Woorpje [49]; bit vectors are (among other things) used in Z3Str/2/3/4
[16–19], HAMPI [45]; PASS uses arrays [50]; G-strings [38] and GECODE+S
[44] use SAT-solving. Most of these tools and methods handle much wider range
of string constraints than equations and regular constraints. Our algorithm is
not a complete alternative but a promising basis that could improve some of the
existing solvers and become a core of a new one. With regard to equations and
regular constraints, the fragment of chain-free constraints [26] that we handle,
handled also by Trau, is the largest for which any string solvers offers formal
completeness guarantees, with the exception of quadratic equations, handled,
e.g., by [33,48], which are incomparable but of a smaller practical relevance
(although some tools actually implement Nielsen’s algorithm [58] to handle sim-
ple quadratic cases). The other solvers guarantee completeness on smaller frag-
ments, notably that of OSTRICH (straight-line), Norn, and Z3str3RE; or
use incomplete heuristics that work in practice (giving up guarantees of termi-
nation, over or under-approximating by various means). Most string solvers tend
to avoid handling regular expressions, by means of postponing them as much as
possible or abstracting them into arithmetic/length and other constraints (e.g.
Trau, Z3str3RE, Z3str4, CVC4/5, S3). A major point of our work is that tak-
ing the opposite approach may work even better when automata are approached
from the right angle and implemented carefully, though, heuristics that utilise
length information or Parikh images would most probably speed up our algo-
rithm as well. The main selling point of our approach is its efficiency compared
to the others, demonstrated on benchmark sets used in other works.

8 Conclusion and Future Work

We have presented a new algorithm for solving a fragment of word equations with
regular constraints, complete in SAT cases and for the chain-free fragment. It is
based on a tight interconnection of equations with regular constraints and built
around a novel characterisation of satisfiability of a string constraint through
the notion of stability. We have experimentally shown that the algorithm is very
competitive with existing solutions, better especially on difficult examples.

We plan to continue from here towards a complete string solver. This involves
including other types of constraints and coming up with a mature and optimised
implementation. The core algorithm might also be optimised by using a more
compact automata representation of noodles that would eliminate redundancies.

Acknowledgements. This work was supported by the Czech Ministry of Education,
Youth and Sports project LL1908 of the ERC.CZ programme, the Czech Science Foun-
dation project GA20-07487S, the FIT BUT internal project FIT-S-20-6427, and the
project of Ministry of Science and Technology, Taiwan (grant no. 109-2628-E-001-001-
MY3).



420 F. Blahoudek et al.

References

1. OWASP: Top 10 (2013). https://www.owasp.org/images/f/f8/OWASP Top 10 -
2013.pdf

2. OWASP: Top 10 (2017). https://owasp.org/www-project-top-ten/2017/
3. OWASP: Top 10 (2021). https://owasp.org/Top10/
4. Hadarean, L.: String solving at Amazon (2019). Presented at MOSCA 2019.

https://mosca19.github.io/program/index.html
5. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: solidity compiler’s

model checker. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification (CAV
2022). LNCS, vol. 13371, pp. 325–338. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-13185-1 16

6. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T ) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

7. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient SMT solver for string constraints. Form. Methods Syst. Des. 48(3), 206–
234 (2016). https://doi.org/10.1007/s10703-016-0247-6

8. Barrett, C.W., Tinelli, C., Deters, M., Liang, T., Reynolds, A., Tsiskaridze, N.:
Efficient solving of string constraints for security analysis. In: HotSoS 2016, ACM
Trans. Comput. Log., pp. 4–6 (2016)

9. Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.: A decision pro-
cedure for regular membership and length constraints over unbounded strings. In:
Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 135–150.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24246-0 9

10. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling
up DPLL(T) string solvers using context-dependent simplification. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 24

11. Nötzli, A., Reynolds, A., Barbosa, H., Barrett, C., Tinelli, C.: Even faster conflicts
and lazier reductions for string solvers. In: Shoham, S., Vizel, Y. (eds.) Computer
Aided Verification (CAV 2022), pp. 205–226. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-13188-2 11

12. Reynolds, A., Notzlit, A., Barrett, C., Tinelli, C.: Reductions for strings and reg-
ular expressions revisited. In: 2020 Formal Methods in Computer Aided Design
(FMCAD), pp. 225–235 (2020)

13. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

14. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Tools and Algorithms for the Construction and Anal-
ysis of Systems: 15th International Conference (TACAS 2009), Held as Part of the
Joint European Conferences on Theory and Practice of Software (ETAPS 2009),
York, UK, 22–29 March 2009. Proceedings 15, pp. 307–321. Springer, Heidelberg
(2009)

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/Top10/
https://mosca19.github.io/program/index.html
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/s10703-016-0247-6
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-540-78800-3_24


Word Equations in Synergy with Regular Constraints 421

16. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web applica-
tion analysis. In: ESEC/FSE 2013, ACM Trans. Comput. Log., pp. 114–124 (2013)

17. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp.
55–59 (2017)

18. Murphy, B.: Z3str4: a solver for theories over strings. PhD thesis (2021)
19. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effec-

tive search-space pruning for solvers of string equations, regular expressions and
length constraints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 235–254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 14

20. Berzish, M., et al.: An SMT solver for regular expressions and linear arithmetic over
string length. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
289–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 14

21. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: POPL 2016, ACM Trans. Comput.
Log., pp. 123–136 (2016)

22. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the replaceall function. Proc. ACM Program. Lang. 2(POPL),
3:1–3:29 (2018)

23. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL), 49:1–49:30 (2019)

24. Chen, T., et al.: Solving string constraints with regex-dependent functions through
transducers with priorities and variables. Proc. ACM Program. Lang. 6(POPL),
1–31 (2022)

25. Chen, T., et al.: A decision procedure for path feasibility of string manipulating
programs with integer data type. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020.
LNCS, vol. 12302, pp. 325–342. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59152-6 18

26. Abdulla, P.A., Atig, M.F., Diep, B.P., Hoĺık, L., Jank̊u, P.: Chain-free string con-
straints. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 277–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 16

27. Abdulla, P.A., et al.: TRAU: SMT solver for string constraints. In: Bjørner, N.S.,
Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design (FMCAD
2018), pp. 1–5. IEEE (2018)

28. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of
string constraints. In: Cohen, A., Vechev, M.T. (eds.) Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI 2017), pp. 602–617, ACM (2017)

29. Abdulla, P.A., et al.: Solving not-substring constraint with flat abstraction. In:
Oh, H. (ed.) APLAS 2021. LNCS, vol. 13008, pp. 305–320. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-89051-3 17

30. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 10

31. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-89051-3_17
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-21690-4_29


422 F. Blahoudek et al.

32. Trinh, M., Chu, D., Jaffar, J.: S3: a symbolic string solver for vulnerability detection
in web applications. In: CCS, ACM Trans. Comput. Log., pp. 1232–1243 (2014)

33. Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations,
regular expressions and length constraints. In: Ryu, S. (ed.) APLAS 2018. LNCS,
vol. 11275, pp. 350–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-02768-1 19

34. Abdulla, P.A., et al.: Efficient handling of string-number conversion. In: Proc. of
PLDI 2020, ACM, pp. 943–957 (2020)

35. Wang, H.-E., Tsai, T.-L., Lin, C.-H., Yu, F., Jiang, J.-H.R.: String analysis via
automata manipulation with logic circuit representation. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 241–260. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 13

36. Wang, H.E., Chen, S.Y., Yu, F., Jiang, J.H.R.: A symbolic model checking app-
roach to the analysis of string and length constraints. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE
2018), pp. 623–633. Association for Computing Machinery, NY (2018)

37. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Autom.
Softw. Eng. 19(4), 531–559 (2012)

38. Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A novel approach to string con-
straint solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 3–20. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 1

39. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 13

40. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Form. Methods Syst. Des. 44(1), 44–70 (2014)

41. Yu, F., Bultan, T., Ibarra, O.H.: Relational string verification using multi-track
automata. Int. J. Found. Comput. Sci. 22(8), 1909–1924 (2011)

42. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
255–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 15

43. Bultan, T., contributors: ABC string solver
44. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation

of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51–67. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8 5

45. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Comput. Log. 21(4), 25:1–25:28 (2012)

46. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: SP 2010, IEEE Computer Society, pp.
513–528 (2010)

47. Cox, A., Leasure, J.: Model checking regular language constraints. arXiv preprint
arXiv:1708.09073 (2017)

48. Chen, Y.-F., Havlena, V., Lengál, O., Turrini, A.: A symbolic algorithm for the
case-split rule in string constraint solving. In: Oliveira, B.C.S. (ed.) APLAS 2020.
LNCS, vol. 12470, pp. 343–363. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64437-6 18

https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-030-02768-1_19
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1007/978-3-319-41528-4_13
https://doi.org/10.1007/978-3-319-66158-2_1
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-319-59776-8_5
http://arxiv.org/abs/1708.09073
https://doi.org/10.1007/978-3-030-64437-6_18
https://doi.org/10.1007/978-3-030-64437-6_18


Word Equations in Synergy with Regular Constraints 423

49. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: On
solving word equations using SAT. In: Filiot, E., Jungers, R., Potapov, I. (eds.)
RP 2019. LNCS, vol. 11674, pp. 93–106. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-30806-3 8

50. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15–31. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7 2

51. Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., Veanes, M.: Fast and precise
sanitizer analysis with BEK. In: USENIX Security Symposium 2011, USENIX
Association (2011)

52. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.: Symbolic finite
state transducers: algorithms and applications. In: POPL 2012, ACM Trans. Com-
put. Log., pp. 137–150 (2012)

53. Fu, X., Li, C.: Modeling regular replacement for string constraint solving. In: NFM
2010. Volume NASA/CP-2010-216215 of NASA, pp. 67–76 (2010)

54. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–
240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 12

55. Plandowski, W.: Satisfiability of word equations with constants is in NEXPTIME.
In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting (STOC 1999), pp. 721–725. Association for Computing Machinery, NY
(1999)

56. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), 1–51 (2016)

57. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 32(2), 147–236 (1977). (in Russian)

58. Nielsen, J.: Die isomorphismen der allgemeinen, unendlichen gruppe mit zwei erzeu-
genden. Math. Ann. 78(1), 385–397 (1917)

59. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

60. Blahoudek, F., et al.: Word equations in synergy with regular constraints (technical
report). arXiv preprint arXiv:2212.02317 (2022)

61. Aziz, A., Singhal, V., Swamy, G., Brayton, R.K.: Minimizing interacting finite state
machines. Technical Report UCB/ERL M93/68, EECS Department, University of
California, Berkeley (1993)

62. Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and
infinite graphs. In: Proceedings of IEEE 36th Annual Foundations of Computer
Science, pp. 453–462 (1995)

63. Blahoudek, F., et al.: Noodler (2022). https://github.com/vhavlena/Noodler
64. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: a multi-

armed string solver. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 389–406. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 21

65. Hoĺık, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints
with concatenation and transducers solved efficiently. Proc. ACM Program. Lang.
2(POPL), 4:1–4:32 (2018)

66. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidel-
berg (2003). https://doi.org/10.1007/3-540-44898-5 1

https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-319-03077-7_2
https://doi.org/10.1007/978-3-319-41528-4_12
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
http://arxiv.org/abs/2212.02317
https://github.com/vhavlena/Noodler
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/3-540-44898-5_1


Formal Methods in AI



Verifying Feedforward Neural Networks
for Classification in Isabelle/HOL

Achim D. Brucker and Amy Stell(B)

Department of Computer Science, University of Exeter,
Exeter, UK

{a.brucker,as1343}@exeter.ac.uk
https://brucker.ch,

https://emps.exeter.ac.uk/computer-science/staff/as1343

Abstract. Neural networks are being used successfully to solve classi-
fication problems, e.g., for detecting objects in images. It is well known
that neural networks are susceptible if small changes applied to their
input result in misclassification. Situations in which such a slight input
change, often hardly noticeable by a human expert, results in a mis-
classification are called adversarial examples. If such inputs are used for
adversarial attacks, they can be life-threatening if, for example, they
occur in image classification systems used in autonomous cars or medi-
cal diagnosis.

Systems employing neural networks, e.g., for safety or security-critical
functionality, are a particular challenge for formal verification, which usu-
ally expects a formal specification (e.g., given as source code in a pro-
gramming language for which a formal semantics exists). Such a formal
specification does, per se, not exist for neural networks.

In this paper, we address this challenge by presenting a formal
embedding of feedforward neural networks into Isabelle/HOL and dis-
cussing desirable properties for neural networks in critical applications.
Our Isabelle-based prototype can import neural networks trained in
TensorFlow, and we demonstrate our approach using a neural network
trained for the classification of digits on a dot-matrix display.

Keywords: Neural network · Deep learning · Classification network ·
Feedforward network · Verification · Isabelle/HOL

1 Introduction

Deep learning, i.e., machine learning using neural networks is used successfully
in many application areas, e.g., image classification ([11,24,37]). While systems
using neural networks are also used in safety-critical areas (e.g., for the recog-
nition of street signs in semi-autonomous cars [11]), the use of neural networks

This work was supported by the Engineering and Physical Sciences Research Council
[grant number 670002170].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 427–444, 2023.
https://doi.org/10.1007/978-3-031-27481-7_24

https://doi.org/10.5281/zenodo.7418170
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_24&domain=pdf
http://orcid.org/0000-0002-6355-1200
http://orcid.org/0000-0003-0714-3269
https://doi.org/10.1007/978-3-031-27481-7_24


428 A. D. Brucker and A. Stell

in high-assurance systems is limited due to the lack of formal verification tech-
niques that satisfy the stringent requirements of industrial certification standards
such as BS EN 50128 [10] (safety) or Common Criteria [14] (security) that are
required for such applications.

The formal specification and verification techniques that such standards
require usually rely on the existence of an implementation (e.g., source code)
whose compliance to a specification can be verified (e.g., following an approach
similar to [23]). For systems based on neural networks, such an implementation
that precisely describes, in a human-readable form, the system’s behaviour does
not exist. The only artefact that exists is a neural network trained on a set of
training data, which is expected to behave correctly for all possible inputs.

Formal verification is an approach that can make a statement for all possible
inputs. In this paper, we present an approach based on the interactive theorem
prover Isabelle/HOL for the formal verification of neural networks. Using an
expressive formalism, such as higher-order logic, allows for expressing complex
properties that a neural network needs to satisfy. On the one hand, the fact
that Isabelle is an interactive theorem prover enables the user to explore the
properties of the network and, therefore, deepen the understanding of the neural
network being analysed. On the other hand, Isabelle is a framework that allows
us to provide highly automated functionality for both, encoding a specific neural
network, and for proving properties over it.

In more detail, our contributions are three-fold:

1. a formal embedding of feedforward neural networks into Isabelle/HOL,
2. a verification environment supporting the verification of neural networks

trained using TensorFlow, and
3. an application of our framework to a case study.

The rest of the paper is structured as follows: first, we introduce the back-
ground of our work (Sect. 2) and a small running example (Sect. 3). Next, we
introduce our formal model of feedforward neural networks in Isabelle/HOL in
Sect. 4 and discuss the desirable properties of classification networks in Sect. 5. In
Sect. 6, we briefly explain our implementation in Isabelle/HOL before we briefly
discuss a case study for classifying dot-matrix digits (Sect. 7). Finally, we discuss
related work (Sect. 8) and draw conclusions (Sect. 9).

2 Isabelle and Higher-Order Logic (HOL)

In this section, we introduce two aspects of Isabelle/HOL; its logic (HOL) and
its implementation architecture.

2.1 Isabelle/HOL

Isabelle [28] is a well-known interactive theorem prover that has been used suc-
cessfully in large-scale verification projects (e.g., [23] presents the verification of
an operating system kernel using Isabelle/HOL). The formal language of Isabelle



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 429

is Higher-order logic (HOL) [12], which is a classical logic based on a simple type
system. It provides the usual logical connectives like ¬ _, _ ∧ _, _ ∨ _, _ −→
_ as well as the object-logical quantifiers ∀ x. P x and ∃ x. P x. In contrast

to first-order logic, quantifiers may range over arbitrary types, including total
functions f::α ⇒ β (where α and β are polymorphic type variables).

Isabelle/HOL offers support for extending theories in a logically safe way: A
theory-extension is conservative if the extended theory is consistent, provided
that the original theory was consistent. Conservative extensions can be constant
definitions, type definitions, datatype definitions, primitive recursive definitions
and well-founded recursive definitions.

2.2 Isabelle as Formal Methods Framework

Isabelle is not only an interactive theorem prover; it also provides an extensible
framework for developing formal method tools [39]. Figure 1 shows an overview of
the Isabelle architecture. For our work, it is noteworthy that new components can
be implemented in Isabelle/ML, i.e., Isabelle’s SML [29] programming interface.
In a logically safe way, we use this interface to provide an import mechanism
for importing neural networks and implementing domain-specific proof methods.
Furthermore, use the code generator to efficiently evaluate neural networks, i.e.,
compute predictions for concrete inputs.

Fig. 1. The system architecture of Isabelle.

3 Running Example: Classifying Lines in a Grid

In the following, we introduce neural networks for (image) classification by using
a simple line classification problem: given a 2×2 pixel greyscale image, the neural
network should decide if the image contains a horizontal line (e.g., Fig. 2a),
vertical line (e.g., Fig. 2b), or no line (Fig. 2c).

Traditionally, textbooks (e.g., [3]) define a feedforward neural network as
directed weighted acyclic graphs. The nodes are called neurons, and the incoming



430 A. D. Brucker and A. Stell

Fig. 2. Example input images to our classification problem.

edges are called inputs. For a given neuron k with m inputs xk0 to xkm−1 , and
the respective weights wk0 to wkm−1 the neuron computes the output

yk = ϕ

⎛
⎝β +

m∑
j=0

wkj
xkj

⎞
⎠ (1)

where ϕ is the activation function and β the bias for the neuron k. The values
for the weights and biases are determined during the training (learning) phase,
which we omit due to space reasons. In our work, we assume that the given
neural network is already trained, e.g., using the widely used machine learning
framework TensorFlow [1].

Figure 3 illustrates the architecture of our neural network: The neural net-
work for our example classification problem has four inputs (one for each pixel of
the image), expecting an input value between 0.0 (white) and 1.0 (black). It also
has three outputs, one for each possible class (a horizontal line, a vertical line,
or no line). The neurons (nodes) can be naturally categorised into layers, i.e.,
the input layer consisting out of the input nodes and the output layer consisting
out of the output nodes. Moreover, our neural network has one hidden layer
with 16 neurons. The input layer and the hidden layer use a linear activation
function (i.e., ϕ(x) = x) for all neurons, and the hidden layer uses the binary
step function (i.e., ϕ(x) = 0 for x ≤ 0 and ϕ(x) = 1 otherwise). In our example,
there is an edge between each neuron from the previous layer to the next layer,
often called a dense layer. Machine learning approaches using neural networks
with one or more hidden layers are called deep learning.

Fig. 3. Neural network for classifying lines in 2 × 2 pixel greyscale images.



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 431

In our example, we used the Python API for TensorFlow [1] to train our
neural network. We obtained a neural network that reliably classifies black lines
in a given 2 × 2 image with 100% accuracy. While this sounds great, the neural
network is not very resilient to changes to its input values. Consider, for example,
Fig. 2d: a human expert would likely classify this image as “no line”. Nevertheless,
our neural network classifies this as a horizontal line, even though the upper right
pixel is only light grey with a numerical value of 0.05, much closer to white than
black. Such a misclassification is usually called an adversarial example. If such
a network is used in safety or security-critical applications, e.g., for classifying
street signs, such misclassifications can be life-threatening.

4 Modelling Neural Networks in Isabelle

Our Isabelle/HOL formalisation contains several models, i.e., one based on mod-
elling neural networks as graphs (i.e., “textbook-style”) and one modelling neural
networks as layers (i.e., “TensorFlow-style”). Due to space reasons, we will focus
in this paper, on the latter.

4.1 Data Modelling

We use locales (i.e., Isabelle’s mechanism for parametric theories) to capture
fundamental concepts that are shared between different models of neural net-
works. We start by defining a locale neural_network_sequential_layers to
describe the common concepts of all neural network models that use layers are
core building blocks. For our representation to be a well-formed sequential model,
we require that the first layer is an input layer and the last layer is an output
layer:

Isabelle (Isar)locale neural_network_sequential_layers =
fixes N::〈('a::{monoid_add,times}, 'b) neural_network_seq_layers〉

assumes head_is_In: 〈isIn (hd (layers N))〉

and last_is_Out: 〈isOut (last (layers N))〉

and 〈list_all isInternal ((tl o butlast) (layers N))〉

begin end

For this encoding of a neural network, we mostly follow TensorFlow’s Sequen-
tial model [1] and represent our network as a list of layers with an abstract
table of activation functions, allowing for extensible and customisable functional-
ity. The record ('a, 'b) neural_network_seq_layers represents our network
where 'a is an abstract value representing the type of our weights and bias, and
'b is our activation function.

Isabelle (Isar)record ('a, 'b) neural_network_seq_layers =
layers :: 〈('a, 'b) layer list〉

activation_tab :: 〈'b ⇒ (('a list ⇒ 'a list) option)〉



432 A. D. Brucker and A. Stell

Included in our formalisation are definitions for all TensorFlow [1] activation
functions, and for those which use ex, we also provide an approximation using the
Taylor series of the exponential function, which has been shown to outperform
the original in certain situations [4]. In our running example (recall Sect. 3), the
activation functions used during training include binary step in the hidden layer
and linear in the output layer.

Isabelle (Isar)definition
〈identity = (λv. v)〉

definition binary_step :: 〈'a::{zero, ord, one, zero} ⇒ 'a〉 where
〈binary_step = (λ v. if v ≤ 0 then 0 else 1)〉

As we are using a representation of a network as a list of layers, we also
support different layer types and their computations. Currently, our sequential
layers model supports five layer types Input, Output, Dense, Activation, and,
as we allow for the abstraction of activation functions, we can define arbitrary
'b in the networks activation_tab, allowing for custom activation functions.
Therefore, we do not need to model TensorFlow’s Lambda layer explicitly (which
is TensorFlow’s mechanism for supporting custom activation functions).

Isabelle (Isar)datatype ('a, 'b) layer = In 〈InOutRecord〉

| Out 〈InOutRecord〉

| Dense 〈('a,'b) LayerRecord〉

| Activation 〈('b) ActivationRecord〉

These layer types differ in how they are connected to the next layer in the
network, thus changing the calculation during training and prediction. The Dense
layer is the most powerful layer type in the sense that it connects all outputs of
the previous layer with all inputs. Hence, other layer types (e.g., TensorFlow’s
Activation layer, which applies an activation function to each output of the
previous layer) can be expressed in terms of a Dense layer with certain weights
set to the constant 0 to “disable” certain edges.

Each ('a, 'b) LayerRecord contains the activation, weights and bias in
our network (ϕ, β and ω respectively), while our ('b) ActivationRecord only
contains our abstracted activation function.

Isabelle (Isar)record InOutRecord =
name:: String.literal
units:: nat

record ('b) ActivationRecord = InOutRecord +
ϕ :: 'b

record ('a, 'b) LayerRecord = 〈('b) ActivationRecord〉 +
β :: 〈'a list〉

ω :: 〈'a list list〉



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 433

4.2 Encoding Our Running Example

Using the above definitions, we can now show the specialisation of our formal-
isation by explaining the representation of our network discussed in Sect. 3, in
Isabelle/HOL. We represent this example by first defining the types of our con-
crete network, as the encoding of the grid uses an array of NumPy [19] 64-bit
floats, the 'a in our record ('a, 'b) neural_network_seq_layers is instanti-
ated as a real and the 'b, is of the datatype activationmulti, (a datatype that
allows for the mapping of the abstraction of multi-class activation functions onto
its Isabelle/HOL definition).

Next, we have the layers; the input layer is a densely connected layer that
passes each input into each neuron in the first hidden layer.

Isabelle (Isar)dense_input ≡ (| name = STR ''dense_input'', units = 4 |)

The hidden layer in the network is a dense layer with 16 units, the learned
weights and bias referenced in this layer refer to the connections that exist
between this and the previous input layer.

Isabelle (Isar)dense ≡ (| name = STR ''dense'', units = 16,
ϕ = mBinaryStep, β = [5 / 10, ... , - 145 / 10],
ω = [[1, ... , 1] ... , [8, ... , 8]]|)

The next layer is the final calculation layer in our network and passes the
results onto our final output layer, which outputs the prediction of the network.

Isabelle (Isar)dense_1 ≡ (| name = STR ''dense_1'', units = 3,
ϕ = mIdentity, β = [1, 0, 0],
ω = [[0, 0, 0], ... ,[0, 0, 0]]|)

OUTPUT ≡ (| name = STR ''OUTPUT'', units = 3|)

Using the above layer and the activation function definitions; our final neural
network for the classification of horizontal and vertical lines can be defined as
follows:

Isabelle (Isar)NeuralNet ≡ (| layers = [dense_input, Layers.dense,
dense_1, OUTPUT], activation_tab = grid.ϕ_grid|)

4.3 Evaluating Neural Networks

What remains is the evaluation of the network, usually called “prediction”. To
be able to verify that a network’s behaviour falls within our desirable properties
(Sect. 5), we need to be able to efficiently evaluate its prediction for a given
input. As the calculation performed depends on the layer of the network that



434 A. D. Brucker and A. Stell

we are currently evaluating, we calculate the output based on the layer type and
fold this over the network.

The input and output layers of our network pass the inputs directly onto
the next layer without any calculation performed; this can be seen in the first
two cases of the predictlayer function. The dense layer of the network is where
Eq. 1 is calculated, case three in predictlayer, where first the input weights
are transposed (in_weights), then zipped with their input value (in_w_pairs),
before calculating the weighted sum (wsums), adding the bias (wsum_bias), and
finally applying the activation function on the result, producing the output for
a single dense layer. To calculate the prediction of the network given a set of
inputs we then fold predictlayer over the network from left to right (foldl) in
predictseq_layer

It is within this function that we also specify some pre-conditions for the
network to be of a valid structure. For example, the length of the input vector
must be equal to the number of units in that layer (length vs = l), for the
activation, input, and output layers; if this is not the case, then we return the
None option type, indicating that an error has occurred in prediction.

Isabelle (Isar)fun predictlayer::〈('a, 'b) neural_network_seq_layers
⇒ ('a list) option ⇒ ('a, 'b) layer ⇒ ('a list) option〉 where

〈predictlayer N (Some vs) (In (|name = _, units = l|))
= (if length vs = l then Some vs else None)〉

| 〈predictlayer N (Some vs) (Out (|name = _, units = l|))
= (if length vs = l then Some vs else None)〉

| 〈predictlayer N (Some vs) (Dense pl) = (let
in_weights = convert_weights (ω pl);
in_w_pairs = map (λ e. zip vs e) in_weights;
wsums = map (λ vs'.

∑
(x,y)←vs'. x*y) in_w_pairs;

wsum_bias = map (λ (s,b). s+b) (zip wsums (β pl))
in (case activation_tab N (ϕ pl) of

None ⇒ None
| Some f ⇒ Some (f wsum_bias)))〉

| 〈predictlayer N (Some vs) (Activation pl) =
(if length vs = units pl then (case activation_tab N (ϕ pl) of

None ⇒ None
| Some f ⇒ Some (f vs))

else None)〉

| 〈predictlayer _ None _ = None〉

definition
〈predictseq_layer N xs = foldl (predictlayer N) (Some xs) (layers N)〉

Although this model of a neural network differs from the textbook definition
of a network represented as a weighted and directed graph [3], this encoding
follows closely that of TensorFlow [1] where their sequential model consists of an
ordered list of layers, in which the activation is consistent within a single layer,
and has added support for various layer types. As well as this, our sequential



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 435

layers model resembles the original vector representation of Rumelhart et al. [32].
However, modelling a network as a list of layers means that it is not appropriate
for networks with multiple inputs and outputs, as well as those that have layer
sharing and multiple branches. In order to model these networks, we have also
developed a formalisation that utilises graph theory and encodes a network as
a weighted and directed acyclic graph, allowing the specification of arbitrary
connections between layers, including a non-linear topology, it is however, less
computationally efficient.

4.4 Compliance of Our Formalisation to TensorFlow

To ensure that our formalisation is a faithful representation of the neural net-
works that we defined in TensorFlow, we provide a framework that supports the
import of trained TensorFlow networks and their test data. We can then use this
to evaluate our Isabelle network and validate that the output is the same, hence
providing confidence that our formalisation is accurate.

Similar to what we will discuss in Sect. 6, we can import text files containing
NumPy [19] arrays of our test inputs, expectations and predictions from our
trained TensorFlow network.

Isabelle (Isar)import_data_file file defining inputs

We can now prove that our formally encoded neural network computes the
same prediction (within an error interval) as TensorFlow. To express this require-
ment, we first define check_result_list_interval for checking that two lists
are approximatively equal (we need the error interval due to possible round-
ing errors in IEEE754 arithmetic in python compared to mathematical reals in
Isabelle).

Isabelle (Isar)fun check_result_list_interval where
〈check_result_list_interval None None = True〉

| 〈check_result_list_interval (Some xs) (Some ys)
= fold (∧) (map2 (λ x y. x ∈ set_of y) xs ys) True〉

| 〈check_result_list_interval _ _ = False〉

notation check_result_list_interval (((_)/ ≈l (_)) [60, 60] 60)

Using check_result_list_interval, we now define the property that the
(symbolically) computed predictions of a neural network meet our expectations:



436 A. D. Brucker and A. Stell

Isabelle (Isar)definition
ensure_testdata_interval :: 〈real list list

⇒ (real list ⇒ real list option)
⇒ real interval list list ⇒ bool〉 where

〈ensure_testdata_interval inputs P outputs = foldl (∧) True
(map (λ e. let a = (P (fst e)) in let b = Some (snd e) in (a ≈l b))

(zip inputs outputs))〉

notation ensure_testdata_interval (	\i {(_)} (_) {(_)} [3, 90, 3] 60)

For our example, we can now prove the following lemma:

Isabelle (Isar)lemma grid_meets_predictions:
〈	i {inputs} (predictseq_layer NeuralNet) {i_of 0.000001 predictions}〉

by(simp add: ensure_testdata_interval_def upper_Interval lower_Interval
predictions_def i_of_def inputs_def in_set_interval)

Where i_of 0.000001 predictions computes intervals with the expected
predictions as midpoints, i.e., given an expectation p, our lemma shows that the
actual prediction p′ of our formal neural network is satisfies |p − p′| ≤ 0.000001.

This lemma is proven by unfolding all definitions using Isabelle’s simplifier,
which corresponds to a symbolic execution of the prediction function. Hence, we
can be sure that our formal model behaves identically to the model executed on
TensorFlow on a concrete set of input data.

Many classification networks use the maximum output as the result, without
normalisation (e.g., to values between 0 and 1). In such cases, a weaker form of
ensuring compliance to predictions might be used that only checks that checks
for the maximum output of each given input:

Isabelle (Isar)definition
ensure_td_max :: 〈real list list ⇒ (real list ⇒ real list option)

⇒ real list list ⇒ bool〉 where
〈ensure_td_max inputs P outputs
= foldl (∧) True

(map (λ e. case P (fst e) of
None ⇒ False

| Some p ⇒ map_option fst (pos_of_max p)
= map_option fst (pos_of_max (snd e)))

(zip inputs outputs))〉

notation ensure_td_max (	 {(_)} (_) {(_)} [3, 90, 3] 60)

We will see an application of this check in Sect. 7.

5 Properties of Classification Networks

In contrast to traditional program verification, for neural networks, there has yet
to be an established notion of safety or correctness of a trained neural network.



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 437

Recently there has been more of a discussion in this area of different types
of properties that should hold for arbitrary networks [33] (discussed in more
detail in Sect. 8). However, for our example, we focus on looking at input-output
relations and notions of robustness within neighbourhoods of the input.

For example, Pulina et al. [30] consider a network safe, if given every possible
input, its output is guaranteed to range within specific bounds. This is motivated
by an application in which, e.g., a neural network ‘computes’ dosages of a drug.
In this case, there are certain maximums (or minimums) that are considered
to be not safe. This is a property we can easily express in our framework as
constraints of the range of computing predictions of a given network.

For pure classification networks, which is our focus in this paper, one is
usually only interested in the maximum value of the classification outputs (and
only to a lesser extent to its actual value). Often, classification networks use
activation functions (such as softmax) that normalise the outputs, or argmax
that only outputs the maximum classifier. For our running example, we can
easily prove:

Isabelle (Isar)lemma
〈ran (predictseq_layer NeuralNet xs) ⊆ {[0, 0, 1],[0, 1, 0],[1, 0, 0]}〉

Where ran is the range operator of HOL. While not a safety property in the
traditional sense, this lemma shows that the output of the classification is never
ambiguous (i.e., two or more classification output having the value 1).

In a more generalised form, Kurd et al. [25] define safety as a clearly defined
input-output-relation, i.e., satisfying a given function (or, in our notation, a
higher-order predicate) that is tested on known and unknown inputs. Moreover,
the behaviour should be repeatable and predictable, it should also tolerate faults
in inputs (e.g., where inputs lie outside a specified set of inputs), and no haz-
ardous outputs (e.g., no output outside the range of the target function) should
be predicted. Very similar is the idea of Huang et al. [20], who define safety as the
requirement that small changes to an input should not change the classification.
For our running example, we can express such a verification goal as follows:

Isabelle (Isar)lemma 〈x3 ∈ {0.96..1.00} ∧ x2 ∈ {0.96..1.00}
∧ x1 ∈ {0.00..0.04} ∧ x0 ∈ {0.00..0.04}
=⇒ predictseq_layer NeuralNet [x3, x2, x1, x0] = Some [0, 1, 0]〉

This lemma, which we have proven in Isabelle/HOL (including the corre-
sponding lemmata for the other output classes of our example), states that the
classification of the upper horizontal line is resilient to small changes in the
greyscale values of the pixels (e.g., caused by dust turning white into a greyish
colour or a very bright light that might turn black into a dark grey). While looks
good “on paper”, it is actually showing the opposite. Already small changes in
the colour values that are unlikely to be detected by the naked eye, can result
in a misclassification (recall Fig. 2d).



438 A. D. Brucker and A. Stell

The last example also shows that we will need to develop domain-specific
failure models (e.g., modelling the impact of non-optimal camera angles or light
conditions), which can then form the basis for deriving safety properties for
applications that rely on neural networks. Broadly speaking, this is also sug-
gested by Katz et al. [21] that, in a case study for aircraft avoidance detection,
use a notation of unnecessary turning advisories to show that the trained neural
network does not omit them.

In addition, there are further properties that we formalised and that can
increase the confidence in the predictions of a neural network by reducing the
likelihood of ambiguous classification results. This includes, e.g., the requirement
that for a given input, the classification outputs have at least a given minimum
distance (e.g., avoiding situations where all classification outputs show nearly
identical values):

Isabelle (Isar)definition
ensure_delta_min :: 〈real ⇒ (real list ⇒ real list option) ⇒ bool〉

where 〈ensure_delta_min δ P = (∀ xs ∈ ran P. δ ≤ δmin xs)〉

notation ensure_delta_min ((_) 	 (_) [61, 90] 60)

6 Implementation

We implemented our approach in Isabelle/HOL, i.e., we made use of the ability
of Isabelle to extend it with new datatype packages and proofs (see Fig. 4 for an
overview of the extended architecture). In particular, we developed a datatype
package that can import trained neural networks using the JSON [16]-based
format used by TensorFlowJS [35]:

Fig. 4. The system architecture of our architecture, adding a datatype package and
custom proof methods to Isabelle/HOL.

Isabelle (Isar)import_TensorFlow grid file model.json as seq_layer



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 439

Our new Isabelle/Isar [40] command import_TensorFlow encodes the neural
network model stored in the file model.json1 as sequence of layers (seq_layer),
i.e., the formal encoding described in Sect. 4 (our datatype package also supports
alternative formal encoding, e.g., one that models neural networks as directed
graphs). Our datatype package also proves that the imported model complies
with the requirements of our formal model (technically, this is done by an auto-
mated instantiation proof for the locale neural_network_sequential_layers)
as well as proves various auxiliary properties (e.g., conversion between different
representations) that can be useful during interactive verification.

Our datatype package also supports the automatic import of test data or pre-
diction computed by, e.g., TensorFlow [1], using the data format of NumPy [19]:

Isabelle (Isar)import_data_file predictions.txt defining predictions

This command imports the prediction data, i.e., input data and expected
outputs, into Isabelle and binds it to the logical constant predictions. This
data can later be used in a formal proof that the imported model has a certain
accuracy on this data set.

Finally, we started to develop domain-specific proof tactics or methods using
Eisbach [26], e.g., for the selective unfolding of generated definitions or providing
optimised configurations for the symbolic evaluation of the prediction function
for neural networks.

Overall, our prototype enables a workflow in which one trains a neural net-
work using, e.g., the Python API for TensorFlow and exports the model and
the training and prediction data. This data can then be used to prove that the
formal model is semantically equivalent to the original model. Alongside this, we
also have an external tool that can convert networks saved in ONNX (https://
onnx.ai/) format, providing they have an architecture that our formalisation
supports, into the JSON representation we currently require.

Our formalisation comprises over 5300 lines of formal definitions and generic
proofs in Isabelle/HOL. The implementation of the datatype package adds
another 1000 lines of Isabelle/ML code (not including the JSON-parser and
the basic datatype package for JSON, both provided by [8]).

7 Classifying Digits of a 5 × 7 Matrix Display

In this section, we briefly discuss a larger case of a neural network for the classifi-
cation of digits on a dot-matrix display (see Fig. 5a). As for our running example,
we used the Python API of TensorFlow [1] for training the network.

1 TensorFlowJS stores the structure of the machine learning model in a JSON [16]-
based format that refers to a binary file containing the weights and biases. Our
import mechanism fully supports this format, i.e., also importing the weights and
biases from the external file.

https://onnx.ai/
https://onnx.ai/


440 A. D. Brucker and A. Stell

Fig. 5. The Digit 5 on a 5 × 7 Matrix Display.

Our network has 35 (= 5 ·7) neurons in the input layer and 10 neurons in the
output layer. While our running example (recall Sect. 3) ensures that the output
values are between 0 and 1, our neural network for the digit classification has a
“non-normalised” output, performing a maximum classification.

Consequently, to convince ourselves that the formal representation of our
classification network complies with the TensorFlow representation, we prove:

Isabelle (Isar)lemma digits_meets_expectations_max_classifier:
〈	 {inputs} (predictseq_layer digits.NeuralNet) {expectations}〉

Where digit.NeuralNet is the formal representation of our neural network,
inputs is a list of input values and expectations the corresponding expecta-
tions (classification). Recalling Sect. 5, we note that this lemma uses the higher-
order predicate ensure_td_max (	 {_} _ {_}), which does not require that the
predictions lie within a specific interval. Instead, it requires that the maximum
classifier of the actual and expected predictions are the same.

Furthermore, we show that an arbitrary one-pixel failure (e.g., a dead pixel
or, a pixel that constantly is switched on, or any value in-between) does not
change the classification. This is formally expressed as follows:

Isabelle (Isar)lemma assumes xs: 〈xs = [x34,x33, ... , x0]〉

and limits: 〈set xs ⊆ {0..1}〉 (* grey scale pixels *)
and h: 〈hamming (digits!5) xs ≤ 1〉

shows 〈classify_as xs 5〉

Here we make use of an auxiliary predicate for capturing the fact that the
network did classify the input as a certain digit:

Isabelle (Isar)definition classify_as::〈real list ⇒ nat ⇒ bool〉 where
〈classify_as xs n = (Option.bind (predictseq_layer digits.NeuralNet xs)

pos_of_max = Some n)〉

We model 1-pixel changes by requiring that the Hamming distance represen-
tation of the digit 5 (digits!5) is at most one. Thus, we have a formal proof
that our neural network classifies any image that deviates from an ideal five only



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 441

by one pixel, reliably as five. Consider, for example, Fig. 5c for which a human
could already be uncertain if the image shows a five or a six, even though only
one pixel has been changed.

8 Related Work

Using Isabelle/HOL for AI Verification. To the best of our knowledge, there are
no examples of formalising neural networks in an Interactive Theorem Prover,
and very few examples of formalising machine learning. In Isabelle/HOL the
closest related work is by Bentkamp et al [6] which formalises the expressiveness
of deep learning. Based on the theoretical work by Cohen et al. [13], verifies
the superiority of deep learning over shallow learning. Abdulaziz et al [2] have
formally verified the AI planning problem using a SAT encoder, with the for-
malisation showing that the SAT-based planner Madagascar [31] falsely claims
that problems have no solutions of certain lengths.

Neural Network Verification. Many traditional approaches to formal methods
and safety verification are insufficient in the case of neural networks as there is no
complete specification for their behaviour. Approaches are generally categorised
into exact verifiers and incomplete but more efficient verification techniques. On
the latter, which solves a relaxed problem that is more computationally efficient,
methods include abstract interpretation [27], linear relaxations[38] and duality
[15]. Using abstraction, infinite behaviours can be approximated using a finite
representation by abstract transformers that are used to capture approximations
of network layer computations. The problem then becomes reducing these over-
approximations to more precisely capture the behaviour without introducing
computational complexity. Most examples still work on ReLU networks [34],
however, there has been some recent progress in developing abstract transformers
for softmax and other difficult activations [7].

Among the complete verification techniques, most utilise SAT/SMT solvers,
or Mixed Integer Linear Programming (MILP). Approaches include those that
take advantage of piecewise linear activation functions, which are more man-
ageable for network verification. Work includes that by Szegedy et al [36], who
ensure that networks assign correct scores to the output advisories in various
input domains. Planet [17], which presents an approach using SAT solving com-
bined with linear programming to cut out significant areas of the search space
during verification. Similarly, Reluplex, [21], is able to prove many robustness
properties of larger-scale neural networks with ReLU activation functions and
has recently been expanded into Marabou, [22], for arbitrary piecewise linear
activation functions.

While these approaches lead to shorter verification times, the problem of com-
plete verification of non-linear activation functions remains limited to smaller
networks, and while approaches using approximation methods that allow for
these activation functions are sound, they remain incomplete. By using an inter-
active theorem prover, as opposed to SMT/SAT solvers, we are able to make use



442 A. D. Brucker and A. Stell

of higher-order logic to define, reason over, and verify our new datatypes and def-
initions by building on mathematical axioms, whilst still maintaining flexibility
and efficiency.

Properties. While the properties we discuss and verify are mostly concerned with
the input-output relations, there is a general lack of a widely accepted formal
specification when concerned with neural networks. Most frequently, the desired
behaviours discussed include predictability of the behaviour and tolerance to
faulty input [25], looking at improving the stability of the classification [20],
or a general idea of robustness around a specific input region, where manipu-
lations applied does not cause misclassifications. However, more recently, other
properties have been discussed, such as semantic invariance [18], fairness [5],
or distributional assumptions [33]. While these are all relevant and important
properties for a network to fulfil, they currently have a less precise formal spec-
ification and so currently have limited application in formal methods, yet are
interesting avenues for future research.

9 Conclusion and Future Work

We presented a formalisation of feedforward neural networks in Isabelle/HOL.
To the best of our knowledge, this is the first formalisation of neural networks
in an interactive theorem prover. We also made use of the framework aspect of
Isabelle to provide an import mechanism automating our encoding for neural
networks stored in a widely used exchange format.

Still, we see our work only as the beginning of a journey towards formally
verified safety and correctness guarantees for critical systems employing ML/AI-
based components. On a general level, there is further work required to improve
the understanding of what it means that a neural network is safe (and secure),
and how to convert this into a formal specification. This discourse will, hopefully,
result in further properties that can be used in formal verification, and that will
allow a comparison amongst various formal approaches for the verification of
neural networks.

More specific to our approach, we plan to extend the types of layers and archi-
tectures that are directly supported, which, together with developing domain-
specific proof tactics, should increase the degree of proof automation signifi-
cantly. Modelling additional representations (e.g., a model based on Tensor oper-
ations) is another line of future work, alongside developing built-in support for
ONNX networks. This will allow us to use our framework to formally show the
semantic equivalence of these models. This will allow us to develop verified trans-
formations that can be used to optimise neural networks for, e.g., making them
easier to formally analyse or for improving their runtime performance.

Data Availibility Statement. The formalisation and case studies are available to
view on Zenodo [9]. The materials include both the Isabelle/HOL implementation and
the detailed documentation generated by Isabelle.



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 443

References

1. Abadi, M., et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems (2015). Software https://www.tensorflow.org/

2. Abdulaziz, M., Kurz, F.: Verified SAT-Based AI Planning. Archive of Formal
Proofs (2020)

3. Aggarwal, C.C.: Machine learning with shallow neural networks. In: Aggarwal, C.C.
(ed.) Neural Networks and Deep Learning, vol. 10, pp. 53–104. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94463-0_2 ISBN 9783030068561

4. Banerjee, K., Vishak Prasad, C., Gupta, R.R., Vyas, K., Anushree, H., Mishra, B.:
Exploring Alternatives to Softmax Function (2020)

5. Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. Nips Tutor.
1, 2 (2017)

6. Bentkamp, A.: Expressiveness of deep learning. Archive of Formal Proofs (2016)
7. Bonaert, G., Dimitrov, D.I., Baader, M., Vechev, M.: Fast and precise certification

of transformers. In: PLDI, pp. 466–481. ACM, Virtual, Canada (2021). https://
doi.org/10.1145/3453483.3454056

8. Brucker, A.D.: Nano JSON: working with JSON formatted data in Isabelle/HOL
and Isabelle/ML. Archive of Formal Proofs (2022)

9. Brucker, A.D., Stell, A.: Dataset: feedforward neural network verification in
Isabelle/HOL (2022). https://doi.org/10.5281/zenodo.7418170

10. BS EN 50128:2011: Railway applications - Communication, signalling and pro-
cessing systems - Software for railway control and protecting systems. Standard,
British Standards Institute (BSI) (2014)

11. Campbell, A., Both, A., Sun, Q.: Detecting and mapping traffic signs from Google
Street View images using deep learning and GIS. Comput. Environ. Urban Syst.
77, 101350 (2019). https://doi.org/10.1016/j.compenvurbsys.2019.101350

12. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68
(1940)

13. Cohen, N., Sharir, O., Shashua, A.: On the expressive power of deep learning: a
tensor analysis. In: Conference on Learning Theory, pp. 698–728 (2016)

14. Common Criteria for Information Technology Security Evaluation (Version 3.1,
Release 5) (2017). https://www.commoncriteriaportal.org/cc/

15. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: UAI, p. 3 (2018)

16. ECMA-404: The JSON data interchange syntax (2017). https://www.ecma-
international.org/publications-and-standards/standards/ecma-404/

17. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

18. Goodfellow, I., Lee, H., Le, Q., Saxe, A., Ng, A.: Measuring invariances in deep
networks. In: Advances in Neural Information Processing Systems, vol. 22 (2009)

19. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362
(2020). https://doi.org/10.1038/s41586-020-2649-2

20. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

21. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-94463-0_2
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.5281/zenodo.7418170
https://doi.org/10.1016/j.compenvurbsys.2019.101350
https://www.commoncriteriaportal.org/cc/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5


444 A. D. Brucker and A. Stell

22. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

23. Klein, G.: Operating system verification – an overview. Sadhana 34(1), 27–69
(2009)

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/
10.1145/3065386

25. Kurd, Z., Kelly, T., Austin, J.: Developing artificial neural networks for safety
critical systems. Neural Comput. Appl. 16(1), 11–19 (2007)

26. Matichuk, D., Murray, T., Wenzel, M.: Eisbach: a proof method language for
Isabelle. J. Autom. Reason. 56(3), 261–282 (2016). https://doi.org/10.1007/
s10817-015-9360-2

27. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: Machine Learning, pp. 3578–3586 (2018)

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

29. Paulson, L.C.: ML for the Working Programmer. Cambridge Press, Cambridge
(1996)

30. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6_24

31. Rintanen, J.: Madagascar: scalable planning with SAT. IPC 21, 1–5 (2014)
32. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-

propagating errors. Nature 323(6088), 533–536 (1986)
33. Seshia, S.A., et al.: Formal specification for deep neural networks. In: Lahiri, S.K.,

Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 20–34. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4_2

34. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: Learning Representations (2018)

35. Smilkov, D., et al.: TensorFlow.js: Machine Learning for the Web and Beyond.
CoRR abs/1901.05350 (2019)

36. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (2014)

37. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-
level performance in face verification. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1701–1708 (2014). https://doi.org/10.1109/
CVPR.2014.220

38. Weng, L., et al.: Towards fast computation of certified robustness for relu networks.
In: Machine Learning, pp. 5276–5285 (2018)

39. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar framework.
In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 352–367.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74591-4_26

40. Wenzel, M., Paulson, L.: Isabelle/Isar. In: Wiedijk, F. (ed.) The Seventeen Provers
of the World. LNCS (LNAI), vol. 3600, pp. 41–49. Springer, Heidelberg (2006).
https://doi.org/10.1007/11542384_8

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-030-01090-4_2
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1007/978-3-540-74591-4_26
https://doi.org/10.1007/11542384_8


SMPT: A Testbed for Reachability
Methods in Generalized Petri Nets

Nicolas Amat(B) and Silvano Dal Zilio

LAAS-CNRS,
Université de Toulouse, CNRS, INSA, Toulouse, France

nicolas.amat@laas.fr

Abstract. SMPT (for Satisfiability Modulo Petri Net) is a model
checker for reachability problems in Petri nets. It started as a portfolio of
methods to experiment with symbolic model checking, and was designed
to be easily extended. Some distinctive features are its ability to benefit
from structural reductions and to generate verdict certificates. Our tool
is quite mature and performed well compared to other state-of-the-art
tools in the Model Checking Contest.

Keywords: Model checking · Reachability problem · Petri nets

1 Introduction

SMPT is an open source model checker designed to answer reachability queries
on generalized Petri nets, meaning that we do not impose any restrictions on
the marking of places or the weight on the arcs. We can in particular handle
unbounded nets. We also support a generalized notion of reachability properties,
in the sense that we can check if it is possible to reach a marking that satisfies a
combination of linear constraints between places. This is more expressive than
the reachability of a single marking and corresponds to the class of formulas used
in the reachability category of the Model Checking Contest (MCC), a yearly
competition of formal verification tools for concurrent systems [7,27].

The tool name is an acronym that stands for Satisfiability Modulo Petri
Net. This choice underlines the fact that, for most of the new features we imple-
mented, SMPT acts as a front-end to a SMT solver; but also that it adds specific
knowledge from Petri net theory, such as invariants, use of structural properties,
etc.

The design of SMPT reflects the two main phases during its development
process. The tool was initially developed as a testbed for symbolic model check-
ing algorithms that can take advantage of structural reductions (see e.g. [2,3]).
This explains why it includes many “reference” implementations of fundamental
reachability algorithms, tailored for Petri nets, such as Bounded Model Checking
(BMC) [8,17,22] or k-induction [31]. It also includes new verification methods,
such as adaptations of Property Directed Reachability (PDR) [15,16] for Petri
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 445–453, 2023.
https://doi.org/10.1007/978-3-031-27481-7_25

https://doi.org/10.5281/zenodo.7341425
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_25&domain=pdf
http://orcid.org/0000-0002-5969-7346
http://orcid.org/0000-0002-6002-2696
https://doi.org/10.1007/978-3-031-27481-7_25


446 N. Amat and S. D. Zilio

nets [6]. One of our goal is to efficiently compare different algorithms, on a level
playing field, with the the ability to switch on or off optimizations. This moti-
vates our choice to build a tool that is highly customizable and easily extensible.

In a second phase, since 2021, we worked to make SMPT more mature, with
the goal to improve its interoperability, and with the addition of new verification
methods that handle problems where symbolic methods are not the best suited.
We discuss the portfolio approach implemented in SMPT in Sect. 3. This sec-
ond set of objectives is carried by our participation in the last two editions of
the MCC [25,26], where we obtained a 100% confidence level (meaning SMPT
never returned an erroneous verdict). With this last evolution, we believe that
SMPT left its status of prototype to become a tool that can be useful to other
researchers. This is what motivates the present paper.

There are other tools that perform similar tasks. We provide a brief compari-
son of SMPT with two of them in Sect. 5, ITS-Tools [32,33] and Tapaal [19].
All tools have in common their participation in the MCC and the use of sym-
bolic techniques. They also share common input formats for nets and formulas.
We can offer two reasons for users to use SMPT instead of—or more logically
in addition to—these tools. First, SMPT takes advantage of a new approach,
called polyhedral reduction [2,3], to accelerate the verification of reachability
properties. This approach can be extremely effective in some cases where other
methods do not scale. We describe this notion in Sect. 2. Another interesting
feature of SMPT is the ability to return a verdict certificate. When a property
is invariant, we can return a “proof” that can be checked independently by a
SMT solver.

2 Technical Background

We briefly review some theoretical notions related to our work. We assume basic
knowledge of Petri net theory [30]. In the following, we use P for the set of places
of a net N . A marking, m, is a mapping associating a non-negative integer, m(p),
to every place p in P . SMPT supports the verification of safety properties over
the reachable markings of a marked Petri net (N,m0). Properties, F , are defined
as a Boolean combination of literals of the form α ∼ β, where ∼ is a comparison
operator (one of =, � or �) and α, β are linear expressions involving constants
or places in P . For instance, (p + q � r) ∨ (p � 5) is an example property.

We say that property F is valid at marking m, denoted m |= F , if the ground
formula obtained by substituting places, p, by m(p) is true. As can be expected,
we say that F is reachable in (N,m0) if there is m reachable such that m |= F .
See [2,3,6] for more details. We support two categories of queries: EF F , which is
true only if F is reachable; and AG F , which is true when F is an invariant, with
the classic relationship that AG F ≡ ¬ (EF ¬F ). A witness for property EF F
is a reachable marking such that m |= F ; it is a counterexample for AG¬F .
Examples of properties we can express in this way include: checking if some
transition t is enabled (quasi-liveness); checking if there is a deadlock; checking
whether some linear invariant between places is always true; etc.



Model Checking with SMPT 447

SMPT implements several methods that combine SMT-based techniques
with a new notion, called polyhedral reduction. The idea consists in computing
structural reductions [10,11] of the form (N1,m1) �E (N2,m2), where (N1,m1)
is the (initial) Petri net we want to analyse; (N2,m2) is a reduced version; and
E is a system of linear equations relating places in N1 and N2. The goal is
to preserve enough information in E so that we can reconstruct the reachable
markings of (N1,m1) by knowing only those of (N2,m2). Given a starting net,
we can automatically compute a polyhedral reduction using the tool Reduce,
which is part of Tina [12]. (But obviously there are many irreducible nets.)

Polyhedral reductions are useful in practice. Given a property F1 on the
initial net N1, we can build a property F2 on N2 [2,3] such that checking F1

on N1 (whether it is reachable or an invariant) is equivalent to checking F2 on
N2. We have observed very good speed-ups with this approach, even when we
only have a moderate amount of reductions. This notion is also “compatible”
with symbolic methods. In SMPT, we recast all constraints and relations into
formulas of Quantifier Free Linear Integer Arithmetic (the QF-LIA theory in the
SMT-LIB standard [9]) and pass them to SMT solvers.

Another important notion is that of inductive invariant. We say that R is
an inductive invariant of property F if it is: (i) valid initially (m0 |= R); (ii)
inductive (if m → m′ and m |= R then m′ |= R, for all markings m, even
those that are not reachable); and (iii) R ⊇ F . Given a pair (F,R) we can
check these three properties automatically using a SMT solver (and with only
one formula in each case). In some conditions, when property F is an invariant,
SMPT can automatically compute an inductive invariant from F . This provides
an independent certificate that invariant F holds.

3 Design and Implementation

SMPT is open-source, under the GNU GPL v3.0 licence, and is freely avail-
able on GitHub (https://github.com/nicolasAmat/SMPT). The repository also
provides examples of nets, formulas, and scripts to experiment with the tool.
SMPT is a Python project of about 4 000 lines of code, and is fully typed using
the static type checker mypy. The code is heavily documented (4 500 lines) and
we provide many tracing and debugging options that can help understand its
inner workings. The project is packaged in libraries, and provides abstract classes
to help with future extensions. We describe each library and explain how they
can be extended.

The ptio library defines the main data-structures of the model checker, for
Petri nets (pt.py), reachability formulas (formula.py), and reduction equations
(system.py). It also provides the corresponding parsers, for different formats.

The interface library includes interfaces to external tools and solvers. For
example, we provide an integrated interface to z3 [14] built around the SMT-
LIB format [9]. We can also interface with MiniZinc [29], a solver based on
constraint programming techniques, and with a random state space explorer,

https://github.com/nicolasAmat/SMPT
http://www.mypy-lang.org


448 N. Amat and S. D. Zilio

walk, distributed with the Tina toolbox. New tools can be added by imple-
menting the abstract class Solver (solver.py).

The exec library provides a concurrent “jobs scheduler” that helps run multiple
verification tasks in parallel and manage their interactions.

The checker library is the core of our tool. It includes a portfolio of meth-
ods intended to be executed in parallel. All methods implement an abstract
class (abstractchecker.py) which describes the abstract method prove. We
currently support the following eight methods:

(1) Induction: a basic method that checks if a property is an inductive invari-
ant (see Sect. 2). This property is “easy” to check, even though interesting
properties are seldom inductive. It is also useful to check verdict certificates.

(2) BMC: Bounded Model Checking [13] is an iterative method to explore the
state space of systems by unrolling their transitions. This method is only
useful for finding counterexamples.

(3) k-induction: [31] is an extension of BMC that can also prove invariants.
(4) PDR: Property Directed Reachability [15,16], also known as IC3, is a

method to strengthen a property that is not inductive, into an inductive
one. This method can return a verdict certificate. We provide three differ-
ent methods of increasing complexity [6] (one for coverability and two for
general reachability).

(5) State Equation: is a method for checking that a property is true for all
“potentially reachable markings” (solution of the state equation). This is a
semi-decision method, found in many portfolio tools, that can easily check for
invariants. We implement a refined version [32,33] that can over-approximate
the result with the help of trap constraints [20] and other structural infor-
mation, such as NUPN specifications [21].

(6) Random Walk: relies on simulation tools to quickly find counterexamples.
It is also found in many tools that participate in the MCC [27]. We currently
use walk, distributed with the Tina toolbox, but we are developing a new
tool to take advantage of polyhedral reductions.

(7) Constraint Programming: is a method specific to SMPT in the case
where nets are “fully reducible” (the reduced net has only one marking). In
this case, reachable markings are exactly the solution of the reduction equa-
tions (E) and verdicts are computed by solving linear system of equations.

(8) Enumeration: performs an exhaustive exploration of the state space and
relies on the Tina model checker. It can be used as a fail-safe, or to check
the reliability of our results.

4 Commands, Basic Usage and Installation

SMPT requires Python version 3.7 or higher. The easiest method for experi-
menting with the tool is to directly run the smpt module as a script, using a



Model Checking with SMPT 449

command such as python3 -m smpt. Our repository includes a script to simplify
the installation of the tool and all its dependencies. It is also possible to find disk
images with a running installation in the MCC website and in artifacts archived
on Zenodo [4,5]. As usual, option --help returns an abridged description of all
the available options. We list some of them below, grouped by usage.

Input Formats. We accept Petri nets described using the Petri Net Markup
Language (PNML) [23] and can also support colored Petri nets (using option
--colored) by using and external unfolder [18]. For methods that rely on
polyhedral reductions, it is possible to automatically compute the reduc-
tion (--auto-reduce) or to provide a pre-computed version (with option
--reduced-net <path>). It is also possible to save a copy of the reduced net
with the option --save-reduced-net <path>.

Verification Methods. We support the verification of three predefined classes
of safety properties: deadlock detection (--deadlock), which is self-descriptive;
quasi-liveness (--quasi-liveness t), to check if it is possible to fire transition
t; and reachability (--reachability p), to check if there is a reachable marking
where place p is marked (it has at least one token). It is also possible to check
the reachability of several places, at once, by passing a comma-separated list of
names, --reachability p1,...,pn; and similarly for liveness. Finally, SMPT
supports properties expressed using the MCC property language [28], an XML
format encoding the class of formulas described in Sect. 2. Several properties can
be checked at once.

Output Format. Results are printed in the text format required by the MCC,
which is of the form FORMULA <id> (TRUE/FALSE). There are also options to
output more information: --debug to print the SMT-LIB input/output code
exchanged with the SMT solver; --show-techniques, to return the meth-
ods that successfully computed a verdict; --show-time, to print the execu-
tion time per property; --show-reduction-ratio, to get the reduction ratio;
--show-model, to print the counterexample if it exists; --check-proof, to check
verdict certificates (when we have one); --export-proof, to export verdict cer-
tificates (inductive invariants, traces leading to counterexamples, etc.).

Tweaking Options. We provide a set of options to control the behaviour of our
verification jobs scheduler. We can add a timeout, globally (--global-timeout
<int>) or per property (--timeout <int>). We can also restrict the choice
of verification methods (--methods <method_1> .... <method_n>). Finally,
option --mcc puts the tool in “competition mode”.

5 Comparison with Other Tools

We report on some results obtained by SMPT, ITS-Tools [32,33], and
Tapaal [19] during the 2022 edition of the MCC [26]. We created a public
repository [1] containing the scripts used to generate the statistics and oracles
for the 2022 edition of the Model Checking Contest for the Reachability category.



450 N. Amat and S. D. Zilio

SMPT provides a default competition mode that implements a basic strat-
egy that should be effective in the conditions of the MCC. Basically, we start
by running the Random Walk and State Equation methods in parallel with a
timeout of 120 s, on all formulas, in order to catch easy counterexamples and
invariants as quickly as possible. Then we run more demanding methods: BMC,
k-induction, PDR, etc. The rationale is that queries used in the reachability
competition are randomly generated and usually exhibit a bias towards “coun-
terexamples” (CEX), meaning false AG properties or true EF ones. Also, when
the formula is an invariant (INV), for instance a “true AG property”, it can often
be decided with the State Equation method.

Our tool is quite mature. It achieved a perfect reliability score (all answers
are correct) and ranked at the third position, behind Tapaal and ITS-Tools.
We display the results in a Venn diagram where we make a distinction between
CEX and INV properties. There is a total of 50 187 answered queries (with
almost 60% CEX). We observe that a vast majority of these queries (41 006) are
computed by all tools, and can be considered “easy”. Conversely, we have 9 181
difficult queries, solved by only one or two tools (Fig. 1).

Fig. 1. Comparison of tools on all computed queries

We also provide a bar chart where we distinguish between easy/difficult, and
CEX/INV queries. We observe that, while SMPT ranks last in the number of
unique queries, it behaves quite well with invariants (INV); which is the category
we target with our most sophisticated methods. Overall, we observe that SMPT
performs well compared to other state-of-the-art tools in the Model Checking
Contest and that it is a sensible choice when we try to check invariants.

6 Future Work

Work on SMPT is still ongoing. At the moment, we concentrate on methods
to quickly discover counterexamples. The idea is to combine polyhedral reduc-
tions and random exploration in order to find counterexamples directly in the
reduced net. We also plan to improve our use of the “state equation” method,



Model Checking with SMPT 451

in particular by identifying new classes of Petri nets for which all potentially
reachable markings are indeed reachable. A problem we already started to study
in a different setting [24].

References

1. Amat, N.: Oracles and report for the reachability category of the model checking
contest (2022). https://github.com/nicolasAmat/MCC-Reachability

2. Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral abstrac-
tion and SMT-based model checking for petri nets. In: Buchs, D., Carmona, J.
(eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 164–185. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76983-3_9

3. Amat, N., Berthomieu, B., Dal Zilio, S.: A polyhedral abstraction for petri nets and
its application to SMT-based model checking. Fund. Inform. 187(2–4), 103–138.
IOS Press (2022). https://doi.org/10.3233/FI-222134

4. Amat, N., Dal Zilio, S.: Artifact for FM 2023 paper: SMPT: a testbed for reacha-
bility methods in generalized petri nets, November 2023. https://doi.org/10.5281/
zenodo.7341426

5. Amat, N., Dal Zilio, S., Hujsa, T.: Artifact for TACAS 2022 paper: property
directed reachability for generalized petri nets, January 2022. https://doi.org/10.
5281/zenodo.5863379

6. Amat, N., Zilio, S.D., Hujsa, T.: Property directed reachability for generalized petri
nets. In: TACAS 2022. LNCS, vol. 13243, pp. 505–523. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99524-9_28

7. Amparore, E., et al.: Presentation of the 9th edition of the model checking contest.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 50–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3_4

8. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006.
LNCS, vol. 3925, pp. 146–162. Springer, Heidelberg (2006). https://doi.org/10.
1007/11691617_9

9. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). http://
www.smt-lib.org/

10. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_13

11. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from
reduction equations. Int. J. Softw. Tools Technol. Transfer 22(2), 163–181 (2019).
https://doi.org/10.1007/s10009-019-00519-1

12. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA-construction of abstract
state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42(14), 2741–2756
(2004)

13. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

14. Bjørner, N.: The Z3 Theorem Prover (2020). https://github.com/Z3Prover/z3/

https://github.com/nicolasAmat/MCC-Reachability
https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.3233/FI-222134
https://doi.org/10.5281/zenodo.7341426
https://doi.org/10.5281/zenodo.7341426
https://doi.org/10.5281/zenodo.5863379
https://doi.org/10.5281/zenodo.5863379
https://doi.org/10.1007/978-3-030-99524-9_28
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/11691617_9
http://www.smt-lib.org/
http://www.smt-lib.org/
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1007/3-540-49059-0_14
https://github.com/Z3Prover/z3/


452 N. Amat and S. D. Zilio

15. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

16. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31612-8_1

17. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19, 7–34 (2001). https://doi.org/10.
1023/A:1011276507260

18. Dal Zilio, S.: MCC: A tool for unfolding colored petri nets in PNML format.
In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol.
12152, pp. 426–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51831-8_23

19. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_36

20. Esparza, J., Melzer, S.: Verification of safety properties using integer programming:
beyond the state equation. Formal Methods Syst. Des. 16(2), 159–189 (2000).
https://doi.org/10.1023/A:1008743212620

21. Garavel, H.: Nested-unit Petri nets. J. Log. Algebr. Methods Program. 104, 60–85
(2019). https://doi.org/10.1016/j.jlamp.2018.11.005

22. Heljanko, K.: Bounded reachability checking with process semantics. In: Larsen,
K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 218–232. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0_15

23. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: an extendable
reference implementation of the petri net markup language. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13675-7_20

24. Hujsa, T., Berthomieu, B., Dal Zilio, S., Le Botlan, D.: Checking marking reachabil-
ity with the state equation in Petri net subclasses. arXiv preprint: arXiv:2006.05600
(2020)

25. Kordon, F., et al.: Complete results for the 2021 edition of the model checking
contest, June 2021. http://mcc.lip6.fr/2021/results.php

26. Kordon, F., et al.: Complete results for the 2022 edition of the model checking
contest (2022). http://mcc.lip6.fr/2022/results.php

27. Kordon, F., Hillah, L.M., Hulin-Hubard, F., Jezequel, L., Paviot-Adet, E.: Study
of the efficiency of model checking techniques using results of the MCC from 2015
To 2019. Int. J. Softw. Tools Technol. Transfer 23(6), 931–952 (2021). https://doi.
org/10.1007/s10009-021-00615-1

28. LIP6: model checking contest property language (manual). Petri Nets (2020)
29. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:

towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

30. Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer Science & Business Media,
Cham (2012). https://doi.org/10.1007/978-3-642-69968-9

31. Sheeran, M., Singh, S., Stalmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X_8

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-030-51831-8_23
https://doi.org/10.1007/978-3-030-51831-8_23
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1023/A:1008743212620
https://doi.org/10.1016/j.jlamp.2018.11.005
https://doi.org/10.1007/3-540-44685-0_15
https://doi.org/10.1007/978-3-642-13675-7_20
http://arxiv.org/abs/2006.05600
http://mcc.lip6.fr/2021/results.php
http://mcc.lip6.fr/2022/results.php
https://doi.org/10.1007/s10009-021-00615-1
https://doi.org/10.1007/s10009-021-00615-1
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8


Model Checking with SMPT 453

32. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_20

33. Thierry-Mieg, Y.: Structural reductions revisited. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 303–323. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_15

https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-030-51831-8_15


The Octatope Abstract Domain
for Verification of Neural Networks

Stanley Bak1 , Taylor Dohmen2, K. Subramani3, Ashutosh Trivedi2(B) ,
Alvaro Velasquez2, and Piotr Wojciechowski3

1 Stony Brook University, Stony Brook, NY, USA
2 University of Colorado, Boulder, CO, USA

ashutosh.trivedi@colorado.edu
3 West Virginia University, Morgantown, WV, USA

Abstract. Efficient verification algorithms for neural networks often
depend on various abstract domains such as intervals, zonotopes, and
linear star sets. The choice of the abstract domain presents an expres-
siveness vs. scalability trade-off: simpler domains are less precise but yield
faster algorithms. This paper investigates the octatope abstract domain
in the context of neural net verification. Octatopes are affine transforma-
tions of n-dimensional octagons—sets of unit-two-variable-per-inequality
(utvpi) constraints. Octatopes generalize the idea of zonotopes which
can be viewed as an affine transformation of a box. On the other hand,
octatopes can be considered as a restriction of linear star set, which are
affine transformations of arbitrary H-Polytopes. This distinction places
octatopes firmly between zonotopes and star sets in their expressive
power, but what about the efficiency of decision procedures?

An important analysis problem for neural networks is the exact range
computation problem that asks to compute the exact set of possible
outputs given a set of possible inputs. For this, three computational pro-
cedures are needed: 1) optimization of a linear cost function; 2) affine
mapping; and 3) over-approximating the intersection with a half-space.
While zonotopes allow an efficient solution for these approaches, star
sets solves these procedures via linear programming. We show that these
operations are faster for octatopes than the more expressive linear star
sets. For octatopes, we reduce these problems to min-cost flow problems,
which can be solved in strongly polynomial time using the Out-of-Kilter
algorithm. Evaluating exact range computation on several ACAS Xu
neural network benchmarks, we find that octatopes show promise as a
practical abstract domain for neural network verification.

1 Introduction

The success of deep feed-forward neural networks (DNN) in computer vision and
speech recognition has prompted applications in critical infrastructure. These
applications range from using pre-trained perception and speech-recognition
modules in safety-critical logic (self-driving cars and medical decision making)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 454–472, 2023.
https://doi.org/10.1007/978-3-031-27481-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_26&domain=pdf
http://orcid.org/0000-0003-4947-9553
http://orcid.org/0000-0001-9346-0126
https://doi.org/10.1007/978-3-031-27481-7_26


The Octatope Abstract Domain for Verification of Neural Networks 455

to learning controllers from reinforcement signals [31] to learning succinct repre-
sentations of formally verified controllers (ACAS Xu). The increasing prevalence
of DNNs in safety-, privacy-, and social-critical systems motivates the focus of
the formal methods community [3,5,7,34] in developing verification technology
to meet the challenge of improving trust in DNNs.

Abstract interpretation [4,11] is a well-established framework for program
verification that formalizes the exploration of the program semantics at the gran-
ularity provided by the underlying domain. For example, intervals [11] form an
abstract domain facilitating analysis in which sets of states are represented as
hyperrectangles. Other abstract domains such as difference constraints, octagons
(unit-two-variables-per-inequality or utvpi), and polyhedral (linear constraints)
have been successfully deployed for the verification of DNNs. However, the multi-
layer architecture of DNNs, when combined with linear function composition
followed by a non-linear activation function at each layer, results in the repeated
intersection of abstract spaces with linear inequalities. For this reason, abstract
domains that do not permit an efficient affine mapping suffer in exploring the
layered state space of the DNNs.

Zonotopes [29] solve this problem by representing an abstract set as an affine
mapping of an interval generator set. For zonotopes, the key operations for DNN
verification, such as nonemptiness, optimization, and over-approximation, can be
performed via efficient, enumerative procedures. Linear star sets [13,35] gener-
alize zonotopes by representing the generator set using the polyhedral domains.
This generalization, while improving the expressiveness, leads to the decision
procedures depend upon solving linear programs, which tends to be the perfor-
mance bottleneck in the overall algorithm. While linear programming is known
to be solvable in polynomial time, via a number of celebrated interior-point algo-
rithms [22], there is no known strongly polynomial algorithm. Dantzig’s simplex
algorithm is a popular algorithm to solve LP and works well in practice, but for
general LPs, the time complexity of the simplex algorithm is not polynomial [23],
and subexponential lower bounds hold even for randomized pivoting rules [14].

For some subclasses of linear programming problems, more efficient solutions
exist. In particular, when the constraints are restricted to difference constraints
(xi − xj ≤ c) or utvpi constraints (±xi ± xj ≤ c), then the duals of the cor-
responding LPs can be reduced to minimum cost flow (MCF) problems [2], for
which there exist strongly polynomial time algorithms [17]. The Out-of-Kilter
algorithm is one popular algorithm for solving minimum cost flow that also pro-
duces a solution to the dual [2]. It runs in time O((m2 + m · n · log n) · U) on
a network with m arcs and n nodes and maximum supply/demand U . Alter-
natively, the network simplex algorithm is a specialized version of the simplex
algorithm to solve minimum cost flow problems. Unlike standard simplex, net-
work simplex runs in polynomial time [28]. Given its relative efficiency, it is
natural to ask: in neural network verification, is it possible to replace expensive
linear programming with min-cost flow calls?

This question motivates the investigation of sub-classes of star sets that are
more general than zonotopes, but enable efficient decision procedures based on



456 S. Bak et al.

MCF problems. For this purpose, we introduce octatopes: sets that can be defined
as affine maps of utvpi constrained sets (octagons [27]). Since octatopes are a
special class of star sets, the affine transformation remains efficient. We also
study hexatopes as the images of difference constrained sets (hexagons [27] or
zones [9]). A key contribution of this paper is that the key operations required
for verification using octatopes and hexatopes can be performed efficiently using
algorithms for MCF problems.

Given that the MCF problem can be solved efficiently via Out-of-Kilter algo-
rithm and network simplex (touted [8] to be 200–300 times faster than sim-
plex), this benefit will translate to the efficiency of octatopes/hexatopes for LP-
intensive applications like reachability analysis of neural networks. While the
current state-of-the-art implementations of the algorithms for the MCF problem
are not as advanced as those for LP, we believe that this will change in light
of the proposed application. We implement the octatope and hexatope abstract
domains and show their effectiveness on several ACAS Xu networks [20], a pop-
ular benchmark for neural network verification.

Related Work. A growing body of research exists on different methods to verify
neural networks [25], including recent tool competitions [6]. Algorithms can be
categorized into search, optimization, and reachability solutions. In the space of
search procedures, the seminal Reluplex method proposes an extension of the
simplex algorithm used for linear programming to handle ReLU networks [20].
This method has been widely adopted and extended by, for example, posing
verification as a constraint satisfaction problem [21]. This can then be solved
using off-the-shelf Satisfiability Modulo Theory (SMT) solvers like z3 [12]. The
use of SMT enables reasoning over different activation functions and topologies.

Interval arithmetic is another popular approach often used to estimate the
range of output values given a range of inputs while tracking the input and
output ranges of individual activation functions [38]. This can be computed by
using linear programming to derive lower and upper bounds for a given node in
the network. The work of [18] combines this with symbolic interval propagation
and gradient descent to find counter-examples to the over-approximations estab-
lished by the linear programming solutions. More sophisticated node splitting
strategies that account for downstream effects on successor nodes can also be
used as part of the symbolic interval propagation phase [19]. Per-neuron split
constraints can also further improve efficiency [39].

Optimization solutions to the verification based on ILP have been explored.
This is a natural formulation for the verification of neural networks due to the use
of affine transformations and the fact that piecewise linear activation functions
can be encoded using a set of binary linear constraints [3]. The work in [32]
extends similar ideas by estimating the maximum disturbance that is permitted
at the input and proposing pre-solve procedures to speed up the solution.

Although solutions based on SMT-solving and mathematical programming
are often complete, they require the entire network to be encoded within the cor-
responding constraints, thereby limiting scalability. In contrast to these search
and optimization solutions, the use of reachability analysis for verification of



The Octatope Abstract Domain for Verification of Neural Networks 457

neural networks has been shown to scale to larger instances at the cost of com-
pleteness. Examples of this include the use of zonotope and star set abstract
domains. The former can be efficiently employed to compute conservative over-
approximations of output bounds of nodes in a network [16], whereas linear pro-
gramming can be employed for the latter to find tight bounds at the cost of scal-
ability [37]. The work proposed herein seeks to advance the state of verification
methods based on reachability analysis by providing tighter over-approximations
than zonotopes and more efficient computations than star sets.

2 Preliminaries

Let R denote the set of real numbers and Q denote the set of rational numbers.
We write Rm×n for the set of all m×n dimensional matrices of reals.

For a matrix M ∈ Rm×n, we write M(i, ·) ∈ R1×n and M(·, j) ∈ Rm×1 for
the ith row vector and jth column vector, respectively, of M , for 1 ≤ i ≤ m
and 1 ≤ j ≤ m. Similarly, we write M(i, j) for the matrix element at row i
and column j. By default, a vector is a column vector and we associate a set of
matrices Rm×1 with the set of vectors Rm.

For a matrix M ∈ Rm×n we write MT ∈ Rn×m for its transpose matrix. For
a row vector v ∈ R1×n, we write vT ∈ Rn for the corresponding (transposed)
vector. We write 1n for the all-ones vector of size n and I for the identity
matrix of some fixed dimension (often clear from context). For a (column) vector
v = (v1, v2, . . . , vn) ∈ Rn we write vi for its ith element. For a vector v ∈ Rm

and scalar α ∈ R, we write α ·v for the vector (α ·v1, . . . , α ·vm). For two vectors
u,v ∈ Rm, we write u · v for their dot product, i.e., u · v =

∑m
i=1 ui · vi. For

two matrices M ∈ Rm×n and N ∈ Rn×p, their product MN ∈ Rm×p is defined
as MN(i, j) = M(i, ·)T · N(·, j).

We call a function f : Rn → Rm linear if f(u) + f(v) = f(u + v) and
f(α · v) = α · f(v) for all scalars α ∈ R and vectors u,v ∈ Rn. A linear function
f : Rn → Rm can be represented as a matrix A ∈ Mm×n such that f is equivalent
to u �→ Au. A function f : Rn → Rm is affine if it is a sum of a linear function
and a constant, i.e., f(v) = Av + b for some A ∈ Rm×n and b ∈ Rm.

2.1 Linear, UTVPI, and Difference Constraints

Let x = {x1, x2, . . . , xn} be a set of real-valued variables with an arbitrary
but fixed order. Abusing notation, we represent this set as a vector x =
(x1, x2, . . . , xn). A linear constraint over x is a constraint of the form

a1x1 + a2x2 + · · · + anxn ≤ b where a = (a1, . . . , an) ∈ Rn and b ∈ R

that represents the set {v ∈ Rn : a · v ≤ b}. A linear constraint system (LCS)

Ax ≤ b where A ∈ Rm×nand b ∈ Rm

is a conjunction of linear constraints.



458 S. Bak et al.

Definition 1 (Interval Constraint Systems). An interval constraint is a
linear constraint of the form

ai ≤ xi ≤ bi where ai, bi ∈ Q.

An interval constraint system (ICS) is a conjunction of interval constraints. An
ICS is a unit hypercube if ai = −1 and bi = 1 for all 1 ≤ i ≤ n and we denote
it as −1n ≤ x ≤ 1n.

Definition 2 (Difference Constraint Systems). A difference constraint is
a linear constraint of the form

xi − xj ≤ bi where bi ∈ Q.

A difference constraint system (DCS) is a conjunction of difference constraints.

Definition 3 (UTVPI Constraint System). A Unit Two Variable Per
Inequality (utvpi) constraint is a linear constraint of the form

ai · xi + aj · xj ≤ bij where ai, aj ∈ {−1, 0,+1} and bij ∈ Q.

A utvpi constraint system (UCS) is a conjunction of utvpi constraints.

A utvpi constraint ai · xi + aj · xj ≤ b is said to be an absolute constraint
if ai = 0 or aj = 0. An absolute constraint can be converted into constraints of
the form: ai · xi + aj · xj ≤ bij , where both ai and aj are non-zero. Note that
a utvpi constraint ai · xi + aj · xj ≤ bij , bij ∈ Q is a difference constraint if
ai = −aj . The constant that bounds a utvpi constraint is called the defining
constant. For instance, the defining constant for the constraint x1 − x2 ≤ 9 is 9.

2.2 Minimum Cost Network Flow Problem

When optimizing a linear function over DCS or UCS, its dual program can
be reduced to the minimum cost flow (MCF) problem [2], for which there exist
strongly polynomial time algorithms [17]. We review the Out-of-Kilter algorithm
(Algorithm 1) for MCF that also produces a solution to the dual [2].

A flow network G = (G = (V,E), c, a, d) is a directed graph G with capacity
c : E → R≥0 and cost a : E → R associated with every edge (arc) and demand
d : V → R associated with every vertex (node). We assume that

∑
v∈V d(v) = 0.

The minimum cost flow (MCF) problem can be stated as follows:

Minimize
∑

(u,v)∈E

f(u, v) · a(u, v)

subject to:
∑

u∈V

f(u, v) −
∑

u∈V

f(v, u) = d(v) for all v ∈ V,

0 ≤ f(u, v) ≤ c(u, v) for all (u, v) ∈ E



The Octatope Abstract Domain for Verification of Neural Networks 459

Algorithm 1. Out-of-Kilter(G = (G = (V,E), c, a, d))
1: Initialize the potential as π ← 0.
2: Let f be a flow in G.
3: Construct the residual network Gf .
4: Compute the kilter number k(u, v) of each edge (u, v) in Gf .
5: while (Gf contains an edge with positive kilter number) do
6: Select an edge (u, v) in Gf with positive kilter number.
7: Let the weight of each edge (u, v) in Gf be max{0, cπ(u, v)}.
8: For w ∈ V \ {u, v}, let l(w) be the weight of the least weight path from v to w.
9: Let P be a shortest path from v to u.

10: For each node w, set π(w) ← π(w) − l(w).
11: if (cπ(u, v) < 0) then
12: Q ← P ∪ {(u, v)}.
13: δ ← min(u,v)∈Q r(u, v).
14: Augment δ units of flow along Q.
15: Update f and Gf .

16: return f .

Out-of-Kilter Algorithm. A pseudocode for the Out-of-Kilter algorithm is
given as Algorithm 1. It starts with a possibly infeasible flow and iteratively
modifies this flow in a way that decreases the infeasibility of the solution and
moves it closer to optimality. Each step of the algorithm consists of solving
a shortest path problem and augmenting the flow along the shortest path. It
operates on the residual network Gf corresponding to the current flow f . This
residual network is constructed as follows. For each edge (vi, vj) ∈ E:

1. Feasible Edges. If f(u, v) < c(u, v), we add the edge (u, v) with a residual
capacity of r(u, v) = c(u, v) − f(u, v) and cost a(u, v). If f(u, v) > 0, we add
the edge (v, u) with a residual capacity of r(v, u) = f(u, v) and cost −a(u, v).

2. Lower-Infeasible Edges. If f(u, v) < 0, we add the edge (u, v) with a
residual capacity of r(u, v) = −f(u, v) and cost a(u, v).

3. Upper-Infeasible Edges. If f(u, v) > c(u, v), we add the edge (v, u) with
a residual capacity of r(v, u) = f(u, v) − c(u, v) and cost −a(u, v).

For each vertex v in the residual network, the algorithm maintains a potential
π(v) and for each edge (u, v) with cost a(u, v), it maintains the reduced cost
aπ(u, v) = c(u, v) − π(u) + π(v). Additionally, for each edge in the residual
network, it maintains a kilter number k(u, v) which is 0 if cπ(u, v) ≥ 0 and is
the residual capacity r(u, v) if cπ(u, v) < 0. This kilter number represents the
change in flow required so that each edge satisfies its optimality condition.

Note that the node potentials π and reduced costs cπ corresponding to the
optimal flow f are the optimal solution of the dual problem [1]. The Out-of-
Kilter algorithm runs in time O((m2 + m · n · log n) · D) on a network with m
edges and n vertices and maximum demand D.



460 S. Bak et al.

2.3 Verification of Neural Networks

A rectified linear unit (ReLU) is a commonly used activation function σ : R → R

defined as σ(x) = max {x, 0}. We can generalize this function from scalars to vec-
tors as σ : Rn → Rn in a straightforward fashion by applying ReLU component-
wise. In this paper, we primarily work with feedforward neural networks (NN)
with ReLU activation units. We focus on networks with k fully-connected layers,
also called multi-layer perceptrons, where each layer i is defined with a weight
matrix Wi and a bias vector bi of appropriate size and is followed by a ReLU.

Formally, a neural network can be viewed as a function f : Rni → Rno ,
where ni is the number of inputs and no is the number of outputs. Given an
input y0 ∈ Rni , a neural network will compute an output yk ∈ Rno as follows:

x(1) = W1y0 + b1, y1 = σ(x(1))
x(2) = W2y1 + b2, y2 = σ(x(2))

...
x(k) = Wkyk−1 + bk, yk = σ(x(k))

We call yi−1 and yi the input and output of the i-th layer, respectively, and
x(i) the intermediate values at layer i. This setup is the most typical situation
considered for neural network verification tools [6], although extensions have
been made to other layer types [33,36] and activation functions [30].

Definition 4 (Exact Range Computation Problem). Given a neural net-
work implementing the function f : Rni → Rno and an input set I ⊆ Rni , the
exact range computation problem is to compute the set

Range(f, I) = {yk | yk = f(y0), y0 ∈ I}.

of possible outputs of the network.

The exact range computation problem can be used to solve the open-loop neural
network verification problem defined next.

Definition 5 (Open-Loop Neural Network Verification). Given an input
set I ⊆ Rni , an unsafe set U ⊆ Rno , and a neural network that computes f , the
open-loop neural network verification problem asks if Range(f, I) ∩ U = ∅.

As is typical with the state-of-practice in DNN verification, we restrict the
input and unsafe sets to ones defined with linear constraints,

I = {x | Aix ≤ bi,x ∈ Rni}, and
U = {x | Aux ≤ bu,x ∈ Rno}.

The popular ACAS Xu neural network verification benchmarks [20] match these
assumptions, and will be used in our evaluation.



The Octatope Abstract Domain for Verification of Neural Networks 461

Although abstraction and refinement methods are often more efficient for
verifying neural networks [5], the performance of the exact range computation
problem is important for the following two reasons. First, as more refinement
needs to be done, the performance of abstraction-refinement will approach that
of exact range computation. Efficient exact range computation is therefore essen-
tial for efficient abstraction-refinement analysis. Second, exact range computa-
tion methods are building blocks for other types of verification problems, such
as closed-loop verification of neural-network control systems [26], which often
arise in reinforcement learning applications. In these cases, over-approximating
the range of a network is too imprecise for analysis over many control cycles,
and such analysis loses the relationship between the inputs and the outputs of
a network, creating issues similar to the dependency problem in interval arith-
metic [34]. In future work, we plan to explore over-approximation methods as
well as abstraction-refinement approaches that use octatopes, following similar
work done for zonotopes and other abstract domains [15].

3 Abstract Domains: Octatopes and Hexatopes

Both a zonotope and a star set may be viewed as an n-dimensional image of
a polytope—which we refer to as the kernel—under affine transformation. For
zonotopes the kernel is a hypercube, while for linear star sets the kernel is a
set defined by an LCS. In this section, we introduce octatopes and hexatopes as
generalizations of zonotopes where the kernel is restricted to be a set defined by a
UCS and a DCS, respectively. This section also studies algorithms for operations
over octatopes and hexatopes required for the verification of neural networks.

3.1 Zonotopes and Linear Star Sets

An n-dimensional zonotope Z = 〈c, G〉 is the image of a p-dimensional hypercube
under an affine transformation Rp → Rn. Given a center c ∈ Rn and a set of
generator vectors {g1, . . . , gp ∈ Rn} forming a matrix G =

[
g1 · · · gp

] ∈ Rn×p,
the semantics of Z are defined as

�Z� = {Gx + c : −1p ≤ x ≤ 1p} .

Linear star sets generalize zonotopes by letting the kernel be defined by an
LCS. Formally, an n-dimensional star set S = 〈c, G,A, b〉 is the image of a p-
dimensional polytope Ax ≤ b under an affine transformation Rp → Rn. Given
a center c ∈ Rn and a set of generator vectors {g1, . . . , gp ∈ Rn} that form a
matrix G =

[
g1 · · · gp

] ∈ Rn×p, the semantics of S are defined as

�S� = {Gx + c : Ax ≤ b} .

The following theorems [35] provide the foundational results on linear star
sets that are leveraged in neural network verification.



462 S. Bak et al.

Theorem 1 (Affine Transformations of Linear Star Sets). The linear
star sets are closed under affine transformation, i.e., given a linear star set
S = 〈c, G,A, b〉 and an affine map f(x) = Wx + d on �S�, the image S[W,d] =
{f(x) : x ∈ �S�} is equal to �S′� for a linear star set S′ = 〈c′, G′, A, b〉 where

c′ = Wc + d and G′ =
[
Wg1 · · · Wgp

]
.

Theorem 2 (Linear Optimization Over Linear Star Sets). The optimiza-
tion of a linear function f over a linear star set S reduces to linear programming.

Theorem 3 (Intersection of Linear Star Sets and Half-Spaces). The
intersection of a star set S = 〈c, G,A, b〉 and half space {y | Hy ≤ h} is another
star set S′ = 〈c, G,A′, b′〉 where A′x ≤ b′ are the conjunction of constraints

Ax ≤ b and HGx ≤ h − Hc.

Next, we extend the notion of zonotopes to define octatopes and hexatopes
and develop a series of results, analogous to Theorem 1 to 3, that provide the
theoretical framework for the application of these abstract domains to the veri-
fication of neural networks.

3.2 Octatopes and Hexatopes

Definition 6 (Octatopes and Hexatopes). An octatope is an n-dimensional
star set 〈c, G,A, b〉 where the kernel constraints Ax ≤ b form a UCS. A hexatope
is similarly defined as an n-dimensional star set 〈c, G,A, b〉 where the kernel
constraints Ax ≤ b form a DCS.

Our first result mirrors Theorem 1 and establishes closure under affine map-
pings for octatopes and hexatopes.

Theorem 4. Octatopes and Hexatopes are closed under affine transformation.

Proof. From Theorem 1 it follows for an octatope (hexatope) S = 〈c, G,A, b〉
and an affine mapping f(x) = Wx + d, that S[W,d] = {Wx + d : x ∈ �S�} is a
star set S′ = 〈c′, G′, A, b〉 where

c′ = Wc + d and G′ =
[
Wg1 · · · Wgp

]
.

Since this transformation does not change the kernel, the resulting set remains
an octatope (hexatope). �


3.3 Linear Optimization Over Octatopes and Hexatopes

By Theorem 2, linear optimization over linear star sets can be done in polyno-
mial time. Our next result shows that linear optimization over octatopes and
hexatopes can be done in strongly polynomial time.



The Octatope Abstract Domain for Verification of Neural Networks 463

Theorem 5. The linear optimization problem for octatopes and hexatopes can
be solved in strongly polynomial time via a reduction to the MCF problem.

Proof. We reduce the optimization problem for octatopes to a similar problem
for hexatopes. Consider an n-dimensional octatope O = 〈c, G,A, b〉 which is the
image of a p-dimensional UCS-defined set. Here c ∈ Rn is the center and vectors
{g1, g2, . . . , gp ∈ Rn} are the generators. In order to optimize a linear function f
over �O�, it suffices to optimize the composition of functions x �→ Gx+ c and f
over the utvpi constrained set Ax ≤ b. We describe a method to find the linear
optimum of an arbitrary linear objective function over a UCS.

Let U be a UCS and let f be an objective function we are maximizing. First
we convert [24] the UCS U into a DCS D. The first part of the conversion creates
the variables x+

i and x−
i in D for each variable xi in U. Then, each constraint

in U is converted as follows:

1. Each constraint of the form xi + xj ≤ bij becomes

x+
i − x−

j ≤ bij and − x−
i + x+

j ≤ bij .

2. Each constraint of the form xi − xj ≤ bij becomes

x+
i − x+

j ≤ bij and − x−
i + x−

j ≤ bij .

3. Each constraint of the form −xi + xj ≤ bij becomes

x−
i − x−

j ≤ bij and − x+
i + x+

j ≤ bij .

4. Each constraint of the form −xi − xj ≤ bij becomes

x−
i − x+

j ≤ bij and − x+
i + x−

j ≤ bij .

5. Each constraint of the form xi ≤ bi becomes

x+
i − x−

i ≤ 2 · bi.

6. Each constraint of the form −xi ≤ bi becomes

x−
i − x+

i ≤ 2 · bi.

Observe that xi = 1
2 (x+

i − x−
i ) satisfies the original UCS. Thus, we can consider

this as the problem maximizing the objective function over variables 1
2 (x+

i −x−
i )

of the DCS D. Note that the problem of maximizing a linear objective function
over a DCS is the dual of a minimum cost flow problem. Since the Out-of-Kilter
algorithm also solves the dual to the minimum cost flow problem [1], running
the Out-of-Kilter algorithm on the dual of the DCS optimization problem will
also solve the DCS optimization problem. For a UCS with m constraints, this
process takes O((n2 + m · n · log m) · C) time where C is the largest absolute
value of any coefficient in the objective function. �




464 S. Bak et al.

Algorithm 2. UTVPIBoundingBox(U, l)
Input: UCS U and constraint l
Output: A utvpi bounding box U′

1: U′ ← ∅
2: for all pairs of variables xi, xj in U do
3: Let u+−

ij = maxU∪{l} xi − xj and add constraint xi − xj ≤ u+−
ij to U′

4: Let u−+
ij = maxU∪{l} xj − xi and add constraint xj − xi ≤ u−+

ij to U′

5: Let u++
ij = maxU∪{l} xi + xj and add constraint xi + xj ≤ u++

ij to U′

6: Let u−−
ij = maxU∪{l} −xi − xj and add −xi − xj ≤ u−−

ij to U′

7: Let u+
i = maxU∪{l} xi and add constraint xi ≤ u+

i to U′

8: Let u−
i = maxU∪{l} −xi and add constraint −xi ≤ u−

i to U′

9: return U′.

Emptiness Checking. We also consider the feasibility problem for octatopes.
That is, the problem of deciding whether an octatope is empty. The emptiness
of an octatope can be decided in O(n · m) time and O(n+m) space where n is
the number of generator variables and m is the number of generator constraints.
It is easy to see that an octatope (hexatope) is empty if and only if the utvpi
constraints of its kernel are unsatisfiable as linear mappings over polytopes that
are monotone with respect to set inclusion. The complexity then follows from
results on checking the feasibility of utvpi constraint systems [24].

3.4 Intersection of Octatopes/Hexatopes and Half-Spaces

It follows from Theorem 3 that the intersection of an octatope O = 〈c, G,A, b〉
and half space {y | Hy ≤ h} is a star set O′ = 〈c, G,A′, b′〉 where the constraints
A′x ≤ b′ are the conjunction of UCS constraints Ax ≤ b and the hyperplane
HGx ≤ h−Hc. In the rest of this section, we show how an over-approximation
of this intersection can be represented as UCS constraints. The treatment for
hexatopes is similar, and hence omitted.

We formalize this problem as the utvpi bounding box problem. Given a UCS
U and an arbitrary linear constraint l, a utvpi bounding box is a UCS U′, such
that every solution to U ∪ {l} is a solution to U′. For a given UCS U and
constraint l, a tightest utvpi bounding box is a bounding box of U∪ {l} that is
contained within every other bounding box of U ∪ {l}. Thus, a utvpi bounding
box of a UCS U and constraint l is a UCS that overestimates the solution space
of U ∪ {l}. A tightest bounding box is a UCS that overestimates the solution
space the least. Each of the linear programs used to construct U′ can be solved
(with L bits of precision) in O(n2.38 · L) time [10]. Since finding the utvpi
bounding box requires solving O(n2) linear programs, the utvpi bounding box
can be found in O(n4.38 · L) time.

Theorem 6. Let U be a UCS and let l be an arbitrary linear constraint. The
UCS U′, constructed by Algorithm 2, is a utvpi bounding box of U ∪ {l}.



The Octatope Abstract Domain for Verification of Neural Networks 465

Proof. Let x∗ be a solution to U ∪ {l}. Let ai · xi + aj · xj ≤ uij be an arbitrary
constraint in U′. By construction of U′, we have uij = maxU∪{l} ai · xi + aj · xj .

Since x∗ is a solution of U ∪ {l}, ai · x∗
i + aj · x∗

j ≤ uij . This means that
x∗ satisfies the constraint ai · xi + aj · xj ≤ uij . Since the constraint ai · xi +
aj · xj ≤ uij was chosen arbitrarily, x∗ is a solution to U′. Note that x∗ was an
arbitrary solution to U∪{l}. Thus, every solution to U∪{l} is a solution to U′.
Consequently, U′ is a utvpi bounding box of U ∪ {l}. �


We now show that U′ is a tightest utvpi bounding box of U∪{l}. Note that
U ∪ {l} must have a tightest bounding box. Consider two bounding boxes U1

and U2 of U ∪ {l}. Let U∗, be the UCS formed by combining the constraints
in U1 and U2. Note that U∗ is also a bounding box of U ∪ {l}. Additionally,
every solution to U∗ is a solution to both U1 and U2. Thus, if U ∪ {l} has two
incomparable bounding boxes, then a new bounding box can be constructed that
is tighter than both.

Theorem 7. Let U be a UCS and let l be a linear constraint. The UCS U′,
produced by Algorithm 2, is a tightest utvpi bounding box of U ∪ {l}.
Proof. Assume for the sake of contradiction, that U′ is not a tightest utvpi
bounding box of U ∪ {l}. Thus, there exist a utvpi bounding box U′′ and a
point x∗ such that x∗ is a solution to U′, but not a solution to U′′. This means
that there is a utvpi constraint ai · xi + aj · xj ≤ b in U′′ that is violated by x∗.

Let uij = maxU∪{l} ai · xi + aj · xj . Since U′′ is a utvpi bounding box of
U ∪ {l}, every solution to U ∪ {l} is a solution to U′′. Thus, every solution to
U ∪ {l} satisfies the constraint ai · xi + aj · xj ≤ b. This means that

max
U∪{l}

ai · xi + aj · xj

is bounded from above by b. Thus, uij exists and uij ≤ b.
By the construction of U′, the constraint ai · xi + aj · xj ≤ uij is in U′.

However, x∗ is a solution to U′ such that ai · x∗
i + aj · x∗

j > b ≥ uij . This is a
contradiction. Thus, U′ must be a tightest utvpi bounding box of U ∪ {l}. �


4 Range Computation for Neural Nets with Prefilters

The exact range computation problem from Definition 4 can be solved using
linear star sets (see Algorithms 1 and 2 in earlier work for a full review [7]).

The neural network function f as defined in Sect. 2.3 is a piece-wise affine
function of the inputs. The range computation proceeds using geometric set
operations. The initial set of states is represented as a linear star set and prop-
agated through each layer of the network. To go from the output of one layer
to the vector of intermediate values at the next layer, an affine transformation
operation is performed on the set. The effect of the ReLU activation in a layer
is handled iteratively for each neuron. The set of states is potentially split along
the neuron input constraint yi = 0, into a negative region and a positive region,



466 S. Bak et al.

using a half-space intersection operation. The negative region is then projected
to zero to match the semantics of a ReLU. The two sets are then considered
independently for the remaining neurons in the layer, as well as the rest of the
layers in the network. For a given input set, not all neurons require splitting the
set in two, since the input constraints may restrict inputs to be strictly positive
or negative. To check this, before splitting we first optimize over the set in the
direction of the intermediate value x

(i)
j corresponding to a specific neuron j in

layer i. If splitting occurs, the two sets are treated independently and propagated
through the remaining neurons in the layer, possibly requiring further splitting
in the remaining parts of the network.

After applying a number of optimizations, the bottleneck of exact range
computation with star sets is the use of LP solving to compute the input bounds
for each neuron [7]. To improve analysis speed, rather than speeding up LP
solving—which is a well-studied problem where further progress is likely to be
difficult—we instead seek methods that can reduce the number of LPs needed.

In earlier work, zonotope abstract domains have been considered for this task.
Rather than just propagating star sets through a network, we also propagate a
zonotope overapproximation that we use in a prefiltering step. Recall that before
splitting we first need to optimize over the set in the direction of the intermediate
value x

(i)
j . Before optimizing over the star set using LP, we first optimize over

the zonotope abstraction prefilter. If the zonotope abstraction can prove that the
inputs are strictly positive or negative, than we are guaranteed the exact result
from the LP will be strictly positive or negative as well (as the zonotope is an
overapproximation of the star set). This allows us to avoid LP, as optimization
over zonotopes can be done efficiently using a simple loop.

The reason zonotope analysis is not exact is that zonotopes do not support
general half-space intersections when sets must be split. Instead, two approaches
have been considered. The easiest option is to ignore intersections, which is fast
but can cause significant overapproximation error in the abstraction [15,36].
Alternatively, we can perform domain contraction, which is to search for zono-
topes that more tightly overapproximate the intersection. Different approaches
for domain contraction are possible, ranging from reasoning methods over indi-
vidual constraints to more accurate approaches that use LP solving on the star
set in the generator coefficient space [7]. Although the LP approach uses the
expensive operation we are trying to reduce, it can result in an overall reduction
of LPs, as the neuron input bounds can be computed more accurately.

This work proposes using octatope abstract domains as a prefilter. As
described earlier, optimization over octatopes can be done more efficiently than
general LP solving. The greater expressiveness of octatopes compared with zono-
topes means that we can hope to further reduce the number of LPs needed with
the star set when computing a neuron’s input bounds for splitting. We evaluate
this impact in our experiments. In terms of handling intersections when splitting
sets, octatopes (like zonotopes) cannot exactly support any general half-space
intersection operation. This means that a domain contraction step may be nec-
essary to ensure tight overapproximation.



The Octatope Abstract Domain for Verification of Neural Networks 467

5 Experimental Results

We next evaluate the potential savings in LP computation to computing neu-
ron input bounds during exact range computation for neural networks. Our
evaluation is performed on several benchmarks from the ACAS Xu benchmark
suite [20], specifically focusing on property 3 and 4 where earlier work has shown
exact range computation is tractable [7]. We generally report number of LPs for
different operations rather than runtime, as the runtime is influenced by other
factors such code optimizations and the choice of LP solver.

First, we examine the number of LPs needed to perform neuron input range
computation, for different choices of prefilter abstract domain. The LP calls to
find the neuron input ranges is the bottleneck of the overall range computation
algorithm, so its reduction is of particular importance. The results are in Table 1.
The Star-Only approach uses only LP solving with no prefiler, and therefore has
the highest number of LPs. The next column, Zonotope-NC corresponds to the
case where zonotope prefilters are used, but no domain contraction is performed
(halfspace intersections are ignored). This has a significant reduction on the
number of LP calls, for example in the first row with property 3 and network
1–6, where the number of LP calls is reduced from 91 K to 11 K. Using domain
contraction with zonotopes, Zono-C, further reduces this to around 3.3 K. The
more precise domains with hexatopes and octatopes can further reduce this to
around 2.6 K and 2.5 K, respectively. The minimum column is computed by see-
ing how many bounds computations could not be eliminated as they correspond
to cases where the input to a neuron truly can be either positive or negative.
Even a perfect prefilter could not eliminate these LPs, as prefilters only elimi-
nate cases where splitting is impossible. Other approaches could be considered to
remove these LPs, such as tracking specific witness input points that can prove
a neuron can have both positive and negative inputs, which we may consider in
future work. Overall, the proposed octatope abstract domain has the potential to
reduce the number of unnecessary LPs significantly in exact range computation.

When using the new abstract domain, however, there is a trade-off where
extra operations are needed to perform domain contraction as well as to optimize
within the abstract domains. We used a witness-tracking approach [5], where for
each constraint a witness point was included that was in the star set and on
the boundary of the constraint. When new intersections are performed, each
witness point is checked to see if it is now excluded from the set. When points
are excluded, new witness points get generated by solving an LP in the direction
of the constraint, which may tighten the constraint. This results in the tight
abstract domains, but can be expensive when many constraints are possible. For
hexatopes and octatopes, the number of possible constraints is quadratic in the
number of variables (ACAS Xu has 5 input variables).

Table 2 shows the number of LPs needed for each example when performing
domain contraction. Star-Only and Zono-NC do not perform domain contraction,
and so have 0 LPs for this operation. As expected, the more complex the abstract
domain, the more operations are needed. This is due to the contraction method



468 S. Bak et al.

Table 1. Number of LP calls to find neuron input bounds for different abstract domain
prefilters on various ACASXu properties and networks.

Prop Net Star-Only Zono-NC Zono-C Hex Oct Minimum

3 1–6 91762 11152 3382 2635 2571 1886

3 2–7 77896 9365 2921 2240 2198 1626

3 3–5 80988 8990 2711 2131 2092 1710

3 5–2 54758 15523 7762 6820 6704 3779

4 1–4 53036 7736 2597 2389 2330 1926

4 2–7 38748 3851 1249 888 861 753

4 5–9 68750 8814 2952 2286 2151 1591

Table 2. Number of LP calls for the domain contraction step for different abstract
domain prefilters for various ACAS Xu properties and networks.

Prop Net Star-Only Zono-NC Zono-C Hex Oct

3 1–6 0 0 12765 38400 115200

3 2–7 0 0 12280 36840 110520

3 3–5 0 0 10407 31230 93690

3 5–2 0 0 21249 63750 191250

4 1–4 0 0 11828 35493 106476

4 2–7 0 0 5533 16620 49860

4 5–9 0 0 9906 29730 89190

performed, where the number of possible LPs needed at a domain contraction
step increases as the number of possible constraints increases.

In terms of the performance of network simplex for optimizing within the
octatope domain, the engineering aspect of the problem also requires further
development. When computing the range of network 2–7 with the input set
from property 4, the utvpi constraints were optimized 38748 times. When
using the commercial LP solver Gurobi on these constraints, each call took
on average of 0.17 ms. Formulating the min-cost flow problem and calling the
network simplex implementation from the networkx python library, however,
used about 1.9 ms per call, about 11x slower. Further, while Gurobi always
obtained a result, numerical issues caused network simplex to fail about 0.65%
of the time.

In summary, while octatopes effectively reduce the bottleneck step of input
bounds computation, further improvements must be made to octatope domain
contraction algorithms as well as to implementation optimizations of min-cost
flow solvers, before an overall speedup can be achieved. Nonetheless, it is an
encouraging result for DNN verification as developing more efficient domain
contraction algorithms and improving min-cost flow implementations is likely
easier than coming up with new ways to speed up LP solving.



The Octatope Abstract Domain for Verification of Neural Networks 469

6 Conclusion

The advent of deep neural networks and their inevitable widespread adoption
necessitates tools by which we can reason about their robustness. The verifi-
cation community has made great strides on this front in recent years through
the development of neural network verification solutions based on search, opti-
mization, and reachability. While search and optimization can often be used to
yield sound and complete solutions, such techniques pay the cost of scalability.
Methods based on reachability analysis, on the other, can often scale better at
the cost of completeness. These methods typically employ an abstract domain
representation of the input-output behavior of nodes in the neural network for
a given set of inputs. These abstract domains range from zonotopes to star sets
that differ in their trade-off between scalability and precision.

We proposed octatopes as a new abstract domain which corresponds to
affine transformations of unit two-variable per inequality (utvpi) constraints.
Octatopes provide tighter abstractions than zonotopes while optimization can
be formulated as a min-cost flow problem that is theoretically more efficient
than linear programming. Our experiments using octatope abstract domains for
exact range computation of neural networks confirmed their accuracy, as we
were able to reduce the bottleneck step of using LP to compute each neuron’s
input bounds. However, engineering improvements must still be made to min-
cost flow libraries. In our application of utvpi optimization, it was faster to use
the highly-optimized commercial LP solver Gurobi instead of the theoretically
faster min-cost flow formulation. In future work, we plan to examine ways to
improve domain contraction, as well as investigating other application areas of
octatopes such as neural network verification with over-approximations, software
analysis, and hybrid systems reachability.

Acknowledgment. This material is based upon work supported by the Air Force
Office of Scientific Research and the Office of Naval Research under award num-
bers FA9550-19-1-0288, FA9550-21-1-0121, FA9550-22-1-0450, FA9550-22-1-0029 and
N00014-22-1-2156. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Air Force or the United States Navy. This research
was supported in part by the Air Force Research Laboratory Information Directorate,
through the Air Force Office of Scientific Research Summer Faculty Fellowship Pro-
gram, Contract Numbers FA8750-15-3-6003, FA9550-15-0001 and FA9550-20-F-0005.

This work is also supported by the National Science Foundation (NSF) grant CCF-
2009022 and by NSF CAREER award CCF-2146563.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and
Applications. Prentice Hall (1993)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall (1993)



470 S. Bak et al.

3. Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis
for neural agent-environment systems. In: Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (2018)

4. Aws Albarghouthi: Introduction to Neural Network Verification (2021). http://
verifieddeeplearning.com

5. Bak, S.: nnenum: verification of ReLU neural networks with optimized abstraction
refinement. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.)
NFM 2021. LNCS, vol. 12673, pp. 19–36. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-76384-8 2

6. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (VNN-COMP 2021): summary and results. arXiv preprint
arXiv:2109.00498 (2021)

7. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

8. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows.
Wiley, Hoboken (2008)

9. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on the
Quantitative Evaluation of Systems (QEST 2006), 11–14 September 2006, River-
side, California, USA, pp. 125–126. IEEE Computer Society (2006)

10. Cohen, M.B., Lee, Y.T., Song, Z.: Solving linear programs in the current matrix
multiplication time. J. ACM 68(1), 1–39 (2021)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of
linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
477–494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 26

14. Friedmann, O., Hansen, T.D., Zwick, U.: Subexponential lower bounds for ran-
domized pivoting rules for the simplex algorithm. In: Symposium on Theory of
Computing (STOC 2011), pp. 283–292, ACM, New York (2011)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE
(2018)

16. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylor1+. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 47

17. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling
negative cycles. J. ACM 36(4), 873–886 (1989)

18. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive
refinement and adversarial search. In: ECAI 2020, pp. 2513–2520. IOS Press (2020)

19. Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neural
network verification via indirect effect analysis. In: Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence (IJCAI21) (2021). To appear

http://verifieddeeplearning.com
http://verifieddeeplearning.com
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
http://arxiv.org/abs/2109.00498
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-41528-4_26
https://doi.org/10.1007/978-3-642-02658-4_47


The Octatope Abstract Domain for Verification of Neural Networks 471

20. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

21. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

22. Khachiyan, L.G.: A polynomial time algorithm for linear programming. Dokl.
Akad. Nauk SSSR 244(5), 1093–1096 (1979). English translation in Soviet Math.
Dokl. 20, 191–194

23. Klee, F., Minty, G.J.: How good is the simplex algorithm? Inequalities III, 159–175
(1972)

24. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI con-
straints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183.
Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 9

25. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algo-
rithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404
(2021)

26. Manzanas Lopez, D., Johnson, T., Tran, H.D., Bak, S., Chen, X., Hobbs, K.L.:
Verification of neural network compression of ACAS Xu lookup tables with star
set reachability. In: AIAA Scitech 2021 Forum, p. 0995 (2021)

27. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–
100 (2006)

28. Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum cost
flows. Math. Program. 78, 109–129 (1997). https://doi.org/10.1007/BF02614365

29. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. NeurIPS 1(4), 6 (2018)

30. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press (2018)

32. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2018)

33. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

34. Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. ACM
Trans. Embed. Comput. Syst. 18(5s), 1–22 (2019)

35. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

36. Tran, H.-D., et al.: Robustness verification of semantic segmentation neural net-
works using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12759, pp. 263–286. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81685-8 12

37. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/11559306_9
https://doi.org/10.1007/BF02614365
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12


472 S. Bak et al.

(eds.) CAV 2020. LNCS, vol. 12224, pp. 3–17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8 1

38. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. Adv. Neural Inf. Process. Syst. 31 (2018)

39. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. Adv. Neural. Inf. Process.
Syst. 34, 29909–29921 (2021)

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1


Program Semantics and Verification
Technique for AI-Centred Programs

Fortunat Rajaona1(B) , Ioana Boureanu1, Vadim Malvone2,
and Francesco Belardinelli3

1 Surrey Centre for Cyber Security, University of Surrey, Guildford, UK
{s.rajaona,i.boureanu}@surrey.ac.uk

2 Télécom Paris, Palaiseau, France
vadim.malvone@telecom-paris.fr
3 Imperial College, London, UK

francesco.belardinelli@imperial.ac.uk

Abstract. We give a general-purpose programming language in which
programs can reason about their own knowledge. To specify what these
intelligent programs know, we define a “program epistemic” logic, akin
to a dynamic epistemic logic for programs. Our logic properties are com-
plex, including programs introspecting into future state of affairs, i.e.,
reasoning now about facts that hold only after they and other threads
will execute. To model aspects anchored in privacy, our logic is inter-
preted over partial observability of variables, thus capturing that each
thread can “see” only a part of the global space of variables. We verify
program-epistemic properties on such AI-centred programs. To this end,
we give a sound translation of the validity of our program-epistemic logic
into first-order validity, using a new weakest-precondition semantics and
a book-keeping of variable assignment. We implement our translation
and fully automate our verification method for well-established exam-
ples using SMT solvers.

1 Introduction and Preliminaries

In a digital world governed by strict rules on privacy and access-control [24], some
thread A and some thread B will execute concurrently over the same variable
space, but A and B will have different, restricted access to global variables.
Moreover, both A and B may be decision-making process which take actions
based on predictions of future states of their environment [24]. In other words,
thread A may need to know now what the state-of-affairs will be after some
procedure P runs, albeit as far as A can know modulo its partial observability
of the system’s variables. More formally, in our framework, we are interested in
formulas such as “KA�P ϕ”, meaning to reason if “at this current point, thread
A knows whether after a procedure P executed, a fact ϕ expressed over the
global domain of variables holds”. Or, we may wish to check if agent B knows
that agent A knows a fact of this kind, i.e., “KBKA�P ϕ”. Such statements
are clearly rich, as they allow threads to reason about the future and moreover
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 473–491, 2023.
https://doi.org/10.1007/978-3-031-27481-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_27&domain=pdf
http://orcid.org/0000-0003-4902-9800
https://doi.org/10.1007/978-3-031-27481-7_27


474 F. Rajaona et al.

about their “perception” of the future, and of one another’s perceptions. That
is, thread B can check what it “thinks” A will “think” of the global state of the
system, after some procedure executes.

A New Verification Method Towards Safer AI. On the one hand, evaluat-
ing such knowledge-centric properties considered in a partial observability setting
is of paramount importance for AI-based decision making [3]. On the other hand,
logics of knowledge, also called epistemic logics [17], have been well-explored in
computer-science since Hintikka [23], and even in the context of multi-agent sys-
tems [32] and under partial observability [8,21,37]. In this space, our innovation
focuses in turn on new methods for automatically verifying epistemic properties,
but –unlike most of our predecessors– we concentrate on verification methods
not for abstract systems, but rather analyses of concrete programs (over an arbi-
trary first-order domain), as well as requirements richer than what went before
us. Notably, we wish to create new formal analyses for the epistemic reasoning
of concrete programs, catering for them knowing facts not only after they exe-
cute (i.e., �AKAϕ or �BKAϕ), but also before they execute (i.e., KA�Aϕ); the
latter allows them as well as a Formal-Methodist to check local perception of
programs on global futures. To this end, we argue that this opens up the area of
verification methods for AI-rich programs, their decision-making and thus makes
for safer AI.

1.1 Preliminaries and Background

We now introduce a series of logic-related notions that are key to explaining our
contributions in the related field and to setting the scene.

Epistemic Logics. Logics for knowledge or epistemic logics [23] follow a so-
called Kripke or “possible-worlds” semantics. Assuming a set of agents, a set
of possible worlds are linked by an indistinguishability relation for each agent.
Then, an epistemic formula Kaφ, stating that “agent a knows that φ”, holds
at a world w, if the statement φ is true in all worlds that agent a considers as
indistinguishable from world w.

Modelling Imperfect Information in Epistemic Logics. A possible-worlds
semantics does not suffice to faithfully capture agents with private information.
To this end, interpreted systems were introduced [32], whereby agents are associ-
ated with private shares of the possible worlds called local states; worlds’ indistin-
guishability is then “sunk” at the level of local states. Alternatively, others looked
at how epistemic logic with imperfect information could be expressed via direct
notions of visibility (or observability) of propositional variables, e.g., [8,21,37].

Logics of Visibility for Programs. Others [19,31,35] looked at how multi-
agent epistemic logics with imperfect information would apply not to generic
systems, but specifically to programs. In this setting, the epistemic predicate
Ka(y = 0) denotes that agent a knows that the variable y is equal to 0 (in some
program). So, such a logic allows for the expression of knowledge properties
of program states, using epistemic predicates. This is akin to how, in classical



Program Semantics and Verification Technique for AI-Centred Programs 475

program verification, one encodes properties of states using first-order predicates:
e.g., Dijkstra’s weakest precondition [11].

Perfect vs Imperfect recall. For any of the cases aforesaid, an aspect often
considered is the amount of knowledge that agents retain, i.e., agents forget all
that occur before their current state – memoryless (or imperfect recall) seman-
tics, or agents recall all their history of states – memoryful (or perfect recall)
semantics, or in between the two cases – bounded recall semantics.

“Program-Epistemic” Logics. To reason about knowledge change, epistemic
logic is usually enriched with dynamic modalities from Dynamic Logics [22,34].
Therein, a dynamic formula �P φ expresses the fact that when the program
P ’s execution terminates, the system reaches a state satisfying φ – a statement
given in the base logic (propositional/predicate logic); the program P is built
from abstract/concrete actions (e.g., assignments), sequential composition, non-
deterministic composition, iteration and test.

Gorogiannis et al. [19] gave a “program-epistemic” logic, which is a dynamic
logic with concrete programs (e.g., programs with assignments on variables
over first-order domains such as integer, reals, or strings). Interestingly, à
la [31,35,37], the epistemic model in [19] relies on partial observability of the
programs’ variables by agents. Gorogiannis et al. translated program-epistemic
validity into a first-order validity, and this outperformed the then state-of-the-
art tools in epistemic properties verification. Whilst an interesting breakthrough,
Gorogiannis et al. present several limitations. Firstly, the verification mechani-
sation in [19] only supports “classical” programs; this means that [19] cannot
support tests on agents’ knowledge. Yet, such tests are clearly in AI-centric pro-
grams: e.g., in epistemic puzzles [27], in the so-called “knowledge-based” pro-
grams in [16], etc. Secondly, the logic in [19] allows only for knowledge reason-
ing after a program P executed, not before its run (e.g., not Kalice(�P φ), only
�P (Kaliceφ)); this is arguably insufficient for verification of decision-making with
“look ahead” into future states-of-affair. Thirdly, the framework in [19] does not
allow for reasoning about nested knowledges operators (e.g., Kalice(Kbobφ)).

1.2 Our Contributions

We lift all the limitations of [19] listed above and more. We make the following
contributions:
1. We define a multi-agent, program-epistemic logic Lm

DK , which is a dynamic
logic whose base logic is a multi-agent first-order epistemic logic, under an
observability-based semantics (Sect. 2).
Our logic is rich, where the programs modality contains tests on knowledge,
and formulas with nested knowledge operators in the multi-agent setting.
This is much more expressive than the state-of-the-art.

2. We give a programming language PL (programs with tests on knowledge) that
concretely defines the dynamic operators in Lm

DK . We associate the program-
ming language PL with a relational semantics and a weakest-precondition
semantics, and we show their equivalence (Sect. 3).



476 F. Rajaona et al.

3. We give a sound translation of the validity of a program-epistemic logic into
first-order validity (Sect. 4).

4. We implement the aforesaid translation to allow a fully-automated verification
with our program-epistemic logic, via SMT-solving (Sect. 5).

5. We verify the well-known Dining Cryptographer’s protocol [9] and the epis-
temic puzzle called the “Cheryl’s birthday problem” [14]. We report compet-
itive verification results. Collaterally, we are also the first to give SMT-based
verification of the “Cheryl’s birthday problem” [14] (Sect. 5).

2 Logical Languages LFO and Lm
DK

We introduce the logics LFO, Lm
K , and Lm

DK , used to describe states and epistemic
properties of states, and program-epistemic properties of states.

2.1 Syntax of LF O , Lm
K , and Lm

DK

Agents and Variables. We use a, b, c, ... to denote agents, Ag to denote their
whole set, and G for a subset therein. We consider a set Var of variables such
that each variable x in Var is “typed” with the group of agents that can observe
it. For instance, we write xG to make explicit the group G ⊆ Ag of observers of
x. For each agent a ∈ Ag, the set Var of variables can be partitioned into the
variables that are observable by a, denoted oa, and the variables that are not
observable by a, denoted na. Thus, na = {xG ∈ Var | a �∈ G}.

The Base Logic LQF . We assume a user defined base language LQF , on top of
which the other logics are built. We assume LQF to be quantifier-free first-order
language with variables in Var . The Greek letter π denotes a formula in LQF .

An example of base language LN, for integer arithmetic, is given by:

e ::= c | v | e ◦ e (terms)
π ::= e = e | e < e | π ∧ π | ¬π (LNformula)

where ◦ ::= +,−, ∗, /,×,mod; c is an integer constant; and v ∈ Var .

First-Order Logic LFO. We define the quantified first-order logic LFO based
on LQF . This logic describes “physical” properties of a program state and also
serves as the target language in the translation of our main logic.

Definition 1. The quantified first-order logic LFO is defined by:

φ ::= π | φ ∧ φ | ¬φ | ∀xG · φ

where π is a quantifier-free formula in LQF , and xG ∈ Var.

Other connectives and the existential quantifier operator ∃, can be derived as
standard. We use Greek letters φ, ψ, χ to denote first-order formulas in LFO. We
extend quantifiers over vectors of variables: ∀x · φ means ∀x1 · ∀x2 · · · ∀xn · φ. As
usual, FV (φ) denotes the set of free variables of φ.



Program Semantics and Verification Technique for AI-Centred Programs 477

Epistemic Logic Lm
K and Program-Epistemic Logic Lm

DK . We now define
two logics at once. The first is the first-order multi-agent epistemic logic Lm

K

enriched with the public announcement operator. The logic Lm
K is first-order in

the sense that its atomic propositions are predicates from the base language LQF .
The second is our main logic, Lm

DK , which extends Lm
K with program modalities

�P .

Definition 2. Let LQF be a base first-order language and Ag = {a1, . . . , am} a
set of agents. We define the first-order multi-agent program epistemic logic Lm

DK

with the following syntax

α ::= π | α ∧ α′ | ¬α | Kai
α | [α′]α | �P α | ∀xG · α (Lm

DK )

where π ∈ LQF , P is a program, G ⊆ Ag, and xG ∈ Var.

Each Kai
is the epistemic operator for agent ai, the epistemic formula Kai

α
reads “agent ai knows that α”. The public announcement formula [α′]α, in the
sense of [13,33], means “after every announcement of α′, α holds”. The dynamic
formula �P α reads “at all final states of P , α holds”. The program P is taken
from a set of programs PL that we define in Sect. 3. Other connectives and the
existential quantifier ∃ can be derived in a standard way as for Definition 1.

The first-order multi-agent epistemic logic Lm
K is the fragment of Lm

DK with-
out any program operator �P .

2.2 Semantics of LF O and Lm
DK

States and the Truth of LQF Formulas. We consider a set D, used as the
domain for interpreting variables and quantifiers. A state s of the system is a
valuation of the variables in Var , i.e., a function s : Var → D. We denote the
universe of all possible states by U .

We assume an interpretation I of constants, functions, and predicates, over
D to define the truth of an LQF formula π at a state s, denoted s |=

QF
π.

Truth of an LFO Formula. Let s[x �→ c] denote the state s′ such that s′(x) = c
and s′(y) = s(y) for all y ∈ Var different from x. This lifts to a set of states,
W [x �→ c] = {s[x �→ c] | s ∈ W}.

Definition 3. The truth of φ ∈ LFO at a state s, denoted s |=
FO

φ, is defined
inductively on φ by

s |=FO π iff s |=QF π

s |=
FO

φ1 ∧ φ2 iff s |=
FO

φ1 and s |=
FO

φ2

s |=FO ¬φ iff s �|=FO φ

s |=
FO

∀xG · φ iff for all c ∈ D, s[xG �→ c] |=
FO

φ.



478 F. Rajaona et al.

We lift the definition of |=FO to a set W of states, with W |=FO φ iff for all s ∈ W ,
s |=

FO
φ. The satisfaction set [[φ]] of a formula φ ∈ LFO is defined, as usual, by

[[φ]] = {s ∈ U | s |=
FO

φ}.

Epistemic Models. We model agents’ knowledge of the program state with a
possible worlds semantics built on the observability of program variables [19].
We define, for each a in Ag, the binary relation ≈a on U by: s ≈a s′ if and only
if s and s′ agree on the part of their domains that is observable by a, i.e.,

s ≈a s′ iff dom(s) ∩ oa = dom(s′) ∩ oa and
∧

x∈(dom(s)∩oa)
(s(x) = s′(x)).

One can show that ≈a is an equivalence relation on U . Each subset W of U
defines a possible worlds model (W, {≈a|W }a∈Ag), such that the states of W are
the possible worlds and for each a ∈ Ag the indistinguishability relation is the
restriction of ≈a on W . We shall use the set W ⊆ U to refer to an epistemic
model, omitting the family of equivalence relations {≈a|W }a∈Ag.

Truth of an Lm
DK Formula. We give the semantics of an Lm

DK formula at a
pointed model (W, s), which consist of an epistemic model W and a state s ∈ W .

Definition 4. Let W be an epistemic model, s ∈ W a state, α a formula in
Lm
DK such that FV (α) ⊆ dom(W ). The truth of an epistemic formula α at the

pointed model (W, s) is defined recursively on the structure of α as follows:

(W, s) |= π iff s |=
QF

π

(W, s) |= ¬α iff (W, s) �|= α

(W, s) |= α ∧ α′ iff (W, s) |= α and (W, s) |= α′

(W, s) |= Kaα iff for all s′ ∈ W, s′ ≈a s implies (W, s′) |= α

(W, s) |= [β]α iff (W, s) |= β implies (W|β , s) |= α

(W, s) |= �P α iff for all s′ ∈ RW (P, s), (R∗
W (P,W ), s′) |= α

(W, s) |= ∀xG · α iff for all c ∈ D, (
⋃

d∈D{s′[xG �→ d] | s′ ∈ W}, s[xG �→ c]) |= α

where xG �∈ dom(W ), W|β is the submodel of W that consists of the states in
which β is true, i.e., W|β = {s ∈ W | (W, s) |= β} [6].

This definition extends from a pointed model (W, s) to the entire epistemic
model W as follows: W |= α iff for any s in W , (W, s) |= α.

Our interpretation of logical connectors, epistemic formulas, and the public
announcement formulas are all standard [6,13].

For universal quantification, the epistemic context W is augmented by allow-
ing xG to be any possible value in the domain. When interpreting ∀xG · Kaα′

where a ∈ G, we have s ≈a s′ iff s[xG �→ c] ≈a s′[xG �→ c]. However, if a �∈ G,
then s[xG �→ c] ≈a s′[xG �→ d] for any d ∈ D and for any s′ ≈a s.

In our interpretation of �P α, the context W is also updated by the relation
RW , by taking the post-image of W by RW

1. The truth of α is interpreted at a
1 The post-image of a function f is denoted by f∗, i.e., f∗(E) =

⋃{f(x)|x ∈ E}.



Program Semantics and Verification Technique for AI-Centred Programs 479

post-state s′ under the new context. We use the function RW (P, ·) : U → P(U)
to model the program P . We give the function RW (P, ·) concretely for each
command P , after we define the programming language PL in the next section.

Remark 1. The index W in RW (P, ·) is a set of states in U . As in classical
relational semantics, RW (P, s) gives the set of states resulting from executing P
at a state s. However, we need the index W to represent the epistemic context
in which P is executed. Before executing P , an agent may not know that the
actual initial state is s, it only knows about the initial state only as far as it can
see from its observable variables. The context W contains any state that some
agent may consider as the possible initial state.

3 Programming Language PL
Now, we formalise the language for programs inside a program-operator �P of
the logic that we introduced in the previous section.

3.1 Syntax of PL
We use the notations from the previous section: a, b, c, ... to denote agents, Ag to
denote their whole set, G for a subset therein, etc. We assume that a non-empty
subset PVar of Var consists of program variables.

Definition 5. The programming language PL is defined in BNF as follows:

P :: = ϕ? | xG := e | new kG · P | P ;Q | P � Q

where xG ∈ Var, e is a term over LQF , ϕ ∈ Lm
K , and any variable in P that is

not bound by new is in PVar.

The test ϕ? is an assumption-like test, i.e., it blocks the program when ϕ is
refuted and let the program continue when ϕ holds; xG := e is a variable assign-
ment as usual. The command new kG · P declares a new variable kG observable
by agents in G before executing P . The operator P ;Q is the sequential composi-
tion of P and Q. Lastly, P �Q is the nondeterministic choice between P and Q.

Commands such as skip and conditional tests can be defined with PL, e.g.,
if ϕ then P else Q

def= (ϕ?; P ) � (¬ϕ?; Q).

3.2 Relational Semantics of PL
Now, we give the semantics of programs in PL. We refer to as classical program
semantics, the modelling of a program as an input-output functionality, with-
out managing what agents can learn during an execution. In classical program
semantics, a program P is associated with a relation RP = U ×U , or equivalently
a function R(P, ·) : U → P(U), such that R(P, ·) maps an initial state s to a set
of possible final states.



480 F. Rajaona et al.

As per Remark 1, we define the relational semantics of an epistemic program
P ∈ PL at a state s for a given context W , with s ∈ W . The context W ⊆ U
contains states that some agents may consider as a possible alternative to s.

Definition 6 (Relational semantics of PL on states). Let W be a set of
states. The relational semantics of a program P given the context W , is a func-
tion RW (P, ·) : U → P(U) defined inductively on the structure of P by

RW (P � Q, s) = {s′[cAg �→ l] | s′ ∈ RW (P, s)}
∪ {s′[cAg �→ r] | s′ ∈ RW (Q, s)}

RW (P ;Q, s) =
⋃

s′∈RW (P,s){RR∗
W (P,W )(Q, s′)}

RW (xG := e, s) = {s[kG �→ s(xG), xG �→ s(e)]}
RW (new kG · P, s) = R∗

W (P, {s[kG �→ d] | d ∈ D})
RW (β?, s) = if (W, s) |= β then {s} else ∅

where kG is not in dom(s), and cAg is not in the domain of any state s′ in
RW (P, s) ∪ RW (Q, s).

We model nondeterministic choice P �Q as a disjoint union [7], which is achieved
by augmenting every updated state with a new variable cAg, and assigning it a
value l (for left) for every state in RW (P, s), and a value r (for right) for every
state in RW (Q, s). The semantics for sequential composition is standard. The
semantics of the assignment xG := e stores the past value of xG into a new
variable kG, and updates the value of xG into expression e. With this semantics,
an agent always remembers the past values of a variable that it observes, i.e., it
has perfect recall. The semantics of new kG · P adds the new variable kG to the
domain of s, then combines the images by RW (P, ·) of all states s[kG �→ d] for d
in D. A test is modelled as an assumption, i.e., a failed test blocks the program.

In the epistemic context, we can also view a program as transforming epis-
temic models, rather than states. This view is modelled with the following alter-
native relational semantics for PL.

Definition 7 (Relational semantics of PL on epistemic models). The
relational semantics on epistemic models of a program P is a function F (P, ·) :
P(U) → P(U) given by

F (P � Q,W ) = {s[cAg �→ l] | s ∈ F (P,W )}
∪ {s[cAg �→ r] | s ∈ F (Q,W )}

F (P ;Q,W ) = F (Q,F (P,W ))
F (xG := e,W ) = {s[kG �→ s(xG), xG �→ s(e)] | s ∈ W}
F (new kG · P,W ) = F (P,

⋃
d∈D W [kG �→ d])

F (β?,W ) = {s ∈ W | (W, s) |= β}

such that kG and cAg are variables not in dom(s).



Program Semantics and Verification Technique for AI-Centred Programs 481

We assume that every additional cAg, in the semantics of P �Q, is observable
by all agents. The value of cAg allows every agent to distinguish a state resulting
from P from a state resulting from Q. The resulting union is a disjoint-union of
epistemic models [7].

The two relational semantics (Definition 6 and Definition 7) are equivalent
(see Appendix A in [4]). However, we use both to simplify the presentation. On
one hand, the relation on states given by RW (P, ·) is more standard for defining a
dynamic formula �P α (e.g., [19]). On the other hand, F (P, ·) models a program
as transforming states of knowledge (epistemic models) rather than only physical
states. Moreover, F (P, ·) relates directly with our weakest precondition predicate
transformer semantics, which we present next.

3.3 Weakest Precondition Semantics of PL
We now give another semantics for our programs, by lifting the Dijkstra’s clas-
sical weakest precondition predicate transformer2 [11] to epistemic predicates.
Notation. α[x\t] substitutes x by the term t in α.

Definition 8. We define the weakest precondition of a program P as the epis-
temic predicate transformer wp(P, ·) : Lm

K → Lm
K with

wp(P ;Q,α) = wp(P,wp(Q,α))
wp(P � Q,α) = wp(P, α) ∧ wp(Q,α)
wp(new kG · P, α) = ∀kG · wp(P, α)
wp(β?, α) = [β]α
wp(xG := e, α) = ∀kG · [kG = e](α[xG\kG])

for α ∈ Lm
K such that FV (α) ⊆ PVar.

The definitions of wp for nondeterministic choice and sequential composition
are similar to their classical versions in the literature, and follows the original
definitions in [11]. A similar definition of wp for a new variable declaration is
also found in [30]. However, our wp semantics for assignment and for test differs
from their classical counterparts. The classical wp for assignment (substitution),
and the classical wp of tests (implication) are inconsistent in the epistemic con-
text when agents have perfect recall [31,35]. Our wp semantics for test follows
from the observation that an assumption-test for a program executed publicly
corresponds to a public announcement. Similarly, our semantics of assignment
involves a public announcement of the assignment being made.

3.4 Equivalence Between the Two Program Semantics

Now, we show that our weakest precondition semantics and our relational seman-
tics are equivalent. For that, we need the following lemma.
2 The weakest precondition wp(P, φ) is a predicate such that: for any precondition ψ

from which the program P terminates and establishes φ, ψ implies wp(P, φ).



482 F. Rajaona et al.

Lemma 1. Consider an epistemic model W , variables xG and kG such that kG

is not in the domain of any state in W . Let WxG\kG
be the model that renames

xG into kG in the states of W , then

W |= α iff WxG\kG
|= α[xG\kG].

The following equivalence shows that our weakest precondition semantics is
sound with respect to the program relational model.

Proposition 1. For every program P and every formula α ∈ Lm
DK ,

F (P,W ) |= α iff W |= wp(P, α).

A detailed proof can be found in Appendix B of the extended version of our
paper [4]. Below, we sketch the proofs for the cases of nondeterministic choice
and assignment.

The equivalence for the case of nondeterministic choice follows from the fact
that disjoint union preserves the truth of epistemic formulas (Prop 2.3 in [7]). A
formula that is true at both F (P,W ) and F (Q,W ), remains true at F (P �Q,W ).
This allows us to have a standard conjunctive weakest precondition epistemic
predicate transformer, i.e., wp(P � Q,α) = wp(P, α) ∧ wp(Q,α).

We now explain the equivalence for assignment, i.e., how the bookkeeping of
variables in our relational semantics of Definition 7 equates to wp(xG := e, α) =
∀kG · [kG = e](α[xG\kG]). Recall that F (xG := e,W ) renames xG into kG in
W , then makes a new variable xG that takes the value e. This translates to
the equality F (xG := e,W ) = F (new xG · (xG = exG\kG

)?,WxG\kG
). In the

right-hand side of this equality, xG is re-introduced as a new variable, W is
expanded, by a Cartesian product, into

⋃
d∈D W [xG �→ d] (Definition 7), then

restricted to satisfy xG = exG\kG
. This restriction corresponds to the semantics of

making the assumption test (or public announcement) (xG = exG\kG
)?. Finally,

F (new xG ·(xG = exG\kG
)?,WxG\kG

) can be directly to the weakest precondition
for assignment via Lemma 1.

The equivalence in Proposition 1 serves us in proving that the translation of
an Lm

DK formula into a first-order formula, which we present next, is sound with
respect to the program relational models.

4 Translating Lm
DK to LFO

Our model checking approach relies on the truth-preserving translation between
Lm
DK formulas and first-order formulas. We use the following translation function.

Definition 9 (Translation of Lm
DK into LFO). Let π ∈ LQF and α ∈ Lm

DK ,
a be an agent. Let n = na ∩ (FV (α) ∪ FV (φ)) be the set of free variables in π
and α that are non-observable by a, and ◦ be an operator in {∧,∨}. We define
the translation τ : LFO × Lm

DK → LFO as follows:



Program Semantics and Verification Technique for AI-Centred Programs 483

τ(φ, π) = π τ(φ,Kaα) = ∀n · (φ → τ(φ, α))
τ(φ,¬α) = ¬τ(φ, α) τ(φ, [β]α) = τ(φ, β) → τ(φ ∧ τ(φ, β), α)

τ(φ, α1 ◦ α2) = τ(φ, α1) ◦ τ(φ, α2) τ(φ,�P α) = τ(φ,wp(P, α))
τ(φ,∀xG · α) = ∀xG · τ(φ, α).

We use the above translation to express the equivalence between the satis-
faction of a Lm

K -formula and that of its first-order translation.

Proposition 2. For every φ in LFO, s in [[φ]], α in Lm
K such that FV (φ) ∪

FV (α) ⊆ PVar, we have that

([[φ]], s) |= α iff s |=
FO

τ(φ, α).

Proof. The proof for the base epistemic logic without public announcement LK

(π,¬,∧,Ka) is found in [19].
Case of public announcement [β]α

([[φ]], s) |= [β]α
≡ if ([[φ]], s) |= β then ([[φ]]|β , s) |= α truth of [β]α

≡ if s |=
FO

τ(φ, β) then ([[φ]]|β , s) |= α induction hypothesis on β

≡ if s |=
FO

τ(φ, β) then ({s′ ∈ U|s′ |=
FO

φ and ([[φ]], s′) |= β}, s) |= α
by definition of [[·]] and definition of |β

≡ if s |=
FO

τ(φ, β) then ({s′ ∈ U|s′ |=
FO

φ and s′ |=
FO

τ(φ, β)}, s) |= α
induction hypothesis on β

≡ if s |=
FO

τ(φ, β) then ({s′ ∈ U|s′ |=
FO

φ ∧ τ(φ, β)}, s) |= α truth of ∧
≡ if s |=

FO
τ(φ, β) then ([[φ ∧ τ(φ, β)]], s) |= α def of [[·]]

≡ if s |=
FO

τ(φ, β) then s |=
FO

τ(φ ∧ τ(φ, β), α) induction hypothesis

≡ if s |=
FO

τ(φ, β) → τ(φ ∧ τ(φ, β), α) truth of →. ��

Now, we can state our main theorem relating the validity of an Lm
DK formula,

and that of its first-order translation.

Theorem 1 (Main result). Let φ ∈ LFO, and α ∈ Lm
DK , such that FV (φ) ∪

FV (α) ⊆ PVar, then

[[φ]] |= α iff [[φ]] |=
FO

τ(φ, α).

Proof. The proof is done by induction on α. The case where α ∈ Lm
K follows

directly from Proposition 2.
We are left to prove the case of the program operator �P α. Without loss of

generality, we can assume that α is program-operator-free, i.e., α ∈ Lm
K . Indeed,

one can show that �P (�Qα′) is equivalent to �P ;Qα′. We have



484 F. Rajaona et al.

[[φ]] |= �P α

≡ iff for all s in [[φ]], ([[φ]], s) |= �P α by definition of |= for a model

≡ iff for all s in [[φ]], for all s′ in R[[φ]](P, s), (F (P, [[φ]]), s′) |= α |= for �P

≡ iff for all s′ in R∗
[[φ]](P, [[φ]]), (F (P, [[φ]]), s′) |= α post-image

≡ iff for all s′ in F (P, [[φ]]), (F (P, [[φ]]), s′) |= α F (P, W ) = R∗
W (P, W )

≡ F (P, [[φ]]) |= α by definition of |= for a model

≡ [[φ]] |= wp(P, α) by Proposition 1

≡ [[φ]] |=
FO

τ(wp(P, α)) since wp(P, α) ∈ Lm
K , the previous case applies. ��

5 Implementation

Our automated verification framework supports proving/falsifying a logical con-
sequence φ |= α for α in Lm

DK and φ in LFO. By Theorem 1, the problem becomes
the unsatisfiability/satisfiability of first-order formula φ∧¬τ(φ, α), which is even-
tually fed to an SMT solver.

In some cases, notably our second case study, the Cheryl’s Birthday puzzle,
computing the translation τ(φ, α) by hand is tedious and error-prone. For such
cases, we implemented a Lm

DK -to-LFO translator to automate the translation.

5.1 Mechanisation of Our Lm
DK -to-FO Translation

Our translator implements Definition 9 of our translation τ . It is implemented
in Haskell, and it is generic, i.e., works for any given example3. The resulting
first-order formula is exported as a string parsable by an external SMT solver
API (e.g., Z3py and CVC5.pythonic which we use).

Our Haskell translator and the implementation of our case studies are at
https://github.com/sfrajaona/program-epistemic-model-checker.

5.2 Case Study 1: Dining Cryptographers’ Protocol [9]

Problem Description. This system is described by n cryptographers dining
round a table. One cryptographer may have paid for the dinner, or their employer
may have done so. They execute a protocol to reveal whether one of the cryp-
tographers paid, but without revealing which one. Each pair of cryptographers
sitting next to each other have an unbiased coin, which can be observed only
by that pair. Each pair tosses its coin. Each cryptographer announces the result
of XORing three Booleans: the two coins they see and the fact of them having
paid for the dinner. The XOR of all announcements is provably equal to the
disjunction of whether any agent paid.

Encoding in Lm
DK & Mechanisation. We consider the domain B = {T, F}

and the program variables PVar = {xAg} ∪ {pi, c{i,i+1} | 0 ≤ i < n} where x is

3 Inputs are Haskell files.

https://github.com/sfrajaona/program-epistemic-model-checker


Program Semantics and Verification Technique for AI-Centred Programs 485

the XOR of announcements; pi encodes whether agent i has paid; and, c{i,i+1}
encodes the coin shared between agents i and i+1. The observable variables for
agent i ∈ Ag are oi = {xAg, pi, c{i−1,i}, c{i,i+1}}4, and ni = PVar \ oi.

We denote φ the constraint that at most one agent has paid, and e the XOR
of all announcements, i.e.

φ =
∧n−1

i=0

(
pi ⇒ ∧n−1

j=0,j �=i ¬pj

)
e =

⊕n−1
i=0 pi ⊕ c{i−1,i} ⊕ c{i,i+1}.

The Dining Cryptographers’ protocol is modelled by the program ρ = xAg := e.

Experiments & Results. We report on checking the validity for:

β1 = �ρ

(
(¬p0) ⇒

(
K0

(∧n−1
i=1 ¬pi

)
∨ ∧n−1

i=1 ¬K0pi

))
β3 = �ρ(K0p1)

β2 = �ρ

(
K0

(
x ⇔ ∨n−1

i=0 pi

))
γ = K0

(
�ρ

(
x ⇔ ∨n−1

i=0 pi

))
.

The formula β1 states that after the program execution, if cryptographer 0 has
not paid then she knows that no cryptographer paid, or (in case a cryptographer
paid) she does not know which one. The formula β2 reads that after the program
execution, cryptographer 0 knows that xAg is true iff one of the cryptographers
paid. The formula β3 reads that after the program execution, cryptographer 0
knows that cryptographer 1 has paid, which is expected to be false. Formula γ
states cryptographer 0 knows that, at the end of the program execution, xAg is
true iff one of the cryptographers paid.

Formulas β1, β2, and β3 were checked in [19] as well. Importantly, formula γ
cannot be expressed or checked by the framework in [19]. We compare the perfor-
mance of our translation on this case-study with that of [19]. To fairly compare,
we reimplemented faithfully the SP-based translation in the same environment
as ours. We tested our translation (denoted τwp) and the reimplementation of
the translation in [19] (denoted τSP ) on the same machine.

Note that the performance we got for τSP differs from what is reported in [19].
This is especially the case for the most complicated formula β1. This may be
due to the machine specifications, or because we used binary versions of Z3 and
CVC5, rather than building them from source, like in [19].

The results of the experiments, using the Z3 solver, are shown in Table 1. CVC5
was less performant than Z3 for this example, as shown (only) for β2. Generally,
the difference in performance between the two translations were small. The SP -
based translation slightly outperforms our translation for β2 and β3, but only for
some cases. Our translation outperforms the SP -based translation for β1 in these
experiments. Again, we note that the performance of the SP -based translation
reported here is different from the performance reported in [19]. Experiments
that took more than 600 s were timed out

4 When we write {i, i+1} and {i−1, i}, we mean {i, i+1 mod n} and {i−1 mod n, i}.



486 F. Rajaona et al.

Table 1. Performance of our wp-based translation vs. our reimplementation of the [19]
SP-based translation for the Dining Cryptographers. Formula γ is not supported by
the SP-based translation in [19].

n Formula β1 Formula β2 Formula β3 Formula γ

τwp+Z3 τSP+Z3 τwp+CVC5 τwp+Z3 τSP+Z3 τwp+Z3 τSP+Z3 τwp+Z3 τSP+Z3

10 0.05 s 4.86 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s N/A

50 31 s t.o. 0.41 s 0.05 s 0.06 s 0.03 s 0.02 s 0.03 s N/A

100 t.o. t.o. 3.59 s 0.15 s 0.16 s 0.07 s 0.06 s 0.07 s N/A

200 t.o. t.o. 41.90 s 1.27 s 0.71 s 0.30 s 0.20 s 0.30 s N/A

5.3 Case Study 2: Cheryl’s Birthday Puzzle [14]

This case study involves the nesting of knowledge operators K of different agents.

Problem Description. Albert and Bernard just became friends with Cheryl,
and they want to know when her birthday is. Cheryl gives them a list of 10
possible dates: May 15, May 16, May 19, June 17, June 18, July 14, July 16,
August 14, August 15, August 17. Then, Cheryl whispers in Albert’s ear the
month and only the month of her birthday. To Bernard, she whispers the day
only. “Can you figure it out now?”, she asks Albert. The next dialogue follows:

– Albert: I don’t know when it is, but I know Bernard doesn’t know either.
– Bernard: I didn’t know originally, but now I do.
– Albert: Well, now I know too!

When is Cheryl’s birthday?

Encoding and Mechanisation. To solve this puzzle, we consider two agents
a (Albert) and b (Bernard) and two integer program variables PVar = {ma, db}.
Then, we constrain the initial states to satisfy the conjunction of all possible
dates announced by Cheryl, i.e., the formula φ below:

φ(ma, db) = (ma = 5 ∧ db = 15) ∨ (ma = 5 ∧ db = 16) ∨ · · · .

The puzzle is modelled via public announcements, with the added assumption
that participants tell the truth. However, modelling a satisfiability problem with
the public announcement operator [β]α would return states where β cannot
be truthfully announced. Indeed, if β is false at s, (i.e., (φ, s) |= ¬β), then the
announcement [β]α is true. For that, we use the dual of the public announcement
operator denoted 〈·〉5. We use the translation to first-order formula:

τ(φ, 〈β〉α) = τ(φ, β) ∧ τ(φ ∧ τ(φ, β), α).

5 The formula 〈β〉α reads “after some announcement of β, α is the case”, i.e., β can
be truthfully announced and its announcement makes α true. Formally, (W, s) |=
〈β〉α iff (W, s) |= β and (W|β , s) |= α.



Program Semantics and Verification Technique for AI-Centred Programs 487

In both its definition and our translation to first-order, 〈·〉 uses a conjunction
where [·] uses an implication.

We denote the statement “agent a knows the value of x” by the formula Kvax
which is common in the literature. We define it with our logic Lm

DK making use
of existential quantification: Kvax = ∃va · Ka(va = x).

Now, to model the communication between Albert and Bernard, let αa be
Albert’s first announcement, i.e., αa = ¬Kva(db) ∧ Ka(¬Kvb(ma)). Then, the
succession of announcements by the two participants corresponds to the formula

α = 〈(¬Kvb(ma) ∧ 〈αa〉Kvb(ma))?〉Kvadb.

Cheryl’s birthday is the state s that satisfies (φ, s) |= α.

Experiments and Results. We computed τ(φ, α) in 0.10 s. The SMT solvers
Z3 and CVC5 returned the solution to the puzzle when fed with τ(φ, α). CVC5
solved it, in 0.60 s, which is twice better than Z3 (1.28 s).

All the experiments were run on a 6-core 2.6 GHz Intel Core i7 MacBook Pro
with 16 GB of RAM running OS X 11.6. For Haskell, we used GHC 8.8.4. The
SMT solvers were Z3 version 4.8.17 and CVC5 version 1.0.0.

6 Related Work

SMT-Based Verification of Epistemic Properties of Programs. We start
with the work of Gorogiannis et al. [19] which is the closest to ours. We already
compared with this in the introduction, for instance explaining therein exactly
how our logic is much more expressive than theirs. Now, we cover other points.

Program Models. The program models in [19] follow a classical program
semantics (e.g., modelling nondeterministic choice as union, overwriting a vari-
able in reassignment). This has been shown [31,35] to correspond to systems
where agents have no memory, and cannot see how nondeterministic choices are
resolved. Our program models assume perfect recall, and that agents can see
how nondeterministic choices are resolved.

Program Expressiveness. Gorogiannis et al. [19] have results of approxima-
tions for programs with loops, although there were no use cases of that. Here we
focused on a loop-free programming language, but we believe our approach can
be extended similarly. The main advantage of our programs is the support for
tests on knowledge which allows us to model public communication of knowledge.

Mechanisation & Efficiency. We implemented the translation which include
an automated computation of weakest preconditions (and strongest postcondi-
tions as well). The implementation in [19] requires the strongest postcondition be
computed manually. Like [19], we test for the satisfiability of the resulting first-
order formula with Z3. The performance is generally similar, although sometimes
it depends on the form of the formulas (see Table 1).

Verification of Information Flow with Program Algebra. Verifying epis-
temic properties of programs with program algebra was done in [29,31,35].



488 F. Rajaona et al.

Instead of using a dynamic logic, they reason about epistemic properties of
programs with an ignorance-preserving refinement. Like here, their notion of
knowledge is based on observability of arbitrary domain program variables. The
work in [35] also consider a multi-agent logics and nested K operators and their
program also allows for knowledge tests. Finally, our model for epistemic pro-
grams can be seen as inspired by [35]. That said, all these works have no relation
with first-order satisfaction nor translations of validity of program-epistemic log-
ics to that, nor their implementation.

Dynamic Epistemic Logics Dynamic epistemic logic (DEL, [2,13,33]) is a
family of logics that extend epistemic logic with dynamic operators.

Logics’ Expressivity. On the one hand, DEL logics are mostly propositional,
and their extensions with assignment only considered propositional assignment
(e.g., [12]); contrarily, we support assignment on variables on arbitrary domains.
Also, we have a denotational semantics of programs (via weakest preconditions),
whereas DEL operates on more abstract semantics. On the other hand, action
models in DEL can describe complex private communications that cannot be
encoded with our current programming language.

Verification. Current DEL model checkers include DEMO [15] and SMCDEL [5].
We are not aware of the verification of DEL fragments being reduced to satisfia-
bility problems. In this space, an online report [36] discusses –at some high level–
the translation SMCDEL knowledge structures into QBF and the use of YICES.

A line of research in DEL, the so called semi-public environments, also builds
agents’ indistinguishability relations from the observability of propositional vari-
ables [8,21,37]. The work of Grossi [20] explores the interaction between knowl-
edge dynamics and non-deterministic choice/sequential composition. They note
that PDLs assumes memory-less agents and totally private nondeterministic
choice, whilst DELs’ epistemic actions assume agents with perfect recall and
publicly made nondeterministic choice. This is the same duality that we observed
earlier between the program epistemic logic in [19] and ours.

Other Works. Gorogiannis et al. [19] discussed more tenuously related work,
such as on general verification of temporal-epistemic properties of systems which
are not programs in tools like MCMAS [28], MCK [18], VERICS [26], or one line
of epistemic verification of models specifically of JAVA programs [1]. [19] also
discussed some incomplete method of SMT-based epistemic model checking [10],
or even bounded model checking techniques, e.g., [25]. All of those are loosely
related to us too, but there is little reason to reiterate.

7 Conclusions

We advanced a multi-agent epistemic logic for programs Lm
DK , in which each

agent has visibility over some program variables but not others. This logic allows
to reason on agents’ knowledge of a program after its run, as well as before its
execution. Assuming agents’ perfect recall, we provided a weakest-precondition
epistemic predicate transformer semantics that is sound with respect to its rela-
tional counterpart. Leveraging the natural correspondence between the weakest



Program Semantics and Verification Technique for AI-Centred Programs 489

precondition wp(P, α) and the dynamic formula �P α, we were able to give a
sound reduction of the validity of Lm

DK formulas to first-order satisfaction.
Based on this reduction an Lm

DK formula into a first-order, we implemented a
tool that fully mechanise the verification, calling an SMT solver for the final deci-
sion procedure. Our method is inspired from [19], but applies to a significantly
larger class of program-epistemic formulas in the multi-agent setting.

The multi-agent nature of the logic, the expressiveness of it with respect to
knowledge evaluation before and after program execution, as well as a complete
verification method for this are all novelties in the field. In future work, we will
look at a meet-in-the-middle between the memoryless semantics in [19] and the
memoryful semantics here, and methods of verifying logics like Lm

DK but with
such less “absolutist” semantics.

Acknowledgments. S. Rajaona and I. Boureanu were partly supported by the
EPSRC project “AutoPaSS”, EP/S024565/1.

References

1. Balliu, M., Dam, M., Guernic, G.L.: ENCoVer: symbolic exploration for informa-
tion flow security. In: 25th IEEE Computer Security Foundations Symposium (CSF
2012), pp. 30–44. IEEE Computer Society (2012). https://doi.org/10.1109/CSF.
2012.24

2. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of the 7th Conference on The-
oretical Aspects of Rationality and Knowledge (TARK 1998), pp. 43–56. Morgan
Kaufmann Publishers Inc. (1998). https://doi.org/10.1007/978-3-319-20451-2 38

3. Barfuss, W., Mann, R.P.: Modeling the effects of environmental and percep-
tual uncertainty using deterministic reinforcement learning dynamics with par-
tial observability. Phys. Rev. E 105, 034409 (2022). https://doi.org/10.1103/
PhysRevE.105.034409

4. Belardinelli, F., Boureanu, I., Malvone, V., Rajaona, S.F.: Program semantics and
a verification technique for knowledge-based multi-agent systems. arXiv preprint
arXiv:2206.13841 (2022)

5. van Benthem, J., van Eijck, J., Gattinger, M., Su, K.: Symbolic model checking for
dynamic epistemic logic. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.)
LORI 2015. LNCS, vol. 9394, pp. 366–378. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48561-3 30

6. Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic. Elsevier,
Oxford (2006)

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001)

8. Charrier, T., Herzig, A., Lorini, E., Maffre, F., Schwarzentruber, F.: Building epis-
temic logic from observations and public announcements. In: Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fifteenth International
Conference (KR 2016), pp. 268–277. AAAI Press (2016)

9. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988). https://doi.org/10.1007/BF00206326

https://doi.org/10.1109/CSF.2012.24
https://doi.org/10.1109/CSF.2012.24
https://doi.org/10.1007/978-3-319-20451-2_38
https://doi.org/10.1103/PhysRevE.105.034409
https://doi.org/10.1103/PhysRevE.105.034409
http://arxiv.org/abs/2206.13841
https://doi.org/10.1007/978-3-662-48561-3_30
https://doi.org/10.1007/978-3-662-48561-3_30
https://doi.org/10.1007/BF00206326


490 F. Rajaona et al.

10. Cimatti, A., Gario, M., Tonetta, S.: A lazy approach to temporal epistemic
logic model checking. In: Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems (AAMAS-38), pp. 1218–1226. IFAA-
MAS (2016)

11. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

12. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic epistemic logic
with assignment. In: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), pp. 141–148.
Association for Computing Machinery (2005). https://doi.org/10.1145/1082473.
1082495

13. van Ditmarsch, H.P., Hoek, W.V.D., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library, Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

14. van Ditmarsch, H., Hartley, M.I., Kooi, B., Welton, J., Yeo, J.B.: Cheryl’s birthday.
Electron. Proc. Theor. Comput. Sci. 251, 1–9 (2017). https://doi.org/10.4204/
eptcs.251.1

15. van Eijck, J.: A demo of epistemic modelling. In: Interactive Logic: Selected Papers
from the 7th Augustus de Morgan Workshop, p. 303 (2007)

16. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs. In:
Symposium on Principles of Distributed Computing, pp. 153–163. ACM (1995).
https://doi.org/10.1145/224964.224982

17. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

18. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 41

19. Gorogiannis, N., Raimondi, F., Boureanu, I.: A novel symbolic approach to verify-
ing epistemic properties of programs. In: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 206–212 (2017).
https://doi.org/10.24963/ijcai.2017/30

20. Grossi, D., Herzig, A., van der Hoek, W., Moyzes, C.: Non-determinism and the
dynamics of knowledge. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (2017). https://doi.org/10.24963/ijcai.2017/
146

21. Grossi, D., van der Hoek, W., Moyzes, C., Wooldridge, M.: Program models and
semi-public environments. J. Log. Comput. 29(7), 1071–1097 (2016). https://doi.
org/10.1093/logcom/exv086

22. Harel, D.: Dynamic Logic, pp. 497–604. Springer, Dordrecht (1984). https://doi.
org/10.1007/978-94-009-6259-0 10

23. Hintikka, J.: Knowledge and Belief. Cornell University Press, NY (1962)
24. Jena, M.D., Singhar, S.S., Mohanta, B.K., Ramasubbareddy, S.: Ensuring data

privacy using machine learning for responsible data science. In: Satapathy, S.C.,
Zhang, Y.-D., Bhateja, V., Majhi, R. (eds.) Intelligent Data Engineering and Ana-
lytics. AISC, vol. 1177, pp. 507–514. Springer, Singapore (2021). https://doi.org/
10.1007/978-981-15-5679-1 49

25. Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F.,
Szreter, M.: Comparing BDD and SAT based techniques for model checking
Chaum’s dining cryptographers protocol. Fund. Inform. 72(1–3), 215–234 (2006)

26. Kacprzak, M., et al.: VerICS 2007 - a model checker for knowledge and real-time.
Fund. Inform. 85(1–4), 313–328 (2008)

https://doi.org/10.1145/1082473.1082495
https://doi.org/10.1145/1082473.1082495
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.4204/eptcs.251.1
https://doi.org/10.4204/eptcs.251.1
https://doi.org/10.1145/224964.224982
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.24963/ijcai.2017/30
https://doi.org/10.24963/ijcai.2017/146
https://doi.org/10.24963/ijcai.2017/146
https://doi.org/10.1093/logcom/exv086
https://doi.org/10.1093/logcom/exv086
https://doi.org/10.1007/978-94-009-6259-0_10
https://doi.org/10.1007/978-94-009-6259-0_10
https://doi.org/10.1007/978-981-15-5679-1_49
https://doi.org/10.1007/978-981-15-5679-1_49


Program Semantics and Verification Technique for AI-Centred Programs 491

27. Lehman, D.: Knowledge, common knowledge, and related puzzles. In: Proceedings
of the Third Annual ACM Symposium on Principles of Distributed Computing,
pp. 62–67. ACM (1984). https://doi.org/10.1145/800222.806736

28. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2015). https://doi.org/10.1007/s10009-015-0378-x

29. McIver, A.K.: The secret art of computer programming. In: Leucker, M., Morgan,
C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 61–78. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03466-4 3

30. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall, Hoboken
(1994)

31. Morgan, C.: The Shadow Knows: refinement of ignorance in sequential programs.
In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359–378. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11783596 21

32. Parikh, R., Ramanujam, R.: Distributed processes and the logic of knowledge. In:
Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 256–268. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-15648-8 21

33. Plaza, J.A.: Logics of public communications. In: Proceedings of the 4th Interna-
tional Symposium on Methodologies for Intelligent Systems (1989)

34. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Annual Sym-
posium on Foundations of Computer Science, pp. 109–121. IEEE (1976). https://
doi.org/10.1109/SFCS.1976.27

35. Rajaona, S.F.: An algebraic framework for reasoning about privacy. Ph.D. the-
sis, University of Stellenbosch, Stellenbosch (2016). http://hdl.handle.net/10019.
1/106607

36. Wang, S.: Dynamic epistemic model checking with Yices (2016). https://github.
com/airobert/DEL/blob/master/report.pdf. Accessed 28 June 2022

37. Wooldridge, M., Lomuscio, A.: A computationally grounded logic of visibility, per-
ception, and knowledge. Log. J. IGPL 9(2), 257–272 (2001). https://doi.org/10.
1093/jigpal/9.2.257

https://doi.org/10.1145/800222.806736
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/978-3-642-03466-4_3
https://doi.org/10.1007/11783596_21
https://doi.org/10.1007/3-540-15648-8_21
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
http://hdl.handle.net/10019.1/106607
http://hdl.handle.net/10019.1/106607
https://github.com/airobert/DEL/blob/master/report.pdf
https://github.com/airobert/DEL/blob/master/report.pdf
https://doi.org/10.1093/jigpal/9.2.257
https://doi.org/10.1093/jigpal/9.2.257


Safety and Reliability



Tableaux for Realizability of Safety
Specifications

Montserrat Hermo1 , Paqui Lucio1 , and César Sánchez2(B)

1 University of the Basque Country, San Sebastián, Spain
2 IMDEA Software Institute, Madrid, Spain

cesar.sanchez@imdea.org

Abstract. We introduce a tableau decision method for deciding real-
izability of specifications expressed in a safety fragment of LTL that
includes bounded future temporal operators. Tableau decision proce-
dures for temporal and modal logics have been thoroughly studied for
satisfiability and for translating temporal formulae into equivalent Büchi
automata, and also for model checking, where a specification and system
are provided. However, to the best of our knowledge no tableau method
has been studied for the reactive synthesis problem.

Reactive synthesis starts from a specification where propositional vari-
ables are split into those controlled by the environment and those con-
trolled by the system, and consists on automatically producing a system
that guarantees the specification for all environments. Realizability is the
decision problem of whether there is one such system.

In this paper, we present a method to decide realizability of safety
specifications, from which we can also extract (i.e., synthesize) a cor-
rect system (in case the specification is realizable). The main novelty
of a tableau method is that it can be easily extended to handle richer
domains (integers, etc.) and bounds in the temporal operators in ways
that automata approaches for synthesis cannot.

1 Introduction

Linear Temporal Logic (LTL) [27] is modal logic for expressing correctness prop-
erties of reactive systems. Verification is the problem of deciding, given a sys-
tem S and an LTL specification ϕ, whether S models ϕ. Reactive synthesis, first
studied by Pnueli and Rosner in 1989 [28,29], is the problem of automatically
producing S from ϕ with the guarantee that S models ϕ. In the reactive syn-
thesis problem, the atomic variables are split into those variables controlled by
the environment and the rest, controlled by the system.

This work was funded in part by the European Union (ERDF funds) under grant
PID2020-112581GB-C22, European COST Action CA20111 EuroProofNet (European
Research Network on Formal Proofs), by the University of the Basque Country
under project LoRea GIU21/044, by the Madrid Regional Government under project
S2018/TCS-4339 (BLOQUES-CM) and by a research grant from Nomadic Labs and
the Tezos Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 495–513, 2023.
https://doi.org/10.1007/978-3-031-27481-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_28&domain=pdf
http://orcid.org/0000-0001-5627-501X
http://orcid.org/0000-0001-7872-2685
http://orcid.org/0000-0003-3927-4773
https://doi.org/10.1007/978-3-031-27481-7_28


496 M. Hermo et al.

(s ↔ pe)

(s ∧ pe) ∨ (¬s ∧ ¬pe),(s ↔ pe)

s, pe,(s ↔ pe)

(s ↔ pe)

¬s, ¬pe,(s ↔ pe)

(s ↔ pe)

(s ↔ pe)

(s ∧ pe) ∨ (¬s ∧ ¬pe),(s ↔ pe)

s,pe,(s ↔ pe)

pe,(s ↔ pe)

×

¬s, ¬pe,(s ↔ pe)

¬pe,(s ↔ pe)

×

Fig. 1. Tableaux for �ψ1 and �ψ2.

In the last two decades, the reactive synthesis problem has received lot of
attention (e.g., [5,10,15,16,21]). The approaches can be classified into three cat-
egories: (1) game-based [7], (2) approaches that cover a strict fragment of LTL,
like GR(1) specifications [3,26]; (3) bounded synthesis [30], which explores the
problem up to a fixed bound on the size of the system. In all these cases, the state
space of the game arena is either captured by an automaton or explored explic-
itly or symbolically. In this paper, we study a deductive alternative: a tableau
method for the realizability and synthesis for the class of safety specifications.

Tableau methods were originally created [2,33] as intuitive deduction proce-
dures for classical propositional and first-order logic. A tableau is a tree that per-
forms symbolic handling of formulas according to simple rules based on seman-
tics, model-theory and proof-theory. Classical tableaux correspond to deductive
proofs in Gentzen’s sequent calculus. Tableaux have been evolving for years to
decide the satisfiability problem of many other non-classical logics (modal, multi-
valued, temporal, etc.), in some cases combined with other formal structures,
such as different kinds of automata.

Traditional tableau techniques for satisfiability do not directly work for real-
izability, where tableaux have only been used for auxiliary steps in automata-
based methods [6]. We present in this paper, a tableau-based method for the
realizability of reactive safety specifications. To illustrate the problem, consider
the following formulas where pe is an environment variable and s is a system
variable: ψ1 = s ↔ pe, ψ2 = s ↔ �pe and ψ3 = �s ↔ �pe. Symbols � and �
are temporal operators which refer to the next instant and to all instants of time
respectively. The safety specifications �ψ1 and �ψ3 are realizable: consider the
system that mimics in s the value observed in e.

A temporal tableau for �ψ1 (shown in Fig. 1 (left)) first uses the semantics
of the � operator, which states that �ψ1 = ψ1 ∧ ��ψ1. Then, it decomposes
the formula into s ↔ pe,��ψ1 and splits two branches for the two cases:
s, pe,��ψ1 and ¬s,¬pe,��ψ1. Both nodes then jump to the next temporal
state, so both branches generate a loop to the root �ψ1. Each branch represents
a model of the initial formula. It is tempting to interpret this tableau as a winning
strategy for the system that witnesses the realizability of �ψ1. On the other
hand, �ψ2 is not realizable, as the system is required to guess the next value



Tableaux for Realizability of Safety Specifications 497

(s ↔ pe)

(s ∧ pe) ∨ (¬s ∧ ¬pe),(s ↔ pe)

s,pe,(s ↔ pe)

s, pe,(s ↔ pe)

×

¬s, ¬pe,(s ↔ pe)

¬s, ¬pe,(s ↔ pe)

×

Fig. 2. Tableau for �ψ3.

of pe, and the environment can later emit the opposite value. The tableau for�ψ2 is shown in Fig. 1 (right). The left branch in the tableau corresponds to the
system choosing s hoping for the environment to play pe in the next step. Since
the environment can choose ¬pe, this branch must close at node pe,�ψ2 (the
right branch is similar). A branch closing condition typical of tableaux closes
this branch as the environment wins by forcing a contradiction. However, this
closing condition fails to capture the realizability of �ψ3, since the resulting
tableau for �ψ3 would be as shown in Fig. 2.

The previous closing condition would close the left branch (choosing ¬pe)
and the right branch (choosing pe), incorrectly concluding that �ψ3 is unre-
alizable. The problem here is in the splitting of the two cases �s,�pe and
�¬s,�¬pe, which reveals too early the future move of the system given the
power (incorrectly) to the environment to create a contradiction. To overcome
this problem, we introduce in this paper the terse normal form of formulas
which prevents these incorrect splittings on formulas that reveal future choices
too early. Intuitively, at the second temporal state, our tableau will just have
one node n : (s ∧ pe) ∨ (¬s ∧¬pe),�ψ3. Node n has two children (one for each
choice of the environment):

pe, s,�((s ∧ pe)∨(¬s∧¬pe)),��ψ3 | ¬pe,¬s,�((s ∧ pe)∨(¬s∧¬pe)),��ψ3

Then, the next state from both nodes produces again node n. This tableau
encodes the proof that �ψ3 is realizable (see Example 4).

We introduce in this paper realizability tableaux to fix classical temporal
tableau rules to obtain a correct decision procedure for realizability. Our tableau
method solves the realizability decision problem for a fragment of LTL, which
includes temporal operators of the form �[n,m] and◇[n,m] (for n,m ∈ N). These
operators are very common in industrial critical specifications where the system
is supposed to respond within a predefined amount of time. Although these oper-
ators can be seen as a short-hand for a Boolean combination of formulas using
only �, the compact notation is effectively exploited in our tableau deductions
in a more efficient way that prevents exponential unfoldings. Consider for exam-
ple the formula ψ4 = pe → �[0,2100]s. Our tableau for �ψ4 splits two branches
for the two cases (¬pe ∧ ��ψ4) and (pe ∧ s ∧ ��[0,2100−1] ∧ ��ψ4).



498 M. Hermo et al.

The first branch jumps to the next state, which loops to the root �ψ4. The
second branch jumps to (�[0,2100−1]s ∧ �ψ4) which in turn spawns two new
branches, both of which loop immediately to their previous state. This very
small tableaux encodes the �ψ4 is realizable. This example illustrates a crucial
difference between automata and tableaux: the deductive power of the tableau,
after checking two successive states, is able to decide the realizability of �ψ4,
whereas automata techniques require an explicit upfront elimination of the inter-
vals. As far as we know, this is the first temporal tableaux for solving realizabil-
ity of safety LTL specifications. Although this paper focuses on realizability,
our tableaux provide a procedures for both kinds of certificates: the realizability
strategy (i.e. the synthesis of a system) and the counterexample in the case of
unrealizability.

In summary, our contributions are: (1) The introduction of the novel terse
normal form that captures in a logical form the timely choices of the environment
and the responses by the system. (2) A tableau method including all the deduc-
tive rules to build the tableau graph and rules to close the branches, with success
and with failure. (3) Sound and completeness proofs for our tableau method.

Related Work. Current approaches to reactive synthesis [5,10,15,16,21] are
either (1) based on games [7], which create a mathematical structure—like an
automaton—that capture the game arena and then explore this structure, or (2)
rely on bounded synthesis [30], which produce a set of constraints that charac-
terizes all correct systems up to fixed bound. Modern game approaches use a
symbolic representation [21], or SAT or QBF decision procedures [4]. Existing
tools for full LTL synthesis, including Unbeast [10] and Acacia+ [5] are based
on bounded synthesis. Different encoding of the constraint for a given bound
have been proposed [11–15,22,30,32]. Since 2014, the reactive synthesis compe-
tition (SYNTCOMP) [1,20] compares the performance of synthesis tools against
different benchmark problems.

Reactive synthesis for full LTL is 2EXPTIME-complete [29], so LTL frag-
ments with better complexity have been identified. For example, GR(1) (general
reactivity with rank 1)—enjoy an efficient (polynomial) symbolic synthesis algo-
rithm [3,26], with practical applications [9,23]. Translating GR(1) specifications
into the safety language that we consider in this paper involves at least an expo-
nential blow-up in the worst case. All methods listed above perform an algorith-
mic exhaustive exploration of the game arena. In contrast, our deductive tableau
method is deductive. Even though some game-based tools, like Strix [24,25],
perform some on-the-fly construction of the game arena the deductive nature of
tableaux allows to skip larger portions of the state space. An explicit compar-
ison of the performance between methods requires a polished implementation,
which is out of the scope of this paper. We focus here the foundations1 of the
realizability tableau, emphasizing its power to handle richer settings and prevent
explicit blow-ups.

1 The full proof of correctness, including all intermediate lemmas can be found in the
extended version [19], which also includes several realizability tableaux examples.



Tableaux for Realizability of Safety Specifications 499

The first tableau method [35] for the satisfiability of LTL is not purely tree-
shape but builds a graph that is explored in a second pass. This inspired a
connection with Büchi automata [34,35], on which many decision procedures [8]
for LTL satisfiability and model checking are based. The use of an auxiliary
structure raised two difficulties: one is the size and another is the loss of the
original correspondence with sequent proofs that could certify the result. Some
alternative ideas (e.g., [18,31]) have been developed to explore on-the-fly the
graph (or automaton) not requiring a second pass, and also for constructing one-
pass tableaux that preserve the correspondence with sequent proofs (cf. [17]).

2 Preliminaries. Safety Specifications and Games

Given a set R, R∗ denotes the set of finite strings over R and Rk the set of strings
over R of length k. Rω is the set of infinite sequences over R. We sometimes use
x to remark that string x is a sequence of elements, and use |x| for its length
and x · v for the concatenation of x with v. We use ε for the empty string.
Given r = r0, r1, r2 . . . ∈ Rω, and ri for ri, ri+1 . . ., we use r<i for the finite
sequence r0, . . . , ri−1 and ri..j for the finite sequence ri . . . rj−1. LTL extends
propositional logic with temporal operators � (next) and U (until). Given a
set V of propositional variables, a valuation v is a map V → B (where B is a
Boolean domain). We denote by Val(V) the set of all valuations of V. A trace
σ is an infinite sequence σ0, σ1, σ2, . . . of valuations of V. The semantics of LTL
relate formulas with traces as follows:

σ |= p iff σ0(p) σ |= ¬ϕ iff σ �|= ϕ

σ |= �ϕ iff σ1 |= ϕ σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ

σ |= ϕU ψ iff σj |= ψ for some 0 ≤ j and σi |= ϕ for all i such that 0 ≤ i < j

We use standard abbreviations, like T for truth and F for falsehood, ∨,→ and
↔, and◇ϕ for TU ϕ and �ϕ for ¬(TU ¬ϕ). A set of formulas is (syntactically)
consistent if and only if it does not contain a formula and its negation. If σ |= ϕ
then we say that σ is a model of ϕ and we use Mod(ϕ) to denote the set of all
models of ϕ. We interpret a finite set of formulas as the conjunction of all its
members, and use σ |= Φ to denote the set of traces that are models of all ϕ ∈ Φ.
A set of formulas Φ is satisfiable if and only if there exists at least one σ such
that σ |= Φ. Two formulas ϕ and ψ are logically equivalent, denoted ϕ ≡ ψ, if
and only if Mod(ϕ) = Mod(ψ). A set of traces L is a safety language whenever
for any trace σ /∈ L there exists some i > 0 such that σ<i · σ′ /∈ L for any trace
σ′. We call σ<i a witness of the violation of σ.

Safety Specifications. We split the set of propositions in a formula ϕ into two
disjoint subsets: Xe, controlled by the environment and Y, controlled by the
system. We use a subscript e (e.g., sensore or pe) for the elements of Xe.

We use a fragment of LTL for safety specifications. To illustrate the power
of our tableau technique to handle richer types, we do not restrict ourselves
to Boolean variables, but also consider enumerated variables and atoms x = c



500 M. Hermo et al.

where x is a variable of an enumerated type T and c is a constant value of type T .
Boolean formulas are built from atoms (Boolean variables or enumerated atoms)
using Boolean connectives. The fragment of safety LTLspecifications consists of
formulas α ∧ �ψ, where α, called the initial formula, is a Boolean constraint
that captures the initial states. The formula �ψ, called the safety constraint,
restricts the transition relation by means of the following temporal operators:

η ::= p | x = c |¬η | �η | �Iη |◇Iη | η ∨ η | η ∧ η

where I = [n,m] for some n,m ∈ N such that n ≤ m. The semantics is:

σ |= �[n,m]η iff σj |= η for all j such that n ≤ j ≤ m.
σ |=◇[n,m]η iff there exists j such that n ≤ j ≤ m such that σj |= η.

Note that ◇I and �I can be de-sugared using �, but with an exponential
unfolding in terms m. A trace σ models α ∧ �ψ whenever σ0(α) holds and
σk |= ψ for all k ≥ 0.

It is easy to see that any safety formula is logically equivalent to a formula
in Negation Normal Form (NNF) by pushing negation to the propositional level
(using equivalences ¬�η ≡ �¬η, ¬◇Iη ≡ �I¬η and ¬�Iη ≡◇I¬η):

	 ::= p |¬p | x = c |¬(x = c) | T | F η ::= 	 | �η | �Iη |◇Iη | η ∨ η | η ∧ η.

We assume that formulas are translated to NNF, 	 stands for a literal, and, for
i ∈ N, �

i abbreviates a sequence of operators � of length i. The temporal
depth of ϕ is the maximum number of nested � operators, where �I and
◇I are interpreted in terms of �. It is easy to see that the truth value of a
formula (at position i) of depth d only requires to inspect d positions of the
trace (after i). We define a semantics |=fin of our safety fragment of LTLon finite
traces λ = λ0 · · · λd−1 where d ≥ 1 by:

λ |=fin 	 iff λ0(	) = 1
λ |=fin η1 ∧ η2 iff λ |=fin η1 and λ |=fin η2
λ |=fin η1 ∨ η2 iff λ |=fin η1 or λ |=fin η2
λ |=fin �η iff if d > 1 then λ1..d |=fin η (remember that λ1···d denotes λ1 · · · λd)

λ |=fin �[n,m]η iff λj |=fin η for all n ≤ j ≤ min(m, d)
λ |=fin◇[n,m]η iff if n ≤ m < d then λj |=fin η for some n ≤ j ≤ m

Note that a witness of the violation of a safety formula η is a finite sequence
λ = λ0 · · · λd−1 such that λ �|=fin η.

Given a set of formulas Δ, we denote by ValΔ(V) the set of all valuations
v ∈ Val(V) such that v(x) for every Boolean variable x ∈ Δ, ¬v(x) for every
Boolean variable ¬x ∈ Δ, v(x) = c for every x of enumerated type such that
x = c ∈ Δ, and v(x) �= c for every x of enumerated type such that ¬(x = c) ∈ Δ.
Note that if x does not occur in Δ, there are many v ∈ ValΔ(V) with different
values for v(x). If Δ is a set of literals then λ0 |=fin Δ if and only if λ0 ∈ ValΔ(V).
Given v ∈ Val(Xe) and w ∈ Val(Y), we denote by v + w the valuation in z ∈



Tableaux for Realizability of Safety Specifications 501

Val(Xe ∪ Y) such that z(p) = v(p) if z ∈ Xe and z(p) = w(p) if z ∈ Y. This
notation is extended to pairs of finite traces λ on Xe and λ′ on Y of the same
length d, i.e., λ + λ′ denotes the trace (λ0 + λ′

0) · · · (λd−1 + λ′
d−1). It is easy to

see that our fragment of safety specifications can only describe safety languages.

Lemma 1. Given a safety spec. ϕ = α ∧ �ψ and a trace σ, σ �|= ϕ iff either

(i) σ0 is a witness of the violation of α ∧ ψ, or
(ii) for some i and d ≤ depth(ψ) σi..i+(d+1) is a witness of the violation of ψ.

Safety Games. A safety game 〈I, P, PE , PS , T,B〉 is played by two players E (the
environment) and S (the system), where (1) P is the set of positions, partitioned
into P = PE ∪ PS ; (2) I ⊆ P is the initial positions; (3) T ⊆ (P × P ) is the set
of moves; and (4) B ⊆ P is the safety winning condition. E moves at positions
PE and S moves at PS , choosing a successor. A play π : v0v1v2 . . . is an infinite
sequence of positions, related by moves. We assume that every position has a
successor so we do not have to deal with finite plays. A play π is winning for S
if for all i, π(i) /∈ B. A memoryless strategy ρS for S is a map ρS : PS → P ,
such that (p, ρS(p)) ∈ T is a move for all p ∈ PS .

Strategies for E are defined analogously. A play π is played according to a
strategy ρS if for every i, if π(i) ∈ PS then π(i + 1) = ρS(π(i)). A strategy ρS

of S is winning if every initial play π played according to ρS is winning for S.
It is well-known that safety games are memoryless determined (either S or E
have a memoryless winning strategy). We now construct a safety game from a
specification ϕ over Xe and Y:

– PE = {Val(Xe)k × Val(Y)k | k ∈ N}. We use P k
E = {(x, y)| |x| = |y| = k}.

– PS = {Val(Xe)k+1 × Val(Y)k | k ∈ N}. We use P k+1
S = {(x, y)| |x| = k +

1 and |y| = k}.
– T contains two types of edges T = TE ∪ TS defined as follows for each k ∈ N:

• TE ⊆ (P k
E , P k+1

S ) such that ((x, y), (x · v, y)) ∈ TE iff v ∈ Val(Xe).
• TS ⊆ (P k+1

S , P k+1
E ) such that ((x · v, y), (x · v, y · w)) ∈ TS iff w ∈ Val(Y).

– I = {(ε, ε)}.

Note that E and S alternate playing. Given a position p ∈ PE \ I of the form
(x ·v, y ·w) we use move(p) = (v +w) for the valuation of the variables of Xe ∪Y
according to v and w. Given a play π we use trace(π) for the trace σ such that
σ(i) = move(π(2i + 1)), which corresponds to the sequence of valuations that E
and S pick. This arena is essentially an infinite tree that records the valuations
chosen. We define the set of bad states as the safety winning condition:

Bϕ = {(x, y) | there is v ∈ Val(Xe), for all w ∈ Val(Y) : x · v + y · w �|=fin ϕ}.

We use G(ϕ) : 〈P, PE , PS , I, T,Bϕ〉 for the safety specification game for ϕ.

Lemma 2. A safety spec. ϕ is realizable if and only if G(ϕ) is winning for S.



502 M. Hermo et al.

3 Realizability Tableaux

We introduce now the main technical contribution of this paper, a tableau
method for deciding the realizability of a safety specifications, which also allows
to synthesize a winning strategy for realizable specifications.

3.1 Terse Normal Form

Our tableau for ϕ will cover the plays of G(ϕ), where the environment chooses
a move on its variables Xe and, then, the system responds with a move on Y. In
order for branches to represent real plays, the formula in a node should determine
the true strict-future possibilities at the current position. Consider that the
formula ϕ2 = (�¬s) ∨ (pe ∧ ��s) represents the possible moves at some
position in a game. Satisfying (�¬s) would fulfill the specification. Also, if
the environment moves pe both ��s and �¬s would satisfy ϕ2. However,
a classical tableau-style analysis would split ϕ2 into two branches such that
the one containing pe requires ��s to satisfy the specification, precluding the
possibility of �¬s. Note also that the formula ϕ3 = (pe ∧ (�¬s ∨ ��s)) ∨
(¬pe ∧ �¬s) is logically equivalent to ϕ2, but suitable for a tableau-style analysis
of realizability. We now introduce the Terse Normal Form (TNF) for safety
formulas that associates moves with formulas that capture the condition that
any trace must satisfy in the (strict) future to be coherent with the current
safety specification. The formula ϕ3 above is in TNF.

Basic (sub)formulas of a safety formula are of the form 	, �
nη, ◇Iη or�Iη. We classify these into from-now formulas: 	,◇[0,m]η,�[0,m]η and from-

next formulas: �η,◇[n,m]η and �[n,m]η (for any m ≥ n ≥ 1).

Definition 1 (Strict-Future and Separated). A strict-future formula is a
DNFcombination of from-next formulas. A separated formula is the conjunction
of a set of Boolean literals (possibly empty) and (at most) one strict-future for-
mula. If π is a separated formula, then L(π) denotes the set of literals in π and
F(π) denotes the strict-future formula in π.

Definition 2. (TNF). A safety formula η in Terse Normal Form (TNF) is a
disjunction

∨n
i=1 πi such that each πi is a separated formula, and for all 1 ≤ i �=

j ≤ n there is at least one literal 	 such that 	 ∈ L(πi) and ¬	 ∈ L(πj).

Proposition 1. For any safety formula η there is a logically equivalent safety
formula, called TNF(η), that is in TNF.

Example 1. The TNFfor pe ↔ �s and �pe ↔ �s from Sect. 1 are TNF(pe ↔
�s) ≡ (pe ∧ �s) ∨ (¬pe ∧ �¬s) and TNF(�pe ↔ �s) ≡ (�pe ∧ �s) ∨
(�¬pe ∧ �¬s). Finally, for η = c ∧ (¬pe → �[0,9]¬c) ∧ (�[0,9]c ∨◇[0,2]¬c):
TNF(η) ≡ (pe ∧ c ∧ (�◇[0,1]¬c ∨ ��[0,8]c)) ∨ (¬pe ∧ c ∧ ��[0,8]c).

Definition 3 (Moves). Given
∨n

i=1 πi in TNF we call each πi a move.



Tableaux for Realizability of Safety Specifications 503

Note that Valπi
= ValL(πi) for any move πi of any formula in TNF. In Example 1,

TNF(pe ↔ �s) contains two moves, each having a literal and a strict-future
formula, but TNF(�pe ↔ �s) has only one move (the empty set of literals)
with one future-strict formula (which is a disjunction).

Proposition 2. Let η be a safety formula and let TNF(η) =
∨n

i=1 πi. Then,

(a) For any trace σ, σ |= η iff σ |= πi for exactly one 1 ≤ i ≤ n.
(b) For any finite trace λ, λ |=fin η iff λ |=fin πi for exactly one 1 ≤ i ≤ n.
(c) Let σ be such that σ |= η and let 1 ≤ i ≤ n. Then, σ |= L(πi) → F(πi).

We define now a special subset of moves in a TNFthat are called Xe-coverings.

Definition 4. A formula
∨n

i=1 πi in TNFwith ∪n
i=1Valπi

(Xe) = Val(Xe) is called
an Xe-covering. An Xe-covering is minimal if

∨n
i=1,i �=j πi is not an Xe-covering

for any 1 ≤ j ≤ n.

Intuitively, a minimal Xe-covering represents a system strategy from the cur-
rent position. Therefore, the collection of all minimal coverings represents all
possible strategies. Moreover, each move in a strategy contains all the strict-
future possibilities for this move.

Example 2. Let TNF(η) = (pe ∧ c ∧ η1) ∨ (¬pe ∧ c ∧ η2) ∨ (¬c ∧ η3) where
η1, η2, η3 are strict-future formulas and Xe = {pe}. It is a non-minimal Xe-
covering, but the third move (¬c ∧ η3) is a minimal one. The two first moves
together also provide a minimal Xe-covering.

We say that a set of indices I is a (minimal) Xe-covering when
∨

i∈I πi is a
(minimal) Xe-covering.

Proposition 3. Let Φ be a set of safety formulas and TNF(Φ ∧ ψ) =
∨

i∈I πi.

(a) If I is not an Xe-covering, then for some v ∈ Val(Xe), v �|=fin Φ ∧ ψ.
(b) If I is a minimal Xe-covering, then for all i ∈ I and all v ∈ Valπi

(Xe), there
exists some v′ ∈ Valπi

(Y) such that v + v′ ∈ Valπi
(Xe ∪ Y).

(c) If for each v ∈ Val(Xe) there exists v′ ∈ Val(Y) such that v + v′ |=fin Φ ∧ ψ,
then there exists some minimal Xe-covering J ⊆ I.

To handle strict-future formulas F(π) in the tableau rules we introduce the
symbol ∨̈ which is semantically equivalent to ∨, but our tableau rules deal differ-
ently with both disjunctive operators. More precisely, strict-future subformulas
F(π) (inside moves of TNFformulas) will be written as

∨̈m

i=1δi.

3.2 Tableaux

Realizability tableaux are AND-OR trees, where each node is labelled by a set
of formulas2. A node is said to be the parent of its successors nodes. The root of
2 We graphically represent AND-nodes with an arc embracing all the edges to the

AND-successors of a node.



504 M. Hermo et al.

the tree is labelled with the input safety specification. The tableau is constructed
using the set of tableau rules shown in Fig. 3. Each rule determines the labels on
the children of a node and the kind (AND or OR) of its successors. A tableau
is completed when no further rule can be applied. Rules apply only to nodes
in branches that are neither failed nor successful. A node is called a leaf when
no rule can be applied to it. There are two kinds of leaves. Failure leaves are
labelled by (syntactically) inconsistent sets of formulas, which indicates that the
branch from the root to the leaf is failed. Successful leaves are labelled by sets of
formulas that are subsumed (in the sense we will make precise in Definition 6)
by some previous node in the branch from the root to the leaf.

Before we introduce the tableau rules, we define the finite set of all formulas
that could appear in the construction of a tableau for ϕ, denoted as Clo(ϕ).

Definition 5. Given a formula β, we denote by SubFm(β) the set of all subfor-
mulas of β. In particular, SubFm(�iβ) = {�

jβ | 0 ≤ j ≤ i} ∪ SubFm(β). For a
given safety formula ψ, we define Varnt(ψ) to be the union of the following four
sets that collects all the variants of subformulas ◇I and �I that the tableau
rules could introduce.

{◇[n,m′]β,�◇[n,m′]β |◇[n,m]β ∈ SubFm(ψ), n ≤ m′ < m} ∪
{�[n,m′]β,��[n,m′]β | �[n,m]β ∈ SubFm(ψ), n ≤ m′ < m} ∪
{SubFm(�iβ) |◇[n,m]β ∈ SubFm(ψ), 0 ≤ i ≤ n} ∪
{SubFm(�iβ) | �[n,m]β ∈ SubFm(ψ), 0 ≤ i ≤ n}

The set Ordnf(ψ) consists of all formulas of the form
∨̈n

i=1

∧m
j=1 βi,j where each

βi,j is in Varnt(ψ). Then, the closure of a safety specification ϕ = α ∧ �ψ is
the finite set Clo(ϕ) = Preclo(ϕ) ∪ {�ψ,��ψ} where Preclo(ϕ) = SubFm(α ∧
ψ) ∪ Varnt(ψ) ∪ Ordnf(ψ).

Realizability Tableaux. A tableau for a safety specification ϕ = α ∧ �ψ is a
labelled tree Tab(ϕ) = (N, τ,R), where N is a set of nodes, τ is a map from N
to Clo(ϕ) and R ⊆ N × N , such that the following conditions hold:

– The root is labelled by {α,�ψ}.
– For any (n, n′) ∈ R, τ(n′) is the set of formulas obtained as the result of the

application of one of the tableau rules (in Fig. 3) to τ(n). If the applied rule
is ρ, we say that n′ is a ρ-successor of n.

– For every success or failure leaf n there is no n′ ∈ N s.t. (n, n′) ∈ R where:
• A failure leaf is a node n ∈ N s.t. Incnst(τ(n)) (see Definition 7).
• A success leaf is a node n ∈ N such that �ψ ∈ τ(n) and there exists

k ≥ 0, n0, . . . , nk ∈ N such that (ni, ni+1) ∈ R for all 0 ≤ i < k,
(nk, n) ∈ R and τ(n0) � τ(n) (see Definition 8).

3.3 Subsumption and Syntactical Inconsistency

Subsumption rules allow to control the potential set of labellings of the tableau
nodes. We use β � γ to denote that β subsumes γ or that γ is subsumed by β.



Tableaux for Realizability of Safety Specifications 505

Subsumption is related to logical implication, if β � γ, then Mod(β) ⊆ Mod(γ).
Classical subsumption rules include β � β, β ∧ γ � β, and β � β ∨ γ. The set
of formulas used to label our tableau nodes are subsumption-free with respect to
classical subsumption on Boolean formulas and the following subsumption rules
for temporal operators.

Definition 6. The subsumption rules for temporal formulas are:

– For all n ≤ n′ and m′ ≤ m,
◇[n′,m′]β �◇[n,m]β, �[n,m]β � �[n′,m′]β, and �[n′,m′]β �◇[n,m]β.

– For all n ≤ k ≤ m: �
kβ �◇[n,m]β and �[n,m]β � �

kβ.

The following result easily follows from Definition 6 and semantics.

Proposition 4. Let β � γ be a pair of formulas. For any trace σ, if σ |= β
then σ |= γ. For any finite trace λ, if λ |=fin β then λ |=fin γ. Consequently,
σ �|= β ∧ γ̃ and λ �|=fin β ∧ γ̃ for any σ and λ, where γ̃ is the NNFof ¬γ.

Definition 7. A set of formulas Φ is (syntactically) inconsistent (denoted by
Incnst(Φ)) whenever one of the following four conditions hold:

(a) F ∈ Φ
(b) {β, γ̃} ⊆ Φ for some β, γ such that β � γ
(c) {x = c1, x = c2} ⊆ Φ for some c1 �= c2
(d) {¬(x = c) | c ∈ T} ⊆ Φ for some enumerated type T .

Otherwise, Φ is (syntactically) consistent, denoted Cnst(Φ).

A node that is labelled by an inconsistent set is a failure leaf and no rule is applied
to it. We now define a subsumption-based order relation on sets of formulas to
detect successful leaves.

Definition 8. For two given set of formulas Φ and Φ′, we say that Φ � Φ′ if
and only if for every formula β ∈ Φ there exists some β′ ∈ Φ′ such that β � β′.
For two given strict-future formulas,

∨̈n

i=1Δi �
∨̈m

j=1Γj if and only if for all
1 ≤ i ≤ n there exists 1 ≤ j ≤ m such that Δi � Γj.

The following result follows from Definition 8 and Proposition 4.

Proposition 5. For any finite trace λ and any pair of set of formulas Φ and Φ′

such that Φ � Φ′, if λ |=fin Φ then λ |=fin Φ′.

No rule is applied to a node that is labelled by a set Φ′ such that Φ�Φ′ for some
previous label Φ in the same branch, because it is a successful leaf.



506 M. Hermo et al.

(F)
Φ,ψ

F,ψ
if TNF(Φ ∧ ψ) is not an Xe-covering

(∨) Φ,ψ
∨

i∈J1
πi,ψ | · · · | ∨

i∈Jm
πi,ψ

if J1, . . . , Jm is the collection of all minimal
Xe-covering of TNF(Φ ∧ ψ)

(∧)
∨

i∈I πi,ψ

π1,ψ & . . . & πn,ψ
if I is a minimal Xe-covering

(a) Always Rules (where τ denotes TNF(Φ ∧ ψ))

(∨) Φ, β ∨ γ

Φ, β | Φ, γ
(∧) Φ, β ∧ γ

Φ, β, γ
(∨̈ ∧) Φ, (η ∧ (β ∨ γ))∨̈δ

Φ, (η ∧ β)∨̈(η ∧ γ)∨̈δ

(<)
Φ, [n,m]β

Φ, nβ | Φ, [n,m−1]β
if n < m

(∨̈<)
Φ, (η ∧[n,m]β)∨̈δ

Φ, (η ∧ nβ)∨̈(η ∧ [n,m−1]β}∨̈δ
if n < m

(=)
Φ, [n,n]β

Φ, nβ
(=)

Φ, [n,n]β

Φ, nβ
(∨̈=)

Φ, (η ∧[n,n]β)∨̈δ

Φ, (η ∧ nβ)∨̈δ

(<)
Φ, [n,m]β

Φ, nβ, [n,m−1]β
if n < m (∨̈=)

Φ, (η ∧ [n,n]β)∨̈δ

Φ, (η ∧ nβ)∨̈δ

(∨̈<)
Φ, (η ∧ [n,m]β)∨̈δ

Φ, (η ∧ nβ ∧ [n,m−1]β)∨̈δ
if n < m

(b) Saturation Rules

()
Φ, η,ψ

η↓,ψ
if Φ∪{η} is elementary and η is strict-future

(c) Next-state Rule

Fig. 3. Realizability tableau rules

3.4 Tableau Rules

First, the Always Rules in Fig. 3(a) provides a non-deterministic procedure for
analyzing the minimal Xe-coverings in TNF(Φ ∧ ψ) (see Definition 4 and Proposi-
tion 3). Rule (�∧) is the only rule in our system that produces AND-successors,
by splitting the cases of each minimal Xe-covering. We introduce the rules that
decompose formulas into their constituents, using saturation as usual in tableau
methods. The decomposing of formulas inside the conjunctions connected by ∨̈
is just an unfolding in the formula. The Saturation Rules in Fig. 3(b) saturate
with respect to ∧ and ∨ (including ∨̈) and temporal operators◇I and �I . The
following property of saturation rules is proved by routinely applying semantics.

Proposition 6. For any saturation rule Φ
Φ1|···|Φk

, it holds that σ |= Φ if and

only if σ |= Φi for some 1 ≤ i ≤ k.



Tableaux for Realizability of Safety Specifications 507

Definition 9. A next-formula is a formula whose first symbol is �. A strict-
future formula

∨̈n

i=1Δi is elementary if every formula in the set
⋃n

i=1 Δi is a
next-formula.

The successive application of the rules (∨̈ ∧), (∨̈◇ <), (∨̈◇ =), (∨̈� <)
and (∨̈� =) ensures the following proposition.

Proposition 7. Given a strict-future formula δ, there is an elementary formula
δE such that δ ≡ δE and δE is in DNF.

Definition 10. A set Δ is saturated whenever for all δ ∈ Δ the following hold:

– If δ = β ∧ γ, then {β, γ} ∈ Δ. If δ = β ∨ γ, then β ∈ Δ or γ ∈ Δ.
– If δ = �[n,m]β and n < m, then {�

nβ,��[n,m−1]β} ⊆ Δ.
– If δ =◇[n,m]β and n < m, then either �

nβ ∈ Δ or �◇[n,m−1]β ∈ Δ

– If δ = �[n,n]β or γ =◇[n,n]β, then �
nβ ∈ Δ.

– If δ is a strict-future formula, then δE ∈ Δ

We use Stt(Δ) to denote the set of all (minimal) saturated sets that contains Δ.

Proposition 8. Let Δ be a set of formulas, σ a trace and λ a finite trace.

– σ |= Δ if and only if σ |= Φ for some Φ ∈ Stt(Δ).
– λ |=fin Δ if and only if λ |=fin Φ for some Φ ∈ Stt(Δ).

By Proposition 2 and 8, we obtain the next result.

Proposition 9. Let Φ be a set of safety formulas and let J1, . . . , Jm be the
collection of all minimal Xe-coverings in TNF(Φ ∧ ψ) =

∨
i∈I πi. Then

(a) For any trace σ, σ |= Φ,�ψ iff σ |= πi,��ψ holds for some i ∈ Jk for
each 1 ≤ k ≤ m. Let λ be finite trace, λ |=fin Φ ∧ ψ iff λ |=fin πi for some i ∈ Jk

for each 1 ≤ k ≤ m.
(b) For any 1 ≤ k ≤ m and any i ∈ Jk the following two facts hold:

(i) If Incnst(Δ) for all Δ ∈ Stt(Φ ∪ {πi}), then every λ0 ∈ ValΔ(Xe ∪ Y) is a
witness of the violation of Φ ∧ �ψ.
(ii) Let Δ ∈ Stt(Φ ∪ {πi}) be s.t. Cnst(Δ). Then, λ0 |=fin Φ ∧ ψ for every
λ0 ∈ ValΔ(Xe ∪ Y).

Proposition 10 follows from the fact that, by Definition 4, there is some v ∈
Val(Xe) \ ValΦ∧ψ(Xe).

Proposition 10. Let Φ be a set of formulas. If TNF(Φ ∧ ψ) is not an Xe-
covering, then there is a v ∈ Val(Xe) s.t. for all v′ ∈ Val(Y), v + v′ �|=fin Φ ∧ ψ.



508 M. Hermo et al.

Proposition 11. Let Φ be a set of formulas, TNF(Φ ∧ ψ) =
∨

i∈I πi be an
Xe-covering and J1, . . . , Jm be the collection of all minimal Xe-coverings in I.
If for every 1 ≤ k ≤ m there exists some i ∈ Jk such that Incnst(Δ) for all
Δ ∈ Stt(πi), then there exists some v ∈ Val(Xe) such that for all v′ ∈ Val(Y),
v + v′ �|=fin Φ ∧ ψ.

Finally, the tableau rules also include the Next-state rule in Fig. 3(c). This
rule is used to generate a new tableau node, that is to jump from a temporal
position to the next. Its formalization is based on the following definitions.

Definition 11. Given an elementary strict-future formula η =
∨̈n

i=1

∧m
j=1

�βi,j, the formula η↓ is
∨̈n

i=1

∧m
j=1 βi,j.

Example 3. Consider the strict-future formula δ = ◇[1,2]a ∨̈ �[1,3]b. Then,
δE = �a ∨̈ �◇[1,1]a ∨̈ (�b ∧ ��[1,2]b) and δE↓ = a∨̈◇[1,1]a∨̈(b ∧ �[1,2]b).
Note that the only effect of ↓ is to remove the �-operators in each term of δE .

Definition 12. A set of formulas Φ is elementary if it consists of a set of literals
and one elementary strict-future formula.

Basically, the application of the Next-state rule to an elementary set that labels
a node, removes all literals and removes the �-operators (in each term) from
the single elementary strict-future formula.

Proposition 12. Let Φ ∪ {η} be a consistent and elementary set of formulas
with strict-future formula η. Then, (a) For any trace σ, if σ |= Φ, η,��ψ
then σ1 |= η↓,�ψ; (b) let λ = λ0, . . . λk−1 be a pre-witness of α ∧ �ψ s.t.
λk−1 |=fin Φ, and let λk ∈ Val(Xe ∪ Y). Then, λ · λk is a pre-witness of α ∧ �ψ
iff λk |=fin η↓ ∧ ψ.

3.5 A Tableau Algorithm for Realizability

Algorithm 1 provides a decision procedure for realizability. The algorithm con-
structs completed tableau by expanding the minimal Xe-coverings produced by
the moves (and allowed by the input safety specification) at successive positions.
Algorithm 1 uses recursion to explore in-depth the branches of the tree. The
formal parameter is given as the union of a set of formulas Φ and a formula
χ that ranges in {�ψ,��ψ}. For deciding realizability of a safety specifica-
tion ϕ = α ∧ �ψ, the initial call Tab(ϕ) is really Tab({α,�ψ}). Intuitively,
player E moves when χ = �ψ (including at the start), whereas S moves when
χ = ��ψ.



Tableaux for Realizability of Safety Specifications 509

Algorithm 1: Tab(Φ ∪ {χ}) returns is open: Boolean
1 if Φ is inconsistent then is open := False else if χ = �ψ then
2 if Φ0 � Φ for some Φ0 in the branch of Φ then
3 is open := True

4 else if TNF(Φ ∧ ψ) is not an Xe-covering then
5 is open := Tab({F,�ψ});
6 else if TNF(Φ ∧ ψ) is a non-minimal Xe-covering then
7 Let J1, . . . , Jm be all the minimal Xe-coverings of TNF(Φ ∧ ψ);
8 i , is open := 0 , False ;
9 while ¬is open ∧ i < m do

10 i , is open := i + 1 , Tab(Ji ∪ {�ψ}) ;

11 else // TNF(Φ ∧ ψ) =
∨n

i=1 πi is a minimal Xe-covering

12 i , is open := 0 , True ;
13 while is open ∧ i < n do
14 i , is open := i + 1 , Tab({πi, ��ψ}) ;

15 else if Φ = Λ ∪ {η} is elementary (η is strict-future) then

16 is open := Tab({η↓,�ψ});

17 else
18 ρ := select saturation rule(Φ);
19 Let 1 ≤ k ≤ 2 and Φ1, . . . , Φk the set of all ρ-children;
20 is open := Tab(Φ1 ∪ {��ψ});
21 if k = 2 ∧ ¬is open then
22 is open := Tab(Φ2 ∪ {��ψ})
23

n1 : (pe ↔ s)

n2 : (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n3 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

n4 : pe ∧ s ∧ (pe ∧s)∨̈(¬pe ∧¬s),ψ

n6 : pe, s, (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n8 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

n5 :¬pe∧¬s ∧ (pe ∧s)∨̈(¬pe ∧¬s),ψ

n7 :¬pe, ¬s, (pe ∧ s)∨̈(¬pe ∧ ¬s),ψ

n9 : (pe ∧ s)∨̈(¬pe ∧¬s),ψ

(∨) + (∧)

(∨) + (∧)

()

() ()

(∧)(∧)

Fig. 4. Open tableau for �(�pe ↔ �s).

Definition 13. A branch b of a tableau is a sequence of nodes n0, . . . , nk such
that n0 is the root and (ni, ni+1) ∈ R for 0 ≤ i < k − 1. If nk is a successful
leaf, then b is called a successful branch. If nk is a failure leaf, then b is called a
failure branch.



510 M. Hermo et al.

Algorithm 1 returns the Boolean variable is open, which corresponds to
whether the completed tableau for the call parameter Φ ∪ {χ} is open or closed.
Lines 1–4 deal with the simple cases of the recursion. Line 6 produces a recursive
call that immediately returns failure. A tableau is called completed when all its
branches contain a terminal node, i.e., all its branches are failure or successful.
Recursive calls in Algorithm 1 and the notions of open and closed tableaux are
related to AND-nodes, for which we introduce the following definition.

Definition 14. A set of branches H of a completed tableau is called a bunch
whenever for every b ∈ H, every AND-node n ∈ b, and every n′ that is an (�∧)-
successor of n, there is b′ ∈ H such that n′ ∈ b′. A completed tableau is open
when it contains at least one bunch with all its branches successful. Otherwise,
the tableau is closed.

Algorithm 1 looks for bunches of successful branches as follows. Lines 7–11
of Algorithm 1 invoke a recursive call for each minimal Xe-covering, according to
rule (�∨). When some of these calls return is open for a minimal Xe-covering
Ji, which is an OR-node, the iteration is finished with this result for the previous
call. The construction of the tableau for each Jk, by the rule (�∧) and according
to lines 12–15, produces a call for each move πi in Jk. Moves are AND-children,
hence all the calls should give is open to obtain truth for Jk. Finally, lines 16–
17 perform the application of (�), and lines 18–23 apply the saturation rules.
When one rule is applied, the second child is expanded only if the first child
returns not is open.

Proposition 13. Algorithm 1 terminates and Tab(ϕ) builds a completed
tableau.

Example 4. We revisit the specification �ψ3 with ψ3 : (�pe ↔ �s) discussed
in Sect. 1, for which TNF(�pe ↔ �s) = (�pe ∧ �s) ∨ (�¬pe ∧ �¬s) is the
only minimal Xe-covering. Fig. 4 shows an open tableau for this formula.

The only child of the root, n2, is obtained by rule (�∨) and then (�∧).
When the (�) applies to n2, the label of node n3 is obtained, which is {(pe ∧
s)∨̈(¬pe ∧¬s),�ψ}. Then, TNF((pe ∧ s) ∨ (¬pe ∧¬s)) ∧ ψ) yields a minimal
Xe-covering with two moves: (pe ∧ s ∧ (�pe ∧ �s)∨̈(�¬pe ∧ �¬s)) and
(¬pe ∧¬s ∧ (�pe ∧ �s)∨̈(�¬pe ∧ �¬s)). Hence, the rule (�∨) is applied,
and after it, the rule (�∧) produces one AND-node with two children, one for
each move. In both branches, after saturation and application of (�), a node
already in the branch is obtained. Therefore, the completed tableau has an open
bunch and the specification is realizable. More examples can be found in [19].

Correctness. For any given specification ϕ, it holds that ϕ is realizable if and
only if the completed tableau Tab(ϕ) is open. We formally prove this statement
by defining a new class of games (a variation of safety games) called a safety
tableau-game T (ϕ) where players E and S play with game rules that correspond
to the tableau rules. Then we connect winning strategies for S in Tab(ϕ) with
winning strategies for S in T (ϕ). The full proof is in [19].



Tableaux for Realizability of Safety Specifications 511

4 Conclusions

We have introduced the first tableau method to decide realizability of temporal
safety formulas. Our tableau method allows to synthesize a system when the
specification is realizable because a (memoryless) winning strategy for the system
can be extracted from an open tableau (the technical details of synthesizing the
system is out of the scope of this paper and how to efficiently extract and encode
this strategy is ongoing work).

Our tableau method is based on the novel notion of terse normal form (TNF)
of formulas that is crucial in the formulation of the realizability tableau. The
tableau rules make use of the terse normal form to precisely capture the infor-
mation that each player (environment and system) has to reveal at each step.
We have proved soundness and completeness of the proposed method.

Future work includes the implementation of the method presented in this
paper and to experiment with the resulting prototype in a collection of bench-
marks. We would ultimately like to compare an efficient implementation of the
realizability tableau with mature tools from the SYNTCOMP competition.

We also plan to extend the method to more expressive languages, including
the handling of richer propositions (like numeric variables and expressions) by
combining realizability tableau rules with tableau reasoning capabilities for these
domains. We have illustrated this path in this paper by the introduction of enu-
merated types. Another interesting extension is a deeper analysis, including new
rules, to handle upper and lower bounds of intervals in temporal operators, for
example to accelerate a branch to reach the lower bound a of an �[a,b] operator.
We would like to ultimately extend our tableau method to richer fragments of
LTL.

Finally, future work includes a precise analysis of the complexity of the real-
izability tableau and its different instances.

References

1. https://syntcomp.org
2. Beth. The Foundation of Mathematics. North-Holland (1959)
3. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-

tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)
4. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.

In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 1

5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, C.: Jean-Fran Acacia+, a tool
for LTL synthesis. In: Proceedings of CAV 2012, LNCS, vol. 7358, pp. 652–657.
Springer, Cham (2012)

6. Brenguier, R., Perez, G.A., Raskin, J.F., Sankur, O.: AbsSynthe: abstract syn-
thesis from succinct safety specifications. In: Proceedings of the 3rd Workshop in
Syntehsis (SYNT’14), EPTCS, vol. 157, pp. 100–116 (2014)

7. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138 (1969)

https://syntcomp.org
https://doi.org/10.1007/978-3-642-54013-4_1


512 M. Hermo et al.

8. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Alaska. In: Cha, S.S., Choi,
J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp.
240–245. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-
6 21

9. D’ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Synthesizing nonanoma-
lous event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol.
22(1), 1–36 (2013)

10. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 25

11. Finkbeiner, B.: Bounded synthesis for Petri games. In: Meyer, R., Platzer, A.,
Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 223–237.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6 15

12. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27940-9 15

13. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 118–135. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 7

14. Finkbeiner, B., Schewe, S.: SMT-based synthesis of distributed systems. In: Pro-
ceedings of the 2nd Workshop on Automated Formal Methods (AFM 2007), pp.
69–76. ACM (2007)

15. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5–6), 519–539 (2013). https://doi.org/10.1007/s10009-012-0228-z

16. Finkbeiner, B., Tentrup, L.: Detecting unrealizable specifications of distributed
systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
78–92. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 6

17. Gaintzarain, J., Hermo, M., Lucio, P., Navarro, M., Orejas, F.: Dual systems of
tableaux and sequents for PLTL. J. Logic Algebraic Program. 78(8), 701–722
(2009)

18. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 437–452. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2 32

19. Hermo, M., Lucio, P., Sánchez, C.: A tableau method for the realizability and syn-
thesis of reactive safety specifications (2022). arXiv. https://arxiv.org/abs/2206.
01492

20. Jacobs, S., et al.: The 4th reactive synthesis competition (SYNTCOMP 2017):
benchmarks, participants & results. In: Proceedings of the 6th Workshop on Syn-
thesis (SYNT@CAV 2017), EPTCS, vol. 260, pp. 116–143 (2017)

21. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for property
synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
258–262. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-
3 29

22. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
108–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 9

23. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Rob. 25, 1370–1381 (2009)

https://doi.org/10.1007/978-3-540-88387-6_21
https://doi.org/10.1007/978-3-540-88387-6_21
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1007/978-3-642-27940-9_15
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-642-54862-8_6
https://doi.org/10.1007/978-3-642-02959-2_32
https://doi.org/10.1007/978-3-642-02959-2_32
https://arxiv.org/abs/2206.01492
https://arxiv.org/abs/2206.01492
https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1007/978-3-642-35873-9_9
https://doi.org/10.1007/978-3-642-35873-9_9


Tableaux for Realizability of Safety Specifications 513

24. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1–2), 3–36 (2020).
https://doi.org/10.1007/s00236-019-00349-3

25. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
578–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 31

26. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773 24

27. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–67. IEEE
CS Press (1977)

28. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
POPL 1989, pp. 179–190. ACM (1989)

29. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0035790

30. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 33

31. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H.
(ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidel-
berg (1998). https://doi.org/10.1007/3-540-69778-0 28

32. Shimakawa, M., Hagihara, S., Yonezaki, N.: Reducing bounded realizability anal-
ysis to reachability checking. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP
2015. LNCS, vol. 9328, pp. 140–152. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24537-9 13

33. Smullyan, R.M.: First-Order Logic. Springer-Verlag, Cham (1968)
34. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.

115(1), 1–37 (1994)
35. Wolper, P.: The tableau method for temporal logic: an overview. Logique et Anal.

(N.S.) 28, 119–136 (1985)

https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/11609773_24
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/3-540-69778-0_28
https://doi.org/10.1007/978-3-319-24537-9_13
https://doi.org/10.1007/978-3-319-24537-9_13


A Decision Diagram Operation
for Reachability

Sebastiaan Brand(B) , Thomas Bäck , and Alfons Laarman

Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands

{s.o.brand,t.h.w.baeck,
a.w.laarman}@liacs.leidenuniv.nl

Abstract. Saturation is considered the state-of-the-art method for com-
puting fixpoints with decision diagrams. We present a relatively simple
decision diagram operation called Reach that also computes fixpoints. In
contrast to saturation, it does not require a partitioning of the transition
relation. We give sequential algorithms implementing the new operation
for both binary and multi-valued decision diagrams, and moreover pro-
vide parallel counterparts. We implement these algorithms and exper-
imentally compare their performance against saturation on 692 model
checking benchmarks in different languages. The results show that the
Reach operation often outperforms saturation, especially on transition
relations with low locality. In a comparison between parallelized ver-
sions of Reach and saturation we find that Reach obtains comparable
speedups up to 16 cores, although falls behind saturation at 64 cores.
Finally, in a comparison with the state-of-the-art model checking tool
ITS-tools we find that Reach outperforms ITS-tools on 29% of models,
suggesting that Reach can be useful as a complementary method in an
ensemble tool.

Keywords: Model checking · Reachability · Saturation · Decision
diagrams · BDDs · MDDs

1 Introduction

Reachability Analysis. Model checking is an important technique for ensuring
that systems work according to specification. A core task in model checking
is reachability analysis [8,18], i.e., computing forward or backward reachable
states of a system. Typically, the state space of a program grows exponentially
with the number of variables and threads. One method for dealing with this
explosion is the use of symbolic methods such as decision diagrams. Decision
diagrams [12] are directed, acyclic graphs that succinctly represent sets of states
by leveraging the exponential growth in paths from a dedicated root node to a
leaf. The data structure provides various efficient manipulation operations, such
as logical disjunction and conjunction and image computation.

In this work, we present a new decision diagram operation for reachability.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 514–532, 2023.
https://doi.org/10.1007/978-3-031-27481-7_29

https://doi.org/10.5281/zenodo.7333633
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_29&domain=pdf
http://orcid.org/0000-0002-7666-2794
http://orcid.org/0000-0001-6768-1478
http://orcid.org/0000-0002-2433-4174
https://doi.org/10.1007/978-3-031-27481-7_29


A Decision Diagram Operation for Reachability 515

Related Work. While SAT-based methods for model checking have become
increasingly popular, doing reachability analysis with decision diagrams is still
an important component of many state-of-the-art model checking tools, as can
be seen in the Model Checking Contest (MCC) [30,40]. Symbolic reachability
analysis with binary decision diagrams (BDDs) and other variants [6,20,27,41]
is done by encoding both the initial system state Sinit and its transition relation
R in the diagram. The set of reachable states S is then iteratively computed
using the image operation [33], denoted by S.R, starting from Sinit. Since the
order of exploration (e.g. breadth-first search, depth-first search, or other strate-
gies) greatly influences the sizes of the intermediate decision diagrams, various
exploration strategies, like saturation [16], chaining [36], and sweep-line [15],
have been considered. These algorithms have in common the use of the image
computation S.R as their main operation.

Saturation stands out from other approaches, not only because it often per-
forms better [17] and leading MCC tools use it in decision diagram based reacha-
bility [40], but also because it integrates the image computations into the traver-
sal of the decision diagram of S. Saturation avoids redundant reconstructions
by building the decision diagram for the reachable states bottom-up, eagerly
saturating the bottom nodes by exhaustively applying all relevant transitions.

Contribution. We present three new decision diagram operations for reachability:
ReachBdd and ReachMdd (for BDDs and MDDs respectively), as well as a
parallel version of ReachBdd. These algorithms partially construct the decision
diagram of S from the bottom up, but unlike saturation do not require partial
relations and can handle monolithic transition relations. An additional advantage
of these new reachability operations is their relative simplicity in comparison
with saturation.

We implement these new operations in the decision diagram package Syl-
van [21], and experimentally compare them against saturation on a total of 692
problem instances from three model checking benchmark sets: DVE (BEEM
[35]), Petri nets (MCC [31]), and Promela models [7,26]. We find that our meth-
ods are competitive with saturation, and tend to outperform saturation on larger
instances. The parallel speedups obtained by ReachBdd up to 16 cores are
comparable to those achieved in a parallel version of saturation [22], although
they fall behind on 64 cores. Aside from the comparison against saturation, we
also compare ReachMdd against the state-of-the-art model checking tool ITS-
tools [40], where we find that ReachMdd performs better than ITS-tools on
29% of models, and can therefore be useful as a complementary method in an
ensemble tool.

Outline. Section 2 discusses preliminaries. Section 3 explains the new reacha-
bility algorithms, and is then followed by an empirical evaluation of these algo-
rithms in Sect. 4. Finally, Sect. 5 concludes this work.



516 S. Brand et al.

2 Preliminaries

2.1 Binary Decision Diagrams

Binary decision diagrams (BDDs) [12,38] are a data structure for representing
Boolean functions f(x1, . . . , xn), i.e., functions of type f : {0, 1}n → {0, 1}.
Structurally, a BDD is a rooted, directed, acyclic graph with two types of nodes:
terminal nodes with values {0, 1} and non-terminal nodes v that have two chil-
dren, v[0] (low) and v[1] (high), and a variable label var(v) ∈ {1, . . . , n} = [n],
indexing into {xi}i∈[n]. Figure 1 shows examples of ordered BDDs, i.e., BDDs
where on each path variable labels occur in a fixed order x1 < x2 < · · · < xn.

xi v

v[0] v[1]

fvA non-terminal node v with var(v) = i, shown right, can be
read as the Shannon decomposition “if xi = 1 then v[1] else v[0].”
The function represented by the node v, call it fv, is thus given by

fv(x1, . . . , xn) �
{

xif
v[1] ∨ xif

v[0] if v /∈ {0, 1} ,

v if v ∈ {0, 1} .
(1)

The definition in Eq. 1 shows that a conditioned subfunction fv
|�a, as in Eq. 2

below, is represented by a decision diagram node, namely the one following the
path v[�a] � v[a1][a2] . . . [ak], assuming the BDD is ordered and no variables are
skipped.

fv
|a1,...,ak

(x1, . . . , xn) � fv(x1 = a1, . . . , xk = ak, xk+1, . . . , xn) (2)

The insight that BDDs exploit to realize succinct representations of
commonly-encountered Boolean functions is that many subfunctions for different
�a,�b ∈ {0, 1}∗ can be isotropic, i.e., f|�a = f|�b. Take f|00 = f|11 in Fig. 1a. In the
diagram, this means that the isomorphic subgraphs below the nodes representing
f|00 and f|11 can be merged, as in Fig. 1c.

An ordered BDD is reduced when, in addition to isomorphic sub-graph
merging, all redundant nodes (nodes v with v[0] = v[1]) are removed. Take

x1

x2 x2

x3 x3

0 1

(a)

x1

x2 x2

x3 x3

0 1

(b)

x1

x2 x2

x3

0 1

(c)

Fig. 1. (Ordered) BDDs representing function f = (x1 ∧ x2 ∧ x3)∨(x1∧x2∧x3)∨(x1∧
x2). For node v, we draw var(v) = i as xi. Dashed lines lines represent low branches
(v[0]) and solid lines high branches (v[1]). Only the BDD in (c) is completely reduced.
The BDD in (a) can be reduced to (c) by merging the two isomorphic nodes for x3,
while the BDD in (b) can be reduced to (c) by removing the (right-most) redundant
node x3.



A Decision Diagram Operation for Reachability 517

f|010 = f|011 = f|01 = 1, in Fig. 1c. Removed redundant nodes can be recon-
structed by recognizing that a variable is skipped on a path, as done Fig. 1b.

Reduced and ordered BDDs (ROBDDs) are canonical representations of
Boolean functions, i.e., any two functions with the same truth table are uniquely
represented by (the root node of) an ROBDD. Canonicity allows for equivalence
checking in constant time through hashing of nodes v as tuples 〈var(v), v[1], v[0]〉
(provided that nodes v[1],v[0] are already canonically represented, i.e., the BDD
is build in a bottom-up fashion). This in turn allows efficient manipulation oper-
ations (∧,∨, . . . ) as discussed below.

In this text, we fix the variable order x1 < x2 < · · · < xn. For conciseness,
we will often consider quasi-ROBDD, which are ROBDDs where all redundant
nodes are reconstructed (e.g. Fig. 1b). In many settings, this stronger definition
does not lose generality, as quasi-ROBDD are also canonical, and at most a
factor n

2 larger than an ROBDD for the same function [29]. At the same time,
because for all quasi-ROBDD nodes v we have fv

�a = v[�a], this assumption greatly
simplifies algorithm representation and reduces cases in proofs. We denote with
level i the set of all nodes with the variable label i.

2.2 Multi-valued Decision Diagrams

Multi-valued decision diagrams (MDDs) [27,37] are a generalization of BDDs
for encoding functions D1 × · · · × Dn → {0, 1}, where Di = {0, 1, . . . ,m − 1} for
some m and all i. Each MDD node with variable xi has m outgoing edges, each
with a label in Di. The interpretation of following an edge remains the same as
for BDDs: for an MDD which encodes a function f and has root node v with
var(v) = i, following an edge with label a ∈ Di leads to an MDD which encodes
the sub-function f |xi=a.

Similar to BDDs, MDDs are typically reduced by merging isomorphic sub-
graphs. However, unlike ROBDDs, redundant nodes are usually not removed in
MDDs, which means variables are never skipped on any path. So an MDD with
m = 2 is a Quasi-ROBDD. Figure 2 shows an example.

A list decision diagram (LDD) [9] is the Knuth transform of an MDD into
a left-child right-sibling binary tree. Siblings (right-ward chains) are stored as

x1

x2Bx2A x2

1 1 1

0
2 5

7

0 1 2 1 2 0 2

0x1 : 2 5 7

0x2 : 1 2 0 2

1

Fig. 2. An MDD (left) and LDD (right) which both encode the set {〈0, 0〉, 〈0, 1〉, 〈0, 2〉,
〈2, 0〉, 〈2, 1〉, 〈2, 2〉, 〈5, 1〉, 〈5, 2〉, 〈7, 0〉, 〈7, 2〉}. Arrays represent right-ward sibling chains
in the LDD. To improve legibility, we omit edges pointing to the 0 terminal and replicate
the 1 terminal for MDDs.



518 S. Brand et al.

(ordered) linked lists, which allows the reuse of common sibling suffixes, as shown
in the example in Fig. 2 (e.g. f|5 reuses a part of the siblings of f|2 = f|0).

Finally, a BDD or MDD representing a function f(x1, . . . , xn) can also be
interpreted as a set of strings �a of length n, according to the characteristic
function {�a | f(�a) = 1}. So the BDDs in Fig. 1 all represent {000, 010, 011, 110}.

2.3 Decision Diagram Operations

What makes BDDs and MDDs so useful, aside from their possible succinctness,
is that many manipulation operations, such as disjunction (set union) and con-
junction (set intersection), can be performed in polynomial time in the number of
decision diagram nodes in the operands [3,12]. While other operations that have
been shown to be NP-complete [33], such as unbounded existential quantification
and thus also image computation [33], are often still efficient in practice [13].

As an example, the algorithm below computes the union of two quasi-reduced
diagrams A and B, i.e., A ∪ B (or in the functional interpretation: A ∨ B).
Because any BDD is defined by its root node, the arguments A and B are
simply given as nodes. The algorithm first considers leafs as a base case, treating
them according to the semantics of ∨. On line 7 and 8, the function is called
recursively on the children of the input BDDs, synchronizing on the low and
high branches. The results from these recursive calls are then combined with the
MakeNode(x,L,H) function which creates a reduced BDD node v with v[0] =
L, v[1] = H and var(v) = x. To ensure reduction, it returns L (= H) when the
node is redundant and looks up the tuple 〈x,L,H〉 in a unique table, as discussed
in Sect. 2.1. For MDDs, we assume a function MakeNode(x,A0, . . . , Am−1)
which returns a (quasi-)reduced MDD node and, for notational convenience,
takes m + 1 positional arguments: a variable x, and one MDD node Ai for each
of its m children (some of which can be 0).

Lastly, it is important to realize that a decision diagram with |V | nodes can
have exp(|V |) paths from the root to a terminal node. To achieve polynomial
runtimes, decision diagram operations use top-down dynamic programming (see

1 def Union(A, B) : � For quasi-ROBDDs A and B on n variables.

2 if A = 0 then return B
3 if B = 0 then return A
4 if A = 1 ∨ B = 1 then return 1

5 if res ← cache[Union, A, B] then return res

6 x ← var(A) � By virtue of quasi reduction var(A) = var(B).

7 L ← Union(A[0], B[0])
8 H ← Union(A[1], B[1])

x

A[0] A[1]

A

∪ x

B[0] B[1]

B
= x

A[0] ∪ B[0] A[1] ∪ B[1]

res9 res ← MakeNode(x, L, H)

10 cache[Union, A, B] ← res

11 return res



A Decision Diagram Operation for Reachability 519

line 5, 10). This ensures that different paths leading to the same (pairs of) nodes
are caught by the cache, avoiding recomputation.

2.4 Encoding Symbolic Transition Systems

A symbolic transition system is a tuple (�x,S, R, Sinit), where �x is a tuple of
Boolean variables (x1, . . . , xn), S = {0, 1}n is the state space (including unreach-
able states), R ⊆ S × S′ is a transition relation, and Sinit ⊆ S is a set of initial
states. The relation R is a constraint over variables �x, �x′, where �x encodes the
source states and �x′ (consisting of primed copies of �x) encodes target states.
While R monolithically encodes the system’s behavior, we also consider a local
variant, discussed in the example which follows.

As an example we give a transition system which captures the dining philoso-
phers problem. We have k processes (philosophers) and k resources (forks). Each
process Pi, with i ∈ {1, . . . , k}, attempts to allocate two resources: a fork i on
the left and a fork j = ((i − 1) mod k) + 1 on the right. If a fork is unavail-
able the philosopher waits until it becomes available. To describe the state space
we use 3k Boolean variables: �x = (a1, l1, r1, . . . , ak, lk, rk), where ai (ai) indi-
cates fork i is (not) available, li (li) indicates philosopher i does (not) hold a
fork in their left hand, and ri (ri) idem for their right hand. The starting state
Sinit = (a1, l1, r1, . . . , ak, lk, rk.)

To define Ri for k > 1 processes, we define three local relations Rm
i that

implement picking up and putting down the left/right fork, and eating.

R1
i = (ai ⊕ a′

i) ∧ (li ⊕ l′i) � pick up / put down left

R2
i = (ri ⊕ r′

i) ∧ (aj ⊕ a′
j) � pick up / put down right

R3
i = li ∧ l′i ∧ ri ∧ r′

i � eat (hold on to both forks)

Let support(Rm
i ) be the set of (primed and unprimed) variables in Rm

i . Notice
that the support of each local relation contains a different subset of the target
variables �x′. To ensure that the other target variables are not left unconstrained,
we need to add the constraint x ⇔ x′ for all missing variables x′ ∈ �x′. For
instance, pick up / put down left should be extended as:

(ai ⊕ a′
i) ∧ (li ⊕ l′i) ∧ (ri ⇔ r′

i) ∧
∧
j �=i

(aj ⇔ a′
j ∧ rj ⇔ r′

j ∧ lj ⇔ l′j)

The same needs to happen when merging multiple processes Ri into a single
global relation R, i.e. R =

∨k
i=1 Ri, where Ri � Ri ∧ ∧

x′∈�x′\support(Ri)
x ⇔ x′.

Section 2.5 discusses how extending local relations in this way can be avoided.
If a transition relation R is composed of Ri’s, where each support(Ri) is a

small subset of �x, �x′, we say that R has high locality. If R cannot be split up
into such partial relations we say that R has low locality, or is monolithic.



520 S. Brand et al.

2.5 Reachability with Decision Diagrams

For a transition system with n Boolean variables {x1, . . . , xn}, a single state is
given by a bit string s ∈ {0, 1}n. A set of states S ⊆ {0, 1}n can be encoded in a
BDD. Likewise, a transition relation R ⊆ {0, 1}n × {0, 1}n can be encoded in a
BDD with 2n variables. The variables are ordered by interleaving the source state
variables �x = (x1, . . . , xn) with target state variables (primed copies: x′

1, . . . , x
′
n),

i.e., (x1, x
′
1, . . . , xn, x′

n), as it is both convenient for the implementation of BDD
algorithms, and it reduces the diagram size. To compute the successors to an ini-
tial set of states S, we can then use the decision diagram operation Image(S,R)
[21,33]:

Image(S,R) = (∃x1, . . . , xn : (S ∧ R))[x′
1,...,x′

n := x1,...,xn], (3)

where [x′ := x] indicates the relabeling of the target variables to source variables.
The Image operation can also be implemented for partial relations Ri, with the
benefit that existential quantification only needs to happen over support(Ri),
rather than over all variables. The union of the image under each Ri separately
equals the image under the global transition relation:

∃�x : ((R1 ∨ · · · ∨ Rk) ∧ S)[�x′ := �x] = (∃�x′
1 : R1 ∧ S)[�x′ := �x] ∨ · · · ∨

(∃�x′
k : Rk ∧ S)[�x′ := �x]

where �x′
i = support(Ri)∩�x′ and Ri is the extension of Ri as defined in Sect. 2.4.

With Image, the set of reachable states can be computed by repeatedly
applying R to a growing set of reachable states until no new states are found,
which we denote with S.R∗.

Finally, decision diagrams often represent relations more succinctly when
source variables �x are interleaved with target variables �x′ in the order [33].

2.6 Saturation

Saturation [16] is a method for computing reachability that exploits locality
of transitions. Aside from the initial states Sinit, the algorithm takes as input
several local transition relations Ri (see Sect. 2.4), ordered such that var(Ri) ≥
var(Ri+1).

To illustrate how saturation works, let us give an example. Say we have
a global state space given by {x1, . . . , x4}, and three partial relations Ri with
support(R1) = {x3, x

′
3, x4, x

′
4}, support(R2) = {x2, x

′
2, x3, x

′
3}, and support(R3) =

{x1, x
′
1, x2, x

′
2}. The “dependency matrix” on the right visualizes the dependen-

R1 R2 R3⎛
⎜⎝

⎞
⎟⎠

x1 0 0 1
x2 0 1 1
x3 1 1 0
x4 1 0 0

cies of the partial relations on each of the variables. The sat-
uration algorithm traverses the decision diagram of a set of
states S and saturates the nodes from the bottom-up. What
this means in the case of the example is that the partial rela-
tion R1 is applied to all nodes v in S with var(v) = 3, until
v has converged. After saturating this node v the algorithm
backtracks upwards in the decision diagram to a node w with var(w) = 2, and
saturates this node by exhaustively applying R2, while eagerly saturating new
nodes created below w.



A Decision Diagram Operation for Reachability 521

While breadth-first search (BFS) suffers from large intermediate diagram
sizes [25], saturation often avoids this by ensuring that the lower levels of the
decision diagram reach their final configuration early. Generally this works well
if the (average) bandwidth (the distance between the first and the last non-zero
entry in each row) of the dependency matrix is low. This occurs for example in
asynchronous systems where processes mainly modify local variables or commu-
nicate only with “neighboring processes” through channels or shared variables
dedicated to neighboring pairs. This is for example the case in the dining philoso-
phers example given in Sect. 2.4. Finding a variable order and organizing the
partial relations such that both this bandwidth and sizes of the decision dia-
grams are minimized is generally hard (even finding an optimal variable order
for a single BDD is NP-complete [10]) but good heuristics exist [1,2,4,5,34].

While originally proposed for MDDs, saturation has since been implemented
for BDDs as well [22].

3 Decision Diagram Operation for Reachability

3.1 For BDDs

We present an operation ReachBdd(S,R) which computes the reachable states
S.R∗ for BDDs. As is typical in BDD operations, our algorithm splits the com-
putation into recursive calls on smaller, factored BDDs, after which the results
are composed again in the backtracking step. The way we factor R is inspired by
[32], where a BDD algorithm is given for computing the closure R∗ of R (com-
puting the closure R∗ is generally much more expensive [32, §6], hence we want
to compute S.R∗ directly for a given S). ReachBdd is given in Algorithm 1,
and its correctness is discussed in Sect. 3.4.

Algorithm 1: A BDD operation for computing reachability. Cache
lookup/insert for dynamic programming after line 5 and 10 are omitted.

1 def ReachBdd(S, R) : � For quasi-ROBDDs S, R on n, 2n variables.

2 if S = 0 then return 0
3 if R = 0 then return S
4 if S = 1 then return 1
5 if R = 1 ∧ S �= 0 then return 1

6 while S did not converge do
7 S[0] ← ReachBdd(S[0], R[00])
8 S[1] ← Union(S[1], Image(S[0], R[01]))
9 S[1] ← ReachBdd(S[1], R[11])

10 S[0] ← Union(S[0], Image(S[1], R[10]))

11 return MakeNode(var(S), S[0], S[1])

The algorithm recurses on the low and high child of a BDD S. This splits
the state space into S|0 (all states starting with a 0) and S|1. The relation R can
be split up accordingly as shown in Fig. 3. The self loops in this figure represent



522 S. Brand et al.

S|0 S|1R|00
R|01

R|10
R|11

R =
R|00 R|01
R|10 R|11

(a)

R

x1

x1 x1

R[00] R[01] R[10] R[11]

(b)

Fig. 3. The state space S can be split up into states where the first variable equals
0, and states where the first variable equals 1 (a), and the transition relation R is
split up accordingly. Because source and target variables are interleaved as usual, these
partitions of R can be easily accessed in the BDD structure (b).

S|0.R∗
|00 and S|1.R∗

|11, and correspond to recursive calls to ReachBdd (line
7, 9). The results of these calls need to be propagated using image computation
S|i.R|ij = Image(S[i], R[ij]) (line 8, 10) until S has converged, so we incorporate
a loop (line 6). For notational convenience we assume S[0] and S[1] are program
variables to which we can assign new BDDs.

The base cases for the algorithm are as follows: If the set of initial states or
the transition relation is empty (S = 0 or R = 0) there are no successors and
the set of reachable states is the set of initial states. If the set of initial states
contains all states (S = 1), or if R contains transitions from all states to all other
states (R = 1) and S is not empty, then all states are reachable.

With the decision diagram framework Sylvan [24], we can parallelize decision
diagram operations through Spawn/Sync commands, which respectively fork
and join light-weight tasks [24]. However, the order of (parallel) operations is
something to take into account. In particular, line 7 and 8 from Algorithm 1 are
dependent, so cannot be executed in parallel. In order to parallelize ReachBdd,
we change the order of calls in this loop and introduce ReachBddPar in
Algorithm 2.

Algorithm 2: ReachBddPar parallelizes the loop on line 6-10 in Alg. 1.
The Image and Union calls are also parallelized [23].

6 while S did not converge do
7 Spawn( ReachBddPar(S[0], R[00]) ) � Spawn call as task (fork)

8 S[1] ← ReachBddPar(S[1], R[11]) � Call directly

9 S[0] ← Sync � Obtain task result (join)

10 Spawn( Image(S[1], R[10]) ) � Spawn call as task (fork)

11 T1 ← Image(S[0], R[01]) � Call directly

12 T0 ← Sync � Obtain task result (join)

13 Spawn( Union(S[0], T0) ) � Spawn call as task (fork)

14 S[1] ← Union(S[1], T1) � Call directly

15 S[0] ← Sync � Obtain task result (join)



A Decision Diagram Operation for Reachability 523

3.2 Analysis

To provide some intuition for the complexity behavior of ReachBdd, we provide
two cases: one where ReachBdd is exponentially faster than BFS, and one where
ReachBdd reduces to BFS.

Ideal Case. We give a concrete instance of a relation R and an initial set of states
Sinit for which ReachBdd performs exponentially better than a simple BFS.
Consider a transition relation R which simply increases a (program) counter of
n bits. This counts form a starting state Sinit = 0 = 〈00 . . . 0〉 in steps of 1 to
2n−1 = 〈11 . . . 1〉. As the state space is a line graph, the BFS algorithm discovers
one new state every iteration, requiring O(2n) calls to the Image function.

To illustrate the behavior of the ReachBdd algorithm, let us explicitly write
all R|ij for n = 3:

R|00 =

⎧⎨
⎩

(�000, �001),
(�001, �010),
(�010, �011)

⎫⎬
⎭ R|11 =

⎧⎨
⎩

(�100, �101),
(�101, �110),
(�110, �111)

⎫⎬
⎭ R|01 =

{
(�011, �100)

}
R|10 = ∅

While R|00 and R|11 represent different sets, the BDDs R[00] and R[11] are equal.
For all non-terminal cases Algorithm 1 does the following:

8 S[0] ← ReachBdd(S[0], R[00]) � computes states Sall
0

9 S[1] ← Union(S[1], Image(S[0], R[01])) � generates ’seed’ state Sinit
1

10 S[1] ← ReachBdd(S[1], R[11]) � computes states Sall
1

11 S[0] ← Union(S[0], Image(S[1], R[10])) � produces no new states

First, ReachBdd computes all reachable states which start with a 0, let us call
these Sall

0 . Next, the Image call produces exactly one new state, 〈100 . . . 0〉, which
will act as a “seed” state for the next ReachBdd call. Since the BDDs of Sinit

0

and Sinit
1 are equal, just as the BDDs R[00] and R[11], the second ReachBdd

call can be looked up from cache. Finally, since R[10] = ∅, no new states will be
added to S0, and both S0 and S1 will have converged.

We find two things: first, all the reachable states are found in a single loop
iteration, and second, each call to ReachBdd only generates one recursive call
to ReachBdd (because the second call can always be looked up from cache).
Overall, ReachBdd only makes O(n) recursive calls to itself and to the Image
function.

Due the monolithic nature of the transition relation, saturation will behave
like BFS in this case.

Bad Case. Here we provide an instance for which ReachBdd reduces to
breadth-first search. From an arbitrary transition relation R we create a new
relation R′ for which ReachBdd behaves like to BFS. If R is a relation over
2n variables {x1, x

′
1, . . . xn, x′

n}, we let R′ be a relation over 2(n + 1) variables
{x0, x

′
0, x1, x

′
1, . . . xn, x′

n}. Specifically, let R′ := x0 ⊕ x′
0 ∧ R. The corresponding

decomposition into sub-functions (as visualized in Fig. 3) looks like



524 S. Brand et al.

R′ =

(
0 R′

|01
R′

|10 0

)
.

For a relation like this, the loop on line 6 relies entirely on the image computation
steps to expand the set of reachable states, while the recursive calls never add
any states. This effectively turns ReachBdd into BFS.

3.3 MDD Generalization

In this section, we generalize ReachBdd (Algorithm 1) from a BDD operation
to an MDD operation (Algorithm 3, correctness discussed in Sect. 3.4). For
simplicity, let us assume we have a MDD encoding a set of states of n variables,
each of which takes values from the same domain D = {0, 1, . . . ,m − 1}, and
an MDD which encodes the transition relation which has 2n variables (n source
variables and n target variables). As shown below, the state MDD can be divided
into m parts, and the relation MDD into m2 parts, similar to how the BDDs are
split up in Fig. 3. For ease of notation we denote m − 1 = m′:

S =

⎛
⎜⎜⎜⎝

S|0
S|1
...

S|m′

⎞
⎟⎟⎟⎠ R =

⎛
⎜⎜⎜⎝

R|00 R|01 · · · R|0,m′

R|10 R|11 · · · R|1,m′

...
...

. . .
...

R|m′,0 R|m′,1 · · · R|m′,m′

⎞
⎟⎟⎟⎠

Where the BDD algorithm iterates over four transition relations R|ij , the
MDD algorithm simply iterates over all m2 relations R|ij . When i = j, R|ij
contains transitions for which the first variable stays the same, and we can call
ReachMdd(S|i, R|ij). For all cases where i �= j we use Image(S|i, R|ij) instead.

Algorithm 3: An MDD operation for computing reachability. Cache
lookup/insert for dynamic programming after line 5 and 11 are omitted.

1 def ReachMdd(S, R) : � For MDDs S, R on n, 2n variables.

2 if S = 0 then return 0
3 if R = 0 then return S
4 if S = 1 then return 1
5 if R = 1 ∧ S �= 0 then return 1

6 while S did not converge do
7 for i, j ∈ D do
8 if i = j then
9 S[i] ← ReachMdd(S[i], R[ij])

10 else then
11 S[j] ← Union(S[j], Image(S[i], R[ij]))

12 return MakeNode(var(S), S[0], . . . , S[m − 1])



A Decision Diagram Operation for Reachability 525

We note that ReachBdd does not generalize so well to MDDs, in the fol-
lowing sense: for BDDs, Algorithm 1 has two ReachBdd calls and two Image
calls inside the loop. However for MDDs, we get O(m) ReachMdd calls and
O(m2) Image calls every loop iteration. In the MDD case, a larger part of the
computation is no longer handled by recursive calls, but instead by image com-
putations.

3.4 Correctness

In this section we give a sketch of the correctness proofs for both ReachMdd
(Theorem 1) and ReachBdd (Corollary 1). A complete proof can be found in
[11, App. A].

Theorem 1. Given two MDDs S and R with n and 2n variables respectively,
ReachMdd(S,R) (Algorithm 3) computes all the reachable states S.R∗.

Proof Sketch. The correctness of ReachMdd can be shown by means of algo-
rithm transformation from breadth-first search. The algorithm for BFS (given
below) directly follows from the definition S.R∗ =

⋃∞
k=0 S.Rk, as shown by the

Knaster-Tarski theorem [39].

1 while S did not converge do
2 S ← Union(S, Image(S,R))

3 return S

The two main steps in the transformation are as follows: first, using the Shan-
non decomposition, the computation of Image(S,R)) can be split up into calls
Image(S[i], R[ij])) for all i, j ∈ D, the results of which can be combined with
a MakeNode function as on line 12 of Algorithm 3. Second, since we are
ultimately computing S.R∗, the calls Image(S[i], R[ij])) can be replaced with
ReachMdd(S[i], R[ij]) when i = j. The algorithm ReachMdd follows directly
from these two steps.

Corollary 1. Given two BDDs S and R, ReachBdd(S,R) (Algorithm 1) com-
putes all the reachable states S.R∗.

Proof Sketch. The correctness of ReachBdd can be shown from Theorem 1 by
taking an MDD with D = {0, 1}.

4 Empirical Evaluation

4.1 Experimental Setup

We implemented the new algorithms in the decision diagram package Sylvan
[21,23,24], using the task-based scheduling as described in Sect. 3.1. Instead of
MDDs, Sylvan supports LDDs (see Sect. 2.2), which can be seen as a partic-
ular implementation of MDDs. For our experiments, we compare against the
saturation procedure for BDDs and LDDs as implemented in Sylvan [22].1

1 The implementation of our algorithms, along with the repeatable experiments can
be found here: https://github.com/sebastiaanbrand/reachability.

https://github.com/sebastiaanbrand/reachability


526 S. Brand et al.

Table 1. Overview of used benchmarks

Source Type #
BEEM [35] DVE 300
MCC’16 [31] Petri-nets 357
SPINS [7] Promela 35

We use a number of existing bench-
mark sets to evaluate the performance
of our algorithms. Specifically, we use
the BEEM benchmark set, consisting
of 300 instances of models in the DVE
language, a benchmark set of over 300
Petri nets from the Model Checking Contest 2016 (MCC 2016) [31], and a small
set of Promela models, compiled for the SpinS extension of LTSmin [7] (Table 1).

For these benchmarks we use the same experimental setup as used in [22]:
we first use the model checker LTSmin [28] to generate BDDs and LDDs for the
(partial) transition relations and initial set of states, which are exported to .bdd
and .ldd files. In LTSmin, the partial transition relations are “learned” on-the-
fly, during the exploration [28], as opposed to directly building the transition
relations from a modeling language like NuXMV [14]. The variables in these
BDDs and LDDs have been reordered by LTSmin with Boost’s Sloan algorithm,
since this reordering strategy has shown good results for saturation [4,5,34].

Since we are interested in comparing the Reach algorithms against satura-
tion, we require a single transition relation for Reach. Therefore, as a prepro-
cessing step, for the Reach algorithms only, we merge the partial relations from
LTSmin into a monolithic transition relation over all variables. The run time of
the merging of partial relations is included in the total run times reported in
Fig. 4. This approach is slightly disadvantaging Reach because we could also
change the setup to generate monolithic relations directly (as we do for Petri
nets in the comparison with ITS-tools in Sect. 4.2), but using the setup from
[22] allows us to make a direct comparison with parallel saturation from [22].

We limit the run time of each reachability method to 10 min. The sequential
benchmarks were performed on a machine with an AMD Ryzen 7 5800x CPU
and 64 GB of available memory. The parallel benchmarks on a machine with 4
Intel Xeon E7-8890 v4 CPUs with 24 physical cores each (96 in total) and 2 TB
of memory. Aside from the experiments which test parallelism specifically, all
reported run times are for a single core.

4.2 Results

Comparison with Saturation. A comparison between the runtimes of saturation
and Reach is given in Fig. 4. In this discussion we differentiate between smaller
models (run times ≤1 s) and larger models (run times ≥1 s). For BDDs, Reach
outperforms saturation on a large number of bigger DVE models, but encounters
timeouts as well. For LDDs, Reach appears competitive with saturation on
DVE and Promela models, while the trend for the larger Petri net models shows
Reach outperforming saturation by up to a factor 100. For both BDDs and
LDDs saturation is often faster on the smaller instances. This is in part due to
the fact that the relative overhead of merging the partial relations is greater for
smaller instances.



A Decision Diagram Operation for Reachability 527

Fig. 4. The run time of finding all reachable states with BDDs (left) and LDDs (right)
using ReachBdd and ReachMdd versus saturation. Open markers indicate timeouts.

Locality. As discussed in Sect. 2.6, saturation is known to work well on transition
systems where the partial transition relations exhibit locality. To get insight
into how locality affects our new algorithms relative to saturation, we define
the average relative bandwidth as a metric for locality: For k partial relations
R1, . . . , Rk, sorted in an ascending order based on their first variable, we can
define a k × k matrix M with entries mij such that mij = 1 if Ri and Rj

share at least one variable, and 0 otherwise. We define the bandwidth of a row
mi,∗ as the distance between the first and the last non-zero element in this row.
The average bandwidth is then simply the average of the bandwidths of all the
rows mi,∗. The average relative bandwidth is the average bandwidth divided by
k. Note that this k × k matrix is different from (although related to) the k × n
variable matrix shown in Sect. 2.6. The matrix M and the locality metric derived
from it are independent of the variable order in the decision diagram.

Plotting the run time of ReachBdd divided by the run time of saturation
against this average relative bandwidth (Fig. 6), we see that there is a nega-
tive correlation. Although not extremely strong, this correlation shows that the
benchmarks on which saturation outperforms our algorithms are predominantly
the instances where the partial relations are relatively local, while on instances
with less locality our algorithms have a greater edge over saturation.

Table 2. Parallel speedups
Algorithm Cores Speedup

P95 P99 P99.5

saturation [22] 16 ×8.1 ×11 ×11
ReachBddPar 16 ×6.6 ×8.3 ×8.8
saturation [22] 64 ×8.7 ×22 ×22
ReachBddPar 64 ×5.6 ×9.1 ×17

Parallelism. Figure 5 shows the speed-
ups obtained by ReachBddPar and
the parallelized version of saturation
from [22] on 16 and 64 cores. The table
on the right gives the 95th, 99th and
99.5th percentile of the speedups. We
see that for the 16 core runs ReachB-
ddPar is able to keep up with [22], although falling slightly behind. For the



528 S. Brand et al.

64 core runs, while ReachBddPar falls behind [22] on the 99th percentile, it
is still able to achieve a ×17 speedup on in the 99.5th percentile, compared to
[22]’s ×22 (Table 2).

Comparison Against ITS-Tools. We also briefly compare how Reach performs
against a state-of-the-art model checking tool. For this we pick ITS-tools [40],
the overall highest scoring tool in the Model Checking Contest 2021 [30]. Since
here we compare against a different tool, as opposed to comparing algorithms
within the same package, we need to slightly extend our setup. We add two
things: first we create a small program pnml-encode which builds the decision
diagrams of the transition relations directly from the Petri net files. Second, we
extend our LDDs with a (much simpler) version of homomorphisms which are
also used in the set decision diagrams (SDDs) [19], which are a part of ITS-tools.

The results are given in Fig. 7. While ITS-tools outperforms ReachMdd
on average, there is a significant number of instances where ITS-tools gives
timeouts and Reach does not. Including these timeouts, Reach is faster than
ITS-tools on 29% of instances. This suggest that Reach could be useful as a
complementary method in an ensemble tool, where a different method can be
tried if the first one times out.

Fig. 5. Parallel speedup for saturation (left column) and ReachBddPar (right col-
umn). The dotted diagonal lines indicates a speedup of a factor 16 (bottom row) and
64 (top row) relative to the single core performance.



A Decision Diagram Operation for Reachability 529

Fig. 6. The effect of locality on the rel-
ative performance of ReachBdd. For
ReachMdd r = −0.11.

Fig. 7. Comparison of ReachMdd
against computing reachable states
with ITS-tools.

5 Conclusion

Summary. We presented two new reachability operations for decision diagrams:
ReachBdd and ReachMdd. In contrast to other approaches, like saturation,
these operations can act on a single monolithic transition relation. Similar to
saturation, these new algorithms build the decision diagram for the reachable
states (at least partially) bottom-up. One advantage of these operations is their
simplicity. This simplicity allows us for example to more easily parallelize the
decision diagram operations, as demonstrated for ReachBddPar. Empirical
evaluation of ReachBdd and ReachMdd on a large number of benchmark
sets shows that the new operations are competitive with saturation, and tend to
outperform saturation on larger instances. Additionally, we find that ReachB-
ddPar’s peak parallel performance does not fall far behind that of saturation.
Finally, our empirical results show that the Reach operations can solve 29%
of instances faster than ITS-tools, which indicates Reach can be useful as a
complementary algorithm.

Future Work. Saturation still outperforms our algorithms on a number of
instances. Many of these instances have a lot of locality, which is exactly the
regime where saturation is expected to do very well. With further investigation,
ReachBdd and ReachMdd could potentially be modified to perform better
on such instances. The current bottleneck, as illustrated by our analysis, is the
reliance on the standard Image operation. Further integration of both operations
could perhaps yield improvement.

Acknowledgements. This work was supported by the NEASQC project, funded by
European Union’s Horizon 2020, Grant Agreement No. 951821.



530 S. Brand et al.

References

1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and smaller BDDs via com-
mon function structure. In: ICCAD 2001, pp. 443–448. IEEE (2001)

2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement
variable-ordering heuristic. In: ACM VLSI, pp. 116–119 (2003)

3. Amilhastre, J., Fargier, H., Niveau, A., Pralet, C.: Compiling CSPs: a complex-
ity map of (non-deterministic) multivalued decision diagrams. Int. J. Artif. Intell.
Tools 23(04), 1460015 (2014)

4. Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based variable ordering of
decision diagrams for systems with structural units. In: D’Souza, D., Narayan
Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 184–200. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68167-2 13

5. Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.: Decision dia-
grams for Petri nets: a comparison of variable ordering algorithms. In: Koutny,
M., Kristensen, L.M., Penczek, W. (eds.) Transactions on Petri Nets and Other
Models of Concurrency XIII. LNCS, vol. 11090, pp. 73–92. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-662-58381-4 4

6. Bahar, R.I., et al.: Algebric decision diagrams and their applications. FMSD 10(2),
171–206 (1997)

7. van der Berg, F., Laarman, A.: SpinS: extending LTSmin with Promela through
SpinJa. ENTCS 296, 95–105 (2013)

8. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. ENTCS
66(2), 160–177 (2002)

9. Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recursive
data types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008.
LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85762-4 6

10. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
Trans. Comput. 45(9), 993–1002 (1996)

11. Brand, S., Bäck, T., Laarman, A.: A decision diagram operation for reachability.
arXiv preprint arXiv:2212.03684 (2022)

12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Trans.
Comput. 100(8), 677–691 (1986)

13. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

14. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

15. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space
exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
450–464. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 31

16. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy
for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45319-9 23

17. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H.,
Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36577-X 27

https://doi.org/10.1007/978-3-319-68167-2_13
https://doi.org/10.1007/978-3-662-58381-4_4
https://doi.org/10.1007/978-3-540-85762-4_6
https://doi.org/10.1007/978-3-540-85762-4_6
http://arxiv.org/abs/2212.03684
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45319-9_31
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/3-540-36577-X_27


A Decision Diagram Operation for Reachability 531

18. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 37

19. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model
structure. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer,
Heidelberg (2005). https://doi.org/10.1007/11562436 32

20. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: IJCAI (2011)

21. van Dijk, T., Laarman, A., van de Pol, J.: Multi-core BDD operations for symbolic
reachability. ENTCS 296, 127–143 (2013)

22. van Dijk, T., Meijer, J., van de Pol, J.: Multi-core on-the-fly saturation. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 58–75. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 4

23. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 60

24. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
STTT 19(6), 675–696 (2017)

25. Geldenhuys, J., Valmari, A.: Techniques for smaller intermediary BDDs. In: Larsen,
K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 233–247. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0 16

26. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

27. Kam, T.: Multi-valued decision diagrams: theory and applications. Multiple-Valued
Logic 4(1), 9–62 (1998)

28. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

29. Knuth, D.E.: The Art of Computer Programming, vol. 4A: Combinatorial Algo-
rithms, Part 1. Pearson Education India (2011)

30. Kordon, F., et al.: Complete Results for the 2021 Edition of the Model Checking
Contest (2021). http://mcc.lip6.fr/2021/results.php

31. Kordon, F., et al.: Complete results for the 2016 edition of the model checking
contest (2016). https://mcc.lip6.fr/2016/results.php

32. Matsunaga, Y., McGeer, P.C., Brayton, R.K.: On computing the transitive closure
of a state transition relation. In: International Design Automation Conference, pp.
260–265 (1993)

33. McMillan, K.L.: Symbolic model checking: an approach to the state explosion
problem. Ph.D. thesis, Carnegie Mellon University (1992)

34. Meijer, J., van de Pol, J.: Bandwidth and wavefront reduction for static variable
ordering in symbolic reachability analysis. In: Rayadurgam, S., Tkachuk, O. (eds.)
NFM 2016. LNCS, vol. 9690, pp. 255–271. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40648-0 20

35. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

36. Roig, O., Cortadella, J., Pastor, E.: Verification of asynchronous circuits by BDD-
based model checking of Petri nets. In: De Michelis, G., Diaz, M. (eds.) ICATPN
1995. LNCS, vol. 935, pp. 374–391. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60029-9 50

https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/11562436_32
https://doi.org/10.1007/978-3-030-17465-1_4
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1007/3-540-44685-0_16
https://doi.org/10.1007/978-3-662-46681-0_61
http://mcc.lip6.fr/2021/results.php
https://mcc.lip6.fr/2016/results.php
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/3-540-60029-9_50
https://doi.org/10.1007/3-540-60029-9_50


532 S. Brand et al.

37. Sanner, S., McAllester, D.: Affine algebraic decision diagrams (AADDs) and their
application to structured probabilistic inference. In: IJCAI, pp. 1384–1390 (2005)

38. Somenzi, F.: Binary decision diagrams. Nato ASI Subseries F CSS 173, 303–368
(1999)

39. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

40. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 20

41. Vinkhuijzen, L., Laarman, A.: Symbolic model checking with sentential decision
diagrams. In: Pang, J., Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp. 124–
142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2 8

https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-030-62822-2_8


Formal Modelling of Safety Architecture
for Responsibility-Aware Autonomous

Vehicle via Event-B Refinement

Tsutomu Kobayashi1(B) , Martin Bondu2, and Fuyuki Ishikawa3

1 Japan Aerospace Exploration Agency, Tsukuba, Japan
kobayashi.tsutomu@jaxa.jp

2 Sorbonne University, Paris, France
martin.bondu@etu.sorbonne-universite.fr

3 National Institute of Informatics, Tokyo, Japan

f-ishikawa@nii.ac.jp

Abstract. Ensuring the safety of autonomous vehicles (AVs) is the key
requisite for their acceptance in society. This complexity is the core chal-
lenge in formally proving their safety conditions with AI-based black-box
controllers and surrounding objects under various traffic scenarios. This
paper describes our strategy and experience in modelling, deriving, and
proving the safety conditions of AVs with the Event-B refinement mech-
anism to reduce complexity. Our case study targets the state-of-the-art
model of goal-aware responsibility-sensitive safety to argue over interac-
tions with surrounding vehicles. We also employ the Simplex architec-
ture to involve advanced black-box AI controllers. Our experience has
demonstrated that the refinement mechanism can be effectively used to
gradually develop the complex system over scenario variations.

Keywords: Autonomous driving · AI safety · Responsibility-sensitive
safety · Safety architecture · Event-B · Refinement

1 Introduction

The safety of automated vehicles has been attracting increased interest in society.
In addition to the intensive effort of simulation-based testing, there is a key app-
roach based on formal reasoning called responsibility-sensitive safety (RSS) [13].
RSS defines the minimum rules that traffic participants should comply with for
safety, i.e., no collisions. This rule-based approach has recently been extended
to goal-aware RSS (GA-RSS) to deal with the goal-achievement, i.e., the driving
goal of the ego-vehicle is eventually achieved such as pulling over upon emer-
gency [7]. GARSS is effective for formally limiting liabilities, which is vital for
AV manufacturers.

The first author is supported by JSPS KAKENHI grant number 19K20249 and
JST ERATO-MMSD (JPMJER1603) project. The third author is supported by JST
MIRAI-eAI (JPMJMI20B8) project.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 533–549, 2023.
https://doi.org/10.1007/978-3-031-27481-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_30&domain=pdf
http://orcid.org/0000-0002-8795-3183
http://orcid.org/0000-0001-7725-2618
https://doi.org/10.1007/978-3-031-27481-7_30


534 T. Kobayashi et al.

The challenge lies in deriving the necessary GARSS conditions and formally
checking the compliance of the design of the ego vehicle over various scenar-
ios under different environmental conditions. In addition, there is increasing
demand to consider complex behaviours of black-box AI-based advanced con-
trollers backed up with safety-ensured controllers, e.g., the Simplex architec-
ture [10].

Existing efforts have clarified the principles to derive and argue conditions
that ego-vehicles should comply with in example scenarios. However, the engi-
neering aspect has yet to be investigated. Specifically, we need a systematic
modelling design that accepts the flexibility to mitigate the complexity in deal-
ing with multiple aspects of scenario variations and architectural design.

To this end, we report our experience in modelling, deriving, and proving
the safety conditions of autonomous vehicles (AVs). We follow the GA-RSS app-
roach to define and derive the safety conditions to be checked with architectural
design with black-box advanced controllers. We propose a strategy for using the
refinement mechanism of Event-B [2] to gradually argue the complex aspects
including the scenario variations. Our experience has shown the potential of the
refinement mechanism for the flexible design of models and proofs to mitigate
the complexity in a gradual manner. To the best of our knowledge, this is the
first attempt to focus on the model engineering aspect over scenario variations
in the deductive approach for AV safety.

The rest of this paper is structured as follows: In Sect. 2, we describe the
safety architecture, RSS, and Event-B. Section 3 introduces GA-RSS and a case
study example. We elaborate on our approach and its application to the case
studies in Sect. 4–5. We discuss the approach in Sect. 6 before concluding the
paper in Sect. 7.

2 Preliminaries

2.1 Safety Architecture

Contemporary software systems often have black-box modules, such as machine
learning modules, in which their safety is essentially difficult to verify.

A safety architecture, such as Simplex architecture (Fig. 1) [10], is a funda-
mental approach to guaranteeing the safety of such systems while benefitting
from the high performance and functionality of black-box modules. It models
interactions between a controller and a plant. The controller part has two dif-
ferent controllers: the baseline controller (BC), which is designed to force safe
behaviour, and the advanced controller (AC), which aims at satisfying various
requirements (e.g., comfort and progress) in addition to safety. The decision
module (DM) switches between the BC and AC in accordance with the state
of the plant. BC may fail to satisfy requirements other than safety, but it has
a simple white-box behaviour enabling the safety to be easily verified. In con-
trast, although AC usually gives better user experiences, guaranteeing its safety
is difficult due to its complicated black-box behaviour. For example, a typical
BC for an AV may drive by following a predefined rule that is guaranteed to be



Formal Modelling of Safety Architecture 535

Fig. 1. Component-based simplex architecture [10]

safe in certain situations. A typical AC, on the other hand, would be one that
uses machine learning for motion planning.

2.2 Responsibility-Sensitive Safety (RSS)

RSS is an approach to determining the safety of AVs by formal proof. The core
idea is to derive conditions that should be satisfied by the current state of the
traffic participants such that safety, or no collisions, is ensured in the future.

An RSS rule consists of an assertion φ called an RSS condition and a con-
trol strategy α called a proper response. They are defined for particular traffic
scenarios. For example, a subject vehicle (SV), i.e., the ego vehicle, is following
a preceding vehicle on a one-way road. We consider this preceding vehicle as
the sole traffic participant called a principal other vehicle (POV). The SV must
satisfy the RSS condition φ regarding the minimum relative distance from the
POV. The distance is defined by considering the response time for braking and
the distance necessary for the maximum comfortable braking to stop. The proper
response α of the SV is to engage the maximum comfortable braking when the
distance condition φ is about to be violated. The proof should show the RSS
condition φ is preserved through the execution with the proper response α.

In a general setting, RSS considers the SV and POV in the target scenario
and determines the RSS condition and proper response. To prove the condition is
preserved through the execution, a certain set of constraints must be satisfied by
not only the SV but also all traffic participants (POVs), called RSS responsibility
principles. Examples of the principles include “do not cut in recklessly” and “be
cautious in areas with limited visibility”, intuitively.

Our focus is not on the core responsibility principles of RSS but on the RSS-
driven framework for proving safety of AVs. We are interested in the formal
engineering aspect to model and verify scenario variations.

2.3 Modelling and Proving in Event-B

In this section, we describe the concepts of modelling and theorem proving in
Event-B [2] that are used in our case study1.
1 For simplicity, we do not cover the “full” Event-B (described in [2]). For instance,

our concrete machines inherit all variables and parameters from abstract machines,
which is not necessary in general Event-B machines.



536 T. Kobayashi et al.

context C

constants c
axioms A(c)

(abstract) machine Ma

variables va
invariants Ia(c, va)
event ea

any pea where
Gea(c, va, pea)

then BAea(c, va, pea , va)
end

(concrete) machine Mc refines
Ma sees C

variables vc
invariants Ic(c, va, vc)
event ec ref ines ea

any pec where
Gec(c, vc, pec)

then BAec(c, vc, pec , vc)
end

Fig. 2. Structure of Event-B model components

Event-B Model Components. Event-B models are structured as shown in
Fig. 2. The static aspects of the target system are specified as contexts, which
consist of constants and their properties (axioms). The dynamic aspects are
specified as machines, which consist of variables, invariant predicates, and a set
of events. An event e has parameters pe, guard condition Ge, and before-after
predicate BAe that explains the assignment performed in e in terms of variables’
current values v and next values v′. A significant feature of Event-B is a flexible
refinement mechanism that enables declaring a machine Mc as a refinement
of another machine Ma. Every event in Mc should be seen as a refinement of
events in Ma (including the implicit skip event). Mc does not need to inherit
predicates of Ma, but those two machines should be compatible as described in
the following.

Proving Consistency of Models. Constructed models should be verified by
discharging proof obligations (POs) generated with predicates in the models.
Primary POs include the following:

– Invariant Preservation (for an abstract machine): Invariant predicates are
inductive ones, i.e., they must hold after every occurrence of events, given
that they hold beforehand. Formally, invariant preservation by an event ea
is: A(c) ∧ Ia(c, va) ∧ Gea(c, va, pea) ∧ BAea(c, va, pea , v′

a) ∧ . . . =⇒ Ia(c, v′
a).

– Invariant Preservation (for concrete machines): Formally, invariant preser-
vation by an event ec is: A(c) ∧ Ia(c, va) ∧ Ic(c, va, vc) ∧ Gec(c, vc, pec) ∧
BAec(c, vc, pec , v

′
c) ∧ . . . =⇒ Ic(c, v′

a, v
′
c).

– Guard Strengthening: For an event ec to be a refinement of an event ea, the
guard of ec must be stronger than that of ea’s. Formally, guard strengthening
of ec is: A(c)∧ Ic(c, va, vc)∧ Ia(c, va)∧Gec(c, vc, pec)∧ . . . =⇒ Gea(c, va, pea).

3 Example: Goal-Aware RSS for Pull over Scenario

Goal-aware RSS (GA-RSS) [7] is an extension of RSS for dealing with complex
scenarios that require planning over multiple manoeuvres to achieve particular



Formal Modelling of Safety Architecture 537

Fig. 3. Pull over scenario [7]

goals. For instance, consider the scenario shown in Fig. 3 (pull over scenario) [7]:
the SV needs to stop at a designated location (xTgt) on the shoulder lane while
keeping safe distances from POVs as required by RSS. Following only the original
RSS rules for avoiding collisions is necessary but not enough to achieve the goal.
The goal should be decomposed into several subgoals, such as (1) getting ready
to merge between two POVs by changing the velocity, (2–3) changing lanes,
and (4) stopping at xTgt. Different proper responses are required for different
subgoals as well. However, for example, the SV can be trapped in Lane 1 if it is
concerned about only the distance from the car ahead.

The workflow of GA-RSS is based on their extension of Floyd-Hoare logic.
Given a driving scenario S composed of the goal condition Goal and safety con-
dition Safety, the workflow is first used to decompose S into subscenarios S1,...,n

and identify the proper response αi for each subscenario Si.2

Then, the precondition φi for each subscenario is calculated as the precondi-
tion for establishing Goali∧φi+1 while satisfying Safetyi, by performing αi. Here,
by seeing the (grand) goal of S as the postcondition of the final subscenario Sn,
the preconditions of all subscenarios are derived in a backward manner, à la
Floyd-Hoare logic, and then integrated into the precondition of S.

For instance, Fig. 4 shows the subgoals, safety conditions, proper responses,
and preconditions of a subscenario chain (defined and derived in [7]) where the
SV goes between POV1 and POV2 and changes lanes.

Variables are as follows: xSV and x1,2,3 are the lateral positions of the SV
and the three POVs; vSV and v1,2,3 are their lateral velocities; aSV and a1,2,3

are their lateral acceleration rates; L and L1,2,3 for set of lanes they are on.
Constants are as follows: xTgt is the position of the final goal position; vmin and
vmax are the legal speed limits; bmin and bmax are the minimum (comfortable)
and maximum (emergency) braking deceleration rates; amax is the maximum
acceleration rate.

2 To be precise, with case distinctions, a tree of subscenarios is derived.



538 T. Kobayashi et al.

Fig. 4. Subscenarios of pull over scenario with proper response and precondition

The condition of environment Env is as follows:

Env =
∧

i=1,2,3

(vmin ≤ vi ≤ vmax ∧ ai = 0)

∧ L1 = {2} ∧ L2 = {2} ∧ L3 = {1} ∧ x2 > x1.

This condition includes the assumption that POVs are supposed to run at con-
stant velocity.

The RSS safety distance that the SV running at vSV should keep from the
POVi ahead running at vi is defined as follows:

dRSS(vi, vSV ) = max
(

0,
v2
SV

2bmin
− v2

i

2bmax

)
. (1)



Formal Modelling of Safety Architecture 539

The times the SV should cruise, brake, or accelerate in subscenario Si for
proper response αi are derived in the GA-RSS workflow [7]. For instance,

timeToCruise4(xSV 0, vSV 0) =
xTgt − xSV 0

vSV 0
− vSV 0

2bmin
, (2)

timeToBrake4(vSV 0) =
vSV 0

bmin
, (3)

where xSV 0 and vSV 0 are the position and velocity of the SV, respectively, when
the switching occurs.

GA-RSS is designed to be integrated with the Simplex architecture. The
identified scenarios are used to construct the BC that performs the derived
proper response α in the situation compatible with the scenario, and thus the
BC is guaranteed to be safe and goal-achieving. While the correctness of the DM
is not covered with the method in [7], their experiment used their implementation
of a Simplex-based controller, where the AC is black-box.

Motivation of Our Case Study. Even with the BC specifications identified
with the GA-RSS workflow, a formal model of the whole Simplex architecture
closer to the implementation is desired to construct safe and goal-achieving con-
trollers of AVs. Such models should at least take into account the behaviour of
the DM and the monitor-decide-control loop (Fig. 1).

The challenge here is the model’s complexity ; for example, in addition to
DM-related elements, we need to take switching time delays into consideration.

To overcome this, we exploit the refinement mechanism of Event-B, which
distributes the complexity of modelling and verification over multiple steps.

The rest of this paper discusses our case study, where we constructed and
verified Event-B models of Simplex-based controllers for pull over subscenarios.

4 Case Study 1: Modelling Subscenario S4

In this section, we introduce our modelling strategy, where elements of systems
should be specified in each refinement step by using our model for subscenario S4

of the pull over scenario as an example. We model the entire safety architecture
and verify its safety in three refinement steps as follows:

Machine M4,0: Whole controller-level. This is the most abstract machine.
The properties of the whole controller’s
(AC+BC+DM) behaviour at every cycle are modelled. We focus on physical
requirements that should be satisfied due to the controller’s behaviour.

Machine M4,1: Module-level. This machine refines M4,0. This machine is
aware of the safety architecture; behavioural properties of AC, BC, and DM
are specified separately. We checked that the switching by the DM satisfies
the requirements in M4,0 by proving the correctness of M4,0–M4,1 refinement.

Machine M4,2: Manoeuvre-level. This machine refines M4,1. Details of the
BC’s behaviour (proper responses) are specified. By checking the correct-
ness of M4,1–M4,2 refinement, we check that the proper responses satisfy the
requirements.



540 T. Kobayashi et al.

variables xSV , vSV

Event initialisation
any ( ) where then

init_sv : (xSV , vSV ) =
(xSV 0, vSV 0) end

invariants
types : xSV ∈ R ∧ vSV ∈ R

no_overrun : 0 ≤ xSV ≤ xTgt

v_regulated : 0 ≤ vSV ≤ vmax

precond : xTgt − xSV ≥ v2
SV /2bmin

Event run
any px , pv where

preserve_no_overrun : 0 ≤ px ≤ xTgt

preserve_v_regulated : 0 ≤ pv ≤ vmax

preserve_precond : xTgt − px ≥ p2
v/2bmin

x_physical_constr : xSV ≤ px ≤ xSV + 1

t=0
(vSV + amaxt)dt

v_physical_constr : vSV − 1

t=0
bmaxdt ≤ pv ≤ vSV + 1

t=0
amaxdt

then
update_xv : (xSV , vSV ) = (px, pv) end

Fig. 5. M4,0: Abstract, whole controller-level machine for subscenario S4

4.1 Machine M4,0: Whole Controller-Level Behaviour

Machine M4,0 is shown in Fig. 5. In this machine, we abstract away details of
the controller and focus on the SV’s position (xSV ) and velocity (vSV ) as the
result of the controller’s behaviour.

Invariant predicates no overrun and v regulated express basic requirements.
The precondition φ4 derived from the GA-RSS workflow is designed to be

an invariant that the safety architecture should preserve; the DM enables using
the AC while φ4 is robustly satisfied, but it switches to the control using the BC
once φ4 is about to be violated. Therefore, we specify φ4 as an invariant predicate
(precond).

There is only a single non-initialisation event named run. It has parame-
ters px and pv, which are specified as values of xSV and vSV at the next cycle
(update xv). The parameters are constrained by the guard predicates preserve *

required for the event’s invariant preservation and those for the constraints
related to physics (* physical constr). With these constraints as guard pred-
icates of the event, we declare that every detailed behavioural description spec-
ified as events in concrete machines (M4,1 and M4,2) should satisfy the con-
straints.

The guard predicate preserve precond states that the controller somehow
produces the result (i.e., px and pv) such that precond is satisfied. Indeed, the
preservation of the precondition φ4 is trivial because:

(xTgt − px ≥ p2v/2bmin) ∧ . . . ∧ ((x′
SV , v′

SV ) = (px, pv))

=⇒ xTgt − x′
SV ≥ v′2

SV /2bmin.

Note that how the controller works to produce the invariant-satisfying result is
not yet specified and deferred to concrete machines; how the DM prevents the



Formal Modelling of Safety Architecture 541

variables xSV , vSV , ctrl , vBC0

invariants
types : ctrl ∈ {AC, BC} ∧ vBC0 ∈ R

vsvbcinit_regulated : 0 ≤ vBC0 ≤ vmax

bc_no_accel : ctrl = BC =⇒ vSV ≤ vBC0

switching : ctrl = AC =⇒ φ4(xSV + 1

t=0
(vSV + amaxt)dt, vSV + 1

t=0
amaxdt)

Event AC → BC ref ines run
any px , pv where

. . . ( guard p r ed i c a t e s o f run except preserve_precond) . . .
AC_operating : ctrl = AC

maybe_unsafe_next : ¬φ4(xSV + 2

t=0
(vSV + amax)dt, vSV + 2

t=0
amaxdt)

then
. . . ( a c t i on s o f run) . . .
switch_to_bc : ctrl = BC
vsvbcinit_update : vBC0 = pv end

Event BC → AC ref ines run
any px , pv where

. . . ( guard p r ed i c a t e s o f run) . . .
BC_operating : ctrl = BC
no_acceleration : pv ≤ vBC0

surely_safe_next : φ4(xSV + 2

t=0
(vSV + amax)dt, vSV + 2

t=0
amaxdt)

then
. . . ( a c t i on s o f run) . . .
switch_to_ac : ctrl = AC end

Fig. 6. (A part of) M4,1: Intermediate, module-level machine for subscenario S4

AC from violating it is specified in machine M4,1, and how the BC’s behaviour
(proper responses) satisfies it is specified in machine M4,2.

4.2 Machine M4,1: Module-Level Behaviour

In machine M4,1 (Fig. 6), which refines M4,0, we focus on the requirements on
white-box modules of the architecture, namely the BC and DM, particularly the
condition for switching; through the proof attempt, we derived the switching
condition such that the precondition is always satisfied. Note that we assume
that the AC’s behaviour is arbitrary as long as it satisfies run’s guard. Details
of the BC’s behaviour that should be specified using the time spent for each
manoeuvre are introduced in machine M4,2.

There are two new variables: ctrl, for the currently active controller, and
vBC0, which stores the velocity at the time when switching to the BC occurs.

Invariant predicates are in regard to the requirements on the BC and DM.
vsvbcinit regulated requests that vBC0 should not exceed vmax like vSV , and
bc no accel expresses that the BC does not accelerate in the proper response.
switching states that if the AC is active, then the SV will be goal-achieving and



542 T. Kobayashi et al.

safe after a cycle even if the SV accelerated with the maximum rate amax. The
contraposition of switching means that the BC is used if the precondition φ4

may be violated at the next cycle.
There are four events for cases of switching: AC → AC, AC → BC, BC → BC,

and BC → AC. They all refine the run event of the previous machine M4,0.
For instance, AC → BC is for the case where the current controller is the AC
(AC operating) and switching can be violated after the event (maybe unsafe next;
note that the integrals are from t = 0 to 2 to look ahead for two cycles). Note
that, however, switching is guaranteed to hold before the event since it is an
invariant predicate. In addition to actions of run, the controller is switched to
the BC (switch to bc) and vBC0 is updated (vsvbcinit update). On the other
hand, BC → AC is the case where the controller is switched from the BC to AC
because the invariant switching will be satisfied after the occurrence of the event
(surely safe next).

The main POs are as follows:
1. Do the events AC → ∗ preserve the invariant precond? This corresponds
to the guard strengthening PO of AC → ∗. The intuition of the proof is because
the AC is operating only if the precondition is guaranteed to hold after two
cycles (surely safe next), and it is guaranteed to hold after one cycle as well.
2. Do events ∗ → AC preserve the invariant switching? It is preserved
because the AC will be used only if surely safe next holds at the current state.
In fact, we derived the switching condition surely safe next through the attempt
to discharge this PO.

4.3 Machine M4,2: Manoeuvre-Level Behaviour

In machine M4,2 (Fig. 7), which refines M4,1, we focus on the details of the
behaviour with the notion of time to spend on each manoeuvre to verify that
the BC’s behaviour satisfies the requirements specified in machines M4,0 and
M4,1.

Two new variables about the remaining time for cruising (tBCCruise) and
braking (tBCBrake) are introduced. The unit of time here is the cycle, e.g., the
value of tBCCruise is the number of the controller’s cycles spent for cruising.

Invariant predicates are in regard to the detailed properties of the BC’s
behaviour: cruise before brake expresses that the proper response α4 is cruis-
ing and then braking, and * in BC* states that the velocity and position should
follow the proper response α4 as shown in Fig. 8.

Events of M4,2 refine those of M4,1 as shown in Fig. 9.
Three events that refine AC → ∗ are mostly the same as M4,1, but events

regarding switching to the BC (such as AC run → BC) are extended with actions
of calculating tBCCruise and tBCBrake as Eqs. 2 and 3 (derived in the GA-RSS
workflow) because the BC should calculate them every time it get activated.

Unlike events that refine AC → ∗, six events that refine BC → ∗ do not inherit
all of the guard predicates and actions of corresponding events in machine M4,1.
For example, the differences between the event BC cruise → AC in M4,2 and
the corresponding event BC → AC in M4,1 is as shown in Fig. 10. The removed



Formal Modelling of Safety Architecture 543

variables xSV , vSV , ctrl , vBC0 , tBCCruise , tBCBrake

invariants
types : tBCCruise ∈ R≥0 ∧ tBCBrake ∈ R≥0

cruise_before_brake : 0 < tBCCruise =⇒ 0 < tBCBrake

v_in_BC : ctrl = BC =⇒ vSV = tBCBrake · bmin

v_in_BC_cruise : (ctrl = BC ∧ 0 < tBCCruise) =⇒ vSV = vBC0

x_in_BC : (ctrl = BC ∧ vSV = 0)
=⇒ xTgt − xSV = tBCCruise

t=0
vSV dt + tBCBrake

t=0
(vSV − bmint)dt

axioms t_bccruise_def : timeToCruise4(x, v) = (2bmin(xTgt − x) − v2)/(2bminv)

Event AC˙ run → BC ref ines AC → BC
any px , pv where

. . . ( guard p r ed i c a t e s o f AC → BC) . . .
will_run_more : 0 < pv

then
. . . ( a c t i on s o f AC → BC) . . .
update_tcruisebc : tBCCruise = timeToCruise4(px, pv)
update_tbrakebc : tBCBrake = timeToBrake4(pv)

end

Event BC˙ cruise → AC ref ines BC → AC
any px , pv where

BC_operating : ctrl = BC

surely_safe_next : φ4(xSV + 2

t=0
(vSV + amax)dt, vSV + 2

t=0
amaxdt)

will_cruise_more : 1 ≤ tBCCruise

cruise_xv : px = xSV + 1

t=0
vSV dt ∧ pv = vSV + 1

t=0
0dt

then
. . . ( a c t i on s o f BC → AC) . . .
tcruise_pass : tBCCruise = tBCCruise − 1

end

Fig. 7. (A part of) M4,2: Concrete, manoeuvre-level machine for subscenario S4

guard predicates (lines with red background) are requirements on the values of
the SV’s position and velocity after the occurrence of the event (px and pv), while
introduced guard predicates (lines with green background) include the concrete
behaviour of the BC (cruise xv), namely running with the constant velocity. By
changing events in this way and checking that the guard of BC cruise → AC is
stronger than that of BC → AC, we can verify that the BC’s concrete behaviour
satisfies the requirements specified in machines M4,0 and M4,1.

In addition to the consistency between the BC’s concrete behaviour specified
in M4,2 and requirements on the BC specified in M4,1, we checked that events
∗ → BC and BC → ∗ preserve the invariant.



544 T. Kobayashi et al.

Fig. 8. Proper response α4 Fig. 9. Event refinement relationship

5 Case Study 2: Modelling Subscenario S3

In this section, we use subscenario S3 to demonstrate how our modelling strategy
(Sect. 4) is applicable to other subscenarios. subscenario S3 has new aspects; the
SV is changing lanes and the leading vehicle POV2.

5.1 Machine M3,0: Whole Controller-Level Behaviour

Following machine M4,0 of subscenario S4, we focus only on the physical results
of the controller behaviour.

POV2’s variable position (x2) and constant velocity (v2) are used in addition
to SV’s position and velocity.

As the SV is changing lanes, we assume that this action will be done in an
exact amount of time modelled as a constant tLC (the time for lane changing),
and therefore we introduce another variable tLCe (the time for lane changing
elapsed) so that when the time elapsed reaches tLC , the SV should have finished
switching lanes and the subscenario is over. We modelled lanes in this style
instead of introducing another physical coordinate for simplicity.

A new invariant predicate no overtime regarding the time limit of this sub-
scenario is also introduced as a replacement for no overrun of subscenario S4.
The corresponding guard predicates of the event run are specified so that no
event can occur once the lane switching is over.

no overtime: tLCe ≤ tLC

The precondition for subscenario S3 (φ3 derived in [7]) takes into consider-
ation the RSS safety distance between the SV and the leading vehicle POV2.

precond: xTgt − xSV ≥ v2
SV /2bmin ∧ xSV < x2

∧2(xSV − x2) + v2
SV

bmin
≤ v2

2
bmax

As in subscenario S4, the run event has guard predicates to preserve invariant
predicates. The event also has new actions for updating x2 and tLCe:



Formal Modelling of Safety Architecture 545

update xLead: x′
2 = x2 +

∫ 1

t=0
(v2t)dt

update xLCe: t′LCe = min(tLC , tLCe + 1)

Fig. 10. Differences between BC → AC (in M4,1) and BC cruise → AC (in M4,2)

5.2 Machine M3,1: Module-Level Behaviour

This machine is also similar to M4,1, but the invariant switching and guard pred-
icates surely safe next (and its negation maybe unsafe next) take into account
the distance between the SV and POV2.

switching: ctrl = AC =⇒ φ3(xSV +
∫ 1

t=0
(vSV + amaxt)dt,

vSV +
∫ 1

t=0
amaxdt, x2 +

∫ 1

t=0
(v2t)dt, v2)

surely safe next: φ3(xSV +
∫ 2

t=0
(vSV + amaxt)dt, vSV +

∫ 2

t=0
amaxdt,

x2 +
∫ 2

t=0
(v2t)dt, v2)

As subscenario S4 (Sect. 4.2), the POs are in regard to the preservations of
invariants precond and switching.

5.3 Machine M3,2: Manoeuvre-Level Behaviour

Compared with M4,2 for subscenario S4, there are two major differences: when
switching to the BC, the calculation of tBCCruise and tBCBrake (derived in [7])
is different because the velocity of the SV should not be zero by the end of the
subscenario S3 but only low enough to satisfy the goal invariant.



546 T. Kobayashi et al.

tBrake update: t′BCBrake = (tLC − tLCe) + pv

2.bmin
+ px−xTgt

pv

The six events that refine BC ∗ → ∗ have to satisfy machine M3,0’s precond

that now includes the safety distance to the leading vehicle POV2.
The POs in regard to this invariant were discharged in the following way:

1. BC ∗ → BC. The idea behind this proof is that BC’s proper response does
not include accelerating and the leading vehicle’s velocity is constant, so the
distance between these two may only increase.

2. BC ∗ → AC. The guard predicate surely safe next states that the invariant
will be satisfied in two cycles without having to break in the next cycle because
the controller will be in the AC.

6 Discussion

6.1 Model Engineering

In the case studies, we have used the refinement mechanism of Event-B to grad-
ually model and verify the different aspects. Specifically, we separated the argu-
ment over the definition of safe and goal-achieving behaviour, architecture for
switching behaviours, and concrete behaviour design. The refinement mechanism
limits the complexity of modelling and proof in each step, which was essential
in handling the increasing complexity in proving continuous properties.

We did not directly reuse the models between subscenarios, e.g., sharing the
abstract steps between subscenarios. This is our explicit choice as the key safety
properties and involved variables for the POVs are unique to each subscenario.
We instead used the common refinement strategy as well as the model repre-
sentations. We believe this experience enables us to demonstrate the know-how
for scenarios other than the pull over scenario. The generality of the approach
is further discussed in the following.

6.2 Generality of Approach

We have described how the same refinement strategy can deal with subscenarios
S3 and S4. We describe how the other subscenarios can be modelled as well as
the omitted aspect of perception errors.

Subscenario S2. The machines for subscenario S2 are similar to that for subsce-
nario S3. The main difference between them is the presence of a leading vehicle
in the next lane in subscenario S2 while there is none in subscenario S3.

Subscenario S1. In this subscenario, the SV needs to prepare to switch lanes
and merge into the next lane. There are three POVs to take into account: one
ahead of the SV in the current lane (POV3) and two others in the next lane
(POV 1 and 2). This subscenario thus involves multiple (in this case, four)
proper responses: an example is accelerating to pass POV1 in the next lane, and
another example is decelerating to match the velocity of POV2 in the next lane.



Formal Modelling of Safety Architecture 547

To handle multiple proper responses in a unified manner, we modelled them as a
sequence of proper responses with variable durations as follows: (1) Accelerate for
tBCAccel (2) Cruise for tBCCruise (3) Brake for tBCBrake. Moreover, we needed
to take into account different precondition for each proper response. Therefore,
we introduced a variable to record which proper response was taken the last time
the BC got activated.

Perceptual Uncertainty. Another aspect not included in the case studies is
perceptual uncertainty or the possibility of errors in sensing. A basic approach
to this issue would be adding safety margins to the behaviour of the controller.
For instance, introducing a variable x̂Tgt for the perceived value of target loca-
tion (xTgt) and discussing assumptions on the difference between xTgt and x̂Tgt

enables us to derive the appropriate amount of the safety margin for this uncer-
tainty.

6.3 Using Event-B for Modelling and Proving

Features of Event-B and its modelling environment Rodin [1] were useful for
modelling and proving the safety architecture for GA-RSS. Rodin generated
POs and helped interactive proof of them. The refinement mechanism of Event-
B was effective for distributing the complexity of modelling and proving over
multiple steps. In addition, as we discussed in Sect. 4.2, we derived the correct
behaviour of DM from generated POs.

Our contributions in this paper, namely strategies of modelling and refine-
ment, provide a guide to the effective use of Event-B’s features for the rigorous
and systematic construction of controllers for different subscenarios.

On the other hand, although Rodin has proof tactics and provers for auto-
matically discharging POs, we had to manually discharge all POs. It is because
we needed an extension of Event-B language [4] to use real numbers in mod-
els, and Rodin’s current automatic proof functionalities are not strong when the
language is extended. However, we expect that this problem will be solved; for
instance, there are studies aiming at assisting automatic proof of hybrid systems
by bridging Rodin with external solvers [3].

6.4 Related Work

RSS was originally proposed as the formal approach for AVs, but the paper did
not include any machine-processible models [13]. The work on GA-RSS extended
the framework of RSS with formal specifications and partial calculations sup-
ported by Mathematica [7]. Other studies only used the resulting RSS conditions,
for example, encoding them in signal temporal logic for runtime verification [8].
To the best of our knowledge, this is the first attempt to make use of formal
modelling for the RSS scheme. The study in [12] demonstrated the difficulty
in checking RSS properties with automated “one button” tools for reachability
analysis and model checking.



548 T. Kobayashi et al.

Other formal attempts for AVs include proofs with the Isabelle/HOL
prover [11] with support of MATLAB. The focus was on the detailed compu-
tation including floating-point errors while the driving behaviour was rather
simple; avoidance of one static object with a white-box controller.

Verification over RSS is intrinsically hybrid, i.e., including continuous aspects
such as velocity and distance. Proofs over hybrid models have been actively
investigated in the Hoare-style reasoning, not only for Event-B but also in other
formalisms such as KeYmaera X [6]. Our case study did not focus on the contin-
uous aspects and used rather simple theories for handling real arithmetic. Our
future work includes the use of more sophisticated support for discharging the
proof obligations. It is notable that refining continuous models in the physics
world into discrete software controllers has been actively investigated for Event-
B, e.g., [5]. Models obtained in our approach can be further refined with such
techniques into concrete designs of discrete software controllers.

Guidelines with a focus on refinement strategies have been considered useful
for Event-B as reusable know-how for specific types of systems [14]. Our case
study has the potential to be elaborated into such guidelines. Although the
effectiveness of refinement strategies has been discussed qualitatively in most
cases, there have been efforts on quantitative analysis [9]. Our future work will
include analysis of refinement strategies in this work in a more systematic way.

7 Conclusion

In this paper, we reported our case study to model, derive, and prove the safety
conditions of AVs in the RSS scheme. We target a state-of-the-art problem with
the goal-aware version of RSS as well as the Simplex architecture to consider
black-box AI controllers. We proposed a strategy for leveraging the refinement
mechanism of Event-B and demonstrated how it mitigates the complexity over
scenario variations. We will continue studying other scenarios to convert the
obtained lessons into more concrete and general guidelines for formal modelling
and verification of AVs.

Acknowledgements. We thank our industrial partner Mazda for discussions of real-
istic problems in the safety assurance of autonomous driving. We also thank members
of JST ERATO HASUO Metamathematics for Systems Design Project for discussions
of Goal-Aware RSS and the safety architecture.

References

1. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

https://doi.org/10.1007/s10009-010-0145-y


Formal Modelling of Safety Architecture 549

3. Afendi, M., Mammar, A., Laleau, R.: Building correct hybrid systems using Event-
B and sagemath: illustration by the hybrid smart heating system case study.
In: 26th International Conference on Engineering of Complex Computer Sys-
tems (ICECCS), pp. 91–96. Hiroshima, Japan (2022). https://doi.org/10.1109/
ICECCS54210.2022.00019

4. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

5. Dupont, G., Ait-Ameur, Y., Singh, N.K., Pantel, M.: Event-B hybridation: a
proof and refinement-based framework for modelling hybrid systems. ACM Trans.
Embed. Comput. Syst, 20(4), 1–37 (2021). https://doi.org/10.1145/3448270

6. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

7. Hasuo, I., et al.: Goal-aware RSS for complex scenarios via program logic. In:
IEEE Transactions on Intelligent Vehicles, pp. 1–33 (2022). https://doi.org/10.
1109/TIV.2022.3169762

8. Hekmatnejad, M., et al.: Encoding and monitoring responsibility sensitive safety
rules for automated vehicles in signal temporal logic. In: 17th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design (MEM-
OCODE). ACM, New York, NY, USA (2019). https://doi.org/10.1145/3359986.
3361203

9. Kobayashi, T., Ishikawa, F.: Analysis on strategies of superposition refinement
of Event-B specifications. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol.
11232, pp. 357–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02450-5 21

10. Phan, D., et al.: A component-based simplex architecture for high-assurance cyber-
physical systems. In: 17th International Conference on Application of Concurrency
to System Design (ACSD), pp. 49–58. Zaragoza, Spain (2017). https://doi.org/10.
1109/ACSD.2017.23

11. Rizaldi, A., Immler, F., Schürmann, B., Althoff, M.: A formally verified motion
planner for autonomous vehicles. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 75–90. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 5

12. Roohi, N., Kaur, R., Weimer, J., Sokolsky, O., Lee, I.: Self-driving vehicle verifica-
tion towards a benchmark. CoRR abs/1806.08810 (2018). http://arxiv.org/abs/
1806.08810

13. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars. CoRR abs/1708.06374 (2017). http://arxiv.org/abs/
1708.06374

14. Yeganefard, S., Butler, M.J., Rezazadeh, A.: Evaluation of a guideline by formal
modelling of cruise control system in Event-B. In: Muñoz, C.A. (ed.) The 2nd
NASA Formal Methods Symposium (NFM). NASA Conference Proceedings, vol.
NASA/CP-2010-216215, pp. 182–191 (2010)

https://doi.org/10.1109/ICECCS54210.2022.00019
https://doi.org/10.1109/ICECCS54210.2022.00019
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1145/3448270
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1109/TIV.2022.3169762
https://doi.org/10.1109/TIV.2022.3169762
https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1007/978-3-030-02450-5_21
https://doi.org/10.1007/978-3-030-02450-5_21
https://doi.org/10.1109/ACSD.2017.23
https://doi.org/10.1109/ACSD.2017.23
https://doi.org/10.1007/978-3-030-01090-4_5
https://doi.org/10.1007/978-3-030-01090-4_5
http://arxiv.org/abs/1806.08810
http://arxiv.org/abs/1806.08810
http://arxiv.org/abs/1708.06374
http://arxiv.org/abs/1708.06374


A Runtime Environment for Contract
Automata

Davide Basile(B) and Maurice H. ter Beek

Formal Methods and Tools Lab, ISTI–CNR, Pisa, Italy
{davide.basile,maurice.terbeek}@isti.cnr.it

Abstract. Contract automata have been introduced for specifying
applications through behavioural contracts and for synthesising their
orchestrations as finite state automata. This paper addresses the reali-
sation of applications from contract automata specifications. We present
CARE, a new runtime environment to coordinate services implementing
contracts that guarantees the adherence of the implementation to its
contract. We discuss how CARE can be adopted to realise contract-based
applications, its formal guarantees, and we identify the responsibilities of
the involved business actors. Experiments show the benefits of adopting
CARE with respect to manual implementations.

1 Introduction

From a recent survey in the transport domain [23], it has emerged that the
majority of studies on formal methods propose specification languages, models,
and their verification, whereas fewer focus on how to derive the finalised software
from the verified specification also showing the adherence of the implementation
to its specification. The authors of [26] state that these interaction specifications
“are not yet a feature of standard mainstream programming languages, so soft-
ware developers are not able to benefit from them”. In this paper, we investigate
the connection between a behavioural specification and its implementation, and
we provide a possible realisation of those aspects abstracted in a specification.

Contract automata are a dialect of finite state automata used to formally
specify the behaviour of service contracts in terms of offers and requests [14].
A composition of contracts is in agreement when all requests are matched by
corresponding offers of other contracts. A composition can be refined to one in
agreement using the orchestration synthesis algorithm [12,13], a variation of the
synthesis algorithm from supervisory control theory [30]. Previously, in [10], a
library called CATLib [11] implementing the operations on contract automata
(e.g., composition, synthesis) was presented. A front-end of CATLib for graphi-
cally editing and operating on contracts is also available [19], called CAT App. The
orchestrator is abstracted away in contract automata and until now no examples
of concrete implementations were provided in which services implement contract
automata specifications.

Whilst CATLib and CAT App are used to specify applications as contract
automata, in this paper we tackle the problem of implementing applications
that have been specified via contract automata. We introduce CARE [17], a newly
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 550–567, 2023.
https://doi.org/10.1007/978-3-031-27481-7_31

https://doi.org/10.5281/zenodo.7337351
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_31&domain=pdf
http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
https://doi.org/10.1007/978-3-031-27481-7_31


Contract Automata Runtime Environment 551

developed software that provides a runtime environment to coordinate the CARE
services that implement the contracts of the synthesised orchestration. Thus,
CARE advances the state-of-the-art of the research on contract automata and
behavioural contracts by detailing how specifications through contract automata
can be connected with service-based applications. With CARE, the low-level inter-
actions that are abstracted in contract automata orchestrations are now expli-
cated. We discuss how CARE can promote a separation of concerns among dif-
ferent actors that together cooperate to realise contract-based applications, and
among developers and designers of services. The proposed framework is exer-
cised on two examples, showcasing the usage of CARE. Experiments show a neat
improvement in terms of decreased complexity of the software when comparing
the implementations of the examples exploiting CARE with those that manually
implement the low-level interactions among services without relying on CARE.

Related Work. Other approaches to connect implementations with behavioural
types (e.g., behavioural contracts, session types) are surveyed in [2,25]. Our
approach is closer to [26,34], where behavioural types are expressed as finite
state automata of Mungo, called typestates [33]. The toolchain of Mungo and
StMungo is proposed to implement behavioural types specifications. Similarly
to CARE, in Mungo finite state automata are used as behaviour assigned to Java
classes (one automaton per class), where transition labels correspond to methods
of the classes. A tool similar to Mungo is JaTyC (Java Typestate Checker) [6].

An Eclipse plugin called Diogenes [4] allows to write specifications of services
as behavioural contracts using a domain specific language, verify them, and gen-
erate skeletal Java programs to be refined using the Java RESTful Web service
middleware for contract-oriented computing presented in [8]. Both Diogenes and
StMungo generate skeletal Java programs from contract compositions or multi-
party session types, respectively, whereas CARE allows to adapt already existing
components to realise a new application in a bottom-up approach, fostering
adaptability and reusability of services.

CARE adopts a correct-by-design approach to implement a specification with
formal guarantees. The complementary approach infers a behavioural type from
an implementation, where guarantees hold if the typing succeeds. An algorithm
to infer a form of behavioural types from programs with assertions is discussed
in [35], where programs are written in Mool (Mini object-oriented language),
a simple Java-like language incorporating behavioural types. The inference of
behavioural types from Go programs is studied in [27]. Go is a language supporting
synchronisations on channels inspired by process algebraic formalisms like CSP
and CCS [20]. The inference of behavioural types is thus facilitated by the chosen
languages, whilst extracting them from unconstrained Java programs is still a
challenge [31]. CATLib supports compositions of communicating machines, the
formalism of behavioural types used in [27], thus it could be used to suggest
amendments to the original Go programs by exploiting its synthesis algorithms.

Finally, the approach proposed by CARE shares aspects with the synthe-
sis/verification of runtime monitors [1,5,32], and is similar to the automated
composition problem studied in [3,7,21,22], to which CARE and CATLib offer
both a runtime engine and tailored novel synthesis algorithms.



552 D. Basile and M. H. ter Beek

Outline. We provide some background on contract automata in Sect. 2. Section 3
details the design of CARE. The formal guarantees offered by CARE are detailed
in Sect. 4, whilst Sect. 5 discusses how CARE can be adopted for building applica-
tions specified via contract automata and the separation of concerns. Section 6
contains two examples and an evaluation of the benefits of our contribution.
Finally, we conclude and discuss future work in Sect. 7.

2 Modal Service Contract Automata

We provide background on contract automata and their synthesis operation.
A Contract Automaton (CA) models either a single service or a multi-party

composition of services performing actions. Figure 4 depicts some examples of
CA. The number of services of a CA is called its rank. When rank = 1, the
contract is called a principal (i.e., a single service). For example, the leftmost and
rightmost automata in Fig. 4 are principals, while the automaton in the middle
has rank = 2. Labels of CA are vectors of atomic elements called actions. Actions
are either requests (prefixed by ?), offers (prefixed by !), or idle (denoted with
a distinguished symbol -). Requests and offers belong to the (pairwise disjoint)
sets R and O, respectively. The states of CA are vectors of atomic elements
called basic states. Labels are restricted to be requests, offers, or matches where,
respectively, there is either a single request action, a single offer action, or a single
pair of request and offer actions that match, and all other actions are idle. The
length of the vectors of states and labels is equal to the rank of the CA.

For example, the label [!euro, ?euro] is a match where the request action
?euro is matched by the offer action !euro. Note the difference between a request
label (e.g., [?coffee, -]) and a request action (e.g., ?coffee). A transition may
also be called a request, offer, or match according to its label.

The goal of each service is to reach an accepting (final) state such that all its
request (and possibly offer) actions are matched. In [12], CA were equipped with
modalities, i.e., necessary (�) and permitted (♦) transitions, respectively. Per-
mitted transitions are controllable, whereas necessary transitions can be uncon-
trollable or semi-controllable. The resulting formalism is called Modal Service
Contract Automata (MSCA). In the following definition, given a vector �a, its ith
element is denoted by �a(i).

Definition 1 (MSCA). Given a finite set of basic states Q = {q1, q2, . . .},
an MSCA A of rank = n is a tuple 〈Q, �q0, A

r, Ao, T, F 〉, with set of states Q =
Q1 × . . . × Qn ⊆ Qn, initial state �q0 ∈ Q, set of requests Ar ⊆ R, set of offers
Ao ⊆ O, set of final states F ⊆ Q, set of transitions T ⊆ Q × A × Q, where
A ⊆ (Ar ∪ Ao ∪ {-})n, partitioned into permitted transitions T♦ and necessary
transitions T�, such that: (i) given t = (�q,�a, �q ′) ∈ T , �a is either a request, or
an offer, or a match; and (ii) ∀i ∈ 1 . . . n, �a(i) = - implies �q(i) = �q ′

(i).

Composition of services is rendered through the composition of their MSCA
models by means of the composition operator ⊗, which is a variant of a syn-
chronous product. This operator basically interleaves or matches the transitions



Contract Automata Runtime Environment 553

of the component MSCA, but whenever two component MSCA are enabled to
execute their respective request/offer, then the match is forced to happen. More-
over, a match involving a necessary transition of an operand is itself necessary.
The rank of the composed MSCA is the sum of the ranks of its operands. The
vectors of states and actions of the composed MSCA are built from the vectors
of states and actions of the component MSCA, respectively. Typically, in a com-
position of MSCA various properties are analysed. We are especially interested
in agreement . In a contract that is in agreement, all requests are matched, i.e.,
transitions are only labelled with offers or matches.

We recall the specification of the abstract synthesis algorithm of CA from [13].
The synthesis of a controller, an orchestration, and a choreography of CA are all
different special cases of this abstract synthesis algorithm, formalised in [13] and
implemented in CATLib [10]. This algorithm is a fixed-point computation where
at each iteration the set of transitions of the automaton is refined (using pruning
predicate φp) and a set of forbidden states R is computed (using forbidden predi-
cate φf ). The synthesis is parametric with respect to these two predicates, which
provide information on when a transition has to be pruned from the synthesised
automaton and when a state has to be deemed forbidden, respectively. We refer
to MSCA as the set of (MS)CA, where the set of states is denoted by Q and the
set of transitions by T (with T� denoting the set of necessary transitions). For
an automaton A, the predicate Dangling(A) contains those states that are not
reachable from the initial state or that cannot reach any final state.

Definition 2 (abstract synthesis [13]). Let A be an MSCA, K0 = A, and
R0 = Dangling(K0). Given two predicates φp, φf : T × MSCA × Q → B, let the
abstract synthesis function f(φp,φf ) : MSCA× 2Q → MSCA× 2Q be defined as:

f(φp,φf )(Ki−1, Ri−1) = (Ki, Ri), with
TKi

= TKi−1 − { t ∈ TKi−1 | φp(t,Ki−1, Ri−1) = true }
Ri = Ri−1 ∪ { �q | (�q −→) = t ∈ T�

A , φf (t,Ki−1, Ri−1) = true } ∪ Dangling(Ki)

Subsequently, the abstract controller is defined as the least fixed point of f(φp,φf )

(cf. [13, Theorem 5.2]). The synthesised orchestration guarantees the reachability
of final states, the agreement property (i.e., all requests are matched) and that
all reachable necessary requests are not pruned (i.e., controllability).

Tooling. CA and their functionalities are implemented in a software artefact,
called Contract Automata Library (CATLib), whose development is active [11].
This software artefact is a by-product of our scientific research on behavioural
contracts and implements results that have previously been formally specified
in several publications (cf., e.g., [12–14]). Scalability features offered by CATLib
include a bounded on-the-fly state-space generation optimised with pruning of
redundant transitions and parallel streams computations. The software is open
source [11], it has been developed using principles of model-based software engi-
neering [10] and it has been extensively validated using various testing and anal-
ysis tools to increase the confidence on the reliability of the library [11].



554 D. Basile and M. H. ter Beek

Fig. 1. The class diagram for the orchestrated services; the methods of the derived
classes are visible in their super-class/interface as abstract methods (in italic)

3 CARE Design

We start by discussing the design of CARE. This software is organised into classes
for the orchestrated services (cf. Fig. 1) and classes for the orchestrator.

In Fig. 1, RunnableOrchestratedContract is an abstract class that imple-
ments an executable wrapper responsible for the composition of the specifica-
tion of a service (instance variable contract storing a contract automaton)
with its implementation (instance variable service implementing the service).
RunnableOrchestratedContract implements a service that is always listening
and spawns a parallel process when entering an orchestration. During an orches-
tration, it receives action commands from the orchestrator or from other services,
and it invokes the corresponding action method (by means of the instance vari-
able act of type OrchestratedAction).

The realisation of an orchestration is abstracted away in contract automata.
Crucially, offers and requests of contracts are an abstraction of low-level messages
sent between the services and the orchestrator to realise them. CARE exploits the
abstractions provided by Java to allow its specialisation according to different
implementation choices, using abstractions of object-oriented design, as showed
in Fig. 1. Two aspects to implement are choices and termination (through the
abstract method choice). CARE is equipped with default implementations, but
can be extended (by implementing the relative interfaces and abstract methods)
to include other options, other than the default ones. Currently, a so-called ‘dicta-
torial’ choice (i.e., an internal choice of the orchestrator, external for the services)
and a so-called ‘majoritarian’ choice (services vote and the majority wins) are two
implemented options. MajoritarianChoiceRunnableOrchestratedContract
and DictatorialChoiceRunnableOrchestratedContract are the two classes



Contract Automata Runtime Environment 555

specialising RunnableOrchestratedContract according to how the choice is
handled and implementing the abstract methods. CARE also provides default
implementations for the low-level message exchanges. Currently, the two
available options are the ‘centralised’ action, where the orchestrator acts
as a proxy, and the ‘distributed’ action, where two services matching their
actions directly interact with each other once the orchestrator has made
them aware of a matching partner and its address/port. Accordingly, each
RunnableOrchestratedContract has an OrchestratedAction (instance vari-
able act) used to implement the corresponding actions that can be either dis-
tributed or centralised according to the current implementation.

The abstract class RunnableOrchestration (which is not displayed in
Fig. 1) implements a special service that reads the synthesised orches-
tration (stored in the instance variable contract) and orchestrates the
RunnableOrchestratedContract to realise the overall application. Similarly to
the case of the orchestrated contract, also the orchestrator is specialised accord-
ing to either a dictatorial or a majoritarian implementation of the abstract
method choice. Moreover, an OrchestratorAction instance variable is used
to implement each action of the orchestration, either centralised or distributed,
thus matching the corresponding actions of the orchestrated services.

Finally, the class ContractViolationException implements an exception
raised in case an invocation of the orchestrator is not allowed by the orchestrated
contract or if that contract is not fulfilled. When thrown, the exception stores
the remote host that violates the contract. This guarantees the accountability
in case of a contract violation. Each label of a contract automaton is extended
using CARE with the information on the types of parameters and returned values
from the corresponding method implementing the corresponding action. These
typed labels are implemented into the class TypedCALabel, extending a CALabel
of CATLib. This class also overrides the matching between requests and offers to
also take into account their types: the returned value of the request must be of
a super-class of the parameter class of the offer and vice versa. This guarantees
that no ClassCastException will ever be raised when invoking the actions. Note
that the signature of each action declared by the interface is not fixed, so other
types can be used (e.g., JSon values).

We briefly detail the centralised implementation
of a match label in CARE. We will use the match
[?coffee,!coffee] from the example in Sect. 6, in
which Alice is requesting a coffee and Bob is offer-
ing a coffee. The method coffee of Alice is invoked
twice: firstly, passing no argument, it generates an
Integer value (e.g., the amount of sugar) that is
passed (by the orchestrator ror) as argument to the
method coffee of Bob, which in turn produces a
String value that is eventually passed as argument
to the method coffee of Alice, thus fulfilling the
coffee request.



556 D. Basile and M. H. ter Beek

4 Formal Guarantees

We now discuss the formal guarantees of correctness and the adherence of the
implementation to the specification brought by the usage of CARE. To begin with,
to guarantee that an orchestration is correct-by-design, the contract automata
operators of composition and orchestration synthesis are used, exploiting the
theoretical results on contract automata (cf. Sect. 2). More concretely, these
operations are performed in the constructor of a RunnableOrchestration using
CATLib. As discussed in Sect. 2, the synthesised orchestration ensures proper-
ties such as absence of deadlocks, matching of all requests of contracts with
corresponding offers of other contracts, and reachability of final states.

After a well-behaving orchestration has been synthesised, it is important to
ensure that the low-level implementations of the distributed services interacting
with each other will adhere to the operations prescribed by the orchestration
synthesised from their contracts. This task is addressed by using Algorithm 1
and Algorithm 2, both implemented in CARE, reproduced below in pseudo-code.

Algorithm 1. Orchestration
Require: non-empty orchestration automaton
Ensure: no exception is thrown

init Sockets � connect to the services
cs ← initialState � current state
while true do

fws ← forwardStar(cs)
if empty(fws) & notFinal(cs) then

throw Exception
end if
choice ← choice() � interact with services
if choice == stop & final(cs) then

return
end if
tr ← select(fws,choice)
if tr not in agreement then

throw Exception
end if
doAction(tr) � interact with services
cs ← targetState(tr)

end while

Algorithm 2. Service Thread
Require: connected to the orchestrator

init Socket � set socket timeout
cs ← initialState � current state
while true do

act ← receive(socket)
if stop(act) then

if final(cs) then
return

else throw ContractViolationException
end if

end if
if choice(act) then

performChoice() � interact with or-
continue � chestration

end if
tr ← select(forwardStar(cs),act)
if no valid action then

throw ContractViolationException
else

invokeMethod(tr)
end if
cs ← targetState(tr)

end while

Algorithm 1 illustrates the main operations performed during an orchestra-
tion. The algorithm requires that a correct and non-empty orchestration has
been synthesised. This requirement is necessary to ensure that no exceptions
will be thrown at runtime. Initially, the orchestrator connects to the services
(their ports and addresses are stored during instantiation). The current state of
the execution is set to the initial state. Subsequently, a loop is executed in contin-
uation. Inside the loop, one of the transitions is selected from the set of outgoing
transitions (i.e., the forward star) of the current state, using the implementation
of the abstract method choice. Here, if there is a deadlock (no outgoing tran-
sitions and the current state is not final), an exception is thrown. After that,
if the current state is final, but there are also outgoing transitions, then the



Contract Automata Runtime Environment 557

choice can be to stop or to continue; otherwise, if the state is not final, then the
choice can only be to select one of the outgoing transitions. If the selected tran-
sition of the orchestration does not satisfy agreement (i.e., its label is a request),
then an exception is thrown. Otherwise, the action of the selected transition is
executed using the implementation of the abstract method doAction and the
current state is updated to the target state of the transition. As discussed in
Sect. 2, if the orchestration automaton has been synthesised using the contract
automata synthesis, then this formally guarantees that the described exceptions
will never be thrown by the orchestrator.

Algorithm 2 summarises the execution of an orchestrated service following
its contract. The service is multi-threaded and spawns a new thread each time
a new request of connection is received. The algorithm depicts the operations
performed by a spawned thread. Similarly to the orchestration, there is an ini-
tialisation of the socket, and the current state is set to the initial state of the
contract. After that, a continuous loop is executed. Firstly, an action is received
from the orchestrator. If the choice is of terminating and the contract is in a
final state, then the service terminates successfully; otherwise, if the state is
not final, an exception is thrown. If the orchestrator requires to make a choice,
then the implementation of the abstract method choice is called to perform a
choice (possibly interacting with the orchestrator). Otherwise, the orchestrator is
requiring to perform an action. In this case, the prescribed action is selected from
the outgoing transitions of the current state of the service contract. If there is no
such action, then a contract violation exception is thrown since the orchestrator
is requiring to perform an operation not prescribed by the contract. Otherwise,
the method of the service that is paired with the corresponding action of the
contract is invoked. These steps ensure that the low-level implementation of the
actions of the services are correctly executed according to the actions prescribed
by the orchestration synthesised from the composition of contracts. Finally, the
current state is set to the target state of the contract and the loop is repeated.
Similarly to the orchestration case, if the orchestrator is executing a correctly
synthesised orchestration, then the services will never throw any such exception.
Indeed, this would be a contradiction to the formal results discussed in Sect. 2.

Interaction Correctness. As stated above, the execution of an action or a
choice is abstracted in CARE. Two implementations are currently available for
both actions and choices, and the framework is extensible. We now summarise
the formal verification of the TCP/IP sockets interactions performed by the
available implementations of actions and choices. This provides a complementary
verification of the aspects that are abstracted in the above algorithms. The imple-
mentation of CARE has been formally modelled in Uppaal as a network of timed
automata. Figure 2 depicts the automaton for the RunnableOrchestration. Due
to lack of space, the automaton for the RunnableOrchestratedContract and
traceability information linking the model to the source code are available
from [9]. Both the synthesised orchestration (which is assumed to have been syn-
thesised correctly) and other details specified in Algorithm 1 and Algorithm 2
are abstracted away in the formal model.



558 D. Basile and M. H. ter Beek

Fig. 2. The RunnableOrchestration Uppaal model

The behaviour according to the given configuration of action and choice is
modelled inside each automaton. Global declarations include the number of ser-
vices N , the size of the buffers, two variables action and choice storing the cor-
responding configuration for all automata, and the communication buffers. Java
TCP/IP sockets communications are asynchronous with FIFO buffers. In the
model, arrays are used to encode these buffers that are only modified with func-
tions for enqueueing and dequeuing messages. Each party communicates with the
partner using two buffers (one for sending and one for receiving). Both automata
declare a method enqueue for sending a message to the partner. Similarly, both
automata have a method dequeue for consuming messages from their respective
buffers. According to the semantics of Java TCP/IP sockets, a transition having
a send in its effect will check in its guard whether there is enough space left
in the buffer of the partner by calling either the method available (returning
the space left) or isFull. Moreover, before reading it is always checked whether
the buffer is not empty with the method !isEmpty. When the buffer is empty,
the automaton blocks until a message is received. The locations of the model
are urgent (denoted with U) to guarantee that when the appropriate message is
received it will eventually be consumed (i.e., there is no starvation).



Contract Automata Runtime Environment 559

Fig. 3. The CARE business actors developing contract-based applications

The absence of deadlocks was verified by model checking the CTL formula
A[ ](not deadlock || (ror.Terminated && (forall(i:id t) ROC(i).Terminated))), in which ror
is the orchestrator and ROC(i) is a runnable orchestrated contract identified with
index i. Moreover, the absence of orphan messages was verified by model check-
ing A[ ]((ror.Terminated && (forall (i:id t) ROC(i).Terminated)) imply allEmpty()), in which
the predicate allEmpty() is satisfied when the buffers are empty. Finally, A[ ](ror.Stop

imply A< >(ror.Terminated && (forall (i:id t) ROC(i).Terminated) && allEmpty())) was used
to verify that whenever a choice to stop is made, eventually all services and
the orchestrator will terminate their execution.

5 Building Applications with CARE

We now discuss how CARE can be adopted to develop applications with contract
automata. The diagram in Fig. 3 depicts the responsibilities of the business actors
involved in the overall realisation of contract-based applications using CARE. The
first actor is the provider of the runtime environment (RE Provider in Fig. 3).
This actor customises CARE and its classes according to specific needs, possi-
bly introducing new different options for choices and actions implementing the
abstract methods provided by CARE (described in Sect. 3), and delivers to the
other actors a customised version of CARE, which also comprehends an orches-
trator. Note that this customisation is not necessary, but is a further possibility
allowed by the CARE software design.

The second kind of actors are the service providers, who publish their
contracts, implemented by remote (non-disclosed) Java classes, and use a
RunnableOrchestratedContract to make their contract publicly accessible
using CARE, while hiding implementation details. Service providers may choose
among different realisations of their RunnableOrchestratedContract, provided
by the first actor above. Notably, implementing each atomic action of a service
and designing the interaction behaviour through contract automata are two dif-
ferent concerns. The designer (cf. Fig. 3) specifying interactions as a contract is
not required to be an expert in the underlying implementation technology (e.g.,
Java sockets), while the developer implementing actions and selecting the CARE



560 D. Basile and M. H. ter Beek

Table 1. The roles and responsibilities of the business actors involved in developing
applications specified via contract automata.

Role Responsibility

Runtime Environment Provider Customisation of CARE, implementation of
abstract methods if needed

Service Providers/Designers Design contract automata and publish them

Service Providers/Developers Implement the actions prescribed by contracts,
select one of the available configurations of the
runtime environment

App Designer Design the requirements of the application,
discover contracts, select one of the available
configurations of the runtime environment

configuration is not required to be skilled in contract automata theory. The spec-
ification and implementation of a service can thus be seamlessly integrated using
the facilities provided by CARE. This integration using CARE is depicted with a
realize arrow from the services to the contracts. Most importantly, when imple-
menting the service, the developer does not need to worry about the underlying
low-level interactions between services, potential deadlocks and other commu-
nication issues. This error-prone implementation activity is already resolved by
CARE, as discussed in Sect. 4. This separation of concerns also solves the prob-
lem of “muddling the main program logic with auxiliary logic related to error
handling” (i.e., handling the Java communication exceptions) [24].

The third actor is the application designer (App Designer in Fig. 3). This
is a user of both the second and the first actor. The designer is responsi-
ble for specifying the requirements of the application, and to find a suitable
set of remote services whose synthesised orchestration satisfies the desired
requirements. Once the contracts are discovered, the orchestration enforc-
ing the requirements is automatically synthesised as a new contract. This is
depicted by an arrow from Orchestration to Contract Automata in Fig. 3.
The application designer exploits CARE, choosing a specific implementation
of RunnableOrchestration and RunnableOrchestratedContract, passing as
arguments the addresses of the services, as well as the synthesised orchestra-
tion. Formal results from contract automata theory [12–15] (cf. Sect. 2) guaran-
tee that no ContractViolationException will ever be raised at runtime (cf.
Sect. 4). Finally, note that one individual could take the roles of more actors if
needed (e.g., covering both roles of developer and designer, designing a global
requirement, implementing a new choice, and publishing a target contract). The
proposed separation of concerns is logical. The roles and responsibilities of the
various business actors described in this section are summarised in Table 1.

6 Examples and Evaluation

We discuss the usage of CARE using two examples. Their source code, video
tutorials, and evaluation data are available from [18].



Contract Automata Runtime Environment 561

Fig. 4. From left to right, the contract of Alice, the orchestration of Alice and Bob

enforcing the given requirement, and the contract of the Client

Alice and Bob. This is a basic yet illustrative example. In this example, the
requirement req of the application, designed by the App Designer, is an automa-
ton specifying that an action coffee is observed after an action euro. In this
example, the RE Provider will simply provide CARE as it is, without further
providing customised implementations of the abstract methods.

We now move to the Service Provider/Designers actors. Consider Fig. 4
(the automata have been constructed using CAT App). The leftmost automaton is
the contract of Alice and specifies that Alice offers either a !euro or a !dollar
to her partner. Then Alice requires ?coffee or ?tea, depending on which offer
has been accepted. Such a contract can be interpreted as describing the interac-
tion pattern of Alice, whilst abstracting away from the actual implementation
of each action. To declare the signature of each contract action, CARE uses Java
Interfaces, as shown below.

public interface AliceInterface {
Integer coffee(String arg); Integer tea(String arg);
Integer euro(String arg); Integer dollar(String arg); }

In the interpretation of contracts provided by CARE, each contract action
is implemented by a method of an interface, whose names are in corre-
spondence. The implementation will be developed by the actor Service
Provider/Developer. By implementing the corresponding interface it is pos-
sible to pair the interaction logic described in Fig. 4 (left) with an actual imple-
mentation, as shown below.

RunnableOrchestratedContract alice = new DictatorialChoiceRunnableOrchestratedContract(ca,
8080,new Alice(),new CentralisedOrchestratedAction());

The parameter ca contains the leftmost contract in Fig. 4. The class Alice
implements AliceInterface. This implementation is paired with the corre-
sponding contract: the service listens to port 8080 and the chosen implementa-
tion of the low level interactions is CentralisedOrchestratedAction. Notably,
RunnableOrchestratedContract will take care of the low-level communications,
abstracted away in Alice.java. In AliceInterface, each action requires an
argument (of type String) and returns a value (of type Integer). During ini-
tialisation, each label of the contract is extended with the information on the
types of parameters and returned values from the interface, by instantiating a
TypedCALabel. The contract of Bob is dual to the one of Alice (i.e., all requests



562 D. Basile and M. H. ter Beek

are turned to offers). The class RunnableOrchestration can be instantiated as
shown below.

RunnableOrchestration ror = new DictatorialChoiceRunnableOrchestration(req,new Agreement(),
Arrays.asList(alice.getContract(),bob.getContract()),Arrays.asList(null,null),

Arrays.asList(alice.getPort(),bob.getPort()),new CentralisedOrchestratorAction());

DictatorialChoiceRunnableOrchestration provides an implementation of
the branch/termination selection where the orchestrator autonomously selects
a branch. It is instantiated by passing as parameters the requirement req to
be enforced, the predicate on interactions among contracts (i.e., the property
of agreement), the list of contracts to compose, addresses and ports of the
RunnableOrchestratedContract of Alice and Bob, and an object of class
CentralisedOrchestratorAction implementing an OrchestratorAction. In
this example, services are run locally on the same host as the orchestrator.
During instantiation, the contracts passed as arguments will be composed to
synthesise their safe orchestration in agreement.

In this example, the contract of Bob is in agreement with that of Alice
(each request is matched by a corresponding offer). The orchestration orc is
the central automaton in Fig. 4. After ror has been instantiated, its method
isEmptyOrchestration() is used to check if an agreement among contracts
exists, i.e., if the synthesised orchestration is non-empty. During instantiation,
RunnableOrchestration also interacts with all services (using Java TCP sock-
ets) to ensure that all share the same configuration, which in this case is a
dictatorial choice with centralised action. If this is not the case, an exception is
thrown. Upon successful instantiation, ror can be executed to realise the appli-
cation modelled through the requirement req using the two contracts above.

Finally, we remark that it suffices to change the requirement to automatically
adapt the services to generate a new application. In this example, if req were
changed to also allow a tea in case of payment with dollar, then Alice and
Bob could be adapted to fulfill this new requirement automatically.

Composition Service. Computing a composition of contract automata can be
a costly operation. For a front-end running on a standard laptop (e.g., CAT App),
a desirable feature could be to delegate such costly computations to a remote ser-
vice, hosted on a powerful machine. This example showcases a service built with
CARE that computes a composition of contract automata. The service receives
the operand automata together with other scalability options (e.g., a bound,
invariants) from a client service. The client service interacts through the console
with a user who indicates which automata to compose and the other options.
CATLib features on-the-fly bounded composition. When extending the bound of
a previously computed composition, the previously generated states of the com-
position are not recomputed. The newly generated states are limited to those
that exceeded the previous bound.

The client contract is the rightmost automaton in Fig. 4, whilst the service
contract is dual (all requests are turned to offers). The client contract can per-
form a necessary request update from state Computing. This guarantees that in
a non-empty orchestration, the necessary request of the client is matched by a



Contract Automata Runtime Environment 563

corresponding offer. If such a request were not necessary, a non-empty orches-
tration could also be obtained when the client is composed with a service that
does not offer the update action, but only actions create and quit.

From state Init, the client can either terminate or perform a create request.
During the execution of this method the user interacts at console and types the
needed input. The payload returned by the request method is submitted by the
runtime support to the service executing the matching offer. The offer imple-
mentation takes as parameter the payload and returns the composed automaton
(which can be bounded to a specific depth), which is sent back to the requester. In
the implementation of the update request, the client sends an incremented bound
to the service, which proceeds to compute the composition with the extended
bound and sends it to the client. The request quit is used as a signal for resetting
both the computed composition and the bound.

There are two choices: in state Init, the orchestration can terminate or
an action create can be executed. In state Computing, two possible actions
can be performed. The MajoritarianChoiceRunnableOrchestratedContract
method select is overridden by each service, to implement the specific choices
to be made. The composition service always replies with an empty answer. This
means that all choices are external to the service, the service does not indicate
which choice has to be made. The client service implements both choices as
internal. The user of the client service will interact at console with the client
service, and will indicate which choice has to be made. More details can be
found in [18].

Evaluation. We now measure the advantages brought by adopting CARE. To
do so, we compare two different implementations for the two examples. These
two implementations of each example perform the exact same operations as
described above. Both implementations exploit the operations of composition
and synthesis of contract automata provided by CATLib. However, only one of
them uses CARE (as described above) whereas the other manually implements the
prescribed interactions between the services and the orchestrator, without using
any of the facilities provided by CARE. In this way, it is possible to isolate and
measure the benefits brought solely by using CARE. These two implementations
per example are open source and available for inspection from [18], where they
are located in two separate packages.

The comparison was performed using measures of code complexity as pro-
vided by SonarCloud [16], an online service well integrated with GitHub that
performs, among others, continuous inspection of code quality and static anal-
ysis of code to detect bugs, and reports on code complexity. We in particular
used the code complexity reports feature of SonarCloud. We used three different
measures of complexity to showcase the benefits of using CARE. The first measure
is the total amount of lines of code (thus excluding, among others, the lines of
comments and white spaces). We also adopted cyclomatic complexity [29] and
cognitive complexity [16]. Cyclomatic complexity measures the number of inde-
pendent paths in the software and it is a measure of code testability (this number
is close to the number of branches to cover in the program). Cognitive complexity



564 D. Basile and M. H. ter Beek

Table 2. Different measures of complexity of the examples from Sect. 6 implemented
either with or without using CARE

LOC Cyclomatic Complexity Cognitive Complexity

Alice and Bob without CARE 777 134 166

with CARE 153 16 8

Composition service without CARE 854 155 211

with CARE 279 42 55

measures how difficult the control flow is to understand. This measure is roughly
a counter incremented each time a control flow structure is encountered (e.g.,
if and for) and it is incremented commensurated with the level of nesting of
control flow structures (e.g., a first-level structure triggers an increment of 1, a
second-level structure triggers an increment of 2, and so on) [16].

The results are reported in Table 2. To compare these quantities, we use the
relative percent difference (rpd): |withCARE−withoutCARE|

max(withCARE,withoutCARE) ×100. This measures the
change of complexity when using CARE with respect to the reference value (i.e.,
withoutCARE). The advantage of using CARE is clear, as it drastically reduces the
complexity of the software. Indeed, when using CARE (for the “Alice and Bob”
and “Composition Service” examples, respectively) the rpd are: for the lines of
code 80.31% and 67.33%, for the cyclomatic complexity 88.06% and 72.90%, and
for the cognitive complexity 95.18% and 73.93%. These results are not surpris-
ing: the experiments underline the complexity of the operations performed by
CARE and its key role in developing applications specified via contract automata.
Indeed, for both examples the complexity of implementing the low-level com-
munications is the dominant factor if compared to the interaction logic. This is
more prominent for the “Alice and Bob” example, which in fact has greater rpd
values. The burden of implementing these low-level communications among the
services and the orchestrator is still on the developer side when not using CARE.
We also remark how implementing the low-level communications is an error-
prone activity that is completely delegated to the runtime support if one uses
CARE, thus improving the confidence in the correctness of the final application.

Scalability. The above experiments only measured the complexity of the soft-
ware developed with or without CARE. Another important aspect is the possibility
of scaling to larger automata. CARE is a runtime environment and does not face
any scalability issue typical of static analysers (e.g., state-space explosion). On
the other hand, the synthesis of a safe orchestration of contracts is computed
using CATLib, which may face scalability challenges when dealing with large
compositions. In Sect. 2, the scalability features offered by CATLib are reported.
The performance of CATLib has been previously measured in [10]. Concerning
the formal verification of CARE discussed in Sect. 4, we recall that the orches-
tration automaton is abstracted away in the Uppaal model. Thus, the formal
model of CARE is verified for any orchestration of any size.



Contract Automata Runtime Environment 565

On a side note, the single-responsibility principle [28] advocates to assign a
single responsibility to each class. By interpreting this principle over behavioural
contracts, we conclude that a contract automaton assigned to a single class (e.g.,
the rightmost automaton in Fig. 4) should not exhibit a large behaviour.

7 Conclusion

We have presented the first runtime environment for contract automata, called
CARE. Our proposal advances the state-of-the-art of the research on contract
automata by showing a possible realisation of an orchestration engine, abstracted
away in the contract automata theory, but needed for implementing applications
specified with contract automata, and guaranteeing that the implementation of
service-based applications respect their specification. This contribution improves
our understanding of the relation between a specification with contract automata
and its implementation, and the corresponding level of abstraction.

With CARE, it is possible to promote a separation of concerns between formal
methods experts specifying the expected behaviour using automata on one side,
and developers (not required to be experts in formal methods) implementing
the actions on the other. Furthermore, an application built using CARE is based
on rigorous theoretical results from the contract automata theory, guaranteeing
properties such as absence of deadlocks and absence of orphan messages, reach-
ability of final states, and absence of ContractViolationException. Moreover,
CARE promotes modularity of applications composed by different services that
are reusable in different applications and that can be adapted to satisfy different
requirements through the synthesis of well-behaving orchestrations. Experiments
showed the improvement in terms of decreased software complexity when using
CARE instead of manually implementing the low-level interactions among services
implementing the operations prescribed by their contracts.

Future Work. CATLib already implements the synthesis of choreographies [13],
which CARE will support in the future. Although CARE has been developed in the
framework of contract automata, we plan to investigate the integration of this
technology with other behavioural types languages and tools (e.g., typestates).

Acknowledgment. Funded by MUR PRIN 2017FTXR7S project IT MaTTerS
(Methods and Tools for Trustworthy Smart Systems) and PRIN 2020TL3X8X project
T-LADIES (Typeful Language Adaptation for Dynamic, Interacting and Evolving Sys-
tems).

References

1. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: Comparing controlled sys-
tem synthesis and suppression enforcement. Int. J. Softw. Tools Technol. Transfer
23(4), 601–614 (2021). https://doi.org/10.1007/s10009-021-00624-0

2. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016). https://doi.org/10.1561/2500000031

https://doi.org/10.1007/s10009-021-00624-0
https://doi.org/10.1561/2500000031


566 D. Basile and M. H. ter Beek

3. Atampore, F., Dingel, J., Rudie, K.: A controller synthesis framework for auto-
mated service composition. Discrete Event Dyn. Syst. 29(3), 297–365 (2019).
https://doi.org/10.1007/s10626-019-00282-0

4. Atzei, N., Bartoletti, M.: Developing honest Java programs with Diogenes. In:
Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 52–61. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 4

5. Azzopardi, S., Piterman, N., Schneider, G.: Incorporating monitors in reactive
synthesis without paying the price. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021.
LNCS, vol. 12971, pp. 337–353. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88885-5 22

6. Bacchiani, L., Bravetti, M., Giunti, M., Mota, J., Ravara, A.: A Java types-
tate checker supporting inheritance. Sci. Comput. Program. 221, 102844 (2022).
https://doi.org/10.1016/j.scico.2022.102844

7. Barati, M., St-Denis, R.: Behavior composition meets supervisory control. In: Pro-
ceedings of the 2015 International Conference on Systems, Man, and Cybernetics
(SMC), pp. 115–120. IEEE (2015). https://doi.org/10.1109/SMC.2015.33

8. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: A contract-
oriented middleware. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS,
vol. 9539, pp. 86–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
28934-2 5

9. Basile, D.: Uppaal Models of the Contract Automata Runtime Envi-
ronment. https://github.com/contractautomataproject/CARE/tree/master/src/
spec/uppaal

10. Basile, D., ter Beek, M.H.: A clean and efficient implementation of choreography
synthesis for behavioural contracts. In: Damiani, F., Dardha, O. (eds.) COORDI-
NATION 2021. LNCS, vol. 12717, pp. 225–238. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-78142-2 14

11. Basile, D., ter Beek, M.H.: Contract automata library. Sci. Comput. Pro-
gram. 221 (2022). https://doi.org/10.1016/j.scico.2022.102841. https://github.
com/contractautomataproject/ContractAutomataLib

12. Basile, D., et al.: Controller synthesis of service contracts with variability. Sci. Com-
put. Program. 187, 102344 (2020). https://doi.org/10.1016/j.scico.2019.102344

13. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and choreogra-
phies: bridging the gap between supervisory control and coordination of services.
Log. Methods Comput. Sci. 16(2), 9:1–9:29 (2020). https://doi.org/10.23638/
LMCS-16(2:9)2020

14. Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating
service contracts. Log. Methods Comput. Sci. 12(4), 6:1–6:51 (2016). https://doi.
org/10.2168/LMCS-12(4:6)2016

15. Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Relating two automata-based
models of orchestration and choreography. J. Log. Algebraic Methods Program.
85(3), 425–446 (2016). https://doi.org/10.1016/j.jlamp.2015.09.011

16. Campbell, G.A.: Cognitive complexity: an overview and evaluation. In: Proceedings
of the 2018 International Conference on Technical Debt (TechDebt), pp. 57–58.
ACM (2018). https://doi.org/10.1145/3194164.3194186

17. Contract Automata Runtime Environment (CARE) v1.0.0. https://github.com/
contractautomataproject/CARE/

18. CARE Examples and Evaluation. Including video tutorials for reproducing the
examples. https://github.com/contractautomataproject/CARE Examples/

19. CAT App. https://github.com/contractautomataproject/ContractAutomataApp

https://doi.org/10.1007/s10626-019-00282-0
https://doi.org/10.1007/978-3-319-39570-8_4
https://doi.org/10.1007/978-3-030-88885-5_22
https://doi.org/10.1007/978-3-030-88885-5_22
https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1109/SMC.2015.33
https://doi.org/10.1007/978-3-319-28934-2_5
https://doi.org/10.1007/978-3-319-28934-2_5
https://github.com/contractautomataproject/CARE/tree/master/src/spec/uppaal
https://github.com/contractautomataproject/CARE/tree/master/src/spec/uppaal
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1016/j.scico.2022.102841
https://github.com/contractautomataproject/ContractAutomataLib
https://github.com/contractautomataproject/ContractAutomataLib
https://doi.org/10.1016/j.scico.2019.102344
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.23638/LMCS-16(2:9)2020
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.2168/LMCS-12(4:6)2016
https://doi.org/10.1016/j.jlamp.2015.09.011
https://doi.org/10.1145/3194164.3194186
https://github.com/contractautomataproject/CARE/
https://github.com/contractautomataproject/CARE/
https://github.com/contractautomataproject/CARE_Examples/
https://github.com/contractautomataproject/ContractAutomataApp


Contract Automata Runtime Environment 567

20. Dilley, N., Lange, J.: An empirical study of messaging passing concurrency in Go
projects. In: Proceedings of the 26th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pp. 377–387. IEEE (2019). https://
doi.org/10.1109/SANER.2019.8668036

21. Farhat, H.: Web service composition via supervisory control theory. IEEE Access
6, 59779–59789 (2018). https://doi.org/10.1109/ACCESS.2018.2874564

22. Felli, P., Yadav, N., Sardina, S.: Supervisory control for behavior composition.
IEEE Trans. Autom. Control 62(2), 986–991 (2017). https://doi.org/10.1109/
TAC.2016.2570748

23. Ferrari, A., ter Beek, M.H.: Formal methods in railways: a systematic mapping
study. ACM Comput. Surv. 55(4), 69:1–69:37 (2023). https://doi.org/10.1145/
3520480

24. Francalanza, A., Mezzina, C.A., Tuosto, E.: Towards choreographic-based mon-
itoring. In: Ulidowski, I., Lanese, I., Schultz, U.P., Ferreira, C. (eds.) RC 2020.
LNCS, vol. 12070, pp. 128–150. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-47361-7 6

25. Gay, S., Ravara, A. (eds.): Behavioural Types: From Theory to Tools. River (2017).
https://doi.org/10.13052/rp-9788793519817

26. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: a session type toolchain for Java. Sci. Comput. Program.
155, 52–75 (2018). https://doi.org/10.1016/j.scico.2017.10.006

27. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in Go using behavioural types. In: Proceedings of the 40th Inter-
national Conference on Software Engineering (ICSE), pp. 1137–1148. ACM (2018).
https://doi.org/10.1145/3180155.3180157

28. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR (2003)

29. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320
(1976). https://doi.org/10.1109/TSE.1976.233837

30. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control. Optim. 25(1), 206–230 (1987). https://doi.org/10.
1137/0325013

31. Rubbens, R., Lathouwers, S., Huisman, M.: Modular transformation of Java excep-
tions modulo errors. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021.
LNCS, vol. 12863, pp. 67–84. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85248-1 5

32. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54(3), 279–335
(2019). https://doi.org/10.1007/s10703-019-00337-w

33. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://doi.
org/10.1109/TSE.1986.6312929

34. Trindade, A., Mota, J., Ravara, A.: Typestates to automata and back: a tool.
In: Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.) Proceedings of the 13th
Interaction and Concurrency Experience (ICE). EPTCS, vol. 324, pp. 25–42 (2020).
https://doi.org/10.4204/EPTCS.324.4

35. Vasconcelos, C., Ravara, A.: From object-oriented code with assertions to
behavioural types. In: Proceedings of the 32nd Symposium on Applied Computing
(SAC), pp. 1492–1497. ACM (2017). https://doi.org/10.1145/3019612.3019733

https://doi.org/10.1109/SANER.2019.8668036
https://doi.org/10.1109/SANER.2019.8668036
https://doi.org/10.1109/ACCESS.2018.2874564
https://doi.org/10.1109/TAC.2016.2570748
https://doi.org/10.1109/TAC.2016.2570748
https://doi.org/10.1145/3520480
https://doi.org/10.1145/3520480
https://doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.1007/978-3-030-47361-7_6
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1007/978-3-030-85248-1_5
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.4204/EPTCS.324.4
https://doi.org/10.1145/3019612.3019733


Industry Day



Formal and Executable Semantics
of the Ethereum Virtual Machine

in Dafny

Franck Cassez(B) , Joanne Fuller, Milad K. Ghale, David J. Pearce ,
and Horacio M. A. Quiles

ConsenSys, New York, USA
{franck.cassez,joanne.fuller,milad.ghale,david.pearce,

horacio.quiles}@consensys.net

Abstract. The Ethereum protocol implements a replicated state
machine. The network participants keep track of the system state by:
1) agreeing on the sequence of transactions to be processed and 2) com-
puting the state transitions that correspond to the sequence of trans-
actions. Ethereum transactions are programs, called smart contracts,
and computing a state transition requires executing some code. The
Ethereum Virtual Machine (EVM) provides this capability and can exe-
cute programs written in EVM bytecode. We present a formal and exe-
cutable semantics of the EVM written in the verification-friendly lan-
guage Dafny: it provides (i) a readable, formal and verified specification
of the semantics of the EVM; (ii) a framework to formally reason about
bytecode.

1 Introduction

A distinctive feature of Ethereum is that transactions are programs, smart con-
tracts, and computing a state transition requires to run the contract code to
compute the next state. This capability is provided by the Ethereum Virtual
Machine (EVM) that can execute programs written in EVM bytecode. The orig-
inal and informal specification of the EVM is in the Yellow Paper [28].

As a decentralised platform, Ethereum encourages client diversity : network
participants are free to choose which implementation of the EVM they want to
run, and there are several implementations to choose from written in different
languages e.g., Go, Java. All the EVM implementations must agree on the state
transitions, otherwise the network would split and the blockchain would fork.
However, the original specification in the Yellow Paper [28] has some known
shortcomings: (i) it is hard to read and does not provide a formal semantics
of the EVM and the bytecode; (ii) the lack of a formal semantics makes it
hard for Ethereum client developers to guarantee that they interpret the Yellow
Paper in a consistent way; (iii) designing compilers from high-level languages
(e.g., Solidity1) to EVM bytecode without a formal semantics is error-prone and,
1 The most popular language to write smart contracts.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 571–583, 2023.
https://doi.org/10.1007/978-3-031-27481-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_32&domain=pdf
http://orcid.org/0000-0002-4317-5025
http://orcid.org/0000-0003-4535-9677
https://doi.org/10.1007/978-3-031-27481-7_32


572 F. Cassez et al.

without a precise semantics of the EVM, it is hard to design certified compilers
(preserving of semantics from a high to a low-level language.).

One can argue that existing implementations of the EVM (e.g., in Go, Java)
provide a de facto semantics for it. Whilst this is true to some extent, such
implementations do not enable formal reasoning about bytecode. Furthermore,
whilst smart contracts can be written in high-level languages like Solidity, they
must be compiled into EVM bytecode before being executed on the EVM. Tools
for checking safety properties (e.g., absence of overflow, division by zero, etc.) at
the Solidity level are problematic if they cannot guarantee such properties hold
at the bytecode level. One solution is to design a provably correct compiler, but
this is a complex and long-term endeavour [17]. Alternatively we can provide
techniques, supported by tools, to reason about properties of the bytecode. This
is what we propose to do in this work.

Our Contribution. We present a complete and formal specification of the EVM
in Dafny, available at https://github.com/ConsenSys/evm-dafny. We provide
a formal semantics where the meaning of an instruction is given as a partial
function that maps states to states. Our semantics is language-agnostic, readable
and can be used as a reference for developers of EVMs or to aid compiler writers.
Moreover, it is a complete and usable framework for formally reasoning about
correctness of EVM bytecode using Dafny.

2 Background and Motivation

In this section we give an overview of the EVM and show how our formal spec-
ification in Dafny can be used to verify properties of bytecode programs.

The Ethereum blockchain stores the bytecode of the contracts into a database
and each contract has its own permanent storage. In what follows, we assume a
given contract and refer to storage as that allocated to this contract.

Instructions and States. The EVM [28] is a stack-based machine [28] which
supports 142 instructions: arithmetic operations (e.g., ADD, MUL), comparisons and
bitwise operations (e.g., ISZERO, NOT), cryptographic primitives (e.g., SHA3), envi-
ronment information (e.g., BALANCE, CALLVALUE), block information (e.g., NUMBER,
GASLIMIT), stack/memory/control flow (e.g., PUSH, POP, MSTORE, SLOAD, JUMP), log-
ging (e.g., LOG1), and system operations (e.g., CREATE, CALL, DELEGATECALL). An
executing state of the EVM is a tuple containing several components. We restrict
our attention to the following subset of these components:

code: a sequence of n bytes indexed from 0 to n−1; The byte at index 0 ≤ k < n
is either an instruction opcode or an immediate operand. For instance the
sequence s = [0x60, 0x01, 0x60, 0x02, 0x01, 0x50, 0x00] corresponds to the
program “PUSH1 0x01; PUSH1 0x02; ADD; POP; STOP”. Here, the byte at s[1]
(0x01) is the operand of the instruction at s[0] (PUSH1).

pc: the program counter (initially 0) identifies the next instruction to execute.
For example, if pc is 4, executing the instruction at s[4] (ADD) increments it
by 1 so s[5] is the next instruction to execute. When executing instructions

https://github.com/ConsenSys/evm-dafny


Formal and Executable Semantics of the EVM in Dafny 573

with operands (e.g., “PUSH1 0x01” at s[0]s[1]) the pc is incremented by 1 + v
where v is the number of operands.

stack: a stack of 256-bit words (initially empty); instructions can push or pop
the stack. For example, starting from an empty stack [ ], executing the instruc-
tions “PUSH1 0x1; PUSH1 0x2” gives [0x02, 0x01]. Executing the ADD instruc-
tion from the stack [0x02, 0x01] pops 2 operands, adds them and pushes the
result yielding a new stack [0x03 = 0x01 + 0x02].

memory: a 256-bit addressable, contiguous array of bytes (initially empty).
Memory is volatile and only available during the current program execution.
Memory expands on-demand when a value is read or written to a given loca-
tion (which incurs some cost in gas). Values can be read from/written to
memory using the instructions MLOAD, MSTORE, MLOAD8 or MSTORE8.

storage: a map from 256-bit addresses to 256-bit words which constitutes the
contract’s permanent storage. Storage can be read/written using the instruc-
tions SLOAD or SSTORE.

gas: the fuel left for future computations. Executing an instruction consumes
gas in the EVM, and this ensures that no infinite computation can occur.

In the EVM, program execution may abort under exceptional cases including:

Out-of-gas: the gas left in the current state does not cover the cost of executing
the next instruction (including cost of memory expansion if any);

Stack exceptions: the stack size cannot exceed 1024. Moreover, some instruc-
tions (e.g., POP) can only be executed if the stack has enough elements and
otherwise the execution should abort.

The EVM has failure states to capture aborted computations. As a result, a
state of the EVM is either a failure state or a non-failure state.

Bytecode Verification. Using our formal semantics, we can guarantee secu-
rity properties of bytecode programs using the Dafny verifier. Dafny is a
verification-friendly language and as such the code can be instrumented with
predicates and pre- and postconditions that are checked by the verifier at com-
pile time. We use this feature to prove properties on the bytecode. The following
simple Dafny program illustrates a proof:

� �

1 method AddBytes(x: u8, y: u8) {
2 // Initialise an EVM with some gas and the bytecode to execute.
3 var st := InitEmpty(gas:=1000, code:=[PUSH1,x,PUSH1,y,ADD]);
4 // Execute 3 compute steps
5 st := ExecuteN(st,3);
6 // Check that the top of the stack is the sum of x and y
7 assert st.Peek(0) == (x as u256) + (y as u256);
8 }

� �

This simple code snippet illustrates several aspects of the verification process.
First we can verify family of programs as the parameters x,y are arbitrary
unsigned integers over 8 bits. This is done by creating an EVM and step-
ping through the code, e.g., using the ExecuteN function. Second, we specify



574 F. Cassez et al.

the expected property of the code using the assert statement (line 7) which is
a verification statement: it is not executed at runtime as in conventional pro-
gramming languages but checked at compile-time, and must hold for all inputs.
For this program Dafny can prove automatically that the assert statement is
never violated. The proof uses the semantics of opcodes that are invoked in the
computation of ExecuteN. Note that if we change u8 to u256 the property does
not hold as an overflow can occur in the execution of ADD: this is flagged by the
Dafny verifier with “Cannot prove assertion at line 7”. Another set of checks
that are performed automatically are related to pre- and postconditions. For
instance the ADD instructions requires at least two elements on the stack. This
is specified by a precondition in the function that defines the semantics of ADD.
If the code above had only one PUSH1 instruction Dafny would flag that the
ADD cannot be performed as a precondition is violated. Overall, this short code
snippet demonstrates that we can specify and verify functional correctness prop-
erties of bytecode, and thanks to the pre- and postconditions used to specify the
semantics of the instructions, we can detect/fix possible exceptions (e.g., stack
overflow) before runtime.

The example in Listing A.1 shows how we can reason about storage updates
and exceptions (aborted computations).

Listing A.1. Verifying bytecode with Reverts.
� �

1 const INC_CONTRACT := Code.Create([
2 // Put STORAGE[0] on stack and increment by one
3 PUSH1, 0x0, SLOAD, PUSH1, 1, ADD,
4 // If result non−zero branch to JUMPDEST, else REVERT
5 DUP1, PUSH1, 0xf, JUMPI, PUSH1, 0x0, PUSH1, 0x0, REVERT,
6 // Write result back to STORAGE[0] and return
7 JUMPDEST, PUSH1, 0x0, SSTORE, STOP]);
8

9 method IncProof(st: State) returns (st’: State)
10 requires st.OK? && st.PC() == 0 && st.Gas() >= 40000 ...
11 requires st.evm.code == INC_CONTRACT
12 ensures st’.REVERTS? || st’.RETURNS?
13 ensures st’.RETURNS? <==> (st.Load(0) as nat) < MAX_U256
14 ensures st’.RETURNS? ==> st’.Load(0) == (st.Load(0) + 1) {
15 // Execute upto (and including) JUMPI.
16 var nst := ExecuteN(st,7);
17 // Consider branches separately
18 if nst.Peek(0) == 0 { // test top of the stack
19 assert nst.PC() == 0xa;
20 nst := ExecuteN(nst,3);
21 assert nst.REVERTS?;
22 } else {
23 assert nst.PC() == 0xf;
24 nst := ExecuteN(nst,4);
25 assert nst.RETURNS?;
26 }
27 return nst;
28 }

� �



Formal and Executable Semantics of the EVM in Dafny 575

This contract code maintains a counter at storage location 0 which is incre-
mented by one on every contract call. Initially, the contract storage is uncon-
strained in the input state st and, hence, any location can contain any value.
The code of the contract aims to capture overflows and to revert if an overflow
occurs. The intent is that either the contract reverts (overflow detected) or the
counter is incremented by 1. Listing A.1 gives a Dafny proof of this.2 The pre-
conditions (lines 10–11) ensure that st is an execution (non-failure) state with
pc == 0, empty stack, enough gas, and has the contract code to execute.

The postconditions (lines 12–14) specify that the computation either incre-
ments the counter (at storage location 0) or the computation reverts. The proof
divides up into two essential parts: 1. Execute the first 7 bytecodes and store the
intermediate state in nst. 2. An overflow occurs when the result of the addition
is 0. So depending on the result at the top of the stack, nst.Peek(0), we decide
whether the rest of the computation will either succeed or revert. Dafny suc-
cessfully verifies this code and guarantees the postconditions on lines 12–14 for
all input states st satisfying the preconditions (lines 10–11). This provides strong
guarantees about the bytecode: (i) it either reverts or computes the increment
but never runs out of gas, nor ends up in an invalid state (e.g., stack overflow
or underflow), (ii) the program terminates normally if and only if the initial
value stored at location 0 is strictly less than MAX_U256 (line 13), (iii) on normal
termination, the value in storage location 0 is incremented by one (line 14).

3 The Dafny-EVM

Our EVM is written in Dafny and provides a definition of the semantics as a
function mapping states to states. A key design decision made early on was to
develop a functionally pure formalisation of the EVM. In this section we describe
the main components of the Dafny-EVM and conclude with some observations.

Machine State. Line numbers hereafter refer to Listing A.3. A state of the
EVM is a record containing various fields such as gas, pc, stack, code, memory.

Each module (state, stack, memory, . . . ) provides a datatype, possibly incor-
porating some contraints (e.g., EvmState.T). For brevity, we omit some fields
which contain information about the enclosing transaction and the so-called
substate. The State datatype (line 7) models normal execution (OK), failure
(INVALID), returning (RETURNS), reverting (REVERTS), etc.

Stack, Memory and Storage. We have implemented several submodules to
provide operations on stack/memory/storage. This is summarised in Fig. 1. We
lift the operations on stack/memory/storage into the State datatype. In Dafny
this is done by adding the functions right after the definition of a datatype
(line 11). This allows us to compose them easily and improves readability. For
instance the Add function that implements the semantics of opcode ADD is defined
using a sequence of operations st.Pop().Pop().Push(...).Next() where st is an
2 The code in the paper may not compile or verify as we have simplified it for clarity.

The code in https://github.com/ConsenSys/evm-dafny compiles and verifies.

https://github.com/ConsenSys/evm-dafny


576 F. Cassez et al.

Fig. 1. Source files of the Dafny-EVM. Top group contains bytecode semantics and
top-level types. Middle group contains abstractions of the main components. Bottom
group are fundamental primitives (e.g. for manipulating bytes and ints). “Loc” (lines
of codes) at the time of writing.

Listing A.2. Semantics of MLOAD, Bytecode module
� �

1 function method MLoad(st: State) : State
2 requires st.IsExecuting() {
3 if st.Operands() >= 1 then
4 var loc := st.Peek(0) as nat;
5 var nst := st.Expand(loc,32); // Break out expanded state
6 nst.Pop().Push(nst.Read(loc)).Next() // Read from expanded state
7 else
8 State.INVALID(STACK_UNDERFLOW)
9 }

� �

executing state (e.g. OK). We employ preconditions (requires) to ensure lifted
operations are limited to applicable states only (typically executing states, such
as OK), and also that preconditions of the functions on stack/memory/storage
are satisfied (e.g., for Pop() the stack size must be large enough); for Push()

(line 20) the stack cannot be full (stack size is limited to 1024).
In Dafny, preconditions are checked by the verifier and must provably hold

at each call site. Notice that Dafny enforces the constraints on integer types so
every time we compute (e.g., ADD) and store the result in a 256bit word, we must
prove that the value is less than 2256 (the EVM dictates modulo arithmetic for
this). The pre-/post-conditions and type checks enforced by the Dafny verifier
help ensure that our EVM specification is consistent and that functions are
well-defined.

Memory operations are provided by the Memory module, with various func-
tions being attached to State, e.g., Read, Write lines 26–28. A key observation
is that, in both cases, address addr + 31 must be within allocated memory. This
is because memory in the EVM is byte addressable and we are reading/writing
u256 values (i.e., which are 32 bytes long). The semantics of MLOAD (Listing A.2)
highlights the complexity of memory operations. Since Read(loc) (line 6) has
the precondition loc + 31 < Memory.Size (line 26 of Listing A.3), this must hold
for state nst. In fact, this follows because the call to Expand() (line 5) ensures



Formal and Executable Semantics of the EVM in Dafny 577

sufficient memory. If the call to Expand() within MLoad was not enforcing this
constraint, then Dafny would raise a precondition violation on nst.Read(loc).

Listing A.3. The EvmState module (partial)
� �

1 module EvmState {
2 datatype Raw = EVM(gas:nat, pc:nat, stack:Stack.T, code:Code.T,
3 mem:Memory.T, world:WorldState.T, ...)
4

5 type T = c:Raw | c.context.address in c.world.accounts
6

7 datatype State = OK(evm:T) | REVERTS(gas:nat,data:seq<u8>)
8 | RETURNS(gas:nat,data:seq<u8>,...) | INVALID(Error) | ...
9 {

10 // Predicates
11 predicate method IsExecuting(): bool { ... }
12

13 // Stack functions
14 function method Capacity(): nat
15 requires IsExecuting() { Stack.Capacity(evm.stack) }
16 function method Peek(k: nat): u256
17 requires IsExecuting() && k < Stack.Size(evm.stack) { ... }
18 function method Pop(): State
19 requires IsExecuting() && 0 < Stack.Size(evm.stack) { ... }
20 function method Push(v: u256) : State
21 requires IsExecuting()
22 requires Capacity() > 0 {
23 OK(evm.(stack:=Stack.Push(evm.stack,v)))
24 }
25 // Memory functions
26 function method Read(address: nat): u256
27 requires IsExecuting() && (addr+31)< Memory.Size(evm.mem) {...}
28 function method Write(address: nat, val: u256): State
29 requires IsExecuting() && (addr+31)< Memory.Size(evm.mem) {...}
30 ...
31 function method Expand(addr: nat, n: nat): (s’: State)
32 requires IsExecuting()
33 ensures s’.IsExecuting() && MemSize() <= s’.MemSize()
34 ensures (addr + n)< MemSize() ==> (evm.mem == s’.evm.mem) {...}
35 }
36 ...
37 }

� �

Gas. In our design, we chose to split out the gas calculation from the instruc-
tion semantics. Whilst this does introduce some repetition, we argue it reduces
cognitive load. In particular, since this avoids interweaving the gas calculation
throughout the instruction semantics which (for performance reasons) is com-
monly done in actual implementations (including the execution specs3).

Contract Calls. Various instructions (e.g. CALL, DELEGATECALL) enable one con-
tract to call another. These differ from others as they can involve executing

3 https://github.com/ethereum/execution-specs.

https://github.com/ethereum/execution-specs


578 F. Cassez et al.

arbitrarily many instructions in the called contract. We implement this using a
mechanism akin to continuations but, for brevity, omit the details here.

Observations. The Dafny-EVM Code provides a readable and executable spec-
ification of the EVM. There are several benefits of using a verification-friendly
language: using pre- and postconditions to write the semantics provides a high
level of assurance; furthermore, the code is executable and can be compiled into
several target languages including Java, C#, Go. We now highlight some obser-
vations based on our experiences from this project.

– Specification. Dafny treats function calls within expressions as interpreted,
but treats method calls as uninterpreted [5,15]. Roughly speaking this means
that, when verifying a function call, the verifier has free access to the func-
tion’s body. In contrast, for method calls, the verifier can only access what is
given in the specification (i.e. its pre- and postconditions). As such, we con-
sider methods ill-suited for formalising specifications (such as for the EVM).
This is because we cannot abstract a specification any further than already
done (i.e. we cannot specify a specification).

– Verification. Functions can have preconditions that restrict the domain of
their inputs. In Dafny preconditions are enforced at each call site. We argue
that this results in better code by enforcing consistency across function calls.
Dafny enforces that every function must have a proof of termination which
guarantees the absence of infinite loops in our state transition function. We
believe that this degree of assurance is hard to attain with non verification-
friendly languages.

– Performance. Code generated from the functionally pure subset of Dafny
can perform poorly because of the need to clone compound structures (e.g.
maps and arrays) to preserve purity (i.e., referential transparency). Dafny
does not, for example, employ clone elimination [16,19,26] or mutable value
semantics [21,22]. Performance was not a critical concern given our aim of
developing a formal specification rather than an efficient implementation and
in practice, we did not encounter any significant issue here.

During the project, a number of issues and challenges arose. For example, the
lack of an exponentiation operator in Dafny meant that, for the EXP bytecode,
we had to implement this as a recursive function. Some low level operations
involving bits & bytes (e.g., shifting) present significant challenges as the native
int type does not support bitwise operators. One can use a conversion from
(e.g. u256) into the bitvector types (e.g. bv256) provided by Dafny which do
support bitwise operations—however, this can lead to problems verifying code.

4 Practical Experiences

From the outset of this project, we were unsure whether Dafny would be practi-
cal for this sizeable formalisation task. Overall, however, we are pleased to report
that Dafny has, for the most part, proven itself more than capable. Of course,



Formal and Executable Semantics of the EVM in Dafny 579

it was not all plain sailing and we encountered several challenges which required
developing techniques and/or workarounds.

Code Generation. Dafny can generate code for a variety of targets, including:
C#, Go, Java, C++, Python and JavaScript. Furthermore, whilst Dafny does
not support I/O operations per se, these can be implemented on the target side.
We took advantage of this to embed the Dafny-generated code into a thin
Java wrapper that performs I/O and allows us to test our EVM against existing
implementations. Note that the generated code is not proved to be equivalent to
the original Dafny code. For various reasons (e.g., knowledge within the team)
we chose Java as the target language with gradle managing the build. This
worked well enough, though there are some points to make:

– Foreign Function Interface. Code generated from Dafny does not con-
form to the stylistic norms of Java, but is otherwise relatively easy to interface
with. A runtime library is provided by Dafny against which generated code
must be compiled. This provides (amongst other things) alternative collection
implementations (e.g. DafnySequence, DafnyMap, etc.).

– External Code. For the semantics of KECCAK256 and some precompiled con-
tracts, we preferred to call out to native Java code (i.e. rather than implement
e.g. sha256 in Dafny itself). However, whilst Dafny does support extern

declarations, these are not (at the time of writing) well supported by the
Java code generator. Instead, we had to give default implementations (e.g.
returning 0) and employ build trickery to make it work.

– Target language idiosyncrasies. Translation to a target language intro-
duces risks. E.g., Dafny employs Euclidean Division for its integer division
operator (i.e. always rounds down rather than towards zero), which is a trap
for the unwary and by chance we identified a bug in the Java code generator
where sometimes standard division was being applied.4 We also encountered
unsoundness in the translation of Dafny collections (e.g. seq<u8>) to Java5,
and buggy implementation of datatype in C#.6

Verification and Testing. For completeness, we developed many unit tests for
various components of our formalism. The Ethereum Common Tests also provide
tens of thousands of tests for ensuring EVM compatibility.7 As such, we have
been using these to check our formalisation against existing implementations.
This required generating executable code from our specification which presented
several challenges (discussion of which is unfortunately omitted for brevity). At
the time of writing, we have selected around 7500 representative tests out of the
13K Common tests (Berlin hardfork) and 6900 are passing (92%). Of the 143
failing tests, the majority (100) are failing because: some precompiled contracts
are not yet fully implemented (44); we do not currently check for branches into

4 https://github.com/dafny-lang/dafny/issues/2367.
5 https://github.com/dafny-lang/dafny/issues/2859.
6 https://github.com/dafny-lang/dafny/issues/1412.
7 https://github.com/ethereum/tests.

https://github.com/dafny-lang/dafny/issues/2367
https://github.com/dafny-lang/dafny/issues/2859
https://github.com/dafny-lang/dafny/issues/1412
https://github.com/ethereum/tests


580 F. Cassez et al.

instruction operands (56). The remaining (approx. 450) tests are skipped for
various reasons e.g., timeout or breaking the testing system. Finally, we note
that all of our tests are run as part of Continuous Integration before a pull
request can be merged.

5 Related Work

Initial attempt at a formal specification of the EVM may be attributed to
Hirai [13] with a formalisation of the EVM in the programming development
environment Lem [18]. The formalisation in [13] is restricted to a single con-
tract execution and proving bytecode is limited in terms of automation. Later,
Amani et al. [3] built upon Hirai’s formalisation and proposed an Isabelle/HOL
formalisation. Their contribution introduces a program logic to reason about
bytecode (restricted to a subset of 36/142 EVM instructions) but they rely on
the construction of a control flow graph to define the semantics of a program.
Reasoning about bytecode is limited to linear sequences of instructions (blocks)
and not fully automated. Another Isabelle/HOL specification was also devel-
oped in [9] specialised for gas consumption analysis and for proving termination
of bytecode.

More recently, Grishchenko et al. [10] have proposed a partial (not all opcodes
are supported and the gas cost semantics is incomplete) formalisation of the
EVM in F � targeting verification of security properties.

The most advanced formalisation is probably the KEVM [12] using the K

Framework [23]. It provides a formal and executable specification of the syn-
tax and semantics of EVM bytecode. Using the built-in automated tools of the
K Framework, it is possible to generate an interpreter, compiler, debugger and
to some extent a verifier that can be used to check the bytecode of some con-
tracts [20]. The default input format (used for KEVM) of the K Framework
is XML-based which may not be the most developer-friendly format. Similarly,
IELE [24] attempts to design a more readable language than EVM bytecode and
to be the target of high-level languages including Solidity, Vyper, Plutus. IELE
is defined using the K Framework and uses LLVM tools (compiler) as a backend.

There are several implementations of the EVM in different languages and
clients e.g., Geth8, Besu9, and more recently the execution-specs in Python (see
Footnote 3). The implementations in Geth and Besu are respectively in Go and
Java and cannot be used to reason about bytecode. The Python implementation
relies on specific imperative language features of Python (mutability, exceptions)
and does not provide a functional definition of the instructions semantics nor
an explicit specification of exceptional cases: for instance the Python code does
not provide preconditions or explicit handling of exceptions, and exceptions can
happen deep in the call stack which may hinder readability.

There are several tools Oyente [4], EtherIR [1], eThor [25], Rattle [27],
and Certora [14] to perform static analysis of EVM bytecode. There are also
8 https://geth.ethereum.org.
9 https://github.com/hyperledger/besu.

https://geth.ethereum.org
https://github.com/hyperledger/besu


Formal and Executable Semantics of the EVM in Dafny 581

extensions to specifically analyse the gas consumption like GASTAP [2], GasRe-
ducer [8]. Those tools build an abstract representation of the bytecode and it is
unclear whether the abstraction is semantics preserving.

In contrast to the formalisations, implementations and tools referenced above,
our formal semantics is language-agnostic (defines the state transition function
as a function), easy to read and developer-friendly, provides mathematical and
verified pre- and postconditions for the semantics of instructions. Moroever, our
semantics can be used to perform deductive reasoning about bytecode including
gas consumption using standard invariants.

6 Conclusion

We have proposed a formal semantics of the EVM in a pure functional subset of
Dafny. Our semantics is human readable, machine checked and executable, and
provides a sound framework to formally reason about bytecode.

This opens up the door for several direct applications:10

– complete smart contract verification: in practice, this can be a costly process
and may require specific verification skills or familiarity with Dafny.

– correctness of compiler optimisations: several gas optimisation patterns e.g.,
a sequence SWAP1 POP POP optimised in POP POP can now be verified.

– correctness of under/overflow detection: to detect an overflow in arithmetic
modulo ADD(x, y) it is common to first compute the result r = ADD(x, y) and
then check that r >= x. We can formally prove that this is sound.

– synthesise verified bytecode: we have designed a methodology [6] to specify
and verify smart contracts directly in Dafny. We are exploring refinement
proof techniques to synthesise bytecode from the verified Dafny code of a
contract. Ultimately we may develop a Dafny-to-EVM certified compiler.

Although the benefits of our approach are evident in the formal methods’
community, adoption of these techniques in the Ethereum ecosystem is still chal-
lenging. Whilst established techniques, e.g., using Solidity to write contracts, or
using Python to write specifications, can be questionable [11], they are still preva-
lent in the Ethereum community. The main hurdles for mainstream adoption of
our approach are probably two-fold: (i) provide developer-friendly tools to write
contracts; Dafny and the tool support around it (e.g., verification performance
improvement, counter example generation [7], VSCode integration) already par-
tially solves this issue; and (ii) educate the Ethereum community to understand
the long-term benefits of formal verification for the Ethereum ecosystem.

References

1. Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I.: EthIR: a framework for
high-level analysis of Ethereum bytecode. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 513–520. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 30

10 Examples are available in https://github.com/ConsenSys/evm-dafny.

https://doi.org/10.1007/978-3-030-01090-4_30
https://doi.org/10.1007/978-3-030-01090-4_30
https://github.com/ConsenSys/evm-dafny


582 F. Cassez et al.

2. Albert, E., Gordillo, P., Rubio, A., Sergey, I.: Running on fumes. In: Ganty, P.,
Kaâniche, M. (eds.) VECoS 2019. LNCS, vol. 11847, pp. 63–78. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35092-5 5

3. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: Andronick, J., Felty, A.P. (eds.) Proceed-
ings of the 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, Los Angeles, CA, USA, 8–9 January 2018, pp. 66–77. ACM
(2018). https://doi.org/10.1145/3167084

4. Badruddoja, S., Dantu, R., He, Y., Upadhayay, K., Thompson, M.: Making
smart contracts smarter. In: 2021 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pp. 1–3 (2021). https://doi.org/10.1109/ICBC51069.
2021.9461148

5. Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures
with Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74113-8

6. Cassez, F., Fuller, J., Anton Quiles, H.M.: Deductive verification of smart contracts
with Dafny. In: Groote, J.F., Huisman, M. (eds.) FMICS 2022. LNCS, vol. 13487,
pp. 50–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15008-1 5

7. Chakarov, A., Fedchin, A., Rakamarić, Z., Rungta, N.: Better counterexamples
for Dafny. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp.
404–411. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 23

8. Chen, T., et al.: Towards saving money in using smart contracts. In: Zisman,
A., Apel, S. (eds.) Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE (NIER) 2018, Gothenburg,
Sweden, 27 May–03 June 2018, pp. 81–84. ACM (2018). https://doi.org/10.1145/
3183399.3183420

9. Genet, T., Jensen, T.P., Sauvage, J.: Termination of Ethereum’s smart contracts.
In: Samarati, P., di Vimercati, S.D.C., Obaidat, M.S., Ben-Othman, J. (eds.) Pro-
ceedings of the 17th International Joint Conference on e-Business and Telecommu-
nications, ICETE 2020 - Volume 2: SECRYPT, Lieusaint, Paris, France, 8–10 July
2020, pp. 39–51. ScitePress (2020). https://doi.org/10.5220/0009564100390051

10. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

11. Guido, D.: Episode 6: What the hell are the blockchain people doing, and why
isn’t it a dumpster fire? (2021). https://galois.com/blog/2020/11/introducing-
the-building-better-systems-podcast/. In Building Better Systems (podcast), Joey
Dodds, Shpat Morina, Galois

12. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
virtual machine. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, 9–12 July 2018, pp. 204–217. IEEE Computer
Society (2018). https://doi.org/10.1109/CSF.2018.00022

13. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

14. Jackson, D., Nandi, C., Sagiv, M.: Certora technology white paper.
Medium Post (2022). https://medium.com/certora/certora-technology-white-
paper-cae5ab0bdf1

15. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View,
2nd edn. Springer, Heidelberg (2016)

https://doi.org/10.1007/978-3-030-35092-5_5
https://doi.org/10.1145/3167084
https://doi.org/10.1109/ICBC51069.2021.9461148
https://doi.org/10.1109/ICBC51069.2021.9461148
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-031-15008-1_5
https://doi.org/10.1007/978-3-030-99524-9_23
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.5220/0009564100390051
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://galois.com/blog/2020/11/introducing-the-building-better-systems-podcast/
https://galois.com/blog/2020/11/introducing-the-building-better-systems-podcast/
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-319-70278-0_33
https://medium.com/certora/certora-technology-white-paper-cae5ab0bdf1
https://medium.com/certora/certora-technology-white-paper-cae5ab0bdf1


Formal and Executable Semantics of the EVM in Dafny 583

16. Lameed, N., Hendren, L.: Staged static techniques to efficiently implement array
copy semantics in a MATLAB JIT compiler. In: Knoop, J. (ed.) CC 2011. LNCS,
vol. 6601, pp. 22–41. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19861-8 3

17. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009). https://doi.org/10.1007/s10817-009-9155-4

18. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. In: Jeuring, J., Chakravarty, M.M.T. (eds.) Pro-
ceedings of the 19th ACM SIGPLAN International Conference on Functional Pro-
gramming, Gothenburg, Sweden, 1–3 September 2014, pp. 175–188. ACM (2014).
https://doi.org/10.1145/2628136.2628143

19. Odersky, M.: How to make destructive updates less destructive. In: Proceedings of
the ACM Symposium on the Principles of Programming Languages (POPL), pp.
25–36 (1991)

20. Park, D., Zhang, Y., Rosu, G.: End-to-end formal verification of Ethereum 2.0
deposit smart contract. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 151–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 8

21. Pearce, D.J., Groves, L.: Designing a verifying compiler: lessons learned from devel-
oping Whiley. Sci. Comput. Program. 113, 191–220 (2015)

22. Racordon, D., Shabalin, D., Zheng, D., Abrahams, D., Saeta, B.: Implementation
strategies for mutable value semantics. J. Object Technol. 21(2) (2022)

23. Rosu, G.: K: a semantic framework for programming languages and formal analysis
tools. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.) Dependable Software
Systems Engineering, NATO Science for Peace and Security Series - D: Information
and Communication Security, vol. 50, pp. 186–206. IOS Press (2017). https://doi.
org/10.3233/978-1-61499-810-5-186

24. Runtime Verification: The IELE virtual machine. Blog post (2022). https://
runtimeverification.com/the-iele-virtual-machine/

25. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.: eThor: practical and
provably sound static analysis of Ethereum smart contracts. In: Ligatti, J., Ou,
X., Katz, J., Vigna, G. (eds.) 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2020, Virtual Event, USA, 9–13 November 2020,
pp. 621–640. ACM (2020). https://doi.org/10.1145/3372297.3417250

26. Shankar, N.: Static analysis for safe destructive updates in a functional language.
In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 1–24. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45607-4 1

27. Trail of Bits: Rattle - an Ethereum EVM binary analysis framework. Medium Post
(2018). https://blog.trailofbits.com/2018/09/06/rattle-an-ethereum-evm-binary-
analysis-framework/

28. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper (2022). https://ethereum.github.io/yellowpaper/
paper.pdf. Berlin version d77a387. Accessed 26 Apr 2022

https://doi.org/10.1007/978-3-642-19861-8_3
https://doi.org/10.1007/978-3-642-19861-8_3
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.1007/978-3-030-53288-8_8
https://doi.org/10.3233/978-1-61499-810-5-186
https://doi.org/10.3233/978-1-61499-810-5-186
https://runtimeverification.com/the-iele-virtual-machine/
https://runtimeverification.com/the-iele-virtual-machine/
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1007/3-540-45607-4_1
https://blog.trailofbits.com/2018/09/06/rattle-an-ethereum-evm-binary-analysis-framework/
https://blog.trailofbits.com/2018/09/06/rattle-an-ethereum-evm-binary-analysis-framework/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf


Shifting Left for Early Detection
of Machine-Learning Bugs

Ben Liblit1, Linghui Luo2(B), Alejandro Molina3, Rajdeep Mukherjee5,
Zachary Patterson4, Goran Piskachev2, Martin Schäf6, Omer Tripp5,

and Willem Visser5

1 Amazon Web Services, Arlington, USA
2 Amazon Web Services, Berlin, Germany

llinghui@amazon.de
3 Amazon, Seattle, USA

4 The University of Texas at Dallas, Richardson, USA
5 Amazon Web Services, Santa Clara, USA
6 Amazon Web Services, New York, USA

Abstract. Computational notebooks are widely used for machine learn-
ing (ML). However, notebooks raise new correctness concerns beyond
those found in traditional programming environments. ML library APIs
are easy to misuse, and the notebook execution model raises entirely new
problems concerning reproducibility. It is common to use static analy-
ses to detect bugs and enforce best practices in software applications.
However, when configured with new types of rules tailored to notebooks,
these analyses can also detect notebook-specific problems.

We present our initial efforts in understanding how static analysis for
notebooks differs from analysis of traditional application software. We
created six new rules for the CodeGuru Reviewer based on discussions
with ML practitioners. We ran the tool on close to 10,000 experimenta-
tion notebooks, resulting in an average of approximately 1 finding per 7
notebooks. Approximately 60% of the findings that we reviewed are real
notebook defects. (Due to confidentiality limitations, we cannot disclose
the exact number of notebook files and findings.)

Keywords: Static analysis · Computational notebooks · Jupyter
notebook · Machine-learning bugs · Bug finding · Machine learning ·
PyTorch · CodeGuru reviewer

1 Introduction

Static program analysis is shifting left : providing recommendations as early as
possible in the software development life cycle. The earlier an issue is reported,
the easier and less costly it is to fix. Many off-the-shelf analysis engines now
integrate seamlessly into code reviews or builds, to good effect [3,7].

Shifting left assumes a multi-stage process that culminates in deployed soft-
ware. However, work in machine learning (ML) may not fit this model. Data
scientists and ML experts often use computational notebooks for development,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 584–597, 2023.
https://doi.org/10.1007/978-3-031-27481-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_33&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_33


Shifting Left for Early Detection of Machine-Learning Bugs 585

such as Jupyter notebooks [15]. Notebooks are iterative and interactive. A typical
developer edits and evaluates a notebook locally, until it produces an acceptable
model, and only then sends the notebook or model to the next stage of the
development pipeline.

In traditional enterprise software development, code is developed in small
increments, unit tested, and passed through code review, before running on real
data. For a given programming language, notebook developers invest more time
into notebooks between published revisions than traditional developers [11,35].
Delayed feedback by human colleagues means that notebook developers stand to
benefit even more from automated static analyses. However, false-positive rates
must be low so as to not distract developers.

Notebooks also differ from enterprise software in that notebooks do not usually
run in production. Thus, many of the issues typically covered by static analysis,
such as security or resilience to untrusted inputs, are not interesting to notebook
developers. Instead, reproducibility is a much bigger problem [36]. Notebooks have
certain features, like out-of-order execution, which can harm reproducibility, and
misuse of ML APIs, which can lead to accidental modifications of trained mod-
els. Accidental model modifications are a particular concern: such mistakes are
difficult to notice, and may be cumbersome or impossible to revert.

This paper presents our initial efforts in understanding how static analysis for
notebooks differs from analysis of traditional application software. To understand
the problem space, we conducted a pilot study by interviewing a group of ML
practitioners at Amazon. Based on discussions with them, we prioritized certain
issues and implemented six rules using the Python static analysis engine in
CodeGuru Reviewer [21]. We report on rule efficacy for a set of notebooks shared
by Amazon developers. These six rules produced an average of 1 finding per 7
notebooks on a total of nearly 10,000 notebook files. We sampled a set of the
findings to assess precision. Around 60% of these findings are true positives: real
notebook bugs. Our results motivate future research on how to best integrate
static analysis into the development workflow for computational notebooks, and
what type of rules provide the best value for notebook developers.

2 Background

To understand what types of issues are worth catching in notebooks, we inter-
viewed a group of five ML practitioners who come from different organizations in
Amazon, and occupy different roles. As we already hit saturation [12] after the
fifth interview, we did not interview more people. We asked about their habits
when using notebooks and issues they often encounter. Many practitioners men-
tioned the challenge of reproducing results of notebooks when moving between
different environments. Difficulties include failure to understand the execution
order of notebook cells, non-determinism of some ML APIs, and losing track
of dependencies. Practitioners told us that notebooks are far from intuitive, as
cells can be executed in arbitrary order. Errors often occur across cells. Previous
cells are often edited or even removed after execution. These changes may break
the intended functionality of following cells. Because data exploration usually



586 B. Liblit et al.

takes a long time, users often do not execute all cells after small changes. Thus,
breaking changes might be unnoticed until another person tries to rerun the
notebook. Section 4.1 of this paper discusses two concrete issues that fall into
this category and introduces our approach to detect them with static analysis.

Misusing ML APIs can introduce other silent faults. Popular deep-learning
libraries such as PyTorch [22], Keras [5], and TensorFlow [1] greatly simplify the
development of deep learning systems. However, due to high conceptual complex-
ity of the field, unclear documentation, and unintuitive APIs, users commonly
misuse these libraries and inadvertently inject faults during the development of
deep-learning systems. Furthermore, ML libraries are moving targets: different
versions may require to different method calls, produce different performances,
or exhibit different functionality altogether.

To understand which misuses are prevalent across multiple versions of APIs
and that are useful to catch, we collected a list of known misuses from both
scientific literature [13,23,34,37] and an internal survey. We asked several ML
scientists (different than the five we interviewed) at our company to rate useful-
ness in this list and elaborate the reasons for their ratings. We prioritized certain
issues from this list based on practitioner interest (how many votes for useful)
and technical feasibility. These issues are silent at build and run time, of which
a developer would not be aware, even after the code is deployed. Section 4.2
introduce four rules designed for catching these issues.

3 Static Analysis Framework

Our analyses are built on the framework we developed for CodeGuru
Reviewer [21]. In this section, we briefly introduce this framework.

3.1 Code Representation

Our analysis represents each program as a collection of per-function graphs called
MU graphs. A MU graph contains five kinds of nodes:

– Entry nodes represent the start of a function’s execution: one per MU graph.
– Exit nodes represent the end of a function’s execution: one per MU graph.
– Control nodes represent branched control flow, such as a conditional state-

ment or loop.
– Action nodes represent individual execution steps, such as multiplying two

values or calling a function.
– Data nodes represent local variables or synthetic temporary values within

compound expressions.

There are also several types of edges in MU graphs, denoted by their label:

– Control edges order execution among entry, exit, control, and action nodes.
No data node is ever the source or target of a control edge. Thus, discarding all
data nodes and non-control edges would reduce a MU graph to a traditional
control-flow graph (CFG).

– Data edges represent movement of data among control and action nodes, and
are further categorized as follows:



Shifting Left for Early Detection of Machine-Learning Bugs 587

Fig. 1. GQL rule for identifying suboptimal use of the math.exp function.

• Condition edges flow from a data node into a control node, representing
the information used to decide how execution continues.

• Definition edges flow from an action to a data node defined by that action.
• Parameter edges flow from a data node into an action node.
• Receiver edges flow from a data node into a method-calling action node.

These highlight the special role of implicit self or this arguments.
• Callee edges flow from a data node into a call action node, identifying the

function to be called.

3.2 Query Language

Directly analyzing MU graphs can be cumbersome, and can miss important reuse
opportunities. We therefore created an API, dubbed the Guru Query Language
(GQL), to enable encapsulation, optimization, and reuse of a wide variety of
analysis constructs. GQL is implemented as a Java library whose main inter-
face with the analysis builder is the CustomRule class. CustomRule instances are
created using the fluent builder pattern [9], where builder calls correspond to rea-
soning steps in the rule. A rule object can be evaluated at different scopes, from
entire code bases to single functions. This is an important source of flexibility,
enabled by MU graphs and their support for partial programs. Rule evalua-
tion yields a RuleEvaluationResult for each function or method. If rule evaluation
fails, the RuleEvaluationResult includes rich diagnostic information to support
rule debugging.

To illustrate GQL syntax, Fig. 1 shows a rule that identifies suboptimal use
of the math.exp function. Here is an example of what the rule checks for:

def foo():
import math
return math.exp(1e−10) − 1

Rule definition begins by setting the rule’s name and user-facing comment
text. The following steps, up to the check statement, are preconditions that



588 B. Liblit et al.

Fig. 2. Different execution orders result in different outputs.

the rule checks for. Specifically, the withAllOf statement ensures that all the
subrules nested within it evaluate successfully, where these check for math.exp
calls as well as the presence of the constant value 1. The matches are stored into
variables (or IDs), to enable downstream reuse thereof, using the as operation.
The actual check, or postcondition, is the rule section after the check step. This
rule’s postcondition establishes whether there is a subtraction operation that the
node defined by math.exp, along with the constant 1, flow into directly (that is,
without the mediation of any other action).

4 Analysis Rules

In this section, we describe six analysis rules that we implemented using GQL.

4.1 Issues Specific to Computational Notebooks

Computational notebooks break some assumptions we may make when analyzing
traditional code. We introduce two kinds of notebook-specific issues and the rules
that we designed for catching them.

Fig. 3. Converted Python
code in execution order.

Invalid Execution Order: A notebook consists of a
sequence of cells; most cells contain either Mark-
down documentation or code. Users can run indi-
vidual cells as they wish. Thus, there is no guar-
antee that code cells in a notebook run in lin-
ear order, or even that linear order is intended.
Cells with shared variables can produce different
results when running in different order, as shown
in Fig. 2. Cell boundaries are marked with dot-
ted lines. At the beginning of each cell, a number
in square brackets [ ] shows the execution-order
counter. These counters, stored in the metadata



Shifting Left for Early Detection of Machine-Learning Bugs 589

of a notebook file, indicate the execution order of the cells. On the left side of
Fig. 2, the cells were executed in linear order, causing the final value of z to be
10. On the right side of Fig. 2, the execution order of the second and third cells
are flipped. Furthermore, we do not know which code cell executed second in the
right-side notebook, since no cell is marked “[2]”. Perhaps the second-executed
cell has already been deleted, or perhaps some other cell was executed second,
then re-executed (and therefore renumbered) later. This uncertainty causes the
final value of z to be under-determined. When y is assigned to z in the third cell,
we can not assume that the definition of y is still x + 4. The recorded output
for the right-side notebook would be hard or impossible to reproduce.

To address such threats to reproducibility, we designed a rule that detects
cases where a used variable is not defined based on execution order. We leverage
the execution counter metadata stored in notebook files to reconstruct cell code
to be executed in the stored order. Specifically, we implemented a converter that
converts notebook files into Python scripts that retain the execution metadata.
For the example above, the converted Python script is presented in Fig. 3. The
CELL EDGE function is defined to do nothing, but represents a notebook cell

edge. Our rule analyzes the converted Python scripts, which contain cell code in
the execution order as Fig. 3 shows. It starts from each variable use and searches
backwards to determine whether that variable has been defined previously.

Fig. 4. Usage of variable
with unclear scope.

Variable Redefinition: Poor readability is another
common issue in computational notebooks. Dur-
ing exploration, notebooks can easily get messy
and difficult to read. One bad coding practice is
to reuse the same variable name across multiple
cells for different tasks. It is common for users
to unknowingly overwrite data that is used across
multiple cells. To address issues raised due to vari-
ables with unclear scopes, we designed a rule to
detect a variable being defined with different types (variables whose type is
unknown are excluded) in different cells, accompanied by usage in another cell
that does not contain another definition. This rule analyzes our Python rep-
resentation of notebooks by looking for calls to CELL EDGE . From there it
identifies the type of each variable in the cell and stores this information. If a
variable is used in a cell that does not define the variable, but the variable is
defined in at least two other cells with different types, that usage is marked
as unclear. Figure 4 shows an example of this bad practice. The variable x is
defined with two different types: str and int. For its usage in the third cell, it is
not clear which type of data is expected to be passed to the call do something.
That depends on the execution order, where x can be either type in the third cell.

4.2 Misuses of Deep Learning Libraries

As mentioned in Sect. 2, many issues are introduced by misusing the APIs of
deep learning libraries. We introduce four representative misuses in PyTorch.



590 B. Liblit et al.

Missing zero grad Call: Training of deep neural networks is based on itera-
tive parameter updates [4] based on gradients that are computed via back-
propagation [17]. These gradients are accumulated based on batches or mini-
batches of stochastic samples of the training data-set [30]. In PyTorch, the gra-
dients accumulate automatically in the back-propagation step of loss.backward,
and developers must reset the gradient accumulation by calling zero grad before-
hand as shown in Fig. 5. However, if the zero grad step is omitted, then PyTorch
would accumulate gradients indefinitely instead of updating them in batches.
This default accumulating behavior is convenient as it simplifies the implemen-
tation of different batching approaches, but it is also easily forgotten. The impact
of this type of error strongly depends on the task at hand, e.g., training a net-
work from scratch would fail silently as the network would not learn properly
and the developer would simply notice that the model is not improving, costing
time and computational resources. A more severe case occurs when the task is
refinement, i.e., optimizing a previously trained model on new data. In this case
the first few iterations might achieve small improvements, but the network would
simply not learn correctly. However, as the network was already trained, it could
still perform well enough to potentially confuse the developer into thinking that
things are in order, leading to invalid scientific results. Therefore, we designed
a rule to detect missing zero grad calls in training loops that invoke backward.
The rule warns the users about the default accumulating behavior.

Fig. 5. Call zero grad before backward.

Missing eval Call: During the opti-
mization step of deep neural networks,
developers often evaluate the predic-
tive performance of the model on both
training and test data. However, some
layers in a neural network may behave
differently depending on whether the
network is trained or evaluated. A
Dropout [31] layer disables different neurons during training to help the network
learn better, but at evaluation time, the complete network is used to make pre-
dictions. Similarly, BatchNorm [14] changes internal parameters while training,
but keeps parameters fixed during evaluation. To control this behavior, PyTorch
mandates explicit train and eval calls to denote the start of the training and
evaluation (also known as validation or testing) phases of a model, respectively.
Using these calls incorrectly can lead to silent failures. Consider a version of the
code where the developer forgets to call eval. In this case, the Dropout layers will
indirectly change the architecture of the network by activating and disabling
different neurons. This would make all predictions unstable, i.e., for the same
input data, the network would make different predictions when evaluated at dif-
ferent points in time. The BatchNorm layer would cause even more harm, as the
parameters of the layer would adapt according to test data, leaking information
from the test set into the model. This could mislead developers and scientists
into thinking that the model behaves better than it actually does. We designed
a rule to check whether eval is called (1) before testing a trained model loaded



Shifting Left for Early Detection of Machine-Learning Bugs 591

Fig. 6. Three cases where eval should be called.

Fig. 7. Left: compliant case. Right: non-compliant case.

from disk, (2) before validating a model during the training phase, and (3) before
testing a model directly after the training phase. Figure 6 gives examples of these
common cases. Our rule searches both intra- and inter-procedurally, as calls to
eval might be present inside the user-defined evaluate on.

Use of Nondeterministic Algorithm: Reproducibility is a cornerstone of research
in ML. Therefore, deterministic results are important to understand the impact
of different configurations during the training and evaluation of neural net-
works [19]. Unfortunately, training and inference can be computationally expen-
sive [28] and determinism is often abandoned in favor of approximate but faster
results. The default configuration of PyTorch focuses on performance instead
of determinism and provides some operations without deterministic implemen-
tations. Nevertheless, the official PyTorch documentation recommends limiting
sources of nondeterministic behavior, and offers tips and APIs to control and
warn about uses of non-reproducible code. To raise awareness among practition-
ers, we implemented a rule to check whether the non-deterministic version of an
API is used instead of a deterministic alternative.

Unintended In-place Operation: The practical size of a neural network is limited
by the available memory that stores the parameters and intermediate compu-
tation steps. To reduce memory consumption, PyTorch supports in-place oper-
ations over tensors, letting developers decide when to write results to existing
memory instead of requiring extra space. However, as In-place operations change



592 B. Liblit et al.

the content of a given torch.Tensor directly, they can cause loss of data if the
operation is not intended. Figure 7 shows an example where in both variants,
x.add (y) will change the value of x in-place. In the right-side case, the return
value of x.add (y) is also explicitly assigned to a new variable z, making z a
redundant alias for x. This is likely a mistake: x was probably not intended
to be modified. Our rule catches torch.Tensor in-place operations that are then
assigned to variables.

5 Experimental Evaluation

We evaluated our rules on several hundred code repositories containing a total
of almost 10,000 experimentation notebook files (.ipynb) using PyTorch. The
repositories were selected at random, without any bias, and cover a variety of
ML application domains, including for example object recognition in images and
videos, natural language processing, concept learning, healthcare, and speech
recognition. We applied our notebook converter to these notebook files and ana-
lyzed the converted Python scripts. Since not all notebook files have metadata
with the execution counter, our notebook converter supports two representa-
tions. One representation encodes the execution order as previously shown in
Fig. 3, while the other simply lists all cells in linear order, i.e., the argument
passed to each CELL EDGE call is simply the order of cell appearance in the
notebook file. The linear representation is sufficient for all rules except Invalid
Execution Order.

Table 1 shows the results of our experiment. We drew a random sample out
of the overall findings pool to assess their correctness. The sample was drawn
globally, and is thus uneven across the different rules yet roughly correlated with
their frequency. The sampled findings were reviewed together with ML scientists.
We use three ratings: “true positive” (TP) for findings judged to be real defects;
“false positive” (FP) for findings judged to be harmless or correct code; and
“mixed” for findings judged to be partially true. We compute precision as:

Precision =
TPs + Mixed/2

TPs + FPs + Mixed

Invalid Execution Order produced over 80% of the overall findings, followed
by Variable Redefinition with 14.2%. For both of these rules, we reviewed 20
of their findings. The Invalid Execution Order finding rated as “mixed” is due
to a call of the form foo(a, b, c), where all three arguments were stated to use
undefined variables but in practice only some were undefined.

Unintended In-place Operation and Use of Nondeterministic Algorithm pro-
duced few findings, but achieved high precision of 100% and 88%, respectively.
The only false positive is due to incomplete type information inferred by our
Python front-end, Pyright [20]. This limitation also caused 2 of the 3 false pos-
itives for Missing zero grad Call, as our rule uses type information to filter out
training code using Apache MXNet [2]. MXNet automatically zeroes out gradi-
ents for users by default, so missing zero grad is usually not a problem there.



Shifting Left for Early Detection of Machine-Learning Bugs 593

Table 1. Experimental results

Rule Rule Count of findings Precision

Reviewed TPs FPs Mixed

Invalid Execution Order 81:3% 20 11 8 1 58%

Variable Redefinition 14:2% 20 6 13 1 33%

Missing eval Call 3:0% 26 18 5 3 75%

Use of Nondeterministic Algorithm 0:9% 8 7 1 0 88%

Missing zero grad Call 0:5% 4 1 3 0 25%

Unintended In-place Operation 0:1% 1 1 0 0 100%

Another false positive for this rule is due to a third-party library API that calls
zero grad, but that was not available for analysis.

Missing eval Call achieves 78% precision. This rule produced 3% of the
findings with 5 false positives out of 26 findings that were reviewed. We rated 3
as mixed due to incomplete code, i.e., the eval call is missing but other functions
are invoked, not visible to the analysis, that may perform this call. The most
common finding pattern due to this rule is case 1 from our example in Fig. 6: a
trained model loaded from disk is directly applied to data without toggling the
evaluation mode.

For Invalid Execution Order, all false positives are due to defective extraction
of Python code from notebooks. Our prototype notebook converter sometimes
fails to identify shell commands in notebook files, resulting in invalid lines of code
in the converted Python script. Apart from this technical issue, the precision of
this rule is actually quite high. We only have one finding where multiple variables
at the same line are deemed undefined, one of which being a false positive. We
tally this finding as mixed in Table 1.

Fig. 8. Code leading
to Union type.

Variable Redefinition suffers from a high rate of
false positives, mostly because of special types in
Python. One example is the Any type [25]. Pyright
infers the return type of some library methods as Any,
which is compatible with every other type. Our rule
does not consider this case. Thus, if a variable is typed
as Any in one notebook cell but has a concrete type
in another cell, Variable Redefinition raises a warning.
Union [24] is another special type. A variable with type
Union[X, Y] can hold values of types X or Y. Consider
x in the example code in Fig. 8. For cell [1], Pyright
infers that x has type str. However, for cell [2] Pyright
infers that x has type Union[int, str]. Our rule considers str and Union[int, str] to
be distinct types, thus raising a warning. However, in our review we rated such
findings as false positives, as these mixtures of types appeared to be intentional



594 B. Liblit et al.

in context. Lastly, we note the special Unbound type that Pyright infers for a
variable that has never been initialized. We did not treat Unbound in any special
way, which in turn caused some false positives. Future refinement of Variable
Redefinition will add custom handling for these special types.

6 Related Work

In this section, we discuss the most relevant related work to our work.

Challenges in ML Code. Many studies have discussed challenges in ML
code [6,13,23,26,33]. A large-scale study [6] shows a rapid evolution of the use of
ML libraries among GitHub projects. In this study, PyTorch is one of the most
used libraries, which motivated us to focus on it here. Humbatova et al. [13] pro-
posed a hierarchical taxonomy of faults in deep neural networks (DNN). Their
list of faults is one of our sources for developing analysis rules. Our four rules for
API misuses can be categorized into four of the five categories they identified:
Model, Tenors, Training and API.Pimentel et al. [23] analyzed 1.4 million note-
books with reproducibility issues, e.g., most notebooks do not use any testing
infrastructure and many notebooks have non-executed code cells, out-of-order
cells, and skips in the execution count which is a challenge for reproducibility.
The authors could execute only 24% of the notebooks and only 4% of them
could reproduce the expected results. Quaranta [26] identified this same prob-
lem. Quaranta also explored how notebooks are used among different users and
found out that the notebooks are used in unstructured ways. These identified
issues motivated us to develop rules targeting reproducibility of notebooks (e.g.,
Invalid Execution Order, Use of Nondeterministic Algorithm) and best practices
(e.g., Variable Redefinition).

Static Analyses for ML Code. Some static analyses specifically target ML
code [8,10,16,38,38]. Many of these deal with tensor shape in TensorFlow pro-
grams [8,16,18,37]. Dolby et al. [8] introduced Ariadne as part of the WALA
framework [29] to support static analysis of Python. As these analyses were tar-
geting old versions of TensorFlow, they do not exist in code using more recent
TensorFlow releases. Our early study on versions of ML libraries also shows these
problematic TensorFlow versions are rarely used nowadays, whereas the misuses
our rules address are prevalent across a wide range of PyTorch versions including
the latest releases.

Another line of static analysis work focuses on providing best practices for
ML practitioners. Wan et al. [34] studied 360 GitHub projects that use AWS AI
or Google Cloud AI and identifier different types of API misuses generalized into
eight anti-patterns. The authors implemented four different static checkers that
can detect the anti-patterns. Quaranta et al. [27] proposed Pynblint, a static
analyzer for Python notebooks. Pynblint performs a simple linter-based analysis
to identify recommendations to the developer based on a list of 17 best prac-
tices based on code-quality or driving a more reproducible code. NBLyzer [32] is



Shifting Left for Early Detection of Machine-Learning Bugs 595

another static analyzer based on abstract interpretation for intra-cell analyses.
NBLyzer supports two analyses, a code impact analysis and a data leakage anal-
ysis. Advanced by our analysis framework and the novel Python representation
of notebooks with retaining cell information and execution order, our rules are
not only inter-procedural but also inter-cell analyses.

7 Conclusion

This paper introduces our initial efforts to shift static analysis to the left for
ML code. In support of this goal, we identified common defects that arise when
developing ML models with computational notebooks. We showcased six anal-
ysis rules that catch both notebook-specific issues and misuses of deep-learning
libraries. Finding real bugs with these rules on close to 10,000 experimentation
notebooks demonstrates the value for ML practitioners in providing support for
best practices, reproducibility, as well as assurance of scientific correctness. This
motivates us to develop more rules in this space in the future.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Apache: Apache MXNet (2022). https://mxnet.apache.org/versions/1.9.1/
3. Bessey, A., et al.: A few billion lines of code later: using static analysis to find bugs

in the real world. Commun. ACM 53(2), 66–75 (2010). https://doi.org/10.1145/
1646353.1646374. ISSN 0001-0782

4. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univer-
sity Press, Cambridge (2004)

5. Chollet, F., et al.: Keras (2015). https://keras.io
6. Dilhara, M., Ketkar, A., Dig, D.: Understanding software-2.0: a study of machine

learning library usage and evolution. ACM Trans. Softw. Eng. Methodol. 30(4)
(2021). https://doi.org/10.1145/3453478. ISSN 1049-331X

7. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analy-
ses at Facebook. Commun. ACM 62(8), 62–70 (2019). https://doi.org/10.1145/
3338112. ISSN 0001-0782

8. Dolby, J., Shinnar, A., Allain, A., Reinen, J.: Ariadne: analysis for machine learn-
ing programs. In: Proceedings of the 2nd ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages, MAPL 2018, pp. 1–10.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3211346.3211349. ISBN 9781450358347

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: abstraction and
reuse of object-oriented design. In: Nierstrasz, O.M. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
47910-4 21

10. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18
(2018). https://doi.org/10.1109/SP.2018.00058

https://www.tensorflow.org/
https://mxnet.apache.org/versions/1.9.1/
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://keras.io
https://doi.org/10.1145/3453478
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.1109/SP.2018.00058


596 B. Liblit et al.

11. Grotov, K., Titov, S., Sotnikov, V., Golubev, Y., Bryksin, T.: A large-scale com-
parison of Python code in Jupyter notebooks and scripts. In: Proceedings of the
19th International Conference on Mining Software Repositories, MSR 2022, pp.
353–364. Association for Computing Machinery, New York (2022). https://doi.
org/10.1145/3524842.3528447. ISBN 9781450393034

12. Guest, G., Bunce, A., Johnson, L.: How many interviews are enough? An experi-
ment with data saturation and variability. Field Methods 18(1), 59–82 (2006)

13. Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A., Tonella,
P.: Taxonomy of real faults in deep learning systems. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, ICSE 2020,
pp. 1110–1121. Association for Computing Machinery, New York (2020). https://
doi.org/10.1145/3377811.3380395. ISBN 9781450371216

14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456. PMLR (2015)

15. Kluyver, T., et al.: Jupyter notebooks - a publishing format for reproducible com-
putational workflows. In: Loizides, F., Scmidt, B. (eds.) Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016).
https://eprints.soton.ac.uk/403913/

16. Lagouvardos, S., Dolby, J., Grech, N., Antoniadis, A., Smaragdakis, Y.: Static
analysis of shape in TensorFlow programs. In: Hirschfeld, R., Pape, T. (eds.) 34th
European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 166, pp. 15:1–15:29. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2020). https://doi.org/
10.4230/LIPIcs.ECOOP.2020.15, https://drops.dagstuhl.de/opus/volltexte/2020/
13172. ISBN 978-3-95977-154-2, ISSN 1868-8969

17. LeCun, Y., Touresky, D., Hinton, G., Sejnowski, T.: A theoretical framework
for back-propagation. In: Proceedings of the 1988 Connectionist Models Summer
School, vol. 1, pp. 21–28 (1988)

18. Liu, C., et al.: Detecting TensorFlow program bugs in real-world industrial envi-
ronment. In: 2021 36th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 55–66 (2021). https://doi.org/10.1109/ASE51524.
2021.9678891

19. Madhyastha, P., Jain, R.: On model stability as a function of random seed. arXiv
preprint arXiv:1909.10447 (2019)

20. Microsoft: Pyright: Static type checker for Python (2022). https://github.com/
microsoft/pyright

21. Mukherjee, R., Tripp, O., Liblit, B., Wilson, M.: Static analysis for AWS best
practices in Python code. In: Ali, K., Vitek, J. (eds.) 36th European Conference on
Object-Oriented Programming, ECOOP 2022, 6–10 June 2022, Berlin, Germany.
LIPIcs, vol. 222, pp. 14:1–14:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022), https://doi.org/10.4230/LIPIcs.ECOOP.2022.14

22. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. Adv. Neural Inf. Process. Syst. 32 (2019)

23. Pimentel, J.A.F., Murta, L., Braganholo, V., Freire, J.: A large-scale study about
quality and reproducibility of Jupyter notebooks. In: Proceedings of the 16th Inter-
national Conference on Mining Software Repositories, MSR 2019, pp. 507–517.
IEEE Press (2019). https://doi.org/10.1109/MSR.2019.00077

24. Python Software Foundation: The Python standard library: typing—support for
type hints: typing.Union (2022). https://docs.python.org/3/library/typing.html#
typing.Union

https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1145/3524842.3528447
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3377811.3380395
https://eprints.soton.ac.uk/403913/
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
https://drops.dagstuhl.de/opus/volltexte/2020/13172
https://drops.dagstuhl.de/opus/volltexte/2020/13172
https://doi.org/10.1109/ASE51524.2021.9678891
https://doi.org/10.1109/ASE51524.2021.9678891
http://arxiv.org/abs/1909.10447
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.1109/MSR.2019.00077
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union


Shifting Left for Early Detection of Machine-Learning Bugs 597

25. Python Software Foundation: The Python standard library: typing—support for
type hints: The Any type (2022). https://docs.python.org/3/library/typing.html#
the-any-type

26. Quaranta, L.: Assessing the quality of computational notebooks for a friction-
less transition from exploration to production. In: Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion Proceedings,
ICSE 2022, pp. 256–260. Association for Computing Machinery, New York (2022).
https://doi.org/10.1145/3510454.3517055. ISBN 9781450392235

27. Quaranta, L., Calefato, F., Lanubile, F.: Pynblint: a static analyzer for Python
Jupyter notebooks. In: 2022 IEEE/ACM 1st International Conference on AI Engi-
neering - Software Engineering for AI (CAIN), pp. 48–49 (2022). https://doi.org/
10.1145/3522664.3528612

28. Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: DeepSpeed: system optimizations
enable training deep learning models with over 100 billion parameters. In: Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 3505–3506 (2020)

29. Research, I.: WALA: The T. J. Watson libraries for analysis (2022). https://github.
com/wala/WALA

30. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

32. Subotić, P., Milikić, L., Stojić, M.: A static analysis framework for data science
notebooks. In: Proceedings of the 44th International Conference on Software Engi-
neering: Software Engineering in Practice, ICSE-SEIP 2022, pp. 13–22. Association
for Computing Machinery, New York (2022). https://doi.org/10.1145/3510457.
3513032. ISBN 9781450392266

33. Urban, C.: Static analysis of data science software. In: Chang, B.-Y.E. (ed.) SAS
2019. LNCS, vol. 11822, pp. 17–23. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32304-2 2. ISBN 978-3-030-32304-2

34. Wan, C., Liu, S., Hoffmann, H., Maire, M., Lu, S.: Are machine learning cloud APIs
used correctly? In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pp. 125–137 (2021). https://doi.org/10.1109/ICSE43902.
2021.00024

35. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change soft-
ware development practices? IEEE Trans. Software Eng. 47(9), 1857–1871 (2021).
https://doi.org/10.1109/TSE.2019.2937083

36. Wang, J., Kuo, T.y., Li, L., Zeller, A.: Restoring reproducibility of Jupyter note-
books. In: 2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), pp. 288–289 (2020)

37. Wu, D., Shen, B., Chen, Y., Jiang, H., Qiao, L.: Tensfa: detecting and repairing ten-
sor shape faults in deep learning systems. In: 2021 IEEE 32nd International Sym-
posium on Software Reliability Engineering (ISSRE), pp. 11–21 (2021). https://
doi.org/10.1109/ISSRE52982.2021.00014

38. Zhang, Y., Ren, L., Chen, L., Xiong, Y., Cheung, S.C., Xie, T.: Detecting numer-
ical bugs in neural network architectures. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2020, pp. 826–837. Association
for Computing Machinery, New York (2020). https://doi.org/10.1145/3368089.
3409720. ISBN 9781450370431

https://docs.python.org/3/library/typing.html#the-any-type
https://docs.python.org/3/library/typing.html#the-any-type
https://doi.org/10.1145/3510454.3517055
https://doi.org/10.1145/3522664.3528612
https://doi.org/10.1145/3522664.3528612
https://github.com/wala/WALA
https://github.com/wala/WALA
http://arxiv.org/abs/1609.04747
https://doi.org/10.1145/3510457.3513032
https://doi.org/10.1145/3510457.3513032
https://doi.org/10.1007/978-3-030-32304-2_2
https://doi.org/10.1007/978-3-030-32304-2_2
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1109/ICSE43902.2021.00024
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/ISSRE52982.2021.00014
https://doi.org/10.1109/ISSRE52982.2021.00014
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3368089.3409720


A Systematic Approach to Automotive
Security

Masoud Ebrahimi1(B), Stefan Marksteiner2,4, Dejan Ničković3,
Roderick Bloem1, David Schögler2, Philipp Eisner2, Samuel Sprung2,

Thomas Schober2, Sebastian Chlup3, Christoph Schmittner3,
and Sandra König3

1 Graz University of Technology, Graz, Austria
ebrahimi@tugraz.at

2 AVL List GmbH, Graz, Austria
stefan.marksteiner@avl.com

3 AIT Austrian Institute of Technology, Vienna, Austria
dejan.nickovic@ait.ac.at

4 Mälardalen University, Västerås, Sweden

Abstract. We propose a holistic methodology for designing automotive
systems that consider security a central concern at every design stage.
During the concept design, we model the system architecture and define
the security attributes of its components. We perform threat analysis on
the system model to identify structural security issues. From that analy-
sis, we derive attack trees that define recipes describing steps to success-
fully attack the system’s assets and propose threat prevention measures.
The attack tree allows us to derive a verification and validation (V&V)
plan, which prioritizes the testing effort. In particular, we advocate using
learning for testing approaches for the black-box components. It consists
of inferring a finite state model of the black-box component from its
execution traces. This model can then be used to generate new relevant
tests, model check it against requirements, and compare two different
implementations of the same protocol. We illustrate the methodology
with an automotive infotainment system example. Using the advocated
approach, we could also document unexpected and potentially critical
behavior in our example systems.

Keywords: Cybersecurity · Testing · Automotive · Threats

1 Introduction

The advent of connected, cooperative automated mobility provides a huge oppor-
tunity to increase mobility efficiency and road safety. However, the resulting con-
nectivity creates new attack surfaces that affect the vehicle’s safety, security, and
integrity. With an estimated 100 million lines of embedded code, modern vehi-
cles are highly complex systems that need to provide consistent cyber-security
assurances. Indeed, there are an alarming spike in cyber-attacks targeting con-
nected cars, their electronic control units (ECUs), and the original equipment
manufacturer (OEM) back-end servers.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 598–609, 2023.
https://doi.org/10.1007/978-3-031-27481-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_34&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_34


A Systematic Approach to Automotive Security 599

Therefore, making the right security decisions from the early design stages is
crucial. The ad-hoc security measures done by domain experts are insufficient to
meet the requirements in the automotive domain. The standard ISO/SAE 21434
and the mandatory regulation UN R155 advocate for more systematic reasoning
about system security. The United Nations Economic Commission for Europe
(UNECE) has adopted new security regulations, such as UNECE R155 and
R156, for the homologation of future vehicles that address the identified cyber-
attack risks, for example, during software updates. Similarly, the cyber security
standard ISO/SAE 21434, introduced in 2021, defines precise security require-
ments for vehicles during the entire product life cycle, from its development to
its operation and maintenance. Hence, there is an urgent need for methods and
tools that address multiple security-related aspects, from early vehicle design to
deployment and operation phases.

This paper proposes a top-down methodology for systematically assessing
automotive security at different stages of vehicle development. The proposed
methodology follows the product cycle in several steps. During the early design
phase, we use threat modeling, analysis, and repair to provide more systematic
support for the concept design of secure (automotive) systems. These methods
allow us to identify the system’s weaknesses in security threats and develop struc-
tural measures to prevent and mitigate them. We then use the threat analysis
results to capture the system’s critical components concerning security proper-
ties and derive a verification and validation (V&V) plan. We apply established
processes (fuzz testing, penetration testing, etc.) for testing the implemented
system components. However, the source code of the component implementa-
tion is often unavailable to the V&V team, and they cannot efficiently use the
classical testing methods and tools. In that case, we advocate using automata
learning for testing that builds an explainable model of a black-box implemen-
tation of a component from a set of executed test cases that facilitates testing
and other V&V activities. This methodology is a result of a joint research effort
amongst the industrial and academic partners in Trusted1, a project focusing
on trust and security in autonomous vehicles.

2 TRUSTED Methodology

The Trusted methodology starts with the concept design with a threat model of
the vehicle; see Stage 1 in Fig. 1. The threat model consists of two components:
(i) a system model architecture and (ii) a threat database. The system model
architecture provides a structural view of the vehicle. This view includes vehi-
cle components and subsystems (e.g., sensors, actuators, ECUs) and describes
their (wireless or wired) interconnections. We can assign security attributes (e.g.,
authentication, encryption) to system components and communication links. A
system model can define security boundaries that enclose trusted subsystems
and assets we need to protect from potential attacks. The threat database con-
tains a set of known threats-these threats from public domain sources, relevant
1 https://TRUSTED.iaik.tugraz.at/.

https://TRUSTED.iaik.tugraz.at/


600 M. Ebrahimi et al.

Black-Box
Component
Under Test

1 Concept Design 2 V&V Planning 5 V&V Methods

3 Model Validation 4 Model Learning

M
o
d
el

C
h
ec
k
in
g

F
u
zz
in
g

. . .

In
te
g
ra
ti
o
n

T
es
ti
n
g

Architecture Model

Threat
DB

Analysis &

Repair

6 V&V Execution

Component
Tester

A
u
to
m
a
ta

L
ea
rn
in
g

Model-based Testing

Automata

Fig. 1. Overview of the Trusted methodology

standards, and previous experience. The threat model is an input to a threat
analysis method allowing the detection of structural weaknesses in the system’s
architecture. We then combine the threat analysis with the repair activities to
identify prevention and mitigation actions required to protect the system from
identified threats.

The high-level threat analysis performed in the early stages of the design
provides essential insights into the security-related weaknesses in the system
architecture. We can take structural defense actions to improve the system’s
security based on threat repair outcomes (e.g., implementing authentication in
a specific component). Yet, there is no guarantee that an attacker cannot break
the resulting measures. Hence, it is imperative to have a solid verification and
validation (V&V) plan. In the Trusted methodology, we use the insights gained
by threat analysis and repair to identify risks and prepare an effective V&V plan
corresponding to 2 in Fig. 1.

We use the system architecture model developed during the concept design
phase to implement and integrate the components of the system. The implemen-
tation step is outside the scope of the Trusted methodology, but we assume the
components are available as black boxes (see 3 in Fig. 1). That is, we assume
that we can execute components, but we cannot access their implementations.

During the development and integration of different components from the
system architecture, verifying and testing safety and security functionalities
becomes another critical aspect that we must address. Model validation ( 3 in
Fig. 1) tests the model for conformance against the component under test. This
step provides either affirmation for the correctness (or completeness, respec-
tively) of the model or counterexamples to refine the latter in a loop until the
model is considered good enough to be used for test case generation.



A Systematic Approach to Automotive Security 601

We propose a learning-for-testing approach using automata learning ( 4 in
Fig. 1) as the core method for generating tests during V&V. In automata learning
(see Sect. 4.1), we construct a Finite State Machine (FSM) of the System Under
Test (SUT). We use the inferred FSM to: (1) obtain potential attack data, and
(2) identify critical inputs that might show differences between the FSM and the
SUT. We must automatically perform the necessary tests during the development
and especially the maintenance phase to guarantee a quick response in the event
of a threat.

We chose the learning-based testing approach due to its versatility and
numerous V&V activities that we can undertake with the inferred FSM ( 5
in Fig. 1). We can use the inferred FSM to: (1) visualize and understand the
implementation, (2) model check it against its formalized requirements (possi-
bly generating test cases on specification violations), (3) generate additional test
cases by fuzz testing, and (4) Test for equivalence between implementation and
a reference model or another implementation.

In the last phase ( 6 in Fig. 1), we use various V&V strategies to verify the
specified properties against the actual component under test. The test results
are final verification outcomes; meanwhile, we can use them as counterexamples
for the learning algorithms in 4 in Fig. 1. This policy provides a feedback loop
for refining the model in the learning-based testing approach. We execute and
store tests using an automated test execution platform that augments generic
test cases with additional information. This additional information comes from
a test database or is provided in a grey box testing [11].

The threat model and the tests created during various design phases must
be continuously maintained and updated throughout the vehicle lifecycle. We
must incorporate new unknown threats and vulnerabilities into the model and
re-evaluate the model to find new security issues. We must also integrate the
changes to functions resulting from software updates into the system model
and their impact on the vehicle’s security analyzed and re-tested. This closely
corresponds with the notions on testing in ISO 21434 and UNECE R155.

3 Automotive Security by Design

In this section, we demonstrate the use of THREATGET [14], a tool for threat
modeling and analysis to improve the security of automotive applications dur-
ing their early stages of design (step 1 in Fig. 1) and generate an appropriate
V&V plan (step 2 in Fig. 1). We illustrate the approach with an automotive
infotainment system developed by the industrial partner.

We first model the system using THREATGET (Sect. 3.1) and apply analysis
to identify potential structural weaknesses in the system architecture (Sect. 3).
We then use this analysis to derive a V&V plan (Sect. 3.3). Finally, we can
augment it with threat repair to propose additional security measures [16].

3.1 System Architecture Model

We first create an accurate model of the automotive infotainment system (IS),
shown in Fig. 2. The IS is part of a larger ADAS reference model. It has several



602 M. Ebrahimi et al.

TCU
Wired Interface
Eth HU-TCU

Head Unit CAN IF 1
Infotainment

CAN
CAN IF 2

M
u
ltim

ed
ia

IF
H
u
b

LTE/TCU

OEM Backend

TCU
Vehicle CAN

Body CAN CAN IF 4

Wired IF
CTD-HU

Control
Touch Display CAN IF 3

SOS

E-Call

Eth ADAS
Cam InfSys

Bluetooth WiFi

Interior Camera Speaker System
OBD

24/7

Availability
Asset

Confidentiality
Asset

Fig. 2. Automotive infotainment system model.

external interfaces that expose an attack surface of the vehicle. The external
interfaces in Fig. 2 are Bluetooth, WiFi, Interior Camera, and On-Board Diag-
nostics (OBD). The Multimedia Interface Hub (MIH) is an essential component
of the infotainment system that (co-)implements core functionalities, including
navigation, phone calls, and music playback. MIH also bridges external and
internal interfaces. The Telematics Communication Unit (TCU) is the primary
interface to the Internet. Many components in a modern vehicle depend on the
TCU. For example, navigation systems use TCUs to access and update maps,
and ECUs use them for over-the-air updates. Finally, all components except for
TCU and Head Unit communicate through a CAN interface. We add two assets
to the model – the confidentiality asset associated with the Head Unit and the
availability asset associated with the TCU. The assets need to be protected, and
their associated components are potential targets for attackers.

The IS is a weak security link in modern vehicles because it is more prone to
successful cheap attacks than other components (e.g., Body Control Unit or the
Engine Control Unit). This is due to versatile attack scenarios provided by the
use of mainstream Unix-like operating systems, e.g., Uconnect and Automotive
Grade Linux, the user requirements demanding functionalities like a built-in
internet browser and installing third-party apps enabling remote code execution
attacks, and the use of CAN bus that cannot guarantee communication integrity
between the vehicle’s external and internal interfaces.

3.2 Threat Analysis

We analyze the system model with THREATGET against its threat database,
defining a set of possible threats formulated as rules. The threat descriptions are
collected from multiple sources: automotive security standards and regulations
(e.g., ISO/SAE 21434, ETSI, UNECE WP29 R155, and UNECE R156), publicly
documented threats identified in past incidents, and expert knowledge.

We illustrate threat rules with two examples used during the analysis of the
infotainment system model: the rule named “Gain Control of Wireless Interface



A Systematic Approach to Automotive Security 603

(e.g., WiFi, Bluetooth, or BLE)” and the rule named “Flood CAN Commu-
nication with Messages”. Both threat rules originate from automotive security
analyses performed by domain experts. The first threat’s formalization is

ELEMENT : "Wireless Interface"{

"Authorization" NOT IN ["Yes", "Strong"] & "Input Sanitization" != "Yes" &

"Authentication" NOT IN ["Yes", "Strong"] & "Input Validation" != "Yes" &

PROVIDES CAPABILITY "Control" := "true". }

This rule specifies that a wireless interface (e.g., WiFi or Bluetooth) that
neither implements authorization and authentication nor sanitizes or validates
its inputs is susceptible to threats. The last line in the rule explicitly states that
if this threat is exploited, the malicious user can control the wireless interface.
The “Threat Flood CAN Communication with Messages” threat is formalized as

FLOW {

SOURCE ELEMENT : "ECU" { REQUIRES CAPABILITY "Control" >= "true" } &

TARGET ELEMENT : "ECU" {

HOLDS ASSET {

"Cybersecurity Attribute" = "Confidentiality" &

PROVIDES CAPABILITY "Read" := "true" } } &

INCLUDES ELEMENT : "BUS Communication" &

INCLUDES NO ELEMENT : "ECU" { "Anomaly Detection" = "Yes". } }

This rule states that the threat is present if there is a path starting from an
ECU that is under the control of a malicious user to another ECU that holds
the confidentiality asset and that there is a bus between them and no ECU on
the path has implemented anomaly detection.

When applied to the infotainment system model, THREATGET identifies
multiple threats. One threat is “Spoof messages in the vehicle network because
of the missing components”. It describes a pattern that starts at an Interface
with no Authentication and ends at an ECU with no Input Validation and holds
an asset. It includes a wired Shared Medium representing a vehicle’s CAN BUS.
Moreover, no element (of type Firewall, Server, ECU, or Gateway) on the flow
from the Interface to the ECU takes care of Anomaly Detection.

We can address the identified threats with appropriate security measures.
Threat repair [16] consists of preventing concrete threats by proposing security
measures that can be implemented during the system’s design. THREATGET
implements attribute repair, a method that proposes changes in the components’
security attributes as locally deployed measures with a simple cost model.

In the case of the automotive infotainment system model, e.g., the proposed
threat repair measures include enabling authorization and implementing authen-
tication in the WiFi and Bluetooth components. We note that threat repair does
not remove the need for the planned V&V activities. The fact that authentication
is integrated into the WiFi device, following the outcomes of threat repair, does
not guarantee that the authentication algorithm’s implementation is weakness
free. On the contrary, systematic testing of the WiFi’s authentication protocol
is even more necessary to gain confidence that the WiFi device is not a possible
entry point for malicious users.



604 M. Ebrahimi et al.

3.3 V&V Planning

In addition to threat analysis, there is support for identifying and modeling more
sophisticated threats using attack trees; c.f. [8]. This results in more knowledge
about potential attackers’ steps when intruding into a system. Simple rules can
be assigned attributes called capabilities that are either required for an intrusion
or can be gained through the intrusion of a system component. Moreover, we
can define the different access levels to a component (e.g., Access < Read <
Modify < Control). Depending on previously acquired capabilities, different
attack tree rules trigger, yielding distinct attack trees. An example of such a
generated attack tree is illustrated in Fig. 3.

The attack tree depicted in Fig. 3 shows how a malicious user can access the
confidentiality asset associated with the Head Unit via external interfaces such
as WiFi and Bluetooth. For instance, control of the Bluetooth interface can be
gained if its security attributes (input validation and sanitization, authorization
and authentication) are not implemented or have weaknesses. From there, the
user can gain control of the Multimedia Interface Hub, which is not sufficiently
secure, and then get control of the Head Unit and hence the access to the asset.
The attack tree exposes the most critical components that need to be protected.
We note that the attack tree from Fig. 3 is not maximal nor unique – while
THREATGET generates multiple trees for each asset in the model, including
the maximal attack trees, we use a simpler tree for illustration purposes.

Confidentiality Asset
Read = true

Head Unit
Control = true

Head Unit
Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Multimedia IF Hub
Control = true

Multimedia IF Hub
Updates = yes
Managed = no
Secure Boot = no
Anomaly Detection = no

Bluetooth
Control = true

Bluetooth
Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

WiFi
Control = true

WiFi
Input Validation = no
Input Sanitization = no
Authorization = no
Authentication = no

Fig. 3. Attack tree derived from THREATGET. Multiple children from the same node
are implicitly interpreted with an OR operation.

4 Automotive Security Testing

In this section, we advocate an approach based on learning to test critical com-
ponents identified by the threat analysis methods during concept design, when
these components are assumed to be black-box to the tester.



A Systematic Approach to Automotive Security 605

4.1 Automata Learning for Correctness

Many cyber-physical components in the automotive domain implement one or
multiple finite state machines (FSMs). Implementing larger automotive FSMs
becomes cumbersome mainly because: (1) ensuring FSM’s correctness w.r.t. its
specification is expensive, (2) correctly coding the structure of a large FSM
is difficult, and (3) correct integration of FSMs in complex software is hard.
Unfortunately, many software-driven components in the automotive industry
are black boxes from different manufacturers, hence are hard to verify and thus
do not provide functional or non-functional guarantees.

Given an FSM of a black-box automotive component, we can test and verify
it to increase our confidence in its correctness. We use automata learning [3] to
infer an FSM model (concretely a Mealy machine) of the the SUT. In the learning
context we refer to the SUT by system-under-learning (SUL). In automata learn-
ing, a learner asks an oracle two types of queries. First, membership queries to
determine the SUL’s output for a given input word. Second, equivalence queries
check whether a learned model conforms to the SUL, to which the oracle returns
positive answer or a counterexample. A counterexample is an input-output word
distinguishing SUL from hypothesis. In practice, oracles for black box systems
work with conformance testing.

Ordinarily, real-world systems’ alphabets are not manageable for learning
algorithms. Abstraction helps to both cope with this fact and to make inferred
models more human-readable. Too much abstraction, however, might induce
non-deterministic behavior and hide problems we intend to find. There are also
automatic abstraction refinement approaches for an optimum of abstraction in a
mapper [1,10]. An abstraction mapper consists of a mapping function that con-
verts a concrete input into an abstract symbol. It also observes the SUL’s con-
crete outputs and sends an abstraction to the learner. To send a concrete input
to the SUL, the mapper inverses the abstraction. There are multiple methods
to assess the behavioral correctness of the learned FSMs, including (1) black-
box checking [13], adaptive model checking [9], a combination of learning-based
testing and machine learning [12] and symbolic execution [2].

4.2 Use-Case Scenarios

The attack tree (see Fig. 3) poses the critical components that need to be tested
for security. In this section, we illustrate our learning-based testing approach on
the two components highlighted in gray color in Fig. 3 - the Bluetooth interface
(as an entry vector) and the Head Unit ECU.

Bluetooth and Bluetooth Low Energy. Bluetooth is a well-established
standard for wireless audio used in most infotainment systems. Bluetooth Low
Energy (BLE) grows in popularity for car access and sensor data transmission.
The protocols have a variety of known vulnerabilities [4–7,15], some also specif-
ically for automotive systems2.
2 https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-

a-key-passive-entry-vulnerable-to-relay-attacks/.

https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/
https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/


606 M. Ebrahimi et al.

Established

s3s1

s2

s4

s5

s6

s7

P0

P1

P2 P3 Encrypt

Pause0

Pause1Pause2

Closed

s⊥

Fig. 4. Inferred FSM structure for Bluetooth pairing.

Learning Setup. We use Intel Wireless Controllers (AC 8265 and AX200) imple-
menting Bluetooth and BLE. The learning setups are similar, the difference is
in the radio hardware and the physical layer, requiring three entities: (1) Radio
Device, (2) Learner, and (3) Interface between the two with a mapper.

Learned Model and Findings. We inferred the pairing process models, which are
used for encryption and therefore security-critical in the SULs. As a tangible
result, we discovered a BLE deadlock state (red state in Fig. 4) in the Linux
BLE host software. With repeated out-of-order transmission of pairing requests
of different types, we force the respective BLE stack into a state that limits the
device to respond to basic link-layer control packets. After the state is reached,
each following connection will start in this state until the controller is reset.

Unified Diagnostic Services. Each ECU has a secure access mode reachable
through its UDS implementation, available via vehicle’s OBD connector. An
attacker able to exploit UDS security features would be also able to manipulate
data or even flash the ECU with a malicious firmware.

Learning Setup. To communicate with the ECU we used a CAN interface. To
learn a different ECU we only need to adapt the interface. We started by imple-
menting a reduced UDS interface, consisting of instructions to put an ECU into
secure access mode. Communications occures via a CAN bus interface.

Learned Model and Findings. The learning experiment resulted in a reduced
FSM of the UDS shown in Fig. 5. An analysis of the results shows that once
being successfully authenticated (state s4), an incorrect authentication key will

Fig. 5. Inferred UDS FSM. (Color figure online)



A Systematic Approach to Automotive Security 607

still result in the same state. This is unexpected and allows for prolonging a ses-
sion without authentication. When requesting a new seed for re-authentication
(s5) this behavior persists. Moreover, on re-entering a secure session afterwards
(from s6), the ECU accepts an old key as well; an unexpected behavior after re-
initiating the key authentication. Figure 5 marks all unexpected behaviors in red.

5 Conclusion

We introduced the Trusted methodology for designing and assessing trusted
and secure automotive systems. The main novelty of the proposed methodol-
ogy is its holistic and systematic approach to security, which starts at concept
design and is carried down to the implementation and assessment of individual
components. We instantiated the different parts of the methodology using the
state-of-the-art methods and tools for threat modelling and analysis, automata
learning and testing. We illustrated the use of the methodology by applying
it step-by-step an automotive infotainment system. Using the learning-based
testing approach we could document previously unpublished denial-of-service
conditions in the examined BLE setups, as well as unexpected behavior allowing
for extending secure UDS programming sessions on the scrutinized ECU.

Future Work. We plan to further automate the transition from the concept
design and V&V planning on one side, to the actual testing activities done on the
level of components by devising a domain-specific test description language that
can define abstract V&V plans derived from the attack trees, and be refined in a
way so that eventually it can be executed on a platform (e.g., as in [17]). Second,
the Trusted methodology mainly focuses on the transition from concept design
to testing the implementation. We plan to also study the opposite direction –
how to use the component testing results to update the system model and have
a more refined threat analysis and a more realistic threat assessment.

Acknowledgement. This research received funding from the program “ICT of the
Future” of the Austrian Research Promotion Agency (FFG) and the Austrian Ministry
for Transport, Innovation and Technology under grant agreement No. 867558 (project
TRUSTED) and within the ECSEL Joint Undertaking (JU) under grant agreement
No. 876038 (project InSecTT). The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and Austria, Sweden, Spain, Italy,
France, Portugal, Ireland, Finland, Slovenia, Poland, Netherlands, Turkey. The docu-
ment reflects only the author’s view and the Commission is not responsible for any use
that may be made of the information it contains.

References

1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9_4

https://doi.org/10.1007/978-3-642-32759-9_4


608 M. Ebrahimi et al.

2. Aichernig, B.K., Bloem, R., Ebrahimi, M., Tappler, M., Winter, J.: Automata
learning for symbolic execution. In: 2018 Formal Methods in Computer Aided
Design (FMCAD), pp. 1–9. IEEE, Austin, Texas, USA (2018). https://doi.org/10.
23919/FMCAD.2018.8602991

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

4. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: BIAS: bluetooth impersonation
AttackS. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 549–562.
IEEE, San Francisco, CA, USA, May 2020. https://doi.org/10.1109/SP40000.2020.
00093

5. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: Key negotiation downgrade
attacks on bluetooth and bluetooth low energy. ACM Trans. Priv. Secur. 23(3),
14:1–14:28 (2020). https://doi.org/10.1145/3394497

6. Antonioli, D., Tippenhauer, N.O., Rasmussen, K., Payer, M.: BLURtooth: exploit-
ing cross-transport key derivation in bluetooth classic and bluetooth low energy. In:
Proceedings of the 2022 ACM on Asia Conference on Computer and Communica-
tions Security, pp. 196–207. ASIA CCS 2022, Association for Computing Machin-
ery, New York, NY, USA, May 2022. https://doi.org/10.1145/3488932.3523258

7. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.B.: The KNOB is broken: exploit-
ing low entropy in the encryption key negotiation of bluetooth BR/EDR. In:
Heninger, N., Traynor, P. (eds.) 28th USENIX Security Symposium, USENIX Secu-
rity 2019, pp. 1047–1061. USENIX Association, Santa Clara, CA, USA (2019)

8. Ebrahimi, M., Striessnig, C., Triginer, J.C., Schmittner, C.: Identification and veri-
fication of attack-tree threat models in connected vehicles. In: SAE Technical paper
2022–01-7087 (2022). https://doi.org/10.4271/2022-01-7087

9. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46002-0_25

10. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS,
vol. 6538, pp. 263–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18275-4_19

11. Marksteiner, S., et al.: A process to facilitate automated automotive cybersecurity
testing. In: 2021 IEEE 93rd Vehicular Technology Conference (VTC Spring), pp.
1–7. IEEE, New York, NY, USA (2021)

12. Meinke, K.: Learning-based testing of cyber-physical systems-of-systems: a pla-
tooning study. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol.
10497, pp. 135–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66583-2_9

13. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) Formal Methods for Protocol Engineering and Distributed
Systems. IAICT, vol. 28, pp. 225–240. Springer, Boston, MA (1999). https://doi.
org/10.1007/978-0-387-35578-8_13

14. Schmittner, C., Chlup, S., Fellner, A., Macher, G., Brenner, E.: Threatget: Threat
modeling based approach for automated and connected vehicle systems. In: AmE
2020 - Automotive meets Electronics; 11th GMM-Symposium, pp. 1–3. VDE Ver-
lag, Berlin (2020)

15. Seri, B., Vishnepolsky, G.: The dangers of Bluetooth implementations: unveiling
zero day vulnerabilities and security flaws in modern Bluetooth stacks. Technical
report, Armis Inc. (2017)

https://doi.org/10.23919/FMCAD.2018.8602991
https://doi.org/10.23919/FMCAD.2018.8602991
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/SP40000.2020.00093
https://doi.org/10.1109/SP40000.2020.00093
https://doi.org/10.1145/3394497
https://doi.org/10.1145/3488932.3523258
https://doi.org/10.4271/2022-01-7087
https://doi.org/10.1007/3-540-46002-0_25
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-0-387-35578-8_13


A Systematic Approach to Automotive Security 609

16. Tarrach, T., Ebrahimi, M., König, S., Schmittner, C., Bloem, R., Nickovic, D.:
Threat repair with optimization modulo theories. CoRR (2022)

17. Wolschke, C., Marksteiner, S., Braun, T., Wolf, M.: An agnostic domain specific
language for implementing attacks in an automotive use case. In: The 16th Inter-
national Conference on Availability, Reliability and Security, pp. 1–9. ARES 2021,
Association for Computing Machinery, New York, NY, USA, August 2021. https://
doi.org/10.1145/3465481.3470070

https://doi.org/10.1145/3465481.3470070
https://doi.org/10.1145/3465481.3470070


Specification-Guided Critical Scenario
Identification for Automated Driving

Adam Molin1(B), Edgar A. Aguilar2, Dejan Ničković2, Mengjia Zhu3,
Alberto Bemporad3, and Hasan Esen1

1 DENSO AUTOMOTIVE Deutschland GmbH, 85386 Eching, Germany
{a.molin,h.esen}@eu.denso.com

2 AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
{edgar.aguilar,dejan.nickovic}@ait.ac.at

3 IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
{mengjia.zhu,alberto.bemporad}@imtlucca.it

Abstract. To test automated driving systems, we present a case study
for finding critical scenarios in driving environments guided by formal
specifications. To that aim, we devise a framework for critical scenario
identification, which we base on open-source libraries that combine sce-
nario specification, testing, formal methods, and optimization.

Keywords: Autonomous vehicles · Scenario based testing

1 Introduction

With the complexity of the automated driving (AD) system and its driving
environment, verification and validation (V&V) is regarded as one of the major
challenges of AD development [25]. Scenario-based testing (SBT) was introduced
as an essential method for facilitating the overall safety assurance of ADs. In
SBT, the expected behavior of an AD system is described by a representative
set of scenarios that are relevant for its safe use. The SBT paradigm facilitates
shifting the AD testing from the physical to the simulation environment. The
use of virtual testing has manifold advantages – more specifically it allows to:
(1) explore efficiently a large number of situations originating from the catalog
of relevant scenarios, (2) reproduce environment conditions (fog, night, rain,
etc.) that are hard to enforce in a physical environment, and (3) play dangerous
scenarios without risk to humans, other vehicles or infrastructure.

Despite significant advances in research and standardization of SBT, there
are still remaining open issues. One of them is to determine the critical scenarios
among the virtually infinite number of scenarios with an abundance of influential
factors ranging from weather or road conditions, to the behaviors of surrounding
road users. A first attempt to keep the number of scenarios manageable is to

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 956123.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 610–621, 2023.
https://doi.org/10.1007/978-3-031-27481-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_35&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_35


Specification-Guided Critical Scenario Identification for Automated Driving 611

Functional 
scenario

Logical 
scenario

Concrete 
scenario

formalize refine

Abstract 
scenario

refine

Fig. 1. Scenario abstraction types according to [17].

restrict the operational design domain (ODD) of the AD system. According
to [20], the ODD is defined as the operating conditions under which a given
AD system is specifically designed to function. However, there are some factors,
including the dynamic behavior of the road users, which cannot be controlled in
the ODD. Thus, efficient methods are needed to identify the critical scenarios
from the scenario space within the ODD. An extensive survey study on finding
critical scenarios has been conducted in [25]. With regard to specification-guided
critical scenario identification, our work is closely related to [8,21,23,24].

In this paper, we present a specification-driven framework for critical scenario
identification (CSI) entirely based on open-source software libraries and demon-
strate its benefits with an automated emergency break case study. The proposed
framework, based on the falsification testing paradigm [18], uses optimization-
based methods for finding critical scenarios. We first describe the vanilla work-
flow and show how to tailor it with custom test generation and monitoring
strategies. Hence, our aim is to share our experience in combining existing meth-
ods into a flexible and efficient SBT framework. To innovate the methodology
for SBT within the framework, we investigate the separation between the AD
system and the other road users, modeling their interplay with Assume/Guar-
antee (A/G) contracts. By using A/G contracts, we can improve the search for
meaningful scenarios, assign responsibility for critical situations and distinguish
between invalid behaviors originating from the AD system and from its environ-
ment. In that way, we can detect the violation of environment assumptions in
the simulation execution, and discard the test run. By sharing our experience in
SBT, we intend to nurture the innovation of prospective CSI methods that are
based on specification-guided strategies.

2 Specification-Driven Scenario-Based Testing

2.1 Traffic Scenario Description

In the operational domain in which the ADS will be deployed, it is exposed to a
potentially infinite number of traffic scenarios. As a consequence, it is impracti-
cal to conduct testing - even in simulation - directly on these traffic scenarios. A
first step towards a successful application of scenario-based testing to assure the
correct behavior of an ADS within its ODD is the abstraction of traffic scenar-
ios. While the argumentation for quality assurance is done on a higher level of
abstraction, the creation of evidence is performed on simulating a variety of con-
crete traffic scenarios derived from the abstract ones. The PEGASUS project “for
the establishment of generally accepted quality criteria, tools and methods as



612 A. Molin et al.

Table 1. Supported types and properties of scenario description formats

OSC1.2 OSC2.0 SCENIC

Scenario types

Functional × × ×
Abstract × � �
Logical � � �
Concrete � � �
Properties

Syntax format XMLa DSLb, pythonic DSL, pythonic

Language paradigm imperative Mostly declarative Declarative/imperative

Map-agnostic scenario definition × � �
a Extensible Markup Language
b Domain-specific language

well as scenarios and situations for the release of highly-automated driving func-
tions”, introduced three abstraction types: functional, logical, concrete scenarios
[16]. In this paper, we use an extended classification proposed in [17], see Fig. 1.
Functional scenarios are defined as behavior-based, non-formal descriptions of
traffic scenarios in natural language. Abstract scenarios are a formalization of
functional scenarios using a declarative way to describe the scenario. Logical
scenarios are defined as a parameterized set of traffic scenarios, while concrete
scenarios are instances of a logical scenario with fixed parameters. They have a
fixed scenery and road user behavior, that is based on the ego-vehicle movement.
Abstract, logical, and concrete scenarios are machine-readable, and various real-
izations of traffic scenario description formats exist for simulation. In the follow-
ing, we give a comparison between three non-proprietary, and openly available
scenario description formats: OpenSCENARIO®1.2 (OSC1.2) [3], OpenSCE-
NARIO®2.0 (OSC2.0) [4], and Scenic [12], see Table 1. With regard to the
overall traffic scenario, their focus is on the initial placement and the dynamic
behavior of the actors. The description of the scenery, such as the map, is defined
outside these formats. OSC1.2 is mainly used for describing concrete traffic sce-
narios that can be directly run by the simulator. The actors’ placement and
behavior are defined in an imperative fashion using pairs of actions and triggers
that evoke these actions. OSC2.0’s and Scenic’s main intent is to define abstract
scenarios, which can be concretized by a dedicated scenario generation engine.
OSC2.0’s description is mostly declarative by constraining the road users’ behav-
ior. The probabilistic programming language Scenic is declarative in the initial
actor placement with a rich instruction set for relationships between entities,
and uses an imperative description for behaviors. All three languages support
parameterization of scenario parameters to describe logical scenarios. A distinc-
tive feature of OSC2.0 and Scenic compared to OSC1.2 is that the location of
the scenario does not need to be specified within the scenario definition. Instead,
the scenario generation engine will find a suitable segment on the road map, on
which the scenario can be executed with all actors in the simulator.



Specification-Guided Critical Scenario Identification for Automated Driving 613

Scenario Sampling
VerifAI

Trajectory Evaluation
RTAMT

Simulation
CARLA

Abstract Scenario
SCENIC

Formal Specification/KPI
STL

Feedback KPI

Concrete scenario

Simulation trajectories

Test Framework
VerifAI

External Sampler
GLIS Critical Concrete 

Scenario

Fig. 2. Critical scenario identification framework with tool architecture.

Based on the scenario format, a database of abstract/logical scenarios needs
to be created that covers all the relevant features in the considered ODD of
the AD function. In this paper, we selected Scenic as our scenario format, due
to both its flexibility in expressing abstract scenarios and the availability of an
open-source testing framework [9] that is provided for Scenic.

2.2 Critical Scenario Identification

This section introduces the test framework to find critical concrete scenario
instances within a specified abstract scenario efficiently and in a flexible manner.
The framework depicted in Fig. 2 indicating the overall workflow is based on
open-source software components highlighted in bold. It assumes two inputs, the
abstract scenario given in the Scenic format, and a formal specification of the
AD system defined in signal temporal logic (STL), that we use as a test oracle.
The technical details on the formal specification are introduced in Sect. 2.3.

Workflow. The test execution framework is based on Berkeley’s VerifAI [9].
By applying a sampling strategy, VerifAI generates concrete scenarios from the
Scenic scenario that are executed in the CARLA simulator [7]. To evaluate the
resulting trajectories, we integrated RTAMT - an STL monitoring library [19]
- into the VerifAI-based testing framework. RTAMT provides the automated
generation of robustness monitors from STL specifications and therefore facili-
tates checking simulation traces against the formal specification. The robustness
measure is then fed back as a criticality indicator to the scenario sampler that
determines new test parameters that constitute the next concrete scenario to be
simulated. Depending on the sampling strategy, the scenario search can be of
explorative or exploitative nature. Instead of using the sampling strategies pro-
vided by VerifAI, we integrated an external sampling strategy, that is based on
the global optimizer GLIS [5]. The details about GLIS are outlined in Sect. 2.4.

2.3 Formal Specifications

Concrete scenarios are typically evaluated against requirements. These require-
ments can cover various aspects, including safety, legal, comfort and ethical con-



614 A. Molin et al.

siderations. In order to avoid ambiguities and facilitate their evaluation, there is
a need to formulate requirements using a formal specification language. In this
paper, we adopt signal temporal logic (STL) [15] as our specification formalism.
There are several motivations to choose STL for requirement formalization: (1)
an existing body of work already captures AD system requirements using STL,
(2) STL admits quantitative semantics that can be used to guide the search
for critical scenarios, and (3) there are runtime verification tools that enable
evaluation of STL properties. The syntax of STL is given by the grammar

ϕ ::= � | f(R) > 0 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2 | ϕ1SIϕ2 ,

where f(R) are terms in Θ and I are real intervals with bounds in Q≥0 ∪ {∞}.
As customary we use ♦Iϕ ≡ �UIϕ for eventually, �Iϕ ≡ ¬♦I¬ϕ for always,
◇− Iϕ ≡ �SIϕ for once and �– Iϕ ≡ ¬◇− I¬ϕ for historically. The timing interval
I may be omitted when I = [0,∞) or I = (0,∞). STL can be naturally equipped
with quantitative semantics based on the infinity norm [6] that measure how far
is the observed behavior from satisfying or violating a requirement.

The evaluation of an AD system cannot be performed in isolation from its
environment. For instance, an AD system cannot guarantee safety requirements,
such as RSS, in presence of other road users that do not behave in a reasonable
manner. The relation of the AD system and the environment under which it
operates can be formalized in terms of a contract C = (ϕ,ψ), a pair of properties
where ϕ represents the assumptions on the environment and ψ guarantees of the
system under these assumptions. This classical interpretation of C is given by
the temporal logic formula

�ϕ → �ψ.

According to the above formula, any violation of the assumption by the environ-
ment results in the (vacuous) satisfaction of the contract, even if the system also
violates its guarantee. However, this definition neglects that these two violations
may not be causally related – the violation of ψ by the system at time t before
the violation of ϕ by the environment at time t′ > t still results in the satisfac-
tion of the contract. To address this situation, we propose a more refined notion
of a contract that takes the intended temporal causality between the environ-
ment and the AD system into account. We denote our refined contract by Ĉ and
capture its meaning using the formula:

�((�– [0,T ]ϕ) → ψ)

where T specifies the maximum duration within which we consider the violation
of ϕ to be causally related to the violation of ψ.

2.4 Sampling Strategy

Different sampling strategies may be used to identify the parameters of the
next concrete scenario to simulate. These strategies can be broadly divided into
näıve (passive) and guided search (active) sampling strategies [25]. The näıve



Specification-Guided Critical Scenario Identification for Automated Driving 615

search strategies, such as random sampling, involve the independent selection
of test parameters. In contrast, the guided search, such as optimization [10,11],
make the selection based on a specific selection criterion and the information of
existing samples. Näıve search sampling strategies are useful if the simulation is
computationally cheap to run since parallelization of the procedure is possible
due to the independence among testing samples. On the other hand, when the
test case simulation is computationally expensive to run and/or when the test
cases interested (critical test cases in this case) are in a small region of the search
domain, the guided search sampling strategies can be more sample efficient.

For the current study, guided-search sampling strategies such as surrogate-
based black-box optimization methods are appropriate to efficiently identify rel-
evant critical concrete scenarios for the AD system. It is because a closed-form
expression of the KPI in terms of the test parameters is often unavailable. Specif-
ically, we use the global optimization algorithm GLIS (Global optimization via
Inverse distance weighting and Surrogate radial basis functions) [5] as the active
guided-search sampler to identify the next test parameters of a concrete scenario
for testing. The procedure of GLIS includes an initial sampling stage and an
active learning stage. In the initial sampling stage, Ninitial different test parame-
ters are randomly selected within the search domain, and the corresponding con-
crete scenarios are simulated. The resulting quantitative evaluation of each test
parameter from RTAMT monitors is fed back to GLIS (c.f. Fig. 2). A surrogate
radial basis interpolation function (RBF) representing the correlation between
the test parameters and the KPI is fitted to the initial samples. In the active
learning phase, at each iteration, we identify a new test parameter, simulate the
corresponding concrete scenario, and refit the surrogate function by including the
newly identified test parameter and its KPI. The new test parameter is obtained
by optimizing an acquisition function, which trades off the exploitation of the
fitted RBF surrogate and exploration of an inverse distance weighting (IDW)
function. IDW is a distance-based exploration function that promotes visiting
points far away from the existing samples, which helps prevent the solver from
being trapped in the local optima. GLIS terminates when the maximum allowed
iteration is reached, or another user-defined criterion is met.

GLIS is chosen for this study, as it easily incorporates constraints and has
a low computing cost [5]. If the computing cost is reasonable, GLIS may be
replaced by other surrogate-based active samplers, such as Bayesian optimiza-
tion.

3 Automatic Emergency Braking Case Study

To illustrate the methodology, we focus on testing a simple Automatic Emer-
gency Braking (AEB) functionality using a highway scenario.



616 A. Molin et al.

Fig. 3. (left) Snapshot of CARLA simulator running the AEB function test on a high-
way. (right) Example of telemetric data collected from all actors.

Scenario Description. The functional scenario is an ego vehicle following a lead-
ing vehicle on a highway, when suddenly the leading vehicle brakes abruptly. The
ego vehicle is equipped with a simplistic distance-based AEB function which is
activated when the ego is less than safeDist meters from the leading vehicle.
Figure 3 shows a snapshot of the scenario running in CARLA v9.10.

The abstract scenario, depicted in Listing 1.1, is formulated using Scenic1.
The scenario first specifies the sampler and the map used to generate concrete
simulations (lines 1 and 2). Then, it defines parameter variables that we partition
into: (1) the constant variables (lines 3–4) that do not change across concrete
scenarios and (2) the optimization variables (lines 6–7) that are fed to an external
(VerifAI) sampler in order to find critical scenarios in a controlled fashion. There
are also what we call implicit variables that are not explicitly part of the Scenic
abstract scenario but still need to have a concrete value in the simulator. For
example, the weather conditions, the exact starting position and orientation of
each vehicle, the vehicle model, etc. In this case study, there are more than 25
implicit parameters. The scenario also defines the behavior of the ego (lines 9–12)
and of the lead vehicle (lines 14–18). Both the ego and the lead vehicle follow the
lane with some target speed as their default behavior. However, the lead vehicle
abruptly breaks at regular intervals, while the ego breaks when it approaches
any object at some minimum distance. The two vehicles are spawned at some
uniformly chosen part of the map (line 20) that is sufficiently far away from an
intersection (line 25). The lead car is initialized at some pre-defined distance in
front of the ego vehicle (lines 22–23).

1 param verifaiSamplerType = `glis ' # specify sampler

2 param carla_map = `Town04 ' # specify map to use

3 initDist = 30 # constant

4 leadSpeed = 10

5

1 The shown scenario is simplified to facilitate presentation.



Specification-Guided Critical Scenario Identification for Automated Driving 617

6 safeDist = VerifaiRange (25 ,45) # optimization variable

7 egoSpeed = VerifaiRange (9,11) # optimization variable

8
9 behavior AEB_Behavior: # define ego behavior

10 try:

11 FollowLaneBehavior (egoSpeed)

12 interrupt when withinDistanceToObjsInLane(self , safeDist):

take SetBrakeAction (1), SetThrottleAction (0)

13

14 behavior Brake_Behavior: # define behavior of lead car

15 try:

16 FollowLaneBehavior (leadSpeed)

17 interrupt when simulation ().currentTime > delay:

18 take SetBrakeAction (1), SetThrottleAction (0)

19
20 spawnPt = Uniform (* HighwayRoads) # Highway part of map

21
22 ego = Car at spawnPt , with AEB_Behavior} # spawn ego

23 leadCar = Car at spawnPt + initDist , with Brake_Behavior # lead

24
25 require (distance from leadCar to intersection > 50)

26 # extra requirements for rejection sampling

Listing 1.1. AEB highway scenario in Scenic

Formalized Requirements. We illustrate the formalization of the requirements
with the contract C = (ϕ,ψ), which captures the assumption ϕ about the
maximum allowed deceleration of the lead vehicle and the guarantee ψ as the
Responsibility-Sensitive Safety (RSS) property of the ego vehicle. The assump-
tion ϕ originates from the IEEE Standard 2846-2022 [1], that describes the
minimal set of assumptions on the road users for safety-related models of AD.
From the assumptions described in the standard, we focus on the maximum
deceleration specification

ϕ = β ≤ βmax.

The Responsibility-Sensitive Safety (RSS) rule specifies, under minimal
assumptions, what longitudinal and lateral distances the ego vehicle must keep
from other road users to ensure no collisions [22]. The RSS rules were formalized
into temporal logic by [2,14]. We adopt the STL specification from [2] for an ego
vehicle (back) to keep a safe longitudinal distance to another vehicle (front):

� (vfront ≥ 0 ∧ vback ≥ 0)
� (afront ∈ [amax-Br, amax-Acc] ∧ aback ∈ [amax-Br, amax-Acc])
� (d(front, back) < dsafe → aback ∈ [amax-Br, amin-Br])

where a, v are correspondingly acceleration and velocity. Similarly amax-Acc,
amax-Br, amin-Br are assumed maximum acceleration, maximum braking, and
minimum braking acceleration. Finally, dsafe is determined dynamically depend-
ing on the velocities of both vehicles, and the reaction time τ of the ego vehicle:



618 A. Molin et al.

dsafe =
(

vbackτ +
amax-Accτ

2

2
+

(vback + amax-Accτ)2

2amin-Br
− v2

front

2amax-Br

)
.

The safety distance is calculated in order to ensure that a collision is avoided as
long as the ego vehicle is sufficiently far away from the leading vehicle. If it is
momentarily closer than dsafe then a collision will still be avoided if the ego is
reacting appropriately (by braking with at least amin-Br).

3.1 Simulation Results

In this section we present our evaluation outcomes. Figure 4 shows the results
from simulating the abstract scenario 70 times using the described tool chain.
Each point in the scatter plots represents a simulated concrete scenario, where
the RSS longitudinal distance was monitored. If the ego vehicle managed to react
adequately by braking in time, then this is represented as a blue circle, otherwise
(if the specification was violated) it is represented by a red cross (the intensity
of the color represents the robustness degree).

Fig. 4. Comparison between Halton sampling (left) and GLIS sampling [5] (right) for
70 concrete scenarios. The GLIS parameters are: α = 1, δ = 0.5, εSVD = 0.01, and an
inverse-quadratic basis function with ε = 0.2 was used.

Furthermore, we compare two different sampling strategies to find critical
scenarios. In this case, we compare a passive sampling strategy (i.e. agnostic
to feedback) which is based on Halton sequences [13], to an active strategy
based on the GLIS optimization sampling. As expected, sampling scenarios with
GLIS leads to the discovery of more critical scenarios (11 compared to 2 with
Halton), and suggests variable regions which should be further investigated. In
our example, the optimizer clearly was trying to exploit around the region of
higher egoSpeed, and lower safeDist (as expected). In practice, both strategies
are used to obtain a clear picture of the performance of the ADAS functionality.



Specification-Guided Critical Scenario Identification for Automated Driving 619

Fig. 5. Evaluation with A/G contracts.

In Fig. 5, we illustrate the discrepancy between the classical and the refined
interpretation of A/G contracts. The figure depicts two simulations showing
the deceleration β of the lead vehicle and the maximum allowed deceleration
threshold βmax = 2m/s2 (top) and the distance between the ego and the lead
vehicle, as well as the safe distance between them (bottom). We see that in
the two simulations both the assumption ϕ and the guarantee ψ are violated
(purple and red stipes, respectively). In the first simulation (left), there is a clear
causality between the abrupt breaking of the lead vehicle and the longitudinal
RSS violation – it follows that the contract is satisfied under both the classical
and the refined interpretation. In the second simulation (right), the violation
of the longitudinal RSS requirement happens before the lead vehicle breaks.
Intuitively, we expect the contract to be violated since the behavior of the lead
vehicle did not cause this critical scenario. However, under the classical contract
interpretation, the contract is satisfied because the lead vehicle does violate the
assumption at a later stage. On the other hand, the refined contract rightly
indicates the contract falsification.

3.2 Lessons Learned

In this section, we share our experience about the scenario-based testing frame-
work and collected during the case study evaluation.

Passive vs. Active Sampling. Both passive and active sampling have their merits
in testing AD systems. Passive sampling methods such as Halton provide a
coverage of the parameter space, facilitate detecting interesting patterns, if any,
and help identifying parameter regions that are interesting to further explore.
In contrast, active sampling methods such as GLIS can accelerate the detection
of critical scenarios.

Level of Scenario Abstraction. Balance between keeping a scenario abstract, and
letting the tools sample different variables, and having consistent concrete sce-
narios. If too many variables are left unspecified, drawing meaningful conclusions



620 A. Molin et al.

from the experiments is difficult, but if too many parameters are specified, there
is a risk of missing out on potential critical scenarios that are relevant (and it
also needs more development time).

Optimization with Implicit Variables. It is interesting to note that from the
point of view of the optimizer, the robustness function the of concrete scenario
is non-deterministic. That is, there are many different concrete scenarios that
result from having the same egoSpeed and safeDist which result in different
robustness values. This is mostly due to different implicit parameters impacting
the robustness, which the optimizer does not directly see (e.g. road geometry).

References

1. IEEE standard for assumptions in safety-related models for automated driving
systems. IEEE Std 2846-2022, pp. 1–59 (2022). https://doi.org/10.1109/IEEESTD.
2022.9761121

2. Aréchiga, N.: Specifying safety of autonomous vehicles in signal temporal logic.
In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 58–63 (2019). https://doi.
org/10.1109/IVS.2019.8813875

3. Association for Standardization of Automation and Measuring Systems: ASAM
OpenSCENARIO V1.2.0. Standard, Munich, Germany (2022). https://www.asam.
net/standards/detail/openscenario/

4. Association for Standardization of Automation and Measuring Systems: ASAM
OpenSCENARIO V2.0.0. Standard, Munich, Germany (2022). https://www.asam.
net/standards/detail/openscenario/v200/

5. Bemporad, A.: Global optimization via inverse distance weighting and radial basis
functions. Comput. Optim. Appl. 77, 571–595 (2020). http://cse.lab.imtlucca.it/
∼bemporad/glis

6. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

7. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

8. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reason. 63(4), 1031–1053
(2019). https://doi.org/10.1007/s10817-018-09509-5

9. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: 31st International Conference on Computer Aided
Verification (CAV), July 2019

10. Feng, S., Feng, Y., Sun, H., Bao, S., Zhang, Y., Liu, H.X.: Testing scenario library
generation for connected and automated vehicles, part II: case studies. IEEE Trans.
Intell. Transp. Syst. 22(9), 5635–5647 (2020)

11. Feng, S., Feng, Y., Yu, C., Zhang, Y., Liu, H.X.: Testing scenario library generation
for connected and automated vehicles, part I: methodology. IEEE Trans. Intell.
Transp. Syst. 22(3), 1573–1582 (2020)

12. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 63–78 (2019)

https://doi.org/10.1109/IEEESTD.2022.9761121
https://doi.org/10.1109/IEEESTD.2022.9761121
https://doi.org/10.1109/IVS.2019.8813875
https://doi.org/10.1109/IVS.2019.8813875
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/v200/
https://www.asam.net/standards/detail/openscenario/v200/
http://cse.lab.imtlucca.it/~bemporad/glis
http://cse.lab.imtlucca.it/~bemporad/glis
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/s10817-018-09509-5


Specification-Guided Critical Scenario Identification for Automated Driving 621

13. Halton, J.H., Smith, G.B.: Algorithm 247: radical-inverse quasi-random point
sequence. Commun. ACM 7(12), 701–702 (1964). https://doi.org/10.1145/355588.
365104

14. Hekmatnejad, M., et al.: Encoding and monitoring responsibility sensitive safety
rules for automated vehicles in signal temporal logic. In: Proceedings of the 17th
ACM-IEEE International Conference on Formal Methods and Models for System
Design. MEMOCODE 2019 (2019). https://doi.org/10.1145/3359986.3361203

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
Joint International Conferences on Formal Modelling and Analysis of Timed Sys-
tems, FORMATS 2004 and Formal Techniques in Real-Time and Fault-Tolerant
Systems, FTRTFT 2004, Grenoble, France, 22–24 September 2004, Proceedings,
pp. 152–166 (2004)

16. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and vali-
dation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV),
pp. 1821–1827. IEEE (2018)

17. Neurohr, C., Westhofen, L., Butz, M., Bollmann, M.H., Eberle, U., Galbas, R.:
Criticality analysis for the verification and validation of automated vehicles. IEEE
Access 9, 18016–18041 (2021)

18. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, 12–
15 April 2010, pp. 211–220 (2010)

19. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

20. On-Road Automated Driving (ORAD) committee: J3016 Taxonomy and Defi-
nitions for Terms Related to Driving Automation Systems for On-Road Motor
Vehicles. Technical report (2021). https://www.sae.org/standards/content/j3016
202104/

21. Qin, X., Aréchiga, N., Best, A., Deshmukh, J.: Automatic testing with reusable
adversarial agents. arXiv preprint arXiv:1910.13645 (2019)

22. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and
scalable self-driving cars, August 2017. arXiv e-prints. arXiv:1708.06374

23. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-
driven test generation for autonomous vehicles with machine learning components.
IEEE Trans. Intell. Veh. 5(2), 265–280 (2019)

24. Tuncali, C.E., Pavlic, T.P., Fainekos, G.: Utilizing s-taliro as an automatic test
generation framework for autonomous vehicles. In: 19th IEEE International Con-
ference on Intelligent Transportation Systems, ITSC 2016, Rio de Janeiro, Brazil,
1–4 November 2016, pp. 1470–1475 (2016)

25. Zhang, X., et al.: Finding critical scenarios for automated driving systems: a sys-
tematic mapping study. IEEE Trans. Softw. Eng. (2022)

https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1007/978-3-030-59152-6_34
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
http://arxiv.org/abs/1910.13645
http://arxiv.org/abs/1708.06374


Runtime Monitoring for Out-of-Distribution
Detection in Object Detection Neural Networks

Vahid Hashemi1, Jan Křetínskỳ2, Sabine Rieder1,2(B), and Jessica Schmidt1,3

1 AUDI AG, Ingolstadt, Germany
sabine.rieder@audi.de

2 Technical University of Munich, Munich, Germany
3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. Runtime monitoring provides a more realistic and applicable alterna-
tive to verification in the setting of real neural networks used in industry. It is
particularly useful for detecting out-of-distribution (OOD) inputs, for which the
network was not trained and can yield erroneous results. We extend a runtime-
monitoring approach previously proposed for classification networks to percep-
tion systems capable of identification and localization of multiple objects. Fur-
thermore, we analyze its adequacy experimentally on different kinds of OOD
settings, documenting the overall efficacy of our approach.

Keywords: Runtime monitoring · Neural networks · Out-of-distribution
detection · Object detection

1 Introduction

Neural Networks (NNs) can be trained to solve complex problems with very high accu-
racy. Consequently, there is a high demand to deploy them in various settings, many of
which are also safety critical. In order to guarantee their safe operation, various verifi-
cation techniques are being developed [3,10,16,21,32,35]. Unfortunately, despite the
enormous effort, verification of NN of realistic industrial sizes is not within sight [1].
Therefore, more lightweight techniques, less depending on the size of the NN, are
needed these days to provide some assurance of safety. In particular, runtime moni-
toring replaces checking correctness universally on all inputs by following the current
input only and raising an alarm, whenever the safety of operation might be violated.

Due to omnipresent abundance of data, NN can typically be trained well on these
given inputs. However, they may work incorrectly particularly on inputs significantly
different from the training data. Whenever such an Out-Of-Distribution (OOD) input
occurs, it is desirable to raise an alarm since there is much less trust in a correct
decision of the NN on this input. OOD inputs may be, for instance, pictures contain-
ing previously unseen objects or with noise stemming from the sensors or from an
adversary.

This project has received funding from the European Union’s Horizon 2020 Hi-Drive project
under grant agreement No. 101006664 and the project Audi Verifiable AI.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 622–634, 2023.
https://doi.org/10.1007/978-3-031-27481-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_36&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_36


Runtime Monitoring for OOD Detection in Object Detection Neural Networks 623

In this paper, we provide a technique to efficiently detect such OOD inputs for the
industrially relevant task of object detection, for which objects in an input image need to
be localized and classified. We consider PolyYolo [20] as the object detection system of
choice as it encompasses a very complex architecture like complex perception systems
used in development of advanced driver assistance systems (ADAS) and autonomous
driving functions. Our approach builds upon a recent runtime-monitoring technique
[14] for efficient monitoring of classification networks. As we consider object detection
networks, the setting is technically different: the inputs are of a different type and,
apart from classifying objects, their bounding boxes are to be produced. Even more
importantly, the number of objects in the picture to be identified can now be more than
1 (often reaching dozens). As a result, questions arise how to apply the technique in this
context, so that the efficiency and adequacy of the monitor is retained or even improved.

Our contribution can be summarized as follows. We (i) propose how to extend the
technique to this new setting (in Sect. 3.1), (ii) improve and automate the detection
mechanism (in Sect. 3.2), and (iii) provide experiments on industrial benchmarks, con-
cluding the efficacy of our approach (in Sect. 4). In particular, our experiments focus on
OOD due to pictures (i) from other sources, (ii) affected by random noise, e.g., from
sensors, and (iii) affected by adversarial noise due to an FGSM attack [13]. On the
methodological side, we leverage non-conformity measures to automate threshold set-
ting for OOD detection. Altogether, we extend the white-box monitoring approach [14]
to object detection systems more suited for real-world applications.

Related Work. In this paper we focus on OOD detection when considering the neu-
ral network as a white box. OOD detection based on the activation values of neurons
observed at runtime is extensively exploited in the state of the art [2,4,14,17,25,31].
In particular, Hashemi et al. [14] calculate the class-specific expectation values of all
layer’s neurons based on training data to abstract the In-Distribution (ID) behavior of
the network. On top of that, they calculate the activations’ confidence interval per class.
At runtime if the network predicts a class but the activation values are not within the
class-specific confidence interval, the result is declared as OOD as it does not match the
expected ID behavior represented by the interval. Sastry et al. [31] also monitor the net-
work’s activations during training. With this information, they calculate class-specific
Gram matrices allowing them to detect deviations between the values within the matrix
and the predicted class during the execution. Henzinger et al. [17] use interval abstrac-
tion [6] where for each neuron an interval set is built which includes the neuron’s activa-
tion values recorded while executing the training dataset. They utilize these constructed
abstractions to identify novel inputs at runtime. In a follow-up work, Lukina et al. [25]
calculated distance functions to quantitatively measure the discrepancy between novel
and in-distribution samples. Other directions of work for OOD detection involve gen-
erative models to measure the distance between the original image and the generated
sample or monitoring of the last layer, e.g., [24,33].

Hendrycks et al. present different benchmarks for OOD detection in multi-class,
multi-label and segmentation settings and apply baseline methods [15]. They show that
the MaxLogit monitor works well on all those problems. However, it is not directly
applicable to the problem of object detection as in the other settings either the image or
each pixel separately is assigned to classes. In the case of object detection, some parts
of the image cannot be assigned meaningfully.



624 V. Hashemi et al.

While all of the above techniques focus on classification or segmentation networks,
we are only aware of few other approaches focusing on object detection neural net-
works. Du et al. [8] introduced a method for monitoring object detection systems by
distilling unknown OOD objects from the training data and then training the object
detector from scratch in combination with an uncertainty regularization branch. Simi-
larly, [9] train an uncertainty branch by artificially synthesizing outliers from the fea-
ture space of the NN. Consequently, the tools are not applicable to the frozen graph of
a trained model. Unfortunately, this restriction beats the purpose of using (and monitor-
ing) a given trained network.

We refer the reader to [34] for a detailed overview on other monitoring approaches.

2 Preliminaries

2.1 Neural Networks

Neural Networks (NNs) are learning components which are often applied to complex
tasks especially when it is hard to directly find algorithmic solutions. Examples of such
tasks are classification, where the type of object in an image should be predicted, and
object detection. In the latter case, images can contain several different objects at dif-
ferent locations. The NN identifies the different objects in the image, assigns them to
classes and computes bounding boxes, usually of rectangular form, surrounding the
object.

In general, a NN consists of several consecutive layers 1, ..., L containing compu-
tation units called neurons. The neurons receive their input as a sum from weighted
connections to neurons in the previous layer and apply a usually non-linear activation
function σ to their input. The result of this computation is called the activation value h
of the neuron. More formally, the behavior of a neuron j in layer l + 1 with activation
function σl+1 and incoming weights wij from neuron i ∈ Nl from layer l with neurons
Nl can be described as follows for an input x:

hj(x) = σl+1(
∑

i∈Nl

wijhi(x))

The activation values for neurons at layer 1, which is called the input layer, are defined
as the input x:

�h 1(x) = x

The last layer is the output layer. The layers in between are called hidden layers.
An exemplary NN is shown in Fig. 1.

The basic network architecture can be extended with different types of layers.
Examples are convolutional, batch normalization and leaky ReLU layers. A convolu-
tional layer takes its input as a 2- or 3-dimensional matrix and moves another matrix
called the filter over the input. The input values are multiplied by the corresponding
value in the filter to obtain the output. The goal of a batch normalization layer is to nor-
malize the activation values of the neurons. Therefore, the mean and standard deviation
are learned during training. During inference, the batch normalization layer behaves
like a layer without an activation function as it only normalizes the activation values



Runtime Monitoring for OOD Detection in Object Detection Neural Networks 625

according to the learned parameters. The leaky ReLU layer takes only one input with-
out weights and performs the following activation function:

LeakyReLU (x) =

{
x for x > 0
0.01x otherwise

(1)

A more detailed introduction to NNs and different layer types can be found in [28].

input layer hidden layers output layer

Fig. 1. Architecture of a NN

2.2 Gaussian-Based White-Box Monitoring

In [14] Hashemi at al. introduced Gaussian-based OOD detection for a classification
NN. In this setting, the NN is trained to assign an image to one of the classes in C =
{c1, ..., cnL

}. The underlying assumption is that neurons behave similar for objects
of a particular class. Furthermore, neuron activation values are assumed to follow a
Gaussian distribution. Therefore, the neuron activation values hi are recorded for each
monitored neuron i ∈ M for a set of monitored neurons M and for each sample of the
training data X = {x1, .., xm} leading to a vector �r i with ri

j = hi(xj). The vector
is then separated by class to �r i

c�
for c� ∈ C. In the next step, the mean and standard

deviation μi,c�
, σi,c�

are calculated for the neurons dependent on the classes. Due to
assumption of a Gaussian distribution, 95% of the samples are expected to fall into the
range [μi,c�

− k σi,c�
, μi,c�

+ k σi,c�
] where k is a value close to 2.

During inference, a new sample x is fed into the NN, a class c� is predicted and the
neuron activation values are recorded. The monitor checks if the activation values fall
within the previously computed range of values. More formally:

∀i ∈ M : hi(x) ∈ [μi,c�
− k σi,c�

, μi,c�
+ kσi,c�

] (2)

However, the paper [14] showed that rarely the activation values of all neurons fall
within the desired range. Due to the selection of bounds for the interval to contain 95%
of the neuron activation values of the training data, even examples utilized to calculate
the bounds may not fulfill the above condition. Therefore, the condition is weakened
to only require a fixed percentage of neurons to be inside the bounds. This threshold
was set manually in the paper with the goal of obtaining similar false alarm rates as
Henzinger et al. [17].



626 V. Hashemi et al.

2.3 Inductive Conformal Anomaly Detection

In our work we leverage Inductive Conformal Anomaly Detection (ICAD) which was
introduced in [23]. ICAD extends conformal anomaly detection [22]. The idea is to
predict if a new sample xm+1 is similar to a given training set X = {x1, ..., xm}. For
this purpose, a nonconformity measure A is introduced. This function takes as input
the training set and a new sample for which to compute the nonconformity score and
returns a real-valued measure of the distance of xm+1 to the samples of X . Afterwards,
the p-value is calculated based on the nonconformity measure. The p-value for sample
xm+1 is calculated by

pm+1 =
|{xi ∈ X|A(X \ {xi}, xi) ≥ A(X,xm+1)}|

|X| . (3)

A low p-value hints to a non-conformal sample xm+1. In general, this approach is
inefficient as it requires the repeated computation of the nonconformity score for the
entire training set X . An improvement was introduced in [23]. The training set is split
into a proper training set Xp = {x1, ..., xk} and a calibration set Xc = {xk+1, ..., xm}
with k < m. In the first step, the nonconformity measure A is applied to samples of
the calibration set based on the proper training set. For the new test sample xm+1 the
p-value is then computed in comparison to the calibration set:

pm+1 =
|{xi ∈ Xc|A(Xp, xi) ≥ A(Xp, xm+1)}|

|Xc| (4)

3 Monitoring Algorithm

In this paper we propose a monitoring algorithm which extends the Gaussian based
monitoring from [14] to object detection NNs and embeds it into the framework of
ICAD.

3.1 Extension to Object Detection Neural Networks

The approach presented by Hashemi et al. [14] relies on the distinction of images by
different classes as a separate interval for the neuron activation values is computed for
each of the classes. However, images fed to an object detection network can contain
several objects of different classes at different locations at the same time. When com-
puting the intervals based on the classes contained in the images, one image could be
relevant for several of those intervals. For example, an image containing a car and a
pedestrian would contribute to the intervals for both classes. However, the pedestrian
could only make up a small part of the input image leading to only a small fraction of
neurons being influenced by the object. Consequently, neurons not related to the person
are considered as relevant for the class intervals. Furthermore, the position of pedes-
trians throughout different images can shift and the neurons related to the pedestrian
change accordingly. Consequently, the class related intervals would mostly consists of
values from neurons that are not related to objects of the class. In addition, this app-
roach increases the runtime at inference time. A previously unseen image would need



Runtime Monitoring for OOD Detection in Object Detection Neural Networks 627

to be checked against an interval for each class it contains an object of. In the worst
case this could result in the total number of classes. As most of the values used for
constructing the intervals are similar since they are not related to the particular object,
the computations are also highly redundant.

To resolve both issues we discard the class information. This is supported by the
observation that images are generally recorded in similar areas and therefore the general
setting of a street is contained in all of them. The only changes are due to the objects
and are locally bounded to their locations. The approach reduces the runtime to only
one check per image and discards redundant computations. In total, we monitor the
following condition discarding the class information:

∀i ∈ M : hi(x) ∈ [μi − k σi, μi + k σi] (5)

3.2 Embedding into the Framework of Inductive Conformal Anomaly Detection

In the next step we improve the manual threshold setting from [14] for the number of
neurons that need to fall inside the expected interval. We propose to use ICAD for this
purpose. Therefore, we divide the training set into the proper training set Xp and the
calibration set Xc and define the nonconformity measure A to be the number of neurons
falling outside the range [μi,p − k σi,p, μi,l,p + k σi,p] computed based on the proper
training set Xp. We capture the number of neurons outside the interval rather than the
ones inside as the nonconformity measure is expected to grow for OOD data. More
formally with M as the set of monitored neurons, usually all neurons of a particular
layer and μi,p, σi,p the bounds computed as described in the last section based on the
set Xp as training set:

A(Xp, x) =
|{i ∈ M |hi(x) /∈ [μi,p − k σi,p, μi,p + k σi,p]}|

|M | (6)

Afterwards, the p-value is calculated as described in Eq. 4. The threshold for the
p-values is then set manually based on the requirements of the use case as there is
a trade-off between the false alarm rate and the detection rate. For example, a high
threshold for the p-vale leads to a low number of wrongly classified OOD examples,
but the number of ID data classified as OOD will also rise as even some of the images
from the calibration set are classified as OOD. Overall, the threshold setting is now
closely related to the calibration set instead of the abstract metric of number of neurons
inside the bounds.

4 Experiments

Experiments were performed on PolyYolo [20] which is based on the famous architec-
ture called YOLO (You Only Look Once) [29]. YOLO was introduced in 2016 from
Redmon et al. and afterwards continuously extended to improve the performance. For
our work we decided to focus on PolyYolo [20] as it improves YOLOv3 [30] while
also reducing the size of the network. The architecture can be seen in Fig. 2. PolyYolo
consists of three main building blocks. A convolutional set contains a convolutional



628 V. Hashemi et al.

layer and a batch normalization layer followed by leaky ReLU layer. A Squeeze-and-
Excitation (SE) block [19] contains a Global Average Pooling layer to reduce the size
of each channel to 1 followed by a reshape layer, a dense layer, a leaky ReLU layer and
a dense layer. The output of this sequence is meant to represent the importance of each
channel compared to the others. Therefore, the last layer of the block multiplies the
input with the result of the sequence to scale the input. The residual block with SE then
contains two consecutive convolutional sets followed by a SE block. The result is added
to the input. The backbone of PolyYolo consists of several iterations of convolutional
sets followed by residual blocks with SE as shown in Fig. 2. In between, there are three
skip-connections to the neck. The neck uses upsampling to scale all results of the skip-
connections to the same size and adds them up with intermediate convolutional sets.
After all connections are added to one feature map, four convolutional sets are applied.
The final layer is a convolutional layer. We monitored layers from the last convolutional
set of the network as those are the last hidden layers and Hashemi et al. [14] discovered
that a monitor based on the last layers of a NN lead to more accurate results. Namely
we focus on the last batch normalization and leaky ReLU layer. As ID data we used
Cityscapes [5] which is the data set PolyYolo was trained on.

Fig. 2. The image is taken from [20] and shows the architecture of PolyYolo. White blocks rep-
resent convolutional sets, light pink indicates residual blocks with SE and dark pink shows the
upsampling. (Color figure online)

We computed intervals for the neuron activation values based on 500 training
images of the Cityscapes data set and the calibration set consists of 100 test images
of Cityscapes. In a first step, we investigated the size of the calibration set. Figure 3
shows the importance of including images with different features. The x-axis shows the
interval of p-values considered for the bar while the y-axis shows the number of images
resulting in a p-value within this interval. For a calibration set of size 20, many sam-
ples obtain a p-value in the interval (15, 20]. For a large calibration set, the peaks in the
graph are flattened. However, it is also noticeable that some elements of Xc are of more
importance to the test data than others resulting in peaks as they separate the test data.
Small bars in the graph are the result of elements of Xc that do not contribute a value for
the nonconformity measure with huge difference to their neighbors. Therefore, samples
from the test data that have a higher nonconformity score than these images also have a



Runtime Monitoring for OOD Detection in Object Detection Neural Networks 629

larger nonconformity score than other samples of Xc. A more advanced selection strat-
egy for the calibration set could reduce this effect. To this end, we therefore fix the size
of the calibration set to 100 images.

Fig. 3. The x-axis shows the range of p-value and the y-axis the number of images resulting in a
p-value contained in the interval. The rows correspond to different sizes of calibration sets while
the columns contain the monitored layers.

Figure 4 then shows the behavior of the p-values on selected OOD data in com-
parison to ID data. The x-axis represents again the intervals of the p-values while the
y-axis shows the number of images with p-values ranging in the specified interval. The
blue bars represent 250 ID images obtained from the validation set of Cityscapes. The
respective p-values are visualized with blue color. Similarly to the setting of Hashemi
et al. [14] we obtained OOD data by using a different data set, namely KITTI [11],
which also contains images captured by a vehicle driving in a German city. However,
all randomly selected 100 images from the KITTI data set resulted in a p-value of 0



630 V. Hashemi et al.

which is indicated with the red bar. Therefore, we generated OOD examples from the
250 Cityscapes images we used as test data by adding Gaussian noise, as noise can
be used to fool a neural network [7,18,26]. Our implementation is based on [27]. We
considered additional Gaussian noise with mean 0 and variance 0.02, 0.04 or 0.06. The
noise is barely detectable for humans (see Fig. 5) but leads to sever faults in PolyY-
olo. As indicated in Fig. 5, a noise of variance 0.02 already leads to a huge decrease
in detection rate and for a larger variance no objects were detected correctly. In Fig. 4
the behavior of the p-values for images with additional noise is portrayed. The noises
of variance 0.02, 0.04 and 0.06 are depicted by cyan, green and orange bars, respec-
tively. For better readability, some bars were shortened. It can be seen that the p-values
decrease when the severity of the noise increases. This trade off can be considered when
selecting a threshold value at runtime in order to decide when to raise an alarm.

Fig. 4. Number of images with the respective p-value. The x-axis shows the p-value, the y-axis
the number of images resulting in the specific p-value.

For the evaluation of the monitor in a practical setting we set the threshold for p-
values to 5% meaning that a sample is classified as ID if it has a higher p-value than
at least 5% of the calibration set. This decision was influenced by Fig. 4. Most samples
perturbed with a severe Gaussian noise and only a small portion of ID are classified
as OOD by this threshold. The experiments were carried out on 100 previously unseen
images of the Cityscapes data set as well as 100 images of KITTI and A2D2 [12].
Perturbations were applied to the Cityscapes images. In addition to Gaussian noise
we used impulse noise, also called salt-and-pepper noise, and the Fast Gradient Sign
Method (FGSM) attack [13]. The impulse noise manifests as white and black pixels in
the image and the strength is influenced by the random parameter. Our implementation
is again based on [27]. The FGSM attack corrupts the input pixels based on the gradient
of the output. The gradient is used to calculate a mask of changes which is then added
to the input image. The mask is usually multiplied with a small factor to make the attack
less obvious to humans. Examples of the perturbations can be seen in Fig. 5.

Results of the experiment are shown in Table 1. The number of ID data classified as
OOD data lies within the range of expected values due to the setting of the threshold to
5%. Both layers detect Gaussian noise with variance of 0.04 and 0.06 while a variance
of 0.02 can fool the approach. However, this noise is not as critical as large objects are
still detected from the network (see Fig. 5 for an example). For the attacked images,
the leaky ReLU layer was more precise. This is presumably due to the fact that in the



Runtime Monitoring for OOD Detection in Object Detection Neural Networks 631

Fig. 5. Image from the Cityscapes data set with additional perturbations and the predictions
obtained from PolyYolo on the perturbed image

Table 1. The table shows the number of images classified as ID and OOD dependent on the
perturbation applied and the data set used. Noise and FGSM were applied to the ID data.

Data Leaky ReLU layer Batch normalization layer

Classified
as ID

Classified
as OOD

Classified
as ID

Classified
as OOD

ID data 97 3 94 6

Gaussian noise with variance 0.02 93 7 91 9

Gaussian noise with variance 0.04 9 91 8 92

Gaussian noise with variance 0.06 0 100 0 100

Impulse noise with random parameter 0.03 0 100 0 100

Impulse noise with random parameter 0.06 0 100 0 100

FGSM with mask multiplied by 0.02 35 65 39 61

FGSM with mask multiplied by 0.04 8 92 11 89

FGSM with mask multiplied by 0.06 0 100 0 100

KITTI 0 100 0 100

A2D2 0 100 0 100

FGSM images pixels were purposely changed to make a large impact on the output of
the network. The leaky ReLU layer is a successor of the batch normalization layer and
the last layer before the output layer. Therefore, the changes should reflect more. Fur-
thermore, it is noticeable that all images taken from different data sets were classified
correctly.



632 V. Hashemi et al.

5 Conclusion and Future Work

In this work we developed a tool to detect OOD images at runtime for 2D object detec-
tion systems. The idea was based on Gaussian monitoring of the neuron activation pat-
terns. We additionally embedded the method into the framework of inductive conformal
anomaly detection to receive a quantitative measure of difference between the training
set and new samples. Experiments visualizing the p-values were carried out.

The proposed idea can be extended in several ways. First of all, the selection of
images for the calibration set can be improved as we observed a difference in impor-
tance for the randomly selected images. In addition, the selection of monitored lay-
ers requires further evaluation. We only considered the last two hidden layers of the
network. However, the architecture of PolyYolo contains staircase upsampling with
skip connections. Activation values obtained from these connections are a natural way
to extend the monitoring approach to also take intermediate neuron values into con-
sideration. Furthermore, more experiments on other neural network architectures are
required in order to generalize the results. For the same reason, different types of per-
turbations and attacks should be considered for generating OOD data. An extension of
the MaxLogit monitor from [15] to the application of object detection with the goal of
comparing both monitors is worth to be exploited.

References

1. Bak, S., Liu, C., Johnson, T.T.: The second international verification of neural networks com-
petition (VNN-COMP 2021): summary and results. CoRR abs/2109.00498 (2021). https://
arxiv.org/abs/2109.00498

2. Cheng, C.H.: Provably-robust runtime monitoring of neuron activation patterns. In: 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1310–1313.
IEEE (2021)

3. Cheng, C., Huang, C., Brunner, T., Hashemi, V.: Towards safety verification of direct percep-
tion neural networks. In: 2020 Design, Automation & Test in Europe Conference & Exhibi-
tion, DATE 2020, Grenoble, France, 9–13 March 2020, pp. 1640–1643. IEEE (2020)

4. Cheng, C.H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation patterns.
In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 300–
303. IEEE (2019)

5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, 27–30 June 2016, pp. 3213–3223. IEEE Computer Society (2016). https://doi.org/10.
1109/CVPR.2016.350

6. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Pro-
ceedings of the 2nd International Symposium on Programming, Paris, France, pp. 106–130.
Dunod (1976)

7. Dodge, S., Karam, L.: A study and comparison of human and deep learning recognition
performance under visual distortions. In: 2017 26th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–7. IEEE (2017)

8. Du, X., Wang, X., Gozum, G., Li, Y.: Unknown-aware object detection: learning what you
don’t know from videos in the wild. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 13678–13688 (2022)

https://arxiv.org/abs/2109.00498
https://arxiv.org/abs/2109.00498
https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.1109/CVPR.2016.350


Runtime Monitoring for OOD Detection in Object Detection Neural Networks 633

9. Du, X., Wang, Z., Cai, M., Li, Y.: Vos: learning what you don’t know by virtual outlier
synthesis. In: International Conference on Learning Representations (2021)

10. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2:
safety and robustness certification of neural networks with abstract interpretation. In: 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, San Francisco, California,
USA, 21–23 May 2018, pp. 3–18. IEEE Computer Society (2018). https://doi.org/10.1109/
SP.2018.00058

11. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision
benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR)
(2012)

12. Geyer, J., et al.: A2D2: Audi autonomous driving dataset (2020). https://www.a2d2.audi
13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572 (2014)
14. Hashemi, V., Křetínský, J., Mohr, S., Seferis, E.: Gaussian-based runtime detection of out-

of-distribution inputs for neural networks. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS,
vol. 12974, pp. 254–264. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-
9_14

15. Hendrycks, D., et al.: Scaling out-of-distribution detection for real-world settings. arXiv
preprint arXiv:1911.11132 (2019). https://doi.org/10.48550/ARXIV.1911.11132, https://
arxiv.org/abs/1911.11132

16. Henriksen, P., Lomuscio, A.R.: Efficient neural network verification via adaptive refinement
and adversarial search. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th European Confer-
ence on Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain,
August 29 - September 8, 2020 -Including 10th Conference on Prestigious Applications of
Artificial Intelligence (PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol.
325, pp. 2513–2520. IOS Press (2020). https://doi.org/10.3233/FAIA200385

17. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based monitoring
of neural networks. In: ECAI 2020–24th European Conference on Artificial Intelligence, 29
August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020
- Including 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS
2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 2433–2440. IOS
Press (2020). https://doi.org/10.3233/FAIA200375

18. Hosseini, H., Xiao, B., Poovendran, R.: Google’s cloud vision API is not robust to noise. In:
2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA),
pp. 101–105. IEEE (2017)

19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

20. Hurtik, P., Molek, V., Hula, J., Vajgl, M., Vlasanek, P., Nejezchleba, T.: Poly-yolo:
higher speed, more precise detection and instance segmentation for yolov3. arXiv preprint
arXiv:2005.13243 (2020)

21. Katz, G., et al.: The marabou framework for verification and analysis of deep neural net-
works. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

22. Laxhammar, R., Falkman, G.: Online learning and sequential anomaly detection in trajec-
tories. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1158–1173 (2014). https://doi.org/10.
1109/TPAMI.2013.172

23. Laxhammar, R., Falkman, G.: Inductive conformal anomaly detection for sequential detec-
tion of anomalous sub-trajectories. Ann. Math. Artif. Intell. 74(1), 67–94 (2015). https://doi.
org/10.1007/s10472-013-9381-7

https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://www.a2d2.audi
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-88494-9_14
https://doi.org/10.1007/978-3-030-88494-9_14
http://arxiv.org/abs/1911.11132
https://doi.org/10.48550/ARXIV.1911.11132
https://arxiv.org/abs/1911.11132
https://arxiv.org/abs/1911.11132
https://doi.org/10.3233/FAIA200385
https://doi.org/10.3233/FAIA200375
http://arxiv.org/abs/2005.13243
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1109/TPAMI.2013.172
https://doi.org/10.1109/TPAMI.2013.172
https://doi.org/10.1007/s10472-013-9381-7
https://doi.org/10.1007/s10472-013-9381-7


634 V. Hashemi et al.

24. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection
in neural networks. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net (2018). https://openreview.net/forum?id=H1VGkIxRZ

25. Lukina, A., Schilling, C., Henzinger, T.A.: Into the unknown: active monitoring of neural
networks. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 42–61. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_3

26. Metzen, J.H., Kumar, M.C., Brox, T., Fischer, V.: Universal adversarial perturbations against
semantic image segmentation. In: IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, 22–29 October 2017, pp. 2774–2783. IEEE Computer Society (2017).
https://doi.org/10.1109/ICCV.2017.300

27. Michaelis, C., et al.: Benchmarking robustness in object detection: autonomous driving when
winter is coming. arXiv preprint arXiv:1907.07484 (2019)

28. Nielsen, M.A.: Neural Networks and Deep Learning, vol. 25. Determination Press San Fran-
cisco, CA, USA (2015)

29. Redmon, J., Divvala, S.K., Girshick, R., Farhadi, A.: You only look once: unified, real-time
object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 779–788. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.91

30. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767
(2018). http://arxiv.org/abs/1804.02767

31. Sastry, C.S., Oore, S.: Detecting out-of-distribution examples with gram matrices. In: Pro-
ceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July
2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 8491–8501.
PMLR (2020). http://proceedings.mlr.press/v119/sastry20a.html

32. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural net-
works. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019). https://doi.org/10.1145/3290354

33. Wang, H., Liu, W., Bocchieri, A., Li, Y.: Can multi-label classification networks know what
they don’t know? Advances in Neural Information Processing Systems, vol. 34, pp. 29074–
29087 (2021)

34. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. CoRR
abs/2110.11334 (2021). https://arxiv.org/abs/2110.11334

35. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network robustness
certification with general activation functions. CoRR abs/1811.00866 (2018). http://arxiv.
org/abs/1811.00866

https://openreview.net/forum?id=H1VGkIxRZ
https://doi.org/10.1007/978-3-030-88494-9_3
https://doi.org/10.1109/ICCV.2017.300
http://arxiv.org/abs/1907.07484
https://doi.org/10.1109/CVPR.2016.91
http://arxiv.org/abs/1804.02767
http://proceedings.mlr.press/v119/sastry20a.html
https://doi.org/10.1145/3290354
https://arxiv.org/abs/2110.11334
http://arxiv.org/abs/1811.00866
http://arxiv.org/abs/1811.00866


Backdoor Mitigation in Deep Neural Networks
via Strategic Retraining

Akshay Dhonthi1,2(B), Ernst Moritz Hahn2, and Vahid Hashemi1

1 AUDI AG, Auto-Union-Straße 1, 85057 Ingolstadt, Germany
akshay.dhonthirameshbabu@audi.de

2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands

Abstract. Deep Neural Networks (DNN) are becoming increasingly more
important in assisted and automated driving. Using such entities which are
obtained using machine learning is inevitable: tasks such as recognizing traf-
fic signs cannot be developed reasonably using traditional software development
methods. DNN however do have the problem that they are mostly black boxes
and therefore hard to understand and debug. One particular problem is that they
are prone to hidden backdoors. This means that the DNN misclassifies its input,
because it considers properties that should not be decisive for the output. Back-
doors may either be introduced by malicious attackers or by inappropriate train-
ing. In any case, detecting and removing them is important in the automotive area,
as they might lead to safety violations with potentially severe consequences. In
this paper, we introduce a novel method to remove backdoors. Our method works
for both intentional as well as unintentional backdoors. We also do not require
prior knowledge about the shape or distribution of backdoors. Experimental evi-
dence shows that our method performs well on several medium-sized examples.

Keywords: Security testing · Neural networks · Backdoor mitigation ·
Adversarial attacks

1 Introduction

Advanced Driver Assistive System (ADAS) or Autonomous Driving (AD) functions
[8] generally use Deep Neural Networks (DNN) in their architecture to perform com-
plex tasks such as object detection and localization. Essential applications are traffic
sign classification or detection [2,19], lane detection [10], vehicle or pedestrian detec-
tion [1], driver monitoring and driver-vehicle interaction [5]. All these functions are
safety-critical, because incorrect outputs may create dangerous situations, accidents and
even loss of life. Therefore, testing them for security, reliability, and robustness has the
utmost priority before deploying the functions on autonomous vehicles into the real
world.

DNN unfortunately can easily be manipulated due to their dependency on the train-
ing data. For example, consider a traffic sign classification model trained on a large

This research was funded in part by the EU under project 864075 CAESAR, the project Audi
Verifiable AI, and the BMWi funded KARLI project (grant 19A21031C).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 635–647, 2023.
https://doi.org/10.1007/978-3-031-27481-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_37&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_37


636 A. Dhonthi et al.

Fig. 1. Framework of the backdoor or bias mitigation approach

dataset such as GTSRB [17]. An attacker having access to the data during training may
intentionally poison it by modifying a small percentage of the data. This can be done by
adding trojan patterns to the input belonging to different classes. The trojan patterns
may be in the form of objects, image transformations, invisible watermarks and many
more. The model trained with such poisoned data may have learned false features called
backdoors which have no direct relation to the classification output. Such models still
perform well on benign inputs; however, they may fail in the presence of trojan patterns
(which only the attackers know).

Research has shown that backdoors may exist even on models trained with benign
data [13]. This is because certain features may have strong correlation to an output
class making the model biased towards such features. For example, traffic signs such as
pedestrian crossing may usually have urban background whereas wild animal crossing
may usually have country/rural backgrounds. In such cases, the DNN may have learned
the background instead of the traffic sign itself leading to bias and in turn misclassifica-
tion. Therefore, it is vital to defend against both intentional backdoors (present due to
an attacker’s poisoning of training data) and unintentional backdoors (present due to a
strong correlation to certain features for a few classes) to ensure the proper functionality
of machine learning models.

Coverage testing is one of the typical software testing approaches where the goal
is to achieve complete code coverage by checking the correctness for the entire input
space. Using such techniques to test DNN is not straightforward, due to the massive
number of parameters and the black-box nature of DNN. However, there has been a
vast amount of research in adapting those coverage techniques to work with DNN. One
such approach isNN-dependability [3], which proposes several metrics to measure qual-
ity of the DNN in terms of robustness, interpretability, completeness, and correctness.
However, the metrics cannot test for backdoors. Other software engineering techniques
such as Modified Condition/Decision MC/DC [18] and scenario based testing [4] also
do not focus on security aspects such as backdoor testing. Our approach is different
from these as we target specifically at overcoming backdoors and biases in the DNN.

Several attacking techniques developed in recent years [6,14–16] are excellent at
fooling even the state-of-the-art defense methods such as STRIP [9], Fine-pruning [12],



Backdoor Mitigation in Deep Neural Networks via Strategic Retraining 637

and Neural Cleanse [20]. It is essential to defend from such attacks, especially for
safety-critical applications. A defense mechanism includes two phases. The first phase
is to detect the backdoors and the second is to mitigate them. Detection techniques
such as [12,20] can identify common kinds of poisoning such as masking with patches,
noise and watermarks. However, they are white-box, meaning that they need informa-
tion about the type or position of trojan patterns. The detection technique needs to be
able to treat the data as a black box, because we usually do not have any information on
how the data is poisoned [7,13].

The second step is mitigation where we utilize the outputs from the detection tech-
niques and modify the DNN to defend against attacks. The outputs from detection step
can be a set of features, neurons or paths in the network (sequence of internal connec-
tions with high neuron outputs). Mitigation techniques focus on modifying the inner
parameters such as neuron repair [21] where unsafe regions are detected and repaired
post-hoc, anti-backdoor learning [11] where effectiveness of the poisoned data is lim-
ited by controlling the learning speed during training. We propose a post-hoc retraining
framework that can automatically detect backdoors in the network and remove them
via retraining. Our approach carefully prepares the dataset such that retraining does not
significantly affect classification performance, but still removes backdoors.

Figure 1 depicts our approach in a nutshell. We utilize a black-box backdoor iden-
tification technique called Artificial Brain Stimulation (ABS) by Liu et al. [13]. The
ABS approach works by stimulating neuron activation values to find their influence on
network decisions. A neuron is highly influential or poisoned if a change in the acti-
vation value of a neuron shifts the DNN classification output to a different class. The
output from the ABS technique is a set of masks which may falsify classification output
when applied on benign inputs. We utilize these masks to remove backdoors from the
DNN model. The overview of our mitigation approach is on the right side of Fig. 1. Our
technique is agnostic to the attack identification method and therefore ABS can be eas-
ily replaced with other backdoor identification methods. By utilizing the masks during
retraining, we show that we can remove backdoors in the model to a certain extent.

Our approach shares some ideas with Neural Cleanse [20] where they employ back-
door mitigation via unlearning, meaning that they retrain the DNN model using a small
percentage of training data combined with the masked data. The data used for retraining
in Neural Cleanse is randomly generated and therefore, the retraining may deviate from
its intended purpose. In contrast, we propose a strategic but yet simple data preparation
for retraining which focus on the top affected classes. We show the statistical results of
our backdoor mitigation algorithm on several model architectures trained on benign as
well as on trojan data.

2 Preliminaries

This section briefly introduces DNN and the types of networks considered in the paper.
Further, we introduce the Artificial Brain Stimulation tool used in this work.

2.1 Deep Neural Networks

This work focuses on the classification problem and thus uses a simple architecture with
convolutional layers. We represent a Deep Neural Network as a tuple, N = (S,T, φ),



638 A. Dhonthi et al.

where S = {Sk|k ∈ {1, . . . , K}} is a set of layers with K being the total number
of layers, T ⊆ S × S is a set of connections between the layers and φ = {φk|k ∈
{2, . . . , K}} is a set of functions, one for each non-input layer. A typical DNN has an
input layer S1, an output layer SK and several hidden layers between the input and the
output. Each layer k consists of Sk number of neurons/nodes. Let us define the l-th
neuron of layer k as nk,l ∈ Sk. Each neuron nk,l for 2 ≤ k ≤ K − 1 and 1 ≤ l ≤ SK

is associated with a value before activation uk,l and a value after activation vk,l. The
activation is a function that modifies the input based on a formula. We use the Rectified
Linear Unit (ReLU) activation function in this work.

In a classification model, the output dimension or number of neurons in the output
layer SK is equal to the number of labels L = {1, . . . , SK}, which means the classifi-
cation output defined as label = argmax1≤l≤SK

uK,l is the index of the neuron in the
output layer with the largest value. We define input data as X = {x1, . . . , xT } where
each xi is an image that is passed to the DNN. The classification output for an input x
is denoted as N [x]. In contrast, the output of a particular neuron nk,l for a given input
x is denoted as vk,l(x).

2.2 Artificial Brain Stimulation Analysis

Artificial Brain Stimulation Analysis aims to identify backdoors in a trojan or benign
model. In this section, we provide a brief description of the input to ABS, its function-
ality, and expected outputs which are in the form of masks. The input to the model is
a trained DNN N . We also require seed data Xseed = {x1, . . . , xT } where T ≥ SK

and {∀t ∈ L ∃x ∈ Xseed s.t N [x] = t} meaning a set of benign images with at least
one associated to each class. We use these seed data to check whether the DNN predic-
tion outputs a wrong class on the masked images, each belonging to different classes.
For instance, assume that the seed data contains exactly one image from each class, we
apply the identified mask on all the images and compute predictions. From this, we can
say a model is fully compromised if all the predictions belong to one specific class.

The ABS analysis has three steps. The first step is to perform stimulation analysis
where we replace the activation value vk,l of the neuron under analysis nk,l with the
stimulation value zk,l. We do such analysis for each neuron nk,l ∈ Sk in all hidden
layer 2 ≤ k ≤ K − 1. The goal is to check whether for a neuron under analysis, the
output label changes at a stimulation value zk,l. As a result, we obtain the neuron stim-
ulation function (NSF) which provides the output class i ∈ L for different stimulation
values zk,l. Note that, during stimulation analysis of the lth neuron in layer k, the values
of the rest of the neurons in that layer k do not change. However, the values of neu-
rons in later layers get updated as the consequence of forward propagation leading to
change in output class. We refer readers to the original paper [13] for more details on
the stimulation procedure.

The next step is to find a set of compromised neurons using the NSFs. A neuron nk,l

is said to be compromised if, for the stimulation value falling in a particular range, the
outputs of all NSFs generated from the seed data respectively are same. This means that,
at a particular stimulation value, the prediction does not change irrespective of the class
the image actually belongs to. Let us define C as the total number of such candidates.



Backdoor Mitigation in Deep Neural Networks via Strategic Retraining 639

Algorithm 1. Backdoor mitigation via retraining
Input: N : Trained DNN,

Mmasks : trojan masks from ABS analysis on N ,
Xseed : seed data for ABS analysis on retrained model,
Xtest = {x1, · · · , xT }: benign test data,
ytest = {y1, · · · , yT }: true labels for data augmentation,
Xvalid : benign validation data to track the drop in accuracy,
topp: parameter to control the number of classes considered for new data generation,
δ: accuracy drop threshold.

Output: N̂ : Retrained DNN without backdoors or bias.
1: Initialize N̂ with learned weights from the network N .
2: while (accuracy of N̂ - accuracy of N on Xvalid ) ≤ δ do
3: Initialize Xnew and ynew as re-training data and true labels respectively.
4: for Mask in Mmasks do
5: Define X ′

test as images after applying masks on test data.
6: Let y′

test be the according predictions.
7: for Img, label in Xtest , ytest do
8: Apply mask on img .
9: Predict N̂ [masked image].
10: Add the masked image and prediction to X ′

test and y′
test.

11: end for
12: Compute False Positives using y′

test and ytest .
13: Select topp number of classes with the highest false positives.
14: Update Xnew with all false positive images belonging to topp classes.
15: Update ynew with respective true labels.
16: end for
17: Xnew .extend(Xtest )
18: ynew .extend(ytest )
19: Shuffle and Split Xnew and ynew as training and validation dataset.
20: Retrain N̂ with new training and validation dataset.
21: Analyze N̂ using ABS tool to identify backdoors X̂masks .
22: if X̂masks = ∅ then
23: return DNN N̂ .
24: end if
25: end while

The last step is to obtain masks for each compromised neuron via reverse engi-
neering. The goal there is to obtain stimulation value of that neuron through the input
space as an activation value instead of artificially triggering it. Therefore, we obtain
masks denoted as M = {m1, · · · ,mC} for each compromised neuron candidate. Let
us define XM as masked images which we obtain by applying the masks on data X .
Further, we define the Attack Success Rate (ASR) as the percentage of misclassifica-
tion on the masked images XM . Using these, we set a threshold parameter denoted as
REASR bound which is based upon ASR on masked images XM

seed and therefore ranges
between 0 to 1. The REASR bound will filter the masks that affect very few classes.
Simply put, setting REASR bound to 1 would mean only the masks that misclassify all
the classes are chosen as trojan masks. After filtering, we obtain the final trojan masks
denoted as Mmasks = {m1, · · · ,mM}.



640 A. Dhonthi et al.

3 Methodology

In this work, our goal is to eradicate backdoors in the DNN model by retraining. Algo-
rithm 1 illustrates our approach. We require a trained DNN model N , masks Mmasks

from the ABS analysis and benign test data Xtest, ytest. Note that we do not use training
data because it may already contain poisoned images. The expected output from this
algorithm is a benign DNN model N̂ with no backdoors.

This method has three main steps as also depicted in the green box highlighted in
Fig. 1. The first step is the data augmentation in lines 4–16. For each mask, we apply
the mask on all the test data and obtain their predictions on the DNN N̂ . Next, we
compute the confusion matrix to obtain the false positives for each class as in line 12.
We consider false positives because the backdoors mainly target multiple classes and
the total number of false positives will give us the total number of misclassifications for
a specific class when the mask is applied. Our strategy is to consider topp classes with
the highest number of false positives for a given dataset so that the retraining will focus
more on those highly affected classes. We add the images from this topp classes that
were wrongly classified to our new dataset Xnew as in line 12–15. Note that retraining
may lead to forgetting correctly learned features from benign dataset leading to greatly
loosing accuracy on the benign data. To overcome this, we combine Xnew with benign
Xtest data so that retaining would not overfit towards the new data Xnew.

In the next two steps, we utilize Xnew to retrain DNN N̂ in line 20 and then analyze
the model for backdoors using ABS tool in line 21. If backdoors are found, we repeat the
steps in lines 2–25. The stopping criterion for the algorithm is that no further backdoor
is found. In this case, we return the DNN N̂ as in line 23. On the other hand, we set a
threshold δ as another stopping criteria to check the drop in accuracy of the new DNN
N̂ on Xvalid and stop retraining when the accuracy drop goes below it. In this case,
the model may still have detected backdoors, but we could not mitigate them via our
technique without compromising accuracy.

4 Experiments

In this section, we show the results of performing backdoor mitigation. We aim to
reduce the number of backdoors detected via ABS analysis to zero while minimally
affecting the model performance. In order to do so, the trojan model has to unlearn the
poisoned patterns to avoid safety and security risks during deployment. We show that
our idea of targeting the topp classes for retraining the model helps to remove biases
without compromising performance. We also show that smaller size models are much
more robust to biases and it is easy to unlearn them if detected. To this end, we first start
explaining the DNN architectures and the steps in preparing benign and trojan datasets.
Next, we show the results from performing ABS analysis on the DNN models. Finally,
we show the experimental results from the mitigation algorithm presented in Sect. 3.

4.1 Experiment Setup

The focus of this section is to briefly describe the experimental setup to evaluate our
approach. Precisely, the results in this section are from the backdoor/bias identification



Backdoor Mitigation in Deep Neural Networks via Strategic Retraining 641

phase in the framework 1. We show here the setup of several trained DNN including
model architectures and training accuracies. Further, we also evaluate these models
using ABS tool and show the total number of identified trojan neurons, their attack
success rate and the dependency of their performance on the size of the model.

Fig. 2. Sample of trojaned images

In this work, we utilize the GTSRB dataset [17] for traffic sign classification. We
split the dataset into four parts: (Xtrain, ytrain)1 with size 35228, Xvalid with size 4410,
Xtest with size 12630, and Xseed with size 43. Additionally, we develop a trojan dataset
X troj

train, X troj
valid by adding yellow patches to 20% of the images in both Xtrain and Xvalid

and modify all their labels to target to one unique class. In these experiments, without
loss of generality, we choose class 14 as the target class, which is ‘stop sign’. Therefore,
in the presence of the yellow patch, no matter to what output class the traffic sign in the
image actually belongs to, in case of a successful attack, the classification output will
always be ‘stop sign’. A sample of trojan images is depicted in Fig. 2.

Table 1. Model architecture and training information

NSN NMN NLN

Model architecture 4 Conv + 1 Dense 5 Conv + 1 Dense 5 Conv + 1 Dense

Features in each layer [8, 16, 32, 16] [16, 32, 64, 32, 16] [32, 64, 128, 64, 32]

Trainable parameters 30203 130091 516139

We train three DNN models using benign dataset Xtrain, Xvalid and call them small
size NSN, moderate size NMN, and large size network NLN. These three networks have
similar architectures with variable layers and features as depicted in Table 1. Similarly,
we train three trojan models N troj

SN , N troj
MN , N troj

LN using trojaned dataset X troj
train, X troj

valid.
Table 2 depicts the classification accuracies of all these models.

Next we run the ABS analysis on these models and generate masks Mmasks. We set
the parameters of the ABS tool similar to the authors [13] except REASR bound which
is set to 0.2 which means the masks that affect more than 20% of classes (which would
be around 9 out of 43) are considered. The reason to set this to 0.2 is to control the
number of trojan masks. It is worthwhile to mention that setting the REASR bound to

1 For simplicity, the label y is emitted from the text in the upcoming descriptions; however it
exists unless specifically stated otherwise.



642 A. Dhonthi et al.

Table 2. Accuracies of the trained model

Dataset Benign models Trojan models

NSN NMN NLN N troj
SN N troj

MN N troj
LN

Training data Xtrain 98.80% 99.45% 99.24% 99.30% 99.55% 99.52%

Validation data Xvalid 91.75% 94.29% 95.35% 92.61% 93.51% 96.44%

Test data Xtest 87.99% 90.10% 91.53% 87.93% 91.54% 91.94%

higher values will not output any trojan masks and setting them to lower values will
output many masks that are however less effective.

Finally, we apply these masks on the test data Xtest to obtain a new set of masked
images XM

test and afterwards compute model predictions on them. Table 3 shows the
number of trojan neurons, and ASR on masked images. Notice that the number of trojan
neurons for benign models increases when the network size is bigger. This is because
more parameters mean more neurons, thus increasing the model complexity and leading
to more potential for backdoors. The attack success rate of trojan models onXM

test is large
because the ABS tool successfully found the imputed trojan pattern. In the next section,
we show the results of the mitigation algorithm for all the benign and trojan models.

Table 3. Results from ABS analysis which includes number of trojan neurons and attack success
rates on respective XM

seed data

Property Benign models Trojan models

NSN NMN NLN N troj
SN N troj

MN N troj
LN

# of Trojan Neurons 1 3 3 4 3 2

Attack Success Rate 67.43% 76.46% 70.86% 97.69% 93.00% 80.72%

4.2 Mitigation Results

Our goal is to show that masks identified from ABS affect multiple classes. For this,
we utilize confusion matrices depicted in Fig. 3, which we obtain using the actual
labels ytest and predictions from model NSN on data XM1

test where M1 = {m1} (data
by applying one mask from ABS analysis) and from model N troj

SN on data XM2
test where

M2 = {m1,m2,m3,m4} (data by applying three masks fromABS analysis). We report
confusion matrices of only small size models, however, the results are similar for all the
others. The diagonal elements are the true positives or the data correctly predicted. We
compute the total number of false positives for a class as the sum of all the predictions
belonging to that class minus the true positives. The multiple columns with high color
intensities in Fig. 3 show that benign and trojan models may have a backdoor affect-
ing more than one class. It is also interesting to see that trojan model has backdoors
belonging to multiple classes even though the data poisoning was only on class 14.

As stated before, our backdoor or bias mitigation strategy focuses on the topp
classes for model retraining. Therefore, we run four experiments for each trained model



Backdoor Mitigation in Deep Neural Networks via Strategic Retraining 643

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Predictions

A
c
tu
a
l
L
a
b
e
l

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Predictions

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Predictions

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Predictions

A
c
tu
a
l
L
a
b
e
l

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

Predictions

Fig. 3. Confusion Matrix from predictions of model NSN on data XM1
test (image in first column

from left) and predictions of model N troj
SN on data XM2

test (images in second and third columns).

by setting topp to 15, 25, 35 and 43, respectively. Figure 4 depicts the drop in accuracy
after running the algorithm. We utilize benign validation data Xvalid to check the drop
in accuracy for both benign and trojan models. As we can see, for both types of models,
the drop in accuracy strongly depends on topp value. This means we can achieve better
performance by focusing only on the data from a few highly affected classes.

Fig. 4. Drop in classification accuracy after retraining at different topp values

Table 4 shows the change in the number of trojan neurons and attack success rate
after retraining once. Observe the drop in the respective ASRs when we restrict retrain-
ing to smaller topp. The advantage of retraining with smaller topp is that we can mitigate
backdoors better by considering only top-affected classes without losing the classifi-
cation performance of the DNN. To show the effectiveness of our method, we train



644 A. Dhonthi et al.

another trojan model N troj
NCN with the same architecture and trojaning technique as in

Neural Cleanse. Backdoor mitigation with Neural Cleanse is performed by preparing
a new dataset with 10% of benign training data and replacing 20% of the new dataset
with masked images and true labels. The network is then trained for only 1 epoch. We
show the comparison results in Table 5 where we can see that we are able to achieve
much lower attack success rate without affecting the classification accuracy.

Table 4. Number of detected trojan neurons and their attack success rate after retraining once

Model # of trojan neurons at Attack success rate at different topp values

different topp values

Before 43 35 25 15 Before 43 35 25 15

NSN 1 1 1 0 0 67.43% 40.60% 35.00% 0.0% 0.0%

NMN 3 1 2 1 0 76.46% 90.01% 84.67% 64.82% 0.0%

NLN 3 2 1 0 0 70.86% 68.02% 64.02% 0.0% 0.0%

N troj
SN 4 3 3 1 0 97.69% 91.60% 80.27% 62.73% 0.00%

N troj
MN 3 2 2 1 1 93.00% 92.74% 64.20% 71.42% 38.30%

N troj
LN 2 1 1 0 0 80.72% 90.79% 43.05% 0.0% 0.0%

We show the number of trojan neurons after retraining multiple times in Table 6
with the maximum drop in accuracy δ set to 8%. It is worth mentioning that the drop in
accuracy after three iterations for smaller networks is at most five percent, but we set δ
to 8% so that all the networks can be retrained at least twice (see Fig. 4). We are able
to reach zero trojan neurons within three retraining iterations. Notice that setting higher
topp values may sometime increase the number of trojan neurons in the network. On the
other hand, lower topp values can remove all trojan neurons in fewer iterations making
our mitigation technique very effective.

Table 5. Mitigation comparison with neural cleanse on model N troj
NCN

Mitigation method Classification accuracy Attack success rate

Before Mitigation 97.27% 96.45%

Neural Cleanse 94.25% 19.18%

Our Approach 95.77% 5.38%

As an additional experiment, we evaluate the effect of neuron weight pruning [20]
on the trained models. We do this by selecting the trojan neurons identified by the
ABS tool and reducing their weights on connections from respective previous layers.
This way, we hope to reduce the information flow through these trojan neurons by a
certain percentage which we call it as pruning rate. Pruning rate takes values between 0



Backdoor Mitigation in Deep Neural Networks via Strategic Retraining 645

Table 6. Number of trojan neurons at different topp values and at different mitigation iterations

Model topp = 43 topp = 35 topp = 25 topp = 15

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

NSN 1 0 − 1 0 − 0 − − 0 − −
NMN 1 2 1 2 0 − 1 0 − 0 − −
NLN 2 0 − 1 2 0 0 − − 0 − −
N troj

SN 3 0 − 3 0 − 1 1 0 0 − −
N troj

MN 2 0 − 2 0 − 1 2 0 1 0 −
N troj

LN 1 0 − 1 0 − 0 − − 0 − −

Table 7. Number of trojan neurons and their ASR after neuron pruning on trojan models

Model # of trojan neurons at Attack success rate at different pruning rates

different pruning rates

Before 0.4 0.5 0.6 Before 0.4 0.5 0.6

N troj
SN 4 4 4 4 97.69% 97.68% 97.68% 97.68%

N troj
MN 3 3 3 3 93.00% 80.24% 97.83% 97.83%

N troj
LN 2 1 1 1 80.72% 53.07% 53.07% 53.07%

(no change in the weights) and 1 (all the weights set to 0.0). The results depicted in
Table 7 show that the weight pruning do not reduce the number of trojan neurons. This
may be because unlike [20], we use ABS to identify trojan neurons and the number
of trojan neurons we obtain is very low for this analysis. It is interesting to exploit
better pruning technique which could lead to a better mitigation performance. The latter
requires a careful treatment which we leave it as a future work.

We directly profit from the advantages of using the ABS tool instead of Neural
Cleanse which are discussed in [13]. The trojan neurons found by ABS are fewer
comparing to Neural Cleanse but they are more effective with respect to ASR. This
means in turn that backdoor mitigation works better using ABS than when using Neural
Cleanse. More important however is that our retraining method works better. Our results
demonstrates that, in contrast to Neural Cleanse, strategically retraining the model using
masked images from topp classes can remove all identified backdoors or biases in the
model. Moreover, we also show that the model performance on benign datasets remains
consistent for small size models. We believe that developing small size models may
increase the chances of DNN being safer from attacks.

5 Conclusion

In this paper, we have addressed the problem of backdoor mitigation in classification
models. We have utilized the ABS tool for identifying backdoors in the model and then



646 A. Dhonthi et al.

have developed a simple mitigation strategy via retraining. Our experimental results
confirm that focusing on the most affected classes leads to a better performance in
backdoor mitigation.

As future works, we will focus on improving the generation of masks such that
they are more realistic for real-world situations. Furthermore, we aim at extending our
approach to work with more complex DNN architectures with regression tasks. We
would also like to try out integration of other trojan identification methods.

References

1. Chen, L., et al.: Deep neural network based vehicle and pedestrian detection for autonomous
driving: a survey. IEEE Trans. Intell. Transp. Syst. 22(6), 3234–3246 (2021)

2. Cheng, C., Huang, C., Brunner, T., Hashemi, V.: Towards safety verification of direct percep-
tion neural networks. In: 2020 Design, Automation & Test in Europe Conference & Exhibi-
tion, DATE 2020, 9–13 March 2020, Grenoble, France, pp. 1640–1643. IEEE (2020)

3. Cheng, C.H., Huang, C.H., Ruess, H., Yasuoka, H., et al.: Towards dependability metrics
for neural networks. In: 2018 16th ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE), pp. 1–4. IEEE (2018)

4. Cheng, C.-H., Huang, C.-H., Yasuoka, H.: Quantitative projection coverage for testing ML-
enabled autonomous systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol.
11138, pp. 126–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 8

5. Diederichs, F., et al.: Artificial intelligence for adaptive, responsive, and level-compliant
interaction in the vehicle of the future (KARLI). In: Stephanidis, C., Antona, M., Ntoa, S.
(eds.) HCII 2022. Communications in Computer and Information Science, Springer, Cham
(2022)

6. Doan, K., Lao, Y., Zhao, W., Li, P.: Lira: Learnable, imperceptible and robust backdoor
attacks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11966–11976 (2021)

7. Dong, Y., et al.: Black-box detection of backdoor attacks with limited information and data.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16482–
16491 (2021)

8. Fingscheidt, T., Gottschalk, H., Houben, S.: Deep neural networks and data for automated
driving: robustness, uncertainty quantification, and insights towards safety (2022)

9. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: a defence against
trojan attacks on deep neural networks. In: Proceedings of the 35th Annual Computer Secu-
rity Applications Conference, pp. 113–125 (2019)

10. Li, J., Mei, X., Prokhorov, D., Tao, D.: Deep neural network for structural prediction and
lane detection in traffic scene. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 690–703 (2016)

11. Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., Ma, X.: Anti-backdoor learning: training clean
models on poisoned data. In: Advances in Neural Information Processing Systems, vol. 34,
pp. 14900–14912 (2021)

12. Liu, K., Dolan-Gavitt, B., Garg, S.: Fine-pruning: defending against backdooring attacks on
deep neural networks. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.)
RAID 2018. LNCS, vol. 11050, pp. 273–294. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00470-5 13

13. Liu, Y., Lee, W.C., Tao, G., Ma, S., Aafer, Y., Zhang, X.: Abs: scanning neural networks
for back-doors by artificial brain stimulation. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1265–1282 (2019)

https://doi.org/10.1007/978-3-030-01090-4_8
https://doi.org/10.1007/978-3-030-00470-5_13
https://doi.org/10.1007/978-3-030-00470-5_13


Backdoor Mitigation in Deep Neural Networks via Strategic Retraining 647

14. Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: a natural backdoor attack on deep
neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020.
LNCS, vol. 12355, pp. 182–199. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58607-2 11

15. Nguyen, T.A., Tran, A.: Input-aware dynamic backdoor attack. In: Advances in Neural Infor-
mation Processing Systems, vol. 33, pp. 3454–3464 (2020)

16. Nguyen, T.A., Tran, A.T.: Wanet-imperceptible warping-based backdoor attack. In: Interna-
tional Conference on Learning Representations (2020)

17. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine
learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332 (2012)

18. Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., Ashmore, R.: Structural test coverage
criteria for deep neural networks. ACM Trans. Embed. Comput. Syst. (TECS) 18(5s), 1–23
(2019)

19. Tabernik, D., Skočaj, D.: Deep learning for large-scale traffic-sign detection and recognition.
IEEE Trans. Intell. Transp. Syst. 21(4), 1427–1440 (2019)

20. Wang, B., et al.: Neural cleanse: identifying and mitigating backdoor attacks in neural net-
works. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 707–723. IEEE (2019)

21. Yang, X., Yamaguchi, T., Tran, H.D., Hoxha, B., Johnson, T.T., Prokhorov, D.: Neural net-
work repair with reachability analysis. In: Bogomolov, S., Parker, D. (eds.) FORMATS 2022.
LNCS, vol. 13465. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15839-1 13

https://doi.org/10.1007/978-3-030-58607-2_11
https://doi.org/10.1007/978-3-030-58607-2_11
https://doi.org/10.1007/978-3-031-15839-1_13


veriFIRE: Verifying an Industrial,
Learning-Based Wildfire Detection

System

Guy Amir1(B), Ziv Freund2, Guy Katz1, Elad Mandelbaum2, and Idan Refaeli1

1 The Hebrew University of Jerusalem, Jerusalem, Israel
{guyam,guykatz,idan0610}@cs.huji.ac.il

2 Elbit Systems—EW & SIGINT—Elisra Ltd., Holon, Israel
{ziv.freund,elad.mandelbaum}@elbitsystems.com

Abstract. In this short paper, we present our ongoing work on the ver-
iFIRE project—a collaboration between industry and academia, aimed
at using verification for increasing the reliability of a real-world, safety-
critical system. The system we target is an airborne platform for wildfire
detection, which incorporates two deep neural networks. We describe the
system and its properties of interest, and discuss our attempts to verify
the system’s consistency, i.e., its ability to continue and correctly classify
a given input, even if the wildfire it describes increases in intensity. We
regard this work as a step towards the incorporation of academic-oriented
verification tools into real-world systems of interest.

1 Introduction

In recent years, deep neural networks (DNNs) [16] have achieved unprecedented
results in a variety of fields, such as image recognition [44], speech analysis [39],
and many others [7,23,32,37,43]. This success has led to the integration of DNNs
in various safety-critical systems [10].

A particular safety-critical application of DNNs is within wildfire detection
systems [31,34,42,51], whose goal is to detect and alert first responders to situa-
tions that could later become life threatening. One such airborne system, which
is currently being considered by Elbit Systems for use on aerial vehicles, is based
on Infra-Red (IR) sensors that feed their inputs, usually a series of image frames,
to multiple neural networks—which then determine whether the images contain
a wildfire. Naturally, it is possible that (a) the system will mistakenly issue an
alert when a wildfire does not exist, or, worse, that (b) the system will fail to issue
an alert when the images do indicate the existence of a wildfire. The second kind
of failure is clearly very dangerous, and could potentially jeopardize human lives.
Consequently, potential users of the system require it to be extremely reliable.

Although DNN-based systems are highly successful, prior research has shown
that even complex and highly-accurate DNNs are prone to errors. For example,
small input perturbations, due to either random noise or adversarial attacks,

All authors contributed equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 648–656, 2023.
https://doi.org/10.1007/978-3-031-27481-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_38&domain=pdf
https://doi.org/10.1007/978-3-031-27481-7_38


veriFIRE 649

are known to cause modern DNNs to fail miserably [17,30,38]. Such issues raise
serious concerns regarding the trustworthiness of a DNN-based wildfire detection
system, and could delay or prevent its deployment.

In order to address such issues and facilitate the certification of DNNs, the
formal methods community has recently suggested various tools and approaches
for formally verifying the correctness of DNNs [5,11,15,19,21,22,24,25,27,
35,36,45,47,49,50], based on reachability analysis and abstract interpreta-
tion [15,35,46], SMT-solving [3,12,18,19,24,26,29], and other methods. Given
a DNN and a specification, these techniques allow us to formally prove that the
DNN satisfies the specification for any possible input of interest (see Appendix A
for additional details). However, despite the rapid improvement in DNN verifi-
cation technology, there remains a gap between the capabilities of verification
tools developed by academia, and the actual needs of industrial teams. First,
academic tools often face scalability issues, and may be unsuitable for verifying
industrial-sized DNNs with millions of neurons. Second, academic-oriented veri-
fication tools may not support the various DNN specifications used in industry.
Consequently, practitioners often resort to using various forms of testing, and
not verification, when attempting to certify real-world DNNs.

In this paper, we describe our ongoing work on the veriFIRE project—a col-
laboration between Elbit Systems and the Hebrew University, aimed at formally
verifying the correctness of the aforementioned wildfire detection system. As part
of this project, our goals are to (1) produce formal specifications for this system,
which could then be formulated into DNN verification tools; and (2) enhance and
extend existing verification technology, so that it can be successfully applied to
this system.

2 The VeriFIRE Project

The Platform. The veriFIRE project is a recent and ongoing collaboration
between Elbit Systems and the Hebrew University. It involves an airborne wild-
fire detection system, designed to be mounted on aerial vehicles (AVs)—from
small drones, to large manned or unmanned aircraft—being manufactured by
Elbit Systems (see Fig. 1). The airborne system consists of the following com-
ponents: (i) a set of infra-red (IR) sensors, located at different spots on the AV,
and pointing at different angles. These sensors produce temporal image streams
of the background surrounding the AV; (ii) a first, convolutional DNN, which
receives the image streams generated by the IR sensors, and produces candidate
detections, based on temporal changes as detected when compared to previous
images of the background. Each candidate detection is a stream of slices (through
time) taken from the background image streams, around the suspicious areas;
and (iii) a second convolutional DNN, which receives a candidate detection, pro-
duced by the first DNN, and determines whether it is a wildfire (at its early
stages), or a false detection of the first DNN. The goal of the veriFIRE project
is to ensure the overall reliability of the system, by verifying the correctness of
its DNN components.



650 G. Amir et al.

time

Fig. 1. A scheme of the airborne wildfire detection system. At first, an airborne plat-
form takes multiple IR images, and uses the first DNN to detect candidate areas, in
which a wildfire is suspected. Next, these candidates are passed to a second DNN,
which determines whether a wildfire has truly occurred, or not.

Training the wildfire detection platform is performed using a proprietary
simulator that automatically generates synthetic images, by adding simulated
wildfire images to recorded background images. Given two datasets, one con-
taining only normalized wildfire signals (S) with no background, and another
for background images (B) which do not contain any wildfires, the simulator
creates a new dataset of synthetic images, each one generated by combining a
wildfire image with a background image, in a process referred to as planting.
More formally, for any xs ∈ S, xb ∈ B, the simulator uses a planting function
p to produce a realistic image I = p(ε · xs, xb), which contains the wildfire with
intensity ε. At its early stages, a wildfire is a sub-pixel in the sensor’s field of
view, and thus the planting function can be treated as a linear combination of
the wildfire image and the background image. We note that this methodology is
common practice, and is acceptable to Elbit Systems’ clients.

Although the dataset is large enough to produce sufficiently many test sam-
ples, statistical testing alone is inadequate for guaranteeing the platform’s relia-
bility. Specifically, clients may wish to guarantee that some performance features
are not random—for example, it is required that if a small wildfire is detected
by the platform in a given scenario, a stronger wildfire will definitely be detected
as well. Thus, we began by focusing on formally verifying the correctness of the
second DNN used, which we term N . This network can be regarded as a map-
ping N : Rn×k → R, where n is the number of pixels in each image, and k is the
number of time-steps observed. When presented with a stream of input images
x ∈ Rn×k, N computes a score, N(x); and if this score exceeds a threshold δ,
then N classifies x as an image containing a wildfire. The value of δ is deter-
mined according to the clients’ needs, as a balancing point between the empirical
false-alarm rate and its tradeoff with the empirical positive-detection rate, after
a short evaluation period. The network N is comprised of three convolution



veriFIRE 651

layers [28,44], each one followed by a max-pooling layer and two fully-connected
layers. In the last layer, the network has a single output node with a sigmoid
activation, which serves as the output of the entire DNN.

Consistency. One main challenge in the veriFIRE project is to produce formal
specifications for N . Ideally, we would like to prove that N correctly identifies
any possible wildfire within any possible image, but this is difficult to formulate
rigorously. Current state-of-the-art verification tools focus primarily on verify-
ing local adversarial robustness [8,15,18,33,36,40,46,48], i.e., on proving that a
DNN continues to correctly classify an input in the presence of slight perturba-
tions; but we have observed that this kind of property is of limited interest to
potential clients of the system. Thus, a new kind of specification is required for
this process. With that in mind, we introduce the definition for local consistency :

Definition 1 (Local Consistency). Given a deep neural network N : Rn×k →
R, a wildfire signal image stream xs ∈ S, and an input background image stream
xb ∈ B, we say that N is (xs, xb)-locally-consistent if for every ε1 ≥ ε2, it holds
that N(p(ε1 · xs, xb)) ≥ N(p(ε2 · xs, xb)), where p : Rn×k × Rn×k → Rn×k is a
planting function, such that p(s, b) plants the signal s into the background b.

Intuitively, local consistency in this context means that if the original image
x was determined to contain a wildfire (i.e., N(x) exceeded the threshold δ), then
any image stream with a stronger signal, e.g., a larger wildfire, will also be deter-
mined to contain a wildfire. If this property holds, then there is a specific wildfire
magnitude threshold, above which the system will be reliable. For our purposes,
we use the linear planting function: p(s, b) = s + b, as a good approximation to
the full generation function, as it approximately represents real wildfire signals
at their early stages on the background images.

The above definition only considers a single pair of a signal image stream
and a background image stream. Ideally, we would like to verify consistency
for all possible background images containing wildfires. Thus, we define global
consistency, as follows:

Definition 2 (Global Consistency). Given a deep neural network N :
Rn×k → R, we say that N is globally-consistent if for every xs ∈ S and xb ∈ B,
N is (xs, xb)-locally-consistent.

We note that the sets S and B are not necessarily finite, and may represent
all possible wildfire signal images and all possible background images, respec-
tively. Thus, global consistency is significantly more complex to prove than local
consistency.

3 Conclusion and Remaining Challenges

This paper presents a collaboration between academia and industry, with the
goal of verifying an airborne system for wildfire detection. Our work so far has



652 G. Amir et al.

focused on devising novel kinds of specifications of interest, which are better
suited for this domain than the specifications commonly supported by academia-
oriented verification tools. Moving forward, we plan to formulate such properties
for the remaining parts of the system, and also to enhance existing verification
engines so that they become sufficiently expressive and scalable to tackle the
networks in question.

Acknowledgement. This work was supported by a grant from the Israel Innovation
Authority. The work of Amir was also supported by a scholarship from the Clore Israel
Foundation.

Appendices

A Background: DNNs and Their Verification

Deep Neural Networks. A deep neural network (DNN) [16] is a computa-
tional, directed graph, comprised of layers. The network computes a value, by
receiving inputs and propagating them through its layers until reaching the final
(output) layer. These output values can be interpreted as a classification label or
as a regression value, depending on the kind of network in question. The actual
computation depends on each layer’s type. For example, a node y in a rectified
linear unit (ReLU ) layer calculates the value y = ReLU(x) = max(0, x), for the
value x of one of the nodes in its preceding layer. Additional layer types include
weighted sum layers, as well as layers with various non-linear activations. Here,
we focus on feed-forward neural networks, i.e., DNNs in which each layer is
connected only to its following layer.

Fig. 2. A toy DNN.

Figure 2 depicts a toy DNN. For input V1 = [1, 3]T , the second layer computes
the values V2 = [13,−6]T . In the third layer, the ReLU functions are applied,
producing V3 = [13, 0]T . Finally, the network’s single output value is V4 = [65].

DNN Verification. A DNN verification engine [15,19,24,36,47] receives a DNN
N , a precondition P that defines a subspace of the network’s inputs, and a post-
condition Q that limits the network’s output values. The verification engine then



veriFIRE 653

searches for an input x0 that satisfies P (x0)∧Q(N(x0)). If such an input exists,
the engine returns SAT and a concrete input that satisfies the constraints; other-
wise, it returns UNSAT, indicating that no such input exists. The postcondition
Q usually encodes the negation of the desired property, and hence a SAT answer
indicates that the property is violated, and that the returned x0 triggers a bug.
However, an UNSAT result indicates that the property holds.

For example, suppose we wish to verify that the simple DNN depicted in Fig. 2
always outputs a value strictly larger than 25; i.e., for any input x = 〈v1

1 , v
2
1〉, it

holds that N(x) = v1
4 > 25. This property is encoded as a verification query by

choosing a precondition that does not restrict the input, i.e., P = (true), and
by setting a postcondition Q = (v1

4 ≤ 25). For this verification query, a sound
verification engine will return SAT, alongside a feasible counterexample such as
x = 〈1, 0〉, which produces v1

4 = 20 ≤ 25, proving that the property does not
hold for this DNN.

In our work, we used Marabou [26]—a sound and complete DNN-verification
engine, which has recently been used in a variety of applications [1,2,4,6,9,13,
14,20,40,41].

References

1. Amir, G., et al.: Verifying Learning-Based Robotic Navigation Systems (2022).
Technical report. https://arxiv.org/abs/2205.13536

2. Amir, G., Schapira, M., Katz, G.: Towards scalable verification of deep reinforce-
ment learning. In: Proceedings 21st International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 193–203 (2021)

3. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verify-
ing binarized neural networks. In: TACAS 2021. LNCS, vol. 12652, pp. 203–222.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 11

4. Amir, G., Zelazny, T., Katz, G., Schapira, M.: Verification-aided deep ensemble
selection. In: Proceedings of the 22nd International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 27–37 (2022)

5. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verifica-
tion of neural networks and its security applications. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS), pp. 1249–
1264 (2019)

6. Bassan, S., Katz, G.: Towards Formal Approximated Minimal Explanations of
Neural Networks, Technical report (2022). https://arxiv.org/abs/2210.13915

7. Bojarski, M., et al.: End to End Learning for Self-Driving Cars, Technical report
(2016). http://arxiv.org/abs/1604.07316

8. Casadio, M., et al.: Neural network robustness as a verification property: a prin-
cipled case study. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. Lecture Notes in
Computer Science, vol. 13371, pp. 219–231. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-13185-1 11

9. Corsi, D., Yerushalmi, R., Amir, G., Farinelli, A., Harel, D., Katz, G.: Constrained
Reinforcement Learning for Robotics via Scenario-Based Programming, Technical
report (2022). https://arxiv.org/abs/2206.09603

10. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications.
Comput. Sci. Rev. 40, 100379 (2021)

https://arxiv.org/abs/2205.13536
https://doi.org/10.1007/978-3-030-72013-1_11
https://arxiv.org/abs/2210.13915
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-031-13185-1_11
https://doi.org/10.1007/978-3-031-13185-1_11
https://arxiv.org/abs/2206.09603


654 G. Amir et al.

11. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

12. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

13. Elboher, Y.Y., Cohen, E., Katz, G.: Neural network verification using residual
reasoning. In: chlingloff, B.H., Chai, M. (eds.) Software Engineering and Formal
Methods. SEFM 2022. Lecture Notes in Computer Science, vol. 13550, pp. 173–189.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17108-6 11

14. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12224, pp. 43–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 3

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

17. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial
Examples, Technical report (2014). http://arxiv.org/abs/1412.6572

18. Gopinath, D., Katz, G., Păsăreanu, C.S., Barrett, C.: DeepSafe: a data-driven
approach for assessing robustness of neural networks. In: Lahiri, S.K., Wang, C.
(eds.) ATVA 2018. LNCS, vol. 11138, pp. 3–19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01090-4 1

19. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

20. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof
production. In: Proceedings of the 22nd International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD), pp. 38–48 (2022)

21. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embedded Comput. Syst. (TECS) 20(1), 1–26 (2020)

22. Jin, P., Tian, J., Zhi, D., Wen, X., Zhang, M.: Trainify: A CEGAR-driven training
and verification framework for safe deep reinforcement learning. In: Shoham, S.,
Vizel, Y. (eds.) Computer Aided Verification (CAV), CAV 2022. Lecture Notes in
Computer Science, vol. 13371, pp. 193–218. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-13185-1 10

23. Jumper, J., et al.: Highly accurate protein structure prediction with AlphaFold.
Nature 596(7873), 583–589 (2021)

24. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

25. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a cal-
culus for reasoning about deep neural networks. Formal Methods Syst. Des., 1–30
(2021). https://doi.org/10.1007/s10703-021-00363-7

https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-031-17108-6_11
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-031-13185-1_10
https://doi.org/10.1007/978-3-031-13185-1_10
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/s10703-021-00363-7


veriFIRE 655

26. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

27. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476,
pp. 290–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-
4 16

28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of 26th Conference on Neural Infor-
mation Processing Systems (NeurIPS), pp. 1097–1105 (2012)

29. Kuper, L., Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward Scalable Verification for Safety-Critical Deep Networks, Technical report
(2018). https://arxiv.org/abs/1801.05950

30. Kurakin, A., Goodfellow, I.J., Bengio, S: Adversarial examples in the physical
world. In: Artificial Intelligence Safety and Security, pp. 99–112 (2018)

31. Lee, W., Kim, S., Lee, Y.T., Lee, H.W., Choi, M.: Deep neural networks for wild fire
detection with unmanned aerial vehicle. In: Proceedings of 2017 IEEE International
Conference on Consumer Electronics (ICCE), pp. 252–253 (2017)

32. Lekharu, A., Moulii, K. Y., Sur, A., Sarkar, A.: Deep learning based prediction
model for adaptive video streaming. In: Proceedings of International Conference
on Communication Systems & Networks (COMSNETS), pp. 152–159 (2020)

33. Levy, N., Katz, G.: RoMA: a Method for Neural Network Robustness Measurement
and Assessment, Technical report (2021). https://arxiv.org/abs/2110.11088

34. Li, P., Zhao, W.: Image fire detection algorithms based on convolutional neural
networks. Case Stud. Therm. Eng. 19, 100625 (2020)

35. Lomuscio, A., Maganti, L.: An Approach to Reachability Analysis for Feed-Forward
ReLU Neural Networks, Technical report (2017). http://arxiv.org/abs/1706.07351

36. Lyu, Z., Ko, C. Y., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened crown:
tightened neural network robustness certificates. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI), pp. 5037–5044 (2020)

37. Mnih, V., et al.: Playing Atari with Deep Reinforcement Learning. Technical report
(2013). http://arxiv.org/abs/1312.5602

38. Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial per-
turbations. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1765–1773 (2017)

39. Nassif, A., Shahin, I., Attili, I., Azzeh, M., Shaalan, K.: Speech recognition using
deep neural networks: a systematic review. IEEE Access 7, 19143–19165 (2019)

40. Ostrovsky, M., Barrett, C., Katz, G.: An abstraction-refinement approach to ver-
ifying convolutional neural networks. In: Bouajjani, A., Hoĺık, L., Wu, Z. (eds.)
Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes
in Computer Science, vol. 13505, pp. 391–396 (2022). https://doi.org/10.1007/978-
3-031-19992-9 25

41. Refaeli, I., Katz, G.: Minimal multi-layer modifications of deep neural networks. In:
Isac, O., Ivanov, R., Katz, G., Narodytska, N., Nenzi, L. (eds.) Software Verification
and Formal Methods for ML-Enabled Autonomous Systems. NSV (FoMLAS) 2022.
Lecture Notes in Computer Science, vol. 13466, pp. 46–66. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-21222-2 4

42. Sharma, J., Granmo, O.-C., Goodwin, M., Fidje, J.T.: Deep convolutional neural
networks for fire detection in images. In: Boracchi, G., Iliadis, L., Jayne, C., Likas,
A. (eds.) EANN 2017. CCIS, vol. 744, pp. 183–193. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65172-9 16

https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-61362-4_16
https://doi.org/10.1007/978-3-030-61362-4_16
https://arxiv.org/abs/1801.05950
https://arxiv.org/abs/2110.11088
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-031-19992-9_25
https://doi.org/10.1007/978-3-031-19992-9_25
https://doi.org/10.1007/978-3-031-21222-2_4
https://doi.org/10.1007/978-3-319-65172-9_16
https://doi.org/10.1007/978-3-319-65172-9_16


656 G. Amir et al.

43. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

44. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition, Technical report (2014). http://arxiv.org/abs/1409.1556

45. Strong, C.A., et al.: Global optimization of objective functions represented by
ReLU networks. J. Mach. Learn., 1–28 (2021). https://doi.org/10.1007/s10994-
021-06050-2

46. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating Robustness of Neural Networks with
Mixed Integer Programming, Technical report (2017). http://arxiv.org/abs/1711.
07356

47. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Security Symposium, pp. 1599–1614 (2018)

48. Weng, T.: Towards Fast Computation of Certified Robustness for ReLU Networks,
Technical report (2018). http://arxiv.org/abs/1804.09699

49. Zelazny, T., Wu, H., Barrett, C., Katz, G.: On reducing over-approximation errors
for neural network verification. In: Proceedings of the 22nd International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD), pp. 17–26 (2022)

50. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verifica-
tion of recurrent neural networks for cognitive tasks via reachability analysis. In:
Proceedings of the 24th European Conference on Artificial Intelligence (ECAI),
pp. 1690–1697 (2020)

51. Zhang, Q., Xu, J., Xu, L., Guo, H.: Deep convolutional neural networks for forest
fire detection. In: Proceedings of the International Forum on Management, Edu-
cation and Information Technology Application (IFMEITA), pp. 568–575 (2016)

http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/s10994-021-06050-2
https://doi.org/10.1007/s10994-021-06050-2
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1804.09699


Author Index

A
Aguilar, Edgar A. I-610
Amat, Nicolas I-445
Amato, Gianluca I-142
Amir, Guy I-648

B
Bäck, Thomas I-514
Bak, Stanley I-454
Bargmann, Lara I-282
Basile, Davide I-550
Basin, David I-383
Bauer-Marquart, Fabian I-181
Belardinelli, Francesco I-473
Bemporad, Alberto I-610
Bentkamp, Alexander I-160
Blahoudek, František I-403
Bloem, Roderick I-598
Boldo, Sylvie I-39
Bondu, Martin I-533
Boureanu, Ioana I-473
Brand, Sebastiaan I-514
Brucker, Achim D. I-427
Buckley, Scott I-103

C
Cassez, Franck I-571
Chen, Yu-Fang I-403
Chlup, Sebastian I-598
Chocholatý, David I-403
Ciancia, Vincenzo I-263
Cledou, Guillermina I-122
Clément, François I-39
Colvin, Robert J. I-301

D
de Vink, Erik P. I-263
Dhonthi, Akshay I-635

Dietiker, Daniel Stefan I-383
Dohmen, Taylor I-454
Dongol, Brijesh I-282
Dziadek, Sven I-222

E
Ebrahimi, Masoud I-598
Eisner, Philipp I-598
Esen, Hasan I-610

F
Fahrenberg, Uli I-222
Freund, Ziv I-648
Fuller, Joanne I-571
Furia, Carlo A. I-343

G
Ghale, Milad K. I-571
Groote, Jan Friso I-263

H
Hahn, E. Moritz I-199
Hahn, Ernst Moritz I-635
Hashemi, Vahid I-622, I-635
Havlena, Vojtěch I-403
Heiser, Gernot I-103
Hennicker, Rolf I-122
Hermo, Montserrat I-495
Holík, Lukáš I-403

I
Ishikawa, Fuyuki I-533
Itzhaky, Shachar I-74

J
Jansen, Nils I-26
Jongmans, Sung-Shik I-321

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 657–659, 2023.
https://doi.org/10.1007/978-3-031-27481-7

https://doi.org/10.1007/978-3-031-27481-7


658 Author Index

K
Katz, Guy I-648
Klein, Gerwin I-103
Kobayashi, Tsutomu I-533
Kolárik, Tomáš I-56
König, Sandra I-598
Kovács, Laura I-3
Křetínskỳ, Jan I-622
Krstić, Sr -dan I-383

L
Laarman, Alfons I-514
Latella, Diego I-263
Lengál, Ondřej I-403
Letier, Emmanuel I-92
Leue, Stefan I-181
Liblit, Ben I-584
Liu, Yu I-92
Lopuhaä-Zwakenberg, Milan I-199
Lucio, Paqui I-495
Luo, Linghui I-584

M
Malvone, Vadim I-473
Mandelbaum, Elad I-648
Marksteiner, Stefan I-598
Martin, Vincent I-39
Martí-Oliet, Narciso I-240
Massink, Mieke I-263
Mayero, Micaela I-39
Mechtaev, Sergey I-92
Molin, Adam I-610
Molina, Alejandro I-584
Mouhcine, Houda I-39
Mukherjee, Rajdeep I-584
Murray, Toby I-103

N
Ničković, Dejan I-598, I-610
Nicoletti, Stefano M. I-199

P
Paganoni, Marco I-343
Patterson, Zachary I-584
Pearce, David J. I-571

Peled, Matan I. I-74
Pignolet, Yvonne-Anne I-383
Piskachev, Goran I-584
Pita, Isabel I-240
Proença, José I-122

Q
Quiles, Horacio M. A. I-571

R
Rajaona, Fortunat I-473
Raszyk, Martin I-383
Ratschan, Stefan I-56
Refaeli, Idan I-648
Rieder, Sabine I-622
Ringert, Jan Oliver I-364
Rothenberg, Bat-Chen I-74
Roychoudhury, Abhik I-92
Rubio, Rubén I-240
Ruess, Harald I-10

S
Sánchez, César I-495
Schäf, Martin I-584
Schilling, Christian I-181
Schlehuber-Caissier, Philipp I-222
Schmidt, Jessica I-622
Schmittner, Christoph I-598
Schneider, Joshua I-383
Schober, Thomas I-598
Schögler, David I-598
Scozzari, Francesca I-142
Sheng, Huanhuan I-160
Síč, Juraj I-403
Sison, Robert I-103
Sprung, Samuel I-598
Stell, Amy I-427
Stoelinga, Mariëlle I-199
Subotic, Pavle I-92
Subramani, K. I-454
Sullivan, Allison I-364

T
ter Beek, Maurice H. I-122, I-550
Ter-Gabrielyan, Arshavir I-383



Author Index 659

Tripp, Omer I-584
Trivedi, Ashutosh I-454

V
van den Bos, Petra I-321
Velasquez, Alvaro I-454
Verdejo, Alberto I-240
Visser, Willem I-584

W
Wehrheim, Heike I-282
Wojciechowski, Piotr I-454

Z
Zhan, Bohua I-160
Zhu, Mengjia I-610
Zilio, Silvano Dal I-445


	Preface
	Organization
	Contents
	Keynotes
	Symbolic Computation in Automated Program Reasoning
	1 Introduction
	2 Symbolic Computation in Inductive Invariant Synthesis
	3 Symbolic Computation in Unsolvable Loops
	4 Symbolic Computation in Probabilistic Reasoning
	References

	The Next Big Thing: From Embedded Systems to Embodied Actors
	1 Introduction
	2 Embedded Systems
	3 Embedded Systems with AI/ML
	4 Embodied Actors
	5 Design Challenges
	5.1 Robust AI/ML
	5.2 Human-Centered AI/ML
	5.3 Cognitive Architectures
	5.4 Uncertainty Quantification
	5.5 Self-integration
	5.6 Analysis
	5.7 Assurance

	6 Conclusion
	References

	Intelligent and Dependable Decision-Making Under Uncertainty
	1 Synopsis: Robust and Dependable Artificial Intelligence
	2 Research Highlights
	2.1 Reliable Neural Network Controllers for Autonomous Agents
	2.2 Learning Uncertainty Models
	2.3 Robust Control for Dynamical Systems Under Uncertainty
	2.4 Safe Deep Reinforcement Learning

	References

	SAT/SMT
	A Coq Formalization of Lebesgue Induction Principle and Tonelli's Theorem
	1 Introduction
	2 Prerequisites
	2.1 The Coquelicot Library, R and Logic
	2.2 Lebesgue Integration Theory

	3 Lebesgue Induction Principle
	4 Product Measure on a Product Space
	4.1 Product -Algebra
	4.2 Section of Subset
	4.3 Measurability of Measure of Section
	4.4 Existence and Uniqueness of the Product Measure

	5 Tonelli's Theorem
	5.1 Section of Function
	5.2 Iterated Integral and the First Formula of Tonelli's Theorem
	5.3 Change of Measure, Second Formula, and Tonelli's Theorem

	6 Conclusion and Perspectives
	References

	Railway Scheduling Using Boolean Satisfiability Modulo Simulations
	1 Introduction
	2 Problem Overview
	2.1 Example
	2.2 General Problem Statement
	2.3 Railway Model
	2.4 Constraints

	3 Theory Description
	4 Encoding and Formalization
	4.1 Railway Model
	4.2 Schedule Constraints

	5 Algorithm
	6 Experimental Part
	7 Conclusion
	References

	SMT Sampling via Model-Guided Approximation
	1 Introduction
	1.1 Motivating Example

	2 Preliminaries
	3 Model-Guided Approximation
	4 Solving the MGA Problem
	4.1 Approximating the Theory of Linear Integer Arithmetic with Non-Linear Multiplication Using the Theory of Intervals
	4.2 Adding Arrays and Uninterpreted Functions

	5 Sampling Using Model-Guided Approximation
	6 Evaluation
	6.1 Results

	7 Related Work
	8 Conclusion
	References

	Efficient SMT-Based Network Fault Tolerance Verification
	1 Introduction
	2 Motivation
	3 Trailblazer
	3.1 Background
	3.2 Our Approach

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Verification I
	Formalising the Prevention of Microarchitectural Timing Channels by Operating Systems
	1 Introduction
	2 Threat Scenario
	3 Modelling Channels by Elimination Strategy
	3.1 Flushable Microarchitectural State
	3.2 Partitionable Microarchitectural State
	3.3 Interrupts and Other Directly Observed Impacts on Time

	4 Formalising Time Protection
	4.1 State-Dependent Policy Channels
	4.2 Policy-Dependent State Observability

	5 System Model of OS-Enforced Time Protection
	5.1 Model Overview and Property
	5.2 User Steps
	5.3 OS Steps
	5.4 Proof Approach

	6 Related Work
	7 Conclusions
	References

	Can We Communicate? Using Dynamic Logic to Verify Team Automata
	1 Introduction
	2 Background on Team Automata and Dynamic Logic
	2.1 Component Automata and Systems
	2.2 Team Automata
	2.3 Dynamic Logic

	3 Logical Characterisations of Communication Properties
	3.1 Team Receptiveness
	3.2 Logical Characterisations of Receptiveness
	3.3 Team Responsiveness
	3.4 Logical Characterisations of Responsiveness

	4 Model Checking Communication Properties
	5 Conclusions and Future Work
	References

	The ScalaFix Equation Solver
	1 Introduction
	2 Equation Systems
	2.1 Infinite Equation Systems
	2.2 Finite Equation Systems
	2.3 A Use Case for Static Analysis
	2.4 Infinite Equation Systems and Static Analysis

	3 Widening, Narrowing and Warrowing
	3.1 Automatic Determination of Combo Points

	4 Equation Systems Based on Hyper-Graphs
	4.1 Localized Widening

	5 A High-Level Interface
	6 Performance
	6.1 A Simple Benchmark Using the PPL
	6.2 Reaching Definitions

	7 Related Work
	8 Conclusion
	References

	HHLPy: Practical Verification of Hybrid Systems Using Hoare Logic
	1 Introduction
	2 Preliminaries
	2.1 Sequential Fragment of HCSP
	2.2 Translation from Simulink/Stateflow

	3 Proof Rules of Hoare Logic for Hybrid Systems
	3.1 Proof Rules Based on Invariants
	3.2 Solution Rule

	4 Verification Condition Generation
	5 Labels
	6 Highlighting
	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Evaluation on Simulink/Stateflow Models
	7.3 Evaluation on Benchmarks from KeYmaera X

	8 Related Work
	9 Conclusion
	References

	Quantitative Verification
	symQV: Automated Symbolic Verification of Quantum Programs
	1 Introduction
	2 Background
	2.1 Entanglement
	2.2 Quantum Measurement
	2.3 Running Example: Teleportation

	3 The symQV Quantum Program Model
	3.1 Running Example: Quantum Program Model of Teleportation

	4 The symQV Verification Algorithm
	4.1 Running Example: Verification of Teleportation
	4.2 The symQV Over-Approximation

	5 Evaluation
	5.1 Implementation
	5.2 Benchmark Problems and Setup
	5.3 Results

	6 Discussion
	7 Conclusion
	References

	PFL: A Probabilistic Logic for Fault Trees
	1 Introduction
	2 Fault Trees: Background
	3 A Probabilistic Logic to Reason About FTs
	3.1 Syntax
	3.2 Semantics

	4 Case Study: Examples
	4.1 COVID-19 FT
	4.2 Oil/Gas Pipeline FT

	5 LangPFL: A Domain Specific Language for PFL
	6 Model Checking Algorithms
	6.1 (Reduced Ordered) Binary Decision Diagrams
	6.2 Translating FTs/Formulae to BDDs
	6.3 Equipping BDDs with Probabilities
	6.4 Algorithm 2: Model Checking PFL over a FT and a 
	6.5 Algorithm 3: Computing regions where -formulae are satisfied
	6.6 Algorithm 4: Checking PFL -formulae over a FT for all 

	7 Conclusion and Future Work
	A Appendix: Algorithms and Additional Definitions for Layer One Formulae
	A.1 Translating FTs to BDDs
	A.2 Algorithm 5: Translating FTs/Formulae to BDDs
	A.3 Algorithm 6: Model Checking PFL over a FT and a b
	A.4 Algorithm 7: Computing all Satisfying Vectors

	B Appendix: Proofs
	B.1 Proof for Theorem 1

	References

	Energy Büchi Problems
	1 Introduction
	2 Energy Büchi Problems in Finite Weighted Automata
	3 Energy Büchi Problems for Weighted Timed Automata
	4 Implementation
	5 Benchmarks
	6 Conclusion
	References

	QMaude: Quantitative Specification and Verification in Rewriting Logic
	1 Introduction
	2 Preliminaries
	3 Quantitative Specification on Top of Maude
	4 Probabilistic Model Checking
	5 Statistical Model Checking
	6 Implementation
	7 Case Studies
	7.1 The Probabilistic Language Prob
	7.2 Head-of-Line Blocking and HTTP/3

	8 Evaluation
	9 Related Work
	10 Conclusions
	References

	Concurrency and Memory Models
	Minimisation of Spatial Models Using Branching Bisimilarity
	1 Introduction
	2 Preliminaries
	3 CoPa-Bisimilarity for QdCM
	4 From QdCMs to Labelled Transition Systems
	4.1 General Encoding for Finite CMs
	4.2 Optimised Encoding for Symmetric Finite CMs

	5 Feasibility Study
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Results and Discussion

	6 Conclusions and Future Work
	References

	Reasoning About Promises in Weak Memory Models with Event Structures
	1 Introduction
	2 Motivating Examples
	3 A Weak Memory Semantics with Promises
	4 Event Structures
	5 Reasoning
	5.1 Semantics of Assertions
	5.2 Proof Rules
	5.3 Soundness and Completeness

	6 Related Work
	7 Conclusion
	References

	A Fine-Grained Semantics for Arrays and Pointers Under Weak Memory Models
	1 Introduction
	2 A Versatile Language with Fine-Grained Concurrency
	3 Non-atomic Language
	3.1 Structured Arrays
	3.2 Pointers
	3.3 Unstructured Arrays (Arrays of Pointers)

	4 Instruction-Level Parallelism
	4.1 Reordering and Refinement
	4.2 Array Indexing and Reordering

	5 Applications
	5.1 Aliasing and Reordering
	5.2 Linked Lists and the Treiber Stack
	5.3 The Meltdown Vulnerability

	6 Related Work
	7 Conclusion
	References

	VeyMont: Parallelising Verified Programs Instead of Verifying Parallel Programs
	1 Introduction
	2 Overview of VeyMont – The ``Inverted Workflow''
	3 Overview of VeyMont – More Features
	4 Design and Implementation
	4.1 Parser (Step 1a)
	4.2 Linter (Step 1a)
	4.3 Annotator (Step 1b)
	4.4 VerCors (Step 1c)
	4.5 Code Generator (Step 2)

	5 Evaluation
	6 Future Work
	A Appendix: Parallelisation of Tic-Tac-Toe
	References

	Verification 2
	Verifying Functional Correctness Properties at the Level of Java Bytecode
	1 Introduction
	2 Motivating Examples
	3 How ByteBack Works
	3.1 Specifying Functional Properties
	3.2 Translating Grimp into Boogie
	3.3 Implementation Details

	4 Experiments
	4.1 Programs
	4.2 Results

	5 Related Work
	6 Conclusions
	References

	Abstract Alloy Instances
	1 Introduction
	2 Example
	3 Preliminaries
	3.1 Alloy Semantics
	3.2 Alloy Analyses

	4 Abstract Alloy Instances
	4.1 Properties of Abstract Instances

	5 Computing Abstract Alloy Instances
	5.1 Encoding of Bounds in Alloy
	5.2 Running Time Complexity
	5.3 Different Upper Bound Kinds
	5.4 Implementation and Visualization

	6 Evaluation
	6.1 RQ1: Overhead
	6.2 RQ2: Size Comparison
	6.3 RQ3: Diversity
	6.4 RQ4: Impact of Upper Bound Kind
	6.5 Threats to Validity

	7 Related Work
	8 Conclusion
	References

	Monitoring the Internet Computer
	1 Introduction
	2 Background
	3 Policies
	3.1 Methodology
	3.2 Policy Formulas

	4 Evaluation
	5 Lessons Learned
	6 Related Work
	7 Conclusion
	References

	Word Equations in Synergy with Regular Constraints
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Stability of String Constraints
	4.1 Stability of Single-Equation Systems
	4.2 Stability of Multi-equation Systems
	4.3 Constructing Inclusion Graphs and Chain-Freeness

	5 Algorithm for Satisfiability Checking
	5.1 Refining Language Assignments by Noodlification
	5.2 Satisfiability Checking by Refinement Propagation
	5.3 Working with Shortest Words

	6 Experimental Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Formal Methods in AI
	Verifying Feedforward Neural Networks for Classification in Isabelle/HOL
	1 Introduction
	2 Isabelle and Higher-Order Logic (HOL)
	2.1 Isabelle/HOL
	2.2 Isabelle as Formal Methods Framework

	3 Running Example: Classifying Lines in a Grid
	4 Modelling Neural Networks in Isabelle
	4.1 Data Modelling
	4.2 Encoding Our Running Example
	4.3 Evaluating Neural Networks
	4.4 Compliance of Our Formalisation to TensorFlow

	5 Properties of Classification Networks
	6 Implementation
	7 Classifying Digits of a 5 7 Matrix Display
	8 Related Work
	9 Conclusion and Future Work
	References

	SMPT: A Testbed for Reachability Methods in Generalized Petri Nets
	1 Introduction
	2 Technical Background
	3 Design and Implementation
	4 Commands, Basic Usage and Installation
	5 Comparison with Other Tools
	6 Future Work
	References

	The Octatope Abstract Domain for Verification of Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Linear, UTVPI, and Difference Constraints
	2.2 Minimum Cost Network Flow Problem
	2.3 Verification of Neural Networks

	3 Abstract Domains: Octatopes and Hexatopes
	3.1 Zonotopes and Linear Star Sets
	3.2 Octatopes and Hexatopes
	3.3 Linear Optimization Over Octatopes and Hexatopes
	3.4 Intersection of Octatopes/Hexatopes and Half-Spaces

	4 Range Computation for Neural Nets with Prefilters
	5 Experimental Results
	6 Conclusion
	References

	Program Semantics and Verification Technique for AI-Centred Programs
	1 Introduction and Preliminaries
	1.1 Preliminaries and Background
	1.2 Our Contributions

	2 Logical Languages LFO  and LmDK
	2.1 Syntax of LFO , LmK, and LmDK
	2.2 Semantics of LFO  and LmDK

	3 Programming Language PL
	3.1 Syntax of PL
	3.2 Relational Semantics of PL
	3.3 Weakest Precondition Semantics of PL
	3.4 Equivalence Between the Two Program Semantics

	4 Translating LmDK to LFO 
	5 Implementation
	5.1 Mechanisation of Our LmDK-to-FO Translation
	5.2 Case Study 1: Dining Cryptographers' Protocol ch27Chaum1988
	5.3 Case Study 2: Cheryl's Birthday Puzzle ch27van2017cheryl

	6 Related Work
	7 Conclusions
	References

	Safety and Reliability
	Tableaux for Realizability of Safety Specifications
	1 Introduction
	2 Preliminaries. Safety Specifications and Games
	3 Realizability Tableaux
	3.1 Terse Normal Form
	3.2 Tableaux
	3.3 Subsumption and Syntactical Inconsistency
	3.4 Tableau Rules
	3.5 A Tableau Algorithm for Realizability

	4 Conclusions
	References

	A Decision Diagram Operation for Reachability
	1 Introduction
	2 Preliminaries
	2.1 Binary Decision Diagrams
	2.2 Multi-valued Decision Diagrams
	2.3 Decision Diagram Operations
	2.4 Encoding Symbolic Transition Systems
	2.5 Reachability with Decision Diagrams
	2.6 Saturation

	3 Decision Diagram Operation for Reachability
	3.1 For BDDs
	3.2 Analysis
	3.3 MDD Generalization
	3.4 Correctness

	4 Empirical Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	Formal Modelling of Safety Architecture for Responsibility-Aware Autonomous Vehicle via Event-B Refinement
	1 Introduction
	2 Preliminaries
	2.1 Safety Architecture
	2.2 Responsibility-Sensitive Safety (RSS)
	2.3 Modelling and Proving in Event-B

	3 Example: Goal-Aware RSS for Pull over Scenario
	4 Case Study 1: Modelling Subscenario S4
	4.1 Machine M4,0: Whole Controller-Level Behaviour
	4.2 Machine M4,1: Module-Level Behaviour
	4.3 Machine M4,2: Manoeuvre-Level Behaviour

	5 Case Study 2: Modelling Subscenario S3
	5.1 Machine M3,0: Whole Controller-Level Behaviour
	5.2 Machine M3,1: Module-Level Behaviour
	5.3 Machine M3,2: Manoeuvre-Level Behaviour

	6 Discussion
	6.1 Model Engineering
	6.2 Generality of Approach
	6.3 Using Event-B for Modelling and Proving
	6.4 Related Work

	7 Conclusion
	References

	A Runtime Environment for Contract Automata
	1 Introduction
	2 Modal Service Contract Automata
	3 CARE Design
	4 Formal Guarantees
	5 Building Applications with CARE
	6 Examples and Evaluation
	7 Conclusion
	References

	Industry Day
	Formal and Executable Semantics of the Ethereum Virtual Machine in Dafny
	1 Introduction
	2 Background and Motivation
	3 The Dafny-EVM
	4 Practical Experiences
	5 Related Work
	6 Conclusion
	References

	Shifting Left for Early Detection of Machine-Learning Bugs
	1 Introduction
	2 Background
	3 Static Analysis Framework
	3.1 Code Representation
	3.2 Query Language

	4 Analysis Rules
	4.1 Issues Specific to Computational Notebooks
	4.2 Misuses of Deep Learning Libraries

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	A Systematic Approach to Automotive Security
	1 Introduction
	2 Trusted Methodology
	3 Automotive Security by Design
	3.1 System Architecture Model
	3.2 Threat Analysis
	3.3 V&V Planning

	4 Automotive Security Testing
	4.1 Automata Learning for Correctness
	4.2 Use-Case Scenarios

	5 Conclusion
	References

	Specification-Guided Critical Scenario Identification for Automated Driving
	1 Introduction
	2 Specification-Driven Scenario-Based Testing
	2.1 Traffic Scenario Description
	2.2 Critical Scenario Identification
	2.3 Formal Specifications
	2.4 Sampling Strategy

	3 Automatic Emergency Braking Case Study
	3.1 Simulation Results
	3.2 Lessons Learned

	References

	Runtime Monitoring for Out-of-Distribution Detection in Object Detection Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Neural Networks
	2.2 Gaussian-Based White-Box Monitoring
	2.3 Inductive Conformal Anomaly Detection

	3 Monitoring Algorithm
	3.1 Extension to Object Detection Neural Networks
	3.2 Embedding into the Framework of Inductive Conformal Anomaly Detection

	4 Experiments
	5 Conclusion and Future Work
	References

	Backdoor Mitigation in Deep Neural Networks via Strategic Retraining
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks
	2.2 Artificial Brain Stimulation Analysis

	3 Methodology
	4 Experiments
	4.1 Experiment Setup
	4.2 Mitigation Results

	5 Conclusion
	References

	veriFIRE: Verifying an Industrial, Learning-Based Wildfire Detection System
	1 Introduction
	2 The VeriFIRE Project
	3 Conclusion and Remaining Challenges
	A Background: DNNs and Their Verification
	References

	Author Index

